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Foreword I

With the increasing demand of people for improved life quality, a large number of
mega projects spring up in our modern society. The successful construction and
sustainable operation of these mega projects mark not only the progress in modern
science and technology but also the significant development of human society and
civilization.

It is well known that the safety, reliability, and sustainability of a project depend
on an elaborate, skillful, and accurate design. Structural computation is, in turn, a
fundamental tool for its design, which provides the theories, methodologies, and
procedures for profoundly understanding the structural performances of the project.

Over the past three decades, China, a populated country, has witnessed rapid
economic and social development and risen to be a middle-income country. In the
process, the mega projects, such as high dams, motorways, high-speed trains,
ultra-long and deeply buried large-scale tunnels, and UHV grids, played crucial
roles.

To exploit and utilize the hydro and water resources of the rivers, China has
designed and built a great number of mega water resources and hydropower pro-
jects including the Three Gorges, Ertan, Xiaolangdi, Longtan, Xiaowan, Shuibuya,
Pubugou, Guangzhao, Xiluodu, Jinping-I, Jinping-II, and South-to-North Water
Diversion. These projects challenge the computational methods to tackle with high
dams, high and steep cut slopes, large and long hydraulic tunnels with high velocity
flow, deep overburden underground cavern clusters under complicated engineering
and hydrogeological conditions.

Computational methods have experienced remarkable advancement over the past
thirty years. They have evolved from the traditional empirical and semiempirical
material mechanics methods as well as rigid body limit equilibrium methods to the
nonlinear finite element method, non-continuum discrete element method, and other
numerical calculation methods. This should be attributed to not only the develop-
ment of modern computer technology but also the design and construction of
various mega projects. On one hand, the computational methods offered credible
and reliable scientific demonstration to the design of mega projects. On the other
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hand, these mega projects promoted the development of modern geomechanics and
computational methods.

Professor Chen Sheng-Hong has long been engaged in the research and devel-
opment of computational methods and computer software for geomaterials and
hydraulic structures. Paying special attention to laboratory experiments and in situ
testing validation, he links the theories with practice and has made considerable
innovative and practical research achievements. He harvested pragmatic results in
the fields like standard adaptive software of the finite element method and initiated
the block element analysis and composite element method which are influential
both in China and abroad. These methods cover reinforcement analysis, feedback
analysis, reliability analysis, seepage field and thermal field analysis, and multifield
coupling analysis. He also has realized the synergy of methods, models, parameters,
and hydraulic engineering structure safety. His theory and methodology have been
verified and widely applied in the dam construction works, underground works, and
artificial high slope works. They have offered solutions and scientific demonstra-
tions to the crucial technological challenges in the design of the key national
hydropower projects, such as Three Gorges, Longtan, Shuibuya, Guangzhao,
Xiluodu, Jinping-I, Pubugou, Xiaowan, and contributed greatly to the success of
project construction.

Professor Chen Sheng-Hong has won many science and technology awards
of the provincial, ministerial, and national levels as well as those of national
industry authorities and associations. He was honored as the Distinguished
Professor of the Wuhan University of Hydraulic and Electric Engineering, and the
Excellent Professor of Wuhan University, the Ministry of Water Resources, and the
Ministry of Education. He is also granted the special government allowance of the
State Council.

Professor Chen Sheng-Hong was invited as guest professor of Swiss Federal
Institute of Technology in Lausanne (EPFL, Switzerland) and Parma University,
Italy. He also worked as the guest professor in the Université des Sciences et
Technologies de Lille (Université Lille1, France) on a long-term basis. He opens
lectures overseas every year to teach advanced modern numerical computation
methods and programs. Since 2000, he acted as the member of Computational
Aspects of Analysis and Design of Dams, International Committee of Large Dam.

As the undergraduate and postgraduate schoolmate living in a same residence, as
well as the partner in the construction of many mega hydraulic projects, I and Prof.
Chen Sheng-Hong are good friends and colleagues. I am proud of his achievements
in academic theory and engineering technology related to the geomechanics and
hydraulic structures. I shall thank him for his valuable research findings to our
breakthrough in the key technology projects of high dams, high and steep cut
slopes, and large underground works. I am lucky to have read most of the manu-
scripts of this great book before publishing and deeply impressed by its rigorous
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theory, clear logic, as well as innovative and pragmatic contents. The book has both
historical texture and broad international vision. I am convinced that the book can
not only serve as the reference to technicians engaged in geomechanics and
hydraulic structures but also positively promote the health development of com-
putational methods.

Beijing, China Prof. Zhou Jianping
November 2017 Vice President, International

Commission on Large Dams;
Chief Engineer Power Construction

Corporation of China
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Foreword II

During the visit of my friend Prof. Chen Sheng-Hong to Lille last year (June–July,
2017), he kindly presented me with an advanced draft of Computational
Geomechanics and Hydraulic Structures and asked me to write a foreword. I was
greatly impressed by the extensive area covered in this book, by the scientific and
engineering basis of his works, and by the quality of the presentation. I accepted his
invitation with great pleasure.

From our first encounter in 20 years ago at Lille when he worked in the
Université des Sciences et Technologies de Lille (Université Lille 1, France) as the
guest professor until today, we have met regularly either in China or in Europe,
including his regular 1- to 3-month stay in Lille as guest professor in our university.
We succeeded in building a strong cooperation through yearly academic visits,
Ph.D. co-supervision, joint paper publication in international journals and confer-
ences, and the organization of lectures for postgraduate students and young
researchers. He is an enthusiastic, hardworking, and interdisciplinary engineering
scientist and university educator. I highly appreciated the scientific and the engi-
neering quality of the work of Professor Chen as well as that of his students. I am
also proud of that for years our university has opportunity to provide resources for a
portion of his theoretical researches and academic writings, which contribute to a
part of the coverage in this book.

Through this book, Prof. Chen enhances our library by a synthesis of more than
30 years of academic and professional experience in the field of computational
geomechanics and their use in the assessment of both the safety and performances
of hydraulic structures throughout their lifecycle covering design, construction, and
exploitation stages. At each stage, engineers have to deal with multiple analysis and
decision-making challenges, which are related to the complexity of the hydraulic
structures geometry, nonlinear behaviors of geomaterials, multiphysics and tran-
sient phenomena as well hydro-thermo-mechanical coupling. To cope with these
challenges, engineers need to enhance the conventional analysis tools by advanced
computational methods in order to consider complex issues, which could highly
influence the safety and performances of hydraulic structures.
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The works of this book resulted in significant advances in (i) the major issues
of the finite element method (FEM) in the analyses of hydraulic structures inclusive
error estimation and mesh refinement, thermomechanical and hydromechanical
coupling, reinforcement mechanism and modeling, parametric inverse and feedback
design, and safety calibration; (ii) the fundamentals of the block element analysis
(BEA) and its enhancement inclusive hybrid techniques, seepage analysis and
reinforcement analyses, as well as stochastic and dynamic analyses; (iii) the fun-
damentals of the composite element method (CEM) and its use in the reinforce-
ment, seepage, and thermal analyses.

It is remarkable that Prof. Chen has conducted a huge state-of-the-art study in the
field of computational geomechanics and hydraulic structures, and he crossed it
with his own academic and professional expertise in the computation methods,
laboratory tests and field observations, material properties and parametrical inverse,
safety calibration, and countermeasure design. He also presents his research phi-
losophy and skill with engineering cases such as the most famous hydraulic projects
of Three Gorges, Longtan, Shuibuya, Xiaowan, Guangzhao, etc. All these resulted
in this exceptional book, which I believe will be an important reference book in the
field of computational geomechanics and hydraulic structures. I would like to
outline that this book constitutes a kind of “encyclopedia” on the computational
geomechanics methods and their applications.

In conclusion, this book should be found in every public or private engineering
library, particularly in universities. Engineers and postgraduate students can find
comprehensive information about the fundamentals of the computational methods
in geomechanics as well as scientific and practical recommendations for the effi-
cient use of these methods in the analysis of hydraulic structures. Thanks to Prof.
Chen for this great contribution.

Lille, France Prof. Isam Shahrour
January 2018 Distinguished Professor

former Vice President Université Lille 1
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Preface

Hydraulic structures, particularly large underground caverns and high damswith their
vicinal high cut slopes, play core roles in hydraulic projects. Following the rapid
progress in the construction of mega hydraulic projects, China has reached interna-
tional level in the theories and technologies related to the project investigation,
research, design, construction, and management. The largest work completed in the
world, the Three Gorges Project, is installed with electric power generator capacity of
22,400 MW; the world highest arch dam (Xiaowan, H = 294.5 m; Jinping-I, H = 305
m), theworld highest concrete-faced rockfill dam (CFRD) (Shuibuya, H = 233m), the
world highest roller compacted concrete (RCC) gravity dam (Guangzhao, H = 200.5
m; Longtan, H = 192 m) are all erected in China.

Initiated in the 1960s and classified as a sub-discipline within computational
mechanics, computational geomechanics uses numerical methods to study the
phenomena governed by the principles of geomechanics. It is a successful paradigm
of interdisciplinary development supported by the applied mathematics and
mechanics as well as the computer science, and driven by engineering practices.
Since the 1980s, Chinese scientists and engineers have made significant contribu-
tions to the research and application of computational geomechanics attributable to
the impetus from the demands of civil engineering, environmental engineering,
mining and transportation engineering, and hydraulic engineering. Today, modern
computational geomechanics has profound influences on the design of giant and
complex engineering structures that would be previously very difficult or even
impossible to be appropriately analyzed using traditional calculation tools.

This book is mainly focused on the development and application of represen-
tative computational methods to estimate the performance and safety of hydraulic
structures from their planning and design phases to construction and service phases,
on which the author has been working since the mid-1980s. In addition, this book is
intended to show how to achieve a good correlation between the numerical com-
putation and the in situ behavior of the hydraulic structure, which is actually
attributable to a close collaboration of the author and his colleagues, friends, and
students with field engineers. In this book, the heuristic and visualized style is
attempted to disseminate the research philosophy and road map. The organization
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of various matters with typical methods (FEM, BEA, CEM) as warps and others
(physical fields and engineering practices) as woofs is meant to clearly and logically
elucidate the following aspects related to the subject of this book.

– Modeling of materials. The results of computational geomechanics for hydraulic
structures are significantly dependent on the models of rock-like materials
characterized by structure planes (rock discontinuities and concrete joints) and
mitigation countermeasure components (e.g., reinforcement, drainage, and
cooling). In the selection of constitutive models (relations) toward the definition
of rock-like materials, these characteristics should be simplified in a rational
way for the feasible and credible simulation of hydraulic structures (Chap. 2).
This philosophy is followed throughout the generation of computation meshes
(Chap. 3), the establishment of typical computational methods (Chaps. 4, 9 and
14), and the approaches of joints and reinforcement components (Chap. 6).

– Input of parameters. It is well known that the unsuccessful computation with
regard to hydraulic structures is often blamed on the inappropriate input
parameters defined in the material model. This is due to the difficulties arise
from laboratory and in situ tests in addition to environmental (stress/water
content/temperature) dependence. The laboratory test is suffered from stochastic
variation whereas the in situ test possesses poor representativeness entailed by
sample amount and high cost. Therefore, it is paramount to be involved in the
investigation and experiment works as deeply as possible toward a correct
interpretation of experimental data and a realistic evaluation of inputting
parameters. On the aspects of computation technique, parametric back or inverse
analysis is a supplementary approach to handle this issue subject to
well-installed instruments, good understanding of construction procedure, as
well as sufficient engineering experience (Chap. 7).

– Diversification of methods. Nowadays, there are a variety of modern computa-
tional methods available for geomechanics and hydraulic structures (Chap. 1),
although only three of them are representatively elaborated in this book (i.e., FEM,
BEA, and CEM). They may be roughly distinguished into entirely different two
classes according to their conceptualization of rock-like materials, i.e., the con-
tinuum or discontinuum, each of them reflects one extreme aspect of the hydraulic
structure encountered. The selection of the most representative ones is, however,
an open question. This is actually dependent on the problem type, the material, the
work situation, etc. Take a large rock block system for example, to understand its
post-failure movements, the DDA or DEM would be a good choice because they
permit decoupling of the block system.On the other hand,when the safetymargins
with respect to collapse/serviceability limit states are demanded, and suggestions
concerning the seepage/stabilization countermeasures are expected, the BEA
would be more appropriate attributable to its competent strength parameters and
clearly allowable safety factors stipulated in the design codes/specifications.
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Where the structural issue is very important and complex, it is suggestible to
exercise diverse methods (at least two) in addition to traditional tools. This phi-
losophy is followed throughout the whole book, and our readers will find that
several typical projects are studied by the FEM or/and BEA (CEM) in addition to
traditional LEM or/and TLM, plus geomechanical physical test.

Theoretically, “all-encompassing” methods covering continuum and discontin-
uum as well as finite and infinitesimal deformation, may be charming. Entailed by
the professional experience of the author, however, I have to say that this is actually
not very attractive and practical because it, if exists, would be too “precise” and
“delicate” to be competent to the “roughly estimated parameters” and complex
hydraulic structures.

– Standardization of preprocess. The computation procedure should been devel-
oped as not only to easily and reliably collect input data, but also to allow for the
standardized discretization of the hydraulic structure. The mesh density (size)
dependent on the structural configuration, exerted action, as well as the con-
struction manner and sequence, will significantly affect the calibration of the
local safeties (e.g., strength, allowable seepage gradient, cracking potentiality)
of a hydraulic structure. This is why the automatic block identification and mesh
generation (Chap. 3) and the adaptive refinement technology (Chap. 5) are
looked at as important contents in this book. From the standpoint of a practi-
tioner in the field of hydraulic engineering, automatic grid generation and
adaptive refinement in grid-dependent computational methods (e.g., the FEM)
may help to overcome the cumbersome preprocessing burden as well as to keep
the balance between computation effort and precision, by appropriately stipu-
lated discretization error tolerances in design codes/specifications for different
structure types and grades, rather than to pursue computation precision solely.

– Coupling of fields. Very often, groundwater appears in and affects hydraulic
structures. In addition, concrete placed onto the foundation undergoes strong
temperature fluctuation before and after being loaded. As a result, hydraulic
structures exhibit complex performances involving hydro-thermo-chemo-
mechanical fields which demand appropriate handling. Although various and
sophisticated coupling models with regard to the movement of water and heat
through the material skeleton and fractures (discontinuities and joints) are
available in the environmental engineering and nuclear power engineering,
yet in the hydraulic engineering normally only partial coupling of temperature
or/and seepage toward the deformation/stress needs to be taken into account
attributable to the lower action level (Chap. 2). Full coupling, particularly of
hydromechanical, is only sometimes encountered where the stress level in the
rock mass is high (e.g., arch dam abutments). Under such circumstances, the
coupling model should be rationally elaborated as simple as possible and its
coupling parameters should be accessible by experiments (Chap. 2) or in situ
back analysis (Chap. 8) subject to the conditions permitted for the project.
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– Interpretation of results and calibration of safety. Once the analysis has been
accomplished, it is necessary to display the results in such a way that they can be
easily understood and interpreted, based on which the safety calibration with
respect to the strength/seepage/temperature according to the design codes/
specifications is undertaken. The calibration criteria may be both of local and/or
overall (Chap. 4).

– Validation by test/observation and feedback. It is also highly important to check
the validation of computational solutions by comparing them with in situ
observed data. This is particularly presented in the study of Xiaowan Project
(Chap. 8) where the comparison of the FEM computation with the instrumen-
tation data is comprehensively carried out for the arch dam, and in the study of
Longtan Project (Chap. 9) where an abutment slope failure accident is captured
by the BEA.

This book may be looked at as an advanced continuation of the Hydraulic
Structures by the author published in 2015 which mainly deals with the investi-
gation, planning, design, construction, and management of hydraulic structures.
I was planning to finish my professional activities by that book and to launch a new
writing life that I have been dreaming since my childhood. However, the publi-
cation of the Hydraulic Structures was so welcome by the readers, and I was deeply
touched and proud of. Encouraged by my friends, colleagues, and students that I am
liable to further present the research achievements and engineering experiences of
my team, I have to continue technical writing and now, I feel in relief by con-
tributing this continuation book.

The basis of this book is established on my studies and practices conducted in
China over the decades with the help of my students partially recited as Dr. Chen
Shangfa, Dr. Wang Weiming, Dr. Xu Minyi, Dr. Fu Shaojun, Dr. Xu Qing,
Dr. Wang Shufa, Dr. Qiang Sheng, Dr. Hu Jing, Dr. Cheng Zhao, Dr. Xia Huaixiao,
Dr. Li Yongming, Dr. Fei Wenping, Dr. Qin Weixin, Dr. Feng Xuemin, Dr. Zheng
Huifeng, Dr. He Zegan, Dr. Xu Guisheng, Dr. Peng Chengjia, Dr. Fu Chenghua,
Dr. Xue Luanluan, and Dr. He Ji et al. I am so proud to see that most of them are
now successful university professors, consultant engineers, and enterprise man-
agers. In my engineering consultant and education works, I am very fortunate to
have chance to collaborate with Prof. Zhou Jianping (Chief Engineer of Power
Construction Corporation of China), Prof. Zou Lichun (Deputy President of
Kunming Engineering Corporation Limited, PowerChina), Prof. Yang Jiaxiu
(Deputy President of Guiyang Engineering Corporation Limited, PowerChina),
Prof. Feng Shurong (President of Zhongnan Engineering Corporation Limited,
PowerChina), Prof. Wang Renkun (Chief Engineer of Chengdu Engineering
Corporation Limited, PowerChina), Prof. An Shengxun (Deputy President of
Northwest Engineering Corporation Limited, PowerChina), et al. In the interna-
tional education and academic activities, the collaboration with my lifetime friends,
Prof. Peter Egger (EPFL, Switzerland) and Prof. Isam Shahrour (Lille University 1,
France), is the most important. In addition, I am really grateful to Wuhan University
for providing tolerant ivory tower and allowing time for me, to complete this book.
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Greater challenges await us in the next prospective decades. From 2011 to 2050,
under the state policy guidance for developing her vast western area, tens of mega
hydropower projects will be built in China. For example, the Motuo hydropower
project will be installed with generator capacity larger than 40,000 MW. These
milestone projects will further give strong impetus to push the technology of
hydraulic engineering in China up to an unprecedented level, and to provide ever
vast room for the progress in computational geomechanics. By the publishing of
this book, the author does wish to encourage our successors to take on historical
responsibilities by conducting more advanced and practical researches on the rel-
evant topics.

Wuhan, Hubei, P.R. China Sheng-Hong Chen

Preface xv



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Mathematical Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Computational Methods for Engineering Structures . . . . . . . . . . 5
1.4 History and State-of-the-Art of Computational Methods . . . . . . 7

1.4.1 3000 BC–300 BC. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.2 300 BC–1600 AD . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.3 1600s–1800s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.4 1800s–1940s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.5 1940s–1970s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.6 1970s–Today . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Concluding Remarks on the Computational Geomechanics for
Hydraulic Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.5.1 Understand of Engineering Problems . . . . . . . . . . . . . . 39
1.5.2 Selection of Computational Methods . . . . . . . . . . . . . . 40
1.5.3 Standardization of Computation Software . . . . . . . . . . 41
1.5.4 Evaluation of Material Models and Corresponding

Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.5.5 Safety Calibration of Hydraulic Structures . . . . . . . . . . 42
1.5.6 Work Style of Scientists and Artists . . . . . . . . . . . . . . 43

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2 Preparation Knowledge of Material Properties . . . . . . . . . . . . . . . . 59
2.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.2 Rock-like Materials and Auxiliary Materials . . . . . . . . . . . . . . . 62

2.2.1 Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.2.2 Rocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.2.3 Steel Bars and Wires . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.3 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.3.1 Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xvii



2.3.2 Rocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.3.3 Steel Bars and Wires . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.4 Permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.4.1 Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.4.2 Rocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.5 Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.5.1 Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.5.2 Rocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2.5.3 Cooling Pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

2.6 Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.6.1 Quasistatic and Cyclic Loading . . . . . . . . . . . . . . . . . . 98
2.6.2 Sustained Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

2.7 Yield and Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
2.7.1 Basic Strength Parameters . . . . . . . . . . . . . . . . . . . . . . 109
2.7.2 Yield (Failure) Criteria . . . . . . . . . . . . . . . . . . . . . . . . 120

2.8 Constitutive Relations: Elasticity . . . . . . . . . . . . . . . . . . . . . . . 134
2.8.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
2.8.2 Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
2.8.3 Rocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
2.8.4 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

2.9 Constitutive Relations: Viscoelasticity . . . . . . . . . . . . . . . . . . . 147
2.9.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
2.9.2 Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
2.9.3 Rocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

2.10 Constitutive Relations: Plasticity . . . . . . . . . . . . . . . . . . . . . . . 155
2.10.1 Classical Elasto-Plasticity Theory . . . . . . . . . . . . . . . . 155
2.10.2 Remarks on Other Plasticity Theories . . . . . . . . . . . . . 163

2.11 Constitutive Relations: Viscoplasticity . . . . . . . . . . . . . . . . . . . 165
2.11.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
2.11.2 Potential Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

2.12 Coupling Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
2.12.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
2.12.2 Partial Coupling: Explicit Thermal

to Stress/Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
2.12.3 Partial Coupling: Iterative Permeability

to Stress/Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

3 Geometrical Description and Discretization of Hydraulic
Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
3.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

3.1.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
3.1.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

xviii Contents



3.2 Fitting of Curved Lines and Surfaces . . . . . . . . . . . . . . . . . . . . 198
3.2.1 Curve Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
3.2.2 Surface Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
3.2.3 Surface/Surface Intersection . . . . . . . . . . . . . . . . . . . . 205

3.3 Geometrical Description of Hydraulic Structures
and Identification of Sub-domains . . . . . . . . . . . . . . . . . . . . . . 208
3.3.1 Concepts of Directed Geometrical Elements . . . . . . . . . 208
3.3.2 Database Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 210
3.3.3 Identification Procedures . . . . . . . . . . . . . . . . . . . . . . . 210
3.3.4 Handling of Special Cases . . . . . . . . . . . . . . . . . . . . . 214
3.3.5 Key Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

3.4 Two-Dimensional Mesh Generation by the AFT . . . . . . . . . . . . 220
3.4.1 Database Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
3.4.2 Generation of Triangular Element Mesh on Planar

Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
3.4.3 Generation of Quadrilateral Element Mesh on

Planar Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
3.4.4 Optimization of FE Mesh on Planar Surface . . . . . . . . 224
3.4.5 Generation of Triangular Element Mesh on Curved

Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
3.5 Three-Dimensional Mesh Generation by the AFT . . . . . . . . . . . 227

3.5.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . . . 227
3.5.2 Treatment of Complex Domain . . . . . . . . . . . . . . . . . . 229
3.5.3 Tetrahedral Mesh Generation . . . . . . . . . . . . . . . . . . . 230
3.5.4 Tetrahedral Mesh Improvement . . . . . . . . . . . . . . . . . . 231
3.5.5 Hexahedral Mesh Generation . . . . . . . . . . . . . . . . . . . 233

3.6 Verification Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
3.6.1 Example 1: Block System Identification . . . . . . . . . . . . 234
3.6.2 Example 2: Quadrilateral Mesh Generation . . . . . . . . . 236
3.6.3 Example 3: Tetrahedral Mesh Generation . . . . . . . . . . 237

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

4 Fundamentals of the Finite Element Method . . . . . . . . . . . . . . . . . 241
4.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
4.2 Shape Functions and Interpolations . . . . . . . . . . . . . . . . . . . . . 242

4.2.1 One-Dimensional Elements . . . . . . . . . . . . . . . . . . . . . 243
4.2.2 Two-Dimensional Elements . . . . . . . . . . . . . . . . . . . . . 248
4.2.3 Three-Dimensional Elements . . . . . . . . . . . . . . . . . . . . 253
4.2.4 Generalized Interpolation of State Variables . . . . . . . . . 259

4.3 Quasistatic Strain/Stress Problems . . . . . . . . . . . . . . . . . . . . . . 260
4.3.1 Solid Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
4.3.2 Joint Elements with Thickness . . . . . . . . . . . . . . . . . . 263

Contents xix



4.3.3 Joint Elements Without Thickness . . . . . . . . . . . . . . . . 265
4.3.4 Simulation of Excavation Disturbed (Damage)

Zone (EDZ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
4.4 Dynamic Strain/Stress Problems. . . . . . . . . . . . . . . . . . . . . . . . 272

4.4.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . 272
4.4.2 Solution Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 274
4.4.3 Modal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
4.4.4 Mode-Superposition . . . . . . . . . . . . . . . . . . . . . . . . . . 275
4.4.5 Response Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 277
4.4.6 Time-History Analysis . . . . . . . . . . . . . . . . . . . . . . . . 277
4.4.7 Dynamic Dam-Reservoir Interaction . . . . . . . . . . . . . . 279
4.4.8 Dynamic Dam-Foundation Interaction

and Seismic Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
4.4.9 Dynamic Material Parameters . . . . . . . . . . . . . . . . . . . 283

4.5 Seepage Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
4.5.1 Governing Equations and Solution Techniques . . . . . . . 284
4.5.2 Unconfined Seepage Problems . . . . . . . . . . . . . . . . . . 287
4.5.3 Seepage Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

4.6 Thermal and Thermal Stress Problems . . . . . . . . . . . . . . . . . . . 292
4.6.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
4.6.2 Governing Equations and Solution Techniques . . . . . . . 293
4.6.3 Temperature of Reservoir Water . . . . . . . . . . . . . . . . . 295
4.6.4 Actions of Temperature: Elastic Analysis . . . . . . . . . . . 300
4.6.5 Actions of Temperature: Viscoelastic Analysis

(Creep) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
4.7 Safety Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

4.7.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
4.7.2 Definition of Safety Factors . . . . . . . . . . . . . . . . . . . . 304
4.7.3 Searching for Overall Safety Factors . . . . . . . . . . . . . . 308

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

5 Adaptive Techniques in the Finite Element Method . . . . . . . . . . . . 315
5.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

5.1.1 H-Version of Refinement . . . . . . . . . . . . . . . . . . . . . . 316
5.1.2 P-Version of Refinement . . . . . . . . . . . . . . . . . . . . . . . 316
5.1.3 Motivations of Adaptive Study for Hydraulic

Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
5.2 H-Version of Refinement in Space Domain: Strain/Stress

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
5.2.1 Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
5.2.2 Error and Element Size Estimators . . . . . . . . . . . . . . . 319
5.2.3 Practical Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 321
5.2.4 Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

xx Contents



5.3 H-Version of Refinement in Space Domain:
Seepage Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

5.4 H-Version of Refinement in Time Domain:
Elasto-Viscoplasticity Problems . . . . . . . . . . . . . . . . . . . . . . . . 328
5.4.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
5.4.2 Refinement Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 330
5.4.3 Error Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
5.4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

5.5 P-Version of Refinement in Space Domain: Strain/Stress
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
5.5.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
5.5.2 Error Analysis and Refinement Strategies

for Elastic Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 335
5.5.3 Error Analysis and Refinement Strategies

for Elasto-Viscoplastic Problems . . . . . . . . . . . . . . . . . 343
5.5.4 Key Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

5.6 P-Version Refinement in Space Domain: Permeability
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
5.6.1 Error Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
5.6.2 Basic Solution Procedure . . . . . . . . . . . . . . . . . . . . . . 357

5.7 Verifications and Applications . . . . . . . . . . . . . . . . . . . . . . . . . 358
5.7.1 Adaptive Time-Stepping (H-Refinement) . . . . . . . . . . . 358
5.7.2 Two-Dimensional Underground Cavern

(H-Refinement) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
5.7.3 Three-Dimensional Underground Cavern

(H-Refinement) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
5.7.4 Two-Dimensional Embankment (H-Refinement) . . . . . . 360
5.7.5 Three-Dimensional Sluice Foundation

(H-Refinement) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
5.7.6 Jointed Sample Under Uni-Axial Pressure

(Complete P-Refinement) . . . . . . . . . . . . . . . . . . . . . . 363
5.7.7 Three-Dimensional Gravity Dam on a Homogenous

Foundation (Complete P-Refinement) . . . . . . . . . . . . . 367
5.7.8 Two-Dimensional Gravity Dam on a Heterogeneous

Foundation (Element P-Refinement) . . . . . . . . . . . . . . 367
5.7.9 Excavation of Slope: Ship Lock, Three Gorges

Project, China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
5.7.10 Stabilization of Landslide: Shuibuya Project,

China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

Contents xxi



6 Reinforcement Analysis Using the Finite Element Method . . . . . . . 387
6.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

6.1.1 Reinforcement Types and Mechanisms . . . . . . . . . . . . 387
6.1.2 History and State-of-the-Art . . . . . . . . . . . . . . . . . . . . 390

6.2 Equivalent Approach of Jointed Rock Masses Reinforced
by Fully Grouted Bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
6.2.1 Reinforcement Mechanism and Rheological

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
6.2.2 Basic Assumptions and Formularization . . . . . . . . . . . . 396
6.2.3 Constitutive Equations . . . . . . . . . . . . . . . . . . . . . . . . 397
6.2.4 Verification and Parametric Study . . . . . . . . . . . . . . . . 400

6.3 Equivalent Approach of Jointed Rock Masses Reinforced
by Fully Grouted Bolts and Shotcrete Lining . . . . . . . . . . . . . . 402
6.3.1 Reinforcement Mechanism and Rheological

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
6.3.2 Basic Assumptions and Formularization . . . . . . . . . . . . 405
6.3.3 Constitutive Equations . . . . . . . . . . . . . . . . . . . . . . . . 406
6.3.4 Verification and Parametric Study . . . . . . . . . . . . . . . . 409

6.4 Distinct Approach of Jointed Rock Masses Reinforced
by Fully Grouted Bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
6.4.1 Basic Assumptions and Formularization . . . . . . . . . . . . 412
6.4.2 Constitutive Equations . . . . . . . . . . . . . . . . . . . . . . . . 414
6.4.3 Governing Equations of the Bolt Element . . . . . . . . . . 415

6.5 Distinct Approach of Stranded Wire Cables . . . . . . . . . . . . . . . 418
6.5.1 Basic Assumptions and Formularization . . . . . . . . . . . . 418
6.5.2 Governing Equations of the Cable Element . . . . . . . . . 419
6.5.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

6.6 Engineering Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
6.6.1 Underground Cavern: Pubugou Project, China . . . . . . . 421
6.6.2 Cut Slope: Longtan Project, China . . . . . . . . . . . . . . . 427
6.6.3 Dam Foundation: Xiaoxi Project, China . . . . . . . . . . . . 436

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

7 Inverse and Feedback Analyses Based on the Finite Element
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
7.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

7.1.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
7.1.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

7.2 Back Analysis Issues in Hydraulic Structures . . . . . . . . . . . . . . 460
7.2.1 In Situ Geo-Stresses . . . . . . . . . . . . . . . . . . . . . . . . . . 461
7.2.2 Material Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 461
7.2.3 Model Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
7.2.4 Mathematical Tools . . . . . . . . . . . . . . . . . . . . . . . . . . 465

xxii Contents



7.3 Feedback Analysis Issues in Hydraulic Structures . . . . . . . . . . . 468
7.4 Regression Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

7.4.1 Multiple Linear Regression . . . . . . . . . . . . . . . . . . . . . 469
7.4.2 Stepwise Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 470
7.4.3 Model Tests and Diagnostics . . . . . . . . . . . . . . . . . . . 471
7.4.4 Verification Example: In Situ Geo-Stresses . . . . . . . . . 472

7.5 Computation Intelligence Methods . . . . . . . . . . . . . . . . . . . . . . 474
7.5.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
7.5.2 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . 474
7.5.3 Verification Example: In Situ Geo-Stresses . . . . . . . . . 480

7.6 Back Analysis of Permeability Tensor: Xiaowan Project,
China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
7.6.1 Presentation of the Project . . . . . . . . . . . . . . . . . . . . . 482
7.6.2 Characteristics of the Computation . . . . . . . . . . . . . . . 482
7.6.3 Procedures of the Back Analysis . . . . . . . . . . . . . . . . . 482
7.6.4 Computation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 485

7.7 Feedback Analysis of Excavated Rock Slope:
Three Gorges Project, China . . . . . . . . . . . . . . . . . . . . . . . . . . 486
7.7.1 Presentation of the Project . . . . . . . . . . . . . . . . . . . . . 486
7.7.2 Characteristics of the Computation . . . . . . . . . . . . . . . 486
7.7.3 Strategies of Feedback Analysis . . . . . . . . . . . . . . . . . 492
7.7.4 Computation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 494

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500

8 Comprehensive Application of the Finite Element Method:
Xiaowan Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
8.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
8.2 Presentation of the Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507

8.2.1 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
8.2.2 Engineering Geology . . . . . . . . . . . . . . . . . . . . . . . . . 508
8.2.3 Concrete Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
8.2.4 Construction Procedure . . . . . . . . . . . . . . . . . . . . . . . . 514
8.2.5 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

8.3 Back Analysis of the In Situ Geo-Stresses in the Dam Site . . . . 516
8.3.1 In Situ Geo-Stress Tests . . . . . . . . . . . . . . . . . . . . . . . 516
8.3.2 Characteristics of the Computation . . . . . . . . . . . . . . . 517
8.3.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . 518

8.4 Excavation and Reinforcement of the Dam Abutments . . . . . . . 521
8.4.1 Dominant Factors Influencing the Deformation

and Stability of the Dam Abutments . . . . . . . . . . . . . . 521
8.4.2 Characteristics of the Reinforcement Analysis . . . . . . . 522
8.4.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . 527

8.5 Excavation Induced EDZ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
8.5.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . 529
8.5.2 Preparations for Analysis . . . . . . . . . . . . . . . . . . . . . . 533

Contents xxiii



8.5.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . 533
8.6 Dam Concrete Placement and Reservoir Impoundment . . . . . . . 537

8.6.1 Generation of the Computation Meshes . . . . . . . . . . . . 537
8.6.2 Back Analysis Strategies . . . . . . . . . . . . . . . . . . . . . . . 539
8.6.3 Iterative Actions of Dam Foundation

and Dam Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
8.6.4 Spatial-Time Characteristics of the Dam Body . . . . . . . 541
8.6.5 Key Issues Solved with the Help of the DSXAD . . . . . 548

8.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558

9 Fundamentals of the Block Element Analysis . . . . . . . . . . . . . . . . . 561
9.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
9.2 Stability Problems of the Rock Wedge in Slope . . . . . . . . . . . . 562

9.2.1 Limit Equilibrium Method for the Wedge
Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562

9.2.2 Inspiration from the Finite Element Analysis . . . . . . . . 565
9.2.3 Improvement of the Limit Equilibrium Method . . . . . . 565

9.3 Establishment of the Block Element Analysis . . . . . . . . . . . . . . 567
9.3.1 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 567
9.3.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . 569
9.3.3 Numerical Integration on Discontinuity Network . . . . . 572
9.3.4 Searching for Safety Factors . . . . . . . . . . . . . . . . . . . . 574

9.4 Seepage Field for the Block Element Analysis . . . . . . . . . . . . . 574
9.4.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . 575
9.4.2 Discretization of Governing Equations . . . . . . . . . . . . . 577
9.4.3 Key Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
9.4.4 Verification Example . . . . . . . . . . . . . . . . . . . . . . . . . 579

9.5 Engineering Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
9.5.1 Natural Slope: Baozhusi Project, China . . . . . . . . . . . . 581
9.5.2 Cut Slope: Longtan Project, China . . . . . . . . . . . . . . . 584

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594

10 Adaptive Techniques in the Block Element Analysis . . . . . . . . . . . . 597
10.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
10.2 Inspiration from Physical Experiments . . . . . . . . . . . . . . . . . . . 598

10.2.1 Experimental Configuration . . . . . . . . . . . . . . . . . . . . . 598
10.2.2 Test and Computation Results . . . . . . . . . . . . . . . . . . . 599

10.3 Deformable Block Elements . . . . . . . . . . . . . . . . . . . . . . . . . . 600
10.3.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
10.3.2 Overlay Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
10.3.3 Deformation Compatibility Equation . . . . . . . . . . . . . . 602
10.3.4 Constitutive Equation . . . . . . . . . . . . . . . . . . . . . . . . . 602
10.3.5 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . 603

xxiv Contents



10.4 Procedure for Adaptive P-Refinement . . . . . . . . . . . . . . . . . . . 607
10.5 Verification Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608

10.5.1 Cantilever Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608
10.5.2 Simplified Gravity Dam . . . . . . . . . . . . . . . . . . . . . . . 609

10.6 Engineering Application: Baozhusi Project, China . . . . . . . . . . 612
10.6.1 Presentation of the Project . . . . . . . . . . . . . . . . . . . . . 612
10.6.2 Characteristics of the Computation . . . . . . . . . . . . . . . 613
10.6.3 Test Configuration and Procedure . . . . . . . . . . . . . . . . 616
10.6.4 Computation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 617

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619

11 Hybrid Methods Related to the Block Element Analysis . . . . . . . . . 621
11.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
11.2 Formulation of the Trial Load Method . . . . . . . . . . . . . . . . . . . 623

11.2.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
11.2.2 Governing Equations of Arch-Cantilever

System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
11.3 Hybrid of Block Element System with Arch-Cantilever

Element System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
11.4 Hybrid of Block Element System with Finite

Element System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
11.5 Verifications and Applications . . . . . . . . . . . . . . . . . . . . . . . . . 631

11.5.1 Cantilever Beam Example . . . . . . . . . . . . . . . . . . . . . . 631
11.5.2 Engineering Application: Dahuashui Project,

China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642

12 Expanding Study on the Block Element Analysis . . . . . . . . . . . . . . 645
12.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645
12.2 Reinforcement Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646

12.2.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646
12.2.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . 647
12.2.3 Equilibrium Equation of Reinforced

Block System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651
12.3 Stochastic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652

12.3.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652
12.3.2 First-Order Second Moment Method . . . . . . . . . . . . . . 655
12.3.3 Monte-Carlo Method . . . . . . . . . . . . . . . . . . . . . . . . . 658
12.3.4 Verifications and Applications . . . . . . . . . . . . . . . . . . . 659
12.3.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661

12.4 Seismic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
12.4.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . 661
12.4.2 Visco-Elastic Artificial Boundary . . . . . . . . . . . . . . . . 663
12.4.3 Verification Example . . . . . . . . . . . . . . . . . . . . . . . . . 666

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668

Contents xxv



13 Comprehensive Application of the Block Element Analysis:
Xiaowan Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671
13.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671
13.2 Presentation of the Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
13.3 Construction Period: Excavation and Reinforcement

of the Headrace Intake Slope . . . . . . . . . . . . . . . . . . . . . . . . . . 672
13.3.1 Characteristics of the Computation . . . . . . . . . . . . . . . 672
13.3.2 Stability of the Cut Slope Without

Reinforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674
13.3.3 Particularities in the Seismic Analysis . . . . . . . . . . . . . 674
13.3.4 Reinforcement Schemes . . . . . . . . . . . . . . . . . . . . . . . 679

13.4 Construction Period: Excavation and Reinforcement
of the Dam Abutments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682
13.4.1 Characteristics of the Computation . . . . . . . . . . . . . . . 682
13.4.2 Comparison and Screen of Alternative Reinforcement

Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684
13.4.3 Optimal Analysis for the Finial Reinforcement

Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685
13.5 Service Period: Abutment Slope Stability . . . . . . . . . . . . . . . . . 690

13.5.1 Characteristics of the Computation . . . . . . . . . . . . . . . 690
13.5.2 Computation Procedure . . . . . . . . . . . . . . . . . . . . . . . . 691
13.5.3 Computation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 692

13.6 Service Period: Abutment Stability and Dam Strength . . . . . . . . 695
13.6.1 Characteristics of the Computation . . . . . . . . . . . . . . . 695
13.6.2 Computation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 698

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705

14 Fundamentals of the Composite Element Method . . . . . . . . . . . . . . 707
14.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707
14.2 Strain-Stress Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710

14.2.1 Bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710
14.2.2 Structural Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711

14.3 Seepage Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712
14.3.1 Drainage Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712
14.3.2 Structural Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714

14.4 Thermal Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715
14.4.1 Cooling Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715
14.4.2 Lift Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717

15 Reinforcement Analysis Using the Composite Element Method . . . 721
15.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721

xxvi Contents



15.2 Fully-Grouted Rock Bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722
15.2.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722
15.2.2 Coordinate Systems and Transformation . . . . . . . . . . . 722
15.2.3 Constitutive Equations . . . . . . . . . . . . . . . . . . . . . . . . 723
15.2.4 Equilibrium Equations . . . . . . . . . . . . . . . . . . . . . . . . 724

15.3 Bonded Anchorage Head of Stranded Wire Cable
in Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729
15.3.1 Sub-Element Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 730
15.3.2 Composite Element Analysis . . . . . . . . . . . . . . . . . . . . 732

15.4 Hollow Friction (Swellex) Bolts . . . . . . . . . . . . . . . . . . . . . . . 734
15.5 Discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736

15.5.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736
15.5.2 Constitutive Equations . . . . . . . . . . . . . . . . . . . . . . . . 737
15.5.3 Equilibrium Equations . . . . . . . . . . . . . . . . . . . . . . . . 737

15.6 Jointed Rocks Reinforced by Fully-Grouted Bolts . . . . . . . . . . . 740
15.6.1 Sub-Element Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 740
15.6.2 Composite Element Analysis . . . . . . . . . . . . . . . . . . . . 743

15.7 Key Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746
15.7.1 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . 746
15.7.2 Assemble of Global Stiffness Matrix

and Load Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747
15.7.3 Hierarchical Refinement . . . . . . . . . . . . . . . . . . . . . . . 747

15.8 Verification Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747
15.8.1 Fully-Grouted Bolt . . . . . . . . . . . . . . . . . . . . . . . . . . . 747
15.8.2 Hollow Bolt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752
15.8.3 Stranded Wire Cable . . . . . . . . . . . . . . . . . . . . . . . . . 754
15.8.4 Hierarchical Refinement . . . . . . . . . . . . . . . . . . . . . . . 761
15.8.5 Joint Reinforced by Fully-Grouted Bolt . . . . . . . . . . . . 763

15.9 Engineering Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767
15.9.1 Gravity Dam: Baozhusi Project, China . . . . . . . . . . . . 767
15.9.2 Underground Cavern: Saizhu Project, China . . . . . . . . 774

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788

16 Seepage Analysis Using the Composite Element Method . . . . . . . . . 791
16.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791
16.2 Air Element for Drainage Holes . . . . . . . . . . . . . . . . . . . . . . . . 792

16.2.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792
16.2.2 Parametric Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 792

16.3 Composite Element for Drainage Holes . . . . . . . . . . . . . . . . . . 797
16.3.1 Coordinate Systems and Nomenclatures . . . . . . . . . . . . 797
16.3.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . 797
16.3.3 Numerical Integrations . . . . . . . . . . . . . . . . . . . . . . . . 801

Contents xxvii



16.4 Composite Element for Discontinuities . . . . . . . . . . . . . . . . . . . 803
16.4.1 Coordinate Systems and Nomenclatures . . . . . . . . . . . . 803
16.4.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . 803

16.5 Composite Element for Jointed Rocks Drained by Holes . . . . . . 807
16.5.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807
16.5.2 Sub-element Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 807
16.5.3 Composite Element Analysis . . . . . . . . . . . . . . . . . . . . 808

16.6 Hierarchical Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810
16.7 Validation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810

16.7.1 Drainage Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810
16.7.2 Jointed Rock Drained by Hole . . . . . . . . . . . . . . . . . . 812

16.8 Engineering Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815
16.8.1 Foundation Drainage: Luohansi Sluice Project,

China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815
16.8.2 Foundation Seepage Control: Baozhusi Project,

China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 829

17 Thermal Analysis Using the Composite Element Method . . . . . . . . 831
17.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831
17.2 Cooling Pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832

17.2.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . 832
17.2.2 Simplification of the Governing Equations . . . . . . . . . . 836

17.3 Lift Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 838
17.3.1 Segmental Form of Variational Function . . . . . . . . . . . 838
17.3.2 Governing Equations of the Composite Element

Containing Lift Joints . . . . . . . . . . . . . . . . . . . . . . . . . 839
17.4 Verifications and Applications . . . . . . . . . . . . . . . . . . . . . . . . . 841

17.4.1 Concrete Block Containing a Single Cooling Pipe . . . . 841
17.4.2 Concrete Block Containing a Single Lift Joint . . . . . . . 844
17.4.3 CVC Arch Dam: Xiaowan Project, China . . . . . . . . . . 847
17.4.4 RCC Gravity Dam: Guangzhao Project, China . . . . . . . 853

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859

18 Comprehensive Application of the Composite Element Method:
Numerical Test of Jointed Rock Masses . . . . . . . . . . . . . . . . . . . . . 861
18.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861
18.2 Mathematical and Mechanical Tools . . . . . . . . . . . . . . . . . . . . 863

18.2.1 Generation of Discrete Fracture Networks . . . . . . . . . . 863
18.2.2 Seepage Flow in Rock Fracture . . . . . . . . . . . . . . . . . . 864
18.2.3 Characteristics of the Permeability Tensor . . . . . . . . . . 864
18.2.4 Characteristics of the Elastic Compliance Matrix . . . . . 866

18.3 Numerical Test for Permeability Characteristics . . . . . . . . . . . . 868

xxviii Contents



18.3.1 Configuration of the Test . . . . . . . . . . . . . . . . . . . . . . 868
18.3.2 Computation of Permeability Coefficients . . . . . . . . . . 869
18.3.3 Identification of Permeability Tensor and REV . . . . . . 871

18.4 Numerical Test for Deformation Characteristics . . . . . . . . . . . . 871
18.4.1 Configuration of the Test . . . . . . . . . . . . . . . . . . . . . . 871
18.4.2 Computation of Deformation Coefficients . . . . . . . . . . 874
18.4.3 Identification of Elastic Compliance Matrix

and REV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875
18.5 Verification Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875

18.5.1 Permeability Tensor and REV . . . . . . . . . . . . . . . . . . . 875
18.5.2 Elastic Compliance Tensor and REV . . . . . . . . . . . . . . 883
18.5.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 888

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 888

Contents xxix



Chapter 1
Introduction

Abstract This chapter describes the connotation and denotation of computational
geomechanics (CG), a sun-branch of computational methods or mechanics
(CM) which is, in turn, the branch of modern mathematical modeling. The history
of the CM is logically unfolded following the evolution of human civilization, and
the state-of-the-art is examined with special reference to those who are most widely
or potentially exercised in hydraulic engineering. This introductory chapter is
concluded with comments and suggestions on the healthy development and suc-
cessful application of the CG for hydraulic structures.

1.1 General

Under environmental actions (or exerted loads), effects such as deformations
(deflections) and stresses will manifest within hydraulic structures. The failure will
further be triggered if the action effects exceed the bearing capacity of the structure.

Since the beginning of human civilization, the design of hydraulic structures has
evolved from primitive trial-and-error ventures to skillfully analytical approaches.
Early hydraulic structure construction was an uncertain art resting on cumulative
experiences. As the centuries unfolded, it was gradually merged with sciences and
technologies. Particularly, the theories of mathematics and mechanics played
increasingly important role in seeking safer design schemes. Nowadays, the anal-
ysis of action effects by means of laboratory physical modeling, field monitor
modeling, and mathematical modeling, is indispensable in the design for important
hydraulic structures (Chen 2015).

Physical modeling is a fundamental tool in the effect analysis of actions because
it may give straight forward and intuitionistic answers concerning the deformation
and failure of hydraulic structures. Even with the great progress in mathematical
modeling of recent decades, the physical modeling is still effective in the study of
structural problems with regard to cracking, sliding, and dynamic shaking for
important hydraulic structures. Physical modeling may be generally distinguished
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as brittle material modeling, geo-mechanical modeling and emulation modeling
according to the model materials used (Fumagalli 1973).

Technically, monitoring of hydraulic structures is related to instrumentation
sciences, computer sciences, modern mathematics, and is one of the most essential
branches of their safety management (ICOLD 1987, 1988; Dunnicliff 1990).
A successful safety monitoring system for hydraulic structures (e.g. dams) consists
of four functional components, i.e. instrumentation, data collection and manage-
ment, data evaluation and calibration, and response plan. Monitor modeling for the
interpretation and analysis of observed data is intended to answer the questions such
as “what is the real state of the hydraulic structure?” and “how far is the real state
shifted from the design stipulation and safety criteria?” Bearing these questions in
mind, it is apparent that the monitoring modeling plays a crucial role in the con-
struction and safety management of modern hydraulic structures (Ardito et al.
2008).

Mathematical modeling is another paramount tool in the analysis of action
effects for modern hydraulic structures (ICOLD 2001a, b, 2013). It makes use of
physical laws to build partial differential equations (PDEs) or their simplified
versions such as the limit equilibrium modeling (LEM), which are solved under
specific boundary and initial conditions. The major advantages of the mathematical
modeling are:

– It is relatively easier to build for the simulation of construction and operation
process;

– It may give prominence to the basic features of hydraulic structures, to ade-
quately implement the analysis of their working principles and failure
mechanism;

– It is sophisticated to carry out sensitive analysis by the adjustment of parameters
and factors, to understand the tendency and extent of their influences on
hydraulic structures, and to enlighten appropriate improvement- or/and
counter-measures in the design and construction stages.

The back (inverse) analysis or its evolutionary product—feedback analysis, is
actually a hybrid of monitor modeling and mathematical modeling in addition to
other auxiliary tools such as computational intelligence (CI) and decision sup-
porting system (DSS). It is prevalent in recent years for the dynamic design and
construction of important hydraulic structures (e.g. dams, cut slopes, underground
caverns and tunnels). Its researches and engineering practices have pushed the
structural design and construction techniques up to an unprecedented level.

The main coverage of this book is much more closely related to the mathe-
matical modeling, although physical modeling and monitor modeling are frequently
demonstrated where the validations and engineering applications are addressed.

2 1 Introduction



1.2 Mathematical Modeling

Typical mathematical modeling for hydraulic structures may be implemented by the
following approaches.

(1) Analytical method

A closed-form (analytical) solution using the mathematical model represented by its
specific PDE may be employed to directly calculate outputs after the plug of inputs
into the formula. It possesses an unique advantage over the others, namely, accu-
rate. Nevertheless, only under simple boundary and initial conditions such solution
may be fortunately worked out. Nowadays, these precious closed-form solutions
also play important roles in validating the computational solutions.

(2) Limit equilibrium method

The limit equilibrium method (LEM) makes use of a simplified version or a portion
of PDE (e.g. neglecting deformation compatibility condition and constitutive
relation), which is directly solved under the conditions of force or/and moment
equilibrium solely, to provide the factor of safety (FOS) for the hydraulic structure
concerned.

There are two approaches for determining the FOS against the loss of stability by
means of the LEM. The first one is based on the condition of stress/force equi-
librium at every point of a structure, the highest load or the lowest strength which
does not lead to the loss of equilibrium of the structure is sought; the second one
postulates the occurrence of a kinematically permitted failure mechanism, e.g. a
sliding prone rock mass along a potential slip surface, the most adverse slip surface
at which failure manifests, is sought (Bell 1968; Meyerhof 1984).

In the first approach, the state of stress in the structure must be pre-determined.
Owing to the statically indeterminate feature of various hydraulic structures,
deformation pattern must be taken into account. As a result, the stress-strain relation
of material must be established beforehand, afterwards solutions are worked out by
the application of computational methods (e.g. FEM). The main advantage of this
approach is that the analysis itself indicates zones where potential slip surfaces may
be evolved. Disadvantages lie in the extensive and complicated numerical com-
putations. Hence this approach is desirable in particular problems where the
structural deformation have to be explored.

The second approach consists of analyzing equilibrium along various kinemat-
ically potential slip surfaces and finding the most possible failure mode. It is
generally exercised for the routine stability verification of structural profiles.
Normally, this approach leads to a sufficiently convincible result and is very
attractive in the routine design due to its simplicity.

To handle special cases where the stability of rock masses is dominated by the
discontinuities, the key block theory (KBT) initiated independently by Warburton
(1983, 1993), Goodman and Shi (1985), is prevalent. Instead of utilizing any stress/
deformation analyses, it identifies “key blocks” in the rock mass formed by
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discontinuities and exposure surfaces that are prone to sliding and rotating in certain
directions. The key block theory, or simply block theory, enjoys wide applications
in the tunnel and cut slope stabilization (Yow 1990; Shi and Goodman 1990; Chern
and Wang 1993; Scott and Kottenstette 1993; Boyle and Vogt 1995; Nishigaki and
Miki 1995; Lee and Park 2000; Lee and Song 1998).

Although LEM algorithms for the various stability issues of hydraulic structures
(e.g. dam foundations, cut slopes) have been exercised for many years, yet it has
been questionable that for a statically indeterminate structure, assumptions on the
forces/moments are required to render the problem being statically determinate
(Londe 1965; Guzina and Tucovic 1969; Chan and Einstein 1981; Chen 1984).
Since such assumptions overlook several important factors lowering down the
stability of hydraulic structures, therefore the reliability of the LEM is not always
guaranteed and the risk of unsafe side design cannot be ruled out. A higher
allowable safety factor is normally stipulated in the design specifications to com-
pensate the deficits of the LEM, in an attempt to let engineers feel confidence that
the stability safety has been assured.

(3) Computational methods

The mathematical modeling and problem-solving oriented computation techniques
give birth to the discipline of “computation science” (CS). In practical use, it is
typically the application of computer simulation and other forms of computation
ranging from the numerical analysis for engineering structures to the solution for
other various scientific problems.

Nowadays, as a result of the fast development of computer industry and com-
putational techniques, the computation science is in parallel to the “theory” and
“experiment” to form three “pillars” in an ambition to understand the nature, and of
course, the hydraulic structures as well (Zhu 1998; Jing and Hudson 2002; Morton
and Mayers 2005; Zienkiewicz et al. 2005, 2013; Bobet et al. 2009; Anandarajah
2010).

The computational method or computational mechanics (CM) is a branch of the
computation science inter-disciplinarily supported by the mathematics, computer
science, mechanics, etc. Important specializations in the hydraulic structures where
the CM is widely exercised are the computational fluid dynamics, computational
thermodynamics, and computational solid mechanics. As a sub-branch of CM, the
computational geomechanics (CG) focusing on soils and rock-like materials (con-
crete and rocks), is the primary coverage of this book.

The subjects of mathematics mostly related to the CM are partial differential
equations (PDEs), linear algebra, and numerical analysis. PDEs entail the mathe-
matical model of various physical and mechanical phenomena in diverse subject
areas such as fluid dynamics and solid mechanics. Very frequently, these PDEs are
so complicated that finding their solutions in closed-form is neither possible nor
practicable, and we have to resort to seeking numerical approximations. In this
context, numerical analysis (NA)—the study of numerical approximation algo-
rithms for PDEs, is an important underpinning in the CM.
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1.3 Computational Methods for Engineering Structures

Scientists and engineers working in the field of computational methods for the
mechanical process of engineering structures, particularly hydraulic structures tar-
geted in this book, are customarily guided by the following task list.

– The pre-process for the real world entity representing a hydraulic structure is
carried out. This is normally accomplished by modeling a solid structure
inclusive its foundation, creating a discrete fracture network (DFN) inclusive
joints in the structure (Wilcock 1996), identifying sub-domains (blocks), and if
necessary (e.g. in FEM and FDM), discretizing the whole solid entity into a
mesh (grid) system.

– The mathematical model simulating a physical phenomenon is constructed. This
usually involves expressing the model in terms of PDEs. Of which, the con-
stitutive equations (relations) for the construction materials (e.g. rock, soil,
concrete) and their corresponding parameters are the most important factors
dominating the computation results.

– The mathematical model is converted into a form suitable for digital compu-
tation. This is mostly related to the areas of linear algebra (LA) and numerical
analysis (NA). Typically, this operation transfers a PDE (or a system thereof)
into a corresponding algebraic equation set, and is called “discretization”
because it creates an approximate discrete model from the original “accurate”
model. There are various algorithms for such a discretization dependent on the
basic conceptualizations and postulations with regard to the materials in the
structure, such as the FEM for continua, the DEM for discontinua, and hybrid
ones.

– Computer program is compiled (or revised) to solve the approximately dis-
cretized model using either direct methods (single marching scheme to obtain
the next step solution) or iterative methods (start with a trial solution and arrive
at the convergent solution by successively iterative refinement). The most
widely exercised programming languages in the science and engineering com-
munities are the Fortran and C++. Although they all possess well known pop-
ularity, yet the latter is becoming more and more prevalent because of its built-in
visualization functions. The proprietary language/environment MATLAB is also
widely employed, especially for a rapid application development and model
verification. Depending on the nature of the problem, supercomputers or parallel
computers may be demanded to run the program within acceptable time.

– Post-process and visualization. In order to help practitioners to understand, ana-
lyze, and debug computation results conveniently, as well as to add some fun to
their works, it is extremely encouraged to develop well performed post-process
software for vividly presenting the spatial-time distribution of physical and
mechanical fields (e.g. temperature, hydraulic head and flow rate, deformation/
stress and damage) in the structure concerned. All these are strongly dependent on
the scientific visualization which is an interdisciplinary branch of computer sci-
ence and hasmade rapid progress insofar (McCormick et al. 1987; Pickover 1994).
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There are basically two ways to realize scientific visualization. The traditional and
still effective approach is to run the computation software and save the output to a
file, afterwards use is made of a special post-process program to hard print or to
screen display the data. When the simulations are time consuming (“expensive”),
or the data sets are very large, this is often advisable. The second approach is to do
the visualization from within the computation program using language-callable
routines. The Fortran language itself does not possess universal graphical con-
structs, as exists in the C++ language. In the former case, a wide selection of
auxiliary software packages are now available (e.g. Dislin) where the emphasis is
on realistic renderings of volumes, surfaces, illumination sources, and so forth,
perhaps with a time component. In the latter case, many commercial software
packages such as ABAQUS, NASTRAN, ADYNA, ANSYS, etc., are equipped
with strong post-process modules.

– Safety calibration. For a hydraulic structure concerned, the run of computation
program provides the hydraulic potential and its gradient, temperature variation
and its gradient, deflection and stress, stability safety factor, etc. These indices
should be assessed for the purpose of safe and economical design of the
structure. There are basically three categories of safety criteria: those who
possess the feature of “point” or “local” such as the computed stress against the
allowable stress (strength), of “face” such as the slip driving force against the
allowable resistance force with regard to a specified surface (planar or curved),
and of “overall” such as the overall stability of the whole structure. It is rela-
tively easier to construct a point criterion with the computed action effects (e.g.
stress, hydraulic gradient) and correspondingly stipulated allowable indices.
Although sometimes the singularity points may bring about the difficulties in the
selection of appropriate action effects, yet the rendering processes such as the
equivalent stress for arch dams (Chen 2015) may be employed to tackle the
problem. Safety factor against sliding normally possesses a “face” feature.
Although it is less disturbed by the singularity points, yet paradoxically it
introduces difficulties in the construction of state function under the circum-
stances with curved slip surface due to the treatment of changeably directed
shear stresses. Towards establishing an “overall” stability safety criterion for the
structure using computational methods, either the “overload factor”—the ratio
of the ultimate load to the actual load exerting on the structure to bring it to a
state of limiting equilibrium, or the “strength reduction factor”—the ultimate
strength (resistance) divided by the mobilized stress (failure driving) to bring the
structure to a state of limiting equilibrium at incipient failure (Matsui and San
1992; Ugai and Leschinsky 1995; Dawson et al. 1999; Griffiths and Lane 1999),
may be employed. The allowable (permissible) factor of safety (FOS) is stip-
ulated according to the structure type and grade under definite load (action)
combination. It is worthwhile to note that all the afore-defined safety factors
exhibit different values, although in particular simple cases they could be
identical.
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The mathematical models, numerical procedures, and computer programs
(codes, software) should be thoroughly verified using either experimental data or
benchmarks (e.g. exact analytical solutions) available. Quite frequently, a new
numerical or computational method is calibrated by comparing its outputs with
those of existing well-established methods. It is appreciative that the “ICOLD
Committee on Computational Aspects of Dam Analysis and Design” had made
noteworthy contributions by organizing a series of “Benchmark Workshops” (al-
together 14 until 2017) intended to offer dam engineers and researchers the
opportunity to share their experiences of how to use computational methods
properly.

1.4 History and State-of-the-Art of Computational
Methods

The history of computation may date back to the dawn of human civilization (Klein
1972). The prehistory of arithmetic—precedence of computation, was limited to a
small number of artifacts which may indicate the conception of addition and sub-
traction. The best-known is the “Ishango bone” from central Africa dating from
between 20000 BC and 18000 BC, although its interpretation is still disputed
(Rudman 2007).

According to the knowledge of the author, the development of computational
methods may be roughly divided into 6 major periods according to the features of
mathematics, mechanics, and computation tools, which will be summarized below.

1.4.1 3000 BC–300 BC

This is a dawn period of computational methods in the human history featured by
arithmetic or elementary algebraic operations consisting of the study on numbers
and basic operations between them, namely the addition, subtraction, multiplication
and division (Struik 1987; Boyer 1991). The earliest written records indicate that
the Egyptians and Babylonians were able to conduct all these elementary arithmetic
operations as early as 2000 BC.

Complex calculations needed the assistance of tools such as counting board and
abacus. One of the earliest mathematical writings on a Babylonian tablet (YBC
7289) from the Old Babylonian period (1830–1531 BC) gave a three significant
sexagesimal digits (seven significant decimal digits) of

ffiffiffi

2
p

(Aaboe 2008), this
means that with the help of counting board, they were able to compute the sides of a
triangle (and hence square roots) which is extremely important in architecture and
astronomy. In the period between 2700 BC and 2300 BC saw the first appearance of
the Sumerian abacus, a table of successive columns which delimited the successive
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magnitude orders of their sexagesimal number system. Abacus is a high efficient
calculating tool that had been widely used in Europe, Russia, African and Eastern
Asian countries (particularly prevalent in China) for centuries and may still find it
application by merchants, traders and clerks in some parts of these countries. Sadly
however, it is seldom to find the use of abacus in China since the 1980s due to the
adoption and wide-spread of pocket electronic calculators, and recently, over-
whelming smart mobile phones.

1.4.2 300 BC–1600 AD

This is a period initiated from the Hellenistic civilization of ancient Greece whose
studies in mathematics overlapped with their philosophical and mystical beliefs.

Until the Hellenistic period the ancient Greeks lacked a symbol for zero, so they
had to use three separate sets of symbols. One set for the unit’s place, another for
the ten’s place, and the rest one for the hundred’s place. For the thousand’s place
they would recur the symbols for the unit’s place, and so on. Although the mul-
tiplication algorithm was slightly different, their addition and long division algo-
rithms were identical to ours today. The square root algorithm once taught in school
was known to Archimedes, who is believed as the inventor.

It is not very clear when the Chinese started to calculate with positional repre-
sentation, but it is believed that definitely before 400 BC they possessed a similar
positional notation based on the ancient counting rods. Coincidentally, they also
lacked a symbol for zero and had one set of symbols for the unit’s place, and a
second set for the ten’s place. For the hundred’s place they would recur the symbols
for the unit’s place, and so on.

The ancient Hindu-Arabic people independently devised the place-value concept
and positional notation. They combined the simpler computational methods with a
decimal base numerals and the use of a digit representing zero (0), which eventually
replaced all other old systems.

The milestone works were founded in the early 6th century AD by Aryabhata—
an Indian mathematician who incorporated an existing version of computation
system in his work, and in the 7th century AD by another Indian mathematician—
Brahmagupta who established the use of zero (0) as a separate number and
determined the results for the multiplication, addition and subtraction of zero and all
other numbers, except for the result of division by 0.

The Arabs learned Indian new computation system. Although the Codex
Vigilanus described an early form of Arabic numerals (without 0) by 976 AD,
Leonardo of Pisa (Fibonacci) was primarily remembered for spreading their use
throughout the European countries after the publication of his book “Liber Abaci”
in 1202 AD. Styled as the “method of the Indians”, he noted the significance of this
“new” representation of numbers because it allowed for the computation system to
consistently represent both large and small integers.
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In the medieval period arithmetic was one of the seven liberal arts taught in
European universities. The flourishing of algebra in the medieval Islamic world and
in Renaissance Europe was an outgrowth of the crucial simplification in the
computation through the decimal notation.

1.4.3 1600s–1800s

As the unfolding of human civilization, various higher performance calculating
tools in addition to ancient abaci were created and used to assist in computation,
including the slide rule invented around 1620–1630 AD by J. Napier, E. Gunter, E.
Wingate, W. Oughtred, et al., the nomograms and mechanical calculators such as
the Schickard’s calculator invented in 1623 AD by W. Schickard, and the Pascal’s
calculator, also called as the “Pascaline”, invented in 1642 AD by Blaise Pascal.

Mechanics is one of the most powerful demand-pulls of the progress in the
computational method. The beginning of classical mechanics is generally attribu-
table to Sir Isaac Newton and many contemporary natural philosophers in the 17th
century, of which the solid mechanics mainly for the engineering structural design
in its early time, was actually initiated by the “Hooke’s law” in 1676—named after
the British physicist Robert Hooke (Timoshenko 1953).

The next important step forward in the solid mechanics was made by Galileo
Galilei who firstly developed a theory of beams, although recent studies argue that
Leonardo da Vinci was the first to make the crucial observations. Leonhard Euler
and Daniel Bernoulli were the first to established a simplified linear theory of
elasticity that provides a tool for calculating the bearing capacity and deflection
characteristics of beams.

The study of fluid mechanics may trace back at least to the days of ancient
Greece, when Archimedes investigated fluid statics and buoyancy and formulated
his famous law known now as the “Archimedes’ principle”—generally considered
to be the first major work on fluid mechanics. Rapid progress in fluid mechanics
began with Leonardo da Vinci (observations and experiments), Evangelista
Torricelli (invented the barometer), Isaac Newton (investigated viscosity) and
Blaise Pascal (researched hydrostatics, formulated Pascal’s law), and was continued
until Daniel Bernoulli who established mathematical fluid dynamics (Massey and
Ward-Smith 2005).

In 1715, Daniel Bernoulli systematized the virtual work principle and made
explicit the concept of infinitesimal displacement to solve problems for both rigid
bodies as well as fluids (Capecchi 2012). This is an important step towards the
study on the mechanics of deformable bodies and the analysis for complex struc-
tures (Dym and Shames 1973).

At the end of this period, science and engineering were generally looked at as
very distinct fields, and there was considerable doubt that a mathematical product of
academia could be trusted for the safety assessment of engineering structures. Take
the hydraulic structures for example, rational theories and criteria for the dam
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design had few acceptance, problems encountered in its construction were ordi-
narily tackled in a style of trial and error (Chen 2015).

1.4.4 1800s–1940s

This is a period featured by the fast development in classical mechanics and
mathematics under the impetus of the fast development in techniques for modern
machinery manufacture industry and civil engineering inclusive hydraulic works.

Bridges and buildings continued to be constructed by precedent until the late
19th century, when the Eiffel Tower and the Ferris wheel demonstrated the validity
of the mechanical theory on large scales. In the field of hydraulic structures, along
with the invention and sophisticated application of climbing formwork, Portland
cement, and modern concrete, Furens Dam (France, H = 50 m), a gravity dam
accomplished in 1858, was designed according to the “gravity method”—a variant
beam theory proposed by French engineer J Sazilly. New Croton Dam, also known
as Cornell Dam (USA, H = 91 m), a gravity dam accomplished in 1905, was one of
the first applications of American Portland cement. FA Noetzli summarized the
works of the “crown cantilever method”, a structural analysis algorithm for the
arch-cantilever grid system initiated in 1905 by two US engineers GY Wisner and
ET Wheeler, in a landmark paper by giving relatively simple formulas for calcu-
lating the cantilever and the arch actions, and then applied his formulations to the
design of Pathfinder Dam (H = 65 m, USA), which was completed in 1909. In
1929, C Howell and AC Jaquith, both from the Bureau of Reclamation, formalized
comprehensively the calculation method using various arches and cantilevers
developed through scattered contributions, as the “trial-load method” (TLM).

Throughout this period, leading scientists in mechanics and mathematics had
been involved in scientific studies and engineering applications of the continuum
mechanics (fluid dynamics, heat transfer and solid mechanics) and related theory of
partial differential equations (Florian 1928), and on many aspects their works had
led to the discovery of modern numerical analysis and computational mechanics in
use today.

On a microscopic scale, materials such as solids and fluids, are composed of
particles (e.g. atoms and molecules) separated by “empty” space. On a mesoscopic
or/and macroscopic scale, rock-like materials (concrete and rock) even contain voids,
cracks and discontinuities. However, certain physical phenomena can be simply
described by assuming the material as a continuum, i.e. in an object the matter is
continuously distributed and fills the entire spatial domain it occupies. By the term of
“continuum”, it implies that the matter concerned can be continually sub-divided into
infinitesimal elements with properties being identical to the original bulk one. On the
length scales much greater than that of inter-particle distances, this conceptual
(phenomenological) material model possesses high performance. Fundamental
physical laws such as the conservation of mass, the conservation of momentum, the
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conservation of energy, and the constitutive law (relation) of material properties, may
be applied to derive PDFs governing the behaviors of object.

When the length scales does not hold, or when one wants to establish a con-
tinuum of finer resolution than that of the representative volume element (RVE) or
representative element volume (REV) size, one has to employ a statistical volume
element (SVE), which in turn, leads to random continuum fields. The latter may
provide a micromechanics or mesomechanics basis for stochastic behaviors of
materials. The levels of RVE (REV) and SVE link continuum mechanics to sta-
tistical mechanics, and they may be assessed only in a limited way via experimental
testing when the constitutive response becomes spatially homogeneous
(Ostoja-Starzewski 2007).

Continuum mechanics deals with the physical properties of solid and fluid which
are independent of any particular coordinate system in which they are observed.
These physical properties are then represented by tensors, which are mathematical
objects with required properties independent of coordinate system. Basically, there
are two formalisms in the classical field theory towards the continuum mechanics
(Spencer 1980; Hutter and Jöhnk 2004), namely, the Lagrangian formalism and the
Eulerian formalism.

The Lagrangian formalism seems a natural development from the Lagrangian
mechanics established in 1788—a reformulation of the classical mechanics for
discrete particle system with a finite degrees of freedom (DOF). To expand the
Lagrangian formalism into the classical field theory of continuum which has an
infinite number of DOF, the function of generalized coordinates—“Lagrangian”, is
replaced by a “Lagrangian density” that is the function of the field and its derivatives,
and possibly of the space and time coordinates themselves. The independent variable
t is replaced by an event in space-time ðx; y; x; tÞ or still more generally, by a point on
a “manifold”. Often, the “Lagrangian density” is simply referred to as the
“Lagrangian”. In the Lagrangian formalism, an observer standing in the referential
frame observes the changes in the position and physical properties as the material
body moves through the space with the ongoing time.

The Eulerian formalism focuses on the current matter configuration, and what is
occurring at a fixed point in the space with the time evolution, in lieu of giving
attention to individual particles with regard to how they move through the space
and time. This approach is conveniently applied in the study of fluid flow or solid
deformation where the main interest is directed to the magnitude and rate at which
the changes manifest, or to the gradient of the field rather than the shape of the body
at a reference time.

In 1826, Claude-Louis Navier published an academic paper on the elastic
behaviors of structures. He formulated the general theory of elasticity in a mathe-
matically resoluble form with sufficient accuracy for the first time. He is therefore
often respected as the founder of modern structural analysis. In 1873, Carlo Alberto
Castigliano presented his dissertation with regard to compute displacements as the
partial derivatives of strain energy, in his theorem the method of least work was a
special case. In 1941 Alexander Hrennikoff discretely solved the elasticity plane
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problems using a lattice framework in parallel to the “trial-load method” for arch
dams.

In fluid dynamics, a set of quasilinear hyperbolic PDEs governing adiabatic and
inviscid flow, the “Euler equations” named after Leonhard Euler, was formulated in
his academic paper in 1757. Further mathematical justification was provided by
Claude-Louis Navier and George Gabriel Stokes (Anderson 1995). The
Navier-Stokes equations are also of great interest in a purely mathematical sense—
it has not yet been proven that their three-dimensional solutions always exist, or that
if they do exist, then they are smooth without any mathematical singularities. These
are called the “Navier-Stokes existence and smoothness problems”.

In 1822, Joseph Fourier published his seminal work on heat flow, in which he
proposed his PDE for conductive diffusion of heat now being taught to students of
mathematical physics and being the basis of thermal field analysis for concrete
dams. Fourier also made a great contribution on purely mathematics by claiming
that any function of a variable can be expanded in a sine series. Although his result
is not correct without additional conditions, yet Fourier’s observation that some
discontinuous functions are the sum of infinite series was a breakthrough in the
numerical analysis and computation.

The Darcy’s law with regard to the rate of water seeping through a soil (per-
meability) was promulgated in 1856, and is still very relevant today. It is analogous
to the Fourier’s law in the field of heat conduction, the Ohm’s law in the field of
electrical networks, or the Fick’s law in the diffusion theory, and therefore the
similarity of governing PDEs exist between the heat conductivity and fluid per-
meability. The Darcy’s law dictates how and where different types of earthfill
materials can be used in an embankment dam. This is probably the first result in
understanding two-phase problems, namely, fluid versus solid.

Field and laboratory testing for soil and rock materials began to emerge during
the 1920s and early 1930s. In addition to the pioneering works on the topics such as
soil permeability by Karl von Terzaghi who is generally respected as the father of
soil mechanics, others contributed greatly, too, in the attempt to characterize these
materials.

At the mid 20th century, the basic governing PDEs for solid mechanics,
hydrodynamics, thermal conductivity, were all available. The ball was then passed
to the scientists in mechanics and mathematics to find the solutions for specific
issues arise from sciences and engineering.

In the whole 19th century, mathematical study on the numerical analysis and
computation continued its long tradition of practical calculations. People did not
seek exact answers that are often impossible to access in practice. Instead, they were
highly interested in obtaining approximate solutions meanwhile maintaining rea-
sonable bounds on errors. Many great mathematicians had been preoccupied by the
issues of numerical analysis (Hildebrand 1956), and invented important algorithms
with their big names like the Newton’s method, the Lagrange interpolation poly-
nomial, the Fourier series and transform, the method of Lagrange multipliers, the
numerical quadratures of the Newton-Cotes formulas/Simpson’s rule, the Euler’s
method, the iterative methods of Jacobi/Gauss-Seidel. Among them, C. F. Gauss is
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an outstanding scientific giant (Dunnington 2012) attributable to his crucial works
in least-squares data fitting in 1795, solution algorithm of linear equation sets
(Gaussian elimination) in 1809, numerical quadrature (Gaussian quadrature) in
1814, as well as fast Fourier transform in 1805, though the last did not become
widely known until its rediscovery by J. W. Cooley and J. Tukey in 1965.

Since around the 1900s, however, mathematicians were shifted to less con-
spicuous in the numerical analysis. This was a consequence of the great advances in
scientific fields in which, for technical reasons, mathematical rigor had to be the
heart of the subject. For example, many advances of the early 20th century sprang
from mathematicians’ new ability to reason rigorously about infinity, a subject
relatively far from numerical analysis.

Before the advent of modern computers, numerical analysis often depended on
hand interpolation in large printed tables. This was far from the sophisticated
solution for complex structural problems governed by the PDEs and restrained by
boundary and initial conditions. The computer for calculating the field functions,
was highly solicitous of.

Charles Babbage, an English mechanical engineer, is considered the father of the
computer by conceptualized the first mechanical analog computer in the early 19th
century. After working on his revolutionary difference engines designed to aid in
navigational calculations, in 1833 he realized that a much more general design, an
“analytical engine”, was possible (Goldstine 1972). The first modern analog
computer was a tide-predicting machine invented by Sir William Thomson in 1872.
The differential analyser, a mechanical analog computer designed to solve differ-
ential equations using wheel-and-disc mechanisms, was conceptualized in 1876 by
James Thomson. The technology of mechanical analog computing reached its
summit by H. L. Hazen and Vannevar Bush at MIT in 1927. A dozen of such
devices were built before their obsolescence became obvious. By the 1950s the
success of digital electronic computers had spelled the swan song for the most
analog computing machines, but they remained in performance during the 1950s in
some specialized applications such as university education.

1.4.5 1940s–1970s

It is an exciting era landmarked by the appearance of digital electronic computer
and computational method towards the solution of PDEs arise from various science
and engineering demands.

Humankind started the modern aviation times in 1939 by the first jet aircraft—the
German Heinkel He 178. In 1943, the Messerschmitt Me 262, the first jet aircraft
fighter, went into service in the German Luftwaffe. In October 1947, the Bell X-1
became the first aircraft to exceed the speed of sound. The first jet airliner—the de
Havilland Comet, was introduced in 1952. The Boeing 707, the first widely suc-
cessful commercial jet, had been in commercial service from 1958 to 2010. The
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Boeing 747 was the world’s biggest passenger aircraft from 1970 until 2005 when it
was surpassed by the Airbus A380.

Although space flight had become an engineering possibility with the work of
Robert H. Goddard in 1919 by his milestone paper “A Method of Reaching
Extreme Altitudes”, yet his work was not taken seriously by the public.
Nonetheless, his paper was highly influential on the German “Von Braun’s V-2”,
the first rocket to reach space at an altitude of 189 km in 1944. In the former USSR,
the class of “Korolev’s R-7 Semyorka” rockets was used to launch the world’s first
artificial Earth satellite “Sputnik 1” in October 1957, and later the “Vostok 1” with
first human—Yuri Gagarin to orbit the Earth in April 1961. A class of rockets
“Saturn” allowed the USA for sending the first two astronauts, Neil Armstrong and
Buzz Aldrin, to the Moon and back the Earth on “Apollo 11”, in July 1969.

In civil engineering, with the advances in construction material technology,
skyscrapers (Empire State Building, USA, H = 381 m, 1931; World Trade Center,
USA, H = 417 m, 1972; The Willis Tower—formerly Sears Tower, USA, H = 442
m,1974), bridges (George Washington Bridge, USA, L = 1450 m,1931; Lake
Pontchartrain Causeway, USA, L = 38.442 km, 1956; Wuhan Yangtze River
Bridge, China, L = 1670 m, 1957; Fremont Bridge, USA, L = 656.5 m, 1973),
tunnels (Delaware Aqueduct, USA, L = 137 km,1945), and dams (Mauvoisin Arch
Dam, Switzerland, H = 237 m,1957; Vajont Arch Dam, Italy, H = 265 m, 1959;
Grande Dixence Gravity Dam, Switzerland, H = 285 m,1962; Glen Canyon Arch
Dam, USA, H = 216 m,1964; Contra Arch Dam, Switzerland, H = 220 m, 1965;
Oroville Earthfill Dam, USA, H = 235 m, 1967; Daniel Johnson Multi-arch
Buttress Dam—Manicouagan No. 5 Dam, Canada, H = 214,1968; Mica Earthfill
Dam, Canada, H = 242 m,1974; Dworshak Gravity Dam, USA, H = 219 m, 1976),
continued to mount toward new height and/or length records.

All the above engineering activities required rational, reliable, and efficient
computations for the structural issues with respect to the simulation and evaluation
of high speed or/and high pressure flow, complex material deformation and strength
(static and dynamic), strong temperature variation, as well as their coupling. Taking
the civil engineering for example, the stability requirements on structure founda-
tions and underground caverns gave impetus to the fast progress in rock mechanics
founded by Leopold Müller. The evolution of soil mechanics and rock mechanics
gave birth to and maturation of geotechnical engineering, as an important specialty
of civil engineering. The use of a large stock of computers and computer programs
jointly pushed by geotechnical engineers and computation scientists became a
routine practice in the structural analysis and design to provide solution within a
fairly short time.

It is fortunate that at the initiation of this period, the mathematical basis of
approximation theory had been built. Today it has grown into one of the largest
branches of mathematics encompassing classical questions of interpolation, series
expansion, and harmonic analysis associated with the names of Newton, Fourier,
Gauss, and others; semi classical problems of polynomial and rational minimax
approximation associated with the names such as Chebyshev and Bernstein; and
much newer topics including splines, radial basis functions, and wavelets.
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In the early phase of this period, in addition to the traditional slide rules and
mechanical calculators, large books were published with formulas and tables of data
(e.g. interpolation points and function coefficients) for the purpose to facilitate
computations by hand. The canonical work in the field is the NIST publication
edited by Abramowitz and Stegun, a 1000-plus page book with a very large number
of commonly used formulas and functions and their values at many points. Today,
although these function values are no longer so useful as before when a computer is
easily accessible, yet the large listing of formulas can still be very handy.

The principle of the modern computer was proposed by Alan Turing when he
delivered a landmark paper in 1936 to the London Mathematical Society (Turing
1937) concerning a simple device called “universal computing machine”—now
known as “universal Turing machine”. It is capable of calculating any computable
things by executing instructions (i.e. program) stored on tape, in this manner the
programmable machine is allowed for. Modern computers are said to be
“Turing-complete”, which is to say, they possess the capability of algorithm exe-
cution equivalent to a universal Turing machine.

The mechanical calculator evolved into the electronic digital programmable
computer when the “Colossus” was built in 1943, followed by the “ENIAC” built at
the Moore School of Electrical Engineering, University of Pennsylvania (USA), by
J. Presper Eckert and John Mauchly in 1945, as well as the “Manchester small-scale
experimental machine” built at the Victoria University of Manchester (UK) in 1948
that is the first stored-program computer in the world.

John von Neumann, joined the ENIAC group in 1944, was a prestigious figure
and he made the concept of a high-speed stored-program digital computer widely
known through his writings and public addresses. As a result of his high profile in
the field, it became customary to refer to electronic stored-program digital com-
puters as “von Neumann machines”. However, John Von Neumann himself
acknowledged that the fundamental concept of the modern computer was the stored
program by the Turing’s design.

The final major event in this period of electronic computation history was the
development of magnetic core memory. Once the absolute reliability, relative
cheapness, high capacity and permanent life of ferrite core memory became
apparent, it soon replaced other forms of high-speed memory. The IBM 704 and
705 computers (announced in May and October 1954, respectively) brought core
memory into wide use.

Until the end of this period, mainframe computers such as IBM 7094 and IBM
7040/7044 were used primarily for critical applications and bulk data processing by
large organizations/institutions, meanwhile less expensive minicomputers such as
HP 2116A and PDP-8 were accessible by smaller agencies/schools.

New academic journals were founded such as the “Mathematics of
Computation” since 1943 and the “Numerische Mathematik” since 1959. From this
moment, numerical methods began to explode, computational science (also called
scientific computing) became a “third way” besides the theoretical and experimental
sciences.
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Thanks to the efforts of these outstanding pioneers going back many decades,
and thanks to the ever more powerful computers, we had reached at a level where
most of the classical mathematical problems arise from physical sciences inclusive
mechanics can be numerically solved to high efficiency and accuracy.
Computational mechanics (CM), widely considered a branch of applied mechanics,
was also considered a branch of computational science. Computational geome-
chanics (CG), a sub-branch of CM strongly backed up by the engineering fields of
mining, transporting, building, etc., possesses more engineering proximate features
attributable to its equalized demands on the material properties and safety margins
in addition to computation algorithms.

Most of algorithms that make the CM powerful were invented since 1950, of
which the classical versions of the finite difference method (FDM), the finite ele-
ment method (FEM), and the boundary element method (BEM) based on the
Eulerian formalism, are without doubt the zenith. For the field problems of low
velocity fluid or infinitesimal deformation solid, the Eulerian formalism is more
convenient and easier to incorporate the constitutive laws (relations) (e.g. Hooke’s
law, Darcy’s law, Fourier’s law) with regard to the physical/mechanical properties
observed and summarized by our predecessors.

(1) FDM

It was firstly proposed by A Thom in the 1920s under the title of “the method of
square” to solve nonlinear hydrodynamic equations. The FDM is based upon the
approximations that permit substituting partial differential equations by finite dif-
ference equations, the latter are algebraic in form, and whose solutions are related to
grid points (Morton and Mayers 2005).

Compared to the FEM and BEM, the most attractive merit of the FDM is that it
is very easy to implement. The formation and solution of the equations are local-
ized, which is more efficient for memory and storage handling in the computer
program. No local trial (or interpolation) functions are demanded to approximate
the PDE in the neighborhoods of the sampling points, as is done in the FEM and
BEM. This also provides the additional advantage of more straightforward simu-
lation of complex constitutive behaviors, such as plasticity and damage, without
iterative algorithms using predictor-corrector mapping schemes for global matrix
equation systems, as in the FEM and BEM.

The FDM is not as prevalent as the FEM in structural problems, although it is a
major method in the fluid dynamics and hydraulics.

(2) BEM

Boundary integral is a classical tool for the solution of boundary value problems
based on PDEs. The BEM is a numerical method of solving boundary integral
equations applicable to problems for which the Green’s functions can be established
(Jaswon and Ponter 1963; Rizzo 1967; Cruse and Rizzo 1968; Brebbia et al. 1984).

The BEM initially sought a weak solution at the global level through the
numerical solution of an integral equation derived using Betti’s reciprocal theorem
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and Somigliana’s identity. The introduction of isoparametric elements using dif-
ferent orders of shape functions, in the same fashion as that in the FEM (Lachat and
Watson 1976; Watson 1979), greatly enhanced the BEM’s applicability for struc-
tural problems.

The BEM is more suitable for solving problems of fracturing in homogeneous
and linearly elastic bodies because it possesses remarkable advantages over the
FEM or FDM that:

– Only the boundary of the domain needs to be discretized. This reduces the
model dimension by one and consequently allows for much simpler mesh
generation and data input as well as smaller data storage.

– Exterior problems with unbounded domains are handled as easily as interior
problems.

– In some cases, the physically relevant data are given not by the solution in the
interior of the domain but rather by the boundary values of the solution or its
derivatives. These data can be obtained directly from the solution of the BEM
with high accuracy.

– Solutions inside the domain are continuously approximated with a rather high
convergence rate and moreover, the same rate of convergence holds for all
solution derivatives of any order in the domain.

Main difficulties with the BEM are that:

– Boundary integral equations require the explicit knowledge of a fundamental
solution, or the Green’s functions which are often problematic to obtain as they
are based on the solution of system equations subject to a singularity load.

– For a given boundary value problem there exist different boundary integral
equations, and to each of them there are several numerical approximations. Thus
every BEM application requires several choices to be made.

– The classical theory of integral equations and their numerical solution con-
centrates on ordinary Fredholm integral equations of the second kind with
regular kernel. However, the boundary integral equations frequently encoun-
tered may be of the first kind whose kernels are in general singular.

– It is not as efficient as the FEM in dealing with material heterogeneity because it
cannot handle as many sub-domains (elements).

– It is not as efficient as the FEM in simulating non-linear behaviors (e.g. plas-
ticity, damage) because domain integrals are often presented in these problems.

(3) FEM

The FEM in its practical application often known as the “finite element analysis”
(FEA), is a numerical technique for finding approximate solutions to PDEs and
(less often) integral equations (Zienkiewicz and Cheung 1967; Desai and Abel
1972; Gallagher 1975; Roy et al. 1976). The distinctive history of the FEM is its
initial driving force from structural engineers who endeavored to the practical
formulations and solution techniques in addition to the scientists in mathematics
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and mechanics who laterly laid theoretical foundations with respect to the existence,
stability, and uniqueness, of the solution and error analysis as well.

In numerical analysis, the Galerkin method converting a continuous operator
problem governed by the PDE to a discrete one, is the equivalent of applying the
variation operator to a function space (Yosida 1980) by converting the equation to a
weak formulation. Use is then made of some constraints on the function space to
characterize the space with a finite set of basis functions. This approach is usually
credited to the Russian mathematician Boris Galerkin although it was firstly dis-
covered by the Swiss mathematician Walther Ritz, to whom Galerkin referred (Pont
2012). Frequently, when referring to a Galerkin method, one also gives the name
along with typical approximation methods used, such as the Bubnov-Galerkin
method (after Ivan Bubnov), Petrov-Galerkin method (after Georgii I Petrov) or
Ritz-Galerkin method after Walther Ritz (Ritz 1909; MacDonald 1933; Mikhlin
1964).

From the point view of mathematics, the FEM is a special case of more general
Galerkin method with polynomial approximation functions. Its development can be
traced back to the works by Hrennikoff (1941) and Courant (1943). Hrennikoff
discretized the object domain by using a lattice analogy similar to the “trial-load
method” for arch dams, whereas Courant divided the domain into finite triangular
sub-regions to solve second order elliptic PDEs arise from the torsion problem of a
cylinder.

The practical algorithm for the FEM was originated from the need for solving
complex elastic structures in civil and aeronautical engineering (Argyris 1963).
Between the later 1950s and early 1960s in China, Kang Feng proposed a sys-
tematic algorithm for the solution of PDEs, and studied the structural problem of
Liujiaxia Gravity Dam (H = 147 m, 1974). His method was called the “finite
difference method based on variation principle”, which was latterly recognized as
an independent invention of the finite element method (Lax 1993; Kang 1994).
Although the approaches used by these pioneers are different, yet they share one
essential feature—mesh discretization for a continuous domain into a set of discrete
sub-domains usually called as “elements”.

The FEM gained its ever stronger impetus in the 1960s and 1970s by the
outstanding works of, for example, J. H. Argyris with co-workers at the University
of Stuttgart, R. W. Clough with co-workers at the UC Berkeley, O. C. Zienkiewicz
with co-workers at the University College of Swansea, and R. Gallagher with
co-workers at Cornell University. Further driving was given in these years by
available open source programs. US NASA sponsored the original version of
NASTRAN, and the UC Berkeley made the SAP IV widely available. A rigorous
mathematical basis to the FEM was eventually established in 1973 with the pub-
lication by Gilbert Strang and George J. Fix. The method has since been generalized
for the numerical modeling of physical and mechanical systems in a wide variety of
engineering disciplines (e.g. heat transfer, fluid dynamics, and solid mechanics).

Much development work in the FEM had been specifically oriented towards
geotechnical structure problems, particularly in hydraulic engineering facing
complex structural configurations, rock-like materials of heterogeneity and
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non-linearity (plasticity), dynamic boundary conditions, and in situ geo-stresses
(Naylor et al. 1981; Pande et al. 1990; Wittke 1990). The FEM out-performed the
traditional FDM in the areas of hydraulic structures is attributable to its attractive
merits of higher ability and flexibility.

1.4.6 1970s–Today

We are fortunate for having experienced such prosperous times featured by high
performance computers and expansions of the FDM, FEM and BEM to various
field problems, of which the FEM holds dominant position in the design of super
engineering structures (e.g. super high dams). In addition, various new computa-
tional methods with regard to the issues of high-speed flow, large and discontinuous
deformation, etc., have been booming propelled by engineering and other industry
demands.

Activities in super tall skyscrapers move towards East, particularly the Asia
(Petronas Towers, Malaysia, H = 452m, 1996; JinMao Tower, China, H = 420.5 m,
1999; Taipei 101, Taiwan, H = 509.2 m, 2004; Burj Khalifa, United Arab Emirates,
H = 829.8 m, 2009; Shanghai Tower, China, H = 632 m, 2015). Cable-stayed and
suspension become prevalent types in the construction of long span and/or high
bridges (Akashi Kaikyō Bridge, Japan, L = 3911 m, 1998; Baling River Bridge,
China, L = 2237 m, 2009; Russky Bridge, Russia, L = 3100 m, 2012; Beipanjiang
Bridge, China, L = 1341.4 m/H = 565 m, 2016). Long and/or large sectional tunnels
are constructed world widely for transportation and water diversion (Seikan Tunnel,
Japan, L = 53.85 km, 1988; Channel Tunnel, UK-France, L = 50.45 km, 1994;
Lærdal Tunnel, Norway, L = 24.51 km, 2000; Lötschberg Base Tunnel, Switzerland,
L = 34.57 km, 2007; Zhongnanshan Tunnel, China, L = 18.04 km, 2007; Eiksund
Tunnel, Norway, L = 7.765 km, 2008; Gotthard Base Tunnel, Switzerland,
L = 57.09 km, 2016).

In the areas of hydraulic structures, the traditional CVC gravity dams and
earthfill dams continues to mount ever new height. Since the 1990s, the world has
witnessed the boost of dam construction in China. Today, the world records of dam
height kept by the country are the roller-compacted concrete (RCC) arch dam
(Dahuashui, China, H = 134.5 m, 2008), the concrete faced rockfill dam (CFRD)
(Shuibuya, China, H = 233 m, 2008), the RCC gravity dam (Longtan, China,
H = 216 m, 2009), the conventional vibrated concrete (CVC) arch dam (Xiaowan,
China, H = 294.5 m, 2012; Jinping-1, China, H = 305 m, 2014).

At the start of this period, use was widely made of the fourth generation (VLSI
integrated circuits) computers such as the VAX with operating system “Digital’s
VAX/VMS” developed by the Digital Equipment Corporation (DEC) in the mid
1970s, and Alpha AXP with operating system “OpenVMS” developed by the DEC,
too. Since then, the computer industry has been developing at a speed normally
predicted by the “Moore’s law” after Gordon Moore, the co-founder of the Fairchild
Semiconductor and Intel. In 1965 he stated a doubling law every year in the number
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of components per integrated circuit. In 1975, looking forward to the next decade,
he revised his prediction to doubling every two years (Moore 1965, 1997). Insofar,
advancements in computers are strongly linked to the Moore’s law, particularly on
the aspects such as quality-adjusted microprocessor prices and memory capacity,
which throughout the late 20th and the early 21st centuries have contributed to
world economic growth from all industry areas inclusive infrastructures. In this
context, the Moore’s law describes a driving force for technology and society
change, and economic growth.

Today, computer hardware has to be designed in a multi-core manner to keep up
with the Moore’s law, and there is hot research to make computers out of many
promising new types of technology, such as optical computers, DNA computers,
neural computers, and quantum computers. Most computers are universal and able
to calculate any computable functions limited only by their memory capacity and
operating speed.

Since the 1970s, with the support of powerful computers and demands from
industry such as hydraulic engineering, aircraft/airspace engineering, high-speed
railway engineering, and marine engineering, new computational methods and their
hybrid, sophisticated material models, various physical and chemical fields and
their coupling, etc., have been developing fast. Some of them have only limited and
short term influences, whereas the others have profound contributions to sciences
and technologies until today. Complex structure systems that would be very diffi-
cult or impossible to handle with may be successfully simulated nowadays using
the tools provided by the CM. The great expectation permeating in the whole
industry, economy and society is that, with the incorporation of quantum, molecular
and biological mechanics into new models, the CM is poised to play an even much
more important role in the near future.

When the CM is expanded into the mechanics areas of compressible fluid
dynamics with high flow speed, and of solid dynamics with separable/crackable and
large deformation, the Lagrangian formalism starts to exhibit higher power
although other intrinsic difficulties (e.g. counting/geometric shaping/interacting of
particles) will manifest. In addition to the continuous and practical progress in the
classical FDM, BEM and FEM (Zienkiewicz 2000), the most important events in
this significant period are the invention of the generalized finite element method
(GFEM), the discrete (distinct) element method (DEM), the discontinuous defor-
mation analysis (DDA), the meshfree (meshless) method (MM), the numerical
manifold method (NMM), and the smoothed particle hydrodynamics (SPH). Most
of them are based on the Lagrangian formalism and therefore possess high
potentialities towards the solutions of crack propagation/dislocation and particle
detachment/flow for the geotechnical and hydraulic structures.

Attributable to selective methods available, we now have a wide spectrum of
computational geomechanics for hydraulic structures related to complex rock-like
materials (rock and concrete) of heterogeneous, anisotropic, and discontinuous,
under different circumstances.
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(1) The advancement in classical computational methods

1. FDM

The classical FDM with regular grid systems does suffer from restraints, most of all
due to its inflexibility in dealing with fractures, complex boundary conditions and
material heterogeneity. These make the standard FDM generally unfavorable for the
solution of structural problems related to rock-like materials. Today however,
significant progress has been made in the FDM with irregular meshes, such as
triangular or Voronoi grid systems, which leads to the so-called finite volume
method (FVM). Voronoi polygons grow from points to fill the space, as opposed to
tessellations where the polygons are formed by lines cutting the plane, or by
building up a mosaic from pre-existing polygonal shapes (Le Veque 2002).

The FVM can be formulated with basic variables (e.g. displacement) at the
centers of cells (elements) or at the nodes (grid points) of unstructured grid. It is
also possible to consider different material properties in different cells. The FVM is
therefore as flexible as the FEM in handling material heterogeneity, mesh gener-
ation, and treatment of boundary conditions. It possesses similarities with the FEM
and is hence regarded as a bridge between the FDM and FEM. The original concept
and early code of the FVM for stress analysis can be traced back to the work of
Wilkins (1963) who used a vertex-centered scheme with a quadrilateral grid.

Explicit representation of fractures is not easy in the FDM or FVM because they
demand continuity in the functions between the neighborhood grid points. In
addition, it is not possible to accommodate special “joint elements” in the FDM or
FVM as in the FEM. In fact, this is the crucial weak point of them in the com-
putational geomechanics. However, the FDM or FVM have been employed to study
the mechanisms of fracturing processes, such as the shear-band formation and
evolution of rock-like material samples (Fang 2001) and fault system formation and
propagation as a result of tectonic loading (Poliakov 1999) without creating explicit
discontinuity surfaces in the structures. This is achieved via a process of material
failure or damage propagation at the grid points or cell centers.

Recently, the gradient smoothing method (GSM) has also been developed for
computational fluid dynamics (CFD) problems (Liu et al. 2008; Zhang et al. 2008).
It is similar to the FVM, but it uses gradient smoothing operations exclusively in
nested fashions, namely gradient smoothing together with a directional derivative
technique to develop the first-and second-order derivative approximations for a
node of interest by systematically computing weights for a set of field nodes sur-
rounding. A simple collocation procedure is then applied to the governing equations
of strong form at each node using the approximate derivatives. In contrast with the
FDM inheriting topological restrictions, the GSM can be easily applied to arbi-
trarily irregular meshes of complex geometry.

2. BEM

The original developments of the BEM towards computational geomechanics may
be attributed to the works by Crouch and Fairhurst (1973), Bray and Brady (1978),
Crouch and Starfield (1983). Followed and pushed further by many others (Hoek
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and Brown 1982; Venturini and Brebbia 1983; Brebbia 1987; Pande et al. 1990;
Beer and Watson 1992; Beer and Pousen 1995a, b; Cerrolaza and Garcia 1997;
Birgisson and Crouch 1998), its applications to general stress and deformation
analysis for underground excavation, soil-structure interaction, groundwater flow
and fracturing process, etc., have been achieved. One of the most notable and
specially formulated BEM, called the Galerkin BEM (GBEM), produces a sym-
metric coefficient matrix in the Galerkin sense of a weighted residual formulation
(Bonnet et al. 1998; Wang et al. 2001a).

Inclusion of source terms, such as body forces, heat sources, fluid sink/source
terms in potential problems, leads to domain integrals in the BEM. The same will
also be manifested when considering in situ geo-stress fields and non-linear (e.g.
plastic) material behaviors (Mukherjee 1982; Wang and Ma 1986). The traditional
technique for dealing with such problems is the division of the domain into a
number of internal cells or elements, which essentially undermines the advantages
of “boundary only” discretization of the BEM. Different techniques have been
developed over the years to handle this issue (Brebbia et al. 1984; Sugawara et al.
1988), of which the most notable is the dual reciprocity method (DRM) (Partridge
et al. 1992; El Harrouni et al. 1997).

3. FEM

The FEM has become prevailing analysis tool in hydraulic structures for more than
40 years. Solutions to even very complicated stress problems, thermal problems, as
well as seepage problems, can now be obtained routinely using the method (Chan
et al. 1970; Hughes 1987; Cook et al. 1989; Crisfield 1997; Clough and Penzien
2003; Ern and Guermond 2004; Zienkiewicz et al. 2005, 2013; Krenk 2009). This is
mainly attributable to its following advancements.

i. Representation of discontinuities (rock joints, concrete cracks and joints)

It was motivated by the needs of computational geomechanics since the late 1960s
(Beer and Watson 1992). Today, the well-known “joint element” model (Goodman
et al. 1968; Mahtab and Goodman 1970; Goodman 1976) has been widely
implemented in FEM software and successfully applied to many practical engi-
neering problems. The zero-thickness postulation of Goodman leading numerical
ill-condition due to the large ratio of length to thickness of his element, was
improved later by Zienkiewicz et al. (1970), Ghaboussi et al. (1973), Katona
(1983), Desai et al. (1984), Gens et al. (1989, 1995), Buczkowski and Kleiber
(1997). Since these element models are inherently formulated on continuum
assumptions, therefore large-scale opening and sliding and complete detaching of
elements, are not permitted. In addition, these element models suffer from the
drawback that the global stiffness matrix is prone to ill-conditioned when many
joint elements are incorporated.

ii. Automatic mesh generation

From the point view of practitioners inclusive the author of this book, mesh gen-
eration with complex interior structures and exterior boundaries, is a highly
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demanding task when applying the FEM to hydraulic structures. It is truly critical
when 3-D problems of complex geometry with a large amount of discontinuities are
encountered.

Owe to the persistent and hard works throughout the 1980s, the breakthroughs
have been completely made (Zienkiewicz and Phillips 1971; Thacker 1980; Ho
1988) using either triangular or quadrilateral element meshes for two-dimensional
structures (Hermann 1976; Blacker et al. 1988). Algorithms for generating
quadrilateral meshes are carried out “directly” or “indirectly”. The latter creates
quadrilateral elements by converting pre-generated triangular elements into
quadrilateral ones by means of splitting or merging techniques (Zhu et al. 1991).
When a direct algorithm is used, quadrilateral elements are constructed and placed
directly into the domain. At the end of the 1980s, there had been a variety of
sophisticated methods for the mesh generation towards two-dimensional domains
of complex configuration, such as the octree method (Yerry and Shepard 1984), the
Delauney triangulation (Sloan and Houlsby 1984), the paving method (Blacker and
Stephenson 1991), the advancing front method (Lo 1985; Peraire et al. 1987;
Löhner 1988; Jin and Wiberg 1990).

Started from the 1990s, three-dimensional grid discretization has achieved great
progress propelled by the industry demands such as the CAD/CAM and the three-D
print. Of which the advancing front technique (AFT) and the Delaunay triangula-
tion method (DTM) are the most successful ones in generating tetrahedral meshes
in sequence as well as in parallel. Since the AFT is able to well control the
stretching direction of elements, it is more prevailing towards the general issues of
fluid dynamics and special issues of solid mechanics (e.g. localization) (Löhner
1988; Peraire et al. 1992; Moller and Hansbo 1995). The author of this book also
has exercised the AFT in the FEM study on hydraulic structures where the dis-
continuities and construction sequences are carefully taken into account (Chen et al.
1996, 2000; Cao et al. 1998).

However, the generation of hexahedral element mesh—superior to tetrahedral
one in terms of analysis accuracy as well as amount of elements and nodes, is rather
structured and offers less flexibility compared to the arbitrary unstructured tetra-
hedral mesh for the general purpose of adaptive FEM system. Existing algorithms
with regard to this difficulty are still not very robust insofar.

One of afflictive problems in the generation of FE mesh is how to tackle the
embedded macro-or/and meso-components due to the existence of discontinuities
and the installation of reinforcement and drainage devices. Simulation of such
components falls into two approach catalogues in the FEM: the implicit (equiva-
lent) approach takes the influences of them into the compliance tensor and per-
meability tensor but neglects their exact positions (Barenblatt et al. 1960; Long
et al. 1982; Pande and Gerrard 1983; Smith and Schwartz 1984; Dershowitz et al.
1985; Oda 1985; Bear et al. 1993; Dershowitz and Miller 1995; Jing and
Stephansson 1996; Chen and Egger 1999), whereas the explicit (distinct) approach
uses special elements to exactly simulate their geological and mechanical properties
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(Endo et al. 1984; Long et al. 1985; Elsworth 1986a, b; Andersson and Dverstorp
1987; Dershowitz and Einstein 1987; Cacas et al. 1990; Swoboda and Marence
1991; Chen and Egger 1997). The former can be applied to very complex engi-
neering problems with a large quantity of discontinuities and bolts as well as
draining holes, whereas the latter has the potentiality to describe them in much more
detail and consequently gives more precise solution. From the standpoint of
engineering practitioners, major difficulties in the explicit approach of fractures and
bolts/drainage holes lie in the pre-process to discretize the domain occupied by
these components: on one hand, there are a large amount of discontinuities of
different sizes, and a large amount of drainage holes or/and bolts of small diameter
(e.g. 10 cm) installed within a small width and largely stretched zone (e.g. 3 m in
distance between holes or/and bolts); on the other hand, the special elements at
hand need certain nodes to be deployed along these components and some of them
should be the common nodes of host solid elements. This, coupled with the
complex configuration of hydraulic structures (e.g. dam foundation, cut slope and
underground cavern), will lead to a time consuming and tedious pre-process
overhead. Recently, the composite element method (CEM) proposed by the author
(Chen et al. 2004b) may provide a promising solution for overthrowing this burden
inherited in the explicit approach.

When simulating the process of fracture propagation, the FEM is further
handicapped by the requirement of small element size and continuous re-meshing,
to conform the fracture path and element edges. This makes the FEM less efficient
in dealing with cracking problems than its BEM counterparts. Nevertheless, the
importance of the FEM equipped with powerful mesh generators should not be and
actually has not been neglected by hydraulic engineers. This is mainly because that
the first concern in the design of a hydraulic structure is the safety calibration under
the actions (loads) of normal or special combinations, where the limit states of
serviceability or collapse are taken into account accompanied by stipulated
allowable safety factors. Under such circumstances, the majority portion of dis-
continuities in the structure keeps closed and sliding deformation is only of minor.
This is why the FEM attains dominant position in the routine design of hydraulic
structures and is recommended as a principal computation tool in addition to tra-
ditional ones (e.g. gravity method, trial-load method) in the design specifications of
China.

iii. Adaptive refinement and standardized software

Users of the FEM in hydraulic engineering also have been dreaming to assess the
accuracy (refinement) of their computation results and to make the computation
“standardized”, to enable the FEM be prevailingly accepted as a principal analysis
tool in routine design practices. However, before proceeding further we have to
clarify the objectives of refinement and to specify “permissible error” or “error
tolerance” for the practitioners. For instance, the naive statement that all
displacement/stress, hydraulic potential and temperature as well as their gradients,
should be given within specified tolerances, is not realistic. The reasons are that at
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singularities, they will always be infinite and hence no acceptable error tolerance
could be specified. Taking a gravity dam for example, its dam heel and toe are
singularities where the strength conditions should be assessed according to the
design specifications. Unfortunately, the denser of the elements around there, the
higher of the stresses would manifest. Since the most procedures of doing refine-
ment convergence are generally too expensive in frequent applications and deci-
sions, therefore “experiences” of previous computations and rules on permissible
element shapes and sizes have to be frequently exercised, leading the element
refinement to be a kind of “magic”. This, accompanied with many disastrous
outcomes of computation, once led to the claim that only well trained and fully
tested technical staff members would be permitted to apply the art of the FEM.

Today, the situation is changing attributable to the introduction of error esti-
mators and adaptive techniques. This enables engineers to assess the discretization
error of a FEM computation and to adaptively adjust mesh size with reasonable
efforts. Such adaptive techniques were first introduced by I. Babuška and W.
C. Rheinboldt in the late 1970s (1978), when they tried to find a process to refine
the approximation with desired accuracy. At the present, there exist various pro-
cedures for the refinement of FE solutions broadly falling into two basic categories
of h-version and p-version.

By the h-refinement, the elements of same class are continuously used but
changed in size: in some locations they are made larger and in others smaller, to
provide maximum economy in reaching the optimal solution (Zienkiewicz and Zhu
1987). The advantage is the FE software may be kept independent, but the software
for mesh generation is demanded to handle the complex domain configuration and
construction process. In addition, the h-refinement is slower in convergence, and
not well performed in handling the problem of singularity.

By the p-refinement, we continue to use the same FE mesh of fixed element size
and hierarchically increase the order of the polynomial used in the shape (basis)
functions. It has been demonstrated for linear elastic fracture problems that the
sequences of FE solutions with the p-refinement converge faster than that based on
the h-refinement (Szabó and Mehta 1978). The theoretical foundations of the
p-refinement were established in a paper of I. Babuška, B. A. Szabó and I. N. Katz
published in 1981. For a large class of problems, the asymptotic convergence rate of
the p-refinement in energy norm is at least twice that of the h-refinement, subject to
quasi-uniform meshes are used. Further evidence of the faster convergence of the
p-refinement was presented by Babuška and Szabó in 1982. The p-refinement is
good at the singularity problems, but the structure of the FE software is
complicated.

Nowadays, the adaptive FEM has been widely exercised in the computational
geomechanics and hydraulic structures. The author of this book was also devoted in
this area in the 1990s, and made practical contribution to the development of
standard FEM software towards the routine design activities. Because personally, I
tended to exploit the adaptive techniques for making the FE computation a stan-
dardized process, subject to the discretization error target or tolerance being stip-
ulated after various “code calibrations” for existing hydraulic structures, taking it
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for granted that these existing practices possess optimal discretization errors.
Thereafter the FEM may be confidently embedded in CAD systems as an automatic
computation toolkit for structural analysis, the very idea making personal experi-
ence in mesh discretization less important and permitting those who do not possess
it to access the FEM more easily.

(2) The advancement in generalized finite element methods

In an attempt to develop special algorithms to overcome the deficits of traditional
joint elements, the generalized FEM (GFEM) with discontinuous shape functions
for fracture initiation and growth through bifurcation theory, was proposed by
Texas School (Wan 1990; Melenk 1995; Duarte and Oden 1996; Melenk and
Babuška 1996). The first work in the GFEM involved the global enrichments of
approximation space.

In the year of 2000, local enrichments for singularities at sharp corners were also
established (Duarte et al. 2000). It uses local function spaces to reflect the available
information on the unknown solution, in this way to guarantee a good local
approximation. A partition of unity is employed to “bond” these spaces together
and to form the approximating sub-spaces. The treatment of discontinuities is at the
element level. They are defined by distance functions so that their representation
demands nodal function values solely by additional DOF in the trial functions—a
kind of jump functions along the discontinuity tips. The motion of a discontinuity is
simulated using the level set technique and no pre-defined joint elements are needed
(Belytschko et al. 2001). It has been validated in problems with domains entailed by
complicated boundaries (Belytschko and Black 1999; Strouboulis et al. 2000, 2001;
Stolarska et al. 2001).

The GFEM performs well with both structured and unstructured meshes which
can be independent of the problem geometry. Structured meshes are appealing for
many studies in material science at the test sample level, where the interest is
directed to determining the properties of a micro-or meso-element (unit cell) of the
material. Unstructured meshes, on the other hand, tend to be widely exercised for
the analysis of engineering structures at the prototype level since it is often desirable
to conform the meshes to the external boundaries, although some methods under
development today are able to tackle even complicated geometries with structured
meshes (Belytschko et al. 2009).

The GFEM inspired a generation of researchers to develop variant methods
distinguished as its family members.

1. SEM

The spectral element method (SEM) was introduced by Patera (1984). By
expanding the solution in trigonometric series, a notable advantage of the SEM is
its very high order. This approach relies on the fact that the trigonometric poly-
nomial set—usually composed of orthogonal Chebyshev polynomials or very high
order Legendre polynomials over non-uniformly spaced nodes, is an orthonormal
basis. The computational error is reduced exponentially as the upgrade of the order
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of approximating polynomials, therefore a fast convergence to the exact solution
may be realized with fewer DOF in comparison with the classical FEM. The
drawback of the SEM is the difficulty in modeling complex geometry, in contrast to
the flexibility of the FEM.

The SEM uses a tensor product space spanned by nodal basis functions asso-
ciated with Gauss-Lobatto points. In contrast, the p-refinement FEM spans a space
of high order polynomials by nodeless basis functions.

2. NMM

The numerical manifold method (NMM) was founded by G. Shi in 1991 and further
improved in 1997 (Shi 1992; Chen et al. 1998). It is in many aspects similar to the
GFEM except for the treatment of discontinuities and discrete blocks by the trun-
cated discontinuous shape functions in a unified form. It also may be looked at as the
combination of the FEM and the DDA in a unified form to naturally bridge over the
continuum and discontinuum representations: in handling discontinuities (faults,
joints and cracks) the NMM takes over the advantages of the DDA, and for the
strain-stress analysis in continuous material domains it is as powerful as the FEM.

The method is formulated using a node-based star covering system for con-
structing the trial functions, where a node is associated with a covering star which
can be a set of standard finite elements associated with the node or be generated
using least-square kernel technique with general shapes. The integration is per-
formed analytically using the simplex integration technique.

In the application of the NMM, meshes also can be independent of domain
geometry. Therefore mesh generation is greatly simplified and re-meshing is not
demanded towards the simulation of fracture propagation (Salami and Banks 1996;
Wang and Ge 1997; Wang et al. 1997; Amadei 1999; Ohnishi and Chen 1999).

3. XFEM

The name “extended finite element method” (XFEM)—a numerical technique
based on the generalized finite element method (GFEM) and the partition of unity
method (PUM), was coined by Northwestern School (Belytschko and Black 1999;
Moës et al. 1999) in 1999. It also may be looked at as a variant of the FEM
combined with some meshfree (meshless) aspects by extending the classical FEM
through the enrichment of solution spaces with discontinuous functions. It is nor-
mally recognized that the development of the XFEM was an outgrowth of the
extensive research in meshfree methods.

The XFEM enriches the approximation space so that it is able to naturally
reproduce the challenging feature associated with the problems of, for example, the
propagation of crack, the evolution of dislocation, and the evolution of phase
boundary. It has been shown that such space enrichment can significantly improve
the convergence rate and computation accuracy. Another advantage of the XFEM is
that the computation mesh can be completely independent of the morphology of the
domain concerned.
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The XFEM has been implemented in the commercial code ABAQUS. It is
increasingly adopted by other commercial software, with a few plug-ins and actual
core implementations available (e.g. ANSYS, etc.).

4. S-FEM

The smoothed finite element method (S-FEM) is a particular class of the GFEM
through carefully designed combination of the classical FEM and some of the
techniques from the meshfree methods. The essential idea in the S-FEM is to use a
finite element mesh (in particular triangular or tetrahedral) to construct a numerical
algorithm of good performance. This is achieved by modifying the compatible
strain field or by constructing a strain field with only the displacements. Such a
modification/construction can be performed within elements but more often beyond
the elements (i.e. meshfree concepts) to bring in the information from the adjacent
elements. Naturally, the modified/constructed strain field has to satisfy certain
conditions, and the standard Galerkin weak form needs to be modified accordingly
to ensure the stability and convergence of solutions (Liu and Nguyen-Thoi 2010).

It has been proven that being softer than the classical FEM counterparts with
identical mesh structure, the S-FEM often produces more accurate solutions with
higher convergence rates and is much less sensitive to mesh distortion (Zeng and
Liu 2016).

5. CEM

From the point view of practitioners, main disadvantage in the explicit simulation of
a large amount of discontinuities and bolts as well as drainage holes lies in the
pre-process to discretize the calculation domain. The composite element method
(CEM) employs classical finite elements to cover the segments of discontinuities,
bolts and draining holes embedded in the hydraulic structure. The shape functions
may be of hierarchical, too, towards the p-refinement for desired computation
accuracy. The sub-elements representing the segments of discontinuities, bolts and
draining holes are detected and defined, and assigned with independent nodal
displacements/hydraulic potentials/temperatures. Across the interfaces of these
sub-elements, a jump in strain/stress or in gradient of head/temperature, is emerged
naturally attributable to the independent nodal variables. These nodal variables may
be solved from the governing equations similar to that of the classical FEM.

The CEM may be regarded as one of the simplified member of the GFEM in its
initial work to explicitly simulate passive, fully-grouted rock bolts using simple
meshes (Chen et al. 2004b, c). It possesses the potentiality to conveniently describe
a large amount of discontinuities, bolts, draining holes and cooling pipes in much
more detail and consequently gives more precise solution (Chen et al. 2004c,
2007b, 2008a, b, 2010b, 2011, 2012, 2015; Chen and Feng 2006; Chen and
Shahrour 2008). The most remarkable feature of this method is to locate the dis-
continuities, bolts, drainage holes and cooling pipes, within the classical finite
elements. In this manner less restraint is imposed on the mesh generation for
complicated hydraulic structures.
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The neglect of crack-tip performance leads to simpler algorithm and as a result,
the CEM may be incorporated in the FEM software easily. However, the crack
propagation phenomena cannot be handled well by the CEM at its present for-
mulation, therefore it is suggestible to employ the CEM only for the hydraulic
structures under the work situations where no widespread crack propagation is
anticipatorily resulted in.

(3) The advancement in discrete element methods

In civil and hydraulic engineering, the problems with regard to the deformation and
stability of rock foundations, dam abutments, underground caverns and cut slopes
are truly important and difficult due to the discontinuity system traversing rock
masses into blocks of various sizes, shapes and positions. Within the framework of
the classical FEM, the implicit or equivalent approach is only valid in a very limited
meaning whereas the explicit or distinct approach equipped by “joint elements”
encounters overhead arise from huge pre-process effort and computer capacity.

The necessity to find new discontinuous models and correspondent algorithms
had been aware long before by the researchers in the areas of geomechanics and
geotechnical engineering. One of the pioneering works was provided by Trollope
(1968) to deal with load transferring and structure deforming in a regular block
system. From the 1970s to the 1990s, many researchers rushed into this area. To
consider the deformation characteristics of rock masses, Cundall and his co-workers
(Cundall 1971; Hart et al. 1988) established the “distinct element method”
(DEM) that treats the rock block as rigid body but the discontinuity possesses
deformation characteristics. In their formulation, the assumption of point to point-or
edge-contact between blocks was adopted. Kawai (1978) proposed the “rigid
body-spring element method” (RBSM) which takes the rock block as rigid body,
too, but put some springs between blocks to describe the sliding or tensing of
discontinuity planes. Chen (1984, 1987) developed a “block element method” or
“block element analysis” (BEA) for deformable multi-blocky systems, with the
assumption of face to face contact between blocks. Shi and his co-workers (Shi and
Goodman 1985) founded the discontinuous deformation analysis (DDA) to handle
the deformation and stability issues of rock masses. Use was made of the principle
of energy, the assumptions of point to point-or edge-contact between blocks, and
the linear interpolation of the displacement within a block, they established a set of
equations to solve the deformation process of blocky rock systems.

The theoretical base of the discrete element methods is to formulate and solve
the motion equations of rigid and/or deformable bodies using either implicit (based
on the FEM discretization) or explicit (using the FDM/FVM discretization)
approaches. Nowadays, a large family of numerical methods for simulating the
motion of blocks (particles) is normally grouped in the category of the “discrete
element methods” and is abbreviated as DEMs, although this term is also specially
meant for the “distinct element method” proposed by Cundall.
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1. DEM

The distinct element method (DEM) is the most famous one from which the family
of discrete element methods was originated (Burman 1971; Cundall 1971; Chappel
1972; Byrne 1974). As one of the most rapidly developing areas of computational
geomechanics (Sharma et al. 1999), it has been widely accepted as an effective
method to address engineering problems in granular and discontinuous materials,
especially in granular flows, powder mechanics, and rock mechanics.

The key concepts of the DEM are that the domain of interest is treated as an
assemblage of rigid or deformable blocks/particles and that the contacts among
them need to be identified and continuously updated during the entire deformation/
motion process dominated by appropriate constitutive models (Cundall and Hart
1985, 1992; Cundall 1988; Hart et al. 1988). Intrinsically, the DEM is a force
method which employs an explicit, time marching scheme to solve the equations of
motion directly. Unbalanced forces drive the solution process, and damping is
introduced to dissipate energy. To avert the distortion of the real vibration in
dynamic problems, the amount and type of damping should be very carefully
specified with the help of experiments. Nevertheless, if only a quasistatic solution is
desired where the intermediate results are not of interest, the amount of damping
and the type of relaxation scheme can be deliberately selected to obtain the highest
solution efficiency.

The basic difference between the DEM and continuum-based methods (e.g. the
FEM and CEM) is that the contact patterns between the components of a system are
continuously changing with the deformation process for the former, but are fixed
for the latter.

The representative explicit DEM computer codes for simulating jointed rocks are
the UDEC (ITASCA Consulting Group Inc. 1992) and 3DEC (ITASCA Consulting
Group Inc. 1994) for two-and three-dimensional problems, respectively.

To simulate the progressive failure mechanism, Cundall and Strack (1979)
introduced a “particle flow code” (PFC) for the movement and interaction of disk-or
spherical-particles using the principle of the DEM. A similar algorithm was
developed by O. R. Walton et al. (Walton 1982; Heuze et al. 1990). In the PFC,
discrete rigid particles bonded together to form an assemblage are capable of failure
by progressive rupture of the contact bonds due to the shear and tension between
these particles in terms of the friction coefficient. The failure behavior of a jointed
rock can therefore be approached as either through the intact material or along the
joints, or through a combination of these two mechanisms.

Well known PFC computer codes are the dynamic materials corporation
(DMC) code (Taylor and Preece 1989, 1990), the PFC2D and PFC3D (ITASCA
Consulting Group Inc. 1995a, b). The PFC has been widely exercised in diverse
fields such as soil mechanics, non-metal material science, processing industry, and
defense industry.
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2. DDA

The discontinuous deformation analysis (DDA) was originally proposed by G. Shi
and his co-workers (Shi and Goodman 1985; Shi 1988) where the rock blocks were
postulated as “simply deformable”, namely, first-order polynomials were employed
for the displacement functions therefore the stresses and strains within a rock block
were constant. The stress-displacement problems are solved by accounting for the
interaction of independent particles (blocks) along discontinuities.

The DDA is typically formulated as a work-energy method, and can be derived
by using the “principle of minimum potential energy” or by using the “Hamilton’s
principle” (MacLaughlin and Doolin 2006). Once the equations of motion are
discretized, a step-wise time marching scheme in the Newmark family (Newmark
1965) is employed for their solution. The relation between adjacent blocks is
governed by the contact interpenetration accounting for friction. The governing
equation system so derived guarantees that equilibrium is held at all times. In
addition, by passing the velocities of rock blocks at the end of a time marching step
to the successive step, it offers dynamic solution with correct energy consumption.

Theoretically, the DDA is different from the DEM because the former is basi-
cally a displacement method using displacements as basic variables in an implicit
formulation with opening-closing iterations within each time marching step to
achieve the equilibrium of blocks under the constrains of contact. In addition, it
does not require an artificial damping term to dissipate energy, and can easily
incorporate other mechanisms for energy loss.

The DDA has been extended to a more comprehensive representation of dis-
continuities (Zhang and Lu 1998) and to the three-dimensional block system
analysis (Shi 2001). It has been further improved for refined stress-deformation
analysis using higher order elements (Ghaboussi 1988; Barbosa and Ghaboussi
1990, 1992; Shyu 1993; Chang 1994). Coupling of fluid flow across rock joints has
been taken into account (Kim et al. 1999; Jing et al. 2001), too. Instead of originally
penalty technique, its contact model has been improved by using the Lagrangian
formalism (Lin et al. 1996; Ma et al. 1996; Hsiung 2001; Grayeli and Mortazavi
2006). A hybrid “finite-discrete element method” has been proposed to consider the
fracturing and fragmentizing process of rocks (Munjiza et al. 1995, 1999; Munjiza
and Andrews 2000; Munjiza 2004). To handle the non-linearity within and between
blocks, a material non-linearity model using strain hardening/softening character-
istics has been implemented (Ma 1999). Instead of its original formulation where a
rock bolt was represented by a linear spring connecting two adjacent blocks, an
advanced fully-grouted bolt/cable model with lateral (shear) constraint has been put
forward (Te-Chin 1997; Moosavi and Grayeli 2006).

The engineering applications of the DDA to dams, tunnels, caverns, fragmen-
tation processes of geological and structural materials, have been exercised since
the 1990s (Lin et al. 1996; Jing 1998; Hatzor and Benary 1998; Yeung and Loeng
1997; Ohnishi and Chen 1999; Pearce et al. 2000; Hsiung and Shi 2001).
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3. BEA

Attributable to its simplicity and experiences accumulated from engineering
applications, the limit equilibrium method (LEM) is very useful in the stability
analysis for rock foundations, abutments and cut slopes dominated by discontinu-
ities. It has, however, certain limitations: the deformation of rocks cannot be
considered; the factor of safety will be overestimated when the slip surface consists
of multi-discontinuities, and postulations concerning the stress states on the slip
surface have to be employed to render the problem statically determinate (Londe
1965).

In the early 1980s, to improve the LEM for the stability analysis of rock wedges
in cut slopes, the deformation characteristics of discontinuities were introduced by
the author of this book (Chen 1984). Later, the idea was generalized to the
multi-blocky system giving rise to the “block element method” or “block element
analysis” (BEA) (Chen 1987). With the assumption of face to face contact between
blocks, the governing equations of the BEA were formulated by the consideration
of the force and moment equilibrium condition, the deformation compatibility
condition, and the elasto-viscoplastic constitutive relation on the discontinuities. In
the time domain, the governing equations are implicitly and step-wisely solved to
present the quasistatic/dynamic and non-linear (elasto-viscoplastic) evaluation of
the whole block system. The BEA had been expanded further into the area of
reinforcement and stochastic analyses (Chen 1993a, b; Chen et al. 1994). After the
displacements in each block being interpolated by a set of polynomials of any order,
and later by the overlap technique with classical finite elements, the BEA was able
to tackle the complicated deformation pattern in rock blocks as well as on dis-
continuities (Chen et al. 2004a). The progress also had been achieved towards more
systematical and practical algorithms, such as the unconfined seepage in disconti-
nuity networks embedded with drainage and grouting curtain systems, the auto-
matic identification of multi-block system for complicated domains with irregular
ground surfaces, the engineering applications under complicated geological and
structural conditions, the dam/foundation interaction and seismic responses, etc.
(Xu et al. 2000; Chen et al. 2003, 2010a).

The BEA may be looked at as one of the simplified versions of the DDA because
the assumption of infinitesimal deformation and related face-to-face contact of
blocks through discontinuities where the contact updating during the block
deflection/rotation process is neglected. This enables to easily handle various
practical issues such as the coupling of fluid flow across rock joints, the simulation
of reinforcement mechanism, the structural dynamic response under the action of
seismic shakes, etc. It is also beneficial from the clear and accessible mechanical
parameters which permit the experimental evaluation for a specific engineering
case. It should remembered that, however, the BEA of infinitesimal deformation is
mainly applicable for the routine structural analysis to solve the deformation,
seepage, dynamic response, and safety margin with regard to serviceability and
collapse limit states under normal and special action (load) combinations (Chen
et al. 2007a).
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The BEA has been recommended by the DL/T 5353-2006 «Design specification
for engineering slopes in water resources and hydropower project» in China.

(4) The advancement in meshfree methods

Classical computational methods such as the FDM, BEM and FEM were originally
defined on the mesh of data points (nodes). In such a mesh, each node has a fixed
number of pre-defined neighborhood nodes, and its connectivity with neighborhood
nodes can be employed to define mathematical operators (e.g. derivative). These
operators are, in turn, used to construct the governing equations to simulate the
physical or mechanical fields.

Where the material being simulated can move around (as in the computational
hydrodynamics) or can deform finitely (as in the computational geomechanics), the
connectivity of mesh points could be difficult to maintain without introducing error
into the computation. If the mesh becomes tangled or degenerate during the sim-
ulation, the operators defined upon are no longer able to provide correct solutions.
Although the domain may be re-meshed during the computation, yet this introduces
additional error, since all the existing data points must be mapped onto a new set of
data points.

A meshfree (or meshless, element free) method (MM) is that it does not require
connection between the nodes in a domain concerned, but rather is based on the
interaction of each node with all its neighborhood nodes. As a consequence,
original extensive properties such as mass or kinetic energy are no more assigned to
the elements but rather to the nodes. Significant advantage of the MM is therefore
that it greatly simplifies the pre-process works.

As one of the earliest meshfree methods based on the Lagrangian formalism, the
smoothed particle hydrodynamics (SPH) was proposed in 1977 (Gingold and
Monaghan 1977; Lucy 1977). It divides the fluid into a set of discrete elements
(cells) referred to as “particles” that possess a spatial distance known as the
“smoothing length” over which their properties are “smoothed” by a kernel func-
tion. This means that the physical properties of any particle can be obtained by
weighted averaging the relevant properties of all the particles which lie within the
range of the kernel function according to their distance from the particle of interest,
and their density as well. Kernel functions commonly used include the Gaussian
function and the cubic spline function. Combined with an equation of state and an
integrator, the SPH is able to simulate hydrodynamic flows efficiently. In 1990, L.
D. Libersky and A. G. Petschek extended the SPH to solid mechanics (Libersky and
Petschek 1990; Libersky et al. 1993). The main advantage of the SPH is its flex-
ibility with regard to local distortion because the mesh dependence is naturally
avoided. The main drawbacks of the SPH are inaccurate results near boundaries and
tension instability (Swegle et al. 1995). Over the past years, different corrections
have been introduced to improve the accuracy and tension stability of the SPH
solutions.

Over the ensuing decades, much more MM algorithms have been emerged
(Belytchko et al. 1996; Belytschko and Chen 2007), in which the trial functions are

1.4 History and State-of-the-Art of Computational … 33



no longer standard, but instead are generated from neighborhood nodes in a domain
of influence by different approximations, such as the least squares technique.
Although it has not outperformed the FEM in the routine structural problems, yet
the MM exhibits great expectation due to its flexibility in the treatment of dis-
continuities and fracture growth in rock-like materials (Belytschko et al. 2000;
Zhang et al. 2000; Li et al. 2001).

One recent advance in the MM is aimed at the computational tool for automated
modeling and simulation. This is realized by the so-called weakened weak (W2)
formulation based on the G space theory (Liu 2010) which offers possibilities to
establish various models that work well with triangular meshes generated auto-
matically and re-meshed easily. One typical W2 formulation is the smoothed point
interpolation method (S-PIM) (Liu 2009).

(5) The advancement in computation intelligent methods

A significant event manifesting in this period is that the computational intelligence
(CI) became a formal study area in computer science in the early 1990s (Attewell
and Woodman 1982; Zadeh 1994). “Computational intelligence” (CI), also referred
to as “soft computing” (SC), is normally looked at as a sub-branch of “bio-inspired
computing” (BC) that relies heavily on the fields of biology, computer science and
mathematics. The BC is, in turn, a branch of the “artificial intelligence” (AI) that
was founded as an academic discipline in 1956 and has become an essential part of
the technology industry. A significant milestone in the development of AI was
erected in the 2017, when the AlphaGo won a three-game match with J. Ke, who at
the time held the world No. 1 ranking.

The areas of CI study encompass a variety of machine learning inclusive arti-
ficial neural networks (ANN) and support vector machines (SVM); fuzzy logic
(FL); evolutionary computation (EC) inclusive evolutionary algorithms (EA) and
genetic algorithms (GA), swarm intelligence (SI) and ant colony optimization
(ACO) and particle swarm optimization (PSO); and Bayesian network (BN), etc.
The way in which CI differs from the traditional computational methods lies in its
more evolutionary approach to learning, as opposed to what could be described by
“rigorous PDEs”.

Since the early 1990s, the computational intelligence, particularly the genetic
algorithms (GA) and the artificial neural networks (ANN), have been provides as a
broad way to address almost every challenging problem in geotechnical engineering
(Neaupane and Adhikari 2006).

1. GA

Belonging to a larger class of evolutionary computation (EC), the genetic algorithm
(GA) undertakes stochastic search that emulates biological evolution processes of
natural selection. As one of the best-known heuristic search algorithms, the primary
reason behind the use of GA lies in its ability to generate high-quality solutions for
optimization and search problems attributable to bio-inspired operators such as
mutation, crossover and selection (Gen and Cheng 1997).
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The GA is well performed in solving large combinational design problems. For
example, Simpson and Priest (1993) demonstrated the application of the GA for
identifying the maximum discontinuity frequency in a complex rock structure for
different problem sizes. S. Pal et al. (Pal et al. 1996; Javadi et al. 1999; Macari et al.
2005) employed the GA to identify optimal material parameters in constitutive
models, and suggested that the use of the GA may overcome the difficulties arise
from a large number of material parameters. Goh (1999) incorporated the GA to
search for the critical slip surface in multi-wedge stability problems.

2. ANN

The artificial neural network (ANN) is a widely exercised computation intelligent
algorithm for solving nonlinear complex problems. Unlike standard computational
methods based on PDEs, it uses a parallel approach which is analogous to the
functioning of the human brain. Its advanced version, the back-propagation neural
network (BP-NN), is based on a supervised training technique that computes the
difference between ANN-calculated output and corresponding desired output from
the training dataset. The error is propagated backward through the net and the
weights are adjusted during a number of iterations, named epochs. The training
ceases when the calculated output values best approximate the desired values
(Rumelhart et al. 1986).

Since the early 1990s, the ANN has been increasingly exercised as an effective
tool in handling nonlinear relationship between parameters and variables for
geotechnical and hydraulic engineering, both at the levels of prototype structure
scale and test sample scale.

With respect of the prototype structure level, numerous literatures reveal that
ANNs may be extensively used in the areas of geotechnical and hydraulic engi-
neering such as the TBM performance (Ding et al. 2013), ground surface settlement
due to tunneling (Kim et al. 2001), tunnel rock mass displacement (Yoo and Kim
2007), probable failure modes in underground cavern (Lee and Sterling 1992),
tunnel support stability (Leu et al. 2001), dam displacement and settlement (Kim
and Kim 2008; Joghataie and Dizaji 2011; Mata 2011), slope stability (Ni et al.
1996; Neaupane and Achet 2004; Ferentinou and Sakellariou 2007; Cho 2009).

The study at the test sample level is mostly focused on the constitutive relations
of geomaterials (Adeli 2001), i.e. the neural network constitutive model (NNCM).
For most constitutive models of geomaterials based on the classical elasticity and
plasticity theories, the lack of physical understanding is customarily supplemented
by either simplifying the problem or incorporating assumptions into the models,
which would lead to the risk of complex formulation, exaggerative idealization, and
excessive empirical parameters. The NNCM based on the data alone and trained on
input-output data pairs to determine the structure and parameters of the model, does
demand no simplifications/assumptions. In addition, the NNCM can be further
updated, if new training examples as new data pairs become available.

Ghaboussi and Sidatra (1997) first developed a constitutive model for
geotechnical materials by the ANN. They showed that the NNCM can be very
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efficient in learning and generalizing the constitutive behavior of complex geo-
materials and give better results. Under the encouragement of their pioneering
work, many researchers proposed more advanced solutions as reliable and practical
alternatives to modeling the failure criteria (Rafiai and Jafari 2011) and the con-
stitutive behavior of geomaterials (Ellis et al. 1995; Goh 1995; Zhu et al. 1998;
Basheer 2002; Habibagahi and Bamdad 2003; Fu et al. 2007).

Despite its good performance in many situations, the ANN suffers from draw-
backs due to the lack of a robust theory by which the success in finding a good
solution is always guaranteed. In addition to develop guidelines in the design
process of the ANN and to give a comprehensive explanation of how it arrives at a
prediction, a hybrid with classical computational methods such as the FEM, can
make the relevant predictions for routine structure design with a competent accu-
racy and confidence.

(6) The advancement in hybrid methods

To handle the multi-phase or multi-scale (level) computations, the combination of
the Lagrangian formalism and the Eulerian formalism gives rise to hybrid com-
putational methods. In recent years, the combination of classical CM with modern
CI unfolds a great expectation to provide much more powerful computation tools
towards the challenges of future super projects.

1. Classical hybrid techniques

Hybrid methods are frequently desirable in geotechnical and hydraulic engineering,
particularly when encountered with rock-like materials. There are various classical
hybrid techniques dependent on the specific problem to be handled, of which the
most useful and prevalent ones are the hybrid BEM/FEM, DEM/FEM, and DEM/
BEM. The BEM is normally used for simulating far-field materials as equivalent
elastic continua, whereas the FEM and DEM are intended to the non-linear and
discontinuous rock-like materials at the vicinity fields where explicit representations
for discontinuities and/or nonlinear behaviors are demanded.

The hybrid BEM/FEM was first proposed by O. C. Zienkiewicz and his
co-workers (Zienkiewicz et al. 1977) then followed by B. H. G. Brady et al. (Brady
and Wassyng 1981; Beer 1983; Elsworth 1986a, b) towards strain/stress and per-
meability analyses. It is customarily employed for simulating underground struc-
tures (Gioda and Carini 1985; Ohkami et al. 1985; Varadarajan et al. 1985;
Swoboda et al. 1987; Von Estorff and Firuziaan 2000).

A hybrid FEM/DEM was described by Pan and Reed (1991), in which the FEM
region exhibits nonlinear deformation and the DEM region consists of rigid blocks.

The hybrid DEM/BEM was implemented in the code group of UDEC and 3DEC
(Lorig and Brady 1982; Lorig 1984; Lorig et al. 1986; Lemos 1987) for strain/stress
analysis. Similar but different codes were developed and applied to various prob-
lems, such as rigid block motion (Hocking 1977; Taylor 1982), plate bending
(Mustoe et al. 1987), and the RBSM (Kawai 1978; Kikuchi et al. 1992; Hu 1997; Li
and Wang 1998). The hybrid DEM/BEM was used for coupled hydro-mechanical
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analysis of jointed rock with the help of discrete fracture network (DFN) (Wei and
Hudson 1988; Wei 1992).

The hybrid FEM/BEA and BEA/TLM were firstly proposed by the author and
co-workers (Wang et al. 2001b; Chen et al. 2003) for the purpose to assess the arch
dam strength and abutment stability simultaneously. Much earlier, a hybrid Beam/
BEM was reported to simulate the support of underground openings (Pöttler and
Swoboda 1986).

At present, the most well known computer code for the stress analysis in
geotechnical and hydraulic engineering using the hybrid PFC/FDM is perhaps the
FLAC3D (ITASCA Consulting Group Inc. 1993, 2002).

The hybrid DDA/SPH (Wang et al. 2016), CFD/DEM (Shan and Zhao 2014),
and DEM/SPH (Wu et al. 2016; Tan and Chen 2017) also have been established
towards the two-phase phenomena such as the fluid-structure interaction with
free-surface flow and structural failure, the landslide movement and generated surge
waves (tsunamis), etc.

Each of the aforementioned classical hybrid methods possesses inherited
advantages, subject to special attention called to the continuity or compatibility
conditions at the interfaces between regions with different methods.

2. Modern hybrid techniques

In the literatures with regard to the study on the hybrid of classical computational
methods (CM) and modern computational intelligence (CA), two classes may be
roughly distinguished, depending on the hybrid structure whether a CM is embedded
in the CI (hybrid CI/CM) or a CI is embedded in the CM (hybrid CM/CA).

The “intelligent finite element method” (IFEM) is a good example of hybrid
CM/CA which was proposed by AA Javadi and his co-workers through the
incorporation of a NNCM in the finite element analysis (Javadi et al. 2003, 2009).
In their work, they used test results to extract stress-strain relationship representing
the mechanical responses of the geomaterial to applied loads through the training of
a NNCM based on the BP-NN. The trained NNCM is then incorporated in the finite
element analysis as a substitutive to classical constitutive relation.

McCombie and Wilkinson (2002) presented a good example of hybrid CA/CM,
by a simple GA to seek the minimum safety factor in slope stability analysis based
on the Bishop’s simplified method, and showed that the GA can perform better than
some traditional optimization methods such as the Monte-Carlo approach.
Zolfaghari and his co-workers (2005) employed the GA to search for the critical
non-circular failure surface in slope stability analysis based on the Morgenstern-
Price method for a variety of slope geometries and loading conditions. Cui and
Sheng (2005) also showed how a hybrid GA/FEM can be formulated towards the
probability of structure failure. Similarly, the researches of the hybrid ANN/LEM
and ANN/FEM for hydraulic structures may be found in literatures (Yi et al. 2004;
Al-Suhaili et al. 2014), the latter is particularly prevalent today for the parametric
back or inverse analysis (Sbarufatti et al. 2011; Zhou et al. 2015) and will be
elaborated in Chap. 7.
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1.5 Concluding Remarks on the Computational
Geomechanics for Hydraulic Structures

Over the past decades, achievements in the application of computational geome-
chanics (CG), a sub-branch of computational mechanics (CM), for hydraulic
structures, are impressive, especially on the aspects of continuum/discontinuum
approaches related to discontinuities (faults, fractures, joints and interfaces), finite
deformation related to dislocation, multi- phase/level computation related to
micro-or/and meso-structure, etc. It is notable that the revolution in designing and
building hydraulic structures was set, at least partially, in motion with the
advancement of the CG. Today, hydraulic engineers are used to find answers to
their problems with the help of computers.

In recent years nevertheless, the author of this book starts to feel a bit of worry
over a somewhat Pollyanna atmosphere, particularly in the young students and
engineers, that finer computations always lead to better designed performances of
the structures. Sometimes, they show exaggerated passion to choose or to create an
“universal method” which would “crown” all the existing methods. This situation is
mainly blamed for that they, as beginners, tend to imagine but actually misun-
derstand, that scientists create formulas/equations and algorithms, and then, by
inputting data into the corresponding software, computers turned out the desirable
responses to the real world problems. In most cases what happens instead is that,
although a fine algorithm may provide “precise” answers, yet they are only the
answers to the imagined object probably far from the target we are looking forward
to, as we used to make fun of our students that “rubbish in, rubbish out; finer
rubbish in, finer rubbish out”.

Taking the Chinese engineering practices for example, the primary analysis tools
recommended in the design specifications/codes for dams, dam foundation/
abutments, and cut slopes, are the classical LEM for stability calibration and the
classical structural mechanics such as the gravity method (GM) and trial-load
method (TLM) for strength calibration. The FEM is commonly ranked at the second
position to handle special issues such as the local failure, the cracking risk, the
interaction of complex foundation/dam body, etc., for “high dams or cut slopes”. If
we trace back the history of these classical methods of 100-plus years old and a
number of prevalent modern computational methods since the 1970s, it will become
clear that their most important and intrinsic talents are the intuitively formulated
conceptualization of the problem in terms of mechanisms, material properties and
parameters, execution processes, and other environmental perturbations. More
important, after the building of their mathematical presentations, the permissible
(allowable) factor of safety (reliability) might be matched convincingly via a wide
range and extensive engineering exercises, through which the dominant factors with
regard to the associated computation uncertainties arise from algorithm assump-
tions, geological exploration, laboratory and field tests, parametric evaluation, work
situations stipulated (normal, check), project importance related to economy
investment and society risk, are fully taken into account (Chen 2015).
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The road ahead us is still long on which many obstacles exist before the CG may
play leading role in the design of hydraulic structures. The author is convinced that
this might be achieved only if we—researchers and practitioners, go forward “vis-à-
vis” following the correct roadmap. For the researchers, they should avert to leave
engineering practices, namely to avoid the risk of leaving their feet from the ground
like Samson; whereas for the practitioners, it is advisable to keep an open mind for
new advancements in computational methods and technologies. In what follows the
author would like to put forward several comments and suggestions on the healthy
development and successful application of CG in hydraulic structures, as the
concluding remarks of this introductory chapter and the commencement of the main
coverage chapters of this book.

1.5.1 Understand of Engineering Problems

There are various structure types in a hydraulic project (Chen 2015), each of them
possesses unique features and corresponding concerns arise from the environmental
settings, design processes and construction activities. We are neither able to fan-
tasize an “all encompassing” model nor to find universal method for all major
problems in hydraulic structures.

The safety is extremely respected by designers in hydraulic engineering. On the
other hand, contractors and private owners prefer economical design with minimum
labor effort and construction cost. Subsequently, implementation of robust opti-
mization techniques which establish a trade-off between safety and total cost of
projects is demanded in practice.

A successful and helpful computation is actually rely on the team work leading
by those who are the experts of both hydraulic structure and modern computation,
in addition to comprehensive knowledge and practice training in the fields of
engineering geology, material science, construction or/and operation management,
and even society or human sciences. Only in this manner, we may feel sufficient
confidence to provide our computation results meeting the following requirements
that:

– The geological and hydrogeological settings, such as in situ geo-stresses, seis-
mic activities, rock strata and structures, are simulated as realistic as possible;

– The materials (soils, rocks, concrete) used in the structure and their properties,
are studied in detail, permitted by the time and budget;

– The numerical representation of construction and operation processes, such as
the sequences of foundation excavation and concrete placement, foundation
treatment (grouting, draining and reinforcing), are appropriately simplified and
simulated;

– The major concern over special difficulties encountered, their origins, conse-
quences, possible solutions or remedial measures, are deliberated;
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– The concerns and performances of the owner, design, contractor, even gov-
ernment agency, etc., might be more or less different in weighing the pros and
cons with respect to the issues of reliability, convenience, economy, and society
benefits/impacts, is fully realized.

1.5.2 Selection of Computational Methods

Today, we are happy but sometimes puzzled to have a large family of computa-
tional methods at hand.

In addition to classical methods (e.g. the LEM, the gravity method, the trial load
method), the most prevalent computational methods commonly applied in hydraulic
structures fall into continuum approaches (FDM, FEM, BEM, CEM), discomtin-
uum approaches (DEM, DDA, RBSM, BEA), and hybrid approaches. Since every
computation method possesses its own merits and drawbacks and there is no one
absolutely advantageous over the others, therefore it is an open question with
respect to whether the discretization scheme (algorithm) of PDFs ranging from
infinitesimal linear and continuous deformation (e.g. the FEM of elasticity) to finite
nonlinear and discontinuous deformation (e.g. the DEM of block cluster), has been
appropriately selected. The most relevant answer is dependent on the wisdom and
cumulated experiences of the practitioners.

Based on the mainstream opinions of the experts in the areas of CG and the
understanding of the author from the career practices in hydraulic structures, the
first consideration in selecting one or more computational methods for a specific
problem is the purpose of the computation task that:

– If the concern is only-or firstly focused on the stability against well defined
failure modes (e.g. discontinuity-controlled planar or wedge slides, circular or
nearly circular surface failure in “homogeneous” geomaterials), the LEM can
normally give convincible and reliable judgment. The major advantages with the
LEM are the simplicity in computation algorithm, full of experiences in the
evaluation of parameters and in the selection of allowable safety factors.

– Classical computational methods such as the FEM is advisable towards further
and more precise computations for the spatial-time distribution with regard to
deformation/stress, hydraulic potential, and temperature, under various envi-
ronmental actions following dynamic construction and operation agenda/
schedule. They are also able to validate or give enlightenment relating the failure
modes postulated in the LEM. If the analysis is intended for the jointed rock
masses under normal or check (extreme) action (load) combinations, the BEA is
a good computation tool attributable to its postulations of infinitesimal defor-
mation and non-dislocation, which enable it to handle a large amount of dis-
continuities meanwhile to keep a consistent basis of the LEM and FEM with
regard to the constitutive relations, mechanical parameters, and allowable safety
factors (Chen et al. 2007a).
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– The much more modern methods such as the DEM, DDA and SPH featured by
discontinuous and finite deformation, have to be attempted when we are
encountered with post-failure processes such as dam break, landslide, and their
generated flood/surge waves. Under such circumstances, the constitutive rela-
tions and mechanical parameters, are certainly not identical to the situation when
the integrity of the structure is maintained within the serviceability and collapse
limit states. This issue is however, not well cared and addressed insofar within
the knowledge scope of the author.

– Conceptual material models often indicate the availability of methods. Taking
the FEM for example, it will be sophisticatedly exercised if only a few of large
scale discontinuities (e.g. faults) are handled. It may also be successfully applied
where the group joint sets exist, and they are sufficiently dense to guarantee the
existence of small REV (RVE) compared to the characteristic dimension of the
hydraulic structure. The latter case allows for the equivalent continuum con-
stitutive relation by taking into account the influence of joints in mechanical
parameters solely. At present, the CEM is very suitable for moderately jointed/
fractured rock-like materials where the joint amount is rather large leading to
difficulties in explicit discretization but not sufficiently large to guarantee the
existence of the smaller REV.

– Where we are in the dilemma between more precise and higher ability methods,
it is suggestible to try hybrid ones. Diverse exercise using representative
methods is encouraged towards the overall understand of the problems.

1.5.3 Standardization of Computation Software

It has been bewildering for a long time that for a definite computation method
towards a specific structure problem, significant difference may manifest originated
from every task aspects in the whole computation procedure. For example, the
element density or size of a FE mesh will influence the hydraulic potential and
stress at the vicinity of a singularity. Such problem may partially overcome, from
the point view of practitioners, through the standardization of computation algo-
rithm instead of the accuracy.

Again, taking the FEM for example, the h-or p-version of refinement (adaptive
technique) is suggestible to uniformly control the discretization precision of mesh,
subject to the stipulation in the design specifications/codes of discrete error toler-
ances after a systematic “code calibration” analyses for various typical existing
hydraulic structures. Some techniques of stress equivalence or singularity smear,
such as the equivalent arch dam stresses at toe and heel (SL282-2003; DL/T5346-
2006), may be further implemented to help the FEM become standard design tool
competent to or even outperforming the classical trial-load method.
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1.5.4 Evaluation of Material Models and Corresponding
Parameters

It has been widely accepted that after the selection of computational methods for a
specific hydraulic structure, the constitutive relation and corresponding input
parameters should reflect the basic material properties while neglect the secondary
and minor factors, and allow for the experimental validation. The evaluation of
geological settings and engineering uncertainties, the homogenization and repre-
sentation of material properties as equivalent continua and the existence of REV,
etc., are routinely carried out. The back (inverse) analysis is always encouraged to
tune the parameters or even further the constitutive relations.

Taking the FEM, BEA and CEM elaborated in this book for example, if we hope
that they perform well as competent counterparts of classical design methods, the
Mohr-Coulomb strength criterion or the mostly similar others are desirable. The
strength parameters should be clearly specified as yield, peak and residual corre-
spondent to the action combinations (normal, check) stipulated in the design
specifications/codes.

In the dynamic and post-failure processes with large movement and certain block
separate-crash due to the dam break and landslide, the strength and deformation
parameters should be strongly dependent on the moving speed and lubricating
effects of water (if exist). This issue has however, not sufficiently attracted attention
and been well explored insofar.

1.5.5 Safety Calibration of Hydraulic Structures

Safety factors or factors of safety (FOS) obtained by modern computational
methods will normally perform as auxiliary indices in addition to that by classical
design methods, which will be helpful for engineers to make more convincible
judgment concerning the structural safety. However, it should bear in the mind that
in doing so, the action (load) combinations (normal or check) and the corresponding
strength parameters (yield, peak, residual), as well as the allowable safety factor ½K�
directly related to the risk and cost, are well defined or stipulated.

The allowable (permissible, design) safety factor should be stipulated on the
considerations concerning the project class, the structure type and grade, the service
life, the computation method, the definition of FOS, and even the state economy
development level (Chen 2015).

Taking the rock slopes on reservoir banks far away from the hydraulic structures
and communities/villages for instance, the creep movement of the slope or/and the
local failure in the slope will be admitted during the service life of the reservoir,
therefore a design with the FOS in its lower bound may be stipulated. In Chinese
design specifications (SL386-2007; DL/T 5353-2006), the allowable safety factor
½K� for such slopes is ranged between 1.0 and 1.3 corresponding to the residual
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strength parameters, dependent on the slope importance (grade and type), work
situations (permanent, temporary, accidental), and the other indeterminate factors
which cannot be taken into account in the computation solely (e.g. the quality and
reliability of blasting and stabilizing operations in the construction, the difficulties
with remedial treatment in case of unexpected accidents manifesting during the
service, the experiences of designer particularly in case of lack of sufficient geologic
exploration and experiment).

On the contrary, for the rock slopes at the vicinity of or above/under important
hydraulic structures (e.g. dam abutments and foundation), a FOS approaching its
upper bound is hence desirable in the design. In Chinese design specifications
(SDL5108-1999; SL319-2005; SL282-2003; DL/T5346-2006), for dam foundation
or abutment slopes the allowable safety factor ½K� is ranged between 2.3 and 3.5
correspondent to peak strength parameters, dependent on the dam importance
(grade and type) and work situations.

1.5.6 Work Style of Scientists and Artists

Computational geomechanics, although on one hand has been widely recognized as
a sub-branch of computing science, yet on the other hand it is similar to the art.
Since there are unlimited variants and no “exact” solution, the layout and imple-
mentation of a computation task for a hydraulic structure is basically a creative
activity relying on the engineer’s talent. In other words, a successful computation
for the hydraulic structure demands drawing on both the “left and right sides” of our
brains.

We are supposed to possess a predictive capability that can only be attained after
the key features of the reality have been well captured. At least the same important
is the ability to compromise the drawbacks and to assimilate the merits of selective
methods. This is why many Chinese design specifications/codes (dams, cut slopes,
etc.) stipulate that for the important or complex hydraulic structure, at least two
methods should be used in parallel.

Very often, the candidate computation methods are not necessarily to be high
level in terms of mathematics and mechanics. As we will show in the hereinafter
chapters, if we understand and handle the problem properly with the help of
engineering experiences, a pertinent computation is able to provide quite satisfac-
tory results. In this context, we, possessing divinity of creation and aesthetics,
should be free of the worry that in the near future we will be replaced by “smart/
intelligent” computation robots equipped by the “universal” computational
algorithm.
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Chapter 2
Preparation Knowledge of Material
Properties

Abstract Termed as “rock-like materials” related to the subject of geomechanics in
this book, rocks and concrete are mostly consumed in hydraulic structures whose
properties are dependent on their micro-or/and meso-structures but usually
described by phenomenological (conceptual) models on the macro-scale level. For
the benefit of beginning students, different types of basic material properties related
to hydraulics (permeability), thermodynamics (thermal stress), and mechanics
(deformation and strength) are discussed in this chapter, with special reference to
why and how the aggregate, cement paste, interfacial transition zone (ITZ), dis-
continuity, testing method, etc., affect these properties. The constitutive laws (re-
lations, equations) related to the fields of permeability/temperature/mechanics
ranging from linear to nonlinear until partial coupling of TM and HM, are concisely
summarized. It is notable that the basic properties and constitutive laws elaborated
in this chapter on one hand, presents preparation knowledge of rock-like materials
and on the other hand, provides basic parametric inputs for the engineering cases as
well as important constituents for the formulation of governing equations in the
hereinafter chapters.

2.1 General

Termed as “rock-like materials” related to the subject of geomechanics in this book,
rocks and concrete are mostly consumed in hydraulic structures whose physical and
mechanical properties such as density, thermal conductivity, permeability,
deformability and strength (Zienkiewicz 1968; Goodman 1989; Hudson and
Harrison 1997; Young et al. 1998; Mehta and Monteiro 2006; Jaeger et al. 2007),
must be comprehensively explored, tested and evaluated in order to design a
hydraulic structure that is safe, feasible, and appropriate for the site conditions
(Golzé 1977; Chen 2015). In addition, steel bars and black or HDPE pipes are
widely used for the purposes of rock reinforcement and concrete cooling.

The properties of rock-like materials are dependent on their micro- or/and
meso-structures but usually described by phenomenological (conceptual) models on
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the macro-scale level. It means a mathematical expression that relates several
observated phenomena by “naked-eye” or/and instruments to each other, in a way
consistent with fundamental physical theory, but not directly derived from micro-
scopic or mesoscopic mechanism. Based on the thermodynamics of continuum
(Malvern 1969; Irgens 2008), a rock-like material is thought to be composed of
infinitesimal “representative elementary volume” (REV) or “representative volume
element” (RVE). The magnitude of REV is normally defined as the minimum
volume beyond which any matter element behaves essentially homogeneous like
the whole material.

In the sense of phenomenological model, the properties of an elementary system
are assigned to the volume elements. The phenomena appearing in the micro-or
meso-structure of the material are represented in terms of state variables and con-
jugate thermodynamic forces, both attached to the elementary system. Cross-effects
between phenomena on the micro-or meso-level and their macroscopic conse-
quences may be determined from standard laboratory tests at the macro-scale level
of engineering material samples. The phenomenological models most familiar to
hydraulic engineers relate, for example, the strain versus stress, the temperature
gradient versus heat flow, the hydraulic gradient versus seepage flow.

The concept of REV has drawn high attention since the early work by Hill
(1963). As is common in continuum mechanics, several other definitions of REV
are proposed by scientists for different purposes (Hashin 1983; Evesque 2000). The
existence and size of REV have been studied by many scholars (Kanit et al. 2003;
Stroeven et al. 2004; Gitman et al. 2007; Al-Raoush and Papadopoulos 2010;
Skarzynski and Tejchman 2012).

Various studies have been carried out for a better understanding of the concrete
REV. Robert (1998) demonstrated that sample dimension need to be at least 3 times
the maximum aggregate size to representatively characterize electromagnetic
properties of concrete. Huet (1999) suggested that the concrete REV should be not
only dependent on the maximum aggregate size, but also on other the factors such
as sample shape, aggregate content or the contrast between properties of the sample
constituents. Van Vliet and Van Mier (2000) conducted a series of uniaxial tension
experiments to study the size effect on the strength and fracture energy of concrete,
they showed that the REV should be as large as 6–7 times the maximum aggregate
size. A study using quantitative image analysis and computer simulation by
Stroeven and Stroeven (2001) indicated that the concrete REV should exceed 4–5
times the maximum aggregate size for structure insensitive properties (such as
stiffness) while it must be even larger for structure sensitive properties (such as
fracture). Kim et al. (2009) proposed that for typical dense-graded asphalt concrete
mixtures with a nominal maximum aggregate size of 19 mm, their effective
non-damaged properties could be characterized by a REV size of 50 mm. Sebsadji
and Chouicha (2012) concluded that, for laboratory concrete testing, standard
sample dimension should be at least 3.5 times the nominal maximum aggregate size
in the case of ordinary concrete mixtures. Based on these studies it may be
rationally stipulated that the REV of concrete is 3–5 times the maximum aggregate
size (Van Mier and Van Vliet 2003).
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The story for rocks is, however, debatable due to their much larger and difficultly
estimated REV. To make things even worse, the definition of REV for rocks is also
ambiguous.

One of the rock REV definitions relates it to the sample size dependent on
stochastic behaviors. On the basis of the crack tensor concept, Oda (1988) sug-
gested that the rock REV must be at least three times the typical length of joint
traces. This is normally applicable to fractured rock where the joint trace is smaller
than 5 m. According to Müller (1974), the minimum size of the rock REV should
be at least ten times the joint space.

Another rock REV definition relates it to the structure size, with regard to
whether the equivalent continuum assumption is valid for the macroscopic phe-
nomenological model. This is more difficult and less addressed until now. The
applicability of phenomenological models is convincible with regard to mass
concrete because the size of the elementary heterogeneity of concrete material is
10–120 mm (fully aggregated), which is considerably smaller than the structural
dimensions—tens to hundreds in meter, taking dams for example. Towards rocks,
Wilson and Witherspoon (1970) suggested a ratio 1/50 of the maximum joint space
to the minimum structure boundary, to guarantee the validity of the equivalent
continuum assumption. Louis (1974a, b) believed that where there are 1000-plus
joints in the domain concerned, the REV does exist and the equivalent continuum
assumption to construct a phenomenological model is valid for seepage analysis.

To the best of our knowledge insofar, only a limited works focusing on the
determination of the REV size related to thermal and desorption isotherm of con-
crete and rocks are available for practical reference (Keskin et al. 2011; Zhou et al.
2013; Li et al. 2017; Xu et al. 2017).

The REV size is not necessarily unique for concrete and rocks since it depends
sensitively on the material properties under investigation. Therefore, there is much
room for its evaluation with regard to whether a macroscopic phenomenological
model is valid for the structural problem encountered. Taking Xiaowan Arch Dam
(H = 294.5 m, China) for example, its dam base width varying from the maximum
72.91 m (crown cantilever) to the minimum 12 m (crest arch abutments) may be
looked at as the minimum structure boundary dimension; the maximum concrete
aggregate size is 120 mm, the average trace length of dominant joint sets is 2.01–
2.23 m, and the average space of dominant joint sets is 0.23–0.43 m, respectively.
As a result, the corresponding minimum REV size is 360–600 mm for concrete
according to Van Mier and Van Vliet, meanwhile for rocks it is 6 m according to
Oda and 4.3 m according to Müller. This means that the physical and mechanical
parameters should be evaluated by test samples larger than 600 mm for concrete
and 6 m for rocks. We now easily realize that the latter requirement is nearly
impossible to meet for the moment. Even if we success in doing so, the ratio of
maximum joint space to the minimum structure boundary is 1/170–1/30, just
spanning the criterion of Wilson and Witherspoon (1970) in between. This situation
vividly presents the real difficulty we are encountered in the computational
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geomechanics arise from rock-like materials, and explains why we should make
compromise among the diverse applications of computation algorithms, material
models, parametric evaluations, and, safety margins.

2.2 Rock-like Materials and Auxiliary Materials

2.2.1 Concrete

Concrete is a composite material that essentially consists of binding media within
which are embedded particles or fragments of aggregate. The binder is formed from
a mixture of hydraulic cement, flying ash, water, and several kinds of admixtures
(Mehta and Monteiro 2006; ICOLD 2009).

Concrete containing natural sand and gravel or crushed-rock aggregates, gen-
erally weighing about cc = 2400 kg/m3, is called “normal-weight concrete”, and is
the most prevalent for hydraulic structures. The normal-weight concrete in
hydraulic structures is exposed to different physico-chemo-mechanical actions of
either fresh or sea water. Such concrete is called “hydraulic concrete” which must
possess certain properties capable of guaranteeing the stability and long service life
of the hydraulic structure in addition to the good workability. These properties are
high strength, high density, high impermeability, high water resistance (i.e. cor-
rosion resistance); high abrasion resistance and cavitation resistance; high crack
resistance.

Aggregates are the granular materials, such as sand, gravel, or construction/
demolition waste that are mixed with a cementing medium to produce either
concrete or mortar. According to the aggregate size, concrete is termed as
“one-graded” with aggregate size of 5–20 mm, “two-graded” by the additional
aggregate size of 20–40 mm, “three-graded” by the additional aggregate size of 40–
80 mm, and “four-graded (fully aggregated)” by the additional aggregate size of
80–120 mm. In hydraulic structures, one-or two-graded concrete is employed for
slim structures such as the tunnel lining, sluice and spillway pavement, this is
mainly required by the construction technology; for mass structures such as dams,
the fully-graded concrete is desirable to meet the requirements for the economy and
temperature control.

Cement is a finely pulverized dry material which may develop the binding effect
as a result of hydration. A cement is tagged “hydraulic” when its hydration products
are stable in an aqueous environment. The most commonly consumed hydraulic
cement is the Portland cement that consists of reactive calcium silicates forming the
calcium silicate hydrates (C-S-H) primarily responsible for its adhesive character-
istics, and is stable in aqueous environment.

Apart from aggregates, cement, and water, admixtures are commonly added to
the concrete batch immediately before or during mixing. The use of admixtures in
concrete may offer a variety of benefits such as to modify the setting and hardening
characteristics of cement paste by chemically influencing the rate of cement
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hydration, to plasticize fresh concrete mixtures through cutting the surface tension
of water by water-reducing admixtures, to improve the durability of concrete
exposed to cold weather by air-entraining admixtures, and to reduce thermal
cracking in mass concrete by mineral admixtures such as pozzolan.

Mortar is a mixture of sand, cement, and water, but without coarse aggregates.
Shotcrete is a mortar or concrete that is pneumatically transported through a hose
and projected onto an excavated rock surface at high velocity for the purposes of its
protection and reinforcement.

As a heterogeneous and multiphase material, there are various factors affecting
concrete properties including the volume fraction, the characteristics of the prin-
cipal constituents, and the characteristics of the “interfacial transition zone” (ITZ).
In general, capillary voids and micro-cracks and oriented calcium hydroxide
crystals are relatively more common in the ITZ than in the bulk cement paste
matrix, therefore it often although not always, provides an important clue in the
exploration of the properties of concrete.

Concrete mixes of different compositions are used depending on the engineering
requirements, demanded by operating conditions of structures or their elements.
Rational selection of the composition of concrete consists in obtaining good quality
concrete at minimum cost, that is, obtaining long-life and economical concrete. In
this respect, the specific consumption of cement for one cubic meter is a key index,
namely, for a stipulated concrete grade it should be possibly minimum. This is also
beneficial to reduce liberation of heat and to control the danger of cracking in
concrete.

The property of place-ability (flow-ability) depends on the composition and
water cement ratio (W/C) of concrete. The so-called settlement (slump) of a stan-
dard cone made from a concrete mix serves as an index of flow-ability: the larger
settlement of the concrete mix cone after removing the form, the greater flow-ability
of concrete placed in forms or sections. Use is made of different types of concrete
mixes: dry and low-slump (slumps 1–2 cm) concrete mixes, they demand com-
paction by vibration for obtaining required strength, and are used in massive frames
and structures; moderate-slump (slumps 2–4 cm) concrete mixes find application in
reinforced massive frames; in reinforced concrete structures with up to 1% rein-
forcement ratio, consistent concrete mixes of 5–8 cm slumps may be required; 8–
12 cm slumps are permitted for even larger proportions of reinforcement.

Although in practice most concrete is simultaneously subjected to a combination
of compressive, shearing, and tensile stresses in two- or three-directions, the
uni-axial compression test is most prevalent. The 28-day compressive strength of
concrete determined by a standard uni-axial test using standard cubes
(150 � 150 � 150 mm) is accepted universally as a primary index for concrete
grading. Exclusive USA, strength grading of cement and concrete is exercised in
China, Europe and many other countries characterized by the standard uni-axial
compressive strengths in MPa. In the architecture industry of China, the strength
grading is normally termed in a series of C15, C20, C25, C30, C35, C40, C45, C50,
C55, C60, where the subsequence digit denotes the uni-axial compressive strength
(in MPa) of standard cubes at the age of 28 days.
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By uni-axial compressive strength, concrete may be divided into three general
categories, namely, low-strength concrete whose compressive strength is lower than
20 MPa, moderate-strength concrete whose compressive strength is ranged from 20
to 40 MPa, and high-strength concrete whose compressive strength is higher than
40 MPa. Moderate-strength concrete, also referred to as ordinary or normal con-
crete, is mostly employed for hydraulic works.

Disregarding the effects such as crack formation (matter of early age) and
chemical change due to AAR or aggressive water, the increase of concrete age is in
general beneficial to the overall structural performance. An increase in the time
dependent elastic modulus leads to a reduction in elastic deflection, and an increase
in the time-dependent strength leads to an increase in structural safety. Attributable
to the longer construction phase of hydraulic structures, the standards of China
(GB50010-2010; SL191-2008) stipulate that in the design of concrete dams, the
concrete grading may be specially termed with the uni-axial compressive strength
of 85% guarantee rate that is tested by standard curing cubes at the design age of
90 days. Where the construction period is much longer, the design age may be
equal to or even longer than 180 days subject to comprehensive study. Under such
circumstances, the concrete strength grade is denoted as Cage(day)Strength (MPa).
For example, by grade C18040 it means that the concrete possesses uni-axial
compression strength 40 MPa of standard cubes (150 � 150 � 150 mm) tested at
the age of 180 days.

For the compressive strength of three-graded or fully-graded concrete, the
standard cubic specimen (150 � 150 � 150 mm) should be “wet-screened”. In the
process of such specimen, the aggregates larger than 40 mm are picked out.

The other requirements for testing sample size are stipulated in the design code
SL352-2006 as follows:

– Wet-screened (two-or three graded). Standard cubes (150 � 150 � 150 mm) are
demanded for compressive and splitting tension tests, in which the aggregates
larger than 40 mm are screened. Beams by 100 � 100 � 400–600 mm are
demanded for direct (axial) tension tests, whereas beams by 150 � 150 �
550 mm are demanded for three point bending tests. Cylinders of /150 � 300
mmmay be employed, too, particularly for axial compression strength andYoung’
modulus tests. Cylinders of /150 � 450 mm or /200 � 600 mm are employed
for compressive creep tests, whereas those of /150 � 500 mm are for tensile
creep tests.

– Fully-graded (four-graded). Cubes larger than 450 � 450 � 450 mm are
demanded for compression, splitting tension, and shear tests. Cylinders of
/450 � 900 mm also may be employed in compression tests. Beams by
450 � 450 � 1700 mm are normally used for three point bending tests.

Since the wet-screen of aggregates larger than 40 mm will greatly change the
mortar content, the concrete parameters using wet-screened samples exhibit notable
change with respect to that of the real fully-graded concrete in mass concrete
structure. In recent years, the Chinese engineers supplementarily employ larger
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samples of real fully-graded concrete to help the selection of design parameters in
addition to standard specimens. For dams higher than 200 m and other important
hydraulic structures, such fully-graded concrete tests are normally demanded. The
data listed in Table 2.1 may help us to understand that, compared to the standard
cubic specimens of 150 � 150 � 150 mm, larger specimens will provide larger
average compressive strength but smaller average tensile strength. When the size is
increased beyond 450 mm, a much smaller variation in strength is observed. It is
therefore validated that the strength of concrete possesses remarkable scale effects
attributable to the heterogeneity at meso-scale level, and the REV size corre-
sponding to fully-graded concrete strength would be approximately 450 mm.

In a hydraulic project, different portions of a mass concrete structure (e.g. dam)
operate under different states of stress/seepage/temperature conditions. Hence for
the purposes of achieving maximum correspondence of concrete grades to the
operating conditions and of obtaining maximum economy, the so-called concrete
grade zoning is customarily exercised in mass concrete structures (Chen 2015).

2.2.2 Rocks

At a granular level, rocks are composed of mineral grains held together by chemical
bonds. Many rocks contain silica (SiO2) forming crystals with other compounds,
whose proportion in rock minerals is a major factor in determining their name and
properties. Most brittle rocks comprise aggregates of crystal and amorphous particle
bounded by varying amount of cementitious materials (Scholtz 1968; Ghaboussi
and Gioda 1977; Barla 1995; Boukharov et al. 1995; Chen and Chugh 1996; Malan
2002; Schubert et al. 2003; Jaeger et al. 2007; Barla et al. 2010; Brantut et al. 2013).

Table 2.1 Strength values of fully-graded and wet-screened concretes: Xiaowan Arch Dam
(28 days)

Strength
grade

W/C Maximum grain of
aggregate (mm)

Sample size
(cm/cubic)

Compressive
strength (MPa)

Splitting tensile
strength (MPa)

C18040 0.40 40 (wet-screened/
two-graded)

15 35.0 2.40

80 (wet-screened/
three-graded)

30 40.0 –

150 (fully-graded) 45 40.5 2.12

C18030 0.50 40 (wet-screened/
two-graded)

15 24.6 2.11

80 (wet-screened/
three-graded)

30 29.0 –

150 (fully-graded) 45 29.7 1.64
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Over the geologic history, rocks can be transformed from one type into another,
which is called the rock cycle. These events produce three general classes of rocks,
namely, igneous, sedimentary, and metamorphic:

– Igneous rocks are formed through the cooling and solidification of magma or
lava;

– Sedimentary rocks are formed at the Earth’s surface by the accumulation and
cementation of fragments of earlier rocks, minerals, and organisms in water
(sedimentation);

– Metamorphic rocks are formed by subjecting any rock types (i.e. sedimentary
rock, igneous rock or another older metamorphic rock) to higher temperature or/
and higher pressure conditions than those in which the original rock was
formed.

In the modern civil engineering, rocks are generally described in the bore log by
the following sequence of terms: drilling information, rock type, weathering, color,
structure, rock quality designation (RQD), strength, and defects (Look 2007;
Ulusay and Hudson 2007; Ulusay 2015).

Significant geological fractures such as faults, joints, bedding planes and fissures
are commonly termed as “geological discontinuities” or “structural planes”, which
have certain shapes and sizes as well as orientations (attitudes). The overall geo-
metrical feature of the major discontinuities in a rock mass is termed as “rock
structure”.

It is widely recognized that there are three basic peculiarities of rock masses
compared to concrete:

– The rock mass comprises structural bodies surrounded by structural planes,
therefore its engineering characteristics is co-decided by the material of struc-
tural body and various discontinuities, the latter are often dominant.

– The rock mass on which a hydraulic work rests has changeable stability states
varying with stress conditions.

– The spatial characteristics of geological discontinuities, coupled with the
properties and configurations of structural bodies, contribute to great disparity in
the physical and mechanical properties of the rock mass.

Actually, there is another important basic peculiarity of rock mass—the virgin
(un undisturbed, initial) in situ geo-stresses abbreviated as “in situ stresses” (or
“geo-stresses”), that significantly affect its characteristics and engineering perfor-
mances. As an important geologic setting of cut slopes, tunnels, and dam foun-
dations, in situ stresses are the natural stresses that exist in the ground prior to any
excavation. They determine the initial conditions for deformation/stress analysis
and give rise to the stress adjustments accompanied by deformation when an
opening/exposure surface is created (Goodman 1989; Jaeger et al. 2007).

The in situ stresses existing in a rock stratum can be decomposed into three
principal compressive components, approximately one vertical and two horizontal,
which are usually not equal. The vertical stress is mainly attributable to the
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overburden weight exerting on the top of the stratum. The horizontal stresses are the
result of the laterally restrained rock deformation plus externally applied tectonic
actions and possible geothermal/ground water actions. The parameters that affect
the magnitude of in situ stresses include overburden weight, fluid pore pressure,
porosity, anomalies in the rock fabric (i.e. natural fractures), rock mechanical
properties (such as the Poisson’s ratio), tectonic activities (inclusive slip on fracture
surfaces and viscoplastic flow throughout the rock), river trenching, terrestrial
heating, chemical and physicochemical processes such as leaching, precipitation
and re-crystallization of constituent minerals. Topographic conditions also signifi-
cantly influence in situ stresses. In a deeply cut river valley, the in situ stress field is
commonly distributed in 4 zones inclusive stress release zone, stress transition
zone, stress concentration zone and, stable stress zone.

The foundations of various hydraulic structures should fully use the stress
transition zone, partially use the stress–release zone and avoid as far as possible the
stress concentration zone. The top of dam foundation bedrock should be adjusted
appropriately so as to keep the ratio between the stress and the strength of rock
within a range permitting only be fractured slightly; the axis of tunnel should be
aligned as parallel as possible or be oblique slightly to the maximum principal
stress; the surrounding rock mass of underground cavern should be reinforced when
it is situated within the stress concentration zone. Full attention should be paid to
the stress induced damages like rock burst and relaxation (scaling and fracturing).

Although some of the simplest clues to stress orientation can be estimated from
the knowledge of a regional geology structure and its recent geologic history, yet
quantitative information of in situ stresses requires the boundary and initial con-
ditions, and field tests are the only true guide for important hydraulic structures
(Goodman 1989; Yi et al. 2001; Yi and Chen 2003). To determine the magnitude
and orientation of in situ stresses by the exploratory tests using a number of spatial
reading points, much manpower and material resources are consumed. Basically,
there are direct or indirect methods available for in situ stress testing. The former is
represented by flat jack testing and hydraulic fracturing, which determines a cir-
cumferential normal stress component in the wall of a borehole; the latter is based
on the determination of strain changes in the wall of a borehole, or other defor-
mations of the borehole, induced by over coring that part of the hole containing the
measuring device.

The in situ stresses tested in the same geology element commonly present
scattered data by different methods. Even by a same test method, the data display
large spatial dispersion, too. These are mainly blamed on the factors of disconti-
nuity system, topography, erosion and denudation, apart from the errors resulted
from test apparatus and operation.

(1) Intact rocks

It is also defined in engineering as “rock matrix” containing no naked-eye per-
ceivable discontinuities. On the smaller scale however, it consists of grains with
meso- or/and micro-structure governed by the geological events such as rock
forming, water penetrating and weathering.
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Three general classes of intact rocks are further subdivided into groups (see
Table 2.2).

(2) Discontinuities

A discontinuity in geotechnical engineering is a plane or surface that marks a
change in physical or chemical characteristics in a rock mass. There are three
fundamental types of discontinuities, namely those who have been simply opened
and are termed as “joints”, those who have been certain lateral movement and are
termed as “shear zones” or “faults”, and those who emerge in sedimentary and
layered volcanic rocks tightly linked with rock lithologic stratigraphy and are ter-
med as “bedding planes”, “weak interlayers” or “intercalations”.

In geotechnical literatures, the term “fracture” is employed to denote the first and
second types of discontinuities that are actually the separation in a geologic for-
mation dividing the rock mass into several pieces. Fractures cause the rock to lose
cohesion along its weakest plane and provide permeability networks for fluid
movement.

Discontinuities possess many geometrical and mechanical features governing the
overall properties of rock masses, particularly the anisotropy and heterogeneity in
addition to the discontinuity with respect to their deformation, strength, and
permeability.

1. Joints

A joint is a break (fracture) of natural origin in the rock most frequently manifesting
as a member of joint sets. A joint set is a family of nearly parallel and evenly spaced
joints that can be identified through mapping and analyzing their orientations,
spacings, and physical properties. A joint system consists of at least two or more
intersecting joint sets.

Joints are among the most universal geologic structures as they are found in the
most exposures of the Earth crust. They vary greatly in appearance, dimension, and
arrangement, and occur in quite different tectonic environments. Joints may be
cleanly open or filled by various materials.

Table 2.2 Classification of rocks

Rock type Example

Igneous rocks Intrusives (plutonic) Granite, Diorite, Porphyry

Extrusives (volcanic) Basalt, Rhyolite, Andesite, Tuff

Sedimentary rocks Clastic sedimentary Conglomerate, Sandstone, Shale

Carbonatite Limestone, Dolomite

Weak and soft Claystone

Metamorphic rocks Ortho-rock Gneiss, Hornblende schist

Para-rock Quartz, Marble, Slate, Phyllite, Chlorite schist
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The stresses giving rise to joints were induced by the stretching of rock layers,
the rise of pore fluid pressure, or the shrinkage due to cooling. Very often, the
specific origin creating a joint set can be quite ambiguous and even controversial.

Joints result from brittle fracture of a rock mass may also be classified as “tensile
joints” and “shear joints”. Although it is possible to make such a discrimination by
looking for the presence of slicken sides, yet from the standpoint of engineering it is
not very necessary.

It is very important from the point view of engineering, that joints are described
by their geometry features as follows:

– Spacing and frequency. Spacing is the distance between adjacent joint inter-
sections with the measuring scan line. Frequency (i.e. the number per unit
distance) is the reciprocal of the spacing.

– Orientation (trend, attitude). A joint is assumed to be planar whose dip direction
(the compass bearing of the steepest line in the plane) and dip angle (the angle
that this steepest line makes to the horizontal plane) uniquely define its orien-
tation. It is either plotted on the stereonet and rose-diagram.

– Persistence. The extent of a joint in its own plane is commonly described using
persistence, incorporated with the assumptions regarding the shape of the
bounded plane and the associated characteristic dimensions (e.g. discontinuity
discs of circular, ellipse, or rectangular).

– Roughness. The surface of the joint is usually uneven due to the existence of
asperities and whose roughness may be defined either by reference to standard
charts or mathematically (e.g. fractal geometry).

– Aperture. It is the perpendicular distance between the adjacent rock walls of a
joint, which strongly dominates its permeability, nonlinear deformation and
strength parameters as well.

– Sets. Joints occur for good mechanical reasons with some degree of clustering
around preferred orientations associated with the formation mechanisms. Hence,
it is untrivial to identify joint sets.

The stochastic characteristics of joint geometry features in the rock mass have
been well studied and presented by Louis and Maini (1970), Baecher et al. (1977),
Cruden (1977), Hudson and Priest (1983), Dershowitz (1984), Kulatilake and Wu
(1984), Chiles (1988), Hakami and Larsson (1990), Kulatilake et al. (1993), Nicholl
et al. (1999). These results lead to the selective probability distribution types and
density functions for the center position, dip direction, dip angle, density, trace
length, and aperture. However, in the practices of hydraulic engineering, the sta-
tistically average (or mean) value is always paramount in the structural design.
Table 2.3 lists the available data of the dominant joint sets in Xiaowan Project in
the phase of preliminary feasibility study.

Often imparting a well-developed permeability to rock masses, joints strongly
influence, even dominate, the circulation of groundwater within bedrock. In addi-
tion, joints may have a significant influence on the mechanical behaviors (strength,
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deformation, etc.) of rock masses in the construction of, for example, tunnels, dam
foundations, and cut-slopes.

2. Faults

A fault is a large scale discontinuity in the rock mass, across which there had been
significant displacement as a result of rock mass movement. Large faults within the
Earth’s crust result from the action of plate tectonic forces, with the largest ones
forming the boundaries between the plates, such as subduction zones or transform
faults. Energy release associated with rapid movement on active faults is the cause
of most earthquakes.

A fault plane is normally represented by its mean fracture surface. A fault trace
or fault line is the intersection of the fault plane with the ground surface commonly
plotted on geologic maps.

Since faults usually do not consist of a single and clean fracture, geologists use
the term “fault zone” when referring to the zone of complex deformation associated
with the fault plane.

The two sides of a non-vertical fault are known as the hanging wall and footwall.
By definition, the hanging wall occurs above the fault plane and the footwall occurs
below. Slip is defined as the relative movement of geological features present on
either side of a fault plane. Rocks within a fault zone are classified by their textures
and their implied mechanism of deformation as:

– Cataclasite. A fault rock which is cohesive with poorly developed or even absent
of planar fabric, or is incohesive and characterized by generally angular clasts
and rock fragments in a finer-grained matrix of similar composition.

– Tectonic or fault breccia. A moderately-to coarsely grained cataclasite which
contains >30% visible fragments.

– Fault gouge. An incohesive, clay-rich, finely-to ultrafinely grained cataclasite
which may possess a planar fabric and contain <30% visible fragments.

Table 2.3 Statistical data of the joint sets: Xiaowan Project (preliminary feasibility study)

Elevation (m) Dominant attitude Average space (m) Average persistence (%)

<1050 N6°E, NW∠86° 0.42 82.3

N10°W, NE∠30° 0.42 67.8

N120°E, SE∠26° 0.24 57.85

N7°E, SE∠87° 0.32 71.78

1050–1150 N10°E, NW∠83° 0.34 80.48

N83°W, NE∠80° 0.43 90.02

N14°E, SE∠30° 0.23 52.93

N70°E, SE∠87° 0.26 63.21

>1150 N10°E, NW∠83° 0.33 77.70

N83°W, NE∠80° 0.39 86.37

N21°E, SE∠28° 0.25 54.03

N70°E, SE∠87° 0.26 63.21
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– Clay-rich gouge. A fault rock formed in sedimentary sequence which contains
clay-rich layers strongly deformed and sheared.

– Mylonite. A fault rock which is cohesive and characterized by a well-developed
planar fabric resulted from tectonic reduction of grain size, and commonly
contains rounded porphyroclasts and rock fragments of similar composition.

– Pseudotachylite. An ultrafine-grained and glassy-looking material, usually black
and flinty in appearance.

In hydraulic engineering, a fault often forms a dominate discontinuity that may
give rise to significant consequences on the mechanical behaviors (strength,
deformation, etc.) of, for example, tunnels, dam foundations, or cut-slopes.

3. Intercalations

It is another kind of large scale discontinuities also termed as “weak (soft) inter-
layers”. They primarily emerge in sedimentary and layered volcanic rocks and are
tightly linked with the rock lithologic stratigraphy due to the deposition of weak
materials into soft and sensitive stratum layers that are further disturbed by the
interlayer shearing during tectonic folding movements followed by groundwater
actions.

(GB50287-99) «Code for Water Resources and Hydropower Engineering
Geological Investigation» (1999) distinguishes four weak interlayer types as
argillic, clastic interbedded argillic, argillic interbedded clastic, clastics and crag
(see Table 2.4).

(3) Rock masses

Engineers have developed various classification schemes for rock masses which are
basically compromises between the use of a complete theory and the overlook of rock
properties entirely (Brown 1981). All the existing rock mass classification schemes
consider a few of the key features, and assign digital values to the classes (grades).

Table 2.4 Classification of weak interlayers (GB50287-99)

Type Quantitative index Shear strength
parameters

Content of fine grain
(� 0.005 mm)

Content of clastics and
crag (� 2 mm)

f′ c′
(MPa)

Clastics and crag Non or few >50% 0.55–
0.45

0.250–
0.100

Argillic
interbedded
clastic

0–10% 30–50% 0.45–
0.35

0.100–
0.050

Clastic
interbedded
argillic

10–30% <30% 0.35–
0.25

0.050–
0.020

Argillic >30% – 0.25–
0.18

0.005–
0.002
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These schemes may provide a short-cut to the rock mass properties that are more
difficult to assess (e.g. the deformability), and provide direct guidance for engi-
neering design (e.g. the type and amount of supporting required for a tunnel).

There are two prevalent classification schemes in the geotechnical engineering
community essentially intended to estimate the supporting necessity of tunnels: one
is the Q Method by Barton, another is the RMR System by Bieniawski (Hudson and
Harrison 1997). Attempts also have been made to extend the classification systems,
such as to the cut slopes (Romana 1993).

However, engineering practices for hydraulic projects have demonstrated that
any classification systems, can only define the overall properties of rock masses
within a limited spatial scope. It can by no means include those special geological
elements of dominant significance which are difficult to be quantified by statistical
data, e.g. the low-strength, thin-opening, and gently inclined discontinuities below
the dam base which undermine the sliding resistant capacity of the dam.

In 1994, China promulgated the (GB50218-94) «Standard for Engineering
Classification of Rock Masses». It includes the basic quality classification for rock
mass applicable to assess the basic quality of rock mass, and the class identification
of engineering rock masses intended to revise the basic quality index in conjunction
with specific engineering undertakings.

The basic quality index (BQ) of rock mass is given by the formula

BQ ¼ 3Rc þ 250Kv ð2:1Þ

where Rc = uni-axial compression strength of saturated rock, MPa; Kv = index
representing the rock mass integrity.

Kv ¼ Vpm

Vpr

� �2

ð2:2Þ

where Vpm = primary wave velocity of rock mass, km/s; Vpr = primary wave
velocity of rock matrix, km/s.

Equation (2.1) is subject to the following constraints:

– For a given Kv by Eq. (2.2), if Rc [ 90KV þ 30, then assuming Rc ¼ 90Kv þ 30
for the calculation of BQ.

– For a given Rc, if Kv [ 0:04Rc þ 0:4, then assuming Kv ¼ 0:04Rc þ 0:4 for the
calculation of BQ.

The rock mass quality classification based on the value of BQ is elaborated in
Table 2.5.

In case of difficulty, the parameters Rc and Kv may be estimated using point load
strength index I(s)50 and volumetric joint count Jv of rock mass, according to
Eq. (2.3) and Table 2.6.
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Rc ¼ 22:82I0:75ðsÞ50 ð2:3Þ

where I(s)50 = point load strength index using cylindrical sample (/50 mm), MPa.
In the phase of planning or preliminary study, when the field testing data are

unaccessible, the shear strength parameters of foundation rock may be selected
according to the rock classification described above, subject to the revision taking
into account of geologic settings, characteristics of discontinuities, recommendation
of design specifications, as well as the data from analogue projects.

2.2.3 Steel Bars and Wires

Steel is an alloy of iron and other elements, primarily carbon, widely consumed in
engineering structures and other applications attributable to its high tensile strength.
The earliest known production of steel—pieces of iron ware excavated from an
archaeological site in Anatolia (Kaman-Kalehoyuk), are nearly 4000 years old
dating from 1800 BC (Akanuma 2005).

Table 2.5 Standard for basic quality classification of engineering rock masses (GB50218-94)

Basic
quality
grade

1 2 3 4 5

Basic
quality
index BQ

>550 550–
451

450–351 350–251 <251

Qualitative
traits for
basic quality
classification

Hard
and
integral
rock
mass

①
Hard/
fairly
integral
rock
mass;
②
Fairly
hard/
integral
rock
mass

① Hard/fairly
fissured rock
mass;
② Fairly hard
or alternating
hard and soft/
fairly integral
rock mass;
③
Comparatively
soft/integral
rock mass

① Hard/fissured
rock mass;
② Fairly hard/fairly
fissured to fissured
rock mass;
③ Fairly hard or
alternating hard and
soft rock
predominated by soft
rock/fairly -integral
to fairly fissured rock
mass;
④ Soft/very fissured
rock mass

①
Comparatively
soft/fissured
rock mass;
② Soft/
fairly-fissured
to fissured rock
mass;
③ Very soft/
very fissured
rock mass

Table 2.6 Relationship between Kv and Jv (GB50218-94)

Jv (count/m
3) <3 3–10 10–20 20–35 >35

Kv >0.75 0.75–0.55 0.55–0.35 0.35–0.15 <0.15
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In the Chinese specifications (GB 1499) «Hot-rolled and ribbed steel bar used in
reinforced concrete», steel bars fall into grade HRB400 and grade HRB335; in the
Chinese specifications (GB 13013) «Hot-rolled and plain round steel bar used in
reinforced concrete», steel bars grade HPB235 is noted as Q235 for hydraulic
engineering; in the Chinese specifications (GB 13014) «Waste-heat treated steel bar
used in reinforced concrete», steel bars RRB 400 is noted as KL400 for hydraulic
engineering. By pre-stress steel strand it means the steel wire of stress–relieved,
spiral ribbed and indented on three sides, as specified in (GB/T 5523) «Steel wires
used in prestressed concrete». The mostly consumed steel materials in hydraulic
structures for the purpose of reinforcement are steel bars (bolts) and wires (strands)
summarized in Table 2.7. The digit following the letters is the characteristic value
of tensile strength. For hot-rolled steel bars it is determined on the basis of yield
strength fyk. In contrast, the characteristic strength of pre-stress steel wires
and heat-treated steel bars is determined on the basis of peak (ultimate) tensile
strength fptk.

2.3 Density

Density (q) is one of the important properties of matters. It is defined as the ratio of
mass by volume.

2.3.1 Concrete

The density of concrete may be adjusted or controlled through the selection of
aggregates, by which the deformability as well as the resistance capacity (stability),
may be “adjusted” to a certain extent.

Most natural mineral aggregates, such as sand and gravel, produce
normal-weight concrete with an approximate density of 2400 (kg/m3), which is
subjected to slight variation within a range of 1.5% following the concrete grade—it
is generally higher for higher grade concrete. This variation should be carefully
studied, particularly for gravity dams, since the dam body size and corresponding
expenditures will be significantly influenced by the concrete density.

2.3.2 Rocks

The rock density varies from the lowest 2.10 (g/cm3) (e.g. standstone and lime-
stone) to the highest 3.1 (g/cm3) (e.g. granite and basalt) depending on its type and
weathering degree. In Table 2.8 the density values of representative intact rocks are
summarized (Wu and Zhou 2013).
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2.3.3 Steel Bars and Wires

Steel comes in many different forms whose densities differ by type. The normally
used steel bar exhibits a density of 7.85 (g/cm3).

Due to very lower volumetric proportion in rocks and mass concrete, the weight
of steel bars or/and strand wires is normally neglected in the structural computation.

2.4 Permeability

The foundation and dam materials are pervious to a certain extent, and seepage flow
will occur attributable to the up-and down-stream head differences. Permeability is
a mechanism of the ease with which a fluid (i.e. water) will flow through the
porosity/fracture system of concrete and rock. Intact rocks and concrete exhibit
lower permeability because the water does not flow easily through them. However,
rock masses are commonly higher permeable where discontinuities (joints, faults,
etc.) conduct water more readily.

Permeability is an important property as it will impose direct effects on the
stability and can represent a significant cost, of the hydraulic structure (Louis and
Maini 1970; Hsieh and Neuman 1985; Hsieh et al. 1985).

Permeability characteristics depend on the distribution, shape and orientation of
the percolation network consisting in pores, ITZs, cracks and discontinuities, in a
rock-like material. For the lower pervious concrete without serious construction

Table 2.8 Density values of intact rocks (Wu and Zhou 2013)

Rock type Density (g/cm3)

Igneous rocks Intrusives (plutonic) Granite 2.58–2.60

Diorite 2.72–2.99

Porphyry 2.60–2.89

Extrusives (volcanic) Basalt 2.5–3.1

Rhyolite 2.28–2.70

Sedimentary rocks Clastic sedimentary Sandstone 2.20–2.71

Shale 2.3–2.62

Carbonatite Limestone 2.66–2.71

Dolomite 2.10–2.90

Weak and soft Claystone 2.24–2.6

Metamorphic rocks Ortho-rock Gneiss 2.30–2.98

Para-rock Quartz 2.4–2.8

Marble 2.6–2.87

Slate 2.50–2.90

Phyllite 2.71–2.86

Schist 2.77–3.01
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defects, it will take a long time (maybe several decades or even longer) to form a
stable regime of seepage. On the contrary, attributable to a large amount of high
permeable joints, fissures, and other structural planes, the foundation rock will take
a much shorter time to form a stable seepage regime.

The water percolated into the rock-like materials builds up pore water pressure
(Harza 1949; Keener 1950; Casagrande 1961; Cedergren 1989). The load due to
pore water pressure exerting on the pervious dam/foundation is not a kind of
boundary traction but rather a kind of volumetric force. Since the calculations in a
volumetric way are relatively more complicated, hence it is often simplified as
boundary traction, i.e. the “uplift”, for the convenience of analysis. Another reason
for the use of uplift lies in the fact that discontinuities in foundation rocks and
construction joints in dam concrete are often weak faces dominating the water
percolation, consequently the uplift action may by postulated as a interstitial water
pressure having characteristics of boundary traction. Traditionally, only the pore
water pressure which exerts upwards on a horizontal dam base or a horizontal
section within the dam is named as uplift. Nowadays, this term is commonly
referred to the resultant effective component of interstitial water pressure perpen-
dicular to any plane, e.g. the dam/base interfaces, construction joints, or disconti-
nuities within the underlying bedrock. However, this term and definition are not
applicable in tunneling engineering. The uplift offsets a part of the selfweight of
hydraulic structure, therefore it is unfavorable to the stability against sliding and the
strength control. Although the built-up of pore water pressure and affected factors
are quite complicated, yet after several decades of observation and research they are
understandable and may be controlled well.

Other concepts related to the seeping water are the “excess pore pressure” and
“effective stress”. The importance of the forces transmitted through the soil skeleton
from particles to particles was recognized in 1923 when Terzaghi presented the
principle of effective stress transmitted through the soil skeleton only

r ¼ r0 þ p ð2:4Þ

where p = pore water pressure or seepage pressure, MPa; r = total stress, MPa;
r′ = effective stress, MPa.

A just completed concrete dam manifests no seepage and usually p = 0. After a
certain term of service when a portion of dam and foundation is saturated, the pore
water pressure is built-up.

In the embankment dam design, the principle of effective stress is important in
which the pore water pressure is denoted as u in lieu of p in Eq. (2.4). When a load
is applied in a fully saturated soil, at beginning it may be resisted partially by inter
particle forces and partially by the increased pressure of the pore water above the
static value due to the deformation of solid skeleton. The component of pore water
pressure ue above the static value us is known as the “excess pore water pressure”,
i.e. u = us + ue. The reduction in excess pore water pressure as drainage takes place
is described as “dissipation”. As the excess pore water pressure dissipates, the
effective stress increases, accompanied by a corresponding reduction in volume.
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When the dissipation of excess pore water pressure is completed, the increment of
total stress will be carried entirely by the soil skeleton. This phenomenon is called
“consolidation”.

For dam concrete and foundation rocks, the transient state process of built-up
and dissipation of excess pore water pressure is normally not considered in their
quasistatic computation, i.e. p = u = us.

In general, neglecting the percolation threshold (Burgisser et al. 2017), the
anisotropic seepage may be approximately described by the “Darcy’s law”, which
linearly links the seepage velocity {v} and the gradient {J} with regard to the
hydraulic potential (water head) / through a permeability tensor [k] as

vf g ¼ k½ � Jf g ð2:5Þ

In which

vf g ¼ ½vx vy vz�T ð2:6Þ

Jf g ¼ ½Jx Jy Jz�T ¼ � @/
@x

@/
@y

@/
@z

� �T
ð2:7Þ

k½ � ¼
kxx kxy kxz
kyx kyy kyz
kzx kzy kzz

2
4

3
5 ð2:8Þ

Towards the formulation of governing equations related to PDEs and constitu-
tive laws (relations) and boundary conditions, as well as corresponding algorithms,
in the whole coverage of this book the global Cartesian coordinate system will be
particularly defined using capital letters with its X-axis and Y-axis being horizontal,
and Z-axis being upright. In addition, Y-axis points northward and X-axis points
eastward. Whereas the axes using small letters (x, y, z) in Eqs. (2.6)–(2.8) form a
local Cartesian coordinate system. Sometimes, a subscript is bound at the local
coordinates or corresponding variables to indicate a specific material (e.g. j for
joint, b for bolt, g for grout, w for stranded wire, p for cooling pipe), and if
necessary (not always), a superscript is further employed to indicate whether the
local coordinate system is of Cartesian (ca) or Cylindrical (cy).

The permeability tensor possesses an important and useful feature, namely the
existence of permeability ellipsoid. The ellipsoid is defined with the semi-axes of
1=

ffiffiffiffiffi
k1

p
, 1=

ffiffiffiffiffi
k2

p
, and 1=

ffiffiffiffiffi
k3

p
, where k1, k2 and k3 are three principal permeability

coefficients (k1 � k2 � k3).
For the conceptual isotropic material at macro-scale level such as concrete or a

large portion of intact rock, Eqs. (2.5)–(2.8) are simplified as
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vx ¼ �k @/
@x

vy ¼ �k @/
@y

vz ¼ �k @/
@z

8><
>: ð2:9aÞ

or

vx
vy
vz

8<
:

9=
; ¼ �

k 0 0
0 k 0
0 0 k

2
4

3
5

@/
@x
@/
@y
@/
@z

8><
>:

9>=
>; ð2:9bÞ

In which scalar k is termed as “permeability coefficient”.

2.4.1 Concrete

The permeability coefficients of well cured modern concrete, which are strongly
related to its density, usually vary between 10−5 and 10−9 cm/s.

Professional judgment in the design of hydraulic concrete should take into
consideration not only the strength, deformation, and permeability, but also its
durability that has serious implications for the life cycle of a hydraulic structure.
Durability of concrete is defined as its service life under given environmental
settings. Permeable concrete is, of course, less durable. Generally, watertight
concrete endures for a long time. The excellent conditions of the 2000-plus years
old concrete linings of several aqueducts in Europe built by the Romans provide a
living testimony to the long-term durability of concrete in moist environments. It is
obvious that there is a relationship between strength and durability since low
strength is associated with high porosity (low density) and high permeability.

The permeability of concrete depends not only on the mix proportion, com-
paction, and curing, but also on the micro-or meso-scale cracks caused by the
ambient temperature and humidity cycles. It also should be emphasized that the loss
of mass by surface wear and cracking as well as leaching of the components of
hardened cement paste due to soft water or acidic fluids (sulfate attack), would
increase the porosity of concrete, which in turn, make the concrete more vulnerable
to abrasion and erosion.

Instead of permeability coefficient, impermeability grade is normally employed
as a key index in the durability design of hydraulic concrete. To meet the imper-
meability requirement, the water-cement ratio W/C must not exceed 0.5–0.55, and
care should be taken to avoid separation of concrete mix into layers during handling
and placing it in the framework.

In China, by the index of impermeability the concretes are classified into six
impermeability grades W2, W4, W6, W8, W10 and W12 in which the subsequence
digit indicates the pressure of water (in atmospheres) against which standard cured

2.4 Permeability 79



samples of concrete at age of 28 days can withstand (for continuous 8 h) without
allowing the water to percolate through them. Similar to the strength grading, a
definition of 60, 90, 180 days, etc., may also be applicable with regard to the initial
exerting time of head gradients on the hydraulic structure.

Impermeability grade testing employs cylindrical steel mould samples of
/450 mm � 450 mm for fully-graded concrete, and 150 mm high taper steel
mould samples with top diameter /170 mm and bottom diameter /180 mm for
wet-screened (two-graded) concrete. The procedure is specified in the design codes
DL/T5150-2001 and SL352-2006.

The conventional impermeability test facilities may provide the relative per-
meability coefficient calculated according to the penetrating height and exerting
pressure. Related to the absorption and unsaturated seepage mechanism, this rela-
tive permeability coefficient cannot be directly used in the seepage analysis of the
concrete structures before appropriate revisions. The design codes DL/T5150-2001
and SL352-2006 advisably relate the impermeability grade to the permeability
coefficient k (see Eqs. 2.9a, 2.9b) and allowable hydraulic gradient [J] (see
Eq. 4.216) in Table 2.9, for the reference in preliminary design phases.

Table 2.10 gives the impermeability testing data of the concrete C18040 for
Xiaowan Arch Dam, China. From these data it is clear that a remarkable difference
between the fully-graded and wet-screened (two-graded) concretes does exist in the
relative permeability. It is also demonstrated that by adding aggregates to cement
paste or mortar strengthens the permeability considerably, the larger of the aggre-
gate size, the greater is the coefficient of permeability.

The explanation as to why the permeability of concrete is higher than that of the
corresponding cement paste lies in the micro-and meso-cracks normally appearing
in the “interfacial transition zone” (ITZ) between the aggregate and cement paste.
During the early hydration period the ITZ is weak and vulnerable to cracking due to
differential strains between the aggregate and the cement paste induced by drying
shrinkage, thermal shrinkage, and externally applied load. These micro-and
meso-scale cracks are too small to be perceived by the naked-eye, but are larger
than most capillary cavities in the cement paste matrix. Later on, the propagation of
these cracks establishes the interconnections for seeping water percolation.

Table 2.9 Relationship of concrete impermeability grade and permeability coefficient (DL/
T5150-2001; SL352-2006)

Impermeability grade W4 W6 W8 W10

Permeability coefficient k (�10−8

cm/s)
0.783 0.419 0.261 0.177

Allowable hydraulic gradient [J] [J] < 10 10 � [J] < 30 30 � [J] < 50 [J] � 50
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2.4.2 Rocks

Study on the permeability properties of rocks may be accomplished by in situ tests
and laboratory tests. In situ tests are normally conducted by pumping or packer
techniques in a single borehole to get permeability coefficient. Although such tests
are very valuable for understanding the permeability of rocks, yet a convincible
evaluation of permeability coefficient could be the most difficult task, particularly
for jointed rock masses, due to the heterogeneity of the foundations and the limi-
tations of test procedures. By the postulations of three orthogonal sets of joints in a
rock mass, triple hydraulic probe was proposed by Louis in 1970 for permeability
tensor. Later on, cross-hole test was also proposed by Hsieh and Neuman in 1985
for the same purpose.

The concepts of primary permeability and secondary permeability in rock
masses are widely accepted nowadays. The former refers to the rock matrix (intact
rock) permeability, whereas the latter indicates the rock mass permeability domi-
nated by discontinuities. Usually, the presence of discontinuities in a rock mass
gives rise to a much higher secondary permeability than the primary one. Therefore,
in most rock permeability problems encountered in hydraulic engineering, the
secondary permeability plays much more important role in the cutoff and dewa-
tering design.

(1) Intact rocks

For intact rocks, there are two testing types suggested by the Paris Laboratory
(France), namely straight (axial) flow and radial flow. Since the former is restrained
by the upper bound of k = 10−8 cm/s, hence the latter is more popular. In the radial
flow test, cylinder samples at a height of 150 mm and with a diameter of 60 mm are
processed. Along the sample axis a hole of 125 mm deep with 12 mm diameter is
drilled. The water pressure may be exerted either from its external or interior
surface, the seeping water is flowing in radial direction.

The permeability coefficients of various intact rocks in Table 2.11 are collected
from laboratory testing data available in a number of literatures (Brace et al. 1968;
Farmer 1968; Serafim 1968; Jaeger et al. 2007;Wu and Zhou 2013). They range from
approximately 10−3 (cm/s) (glenrose sandstone) to 10−11 (cm/s) (granite and shale).

Table 2.10 Data summarized from the impermeability grade test (C18040): Xiaowan Arch Dam

Aggregate gradation Impermeability
grade

Penetration height
(cm)

Relative permeability
(10−7m/s)

Fully-graded >W14 3.93 7.74

Wet-screened
(two-graded)

>W14 3.19 5.11

F/W ratio – 1.23 1.51
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(2) Joints and interlayers

A rock joint may be unfilled or filled. An unfilled joint may, in turn, be opened or
closed with asperity contact. Towards the estimation of its permeability, an unfilled
joint is customarily simplified into two parallel smooth slabs with a determinative
aperture. Lots of theories were proposed in light of this simplification, of which the
“cubic law” firstly introduced by Boussinesq (1868) for the problem of the laminar
flow of a viscous and incompressible fluid in two parallel smooth slabs, is the most
classical and prevalent (Snow 1969).

For an open and smooth joint (see Fig. 2.1), the unit fluid flow rate q observes

q ¼ �CJ ¼ �kf aJ ð2:10Þ

Table 2.11 Permeability coefficients of intact rocks (Wu and Zhou 2013)

Rock type Permeability coefficient
k (cm/s)

Igneous rocks Intrusives
(plutonic)

Granite 5 � 10−11–2 � 10−7

Diorite 8 � 10−11–8 � 10−7

Porphyry 6 � 10−11–2.5 � 10−7

Extrusives
(volcanic)

Basalt 1.0 � 10−12

Rhyolite 1.0 � 10−11–1.0 � 10−10

Sedimentary
rocks

Clastic
sedimentary

Sandstone 1.6 � 10−7–1.2 � 10−5

Shale 1.0 � 10−9–5.0 � 10−13

Carbonatite Limestone 7.0 � 10−10–1.2 � 10−7

Dolomite 7.0 � 10−10–1.2 � 10−7

Weak and soft Claystone 6.0 � 10−7–2.0 � 10−6

Metamorphic
rocks

Ortho-rock Gneiss 4.0 � 10−12–3.0 � 10−5

Para-rock Quartz 1.8 � 10−10–1.0 � 10−9

Marble 1.0 � 10−11–1.0 � 10−10

Slate 7.0 � 10−11–1.6 � 10−10

Phyllite 1.0 � 10−6–1.0 � 10−5

Schist
(fissured)

1.0 � 10−9–5.0 � 10−8

Fig. 2.1 Velocity pattern in a
parallel and smooth joint
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In which C is the hydraulic conductivity of joint, a is the hydraulic aperture of
joint, and kf is the equivalent permeability coefficient parallel to the joint surface
calculated by the formula

kf ¼ ga2

12v
ð2:11Þ

where v = coefficient of water viscosity, cm2/s.
Equation (2.10) is actually identical to the Darcy’s law if we introduce the

average velocity in joint as v ¼ q
a.

Joint aperture is rather tiny but significantly influential to joint permeability, so it
should to be gauged as precisely as possible in spite of difficulties (Kacewicz 1994).

Lomize (1951) experimentally validated the cubic law for laminar flow
(Re < 500) using parallel glass plates. He also investigated the effect of roughness
that accounted for the deviations from the ideal cubic law. Romm (1966) investi-
gated fine (10–100 lm) and superfine (0.25–4.3 lm) joints by using various fluids,
and he demonstrated that laminar flow in a joint observes the cubic law, at least,
down to apertures of 0.02 lm. Witherspoon et al. (1980) studied the cubic law in
both open and closed joints with regular asperity contact, and reported that the
cubic law is held in the closed joint with aperture varying from 4 to 250 lm.

For rough joints with asperities (protuberances) on joint surfaces against per-
meability, modifications should be made for Eqs. (2.10) and (2.11) in order to take
into account the surface roughness by introducing the contact area ratio (Louis
1969; Walsh 1981). Other famous works on the modification of the cubic law were
worked out by Tsang and Witherspoon (1981), Barton et al. (1985), Fernandez and
Moon (2010) introduced the hydraulic aperture into the cubic law as an appropri-
ately weighted average aperture, which is a function of initial hydraulic joint
aperture, joint aperture reduction factor and joint closure.

The author of this book proposed a “filled model” (Chen et al. 1989) which
equates the asperities as a thin layer of evenly “filled” medium with certain
deformation and permeability characteristics. In this manner, a unified model for
both the filled and unfilled joints can be established, and Eq. (2.10) holds for the
both joint types. For the filled joint, kf is the permeability coefficient parallel to the
joint surface of the natural filler medium, whereas for the unfilled and open joint, kf
is calculated according to the cubic law (see Eq. 2.11) or its modifications avail-
able; for the unfiled and closed joint, the asperities are looked at as a thin layer of
virtual filler material with high porosity. This is simple and facilitates the compu-
tation algorithms, particularly in handling HM coupling problems.

In additional to the global coordinate system X–Y–Z in Fig. 2.2, a special local
Cartesian coordinate system for the joint segment j is defined with its zj-axis being
perpendicular to the joint and upward, the yj-axis being on the joint and pointing in
the direction of dip, the xj-axis being formed by the right hand rule (see Fig. 2.2). hj
and /j are the dip angle and dip direction of the joint.
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The coordinate (displacement and velocity as well) transformation may be
undertaken by

xf gj¼
xj
yj
zj

8<
:

9=
; ¼

l11 l12 l13
l21 l22 l23
l31 l32 l33

2
4

3
5 X

Y
Z

8<
:

9=
; ¼ l½ �j Xf g

Xf g ¼
X
Y
Z

8<
:

9=
; ¼

l11 l21 l31
l12 l22 l32
l13 l23 l33

2
4

3
5 xj

yj
zj

8<
:

9=
; ¼ l½ �Tj xf gj

8>>>>>><
>>>>>>:

ð2:12Þ

where

½l�j ¼
cos/j � sin/j 0
sin/j cos hj cos/j cos hj � sin hj
sin/j sin hj cos/j sin hj cos hj

2
4

3
5 ð2:13Þ

Suppose the flow on the joint surface is isotropic, the Darcy’s law with respect to
the average velocity in the local coordinate system is

vx ¼ �kf
@/
@x

vy ¼ �kf
@/
@y

vz ¼ �kf
@/
@z

8><
>: ð2:14aÞ

In which kf is computed by the cubic law (see Eq. 2.11) for an open-and unfilled
joint, or by the “filled model” for any joints using the permeability coefficient of the

Fig. 2.2 Coordinate systems of joint segment j
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virtual filler medium. Where the joint walls are impervious or the flow exchange
between adjacent intact rock blocks is neglected, we have vz = 0 and

vx ¼ �kf
@/
@x

vy ¼ �kf
@/
@y

(
ð2:14bÞ

(3) Rock masses

The secondary permeability of rock is several orders higher than the primary per-
meability in magnitude, due to the existence of discontinuity networks.

Usually, joints manifesting in sets are planar and in parallel. The aperture of joint
ranges from 0.000001 to 0.01 m, the trace of joint varies from several meters to tens
of meters. The real world model of the rock mass with complex discrete fracture
network-porosity system is fairly difficult to be established (Kranz et al. 1979;
Nuezil and Tracy 1981; Kolditz 1995; Singhal and Gupta 2010). In view of the
much larger dimension of hydraulic structures (e.g. dams), equivalent continuum
approach which smears the joints of high density, is commonly recognized as a
reasonable compromise between the real world and research level related to the
investigations, experiments and computations. Further, the laminar flow may be
postulated on the safe side due to the tiny aperture of joint, hence the cubic law or/
and Darcy’s law holds. On these basic assumptions the beautiful linear constitutive
Eqs. (2.5)–(2.11) relating seepage velocity and hydraulic gradient, may be
employed.

However, it should bear in mind that these assumptions are actually problematic.
A successful application of the equivalent continuum approach relies on the corner
stone that a REV for the hydraulic behavior exists and its size is much smaller than
the characteristic dimension of the structure concerned. Theoretically, the REV is
defined as the size beyond which the rock hydraulic permeability tensor keeps
unchanged. Practically, it is identified where the permeability components only
exhibit minor fluctuation when the size of rock samples increases. Unfortunately
insofar, this is a not well answered question and leaves a large room for the further
study (vide Chap. 18).

1. Analytical solutions

Most joints in rock masses may be grouped into sets, each set is assumed with
constant aperture, uniform spacing and dominant orientation. The rock mass per-
meability is contributed from individual joint set and intact rock matrix. Ignoring
the water exchange between joint sets, the equivalent permeability tensor of a
jointed rock mass is formulated by a “fracture tensor” (Snow 1969). Use is made of
the expressions in Eqs. (2.9a, 2.9b)–(2.14a, 2.14b), we have

K½ � ¼
Xn
j¼1

ga3j
12bjm

l½ �Tj l½ �j þ kr½ � ð2:15Þ
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In which n is the amount of joint sets; j is the serial number of joint sets; aj is the
hydraulic aperture of joint; bj is the joint spacing; kr is the primary permeability
coefficient of intact rock matrix, which can be ignored if the intact rock is relatively
impermeable.

In view of the finite size of joints in rock masses, Oda (1986a, b) revised
Eq. (2.15) by introducing the connection coefficient wj to give

K½ � ¼
Xn
j¼1

wj

ga3j
12bjm

l½ �Tj l½ �j þ kr½ � ð2:16Þ

Under the circumstances that the joint set j is persistence, wj = 1.
Where the filled model for joints is employed, the corresponding permeability

tensor may be simply generalized from Eq. (2.16) as

K½ � ¼
Xn
j¼1

wj
kf aj
bj

l½ �Tj l½ �j þ kr½ � ð2:17Þ

Towards the influence of joint persistence on the permeability of rock mass, a
simple relation between the connectivity ratio η and the connection coefficient wj

was established by He and Chen (2012) who postulated the distribution of joint
segments in a manner schematically illustrated in Fig. 2.3, where the length of
seepage path in joint j is Lf ¼

P
j Lfj ¼ gL, the length of seepage path in rock

bridge is Lr ¼
P

j Lrj ¼ ð1� gÞL, and the entire length of seepage path in rock
mass is L ¼ P

j Lfj þ
P

j Lrj (connectivity ratio 0� g� 100%).
The seepage path in the rock bridge is entailed within a zone whose quantifi-

cation is difficult—it may be the Path 1, Path 2, Path 3 or even more complicated
ones (see Fig. 2.4). This zone is therefore constrainedly simplified as a channel
wider than a and parallel to the joint surface. The width of this potential seepage
channel in rock bridge is assumed to be the product of the joint aperture a and the
parameter m (m > 1) termed as “connection adjusting coefficient”.

By the continuity principle of the seepage flow in joint segment and rock bridge
channel, the relation between the connection coefficient w and the connectivity ratio
η may be deduced as

w ¼ 1
12

mkr
gmkr þð1� gÞkf ð2:18Þ

Fig. 2.3 Diagram to the
simplification of joint
connectivity ratio
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where w = connection coefficient; η = connectivity ratio; m = connection adjusting
coefficient; kr = permeability coefficient of rock bridge; kf = permeability coeffi-
cient of joint.

The connection adjusting coefficient may be evaluated by numerical testing at
the sample level or the back analysis using field testing data. Dependent on the
factors such as the rock type and joint connectivity ratio, m varies between 6
and 6000 (He and Chen 2012).

2. Field tests

Traditional tests towards the estimation of permeability are summarized by Hoek
and Bray (1981). These include the borehole falling-head (pumping) test, the
borehole recharge test and the borehole packer test. The last one is suitable to the
case of lower underwater table and is mostly exercised in the China’s hydraulic
engineering. The (SL31-2003) «Code of Water Pressure Test in Borehole for Water
Resources and Hydropower Engineering» stipulates that the borehole diameter
should be 59–150 mm, for each packer segment the pressure should be increased
by three incremental steps as 0.3, 0.6 and 1.0 MPa.

Through the borehole packer test, the unit filtration rate x was traditionally
computed to characterize the permeability of rock

x ¼ Q
h0l

ð2:19Þ

where x = unit filtration rate, L/(min m m); Q = gauged flow rate, L/min; h0 =
packer pressure, m; l = packer length in the borehole, m.

After the 1990s, x has been replaced by the Lugeon [Lu L/(min m MPa)] to
characterize the water percolation rate

q ¼ Q
pl

ð2:20Þ

where p = pressure of the packer length, MPa; Q = gauged flow rate, L/min.
One unit water percolation rate (Lu) is equal to x = 0.01 L/(min m m).
Where the test segment is under water table and the unit water percolation rate is

smaller than 10 Lu, the permeability coefficient may be estimated by the formula

Fig. 2.4 Sketch of the
seepage path in the rock
bridge
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k ¼ Q
2plDh

ln
l
r0

ð2:21Þ

where r0 = radium of the bore hole, m; Dh = head difference between the injected
water and groundwater, m.

Although such estimated permeability coefficient suffers from various deficien-
cies, it is very useful as a preliminary index in the evaluation of rock mass per-
meability in hydraulic engineering.

To test the principal permeability coefficients of rock masses on a larger scale
(between boreholes), Louis (1974a, b) invented a technique that drills one injection
hole and two monitoring holes, the shortest lines between monitoring holes and the
injection hole are parallel to the rest two principal permeability coefficients. The
pressure readings inside the monitoring holes make it possible to compute all the
three unknown principal permeability coefficients.

Hsieh and Neuman (1985) improved the Louis’s technique and termed it as
“cross-hole testing”. It consists of injecting water into (or withdrawing water from)
the packed-off intervals in a number of boreholes meanwhile monitoring the tran-
sient head response in the similar intervals of neighborhood boreholes. The
directions of the principal permeability tensor need not be known prior to the test,
and the boreholes may possess arbitrary orientations. It also provides direct field
information on whether it is proper to regard the medium as being homogeneous
and anisotropic on the scale of test.

Table 2.12 summarizes the principal values of rock mass permeability tensors in
a number of China’s hydraulic projects, meanwhile Table 2.13 gives the full per-
meability tensors of granitic gneiss in the foundation and abutments of Xiaowan
Arch Dam. They were all obtained from in situ tests and revised according to the
geologic conditions.

Table 2.12 Principal values of rock mass permeability tensors of several China’s hydraulic
projects

Project Position Rock type Dominant
fracture sets

Principal values of equivalent
permeability tensor (10−3 cm/s)

k1 k2 k3
Three
Gorges

Ship lock
slope

Granite (slightly
weathered)

3 0.0365 0.0321 0.0033

Longtan Cut slope Sandstone (slightly
weathered)

5 0.007983 0.005438 0.005438

Pushihe Dam
foundation

Granite (weakly
weathered)

3 0.355 0.143 0.133

Lingnan Cut slope Meta sandstone
(weakly weathered)

4 0.740 0.287 0.181
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3. Numerical tests using DFN

In recent decades “numerical test” (NT) has been developed for stochastic rock
samples containing “discrete fracture network” (DFN) (Wei and Hudson 1986; Wei
et al. 1995; Zhang et al. 1996; Kulatilake and Panda 2000; Öhman and Niemi 2003;
Min et al. 2004; Chen et al. 2008) to evaluate their permeability tensor and REV,
which requires a large amount of computation efforts concerning different sample
sizes and orientations.

This issue will be addressed in Chap. 18.

(4) Drainage holes

In addition to cutoff devices, drainage of seeping water is essential to prevent the
built-up of high uplift in dams and their foundations during service period (Chen
2015).

Table 2.13 Permeability tensors of the granitic gneiss: Xiaowan Project, China

Elevation (m) Permeability tensor (m/d)

Left bank Right bank

1245–1050 Shallow 0.0356 −0.0009 0.0096 0.0340 0.0097 −0.0190

−0.0009 0.1769 −0.0030 0.0097 0.1727 −0.0029

0.0096 −0.0030 0.1600 −0.0190 −0.0029 0.1598

Middle 0.0024 −0.0001 0.0006 0.0019 0.0007 −0.0011

−0.0001 0.0129 −0.0002 0.0007 0.0121 −0.0002

0.0006 −0.0002 0.0117 −0.0011 −0.0002 0.0116

Deep 0.0005 0.0000 0.0001 0.0004 0.0002 −0.0003

0.0000 0.0030 0.0000 0.0002 0.0029 0.0000

0.0001 0.0000 0.0027 −0.0003 0.0000 0.0027

1050–975 Shallow 0.0405 −0.0016 0.0053 0.0368 0.0096 −0.0170

−0.0016 0.1770 −0.0017 0.0096 0.1727 −0.0035

0.0053 −0.0017 0.1551 −0.0170 −0.0035 0.1570

Middle 0.0028 −0.0001 0.0003 0.0021 0.0007 −0.0010

−0.0001 0.0129 −0.0001 0.0007 0.0121 −0.0002

0.0003 −0.0001 0.0114 −0.0010 −0.0002 0.0114

Deep 0.0005 0.0000 0.0001 0.0004 0.0002 −0.0002

0.0000 0.0030 0.0000 0.0002 0.0029 0.0000

0.0001 0.0000 0.0027 −0.0002 0.0000 0.0027

975–950.5 Deep 0.0005 0.0000 0.0000 0.0005 0.0002 −0.0002

0.0000 0.0030 0.0000 0.0002 0.0029 0.0000

0.0000 0.0000 0.0026 −0.0002 0.0000 0.0026

Below 950.5 Deep 0.0006 0.0000 −0.0001 0.0006 0.0000 −0.0001

0.0000 0.0030 0.0000 0.0000 0.0030 0.0000

−0.0001 0.0000 0.0026 −0.0001 0.0000 0.0026
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Dam bodies are normally drained by an embedded array of porous concrete
pipes of 15–20 cm in diameter, which run vertically through the full dam height.
The spacing of these porous concrete pipes is 2–3 m. These drainage pipes dis-
charge seeping water into the drainage gallery system first, afterwards the water is
directed into sump wells and from therein further diverted into the downstream river
by pumping or flowing automatically.

Drainage curtain of borehole array is conventionally installed in the dam
foundation and abutment to control seepage and to relieve uplift as well as to
prevent seepage hazards (e.g. piping). Foundation drainage holes are drilled and
connected to the grouting gallery for releasing the seeping water to gutters, which is
further gathered in sump wells. The foundation drainage holes should be 2–3 m in
space and minimum 100–150 mm in diameter. The depth of holes is usually 40–
60% of the grout curtain and no smaller than 10 m for high-to medium dams, which
is related to the geologic and hydrogeologic conditions.

Groundwater in cut slopes is often a primary or contributory driving of slope
failure, and a reduction in water pressures through sub-surface draining may
improve the stability considerably, this comprises drilling a series of nearly hori-
zontal drainage holes from the exposure faces. In large rock slopes, holes of 200–
300 m in depth may be demanded to achieve ideal effects. For large and deep
landslides, long drainage adits or tunnels may be driven from which a series of
drainage holes are drilled into the saturated rock.

Sluices and low gravity dams may have to be founded on a preglacial valley with
soft rocks, pervious alluvial or morainal deposits. Under seepage control for such
foundations is, if necessary, by installing relief wells at the downstream toe. The
wells, including screen and riser pipes, should possess a diameter which will permit
the maximum design flow without excessive head losses, in no instance should the
well’s diameter be smaller than 15 cm. Seeping water from relief wells should be
delivered into open ditches or into collector system outside of the dam base.
Experience with relief wells indicates that with the ongoing of time their discharge
function will be gradually undermined due to clogging of the well screen and/or
reservoir siltation.

To uniformly handle the drainage holes and relief wells under the both cir-
cumstances of empty and clogging, the author of this book proposed an “air ele-
ment” model (Hu and Chen 2003), by assuming that the hole/well is filled with an
virtual filler material with much larger permeability coefficient. Where the hole/well
is empty, the proportion P = kd/ks ranges between 102 and 103 will guarantee a
satisfactorily precise solution, in which kd and ks are the permeability coefficients of
the virtual filler material and the surrounding host material (rock/soil/concrete),
respectively. With the help of “air element”, in the analysis of hydraulic structures
the drainage hole may be simulated as a high permeable solid cylinder observing
the Darcy’s law.

Apart from the global coordinate system, a local Cartesian system (see Fig. 2.5a)
is needed to simplify the formulation of computation algorithm for drainage holes
in the subsequent chapters of this book: the zd-axis is coincident with the axis of the
drainage hole and points upward, the yd-axis is perpendicular to the drainage hole
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and points in the direction of dip, the xd-axis is formed by the right hand rule. Based
on this local Cartesian system, a local Cylindrical coordinate system is further
defined in Fig. 2.5b for the purpose of further simplification in the computation
algorithm.

The Darcy’s law expressed in the local Cylindrical coordinate system is:

vr ¼ �kd
@/
@r

vx ¼ �kd
1
r
@/
@x

vz ¼ �kd
@/
@z

8>>>>>><
>>>>>>:

ð2:22Þ

2.5 Thermal Conductivity

2.5.1 Concrete

The temperature rise in a concrete structure due to hydration process and thermal
flow causes temperature fluctuations which in turn, produce thermal strains/stresses
because of the restraints presenting in the structure. The most adverse effect of the
thermal stress is the thermal cracking in surface lifts.

On the thin placed concrete lift the surface temperature is usually controlled by
the atmosphere. When the initial temperature of the concrete is higher than the
atmosphere temperature and the surface is not protected, the temperature jump
(non-linear gradient) across the lift joint between old and new concrete lifts could
be over 10 °C in the daytime with full sun, whereas in the night and rainy day it

Fig. 2.5 Coordinate systems of drainage hole segment d. a Cartesian; b cylindrical
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could be only 2 °C. If the time of placing interval between two lifts is longer, the
temperature jump would be even much larger, which will lead to the early age
cracking in young concrete. Cracking may also emerge if the mean temperature
varies considerably in the different parts of a casted structure. In both cases of early
age cracking referred to above, the thermal movement due to hydration is the key
clue (Carslaw and Jaeger 1985).

The thermal conductivity k dominates the heat flux transmitted through a unit
area of a material under a unit temperature gradient. For concrete, it is related to the
mineralogical characteristics of aggregate, moisture content, density, and
temperature.

The specific heat c is defined as the quantity of heat needed to raise the tem-
perature of a unit mass of material by one degree. The specific heat of normal
weight concrete is not very much affected by the type of aggregate, temperature,
and other parameters. Typically, it varies within the range of 0.9–1.0 kJ/kg °C.

The thermal diffusivity a is the heat flowing rate through concrete from the hot
side to the cold side. It is conventional estimated by the formula

a ¼ k
cq

ð2:23Þ

where q = density of concrete, g/cm3.
The hydration heat of cement Q is the propulsion to “warm up” concrete, which

may be represented by two kinds of formulas.

– Exponent

QðsÞ ¼ Q0ð1� e�msÞ ð2:24Þ

where Q(s) = accumulated hydration heat at the age of s, kJ/kg; Q0 = total
hydration heat, kJ/kg; s = concrete age, day; m = constant related to cement and
curing temperature.

– Hyperbolic

QðsÞ ¼ Q0s
nþ s

ð2:25Þ

where: n = constant.
The hydration heat of cement should be tested for a specific project. For the

moderate-heat Portland cement, the hydration heat usually does not exceed 210 kJ/
kg after three days of hardening and 252 kJ/kg after seven days.
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The thermal regime analysis often employs adiabatic temperature rise h of
concrete instead of the hydration heat Q of cement. It may be obtained either by
direct or indirect methods.

For an important project, direct method using thermal rise test facilities on
concrete samples is required, and the following formulas may be fitted using the
tested data.

– Exponent

hðsÞ ¼ h0ð1� e�asbÞ ð2:26Þ

– Hyperbolic

hðsÞ ¼ h0s
a= bþ sað Þ ð2:27Þ

where h0 = final adiabatic temperature rise, °C; a, b = constants.
More complicated models (e.g. the maturity model) may also be established and

exercised (Roy et al. 1994).
In short of tested data, use is made of indirect method based on the hydration

heat and amount of cement, as well as the specific heat and density of mixtures, to
estimate the adiabatic temperature rise by the formula

hðsÞ ¼ QðsÞðW þ kFÞ
cq

ð2:28Þ

where W = amount of cement, kg/m3; c = specific heat of concrete, kJ/(kg °C);
q = density of concrete, kg/m3; F = amount of mixture, kg/m3; Q(s) = hydration
heat of cement, kJ/kg; k = fraction coefficient.

It is worthwhile to indicate that there is difficulty in the long-age test (e.g.
180 day or longer) for the final adiabatic temperature rise h0 of cement and con-
crete, blamed on the shortage of sensitive and reliable experimental equipments.
The comparison study conducted on Xiaowan Project (see Fig. 2.6) shows that the
final adiabatic temperature rise based on the long-age test (C18035) is h0 = 39.2 °C,
much higher than that of the conventional 28 days-age test (C18035) h0 = 27.03 °C.

The surface exothermic coefficient b is an important parameter concerning the
concrete/air contact face, which is demanded in defining the third type boundary
condition (see Eq. 4.180).

Under the thermal action, the thermal strain is mainly governed by the coefficient
of thermal expansion a, which is defined as the change in unit length per degree of
temperature change. It is an important parameter towards the thermal stress and
cracking control. Apart from the concrete composition design and humidity con-
dition during curing, it is closely related to the aggregate type. In the phase of
preliminary design, it can be estimated from the weighted average of the compo-
nents, assuming 70–80% aggregate content in the concrete mixture. Since the
thermal strain of concrete is significantly influenced by the thermal strain of
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aggregate which is the primary constituent of concrete, therefore selecting an
aggregate type with a low coefficient of thermal expansion (e.g. limestone), if it is
economically feasible and technologically acceptable, may become a critical work
for cracking prevention in mass concrete.

For important projects, all the aforementioned thermal parameters should be
comprehensively studied by laboratory tests. In Table 2.14 the thermal parameters
of several China’s dam projects are summarized which may be referred to in the
initial phases of design. Table 2.15 lists the surface exothermic coefficient tightly
related with the wind speed.

2.5.2 Rocks

The thermal properties of rocks are mainly dependence upon their origins (types),
composition, porosity, and geo-environmental settings (e.g. temperature) (Birch and
Clark 1940; Danilova and Bogdanov 1967; Wu and Zhou 2013; Mielke et al.
2017), of which the most useful ones in hydraulic structures are their specific heat
c and thermal conductivity k. They participate the thermal analysis for concrete
dams and tunnel linings during construction or/and operation phases where the heat
exchange between concrete and rocks is taken into account. The data in Table 2.16
are collected from numerous literatures which exhibit large variation due to test
methods, sample sizes and temperature, purposes of experiment, etc.

The coefficient of thermal expansion of commonly used rocks and minerals
varies from about a = 5 � 10−6 per °C (limestone and gabbros) to a = 12 � 10−6

per °C (sandstone, natural gravel, and quartzite).

Fig. 2.6 Adiabatic temperature rise fitted by long-age and 28 days-age tests: Xiaowan Project,
China
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Table 2.15 Surface exothermic coefficients concerning concrete/air contact face (Chen et al.
2011)

Wind speed
(m/s)

b (kJ/(m2 h °C)) Wind speed
(m/s)

b (kJ/(m2 h °C))

Smooth
surface

Rough
surface

Smooth
surface

Rough
surface

0.0 18.4638 21.0596 5.0 90.1418 96.7151

0.5 28.6796 31.3591 6.0 103.2465 110.9921

1.0 35.7553 38.6442 7.0 116.0581 124.8922

2.0 49.4042 53.0049 8.0 128.5766 138.4575

3.0 63.0951 67.5750 9.0 140.7602 151.7296

4.0 76.7022 82.2288 10.0 152.6926 165.1274

Table 2.16 Thermal parameters of rocks (Wu and Zhou 2013)

Rock type Temperature
T (°C)

Specific
heat c (J/
(kg K))

Thermal
conductivity
k (W/(m K))

Igneous rocks Intrusives
(plutonic)

Granite 50 787.1–
975.5

2.17–3.08

Diorite 20 837.4–
1256.0

1.64–2.33

Porphyry 20–40 900–910 2.1–2.6

Extrusives
(volcanic)

Basalt 0–300 908.5 1.60–2.18

Rhyolite 0–300 870.9 1.04–2.80

Sedimentary
rocks

Clastic
sedimentary

Sandstone 50 762–
1071

2.18–5.1

Shale 0–300 774.6 1.72

Carbonatite Limestone 50 824.8–
921.1

2.34–3.51

Dolomite 50 921.1–
1000.6

2.52–3.79

Weak and
soft

Claystone 50 908.5–
925.3

2.32–3.23

Metamorphic
rocks

Ortho-rock Gneiss 0–300 736.9–
1005

2.7–3.1

Para-rock Quartz 0–300 699.2–
942.0

3.13–6.65

Marble 0–300 795.5–
879.2

2.11–2.80

Slate 0–300 711.8 2.18

Phyllite 20–40 850 1.9–3.2

Schist 20–40 710–760 1.75–3.80
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2.5.3 Cooling Pipes

There are many methods to alleviate, or even fully prevent, thermal cracking due to
the built-up thermal stresses within concrete during casting and maturing, of which
the often exercised one for reducing temperature gradients within a concrete
structure, and thus also the risk of cracking, is to cool down the inner core with
embedded cooling pipes. Normally, water is used as the cooling medium. Such a
cooling technique was firstly employed to construct the Hoover Dam
(H = 221.4 m, USA).

The types of cooling pipes are normally black or HDPE (high density poly-
ethylene), in which the flowing water extracts heat from surrounding concrete.

For the simulation of cooling water and pipe, in addition to the global coordinate
system, a local Cartesian system is needed to simplify the formulation of compu-
tation algorithms (see Fig. 2.7a): the zp-axis is along the cooling pipe and upright,
the yp-axis is perpendicular to the cooling pipe and points in its dip direction, and
the xp-axis is formed by the right hand rule. On the basis of this local Cartesian
coordinate system, a local Cylindrical coordinate system is further defined in
Fig. 2.7b.

Specific heat c of both the black pipe and HDPE pipe is normally not taken into
account in the thermal computation of mass concrete structures. In addition, the
thermal conductivity k is neglected for the black pipe, but it is suggestible as
1.66 kJ/(m h °C) for the HDPE pipe. The specific heat c and thermal conductivity k
of water are 2.1604 and 4.1868 (kJ/kg °C), respectively.

Fig. 2.7 Coordinate systems of cooling pipe segment p. a Cartesian; b cylindrical

2.5 Thermal Conductivity 97



2.6 Deformation

2.6.1 Quasistatic and Cyclic Loading

(1) Rock-like materials

1. Intact rocks and concrete

The conventional compressive test with or without confining pressure, in which a
short, right cylinder is loaded axially, is one of the most widespread experiments
(see Fig. 2.8) towards the studies on elastic behavior and strength, as well as on
long term creep, of rock-like materials.

The most useful single description for the mechanical properties of rock-like
materials is the complete stress–strain curve plotted in Fig. 2.8, using a right
cylinder of material sample being confined laterally (r3) and compressed in axial
direction (r1), where the abscissa axis exhibits lateral strain (ea) and the ordinate
axis emerges deviate stress (r1 − r3). If r3 = 0 the test is called as uni-axial. This
type of resultant curve, known as the “strain-controlled complete stress–strain
curve”, was firstly obtained in 1966 for rock, for the purpose to illustrate the very
significant effect of the microstructure and the history on its mechanical behavior
(Jaeger et al. 2007).

At the very beginning of loading, the curve covers an initial portion (OA) which
could be concave upwards for rock, but also could be convex for concrete. This is
mainly due to the deficit in the rock specimen preparation—the ends of the cylinder
being non-parallel, and/or the closing of micro-cracks within the intact rock. After
this initial portion, there is a portion of essentially linear behavior (AB). B may be
defined as the “yield point” pinpointed by the “yield strength” ry, after this point
plastic strain ep will manifest along with the continuous but gentler mounting of the
loading curve, which is termed as the “hardening phase”. The plastic strain may be
detected by an unloading-reloading circle, F ! Q ! F for example, where the total

Fig. 2.8 Complete stress–strain curve of rock-like materials under constant confining pressure
and quasistatic axial loading
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strain is divided into the components of elastic and plastic, i.e. e = ee + ep. After the
peak point C tagged by the “peak strength” rp, also termed as the “ultimate
strength” ru, the complete stress–strain curve enters a descending post-peak region
(CD), which is named as the “softening phase”. In this phase much more plastic
strain may be found through unloading-reloading circle, such as S ! T ! U. For
ductile materials or brittle materials under sufficient confining pressure, the point D
may be sustained at a stable value following the continuous increase of strain, and
finally the “residual strength” rr is declared. All the above defined characteristic
points may be abbreviatedly termed as the “strength” rs where there is no risk of
misleading.

There is approximately ten-fold augment in the deformation modulus and
uni-axial strength from a strongly weathered rock to the fresh one. The geologic age
also may considerably affect the deformation and strength parameters for sedi-
mentary rocks.

Attributable to the major concern over the normal working situation and the
difficulties in obtaining hardening/softening parameters, the yield strength is
dominantly used in the computation for the design of hydraulic structures, and the
perfect plasticity is postulated. The peak strength is sometimes employed where
there exists difficulties to pinpoint the yield strength, under such circumstances the
allowable safety factor should be somewhat higher than that uses the yield strength.
The residual strength is only useful in the stability analysis for the structure where
its deformation is of minor concern (e.g. a cut slope being neither a portion of nor
closely adjacent to the dam).

2. Joints

Another very useful description for the mechanical behavior of rock-like materials
is the complete strain-displacement curve under direct shear for discontinuities
(joint, fault, fissure, etc), as shown in Fig. 2.9.

In compression (see Fig. 2.9b), the discontinuity is gradually pushed close, with
an apparent limit when its two surfaces are contacted. The stiffness kn associated
with this compressive process exhibits strong nonlinearity linked to the applied
normal stress and associated with the strength of the intact rock/concrete. When a

Fig. 2.9 Complete stress–strain curve of a discontinuity under constant normal pressure and
quasistatic direct shear loading. a Schematic diagram to the test; b compressive behavior; c shear
behavior
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discontinuity is subjected to shear stress (see Fig. 2.9c), the curve is rather like the
complete stress–strain curve of intact rock under axial compression, i.e., in addition
to the shear stiffness ks, there are the yield strength, the peak shear strength, and the
post-peak failure region with the residual strength.

3. Rock masses

It has been widely recognized that joints are significantly influential to the gross
response of the rock mass. While the intact rock may remain effectively elastic and
undergo only small strain, irreversible slip at joints changes the overall stress
distribution. In the first ISRM International Congress in 1966, Müller stated that
discontinuity and anisotropy are the most characteristic properties of rock materials
and that the properties of jointed media depend much more upon the joints of the
unit rock block system than upon the rock material (Müller 1967; Brown 2011).

The actual mechanisms of joint deformations, are complex. Various minerals
and gouges generated by sliding which fill joints, affect both their slip and com-
paction, or dilation. The presence of pore water alters the joint deformation process,
too.

There was a period when scholars endeavored to conduct laboratory tests for the
deformation and strength properties of jointed rock masses, through which several
models of gross response taking into account of the effects of joint interaction and
block interlock were correlated with experimental data. These experimental works
were largely carried out with specimens of plaster materials containing multiple
intersecting joint sets in order to simulate rock fracture and slip at low stress levels,
and to facilitate preparation of joint surfaces (Einstein et al. 1969; John 1969).
However, it is not clear that even the qualitative response of rock masses has been
reproduced by such manner of tests (Barton 1972).

The term “modulus of deformation” or “deformation modulus” (E), a secant
Young’s modulus, signifies that its value is calculated from the data of the loading
portion of the stress–strain curve comprising both elastic and permanent defor-
mation. Nowadays as far as the deformation modulus (and the strength as well) of
the rock mass is concerned, three approaches are exercised, i.e. either by compu-
tation using the properties of the intact rock and the discontinuities respectively, or
via the direct in-situ tests, or through empirical formulae.

For highly jointed rock masses in which the joint spacings are much smaller than
the characteristic dimension of the hydraulic structure concerned, it is very con-
venient to regard them as “equivalent” continua. Along this line, many works can
be found from, for example, Salamon (1968), Morland (1974), Zienkiewicz and
Pande (1977a, b), Amadei and Goodman (1981), Stephansson (1981), Gerrard
(1982a, b), Amadei (1983), Pande and Gerrard (1983), Yoshinaka and Yamabe
(1986), Chen and Pande (1994). Although various theoretical models are available
for the computation of deformation modulus (and strength as well), yet they are all
subjected to the verification and adjustment using the data from in situ tests, the
engineering analogue, and the back analysis (if possible).
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To avoid the effects of sampling disturbance, it is world widely demanded to
determine the deformation modulus E and Poisson’s ratio l (or shear modulus G)
mainly by the data from in situ testing. Four basic apparatus for in situ testing are
prevalent towards the deformation modulus of rock mass.

– Borehole jacks and dilatometers;
– Flat jacks installed in slots cut into rock mass;
– Bearing plates;
– Radial jacks.

Expanding against the walls, jacks, designed to fit inside exploratory drill hole or
slot and associated equipments for measuring dilation, can provide qualitative
information on the rock deformability at depths of several hundred meters.
Although they are quite useful, yet they are not sufficiently accurate in hard rock to
provide quantitative design data for large hydraulic structures.

By plate bearing test, load increments are applied to a test plate, either in a
shallow pit, or at the bottom of a large-diameter borehole, or on the walls of an adit,
and the resulted displacements are measured. The value of the deformation modulus
is then calculated using the relevant closed-form displacement solution.

Field testing is the most straight forward way to obtain the equivalent elastic
deformation parameters, but it is costly and often involves uncertain errors related
to the effects of hidden factors, the control of boundary conditions, the equipment
installation, the test site preparation, the blasting damage, and the interpretation of
results. These errors lead to the test data of rock masses with great inaccuracy and
scatterness (Bieniawski 1978; Palmstrom and Singh 2001; Hoek and Diederichs
2006).

Empirical formulae establish certain relationships on the basis of rock mass
classification (Barton 2002; Cai et al. 2004; Sonmez et al. 2004; Hoek and
Diederichs 2006). Although they have gained extensive popularity for practical
applications of engineering design, especially in tunneling, they often elicits esti-
mations that are too conservative, largely because they make use of categorized
parameters from case histories. Another shortcoming is that they lack a proper
mathematical platform to establish constitutive relations. Furthermore, the aniso-
tropy in the deformation properties cannot be properly represented in the tensor
form that is a base of continuum mechanics.

(2) Steel bars

During monotonic loading (see Fig. 2.10), the uni-axial behavior of structural steel
bar with yield plateau is essentially linear elastic from its virgin state (O) up to the
sharp point of yield (A), followed by an abrupt yield drop and the yield plateau
(AB). The plastic deformation along the yield plateau is caused by the “Lüders band
propagation” (Hall 1970). From a macroscopic point of view, such a behavior can
be handled as perfectly plasticity, and the length of the yield plateau can be
quantified by the plastic strain at the end of the plateau. At the end of yield plateau
(B), the material usually starts hardening nonlinearly up to the point (C)
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corresponding to the ultimate strength when necking initiates. Afterwards, the true
stress–strain relationship is almost linear, which indicates that the hardening
modulus is approximately a constant (Bridgman 1952; Jia and Kuwamura 2014).

During cyclic loading, the material behavior of structural steel bar with yield
plateau is much more complex than monotonic loading and is closely related to the
strain amplitude of cycling (Hu et al. 2016). Generally, cyclic loops converge to a
stabilized saturation dependent only on the loading amplitudes (Yamada et al. 2002;
Matsumoto et al. 2005). This cyclic loading effect, however, is seldom considered
in the hydraulic structures of mass concrete and rocks.

(3) Remarks

Although there exist various factors related to loading conditions (e.g. confining
pressure in tri-axial tests) and loading rates which influence the shape of the
complete stress–strain curve, yet there are always several features of importance to
be indicated from Fig. 2.8 (Figs. 2.9 and 2.10 similar). The first one is the Young’s
modulus E of the material, either tangent or secant. The next one is the charac-
teristic strength rs. The third one is the steepness of the descending portion
(post-failure) which is an index of material brittleness. If the post-failure is in a form
of steadily progressive strain at the same stress level, the material is termed as
ductile, and a residual stress may be identified; if a sharp drop in the stress level
down to zero occurs at the nearly same strain value, the material is brittle. In fact,
the real situation is more complicated than these two extraordinary cases because a
rock-like material usually exhibits obvious hardening phase under high confining
pressure while softening phase may be completed abruptly under low confining
pressure.

Fig. 2.10 Complete stress–
strain curve of steel bar under
monotonic and quasistatic
tensile loading
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2.6.2 Sustained Loading

(1) Creep phenomena and mechanisms

The creep and stress relaxation have actually the same mechanisms emerged as two
phenomena, the former exhibits a gradual increase in strain with the ongoing of
time under a given level of sustained stress, the latter performs a gradual decrease in
stress with the ongoing of time under a given level of sustained strain. Both
manifestations are typical of viscoelastic or/and viscoplastic properties of rock-like
materials, particularly the concrete in its young age.

The creep of concrete is originated from the calcium silicate hydrates (C-S-H) in
the hardened Portland cement paste and theoretically occurs at all stress levels
within the range of service actions (Wittmann 1982; Brooks 2005). It appears in
early aging concrete mainly due to the loss and movement of a certain amount of
physically adsorbed water in the C-S-H of paste matrix, and in mature aging
concrete mainly caused by long-term relaxation of self-equilibrated micro-stresses
in the nano-porous microstructure of the C-S-H. It is linearly dependent on the
sustained stress under certain threshold value (e.g. 30% of uniaxial strength) if the
pore water content is constant. The nonlinearity of the complete stress–strain curve
of concrete, especially at stress levels greater than 30–40% of the ultimate stress,
clearly shows the contribution of the ITZ and micro-cracks to creep. Additional
creep strain occurs when a concrete is simultaneously exposed to the drying con-
dition, which is caused by micro-cracking in the ITZ due to drying shrinkage.

The remarkable advance in the understanding and description of creep is the
multi-level (scale) theory of coupled chemo-thermodynamics (Hellmich et al.
1999), by which the intrinsic material behaviors independent of field and boundary
conditions can be determined. In this theoretical framework, material properties are
not a function of time solely, but are related to their origin on the micro-level,
namely the formation of C-S-H dependent on the temperature, moisture, age, etc. In
the same framework, material functions relating autogenous (chemical) shrinkage,
elastic stiffness, and creep compliance to the degree of hydration, may be derived
(Sercombe et al. 2000), too.

The creep nature of rocks is mainly determined by their mineralogical and
structural features (Cristescu and Gioda 1994). It has been shown that the
time-dependent behavior of argillaceous rocks is attributed to creep, pore-pressure
dissipation, swelling, and electrochemical effects. Meticulous investigations into
creep of brittle rock using methods of electron microscopy (Boland and Hobbs
1973; Tappennier and Brace 1976; Dragon and Mróz 1979; Kranz 1979), acoustic
emission (Ohnaka and Mogi 1982) and others have revealed that the long-term
behavior of a polycrystalline rock depends, on one hand, upon the physical pro-
cesses in each individual crystal grain as well as on the rock as a whole, and on the
other hand, upon the interaction of the rock grains and other structural features.
Therefore more precisely, intrinsic parameters such as mineralogy, porosity and
water content, and extrinsic parameters such as deviatoric stress, strain rate, tem-
perature and hygrometry, all influence the time-dependent behavior of rocks
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(Maranini and Brignoli 1999; Auvray et al. 2004; Zhang and Rothfuchs 2004).
Time-dependent behavior of the rock mass is an important aspect in the observation
and prediction of land sliding movement (Bizjak and Zupančič 2007).

Creep deformations resulting from mechanical loading are normally studied
through creep tests (deviatoric stress maintained constant over a long period) and
relaxation tests (strain maintained constant over a long period), the former is more
prevalent in the practices.

Figure 2.11 plots the creep curves using the tested data for a rock and a weak
interlayer, respectively. It is remarkable that there is no strength threshold r0 for the
soft rock or interlayer (see Fig. 2.11a), i.e., at any stress level, creep may be
observed. Nevertheless, there is a strength threshold r0 for the hard rock (and
concrete as well) (see Fig. 2.11b), creep deformation may be observed only if the
threshold is exceeded.

A classical creep curve, as idealized in Fig. 2.12, represents the evolution of
strain as the function of time under uni-axial stress at a constant temperature. In

Fig. 2.11 Field tested creep curves of rocks. a Shear creep test of the argillaceous interlayer
(Gezhouba Project); b compressive creep test of the granite (Three-gorges Project)
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general, there are three phases in the creep history of rock (Kachanov 1958; Gruden
1971; Stagg and Zienkiewicz 1986; Betten 2008; Jaeger et al. 2007).

① The primary creep phase (also known as transient creep). Hardening of the
material leads to the decrease in creep rate which is initially much higher.
Where r0 � r\�rs, there is only primary creep emerging as a “convergent
creep” shown in Fig. 2.12a.

② The secondary creep phase (also known as the steady state creep). Where
r[ �rs, it follows the primary creep phase with a constant strain rate (see
Fig. 2.12b).

③ The tertiary creep phase. There is an increase in the creep strain rate until the
sample failure (see Fig. 2.12b).

The initiation of tertiary creep phase is due to the accumulation of irreversible
deformation (creep damage), which has similar mechanism to the fatigue failure
under cyclic loading (Ge et al. 2003).

It is worthwhile to indicate that for rock-like materials, the long term yield
strength �rs obtained from creep test is always smaller than rs from quasistatic test,
this may be validated by the tested data illustrated in Tables 2.17 and 2.18.

The principal postulation is made that the creep of rock-like materials may be
generally looked at as an integral manifestation of following three strain compo-
nents (Boukharov et al. 1995):

– Elastic strain ee(t). Depending on the bonding between the particles of each
individual grain as well as on the bonding between grains (rock), the loss and
movement of adsorbed water as well as the relaxation of self-equilibrated
micro-stresses in the C-S-H (concrete);

– Plastic strain ep(t). Resulting from the crystal (or C-S-H) dislocations movement
and from the plastic deformation of cementitious materials;

– Brittle dilatancy eb(t). Due to the micro-cracking process in individual crystal
grains and between grains (rock), as well as in paste matrix and ITZ (concrete).

If we further postulate that micro-cracking does not contribute significant strain
to the creep during the first two phases, a graphical decomposing of an integral

Fig. 2.12 Idealized creep curve of rock-like materials. a Convergent creep; b non-convergent
creep
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creep curve into elementary creeps using geometric subtraction may be illustrated in
Fig. 2.13, which is further formulized by

eðtÞ ¼ eeðtÞþ epðtÞþ ebðtÞ ¼ e0 þ edðtÞþ epðtÞþ ebðtÞ ð2:29Þ

where e0 = instant elastic deformation; ed(t) = delayed elastic creep (e.g. creep of
the young concrete at early age); ep(t) = delayed plastic creep (e.g. perfect or work
hardening visoplastic strain evp of rock-like materials); eb(t) = dilatant creep, or
brittle creep (e.g. work softening viscoplastic strain of rock-like materials before
rupture).

Table 2.17 Uni-axial compression strength values of rocks under sustained loading and
quasistatic loading (laboratory)

Project Rock Quasistatic yield
strength rs (MPa)

Creep yield
strength �rs
(MPa)

Ratio
�rs=rs

Three-gorges Porphyritic granite
(weakly weathered)

63.6 51.9 0.82

Porphyritic granite
(slightly weathered)

72.5 65.71 0.95

Shuibuya Carbonaceous
argillaceous
limestone

22.85 12.59 0.55

Carbonaceous
argillaceous
limestone

26.76 18.23 0.68

Intercalation 031# 1.142 0.623 0.54

Shale 18.39 11.33 0.62

Limestone 70.31 52.73 0.75

Goupitan Magenta claystone 18.05 13.01 0.72

Celadon claystone 7.60 4.94 0.65

Table 2.18 Shear strength values of rocks under sustained loading and quasistatic loading
(in situ)

Project Rock Quasistatic
strength

Long term (creep)
strength

Ratio

f′ c′ (MPa) f∞ c∞ (MPa) f∞/f′ c∞/c′

Three-gorges Granite 2.2 2.7 2.0 2.2 0.91 0.81

Joint (rough) 0.78 0.07 0.72 0.0 0.92 0

Gezhouba Intercalation 202# 0.225 0.06 0.204 0.03 0.91 0.50

Baihetan Intercalation 157-1 0.36 0.08 0.29 0.01 0.81 0.13
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There are some debates with regard to whether secondary creep exists as a
distinct phase or simply as an inflexion between the primary and tertiary phases.
Secondary creep, which is often observed on ice, salt or metallic alloys (Mott 1953;
Stagg and Zienkiewicz 1986), is seldom observed on polycrystalline rocks and
concrete. For example, during the test performed on brittle rocks, a transition from
primary creep to tertiary creep without any stabilization of the strain rate may be
observed. This is why some scholars (Gonze 1988; Dusseault and Fordham 1993)
expressed doubts as to its existence. The author of this book believes that this
phenomenon could be explained by the similarity between the creep failure
mechanism and fatigue failure mechanism—they exhibit nearly identical threshold
strength and the formation is entailed under the complete quasistatic stress–strain
relation (Ge et al. 2003).

In the computation of hydraulic structures, the delayed elastic creep of young
concrete at early age and the delayed plastic creep (i.e. visoplastic deformation) of
rock are normally handled. The last phase of creep (brittle creep) is only considered
where the post-failure performances of the hydraulic structures are of importance.

(2) Creep models

Researchers generally examine the aforementioned mechanisms and responses of
creep through phenomenological approximation utilizing a postulated empirical
formula or rheological model, of which the latter is more prevalent whose elastic
response is represented in one-dimension by Hookean spring elements,
rate-dependence behavior is represented by nonlinear dashpot elements, plastic
performance is accounted for by adding sliding frictional elements.

One-dimensional rheological models for the phenomenological description of
rock-like materials based on above spring-dashpot-slider elements consist of per-
fectly viscoplasticity, elasticity perfectly viscoplasticity, and hardening
elasto-viscoplasticity. The elements may be connected in series or in parallel.
Where the elements are connected in series the strain is additive meanwhile the

Fig. 2.13 Graphical
decomposition of the creep
curve for rock-like materials
and discontinuities
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stress is equal in each element. In parallel connections, the stress is additive
meanwhile the strain is equal in each element.

Prevalent phenomenological rheology models of one-dimension used in
hydraulic structures for their creep deformation are illustrated in Table 2.19 (Wu
and Zhou 2013), in which E is the modulus of elasticity, η is the viscosity of the
dashpot, rs is the strength of the sliding element. These parameters are normally
regarded as constant for practical reason. Where the young concrete of early age is
handled, however, they are all time-dependent (vide Sects. 2.8.2 and 2.9.2). In case
of necessary, expensive experiments are demanded to get the dependent relation-
ship of these parameters with stress/strain rate as well as with inner variables (e.g.
plastic strain), too. Table 2.20 gives the rheological models and corresponding
constant parameters of the rocks for several hydraulic projects in China.

Table 2.19 Typical rheology models (Wu and Zhou 2013)

Name Element connection One-dimensional constitutive relation

Maxwell rþ g2
E0
r
: ¼ g2 e

:

Kelvin r ¼ Eeþ g1 e
:

Generalized Kelvin rþ g1
E0 þE1

r
: ¼ E0E1

E0 þE1
eþ E0g1

E0 þE1
e
:

:

Bonaitin-Thomson
standard linear
solid model

rþ g1
E1
r
: ¼ E2eþ g1 1þ E2

E1

� �
e
:

Bergers rþ g2
E0

þ g1 þ g2
E1

� �
r
: þ g1g2

E0E1
r
:: ¼ g2 e

: þ g1g2
E1

e
::

Viscoplastic e ¼ 0 for r\rs
e
: ¼ ðr� rsÞ=g2 for r� rs

Bingham
e ¼ r

E0
; _e ¼ _r

E0
for r\rs;

_e ¼ _r
E0

þ ðr� rsÞ
g2

for r�rs

Mishihara rþ g1
E0 þE1

r
: ¼ E0E1

E0 þE1
eþ E1g1

E0 þE1
e
:

for r\rs

ðr� rsÞþ g2
E0

þ g1 þ g2
E1

� �
r
: þ g1g2

E0E1
r
:: ¼ g2 e

: þ g1g2
E1

e
::

for r\rs � rs
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2.7 Yield and Failure

2.7.1 Basic Strength Parameters

The stress–strain relation for linear elasticity is commonly known as the “Hooke’s
law”. In its simplest form, the law defines the spring constant (or elasticity constant)
in a scalar equation, stating the tensile/compressive force is proportional to the
extended/contracted displacement and the material recovers its initial shape after
unloading. In the context of plasticity, the applied force will induce non-recoverable
(irreversible) deformations in the material when the stress reaches a critical mag-
nitude, called as the “yield strength” or “elastic limit”. The significance of the
elastic limit in structural design lies in the fact that it represents the maximum
allowable stress before the material undergoes permanent deformation.

(1) Concrete

Although the shape of complete stress–strain curve, the elastic modulus and the
Poisson’s ratio of concrete under uni-axial tension are similar to those under
uni-axial compression, yet there is significant difference in its yield (and failure as
well) mechanism: as the uni-axial tension state tends to arrest cracks much less
frequently than the compressive state, the interval of stable crack propagation is
anticipatorily much shorter.

There is evidence that the compressive and tensile strengths are closely related but
there is no fixed proportion: as the compressive strength of concrete increases, the
tensile strength also increases but at a lower rate. In other words, the
tensile-to compressive strength ratio depends on the general level of the compressive
strength. It appears that this ratio is approximately 10–11% for low-strength concrete,
8–9% for moderate-strength concrete, and 7% for high-strength concrete.

Table 2.20 Rock rheological models and parameters for several hydraulic projects in China

Rock (Project) Test method Stress
level
(MPa)

Model Parameter

E1

(GPa)
E0

(GPa)
η1
(GPa h)

η2
(GPa h)

Carbonaceous
argillaceous
limestone (Shuibuya)

Laboratory uni-axial 0.04–
0.33

Bergers 0.550 0.024 2.658 55.433

Claystone (Goupitan) Laboratory uni-axial 2.71–
7.66

Bergers 27.6 5.26 67 4892

Limestone
(Shuibuya)

Laboratory uni-axial 12.81–
18.78

Generalized
Kelvin

49.9 16.89 724 –

Granite
(Three-gorges)

In situ uni-axial 6–33 Generalized
Kelvin

1514.5 40.68 20,746.7 –

Altered Gneiss
(Xiaowan)

Laboratory tri-axial
(confine
pressure = 2 MPa)

30–
57.5

Burgers 160.44 11.29 8.407 63.333
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Most slim structural elements are designed under the assumption that the con-
crete would resist the compression but no tension, and use is made of steel bars to
pick up tensile loads. With mass concrete structures however, tensile strength
cannot be ignored because concrete cracking is frequently the outcome of a local
tensile failure due to restrained shrinkages resulted either from lowering of concrete
temperature or/and from drying of concrete moist. And it is impractical to resist all
of the tensile failure by steel reinforcement. Therefore, an estimation of tensile
strength (or ultimate tensile strain) is demanded, especially for judging the safety of
a concrete dam under seismic actions. In addition, a combination of tensile, com-
pressive, and shearing stresses determines the strength when the concrete is in
three-dimensional loading state, such as in arch dams.

There exists a fundamental inverse relationship between concrete porosity and
its strength. Since natural aggregates are generally dense and strong, therefore the
porosity of the cement paste matrix as well as the ITZ will overwhelmingly
determine the strength of normal-weight concrete.

Table 2.21 summarizes the concrete parameters of Xiaowan Arch Dam by
laboratory experimental studies. It is evident that the strength and other related
parameters depend on the concrete proportions related to the grade and the amount
of cement as well as the amount of added water (i.e. W/C). Actually, they also
depend on the characteristics of stone aggregate, curing age and conditions (tem-
perature and moisture), loading conditions, test methods, etc. (Mehta and Monteiro
2006).

1. Aggregate

The influence of aggregates on concrete strength is not generally appreciated
because aggregate strength is usually not a dominant factor in the normal-weight
concrete. In other words, with most natural aggregates their strengths are hardly
mobilized because the concrete failure is dominated by the other two phases.
However, from theoretical considerations it may be anticipated that, independent of
W/C, the size, the shape, the surface texture, and the mineralogy of aggregate
particles would influence the characteristics of ITZ and, in turn, affect concrete
strength.

A change in the maximum size of well-graded coarse aggregates imposes two
opposing effects on the strength of concrete. With the same cement content and
consistency, concrete mixtures containing larger aggregate particles require less
mixing water. On the contrary, larger aggregates are prone to form weaker ITZ
containing more micro-cracks. The net effect will vary with the W/C of concrete
and the type of applied stress.

It has been observed that a concrete mixture containing rough-textured or cru-
shed aggregates would show somewhat higher strength (especially tensile strength)
at early ages. A stronger physical bond between the aggregate and the hydrated
cement paste could be responsible for this phenomenon. At later ages however,
when the chemical interaction between aggregates and cement paste begins to take
effect, the influence of the surface texture of aggregate on strength may be reduced.
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Differences in the mineralogical composition of aggregates are also known to
affect the concrete strength. Reports show that, with identical mix proportions, the
substitution of a calcareous aggregate for a siliceous aggregate can result in certain
strength improvement. This may be due to the higher ITZ bond at later ages.

2. Curing conditions

The term “curing of concrete” involves a combination of growth conditions (time,
humidity, and temperature) that promote the cement hydration immediately after the
placement.

At a given W/C, the porosity of a hydrated cement paste is determined by the
degree of cement hydration. Under normal temperature some of the constituent
compounds of Portland cement begin to hydrate as soon as water is added, but the
hydration reactions slow down considerably when the products of hydration coat
the anhydrous cement grains. This is because hydration can proceed satisfactorily
only under conditions of saturation. It almost stops when the vapor pressure of
water in capillaries falls below 80% of the saturation humidity.

Diffusion of the adsorbed water and the water held by capillary tension in small
pores (under 50 nm) of the hydrated cement paste into large capillary voids within
the system or to the ambient environments, is a time-dependent process that takes
place over long periods. An increase in the atmospheric humidity is expected to
slow down the rate of moisture flow from the interior to the outer surfaces of
concrete.

Like all chemical reactions, temperature has an accelerating effect on the
hydration reactions. With moist-cured concrete the influence of temperature on
strength depends on the temperature history from casting to curing.

i. Age

The evaluation of time-dependent strength (elastic modulus as well) is of great
concern to structural engineers.

A minimum period of 7 days for moist-curing is generally demanded for the
concrete containing normal Portland cement. It should be noted that the time versus
strength relations in concrete generally assume moist-curing conditions and normal
temperatures. At a given W/C, the longer time the moist curing period, the higher is
the strength, subject to the hydration of anhydrous cement particles is still going on
with sufficient water.

It has been reported that the strength and elastic modulus of concrete are not
influenced to the same degree by curing age: at later ages (i.e. 3–12 months) the
elastic modulus increases at a higher rate than the compressive strength. It is
probably due to the beneficial effect of the density improvement of ITZ, as a result
of slow chemical interaction between the alkaline cement pastes and aggregates, is
more pronounced for the elastic modulus than for the compressive strength.
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ii. Humidity

The strength of continuously moist-cured concrete is much greater than that of
air-cured concrete. Moist-curing is provided either by water spraying/pounding, or
by covering the concrete surface with wet mats of sand/sawdust/cotton. Since the
amount of mixing water in a concrete mixture is usually more than needed for
Portland cement hydration, proper application of an impermeable membrane soon
after the concrete placement may offer an acceptable condition to maintain the
strength development at a satisfactory rate.

It has been observed that regardless of mix proportions or curing age, concrete
specimens that are tested in wet conditions exhibit about 15% higher elastic
modulus than the corresponding specimens tested in a drying condition. On the
contrary, the compressive strength of the specimen behaves in the opposite manner,
i.e., the strength is higher by about 15% when the specimens are tested in drying
condition. The explanation would be that: in a saturated cement paste the adsorbed
water in the C-S-H is load-bearing, which contributes to higher elastic modulus; on
the other hand, the disjoining water pressure in the C-S-H tends to reduce the van
der Waals force of attraction, which in turn, to lower down the strength.

iii. Temperature

When concrete is casted and cured at a specific constant temperature in the range of
5–46 °C, it is generally observed that the higher of the temperature, the more rapid
is the cement hydration and the strength development. It is reported that the 28-day
strength of concrete specimens casted and cured at 5 °C is only about 80% of those
casted and cured at 21–46 °C. At a curing temperature near freezing, this per-
centage is further lowered down to about one half. Therefore, adequate temperature
must be maintained for a sufficient time, to provide enough activation energy for the
hydration reactions to launch.

It has been observed, too, that within the temperature range 5–46 °C, the lower
casting and curing temperature, the higher will be the ultimate strength. This is
mainly attributable to a more uniform microstructure (especially the pore size
distribution) of the hydrated cement paste.

3. Loading conditions

Loading conditions include stress level and duration. In addition, the advent and
degree of nonlinearity in the complete stress–strain curve would obviously depend
on the application rate of load.

The grading strength of concrete is tested in laboratory by uni-axial compression
(SL352-2006) in which the load is progressively increased to crush the specimen
within 2–5 min. In practice, most structural elements are subjected to a dead load
for an indefinite period and, at times, to repeated loads or to impact loads. It is
therefore, desirable to know the relationship between the concrete strength under
laboratory loading conditions and actual loading conditions.
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4. Scale effects

It has been widely accepted that the test results of concrete strength are significantly
affected by the parameters involving in the test specimens including their shape and
size.

5. Test methods

Direct tension test of concrete is seldom exercised, mainly because the specimen
holding devices will introduce secondary stresses that cannot be ignored or revised.
The most prevalent tests for estimating the tensile strength of concrete make use of
splitting tension and third-point flexural (bending) loading.

Table 2.22 illustrates the comparison of tensile strengths in Xiaowan Arch Dam
by different methods. It is evident that:

– For wet-screened concrete, axial tensile strength is the largest; on the contrary,
for fully-grade concrete, axial tensile strength is the smallest.

– Third-point flexural loading tends to overestimate the tensile strength by 50–
100%, probably because of the assumption of linear stress–strain relationship
throughout the cross section of the bended beam and the fact that only a small
portion near the specimen bottom is subjected to high tensile stress under the
flexural loading.

– The tensile strength of fully-graded concrete is about 73–76% lower than that of
wet-screened one.

In the design of hydraulic structures, the cracking resistance of concrete is
primarily specified using an allowable value of tensile strain below which no
apparent cracks manifest. This index is normally ranged between 0.00005 and
0.00007 apparently age dependent and specimen scale dependent. Taking Xiaowan
Arch Dam for example (see Table 2.23), the maximum tensile strain increases with
the age, and that of the fully-graded concrete is about 74–78% smaller than that of
wet-screened one.

Table 2.22 Comparison of tensile strength values: Xiaowan Arch Dam, China

Strength
grade

Age
(days)

Wet-screened (two-graded)
concrete (MPa)

Fully-graded (four-graded)
concrete (MPa)

Splitting Axial Third-point
flexural

Splitting Axial Third-point
flexural

C18040 28 2.40 2.75 3.62 2.12 1.41 2.71

180 3.50 3.56 5.46 3.10 1.96 3.89

C18030 28 2.11 2.20 3.41 1.64 1.09 2.53

180 3.00 3.29 4.49 2.65 1.77 3.26
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(2) Intact rocks

The uni-axial compressive strength of an intact rock is related to its type ranging
from the lowest 40 MPa (phyllites) to the highest 170 MPa (rhyolites), according to
Hoek and Bray (1981).

Mostly (>70%) but not always, the tensile strength tested by splitting rt,s is
larger than that by direct axial tension rt,d, the ratio rt,d/rt,s is ranged within 0.60–
1.43.

Instead of compressive and tensile strengths, the most important rock strength
for hydraulic structures is the shear strength, particularly in the design of cut slopes
and foundations of high concrete dams. Shear strength is a result of friction and
interlocking of particles, and possibly cementation or bonding at particle contacts. It
is evaluated in a comprehensive way using experiments, back analyses, and engi-
neering analogues (empirical data). Laboratory tests employ shear box (direct shear
test), tri-axial and unconfined (uni-axial) compressive apparatus, whereas in situ
tests fall into vane shear and direct shear (Commission on Standardization of
Laboratory and Field Tests (ISRM) 1974).

The Mohr envelope is primarily a graphic method to represent the results of a
series of experiments on the shear of rock-like materials under varying external
conditions, e.g. tri-axial tests under a series of confining pressures. In any experi-
ments, the maximum and minimum principal stresses (r1 and r3) when failure takes
place, are assumed to be known, and a Mohr circle for them can be drawn. If the
conditions of test (e.g. confining pressure) are changed slightly, a slightly shifted
Mohr circle (see Fig. 2.14) will be obtained. The envelope of all such circles, if
exists, is the Mohr envelope for the rock-like material which is a curve relating
normal stress r and shear stress s. In practice, only a limited portion of the envelope
is available.

In a definite stress range, prior to the postulation of the principle of effective
stress, the shear strength of material on a particular plane was expressed by
Coulomb as a linear function of the normal stress. Therefore, in the stability
analysis, it is generally assumed that the failure of material may be calibrated using
the Mohr-Coulomb criterion, in which the shear strength is expressed in terms of
parameters c (cohesion) and u (angle of shearing friction) by the formula

Table 2.23 Maximum tensile strain values: Xiaowan Arch Dam, China

Strength
grade

Age
(days)

Maximum tensile strain (�10−6)

Wet-screened (two-graded)
concrete

Fully-graded (four-graded)
concrete

C18040 28 123.9 97.0

180 139.9 107.3

C18030 28 114.2 89.8

180 128.2 94.8
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sf ¼ cþ r tanu ð2:30Þ

where c and u = total stress strength parameters representing the intercept at the
ordinate axis and the slope of the Mohr-Coulomb shear envelope.

Use is made of tested data, graphs of shear stress against normal stress and shear
displacement may be plotted to find c and u corresponding to the yield, peak and
residual shear strengths, which are selectively employed in the stability analysis
taking into account of the types of hydraulic structures and the stipulated work
situations. In the selection of strength parameters, the reservoir impounding induced
rock softening should be foreseen, too.

Although the Mohr-Coulomb theory is not exactly true to rock-like materials, yet
it offers a simple way to represent their failure under combined compressive-shear
stress states from which an estimation of the shear strength can be easily obtained.
In the preliminary phases of design, the shear strength parameters—the friction
coefficient f = tanu and cohesion c, may be roughly estimated by the compressive
strength and tensile strength using Mohr rupture diagram.

It should be reminded that tests are always not able to simulate exact natural
settings of rock-like materials, particularly the rock mass with discontinuities,
therefore the testing data are normally not applied directly. They are subjected to
revision taking into account of experimental conditions, sample representatives,
computing methods, and natural conditions.

Assuming fresh to slightly weathered rock, the peak shear strength parameters
range from the lowest sedimentary (triassic, coal, chalk) of c′ = 1–20 MPa and
u′ = 25°–35°, to the highest Igneous (granite) of c′ = 30–50 MPa andu′ = 45°–55°.
Strongly weathered rock will lead to significantly reduction in shear strengths (Look
2007).

Table 2.24 summarizes the shear strengths of typical intact rocks (Wu and Zhou
2013) and Table 2.25 gives the intact rock strengths and other parameters in
Xiaowam Project.

Fig. 2.14 Mohr-Coulomb
strength envelope
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(3) Discontinuities

It is customarily assumed that the strength of a discontinuity is represented by the
Mohr-Coulomb criterion (see Eq. 2.30). To give a general idea, at unfilled rock
joints the friction angle ranges from u′ = 20°–27° (schists, shale) to u′ = 34°–40°
(basalt, granite, limestone, conglomerate).

Table 2.24 Strengths of intact rocks (Wu and Zhou 2013)

Rock type Compressive Tensile
(splitting)
(MPa)

Shear

Dry
(MPa)

Wet
(MPa)

c′
(MPa)

u′ (°)

Igneous Intrusives
(plutonic)

Granite 150–
230

110–
210

7.5–16.5 10–35 45–65

Diorite 180–
270

140–
250

7.5–17.5 12.4–
16.7

54–61

Porphyry 110–
294

91–
215

9.8–15.6 9.5–
55

40–65

Extrusives
(volcanic)

Basalt 134–
202

73–
150

8.5–20.0 20–60 48–55

Rhyolite 180–
260

160–
220

10.0–14.5 10–50 45–60

Sedimentary Clastic
sedimentary

Sandstone 18–80 8–68 2.0–5.5 8–40 35–50

Shale 9–77 5–68 1.5–4.5 3.6–
9.8

16–40

Carbonatite Limestone 80–
235

32–
174

6.0–14.1 10–50 35–50

Dolomite 56–
169

50–
130

4.0–20.5 19.6–
49.0

30–55

Weak and soft Claystone 20–59 2.0–32 3.5–5.5 7.5–
11.5

18–30

Metamorphic Ortho-rock Gneiss 140 80 4.5–13.5 3–5 30–50

Para-rock Quartz 145–
200

50.0–
176.8

8.8–18.5 22–58 45–58

Marble 70–
140

50–
118

5.0–14.5 15–30 35–50

Slate 60–
142

20–
140

3.5–6.5 2–20 45–60

Phyllite 73–
111

68–
111

3.5–5.5 1–20 26–65

Schist 90–
152

63–
140

5.5–16.7 1–20 26–65
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(4) Rock masses

Jointed rock masses are very often encountered in hydraulic structures (e.g. dams,
tunnels, caverns, etc.). Their strength parameters are strongly dependent on the
stress states in addition to the properties of each joint.

The determination of rock mass strength can be approached either via
theoretical/computational analyses using the strengths of intact rocks and discon-
tinuities, or via in situ tests directly.

In the first approach, researchers initially devoted themselves to the problems
linked to stratified rock with regard to the elastic response and failure. The seminal
work of Salamon (1968) on stratified materials consisting of isotropic layers was
preceded by the works of Wardle and Gerrard (1972) who examined some
restrictions to the values of equivalent elastic constants. In a work by Gerrard
(1982a, b) orthorhombic constituents were considered, and Bourne (2003) pre-
sented an interesting discussion on global versus local stress states. Other works
tackling the same problem with numerical approaches can be found in, for example,
Adhikary and Dyskin (1998), Guz and Soutis (2001). Triantafyllidis and
Gerolymatou (2014) formulated a solution covering both elasticity and failure in
three dimensions.

Due to the fact that real world rock masses are discontinuous in most cases, tests
conducted on small specimens in laboratory generally do not yield appropriate
strength and deformation parameters (Bieniawski 1968a, b). The smaller of the
specimen, the fewer discontinuities are presented and hence the stronger will be the
specimen. A large specimen may, therefore, provide a better estimation of these
characteristics. In situ tests are highly desirable for the strength evaluation of rock
mass although difficulties arise from the extreme capacity demand of testing loads.

There are many types of large scale in situ tests such as compression tests and
shear tests, etc. They are exercised throughout the world for various purposes and in
various applications. For detailed messages our readers are referred to the book by
Dunnicliff (1988).

It is also appropriate to suggest that laboratory or in situ testing is minimized
until the decision on the site of the hydraulic structure has been made. In the early
phases of design, the deformation modulus, uni-axial compression strength rc,
uni-axial tensile strength rt, and shear strength parameters c and tanu of the rock
mass (weathered or intact) may be estimated using the rock classification indices of
RBQ, RMR, and Q.

For dams, the basic quality index BQ can be used directly. However, the Chinese
Standard (GB50218-94) requests a revision in BQ for underground structures and
cut-slopes, the main factors taken into account of in the revision are the ground-
water conditions, dominant structural planes, in situ geo-stresses. The Standard
(GB50218-94) also suggests empirical relationships of BQ versus physical and
mechanical parameters for rock masses, which are obtained from the statistic
analysis relating the field tests of 47 typical hydraulic projects in China.

GB 50487-2008 «Code for Engineering Geological Investigation of Water
Resources and Hydropower» also recommends shear strength parameters of rock
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masses and discontinuities, according to the collected data from the extensive in situ
and laboratory tests carried out in the China’s hydraulic engineering.

Table 2.26 lists a portion of deformation and shear strength parameters recom-
mended in the China’s design codes for hydraulic projects (GB 50287-99), which
may be referred to in the early phases of design. Table 2.27 gives the rock clas-
sification and corresponding parameters recommended for Xiaowan Project.

(4) Steel bars

The standard strengths of bolts (steel bar, strand wire anchor, earth nail) have been
discussed previously in Sect. 2.2 (see Table 2.7).

2.7.2 Yield (Failure) Criteria

(1) Concept

From the uni-axial tests illustrated in Figs. 2.8, 2.9 and 2.10 it may be justified that
a yield or ultimate stress can readily be determined. What if, however, there are
bi-axial or tri-axial stresses exerting on a sample? Towards this question it is
necessary to extend the definition from the uni-axial concept of a yield (failure)
stress to a general three-dimensional state of yield (or failure) criterion (Michino
and Findley 1976; Pisarenko and Lebedev 1976; Gurson 1977).

A “yield criterion” is a function of the strain/stress state and the material
parameters defined either in strain or stress space, the latter is more prevalent, for
deciding what combination of multi-axial stresses will bring about yield
(Scheunemann 2004; Sakash et al. 2006; Wang and Lee 2006). It is expressed
mathematically by a yield function F being equal to zero, i.e. F = 0. The material
will perform elasticity where the yield function F < 0. The suitability of any pro-
posed yield criteria must be validated by experiments and preferably, be supported
by clear physical mechanism (Yu 2002).

Before the detailed works on the yield criteria and further the constitutive
relations for rock-like materials hereinafter, it is essential that the terms “stress” and

Table 2.26 Recommended shear strength and deformation parameters of rock masses (GB
50287-99)

Rock grade Shear between concrete/
rock contact surface

Shear of rock Deformation modulus

f′ c′ (MPa) f′ c′ (MPa) E (GPa)

I 1.50–1.30 1.50–1.30 1.60–1.40 2.50–2.00 >20

II 1.30–1.10 1.30–1.10 1.40–1.20 2.00–1.50 20–10

III 1.10–0.90 1.10–0.70 1.20–0.80 1.50–0.70 10–5

IV 0.90–0.70 0.70–0.30 0.80–0.55 0.70–0.30 5–2

V 0.70–0.40 0.30–0.05 0.55–0.40 0.30–0.05 2–0.2
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Table 2.27 Classification and parameters recommended for Xiaowan Project, China

Rock grade Structure Geological characteristics Suggestion on the parameters

Deformation
modulus
(GPa)

Shear
strength

Grade Sub-grade

f′ c′
(MPa)

I Integrate Slightly weathered—intact
gneiss, non structural face
of IV grade or above IV
grade. In V grade structure
face, joint sets are less or
equal to 2. Seismic velocity
Vp � 5000 m/s

22–28 1.3–
1.6

2.0–
2.5

II Blocky Slightly weathered—intact
gneiss, non structural face
of IV grade or above IV
grade. In V grade structure
face, joint sets are 2–3, no
filling. Seismic velocity
Vp � 4500 m/s

16–22 1.3–
1.5

1.5–
2.0

III IIIa Inferior
blocky

Weakly weathered,
structural faces of IV grade
are well developed. In V
grade structure face, joint
sets are above or equal to 3.
Seismic velocity
Vp = 4500–4000 m/s

12–16 1.1–
1.3

1.1–
1.5

IIIb1 Inferior
blocky–
blocky

Unloading rock of slightly
weathered. Seismic velocity
Vp = 4000–3500 m/s

8–12 1.2–
1.3

0.9–
1.1

IIIb2 Inferior
blocky

Unloading rock of slightly
weathered. Loosen joints
are well developed and
filled. Joints are well
developed, open and filled
by kaolinite clay. Seismic
velocity Vp = 3000–
2000 m/s

6–8 1.0–
1.2

0.7–
0.9

(continued)

2.7 Yield and Failure 121



“strain” are defined without ambiguity. Typically, two types of definitions are
considered. The first type deals with materials only undergo small strains, whereas
the second type deals with materials that are not limited to small strains. In the
design of hydraulic structures, the first type is normally postulated, particularly for
their normal working situation. Under such circumstances the Cauchy stress tensor
corresponding to infinitesimal strain tensor is employed (Landau and Lipshitz
1970).

Towards the three dimensional expression of a yield criterion for rock-like
materials, the following invariants with regard to stress and strain tensors are
customarily employed (Nayak and Zienkiewicz 1972).

I1 ¼ rx þ ry þ rz
I2 ¼ �rxry � ryrz � rzrx þ sxy2 þ syz2 þ szx2

I3 ¼ rxryrz þ 2sxysyzszx � rxs2yz � rys2zx � rzs2xy

8<
: ð2:31Þ

J1 ¼ 0
J2 ¼ 1

6 ðrx � ryÞ2 þðry � rzÞ2 þðrz � rxÞ2 þ 6ðsxy2 þ syz2 þ szx2Þ
h i

¼ 1
3 ðI21 þ 3I2Þ

J3 ¼ 1
27 ð2I31 þ 9I1I2 þ 27I3Þ

8>>><
>>>:

ð2:32Þ

Table 2.27 (continued)

Rock grade Structure Geological characteristics Suggestion on the parameters

Deformation
modulus
(GPa)

Shear
strength

Grade Sub-grade

f′ c′
(MPa)

IV IVa Jointed
blocky

Weakly weathered. IV and
V graded structural face are
well developed. Joint opens.
Seismic velocity
Vp = 3500–2500 m/s

5–10 1.0–
1.1

0.5–
0.7

IVb Mosaic Fault influenced zone, joint
concentrated zone, and
erosion zone. IV and V
grade structural faces are
well developed. Joints are
slightly open and filled

2–4 0.9–
1.0

0.4–
0.5

IVc Cataclastic Fault fragrant zone, strongly
erosion zone. Structural
faces are well developed
and filled

0.5–2 0.8–
0.9

0.3–
0.4
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rm ¼ p ¼ 1
3 ðrx þ ry þ rzÞ ¼ 1

3 I1
q ¼ ffiffiffiffiffiffiffi

3J2
p

hr ¼ 1
3 arccos

3
ffiffi
3

p
2

J3
J3=22

� �
8>><
>>: ð2:33Þ

The first invariant of stress tensor I1 and the second invariant of deviatoric stress
tensor J2 are always positive, whereas the third invariant of deviatoric stress J3
reverses in sign if the signs of all the stresses are reversed.

The Lode angle hr is useful in the study of a yield surface on its p plane.
The hydrostatic stress p and the generalized shear stress q are customarily used

in the study of yield criterion and corresponding constitutive relation in the classical
plasticity theory, particular for soils.

(2) Yield criteria for rock-like materials

The behaviors of rock-like materials under multi-axial stress state are very complex
and therefore, they normally have to be described from the phenomenological
standpoint. Unlike the laboratory tests for determining the basic strength parameters
of rock-like materials under uni-axial compression, splitting tension, and flexure
loading, there is no standard test for them under multi-axial stress states.

Strength theory (inclusive yield criterion and failure criterion), as one of the most
important components in constitutive relations, has been widely exercised in var-
ious computational geomechanics. Textbooks and monographs devoted to com-
putational plasticity are referred to Brebbia (1985), Yu and Li (2012). Other related
books and a brief history of nonlinear FEM before 2000 were summarized by
Belytschko et al. (2000).

Yield criteria are usually noted in the forms of principal stresses or stress
invariants as

F r1; r2; r3ð Þ ¼ 0
F I1; I2; I3ð Þ ¼ 0
F I1; J2; J3ð Þ ¼ 0
F rm; J2; hrð Þ ¼ 0
F p; q; hrð Þ ¼ 0

8>>>><
>>>>:

ð2:34Þ

A visual representation termed as the “yield surface” may be constructed in the
principal stress space using the yield criterion in Eq. (2.34). Inside the surface the
material is elastic whereas reaching the surface means the material initiates plastic
deformation. It is physically impossible for a material to go beyond its yield
surface.

For an isotropic material, the yield function F should be invariant with respect to
the interchange operator for the coordinate axes, this means that the yield function
is a symmetric function of the principal stresses ri (i = 1, 2, 3), namely, the yield
function is tri-fold symmetric.
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Nowadays, there have been numerous isotropic yield (failure) criteria for
rock-like materials (see Table 2.28) falling into single-shear series (e.g. Tresca,
Mohr-Coulomb), twin-shear series (e.g. Yu), and triple-shear series (e.g. von Mises,
Drucker-Prager). In hydraulic structures, rock-like materials are normally regarded
as frictional, and the Mohr-Coulomb criterion taking into account of the effects of
friction and cohesion perhaps is the most prevalent one.

Although there is desperate need for anisotropic yield (failure) criteria with
respect to jointed rock masses, yet credible and practical results are limitedly
available except for simpler case with layered rocks (Mutschler and Fröhlich 1987;
Taliercio and Landriani 1988; Ramamurthy 1993; Lai et al. 1999; Tien and Kuo
2001; Tien et al. 2006).

Physically, any yield surfaces for solid materials, if exist, should be smooth. But
many of them artificially built focusing on one-or-two yield mechanisms solely may
develop pointed pyramidal or conical vertices. For example, the single-shear criteria
(e.g. the Mohr-Coulomb) are angular on the p-plane. Although theories of plasticity
imply the formation of a vertex at the loading point on the yield surface (Hill 1967),
yet experimental evidences suggest that, while relatively high curvature at the
loading point is often observed, sharp vertices are seldom detected (Hecker 1976).
Experimental data also indicate that the yield surfaces for metals are convex in
Cauchy stress space, if elastic response within the yield surface is linear and
unaffected by plastic flow.

Where there are pointed pyramidal or conical vertices on a yield surface, the
flow vector of plastic strain is not uniquely defined. Before, these singularities give
rise to constitutive models that are difficult to implement numerically. Koiter (1953)
first provided limits within which the incremental plastic strain vector must lie. The
singularities of the Mohr-Coulomb yield criterion can also be overcome by
rounding off them or by employing a simple mathematical artifice in the numerical
procedure (Owen and Hinton 1980). Other treatments of singularities in yield
surfaces available are suggested by Ortiz and Popov (1985), Sloan and Booker
(1986), de Borst (1987), Runesson et al. (1988), Simo and Hughes (1988), Pramono
and Willam (1989), de Borst et al. (1991), Khan and Huang (1995), Larsson and
Runesson (1996).

(3) Prevalent yield criteria in hydraulic structures

1. Von Mises criterion

This criterion is based on the Tresca criterion but takes into account the postulation
that hydrostatic stresses do not contribute to material failure (Von Mises 1913;
Timoshenko 1953)

J2 ¼ C ð2:35Þ

The von Mises yield surface in principal stress space circumscribes a cylinder
around the hydrostatic axis (see Fig. 2.15).
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The Von Mises criterion is used for the yield of rock bolts (steel bar and strand
wire) in this book. Towards the expression of the yield criterion and further the
establishment of the constitutive relation for the bolt b (stranded wire w and grout
g as well) in the subsequent Chaps. 6 and 15, the local coordinate systems for the
bolt segment are defined in Fig. 2.16. In the local Cartesian system (see Fig. 2.16a),
the zb-axis is along the bolt axis and upright, the yb-axis is perpendicular to the bolt
and points in the direction of dip, the xb-axis is formed by the right hand rule. On
the basis of the local Cartesian coordinate system, the local Cylindrical coordinate
system is further defined in Fig. 2.16b.

The superscripts ca and cy are used to denote a variable in the local coordinate
systems of Cartesian and Cylindrical respectively; the subscripts b in small letter
and B in capital letter are used to denote the bolt related variables in the local
coordinate system and global coordinate system, respectively.

Similar to Eqs. (2.12) and (2.13), the coordinate (displacement as well) trans-
formation from the local Cartesian system to the global one is defined by

xf gb¼
xb
yb
zb

8<
:

9=
; ¼

l11 l12 l13
l21 l22 l23
l31 l32 l33

2
4

3
5 X

Y
Z

8<
:

9=
; ¼ l½ �cab Xf g

Xf g ¼
X
Y
Z

8<
:

9=
; ¼

l11 l21 l31
l12 l22 l32
l13 l23 l33

2
4

3
5 xb

yb
zb

8<
:

9=
; ¼ l½ �cab

	 
T
xf gb

8>>>>>><
>>>>>>:

ð2:36Þ

where

½l�cab ¼
cos/b � sin/b 0
sin/b cos hb cos/b cos hb � sin hb
sin/b sin hb cos/b sin hb cos hb

2
4

3
5 ð2:37Þ

In which /b and hb are the dip direction and dip angle of the bolt b, respectively.
The displacement transformation from the local Cartesian system to the local

Cylindrical one, which will be useful in the works of subsequent Chaps. 15–17, is
defined as

Fig. 2.15 Von Mises yield
surface
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uf gcyb ¼
urb
uxb
uzb

8<
:

9=
; ¼

cosx sinx 0
� sinx cosx 0

0 0 1

2
4

3
5 uxb

uyb
uzb

8<
:

9=
; ¼ l½ �cyb uf gcab ð2:38Þ

The useful stress and strain transformation between the local Cartesian coordi-
nate system to the global one is further defined by

ef gb¼ ½T �b ef gB
rf gB¼ T½ �Tb rf gb

�
ð2:39Þ

In which

½T �b ¼

l211 l221 l231 l21l31 l11l31 l11l21
l212 l222 l232 l22l32 l12l32 l12l22
l213 l223 l233 l23l33 l13l33 l13l23
2l12l13 2l22l23 2l32l33 l22l33 þ l23l32 l12l33 þ l32l13 l12l23 þ l22l13
2l11l13 2l21l23 2l31l33 l21l33 þ l23l31 l11l33 þ l13l31 l11l23 þ l21l13
2l11l12 2l21l22 2l31l32 l21l32 þ l22l31 l31l12 þ l11l32 l11l22 þ l21l12

2
6666664

3
7777775

ð2:40Þ

Normally, there are only three stress components frgb ¼ szxb szyb rzb½ �T to
be taken into account in the formulation of the yield criterion and constitutive
relation for bolts and strand wires. For example, the Von Mises yield function Fb of
bolt is specifically expressed in the local Cartesian coordinate system by the
formula

Fig. 2.16 Coordinate systems of bolt segment b. a Cartesian; b cylindrical
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Fb ¼ ½3ðszxb2 þ szyb
2Þþ rzb

2�1=2 � fyk ð2:41Þ

In which fyk is the yield strength of bolt b.

2. Drucker-Prager (D-P) criterion

Drucker and Prager (1952) proposed a generalized von Mises criterion in which the
material friction is taken into account. It has been widely implemented in nonlinear
FEM codes for geotechnical and hydraulic structures. Although substantial depar-
tures from the predictions of the D-P criterion that would give a rather poor
approximation to the real failure conditions, had been observed (Humpheson and
Naylor 1975; Zienkiewicz and Pande 1977a, b; Chen and Baladi 1985), yet this
criterion are prevalent in the computation for hydraulic structures in China due to its

– Simplicity;
– Well defined and easily accessible parameters;
– Engineering convention;
– Comparable safety margin stipulated in the design codes/specifications.

The D-P criterion will be used for the yield of rock-like materials throughout this
book. For isotropic intact rocks and concrete, it is expressed in the principal stress
space with invariants as

F ¼ aI1 þ
ffiffiffiffiffi
J2

p � k ¼ 0 ð2:42Þ

a ¼ sinu=½3ð3þ sin2 uÞ�1=2
k ¼ ffiffiffi

3
p

c cosu=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ sin2 u

p
(

ð2:43Þ

In which u and c are the internal friction angle and cohesion of the material.
There are various expressions of a and k. It is conventionally to term any

criterion expressed in Eq. (2.42) with different a and k as the “generalized Von
Mises criterion” whose corresponding yield surface in the principal stress space
circumscribes a circular conical surface around the hydrostatic axis (see Fig. 2.17),

Fig. 2.17 Drucker-Prager
yield surface
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while with particular expressions of a and k in Eq. (2.43) as the Drucker-Prager
criterion.

The D-P criterion will be retrogressed into the Von Mises criterion where u = 0.
For the mortar grout segment g surrounding the bolt b (see Fig. 2.16), there are

three stress components frgg ¼ szxg szyg rzg
� T

corresponding to {r}b in the
formulation of its yield criterion and constitutive relation. The D-P yield function
Fg of grout g is specifically expressed in the local Cartesian coordinate system (see
Fig. 2.16a) by the formula

Fg ¼ arzg þ
ffiffi
1
3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2g þ 3ðs2zxg þ s2zygÞ

q
� k ¼ 0

a ¼ sinug=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3þ sin2 ugÞ

q
k ¼ ffiffiffi

3
p

cg cosug=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ sin2 ug

q

8>>>><
>>>>:

ð2:44Þ

In which ug and cg are the friction angle and cohesion of the grout.
The D-P criterion will be used for the shotcrete lining in this book, too. Towards

this purpose, in addition to the global coordinate system, a local Cartesian coor-
dinate system is also needed to simplify the deduction (see Fig. 2.18). This local
system is defined with its zl-axis being perpendicular to the shotcrete layer l, the yl-
axis being on the shotcrete layer and coincident with the dip direction ul of the
shotcrete layer and forming a dip angle hl with the horizontal plane, the xl-axis
being on the shotcrete layer and being orientated by the right hand rule.

The coordinate transformation from the local Cartesian system to the global one
is identical to Eqs. (2.12) and (2.13) and Eqs. (2.36) and (2.37) in which the
subscripts j and b are substituted by l.

Under the local Cartesian coordinate system, the stress vector of lining l is
denoted as frgl ¼ ½rxl ryl szyl szxl�T . The stress transformation between the coor-
dinate systems of lining is identical to Eqs. (2.39) and (2.40) in which the subscript
b is substituted by l.

Fig. 2.18 Local coordinate system of lining segment l. a Three-dimensional view; b projected to
dip direction; c projected on horizontal plane
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The D-P yield criterion for the lining is given by the formula

Fl ¼ aI1 þ
ffiffiffiffiffi
J2

p � k ¼ 0
a ¼ sinul=½3ð3þ sin2 ulÞ�1=2
k ¼ ffiffiffi

3
p

cl cosul=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ sin2 ul

p
8<
: ð2:45Þ

In which ul and cl are the friction angle and cohesion of lining l.
The D-P criterion will also be applied to the joint element with thickness (Desai

et al. 1985) in this book. Since the intercalations (fault, interlayer) are thin com-
pared to their stretch or the characteristic dimension of the hydraulic structure, their
deformation is restrained by the side rock walls. On the local Cartesian coordinate
system defined in Fig. 2.2 we can assume that

cxy; ex; ey ¼ 0 ð2:46Þ

and the stress vector may be denoted as frgj ¼ ½ szxj szyj rzj�T . The D-P yield
criterion may be reduced to

Fj ¼ 3arzj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 12a2Þðs2zxj þ s2zyjÞ

q
� k ¼ 0 ð2:47Þ

It is interesting to find that the D-P criterion is actually identical to the
Mohr-Coulomb criterion in case of joint element with thickness.

3. Mohr-Coulomb (M-C) criterion

In the principal stress space, the Mohr-Coulomb criterion for isotropic rock-like
materials is expressed as

1
3
I1 sinuþ cos hr � 1ffiffiffi

3
p sin hr sinu

� � ffiffiffiffiffi
J2

p � c cosu ¼ 0 ð2:48Þ

In which the Lode angle hr varies within � p
6 � hr � p

6.
Equation (2.48) may be expressed in an alternative form

p sinuþ 1ffiffiffi
3

p q cos hr � 1ffiffiffi
3

p sin hr sinu
� �

� c cosu ¼ 0 ð2:49Þ

In which q and p are defined in Eq. (2.33).
The M-C yield surface in the principal stress space circumscribes an irregular

hexagonal prism around the hydrostatic axis (see Fig. 2.19).
Disregard the disadvantage of the M-C criterion that the intermediate principal

stress is not taken into account, it is widely exercised in China attributable to its
remarkable advantages of clear physical mechanism, full-fledged parametric eval-
uation scheme, and rich practice experiences with competent safety margin stipu-
lated in the design codes/specifications.
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Modifications of the C-M criterion with tension cut-off were suggested by Paul
(1961), Chen and Drucker (1969). Multi-surface models combined with the
Mohr-Coulomb criterion with a compressive cap were proposed by Simo et al.
(1988), Lourenço and Rots (1997), Sutcliffe et al. (2001). Advanced smooth ridge
models such as the Willam-Warnke criterion (1975), the Lade-Duncan criterion
(1975), the Zienkiewicz-Pande criterion (1977a, b), and the others, are available
(see Table 2.28).

In this book, tension cut-off will be adopted but the multi-surface (cap) models
will not be taken into account because normally the hydrostatic pressure is not
sufficiently large to bring about yield for the rock-like materials encountered in
hydraulic structures.

The M-C criterion is also used for the yield of joint element without thickness,
whose local Cartesian coordinate system has been defined in Fig. 2.2. The strain
and stress transforming between the global and local coordinate systems of a joint
segment j is identical to Eqs. (2.39) and (2.40) in which the subscript b is substi-
tuted by j. In the local coordinate system of joint j, the M-C criterion with tension
cut-off is expressed by

Fj ¼ ðs2zxj þ s2zyjÞ1=2 þ rzjtguj � cj for rzj � rTj\0
Fj ¼ rzj � rTj for rzj � rTj � 0

�
ð2:50Þ

In which cj, uj and rTj are the cohesion, friction angle, and tension strength,
respectively.

Fig. 2.19 Mohr-Coulomb yield surface. a On p-plane; b in principal stress space
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2.8 Constitutive Relations: Elasticity

2.8.1 Concept

In continuum mechanics, the “constitutive relation (equation, law)” or “equation of
state” relates physical variables specific to a material, and approximates the
response of that material to external stimuli such as applied fields or forces.
Although constitutive relations may be derived from the first principle in physics,
yet most of them used in the computation for hydraulic structures are simply
phenomenological. They are combined with other governing equations (e.g. equi-
librium, conservation, continuity) to solve mechanical/physical field problems.
Taking the water percolation problem for instance, constitutive equation relates the
seepage flow rate of water in rock-like materials to the water head (hydraulic
potential) gradient (e.g. the Darcy’s law). In the thermal conduction problem of
concrete dams, it links the rate of heat flow with the gradient of temperature (e.g.
the Fourier’s law). Towards a structural problem, the connection between applied
stresses or forces to emerged strains or deformations (e.g. the Hooke’s law pro-
posed in 1675) is necessarily built and often called as the “stress–strain relation”. It
deals with linear elastic materials which are able to resist actions and to return to
their original size and shape when the actions are removed. The mechanism for
elastic behavior can be quite different for different materials (Chen and Saleeb
1994).

A common approximate constitutive relation is frequently expressed as a simple
proportionality through parameters representing the properties of the material, such
as a spring constant in elasticity. However, it is often necessary to account for the
directional dependence of the material, which demands a generalization from scalar
parameters to a tensor. Constitutive relations are also modified to account for the
rate of response and the non-linear performance of materials, if necessary.

There are various definitions of elastic moduli, such as the Young’s modulus, the
shear modulus, and the bulk modulus, all of them are the measures of the inherent
elastic properties of a material as the resistance to deformation under an applied
load. These moduli are corresponding to different kinds of deformation. For
instance, the Young’s modulus applies to extension/compression of a body,
whereas the shear modulus applies to its torsion.

Perfect elasticity is only an approximation of the real world substance, and few
rock-like materials stay purely elastic even after very small deformations.
Regarding to the definition of the Young’s modulus E which significantly influ-
ences the rigidity of hydraulic works, there are several prevalent expressions. The
“tangent modulus” is given by the slope of a line drawn tangent to the stress–strain
curve at any point, of which the initial tangent is the slope at initial stress. The
elastic tangent modulus which is conventionally named as “elastic modulus”, is the
slope at any specified linear point (or near linear) on the stress–strain curve, but
usually at a specified stress level (such as 50% for rock) of the maximum or peak
stress. The “chord modulus” is given by the slope of a line drawn between two
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points on the stress–strain curve. The “deformation modulus” is the slope of such a
line between zero and a specified stress level with respect to the maximum or peak
stress (e.g. 40% for concrete, 50% for rock, one-third for soil), which belongs to
“secant modulus”. The “recovery modulus” is the slope of unloading route.

For a sample subjected to simple axial load, i.e. the confining pressure r3 = 0 in
Fig. 2.8, the ratio l of the lateral strain er to axial strain ea within the elastic range is
called the “Poisson’s ratio”. It is generally not needed for the conventional design of
concrete gravity dams. However, it is demanded for the structural analysis of
tunnels, arch dams, and other statically indeterminate structures. In principle, the
values of E of intact rocks and concrete, can be estimated from the curve relating
principal stress difference and axial strain in appropriate laboratory tests. However,
due to the effects of sampling disturbance, it is preferable to determine the Young’s
modulus E and Poisson’s ratio l (or shear modulus G) from the results of in situ
tests.

(1) General form

The elastic constitutive relation is expressed in the form of increments throughout
the rest coverage of this book. According to the convention prevalent in engineers,
we use matrix notation for the fourth-order elastic tensor and vector notation for the
second-order stress and strain tensors

fDrg ¼ ½Drx Dry Drz Dsyz Dszx Dsxy �T ð2:51Þ

fDeg ¼ ½Dex Dey Dez Dryz Drzx Drxy �T ð2:52Þ

The 6 � 6 elastic matrix [D]e linearly links above stress and strain vectors by the
formula

fDrg ¼ ½D�efDeeg ð2:53Þ

(2) Special cases

1. Discontinuity with thickness

For the discontinuity j with thickness (e.g. interlayer), its strain increment vector
will be reduced with only three components in the local Cartesian coordinate
system defined in Fig. 2.2 as

Def gj¼ ½Dczxj Dczyj Dezj �T ¼ 1
aj
½Duxj Duyj Duzj �T ð2:54Þ

Drf gj¼ ½Dszxj Dszyj Drzj �T ð2:55Þ

In which aj is the aperture (thickness) of the discontinuity j.
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The 3 � 3 elastic matrix [D]j linearly links above stress and strain vectors by the
formula

fDrgj ¼ ½D�ej fDeegj ð2:56Þ

2. Discontinuity without thickness

For the discontinuity j without thickness (e.g. joint), the normal and shear forces
applied across it can be scaled by the nominal area of the discontinuity to give
normal and shear stresses, respectively, which give rise to normal and shear dis-
placements. These displacements are related to the corresponding stresses by var-
ious parameters extensively studied (Barton et al. 1985), of which the model
proposed primarily by Goodman et al. (1968), Mahtab and Goodman (1970) is the
most prevalent in the design of hydraulic structures in many countries inclusive
China. The so called “Goodman joint element” model simply links the stress
increments in conjugate with the displacement increments in a linear form. Under
such circumstances, the strain increment will be replaced by the relative displace-
ment in the general form of the constitutive relation, which is expressed in the local
Cartesian coordinate system defined in Fig. 2.2 as

Duf gj¼ ½Duxj Duyj Duzj �T ð2:57Þ

The 3 � 3 elastic matrix [D]j linearly links above stress and strain vectors by the
formula

fDrgj ¼ ½D�ej fDuegj ð2:58Þ

where it is demanded to describe the interfaces of grout/bolt and rock/grout, the
local Cylindrical coordinate system defined in Fig. 2.16 might be employed to
establish their constitutive relations. Under such circumstances Eq. (2.58) will hold
but the stress and deformation vectors of the interface are replaced by

Duf gj¼ ½Durj Duxj Duzj �T ð2:59Þ

Drf gj¼ ½Drrj Dsrxj Dsrzj �T ð2:60Þ

3. Grout

The elastic constitutive relation of grout g is expressed in the local Cartesian
coordinate system defined in Fig. 2.16. Normally, only two shear stresses szxg and
szyg perpendicular to the bolt axis and one axial tensile stress rzg are taken into
account in the study of the constitutive relation for grout.
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Denote the strain and stress incremental vectors in the local coordinate system as

Def gg¼ ½Dczxg Dczyg Dezg �T ð2:61Þ

Drf gg¼ ½Dszxg Dszyg Drzg �T ð2:62Þ

The 3 � 3 elastic matrix [D]g linearly links above stress and strain vectors by the
formula

fDrgg ¼ ½D�egfDeegg ð2:63Þ

4. Bolt

The constitutive relation of bolt b is expressed in the local Cartesian coordinate
system, too. Taking two shear stresses szxb and szyb perpendicular to the bolt axis
and one axial tensile stress rzb into account and denoting the strain and stress
incremental vectors in the local Cartesian coordinate system as

Def gb¼ ½Dczxb Dczyb Dezb �T ð2:64Þ

Drf gb¼ ½Dszxb Dszyb Drzb �T ð2:65Þ

The 3 � 3 elastic matrix [D]b linearly links above stress and strain vectors by the
formula

fDrgb ¼ ½D�ebfDeegb ð2:66Þ

5. Lining

Since the normal stress and strain perpendicular to the lining face may be neglected
in the local coordinate system defined in Fig. 2.18, the stress and strain incremental
vectors are denoted as

fDrgl ¼ ½Drxl Dryl Dszyl Dszxl �T ð2:67Þ

fDegl ¼ ½Dexl Deyl Dczyl Dczxl �T ð2:68Þ

The elastic constitutive relation for lining l is expressed by the formula

fDrgl ¼ ½D�el fDeegl ð2:69Þ

In which [D]l is the elastic matrix of 4 � 4.
The elastic matrices in Eqs. (2.53), (2.56), (2.58), (2.63), (2.66) and (2.69) will

be specified in the hereinafter sections.
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2.8.2 Concrete

The elastic modulus of natural aggregates of low porosity such as granite and basalt
is in the range of 70–140 GPa, whereas with sandstone, limestone, and gravel, it
varies from 21 to 49 GPa. The elastic moduli in the range of 7–28 GPa with
hydrated Portland cement pastes have been reportedly determined by its porosity,
which are similar to the elastic moduli of lightweight aggregates.

For concrete, the direct relationship between elastic modulus and strength does
exist because they are both significantly affected by the porosity of the constituent
phases, although not to the same degree (Swaddiwudhipong et al. 2003; Shen et al.
2016; Silva et al. 2016).

The Young’s modulus used in preliminary phases of design may be estimated
from empirical formulas that assume a direct dependence of the modulus on the
strength and the density of concrete, or the concrete grade. Most design codes
provide equation predicting Young’s modulus of concrete in terms of compressive
strength (ECS 2004; ACI 2008). As its first approximation, this estimation makes
sense because the stress–strain behaviors of the three components of concrete,
namely the aggregate, the cement paste matrix, and the ITZ, would actually be
related to the deformation and ultimate strength of the concrete. According to the
Chinese design codes GB50010-2010 and SL191-2008, the elasticity modulus of
concrete can be determined by

Ec ¼ 105

2:2þ 34:7
rc

ð2:70Þ

where Ec = Young’s modulus, MPa; rc = compression strength (28 days) of
standard cubic sample, MPa.

The elastic modulus Ec of concrete in compression varies from 14 to 40 GPa. In
the initial phases of design, the codes GB50010-2010 and SL191-2008 also suggest
its reference values in relation to the concrete grade (see Table 2.29).

In the later design phases for an important project, the elastic modulus of con-
crete should be evaluated by experiments. Table 2.30 gives the testing results of the
concrete in Xiaowan Arch Dam. It is found that there is a perceivable difference in

Table 2.29 Elastic modulus of concrete (�104 MPa) (GB50010-2010; SL191-2008)

Strength
grade

C15 C20 C25 C30 C35 C40 C45 C50 C55 C60

Ec 2.20 2.55 2.80 3.00 3.15 3.25 3.35 3.45 3.55 3.60
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the Young’s modulus between fully-graded concrete and wet-screened concrete,
and between the compressive and tensile loading as well.

The Poisson’s ratio is not always needed for the conventional design of many
hydraulic structures. However, it is demanded for tunnel linings, arch dams, and
other statically indeterminate concrete structures.

Although there appears no consistent relationship between the Poisson’s ratio
and concrete characteristics such as W/C and curing age and aggregate gradation,
yet it is generally lower in high strength concrete, and higher for saturated concrete
and for dynamically loaded concrete. The values of the Poisson’s ratio for concrete
generally vary within 0.15–0.20, for ordinary concrete it may be assumed as
l = 0.167 in the initial phases of design.

For an important project, the Poisson’s ratio should be tested using steel
cylindrical samples of /450 mm � 900 mm for fully-graded concrete, and
/150 mm � 300 mm for wet-screened (two-graded) concrete. The test data of
concrete C18040 in Xiaowan Arch Dam are listed in Table 2.31. It is obvious that
there is significant difference in the Poisson’s ratio between fully-graded and
wet-screened concretes.

Most concretes, particularly the “conventionally vibrated concrete” (CVC), may
be looked at as an isotropic material whose elastic matrix in Eq. (2.53) is specified by

D½ �ec¼

1
E � l

E � l
E 0 0 0

� l
E

1
E � l

E 0 0 0
� l

E � l
E

1
E 0 0 0

0 0 0 2ð1þlÞ
E 0 0

0 0 0 0 2ð1þlÞ
E 0

0 0 0 0 0 2ð1þlÞ
E

2
66666664

3
77777775

ð2:71Þ

Table 2.30 Young’s modulus of concrete: Xiaowan Arch Dam, China

Strength
grade

Age
(days)

Compressive Young’s modulus
(�104 MPa)

Tensile Young’s modulus
(�104 MPa)

Wet-screened
concrete
(two-graded)

Fully-graded
concrete

Wet-screened
concrete
(two-graded)

Fully-graded
concrete

C18040 28 2.383 2.412 2.972 3.437

180 3.040 3.146 3.665 3.837

C18030 28 2.131 2.261 2.655 2.997

180 2.791 2.971 3.388 3.844

Table 2.31 Poisson’s ratio
of C18040 concrete: Xiaowan
Arch Dam, China

Aggregate gradation Poisson’s ratio

Fully-graded 0.17

Wet-screened, two-graded 0.21
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If necessary, the “roller compacted concrete” (RCC) may be looked at as a
transversely isotropic symmetry material attributable to the existence of regular lift
joints. To describe transversely isotropic elasticity, let s (e.g. xj in Fig. 2.2) and
t (e.g. yj in Fig. 2.2) be any two perpendicular directions on the lift joint perpen-
dicular to the axis of symmetry and let n (e.g. zj in Fig. 2.2) be the direction parallel
to the axis of symmetry, we have

D½ �ec¼

1
En

� lsn
Es

� lsn
Es

0 0 0
� lsn

Es

1
Es

� lst
Es

0 0 0
� lsn

Es
� lst

Es

1
Es

0 0 0
0 0 0 1

Gns
0 0

0 0 0 0 1
Gns

0

0 0 0 0 0 2ð1þlstÞ
Es

2
666666664

3
777777775

ð2:72Þ

It is unique that the primary factors affecting thermal stress for young concrete,
apart from the degree of restraint and temperature change, is the growth of the
Young’s modulus E(s) with the ongoing of age in a basic form of exponent formula

EðsÞ ¼ E0ð1� e�asÞ ð2:73Þ

where s = concrete age, day; E0 = finial modulus when s!∞, MPa; a = constant.
In China, two improved forms of the Young’s modulus E(s) are prevailingly

exercised (Zhu 1996).

– Composite exponent

EðsÞ ¼ E0ð1� e�asbÞ ð2:74Þ

Table 2.32 Fitted constants of the Young’s modulus

Concrete Project Hyperbolic Composite exponent

E0 (GPa) q (d) E0 (GPa) a b

RCC C15 Yantan 32.8 8.20 36.07 0.24 0.45

C15 Three Gorges 35.6 28.00 35.00 0.061 0.70

C20 Three Gorges 37.9 25.63 38.00 0.065 0.70

CVC C20 Yantan 35.91 6.46 35.70 0.28 0.52

C20 Three Gorges 34.25 8.59 34.25 0.24 0.50

C18040 Xiaowan 33 6.658 33 0.4804 0.3076

C18035 Xiaowan 32 7.098 32 0.4566 0.3154

C18030 Xiaowan 30 6.569 30 0.4375 0.3432
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– Hyperbolic

EðsÞ ¼ E0s
qþ s

ð2:75Þ

The practices in China validate that for CVC, the composite exponent function
Eq. (2.74) exhibits higher precision, whereas for RCC, the hyperbolic function
Eq. (2.75) is better performed. Table 2.32 summarized several fitted constants with
regard to the Young’s modulus evolution.

As a first approximation in the dam engineering, the mechanical properties of
concrete are considered as directly proportional to the degree of hydration solely. It
may be easily understood that the dependence on the temperature during curing has
not been sufficiently investigated and taken into account in Eqs. (2.73)–(2.75). Since
it has been widely accepted that the curing temperature has significant effects on the
Young’s modulus, Machida et al. (Machida and Uehara 1987; Majorana et al. 1990)
postulated more advanced models by the concept of “concrete maturity”, a
temperature-and time dependent parameter, in the simulation of the growth of E(s).

2.8.3 Rocks

(1) Intact rocks

The Young’s modulus differs considerably for different rock types and at various
stages of deformation. In compact igneous rocks, it is nearly constant until their
failure. The commonly encountered secant Young’s modulus, termed as the “de-
formation modulus”, and the Poisson’s ratio of fresh intact rocks are ranged from
80 GPa (granite porphyry, diorite, basalt porphyrite) to 3.0 GPa (shale, siltstone,
conglomerate), and 0.15 (basalt porphyrite) to 0.33 (shale, siltstone, conglomerate).
Generally speaking, the higher of the Young’s modulus, the lower would be the
Poisson’s ratio.

In the design of hydraulic structures in China, intact rocks are mostly looked at
as isotropic materials whose elastic matrix in formalism D½ �er is identical to
Eq. (2.71) subject to the subscript substituting for c by r.

The secant modulus E50 defined at 50% of the peak stress, is normally employed
as the deformation modulus of rock, within this point the rupture does not manifest.
The typical deformation parameters of intact rocks are summarized in Table 2.33
(Wu and Zhou 2013).

(2) Joints (interfaces)

There is a variety of testing procedures for the mechanical attributes of disconti-
nuities, ranging from the simplest tilt tests, to the shear box tests, until the standard
and tri-axial procedures and the sophisticated tests on servo-controlled equipments.
By which a complete stress–displacement curve may be obtained (see Fig. 2.9).
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The elastic matrix for a joint element without thickness in Eq. (2.58) is
specifically expressed by the formula

D½ �ej¼
ksj 0 0
0 ksj 0
0 0 knj

2
4

3
5 ð2:76aÞ

where knj and ksj = coefficients of normal stiffness and tangential stiffness of the
joint j, MPa/m.

For an interface in its Cylindrical coordinate system whose stress and strain
increments are denoted in Eqs. (2.59) and (2.60), the elastic matrix for corre-
sponding joint element in Eq. (2.58) is written as

D½ �ej¼
knj 0 0
0 ksj 0
0 0 ksj

2
4

3
5 ð2:76bÞ

As for the stiffness coefficients with respect to the joint compression and shear,
there exists no linear relation mainly due to the closure and shear on its irregular
wall surfaces. Among various approximations, Chen et al. (1989) had established a
unified stiffness and permeability model which looks at the contacted asperities on
joint walls as a thin layer of evenly “filled” virtual medium. This model applies for
both the filled and unfilled discontinuities and is usually termed as “filled model”.

Table 2.33 Deformation parameters of intact rocks (Wu and Zhou 2013)

Rock type Deformation modulus
E (GPa)

Poisson’s
ratio l

Igneous rocks Intrusives
(plutonic)

Granite 50–71 0.17–0.25

Diorite 55–75 0.2–0.28

Porphyry 53–69 0.17–0.18

Extrusives
(volcanic)

Basalt 25–80 0.15–0.22

Rhyolite 18–75 0.17–0.22

Sedimentary
rocks

Clastic
sedimentary

Sandstone 20–37 0.28–0.31

Shale 3–10 0.28–0.33

Carbonatite Limestone 20–55 0.25–0.30

Dolomite 39–58 0.23–0.25

Weak and soft Claystone 0.5–4 0.27–0.29

Metamorphic
rocks

Ortho-rock Gneiss 40–60 0.18–0.22

Para-rock Quartz 50–70 0.16–0.18

Marble 18–60 0.24–0.28

Slate 8–20 0.26–0.32

Phyllite 10–15 0.28–0.33

Schist 40–70 0.25–0.28
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(3) Weak interlayers

The elastic matrix for a joint element with thickness in Eq. (2.56) is dominated by
the filler in the weak interlayer, i.e.

D½ �ej¼
Gj 0 0
0 Gj 0
0 0 kj þ 2Gj

2
4

3
5 ð2:77Þ

where Gj and kj = shear modulus and Lamé coefficients of the intercalated matter in
the interlayer, MPa.

(4) Rock masses

The deformation properties of rock masses are closely related to the distribution of
joints, fissures and bedding planes, which give rise to the anisotropy of rock mass
deformation and strength. Consequently, in order to quantitatively study the
equivalent deformation properties of rock masses, one of the most important pro-
cedures is the description of the spatial distribution of joints.

It is normally considered as orthotropic symmetry where there exist three mutual
perpendicular directions of symmetry, referred to as principle symmetry directions
(e.g. rock with three perpendicularly joint sets). Under such circumstances the
elastic matrix in Eq. (2.53) is specifically expressed by

D½ �er¼

1
Ex

� lyx
Ey

� lzx
Ez

0 0 0

� lyx
Ey

1
Ey

� lzy
Ez

0 0 0

� lzx
Ez

� lzy
Ez

1
Ez

0 0 0
0 0 0 1

Gyz
0 0

0 0 0 0 1
Gzx

0
0 0 0 0 0 1

Gxy

2
6666666664

3
7777777775

ð2:78Þ

The Poisson’s ratio lij determines the normal strain in the symmetry direction
j when a stress is added in another symmetry direction i. For the orthotropic rock
mass we have

lij
Ei

¼ lji
Ej

ð2:79Þ

The nine independent constants are further reduced to five if the rock is isotropic
within a plane (i.e. transversely isotropic). This is normally the case where two
types of rocks are regularly interlayered. It also comes about when flat minerals like
mica, talc, chlorite, graphite, serpentine, etc., are arrayed in parallel orientation, or
when long minerals (e.g. amphiboles) are oriented with their long axes randomly
pointed within parallel planes. The number of elastic constants is reduced to four for
transversely isotropic symmetry attributable to one set of regular joints, for
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example, parallel to bedding. In the local coordinate system defined in Fig. 2.2, the
elastic matrix of a transversely isotropic rock is identical to that of the RCC in
Eq. (2.72).

The prevalent continuum mechanics assumes that the REV is much smaller
compared with the characteristic dimension of structure boundary or loading sur-
face, this is equally to stipulate that traction gradients are much smaller on the
element scale, and further, that relative displacements across joints are small
compared with the joint spacing. Under such circumstances it is profitable to
explore theories of gross response which average individual joint effects over a
REV (Morland 1974).

An alternative continuum characterization of jointed rock masses by Singh
(1973) treats the intact rock blocks and joints as two elastic phases of an overall
linear elastic composite in which orthogonal parallel joint sets are considered, and
stress gradients are assumed to be small over the REV. Stress concentration factors
(ratio of mean joint stress to overall stress) are estimated for different staggered joint
geometries in the REV subjected to simple boundary loads, both by analytic
approximation and finite element calculation.

The “crack tensor” proposed by Oda in 1982 tries to quantitatively and com-
prehensively describe the spatial distribution of joints in a form of second-order or
fourth-order crack tensor (Oda 1984, 1986a, b), through which an elastic consti-
tutive relation may be formulated in terms of this tensor explicitly, taking into
account the elastic behaviors of intact rock blocks and joints (Oda 1983; Oda et al.
1984, 1993, 2002).

Insofar, difficulties still exist in the practical evaluation of elastic matrix com-
ponents for rock masses mainly due to:

– Stochastic features. Joints are dominant factors in the rock mass parameters, and
their spatial distribution pattern (attitude, space or density, persistence) is
actually random. In addition, rock blocks are composed of crystals and grains in
a fabric that includes cracks and fissures. The in situ test may only comprise a
portion of them and lack of full representation. The limited number of test
samples and strongly fluctuated data obstruct us to conduct meaningful statistic
analysis. How to explore the limited testing data from points to faces and further
to a geological body is an unsolved issue, despite carefully layout testing
locations.

– Scale effects. Smaller sample yields unnaturally higher deformation modulus
(and strength as well). Take Three-gorges Project for example, the laboratory
tests provided a deformation modulus of 69.6 GPa, the in situ tests lowered it
down to 48.90 GPa, and the late phase back analyses gave an even lower
deformation modulus of 32.10 GPa, for the granite in the ship lock cut slope.
Coal, altered granite, shale, etc., with networks of fissures exhibit greater size
effects—the ratio of laboratory tested strength to in situ tested one sometimes
attains as high as of tens. Rather large sample size is hence demanded to get
statistically complete collection of all the components influential to the defor-
mation and strength. Ideally, a sample with at least 10 discontinuities
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intersecting any of its edge might guarantee the REV with stable components of
elastic matrix, but it would be very expensive, and under many circumstances,
not realistic to accomplish such in situ tests due to the lack of technique
capability.

– Dynamic evolution due to relaxation (EDZ). In the cut-slope at a height of
170 m for the ship lock in Three-gorges Project, the deformation modulus was
deteriorated by 60% in the strongly relaxed zone within the depth of 5 m. Under
the base of Goupitan Arch Dam, the deformation modulus was deteriorated by
40% in the strongly relaxed zone within the depth of 2 m.

– Environmental effects. The conventional test codes do not take into account of
the factors of high in situ geo-stress, high hydraulic pressure, and high
geo-thermal for deeply embedded rock masses.

Towards the estimation of deformation modulus, the codes (GB/T 50266-2013)
stipulate a conventional procedure as follows.

– Engineering geological units are divided and followed by the rock classification.
Then the configuration for experiment is accomplished comprising layout,
sample number, and test methods.

– According to the design codes (GB/T 50266-99), (SL264-2001) and (DL/
T5368-2007), the in situ deformation tests are carried out.

– The standard value is given through the statistical analysis of tested data. The
mean arithmetical values may be looked at as the standard value of deformation
modulus. When the sample number is sufficiently large, the standard value is
defined as the 0.5 tantile of its probability distribution.

– After the further adjustment taking into account of the factors such as the
geological representation and setting, as well as the test conditions, the rec-
ommended value is put forward.

– The design value is finally provided after the joint studies by a team engaged in
structural design, geological investigation and tests. This study is based on the
recommended value, the work situations of the hydraulic structure, the design
and computation methods, as well as the similar engineering experiences.

Fig. 2.20 Correlation of
deformation modulus versus
rock mass BQ
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Through the statistic analysis conducted for 54 hydraulic projects in China, the
BQ indices and the design values of deformation modulus are related in Fig. 2.20
and fitted in Eq. (2.80).

E ¼ 0:0986e0:0105½BQ� ðR2 ¼ 0:8335Þ ð2:80Þ

When there are insufficient test data, the recommended deformation modulus of
rock mass (see Table 2.26) based on the rock classification (GB50218-94) may also
be selectively referred.

It should be emphasized again that all the Young’s moduli estimated by in situ
tests or/and engineering analogues at present engineering practices can only define
isotropic elastic matrices. Further endeavors are desperately desirable to access a
reliable anisotropic elastic matrix with both respect to the component values and
principal directions. In this context a tight combination of geological explorations,
theoretical/numerical analyses, and laboratory/field tests, is highly encouraged.

2.8.4 Others

(1) Grout

The elastic matrix in Eq. (2.63) is expressed in the local Cartesian coordinate
system by the formula

D½ �eg¼
Gg 0 0
0 Gg 0
0 0 kg þ 2Gg

2
4

3
5 ð2:81Þ

where Gg and kg = shear modulus and Lamé coefficients of the grout mortar, MPa.

(2) Bolt

The elastic matrix in Eq. (2.66) is expressed in the local Cartesian coordinate
system by the formula

D½ �eb¼
Gb 0 0
0 Gb 0
0 0 kb þ 2Gb

2
4

3
5 ð2:82Þ

where Gb and kb = shear modulus and Lamé coefficients of steel bar, MPa.
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(3) Lining

The elastic matrix in Eq. (2.69) is expressed in the local Cartesian coordinate
system by the formula

D½ �el¼
El 0 0 0
0 El 0 0
0 0 Gl 0
0 0 0 Gl

2
664

3
775 ð2:83Þ

where El and Gl = Young’s modulus and shear modulus of lining, MPa.

2.9 Constitutive Relations: Viscoelasticity

2.9.1 Concept

In physics, creep is the tendency of a solid substance to move or deform slowly
under actions, and over the typical history it may attain a strain rather larger than the
initial (instantaneous) elastic strain (Hoff 2012). Where it occurs as a result of
long-term exposure to the stresses that are still below the long term (creep) yield
strength �rs of the material and do not initiate a failure mode, it is termed as the
“delayed elastic creep” or “elastic creep” in brief (see Fig. 2.12a).

The mechanism and computation of creep still being debated may be referred to
the literatures and design handbooks (Troxell et al. 1958; Wittmann 1982; Neville
et al. 1983; Bažant 1982, 1988; Mehta and Monteiro 2006; Chen et al. 2011).
Phenomenologically, elastic creep simulated using rheological models falls into the
category of viscoelasticity. While elasticity is usually the result of bond stretching
along crystallographic planes in an ordered solid and does not dissipate energy in
loading-unloading circles, viscosity is the result of the diffusion of atoms or
molecules inside an amorphous material.

Use of more complex material laws of creep for large-scale applications requires
appropriate treatment of the underlying constitutive relations. As for the so-called
thermochemical problem in early age concrete, reference is made to Ulm and
Coussy (1995), Ulm et al. (1998), Hellmich et al. (1999). The algorithmic basis for
the implementation of creep laws has been well documented by Lechner et al.
(2001). All of these algorithmically relevant studies contain extensions or derivates
of classical algorithms for elasto-plasticity developed by Simo and Hughes (1998).

In service life, the stresses in hydraulic structures are normally limited within
<40% of concrete strength and <50% of rock mass strength, in this case the stress–
strain relation is approximately linear. This linearity postulation implies the prin-
ciple of superposition (introduced by Boltzmann), and the elastic creep might thus
be characterized by the linear viscoelasticity with the help of creep compliance
function.
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2.9.2 Concrete

When a deformation is suddenly imposed and held constant, creep causes relaxation
of stress. After unloading, creep recovery might take place, but it is only partial,
because of various factors such as the aging of concrete (Rhodes 1992).

In concrete structures, creep is sometimes welcomed because it relieves tensile
stresses that might otherwise lead to cracking. Therefore, the creep of concrete,
particularly the early age creep, is the most important phenomenon that should be
well handled towards the prediction and mitigation of early concrete cracking.

Creep in early age concrete is driven by more than one mechanism. When a
hydrated cement paste is subjected to a sustained stress of certain magnitude and
duration, the C-S-H will lose a certain amount of physically adsorbed water, and the
paste matrix will exhibit a creep strain. This is widely recognized as the most
important scenario in concrete creep.

A saturated cement paste will not remain dimensionally stable when exposed to
unsaturated ambient blamed on the loss of physically adsorbed water from C-S-H.
Variations of pore water content due to drying or wetting processes give rise to
significant volume changes of concrete in load-free specimens. They are called the
“drying shrinkage” typically exhibiting negative strain increment (drying) between
0.0002 and 0.0005 in normal concrete and as high as 0.0012 in low strength
concretes; or positive strain increment (wetting) <0.00005 in normal concrete and
<0.00020 in high strength concrete. Drying shrinkage may be decomposed into
reversible component which is a portion of total shrinkage that is reproducible on
wetting-drying cycles and irreversible component which is the part of total
shrinkage on first drying that cannot be reproduced on subsequent wetting-drying
cycles, the latter is probably due to the development of chemical bonds within the
C-S-H structure.

Both the drying shrinkage and creep strains in concrete are assumed to be
correlated, because in practice they usually take place simultaneously and are
mainly resulted from the removal of adsorbed water from the hydrated cement
paste. The distinguishment is that in the former case the differential relative
humidity between concrete and the environment is the driving force, whereas in the
latter case it is the sustained applied stress. In addition, both the drying shrinkage
and the creep phenomena in concrete exhibit a degree of irreversibility that has
practical significance. It has been observed that when a concrete is simultaneously
under loading and exposed to low relative humidity environment, the total strain
increment is higher than any of the single factors.

Using the stoichiometric amount of water needed for complete hydration of the
cement paste in a closed system, it can be shown that the volume of the hydration
products would be less than the volumetric sum of the water and cement that is
hydrated. Chemical shrinkage is the relative volume reduction by this phenomenon
which is the measured deformation of cement paste in a closed system (Tazawa and
Miyazawa 1995). Chemical shrinkage is also referred to as the “Le Chatelier
contraction”, in honor of the French scientist who first observed the phenomenon
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(Davis 1940). In the hydraulic structures, chemical shrinkage is also termed as
“autogenous shrinkage”. The “Japanese Concrete Institute” defines autogenous
shrinkage as the macroscopic volume reduction of cementitious materials when
cement hydrates after initial setting.

1. Drying shrinkage

To separate shrinkages from creep, the load-free specimens are employed to get
drying and autogenous components (Videla et al. 2008).

Drying shrinkage tests make use of cylindrical steel mould samples of /450
mm � 900 mm for the fully-graded concrete, and of /200 mm � 600 mm for the
wet-screened (two-graded) one. In Xiaowan Arch Dam, the drying shrinkage of the
concrete C18040 was investigated with specimens of two different aggregates but
identical W/C = 0.40. From the data listed in Table 2.34, we find that the shrinkage
strain of fully aggregated concrete is much smaller than that of wet-screened one.

In the practical computation for hydraulic structures, the drying shrinkage strain
increment is normally looked at as an initial strain whose time-dependent evolution
is interpolated using the tested data directly (e.g. Table 2.34). The elastic consti-
tutive relation taking into account of the initial strain will be in the form of

Desf g ¼ ½Des Des Des 0 0 0 �T ð2:84Þ

Drf g ¼ D½ � ec Def g � Desf gð Þ ð2:85Þ

2. Chemical (autogenous) shrinkage

The test for the autogenous shrinkage uses cylindrical steel mould samples of
/450 mm � 900 mm for the fully-graded concrete, and of /200 mm � 600 mm
for the wet-screened (two-graded) one. The tested results of the fully-graded con-
crete in Xiaowan Arch Dam are given in Table 2.35.

Similar to the drying shrinkage strain, the elastic constitutive relation taking into
account of the initial strain attributable to autogenous shrinkage is in the form of

Deaf g ¼ ½Dea Dea Dea 0 0 0 �T ð2:86Þ

Drf g ¼ D½ �ec Def g � Deaf gð Þ ð2:87Þ

3. Creep compliance function

In general, the influence of cement content and W/C of concrete on the creep
(drying shrinkage as well) is direct, because an increase in the cement paste volume
means a decrease in the aggregate fraction, and consequently a corresponding
increase in the moisture-dependent deformations in concrete (Neville 1964; Counto
1964). For given cement content, with increasing W/C, both the drying shrinkage
and creep are intensified.
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Additional factors affecting creep are the curing history of concrete, temperature
of exposure, and magnitude of applied stress. Depending on the curing history,
creep strains in a real structure where wetting-drying cycles can enhance
micro-cracking in the ITZ and thus increase the creep, may be significantly shifted
from those in laboratory testing undertaken at a constant humidity and temperature.

Creep tests make use of cylindrical steel mould samples of /450 mm � 900
mm for the fully-graded concrete, and of /200 mm � 600 mm for the
wet-screened (two-graded) one. The creep data of the concrete C18040 in Xiaowan
Arch Dam are presented in Table 2.36.

During the construction period, a hydraulic concrete at its early age is normally
looked at as an elastic creep body whose stresses and strains [instantaneous and
long term (creep)] are linearly related. The current and practically feasible
state-of-the-art with phenomenological approximation of given creep curves is
characterized by the “creep degree” or the “creep compliance function” C(t − s)
defined as the creep strain (i.e. the total strain minus shrinkages) manifested at time
t by a unit sustained uni-axial stress applied at concrete age s. It is gauged as the
strain difference between the loaded and load-free specimens, and mostly repre-
sented by the hereditary theory of aging of the Russian school (Alexandrovskii
1966; Arutiunian and Kolmanovskii 1983; Bažant and Prasannan 1989).

The shortcomings of this solution are the disregard of the creep influence on the
stresses after long loading period (e.g. one or two years) and the comparatively
difficulties in determining the creep function parameters.

In China, the creep compliance function C(t − s) customarily employed is in the
form of

Cðt � sÞ ¼
X
s

ws 1� e�rsðt�sÞ
� �

ð2:88Þ

In which

WsðsÞ ¼ fs þ gss�ps for s ¼ 1�m� 1
WsðsÞ ¼ De�rss for s ¼ m

�
ð2:89Þ

Table 2.36 Creep degree of the concrete C18040 (10−6/MPa): Xiaowan Arch Dam, China

Grade Age
(days)

Loading duration (days)

1 3 7 10 15 30 45 60 90

Fully-graded 7 – 16.51 21.5 24.34 24.86 29.74 32.27 34.18 34.58

28 – 13.27 16.4 16.91 19.05 21.21 23.74 23.68 25.46

180 – 6.2 7.9 9.0 9.4 10.4 10.9 11.1 12.1

Wet-screened
(two-graded)

7 20.4 27.8 34.1 38.0 42.7 48.8 53.4 57.4 61.0

28 9.6 14.1 19.0 20.0 22.6 26.4 29.7 31.8 33.7

180 5.9 7.6 9.4 10.2 10.7 12.3 13.9 14.4 15.6
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Equations (2.88) and (2.89) may be regarded as the semi-empirical form of
non-linear Kelvin model series taking into account of the time-dependent features
of elements, and is similar to the Alexandrovskii formula (Zhu 1985a, b).

Use is made of the test data for the concrete in Xiaowan Arch Dam, we get the
following fitted creep compliance functions

– For concrete C18040

Cðt; sÞ ¼ ð2þ 56=s0:48Þð1� e�0:4ðt�sÞÞ þ ð2:5þ 20=s2:5Þð1� e�0:05ðt�sÞÞ
þ 32e�0:02sð1� e�0:02ðt�sÞÞ ð2:90Þ

– For concrete C18035

Cðt; sÞ ¼ ð2þ 75=s0:48Þð1� e�0:4ðt�sÞÞ þ ð3þ 20=s2:5Þð1� e�0:05ðt�sÞÞ
þ 28e�0:02sð1� e�0:02ðt�sÞÞ ð2:91Þ

The fitting quality of the creep compliance functions against the test data
(C18040) is verified in Fig. 2.21.

To generalize Eqs. (2.88) and (2.89) into tri-axial stress–strain state, postulations
are made that (Santurjian and Kolarow 1996):

① The concrete is isotropic;
② The concrete is linear under tension nearly up to the point of rupture,

meanwhile compressive stresses rarely reach half the compressive strength;
③ The Poisson’s ratio is constant for both instantaneous and creep strains (e.g.

l = 0.17);
④ The thermal expansion coefficient a is constant;

Fig. 2.21 Creep degree (compliance) of the C18040 concrete: Xiaowan Arch Dam, China
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⑤ The creep compliance function C(t − s) is unchanged in tensile and com-
pressive loading;

⑥ The influence of the temperature during concrete hardening on the Young’s
modulus and creep, is taken into account by means of effective concrete age.

With these assumptions, volumetric and deviatoric stress–strain relations may be
constructed in which C(t − s) performs as the bulk and shear compliance functions.

To get the constitutive relation for concrete creep, the implicit scheme is
employed (see Fig. 2.22) by the assumption that in the time interval Dtn, the stress
rate @r

@t = constant.
The incremental elastic strain Deef gt is given by the formula

Deef gt¼
1

Eðs�Þ ½Q� Drf gt ð2:92Þ

In which Eðs�Þ is the Young’s modulus at the middle of age interval s
� ¼

s� 0:5Dtn (see Eqs. 2.74 and 2.75).
The creep strain increment Decf gt is expressed as

Decf gt¼ gf gt þCðt; s�Þ½Q� Drf gt
s
� ¼ s� 0:5Dtn

�
ð2:93Þ

In which

gf gt¼
X
s

1� e�rsDtn
	 


xsf gt ð2:94Þ

and

xsf gt¼ xsf gt�Dtne
�rsDtn�1 þ ½Q� Drf gt�DtnWsðs��Dtn�1Þe�0:5rsDtn�1

xsf gt1¼ ½Q� Drf gt0Wsðs0Þ
�

ð2:95Þ

Fig. 2.22 Incremental
scheme for creep algorithm
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For three-dimensional issue, the matrix [Q] may be written as

Q½ � ¼

1 �l �l 0 0 0
�l 1 �l 0 0 0
�l �l 1 0 0 0
0 0 0 2ð1þ lÞ 0 0
0 0 0 0 2ð1þ lÞ 0
0 0 0 0 0 2ð1þ lÞ

2
6666664

3
7777775

ð2:96Þ

The complete constitutive relation for concrete creep deformation is

fDrgt ¼ ½D��et ð Def gt� gf gtÞ ð2:97Þ

In which gf gt may be regarded as the equivalent initial strain due to the creep of

early age concrete corresponding to the equivalent elastic matrix ½D��et

½D��et ¼ Et

� ½Q��1 ð2:98Þ

Et

� ¼ Eðs�Þ
1þEðs�ÞCðt; s�Þ ð2:99Þ

2.9.3 Rocks

The reversible creep of rocks is normally neglected in the computation of hydraulic
structures. For irreversible creep, the elasto-viscoplastic model may be employed
which will be addressed later in Sect. 2.11.

2.10 Constitutive Relations: Plasticity

2.10.1 Classical Elasto-Plasticity Theory

Before the 1970s, numerical representations of rock-like materials in computational
geomechanics often restricted displacements to elastic orders of magnitude.
However, field observations of highly jointed rocks indicated that much larger
displacements often manifest due to their plastic properties.

In material science, plasticity describes the deformation of a solid undergoing
irreversible change of shape in response to exerted actions (Chen and Zhang 1991).
The transition from an elastic behavior to the plastic behavior is called yield.
Plasticity in a crystal of pure metal is primarily caused by two modes of defor-
mation (slip and twinning) in the crystal lattice, whereas plastic deformations of
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rocks and concrete at normal temperature are primarily caused by the formation of
micro-cracks and sliding motions relative to these cracks (Harris 1992).

Research on classical plasticity theories started in 1864 with the work of Henri
Tresca on the maximum shear criterion. An improved plasticity model was pre-
sented in 1913 by Von Mises which is now referred to as the von Mises yield
criterion. Concepts such as the normality of plastic flow to the yield surface and the
flow rule for plasticity were introduced by Prandtl (1924) and Reuss (1930).

In the classical plasticity theory, the total strain increment appearing in a loaded
material is divided into elastic and plastic components such that

fDeg ¼ fDeegþfDepg ð2:100Þ

In which the plastic strain increment is elaborated with the help of yield and load
functions, flow rule, and hardening/softening law (Armstrong and Frederick 1966;
Oden 1972; Miyoshi 1985; Owen et al. 1989; Simo and Hughes 1988; Doltsinis
1989; Inoue et al. 1990; Lemaitre and Chaboche 1990; Lubliner 1990; Chaboche
1991; Ohno and Wang 1993; Hill 1998; Han and Reddy 1999; Kolymbas 2000;
Rappaz et al. 2003; Dunne and Petrinic 2005; de Souza Neto et al. 2009).

(1) Elastic behavior

The elastic strain increments, which are recoverable upon unloading, are calculated
from the Hooke’s law (see Eq. 2.53). The value of Poisson’s ratio, being limited
between zero and one half for most materials, is assumed to be constant.

(2) Yield/loading function

One consequence of yield is that as plastic deformation proceeds, an increase in
stress is deeded to produce additional plastic strain. This phenomenon is known as
“strain/work hardening”. Plasticity materials with hardening necessitate increas-
ingly higher stresses to result in further plastic deformation. On the contrary,
“perfect plasticity” is a property of material to undergo irreversible deformation
without any increase in stress or load.

Except perfect plasticity materials, the yield surface, as the plastic work increases,
expands or shrinks until the current stress point is reached. Under such circum-
stances, the “loading function” w is defined as the subsequent yield function criterion

wðrij;HaÞ ¼ 0 ð2:101Þ

In which Ha is termed as “internal variable” which may be selectively adopted
from those listed below, of which the plastic work is more commonly exercised.

– Plastic work wp ¼ R frgTfdegp;
– Plastic strain ep;

– Equivalent (generalized) plastic shear strain �cp ¼ R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3 ðfdegpÞTfdegp

q
;

– Plastic volumetric strain epv ¼ epx þ epy þ epz .
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There are three basic types of hardening to build a loading function w from
corresponding yield function F, one is isotropic hardening shown in Fig. 2.23 and
Eq. (2.102) where the only internal variable is Ha = wp.

w ¼ FðI1; J2; hrÞ � CðHaÞ ¼ 0 ð2:102Þ

Another is kinematic hardening shown in Fig. 2.24 and Eq. (2.103)

w ¼ FððI1; J2; hrÞ � CðHaÞÞ ¼ 0 ð2:103Þ

The last one is mixed hardening (see Fig. 2.25 and Eq. 2.104) combined by that
of isotropic and kinematic.

w ¼ FððI1; J2; hrÞ � C1ðHaÞÞ � C2ðHaÞ ¼ 0 ð2:104Þ

Fig. 2.23 Isotropic hardening. a Strain versus stress; b on the p-plane

Fig. 2.24 Kinematic hardening. a Strain versus stress; b on the p-plane
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Take the bolt (steel bar) for example, the Von Mises loading function of linear
isotropic work hardening related to the generalized plastic shear strain is employed
in this book, that

wb ¼ ½3ðszxb2 þ szyb2Þþ rb2�1=2 � r ¼ 0
r ¼ fyk þðfptk � fykÞ�cvp=�cvpu
�cvpu ¼ ffiffiffiffiffiffiffiffi

2=3
p

dgt

8<
: ð2:105Þ

In which fyk, fptk, dgt, �cvp are the yield strength, ultimate strength, elongation
ratio, and present plastic general shear strain, respectively.

Loading is defined as the situation under which increments of stress are greater
than zero. If loading leads the stress vector across the plastic domain, then the
increment of plastic strain occurs

w ¼ 0
@w
@ rf g

n oT
Drf g[ 0

(
ð2:106Þ

The above equation, when it is equal to zero, indicates a state of neutral loading
where the stress state moves along the loading (yield) surface without changing the
plastic strain, i.e.

w ¼ 0
@w
@ rf g

n oT
Drf g ¼ 0

(
ð2:107Þ

Unloading is defined as the situation when increments of stress are smaller than
zero. The material stays in the elastic domain during unloading and no additional
plastic strain is accumulated, namely

w ¼ 0
@w
@ rf g

n oT
Drf g\0

(
ð2:108Þ

For perfect plasticity materials we have w = F in Eqs. (2.106)–(2.108).

Fig. 2.25 Mixed hardening
(on the p-plane)
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(3) Potential function and flow rule

Flow plasticity is a theory characterized by the assumption that the flow rule exists
to determine the amount of plastic deformation. For hardening material, the work
done of a loading-unloading cycle is positive or zero, this is called the “Drucker
stability postulation”. Although it eliminates the possibility of strain softening
behavior that actually exists, yet if applicable, the “normality condition”—associ-
ated flow rule, that the plastic strain increment and the normal to the yield surface
have the same direction, may be inferred. The use of the associated flow rule is a
cornerstone in the so-called mathematical theory of plasticity which was formulated
around 1950 by among others Hill, Drucker and Prager. This mathematical theory
of plasticity contains some very attractive results such as the necessity of a convex
yield surface and the existence of the limit theorems which have been used
extensively in engineering computations (Lin and Bažant 1986).

Experimental data, however, indicate that the associated flow rule often fails to
describe the plastic response of rock-like materials that exhibit shear dilatancy
characterized by nonlinear volume change and associated with shear distortion,
namely, they contract at low loading levels and dilate at higher loading levels. Some
non-associated flow rules in which the loading (yield) and plastic potential func-
tions are not identical, may be employed, if necessary.

Nowadays, associated and non-associated plastic strain flow rules are
well-established concepts (Desai and Gioda 1990; Griffiths and Gioda 2000; Davis
and Selvadurai 2002; Pivonka et al. 2003). The assumption of generalized asso-
ciativity (or generalized normality) further relates the flow directions of all internal
variables to a given loading surface (Rockafellar 1969; Halphen and Nguyen 1975;
Jirásek and Bažant 2001; Frémond 2002).

Towards the plastic strain increment, we can without loss of generality assume
that this can be derived from a plastic potential Q as

Def gp¼ k
@Q
@frg

� �
ð2:109Þ

k ¼ 1
A

@w
@r

� �T

Drf g ð2:110Þ

In which k is a positive scalar of proportionality and Q = w giving rise to the so
called associated flow rule.

Q = 0 can be thought of as describing a surface in stress space. Since @Q
@frg

n o
is a

vector normal to this surface, the strain increment can be plotted as a vector normal
to the surface with a length determined by k.

The parameter A is dependent on the selection of internal variables.
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– Hardening with plastic work wp

A ¼ � @w
@wp

rf gT @Q
@r

� �
ð2:111Þ

– Hardening with plastic strain epij

A ¼ � @w
@ep

� �T @Q
@r

� �
ð2:112Þ

– Hardening with generalized plastic shear strain cp

A ¼ � @w
@cp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@Q
@r

� �T
@Q
@r

� �s
ð2:113Þ

– Hardening with plastic volumetric shear strain epv

A ¼ � @w
@epv

@Q
@p

ð2:114Þ

The non-associated flow rule gives rise to non-symmetrical implicit matrix in the
elasto-plastic and elasto-viscoplastic FEM, it in turn leads to the difficulties with
equation solvers and higher computation overheads, although it may be additionally
handled by the symmetrization operation proposed by Xiong (1993).

Generally, the expression for Q must be determined by experiment similarly to
the yield function. This is, however, quite a demanding task, and as a first guess at
Q it would be reasonable to make use of the yield criterion. For example, we may
substitute a dilatancy angle / for the friction angle u in the yield functions of
Drucker-Prager and Mohr-Coulomb, to obtain the corresponding potential functions
(Goodman and Dubois 1972; Vermeer and de Borst 1984; Nemat-Nasser and Obata
1988; Manzari and Nour 2000). However, even for such a single additional
parameter /, difficulties do exist in its evaluation for engineering practices.

The non-associated potential functions occasionally used in this book are
specified as follows.

1. Drucker-Prager (D-P) for rock-like materials

Q ¼ aI1 þ
ffiffiffiffiffi
J2

p � k ¼ 0
a ¼ sin/=½3ð3þ sin2 /Þ�1=2
k ¼ ffiffiffi

3
p

c cos/=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ sin2 /

p
8<
: ð2:115Þ

In which / and c are the dilatancy angle and cohesion of the rock-like material,
respectively.
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2. Drucker-Prager (D-P) for joint element with thickness

Qj ¼ 3arzj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 12a2Þðs2zxj þ s2zyjÞ

q
� k ¼ 0 ð2:116Þ

a ¼ sin/j=½3ð3þ sin2 /jÞ�1=2

k ¼ ffiffiffi
3

p
cj cos/j=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ sin2 /j

q
8<
: ð2:117Þ

In which /j and cj are the dilatancy angle and cohesion of the interlayer,
respectively.

3. Mohr-Coulomb (M-C) for rock-like materials

Q ¼ 1
3
I1 sin/þ cos hr � 1ffiffiffi

3
p sin hr sin/

� � ffiffiffiffiffi
J2

p � c cos/ ð2:118Þ

Where � p
6 � hr � p

6.
or

Q ¼ p sin/þ 1ffiffiffi
3

p q cos hr � 1ffiffiffi
3

p sin hr sin/
� �

� c cos/ ð2:119Þ

In which / and c are the dilatancy angle and cohesion of the rock-like material,
respectively.

4. Mohr-Coulomb (M-C) for joint element without thickness (joint, interface)

Qj ¼ ðs2zxj þ s2zyjÞ1=2 þ rzjtg/j � cj for rzj � rTj\0

Qj ¼ ðs2zxj þ s2zyj þ r2zjÞ1=2 for rzj � rTj � 0

(
ð2:120Þ

In which cj, /j, rTj are the cohesion, dilatancy angle, and tension strength of the
joint, respectively.

(4) Constitutive equation

In the elasto-plastic FEM one usually proceeds by applying a load increment which
produces a displacement increment, and thus a total strain increment. The stress
increment corresponding to this total strain increment can be determined by a
constitutive relation similar to that of elasticity in formalism, i.e.
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fDrg ¼ ð½D�e � ½D�pÞ Def g ¼ ½D�ep Def g

½D�p ¼
½D�e @Q

@frg
@w
@frg

� �T

½D�e

Aþ @w
@frg

� �T

½D�e @Q
@frg

8>>><
>>>:

ð2:121Þ

In which [D]p is termed as “plastic matrix” and [D]ep is termed as “elasto-plastic
matrix”. Such a relation was firstly derived and used in a finite element context by
Zienkiewicz et al. (1969).

The elasto-plastic constitutive relation Eq. (2.121) defines the stress increment
uniquely once the total strain increment and the current state of stress is known,
whereas the a strain increment cannot be determined uniquely on the basis of a
stress increment, i.e. [D]ep is singular. The use of Eq. (2.121) leads to a classical
type of finite element nonlinearity where the current state and an increment are
known. However, where the effect of the increment depends on the state that the
increment gives rise to, an iterative procedure must be applied.

It should be emphasized that the positivity of [D]ep in Eq. (2.121) is only
guaranteed for hardening matrieals. Following a material approaches to softening
(see Figs. 2.8 and 2.9), its elasto-plastic constitutive law presents a descending
branch which implies a local instability of the material. This local instability can
progressively lead to irreversible strain localization, and eventually to global
instability. When this behavior is introduced in a standard time-independent (e.g.
elasto-plastic) constitutive relation some physically meaningless consequences arise
for both initial and boundary value problems (Bažant et al. 1984), which in turn,
causes the ill-posedness of the algorithm. When solved by means of computational
methods (e.g. FEM), such an ill-posedness generally shows numerical instability
and mesh dependence of the solution. This behavior may also emerge in elastic
perfectly plastic materials in the presence of a non-associated flow rule (Rudnicki
and Rice 1975). Associated to the formation of concentrated strain zones of limited
thickness within the structures, the softening materials should be carefully handled
taking into account of the condition governing the onset and the process of spread
and coalescence of localization zones (Ortiz et al. 1987; Leroy and Ortiz 1989;
Zienkiewicz et al. 1995; Desai and Toth 1996; Sterpi 1999; Chen et al. 2007).

The classical form of elasto-plastic constitutive relation (equation) in Eq. (2.121)
has only been occasionally used in the exercises of computational geomechanics for
hydraulic structures by the author of this book, because the solution using classical
elasto-plastic constitutive equation may be identically accessed by using the
elasto-viscoplastic constitutive equation of potential theory elaborated in the
hereinafter Sect. 2.11. However, the framework and the components of the classical
elasto-plastic theory such as the yield and loading functions, the potential function
and flow rule, as well as the strain increment additivity, will form the theoretical
base towards the building of the potential theory of elasto-viscoplasticity.

162 2 Preparation Knowledge of Material Properties



2.10.2 Remarks on Other Plasticity Theories

The classical elasto-plastic theory is a certain formalism treating the solid substance
as “black box” which leads to difficulties in incorporating the internal structure of
matter into the constitutive equation. Towards the improvement, generalized plas-
ticity theories, endochronic models, continuum damage mechanics (CDM) offer the
appealing frameworks for rock-like materials since they possess indicators of
internal structures.

(1) Generalized plasticity theory

An important step towards the formulation of generalized plasticity is the idea of a
plasticity model where loading and yielding surfaces are not coincident (Eisenberg
and Phillips 1971). Starting from an axiomatic approach to describe inelastic
behavior of materials, Lubliner proposed several simple generalized plasticity
models that are able to represent observed experimental behaviors of metals
(Lubliner 1974, 1980, 1984). In the generalized plasticity theory proposed by
Zienkiewicz and Mróz (1984) for sands under monotonic and cyclic loading, nei-
ther yield surface nor plastic potential surface needs to be defined explicitly, and
consistency law is not required to determine plastic modulus. The generalized
plasticity has been successfully used for describing the shape memory alloy
behavior (Lubliner et al. 1993; Lubliner and Auricchio 1996).

(2) Endochronic theory

Endochronic theory was developed during the 1970s and used for modeling the
inelastic behaviors of metals (Valanis 1971; Valanis and Wu 1975), concrete and
soils (Bažant and Bhat 1976; Bažant and Krizek 1976).

The endochronic stress evolution depends on the “intrinsic time” and is for-
mulated by a convolution integral between the strain tensor and a scalar function of
the intrinsic time called “memory kernel”. When the kernel function is exponential,
an incremental form of endochronic flow rule exists.

Bažant (1978) observed that for the endochronic theory the notion of loading
surface can still be introduced, but it loses its physical meaning. Valanis (1980),
Watanabe and Atluri (1986) proved that a non-linear kinematic (NLK) hardening
model can be derived from an endochronic model by imposing a special intrinsic
time definition. Moreover, a comparative study between the NLK hardening and the
generalized plasticity theory has been presented by Auricchio and Taylor (1995). In
view of there is a lack of unified theory framework on which formal comparisons
between various plasticity theories could be based, new formulation of endochronic
and NLK hardening models as well as generalized plasticity theory were suggested
by Erlicher and Point (2006) using the classical notion of generalized normality
(Halphen and Nguyen 1975), for the purpose to investigate the relationships
between plasticity theories.
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(3) Continuum damage theory

Continuum damage theory is focused on the damage representation suitable for
making predictions with respect to the initiation and propagation of cracks (joints)
in solid substances without resorting to a microscopic description that would be too
complex for practical engineering computation (Kachanov 1982a, b, c; Krajcinovic
1983; Pijaudier-Cabot and Bažan 1987; Ju and Lee 1991; Swoboda and Yang
1999a, b). It offers a typical approaching strategy to simulate complex phenomena
as indicated by Krajcinovic (1996) that “it is often argued that the ultimate task of
engineering research is to provide not so much a better insight into the examined
phenomenon but to supply a rational predictive tool applicable in design”.

A damage activation criterion is needed to predict damage initiation (Lee et al.
1985). Most of the works use state variables to represent the effects of damage as a
result of thermomechanical loading and ageing on the stiffness and remaining life of
the material. These state variables may be measurable such as crack density, or
inferred from the effect they have on some macroscopic property such as stiffness,
coefficient of thermal expansion, remaining life, etc. They have conjugate ther-
modynamic forces that motivate further damage.

Since damage evolution does not progress spontaneously after initiation,
therefore a damage evolution model is required. In plasticity-like formulations, it is
controlled by a hardening function (Dragon and Mróz 1979; Murakami 1983, 1988;
Kawamoto et al. 1988; Ju 1989; Chen and Schreyer 1995; Prat and Bažant 1997).

To tackle the problems arise from extending the phenomenological damage
definition to rock-like materials, a second-order fabric tensor is normally incorpo-
rated to constitutive equations within the framework of continuum damage
mechanics (Oda 1982). Since the damage-dependent elasticity tensor cannot be
deduced on the hypothesis of strain equivalence, therefore the overall microme-
chanical analysis is necessary (Oda et al. 1984; Lemaitre 1990). From a phe-
nomenological point of view, Cowin (1985) developed the most general fabric
tensor-dependent elasticity tensor. The most important obstacles in the application
of such damage theories are, probably the geometric measuation of anisotropic
damage.

In computational geomechanics the damage is mostly regarded as the distributed
micro-cracks (Budiansky and O’Connel 1976). However, this is mainly valid in a
tensile stress dominated field. In addition, to describe the complicated mechanism
with regard to the coupling of plastic flow in damage process, only
conjugate-force-based damage evolution laws can keep a unitary and compact form
(Rice 1971, 1975, 1978; Chow and Lu 1989). It is also debatable that the macro-
scopic stress/strain changes the contact manner (close or open) of crack surfaces
which in turn, changes the crack propagation. To overcome the aforementioned
difficulties for obtaining a practical formulation, some authors simply assume that
the driving force behind the damage propagation is the net maximum tensile stress.
Obviously, it is not a very convincible assumption because damage generally
propagates not along the direction of its conjugate force.
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2.11 Constitutive Relations: Viscoplasticity

2.11.1 Concept

Viscoplasticity is a theory in continuum mechanics that describes the
rate-dependent inelastic behavior of solid substances. Rate-dependence in its con-
text means that the deformation of the matter depends on the rate at which loads are
applied. The main difference between the rate-independent plastic material and the
rate-dependent viscoplastic material is that the latter exhibits not only permanent
deformation but continues to demonstrating an irreversible creep as a function of
time under the applied load.

The development of mathematical models in viscoplasticity may be dated back
to 1910 with the representation of primary creep by Andrade’s law. In 1929, Norton
developed a one-dimensional dashpot model which linked the rate of secondary
creep to the stress. In 1932, Hohenemser and Prager proposed the first model for
slow viscoplastic flow relating the deviatoric stress for an incompressible Bingham
(1922) solid. In 1934, Odqvist (1974) generalized the Norton’s law to multi-axial
cases.

Normally, viscoplasticity is treated as a consequence of subcritical crack growth
or stress corrosion (Anderson and Grew 1977; Das and Scholz 1981; Atkinson
1984; Batra and Kim 1990; François et al. 1993; Lockner 1998; Amitrano and
Helmstetter 2006; Haimson 2007; Gran et al. 2012; Xu et al. 2012; Brantut et al.
2013). Other possible mechanisms for viscoplasticity are the stress solution at crack
tips (Rutter 1976), the diffusion of pore fluid pressure (Detournay and Cheng 1988),
and the chemical interaction (Chen et al. 2003).

Nowadays, the concept of viscopalsticity is widely employed in the simulation
of the secondary or/and tertiary creep (see Fig. 2.12), in which one-dimensional
phenomenological models including the perfectly viscoplastic solid, the elastic
perfectly viscoplastic solid, and the elasto-viscoplastic hardening solid (see
Table 2.19), are constructed using spring-dashpot-slider elements. Many of these
one-dimensional models can be generalized to three dimensional ones for the small
strain regime through overstress formulations (Cristescu and Suliciu 1982;
Mukherjee 1982), which are customarily categorized into two types (Simo and
Hughes 1998), namely the Perzyna formulation and the Duvaut-Lions formulation.
They all allow for stress to outgo beyond the rate-independent loading (yield)
surface upon the application of a load and then to relax back on the surface over
time. The loading (yield) surface is usually assumed to be rate-independent for
quasistatic and earthquake related dynamic problems.

Perzyna, in 1963, introduced a viscosity coefficient that is temperature and time
dependent. His phenomenological formulation was supported by the thermody-
namics of irreversible processes. The ideas presented in his works have been the
basis for most subsequent researches into rate-dependent viscoplasticity.

By the Perzyna formulation, if an elasto-viscoplastic computation reaches a
stationary condition with respect to displacements, the solution to an equivalent
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elasto-plasticity problem is obtained. The elasto-viscoplastic approach thus pro-
vides an alternative technique to solve elasto-plastic problems, which is found to
possess considerable merits over other iterative processes (Zienkiewicz and
Cormeau 1972, 1974). In particular, non-associated flow rules and strain softening
can be handled with well without requiring specific numerical artifices.

The Perzyna formulation will be employed in the elasto-viscoplastic computa-
tion algorithms throughout this book.

2.11.2 Potential Theory

According to the principle of the Perzyna formulation, at time tn, the implicit
constitutive equation will take the following forms (Owen and Hinton 1980)

fDrgt ¼ D
^

� �e
t
ðfDegt � f_evpgtDtÞ ¼ D

^
� �e

t
ðfDegt � fDevpgtÞ

¼ D
^

� �e
t
fDegt � fDrvpgt ð2:122Þ
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fDegt ¼ D
^

� �e
t

� ��1

fDrgt þf_evpgtDt ¼ D
^

� �e
t

� ��1

fDrgt þfDevpgt ð2:123Þ

In which the implicit elasticity matrix ½D^ �et and elasto-viscoplastic strain rate
_evpf gt are

½D^ �et ¼ ðð½D�eÞ�1 þ ½C�tÞ�1

½C�t ¼ HDt½H�t
H½ �t¼ @ _evpf gt

@ rf gt

h i
_evpf gt¼ c wh i @Q

@r

� �
t

8>>>><
>>>>:

ð2:124Þ

where Dt = time marching step length, s; [H]t = implicit matrix; H = implicit
parameter; c = fluidity parameter, 1/(MPa s).

The function <w> is defined as

\w[ ¼ w for w[ 0
0 for w� 0

�
ð2:125Þ

In which w is the loading function. For perfect plasticity materials it is identical
to the yield function F, i.e. w = F.
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It is particularly notable that for discontinuities without thickness, the strain
should be replaced by the relative displacement {Du}, therefore we have

fDrgt ¼ D
^

� �e
t
ðfDugt � f _uvpgtDtÞ ¼ D

^
� �e

t
ðfDugt � fDuvpgtÞ

¼ D
^

� �e
t
fDugt � fDrvpgt ð2:126Þ
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In which the implicit elasticity matrix ½D^ �et and elasto-viscoplastic strain rate
_uvpf gt are
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The implicit matrix in Eqs. (2.124) and (2.128) may be uniformly expressed as

H½ �t¼ c½w @fqgTt
@frgt þfagtfqgTt �

fagTt ¼ @w
@frgt

fqgTt ¼ @Q
@frgt

8>><
>>: ð2:129Þ

where H = 1, we obtain a fully implicit or backward time marching scheme with
the strain increment being determined from the strain rate corresponding to tn, i.e.
the end of the time marching step n.

H = 0.5 yields implicit trapezoidal scheme and H � 0.5 guarantees a time
stepping scheme of unconditionally stable. This implies that the time marching
scheme is numerically stable but does not guarantee the accuracy of the solution. To
keep the balance between the time marching accuracy and the computation efforts,
the adaptive time stepping technique based on the stepping error estimation may be
employed (Zhang and Chen 1996, 1997).

On the other hand, H = 0 gives the Euler time integration scheme which is also
referred to as fully explicit or forward stepping scheme, since the strain increment is
completely determined from the strain rate corresponding to the condition existing
at tn−1, i.e. the start of the time marching step n. Under such circumstances we have
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½D^ �et ¼ ½D�e ð2:130Þ

The explicit scheme is the simplest but is conditionally stable and numerical time
integration can only be proceeded for a time interval Dtn smaller than some critical
values (Owen and Hinton 1980).

Depending on the materials encountered and coordinate systems defined,
Eqs. (2.71), (2.72), (2.76a, 2.76b)–(2.78) and (2.81)–(2.83) may be selectively used
for the corresponding elastic matrix [D]e, and Eqs. (2.35), (2.41)–(2.45) and (2.47)–
(2.50), may be selectively used as the corresponding yield criterion. The loading
functions and non-associate potential functions, if necessary, may be found in
Eqs. (2.105) and (2.115)–(2.120).

If the fluidity parameter c may be evaluated by tests or in-situ back analyses,
then the histories as well as the steady-state results concerning the deformation and
stress of a hydraulic structure may be obtained. However, in many cases it is not
easy to get the appropriate fluidity parameter or it is thought that only the
elasto-plastic solution is of importance. Under such circumstances, we can simply
assume that the fluidity parameter c = 1, in this manner the calculated histories are
not applicable, but the steady-state results with respect to deformation and failure
are identical to the corresponding classical elasto-plastic solution (Zienkiewicz and
Cormeau 1974), subject to appropriate time stepping scheme (implicit or explicit)
and time stepping length to guarantee the computation accuracy and to avert
numerical escalation.

2.12 Coupling Phenomenon

2.12.1 Concept

The coupling between the processes of heat transfer (T), fluid flow (H) and stress/
deformation (M) in rock-like materials has become an increasingly important
subject since the early 1980s (Tsang 1987, 1991), mainly attributable to the
requirements from the design and performance assessment for underground
radioactive waste repositories, and other engineering fields in which heat and water
both play important roles, such as gas/oil recovery, hot-dry-rock thermal energy
extraction, contaminant transport analysis and environment impact evaluation. The
term “coupling” implies that the rock-like material response to the perturbations
during the construction and operation of an engineering structure, cannot be pre-
dicted with confidence only by considering each process separately.

Although various computational techniques illustrated in Chap. 1 of this book
may be employed for coupling problems, yet the representations using the FEM are
the most prevalent for porous continua (Noorishad et al. 1992; Noorishad and
Tsang 1996; Lewis and Schrefler 1998; Thomas and Missoum 1999; Borgesson
et al. 2001; Rutqvist et al. 2001a, b; Hudson et al. 2001; Schrefler 2001). Other
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applications are reported in the areas of advanced models and solution techniques
for coupled THM models (Cervera et al. 1996; Wang and Schrefler 1998; Thomas
and Cleall 1999; Thomas et al. 1999; Nithiarasu et al. 2000; Zimmerman 2000)
inclusive flow and deformation of fractures (Selvadurai and Nguyen 1996, 1999)
and double-porosity media (Masters et al. 2000).

The phenomenon of THM coupling is theoretically simulated using three
inter-related PDEs with regard to the conservation of mass, energy and momentum.
This belongs to the full coupling algorithm which is very rigorous involving the
simultaneous solution of THM fields in a single simulator. It usually provides good
solutions but demands extensive CPU-time consumption. In contrast, partial cou-
pling algorithm solves a HTM field separately using three distinct simulators, but
intermediate results must be passed between these simulators.

Partial coupling algorithm may be explicit or iterative. Taking the HM coupling
for example, if the information obtained from the geomechanical simulator is not
sent back to the flow simulator, the coupling is explicit. If the information is passed
back and forth until the establishment of convergence, the coupling is iterative.
Because of its reduced computing effort, explicit coupling is often exercised, if
practically acceptable (Settari and Mourits 1994). Iterative algorithm is demanded
when the HM coupling behavior is sensitive to joint/fracture compressibility
(Samier et al. 2006).

In hydraulic structures, only the iterative HM coupling with regard to joint
systems or/and explicit TM coupling with regard to solid skeleton phases are
sometimes demanded, due to the lower stress or/and temperature level encountered.

2.12.2 Partial Coupling: Explicit Thermal to Stress/Strain

In general, solid substances expand on heating and contract on cooling. The strain
associated with change in temperature will depend on the coefficient of thermal
expansion of the matter and the magnitude of temperature drop or rise.

In mass concrete structures, the heat produced by cement hydration and rela-
tively poor heat dissipation conditions result in a steep mount of temperature within
a few days after the concrete placement. Before setting, the temperature rise related
expansive deformation is not constrained and, therefore, it will result in only minor
compressive stresses. As the rigid network of hydration products starts to build,
subsequently cooling of concrete will give rise to higher shrinkage related tensile
stresses due to the restraint appearing in concrete. Since the primary concern in the
design and construction of mass concrete structures is that the completed structure
stays a monolith free of cracks, every effort to control the temperature rise is made
by the selection of proper cementitious materials and mix proportions, the imple-
mentation of artificial cooling, and the management of construction schedule.
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Normally, concrete is supposed as isotropic elasticity and its free strain incre-
ment induced by the temperature increment is calculated by

DeT
� �

n¼

DeTx
DeTy
DeTz
0
0
0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

aDT
aDT
aDT
0
0
0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð2:131Þ

where a = coefficient of thermal expansion, which is around 1.0 � 10−5 for con-
crete, 1/°C (see Table 2.14); DT = temperature variation, °C.

Under certain restraint, suppose the actual strain induced by DT is Def gn (as yet
unknown), the stress in the element is calculated by the coupling constitutive
relation

Drf gn¼ D½ �ec Def gn� DeT
� �

n

	 
 ð2:132Þ

where D½ �ec = elastic matrix; DeTf gn = initial strain induced by temperature
variation.

At the early age, as the on going of time after the placement and setting of
concrete, its volume changes attributable to complex mechanical, physical and
chemical processes. Apart from the direct relationship of the strain increment
fDeTgn versus temperature variation in Eq. (2.131), the drying shrinkage fDesgn in
Eq. (2.84), the autogenous shrinkage fDeagn in Eq. (2.86), and the creep strain
fDecgn in Eq. (2.93), should be taken into account explicitly following the tem-
perature history. Under such circumstances the total strain increment in the interval
Dtn is expressed by the formula

fDegt ¼ feðtÞg � feðt � DtnÞg ¼ fDeegt þfDecgt þfDeTgt þfDeagt þfDesgt
ð2:133Þ

where fDeegt = elastic strain increment; fDecgt = creep strain increment;
fDeTgt = thermal strain increment; fDeagt = autogenous strain increment;
fDesgt = drying shrinkage strain increment.

Instead of Eq. (2.132), the stress increment concerning thermal effects on the
elastic performance of young concrete is expressed by the formula

fDrgt ¼ ½D��et ðfDegt � fDecgt � fDeTgt � fDeagt � fDesgtÞ ð2:134Þ

In which ½D��et is the equivalent elastic matrix of concrete within the time
marching step interval Dtn (see Eq. 2.98).

The strain/stress increments computed by Eqs. (2.133) and (2.134) are not
necessarily sent back to the heat flow simulator.
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2.12.3 Partial Coupling: Iterative Permeability
to Stress/Strain

There are correlations between most of the rock properties, and the percolation of
water through a jointed rock mass is without exception. It depends on the joint
aperture, which in turn, will be related to the stresses exerting across the joint
(Stratford et al. 1990; Ohnishi et al. 2001; Liu et al. 2016).

Basically, the seepage force (action) increment calculated by the flow simulator
is passed to the geomechanical simulator to compute the corresponding changes in
stresses, which are feedbacked to update the strain/stress dependent permeability
tensor for the flow simulator.

Gangi (1978) had proposed a “bed of nails” model to determine the stress
dependent permeability in jointed rock, in which the closure of joint under normal
stress is described as an elastic compression of asperities. Attempts on the coupling
relationship between normal stress and tangential seepage through the joint were
also made by for example, Gale (1982), Raven and Gale (1985).

Rock joints may be filled or unfilled. An unfilled joint can be represented as two
parallel plates in contact through asperities. These asperities may be looked at as a
thin layer of equivalent granular material of high porosity clipped between the
plates. Accordingly, Chen et al. (1989) proposed a “filled model”, in which the
asperities are replaced by an evenly “filled” virtual medium with certain defor-
mation and permeability characteristics. In this manner, a uniform HM coupling
model for both the filled and unfilled joints can be established.

There are normal and shear stresses on the joint surface in Fig. 2.26. Because the
joint aperture is very small, a portion of strain components can be neglected, i.e.

exj ¼ eyj ¼ 0
cyxj ¼ 0

�
ð2:135Þ

Hence the elastic constitutive relation of the joint filler is expressed by three
differential components

Fig. 2.26 Rock sample with
a single joint segment

2.12 Coupling Phenomenon 171



dszxj
dszyj
drzj

8><
>:

9>=
>; ¼

G 0 0
0 G 0
0 0 kþ 2G

2
4

3
5 dczxj

dczyj
dezj

8<
:

9=
; ð2:136Þ

In which Gj and kj = shear modulus and Lamé coefficient of the filler matter
(filled joint) or the equivalent asperity medium (unfilled joint), MPa.

Denoting the differential relative displacement of the joint walls as duxj, duyj and
duzj, Eq. (2.136) can be replaced by
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In which

ks ¼ G
a

kn ¼ kþ 2G
a

�
ð2:138Þ

where a = aperture of joint, m.
kn and ks are termed respectively as “normal and tangent stiffness coefficients” of

the joint. According to Eq. (2.138), it is evident that even if the parameters k and
G are keeping constant, kn and ks are functions of normal stress, because the
aperture a is related to the deformation uzj which in turn, dependent on the normal
stress rzj. When the joint exhibits a normal compression uzj, the deformed joint
aperture is calculated by the formula

a ¼ a0 þ uzj ð2:139Þ

where a0 = initial joint aperture, m.
Introducing Eqs. (2.138) and (2.139) into Eq. (2.137), we have

drzj ¼ knduzj ¼ kþ 2G
a

duzj ¼ kþ 2G
a0 þ uzj

duzj ð2:140Þ

By the integral throughout Eq. (2.140), it becomes

uzj ¼ a0½expð rzj
kþ 2G

Þ � 1� ð2:141Þ

Denote

n ¼ 1
kþ 2G

ð2:142Þ
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And take into account of Eqs. (2.139) and (2.141), the exponential relation
between the joint aperture and the normal stress is given

a ¼ a0 þ uzj ¼ a0 expðnrzjÞ ð2:143Þ

where n = coupling coefficient.
Substituting for a from Eq. (2.143) in Eq. (2.138) results in

ks ¼ ks0 expð�nrzjÞ
kn ¼ kn0 expð�nrzjÞ

�
ð2:144Þ

where n = coupling coefficient; kn0 and ks0 = initial stiffness coefficients, MPa/m;
rzj = normal stress on joint (negative for compression); MPa.

Since the virtual (equivalent) parameters k and G are difficultly evaluated for
unfilled joint, n is commonly estimated through the compression and direct shear
tests.

By the exponential relation between the joint aperture and the normal stress in
Eq. (2.143), and the hydraulic conductivity defined in Eq. (2.10), a simple relation
of the hydraulic conductivity (either filled or unfilled joint) versus normal stress is
obtained

C ¼ kf a0 expðnrzjÞ ¼ C0 expðnrzjÞ ð2:145Þ

where n = coupling coefficient; C0 = initial hydraulic conductivity of the joint,
MPa/m; rzj = normal stress on the joint (negative for compressive), MPa.

The parameters in Eqs. (2.144) and (2.145) under the normal pressure <10 MPa
may be estimated by the routine coupling tests for joints. Iwai (1976), Raven and
Gale (1985) performed laboratory tests on the mechanical and hydraulic properties
of tension fractures in basalt, granite, and marble. Cylindrical samples of intact
rocks, 0.15 m in diameter, were diamond-cored from rock blocks, and a horizontal
tension fracture was created in each sample using a modified “Brazilian” splitting
method. A central hole, 0.022 m in diameter, provided access for outward radial
flow of water. Use was made of their test data, Chen et al. (1989) evaluated the
parameters in the “filled model” (see Table 2.37).

Table 2.37 Coupling parameters of joints (laboratory)

Coupling
parameter

Granite (Raven and
Gale 1985)

Granite (Iwai
1976)

Basalt (Iwai
1976)

Marble (Iwai
1976)

kn0 (MPa/m) 1.977 � 104 1.449 � 10 4 5.495 � 104 3.571 � 104

C0 (m
2/s) 3.055 � 10−8 6.4 � 10−8 6.1 � 10−8 6.1 � 10−9

n 0.22 0.3 0.35 0.8
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Chapter 3
Geometrical Description
and Discretization of Hydraulic
Structures

Abstract Pre-processing towards the geometrical description and discretization is
one of the prerequisites for the structural analysis using computational mechanics.
Despite of tedious and time-consuming overheads, it must be handled carefully to
obtain reasonable accuracy for the performance prediction of hydraulic structure. In
this chapter, a robust identification algorithm of irregular block system is imple-
mented with the help of the “directed body” concept and by taking into account of
the existence of irregular ground surfaces (curved faults and dam surfaces as well)
and grouting/drainage curtains. Use is made of the advancing front technique
(AFT), a sophisticated element (triangular, quadrilateral, tetrahedral) discretization
algorithm is further implemented for a structure domain identified previously or
constructed by the technique with CAD/CAM software. These may be competently
employed for the discrete approaches (e.g. BEA) and continuum approaches
(e.g. FEM, CEM) elaborated in the hereinafter chapters towards hydraulic structures
with complex discontinuity system and configuration.

3.1 General

3.1.1 Concept

In engineering practice, a numerical computation is commonly accomplished by
three principal steps including pre-processing, structural response analysis, and
post-processing. In this respect, the pre-processing towards the geometrical
description and discretization is one of the prerequisites for the analysis of hydraulic
structures. If a computation program has not been equipped with well performed
pre-processing procedure and corresponding software, it will be difficult to be
widely accepted by the practitioners.

The computation for a hydraulic structure using discrete approaches such as the
distinct element method (DEM), the discontinuous deformation analysis (DDA), or
the block element analysis (BEA) demands an identified discrete block system
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intersected by structural planes and the correspondent database concerning its
geometry configuration.

Figure 3.1 shows the axonometric drawing of an integrated block system, and
Fig. 3.2 shows the axonometric drawing of the corresponding decomposed blocks.
Due to complicatedly distributed discontinuities, there are a variety of convex and
concave blocks in the block system.

Where a continuum approach such as the finite element method (FEM) is exer-
cised, the user should construct a FE mesh in which the whole structure domain is
divided into a number of discrete sub-domains, namely “elements”, connected at

Fig. 3.1 Axonometric
drawing of an integrated
block system

Fig. 3.2 Axonometric
drawing of the decomposed
blocks
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discrete points called “nodes”. Certain of these nodes will have fixed displacements,
and others will have prescribed loads (Zienkiewicz et al. 2005). Use also may be
made of the block system previously identified, to further produce standard solid
elements from blocks and joint elements from structural planes (discontinuity seg-
ments). Figure 3.3 shows the discrete FE mesh for a gravity dam and its foundation.

The simplest type of two-dimensional solid elements is triangular. There are a
variety types of three-dimensional solid elements (see Fig. 3.4; Table 3.1), of which
the simplest one is tetrahedral. Usually, the curved-edge elements are more adaptive
to the structure configuration and possess higher precision, but they need higher
capacity and more efforts for computation.

In the analysis of shell structures such as thin arch dams and tunnel linings, shell
elements are also available (see Fig. 3.5; Table 3.2).

Towards the simulation of structural planes such as faults and joints in rock
masses, contact interfaces between concrete and rocks, cracks and joints in concrete
dams, “joint elements” without thickness or with certain thickness are widely
exercised. On such a joint element shown in Fig. 3.6, a local Cartesian coordinate
system ðxjyjzjÞ is defined (see also Fig. 2.2).

3.1.2 State of the Art

Discretization of a hydraulic structure with complex geometry into block system or
even further to finite element system (mesh) may be one of the most tedious and
time-consuming overheads. It must be handled carefully to obtain reasonable
accuracy for its performance predictions.

(1) Block element system discretization

The study to develop a sophisticated description of sub-domains (e.g. rock blocks)
began from the mid 1980s. Lin et al. (1987), Cundall (1988), Jing and Stephansson
(1994) introduced geometrical identification algorithms for rock block system using

Fig. 3.3 Finite element mesh
of a gravity dam
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topological techniques. Their methods are rather sophisticated, but unlikely to
identify a system including concave blocks at that time. Heliot (1988) proposed a
new approach to produce more realistic rock block system, in which a rock block is
always decomposed into two convex blocks. In 1992, Ikegawa and Hudson made a
breakthrough by the “directed body” concept to cope with both convex and concave
blocks in the same identification procedure. After a check on the various existing
methods, the author of this book realized that the directed body concept could be a
solid base to establish a robust identification and pre-processing algorithm for the
analysis of seepage, deformation and stability of complicated block system. During
the implementation of the method, further improvements taking into account of the
existence of irregular ground surfaces (curved faults and dam surfaces as well), the
existence of the grouting and drainage curtains, etc., were made (Wang and Chen
1998). These enable us to carry out the pre-processing work more easily and more

Fig. 3.4 Three-dimensional solid elements

Table 3.1 Three-dimensional solid elements

Type of element Number
of node

Freedom
of
element

Node
number
of edge

Remark

Three-dimensional
isoparametric

Hexahedral Quadratic curved
edges

20 60 1 Figure 3.4a

Straight edges 8 24 0 Figure 3.4b

Variable nodes 8–21 24–63 0–1 Figure 3.4f

Pentahedral Straight edges 6 18 0 Figure 3.4c

Curved
edges

Quadratic 15 45 1 Figure 3.4d

Cubic 24 72 2 Figure 3.4e

Tetrahedral Straight edges 4 12 0 Figure 3.4g

Curved edges 10 30 1 Figure 3.4h
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reliably. Our procedure on one hand, may be directly employed for the discrete
approaches such as the BEA elaborated later in this book, on the other hand it may
offer a well organized database for the further FE mesh generation, by discretizing
each sub-domain (block) into a group of standard elements correctly connected. In
the latter case, in addition to natural discontinuities and interfaces, artificial struc-
tural planes also may be supplementarily introduced to facilitate the FE mesh
discretization by transforming a complex domain into a set of simplex blocks.

(2) Finite element system discretization

There are two groups of algorithms for the finite element mesh discretization,
namely the structured meshing and unstructured meshing (Babuška et al. 1995).
A structured mesh can be recognized by all its interior nodes possessing an equal
number of adjacent elements. The mesh by a structured grid generator is typically

Fig. 3.5 Shell elements

Table 3.2 Shell elements

Type of element Number of
node

Freedom of
element

Node number of
edge

Remark

Thin shell 3 18 0 Figure 3.5a

Variable
nodes

Thin
shell

3–16 9–48 0–2 Figure 3.5b

Thick
shell

8–32 24–96 0–2 Figure 3.5c

Quadratic surface thick
shell

8 40 1 Figure 3.5d

Cubic surface thick
shell

12 60 2 Figure 3.5e

Isoparametric thick
shell

16 48 1 Figure 3.5f
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all quad or hexahedral. Algorithms employed generally involve complex iterative
smoothing techniques that attempt to align elements with boundaries or physical
domains. Where non-trivial boundaries are required, “block structured” techniques
can be employed which allow the user to break the domain up into topological
blocks (sub-domains) by for example, the aforementioned block element system
discretization. Structured grid generators are most commonly used within the CFD
field, where strict alignment of elements is often required by the analysis code or
necessary to capture physical phenomenon. Unstructured grid generator, on the
other hand, relaxes the node valence requirement, allowing any number of elements
to meet at a single node. Triangle and tetrahedral meshes are most commonly
thought of when referring to unstructured meshing, although quadrilateral and
hexahedral meshes can be unstructured, too (Owen 1998). Unstructured grid gen-
erators are more advantageous in the adaptive-refinement towards the FEM in
structural computations, where strong concentration of stress/head gradient/
temperature gradient demands rapid spatial variation in element sizes.

Initiated from the early 1970s when Buell and Bush (1973) used the computer
for FE mesh discretization, after the intensive study of decades, various and
sophisticated methods for two-dimensional domains had been available (Thacker
1980; Ho 1988), using either triangular or quadrilateral element meshes (Hermann
1976; Blacker et al. 1988). Algorithms for the generation of quadrilateral meshes
can be either “direct” or “indirect”. The indirect algorithm (Zhu et al. 1991; Owen
et al. 1999; Merhof et al. 2007; De Berg et al. 2008) converts pre-generated tri-
angular elements into quadrilateral ones by means of splitting or merging tech-
niques). “Splitting” presumes inserting an additional node inside the triangle,
splitting it into three triangles further being combined by pairs into quadrilaterals.

Fig. 3.6 Joint elements for
structural planes/interfaces
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Techniques based on splitting may result in a poor mesh quality blamed on a large
number of irregularly and badly positioned nodes. When the direct algorithm is
used, quadrilateral elements are constructed and placed directly into the domain.

No sooner the success had been achieved in the two-dimensional FE mesh
generation than the three-dimensional mesh discretization started to boom follow-
ing the industry advance in CAD/CAM and three-D print. Of which advancing front
technique (AFT) and Delaunay triangulation algorithm (DTA), are dominant in
generating tetrahedral meshes. Since the AFT is able to control the stretching
direction of elements well, it is prevalent in the general fields of fluid dynamics and
the special fields of solid mechanics (e.g. localization) (Löhner 1988; Peraire et al.
1992; Moller and Hansbo 1995). The author of this book also had been involved in
the application of the AFT to the FE mesh generation for hydraulic structures (Chen
et al. 1996, 2000; Cao et al. 1998).

Hexahedral element meshes have been proved to be superior to tetrahedral ones
in terms of higher computation accuracy. However, the rather structured feature of
bricks (hexahedra) or prisms (pentahedra) leads to their exclusion from an adaptive
meshing system of general purpose. The tetrahedral meshes, on the other hand, offer
much greater flexibility.

1. Coordinate mapping method

This is one of the earliest and most classical direct methods (Zienkiewicz and
Phillips 1971). It is based on the decomposition of a complex domain into simpler
sub-domains which can be mapped on to the domains of simple geometry in a
parametric space (Joe 1995). The most serious drawback with the mapping
approach is that it can only be applied to a limited variety of geometry configu-
rations and certain expertise is demanded for an appropriate decomposition of the
primary domain.

2. Octree method

Spatial decomposition methods based on octree structures were originally proposed
as approximate representations of geometric objects (Yerry and Shepard 1984). The
basic concept of octree representation consists of placing the object of interest in a
parallelepiped, typically a cuboid, which totally encloses the object. This paral-
lelepiped is then subdivided into its eight octants which are then recursively
sub-divided a number of times based on criteria defined by the application. The
number of levels of sub-division typically varies throughout the domain. For
example, when octrees are used to approximate a geometric object, octants either
fully inside or outside the object are not sub-divided further, while those octants
which contain a portion of the object’s boundary continue to be subdivided to the
finest level.

The mesh generation process is implemented by two steps, the first is the con-
struction of octree and the second is the FE mesh generated within the octree.
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3. Delauney triangulation method

The Delaunay triangulation is a geometric construction of long history (Sloan and
Houlsby 1984). An efficient method for generating the Delaunay triangulation of a
set of points was proposed by Watson, known as Watson’s algorithm (1981).

The major difficulty in the Delaunay triangulation is to develop the points
automatically within and on the boundary of a domain (Baker 1987). These points
must be such generated as to avoid numerical difficulties, while producing a valid
computational mesh compatible with the geometric representation of the object.
Further requirements of controlling mesh density and associating the various
sub-domains of the mesh, also pose difficulties.

4. Hybrid octree/Delauney method

Schroeder and Shephard (1990) proposed a hybrid octree/Delaunay approach for
three-dimensional mesh generation. The basic motivation is to build an octree
procedure for octant geometries that can then be tetrahedronized using Delaunay
algorithm. This hybrid approach keeps the spatial addressability, localized mesh
control, linear growth rate and geometric simplification features of the octree
technique, meanwhile simultaneously takes the advantages of simple and optimal
properties with the Delaunay triangulation. The major difficulty lies in maintaining
the compatibility between octants because they are individually triangulated.

5. Paving method

The “paving method” (PM) is an alternative direct method to construct quadrilateral
mesh (Blacker and Stephenson 1991), in which elements are propagated from the
boundary to the interior of a physical domain. It demonstrates certain advantages
over less straightforward methods and is actually preferred in many grid generators.
Further studies on the paving method have been aimed at improving its robustness
(White and Kinney 1997), functionality (Cass et al. 1996; Staten et al. 2005),
computation efficiency (Lober et al. 1997), and mesh quality (Kinney 1997;
Anderson 2009). For example, White and Kinney (1997) managed to enhance the
robustness of the original algorithm by means of paving on the element-by-element
basis instead of doing it row-by-row, this modification is claimed to be more
immune to meshing process failures resulting in poor quality elements. Cass et al.
(1996) extended the paving algorithm to arbitrary three-dimensional trimmed sur-
faces. To improve the quality of quadrilateral meshes, Kinney (1997) proposed a set
of empirical clean-up routines to handle the connectivity, boundary, shape and size
of elements.

6. Advancing front method

The “advancing front technique” (AFT) has been successful in generating
unstructured meshes in both two-and three-dimensional cases (Lo 1985; Peraire
et al. 1987; Löhner 1988; Löhner and Parikh 1988; Jin and Wiberg 1990; Jin and
Tanner 1993).
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The AFT creates new element together with the creation of new node, in this
process the messages (e.g. the sizes and the stretching directions of the element)
demanded for creating new node are stored in the background mesh. Setup of
directed line segments (two-dimensional) or triangular surface patches
(three-dimensional) on the domain boundary yields the initial front. After the
finding of generation parameters (element size, element stretching direction) for the
active front from the background mesh, the new element, point and faces are added
to their respective lists, meanwhile the known line segment (or face patch) from the
front is deleted, in this way the active front is updated. If there are any lines (or
faces) left in the front, go to the beginning of the routine and recur the procedure
until the front is empty.

7. Parallel mesh generation

Computational geomechanics sometimes require several meshes for different
mechanical and physical fields of the structure. Parallel grid generator starting from
a coarse volume mesh is a good strategy because it enables robust domain
decomposition. In addition, the communication efforts can be minimized between
processors because all the sub-domains can be easily defined beforehand and the
mesh is generated on each sub-domain in parallel guided by the specific require-
ments for the mesh size and stretching direction.

The parallel mesh generation can be initiated from a surface mesh or a volume
mesh. Löhner (2001) presented a “parallel advancing front technique” (PAFT) for
distributed-memory machines. It sub-divides each sub-mesh into an interior region
and interface regions. Each processor reads in a sub-mesh and refines the interior
region independently. Once all the interior regions are refined, the processors refine
the interface regions and, finally, the corners. An octree is employed in order to
decompose the continuous geometry and to maximize code re-use for parallelizing
the AFT on shared-memory computers. The PAFT is not efficient on large-scale
distributed-memory parallel platforms blamed on the global synchronization at the
beginning of each phase and the data movement for gathering (into a single node)/
scattering (back to all nodes) the global octree before and after its sequential
refinement and re-partition.

De Cougny and Shephard (1999) proposed a “parallel octree advancing front
technique” (POAFT). It firstly generates a distributed coarse-grain octree using a
“divide-and-conquer algorithm”. The terminal octants and the geometric model of a
domain define the sub-domains. The terminal octants are distinguished as interior,
interface, boundary, and complete. Interface octants have at least one adjacent
octant which is not local. Boundary octants include mesh entities from the input
surface mesh while complete octants contain no front-faces. Before the boundary
octants are refined and meshed, sometimes a re-partitioning is necessary. The
meshing of boundary octants is one of the most challenging tasks. Every processor
applies a tree-based face removal procedure in order to connect the input surface
mesh with the volume mesh of the interior octants. In the POAFT, the sub-domain
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limits or internal boundaries (i.e. interfaces between sub-domains) are specified
beforehand so that no extra communication is required during the mesh generation
in parallel.

Meshes automatically generated can contain strongly distorted poor elements,
which cause numerical difficulties during the FE solution process. Therefore, the
improvement procedure is indispensable to get a qualified finite element mesh (Dari
and Buscaglia 1994; Zavattieri et al. 1996).

Commercial codes vie with one another to have the most user-friendly graphical
“pre-processor”. Some of these pre-processors can overlay a mesh on a pre-existing
CAD file, so that the finite element analysis can be done conveniently as a part of
the computerized drafting-and-design process.

3.2 Fitting of Curved Lines and Surfaces

The simplest curve is straight line and the simplest surface is plane. Next to lines
and planes, there are conics and quadrics. Quadric surfaces, or quadrics for short,
consist of ellipsoids, hyperboloids of one sheet, hyperboloids of two sheets, elliptic
paraboloids, and hyperboloid paraboloids. Particular, two existing types of rank
three quadrics-cones and cylinders, are the most useful. Cylinders fall into three
sub-types of elliptic, hyperbolic and parabolic.

These 2000-plus years old conics and quadrics have been widely applied in the
body configuration of hydraulic structures (arch dams, tunnels, for example) and are
the familiar geometry objects in the FE mesh generation. However, sometimes we
will be encountered with higher order curved lines and surfaces (e.g. arch dams) or
even irregular surfaces (e.g. ground surfaces or large faults). They all demand
appropriate geometry interpretation and discrete treatment in the FE mesh
generation.

3.2.1 Curve Fitting

Curve fitting is the process of constructing a curve, or mathematical function that
has the best fit to a series of spatial data points, possibly subject to
constraints. Curve fitting involves either interpolation where an exact fit to the data
is required, or smoothing where a “smooth” function is constructed that approxi-
mately fits the data. The customarily exercised curve fitting is to arrange repre-
sentative points in sequence, afterwards the truncated polynomial interpolation is
employed to undertake the fitting. For example, a third order polynomial may be
used to fit the “Ferguson curve segment” by
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In which rð1Þ and rð2Þ = coordinates of the start and finish points, respectively;
tð1Þ and tð2Þ = tangent vectors at the start and finish points, respectively.

According to the continuity requirement of C1, the constant matrix [C] is
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The cubic spline constructed below is a better alternative to analytically repre-
sent a curve, which demands less computational efforts and possesses higher
numerical stability (Prenter 1975).

① Establishment of parameters

For nþ 1 ðn[ 3Þ vortices Pi ði ¼ 0; 1; . . .; nÞ, denote the ith chord length as

li ¼ Pi Pi�1½ �;where ti ¼
Pi
j¼1

lj and t0 ¼ 0:

② Establishment of m continuity equation by the “Hermite interpolation” in
the interval ti�1; ti½ �
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P00ðtÞ defined at ti possesses an utmost left limit at the section i and an utmost
right limit at the section iþ 1, i.e.
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In view of P00ðti � 0Þ ¼ P00ðti þ 0Þ, we have

limi�1 þ 2mi þ kimiþ 1 ¼ Ci;
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③ Construction of boundary conditions m0 and mn

There are nþ 1 unknown variables in Eq. (3.5) comprising n� 1 equations,
therefore two boundary conditions m0 and mn need be constructed for the solution
of these variables uniquely. With the help of third-order “Bezier curve” we have

R1ðtÞ ¼ P0ð1� tÞ3 þ 3Q1ð1� tÞ2tþ 3Q2ð1� tÞt2 þP3t3

R2ðtÞ ¼ Pn�3ð1� tÞ3 þ 3Q3ð1� tÞ2tþ 3Q4ð1� tÞt2 þPnt3 t 2 ½0; 1�
�

ð3:6Þ

And let

R1
l1

l1 þ l2 þ l3

� �
¼ P1

R1
l1 þ l2

l1 þ l2 þ l3

� �
¼ P2

R2
ln�2

ln�2 þ ln�1 þ ln

� �
¼ Pn�2

R2
ln�2 þ ln�1

ln�2 þ ln�1 þ ln

� �
¼ Pn�1

8>>>>>><
>>>>>>:

ð3:7Þ

We have

Q1 ¼ e1 l1 þ l2ð Þ�e2l1
l2

Q2 ¼ e1l1�e2ðl2 þ l3ÞQ1

l1

Q3 ¼ f1ðln�2 þ ln�1Þ�f2ln�2

ln�1

Q4 ¼ f2 ln�1 þ lnð Þ�f1ln
ln�1

e1 ¼ L31P1� l2 þ l3ð Þ3P0�l31P3

3 l2 þ l3ð ÞL1l1
e2 ¼ L31P2�l33P0� l1 þ l2ð Þ3P3

3l3 l1 þ l2ð ÞL1
L1 ¼ l1 þ l2 þ l3
f1 ¼ L32Pn�2� ln�1 þ lnð Þ3Pn�3�l3n�2Pn

3 ln�1 þ lnð Þln�2L2

f2 ¼ L32Pn�1�l3nPn�3� ln�2 þ ln�1ð Þ3Pn

3ln ln�2 þ ln�1ð ÞL2
L2 ¼ ln�2 þ ln�1 þ ln

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð3:8Þ
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In which

m0 ¼ Q1�P0
Q1�P0j j

mn ¼ Pn�Q4
Pn�Q4j j

(
ð3:9Þ

④ Solution of the m-continuity Eq. (3.5) in the matrix form of

½A�fmg ¼ fCg ð3:10Þ

In which ½A� is a tri-diagonally dominant matrix, and

½A� ¼

2 k1

l2 2 k2

l3 2 k3

..

. ..
. ..

.

ln�2 2 kn�2

2
666666664

3
777777775

fmg ¼ m1 m2 . . . mn�2 mn�1½ �T

fCg ¼ C1 � l1m0 C2 . . . Cn�2 Cn�1 � kn�1mn½ �T

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð3:11Þ

3.2.2 Surface Fitting

(1) Smooth surface

The interpretation of curved surfaces on an arch dam or in a tunnel is one of the key
prerequisites in the generation of FE meshes. There are many methods to represent
curved surfaces in terms of parametric coordinates (Thompson et al. 1974; Bornhill
and Little 1984), of which the widely used one is “Coons patches”. For defining
these patches, the data concerning vortex coordinates fXg, tangent vectors
fXsg; fXtg and twist vector fXstg, are needed. Where the twist vector fXstg cannot
be obtained from the survey or design data directly in a mass hydraulic structure,
several approximate methods such as the “Adini formula”, are suggestible, or we
may simply let fXstg ¼ 0.

In this book if necessary, the spline-blended surface interpolation proposed by
Gordon (1969) is employed, where the boundary derivation condition of a surface is
neglected, and the surface can be defined only with the coordinates of survey points
without special demands on their location and amount.

A general form of smooth surface can be represented in terms of parametric
coordinates
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X ¼ Xðu; vÞ
Y ¼ Yðu; vÞ
Z ¼ Zðu; vÞ

8<
: ð3:12Þ

Let Z ¼ Zðu; vÞ be any continuous surface defined in the rectangular domain
R : ½a; b� � ½c; d� on the parametric u� v plane, and let p : a ¼
u1 � u2 � � � � � un ¼ b and p0 : c ¼ v1 � v2 � . . .vn0 ¼ d be the partitions of the
intervals I ¼ ða; bÞ and I 0 ¼ c; dð Þ. The surface Z and the vertical planes u ¼
ui; v ¼ vj produce nþ n0 univariate functions constructing a net work in a manner
of

fjðuÞ ¼ Zðu; vjÞ ðj ¼ 1; n0Þ
giðvÞ ¼ Zðui; vÞ ði ¼ 1; nÞ

�
ð3:13Þ

There are two spline sets of odd degree meeting the cardinal conditions
expressed by

/iðukÞ ¼ dik ¼ 0 if i 6¼ k
1 if i ¼ k

�
ði; k ¼ 1; 2; . . .;m1; m1 ¼ nþ 2p� 2Þ ð3:14Þ

ujðvkÞ ¼ djk ¼ 0 if j 6¼ k
1 if j ¼ k

�
ðj; k ¼ 1; 2; . . .;m2; m2 ¼ n0 þ 2p� 2Þ ð3:15Þ

Now let p ¼ 2, the spline-blended surface will belongs to class C2 (Prenter
1975). If the derivative condition at boundary is further neglected, namely

Zsðu1; vÞ ¼ 0
Zsðun; vÞ ¼ 0
Ztðu; v1Þ ¼ 0
Ztðu; vn0 Þ ¼ 0

8>><
>>: ð3:16Þ

The surface interpolation can be derived by the formula

Zðu; vÞ ¼
Xn
i¼1

/iðuÞgiðvÞþ
Xn0
j¼1

ujðvÞfjðuÞ�
Xn
i¼1

Xn0
j¼1

/iðuÞujðvÞZðui; vjÞ ð3:17Þ

Obviously, the surface constructed in Eq. (3.17) will exhibit certain distortion
near the boundary, but it is normally acceptable in “roughly shaped” hydraulic
structures compared with “precisely shaped” machinery components.
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(2) Arch dam surface

According to the shape of arch rings (see Fig. 3.7), arch dams may be distinguished
as circular arch dams, multi-central arch dams, variable curvature arch dams, etc.,
(Chen 2015).

The upstream curve of crown cantilever (see Fig. 3.8) may be single arc or
multi-arc, quadratic, cubic or other curve types (suitable for double curvature arch
dams). It may also be vertical or inclined straight line, or poly line (suitable for
single curvature arch dams). At the moment, the polynomial relating radial thick-
ness Y and vertical altitude Z is widely exercised in the configuration of the profile
of crown cantilever. For example, the upstream curve may be fitted by the formula

Y ¼ a1Z þ a2Z
2 þ � � � þ anZ

n ð3:18Þ

The polynomial order n may be 2 in preliminary design phase, 3 in final design
phase, and 4 in particular situation. The arch ring equation and cantilever equation
may be converted into the univariate functions fjðuÞ and giðvÞ to construct the arch
dam surface Eq. (3.17).

(3) Irregular ground surface

The natural ground surfaces and faults are normally curved and irregular. To make
the identification and pre-processing algorithms more realistic, the geological body
bounded or delimited by several irregular surfaces should be handled.

Assume that the coordinates of the n points on one ground (or fault) surface are
arranged in the following manner

Fig. 3.7 Shapes of arch rings. a Circular arch; b double-central arch; c triple-central arch;
d parabola arch; e ellipse arch; f logarithmic spiral arch
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X1 X2 . . . Xi . . . Xn

Y1 Y2 . . . Yi . . . Yn
Z1 Z2 . . . Zi . . . Zn

0
@

1
A

Then the suggested surface formula is

ZðX; YÞ ¼ a0 þ a1Xþ a2Y þ
Xn
i¼1

tir
2
i lnðr2i þ eÞ ð3:19Þ

In which

ri ¼ ðX � XiÞ2 þðY � YiÞ2 ð3:20Þ

and e is a small fraction (e.g. e ¼ 0:001). By inserting the coordinates of the
n points into Eq. (3.19), n linear equations comprising nþ 3 coefficients
ða0; a1; a2; t1; t2; . . .; tnÞ can be obtained. After supplemented by the following three
conditions

Fig. 3.8 Shape of crown
cantilever
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Pn
i¼1

ti ¼ 0

Pn
i¼1

tiXi ¼ 0

Pn
i¼1

tiYi ¼ 0

8>>>>>><
>>>>>>:

ð3:21Þ

nþ 3 equations for solving the nþ 3 coefficients are established.
The mapping method can be applied to triangulate the surface of Eq. (3.19)

parametrically expressed on the u�v plane

Zðu; vÞ ¼ a0 þ a1uþ a2vþ
Pn
i¼1

tir2i lnðr2i þ eÞ
X ¼ u
Y ¼ v
ri ¼ ðu� XiÞ2 þðv� YiÞ

8>>><
>>>:

ð3:22Þ

3.2.3 Surface/Surface Intersection

The rest issue is the surface/surface intersection (SSI) in handling the irregular
faults and ground surfaces. Since the SSI is an essential and well studied problem in
the CAD/CAM (Shi and Cai 1996; Yu et al. 1999), we will merely find a reliable
and simple algorithm practically implemented, that one surface possesses a para-
metric form meanwhile the other is in the implicit form. The former is inserted into
the latter to get a nonlinear equation that can be solved by a routine procedure of
contour extraction in a two-dimensional scalar field.

Define a parametric surface in Xg

X ¼ g1ðu; vÞ
Y ¼ g2ðu; vÞ
Z ¼ g3ðu; vÞ

8<
: ð3:23Þ

And another implicit surface in Xf

f X; Y ; Zð Þ ¼ 0 ð3:24Þ

Introducing Eq. (3.23) into Eq. (3.24), the intersection line of these surfaces is
interpreted by
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f g1; g2; g3ð Þ ¼ hðu; vÞ ¼ 0 ð3:25Þ

Equation (3.25) is normally solved using the numerical algorithm of contouring.
Denoting X ¼ Xf \Xg, the algorithm is implemented in the following steps.

① Establish regular grid on the parametric plane u–v shown in Fig. 3.9.
Dividing this domain equally into nu and nv sections in the directions of
u and v respectively, and let

hu ¼ 1=nu
hv ¼ 1=nv

�
ð3:26Þ

We have

ui ¼ ihu i ¼ 0; 1; . . .; nuð Þ
vj ¼ jhv j ¼ 0; 1; . . .; nvð Þ

�
ð3:27Þ

Each sell Dij (see Fig. 3.9) in the grid possesses 4 vortices ui; vj
� �

, ui; vjþ 1
� �

,
uiþ 1; vj
� �

, and uiþ 1; vjþ 1
� � ði ¼ 0; 1; . . .; nu � 1; j ¼ 0; 1; . . .; nv � 1Þ. The corre-

sponding function hðu; vÞ values at the vortices are ðhi;j; hi;jþ 1; hiþ 1;j; hiþ 1;jþ 1Þ.

Fig. 3.9 Regular grid on the
parametric plane u–v
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② The cells are arranged sequentially and the contour segments are sought
out in these sells. The key algorithm to locate a contour segment within
Dij is the intersection calculation of the contour and the grid cell.
Suppose hðu; vÞ varies linearly within Dij, the following intersection
calculation is carried out

– If hi;j � 0, the vortex ui; vj
� �

is marked with “−”, otherwise “+”;
– If the 4 vortices are all marked with “+” or “−”, the contour does not

intersect with the cell, and the calculation goes back to the antecedent
step, otherwise goes to the succedent step;

– For the cell with two vortices being marked with “+” at one edge and
other two vortices being marked with “−” at the opposite edge, the
linear interpolation is conducted to obtain the points where the cell
edges are intersected by the contour. Take Fig. 3.10 for example
where ui; vj

� �
is “−” and ui; vjþ 1

� �
is “+”, the intersecting point is

located at

ut ¼ ui
vt ¼ vihi;jþ 1�viþ 1hi;j

hi;jþ 1�hi;j

�
ð3:28Þ

– For the cell Dij with two “+” vortices and other two “−” vortices
being located diagonally, the contour linkage may emerge two pos-
sibilities illustrated in Fig. 3.11. To overcome the ambiguity, St.
Andrew cell may be employed using diagonal lines to subdivide the
Dij into four triangles (Fig. 3.12), the contour segments are judged
and calculated in each triangle (see Fig. 3.13).

Fig. 3.10 Intersection of
contour with a grid cell
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3.3 Geometrical Description of Hydraulic Structures
and Identification of Sub-domains

3.3.1 Concepts of Directed Geometrical Elements

A directed body is defined as the block enclosed by a number of directed faces
Fig. 3.14b. A directed face has an external vector f ext and an internal vector f int

perpendicular to the face and starting from the centroid of the face. The magnitude
of the face vector is identical to the face area (Ikegawa and Hudson 1992).

A directed face is formed by a set of vertices arranged to make a right-handed
system, with circular permutation, in terms of the external face vector (see
Fig. 3.14a).

Fig. 3.11 Possible linkage of contour

Fig. 3.12 St. Andrew
sub-cells
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An edge has an external vector eext and an internal edge vector eint perpendicular
to both the external face vector and the edge, and starting from the middle of the
edge. The magnitude of edge vector is identical to the edge length.

The directed body has a quite important geometrical invariant property that the
resultant of all its external or internal face vectors is a null vector, i.e.

Xn
i¼1

~Fi ¼~0 ð3:29Þ

In which i is the face sequence and n is the amount of all faces bounding the
body. This is called the “body completion theorem” (Ikegawa and Hudson 1992).

The directed face also possesses a similar property that the resultant of all its
external or internal edge vectors is a null vector, i.e.

Fig. 3.13 Possibilities of contour segments in St. Andrew sub-cells

Fig. 3.14 Diagram showing directed body and directed face. a Directed face; b directed body
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Xn
i¼1

~Ei ¼~0 ð3:30Þ

In which i is the edge sequence and n is the amount of all edges bounding the
face. This is called the “face completion theorem” (Ikegawa and Hudson 1992).

Based on the above concepts, the automatic identification algorithm can be
formulated for the blocky system containing both the convex and concave blocks.

3.3.2 Database Structures

The sub-domains (blocks) are identified in the global coordinate system and a
four-leveled hierarchical structure of geometry element database for the block
identification is constructed beforehand.

(1) Point

The coordinate ðXm; Ym; ZmÞ of each point Pm is input in sequence, and the message
indicating if the point is in a structural surface or not, should be specified.

(2) Edge

For an edge Ek whose reference nodes ðP1;P2;P3; . . .; Pm; . . .Þ are logically given,
the type of the line segment and the message indicating if the edge is in a structural
surface or not, should be specified.

(3) Directed face

For a directed face patch Fi, its type, reference points, and the line segments
ðE1;E2;E3; . . .; Ek; . . .Þ enclosing the face, should be specified.

(4) Directed body

Data describing the sub-domain Bj comprise its type, reference points, the face
patches ðF1;F2;F3; . . .; Fi; . . .Þ enclosing the body, the adjacent blocks Bi con-
tacting the block Bj through the face patch Fi.

3.3.3 Identification Procedures

The flow chart of block identification is schematically formulated in Fig. 3.15.

(1) Generation of points

After reading the messages of all the surfaces (inclusive the irregular ground sur-
face) by the sub-module of INPUT, a point is defined by the intersection of three or
more structural surfaces and created by the sub-module POINT.
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① Intersection loop over every three-surface combination is carried out;
② If there exists intersecting point of these tentative surfaces, the auxiliary

examination is carried out to check if this is a superposition point;
③ If yes, the point is formed by at least four surfaces and should be

abandoned, the process goes back to step ① for another tri-surface
combination;

④ If no, the point is sorted as the new vortex point, and the process goes
back to step ① for another tri-surface combination;

⑤ Steps ②–④ are recurred until all the tri-surface combinations have been
covered;

⑥ Store the messages of all the generated vortices (inclusive their relations
with the surfaces);

⑦ Turn to the next sub-module LINE.

(2) Generation of edges

The edge messages are produced after the completion of point generation. All the
points related to a bi-surface combination are arranged in sequence, a edge com-
prising these points may be defined and messages indicating if it is in these two
surfaces or not, is specified. If there are two edges possess identical messages, it
means that there are at least three surfaces intersecting at the same edge, and one of
them should be removed from the edge messages. The algorithm towards the edge
generation is therefore formulated in the sub-module LINE as follows.

① Read in the stored messages of all the vortex points;
② Intersection loop over every bi-surface combination is carried out;
③ Sort out all the points that are related to a tentative bi-surface combi-

nation. If the number of points is smaller than 2, the process goes back to
step ② for another bi-surface combination;

Fig. 3.15 Flow chart of
block system identification
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④ If these two surfaces are all planar, a straight edge is generated whose
messages are created and recorded, then the process goes back to step ②
for another bi-surface combination;

⑤ If at least one of the surfaces is curved, the curved edge segment is
created and recorded, then the process goes back to step ② for another
bi-surface combination;

⑥ Recur steps ②–⑤ until all the bi-surface combinations have been
covered;

⑦ Store the messages of all the generated edges (inclusive their relations
with the surfaces);

⑧ Turn to the next sub-module FACE.

(3) Generation of directed faces

The face messages are produced after the completion of edge generation. All the
edges related to a structural surface (including ground surface) are arranged in
sequence and anti-clockwise. The conjugated edges should form the smallest
interior included angle (or largest exterior angle) (see Fig. 3.16). When directed
edges form a closed face patch, i.e. the face completion theorem Eq. (3.30) is held,
a directed face is generated. Any inner point located with the face should be judged
as invalid.

Generally, each edge may be used twice as two directed edges (identical in
quantity but negative in direction), so there are virtual directed faces to be deleted.
Figure 3.17 shows 3 directed faces ABCDA, CEFDC, ADFECBA. Since the area
of ADFECBA is negative and its quantity is the sum of ABCDA and CEFDC,
therefore it is a virtual face and should be removed. The steps of the directed face
generation in the sub-module FACE are detailed as follows.

① Read in the stored messages of all the edges;
② Loop over all the structural surfaces;
③ Loop over all the edges on a selected structural surface;
④ For a selected active edge, denote its end point as the start point of

tentative new active edge, then

Fig. 3.16 Generation of a
directed face
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– Find out all the tentative edges started from this point, calculate their
interior included angles with the active edge;

– The trial edge that forms the smallest interior included angle with the
active edge is defined as the new active edge;

– If the end point of the new active edge is identical to the start point of
the first active edge, a directed face is created, otherwise the process
goes back to the step ④ for a new active edge;

⑤ If all the directed faces are created, the virtual faces are judged and
removed, the valid directed faces are stored for the body generation;

⑥ A new structural surface is selected and the process from step ② to step
⑤ is recurred;

⑦ Steps ②–⑥ is repeated until all the structural surfaces are covered;
⑧ Turn to the next sub-module BODY.

(4) Generation of directed bodies

The body messages are produced after the completion of face generation. All the
directed faces related to a common edge are arranged in sequence, the conjugated
faces should form the smallest interior included angle (or largest exterior included
angle) (see Fig. 3.18).

Fig. 3.17 Directed face
patches on a structural surface

Fig. 3.18 Generation of a
directed body
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When a set of directed faces forms an closed entity, i.e. the body completion
theorem Eq. (3.29) is held, a directed body is generated. Any inner point located
within the entity should be judged as invalid. The steps of the directed body
generation in the sub-module BODY are detailed as follows.

① Read in the stored messages of all the directed faces;
② Loop over all the directed faces;
③ For an active face, loop over all its directed edges;
④ For the selected edge, find all the faces it links, and calculate their

interior included angles. The smallest interior included angle defines the
new active face, and the process goes back to step ③;

⑤ If a new directed body meeting the completion theorem Eq. (3.29) is
created, its messages are stored, the process goes back to step ②,
otherwise goes back to step ③;

⑥ The virtual bodies with negative volume are removed by the auxiliary
examination, the rest valid bodies are stored;

⑦ Turn to the next sub-modules OUTPUT and DRAW to output and
visualize the block system.

3.3.4 Handling of Special Cases

(1) Removal of an invalid edge

Figure 3.19 schematically explains how to remove an invalid edge.

(2) Identification of a multiply connected face

A multiply connected face possesses two or more separately enclosed boundaries.
The directed face shown in Fig. 3.20 has two enclosed boundaries ABCDA and
EFGHE. Under such circumstances, three directed faces ABCDA, EFGHE,
EHGFE will be generated according to the identification strategy, of which four
interior points (E, F, G, H) within the face ABCDA create a virtual face EHGFE

Fig. 3.19 Diagram showing the removal of invalid edge
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with negative area. After the removal of this invalid directed face, the multiply
connected face ABCDA-EHGFE possesses two separate boundaries is identified.

(3) Generation of a directed face containing curved edges

Commonly, at least three directed edges are demanded to enclose a directed face.
Where curved edges are permitted, however, two edges might be sufficient to form
a directed face. In the generation process of directed face, the straight secant
through the ends of a curved edge is employed. After the completion of the whole
directed face, the secant is substituted by the original curve (see Fig. 3.21).

(4) Generation of a curved directed face

The curved surface should be projected on to a parametric plane. After the gen-
eration of all the directed faces on this parametric plane, the directed faces on the
curved surface may be obtained by the inverse transformation.

Suppose a curved surface is expressed by the univalent function ZðX; YÞ ¼
FðX; YÞ and vertically projected on to the horizontal plane X–Y (see Fig. 3.22).

After the generation of a directed face, its edge vectors and face vector should be
calculated (see Fig. 3.23). In doing so, the straight secant through the ends of the

Fig. 3.20 Diagram showing
the identification of multiply
connected face

Fig. 3.21 Diagram showing
the identification of directed
face containing curved edges.
a One curved edge; b two
curved edges
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curved edge is employed, then the curved face may be divided into (nv − 2) tri-
angles (nv is the amount of the vortices on the face). The vectors of these curved
edges and curved face are calculated using their straight and planar substitutes.
These (nv − 2) vectors corresponding to triangles are superposed for the purpose of
body identification. After the accomplishment of body generation, these planar
triangles are back substituted by the original curved face.

(5) Generation of a body containing curved faces

Denote that the intersecting points of an irregular ground surface with structural
planes as E, J, I, H and D, respectively (see Fig. 3.24). We substitute the triangles
EJD, DJI and HDI for the curved face patch EJIHDE temporarily, in this manner
the body completion theorem and face completion theorem can be applied to the
equivalent body bounded by the substitute planar triangles and the identification
algorithm can be carried out without major difficulties.

Fig. 3.22 Directed faces and
edges on a curved structural
surface

Fig. 3.23 Diagram showing
the identification of curved
directed face
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3.3.5 Key Algorithms

(1) Intersection point of two planes with one curved surface

Suppose there are two non-parallel planes

A1X þB1Y þC1Z ¼ D1

A2X þB2Y þC2Z ¼ D2

�
ð3:31Þ

And their intersecting edge is given by

Z ¼ F1ðXÞ
Y ¼ F2ðXÞ

�
ð3:32aÞ

or

Z ¼ F1ðYÞ
X ¼ F2ðYÞ

�
ð3:32bÞ

Taking the intersecting edge Eq. (3.32a) for example, it is discretized along the
X-axis into segments ði; jÞ with an interval length DX defined by the segment ends
ðXi; Yi; ZiÞ and ðXj; Yj; ZjÞ. Meanwhile, the curved surface formula in Eq. (3.19)
provides ZðXi;YiÞ and ZðXj; YjÞ.

If

ðZðXi; YiÞ � ZiÞ � ðZðXj; YjÞ � ZjÞ\0 ð3:33Þ

The segment ði; jÞ is intersected with the curved surface, and an interpolation
between the two ends may indicate the exact intersecting point. Otherwise the next
edge segment is trialed.

Fig. 3.24 Diagram showing
the identification of a body
containing curved face patch
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(2) Sequence of points on a curved edge

When a plane is intersected with the curved surface, a curved edge is produced. The
iterative algorithm may be employed to find the points in sequence to form the
messages of this curved edge.

Suppose a plane

AX þBY þCZ ¼ D ð3:34Þ

is intersected with the ground surface interpreted in Eq. (3.19), we have

FðX; YÞ ¼ a0 þ a1Xþ a2Y þ
Xn
i¼1

tir
2
i lnðr2i þ eÞþ A

C
Xþ B

C
Y � D

C
¼ 0 ð3:35Þ

For a specified coordinate X (or Y), the coordinate Y (or X) may be solved by the
iterative algorithm using the following formula deduced from Eq. (3.35)

Y ¼ f ðX; YÞ ð3:36aÞ

or

X ¼ f ðX; YÞ ð3:36bÞ

Starting from an initial vortex point ðX0; Y0Þ on the edge, the coordinate X (or Y)
is discretized into segments with interval length DX (or DY ), then the iterative
algorithm may be carried out to find corresponding Yi (or Xi). The curved edge is
defined by the initial vortex point ðX0; Y0Þ and all the new detected vortex points
ðXi; YiÞ (see Fig. 3.25).

Fig. 3.25 Sequencing of the
points on a curved edge
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All the points of the edge calculated in sequence may be later employed in the
area and volume computation (if necessary), ground contour drawing, as well as the
FE mesh discretization.

(3) Judgment on the inclusion of a point within the polygon

The judgment on a point with regard to its relation to the polygon is indispensable
in the directed face generation and discretization.

Giving any point P (corresponding to the vector ~VP) and directed polygonal face
ABCDEFA (corresponding to the vector ~F) (see Fig. 2.26). The edge ~EAB of this
face and the point P form an included angle

hAB ¼
arccos ð~VA�~VPÞ�ð~VB�~VPÞ

~VA�~VPj j� ~VB�~VPj j
	 


ð~VA � ~VPÞ � ð~VB � ~VPÞ
� � �~F[ 0

� arccos ð~VA�~VPÞ�ð~VB�~VPÞ
~VA�~VPj j� ~VB�~VPj j

	 

ð~VA � ~VPÞ � ð~VB � ~VPÞ
� � �~F\0

8>><
>>: ð3:37Þ

All the included angles formed by the directed edges of the face with the point P
are summed

h ¼
XFA
i¼AB

hi ð3:38Þ

If h = 0, the point P is outside of the polygon ABCDEFA (see Fig. 3.26a),
whereas h = 360° means that the point P is within the polygon (see Fig. 3.26b).

Fig. 3.26 Diagram to the inclusion judgment on the point with regard to a polygon. a P outside
the polygon; b P within the polygon
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3.4 Two-Dimensional Mesh Generation by the AFT

Attributable to the merit that the advancing front technique (AFT) is able to dis-
cretize 3D complex domains sophisticatedly, its use has been widely made to
generate FE mesh, particularly towards the adaptive FEM (Peraire et al. 1992).

The AFT requires an initial front in order to start the discretization of a
three-dimensional domain, this means that the surfaces enclosing the domain need
to be defined, either by the identification algorithm of directed bodies and faces
elaborated in Sect. 3.3, or by the entity construction technique using CAD/CAM
software. Afterwards, the AFT grid generator performs two-dimensional mesh
discretization on these surfaces (Moller and Hansbo 1995). It is well known that the
quality of face discretization has a major impact on the quality of three-dimensional
meshes, which in turn influences the quality of FEM computations. Of course, the
two-dimensional problems encountered in the conventional design for several types
of hydraulic structures (e.g. gravity dams and tunnels), rely on the two-dimensional
mesh generation directly.

3.4.1 Database Structure

The database organizes geometrical elements (faces, edges, points) hierarchically
(Beall and Shephard 1997). The underground cavern section shown in Fig. 3.27
may be used to elucidate such a database structure.

This cavern section consists of six sub-face patches: sub-face patch ① is dis-
tinguished due to its different rock stratum; sub-face patches ②–⑤ belong to the
same rock stratum but they are divided by the faults F1 and F2; sub-face patch ⑥ is
the excavated portion of the cavern.

Each sub-face is enclosed by straight or curved edge segments. Take sub-face
patch ① for example, it is composed of edge segments 1, 10, 15 and 2. Edge 15 is
straight and defined by points 4 and 3, edge 19 is a semi-circle and defined by
points 9, 16 and 8.

Point is the elementary geometrical element defined by its coordinates solely.
This data structure enables to assign the material properties, excavation

sequences (benches), concrete placement sequences (lifts), boundary conditions,
etc., to the geometrical elements conveniently.

3.4.2 Generation of Triangular Element Mesh on Planar
Surface

The triangular mesh generator detailed by Jin and Wiberg (1990) requires a separate
input file as the background data of edge segments. Afterwards the generation of
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triangular element mesh on a planar surface using the AFT is implemented in the
following steps.

① By discretizing the boundary, an initial front is created (see Fig. 3.28a).
② At any stage of node and element searching loop (see Fig. 3.28b, c), the

shortest edge AB is selected as active edge (see Fig. 3.28, detailed
drawing A).

③ Find the coordinates of midpoint D (see Fig. 3.28, detailed drawing A),
the element size h at D is interpolated from the mesh density defined in
the background mesh.

④ Calculate the coordinate of point C (see Fig. 3.28, detailed drawing A)
that

– C is located at the interior side of edge AB;
– ACj j � BCj j � h:

Fig. 3.27 Underground cavern and its geometrical elements
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⑤ Create a point set N1 that

– Point P is located at the active front and at the interior side of edge
AB;

– Point P is located within the circle centered on point C with a radius
of h.

In the detailed drawing A of Fig. 3.28, N1 contains two points (P1 and
P2).

⑥ Construct the sub-set N2 of N1 that

– Apart from point P, DABP does not contain any point of set N1;
– Apart from AB, edge PD does not intersect with the active front;
– PA < nh, PB < nh (usually n ¼ 1:5).

⑦ If N2 is not empty, the point which forms the largest included angle with
AB ð\ABPÞ is sorted as the new node to generate a new triangular
element ðDABPÞ, the front is updated and the algorithm returns to step②.

Fig. 3.28 Diagram to the generation of triangular element mesh
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In the detailed drawing A of Fig. 3.28, point P2 is finally selected as new
node.

⑧ If N2 is empty, and C meets that

– DABC does not contain any points in N1;
– Apart from AB, CD does not intersect the active front;

Point C is sorted as the new node to generate a new triangular element
ðDABCÞ, the front is updated and the algorithm returns to step ②.

⑨ If point C does not meet the requirements stipulated in step ⑧, the
element generation fails and another active edge with second shortest
length is alternatively attempted, then the algorithm returns to step ②.

⑩ If the active front is empty, the mesh generation is accomplished.

3.4.3 Generation of Quadrilateral Element Mesh on Planar
Surface

The quadrilateral mesh generation using AFT for a planar surface patch may be
formulated on the basis of triangular mesh generators (Lo 1989; Zhu et al. 1991;
Zienkiewicz and Zhu 1991).

① By discretizing the boundary, the initial front is created (see Fig. 3.29a).
② The shortest edge segment (AB) is selected as active edge, a new tri-

angular element ðDABCÞ is created with the help of new node C
according to the element size h defined at the background mesh (see
Fig. 3.29b).

③ The active front is updated. In Fig. 3.29b, AC and BC are new active
edges included in the updated active front, meanwhile AB is deleted
from the active front.

④ From active edge AC or BC, another triangle is created, such as the
triangle DBCD in Fig. 3.29c, and the active front is updated accordingly.

⑤ Two triangular elements DABC and DBCD are merged into a new
quadrilateral element ABCD (see Fig. 3.29c).

⑥ Steps ①–⑤ is recurred until the active front is empty.

Fig. 3.29 Diagram to the generation of quadrilateral element mesh
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3.4.4 Optimization of FE Mesh on Planar Surface

Independent of mesh generation, the so-called “smoothing techniques” have been
developing for the improvement of already constructed meshes or their portions.
Most of the smoothing algorithms insofar can be categorized into two groups: the
Laplacian-based scheme (Blacker and Stephenson 1991; Hansbo 1995; George and
Borouchaki 1998) and the optimization based scheme (Canann et al. 1993; Batdorf
et al. 1997). The Laplacian scheme is straight forward and easy to implement, but
often produces elements of rather poor quality. The optimization based scheme
typically results in high-quality elements, but requires more computational over-
heads. In addition to the schemes mentioned above and their variants, the so-called
angle-based optimization (Xu and Newman 2006) was also proposed.

3.4.5 Generation of Triangular Element Mesh on Curved
Surface

Mesh generation on the curved surface is inevitable for the generation of
three-dimensional meshes for the structures with curved interfaces or/and bound-
aries (Lo 1989; Nordsletten and Smith 2008).

Normally, a curved surface is first decomposed into a union of simple curved
face patches, which may be generally undertaken together with the sub-domain
decomposition using the technique for block system identification elaborated pre-
viously in this Chapter. Meshes are then generated on each of the face patch and
finally stitched together into the whole discretized surface. Such an algorithm does
give rather satisfactory results on the most types of curved surfaces in hydraulic
structures.

To meet the requirement on the element sizes at different directions feg1, feg2,
feg3 (see Fig. 3.30) (Moller and Hansbo 1995; Merhof et al. 2007), if necessary,
one of the most widely exercised techniques is the transformation method, namely
the mesh is first generated on a parametric plane and then mapped back onto the
curved surface. This might produce reasonably good meshes for simple curved
surfaces that are sufficiently smooth.

For tremendous complicated surfaces with strict requirement on discretization
accuracy, Lau and Lo (1996) proposed a transformation method capable of gen-
erating high-quality meshes directly over curved face patches, taking into account
of their curvature effect (see Fig. 3.31).

Denote

½�g� ¼
1
h1

0 0
0 1

h2
0

0 0 1
h3

2
64

3
75 feg1; feg2; feg3
� �T ð3:39Þ
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and let

½T� ¼ ½�g�T½�g�
� �1

2 ð3:40Þ

Transformation from natural space ðX; Y ; ZÞ to regular space ðn; g; fÞ is con-
ducted by

dn
dg
d1

8<
:

9=
; ¼ ½T �

dX
dY
dZ

8<
:

9=
; ð3:41Þ

Fig. 3.31 Transformation from natural space to regular space

Fig. 3.30 Requirement for the element size on a curved surface
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Peraire et al. (1992) define the transformation matrix in the manner of

½T 0� ¼
X3
i¼1

1
hi
fegifegTi ð3:42Þ

It may be justified that [T] is actually identical to ½T 0�. [T] or ½T 0� defines a
transformation that eliminates the requirement of the directional element size on the
mesh by mapping a directionally sized triangular element in the natural space
ðX; Y ; ZÞ to an equilaterally unit triangular element in the regular space ðn; g; fÞ.

To transform the triangular element in the three-dimensional regular space
ðn; g; fÞ to the parametric plane ðu; vÞ, according to Eq. (3.23) we write

dX
dY
dZ

8<
:

9=
; ¼

@X
@u

@X
@v

@Y
@u

@Y
@v

@Z
@u

@Z
@v

2
4

3
5 du

dv

� �
ð3:43Þ

Or simply

fdXg ¼ fXug; fXvg½ �fdug ð3:44Þ

Introducing Eq. (3.44) into Eq. (3.41) leads to

dn
dg
d1

8<
:

9=
; ¼ ½T � fXug; fXvg½ � du

dv

� �
ð3:45Þ

Define

½�g�� ¼ ½T � fXug; fXvg½ �ð ÞT ½T� fXug; fXvg½ �ð Þ ð3:46Þ

The transformation from the directionally sized triangular element in the space
ðX; Y ; ZÞ to the equilaterally unit triangular element in the two-dimensional para-
metric plane n0; g0ð Þ is established

dn0

dg0

� �
¼ ½�g��ð Þ12 du

dv

� �
ð3:47Þ

After the discretization in the space n0; g0ð Þ, the inverse transformation is carried
out from n0; g0ð Þ back to ðu; vÞ as

du
dv

� �
¼ ½�g��ð Þ�1

2
dn0

dg0

� �
ð3:48Þ
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3.5 Three-Dimensional Mesh Generation by the AFT

Lo (1985), Löhner and Parikh (1988) proposed an AFT towards the tetrahedral
element generation for three-dimensional domains. Based on their algorithm, the
author of this book also had developed a mesh generator (Cao et al. 1998; Chen
et al. 2000; Xia and Chen 2001), in which particular attention is focused on the
complex configuration of the dam/foundation containing irregular surfaces (e.g.
discontinuities in rock masses and ground surfaces). However, insofar there are
crucial difficulties to reliably implement the AFT for hydraulic structures by the
transformation of tetrahedral mesh into whole-hexahedral mesh, although the latter
is more effective and attractive for engineering practitioners.

3.5.1 General Considerations

(1) Flow chart

In the process of mesh generation flow charted in Fig. 3.32, a background mesh
which completely covers the domain is defined to accommodate messages con-
cerning the mesh density, material properties, boundary conditions, and actions.

To construct an initial front, the boundary surfaces are discretized beforehand
using the two-dimensional mesh generator described previously in this Chapter.
The initial generation front is a collection of all triangular faces discretized from the
boundary surfaces of all the sub-domains in the block system identified.

Fig. 3.32 Flow chart of
tetrahedral element generation
for three-dimensional
domains
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The face to be deleted from the list of active front always should be able to form
the smallest tetrahedron element. A “best point” is created to form a tentative new
tetrahedron element. If this tentative tetrahedron can pass through both the “validity
test” to ensure the existent elements will not be intersected with the new element
and the “auxiliary test” to ensure the qualified shape and position, it will be
accepted as a new element. The new element, point and faces should be added to
their respective lists to update the active front. The element generation process is
terminated when the generation front is empty.

(2) Database structure

The data defining a complex domain are organized by simple sub-domains, each
sub-domain possesses one material merely, or will be excavated/casted in one
construction operation, or just supplementarily cut by artificial planes to facilitate
the mesh generation (Löhner 1988). The local mesh will be generated in each
sub-domain independently first, then all these local meshes will be “stitched”
together to form the whole mesh.

A five-leveled hierarchical database structure for sorting and storing input data is
presented in Fig. 3.33.

– First level. Data describing the domain, where the sub-domains (blocks, bodies)
are denoted as ðB1;B2;B3; . . .;Bj; . . .Þ.

– Second level. Data listing the material parameters of sub-domain Bj, its exca-
vation or replacement sequence, and face patches ðF1;F2;F3; . . .;Fi; . . .Þ
enclosing the sub-domain.

Fig. 3.33 Structure for
sorting and storing input data
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– Third level. Data of face patch Fi, inclusive its type, reference points, edge
segments ðE1;E2;E3; . . .;Ek; . . .Þ enclosing the face.

– Fourth level. Data of edge segment Ek inclusive its type and reference nodes
ðP1;P2;P3; . . .;Pm; . . .Þ.

– Level five. The coordinates ðXm; Ym; ZmÞ and type of point Pm input in sequence.

3.5.2 Treatment of Complex Domain

The complexity in the FE mesh generation for hydraulic structures mainly arise
from the material heterogeneity (faults and joints), the multiply connected domain
(holes and pipes), as well as the sequential construction and operation processes.

(1) Multiply connected domain

Auxiliary line is customarily drawn for the multiply connected domain to transform
it into simply connected domain (see Fig. 3.34).

If an auxiliary plane is employed to treat the three-dimensional multiply con-
nected domain, the complicated intersecting computation with regard to surfaces is
demanded. The author of this book had however, proposed an alternative way to
handle multiply connected domain problems without the help of auxiliary lines/
planes but rather by improving database structure (Cao et al. 1998).

(2) Discontinuity

Important discontinuities (joints, faults and interfaces) are simulated explicitly by
joint elements with or without thickness in the FEM computation for hydraulic
structures. In the mesh generation, firstly these discontinuities are looked as ordi-
nary boundary face patches of sub-domains. After the triangulation of these faces,
they will be duplicated in parallel, in this way the discontinuities can be discretized
into triangular slab (prism) elements with or without thickness a (see Fig. 3.35).

Fig. 3.34 Auxiliary line
treatment. a Multiply
connected domain; b simply
connected domain
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3.5.3 Tetrahedral Mesh Generation

After the input of background mesh and new mesh density data, the tetrahedral
mesh generation using the AFT is carried out as follows (Nguyen-Van-Phai 1982;
Peraire et al. 1992; Weatherill and Hassan 1994; Moller and Hansbo 1995).

① Triangulate each boundary surface using the two-dimensional AFT, all
the triangular elements are organized to build the active front.

② Select a tentative triangle face (see Fig. 3.36) DABC from the active
front for the purpose of new tetrahedral element generation.

③ From the background mesh the new tetrahedral element size h at mid-
point E (see Fig. 3.36) is found.

Fig. 3.35 Creation of
triangular prism element by
the duplication of a triangle

Fig. 3.36 Diagram to the
generation of tetrahedral
element mesh
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④ Determine the coordinates of tentative node D (see Fig. 3.36) as the
fourth node of the tentative tetrahedral element. Node D lies in the
normal to the face of DABC through point E, and is approximately at a
distance of h from each node of DABC, i.e. ADj j � BDj j � CDj j � h.

⑤ Check the validity of tentative tetrahedron ABCD known as the “aux-
iliary test” that

– The angles between the active face and new faces are sufficiently
large;

– The new faces do not intersect any of the existing faces on the active
front.

⑥ If node D passes the auxiliary test, it forms a valid new tetrahedron and
the process goes to the next step ⑦; otherwise, it is discarded and the
process returns to step ④; if the point set of D is empty, the process goes
to the step ⑧.

⑦ Once a new element has been generated the linked list forming the active
front must be updated that

– New faces created during the generation of the new element are
added into the list as active;

– Face DABC must be deleted from the active front.

⑧ Steps ①–⑦ is recurred until the active front is empty.

For more detailed algorithm with regard to geometry search and intersection, the
readers are referred to Bonet and Peraire (1991), Peraire et al. (1992), Löhner
(1988).

3.5.4 Tetrahedral Mesh Improvement

Algorithms for unstructured mesh improvement fall into three basic categories (Lo
1997; Lori and Carl 1997; Ito and Nakahashi 2004): point insertion/deletion to
refine a mesh or to improve the local length scale of the mesh; local reconnection to
change mesh topology by face or edge swapping for a given set of vertices; and
smoothing operation to relocate mesh nodes to improve mesh quality without
changing mesh topology. In general the latter two are conducted alternatively to
achieve the desirable mesh optimization.

The frequently used configuration parameters of a tetrahedral element are the
minimum solid angle h, the radius ratio q of inscribed sphere to circumscribed
sphere, and the parameter c (Lo 1997).

For a tetrahedron T P1P2P3P4ð Þ, denote lij as the length linking its vortices Pi and
Pj, V as its volume, then the minimum solid angle h is calculated by
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h ¼ min h1; h2; h3; h4ð Þ ð3:49Þ

In which

sin
h1
2

	 

¼ 12VffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ

2� i� j� 4 l1i þ l1j
� �2�l2ij
h ir ð3:50Þ

Equation (3.50) is recurred for h2, h3, h4.
Radius ratio q of inscribed sphere to circumscribed sphere is defined as

q ¼ 3r
R

ð3:51Þ

where r = radius of inscribed sphere, m; R = radius of circumscribed sphere, m.

c parameter is calculated by the formula

c ¼ 2
ffiffiffi
3

p
VP

1� i\j� 4 l
2
ij

� �1:5 ð3:52Þ

Above parameters are actually correlated and any of them may be employed as
an element quality index Q.

(1) Local mesh reconfiguration

Local mesh reconfiguration changes the connectivity of a part of mesh to improve
mesh quality. It can be divided into two classes as face swapping and edge
swapping (Lori and Carl 1997).

Face swapping reconnects two tetrahedral elements comprising five nodes and
separated by a single interior face. A large number of non-overlapping tetrahedral
configurations are possible with these five nodes, but only two can be legally
reconnected, which enables a quick comparisons to find one with the higher quality.

Edge swapping reconfigures m tetrahedral elements incident on an edge through
removing that edge to substitute the original m tetrahedral elements by new 2m� 4
tetrahedral elements. The reconfiguration is performed only if every new tetrahe-
dron exhibits better quality than the worst of m original tetrahedral elements. The
effectiveness of edge swapping will be undermined dramatically following the
increase of m (e.g. m	 7).

(2) Overall mesh smoothing

The most common approaches to mesh improvement are variants on Laplacian
smoothing (Field 1988). This technique adjusts the location of each mesh node to
the arithmetic mean Xa; Ya; Zað Þ of its incident vertices. Let k vertices (nodes)
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ðP1;P2; . . .;PkÞ be edge-incident to the vertex Ea. Laplacian smoothing defines new
coordinates X�

a ; Y
�
a ; Z

�
a

� �
by the formulas

X�
a ¼

P
i2k Xi

k

Y�
a ¼

P
i2k Yi
k

Z�
a ¼

P
i2k Zi
k

8>>><
>>>:

ð3:53Þ

In which Xi, Yi, Zi are spatial coordinates of each edge-incident vertex.
The new coordinates X�

a ; Y
�
a ; Z

�
a

� �
are immediately used for all subsequent

Laplacian smoothing of other vertices.
Further improved algorithm seeks to maximize the minimum value of the mesh

quality index Q in an overall (n dimensional) space. Suppose there are m elements
in the mesh, the differentiable Qtol may be defined as

Qtol ¼
Ym
i¼1

Qi

 !1
m

ð3:54Þ

It also may be defined as

Qtol ¼ minQi ð3:55Þ

Since in the FE computation one highly distorted element solely may sufficiently
give rise to very poor solution accuracy and high computation difficulty, Eq. (3.55)
is more advisable and the interest of the smoother is directed to the maximum of
function f

f ¼ Qtol ¼ minQi ð3:56Þ

For additional information on the solution of Eq. (3.56) using optimization
process, readers are referred to the works of Polak (1987), Zavattieri et al. (1996).

3.5.5 Hexahedral Mesh Generation

The success of grid generation in two-dimensional domain by combining two
triangles into one quadrilateral element naturally encourages researchers to find a
similar way to recombine tetrahedral elements into hexahedron. One of the famous
algorithms is named after Yamakawa and Shimada (2003), in which candidate
hexahedral elements are stored in an array and sorted with respect to their geo-
metrical quality. The algorithm then iterates through this array starting from the
highest quality hexahedron. Hexahedral elements that are composed of available
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tetrahedral elements and that preserve hexahedral conformity are successively
added to the mesh.

Unfortunately, it is very complicated and difficult to guarantee the quality of
full-hexahedral mesh or even hex-dominant mesh by the AFT (or DT) with
recombination strategy (Baudouin et al. 2014). After more than two decades of
concentrated research on the full-hexahedral grid generator, none of the methods
satisfactorily comply with industrial requirements. Most of the methods lack geo-
metric generality, and all-automatic methods are also very rare. Nowadays, the
difficulty in producing all-hexahedral meshes leads researchers to develop new/or/
hybrid algorithms (Sheffer et al. 1998; Ruiz-Gironés et al. 2012).

An attempt of subdividing a tetrahedron into four hexahedral elements was also
proposed (Chen et al. 1998), according to the following rigorous routine.

– First, draw four straight lines from the center of the tetrahedron to the centers of
its four triangular boundary faces;

– Then draw straight lines from the centers of triangular boundary faces to the
middle points of the edge segments, respectively.

It can be proved that such sub-divided four hexahedral elements all have planar
boundary faces. However, the perplexity in handle of poor mesh quality still exists
(Chen et al. 1998).

Mesh generation, as a process of dividing a continuous physical domain into the
grid for further numerical solution, is a crucial step before the FEM could be carried
out. Although mesh generation and optimization had made remarkable progress in
numerous in-house and/or commercial programs, yet many researchers are still
persisting in. The Sandia National Laboratories 25th International Meshing
Roundtable was just held in 2016, which reflects the related research history,
current outcomes and existing problems.

3.6 Verification Examples

3.6.1 Example 1: Block System Identification

Figure 3.37 shows a valley segment which contains 6 faults, the corresponding
block system identified is displayed in Fig. 3.38.
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Fig. 3.37 Axonometric
drawing of an integrated
block system

Fig. 3.38 Axonometric
drawing of a decomposed
blocks
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3.6.2 Example 2: Quadrilateral Mesh Generation

For the shallowly embedded underground cavern in Fig. 3.27, if the initial mesh
size is uniformly specified as h = 10 m, the mesh generator will output the back-
ground mesh in Fig. 3.39 comprising 421 nodes and 375 elements. The energy
norm of error (Vide Chap. 5) corresponding to this mesh is e = 27%.

Fig. 3.39 Initial background mesh (375 elements; 421 nodes; e = 27%): two-dimensional cavern

Fig. 3.40 Initial background mesh (6623 elements; 1826 nodes; e = 36%): three-dimensional
cavern. a Axonometric view; b front view
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3.6.3 Example 3: Tetrahedral Mesh Generation

The problem being examined is a tunnel segment excavated under a rock slope with
two intersected faults and an irregular ground surface. The mesh generator gives the
initial background mesh shown in Fig. 3.40, its energy norm of error (Vide Chap. 5)
is e = 36%.
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Chapter 4
Fundamentals of the Finite Element
Method

Abstract This chapter summarizes the principles, governing equations, and basic
algorithms related to the finite element method (FEM), which has been the most
general and powerful computation tool in the engineering design and analysis since
the later 1960s. The “standard” and “hierarchical” shape functions using orthogonal
polynomial series are elucidated in details, based on which the algorithms with
regard to the fields of permeability, temperature, and deformation are elaborated.
The solution techniques particularly important for hydraulic structures related to the
issues of rock EDZ, phreatic surface, concrete hydration heating, reservoir water
temperature, dynamic response, are addressed. This chapter is closed with the
discussion on the safety criteria of hydraulic structures.

4.1 General

The finite element method (FEM) was initiated in a seminal work of Richard
Courant (1943), and might be further traced back to the works by Hrennikoff
(1941), but the relevance of their works was not recognized at the time until the
early 1950s, when the method was rediscovered by engineers for solving complex
elasticity and structure problems in civil and aeronautical engineering (Turner et al.
1956). Although the approaches proposed by these pioneers are different, yet they
share one essential feature: mesh generation for a continuum domain into a set of
discrete sub-domains, usually termed as “elements”. The FEM obtained its real
impetus in the 1960s (Argyris and Kelsey 1960). The term “finite element method”
appeared firstly in a paper on the structural analysis by Clough (1960). Zienkiewicz
and his co-workers (Zienkiewicz and Cheung 1964; Zienkiewicz et al. 1966, 1970;
Zienkiewicz and Taylor 1967; Hinton and Irons 1968) and other outstanding
scholars in the world gathered those works systematically and built the pioneering
mathematical formalism of the FEM. Since then the FEM has been developed into
one of the most general and powerful computational techniques towards the
numerical solution of PDEs, and has been widely exercised in the engineering
design and analysis.
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The FEM has been the prevalent computation tool in hydraulic structures for
nearly 40 years. Solutions to even very complicated field problems of temperature,
permeability, as well as strain/stress, now may be accessed routinely using the
method. In this chapter, the concepts, principles, and basic algorithms will be
expositorily summarized and according to various literatures (Owen et al. 1989;
Babuška et al. 1995; Crisfield 1997; Wilson 1998; Zhu 1998; Clough and Penzien
2003; Zienkiewicz et al. 2005, 2013; Oden 2006), for the purpose to unfold the
hereinafter chapters of this book.

4.2 Shape Functions and Interpolations

After the creation of FE mesh for a specified hydraulic structure as has been
elaborated in Chap. 3, basic unknown state variables such as displacements [or
temperatures, hydraulic potentials (water heads)] will be defined at the nodal points.
A set of shape (also called basis) functions is chosen on reference elements to
uniquely interpolate the nodal state variables onto the mapped elements of the mesh
and its boundaries. To determine a one-to-one correspondence between the
Cartesian coordinates in a reference element and the curvilinear coordinates in the
real world element, the so-called isoparametric element is customarily employed
which conducts coordinate mapping (transforming) between the reference element
and stretched/distorted real world element. With the help of the principles of virtual
work (or functional variation), an equation set of equivalent nodal forces (or fluxes)
equilibrated by the boundary loads (or fluxes) is established, which may be alge-
braically solved to provide the basic state variables bound at the nodes. These
solved basic state variables are further employed to calculate their gradient related
variables such as strain/stress, seepage gradient, flow rate, temperature gradient, etc.
(Babuška et al. 1995).

Traditional nodal shape (basis) functions of C0 continuity as “standard” ones are
prevalent in the most FE algorithms, which possess a well known property termed
as “partition of unity” that each nodal shape function is equal to 1 at its binding
node whereas at the other nodes it is equal to 0, and the summation of all the nodal
shape functions is equal to 1.

A serious drawback exists, however, with these standard basis functions, when
the element order is updated, the new shape functions have to be regenerated totally
and hence all the calculations are repeated. It would be attractive to avoid this
drawback by constructing the state variable interpolation as a series in which the
nodal shape functions do not depend on the number of nodes in the element. This
idea gives rise to “hierarchical” shape functions (Babuška et al. 1981).
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4.2.1 One-Dimensional Elements

(1) Standard and hierarchical basis functions

Take the bar element illustrated in Fig. 4.1 for example. The traditional
one-dimensional element of C0 continuity entails the displacement interpolation
along the bar by

u ¼ N1u1 þN2u2 ð4:1Þ

In which the standard shape (basis) functions are

N1 ¼ u1 ¼ � 1
2

n� 1ð Þ

N2 ¼ u2 ¼
1
2

nþ 1ð Þ

8><
>: ð4:2Þ

The normalized (parametric, simplex) coordinate n is a dimensionless geomet-
rical variable with its origin at the middle of the element (see Fig. 4.1) and is
calculated by the formula

n ¼ 2x� x2 � x1
x2 � x1

ð4:3Þ

where x1 = global coordinate of the left end; x2 = global coordinate of the right
end.

A progressively increasing number of nodes will improve the interpolation
accuracy. To generate a set of standard shape functions using the polynomial of the
2nd order for the purpose of higher order interpolation, we can write

u ¼ N1u1 þN2u2 þN3u3 ð4:4Þ

Fig. 4.1 One-dimensional element and basis functions
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In which

N1 ¼ 1
2
n n� 1ð Þ

N2 ¼ 1
2
n nþ 1ð Þ

N3 ¼ 1
2
ð1� nÞ 1þ nð Þ

8>>>>><
>>>>>:

ð4:5Þ

u1, u2 and u3 are exactly the nodal state variables, namely, the nodal displacements
bound at the left end, right end and middle point. The standard shape functions N1,
N2 and N3 defined by the normalized coordinate n possess the property of the
Lagrange interpolation, i.e. at the binding node it is equal to 1 whereas at the other
points it is equal to 0, and the summation of all the shape functions is equal to 1.
Compare Eq. (4.2) with Eq. (4.5) it is clear that the shape functions of different
order will not be overlapped at all, this will result in the unpleasant consequence
that the stiffness matrix of a lower order element is not the sub-matrix of the higher
order ones. For a fixed mesh, if we try to use higher order element to improve the
computation accuracy, the whole computation procedure should be re-started from
the beginning, which results in low computation efficiency.

The hierarchical concept may also be well illustrated by the bar problem in
Fig. 4.1. It keeps the linear interpolation Eq. (4.1) unchanged using the standard
shape functions N1 and N2 defined in Eq. (4.2), meanwhile adds a polynomial basis
function U3 always so designed as to have zero values at the bar ends. The cor-
responding quadratic (2nd-order) interpolation is now in the form of

u ¼ N1û1 þN2û2 þU3û3 ð4:6Þ

In which

U3 ¼ 1þ nð Þð1� nÞ ð4:7Þ

Contrast Eqs. (4.4) and (4.5) with Eqs. (4.6) and (4.7), the new state variables
û1, û2, û3 may be expressed by

û1 ¼ u1
û2 ¼ u2
û3 ¼ u3 � ðu1 þ u2Þ=2

8><
>: ð4:8Þ

These new state variables are now not the explicit nodal ones (e.g. local dis-
placements). In addition, the traditional properties such as the partition unity of
shape functions, are no longer held. However, the final solution is identical because
the interpolation of u within the bar element is unchanged.
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As we have already noted, the above basis function U3 is not obligated to be
uniquely defined as (1 − n2), and many other possibilities exist in the quadratic
expression subject to the null value restraint at both the ends of the bar element.

For a cubic (3rd-order) element, we further add an item related to U4 to the
quadratic expansion Eq. (4.6) where U4 is any cubic (3rd-order) polynomial which
is null at n = ±1 (i.e. at nodes 1 and 2). Again, a selective polynomial set is
available. For example, we can write

U4 ¼ n 1� n2
� � ð4:9Þ

The coordinate mapping (transforming) between the reference element and real
world element holds by the standard shape functions identical to Eqs. (4.1)–(4.5).

Following a similar manner, we can define the much higher-order hierarchical
element by adding the basis function series

U5 ¼ n2 1� n2
� �

U6 ¼ n3 1� n2
� �

. . .

8><
>: ð4:10Þ

As we have already emphasized that, the above polynomial set is not unique and
many other possibilities exist. For example, an alternative series of the hierarchical
basis functions may be conveniently built as

Up ¼
1

p�1ð Þ! np�1 � 1
� �

p ¼ 3; 5; . . .ð Þ
1

p�1ð Þ! np�1 � n
� �

p ¼ 4; 6; . . .ð Þ

(
ð4:11Þ

Use is made of orthogonal polynomial series, a much better choice of hierar-
chical basis functions may be achieved to profit from their advantage that the
stiffness matrix obtained is nearly diagonal and hence better matrix condition is
implied (Babuška et al. 1989; Webb and Abouchacra 1995; Chilton and Suri 1997;
Cheng and Chen 1999).

(2) Shape functions using orthogonal polynomials

1. Legendre polynomials

Up ¼
Zn

�1

Pp�2 xð Þdx p ¼ 3; 4; . . .ð Þ ð4:12Þ

In which Pp is the p-order normalized Legendre polynomial
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Pp xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pþ 1

2

r
1

2p�1 p� 1ð Þ!
dp

dxp
x2 � 1
� �p ð4:13Þ

The front items of Eq. (4.12) may be specified as follows

U3 ¼
ffiffiffi
3
2

r
� 1
2

n2 � 1
� �

U4 ¼
ffiffiffi
5
2

r
� 1
2

n3 � n
� �

U5 ¼
ffiffiffi
7
2

r
� 1
8

5n4 � 6n2 þ 1
� �

U6 ¼
ffiffiffi
9
2

r
� 1
8

7n5 � 10n3 þ 3n
� �

U7 ¼
ffiffiffiffiffi
11
2

r
� 1
16

21n6 � 35n4 þ 15n2 � 1
� �

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð4:14Þ

The corresponding functional curves are plotted in Fig. 4.2.

2. Jacobian polynomials

Up ¼ ðn2 � 1ÞJ 2;2ð Þ
p�3 nð Þ p ¼ 3; 4; . . .ð Þ ð4:15Þ

In which Jp
(2,2)(x) is the Jacobian (2,2) orthogonal polynomial series of p-order

J 2;2ð Þ
p xð Þ ¼ 1

2pp!
� 1

1� xð Þ2 1þ xð Þ2 �
dp

dxp
1� xð Þ2 1þ xð Þ2 x2 � 1

� �ph i
ð4:16Þ

The front items of Eq. (4.15) are specified as follows

U3 ¼ n2 � 1
U4 ¼ 3n3 � 3n
U5 ¼ 7n4 � 8n2 þ 1
U6 ¼ 15n5 � 20n3 þ 5n
U7 ¼ 15

16 33n6 � 51n4 þ 19n2 þ 1
� �

8>>>><
>>>>:

ð4:17Þ

The functional curves of the Jacobian polynomials are very similar to that of the
Legendre polynomials (see Fig. 4.2).
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(3) Merits of orthogonal polynomial series as basis functions

Take the elastic problem of the bar element (see Fig. 4.1) for example, its stiffness
matrix is computed by the formula

½K� ¼
Z l

0

EA
d½U�T
dx

d½U�
dx

dx ð4:18Þ

Fig. 4.2 Functional curves of the Legendre polynomials. a U3; b U4; c U5; d U6; e U7
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Introducing Eqs. (4.2) and (4.14) into Eq. (4.18), we have

K ¼ EA
l

1 �1
�1 1

1
1

:
1

2
6666664

3
7777775

ð4:19Þ

In which E, A, l are the Young’s modulus, cross sectional area, and length of the
bar, respectively.

It is clear that apart from the sub-matrix corresponding to the constant strain, the
rest sub-matrix is diagonal, which is important for the purpose of saving computer
memory and accelerating computation speed.

In addition, the stiffness matrix employing orthogonal polynomial series exhibits
better condition number.

4.2.2 Two-Dimensional Elements

For the two-dimensional FEM, a standard element possesses nodal shape functions
associated with its nodes which meet the condition of partition of unity. For hier-
archical element two additional groups of shape functions are demanded. An edge
shape function is associated with the edge enclosing the element. It is zero at other
edges and the two ends of the edge itself. A face shape function is associated with
the element itself, and it is zero at all the element edges and other elements.

(1) Triangular elements

1. Standard basis functions

A simplest two-dimensional finite element with triangular configuration is defined
by its local nodes 1, 2, 3, and straight edge linking the nodes, as shown in Fig. 4.3.
The choice of basic state variables, take the displacements for example, is of

Fig. 4.3 Simplex coordinates
of standard triangular element
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paramount importance. The normalized coordinates for this element are defined
using the element sub-division as simplex coordinates

n1 ¼
SP23
S123

n2 ¼
S1P3
S123

n3 ¼
S12P
S123

8>>>>>><
>>>>>>:

ð4:20Þ

It is obvious that n1, n2 and n3 are defined within [0,1], and n1 + n2 + n3 = 1.
Similar to the one-dimensional case, the traditional standard basis functions are

employed to formulate nodal shape functions

Ni ¼ ni ði ¼ 1; 2; 3Þ ð4:21Þ

2. Hierarchical basis functions

Conventional polynomial sets may be employed to construct additional basis
functions for the hierarchical element, if necessary.

– Edge basis functions

Ep 1�2ð Þ ¼
1
p! n2 � n1ð Þp� n1 þ n2ð Þp½ � p ¼ 2; 4; 6; . . .ð Þ
1
p! n2 � n1ð Þp� n2 � n1ð Þ n1 þ n2ð Þp�1
h i

p ¼ 3; 5; 7; . . .ð Þ

8<
:

Ep 2�3ð Þ ¼
1
p! n3 � n2ð Þp� n2 þ n3ð Þp½ � p ¼ 2; 4; 6; . . .ð Þ
1
p! n3 � n2ð Þp� n2 � n3ð Þ n2 þ n3ð Þp�1
h i

p ¼ 3; 5; 7; . . .ð Þ

8<
:

Ep 3�1ð Þ ¼
1
p! n1 � n3ð Þp� n3 þ n1ð Þp½ � p ¼ 2; 4; 6; . . .ð Þ
1
p! n1 � n3ð Þp� n1 � n3ð Þ n3 þ n1ð Þp�1
h i

p ¼ 3; 5; 7; . . .ð Þ

8<
:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð4:22Þ

– Face basis functions

Fp ¼ ni1n
j
2n

k
3 iþ jþ k ¼ p; i; j; k� 1ð Þ ð4:23Þ
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If the orthogonal polynomial sets (e.g. the Jacobian) are employed, then we have

① Nodal basis functions where (p � 1)

Ni ¼ ni ði ¼ 1; 2; 3Þ ð4:24Þ

② Edge basis functions where (p � 2)

Ei a; bð Þ ¼ abJ 2;2ð Þ
i�1 b� að Þ ða 6¼ b; a; b ¼ n1; n2; n3Þ ð4:25Þ

The orthogonal condition profitable in such a hierarchical element is

Z1

0

Ei nk; 1� nkð Þð ÞEj nk; 1� nkð Þð Þdnk ¼ dij
i iþ 1ð Þ

iþ 3ð Þ iþ 2ð Þ 2iþ 3ð Þ ð4:26Þ

③ Face basis functions where (p � 3)

Fpi ¼ n1n2n3 1� n3ð ÞvJ 2;2vþ 5ð Þ
i 1� 2n3ð ÞJ 2;2ð Þ

v
n2 � n1
1� n3

� �
ðv ¼ p� 3� i; i ¼ 0; 1; . . .p� 3Þ

ð4:27Þ

The orthogonal condition profitable in such a hierarchical element is

1
2S

ZZ
S

FpiFqjdS ¼
Z1

n3¼0

Z1�n3

n1¼0

FpiFqjdn1n3

¼ dpqdij
vþ 1ð Þ vþ 2ð Þ iþ 1ð Þ iþ 2ð Þ

2vþ 5ð Þ vþ 4ð Þ vþ 3ð Þ 2vþ 2iþ 8ð Þ 2vþ iþ 7ð Þ 2vþ iþ 6ð Þ
ð4:28Þ

The front four items of the face basis functions are specified in Eq. (4.29) and
Fig. 4.4.
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F30 ¼ n1n2n3
F40 ¼ 3n1n2n3 n2 � n1ð Þ
F41 ¼ 3n1n2n3 1� 3n3ð Þ
F50 ¼ n1n2n3 �1þ 2n3 � n33 þ 7n22 � 14n1n2 þ 7n21

� �

8>>>><
>>>>:

ð4:29Þ

Fig. 4.4 Front four items of the face basis functions constructed with the Jacobian polynomials.
a F30; b F40; c F41; d F50
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(2) Quadrilateral elements

1. Standard basis functions

A standard rectangular element defined by local nodes 1, 2, 3 and 4 is shown in
Fig. 4.5. Any quadrilateral may be mapped into this standard element whose
standard nodal basis functions are

Ni ¼ 1
4

1þ n0nð Þ 1þ g0gð Þ i ¼ 1; 2; 3; 4ð Þ ð4:30Þ

In which n0 and η0 are the normalized coordinates of the node i

n0 ¼ �1ð Þi

g0 ¼ �1ð Þ i=2þ 0:5½ �

(
ð4:31Þ

2. Hierarchical basis functions

The additional basis functions for the hierarchical element are constructed as
follows.

① Edge basis functions where (p � 2)

Ep
1�2 ¼

1
4

1� gð ÞUp nð Þ

Ep
3�4 ¼

1
4

1þ gð ÞUp nð Þ

Ep
1�3 ¼

1
4

1� nð ÞUp gð Þ

Ep
2�4 ¼

1
4

1þ nð ÞUp gð Þ

8>>>>>>>>>><
>>>>>>>>>>:

ð4:32Þ

Fig. 4.5 Standard
quadrilateral element
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In which Up may be all the hierarchical basis functions available in
one-dimensional case.

② Face basis functions where (p � 4)

Fp
i;jð Þ ¼ Ui nð ÞUj gð Þ iþ j ¼ p; i; j� 2ð Þ ð4:33Þ

The above basis functions actually belong to the Serendipity family. If in lieu of
i + j = p we let i, j � p, they are transferred into the Lagrange family. The basis
functions of the Serendipity family comprise fewer members than the Lagrange
family, therefore this is advantageous to lower down the computation efforts. The
hierarchical function curves of the simplest items for the quadrilateral element are
plotted in Fig. 4.6.

4.2.3 Three-Dimensional Elements

For an isoparametric three-dimensional element, traditional standard shape func-
tions are associated with the element nodes, and they meet the requirement on the
partition of unity. Towards the hierarchical interpolation, additional three groups of
hierarchical basis functions are demanded. An edge shape function is associated
with the element edge, which is zero at other edges and the two ends of the edge
itself. A face shape function is associated with the element face, which is zero at the
four edges enclosing the face and the other faces. A body shape function (also
called internal shape function) is associated with the element itself, which is zero on
all the element faces.

(1) Tetrahedral elements

1. Standard basis functions

Any tetrahedral may be mapped into the standard element in Fig. 4.7, whose nodal
basis functions are expressed in Eqs. (4.34) and (4.35) with the simplex coordinates
define by the sub-division.

n1 ¼
VP234

V1234

n2 ¼
V1P34

V1234

n3 ¼
V12P4

V1234

n4 ¼
V123P

V1234

8>>>>>>>>>><
>>>>>>>>>>:

ð4:34Þ
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Fig. 4.6 Diagram showing the hierarchical basis functions for quadrilateral element. a Nodal

function (Ni); b edge function E2
i

� �
; c face function F4

ð2;2Þ
� �
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Ni ¼ ni i ¼ 1; 2; 3; 4ð Þ ð4:35Þ

2. Hierarchical basis functions

The additional basis functions particular for the hierarchical element are constructed
as follows.

① Basis function for the edge (r, s) where (p � 2)

Ep
r;sð Þ ¼ �2nrnsGp�2 nr; nsð Þ ðr; s ¼ 1; 2; 3; 4; r 6¼ sÞ ð4:36Þ

In which

Gm x; yð Þ ¼
Xm
i¼0

�1ð Þi 1
iþ 1

m
i

� �
mþ 1

i

� �
xiym�i ð4:37Þ

The front items of edge functions are specified below

E2
r;sð Þ ¼ �2nrns

E3
r;sð Þ ¼ �2nrns nr � nsð Þ

E4
r;sð Þ ¼ �2nrns n2s � 3nrns þ n2r

� �
E5

r;sð Þ ¼ �2nrns n3s � 6nrn
2
s þ 6n2rns � n3r

� �

8>>>>><
>>>>>:

ð4:38Þ

② Basis functions for the face (r, s, t) where (p � 3)

F a;bð Þ;t
r;s;tð Þ ¼ nrnsntHab nr; nsð Þ aþ b ¼ p� 3ð Þ ð4:39Þ

Fig. 4.7 Standard tetrahedral
element

4.2 Shape Functions and Interpolations 255



In which

Hab x; yð Þ ¼
Xb
i¼0

Xa
j¼0

� 1
2

� �iþ j

i!j! iþ jð Þ! a

j

� �
aþ 1

j

� �
b

i

� �
bþ 1

i

� �

� 1Qiþ j
k¼1 k aþ bþ 2ð Þ � k k � 1ð Þ=2½ � x

a�jyb�i ð4:40Þ

The front items of face functions are specified below

F 0;0ð Þ;3
r;s;tð Þ ¼ nrnsnt

F 1;0ð Þ;4
r;s;tð Þ ¼ nrnsnt nr �

1
3

� �

F 0;1ð Þ;4
r;s;tð Þ ¼ nrnsnt ns �

1
3

� �

8>>>>>><
>>>>>>:

ð4:41Þ

③ Body basis functions where (p � 4)

B a;b;cð Þ;p ¼ n1n2n3n4I a;b;cð Þ n1; n2; n3ð Þ aþ bþ c ¼ p� 4ð Þ ð4:42Þ

In which

I a;b;cð Þ nr; ns; ntð Þ ¼ �I aþ bþ cð Þ
a;0;0ð Þ nrð Þ � �I bþ cð Þ

0;b;0ð Þ nr; nsð Þ � �I a;b;cð Þ
0;0;cð Þ nr; ns; ntð Þ ð4:43Þ

and

�I mð Þ
a;0;0ð Þ nrð Þ ¼ Pa

i¼0
�1ð Þii! a

i

� �
aþ 1
i

� �
2mþ 5�ið Þ!
2mþ 5ð Þ! na�i

r

�I mð Þ
0;b;0ð Þ nr; nsð Þ ¼ Pb

i¼0
�1ð Þii! b

i

� �
bþ 1
i

� �
2mþ 3�ið Þ!
2mþ 3ð Þ! nb�i

s nr � 1ð Þi

�I mð Þ
0;0;cð Þ nr; ns; ntð Þ ¼ Pc

i¼0
i!

c
i

� �
cþ 1
i

� �
2mþ 1�ið Þ!
2mþ 1ð Þ! nc�i

t ns þ nr � 1ð Þi

8>>>>>>><
>>>>>>>:

ð4:44Þ
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The front items of body functions are specified below

B 0;0;0ð Þ;4 ¼ nrnsntnw
B 1;0;0ð Þ;5 ¼ nrnsntnw nr � 2

7

� �
B 0;1;0ð Þ;5 ¼ nrnsntnw ns þ 2

5 ðnr � 1Þ� �
B 0;0;0ð Þ;5 ¼ nrnsntnw nt þ 2

3 ðns þ nr � 1Þ� �

8>><
>>: ð4:45Þ

(2) Hexahedral elements

1. Standard basis functions

For the standard hexahedral element illustrated in Fig. 4.8, we have traditional
standard nodal shape functions defined as

Ni ¼ 1
8

1þ n0nð Þ 1þ g0gð Þ 1þ f0fð Þ ði ¼ 1; 2; . . .; 8Þ ð4:46Þ

In which n0, η0, i are the normalized coordinates of node i

n0 ¼ �1ð Þi
g0 ¼ �1ð Þ i=2þ 0:5½ �

f0 ¼ �1ð Þ i=4þ 0:75½ �

8<
: ð4:47Þ

2. Hierarchical basis functions

The additional basis functions particular for the hierarchical element are constructed
as follows.

① Edge basis element where (p � 2)

Fig. 4.8 Hexahedral element
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Ep
1 ¼

1
4

1� gð Þ 1� fð ÞUp nð Þ

Ep
2 ¼

1
4

1þ gð Þ 1� fð ÞUp nð Þ

Ep
3 ¼

1
4

1� gð Þ 1þ fð ÞUp nð Þ

Ep
4 ¼

1
4

1þ gð Þ 1þ fð ÞUp nð Þ

Ep
5 ¼

1
4

1� fð Þ 1� nð ÞUp gð Þ

Ep
6 ¼

1
4

1þ fð Þ 1� nð ÞUp gð Þ

Ep
7 ¼

1
4

1� fð Þ 1þ nð ÞUp gð Þ

Ep
8 ¼

1
4

1þ fð Þ 1þ nð ÞUp gð Þ

Ep
9 ¼

1
4

1� nð Þ 1� gð ÞUp fð Þ

Ep
10 ¼

1
4

1þ nð Þ 1� gð ÞUp fð Þ

Ep
11 ¼

1
4

1� nð Þ 1þ gð ÞUp fð Þ

Ep
12 ¼

1
4

1þ nð Þ 1þ gð ÞUp fð Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð4:48Þ

In which Up may be any hierarchical basis functions available in
one-dimensional case.

② Face basis functions where (p � 4)

Fpði;jÞ
1 ¼ 1

2
1� nð ÞUi gð ÞUj fð Þ

Fpði;jÞ
2 ¼ 1

2
1þ nð ÞUi gð ÞUj fð Þ

Fpði;jÞ
3 ¼ 1

2
1� gð ÞUi fð ÞUj nð Þ

Fpði;jÞ
4 ¼ 1

2
1þ gð ÞUi fð ÞUj nð Þ

Fpði;jÞ
5 ¼ 1

2
1� fð ÞUi nð ÞUj gð Þ

Fpði;jÞ
6 ¼ 1

2
1þ fð ÞUi nð ÞUj gð Þ

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ði; j� 2; iþ j ¼ pÞ ð4:49Þ
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③ Body basis functions where (p � 6)

Bp i;j;kð Þ ¼ Ui nð ÞUj gð ÞUk fð Þ ði; j; k� 2; iþ jþ k ¼ pÞ ð4:50Þ

The above basis functions belong to the Serendipity family. Similar to the
two-dimensional case, if in lieu of i + j = p and i + j + k = p, we let i, j � p for
face basis functions and i, j, k � p for body basis functions respectively, they are
transferred into the Lagrange family.

4.2.4 Generalized Interpolation of State Variables

Use is made of the foregoing basis functions, any basic state variables within an
element may be interpolated. Take the displacement u in a hexahedral element for
example, we have

u ¼
X8
i¼1

NiuNi þ
X
p¼2

X12
k¼1

Ep
ku

p
Ek þ

X
p¼4

Xiþ j¼p

i;j� 2

X6
k¼1

Fpði;jÞ
k up i;jð Þ

Fk

þ
X
p¼6

Xiþ jþ k¼p

i;j;k� 2

Bpði;j;kÞup i;j;kð Þ
B

ð4:51Þ

In which uNi, uEk
p , uFk

p(i,j), and uB
p(i,j,k) are the general displacement variables,

respectively corresponding to the nodes, edges, faces and body, of the element.
The right side of Eq. (4.51) may be truncated to leave only the first item merely,

in this way the standard isoparametric element of 8 nodes is retrogressed.
If we assemble all the basis functions with respect to nodes, edges, faces, and

body into a general shape function set (Ni) of the element e whose correspondent
general node number is fe(p), any physical and mechanical variables, e.g. dis-
placement u, head potential /, and temperature T within the element with nor-
malized coordinates (n, η, f) may be interpolated using the general nodal variables
by the formulas

u ¼
XfeðpÞ
i¼1

Niui

/ ¼
XfeðpÞ
i¼1

Ni/i

T ¼
XfeðpÞ
i¼1

NiTi

8>>>>>>>>>>><
>>>>>>>>>>>:

ð4:52Þ
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In the discussion hereinafter with respect to three-dimensional problems,
fe(p) = 8 means that the FE algorithm will be formulated using traditional standard
isoparametric element of 8 nodes, otherwise the hierarchical technique will be
addressed.

4.3 Quasistatic Strain/Stress Problems

4.3.1 Solid Elements

(1) Basic formulation for elasticity

The region concerned is discretized into an assemblage of sub-regions, each of
which has its own approximating functions termed as basis or shape functions. Take
the isoparametric hexahedral element e with 8 nodes (see Fig. 4.8) for instance. At
time t, we denote the nodal displacement increment {Dd}t and the interior dis-
placement increment {Du}t as

Ddf gt¼ Dux1 Duy1 Duz1 . . . DuxfeðpÞ DuyfeðpÞ DuzfeðpÞ
	 
T

ðfor p ¼ 1; feðpÞ ¼ 8Þ ð4:53Þ

and

Duf gt¼ ½Dux Duy Duz�T ð4:54Þ

where t is the time at the end of the nth time marching step.
There also exists nodal force increment

fDf g ¼ Dfx1 Dfy1 Dfz1 . . . DfxfeðpÞ DfyfeðpÞ DfzfeðpÞ
	 
T

ðfor p ¼ 1; feðpÞ ¼ 8Þ ð4:55Þ

The approximation for the displacement within an element is an interpolation of
the nodal displacements (as yet unknown) via shape functions.

Duf gt¼ N½ � Ddf gt ð4:56Þ

In which [N] is termed as the “shape function matrix”

N½ � ¼ N1½I� N2½I� . . . NfeðpÞ½I�
� � ðfor p ¼ 1; feðpÞ ¼ 8Þ ð4:57Þ

where [I] stands for 3 � 3 unit matrix.
For small deformation problems, we have
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Dex ¼ @Dux=@x
Dey ¼ @Duy=@y
Dez ¼ @Duz=@z
Dcyz ¼ @Duz=@yþ @Duy=@z
Dczx ¼ @Dux=@zþ @Duz=@x
Dcxy ¼ @Duy=@xþ @Dux=@y

8>>>>>><
>>>>>>:

ð4:58Þ

Inserting Eq. (4.56) into Eq. (4.58) leads to

Def gt¼ B½ � Ddf gt ð4:59Þ

In which B½ � is termed as the “strain matrix”

B½ � ¼ ½½B1� ½B2� . . . ½BfeðpÞ�� ðfor p ¼ 1; feðpÞ ¼ 8Þ ð4:60Þ

Bi½ � ¼

@Ni
@x 0 0
0 @Ni

@y 0

0 0 @Ni
@z

0 @Ni
@z

@Ni
@y

@Ni
@z 0 @Ni

@x
@Ni
@y

@Ni
@x 0

2
666666664

3
777777775

ð4:61Þ

According to the Hooke’s law we have elastic constitutive relation

Drf gt¼ D½ � Def gt ð4:62Þ

In which Drf gt¼ Drx Dry Drz Dsyz Dszx Dsxy
	 
T

t is the stress

incremental vector, Def gt¼ Dex Dey Dez Dcyz Dczx Dcxy
	 
T

t is the
strain incremental vector, D½ � is the elastic matrix.

Inserting Eq. (4.59) into Eq. (4.62) gives rise to

fDrgt ¼ ½S�fDdgt ð4:63Þ

In which [S] is termed as the “stress matrix”

½S� ¼ ½D�½B� ð4:64Þ

Suppose a small, virtual displacement {Dd*}t occurs to the element e, it in turn
produces a virtual strain {Dɛ*}t according to Eq. (4.59), then the virtual work
principle may be written as
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ðfDd�gtÞTfDf g ¼
ZZZ
Xe

ðfDe�gtÞTfDrgtdX ð4:65Þ

where

fDf g ¼
ZZZ
Xe

N½ �T DVf gdXþ
ZZ
Ce

N½ �T Dpf gdCþ N½ �T Dqf g ð4:66Þ

In which {DV}, {Dp} and {Dq} are the nodal force incremental vectors corre-
sponding to volumetric load, surface load, and concentrated load within the element
or on the element boundaries.

Denoting

fe�gt ¼ ½B�fd�gt ð4:67Þ

and use is made of Eq. (4.62), the virtual work principle Eq. (4.65) may be spec-
ified as

ðfd�gtÞTfDf g ¼
ZZZ
Xe

ðfd�gtÞT B½ �T D½ � B½ � Ddf gtdX ð4:68Þ

From Eq. (4.68) we have

k½ � Ddf gt¼ Dff gt ð4:69Þ

k½ � ¼
ZZZ
Xe

B½ �T D½ � B½ �dX ð4:70Þ

In which [k] is the stiffness matrix of the element e.
Gaussian quadrature for the numerical integration in Eqs. (4.66) and (4.70) is

normally employed with the help of isoparametric element concept (Zienkiewicz
et al. 2005).

Equation (4.69) is the governing equation for the element e. By looping over
each element, the system stiffness matrix [K] and force vector {DF}t of the structure
are assembled in a way similar to the “matrix truss method”, then the governing
(equilibrium) equation of the whole structure system is given by

½K�fDUgt ¼ fDFgt ð4:71aÞ
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After the solution for the system displacement vector {DU}t of the discretized
structure system, the strain increment {Dɛ}t and stress increment {Dr}t for each
element may be computed individually using Eqs. (4.59)–(4.62).

In the following coverage throughout the whole book, {Dd}t will be used to note
the system displacement vector in lieu of {DU}t, where there is no risk of mis-
leading. Namely, instead of Eq. (4.71a), we may write

½K�fDdgt ¼ fDFgt ð4:71bÞ

(2) Extended formulation for elasto-viscoplasticity

The constitutive relation of incremental form formulated in Chap. 2 (see Eqs. 2.122–
2.125) will be implemented in the FEM algorithm for the purpose of elasto-
viscoplastic analysis of hydraulic structures. The implicit symbol (superscript ^) will
be neglected in the hereafter discussions of this book, where no risk of misunder-
standing will be led to.

The initial strain algorithm may be employed to solve the elasto-viscoplastic
problem of hydraulic structures (Owen and Hinton 1980). Inserting Eq. (2.122) into
Eq. (4.65), Eqs. (4.71a, 4.71b) will be transformed into

½K�fDdgt ¼ fDFgt þfDFvpgt ð4:72Þ

where the nodal equivalent (initial) load increment {DFvp}t attributable to vis-
coplastic deformation is assembled by the routine procedure of looping over {Dfvp}t
of each element

fDf vpgt ¼
ZZZ
Xe

B½ �T D½ � Devpf gtdX ð4:73Þ

4.3.2 Joint Elements with Thickness

Since the thickness of an interlayer or a fault j is rather small compared to its
stretch, any two conjugate nodes of a joint element corresponding to its upper and
lower faces [e.g. node 2 and node 6 in Fig. (3.6)] may employ the identical shape
functions of isoparametric quadrilateral element (see Fig. 4.5) (Desai et al. 1985),
namely

Ni ¼ 1
4

1þ ninð Þ 1þ gigð Þ i ¼ 1; 2; 3; 4ð Þ ð4:74Þ

where ni = (−1)i, ηi = (−1)[i/2+0.5].
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The displacements on the joint walls are interpolated in a conjugate form

Dux;lower ¼
X4
i¼1

NiDuxi

Dux;upper ¼
X4
i¼1

NiDuxiþ 4

8>>>><
>>>>:

ð4:75Þ

Thus the displacement difference in the upper and lower walls is

Dux ¼ Dux;upper � Dux;lower ¼
X4
i¼1

Ni Duxiþ 4 � Duxið Þ ð4:76Þ

Similarly, we have

Duy ¼
X4
i¼1

Ni Duyiþ 4 � Duyi
� � ð4:77Þ

Duz ¼
X4
i¼1

Ni Duziþ 4 � Duzið Þ ð4:78Þ

Equations (4.76)–(4.78) may be expressed in the local coordinate system cor-
respondent to the joint j using vector notations as

Duf gt¼ l½ �j½N� Ddf gt ð4:79Þ

In which

N½ � ¼ �N1I � N2I � N3I � N4I N1I N2I N3I N4I½ � ð4:80Þ

Ddf gt¼ ½Dux1 Duy1 Duz1 . . . Dux8 Duy8 Duz8�T ð4:81Þ

And the transformation matrix [l]j is defined in Eqs. (2.12)–(2.13).
There are three local strain components defined in Eqs. (2.54) and (2.55) which

may be given in terms of the displacement interpolation Eq. (4.79)

Def gt¼ 1
aj
l½ �j½N� Ddf gt¼ ½B�j Ddf gt

½B�j ¼ 1
aj
l½ �j½N�

(
ð4:82Þ

According to the virtual work principle in Eq. (4.65) and the constitutive relation
in Eq. (2.122), we obtain the governing equation of the joint element with thickness
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k½ � Ddf gt¼ Dff gt þ Df vpf gt ð4:83Þ

In which

k½ � ¼
ZZZ
Xe

B½ �Tj D½ �j B½ �jdX ¼ 1
aj

ZZ
Ce

N½ �T l½ �Tj D½ �j l½ �j N½ �dC ð4:84Þ

Df vpf gt¼
1
aj

ZZ
Ce

N½ �T l½ �Tj D½ �jfDevpgtdC ð4:85Þ

In which the elastic matrix [D]j is defined in Eq. (2.77).
Equations (4.83)–(4.85) may be assembled into Eqs. (4.72) and (4.73) in an

identical manner of normal solid element.

4.3.3 Joint Elements Without Thickness

Where the joint thickness approaches zero, i.e. a ! 0, the stress increment may be
postulated in proportional to the displacement difference of the conjugated nodes
directly (Goodman et al. 1968; Mahtab and Goodman 1970), and the constitutive
relation of joint will take the form in Eq. (2.126). Under such circumstances, the
governing equation for the joint element without thickness is identical to Eq. (4.83)
but in lieu of Eqs. (4.84) and (4.85), we have

k½ � ¼
ZZ
Ce

N½ �T l½ �Tj D½ �j l½ �j N½ �dC ð4:86Þ

Df vpf gt¼
ZZ
Ce

N½ �T l½ �Tj D½ �jfDuvpgtdC ð4:87Þ

In which the elastic matrix [D]j is defined in Eq. (2.76a).

4.3.4 Simulation of Excavation Disturbed (Damage)
Zone (EDZ)

(1) Concept

Stress redistribution and blasting impact during the excavation of underground
cavern, slopes and dam foundations trigger relaxation in the surrounding rock
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masses. As a result, excavation disturbed (damage) zone (EDZ) due to the relax-
ation will manifest along the excavation surface (Maejima et al. 2003; Martino and
Chandler, 2004; Zhou et al. 2004; Malmgren et al. 2007).

It has been widely accepted that because of the stress redistribution during
excavation, secondary cracks are induced around the initial rock fractures. Through
the examinations by scanning electron microscope (SEM) and acoustic emission
(AE), it is also revealed that the growth and nucleation of these cracks dominate the
failure and macroscopic mechanical properties (Kwaśniewski 1993; Golshani et al.
2006; Corthésy and Leite 2008).

The spatial-time distribution of the relaxation is influenced by a variety of factors
including the mechanical parameters of rocks, the characteristics of joints, the
in situ geo-stresses, the excavation procedure, and the blasting technology.
The EDZ is customarily further divided into the stress redistribution zone
(SRZ) and the blasting impact zone (BIZ). The relaxation in SRZ is mainly induced
by the tension and shear on the existing joints. The depth of this zone may range
from 5 to 20 m. The relaxation in BIZ shows new cracks and fissures over a depth
in the range of 0.5–2 m. Rock relaxation demonstrates the reduction of the Young’s
modulus (E), friction angle (u), cohesion (c), and the augment of Poisson’s ratio (l)
(Ramamurth 1993; Chen et al. 2001; Martino and Chandler 2004). The deteriora-
tion of the mechanical parameters is less pronounced in the SRZ than in the BIZ.
Outside the EDZ the mechanical parameters of the rock mass undergo but a slight
variation.

When the relaxation develops to certain degree, the spalling from the excavation
surface will be triggered. Under certain geology conditions, the surface instability
such as rock burst, or the appearance of larger extensive cracks along the excavation
surface, will occur (Exadaktylos and Tsoutrelis, 1995). These phenomena have
been mostly recognized and studied in the tunnelling engineering (Kaiser et al.
2010). The recent engineering practices also indicate that under certain circum-
stances such relaxation will affect the rock deformation and stability of excavated
slopes, foundations and their adjacent structures (e.g. dams) remarkably.

Based on the damage theory, complete stress-strain relations for brittle rocks
with crack propagation, have been explored, and the corresponding computation
algorithms have been formulated for the rock deformation and failure taking the
relaxation into account (Cai and Kaiser 2005; Moura et al. 2005; Exadaktylos et al.
2007; Jäger et al. 2008). This is a correct way, and, providing sufficient time and
budget for the comprehensive tests to calibrate the corresponding parameters, the
problems concerning the excavation-induced relaxation in EDZ could be well
handled.

A rigorous engineering approach to the rock relaxation issue is somewhat,
intractable, because of the intrinsic difficulties with the models and parameters for
heterogeneous and anisotropic rock masses. Consequently, it is suggestible to take
into account of a basic, rather than a detailed mechanism, towards the simplified
and practical algorithm based on the conventional geology investigations and tests
as well as the instrumentation observations. This is also because of the fact that a
dam foundation excavated in hard and brittle rock under high in situ geo-stresses
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may exhibit unexpected and rapid rock relaxation, leaving limited time for “me-
chanically perfect” analysis to help the countermeasure design.

Based on the above considerations we formulated a practical FE algorithm for
the rock foundation excavation considering EDZ. A criterion to pinpoint EDZ using
maximum tensile strain is introduced firstly, then the characteristics of the EDZ are
described by the variation of the conventional mechanical parameters of the rock
(E, l, u, c) pre- and post-relaxation. The algorithm is established on the
elasto-viscoplastic potential theory, which is able to describe the deformation and
stress adjustment history resulted from the deterioration of both the elastic and
strength parameters.

(2) Relaxation mechanism and criterion

The relaxation criterion may be established using displacements, stresses, or
internal variables (e.g. plastic strain) (Kaiser et al. 2010). It should be based on the
mechanism understanding that after the excavation, the augment of rebound dis-
placement and the reduction of stress perpendicular to the excavation surface will
lead to the relaxation. The fracture mechanics and rock sample tests have shown
that where the confining stress level is low, a hard rock performs in a way of brittle,
and the failure means the initial micro-cracks propagating along the maximum
compression stress (Kwaśniewski 1993; Golshani et al. 2006; Corthésy and Leite
2008). Therefore, the most inornate but applicable relaxation criterion makes use of
the maximum tensile strain of rock, to claim that the excessive maximum tensile
strain perpendicular to the maximum compressive stress is mainly blamed for the
rock relaxation. This maximum stress is, nearly parallel to the excavation surface.

A rock sample under the principal compression stress r3 is shown in Fig. 4.9.
The Poisson’s effect will lead to the lateral tensile strain ɛ1, which of course
including the effect of micro-crack propagation. If the permissible (allowable)
tensile strain ɛl can be experimentally obtained, the relaxation criterion can be
simply expressed by the formula

Fig. 4.9 Propagation of micro-cracks and development of tensile strain

4.3 Quasistatic Strain/Stress Problems 267



F ¼ e1 � el ¼ 0 ð4:88Þ

Figure 4.10 shows the excavation surface of a dam foundation. As the ongoing
of excavation, the compression stress r3 parallel to the excavation surface will be
adjusted (increase or decrease), while the compression stress r1 perpendicular to the
surface is definitely decreased (unloading). All these two factors put together will
result in the tensile strain ɛ1 perpendicular to the excavation surface. When the
tensile strain exceeds the permissible value ɛl, rock relaxation occurs.

The maximum tensile strain criterion is one of the simplest strain-based failure
criteria for rocks (Kwaśniewski and Takahashi 2010), which was initiated by Stacey
(1981) in order to interpret the mechanism of sidewall slabbing in mine haulages
and spalling from the face of bored tunnels. Stacy also suggested the value of
permissible tensile strain ɛl = 0.0073% for a certain congloment reef and
ɛl = 0.0175% for a diabase. The further researches were continued by Sakuri et al.
(Sakurai 1981; Sakurai et al. 1995), Fujii et al. (1998), Li et al. (2000) towards the
improvement of the criterion and the evaluation of ɛl. It was also reported to range
between ɛl = 0.1–1% according to different laboratory testing resources
(Kwaśniewski and Takahashi 2010).

However, the major difficulty lying in the evaluation of ɛl for a specific project
has not been satisfactorily solved. This is resulted from two aspects: first, if the rock
contains oriented joints (e.g. blind joints nearly parallel to the excavation surface),
the permissible tensile strain ɛl will be much smaller than that from laboratory tests
using intact rocks; second, the rock mass in the field has suffered from initial strain
prior to the engineering disturbance, which is not so easy to be measured or
computed. An alternative way to evaluate ɛl is, probably the back analysis

Fig. 4.10 Schematic diagram to dam foundation excavation
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immediately undertaken after the starting of the rock excavation, using the mes-
sages of the relaxation depth obtained from the ultrasonic detection.

At any time t, the evolution of mechanical parameters may be simply expressed
by the following formulas (Chen et al. 2012)

Et ¼ E� � E��E��
t0

t for t� t0
Et ¼ E�� for t[ t0


ð4:89Þ

lt ¼ l� þ l���l�
t0

t for t� t0
lt ¼ l�� for t[ t0


ð4:90Þ

ut ¼ u� � u��u��
t0

t for t� t0
ut ¼ u�� for t[ t0


ð4:91Þ

ct ¼ c� � c��c��
t0

t for t� t0
ct ¼ c�� for t[ t0


ð4:92Þ

In which the initial (pre-relaxation) and final (post-relaxation) mechanical
parameters are denoted as (E*, l*, u*, c*) and (E**, l**, u**, c**) respectively; the
duration time of the relaxation is denoted as t0. These parameters are evaluated by
laboratory or/and field tests as well as back analyses.

(3) FE solution process considering EDZ

The FE computation for excavation effects involves the determination of nodal
force vector {Df}t, which are equivalent to the tractions from the excavated ele-
ments adjacent to the excavation boundary

Dff gt ¼
ZZZ
Xe

B½ �T rf gtdX�
ZZZ
Xe

N½ �TcrdX ð4:93Þ

where cr = bulk unit weight of rock, kN/m3; [B] = strain matrix; [N] = shape
function matrix.

The integral of Eq. (4.93) covers the excavated elements merely, and only the
forces corresponding to the nodes on the excavated surface are assembled in {Df}t.

The vector {Df}t is then employed as a common load in the excavation simu-
lation to obtain the adjusted stress field (Brown and Booker 1985), which is further
followed by the relaxation computation.

The FEM algorithm for subsequent relaxation effects is established on the two
sets of mechanical parameters (Et, lt, ct, ut) and (Et+Dt, lt+Dt, ut+Dt, ct+Dt) at t and
t + Dt, respectively (Chen et al. 2012).

1. Displacement and stress adjustment due to the deterioration of elastic parameters

Suppose the elastic parameters are deteriorated from (Et, lt) down to (Et+Dt, lt+Dt),
the elastic relaxation analysis is conducted by the “restraint-relaxation” procedure
described as follows.
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① Calculate the strain {ɛ}t before relaxation

Figure 4.11a shows an element at time t, in which {f}t is the nodal force vector
balanced by this element and the surrounding elements through the stress {r}t. The
corresponding strain is

ef gt¼ D½ ��1
t rf gt ð4:94Þ

In which [D]t is the elastic matrix at time t.

② Calculate the clamped stress rf g0tþDt after relaxation

Figure 4.11b shows the same element at time t + Dt with deteriorated parame-
ters. During the time interval Dt the elastic matrix varies from [D]t to [D]t+Dt.
Suppose the element is fully clamped, the stress rf g0tþDt at time t + Dt will become

rf g0tþDt¼ D½ �tþDt ef gt ð4:95Þ

Figure 4.11b also displays the nodal force vector {f}t+Dt corresponding to this
clamped stress state.

③ Calculate the unbalanced force {Df}t

Since the imagined clamp does not actually exist, the unbalanced nodal force
vector before and after the relaxation will cause the strain and stress adjustment.
Figure 4.11c shows the element before (in broken line) and after (in solid line) the
adjustment where the unbalanced nodal force vector {Df}t during the element
relaxation is calculated by

fDf gt ¼ ff gtþDt � ff gt ð4:96Þ

The unbalanced nodal force {Df}t can be further written as

Fig. 4.11 Diagram to the calculation of unbalanced force. a Before relaxation; b after relaxation;
c unbalanced force
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fDf gt ¼ ff gtþDt � ff gt ¼
ZZZ
Xe

B½ �T rf gtdX�
ZZZ
Xe

B½ �T rf g0tþDtdX

¼
ZZZ
Xe

B½ �T rf gt� rf g0tþDt

� �
dX

ð4:97Þ

This unbalanced force {Df}t will be employed to compute the increments of
displacement, strain and stress due to the deterioration of elastic parameters by

k½ �t Ddf gt¼ Dff gt ð4:98Þ

Equations (4.97) and (4.98) may be assembled into the system Eqs. (4.71a,
4.71b) in an identical manner of normal solid element. After the solution of {Dd}t,
the strain and stress increments due to elastic relaxation may be calculated by

Def gt¼ B½ � Ddf gt ð4:99Þ

Drf gt¼ D½ �t Def gt ð4:100Þ

The displacement, strain and stress at time t + Dt are accumulated by

df gtþDt ¼ df gt þ Ddf gt
ef gtþDt ¼ ef gt þ Def gt
rf gtþDt ¼ rf gt þ Drf gt

8><
>: ð4:101Þ

2. Displacement and stress adjustment due to the deterioration of strength
parameters

Where the deterioration in strength parameters occurs, conventional non-linear
FEM is conducted using the elasto-viscoplastic potential theory. The equivalent
nodal force caused by the viscoplastic deformation is

Df vpf gt¼
ZZZ
Xe

B½ �T D½ �t Devpf gtdX ð4:102Þ

The increment of displacement is governed by

k½ �t Ddf gt¼ Df vpf gt ð4:103Þ

Equations (4.102) and (4.103) may be assembled into system Eqs. (4.72)
and (4.73) in an identical manner of normal solid element. After the solution
of {Dd}t, the strain and stress increments due to viscoplastic relaxation may be
calculated by
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Def gt¼ B½ � Ddf gt ð4:104Þ

fDrgt ¼ D½ �tðfDegt � Devpf gtÞ ð4:105Þ

The displacement, strain and stress at time t + Dt are accumulated by

df gtþDt¼ df gt þ Ddf gt
ef gtþDt¼ ef gt þ Def gt
rf gtþDt¼ rf gt þ Drf gt

8<
: ð4:106Þ

3. Solution process considering the deterioration of both the elastic and strength
parameters

The finite element solution process for the rock excavation considering the
deterioration of both the elastic and strength parameters is formulated in the flow
chart shown in Fig. 4.12, in which Kmax is the amount of excavation benches.

4.4 Dynamic Strain/Stress Problems

4.4.1 Governing Equations

Structural analysis methods for earthquake effects are normally classified into two
categories: approximate sliding stability analysis using an appropriate seismic
coefficient (e.g. the pseudo-static method) and dynamic internal stress analysis
(Severn 1978; Wilson 1998; ICOLD 2001, 2002; Clough and Penzien 2003; Chen
et al. 2015) using site-dependent earthquake ground motions. The latter is obliga-
tory for the hydraulic structures whose aseismic and fortifying design class is 1, and
is optional for that with aseismic and fortifying design class 2 or 3 (DL 5073-2000).

By the virtual work principle and the D’Alembert’s principle, the governing
equation of the FEM for dynamic response under the exciting of earthquake is
(Newmark 1959; Chopra and Chakrabarti 1981; Chopra 1987; Paulay and Priestley
1992)

M½ � €dðtÞ
n o

þ C½ � _dðtÞ
n o

þ K½ � dðtÞf g ¼ Ff g ð4:107Þ

where [M] = mass matrix; [C] = damping matrix; [K] = stiffness matrix; {d(t)},
_dðtÞ

n o
, €dðtÞ
n o

= vectors of displacement, velocity, and acceleration, respectively.

In Eq. (4.107) {F} is the dynamic force vector, in the case of earthquake we
have
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Ff g ¼ � M½ � €dgðtÞ
n o

ð4:108Þ

where €dgðtÞ
n o

= earthquake acceleration of ground motions.

The mass matrix [M] of a structure system is assembled using [m]e of element
e computed by the formula

m½ �e¼
ZZZ
Xe

N½ �Tq N½ �dX ð4:109Þ

where q = volumetric density of the material, kg/m3.

Fig. 4.12 Flow chart of the
finite element solution process
for EDZ effects
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Proportional damping (Rayleigh damping) is commonly stipulated (Caughey
and Kelly 1965), that

C½ � ¼ a0 M½ � þ a1 K½ � ð4:110Þ

In which a0 and a1 are found by the damping ratio through the formula

f1 ¼ a0
2x1

þ a1x1
2

f2 ¼ a0
2x2

þ a1x2
2


ð4:111Þ

In which x1 and x2 are the first and second natural frequencies.

4.4.2 Solution Techniques

Because the exact solutions for most dynamic problems do not exist or they demand
an excessive efforts, two approximate approaches are normally employed to com-
pute the dynamic responses of structural systems governed by Eq. (4.107). The first
approach employs mode-superposition techniques in which the total response is
expressed as a series of individual responses in the normal modes of vibration.
Towards elastic hydraulic structures, this approach falls into the simplified response
spectrum method and the finite element method using either a response spectrum or
acceleration-time records for the dynamic input. It cannot be applied in non-linear
structural system because of the superposition scheme involved, which requires that
the system remains linear during the vibration process. The second approach termed
as “time-history analysis” is applicable in the analysis of an arbitrary set of non-
linear dynamic equations, and coupled linear modal equations are implemented by
the direct time integration step-by-step. It enables the designer to determine the
number of cycles of nonlinear behavior, the magnitude of excursion into the
nonlinear range, and the time the structure remains nonlinear.

Dynamic analysis should be started with the simpler response spectrum method
and progress to more refined ones, if needed. The time-history analysis is only
required when important yielding (cracking) of the structure is indicated by, for
example, a response spectrum analysis.

4.4.3 Modal Analysis

Since by experiences the damping has minor influence on the natural frequencies
and modes, therefore it is ordinarily neglected in the modal analysis.

Let [C] = 0 and €dgðtÞ
n o

= 0 in Eq. (4.107), the governing equation of free

vibration without damping is reduced
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M½ � €dðtÞ
n o

þ K½ � dðtÞf g ¼ 0f g ð4:112Þ

Assuming that the displacements are harmonically related with time

dðtÞf g ¼ df g sinðxtþ cÞ ð4:113Þ

where {d} = vector of nodal displacement amplitudes; x = natural frequencies;
c = initial phase angle.

Substituting for {d(t)} and €dðtÞ
n o

from Eq. (4.113) in Eq. (4.112) that is

divided by sinðx tþ cÞ at its two sides, we have

K½ � � x2 M½ �� �
df g ¼ 0f g ð4:114Þ

This is a generalized eigenvalue equation, from which non-virtual solution for
{d} does exist only if

K½ �j � x2 M½ �j ¼ 0 ð4:115Þ

For a three-dimensional problem with n nodes, this is a 3n order polynomial
equation of x2, from which we can find 3n solutions (roots) xi as eigenvalues, of
which the smallest x1 is called as the “fundamental frequency”. For each xi

Eq. (4.114) gives one solution of eigenvector {d}i. The Jacobi method is normally
applied to seek all the eigenvectors to form “natural modes”. Since only few frontal
(less than 20) modes might be important in the response spectrum analysis,
therefore significant reduction in the size of system may be achieved. It is also
worthwhile to indicate that for normal mode analysis, support (restraint) of the
structure is unnecessary, and the magnitudes of eigenvectors and correspondent
stresses bear no physical meaning.

4.4.4 Mode-Superposition

Supposing s(� 20) natural frequencies x1 , x2, … xs and corresponding modes
{d}1, {d}2 … {d}s have been found, the displacement of the structure is expressed
by

dðtÞf g ¼ Y1ðtÞ df g1 þ Y2ðtÞ df g2 þ � � � þ YsðtÞ df gs ð4:116Þ

In which Y1(t), Y2(t) … Ys(t) are termed as “principal coordinates”.

Substituting for dðtÞf g, €dðtÞ
n o

and _dðtÞ
n o

from Eq. (4.116) in Eq. (4.107) and

using orthogonal conditions of natural modes, the coupled dynamic Eq. (4.107)
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may be transformed to the uncoupled equation set with respect to the principal
coordinates Yi(t)

€YiðtÞþ 2xini _YðtÞþx2
i YiðtÞ ¼ �ðgxi€dgxðtÞþ gyi

€dgyðtÞþ gzi
€dgzðtÞÞ ði ¼ 1; 2; . . .; sÞ

ð4:117Þ

In which gxi ; gyi ; gzi are the “mode-participation coefficients”; ni is the “damping
ratio”.

gxi ¼ df gTi M½ � Ixf g
df gTi M½ � df gi

; Ixf g ¼ 1 0 0 1 . . .½ �T

gyi ¼
df gTi M½ � Iyf g
df gTi M½ � df gi

; Iy
� � ¼ 0 1 0 0 . . .½ �T

gzi ¼ df gTi M½ � Izf g
df gTi M½ � df gi

; Izf g ¼ 0 0 1 0 . . .½ �T
ni ¼ a0

2xi
þ a1xi

2

8>>>>>><
>>>>>>:

ð4:118Þ

Damping ratio is obtained by the vibration test of structures. According to the
field observation data, the damping ratio of arch dams varies between 3 and 5%. For
example, the damping ratio of Xiaowan Arch Dam (H = 294.5 m) is ni = 5%. For
the calculation of the parameters a0 and a1 in Eq. (4.111), the fundamental fre-
quency x1 (1 Hz in the case of Xiaowan Arch Dam) and the threshold high fre-
quency (12 Hz in the case of Xiaowan Arch Dam) are selected. The earthquake
energy above threshold frequency may be neglected.

Equation (4.117) is called as “modal equations”, which are a set of uncoupled,
second order differential equations of Yi(t), and are much easier to be solved than
the original Eq. (4.107). A famous solution of Eq. (4.117) was provided by the
integration of Duhamel (1833)

YiðtÞ ¼ � 1

xi
�

Z t

0

ðgxi€dgxðtÞþ gyi
€dgyðtÞþ gzi

€dgzðtÞÞe�ni xi
� ðt�sÞ sinxi

� ðt � sÞds

þ e�ni xt
�
ðai sinxi

�
tþ bi cosxi

�
tÞ

ð4:119Þ

In which

�xi ¼ xi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2i

q
ð4:120Þ

ai and bi are the constants calculated using the initial conditions (e.g. dis-
placement, velocity) as follows
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ai ¼ Yið0Þ

bi ¼
_Yð0Þþ ni �xiYið0Þ

�xi

8><
>: ð4:121Þ

The numerical solution of Eq. (4.119) can be carried out by the linear interpo-
lation between discrete time intervals and the calculation of the resulting integrals.

4.4.5 Response Spectrum

The FEM using response spectrum is able to simulate the linear dynamic response
of structures by means of the natural (or characteristic) frequencies and corre-
sponding normal modes (natural modes, mode shapes).

In Eq. (4.116), the function Yi(t) represents the proportion of the i mode in the
vibration. For a certain earthquake action and damping, the solution of Yi(t) from
Eq. (4.119) depends on xi. Let x as abscissa axis and Yi(t) as ordinate axis, a group
of scattered points called as “displacement response spectrum”, may be plotted.
Similarly, let _YðtÞ or €YðtÞ as ordinate axis, and x (or T ¼ 2p

x ) as abscissa axis,
“velocity response spectrum” or “acceleration response spectrum” also may be
constructed. Because Yi(t), _YiðtÞ and €YiðtÞ are time dependent, such response spectra
are time dependent, too. Since in the practice the maximum earthquake response is
the most concern, therefore Yimax(t), _YimaxðtÞ and €YimaxðtÞ are customarily used in
lieu of the time dependent Yi(t), _YiðtÞ and €YiðtÞ in the building of response spectra.
With the help of such response spectra, it is no longer necessary to solve
Eq. (4.119). Instead, Yimax(t), _YimaxðtÞ and €YimaxðtÞ may be inserted into Eq. (4.116)
to obtain an estimation of the maximum responses (displacement, velocity, and
acceleration), i.e. the bounds on the behaviors of a structure subjected to seismic
loading (Chen 2015).

4.4.6 Time-History Analysis

The response spectrum solution, while providing much insight into the structural
shake patterns, are in general not economical for the solution of transient problems
in linear cases and not applicable where non-linearity declares its importance.

Towards the direct solution of Eq. (4.107), the classical Newmark-b algorithm
and Wilson-h algorithm (Newmark 1959; Bathe and Wilson 1972) basically belong
to the particular case of a quadratic truncated Taylor series expansion with regard to
time of the governing equation, are most prevalent for the dynamic analysis in
hydraulic structures. The remarkable advantage of these algorithms in comparison
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with the linear ones using the assumption of linear accelerate within the time
interval [t, t + Dt], is unconditionally stable in time marching steps.

By introduce a control parameter h(h � 1), the Wilson-h algorithm assumes
that the accelerate is linear within the interval [t, t + hDt], and it is proved that the
unconditional stable will be guaranteed when h � 1.37. In practical computation
h = 1.4 is normally exercised.

At time t + s, the accelerate may be interpolated by the formula

€d
n o

tþ s
¼ €d

n o
t
þ s

hDt
€d

n o
tþ hDt

� €d
n o

t

� �
0� s� hDtð Þ ð4:122Þ

Integral the Eq. (4.122) and let s = hDt yields the velocity and displacement as
follows

_d
n o

tþ hDt
¼ _d

n o
t
þ hDt

2
€d

n o
tþ hDt

þ €d
n o

t

� �

df gtþ hDt¼ df gt þ hDt _d
n o

t
þ hDtð Þ2

6
€d

n o
tþ hDt

þ 2 €d
n o

t

� �
8>><
>>: ð4:123Þ

Equation (4.123) further provides the accelerate and velocity at time s + hDt

€d
n o

tþ hDt
¼ 6

hDtð Þ2 df gtþ hDt� df gt
� �� 6

hDt
_d

n o
t
�2 €d

n o
t

_d
n o

tþ hDt
¼ 3

hDt df gtþ hDt� df gt
� �� 2 _d

n o
t
� hDt

2
€d

n o
t

8<
: ð4:124Þ

Equation (4.124) is now introduced into Eq. (4.123) to give the displacement

{d}t+hDt. Since the displacement {d}t and velocity _d
n o

t
and accelerate €d

n o
t
at time

t, as well as the displacement {d}t+hDt at time t + hDt, are all known, the velocity
_d

n o
tþDt

and accelerate €d
n o

tþDt
at time t + Dt may be recurred.

To summarize, the following steps are specified for the implementation of the
Wilson-h algorithm

① Computation of system stiffness matrix [K], damping matrix [C] and mass
matrix [M];

② For the initial values of df g0; _d
n o

0
, and {F}0, compute €d

n o
0
using the

governing equation;
③ Let h = 1.4, calculate the constants

a0 ¼ 6
hDtð Þ2 ; a1 ¼ 3

hDt ; a2 ¼ 2a1; a3 ¼ hDt
2 ; a4 ¼ a0

h

a5 ¼ � a2
h ; a6 ¼ 1� 3

h ; a7 ¼ Dt
2 ; a8 ¼ Dt2

6
④ Assemble the equivalent stiffness matrix
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�K½ � ¼ K½ � þ a0 M½ � þ a1 C½ � ð4:125Þ

⑤ Compute the equivalent load at time t + hDt

�Ff gtþ hDt ¼ Ff gtþ hDt þ M½ � a0 df gt þ a2 _d
n o

t
þ 2 €d

n o
t

� �
þ C½ � a1 df gt þ 2 _d

n o
t
þ a3 €d

n o
t

� � ð4:126Þ

⑥ Compute the displacement at time t + hDt

df gtþ hDt¼ �K½ ��1f�Fgtþ hDt ð4:127Þ

⑦ Compute the accelerate, velocity, and displacement at time t + Dt

€d
n o

tþDt
¼ a4 df gtþDt� df gt

� �þ a5 _d
n o

t
þ a6 €d

n o
t

_d
n o

tþDt
¼ _d

n o
t
þ a7 €d

n o
tþDt

þ €d
n o

t

� �

df gtþDt¼ df gt þDt _d
n o

t
þ a8 €d

n o
tþDt

þ 2 €d
n o

t

� �

8>>>>><
>>>>>:

ð4:128Þ

4.4.7 Dynamic Dam-Reservoir Interaction

The importance of reservoir water on the dynamic behavior of concrete dams was
firstly demonstrated by Westergaard (1933) who gave hydrodynamic pressures at
the vertical face of a rigid gravity dam subjected to harmonic ground motion. The
incompressible water postulation and added mass concept had become standard in
representing the reservoir/dam interaction, and various modifications have been
made to apply the equivalent concept to arch dams.

Under the assumption of incompressible water, it is possible to write the
dynamic equation of fluid as (Wilson and Khalvati 1983)

@2p
@x2

þ @2p
@y2

þ @2p
@z2

¼ 0 ð4:129Þ
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With boundary conditions

p ¼ 0 on the surface of reservoir
@p=@n ¼ �q€dn on the contact face of structure=water


ð4:130Þ

where €dn = absolute accelerate along the normal of the structure/water contact face;
n = normal vector of the contact face.

Equations (4.129) and (4.130) may be discretized by the variation principle

H½ � pf g ¼ Rf g ð4:131Þ

In which the matrix [H] and vector {R} of the reservoir system are assembled
from that of element e

h½ � ¼
ZZZ
Xe

B½ �T B½ �dX ð4:132Þ

rf g ¼ �
ZZ
Ce

q€dn N½ �TdC ð4:133Þ

where

B½ � ¼ ½Bi� ½Bj� . . . ½Bm�b c

Bi½ � ¼ Ni;x Ni;y Ni;z½ �T¼ @Ni

@x
@Ni

@y
@Ni

@z

� �T
8><
>: ð4:134Þ

Under the action of earthquake accelerate €dg
n o

, €dn may be expressed by the

formula

€dn ¼ l½ � �N½ � €d
n o

þ €dg
n o� �

ð4:135Þ

where �N½ � = shape function on the element face contacting reservoir water;
[l] = outward normal to the element face exerted by reservoir water expressed by

l½ � ¼ cosðn; xÞ; cosðn; yÞ; cosðn; zÞ½ � ð4:136Þ

Introducing Eq. (4.135) into Eq. (4.133) gives rise to

rf g ¼ � S½ � €d
n o

þ €dg
n o� �

ð4:137Þ
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In which

S½ � ¼
ZZ
Ce

N½ �Tq l½ � �N½ �dC ð4:138Þ

On the other hand, the dynamic response of the structure system after the dis-
cretization is governed by

M½ � €d
n o

þ C½ � _d
n o

þ K½ � df g ¼ Ff gþ �Ff g ð4:139Þ

In which �Ff g is the additional dynamic hydraulic pressure due to the reservoir
water

�Ff g ¼
ZZ
C

�N½ �T l½ �T N½ � pf gdC ¼ 1=q S½ �T pf g ð4:140Þ

Summarizing Eqs. (4.108), (4.131), (4.137), (4.139) and (4.140) yields the
equation set for the coupling problem

H½ � pf g ¼ � S½ � €d
n o

þ €dg
n o� �

M½ � €d
n o

þ C½ � _d
n o

þ K½ � df g ¼ � M½ � €dg
n o

þ 1=q S½ �T pf g

8<
: ð4:141Þ

The first row in Eq. (4.141) may be expressed as

pf g ¼ � H½ ��1 S½ � €d
n o

þ €dg
n o� �

ð4:142Þ

Introducing Eq. (4.142) into the second row in Eq. (4.141) results in

M½ � þ Mp
	 
� �

€dðtÞ
n o

þ C½ � _dðtÞ
n o

þ K½ � dðtÞf g ¼ � M½ � þ Mp
	 
� �

€dg
n o

ð4:143Þ

In which Mp
� �

is termed as the “added mass matrix”.

Mp
	 
 ¼ 1=q S½ �T H½ ��1 S½ � ð4:144Þ

Equation (4.143) is actually identical to Eq. (4.107) in formalism and may be
solved by any available algorithms inclusive that elaborated above.

4.4.8 Dynamic Dam-Foundation Interaction
and Seismic Input

The importance of dam-foundation interaction on the dam deflection and stress has
long been recognized for static as well as for dynamic actions (Wilson and Button
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1982). In the standard foundation model exercised towards the seismic response
analysis in the 1970s, some appropriate supports/restraints were employed at all
vertical boundaries of the FE mesh to approximate its response to each specified
component of earthquake motion. For example, rollers at the sides that permit
horizontal motion merely enable to simulate the response to a cross-canyon
earthquake motion. However, in such a manner the earthquake excitation trans-
mitted to the base of dam may be artificially amplified, and the vibration properties
of the dam-foundation system may be significantly altered due to the inertial effects
of the foundation mass.

A modified massless foundation was proposed in the late 1970s and has been
employed extensively until today. By assuming that the deformable foundation
region is massless, the foundation only performs as a system of springs. Obviously,
the absence of mass allows for the earthquake excitation being transmitted
instantaneously through the foundation rock to the dam base without any wave
propagation effects. It is appropriate to apply a free-field surface motion as the
earthquake input at the base rock because the same free-field motion would be
observed if there were no dam-foundation interaction effects. Another feature of the
massless foundation is that the dam vibrations are not affected by the foundation
mass. Thus, the vibration of foundation do not tend to dominate the dynamic
behavior of the dam, as will happen if a large volume of foundation rock with mass
is included.

A deconvolution procedure for producing input of non-uniform free-filed motion
along the canyon of dam site and a corresponding multiple-excitation technique
(mainly for arch dams) were developed and exercised in the aseismic design of
dams in China since the 1980s. Typically, it is postulated that the free-field motion
is recorded at the infinitely extended surface of a horizontally stratified deformable
foundation. A base rock input that might have produced the free-field motion at the
surface of this layered rock is determined by the inverse operation with respect to
the one-dimensional wave propagation equation. This deconvolved rock motion is
applied at the base of dam-foundation system, underneath the foundation rock
possesses mass as well as stiffness. With the later presence of dam on canyon, the
motions are modified by reflection and refraction at the canyon and dam interface
dominated by the FE algorithms.

Recently, a more effective and accurate approach to solve the dam-foundation
interaction problem in time domain has been developed with the transmitting
boundary techniques. The dam-foundation system can be divided into an interior
region with a discrete dam and its adjacent near-field foundation enclosed by a
far-field infinite foundation region with a set of artificial boundaries. At these
artificial boundaries the outgoing waves from the interior region can be transmitted
without reflection. The transmitting boundary technique may take following three
important factors into account

– The spatial variation both in the amplitude and phase of a seismic input along
the deep canyon;

– The energy dispersion of a seismic wave in the semi-infinite rock foundation;
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– The effects of the topographical features of a canyon and the nonlinear prop-
erties of geological strata.

4.4.9 Dynamic Material Parameters

Another issue of paramount importance for dynamic analysis is the input of
dynamic material parameters, particularly the Young’s modulus and shear modulus.
Theoretically, these parameters may be obtain by dynamic tests on the laboratory
samples, but the heterogeneous and isotropic characteristics of rock often force
engineers to turn to the field nondestructive tests or empirical correlations.

Sudden application of a concentrated force to the surface of a homogeneous
elastic body generates body waves and surface waves. The body waves are dis-
tinguished as compressive (P) and shear (S), the latter is further decomposed into
vertically polarized (SV) and horizontally polarized (SH). In rock-like materials the
velocity Vp of the P wave is related to the dynamic Young’s modulus, density, and
Poisson’s ratio, while the velocity Vs of the S wave is related to the shear modulus
and density. The dynamic Young’s modulus (Ed) can be solved from the following
equations

Vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ed

q
ð1� lÞ

ð1þ lÞð1� 2lÞ

s

Vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ed

q
1

2ð1þ lÞ

s
8>>>>><
>>>>>:

ð4:145Þ

where q = bulk density, kg/m3; l = Poisson’s ratio.
The Poisson’s ratio may be directly calculated by the formula

l ¼
1
2 ðVp=VsÞ2 � 1

ðVp=VsÞ2 � 1
ð4:146Þ

In general, the dynamic Young’s modulus is significantly larger than the static
one. It has also been documented (Howarth 1984) that the discrepancy is much
larger for soft rocks (e.g. sandstone) than for hard rocks (e.g. granite). The dis-
crepancies between the dynamic modulus and static modulus are mostly attributable
to the micro cracks and pores in materials.

The dynamic Young’s modulus can be converted into static modulus, and vice
versa, by empirical correlations (Lacy 1997; Du et al. 2001).

The Chinese design specifications (DL 5073-2000) stipulate that in the dynamic
computation for concrete dams, the dynamic Young’s modulus of concrete is
amplified by 1.3 times static one, but there is no suggestion with regard to the
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foundation rocks, although in the practice the widely accepted treatment is to
identically amplify it by 1.3 times static modulus. In contrast, the US federal
guidelines (FEMA 2005) stipulate that the dynamic Young’s modulus of concrete is
amplified by 1.5 times static one, and no modulus amplification for foundation
rocks is demanded.

4.5 Seepage Problems

4.5.1 Governing Equations and Solution Techniques

The permeability study relies on the solution of hydraulic potential (or water head)
function /(x, y, x) based on the principles of fluid dynamics. For example, the
steady state permeability theory for pervious continuum directly comes from the
analogue of fluid dynamics for continuous flow.

The general form of the Darcy’s law Eq. (2.5) is valid in any Cartesian coor-
dinate system, and it is always possible to determine a coordinate system in which
the matrix [k] becomes diagonal, as shown in Eq. (2.9). Introducing Eq. (2.9) into
the equation of continuity

@vx
@x

þ @vy
@y

þ @vz
@z

þ q0 ¼ 0 ð4:147Þ

The governing equation of the seepage flow in perfectly saturated materials
under the postulation that both material grains and pore water are incompressible, is
associated with three orthogonal local axes as

@

@x
ðkx @/

@x
Þþ @

@y
ðky @/

@y
Þþ @

@z
ðkz @/

@z
Þþ q0 ¼ 0 ð4:148Þ

In which q0 is the rate of inner source.
Restricted to the materials that are homogeneous and isotropic, i.e. kx = ky =

kz = k, and where there is no inner source, Eq. (4.148) may be reduced to the
famous Laplace differential equation

@2/
@x2

þ @2/
@y2

þ @2/
@z2

¼ 0 ð4:149Þ

Equation (4.148) or (4.149) is subject to appropriate boundary conditions (see
Fig. 4.13).
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1. First type boundary C1 (Dirichlet)

This is the boundary on which the hydraulic potential is specified. For instance, the
upstream surface (ABC), downstream exit surface (HI) and free discharge surface
(FGH), are all the first type boundaries (see Fig. 4.13), on which

/ x; y; zð ÞjC1
¼ /0 x; y; zð Þ ð4:150Þ

where /0(x, y, z) = specified hydraulic potential, m.

2. Second type boundary C2 (Neumann)

This is the boundary on which the normal gradient of hydraulic potential (or flow
rate) is specified. For instance, on the boundary (CDEF) in Fig. 4.13 it is defined by

vn ¼ �kn � @/
@n

����
C2

¼ q x; y; zð Þ ð4:151Þ

where n = outside normal to the boundary surface; q(x, y, z) = flow rate per unit
area on the boundary surface, m/s, q(x, y, z) = 0 means the boundary is impervious.

3. Phreatic C3 and outflow C4 boundaries

Phreatic/free surface (AI) in Fig. 4.13 is a special boundary. Being a streamline of
zero pressure, it should simultaneously satisfy the following conditions

kn � @/@n
��
C3
¼ 0

/ x; y; zð ÞjC3
¼ Z

(
ð4:152Þ

On the outflow (exit) boundary (IH) in Fig. 4.13, we have

kn � @H@n
��
C4
6¼ 0

/ x; y; zð ÞjC4
¼ Z

(
ð4:153Þ

Fig. 4.13 Boundaries of the
seepage regime of a gravity
dam
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The solution of the governing Eq. (4.148) restrained by the boundary conditions in
Eqs. (4.150)–(4.153) may provide the potential function / = f(x, y, z) or conjugated
stream function q = g(x, y, z) of major practical interest, which may be further used to
derive the seepage gradient J and seepage velocity v. However, complex boundaries
make the exact analytical solution be very difficult, if not impossible, to access. The
practical solution methods available are manual seepage flow net, physical model test,
hydraulic method, numerical computation (e.g. FEM), and engineering analogue.

Towards the solution by the FEM, the above governing equation and boundary
conditions are converted into the equivalent variational calculus (operator) for the
function I(/) (Yosida 1980) defined below

I /ð Þ ¼
ZZZ
X

1
2

kx
@/
@x

� �2

þ ky
@/
@y

� �2

þ kz
@/
@z

� �2
" #

� q0/

( )
dXþ

ZZ
C2

q/dC

¼ min

ð4:154Þ

Since / is a scalar, therefore the function I(/) in Eq. (4.154) can be simply
augmented from each element e in its bound coordinate system corresponding to
principal permeability directions

I /ð Þ ¼
Xne
e

Ieð/Þ

¼
Xne
e

ZZZ
Xe

1
2

kx
@/
@x

� �2

þ ky
@/
@y

� �2

þ kz
@/
@z

� �2
" #

� q0/

( )
dXþ

ZZ
C2

q/dC

0
B@

1
CA

¼ min

ð4:155Þ

In which ne stands the element amount in the structure system.
The function I(/) in Eq. (4.155) is then discretized to obtain FE algorithm. Take

the standard hexahedral element in Fig. 4.8 as example, on which there are 8 nodal
potentials (/1, /2, …, /8) grouped into an element vector {/}e. At any point within
the element e, the hydraulic potential may be interpolated by

/ ¼ N½ � /f ge
N½ � ¼ N1 N2 . . . NfeðpÞ

	 
 ðfor p ¼ 1; feðpÞ ¼ 8Þ


ð4:156Þ

The flow velocity is calculated by the formula

vf g ¼ � k½ � B½ � /f ge ð4:157Þ
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In which

B½ � ¼ ½B1� ½B2� . . . ½BfeðpÞ�
� � ðfor p ¼ 1; feðpÞ ¼ 8Þ

Bi½ � ¼ Ni;x Ni;y Ni;z½ �T¼ @Ni
@x

@Ni
@y

@Ni
@z

h iT
8<
: ð4:158Þ

Introducing Eq. (4.156) into Eq. (4.155), the variational operator leads to

@I
@/i

¼
Xne
e

@Ie

@/i
¼ 0 ði ¼ 1; 2; . . .;DOFÞ ð4:159Þ

By looping over the elements around each node (freedom) i using Eq. (4.159),
we get

H½ � /f g ¼ Qf g ð4:160Þ

In which the conductivity matrix [H] and vector of discharge {Q} arise from the
boundary conditions of the structure system are assembled by their elementary
components

h½ �e¼
ZZZ
Xe

B½ �T k½ � B½ �dX ð4:161Þ

qf ge¼
ZZZ
Xe

N½ �Tq0dX�
ZZ
C2

N½ �TqdC ð4:162Þ

By the solved nodal potential {/} from Eq. (4.160), the potential and the
seepage flow velocity within an element may be calculated using Eqs. (4.156) and
(4.157).

4.5.2 Unconfined Seepage Problems

The solution of an unconfined seepage problem demands the hydraulic potential
(water head) within the regime enclosed by the boundaries and phreatic surface.
The latter, being a special unknown boundary in the seepage regime, involves
intrinsically geometrical nonlinearity and should be solved by certain iteration
algorithms (France et al. 1971; Neumann 1973). However, where the unconfined
seepage field manifests in a complex multi-connected domain, the nonlinearity due
to the phreatic surface will be very intensive leading to difficulties in the conver-
gence of iteration.

Algorithms for unconfined flow problems may be distinguished as fixed mesh
and deformed mesh approaches (Bathe and Khoshgoftaar 1979). In the deformed
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mesh approach, the computation is based on the domain below the phreatic surface
solely that varies during the iterative process, while in the fixed mesh approach,
however, the whole domain is taken into account and the phreatic surface is handled
by setting different permeability properties for the portions below and above the
surface. Essentially, the fixed mesh approach replaces the geometrical nonlinearity
involved in the problem using material nonlinearity.

It is well known that many nonlinear boundary-value problems may be elegantly
formulated using the theory of variational inequality, which has rigorous mathe-
matics basis and provides a natural framework for the computation algorithm of
flow through porous media. Take the unconfined seepage problem for example, use
may be made of the continuous quasi-Heaviside function instead of the discon-
tinuous stepwise Heaviside function, it is able to overcome mesh dependency and
improve numerical stability much better (Chen et al. 2011b).

(1) Deformed mesh approach

With the deformed mesh approach, the element properties are held constant while
the mesh is iteratively deformed to match the phreatic surface (Taylor and Brown
1967; Neumann and Witherspoon 1970; Chung and Kikuchi 1987; Fenton and
Griffiths 1997). In this approach, an initial phreatic surface should be constructed
according to the simplified analysis and engineering experiences, then the shape of
elements is iteratively adjusted according to the results of the previous steps until
the total water head at the phreatic surface is equal to the elevation head (i.e. null of
pressure head).

High solution accuracy may be theoretically achieved but the mesh distortion
appearing in the neighborhood of the phreatic surface may actually lead to high
numerical errors. In addition, deformed mesh approach is often inflicted by the
requirement of advanced theories which are unfamiliar to practical engineers.

(2) Fixed mesh approach: residual flow method

The residual flow method (Desai 1976) is a typical fixed grid approach where the
boundary conditions on phreatic surface are met by the flow rate adjusting as
follows.

① The whole domain is discretized and solved for nodal heads/potentials {/r}.
② According to the condition /r = Z, the tentative phreatic surface of the rth

iteration is constructed.
③ The normal flow rate vnr through the phreatic surface and the corresponding

nodal flow vector {qr} are computed by

vrf g ¼ � k½ � B½ � /rf ge ð4:163Þ

vnr ¼ lf gT vrf g ð4:164Þ
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qrf g ¼
ZZ
C3

N½ �TvnrdC ð4:165Þ

In which {l} is the outward normal unit vector of the rth tentative phreatic
surface.

④ Solve the equation

H½ � D/rf g ¼ Qrf g ð4:166Þ

In which {Qr} is the assemblage of the element residual flow rate {qr} (see
Eq. 4.165).

⑤ Accumulate the total hydraulic potential after the rth iteration

/rþ 1

� � ¼ /rf gþ D/rf g ð4:167Þ

⑥ The iteration will be terminated when {D/r} is satisfactorily minor, other-
wise let r = r + 1 and the iteration is recurred starting from step ②.

(3) Fixed mesh approach: initial flow rate method

Zhang et al. (1988) proposed a concept of initial flow, by adjusting the initial flow
to enforce the zero flow through the phreatic surface. This method avoids the
intersecting calculation of the phreatic surface in elements.

① The whole domain is discretized and solved for nodal heads/potentials {/r}.
② According to the condition /r = Z, the elements comprising tentative

phreatic surface segment are recorded.
③ For each element containing phreatic surface segment, the initial flow rate is

calculated by the integral over the dry portion (or saturated portion) only

qrf g ¼ �
ZZZ
Xe

B½ �T k½ � B½ � /rf gedX ðGaussian point where/r\Z onlyÞ

ð4:168Þ

④ The initial flow rate {Qr} of the system is assembled using {qr}, then we
solve the potential increment by

H½ � D/rf g ¼ Qrf g ð4:169Þ
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⑤ Accumulate the total hydraulic potential after the rth iteration

/rþ 1

� � ¼ /rf gþ D/rf g ð4:170Þ

⑥ The iteration will be terminated when {D/r} is satisfactorily minor, other-
wise let r = r + 1 and the iteration is recurred starting from step ②.

The initial flow rate method requires condensed Gaussian integration points to
ensure the numerical accuracy and stability.

(4) Boundary pre-adjustment method

The initial (tentative) phreatic surface dominates the iterative efficiency in the fixed
mesh approach. Where the boundary conditions are simple and the permeability
properties of adjacent materials are similar, the solution of a confined seepage field
in the same domain may be used to launch the iteration. However, there is the risk
of non-convergence or very slow convergence because such an initial seepage field
could depart from the exact solution significantly.

Boundary pre-adjustment method (Chen et al. 2000) is a useful strategy to
handle the difficulties in defining initial tentative seepage field. It divides the
boundary water level into n increments (see Fig. 4.14), then step by step, exerts
them and solves the corresponding seepage field using fixed mesh approach.
According to the seepage field related to the Hi�1

U of the (i − 1)th incremental water
level, use is made of its convergent phreatic surface as the tentative phreatic surface
towards the next phase of iterative computation under the ith incremental water
level Hi

U.

Fig. 4.14 Diagram to the
phreatic surface iteration
using boundary
pre-adjustment method
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4.5.3 Seepage Actions

As water seeps through porous or/and fractured materials it exerts a frictional drag
on the material particles, which in turn, results in head losses. The frictional drag is
termed as “seepage force” acting on materials, which is calculated as force per unit
volume (it has the unit similar to that of weight).

f ¼ cw�J ð4:171Þ

In which �J ¼ �gradð/Þ is the gradient of hydraulic potential.
This is an important concept to bear in mind that the volumetric seepage force is

transferred from the hydrodynamic pressure of the percolated water, which is in
turn, transferred from the boundary actions related to the up-and down-stream
water. This concept may be helpful to prevent mistakes of neglecting or duplicating
the action of seepage flow.

Suppose the hydraulic potential /ðx; y; zÞ ¼ Zþ p
cw

has been solved in the

regime, then the seepage force per unit volume may be computed by the formulas

fx ¼ � @p
@x ¼ �cw

@/
@x

fy ¼ � @p
@y ¼ �cw

@/
@y

fz ¼ � @p
@z ¼ �cw

@/
@z þ cw

8><
>: ð4:172Þ

where fx, fy, fz = components of seepage force per unit volume, kN/m3; cw = unit
weight of water, kN/m3; p = seepage pressure, kN/m2.

The seepage force vector may be integrated over the element domain Xe

ff g ¼ �cw

ZZZ
Xe

N½ �T @/
@x

@/
@y

@/
@z

� 1
� �T

dX ð4:173Þ

Since

@/
@x

@/
@y

@/
@z

� �T
¼ ½B� /f ge ð4:174Þ

We have

ff g ¼ �cw

ZZZ
Xe

N½ �T B½ � /f gedXcw þ cw

ZZZ
Xe

N½ �T If gdX; If g ¼ 0 0 1½ �T

ð4:175Þ
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4.6 Thermal and Thermal Stress Problems

4.6.1 Concept

To prevent early age cracking in concrete, one of the first concerned tasks for the
engineers of concrete structures is the evaluation of the thermal field. Based on the
evaluation the structural configuration and construction requirements inclusive
protection and cooling measures can be designed or/and adjusted. Various methods
are reported in literatures for the thermal problem of concrete, which are ranged
from complex three-dimensional finite element analysis to simple manual calcu-
lation. Nowadays, the former is more and more prevalent.

Generally, the temperature history within concrete of hydraulic structures
experiences three stages (Chen 2015).

① Early stage. This is a temperature mounting period, initiated from the casting
and finished nearly at the end of the exothermic hydration of cement.

② Middle stage. This is a temperature falling period, commenced from nearly
the end of the exothermic hydration of cement and terminated at the stable
temperature. It often takes long time for exothermal concrete to lower down
its temperature.

③ Late stage. This is the normal service period after totally cooling down of
concrete. The zones underlying the surfaces (no deeper than 5–6 m from the
surface) are exposed to seasonal temperature changes due to the temperature
fluctuations of air and water and solar radiation, which is called as
“quasi-stable temperature”. In the portion deeper inside the mass structure,
the fluctuations may be ignored and the temperature is actually stable
assumed the mean annual temperature of the locality. For mass concrete
structures such as gravity dams, the course reaches stable temperature is quite
a long period ranged from several decades to more than one hundred years, if
no artificial cooling measures would be carried out during the construction.

Due to both the development of the Young’s modulus and the thermal action
along with the ongoing of time, thermal stresses emerging within mass concrete
structures also experience three stages as early stage thermal stresses, middle stage
thermal stresses, and late stage thermal stresses. In temperature mounting period,
the expansion of concrete lift is restrained by underneath foundation rock or old
concrete. This restraint induces horizontal compressive stresses, which are of lower
level because the Young’s modulus at this stage has far from been fully developed.
On the contrary, in the temperature falling period when concrete age exceeds 28
days and the Young’s modulus is fairly developed, the shrinkage restraint results in
higher horizontal tensile stresses, which give rise to net tensile stresses after the
offset of early stage compressive stresses. If such a net tensile stress exceeds the
tensile strength, undesirable cracking occurs. In addition, the surface radiation or
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cold snap during mass concrete construction produces nonlinear temperature gra-
dient from its surface to the internal portion, which also may result in
surface cracking.

The analyses with regard to the thermal and thermal stress fields of mass
hydraulic structures are accomplished by two steps: firstly, solve the thermal regime
to obtain the temperature variation DT as a thermal action; then, apply the action
DT to compute strain/stress increments in the structures (Fanelli and Giuseppetti
1975; Singh 1985; Tatro and Schrader 1985; Leger and Leclerc 2007).

4.6.2 Governing Equations and Solution Techniques

Temperature regime of a mass concrete structure, both in the construction period
and operation period, may be solved by the heat transfer theory for continuum. The
thermal action for a specified period is then defined as the temperature difference
DT regarding the end and beginning of the period concerned (Zhu 1998;
Zienkiewicz et al. 2005).

The governing equation of temperature T(x, y, z, t) in the concrete structure is
formulated on the basis of thermodynamics

@T
@t

¼ að@
2T
@x2

þ @2T
@y2

þ @2T
@z2

Þþ @h
@t

ð4:176Þ

where h = adiabatic temperature rise (see Eq. 2.28), °C; a = thermal diffusivity
(see Eq. 2.23), m2/h.

The initial condition is specified as

T ¼ T0ðx; y; zÞ When t ¼ 0 ð4:177Þ

There are basically three types of boundary conditions (see Fig. 4.15).

Fig. 4.15 Boundaries of the
temperature regime of a
gravity dam
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1. First type boundary C1 (Dirichlet condition, ABCDEF in Fig. 4.15)

T ¼ Tb ð4:178Þ

For the dam face contacting reservoir water directly, Tb is the reservoir water
temperature.

2. Second type C2 (Neumann condition, FGHIJA in Fig. 4.15)

The normal component of flow (or flux) qn is given as

qn ¼ �kð@T
@n

Þ ¼ qðtÞ ð4:179Þ

where n = vector of direction cosines normal to the boundary surface; k = thermal
conductivity, kJ/(m h °C).

3. Third type C3 (FGHIJA in Fig. 4.15)

qn ¼ �k
@T
@n

¼ bðT � TaÞ ð4:180Þ

where Ta = temperature of the water or air, °C; b = surface exothermic coefficient,
kJ/(m2 h °C).

If h is zero meanwhile Tb, q and Ta are all constant, after a fairly long period the
thermal field approaches a time independent state (i.e. @T

@t ¼ 0), then we will
encounter an particular case governed by the well known Laplace equation

@2T
@x2

þ @2T
@y2

þ @2T
@z2

¼ 0 ð4:181Þ

Similar to the permeability problem, we can get the following function
I(T) (Yosida 1980) whose minimization operator gives rise to identical governing
equation and boundary conditions Eqs. (4.176)–(4.148).

IðTÞ ¼
ZZZ
X

a
2

ð@T
@x

Þ2 þð@T
@y

Þ2 þð@T
@z

Þ2
� �

þð@T
@t

� @h
@t
ÞT

 �
dX

þ
ZZ
C2

�qTdCþ
ZZ
C3

ð
�b
2
T2 � �bTaTÞdC

ð4:182aÞ

In which �b ¼ b=k and �q ¼ q=k.
Normally in the thermal problem of concrete dams, the second type boundary

does not presented. Under such circumstances we have
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IðTÞ ¼
ZZZ
X

a
2

ð@T
@x

Þ2 þð@T
@y

Þ2 þð@T
@z

Þ2
� �

þð@T
@t

� @h
@t
ÞT

 �
dXþ

ZZ
C3

ð
�b
2
T2 � �bTaTÞdC

ð4:182bÞ

A finite element solution in the space domain yields the semi-discrete set of
ordinary differential equation, then a simple procedure in which the time domain is
discretized by the central difference approximation gives rise to

ð½H� þ 2
Dt
½R�ÞfTtþDtgþ ð½H� � 2

Dt
½R�ÞfTtgþfFtgþfFtþDtg ¼ 0 ð4:183Þ

In which [H] is the heat conductivity matrix of the structure system; [R] is the
heat capacity matrix; {F} is the temperature load vector. They are assembled by the
loop over each element using sub-matrices and vectors given by

h½ � ¼
ZZZ
Xe

a½B�T ½B�dX

r½ � ¼
ZZZ
Xe

N½ �T N½ �dX

ff g ¼
ZZZ
Xe

N½ � @h
@t

dX�
ZZ
C3

N½ �T N½ ��bdCþ
ZZ
C3

N½ ��bTadC

8>>>>>>>>>>><
>>>>>>>>>>>:

ð4:184Þ

In which the matrices [N] and [B] are identical to that in Eqs. (4.156) and (4.158).

4.6.3 Temperature of Reservoir Water

The reliability and applicability of solutions using Eq. (4.183) are strongly
dependent on the rationality in the evaluation of the thermal parameters related to
the materials, the construction schedule, as well as the ambient factors such as the
spatial-time variation of air temperature and reservoir water temperature, of which
the last one (i.e. Tb) is quite complicated. Nowadays sufficient experiences have
been accumulated for a good understanding of the water temperature in the majority
of China’s reservoirs (in temperate zone only) (Zhu 1998; Chen et al. 2011a).

(1) Features of reservoir water temperature

The temperature of reservoir water is an important boundary condition that entails
the thermal performance of hydraulic structures (Raphael 1962), and is difficult to
be exactly prescribed in the design phases. On the reservoir surface it often,
although not always, fluctuates more than 10 °C, meanwhile in the middle and
bottom regions the water body remains rather stable. The current methods for
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studying the water temperature distribution in reservoirs include empirical or sta-
tistical formulas, engineering analogues and numerical computations (Huber et al.
1972; Orlob and Selna 1983).

Figures 4.16 and 4.17 display the water temperatures observed from two typical
China’s reservoirs, from which it may be concluded that

① During the warm season, superficial water is heated by shortwave solar radiation
and air convection attributable to the sun shine. As a result, it is a bit of warmer
than that of ambient temperature. In the cold seasonwhen the superficial water is
frozen, thermal energy is more uniformly distribute in the reservoir water body
due to the wind-induced turbulent diffusion and cloud albedo.

Fig. 4.16 Xinfengjiang
reservoir, Guangdong
Province, China

Fig. 4.17 Fengman
reservoir, Jiling Province,
China
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② Generally, isothermal surfaces in the water body stay parallel with the
reservoir surface.

③ At a certain depth, the periodic annual fluctuation manifests. The deeper of
the water, the slighter will be the fluctuation extent. In addition, the tem-
perature fluctuation of reservoir water body lags behind the ambient tem-
perature. Generally, the fluctuation of reservoir temperature may be
neglected in the reservoir water deeper than 80 m.

④ The reservoir bottom is dominated by the geothermy, inflow, and turbidity
current. If there is no turbidity current and other special scenarios, the bottom
temperature in the reservoir at chilly region is approximately 4–6 °C. For the
reservoir at climate region, it is around the average ambient temperature of
the coldest three-months in winter. Where the inflow is mainly from the melt
water of snow mountains, or there is abnormal geo-heat sources, it is subject
to an augment of ± (2–3) °C.

⑤ A stable cold sinking current causes the thermal stratification in the entire
reservoir in a manner of

– Superficial layer (epilimnion). This is a layer of 10–20 m thick and is
more sensitive to the meteorological conditions, particularly the seasonal
ambient temperature fluctuation;

– Buffer layer (transition zone between epilimnion and hypolimnion). This
is attributable to strong diffusion and convection of heat, the water intakes
and other outlets assigned to the reservoir operation;

– Stable layer (hypolimnion). For a reservoir deeper than 100 m, the minor
influence of ambient temperature and the sink of colder and denser water
give rise to a relatively stable and low temperature layer, except for there
is the influence of low level bottom outlets;

– Where there is the influence of turbidity current or initial deposition of
thick slag/silt to dam heel, the local temperature near the reservoir bottom
in front of the dam could be abnormally and significantly higher.

(2) Prediction of reservoir water temperature using semi-empirical correlations

Under periodical boundary conditions and with the 1-D thermal PDEs in hydro-
dynamics, the semi-empirical correlation Eq. (4.185) proposed by Zhu (1999) can
be employed to forecast the 1-D distribution of the water temperature T(h, t) (°C)
along the reservoir depth h at time t (month)

Tðh; tÞ ¼ TmðhÞþAðhÞ cosxðt � t0 � eÞ ð4:185Þ

where Tm(h) = annual average temperature, °C; A(h) = amplitude of temperature
fluctuation at the depth of h, °C; ɛ = phase difference, (month); x = 2p/P, circular
frequency of temperature fluctuation (P = 12 months), °C; t0 = emerging time of
maximum annual ambient temperature, month.
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1. Amplitude of temperature fluctuation A(h) at water depth h

AðhÞ ¼ A0Rkie�bih ð4:186Þ

Or
AðhÞ ¼ A0e�bhs ð4:187Þ

In which ki, bi, b and s are the constants evaluated through the field observation
data, and Rki ¼ 1.

According to the reservoir observation data collected in China, the following
empirical formula may be used in the most China’s reservoirs

AðhÞ ¼ A0e�0:018h ð4:188Þ

The amplitude of temperature fluctuation on the reservoir surface A0 is normally
postulated as

A0 ¼ Aa ¼ ðT7 � T1Þ=2 ð4:189Þ

where Aa = annually averaged ambient temperature, °C; A7 = month average
ambient temperature of the July (in China), °C; A1 = month average ambient
temperature of the January (in China), °C.

In chilly regions where the reservoir surface is frozen in the winter, we use
following formula in lieu of Eq. (4.189)

A0 ¼ ðT7 þDTÞ=2 ¼ T7=þDa ð4:190Þ

where Da = influence of sun radiation, normally Da = 1–2 °C.

2. Emerging time of the maximum annual ambient temperature t0

It is normally postulated that in China t0 = 6.5 (month), namely the highest
temperature appears in between of June and July.

3. The phase difference ɛ

e ¼ 2:15� 1:30e�0:085h ð4:191Þ

4. Annually average temperature Tm(h) (°C)

TmðhÞ ¼ cþðTs � cÞe�0:04h ð4:192Þ

c ¼ ðTb � TsgÞ=ð1� gÞ
g ¼ e�0:04H

(
ð4:193Þ
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where H = depth of the reservoir in front of dam, m; Ts = annual average tem-
perature on the reservoir surface, °C; Tb = annual average water temperature at the
reservoir bottom, °C.

i. Annual average temperature on the reservoir surface Ts (°C)

In temperate region (annual average ambient temperature Tam = 10–20 °C) and hot
area (Tam > 20 °C), where the reservoir surface is not frozen, Ts may be estimated
by

Ts ¼ Tam þDb ð4:194Þ

In which Db is the temperature augment due to sun radiation, normally Db = 2–
4 °C (temperate region) and Db = 0–2 °C (hot area).

In chilly region where the reservoir surface is frozen in the winter, Ts may be
estimated by

Ts ¼ T 0
am þDb ð4:195Þ

T 0
am ¼ 1

12

X12
i¼1

Ti ð4:196Þ

Ti ¼ Tai for Tai � 0
0 for Tai\0


ð4:197Þ

where T 0
am = revised annual average ambient temperature, °C; Tai = average

ambient temperature of the ith month, °C.
Based on the field data collected in China, in chilly region we have Db = 2 °C.

ii. Annual average water temperature at the reservoir bottom Tb (°C)

Tb is customarily evaluated by the engineering analogue using existing reservoirs of
similar conditions. Where such analogue is absent in the preliminary phases of
design, the data listed in Table 4.1 may be referred to. These data are merely
applicable to the reservoirs deeper than 50 m in the mainland of China.

(3) Prediction of reservoir water temperature using numerical computations

Nowadays, computational methods such as the FEM have been extensively exer-
cised to predict the temperature distribution of reservoir water by solving the vortex

Table 4.1 Annual average water temperature at reservoir bottom

Climate
condition

Chilly
(North-eastern
China)

Chilly
(Northern China,
North-western
China)

Temperate
(Eastern China, Central
China, South-western
China)

Hot
(Southern
China)

Tb (°C) 4–6 6–7 7–10 10–12
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motion of incompressible viscous fluid governed by the thermal
convection-diffusion equations (Imberger et al. 1978). Of all the methods available,
the 3-D model is the most powerful (Zhang and Baptista 2008) because it can
provide detailed temporal and spatial patterns of reservoir temperature taking into
account of the in-and out-flows, although the 1-D and 2-D models are still
prevalent.

Methods using one-dimensional approach were initiated in the 1970s, when
Stefan and Ford (1975) developed a deterministic, process-oriented, unsteady
model for lake water quality. It uses a one-dimensional vertical transport equation
to predict temperature as a function of depth and time under a wide range of
meteorological conditions. The surface wind mixing, vertical turbulent diffusion,
convective heat transfer, and heat flux from solar radiation, are all incorporated into
his model by the regression analysis of field data.

Lei and Patterson (2002) proposed a two-dimensional approach using the
Navier-Stokes and energy equations as well as the Boussinesq approximation to
study the natural convection in a reservoir sidearm subject to solar radiation.
Bednarz et al. (2009) used a similar approach to investigate the transient flow
response to periodic temperature changes at reservoir water surface.

Compared with empirical formulas, the computational methods can strike a
balance between accuracy, efficiency, economy, and applicability, which makes
them very powerful for the reservoir temperature estimation. However, the effort for
the computation is huge. In addition, vigilance is reminded that where there is
numerical dispersion or oscillation due to improper treatments concerning the
convection terms, the prediction quality would be even inferior to those by
empirical formulas.

4.6.4 Actions of Temperature: Elastic Analysis

The initial strain DeTf g attributable to temperature variation DT under the cir-
cumstance without any restraint is related through the coefficient of thermal
expansion a (see Eq. 2.131). In the appearance of restraint, the actual strain {Dɛ}
(as yet unknown) and the stress {Dr} induced by DT in a finite element are related
by the formula

Drf g ¼ D½ � Def g � DeT
� �� � ¼ D½ � B½ � Ddf g � D½ � DeT

� � ð4:198Þ

where [D] = elastic matrix; [B] = strain matrix; {Dd} = nodal displacement vector.
According to the virtual work principle Eq. (4.65) where {Df} is null, the

governing equation for the solution of nodal displacement vector is given by
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½K�fDdg ¼ fDFg ð4:199Þ

In which the overall stiffness K½ � of the structure system is identical to that of
Eqs. (4.71a, 4.71b), and the overall equivalent force vector {DF} due to temper-
ature variation is assembled by the loop over each element using

Dff g ¼
ZZZ
Xe

B½ �T D½ � DeT
� �

dX ð4:200Þ

After the solution of the overall displacement vector Ddf g , the elastic stress
increment due to thermal action may be computed using Eq. (4.198).

4.6.5 Actions of Temperature: Viscoelastic Analysis (Creep)

The concrete may deform continuously as the time goes on, which are resulted from
mechanical, physical and chemical processes including:

– Temperature change. It is a very important action on concrete structures, of
which two distinct phenomena need to be cared over. One is the hydration of the
cement which warms up the structure during its setting and hardening, another is
the fluctuation of ambient temperature under the construction and normal ser-
vice conditions. All these may lead to cracking in concrete. In both cases the
analyses of the thermal field in a structure and the consequently induced stresses
need data on the adiabatic temperature rise, conductivity and diffusivity, specific
heat and coefficient of thermal expansion (vide Chap. 2).

– Volume change. It is mainly due to the moisture variation and the consequent
drying shrinkage in addition to the chemical reaction and the consequent
autogenous shrinkage. The effect of drying shrinkage of mass concrete reduces
rapidly along the thickness and become negligible at a depth of about 0.50 m.

– Creep. It is a kind of time-dependent deformation under sustained loading
generally accepted as a rheological phenomenon associated with the gel-like
component in the cement paste (Troxell et al. 1958; Nasser and Neville 1965;
Neville et al. 1983). Creep phenomenon also can be partially explained in terms
of viscoelastic and/or viscoplastic deformation of the cement paste and the
gradual transfer of load from cement paste to aggregate. Creep properties are of
particular relevance to understand the mechanism of potential thermal cracking
of mass concrete, this is why the most extensive use of creep data is in the
thermal stress analysis for concrete dams (Mehta and Monteiro 2006; Chen et al.
2011a). In recent decades it has been found that some forms of enhanced creep
due to alkali-aggregate reactions can significantly affect the long term deflec-
tions and stresses of concrete structures, but for the moment this issue will not
be addressed in this book.
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Creep effects (short and long terms) need to be well handled, especially for
structures of static indetermination such as arch dams, because they lead to the
redistribution of stresses.

For the short term creep problem accompanied with temperature and volume
changes, the incremental algorithm discretizes the time domain in a series of
intervals (t1, t2 … tn) with Dtn = tn − tn−1 (see Fig. 2.22). In the interval Dtn the
strain and stress increments are expressed in Eqs. (2.133) and (2.134). The element
equilibrium equation may be derived from the virtual work principle

Dff g t ¼
ZZZ
Xe

B½ �T Drf gtdX ð4:201Þ

Introducing Eq. (2.134) into Eq. (4.201) yields

fDf gt ¼ ½k�tfDdgt � fDf cgt � fDf Tgt � fDf agt � fDf sgt ð4:202Þ

where fDf cgt = incremental element nodal load vector due to creep;
fDf Tgt = incremental element nodal load vector due to temperature; fDf agt = in-
cremental element nodal load vector due to autogenous shrinkage; fDf sgt = in-
cremental element nodal load vector due to drying shrinkage.

The element stiffness matrix in term of ½D�t (see Eq. 2.98) is computed by

½k�t ¼
ZZZ
Xe

½B�T½D�t½B�dX ð4:203Þ

And the equivalent nodal force increments are computed by the formulas

fDf cgt ¼
ZZZ
Xe

½B�T½D�tfggtdX ð4:204Þ

fDf Tgt ¼
ZZZ
Xe

½B�T½D�tfDeTgtdX ð4:205Þ

fDf agt ¼
ZZZ
Xe

½B�T½D�tfDeagtdX ð4:206Þ

fDf sgt ¼
ZZZ
Xe

½B�T½D�tfDesgtdX ð4:207Þ

Following the routine procedure the governing equation of the structure system
is assembled
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½K�tfDdgt ¼ fDFgt þfDFcgt þfDFTgt þfDFagt þfDFsgt ð4:208Þ

In which the system stiffness matrix and load vectors are assembled using that of
all the elements in the discrete system

K½ �t¼
X
e

k½ �t ð4:209Þ

fDFcgt ¼
X
e

fDf cgt

fDFTgt ¼
X
e

fDf Tgt

fDFagt ¼
X
e

fDf agt

fDFsgt ¼
X
e

fDf sgt

8>>>>>>>>>><
>>>>>>>>>>:

ð4:210Þ

Substituting for the nodal displacement increment {Dd}t in Eqs. (4.59) and
(2.134) from the solution of Eq. (4.208) yields the incremental strain {Dɛ}t and
stress {Dr}t, then the stress at time t is accumulated by

frgtn ¼ fDrgt1 þfDrgt2 þ � � � þ fDrgtn ¼ RfDrgti ð4:211Þ

4.7 Safety Criteria

4.7.1 Concept

The structural performance is customarily assessed by means of calibration models
using structural analyses (e.g. computation) based on physical understanding and
empirical data. Due to idealized modeling, inherent physical uncertainties and
inadequate or insufficient data, these models themselves and the parameters entering
the models (e.g. material parameters and load characteristics), are uncertain.

The limited ability of engineers to calibrate structural performance is bridged by
a variety of design criteria. These may be broadly classified as safety factor or factor
of safety (FOS) and reliability index (RI), depending on the extent of the application
of probability theory and statistics in the treatment of stochastic characteristics
encountered in engineering (Cornell 1969; Hasofer and Lind 1974; Ellingwood
et al. 1982; Ang and Tang 1984; Madsen et al. 1986; Chen 2015).

The FOS, generally noted as K to calibrate if a structure is stability or not,
belongs to the philosophy of deterministic design. It treats the stochastic parameters
deterministically using empirical methods. For example, for the loads of extreme
adverse, small probability oriented values are used, whereas for the material
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strength, conservative and high dependability (assurance factor) oriented values are
adopted. When the FOS evaluated by computations or experiments is equal to or
larger than the specified value (i.e. allowable safety factor or design safety factor),
the structure is considered as safe.

Structural reliability theory belongs to the philosophy of indeterministic design.
It uses probabilistic modeling for the uncertainties and provides methods for the
quantification of the probability that a structure does not fulfill the performance
criteria. In this way uncertainties can be related quantitatively to the design relia-
bility of a structure. To facilitate the applications and to attend the habits of
engineers, Chinese design codes or specifications recommend partial safety factor
method base on limit state equation. In its mathematical principles, the partial safety
factor method is a deterministic way to analyze limit state equation. However, it
does consider the uncertainty by introducing a group of so-called partial safety
factors larger than or equal to 1.

Nowadays in China, a fairly large portion of new version design codes or
specifications for hydraulic structures are based on limit-state reliability analysis
using partial safety factors, which are exercised particularly by the design institutes
formerly belong to the State Electrical Ministry, Energy Ministry, or State Electrical
Cooperation. On the other hand, the institutes belong to the Water Resources
Ministry are used to adhere the design codes or specifications mainly based on the
traditional FOS analysis (Chen 2015). The latter, which will be customarily
employed throughout the whole coverage of this book, makes use the FOS of point,
face, and global (overall), respectively.

4.7.2 Definition of Safety Factors

For each type of hydraulic structures, running FEM software produces the solutions
with respect to displacement and stress, hydraulic potential and its gradient, tem-
perature and its gradient, etc. These indices should be calibrated for the purpose of
safe and economical design of the structure concerned.

(1) Point FOS Kp

Take the gravity dam in Fig. 4.18 for example. The Chinese design specifications
demand following calibration works (Chen 2015).

① That the allowable stresses in the dam concrete or in the foundation rock
shall not be exceeded. Particularly, the vertical stresses in the foundation
rock and principal stresses in the dam concrete at the dam heel (A) and toe
(C) are strictly limited within the corresponding allowable stress values
(gravity method).

i. The tensile vertical stress at the dam heel, if any, should be lower than or equal
to the allowable tensile stress of rock
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rz;dam heel � ½rl� � 0 ð4:212Þ

where [rl] = allowable tensile stress of rock, MPa. It is usually zero in the gravity
method.

ii. The compressive vertical stress at the dam toe should be lower than or equal to
the allowable compressive stress of rock

rz;dam toe � ½ra� � 0 ð4:213Þ

where [ra] = allowable compressive stress of rock that is defined as the ratio of the
uni-axial compressive strength of rock to its correspondent FOS (Kp). Kp = 20–25
for hard and fractured rock, Kp = 10–20 for medium hard rock, Kp = 5–10 for
lower strength rock, or soft rock.

iii. The point safety factor Kp is normally used in the FE computation for
hydraulic structures, too. It is defined with yield (or failure) criterion in terms
of yield resistance R and yield driving S

Kp ¼ R
S

ð4:214Þ

Take the Drucker-Prager criterion (see Eqs. 2.42 and 2.43) for example, we have

Kp ¼ aI1�kffiffiffi
J2

p

a ¼ sinu=½3ð3þ sin2 uÞ�1=2
k ¼ ffiffiffi

3
p

c cosu=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ sin2 u

p
8><
>: ð4:215Þ

Fig. 4.18 Diagram to the
stability assessment for a
gravity dam
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In which u and c are the internal friction angle and cohesion of the rock-like
material.

It is notable that there is no clear stipulation in the Chinese design specifications
for hydraulic structures with respect to the allowable point safety factor [Kp]. The
widely but not unanimously accepted one for dam structures is [Kp] = 2.0 where
only small and isolated portions below [Kp] are permitted.

② That the allowable potential gradients in the dam concrete or foundation rock
shall not be exceeded. Particularly, the potential gradients in the foundation
grouting curtain are strictly limited within the corresponding allowable
gradient, i.e.

J� ½J� ð4:216Þ

where [J] = allowable seepage gradient. For the rock foundation of a concrete dam,
[J] = 20–15 where dam height >100 m, [J] = 15–10 where dam height 50–100 m,
[J] � 10 where dam height <50; whereas for the dam concrete itself, [J] is stip-
ulated in Table 2.9.

The criteria stated in Eqs. (4.212)–(4.216) possess “point” or “local” feature.
Normally, it is relatively easy to construct a local criterion and to specified its
correspondent allowable index (right side item), but sometimes the singularities
may bring about the difficulties in the selection of action effects such as the max-
imum stress and seepage gradient (left side item).

(2) Face FOS Kf

Again, we take the gravity dam for example. The Chinese design specifications
demand the safety against sliding on any horizontal (e.g. AC in Fig. 4.18) or
near-horizontal plane within the dam, at the base, or on any rock seam in the
foundation (e.g. ABF, ABF1, ABD in Fig. 4.18).

When the sliding prone surface AC is horizontal, the FOS is defined as the ratio
of the total resistance to the resultant horizontal thrust along the surface, namely

Kf ¼ f 0ðPV � UÞþ c0AP
H

ð4:217Þ

where f′ = shear friction factor; c′ = shear cohesion factor; A = area of sliding
surface;

P
H = resultant horizontal loads;

P
V = resultant vertical loads;

U = uplift.
In the study of slope stability using FEM, Wright et al. (1973), Yamagami and

Ueta (1988) defined the FOS as the ratio of the total shear resistance mobilized on a
potential slip surface to the total slip driving force on the same surface, as

Kf ¼
Pn

i¼1 ðfiri þ ciÞliPn
i¼1 sili

ð4:218Þ
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where ri = normal stress on the slip surface segment embedded in the element i;
si = shear stress on the slip surface segment embedded in the element i; fi = friction
coefficient of the slip surface segment i; ci = cohesion representing the unit shearing
strength of the slip surface segment i; li = length of the slip surface segment i.

The definition in Eq. (4.218) may also be termed as the “stress resultant method”
(SRM) or “finite element method + limit equilibrium method” (FEM + LEM) and
is most familiar to hydraulic engineers, although the calculated result often exhibits
remarkably shift from that by the conventional limit equilibrium methods.

Normally, the face FOS Kf against sliding is less disturbed by the singularity
problem, but paradoxically it introduces other difficulties in the construction of
criterion and the sought of minimization.

(3) Overall FOS K

An overall FOS K may be further distinguished as overload factor or strength
reduction factor.

1. Overload factor

The overload factor K is defined as the ratio of the ultimate load to the actual load
exerting on the structure, to bring it to a state of limiting equilibrium at incipient
failure. The critical (minimal) K is sought using trial and error procedure. For each
tentative K, the finite element computation is carried out under the multiplied
actions (by K). The critical K is looked at as the overload FOS for the structure
under a specified work situation.

2. Strength reduction factor

The strength reduction factor K is defined as the ratio of the ultimate strength
(resistance) divided by the mobilized stress (failure driving) to bring the structure to
a state of limiting equilibrium at incipient failure (Matsui and San 1992; Ugai and
Leschinsky 1995; Dawson et al. 1999; Griffiths and Lane 1999; Chen et al. 2007).
The critical (minimal) K is sought using trial and error procedure. For each tentative
K, the finite element computation is carried out under the reduced strength
parameters (by K). The critical K is looked at as the FOS for the structure under a
specified work situation.

In China, the strength reduction factor is widely accepted in the design of cut
slope and embankment slope for hydraulic projects, because

– The loads on slopes are relatively more clear and easier to be prescribed. On the
contrary, the strength parameters of rocks and soils exhibit larger variation and
are more difficult to evaluate. Therefore it would be wise to use strength
reduction factor to have a good understanding of the safety margin with regard
to the parametric uncertainty.

– Self weight is a predominant load on slopes. Since it gives rise to both the
driving force and resistance force, therefore overload factor is not very appro-
priate in the definition of the safety margin for slopes.
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On the contrary, the concrete dam design prefers the overload factor by multi-
plying the reservoir water thrust solely, this is attributable to that

① The most important action is the reservoir water pressure laterally
exerting on the concrete dam. This action possesses large variation
following the reservoir water level fluctuation, particularly where the
considerations on the landslide induced surge waves are demanded.

② The self weight of dam and foundation are relatively more clear and
easier to be evaluated.

It is notable that for a definite computation method, significant difference in
foregoing definitions for the FOS may manifest, although in particular simple cases
they could be identical.

4.7.3 Searching for Overall Safety Factors

The most intractable question in the search of minimal overall safety factor is “how
to pinpoint whether a hydraulic structure starts to enter a state of limit equilibrium at
incipient failure”?

The loss of structural stability is actually identical to the loss of strength at the
critical portion or surface in the structure. Accompanied by the loss of stability, the
stress-deformation curve exhibits an extreme point, i.e. this is belong to the
instability problems with extreme point. Prevalent detection algorithms for the
incipient failure are related to the non-convergence in computation, penetration of
plastic zone, catastrophe in displacement (or energy), and limit shear resistance.

(1) Non-convergence of solution

This is most commonly exercised (Dawson et al. 1999; Griffiths and Lane, 1999;
Lechman and Griffiths 2000; Sloan 2013). When a structure reaches at the critical
state (i.e. the limit equilibrium state), non-convergence will occur and the solution
could escalate during the iterative process. However, because the convergence in
nonlinear finite element computation is subjectively controlled by the tolerance
magnitude of out-of-balance forces and/or the tolerance of nodal displacements
specified by users, and by many other additional factors as well, non-convergence
does not necessarily mean the collapse of structures.

(2) Penetration of plastic zone

Luan et al. (2003) (Zheng et al. 2008) suggested that a structural failure might take
place as the moment at which there exists a plastic band going through the structure
in such a manner that all the elements in the band enter plastic state. The major
problem is, however, the mesh size and stretching dependent of the plastic zone.
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(3) Catastrophe criterion (displacement, energy)

It says (Snitbhan and Chen 1978; Manzari and Nour 2000; Fu and Chen 2008;
Chen et al. 2013; Liu et al. 2016) that when a structure reaches at the critical state,
some characteristic points within the structure would enter a flow state deforming
considerably in a manner described by the catastrophe theory (Zeeman 1977). This
is theoretically correct but, in reality we are often puzzled that the moment entering
the flow state would be changeable for these characteristic points.

(4) Limit shear resistance

The stress field corresponding to the reduced shear strength parameters or amplified
loads (actions) is computed by the FEM, then the minimum stress resultant factor
Kf,min in Eq. (4.218) is sought by optimization technique. When Kf,min = 1, the
structure is looked at as being brought into a state of limit equilibrium (Duncan
1996; Kim and Lee 1997; Farias and Naylor 1988).
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Chapter 5
Adaptive Techniques in the Finite
Element Method

Abstract In computational methods, particularly the FEM, the adaptive refinement
indicates an automatic convergence process. The motivations of adaptive study for
hydraulic structures elucidated in this chapter are multi-fold inclusive pre-process
facilitation and software standardization, of which the latter is more attractive
because it may enable engineers to control the computation error tolerance for
different grades of hydraulic structures, in lieu of optional and ambiguous con-
sideration and discussion on the adequate mesh size. Towards this target, the most
prevalent adaptive refinement schemes, namely, the h-version to control the error of
approximation by means of element size and the p-version to control the error of
approximation through the polynomial shape functions, are elaborated in this
chapter. To be more practical for hydraulic structures, the issues of viscoplastic
deformation, phreatic surface, refinement strategy, equation solver, etc., are
specifically handled. This chapter is closed with a variety of validation examples
(underground cavern, embankment dam, concrete dam, sluice) and two engineering
application cases (cut slope, landslide).

5.1 General

In computational methods, particularly the FEM, the adaptive refinement indicates
an automatic convergence process. The most commonly used adaptive refinement
strategies fall into h-, p-, and hp-version. The approach to control the error of
approximation by means of the element size h is called the h-version of refinement
or simply the h-refinement. The approach to control the error of approximation
through the augment of polynomial shape functions with progressively increasing
degree p is called the p-version of refinement or simply the p-refinement. The latter
possesses more rapid exponential convergence rates for a given number of variables
subject to appropriate mesh design. The combination of h-version and p-version
gives rise to the hp-refinement, in this procedure both the sizes of elements h and
their degrees of polynomials p are altered (Guo and Babuška 1986a, b; Zienkiewicz
et al. 1989).
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5.1.1 H-Version of Refinement

There are basically three sub-classes of h-refinement (Babuška and Rheinboldt
1978; Zienkiewicz and Zhu 1991).

(1) Element subdivision (enrichment)
If existing elements show too large approximation (discrete) error, they are
simply divided into smaller ones keeping the original element boundaries
intact. Such a process is cumbersome as many hanging points might be created
where an element with mid-side nodes is joined to its adjacent linear element
without such nodes. Local constraints at the hanging points are demanded and
the calculations become more involved. Nevertheless, this refinement is quite
welcome where its drawbacks are overcome by appropriate sub-division
strategies.

(2) Complete mesh regeneration or re-meshing
Here, on the basis of a given solution using old mesh, a new element size is
predicted and a totally new mesh is regenerated. In this way the refinement and
de-refinement are simultaneously permitted. Of course this could be expensive,
especially in three-dimensional cases where mesh generation is difficult for
certain types of elements. In addition, it also presents a problem of transferring
data from one mesh to another. For many practical engineering problems
however, particularly for that the element shape will be severely distorted
during the analysis, complete mesh regeneration is a natural choice. This
refinement will be employed in this book in the elaboration of h-refinement
algorithm.

(3) R-refinement
Also termed as s-refinement, it keeps the total number of nodes and the
topology of mesh unchanged but adjusts nodal position to obtain an optimal
approximation. Although this procedure is theoretically of interest, yet it is
difficult to use in practice and there is little to recommend it.

5.1.2 P-Version of Refinement

By p-refinement we stay with the same element size and mesh topology but simply
increase, hierarchically in general, the order of polynomials used in the shape
functions. Although the FE software structure is more complicated, yet it had been
demonstrated on the basis of elastic fracture mechanics that the sequences of
solutions based on the p-refinement converge faster than the sequences based on the
h-refinement (Szabó and Mehta 1978). The theoretical foundations of the
p-refinement were established in a paper by Babuška et al. in 1981 where they
shown that for a large class of problems the asymptotic convergence rate of the
p-version in terms of energy norm is at least twice that of the h-refinement, subject
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to quasi-uniform meshes. Additional computational results and evidences of faster
convergence of the p-refinement were presented by Babuška and Szabó in 1982. In
addition, the p-refinement performs well in handling singularities. The p-refinement
algorithms fall into three sub-classes (Cheng and Chen 1999), too.

(1) Complete refinement
The polynomial order is increased uniformly throughout all the elements in the
whole discretized domain.

(2) Element refinement
The polynomial order is adjusted locally with respect to each element in the
whole discretized domain.

(3) Degree of freedom (DOF) refinement

DOF refinement is theoretically the most rigorous algorithm of p-refinement. It
introduces more important DOFs to effectively control the discretization error.

5.1.3 Motivations of Adaptive Study for Hydraulic
Structures

The motivations of adaptive study for hydraulic structures are multi-fold inclusive
the facilitation in the pre-process and the software standardization in the design
specifications. Particularly the latter may enable engineers to control the compu-
tation error tolerance et for different grade of hydraulic structures, in lieu of optional
and ambiguous consideration and discussion on the adequate mesh size. Towards
this target, the author believe that the specified error tolerance et may be eventually
“check analyzed” from existing structures in service by the experienced engineers
and scholars, towards the design specifications of new generation.

5.2 H-Version of Refinement in Space Domain:
Strain/Stress Problems

5.2.1 Frameworks

The domain must be defined and covered by an initial background mesh. A finite
element analysis carried out on this background mesh launches the iterative
refinement, which is implemented by the following main steps (De et al. 1983;
Zienkiewicz and Zhu 1991):

① A mesh is generated according to the given mesh size.
② A FE solution is obtained and the corresponding discretization error is

estimated.
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③ If the error does not meet the stipulated tolerance, the new mesh size
related to the error is evaluated towards the next iterative refinement,
then recur from step ①, otherwise the refined mesh and corresponding
computation results are output to collapse the iteration.

The major functional modules in the h-refinement procedure are implemented to
undertake following missions that:

– The mesh is generated by a well performed pre-process procedure;
– The discretization error is estimated reasonably and easily at all iterative stages;
– The transfer of mechanical and physical variables between tentative meshes is

reliable and accurate.

A wide variety of algorithms has been devised for the generation of unstructured
grids of complex geometrical representations (Babuška and Rheinboldt 1978, 1979)
covering elasticity (Zienkiewicz and Zhu 1991), fluid dynamics (Peraire et al. 1987;
Probert et al. 1991), metal process (Zienkiewicz et al. 1988), groundwater perme-
ability (Rank andWerner 1986; Chung and Kikuchi 1987; Burkley and Bruch 1991;
Chen 1996). A more detailed discussion on the issue of automatic mesh generation
may be found in Chap. 3.

Two classes of discretization error estimators are currently available (Targowski
et al. 1990). The first class introduced by Babuška and Rheinboldt (1978, 1989) is
based on evaluating the residuals of approximate solution to obtain local, more
accurate answers; the second class introduced by Zienkiewicz and Zhu (1987)
estimates the error in gradient-based norms simply by improved values of gradient
using available recovery process (Z2 or ZZ-estimator). The latter is rather prevalent
in the applications of h-refinement.

Obviously, the validation of the ZZ-estimator depends on the accuracy of the
recovered value of gradient such as the stress denoted by fr�g. It customarily utilizes
the discontinuous nature of the gradient across element boundaries to define an
approximation of error. The earliest recovery technique made use of L2 projection
(Hinton and Campbell 1974; Kelly et al. 1983a, b; Babuška and Miller 1984a, b, c)
and, even simpler, of averaging procedure. Later, it was found that reliable error
estimators of the mesh discretization can be achieved by using the interpolation of
recovered nodal values, of which the famous one is the Super-convergent Patch
Recovery (SPR) (Zienkiewicz and Zhu 1992a, b; Wiberg and Abdulwahab 1993;
Wiberg et al. 1994; Wiberg and Li 1994). In the SPR method, a patch of elements
adjacent to a node is constructed, and the least squares fitting is performed at specific
points within the element patch. The locations where the gradients are sampled are
referred to as “super-convergent”, implying that the accuracy order at these specific
locations is higher than at arbitrary locations within the element. The high efficiency
of the SPR has been proven (Zienkiewicz and Zhu 1995). A more general one is the
Recovery by Equilibrium of Patches (REP) (Boroomand and Zienkiewicz 1997a, b),
in which the original PDE (or equilibrium equation) is expressed in terms of the field
we seek to recover, and then the PDE is solved in least squares sense over a patch of
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elements adjacent to a given node (Tabbara et al. 1994). The REP has the advantage
over the SPR in that it is applicable for any element type.

The data transfer between meshes (Ortiz and Quigley 1991; Zienkiewicz et al.
1995; Deb et al. 1996a, b; Cramer et al. 1999) is indispensable for adaptive
h-refinement because that:

– The refined meshes for the stress computation and seepage computation are not
overlapped;

– The different phases of rock excavation and concrete placement demand dif-
ferent meshes;

– Spatial-time characteristics attributable to the crack propagation (Wang 1987;
Tradegard et al. 1998) or/and localization (Leroy and Ortiz 1990; Needleman
1992; Chen et al. 2007) need mesh adjustment and data transfer.

5.2.2 Error and Element Size Estimators

Towards the adaptive FEM computation of h-version refinement, the posteriori
error and element size estimator is most essential.

Normally, the exact solution demanded in approximation error estimation is not
accessible. In the ZZ-estimator, stress gradient error is approximated by the dif-
ference between the recovered solution fr�g of higher order and the original FE
solution frhg on the mesh with element size h.

Take the linear elastic problem for example, the governing equation of Eq. (4.71)
may be reduced in terms of total displacement

½K�fdg ¼ fFg ð5:1Þ

The total strain and stress hold the same forms in Eqs. (4.59) and (4.62) but
neglect the incremental prefix D and time subscript t.

Under a certain family of elements with polynomial interpolation order p and
mesh size h, denote the FE computed outcomes as fuhg; fehg; frhg, and the precise
solutions as fug; feg; frg, then the error vectors are calculated by

eu;h
� � ¼ uf g � uhf g
ee;h
� � ¼ ef g � ehf g
er;h
� � ¼ rf g � rhf g

8><
>: ð5:2Þ

The point-wise definitions of errors feg are cumbersome in view of application,
so various integral scales ek k, such as the so-called L2-norm and the energy norm,
are used.
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– Energy norm

ehk k ¼
ZZZ
X

½B�feu;hg
� �T ½D� ½B�feu;hg� �

dX

0
@

1
A

1
2

¼
ZZZ
X

fer;hg
� �T ½D��1 fer;hg

� �
dX

0
@

1
A

1
2

ð5:3Þ

– L2-norm

ehk k ¼
ZZZ
X

fer;hg
� �T fer;hg

� �
dX

0
@

1
A

1
2

ð5:4Þ

The energy norm of the error in Eq. (5.3) will be employed in this book, based
on which the error energy Uðu� uhÞ is conventionally denoted as

Uðu� uhÞ ¼ ehk k2 ð5:5Þ

The asymptotic convergence rate of the finite element solution (Zienkiewicz and
Zhu 1991) states that

ehk k ¼ OðhlÞ
l ¼ minðp; kÞ

�
ð5:6Þ

Where p = order of the polynomials used in the shape functions; k\1 = in-
tensity of singularities (if present).

Since the precise solution frg cannot be accessed, therefore it is substituted by a
“best guess” fr�g in Eq. (5.3) to get

ehk k � ~ehk k ¼
ZZZ
X

ðfr�g � frhgÞ½D��1ðfr�g � frhgÞdX
0
@

1
A

1
2

ð5:7Þ

In hydraulic engineering, rock-like materials are often inhomogeneous, and
discontinuities (e.g. faults, joints) frequently appear. Since the stress continuity is
not guaranteed on a discontinuity surface, therefore it is advisable that the error
estimator Eq. (5.7) should be worked out separately in different matter
sub-domains. If the SPR procedure (Zienkiewicz and Zhu 1992a, b) is conducted in
each material domain separately, the recovered stress field fr�g is continuous in
each sub-domain but exhibits jump across the sub-domain boundaries.
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The effective index h of the estimator is defined by

h ¼ ~ehk k
ehk k 0� h� 1ð Þ ð5:8Þ

When h � 1, the estimator performs with the highest efficiency.
We express Eq. (5.7) in a way of

~ehk k ¼ r� � rhk k ¼ r� � rð Þ � ðrh � rÞk k ð5:9Þ

Then according to the characteristics of energy norm, we have

r� � rk k � rh � rk k� ~ehk k� r� � rk kþ rh � rk k

or

ehk k � e�k k� ~ehk k� ehk kþ e�k k ð5:10Þ

In which e�k k is the error norm between the “best guess” and precise solution.
According to Eqs. (5.8) and (5.10) we get

1� e�k k
ehk k

� �
� h� 1þ e�k k

ehk k
� �

ð5:11Þ

Since e�k k
ehk k ! 0 following the refinement iteration, therefore according to

Eq. (5.11) it may be confirmed that h ! 1.

5.2.3 Practical Algorithm

Due to the non-linear deformation, the simple relation between the displacement
and the energy norm [see Eqs. (5.1)–(5.3)] no longer exists. Under such circum-
stances, we need more complicated procedures for the error and element size
estimator (Stone and Babuška 1998; Boroomand and Zienkiewicz 1999).
However, from the standpoint of hydraulic engineering application, a practical
algorithm via “pseudo energy norm” is suggestible (Chen 1996; Xia and Chen
2001).

Suppose under the present mesh (with size hold) the elasto-viscoplastic solutions
fuhg; fehg; frhg are given where

fuhg ¼ ½N�fdhg ð5:12Þ

And the definition of error vector in Eq. (5.2) is held.
The pseudo energy norm of error is defined in an analogue way similar to

Eq. (5.7).
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ehk k ¼
ZZZ
X

erf gTfeegdX
0
@

1
A

1=2

ð5:13Þ

Equation (5.13) is integrated on the whole domain X but also may be accu-
mulated by the summation of all the contributions from individual element i in the
square form

ehk k2¼
Xne
i¼1

ehk k2i ð5:14Þ

In which ek ki represents the contribution from element i, ne is the element
amount. The estimated relative error is

e ¼ ehk k= uk k ð5:15Þ

In which uk k is the corresponding energy norm of the exact (precise) solution
calculated by

uk k ¼
ZZZ
X

frgTfegdX
0
@

1
A

1=2

ð5:16Þ

Where the error is uniformly distributed in each element and the error tolerance
et is specified, we have

ehk k2i¼ ehk k2=ne ði ¼ 1; 2; . . .; neÞ ð5:17Þ

Introducing Eqs. (5.15) and (5.16) into Eq. (5.17) leads to

ehk ki¼ et uk k= ffiffiffiffiffi
ne

p ði ¼ 1; 2; . . .; neÞ ð5:18Þ

We may define a refinement parameter ni as follows

ni ¼
ffiffiffiffiffi
ne

p
ehk ki=ðet uk kÞ ði ¼ 1; 2; . . .; neÞ ð5:19Þ

For all the element i, ni ¼ 1 entails the optimal mesh and the h-refinement is
accomplished. Otherwise the new element size hnewi towards the next iterative
refinement is calculated by the formula

hnewi ¼ holdi =n1=li ði ¼ 1; 2; . . .; neÞ ð5:20Þ

In which l ¼ minðp; kÞ, p is the order of the shape functions and k\1 is the
intensity of the singularity.

The new element size hnewi may be looked at as being located at the center of the
old element i, which is assembled into the database as a portion of back ground
messages for the generation of new mesh.
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5.2.4 Data Transfer

For a large class of nonlinear problems the mesh configuration needs to change
(Kato et al. 1993). Upon re-meshing, material history data and internal variables in
addition to strains/stresses have to be mapped from the old mesh to a new one. In
practice, this involves transferring state variables from a discrete number of points
(nodes or/and integral points) in the old mesh to another set of points in a new
mesh.

The data that need to be transferred in the elasto-viscoplastic computation may
be uniformly termed as

Kh;t ¼ fuhgt; fehgt; frhgt; fHa;hgt
� � ð5:21Þ

Where fuhgt = displacement; fehgt = strain; frhgt = stress; fHa;hgt = internal
variable related to viscoplasticity.

These variables may be located at nodes (e.g. displacements) or at integral points
(e.g. stresses, strains, internal variables), respectively.

Several important aspects of the transfer operation ought to be well cared are:

– Consistency with the constitutive equations;
– Equilibrium of the system;
– Compatibility with the displacement field on the new mesh;
– Compatibility with evolving boundary conditions;
– Minimization of the numerical diffusion of state variables.

Since state variables may be stored at the integral points or/and nodes, two
different types of transfer operators are generally needed. Suppose at time instant
tþDt the state variable Kh;tþDt is solved, and the error estimation indicates the
refinement of hþ 1, the data transfer operators are defined below according to Perić
et al. (1996).

fuhþ 1gtþDt ¼ C1 fuhgtþDt

� � ð5:22Þ

frhþ 1gtþDt; fehþ 1gtþDt; fHa;hþ 1gtþDt

� � ¼ C2 frhgtþDt; fehgtþDt; fHa;hgtþDt

� �
ð5:23Þ

The transfer operator C1 is simple because it links the old nodes directly to the
new nodes. The operator C2 corresponding to Gaussian quadrature points is more
complex involving the steps depicted in Fig. 5.1. It transfers K to the nodes first,
then further to the Gaussian quadrature points.

(1) Extrapolation of a continuous state variable field on the old mesh (see
Fig. 5.1a)

Use is made of standard nodal extrapolation and average, a continuous state vari-
able KN

h;t may be get from the original discrete values KG
h;t at the integration points
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KN
h;t ¼ C1

2K
G
h;t ð5:24Þ

In which the superscripts N;G indicate the nodal and Gaussian points,
respectively.

Evidently, this step constitutes an important source of numerical diffusion. More
advanced techniques similar to the SPR to construct a smooth field meanwhile to
cut down transfer diffusion are for instance, the global least squares approximation
(Hinton and Campbell 1974) and the iterative procedure (Loubignac et al. 1977).

(2) Interpolation of a continuous state variable field on the new mesh (see
Fig. 5.1b)

For each new node, the element of the old mesh containing this new node is
determined in terms of its normalized coordinates. The new nodal values KN

hþ 1;t are
then easily computed using the old shape functions and the field of continuous state
variable KN

h;t on the old mesh

KN
hþ 1;t ¼ C2

2K
N
h;t ð5:25Þ

This is implemented through three detailed steps as follows.

① For the node j in the new mesh (hþ 1) with coordinate xhþ 1f gj, the
background element Xh;e is sought in the old mesh (h) (see Fig. 5.2), i.e.
fxhþ 1gj 2 Xh;e.

– Search an old node most close to the new node j, all the old elements related to
this old node are grouped as candidate elements.

– The normalized coordinates fRhgj ¼ ½nhj ghj fhj�T of the node j corre-
sponding to each candidate element are calculated using the Newton-Raphson
iterative procedure

Fig. 5.1 Steps of the operator C2 (linear triangle element)
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fGg ¼ fxhþ 1gj �
X
i¼1

Ni fRhgj

 �

fxhgi ¼ 0 ð5:26Þ

In which fxhgi are the nodal coordinates of the candidate element and Ni fRh;jg
� �

is the ith shape function of the candidate element.

If 0�Rh;j � 1 (for triangular and tetrahedral element)
�1�Rh;j � 1 (for quadrilateral and hexahedral element)

The candidate element is selected as the target element.

② The shape functions of the old mesh (h) are employed to interpolate the
state variable defined at the new node j

KN
hþ 1;t ¼

X
i¼1

Ni fRhgj

 �

KN
h;t


 �
i

ð5:27Þ

③ The shape functions of the new mesh (hþ 1) are employed to interpolate
the state variable at the new Gaussian quadrature point (see Fig. 5.1c)

KG
hþ 1;t ¼

X
i¼1

Ni fRG
hþ 1g

� �
KN

hþ 1;t


 �
i

ð5:28Þ

The above procedure makes use of shape function interpolation and least squares
minimization, which will more or less bring about data diffusion, i.e. localization
features might be smoothed. Data diffusion can be further brought about by com-
puting the state variable on new integration (quadrature) points directly from the
continuous state variable field on the old mesh (Lee and Bathe 1994). All these

Fig. 5.2 Identification of element
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introduce inconsistencies (Pavana Chand and Krishna Kumar 1998). Consistency
here refers to the correct mutual dependencies between the transferred state vari-
ables on the basis of governing equations. Ortiz and Quigley (1991) showed that by
applying the Hu-Washizu principle, a consistent transfer operator for the state
variables from the old Gaussian quadrature point directly to a new one, can be
derived.

5.3 H-Version of Refinement in Space Domain:
Seepage Problems

Adaptive FEM was firstly implemented for the steady state seepage problems in
1986 (Rank and Werner 1986; Chung and Kikuchi 1987). In 1991, Burkley and
Bruch established an adaptive FE algorithm for the unconfined seepage problem
through a homogeneous earth fill dam with triangle mesh. Chen et al. (1996), Feng
and Chen (2003) generalized it into the practical algorithm with 2-D quadrilateral
mesh and 3-D tetrahedral mesh. Since the Z2 or ZZ-estimator aiming at the elas-
ticity problem (Zienkiewicz and Zhu 1987) possesses clear physical concept and
can be easily implemented, therefore the mesh error and size estimator for seepage
problem was similarly proposed by these pioneering researchers.

Denote the exact solution of hydraulic potential and flow rate as / and vf g, and
the corresponding FE solution on the mesh of size hold as /h and vhf g. Error is
therefore defined as the difference between the exact solution and the approximate
solution

e/;h ¼ /� /h

ev;h ¼ fvg � fvhg ¼ �½k�½ @@x @
@y

@
@z�Te/;h

�
ð5:29Þ

It is convenient to scale the error in terms of “energy norm” in the form of

ehk k ¼
ZZZ
X

fev;hgT ½k��1fev;hgdX
0
@

1
A

1=2

ð5:30Þ

In which k½ � is the permeability matrix.
Since we cannot get the exact solutions with regard to / and vf g in Eq. (5.29)

unless under very simple boundary conditions, the estimation of mesh error
involves the comparison of the approximate solution with other more precise
solution fv�g termed as the “best guess” of vf g. fv�g may be given by a similar
procedure of SPR, or even simply by the average surrounding the nodes using the
recovered nodal values on element-base, i.e.
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v�f gi¼ ½N� �v�f gNi ð5:31Þ

The nodal vector �v�f gNi of the element i is given by

f�v�gNi ¼ 1
m

Xm
j¼1

fv�gNj ð5:32Þ

In which j runs over m elements around the node N concerned, andZZZ
Xj

½N�Tð½N�fv�gNj � fvhgjÞdX ¼ 0 ð5:33Þ

The energy norm of error in Eq. (5.30) is defined in the entire domain X and
normally calculated by the square summation of all the elements ne in the discrete
domain

ehk k2¼
Xne
i¼1

ehk k2i ð5:34Þ

A good approach of the total energy norm of / can be postulated as

/k k2� /hk k2 þ ehk k2 ð5:35Þ

In which

/hk k ¼ ð
ZZZ
X

fvhgT ½k��1fvhgdXÞ1=2 ð5:36Þ

In general, the error is scaled in terms of an overall percentage energy norm, i.e.

e ¼ ehk k
/k k ð5:37Þ

If this error is equal to the tolerance specified by the user, namely

e ¼ et ð5:38Þ

The optimal mesh has been obtained, otherwise the element size h should be
refined by distributing the error evenly among elements, i.e.

ehk k2i¼ ehk k2=ne ði ¼ 1; 2; . . .; neÞ ð5:39Þ
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Substituting ehk k2 from Eq. (5.37) in Eq. (5.39) yields

ehk ki¼ et /k k= ffiffiffiffiffi
ne

p ði ¼ 1; 2; . . .; neÞ ð5:40Þ

We may define a refinement parameter ni as

ni ¼
ffiffiffiffiffi
ne

p
ehk ki=ðet /k kÞ ði ¼ 1; 2; . . .; neÞ ð5:41Þ

For all the element i, ni = 1 entails the optimum mesh. Otherwise the new
element size hnewi towards the next iterative refinement is calculated by the formula

hnewi ¼ holdi =n1=li ði ¼ 1; 2; . . .; neÞ ð5:42Þ

In which l ¼ minðp; kÞ, p is the order of the shape function and k\1 is the
intensity of the singularity.

In Fig. 5.3 we construct the flow chart towards the seepage analysis using the
h-refinement FEM. It comprises 4 major modules for mesh generation, seepage
analysis, error and mesh size estimation, and post process, respectively.

5.4 H-Version of Refinement in Time Domain:
Elasto-Viscoplasticity Problems

5.4.1 Concept

For problems of parabolic types (e.g. viscoplastic deformation, transient heat
conduction, unsteady seepage and transport) and hyperbolic types (e.g. dynamic
response), the discretization and integration (marching, stepping) scheme in time
domain plays a crucial role in preserving computation convergence and efforts
(Zienkiewicz et al. 1984; Zienkiewicz and Taylor 1985; Selman 1992; Wiberg
et al. 1992; Wiberg and Li 1994). At specific time ti where the subscript i denotes
the sequence of discrete time steps taken to reach ti, most of direct time integration
schemes require the solution to be specified in the previous instant ti�1. The
time-stepping (marching) length Dti ¼ ti � ti�1 should be prescribed, too. These
schemes can be categorized into heuristic methods, in which the time-step is
controlled by either the rate of convergence of the solution or the rate of variation of
a state variable, and adaptive methods, in which an estimator for time-stepping error
is employed to adaptively set/adjust the time-stepping length.

It is troublesome to choose an appropriate time-stepping length for the direct
time integration process with heuristic methods. Selecting smaller time-stepping
length provides more detailed and stable description of the response, but spends
larger computation resources. The correct choice of time-stepping length must
consider the conflict between the demands of solution accuracy in addition to the
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numerical stability (in some cases) and computational effort. Unfortunately, the
optimal time-stepping length may change considerably during the computation due
to the changes in actions and/or system nonlinearities. Thus, although the fixed
time-stepping scheme is prevalent and its length choice is frequently based on
intuition and experience, the desirable approach is adaptive (automatic) strategy
seeking the largest possible time-stepping length while maintaining a prescribed
accuracy efficiently.

Adaptive time-stepping algorithms for parabolic and hyperbolic problems
available may be distinguished into three types as follows (Rossi et al. 2014).

– Current characteristic frequency (Park and Underwood 1980). It was initially a
strategy based on a scale of the residual force vector computed at the midpoint of
the time interval, and was further developed by Bergan and Mollestad (1985) to
estimate time-stepping length using an expression similar to the Rayleigh quotient.

Fig. 5.3 Flow chart for the
seepage analysis of
h-refinement
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– Local error estimator (Zienkiewicz and Shiomi 1984; Zienkiewicz and
Xie 1991; Zhang and Chen 1996, 1997). It is based on a simple expression as
an indicator of local error obtained at little computational effort. Hulbert and
Jang (1995), Chung et al. (2003) proposed a priori error estimator and automatic
time-stepping algorithms applied to the integration process for generalized
Newmark-a method. It uses only information in the previous and current time
steps without a feedback process, which is required in most conventional a
posteriori error estimators.

– Indicator of curvature (Lages et al. 2013). It is a strategy that employs an
estimator based on the geometric indicator of displacement history curvature.
This estimator is obtained at little computational effort and is applicable to
various existing direct time integration methods.

For structural dynamic analyses, Bergan and Mollestad (1985) suggested a set of
criteria to evaluate control strategies for time-stepping length. Briefly, these are

– The optimized time-stepping length should not be influenced by the initial
stepping length;

– The time-stepping length should remain constant during a linear stationary
response;

– The time-stepping length should not be influenced by the selection of physical
units or by the DOFs in the dynamic equations;

– All of the input parameters should be easily described;
– The additional computational cost for time-stepping length selection should be

as small as possible;
– The time-stepping length should react immediately to sudden changes in a

dynamic response analysis;
– The time-stepping length should not change without necessity.

In the following coverage of this section, only elasto-viscoplastic problems are
addressed to give our readers the general idea with regard to the automatic
time-stepping algorithms based on the adaptive refinement.

5.4.2 Refinement Strategies

Refinement strategies can control the time-stepping length using either a posteriori
or a priori estimators of the truncation error. A posteriori refinement calculates the
error based on the result just obtained (Babuška and Rheinboldt 1978), using for
example, the extrapolation technique (Abbasian and Carey 1997; Belfort
et al. 2007). A priori refinement (Schneid et al. 2004) attempts to determine a
bound on the truncation error beforehand. The latter is however, difficult to ensure
accuracy and depends on the convergence rate as well as the derivate of the
function.
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In the elasto-viscoplastic potential theory (Owen and Hinton 1980), the vis-
coplastic strain increment may be expressed by

fDevpgt ¼ 1�Hð Þ _evpf gt þH _evpf gtþDt

� 
Dt ð5:43Þ

In which _evpf gtþDt and _evpf gt are the viscoplastic strain rates that occur at the
beginning and the end of the time step, respectively.

We also have

_evpf gtþDt¼ _evpf gt þ H½ �t Drf gt ð5:44Þ

In which ½H�t is the implicit matrix [see Eq. (2.129)] and fDrgt is the stress
increment in the interval Dt.

½H�t ¼
@ _evpf gt
@frgt

ð5:45Þ

fDrgt ¼ ð½H�tÞ�1ð _evpf gtþDt� _evpf gtÞ ð5:46Þ

In Eq. (5.43), an implicit parameterH� 1=2 guarantees unconditional numerical
stability. Although this means that Dt may be selected without worries over the
noise producing unaccepted oscillation or even abnormal collapse in computation,
yet the time-stepping length is additionally restrained to keep the balance between
the computation effort and accuracy.

In elasto-viscoplastic problems when the time-stepping is unconditionally stable,
the accuracy is customarily ascertained by the heuristic strategies. Use is often made
of minimum and maximum time-stepping lengths, time-step reduction, enlargement
factor, and a maximum number of iterations. Two fractional values of the maximum
number of iteration are also exercised for determining when the time-stepping
length is adjusted: if the solution converges in fewer iterations than the lower
fractional value, the time-stepping length is reduced and vice versa (Owen and
Hinton 1980). Towards the more clever adjustment of time-stepping length, and
further, the standardized computational software for practitioners, adaptive
time-stepping is recognized as a better strategy (Zienkiewicz and Shiomi 1984;
Zienkiewicz and Taylor 1985; Zhang and Chen 1997).

5.4.3 Error Estimators

Introducing Eq. (5.44) into Eq. (5.43), we have (Zhang and Chen 1997)

Devpf gt¼ _evpf gtDtþHDt½H�tfDrgt ð5:47Þ
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Since at any time tþDt, the viscoplastic strain fevpgtþDt is cumulated by
fevpgtþDt ¼ fevpgt þfDevpgt, we have

fevpgtþDt ¼ fevpgt þ _evpf gtDtþHDt½H�tfDrgt ð5:48Þ

Equation (5.48) gives “extrapolation solution” or “differential solution” of
fevpgtþDt with 1st-order in terms of the truncation of the Taylor series.

Suppose that at the start of time marching we hold an accurate solution fevpgt,
then with the Taylor series expansion we may get the higher order solution of
fevpgtþDt;ex as the “best guess” of the exact solution fevpgtþDt at the end that

fevpgtþDt; ex ¼ fevpgt þ _evpf gtDtþ 1
2
Dt2 €evpf gt þ o Dt3

� � ð5:49Þ

The time-stepping error can be calculated using high-order items in the Taylor
series by the subtraction operation between the “extrapolation solution” Eq. (5.48)
and the “exact solution” Eq. (5.49) as

fevpgt;error ¼ fevpgtþDt � fevpgtþDt;ex ¼ H½H�tfDrgtDt � 1
2
Dt2 €evpf gt þ o Dt3

� �
ð5:50Þ

Introducing Eq. (5.46) into Eq. (5.50), we have

fevpgt;error ¼ HDt _evpf gtþDt� _evpf gt
� �� 1

2
Dt2 €evpf gt þ o Dt3

� � ð5:51Þ

The truncated Taylor series for _evpf gtþDt is employed to calculate the second
order derivation €evpf gt in Eq. (5.51), i.e.

_evpf gtþDt¼ _evpf gt þDt €evpf gt þ o Dt2
� � ð5:52Þ

From Eq. (5.52) we get

€evpf gt¼
1
Dt

_evpf gtþDt� _evpf gt
� �þ o Dtð Þ ð5:53Þ

Insert Eq. (5.53) into Eq. (5.51) and neglect the 3rd-order item gives rise to

fevpgt;error ¼ ðH� 1
2
ÞDt ð _evpf gtþDt� _evpf gtÞ ð5:54Þ

Equation (5.54) is the local error estimator of second order defined at Gaussian
quadrature points. It is found that Eq. (5.54) does not hold where H = 1/2 because
in this case the time-stepping scheme Eq. (5.43) intrinsically possesses higher order
accuracy, hence a similar deduction gives rise to a substitute error estimator of
higher order as
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fevpgt;error ¼ ðH� 1
3
ÞDtð _evpf gtþDt� _evpf gtÞ �

1
6
Dt2 €evpf gt ð5:55Þ

5.4.4 Implementation

The Euclid norm of the local error is used to scale the error g (Zhang and
Chen 1997).

g ¼ fevpgt;error
��� ��� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfevpgt;errorÞTfevpgt;error

q
ð5:56Þ

The normalized dimensionless error is further defined by the formula

e ¼ g

fDevpgmax

�� ��� 100% ð5:57Þ

In which fDevpgmax

�� �� is the Euclid norm of the maximum viscoplastic strain
increment. Since the error e is different in each Gaussian quadrature point, the
maximum error emax is selected to control the time-stepping length for the whole
structure system

emax ¼ Max
i;g

ðeÞ ð5:58Þ

In which i and g cover all the elements and Gaussian points emerging vis-
coplastic deformation.

After the specification of error tolerance (allowable or permissible error) et, the
time-stepping length at each step is controlled according to

emax ¼ et
emax\et
emax [ et

8<
: ð5:59Þ

– emax ¼ et. The solution is accepted and the marching process proceeds to the
next time increment without changing its stepping length.

– emax\et. The time-stepping length can be raised. However, it is advisable to
execute the augment only for the next time-stepping, and the solution from the
current step is accepted.

– emax [ et. The time-stepping length is subject to reduction. The current solution
is discarded, and a new solution is re-computed using a smaller stepping length
Dtnew calculated by the formulas
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Dtnew ¼ ðet=emaxÞ1=2Dtold 2 - order estimator
Dtnew ¼ ðet=emaxÞ1=3Dtold 3 - order estimator

(
ð5:60Þ

5.5 P-Version of Refinement in Space Domain:
Strain/Stress Problems

5.5.1 Concept

It is well known that the accuracy of FE solution depends on both the mesh
refinement and the dimension of basis function space, and the hierarchical upgrade
of basis functions is an effective way to realize the p-convergence. Denote Hpi as
the pi-order hierarchical space where the element size is unchanged, according to
the hierarchical concept, the lower order space is the subset of the higher order
space, i.e. Hp1 	 Hp2 	 . . . 	 Hpi 	 . . . 	 Hpn p1\p2\. . .\pi\. . .pnð Þ.

In the middle of the 1970s, the Washington University compiled a p-refinement
FEM program COMET-X with the concept of hierarchical elements. Babuška,
Szabó and Katz firstly analyzed the theory of p-refinement in 1981 and pointed out
that in the p-version of refinement using quasi-uniform mesh, the rate of conver-
gence is higher than that in the h-version of refinement. When the singularities are
at the element boundaries in a quasi-uniform mesh, the rate of convergence of the
p-refinement is twice that of the h-refinement (Rahulkumar et al. 1997). In 1985,
the first commercial software PROBE of p-refinement is published by Noetic.

In the following years the research was booming in the area of computation
techniques for the p-refinement FEM (Wiberg and Möller 1988). Typically,
Hinnant (1994) proposed a vector integral scheme which specifically takes
advantage of the nature of p-version element matrices, to minimize the computa-
tional effort. Since the 1990s, scholars made remarkable progress in the
p-refinement inclusive solution strategy towards various field problems (Morris
et al. 1992; Papadrakakis and Babilis 1994; Fei and Chen 2004).

So far, most studies on the p-refinement are focused on the theories and appli-
cations within the range of elastic and homogenous materials. Since rock-like
materials are mostly heterogeneous, non-linear, and discontinuous, there is still
much room for the improvements towards the solution of complicated hydraulic
structure problems using the FEM of p-version refinement.
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5.5.2 Error Analysis and Refinement Strategies for Elastic
Problems

Use is made of all the basis functions with respect to nodes, edges, faces, and body to
formulate a general shape function setNi with a certain degree of freedom (DOF), the
displacement u within the element specified by the normalized coordinates (n, g, f)
may be interpolated using the corresponding nodal displacements (state variables) by
Eq. (4.52). Under such nomenclature convention, the approximation for the dis-
placement within an element [see Eq. (4.56)], the strain related to the general nodal
displacements [see Eq. (4.59)], the stress related to the general nodal displacements
[see Eq. (4.63)], as well as the governing equations [see Eqs. (4.69)–(4.70)], do hold.

For the linear elasticity problem under certain mesh and basis functions of order
p, denote fupg; fepg; frpg as the computational solutions by FEM, and
lf g; ef g; rf g as the correspondent exact solutions, the error vectors are defined as

(Babuška et al. 1994a, b).

eu;p
� � ¼ uf g � up

� �
ee;p
� � ¼ ef g � ep

� �
er;p
� � ¼ rf g � rp

� �
8<
: ð5:61Þ

The error norm is defined accordingly

ep
�� �� ¼

u� up
�� ��
e� ep
�� ��
r� rp
�� ��

8<
: ð5:62Þ

A particular notation U for the displacement error in the elastic problem has been
conventionally used for many years, i.e.

U ¼ u� up
�� ��2

Up ¼ up
�� ��2

Uu ¼ uk k2

8><
>: ð5:63Þ

The energy norm are usually employed under the circumstances of elastic
deformation

ep
�� �� ¼

ZZZ
X

B½ � eu;p
� �� �T

D½ � B½ � eu;p
� �� �

dX

0
@

1
A

1
2

¼
ZZZ
X

er;p
� �� �T

D½ ��1 er;p
� �� �

dX

0
@

1
A

1
2

ð5:64Þ
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This definition may be of overall covering all the elements or of local covering
element i only, and they are related in a manner of

ep
�� ��2¼Xne

i¼1

ep
�� ��2

i ð5:65Þ

It has been verified that these errors can be well characterized by a function of
the degree of freedom abbreviated as DOF, or simply as N if there is no risk of
misleading.

The p-refinement algorithms fall into the “complete refinement” by which all
elements are refined, the “element refinement” by which only the elements whose
precisions cannot meet the requirement are refined, and the “DOF refinement” by
which the DOF s prone to reduce the error remarkably are refined (Cheng and
Chen 1999). Generally speaking, the complete refinement is the simplest, but it has
an obvious disadvantage that those elements sufficiently accurate are forced to
upgrade. The DOF refinement may be regarded as the most rigorous method but it
is too complicated to implement. The element refinement is a good compromise
between the complete refinement and the DOF refinement.

(1) Complete refinement
It has been shown by Zienkiewicz et al. (1970, 1983) that, the error energy norm in
Eq. (5.64) will approach zero monotonously following the mesh refinement or the
basis function upgrade. The problem now is, how to estimate the energy norm (Uu)
of exact solution. It may be handled by the strategies of residual-based,
recovery-based, goal-oriented, and a variety of practical (Grätsch and Bathe 2005).

1. Residual-based error estimator
It aims to improve the quality of computational solution by minimizing the dis-
cretization error with the help of some global scales (i.e. norm). Whilst it is possible
to compute the discretization error via solving the exact solution or very accurate
solution on an extremely well resolved mesh, in practical applications the essential
idea stems from the definition of the residual of variational problems. Giving a well
discretized mesh, the convergent rate of p-refinement is

ep
�� �� ¼ u� up

�� ���C=Nb
p ð5:66Þ

In which b is dependent on the smoothness of the solution. For the h-refinement
FEM without the existence of singularity, we have b ¼ p=2.

Therefore

Uu � Up

�� �� ¼ U u� up
� � � C2=N2b

p ð5:67Þ

Where Np is the DOF when the polynomial order is p.
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Equation (5.67) contains three unknown variables Uu, C and b. Towards the
solution of Uu we write

Uu � Up

�� �� � C2=N2b
p

Uu � Up�1

�� �� � C2=N2b
p�1

Uu � Up�2
�� �� � C2=N2b

p�2

8><
>: ð5:68Þ

Taking into account of the monotony feature of U

log Uu�Up

Uu�Up�1


 �
log Uu�Up�1

Uu�Up�2


 � ¼
log Np�1

Np

log Np�2

Np�1

ð5:69Þ

And denoting

log Np�1

Np

log Np�2

Np�1

¼ Q ð5:70Þ

We have

Uu � Up

Uu � Up�1
� Uu � Up�1

Uu � Up�2

� �Q

ð5:71Þ

From Eq. (5.71) the strain energy of exact solution Uu may be estimated.
The adaptive strategy is established by at least three continuous successive

orders p of hierarchical upgrade, where the relative error is calculated by the energy
norms of the exact solution Uu and error Uðu� upÞ

e ¼ ep
�� ��
uk k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uðu� upÞ

Uu

s
ð5:72Þ

The adaptive refinement is terminated if e� et, otherwise the basis functions
should be upgraded using polynomials of higher order.

2. Recovery-based error estimator
One of the classical techniques to define an error estimator is via the construction of
higher order solution to approximate discretization error. As stated previously, this
could be somewhat impractical or expensive to compute with high resolution.
A recovery-based error estimator attempts to construct an approximation to the
error via a higher precise solution fu�g in comparison to fupg. The philosophy is
that since fu�g converges to the exact solution faster than fupg, the error given by
fepg ¼ fu�g � fupg is a meaningful approximation of the discretization error in an
appropriate norm.
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The recovery estimator that utilizes the discontinuous nature of the gradient of
finite element solution across element boundaries to define an approximation of the
error, has been addressed in Sect. 5.2.

3. Goal-oriented error estimator

It seeks to modify the finite element mesh, with the objective of improving the
numerical approximation of a specific quantity of interest (e.g.fupg) (Babuška and
Rheinboldt 1978; Prudhomme and Oden 1999; Becker and Rannacher 2001;
Chung et al. 2016).

4. Practical estimator

Since the main purpose of adaptive refinement in the works of this book is to make
the computation software be standardized towards the design of hydraulic struc-
tures, rather than to unilaterally pursue the “computational accuracy”, a practical
algorithm of p-refinement will be proposed hereinafter. (Fei and Chen 2003a, b).

We define the energy norm

ep
�� �� ¼

ZZZ
X

rf g � rp
� �� �T

ef g � ep
� �� �

dX

0
@

1
A

1
2

ð5:73Þ

In which rp
� �

and ep
� �

are respectively the stress and strain computed with
certain shape functions of grade p, rf g and ef g are respectively the exact stress and
strain. It is supposed that the stress and strain of higher grade pþ 1 is the “best
guess” of the exact stress and strain. For a mesh system containing ne elements, the
error energy norm in Eq. (5.73) can be rewritten as

ep
�� �� ¼

Xne
i

ep
�� ��

i ¼
Xne
i

ZZZ
Xi

rpþ 1
� �� rp

� �� �T
epþ 1
� �� ep

� �� �
dX

0
B@

1
CA

1
2

ð5:74Þ

and the total energy norm of exact solution is computed by the formula

uk k ¼
Xne
i

ZZZ
Xi

rpþ 1
� �� �T

epþ 1
� �� �

dX

0
B@

1
CA

1
2

ð5:75Þ

The following relative error is therefore established

e ¼ ep
�� ��
uk k ð5:76Þ
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If the error e is smaller than or equal to the error tolerance et, i.e.

e� et ð5:77Þ

The calculation results is accepted as practical satisfactory, otherwise the order p
of the shape functions should be upgraded.

The complete refinement demands a “well” designed mesh. The problem is,
where there is a singularity, how to well discretize the domain? Szabó (1986)
suggested that the element size around the singularity is shrunk by a fraction scale
of 0.15 (see Fig. 5.4).

(2) Element refinement

The element refinement is intended to avoid the unnecessary upgrade for those
elements with gentle stress gradient.

1. Error estimator

Since in Eq. (5.66) b ¼ 1
2 p for h-refinement and generally the convergent rate is

higher in p-refinement, therefore an acceptable bp in Eq. (5.66) for p-refinement
may be

Fig. 5.4 Mesh design surrounding a singularity (by Szabó)
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bp ¼
/
2
p ð5:78Þ

In which /� 1.
Similar to the Eq. (5.78), the higher order (grade) of pþ 1 gives rise to

bpþ 1 ¼
/
2

pþ 1ð Þ ð5:79Þ

For the problem without singularity, combine Eqs. (5.78) and (5.79) we obtain

p
pþ 1

� bp
bpþ 1

ð5:80Þ

Equation (5.80) may be used to estimate the convergent rate of element because
we can relate the error norm of order p to that of order pþ 1 in a manner of

epþ 1

�� �� ¼ Np

Npþ 1

� �bpþ 1

ep
�� �� ¼ Np

Npþ 1

� �bp
pþ 1
p

ep
�� �� ð5:81Þ

Similarly, from order pþ 1 to order pþ 2 we have

epþ 2

�� �� ¼ Npþ 1

Npþ 2

� �bpþ 2

epþ 1

�� �� ¼ Npþ 1

Npþ 2

� �bp
pþ 2
p

epþ 1

�� �� ð5:82Þ

Introducing Eq. (5.81) into Eq. (5.82) leads to

epþ 2
�� �� ¼ Npþ 1

Npþ 2

� �bp
pþ 2
p Np

Npþ 1

� �bp
pþ 1
p

ep
�� �� ð5:83Þ

or

epþ 2
�� �� ¼ Np

Npþ 2

� �pþ 2 Npþ 1

Np

� �" #bp1p
ep
�� �� ð5:84Þ

Inductive approach gives rise to

epþ n

�� �� ¼ Np

Npþ n

� �pþ n Npþ n�1
� �

Npþ n�2
� � 
 
 
 Npþ 1

� �
Nn�1
p

 !" #bp=p
ep
�� �� 8n[ 1

ð5:85Þ
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Equation (5.85) may be employed to estimate the energy norm of error under
different order of basis functions, where there is no singularity in the element
concerned.

If a node on the element is the singularity, we have b ¼ k = constant, in which k
is dependent on the intensity of the singularity. Under such circumstances, fol-
lowing the similar procedure of Eqs. (5.81)–(5.85), we get

epþ 1
�� �� ¼ Np

Npþ 1

� �b

ep
�� �� ð5:86Þ

epþ 2

�� �� ¼ Npþ 1

Npþ 2

� �b

epþ 1

�� �� ð5:87Þ

epþ n

�� �� ¼ Np

Npþ n

� �b

ep
�� �� ð5:88Þ

2. Practical algorithms

① For the element i, the stress rp
� �

i of order p is obtained.
② The computation of order pþ 1 is carried out to get a higher order stress

rpþ 1
� �

i that is directly looked at as the “best guess” of the exact
solution. The relative error of the element i is calculated by the formula

ei ¼
ep
�� ��

i

rpþ 1

�� ��
i

¼ rpþ 1 � rp
�� ��

i

rpþ 1

�� ��
i

ð5:89Þ

③ If ei � et, the polynomial order pþ 1 is kept for the element i, otherwise
we use Eq. (5.85) or Eq. (5.88) to estimate the tentative order p ¼ pþ n
and return to step ①.

④ Repeat steps ①–③ until for all the elements the following criterion is
met

ei � et ði ¼ 1; . . .; neÞ ð5:90Þ

(3) DOF refinement

Towards the purpose of DOF refinement, we write the governing equation of the
FEM for an element in the hierarchical form of

kp
� 

dp
� � ¼ fp

� � ð5:91Þ

Denote the additional displacement sub-vector attributable to the p-refinement as
daf g, and
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d�f g ¼ N½ � dp
� �þ Na½ � daf g ð5:92Þ

kp
� 

kpa
� 

kap
� 

kaa½ �
� �

dp
� �
daf g

� �
¼ fp

� �
faf g

� �
ð5:93Þ

The error with respect to the displacement is termed as

eu;p
� � ¼ N½ �ð df g � dp

� �Þþ Na½ � daf g ð5:94Þ

In which df g is the exact solution of the nodal displacement and Na½ � is the
additional sub-matrix of the shape function due to the hierarchical upgrade.
A convincible postulation might be

dp
� � � df g ð5:95Þ

The second row of Eq. (5.93) gives the solution of daf g

daf g ¼ kaa½ �ð Þ�1 faf g � kap
� 

df g� � ð5:96Þ

To operate the inverse of kaa½ � in Eq. (5.96), we introduce one DOF, for
example, j. Since there is only one scalar member da;j of daf g, we have

kaa½ �ð Þ�1� 1
ka;jj

ð5:97Þ

There are two manners to scale the error in Eq. (5.94) using the energy norm.
One is to link it with the strain and stress increments in a form of

eu;p
�� ��2¼ fdagð ÞT

ZZZ
Xi

½Ba�T ½D�½Ba�dX daf g ð5:98Þ

Another is to link it with the residual rf g related to the exact and FE solutions by

k½ � eu;p
� � � ½k� df g � dp

� �� � ¼ rf g ð5:99Þ

eu;p
�� ��2¼ C2

j ¼

RRR
Xi

Na½ �ð Þ2dX
 ! RRR

Xi

rf gð Þ2dX
 !

ka;jj
ð5:100Þ

By the DOF refinement, it is to introduce those DOFs with larger Cj. For
example, the DOF j added in the next refinement iteration may be selected
according to
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Cj � cCmax ð5:101Þ

Obviously, c ¼ 0 in Eq. (5.101) leads to the complete refinement.
Too smaller of c may introduce not very important DOFs, on the contrary, too

larger of c may neglect important DOFs. Both of these cases will undermine the
refinement efficiency. Hence it is advisable that

10%� c� 25% ð5:102Þ

5.5.3 Error Analysis and Refinement Strategies
for Elasto-Viscoplastic Problems

The p-refinement taking into account of elasto-viscoplasticity (viscoelasticity as
well) is basically similar to that of linear elasticity, the difference mainly lies in the
much more complicated error estimator and refinement strategy (Wilson et al. 1992;
Holzer and Yosibash 1996). Towards the purpose of standardization of FEM
software for hydraulic structures, a practical algorithm is suggestible (Chen and
Cheng 2001; Fei and Chen 2003).

Theoretically, at each time step the shape functions should be adjusted through
the raise and lower down of the polynomial order p. Although there are no essential
difficulties, yet the computation effort is huge. The author had tried two approaches
in the practices for hydraulic structures, namely, the p-refinement is carried out after
every prescribed time steps, or conducted at the time-marching end corresponding
to one load increment solely. Since these two approaches do not make significant
difference in the sense of algorithm, therefore the latter will be elucidated as follows
with the element refinement strategy.

For one load increment

ff g ¼
ZZZ
Xi

Np�1
� T

Vf gdXþ
ZZ
Ci

Np�1
� T

pf gdCþ Np�1
� T

qf g ð5:103Þ

Suppose that after the accomplishment of a successive time step, the steady state
solutions dp�1

� �
, ep�1
� �

and rp�1
� �

of order p� 1 demand upgrade for the basis
functions of element i, the refinement iteration is recurred according to

① Giving the solution up
� �

t and rp
� �

t of order p at time t, the equivalent
load increment due to viscoplastic flow at time tþDt is computed by

Df vpp
n o

tþDt
¼
ZZZ
Xi

Bp
� T

D½ � Devpp

n o
tþDt

dX ð5:104Þ
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② Solve the equilibrium equation of the structural system

Kp
� 

DUp
� �

tþDt¼ DFvp
p

n o
tþDt

ð5:105Þ

③ Calculate the element strain increment at tþDt

Dep
� �

tþDt¼ Bp
� 

Ddp
� �

tþDt ð5:106Þ

④ Calculate the element stress increment at tþDt

Drp
� �

tþDt¼ D½ � Dep
� �

tþDt� Devpp

n o
tþDt

� �
ð5:107Þ

⑤ Accumulate the vectors of nodal displacement, element strain, and stress
at tþDt

dp
� �

tþDt¼ dp
� �

t þ Ddp
� �

tþDt

ep
� �

tþDt¼ ep
� �

t þ Dep
� �

tþDt

rp
� �

tþDt¼ rp
� �

t þ Drp
� �

tþDt

8><
>: ð5:108Þ

⑥ Repeat steps ①–⑤ until the steady state solutions dp
� �

, ep
� �

, and rp
� �

are reached.
⑦ Repeat steps ①–⑥ until all the load increments are exerted.
⑧ Calculate the element error ei according to Eq. (5.89).
⑨ If ei � et for all the elements in the structural system, the refinement

iteration collapses with an acceptable order of p. Otherwise let the
unsatisfied elements be upgraded by p ¼ pþ 1, then repeat steps ①–⑧.

5.5.4 Key Algorithms

The p-refinement possesses several peculiarities with its algorithms such as the
generation of topologic messages, the integral of matrices (vectors), and the solu-
tion of governing equation set (Morris et al. 1992; Carnevali et al. 1993; Hinnant
1994; Papadrakakis and Babilis 1994).

(1) Generation of topologic messages

The program TOPO flow-charted in Fig. 5.5 comprises three major modules: point
generation for an edge by the NODE-EDGE; edge generation for a face by the
EDGE-FACE, and face generation for an element by the FACE-BODY.

The topologic messages for p-refinement need be sequentially organized in a
manner of
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– Nodal sequence and corresponding coordinates as well as elementary sequence
and their nodal sequence, are generated by pre-process modules elaborated in
Chap. 3;

– Point sequence of each edge, is demanded and generated by the TOPO;
– Edge sequence of each element surface, is demanded and generated by the

TOPO;
– Surface sequence of each element, is demanded and generated by the TOPO.

(2) Handling of boundary conditions

Standard FEM assigns a boundary constraint to the real nodes. Since the face and
edge possess own basis functions in the p-refinement, so they contribute to the
DOFs of an element and should be looked at as “virtual DOFs”. These virtual
DOFs are equally treated as the “real DOFs”, and they are uniformly termed as
generalized DOFs. In this manner, the general basis functions corresponding to
general nodes are formulated by grouping the functions of point, edge, face and
body. Suppose for instance, a face is restrained by a type of boundary condition,
then the virtual nodes assigned to the face as well as the edge on this face are
imposed with the boundary restraint in addition to the real node geometrically
defining the face. Since there are no face basis functions where p\4 nor edge basis
functions where p\2, therefore there are no restraints under such circumstances.

Figures 5.6 and 5.7 illustrate the differences between the standard and hierar-
chical FEM in handling totally restrained face and partially restrained edge.

Fig. 5.5 Flow chart of the
program TOPO
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(3) Assembling of stiffness matrix and load vector

1. Element stiffness matrix

Take the hexahedral element for example. When p ¼ 1; the points 1–8 are taken as
the real nodes with correspondent standard basis functions N1–8; when p ¼ 2; the
edges 1–12 are assigned with the virtual nodes 9–20 corresponding to the basis
functions E2

1�12; when p = 3, the edges 1–12 are additionally assigned with the
virtual nodes 21–32 corresponding to the basis functions E3

1�12; when p = 4, the
edges 1–12 are additionally assigned with the virtual nodes 37–44 corresponding to
the basis functions E4

1�12, and the faces 1–6 are assigned as the virtual nodes 44–50

with the correspondent basis functions F4ð2;2Þ
1�6 ; when p = 5, the edges 1–12 are

additionally assigned with the virtual nodes 51–62 corresponding to the basis
functions E5

1�12, and the faces 1–6 are additionally assigned with the virtual nodes

67–74 corresponding to the basis functions F5ð2;3Þ
1�6 and F5ð3;2Þ

1�6 ; when p = 6, the

Fig. 5.6 Handling of totally restrained face (left—standard; right—hierarchical) a p ¼ 1; b p ¼ 2;
c p ¼ 3; d p ¼ 4

Fig. 5.7 Handling of partially restrained edge (left—standard; right—hierarchical) a p ¼ 1;
b p ¼ 2; c p ¼ 3; d p ¼ 4
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edges 1–12 are additionally assigned with the virtual nodes 75–86 corresponding to
the basis functions E6

1�12, the faces 1–6 are additionally assigned with the virtual

nodes 87–104 corresponding to the basis functions F6ð2;4Þ
1�6 ,F6ð3;3Þ

1�6 and F6ð4;2Þ
1�6 , and

one body is assigned with the virtual node 105 corresponding to the basis function
B6 2;2;2ð Þ; and so forth.

The above fe pð Þ basis functions are uniformly termed as Ni (1� i� feðpÞ) to
concisely express the element interpolation

uxp ¼
Pfe pð Þ

i¼1
Niux

uyp ¼
Pfe pð Þ

i¼1
Niuy

uzp ¼
Pfe pð Þ

i¼1
Niuz

8>>>>>>>><
>>>>>>>>:

Or

up
� � ¼ Np

� 
dp
� �

Np
�  ¼ N1½I� N2½I� . . . NfeðpÞ½I�

� �
ð5:109Þ

In which I½ � stands for 3 � 3 unit matrix.
The coordination interpolation keeps the isoparametric form using the nodal

shape functions only

x ¼P8
i¼1

Nixi

y ¼P8
i¼1

Niyi

z ¼P8
i¼1

Nizi

8>>>>>>><
>>>>>>>:

ð5:110Þ

We have the element stiffness of order p

kp
�  ¼ ZZZ

Xe

Bp
� T

D½ � Bp
� 

dX ¼
Z1
�1

Z1
�1

Z1
�1

Bp
� T

D½ � Bp
� 

Jj jdndgdf ð5:111Þ
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In which the matrix of strain ½Bp� is

Bp
�  ¼ ½B1� ½B2� . . . ½BfeðpÞ�

� 
Bi½ �T¼

Ni;x 0 0 0 Ni;z Ni;y

0 Ni;y 0 Ni;z 0 Ni;x

0 0 Ni;z Ni;y Ni;x 0

2
4

3
5 i ¼ 1; 2; . . .; fe pð Þð Þ

8>><
>>: ð5:112Þ

2. Overall stiffness matrix of the structural system

If we look at the whole structure system as a “big element” comprising Nn real
nodes, Ne edges, Nf faces, and Nb bodies, the overall stiffness of the structure
system assembled in this sequence is hierarchical, and the amount of general nodes
in the structure system is

ft pð Þ ¼Nn þmax 0; p� 1ð ÞNe þmax 0;
1
2

p� 2ð Þ p� 3ð Þ
� �

Nf

þmax 0;
Xp
k¼6

1
2

k � 4ð Þ k � 5ð Þ
 !

Nb

ð5:113Þ

3. Load transfer

Load transfer to the element nodes is similar to the standard FEM. Take the vol-
umetric force for example, we have

Dfp
� � ¼

ZZZ
Xe

Np
� T

DVf gdX ¼
Z1
�1

Z1
�1

Z1
�1

Np
� T

DVf g Jj j dndgdf ð5:114Þ

It is notable that virtual nodal forces are self-balanced and merely the forces
transferred to the real nodes shall take part in the balance against exerted loads.

Figure 5.8 shows the hierarchical structure of the stiffness matrix and the load
vector.

(4) Numerical integration

Some matrix and vector functions should be integrated over the whole or partial
domain of a finite element in order to get element matrices and vectors. Numerical
integration (quadrature) is so intimately related to the performance of FE analysis,
that the selection of its scheme and order is a portion of the definition of a particular
finite element. Following the upgrade of polynomial order, higher order integration
demands larger computer capacity. Some scholars (Douglas Jr and Olsen 1989)
even thought that the p-version technique would be intrinsically limited below, for
example, p = 4, due to the large amount of time required to complete integrations.
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In recent decades however, several advanced integration schemes have been
proposed to reduce the effort for integral computation considerably.

1. Strategy to reduce integration computation

Irons (1969) introduced a technique to reduce the number of floating point opera-
tions during element integration. His work was further enhanced by Gupta and
Mohraz (1972) by using tensor notation and bringing the material constants outside
of the integral. Both the works make use of the fact that the strain matrix is
relatively sparse and hence avoid multiplications by zero. Bardell (1989) and
Yagawa et al. (1990) showed that the symbolic pre-computation of certain quan-
tities could significantly accelerate the integration process. These works are all
applicable to the Gaussian integration (quadrature). Taking the element stiffness
matrix kp

� 
in Eq. (5.111) for example, its sub-matrix relating freedom i and j is

kij
�  ¼ kþ 2Gð ÞRxx þG Ryy þRzz

� �
kþGð ÞRxy kþGð ÞRyz

kþGð ÞRyx kþ 2Gð ÞRyy þG Rzz þRxxð Þ kþGð ÞRyz

kþGð ÞRzx kþGð ÞRzy kþ 2Gð ÞRzz þG Rxx þRyy
� �

2
4

3
5

i; j ¼ 1; 2; . . .; fe pð Þð Þ ð5:115Þ

Fig. 5.8 Diagram showing hierarchical structure of stiffness matrix and load vector
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In which

Rst ¼
Z1
�1

Z1
�1

Z1
�1

@Ni

@s

 @Nj

@t
Jj jdndgdf s; t 2 x; y; zf g; i; j ¼ 1; 2; . . .; fe pð Þð Þ

ð5:116Þ

and

J½ � ¼
@N1
@n

@N2
@n . . . @N8

@n
@N1
@g

@N2
@g . . . @N8

@g
@N1
@f

@N2
@f . . . @N8

@f

2
64

3
75 


x1 y1 z1
x2 y2 z2
..
. ..

. ..
.

x8 y8 z8

2
6664

3
7775 ð5:117Þ

Since

@Ni
@x
@Ni
@y
@Ni
@z

8><
>:

9>=
>; ¼ J½ ��1

@Ni
@n
@Ni
@g
@Ni
@f

8><
>:

9>=
>; ¼

cxx cxy cxz
cyx cyy cyz
czx czy czz

2
4

3
5

@Ni
@n
@Ni
@g
@Ni
@f

8><
>:

9>=
>; i ¼ 1; 2; . . .; fe pð Þð Þ

ð5:118Þ

Therefore we get

@Ni

@s

 @Nj

@t
¼ csx

@Ni

@n
þ csy

@Ni

@g
þ csz

@Ni

@f

� �
ctx

@Nj

@n
þ cty

@Nj

@g
þ ctz

@Nj

@f

� �

i; j ¼ 1; 2; . . .; fe pð Þð Þ ð5:119Þ

The following strategies for the reduction of integral calculation efforts make use
of hierarchical natures.

– Take advantages of the sparsity of B½ � and D½ �. The algebra computation for
Bi½ �T D½ � Bj

� 
is conducted first, then the integration scheme is carried out for

each nonzero member in the resultant matrix.
– Members with different order in the matrix are integrated using different

Gaussian integration orders.
– For a member in the stiffness matrix, different coordinate directions may possess

different polynomial orders, therefore different Gaussian integration orders are
advisable.

2. Vector integration scheme

The one-dimensional structural problem is used to elucidate the vector integration
scheme, which exploits the structure of the matrix in order to reduce the compu-
tational effort (Hinnant 1994). Instead of Eq. (5.115), we write
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kij ¼
Z1
�1

@rk
@ui

@ek
@uj

Jj jdx i; j ¼ 1; 2; . . .; fe pð Þð Þ ð5:120Þ

The stiffness in Eq. (5.120) is actually the dot product of two functions. One is
entirely dependent upon the row index i, while the other is dependent only upon the
column index j.

Since each term in the dot product of Eq. (5.120) can be integrated individually,
it is convenient to express Eq. (5.120) in a simpler generic form

kij ¼
Z1
�1

gi xð Þhj xð Þdx i; j ¼ 1; 2; . . .; fe pð Þð Þ ð5:121Þ

The philosophy of vector integration is to operate integration on the gi xð Þ and
hj xð Þ separately for all i and j, then combine the operation results. Since the specific
values of i and j are not relevant to our discussion, they will be dropped for
notational simplicity. Thus the object of study becomes,

Z1
�1

g xð Þh xð Þdx ð5:122Þ

The orthonormal curve fitting of g and h with, for example, the Legendre or
Jacobian polynomial series, can be written as

g xð Þ ¼ P1
I¼0

cIPI xð Þ

h xð Þ ¼ P1
J¼0

dJPJ xð Þ

8>><
>>: ð5:123Þ

In which

cI ¼
Z1
�1

g xð ÞPI xð Þdx

dJ ¼
Z1
�1

h xð ÞPJ xð Þdx

8>>>>>>><
>>>>>>>:

ð5:124Þ
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Introducing Eq. (5.123) into Eq. (5.122), we get

Z1
�1

g sð Þh xð Þdx ¼
X1
I¼0

cIdI ð5:125Þ

Equation (5.125) justifies that the integral of g times h can be calculated by the
dot product of two vectors cf g and df g.

For more details our readers are referred to the creative work of Hinnant (1994).

(5) Solvers for linear equation system emerged from p-refinement

The FEM utilizes basis shape functions vanishing outside of the reference element
to transform a PDE into the discrete system governed by an algebraic equation set.
Take the linear problem for example, the correspondent equation set is also linear
and can be expressed simply by

½A�fxg ¼ fbg ð5:126Þ

In which fbg and fxg are N-dimensional vectors representing the forces and the
unknown basic state variables (e.g. displacement, hydraulic potential, temperature),
½A� is an N � N non-singular, sparse, and positive definite matrix representing the
discrete form of the differential operator.

Solution algorithms to obtain fxg fall into two basic classes of direct and iter-
ative. Interested readers are referred to Golub and Loan (1996) and Saad (2003)
where these algorithms are discussed in more detail.

1. Direct methods

In the context of direct method, we need the calculation of ½A��1fbg directly.
Naively, one could consider the possibility to explicitly assemble the matrix ½A��1

and then perform the foregoing matrix-vector product. Nevertheless, this approach
is seldom ever advocated. The alternative and realistic way is that we seek a method
to apply operation action of the inverse of ½A� on a vector.

Efficient direct solution methods factorize the original matrix ½A� into several
components, for which the operation of inverse applied to a vector is trivial. For
example, the LU decomposition factorizes ½A� in a form of ½A� ¼ ½L�½U�, where ½L�
and ½U� are lower and upper triangular matrices of same dimension. Following the
factorization, the solution is obtained via first performing fyg ¼ ½L��1fbg (for-
ward), and then computing fxg ¼ ½L��1fyg (backward).

Modern prevalent factorization techniques can further exploit the sparsity in the
FE operator ½A�. To perform the factorization, sparse direct methods require
OðN3=2Þ floating point operations in two-dimension problems, and OðN2Þ opera-
tions in three-dimension ones. In addition, the forward and backward procedures
demand OðN logNÞ and OðN4=3Þ floating point operations in two-and
three-dimensional problems, respectively (Li and Widlund 2006).
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The memory usage and CPU time required for the solution using factorization
techniques can become prohibitively expensive when the number of unknown state
variables becomes large. In addition, high-resolution is not always guaranteed, even
with the usage of double-precision and super computer.

2. Iterative methods

In contrast to direct methods which produce the solution fxg in a “two-step”
(factorize-forward/backward solution) procedure, iterative methods pursue updates
to the solution via a sequence of iterative operations. A simple iterative method (e.g.
Richardson’s method) is constructed below to explain their features.

① Set the iteration counter k ¼ 0 and choose the initial guess for the
solution x0

� � ¼ 0.
② Update the solution

fxkþ 1g ¼ fxkgþ ðfbg � ½A�fxkgÞ ð5:127Þ

③ Update the counter k ¼ kþ 1 then return to step ②.
At each iteration step, a collapse condition is prescribed to terminate the
iterative sequence when fxkg is sufficiently accurate. Typically it may be
related to the residual in a manner of

frg ¼ fbg � ½A�fxkg ð5:128Þ

Iterative methods exhibit an attractive property that only matrix-vector and
vector-vector product operations are employed to obtain the solution. Thus in terms
of memory usage, they could be much cheaper compared to direct methods.

Nowadays, a large number of robust iterative methods are available. We are able
to choose an appropriate one according to the properties of the matrix ½A�
encountered, e.g. symmetric or non-symmetric, positive definite or non-positive
definite, etc. For an implementation “catalog” of different iterative methods the
work by Barrett et al. (1994) is recommended.

In all cases, the number of iterations needed to reach a convergent solution can
be rather large, and will generally increase as the resolution of the finite element
mesh is refined. To accelerate the convergence of iterative procedure, use is
prevalently made of pre-conditioners. In the example of the aforementioned
Richardson’s method, the iterative Eq. (5.127) is reformed by a pre-conditioner ½B�:

fxkþ 1g ¼ fxkgþ ½B��1ðfbg � ½A�fxkgÞ ð5:129Þ

Intuitively we can infer that ½B� should be a close approximation to ½A�, and the
cost (memory usage and CPU time) should be much cheaper to undertake the action
of its inverse than that of ½A�.

An optimal pre-conditioner is one in which the number of iterations to reach
convergence is independent of the mesh resolution. The pre-conditioners which

5.5 P-Version of Refinement in Space Domain: Strain/Stress Problems 353



possess this property are called multi-level pre-conditioners. An excellent coverage
of the theory and implementation concerning multi-level pre-conditioners can be
found within the works by Wesseling (1992), Briggs et al. (2000), Trottenberg
et al. (2001), and Falgout (2006).

A multi-level pre-conditioner tries to construct a hierarchical representation of
½A� containing multi-levels (two or more). At the top of this hierarchy is the operator
½A�, and on each subsequent level we have a “coarser” representation of the operator
from the level above. The under-lying principle of such multi-level algorithms is
that we use solutions from the coarser level to accelerate the convergence on the
finer levels. Information concerning the solution is passed between different levels
in the hierarchy via interpolant (fine ! coarse) and prolongation (coarse ! fine)
operators.

3. SSOR-PCG method for general purpose

The method of “symmetric successive over-relaxation pre-conditioned conjugate
gradient” (SSOR-PCG) (Lin 1997), as a well preformed solver of iterative for
Eq. (5.126), is presented as follows.

① Let R represent the real N-dimensional vector space, and suppose ½M� ¼
½S�T ½S�� ��1

is a symmetric and positive definite matrix, the Eq. (5.126) is
transformed in the PCG (pre-conditioned conjugate gradient) form

½A0�fx0g ¼ fb0g
½A0� ¼ ½S�½A�½S�T
fb0g ¼ ½S�fbg
fx0g ¼ ½S��Tfxg

8>><
>>: ð5:130Þ

② Towards the iterative procedure, we set the initial values

x0
� �
fg0g ¼ ½A�fx0g
fh0g ¼ ½M��1fg0g
d0
� � ¼ � h0

� �
k ¼ 0

8>>>>>><
>>>>>>:
R : d ¼ fgkg; fhkg� �

ð5:131Þ
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③ If d� e, the iteration collapses, otherwise

sk ¼ fgkg;fhkgð Þ
fdkg;½A�fdkgð Þ

fxkþ 1g ¼ fxkgþ skfdkg
fgkþ 1g ¼ fgkgþ sk½A�fdkg
fhkþ 1g ¼ ½M��1fgkþ 1g
bk ¼

fgkþ 1g;fhkþ 1gð Þ
fgkg;fhkgð Þ

fdkþ 1g ¼ �fhkþ 1gþ bkfdkg
k ¼ kþ 1

8>>>>>>>>>><
>>>>>>>>>>:

ð5:132Þ

The convergent rate of equivalent Eq. (5.130) is dependent on the
Cond ½A0�ð Þ. If ½M� is a unit matrix, then Eq. (5.132) becomes the
“conjugate gradient” (CG) iterative scheme with convergent rate
depending on Cond ½A�ð Þ. Normally, Cond ½A�ð Þ is rather large and we
may expect that Cond ½A0�ð Þ � Cond ½A�ð Þ. The matrix ½M� so selected is
termed as the pre-conditioner of ½A�. A good pre-conditioner should meet
the following requirements

– Cond A0ð Þ � Cond Að Þ;
– Compared with ½A�, it does not demand too large additional memory;
– It is much easier to solve ½M�fhg ¼ fgg than to solve ½A�fxg ¼ fbg.

Where the decomposition matrices of the “symmetric successive over-relaxation
(SSOR) method are used to construct the ½M� in a manner of

½M� ¼ 2� xð Þ�1 ½D�=xþ ½L�ð Þ ½D�=xð Þ�1 ½D�=xþ ½L�ð ÞT ð5:133Þ

The PCG algorithm employing ½M� in Eq. (5.133) is termed as the SSOR-PCG
method. In Eq. (5.133), ½D� is the diagonal matrix of ½A�,½L� is the lower triangular
matrix of ½A�, i.e.½A� ¼ ½D� þ ½L� þ ½L�T , 0\x\2 is the relaxation factor.

The selection of appropriate relaxation factor x is still problematic because there
is no theoretical support to get the optimal relaxation factor for the matrix ½A�
derived from complex engineering problems. As a result, empirical values based on
computation experiences are widely exercised. For caution, x should be very close
to 1.0, and x ¼ 1.0–1.1 is commonly advisable.

4. SSOR-PCG method for the p-refinement FEM

The foregoing SSOR-PCG method is revised to take into account of the hierarchical
properties of the p-refinement FEM (Fish and Guttal 1997), i.e. the lower order
solution may be employed in the successive higher order solution.
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i. Iterative algorithm

Denote the algebra equation set from the FEM of order p as

½Ap�fxpg ¼ fbpg ð5:134Þ

In which

½Ap� ¼ ½Ap�1� ½Ap�1;a�
½Aa;p�1� ½Aa;a�
� �

fxpg ¼ fxp�1g
fxag

� �

fbpg ¼ fbp�1g
fbag

� �

8>>>>>><
>>>>>>:

ð5:135Þ

Similarly, the corresponding equation of order p� 1ð Þ is

½Ap�1�fxp�1g ¼ fbp�1g ð5:136Þ

Suppose the solution of Eq. (5.136) is fx0p�1g, the iterative marching for
Eq. (5.134) launches

½Aa;a�fxsþ 1
a g ¼ fbag � ½Aa;p�1�fxsp�1g

½Ap�1�fxsþ 1
p�1 g ¼ fbp�1g � ½Ap�1;a�fxsþ 1

a g

(
ð5:137Þ

In which s is the iterative step using the SSOR-PCG method. Computation
experiences show that the iterative convergent rate of Eq. (5.137) is high, and s is
normally smaller than 5.

ii. Initial value

Another use is made of initial value assignment. Suppose the algebra equation from
the p-refinement FEM is Np�1 dimension in the previous upgrade of order p� 1ð Þ
and is Np ¼ Np�1 þNa dimension during the present upgrade of order p. Let fx0g in
Eq. (5.131)

fx0g ¼ fxp�1g
f0g

� �
ð5:138Þ

In which fxp�1g is the previous FE solution of p� 1 order and

f0g ¼ 0 . . . 0½ �TNa�1
. This may give rise to remarkable acceleration effect in the

iteration because the fx0g constructed in Eq. (5.138) is rather close to the solution
of Eq. (5.134).
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5.6 P-Version Refinement in Space Domain:
Permeability Problems

5.6.1 Error Estimator

The element refinement strategy is taken as the example to elucidate the p-version
refinement FEM for permeability problems (Fei and Chen 2004).

Suppose the basis functions are of p-order, then the flow velocity is calculated by
the formula

qp
� � ¼ � k½ � Bp

� 
/p

� �e ð5:139Þ

The higher order (pþ 1) solution of flow velocity is regarded as the “best guess”
of the exact solution, then similar to Eq. (5.30), the “energy norm” for the element i
may be computed by the formula

ep
�� ��

i¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZZZ
Xi

ð qpþ 1
� �� qp

� �ÞT k½ ��1ð qpþ 1
� �� qp

� �ÞdX
vuut ð5:140Þ

And the total energy norm of the element i is

/k ki¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZZZ
Xi

qpþ 1
� �T

k½ ��1 qpþ 1
� �

dX

vuut ð5:141Þ

The relative error ei is a dimensionless scale of the error

ei ¼ ep
�� ��

i

.
/k k

i
ð5:142Þ

5.6.2 Basic Solution Procedure

When the solution f/p�1g of order p-1 has been accomplished, the iterative pro-
cedure for the unconfined seepage field f/pg of successive higher order p is carried
out as follows.

① Suppose at the rth phreatic surface iterative step, the potential function
f/p;rg is solved.

② According to the condition /p;r ¼ Z, the tentative phreatic surface is
constructed.

③ For each element i in which a patch of phreatic surface is embedded, its
contribution to the residual nodal flow rate is calculated using
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qp;r
� � ¼ �

ZZZ
Xi

Bp
� T

k½ � Bp
� 

/p;r

� �e
dX ðGaussian point where /p;r \Z onlyÞ

ð5:143Þ

④ The overall residual flow rate Qp;r
� �

is assembled, afterwards the
potential increment is solved by

Hp
� 

D/p;r

� � ¼ Qp;r
� � ð5:144Þ

⑤ The adjusted potential after the rþ 1th iteration is accumulated by

/p;rþ 1

� � ¼ /p;r

� �þ D/p;r

� � ð5:145Þ

⑥ Where D/p;r

� �
is sufficiently small, the phreatic surface iteration loop

collapses, and we return to step ⑦; otherwise let r ¼ rþ 1 and go back
step ①.

⑦ The error ei of element i is evaluated using Eqs. (5.140)–(5.142).
⑧ If ei � et for all the elements, the p-refinement is collapsed with an

acceptable order of p; Otherwise, let p ¼ pþ 1 for unqualified elements
and let r ¼ 1, steps ①–⑦ are recurred.

5.7 Verifications and Applications

5.7.1 Adaptive Time-Stepping (H-Refinement)

The bar element fixed at two ends in Fig. 5.9a is assigned with unit parameters
E = 10000, ry = 0, c = 0.001, and L = 1. An initial displacement d = 0.1 is sud-
denly imposed at its lower end. The analytical solution for this simplest stress relax
problem plotted in Fig. 5.9b is well known from the elementary theory of rheology.
The computational results with implicit parameter H = 0.85 and variable et are
plotted in this figure, too. It demonstrates that the strategy of automatic marching
with adaptive time step length yields the satisfactory accuracy when the error
tolerance is prescribed as et = 5%.

5.7.2 Two-Dimensional Underground Cavern
(H-Refinement)

For the underground cavern of shallowly embedded in Fig. 3.27 whose in situ stress
field is dominated by the gravity actions of the surrounding rocks and the
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excavation is postulated to be accomplished in one bench, we input the background
mesh size h ¼ 10 m, the mesh generator creates an uniformly distributed back-
ground mesh (see Fig. 3.39) comprising 375 elements and 421 nodes (e ¼ 27%).

The iterative computation using the h-refinement FEM on the foregoing back-
ground mesh with prescribed error tolerance et = 15% produces the refined mesh
(see Fig. 5.10) comprising 2862 elements and 2898 nodes (e ¼ 14:1%). Since it is
close to the prescribed error tolerance et, the adaptive iteration is collapsed after the
output of corresponding results.

The mesh distribution is automatically adjusted with the help of the specified
error tolerance, and it is obvious that the elements are concentrated around the
cavern attributable to the strong stress concentration (gradient) in this area. In
Fig. 5.11 we draw the contours of local (point) safety factor Kp based on the
Drucker-Prager criterion [see Eq. (4.215)], it is evident that the area of concentrated
elements is mostly overlapped with the area enclosed by the contour of local safety
factor Kp = 2.0.

5.7.3 Three-Dimensional Underground Cavern
(H-Refinement)

For the tunnel excavated under a rock slope with initial background mesh
(e ¼ 36%) (see Fig. 3.40), we specify the error tolerance et ¼ 15%. After two
iteration steps, the refined mesh is reached with actual error e ¼ 12:3%(see
Fig. 5.12).

Fig. 5.9 Stress relax history of the bar element (H = 0.85)
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5.7.4 Two-Dimensional Embankment (H-Refinement)

The embankment in Fig. 5.13 is installed with horizontal drain device. Input the
initial background mesh size h ¼ 5 m, the back ground mesh is generated in
Fig. 5.14 with e ¼ 17:2%. Specify the error tolerance et ¼ 10%, the optimal mesh
is obtained after two iteration steps with actual error e ¼ 9:7% (see Fig. 5.15).

Table 5.1 lists the gradient J of hydraulic potential at the left extremity of the
horizontal drainage. Figure 5.16 gives the phreatic surface by the analytical solution
(Polubarinova-Kochina 1962) and the FE solution on the refined mesh, Fig. 5.17
illustrates the flow velocity field on the refined mesh.

5.7.5 Three-Dimensional Sluice Foundation
(H-Refinement)

Figure 5.18 presents a pervious foundation supporting the impervious concrete
bottom slab of a sluice. The foundation soil is homogeneous and isotropic with the

Fig. 5.10 Refined mesh
(2862 elements; 2898 nodes;
e ¼ 14:1%): two-dimensional
cavern
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Fig. 5.11 Contours of point safety factor Kp

Fig. 5.12 Refined mesh (13,114 elements; 3762 nodes; e ¼ 12:3%): there-dimensional cavern.
a Axonometric view; b front view
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permeability coefficients k ¼ kx ¼ ky ¼ kz ¼ 1:0� 10�3 m/s. Head water is 5 m
and tail water is 0 m. Input the initial mesh size h ¼ 3 m, the initial background
mesh is generated in Fig. 5.19 with error e = 31.1%. Specify the error tolerance
et = 10%, the refined mesh is obtained only after two iteration steps with e = 9.3%.
Figure 5.20 is the axonometric view of the refined mesh and Table 5.2 displays the
error following the adaptive iteration. Figures 5.21 and 5.22 draw the potential
contours and the flow velocities in the longitudinal section.

Fig. 5.13 Homogeneous embankment with a horizontal drain

Fig. 5.14 Initial background mesh (56 elements, 74 nodes, e = 17.2%)

Fig. 5.15 Refined mesh (198 elements; 232 nodes; e ¼ 9:7%)

Table 5.1 Gradient of the hydraulic potential at the left extremity of the horizontal drainage

Mesh error e 17.2% (initial) 9.7% (refined)

Gradient J 0.9377 6.0876
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5.7.6 Jointed Sample Under Uni-Axial Pressure
(Complete P-Refinement)

The sample is initially discretized into three big elements (see Fig. 5.23): element
① and element ② are solid elements, whereas element ③ is a joint element with
thickness. The top of sample is exerted by an uniform pressure of 1.0 MPa, and the
bottom is fixed completely. The material parameters are listed in Table 5.3. The
error tolerance is specified as et = 3.0%, and the variation of nodal displacement
following the p-refinement is illustrated in Table 5.4.

Fig. 5.16 Phreatic surface

Fig. 5.17 Distribution of flow velocity on the refined mesh

Fig. 5.18 Sluice foundation
with impermeable concrete
bottom slab
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In parallel, we subdivide the coarse mesh in Fig. 5.23 into a finer mesh in
Fig. 5.24 (octree method) for the cross-reference using h-refinement. On this higher
resolution mesh the same problem is solved using standard 8-nodal hexahedral
elements. The results of nodal displacement are also listed in the last column of
Table 5.4 (last column).

Fig. 5.19 Initial background mesh (797 elements; 236 nodes; e = 31.1%)

Fig. 5.20 Refined mesh (2397 elements; 621 nodes; e = 9.3%)

Table 5.2 Variation of mesh discretization errors

– Initial
background

First refinement iteration Second refinement iteration

Mesh size h (m) 3.0 0.7–4.5 0.2–5.0

Mesh error e (%) 31.1 18.8 9.3
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Fig. 5.21 Potential contours on the refined mesh

Fig. 5.22 Flow velocity on the refined mesh

Fig. 5.23 Jointed sample: coarse mesh for p-refinement

Table 5.3 Material parameters

– Young’s
modulus
E (GPa)

Poisson’s ratio
l

Cohesion c
(MPa)

Friction angle u (°)

Solid
element

30 0.2 2.8 40

Joint element 15 0.15 1.6 45
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Table 5.4 Variation of nodal displacements (unit: mm)

Method p-refinement h-refinement
ðhnew ¼ hold=2Þ
ðp ¼ 1Þ

p ¼ 1 p ¼ 2 p ¼ 3 p ¼ 4

Error – 7.12% 3.44% 2.02%

Node 5 ux −0.004325 −0.003284 −0.003646 −0.003519 −0.003515

uy −0.004255 −0.003139 −0.003505 −0.003377 −0.003383

uz −0.032110 −0.033100 −0.033330 −0.032760 −0.032930

Node 6 ux 0.004437 0.003210 0.003646 0.003480 0.003485

uy −0.004339 −0.003126 −0.003553 −0.003374 −0.003393

uz −0.032230 −0.033030 −0.033370 −0.032720 −0.032910

Node 9 ux −0.004322 −0.003915 −0.004036 −0.004077 −0.004055

uy −0.003632 −0.003213 −0.003337 −0.003368 −0.003361

uz −0.038410 −0.039310 −0.039360 −0.039150 −0.039220

Node 10 ux 0.002973 0.002580 0.002714 0.002728 0.002720

uy −0.003545 −0.003242 −0.003341 −0.003362 −0.003355

uz −0.044920 −0.045500 −0.045610 −0.045440 −0.045500

Fig. 5.24 Jointed sample:
h-refined mesh
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5.7.7 Three-Dimensional Gravity Dam on a Homogenous
Foundation (Complete P-Refinement)

Figure 5.25 shows a gravity dam at a height of 100 m whose crest width is 10 m.
The material parameters for the computation are:

– Dam concrete. Volumetric weight cc ¼ 0.024 MN/m3, Young’s modulus
Ec = 25 GPa, Poisson’s ratio lc ¼ 1/6.

– Foundation rock. Volumetric weight cr ¼ 0.026 MN/m3, Young’s modulus
Er ¼ 75 GPa, Poisson’s ratio lr ¼ 0.25.

A dam monolith of 10 m thick is discretized into 114 hexahedral elements and
284 real nodes (see Fig. 5.26). Specifying the error tolerance et ¼ 10%, the com-
plete p-refinement is carried out until the error is under the control when p ¼ 3. The
variation of p-refinement indices is presented in Table 5.5 and Fig. 5.27,
respectively.

5.7.8 Two-Dimensional Gravity Dam on a Heterogeneous
Foundation (Element P-Refinement)

Figure 5.28 shows the computation mesh (projected on the plane X � Z) for the
gravity dam identical to Fig. 5.25, but there are additional two faults F1 and F2

embedded in its foundation which should be discretized using joint element without
thickness. In addition, the contact surface J of dam/foundation is also simulated.
There are 160 elements and 384 real nodes. The material parameters are listed in
Table 5.6.

Fig. 5.25 Gravity dam on a
homogenous foundation
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Fig. 5.26 Computation mesh (114 elements; 284 nodes; 652 edges; 484 faces)

Table 5.5 Variation of p-refinement indices

p General nodes
of element
fe pð Þ

General nodes of the
whole structure
ft pð Þ

Overall
DOF

Density of overall
stiffness (%)

Error
energy
norm
e (%)

1 8 284 510 5.786 27.04

2 20 936 1875 4.049 16.69

3 32 1588 3240 3.795 9.93

Fig. 5.27 DOF versus error e
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Fig. 5.28 Computation mesh projected on the plane X � Z for the gravity dam with faults F1 and
F2

Table 5.6 Material parameters

– Foundation Dam F1 F2 J

Unit weight c (MN/m3) 0.026 0.024 0.025 0.025 –

Young’s modulus E (GPa) 25 28 24 24 –

Poisson’s ratio l 0.2 0.167 0.2 0.2 –

Cohesion c (MPa) 1.2 1.6 1.0 1.0 2.0

Friction angle u (°) 45 40 45 45 45

Tension strength rT (MPa) 0.2 0.18 0.2 0.2 0.2

Dip angle h (°) – – 153.43 33.69 0

Dip orientation / (°) – – 180 180 180

Normal stiffness kn (MN/m3) – – – – 25

Shear stiffness ks (MN/m3) – – – – 10

Table 5.7 Variation of p-refinement indices

p Refined
elements

General nodes of the
whole structure ft pð Þ

Overall
DOF

Density of
overall stiffness
(%)

Error
energy
norm
e (%)

1 – 384 706 4.147 –

2 160 1278 2599 2.663 10.38

3 97 1939 4058 2.499 0.37
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We prescribe the error tolerance et ¼ 5%, the element refinement is terminated
when p ¼ 3. The variation of p-refinement indices is listed in Table 5.7, and
Fig. 5.29 shows the distribution of shape function order after the element
refinement.

We subdivide each solid element in Fig. 5.29 into eight finer elements (Octree
method), and each joint element into four finer elements as well. In this way a
simple h-refinement FEM is implemented whose principal stresses are compared
with that by the p-refinement in Table 5.8.

The computation results validate that the p-refinement is prone to raise the
principal stresses at the crucial points (singularities) where strength safety should be
calibrated in the dam design. The results of p ¼ 2 is rather close to that of
h-refinement (hnew ¼ hold=2, p ¼ 1) through the uniform octree sub-division.

Fig. 5.29 Distribution of shape function order p after the refinement

Table 5.8 Principal stresses computed by the p-refinement and h-refinement FEM (Unit: MPa)

Principal stress p-refinement h-refinement
ðhnew ¼ hold=2Þ
ðp ¼ 1Þ

p ¼ 1 p ¼ 2 p ¼ 3

Dam heel r1 1.193751 1.789498 2.096205 1.835808

r3 −0.717360 −0.712321 −0.722489 −0.566757

Dam toe r1 −0.223288 −0.188617 −0.032742 −0.0327781

r3 −3.000112 −3.924229 −4.669299 −3.557305

Generatrix point of
downstream slope

r1 −0.085366 −0.061472 −0.059228 −0.119863

r3 −0.409060 −0.598107 −0.676079 −0.622786
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5.7.9 Excavation of Slope: Ship Lock, Three Gorges
Project, China

(1) Presentation of the project

Three Gorges Project (see Fig. 5.30) dams the Yangtze River in the Hubei
Province, China. It is the world’s largest water resources project in terms of in-
stalled turbine generator capacity (22,500 MW). The dam was completed and fully
functional on July 4, 2012, when the last of the main turbine generators in the
underground plant began production.

As well as to produce electricity, the project is intended to increase the Yangtze
River’s shipping capacity and to reduce the risk of downstream floods. In addition
to the ship lift completed in December 2015 and started to trial running from
September 2016, the ship locks play a principal role in raising annual river ship-
ping capacity from ten million tons to 100 million tons.

There is double-lane and five tandem ship lock installed near the left dam
abutment. It comprises up-and down-stream approach channels, ship lock cham-
bers, water conveyance system and drainage system located in the mountain around
(see Fig. 5.31). The total length of the ship lock from the entrance of the upstream
approach channel to the exit of the downstream approach channel is 6442 m. The
main structure of the ship lock (inclusive six lock chambers) is 1621 m in length.

Fig. 5.30 Plan of Three-Gorges Water Resources Project (gravity dam), China
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The highest slope cutting is l70 m, altogether 41.96 million m3 open cut and
980,000 m3 tunnel cut were undertaken. A rock pillar wall of 54–57 m wide is left
between the two lock lanes serving as the middle-isolated wall (pier). The side walls
of the ship lock chambers are of thin concrete lining back-tied on the vertical
slopes, in this way the rock mass also performs as an integrity component of the
ship lock structure.

The rock mass in the ship lock area consists of amphibole granite (Pre Sinian
Period), occasionally of schist, with 4 dominant sets of joints dipping at 50°–75°.
Pegmatitic dikes are commonly encountered, which may potentially result in local
wedge failures. The maximum principal in situ geo-stress is nearly horizontal in the
ship lock area forming an small included angle (about 30°) with the cut slope. The
horizontal in situ geo-stress within the excavation channels is at a relatively lower
level of 4–11 MPa.

(2) Characteristics of the computation

The representative section of the second stage of the ship lock (see Fig. 5.32,
chainage 15,600 m) is taken for the deformation and stability analysis using the
elaso-viscoplastic FEM of h-refinement.

There are more than ten faults in the section concerned, of which the most
adverse ones are f229, f204 and F8. They, together with the Pegmatitic dyke ex, are
explicitly taken into account in the mesh discretization. The excavation is simulated
by six benches corresponding to the elevation of 170.0, 155.0, 140.0, 125.0, 112.9,
and 92.5 m, respectively.

(3) Mesh refinement

Firstly, the geometrical messages of the ship lock, mechanical properties of the rock
masses, the excavation benches, are prepared in the input data file. The error
tolerance is specified as et ¼ 5% (the initial stress is taken into account of the total
energy norm). The refined meshes corresponding to excavation benches are shown
in Figs. 5.33, 5.34, 5.35, 5.36, 5.37 and 5.38. It is notable that near the exposure
face, particularly at the break point of the cut slope surface, elements are concen-
trated. In addition, at different excavation benches, the stress concentration zones
are shifted downwards, and the mesh is adjusted in correspondence.

The displacements, the stresses, the safety factors, and the reinforcement
schemes of the ship lock were comprehensively studied using above refined meshes
in its preliminary design phases (Chen 1998; Chen and Chen 2001).

Fig. 5.31 Longitudinal section of the dual-lane and five-tandem ship lock in Three-Gorges
Project
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5.7.10 Stabilization of Landslide: Shuibuya Project, China

(1) Presentation of the project

Located on the Qingjiang River, Hubei Province, China, Shuibuya Project com-
prises a concrete faced rockfill dam (CFRD), a bank-type spillway controlled by
five 14 m � 21.8 m gates with maximum discharge of 16,300 m3/s, an

Fig. 5.32 Geology profile of the representative section (chainage 15,600 m)

Fig. 5.33 Refined mesh after the first bench excavation (787 elements; 865 nodes)
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Fig. 5.34 Refined mesh after the second bench excavation (1080 elements; 1178 nodes)

Fig. 5.35 Refined mesh after the third bench excavation (1009 elements; 1111 nodes)

Fig. 5.36 Refined mesh after the fourth bench excavation (908 element; 1008 nodes)
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underground power station installed with four turbine generator
units (4 � 460 MW) (see Fig. 5.39).

The major purpose of the project is hydroelectricity generation in addition to
flood mitigation, navigation, tourism and fishery. The project possesses the tallest
CFRD in the world (H = 233 m) containing 15,640,000 m3 rockfill materials.
Construction on the project was authorized in January 2002 and began soon
thereafter. On August 12, 2006, the dam reached its maximum height of 233 m and
by July 2007, its first turbine generator was operational. The whole project was
completed later in 2008.

Dayantang landslide (see Figs. 5.39 and 5.40a) is located at the downstream left
abutment of the CFRD, 800 m to the dam axis and 300 m to the flip bucket nose of
the shore spillway (Chen et al. 2002). It is evolved from an ancient bedded rock
landslide on the slightly dip-away single slip surface, during that event the slide

Fig. 5.37 Refined mesh after the fifth bench excavation (937 elements; 1042 nodes)

Fig. 5.38 Refined mesh after the sixth bench excavation (1109 elements; 1228 nodes)
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body was dismissed into a fragmented structure. The present landslide surface is
0.196 km2, the thickness of the slide body is 25–64.8 m and the total slide volume
is 5.88 � 106 m3.

Under the natural condition, Dayantang landslide is stable. However, since it is
situated at the vicinity of the spillway, the project construction and operation will
give rise to adverse effects in the following aspects:

– The excavation of the plunge pool cuts a portion of the bedrock from the
landslide toe, which will bring down its slide stability and erosion resistance.

– The atomization rainfall due to flood discharge through the spillway will further
bring down its stability.

– The construction activities will damage the surface vegetation on the slide body,
which will in turn, undermine its stability due to stronger infiltration.

The stabilization scheme of this landslide was designed and implemented
according to the comprehensive analysis with respect to its overall and local
stability.

(2) Characteristics of the computation

The principal section B-B of Dayantang landslide is shown in Fig. 5.40b.
The major stabilization countermeasure includes two rows of lateral resistance

piles near the toe. The space of piles is 10 m, the cross sectional area of each pile is
3 � 4 m. At the top of each pile, a pre-stress anchor cable of 4000 kN is installed
to tie back the pile towards the bedrock beneath the slide body.

Fig. 5.39 Plan of Shuibuya Project, China
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Three work situations were studied including

① Self-weight + Steady seepage field (natural).
② Excavation.
③ Reinforcement + Excavation.

The physical and mechanical parameters used in the study are listed in
Table 5.9.

(3) Results and discussions

1. Mesh refinement
Figure 5.41 is the initial background mesh with error of energy norm e ¼ 6:3%
(in situ geo-stress is taken into account in the total energy norm). Prescribing the
error tolerance as et ¼ 2%, the refined mesh is generated in Fig. 5.42. The

Fig. 5.40 Dayantang landslide. a Plan; b principal section B-B
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elements tend to concentrate around the toe of the slide body, attributable to the
severe plastic deformation around this area.

2. Stresses
Figure 5.43 shows the principal stresses under the work situation of ③
Reinforcement + Excavation. The first principal stresses range between 0 and

Table 5.9 Physical and mechanical parameters of Dayantang landslide

– Dry unit weight c
(kN/m3)

Young’s
modulus E (MPa)

Poisson’s
ratio l

Cohesion
c (kPa)

Friction
angle u (o)

Slide
body

23.0 29 0.40 19.5 22.0

Slip
surface

23.0 19 0.40 10.0 18.0

Bedrock 26.0 2500 0.34 650.0 35.0

Pile
concrete

24.0 24000 0.17 2000.0 45.0

Fig. 5.41 Initial background mesh (3662 elements; 3782 nodes)

Fig. 5.42 Refined mesh (5316 elements; 5487 nodes)
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−0.67 MPa, the second principal stresses range between 0 and −1.10 MPa. The
maximum stress emerges on the slip surface where the slide body is the thickest.

3. Deformation
Where there is no reinforcement (i.e. under the work situation of ②
Excavation), there will be a continuous downwards creep after the plunge pool
excavation, and no convergent solution can be obtained. Nevertheless, the slip
deformation may be well controlled by the installation of two-row piles
strengthened by the pre-stress anchor cables at their top before the plunge pool
excavation. Figure 5.44 illustrates the convergent displacements due to exca-
vation after the reinforcement (i.e. work situation ③). At the toe of the land-
slide, the maximum horizontal and vertical displacements are 14.5 and 15.7 cm,
respectively.

4. Plastic zones and stability safety factor against sliding
The computation reveals that if there are no reinforcement countermeasures
before the plunge pool excavation, there will be a large plastic zone in the front
of the slide body, and the FE computation is divergent. This plastic zone
develops from the toe towards the up portion of the slide body until an overall

Fig. 5.43 Principal stresses under the work situation ③ Reinforcement + Excavation

Fig. 5.44 Convergent displacements under the work situation ③ Reinforcement + Excavation

5.7 Verifications and Applications 379



slip failure is triggered. This validates that the reinforcement scheme is effective
and indispensable to ensure the stability of Dayantang landslide. Figure 5.45
draws the plastic zones (in black) after the reinforcement and followed by the
plunge pool excavation.

The strength reduction factor under the natural work situation ① is
K ¼ 1:28, whereas after the reinforcement followed by the excavation (i.e. work
situation ③) it is approximately maintained at K ¼ 1:24; which actually meets
the design specifications (SL 386-2007) which stipulate the allowable safety
factor ½K� ¼ 1:25 for grade 1 slopes and landslides.
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Chapter 6
Reinforcement Analysis Using
the Finite Element Method

Abstract Earth anchors inclusive solid bars (bolt, rebar) and stranded wire cables,
have been extensively exercised in a wide range of geotechnical engineering.
Shotcrete is also prevalent for the purpose to restrain rock exposures from excessive
deforming and loosening. The relationships of meso-structure property are at the
heart of the FEM towards the performance of reinforced hydraulic structures. Based
on experimental studies, this chapter presents comprehensive studies inclusive
explicit (distinct) approach and implicit (equivalent) approach of reinforcement
components and joints. Either of them exhibits intrinsic advantages and disad-
vantages. The former uses special elements to individually discretize joints and
reinforcement components to extract detailed behaviors of reinforced structures,
whereas the latter elaborates an equivalent constitutive relation neglecting the exact
positions of joints and reinforcement components to provide the overall structural
response. One of the major advancements achieved in this chapter is that the
localized shear deformation at the intersection points of bolts/shotcrete layers with
joints is taken into account, which enables to describe the behaviors of bolt/
shotcrete at the joint in much more detail even with implicit approach. The other
important advancement is the consideration of the interface between equivalent
bolt-grout material and host rock, which makes it possible to simulate the pull-out
mechanism of bolt with explicit approach. In addition to a number of validation
examples interspersed within the context, this chapter is closed with three engi-
neering application cases (underground cavern, cut slope, dam foundation).

6.1 General

6.1.1 Reinforcement Types and Mechanisms

Earth anchors have been extensively employed in a wide range of geotechnical
engineering—more than 500 million reinforcement units are installed in the world
per annum (Windsor 1997). They can be distinguished as two main categories: solid
bar (bolt, rebar) and stranded wire cable (Stillborg 1994). The former is normally
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used for the systematic surface protection in combination with shotcrete, whereas
the latter is customarily installed to provide large pre-stress and deep reinforcement.

Penetrating into rock about 4–12 m deep to form a reinforced layer around the
tunnel or along the slope surface, rock bolts are installed to stabilize the rock mass
by tying back the movable rock blocks that are likely to fail around the excavation
area, as well as to reduce the deformability and to maintain the strength of the rock
mass (see Fig. 6.1b–d). There are various types of rock bolts falling into active and
passive ones. Active rock bolts exert a positive force to the rock mass and are made
of steel bars or stranded wires that are anchored in the rock on one extremity with a
plate and fixed by a nut on the other extremity. They are always tensioned after
installation and may be sealed by grout or resin for long-term applications against
corrosion. The anchorage may either be punctual at the end of borehole at which it
is installed or distributed along the entire length of the bolt, either through a sealing
grout product or rock/bolt friction. Passive rock bolts can be punctually anchored to
(through mechanical anchorage or localized grouting) or fully bonded to (along

Fig. 6.1 Types of bolt and shotcrete supporting (Unit: cm). a Shotcrete; b rock bolt; c rock bolt +
shotcrete + steel mesh; d rock bolt + shotcrete + steel mesh + concrete lining
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their entire length either through friction or a sealing grout product) the rock mass.
They only react to the deformation therefore must be installed before a significant
movement of rock mass taking place. For rock masses reinforced with passive,
fully-grouted bolts, it is widely accepted that the principal reinforcing mechanism
of the bolt is the raise of shear resistance along the joints, which is, in common
terms, expressed in three parts, i.e. tension force in the bolt, friction as a conse-
quence of increased normal stress, and dowel effect (Bjurstrom 1974; Azuar 1977;
Egger and Fernandes 1983; Goris and Conway 1987; Spang and Egger 1990; Egger
and Pellet 1991; Egger and Zabuski 1991; Bawden et al. 1992; Hyett et al. 1992;
Kaiser et al. 1992; Yazici and Kaiser 1992; Jalalifar and Aziz 2010a, b).

Applying immediately after the advance of cut face, shotcrete (also called
spray-concrete) protection of a thin layer (5–20 cm thick) which works together in
time with the surrounding rock mass (see Fig. 6.1a), is intended to restrain rock
from excessive deforming and loosening. A portion of shotcrete penetrated into
rock fractures may also multilaterally contribute to the bonding of loosen rock, the
protecting of rock weathering, the blocking of seepage path, the filling of deficit,
and the smoothing of surface. Being a flexible supporting structure, it also helps to
transfer loads to the rock bolts.

For low strength or poor integrity rock masses, combination of rock bolts and
shotcrete is desirable. For even worse situation of weak or strongly fractured rock
masses, steel mesh may be installed before the spray of shotcrete, which may
enhance the integrity and strength of shotcrete and reduce the thermal induced
cracks (see Fig. 6.1b–d).

Composed of 2, 3, 7 or more (up to 19) high strength and stress-
relieved (stabilized) steel wires, stranded wire cables actually belong to the cate-
gory of active rock bolts with large pre-stress tonnage for deep reinforcement.
Restrained by the construction techniques however, the length of such cables is
usually limited within 50 m. In addition, for loosen or fragment rock slopes, due to
the difficulties with the borehole drilling and grouting operation, the pre-stress cable
was seldom employed. Anyway, this restraint is less rigorous nowadays attributable
to the breakthrough of construction techniques. For example, altogether 1380
pre-stress cables had been installed for the Yingshuigou ancient landslide in
Xiaowan Project by the “casing while drilling technique”, the average depth of
borehole is 65 m, of which the maximum one is 92 m.

Two types of stranded wire cables may be roughly distinguished as in com-
pression and in tension. A typical tension cable generally consists of three parts (see
Fig. 6.2): the bonded inside anchorage head with certain bonded length, the free
length and the out-laid anchor head. The tension load is transferred from the
anchor’s free length to the surrounding rock mass through the bonded inside
anchorage head in a form of shear at the interfaces of grout/stranded wire and rock/
grout, attributable to a combined mechanism inclusive chemical adhesion,
mechanical interlocking and frictional resistance (Fuller and Cox 1975).
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6.1.2 History and State-of-the-Art

Rock bolts were initially used in mining in the 1890s, whereas the systematic use
was documented at the St. Joseph Lead Mine (USA) in the 1920s. In the late 1940s,
rock bolts were started their applications to the civil tunnel supporting in USA and
Australia. Shotcrete was invented in 1907 by American taxidermist Carl Akeley to
repair the crumbling facade of the Field Columbian Museum in Chicago (Pietro
2002). Bolt and shotcrete supporting was invented much later between 1957 and
1965 in Austria with the development of the “New Austrian Tunneling Method
(NATM)” that is actually an approach or philosophy to tunneling rather than a set
of excavation and supporting techniques (Rabcewicz 1964, 1965; Hagenhofer
1990; Müller 1990; Kovári 1994). The stabilization of rock masses by bolts and
shorcrete now have been widely exercised in open/underground excavations and
foundation engineering (Hoek and Bray 1981; Pande et al. 1990; Bickel et al. 1996;
Kropik and Mang 1996; Ng et al. 2004).

In hydraulic projects, combination of rock bolts and shotcrete is commonly
exercised in the initial or temporary supporting for permanent works such as dam
abutments, or for the temporary works such as diversion tunnels. Stranded wire
cables are particularly employed in the deep and active reinforcement for high cut
slopes, high side walls of large span underground caverns, and downstream dam
abutments at the vicinity of dam toe. The first temporary supporting practice with
rock bolts in China was the hydraulic tunnel constructed in Luhun Project in the
1950s, followed by the temporary supporting with bolts and shotcrete in the
excavation of the 80 m high surge shaft in Bikou Project. Thereafter bolts and
shotcrete have been prevalently and successfully applied as permanent supporting
in the underground caverns, free flowing tunnels, as well as the pressure tunnels of
medium-to low head (e.g. the Projects of Huilongshan, Yuzixi, Fengjiashan).

The simulation of reinforcement components is particularly laborious. To
achieve a prescribed degree of displacement control in the immediate vicinity of the

Fig. 6.2 Configuration of a tension anchor cable with 7 stranded wires
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structure concerned, it requires that the effect of any reinforcement is defined in a
quantitative manner, and the interactive nature of reinforcement mechanism should
be represented adequately. This in turn, demands comprehensive studies inclusive
experimental, analytical and numerical methods, of which the last one falls into
explicit (distinct) approach (Weerasinghe and Littlejohn 1977; ST. John and Van
Dillen 1983; Aydan et al. 1987; Aydan 1989; Swoboda and Marence 1991, 1992;
Marence and Swoboda 1995; Chen and Egger 1997; Qiang and Chen 2001;
Benmokrane et al. 1995a, b; Barley 1997a, b) and implicit (equivalent) approach
(Pietruszczak and Mróz 1981; Larsson and Olofsson 1983; Pande and Gerrard
1983; Stillborg 1984; Larsson et al. 1985; Sharma and Pande 1988; Kaiser et al.
1992; Chen and Pande 1994; Jarrel and Haberfield 1997; Woods and Barkhordari
1997; Chen and Egger 1999) of reinforcement components and joints. Either of
them exhibits intrinsic advantages and disadvantages. The former uses special
elements to individually discretize joints and reinforcement components (bolts,
lining, anchors), whereas the latter elaborates an equivalent constitutive relation
neglecting the exact positions of joints and reinforcement components to provide
the overall response of reinforced structures.

6.2 Equivalent Approach of Jointed Rock Masses
Reinforced by Fully Grouted Bolts

Usually, postulations concerning the interactions of reinforcement components
within the REV (representative element volume) are made for the formulation of an
equivalent constitutive relation. If the reinforced rock masses behave elastically, a
number of equivalent methods available would be quite effective. In the presence of
plastic deformation however, it will be cumbersome to get their rationally
response. Hence it is essential to develop an equivalent nonlinear constitutive
relation of jointed rock masses which appropriately takes into account the influence
of bolts.

In the following coverage of this section, we present a road map showing how to
get a more detailed description of the bolting effects on joints by means of an
implicit (equivalent) rheological model (Chen and Pande 1994; Chen and Egger
1999), guided by the laboratory and field tests.

6.2.1 Reinforcement Mechanism and Rheological Models

A number of researchers have conducted shear tests for the purpose of determining
the contribution of a bolt to the shear strength and the stiffness of joints, most of
them were carried out by direct shear on natural or artificial rock (or concrete)
joints. For example, a series of laboratory tests were conducted at EPFL
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(Egger and Fernandes 1983; Spang and Egger 1990; Egger and Pellet 1991; Egger
and Zabuski 1991) by conventional shear box containing parallelepipedic blocks of
220 mm � 200 mm � 150 mm and 150 mm � 150 mm � 130 mm (see
Fig. 6.3). Tests on reinforced samples by 2-D or 3-D stresses can also be found in
literatures (Grasselli 2005).

These tests reveal that the deformations and stresses are localized near the
portion where the bolt intersects a joint, and that the deflection of the included angle
between the bolt and joint due to shear deformation could be significant.
Specifically

– For samples with a bolt forming small included angle with the normal of the
joint, bending of the bolt becomes predominant even when the shearing force is
small, which will create two hinges above and below the joint plane (see
Fig. 6.4). As the stress level is approximately constant in the zone between the
two hinges, the exact location of failure cannot be predicted. Failure may occur
by bending in one of the plastic hinges or by combined shear and tension near
the shear surface. Results show the occurrence of both failure types for tests

Fig. 6.3 Configuration of direct shear testing device of bolted joint. 1—parallelepipedic block; 2
—steel box; 3—bolt; 4—cement mortar; 5—shear surface; 6—vertical jack; 7—frictionless upper
support; 8—guided cam; 9—horizontal jack; 10—transducer of shear force; 11—transducer of
shear force displacement; 12—transducer of normal force; 13—transducer of vertical displacement
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under apparently the same conditions, the ultimate loads and displacements at
failure are nearly identical.

– For samples with a bolt being inclined at a large included angle to the normal of
the joint, two hinges also emerge in the tests, but the bending phenomena are not
so strong. The great majority of the inclined bolts fail in tension near the shear
surface.

– The vertical height of a bended bolt is about 2–4 times the bolt diameter db, i.e.
hb ¼ ð2�4Þdb. It is termed as “effective height”, corresponding to an “effective
length” of Lb ¼ hb= cos ab (see Fig. 6.4). This height depends on the quality of
the rock (or the grout mortar) and bolt, as well as on the bolt’s diameter and
inclined angle, etc.

– The samples in which the bolt forms a small included angle with the normal of
the joint show larger shearing displacements, i.e. the inclined bolts react in a
stiffer way than normal ones. In addition, the maximum shear resistance of the
bolted joint increases which the inclination of the bolt, provided there is con-
siderable friction along the joint.

– Large bolt diameters reduce the shearing displacements demanded for mobi-
lizing a given shearing force, and the maximum shearing force increases linearly
with the sectional area of the bolt.

All of the test results available give us a fairly deep insight into the reinforce-
ment mechanism of passive, fully grouted bolts on joints. On one hand, they permit
the development of analytical or semi-empirical formulas to predict the effect of
bolts on the shear resistance along a joint, which is very useful in the conventional
reinforcement design. On the other hand, they provide a solid base to develop
numerical models for the purpose of more detailed analysis of the deformation and
stress states in complicated structures.

A number of useful and simple equivalent models have been proposed to sim-
ulate the reinforced jointed rock masses. Zienkiewicz and Pande (1976) firstly

Fig. 6.4 Deformation of bolt near a joint. a Schematic; b quantitative notation
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proposed an elasto-viscoplastic “multi-laminate” model for jointed rock masses.
Later, Pande and Gerrard (1983), Sharma and Pande (1988) modified the model to
cover reinforced cases. Larsson and Olofsson (1983) proposed a similar approach.
Their approaches may be illustrated by the rheological model in Fig. 6.5 (Sharma
and Pande 1988) whose advantage is simple and easy to implement whereas dis-
advantage is that the reinforcement mechanism cannot be well interpreted.

Take the REV containing two sets of joints and one set of bolts shown in
Fig. 6.6a for example. Under the action of uniform vertical pressure, the intersec-
tion points of the bolt with the joint set 1 and joint set 2 manifest different stresses
due to different deformation. However, the model constructed in Fig. 6.5 will
provide identical stresses attributable to the homogenization assumption. Again,
take the REV containing two joint sets with identical dip angle 45° but opposite dip
direction, and one horizontal bolt set (see Fig. 6.6b), for example. Since there is no

Fig. 6.5 Conventional rheological model of the REV containing joints and bolts

Fig. 6.6 Typical REVs containing two joint sets and one bolt set
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homogenized shear stress in the whole REV according to the model in Fig. 6.5,
therefore there is no localized shear stress in the bolt apart from tension. However,
such localized shear stresses at the intersection points of bolts with joints do
actually exist, overlooking of them will lead to the underestimation of the rein-
forcement effects of rock bolts.

We proposed a new rheological model shown in Fig. 6.7 (Chen and Pande 1994;
Chen and Egger 1999). The advantage with the new model is that it enables us to
describe the bolt’s behavior at the joint in more detail even with an equivalent
approach. For example, from the observation of test samples it is clear that the bolts
have undergone an intensive localized shear and tension deformations. Such phe-
nomenon can be taken into account in the new rheological model to some extent if
the test results can be correctly interpreted into the constitutive relation of the bolted
joint.

Fig. 6.7 New rheological model of the REV containing joints and bolts
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6.2.2 Basic Assumptions and Formularization

For fully-grouted rock bolts, the primary concern is the effect of bolt on the shear
resistance of a joint, therefore the influence of interfaces may be normally neglected
in the equivalent study. The proposed rheological model in Fig. 6.7 infers following
four basic assumptions which reflect the major findings from laboratory tests, that

① The strain increment of the jointed rock with bolt is given as the sum of the
incremental strains of the reinforced rock material and the reinforced joints.

② The load increment is shared among the bolt and rock material in the rein-
forced rock material, the same applies to the reinforced joint.

③ The mean stress in the bolted rock material is equal to that in the bolted joint.
④ The strain of the bolt is equal to that of the rock material in the bolted rock

material, similarly, the relative displacement of the two bolt hinges (see
Fig. 6.4) is equal to that of the joint walls.

Under the coordinate systems for the joint j and bolt b defined in Figs. 2.2 and
2.16 respectively, these assumptions can be mathematically formulated as follows.

① Assumption 1—strain addition

fDeg ¼ fDegRðBÞ þ
X
J

fDegJðBÞ ð6:1Þ

② Assumption 2—stress share

Drf gRðBÞ¼ AR Drf gR þ
P
b
Ab½T �Tb Drf gðbrÞ

Drf gjðbÞ¼ AR Drf gj þ
P
b
Ab½T �TðbjÞ Drf gðbjÞ

½T�TðbjÞ ¼ ð½T�Tj Þ�1½T�Tb

8>>><
>>>:

ð6:2Þ

In which AR and Ab are the volumetric ratios of rock and bolt in a REV, and
we have

AR þ
X
b

Ab ¼ 1

③ Assumption 3—stress consistency

Drf g ¼ Drf gRðBÞ¼ Drf gJðBÞ ð6:3Þ

④ Assumption 4—strain consistency
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Def gRðBÞ¼ Def gR¼ Def gðBRÞ
Def gjðbÞ¼ Def gj¼ ½T�ðbjÞ Def gðbjÞ

�
ð6:4Þ

In Eqs. (6.1)–(6.4), any quantities without subscript belong with the equivalent
material; the subscripts r, j, and b denote the rock material, the joint set, and the bolt
set, respectively; the subscripts (br) and (bj) denote the bolt b in the rock material
and in the joint set j; the subscripts rðbÞ and jðbÞ denote the reinforced rock material
and the reinforced joint set j. All the subscripts written in small letters imply the
local coordinate system, while the same subscripts written in capital letters imply
the global system. The transformation matrix ½T�b has been defined in Eq. (2.40),
and the form of matrix ½T�j is identical to ½T �b but the subscript b should be
substituted by the subscript j.

6.2.3 Constitutive Equations

According to the potential theory of elasto-viscoplasticity summarized in Chap. 2,
at time t the constitutive equation will take the form of Eqs. (2.122)–(2.129). In the
following deduction, the superscript (^) denoting implicit time-stepping scheme, the
subscript (t) or (n) denoting time or stepping sequence, will be neglected where
there is no risks of misleading.

(1) Intact rock

See Eqs. (1.122)–(1.125).

(2) Joint

On the local Cartesian coordinate system of joint defined in Fig. 2.2, only normal
stress rzj and shear stresses szxj and szyj can be transmitted. According to
Eqs. (2.126)–(2.129), the contribution of joint deformation to the strain of the
equivalent material is given by

fDrgj ¼ ½D�jðfDegj � _evpf gjDtÞ ð6:5Þ

where

D½ �j¼ sj

0 0 0 0 0 0
0 0 0 0 0 0
0 0 knj 0 0 0
0 0 0 ksj 0 0
0 0 0 0 ksj 0
0 0 0 0 0 0

2
6666664

3
7777775

_evpf gj¼
_uvpf gj
sj

¼ cj
sj
\Fj [

@Qj

@ rf gj

n o

8>>>>>>>>><
>>>>>>>>>:

ð6:6Þ

6.2 Equivalent Approach of Jointed Rock Masses … 397



In which the yield function Fj and potential function Qj are expressed by the
cohesion cj, friction angle uj, dilation angle /j and tension strength rTj [see
Eqs. (2.50) and (2.120)]; sj is the joint spacing; knj and ksj are the normal stiffness
and tangential stiffness.

(3) Bolt

On the local Cartesian coordinate system of bolt in Fig. 2.16, only normal stress
rzb and shear stresses szxb and szyb can be transmitted. We express Eq. (2.122) in the
“true” stress and strain as

fDrg�b ¼ ½D��bðfDeg�b � _evpf g�bDtÞ ð6:7Þ

In which the yield function, the loading function, and the elastic matrix may be
found in Eqs. (2.41), (2.105) and (2.82), subject to the dimension expansion of the
elastic matrix from 3 � 3 to 6 � 6 in a similar manner of joint [see Eq. (6.6)].

1. Bolt at joint

Use is made of the assumption ④ for the equivalent material, the relative dis-
placement between the two hinges is equal to the relative displacement of the joint
walls at the intersection point. For the tension stress rb in this hinge segment, the
uniform distribution along the effective length Lb seems a good and reasonable
postulation (see Fig. 6.8a), for the shear stress sb, we postulate two applicable types
of distribution shown in Fig. 6.8b, c.

Within the effective length, the “true” strain of the bolt in Eq. (6.7) should be
made equivalent to that of the rock mass according to the effective length and joint
spacing through the transformation Def gb¼ Lb

sj
Def g�b, therefore the equivalent

constitutive relation for the bolt at joint is

fDrgðbjÞ ¼ ½D�ðbjÞðfDegðbjÞ � _evpf gðbjÞDtÞ ð6:8Þ

Fig. 6.8 Diagram to the simplification of stress distribution along the effective length. a Normal
stress; b shear stress (uniform); c shear stress (triangular)
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In which

D½ �ðbjÞ¼ sj
Lb

D½ ��b
_evpf gðbjÞ¼ Lb

sj
_evpf g�b

(
ð6:9Þ

It is emphasized that in the implementation of Eqs. (6.8) and (6.9), attention
should be paid on the localized deflection of bolt at joint, namely the deflections
Dhb of the dip angle hb and D/b of the dip direction /b, should be taken into
account. In our practical algorithm, during the viscoplastic iteration the effective
length Lb, the dip direction /b and the dip angle hb are updated at certain time steps
by

LbðtþDtÞ ¼ LbðtÞþ sjDezb
/bðtþDtÞ ¼ /bðtÞþ arctan sjDczxb

LbðtÞ
� �

hbðtþDtÞ ¼ hbðtÞ � arctan sjDczyb
LbðtÞ

� �
8>><
>>: ð6:10Þ

2. Bolt in rock

For a bolt in rock, the stress and strain demand no equivalent treatment, and
Eq. (6.7) may be used directly, but the subscript b should be replaced by ðbrÞ and
the superscript * should be deleted.

(4) Equivalent material

Substituting the constitutive equation of each component into Eq. (6.2), and making
strain transformation defined by Eqs. (2.39) and (2.40), the constitutive equations
of bolted rock and bolted joint are obtained as

Drf gRðBÞ ¼ AR D½ �R Def gR�AR D½ �R _evpf gRDt
þ

X
b

Ab T½ �Tb D½ �ðbrÞ T½ �b Def gðBRÞ�
X
b

Ab T½ �Tb D½ �ðbrÞ _evpf gðbrÞDt
Drf gjðbÞ ¼ AR D½ �j Def gj�AR D½ �j _evpf gjDt

þ
X
b

Ab T½ �TðbjÞ D½ �ðbjÞ T½ �ðbjÞ Def gðbjÞ�
X
b

Ab T½ �TðbjÞ D½ �ðbjÞ _evpf gðbjÞDt

8>>>>>>><
>>>>>>>:

ð6:11Þ

Taking Eq. (6.4) into account, the above constitutive equations can be reduced
to

Drf gRðBÞ ¼ D½ �RðBÞ Def gRðBÞ� Drvpf gRðBÞ
Drf gjðbÞ ¼ D½ �jðbÞ Def gjðbÞ� Drvpf gjðbÞ

�
ð6:12Þ
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or

Def gRðBÞ ¼ D½ ��1
RðBÞ Drf gRðBÞ þ D½ ��1

RðBÞ Drvpf gRðBÞ
Def gjðbÞ ¼ D½ ��1

jðbÞ Drf gjðbÞ þ D½ ��1
jðbÞ Drvpf gjðbÞ

(
ð6:13Þ

In which

D½ �RðBÞ ¼ AR D½ �R þ
P
b
Ab T½ �Tb D½ �ðbrÞ T½ �b

D½ �jðbÞ ¼ AR D½ �j þ
P
b
Ab T½ �TðbjÞ D½ �ðbjÞ T½ �ðbjÞ

8><
>: ð6:14Þ

and

Drvpf gRðBÞ ¼ AR D½ �R _evpf gRDtþ
P
b
Ab T½ �Tb D½ �ðbrÞ _evpf gðbrÞDt

Drvpf gjðbÞ ¼ AR D½ �j _evpf gjDtþ
P
b
Ab T½ �TðbjÞ D½ �ðbjÞ _evpf gðbjÞDt

8><
>: ð6:15Þ

Transforming the constitutive equation of the bolted joint [the second row of
Eq. (6.15)] using the matrix T½ �j, then introducing it together with the constitutive
equation of the bolted rock material [the first row of Eq. (6.15)] into Eq. (6.1), the
equivalent constitutive equation of the jointed rock mass with bolts is finally for-
mulated as

Def g ¼ S½ � Drf gþ Devpf g ð6:16Þ

In which

S½ � ¼ D½ ��1
RðBÞ þ

X
j

T½ �j
� ��1

D½ ��1
jðbÞ T½ �Tj

� ��1
ð6:17Þ

and

Devpf g ¼ D½ ��1
RðBÞ Drvpf gRðBÞ þ

X
j

T½ ��1
j D½ ��1

jðbÞ Drvpf gjðbÞ ð6:18Þ

6.2.4 Verification and Parametric Study

The direct shear sample illustrated in Fig. 6.3 is made of concrete with size of
220 mm � 200 mm � 150 mm. The mesh for the calculation is illustrated in
Fig. 6.9a (projected on the X�Z plane, thickness = 200 mm in the direction of
Y axis). Since the “equivalent” approach is adopted in the constitutive relation, and
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there are only one joint plus one bolt in the sample, therefore it is wise to deploy
thin elements to accommodate the joint and bolt (see Fig. 6.9b). For the element
containing a joint, the thickness of element should be specified as the joint spacing;
similarly, for the element containing a bolt, the volumetric proportion should be
specified as the ratio of the bolt’s volume to the element’s volume.

In Tables 6.1 and 6.2, the parameters of the concrete block, joint and bolt, are
listed respectively. Since only the quasistatic (elasto-plastic) behaviors are of
interest in the test, the fluidity parameters are all assumed as c ¼ 1:0 in the
computation.

Fig. 6.9 Mesh of the test sample projection on the X � Z plane

Table 6.1 Parameters of concrete

E (GPa) l c (MPa) u (°) / (°)

17.8 0.2 12.5 45.0 45.0

Table 6.2 Parameters of joint and bolt

Joint Bolt

kn
(MN/
m3)

ks
(MN/
m3)

c (MPa) u
(°)

/
(°)

E (GPa) l fyk
(MPa)

fptk
(MPa)

dgt
(%)

h
(°)

db
(mm)

1000 300 0 34.0 0 210 0.3 630 670 27.0 60.0 8.0
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In the laboratory test and numerical analysis, a normal pressure r = 0.2 MPa is
exerted at the top of the sample first, then the shear force T is raised step by step
until the failure of the sample. Tentative values of the “effective length” or “ef-
fective height” (hb ¼ ð2�4Þdb) are trialed to find the best curve fitting for shear
force T versus displacement ux. In Fig. 6.10, we find that if the “effective length” or
“effective height” of a bolt at joint could be correctly specified by the tests, both the
deformation and strength of the reinforced joint can be well predicted.

6.3 Equivalent Approach of Jointed Rock Masses
Reinforced by Fully Grouted Bolts and Shotcrete
Lining

Quantification of stress state in a tunnel shell made of shotcrete is of great
importance for the safety of tunnel and other underground openings (e.g. power
house caverns), both during the excavation process and service period (Aydan et al.
1992). Early methods dealing with this issue reported in the literatures normally
discretize the tunnel shell by means of finite beam elements or shell elements
(Timoshenko 1940). In situ monitoring of displacement plays crucial role in the
estimation of the load at shell and in the implementation of NATM (Zachow 1995;
Rokahr et al. 2002; Schubert et al. 2002).

Fig. 6.10 Shear force versus displacement of the sample Vnr1.40 (bolt normal to joint)
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In the following coverage of this section, we extend the equivalent rheological
model established previously to cover the jointed rock mass reinforced by the
combination of bolts and shotcrete (Chen et al. 2009).

6.3.1 Reinforcement Mechanism and Rheological Models

It has been confirmed that there are two hinges attributable to bending in the bolt
near a joint, between the hinges the bolt undergoes strong localized shear and
tensile deformations. With these ongoing deformations the dip angle of the bolt as
well as the included angle between the bolt and the normal of joint will be deflected.
This phenomenon, together with the hardening of the steel bar, will enable the bolt
to mobilize larger shear resistance along the joint until the plastic deformation
reaches a certain criterion depending on the steel quality.

On the analogy of bolt, it sounds rather reasonable to postulate that the shotcrete
lining is a thin layer pasted on the rock surface whose major function is to restrain
the joints near the shotcrete from shear and tension deformations. Two hinges due
to bending in the lining near joint may manifest (see Fig. 6.11) with an “effective
length”. Between the hinges the lining undergoes strong localized shear and tensile
deformations. With these ongoing deformations the dip angle of the lining as well
as the included angle between the lining and the normal of joint will be deflected
(see Fig. 6.11b). This mechanism enables the lining to mobilize shear resistance
along the joint until the plastic deformation reaches a certain criterion.

Figure 6.12 shows four REVs around an excavated cavern. Element A contains
joints only, element B contains joints and shotcrete lining, element C contains joints
and bolts, element D contains joints, shotcrete lining and bolts. The last one, i.e. the
element D will be particularly addressed hereinafter.

Fig. 6.11 Deformation of shotcrete lining patch near a joint. a Schematic; b quantitative notation
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The generalized rheological model of the jointed rock mass reinforced by fully
grouted bolts and lining is constructed in Fig. 6.13. It is notable that the interfaces
of steel/grout and grout/rock are not taken into account in this model. It also should
be reminded that the joint persistence is indirectly handled with the average out
deformation and strength parameters over the joint and the “rock bridge”.

Fig. 6.12 Typical REVs around an excavated cavern

Fig. 6.13 Rheological model for the REV contains joints + bolts + shotcrete lining
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6.3.2 Basic Assumptions and Formularization

According to the rheological model in Fig. 6.13, a bolt (or lining) segment in the
REV can exhibit different stresses at joint and within (or on) intact rock. In this
manner, the localized deformation of bolt and shotcrete lining at joint can be
simulated. This rheological model implies four assumptions as follows.

① Assumption 1—strain addition
It states that the strain increment of the jointed rock mass reinforced by
shotcrete and bolts (element D) is the sum of the incremental strains of the
reinforced intact rock and reinforced joints. This assumption is mathemati-
cally formulated in the global coordinate system as

fDeg ¼ fDegRðLBÞ þ
X
J

fDegJðLBÞ ð6:19Þ

In which Def g is the equivalent strain increment of the jointed rock mass
containing bolts and lining; Def gRðLBÞ is the equivalent strain increment of
intact rock containing bolts and lining; Def gJðLBÞ is the equivalent strain
increment of joint containing bolts and lining.

② Assumption 2—stress share
It states that the load increment is shared among the bolt, shotcrete, and intact
rock in the reinforced intact rock, the same applies to the reinforced joint.
The corresponding formulas are

Drf gRðLBÞ¼ AR Drf gR þ
P
b
Ab½T�Tb Drf gðbrÞ þAl½T�Tl Drf gðlrÞ

Drf gjðlbÞ¼ AR Drf gj þ
P
b
Ab½T �TðbjÞ Drf gðbjÞ þAl½T �TðljÞ Drf gðljÞ

½T �TðbjÞ ¼ ð½T�Tj Þ�1½T �Tb
½T �TðljÞ ¼ ð½T�Tj Þ�1½T�Tl

8>>>>>><
>>>>>>:

ð6:20Þ

In which AR, Al and Ab are the volumetric proportions of the intact rock,
shotcrete lining, and bolt in the REV considered, and we have

AR þ
X
b

Ab þAl ¼ 1
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③ Assumption 3—stress consistency
It states that the average stress in the reinforced intact rock is equal to that in
the reinforced joint, mathematically

Drf g ¼ Drf gRðLBÞ¼ Drf gJðLBÞ ð6:21Þ

④ Assumption 4—strain consistency
It states that the strains of the bolt and shotcrete are equal to that of the intact
rock in the reinforced intact rock; similarly, the relative displacements of the
two hinges of the bolt and shotcrete are equal to that of the reinforced joint
walls, mathematically

Def gRðBÞ¼ Def gR¼ Def gðBRÞ¼ Def gðLRÞ
Def gjðbÞ¼ Def gj¼ ½T�ðbjÞ Def gðbjÞ¼ ½T �ðljÞ Def gðljÞ

�
ð6:22Þ

The local coordinate systems of joint, bolt, and lining have been defined in
Figs. 2.2, 2.16, and 2.18. In Eqs. (6.19)–(6.22) all quantities without subscript
belong with the equivalent material. Let the subscripts r, j, b and l denote the rock,
joint set, bolt set and shotcrete lining, respectively; the subscripts (br), (bj), (lr) and
(lj) denote the bolt in the intact rock and at the joint set, the shotcrete lining at the
intact rock and the joint set, respectively; the subscripts rðlbÞ and jðlbÞ denote the
intact rock r and joint set j reinforced by bolt b and shotcrete lining l together. All
the above subscripts written in small letters imply the local Cartesian coordinate
system, whereas the same subscripts written in capital letters imply the global
coordinate system.

The transformation matrix ½T�b has been defined in Eq. (2.40), the forms of
matrices ½T�j and ½T�l are identical to ½T �b but the subscript b should be replaced by
j and l.

6.3.3 Constitutive Equations

The constitutive equations of rock, joint and bolt are identical to that in Sect. 6.2.3.
In the following only the constitutive equation of shotcrete lining is additionally
elaborated.

(1) Shotcrete lining at joint

As has been illustrated in Fig. 6.11a, a lining patch would undergo bending process
during the shear of the joint. The bending height hl termed as “effect height” or the
corresponding “effective length” Ll ¼ hl= sin al (see Fig. 6.11b) is related to various
factors such as the properties of rock, joint, and shotcrete. It is postulated that along
the effective length, the normal stresses rxl and ryl are uniformly distributed, the
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shear stresses szxl and szyl are uniformly distributed, too. Within the effective length,
the constitutive equation can be given by the “true” strain fDeg�l

fDrg�l ¼ ½D��l ðfDeg�l � _evpf g�l DtÞ ð6:23Þ

Since the equivalent strain contributed from the joint set j is

fDegðljÞ ¼
Ll
sj
fDeg�l

or

fDeg�l ¼
sj
Ll
fDegðljÞ ð6:24Þ

Therefore we have the constitutive equation given by the equivalent strain

fDrgðljÞ ¼ ½D�ðljÞðfDegðljÞ � _evpf gðljÞDtÞ ð6:25Þ

In which

D½ �ðljÞ ¼ sj
Ll

D½ ��l
_evpf gðljÞ ¼ Ll

sj
_evpf g�l

(
ð6:26Þ

In Eqs. (6.24) and (6.26) Ll is the effective length of the lining at joint and sj is
the spacing of the joint set j. During the viscoplastic deformation, the effective
length Ll, the dip direction /l and the dip angle hl should be updated at certain time
steps by the formulas

LlðtþDtÞ ¼ LlðtÞþ sjDeyl
/lðtþDtÞ ¼ /lðtÞþ arctan sjDczxl

LlðtÞ
� �

hlðtþDtÞ ¼ hlðtÞ � arctan
sjDczyl
LlðtÞ

� �
8>><
>>: ð6:27Þ

(2) Shotcrete lining at rock

For the shotcrete lining at rock, Eq. (6.23) may be used directly, but the subscript
l should be replaced by ðlrÞ and the superscript * should be deleted.

(3) Equivalent material

In the first step, the constitutive equations of the rock, joint, shotcrete lining, bolt
are introduced in the stress share Eq. (6.20) simultaneously. After the corre-
sponding coordinate transformations we get
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Drf gRðLBÞ ¼ AR D½ �R Def gR�AR D½ �R _evpf gRDt
þAl T½ �Tl D½ �ðlrÞ T½ �l Def gðLRÞ�Al T½ �Tl D½ �ðlrÞ _evpf gðlrÞDt
þ P

b
Ab T½ �Tb D½ �ðbrÞ T½ �b Def gðBRÞ�

P
b
Ab T½ �Tb D½ �ðbrÞ _evpf gðbrÞDt

Drf gjðlbÞ ¼ AR D½ �j Def gj�AR D½ �j D_evpf gjDt
þAl T½ �TðljÞ D½ �ðljÞ T½ �ðljÞ Def gðljÞ�Al T½ �TðljÞ D½ �ðljÞ _evpf gðljÞDt
þ P

b
Ab T½ �TðbjÞ D½ �ðbjÞ T½ �ðbjÞ Def gðbjÞ�

P
b
Ab T½ �TðbjÞ D½ �ðbjÞ _evpf gðbjÞDt

8>>>>>>>>>><
>>>>>>>>>>:

ð6:28Þ

Next, we take the strain consistency Eq. (6.22) into account, the Eq. (6.28)
becomes

Drf gRðLBÞ¼ D½ �RðLBÞ Def gRðLBÞ� Drvpf gRðLBÞ
Drf gjðlbÞ¼ D½ �jðlbÞ Def gjðlbÞ� Drvpf gjðlbÞ

�
ð6:29Þ

or

Def gRðLBÞ¼ D½ ��1
RðLBÞ Drf gRðLBÞ þ D½ ��1

RðLBÞ Drvpf gRðLBÞ
Def gjðlbÞ¼ D½ ��1

jðlbÞ Drf gjðlbÞ þ D½ ��1
jðlbÞ Drvpf gjðlbÞ

(
ð6:30Þ

In which

D½ �RðLBÞ¼ AR D½ �R þAl T½ �Tl D½ �ðlrÞ T½ �l þ
P
b
Ab T½ �Tb D½ �ðbrÞ T½ �b

D½ �jðlbÞ¼ AR D½ �j þAl T½ �TðljÞ D½ �ðljÞ T½ �ðljÞ þ
P
b
Ab T½ �TðbjÞ D½ �ðbjÞ T½ �ðbjÞ

8><
>: ð6:31Þ

Drvpf gRðLBÞ¼ AR D½ �R _evpf gRDtþAl T½ �Tl D½ �ðlrÞ _evpf gðlrÞDtþ
P
b
Ab T½ �Tb D½ �ðbrÞ _evpf gðbrÞDt

Drvpf gjðlbÞ¼ AR D½ �j _evpf gjDtþAl T½ �TðljÞ D½ �ðljÞ _evpf gðljÞDtþ
P
b
Ab T½ �TðbjÞ D½ �ðbjÞ _evpf gðbjÞDt

8><
>:

ð6:32Þ

The constitutive equation of joint containing lining and bolt [the second row of
Eq. (6.30)] is transformed with T½ �j, afterwards its resultant is introduced into the
strain addition Eq. (6.19) together with the constitutive equation of the rock with
lining and bolt [the first row of Eq. (6.30)], the equivalent constitutive equation of
the jointed rock mass containing lining and bolts is finally formulated

Def g ¼ S½ � Drf gþ Devpf g ð6:33Þ
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In which

S½ � ¼ D½ �RðLBÞ
� ��1

þ
X
j

ð T½ �jÞ�1 D½ �jðlbÞ
� ��1

T½ �Tj
� ��1

ð6:34Þ

Devpf g ¼ D½ ��1
RðLBÞ Drvpf gRðLBÞ þ

X
j

T½ ��1
j D½ ��1

jðlbÞ Drvpf gjðlbÞ ð6:35Þ

where the REV contains no shotcrete lining, Eqs. (6.33)–(6.35) will be degenerated
back to the constitutive equation of the jointed rock mass reinforced by the bolt
only [see Eqs. (6.16)–(6.18)].

6.3.4 Verification and Parametric Study

Figure 6.14 presents a sample of jointed rock for the verification study. It comprises
two joint sets spaced at 0.5 m and with dip angle of 45° and −45°, respectively. The
sample is loaded by the uniform pressure P on its top. One horizontal bolt set
(diameter db = 30 mm, spacing = 1 m � 1 m) or/and two lining layers on its left
and right vertical surfaces (thickness of lining dl = 10 cm), are deployed. Under
such testing configuration, the equivalent stress and strain within the sample are
uniformly distributed.

Towards the verification, three FE models are constructed.

① FE model 1. The intact rock, joints, linings and bolts are all approached
explicitly. The joints are discretized by joint elements without thickness
(Goodman et al. 1968; Mahtab and Goodman 1970), intact rock, bolts and

Fig. 6.14 Numerical test
sample (Unit: mm)
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linings are all discretized by solid elements. The mesh includes 4446 ele-
ments and 5340 nodes.

② FE model 2. The sample is regarded as one solid equivalent element, the
effect of joints, bolts and linings are simulated using the equivalent approach
elaborated in this section.

③ FE model 3. The sample is discretized into 96 elements and 175 nodes, the
effect of joints, bolts and linings are all simulated by the equivalent approach
elaborated in this section.

FE model 1 simulates the joints, linings and bolts explicitly and is able to
provide more precise solution. Therefore, it performs as a “benchmark” to validate
the equivalent solutions by FE models 2 and 3. The only difference between FE
models 2 and 3 lies in their mesh density.

The material parameters of the rock and shotcrete as well as joints and bolts used
in the computation are listed in Tables 6.3 and 6.4.

The following four reinforcement cases are studied with regard to the above
three FE models.

– Case 1. Without reinforcements.
– Case 2. One horizontal bolt set only, without shotcrete linings.
– Case 3. Two lining patches on its left and right vertical surfaces, without bolts.
– Case 4. Two lining patches on its left and right vertical surfaces + one hori-

zontal bolt set.

The pressure P is incrementally raised until the failure of the samples. The
curves relating the pressure P and the vertical displacement uz at the top center point
plotted in Figs. 6.15, 6.16 and 6.17 validate that

– The results by equivalent FE models 2 and 3 are close to the results of the
explicit approach by FE model 1. However, it is obvious that FE model 1 needs
more complex mesh;

– Use of shotcrete linings or fully-grouted bolts independently may raise the
overall strength of samples;

– It seems that the bolt is more effective in the improvement of sample strength
than shotcrete lining under the specified design parameters;

Table 6.3 Parameters of rock and shotcrete

Material E (GPa) l c (MPa) u (°) / (°)

Shotcrete 25 0.18 2.0 50.0 50.0

Rock 28 0.20 205 56.0 56.0

Table 6.4 Parameters of joints and bolts

Joint Bolt

kn
(MN/
m3)

ks
(MN/
m3)

c
(MPa)

u
(°)

/
(°)

E
(GPa)

l fyk
(MPa)

fptk
(MPa)

dgt
(%)

h
(°)

db
(mm)

60,000 20,000 0.1 25.0 0 210 0.18 340 370 10.0 0.0 30.0
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Fig. 6.15 P�uz relationship
of FE model 1

Fig. 6.16 P�uz relationship
of FE model 2

Fig. 6.17 P�uz relationship
of FE model 3
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– However, combination of shotcrete lining and bolt may increase the sample
strength much more remarkably.

Similar to the parameter “effective height” hd or “effective length” Ld of the bolt
at joint, the “effective height” hl or “effective length” Ll of the shotcrete lining at
joint in Eqs. (6.23)–(6.27) is dominated by various factors.

A numerical test procedure using the samples in Fig. 6.14 is further carried out
to study the effective height of the lining at joint (Chen et al. 2009).

① The Young’s modulus of rock, the strength parameters of joint, the dip angle
of joint, the thickness of lining, are selected as the main factors influencing
the effective height. The upper and inferior bounds of these parameters are
prescribed.

② Within the upper and inferior bounds, mi tentative values are designed for
each factor, then by the orthogonal design method, N combinations of the
factors are prepared.

③ According to these N factor combinations, numerical test samples are dis-
cretized by explicit FE model 1 and equivalent FE model 3, respectively.

④ For each test sample, the result from FE model 1 is looked at as a benchmark
solution.

⑤ For each test sample, tentative effective heights of the lining are trialed until
the best fitting between FE model 3 and FE model 1 is obtained. In this
manner the value of the effective height of the lining at joint under a specified
factor combination is estimated.

⑥ All the factor combinations are grouped as input data set, and the corresponding
effective heights are grouped as output data set in the training of artificial neural
network (ANN) (Haykin 1999). The trained ANN will provide the relationship
between the factors and the effective height of the lining at joint.

⑦ An empirical relation between the effective height and the thickness of
shotcrete lining can be empirically suggested as hl ¼ a � dl ¼ 0:1�2:0dl.
Compared with the empirical relation between the effective height and the
diameter of bolt (hb ¼ a � db ¼ 2:0�4:0db), it can be justified that the
parameter a is rather smaller for the shotcrete lining, mostly due to a much
lower ductility of the shotcrete lining.

6.4 Distinct Approach of Jointed Rock Masses Reinforced
by Fully Grouted Bolts

6.4.1 Basic Assumptions and Formularization

To deal with very complicated stabilization problems, a combination of equivalent
and distinct approaches is more powerful than to make use of either one only.
Therefore, the interest of this section is directed to the distinct approach for rock
bolts.
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In 1989 Aydan proposed a three-dimensional bolt element with 8 nodal points.
Two of them are connected to the bolt, whereas the six others are connected to host
rock. The number of nodes in two-dimensional cases is reduced to six. Swoboda
and Marence (1991, 1992) modified the formulation by assigning different coor-
dinates for the bolt nodes and the nodes of rock/grout interfaces. Thus, the bolt and
rock displacements are different at the bolt-joint intersection, and the parameters in
the stiffness matrix are not constant. They depend on the joint displacement and are
independently calculated by an iterative procedure.

We proposed a bolt element using the technique of assemblage in which the bolt
and grout are simplified as a kind of equivalent material (see Fig. 6.18), and the
interface between equivalent bolt-grout material and host rock is taken into account
(Chen and Egger 1997; Qiang and Chen 2001).

For the simplicity of discussion, the 8-node bolt element schematically illus-
trated in Fig. 6.19 is taken as an example, for which the basic assumptions are
postulated that

① The load increment is shared among bolt and grout.
② The strain of bolt is equal to that of grout.
③ Along the axial direction, the displacement of bolt-grout material is linearly

distributed.

Fig. 6.18 Rheological model
of the equivalent bolt-grout
material

Fig. 6.19 8-node bolt
element
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④ Along the radial direction, the stress of bolt-grout is uniform.
⑤ Normal stress along the axis is transmitted by bolt-grout material.
⑥ Shear stresses perpendicular to the axis is transmitted by bolt-grout material,

too.
⑦ Shear stress along the axis is transmitted through the interfaces between

grout and rock.
⑧ The relative displacement on the interface of grout and rock perpendicular to

the axis is step-wisely distributed along the circumferential direction.

6.4.2 Constitutive Equations

(1) Equivalent bolt-grout material

The rheological model of the equivalent bolt-grout material in Fig. 6.18 is
actually a simplified case of Fig. 6.7 where the rock is replaced by the grout and
there are no joints. Hence on the local Cartesian coordinate system (see Fig. 2.16) it
may be routinely given by the formula

Drf gðbgÞ¼ D½ �ðbgÞ Def gðbgÞ� Drvpf gðbgÞ ð6:36Þ

where the subscript ðbgÞ means the equivalent grout-bolt material, and

D½ �ðbgÞ¼ Ab D½ �b þAg D½ �g ð6:37Þ

Drvpf gðbgÞ¼ Ab D½ �b _evpf gbDtþAg D½ �g _evpf ggDt ð6:38Þ

In which Ag and Ab are the volumetric ratios of grout and bolt respectively
observing

Ag þAb ¼ 1

The elastic matrices D½ �g and D½ �b have been given in Eqs. (2.81) and (2.82), the
viscoplastic strain rates _evpf gb and _evpf gg have been given in Eqs. (2.122)–(2.125).

(2) Interface between the equivalent bolt-grout material and host rock

Figure 6.20 shows an interface patch and corresponding local Cylindrical coordi-
nate system. The relative displacement and stress increments are identical to
Eqs. (2.126)–(2.129) where the cohesion c, friction angle u, dilation angle / and
tension strength rT are specified for the interface between the equivalent bolt-grout
material and host rock.
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Fig. 6.20 Interface patch
simulated by joint element

6.4.3 Governing Equations of the Bolt Element

(1) Equivalent bolt-grout material

The displacement increment Duf gðbgÞ of the equivalent bolt-grout material on its
local Cartesian coordinate system (see Fig. 6.20) is related to the nodal displace-
ment increment Ddf gðbgÞ at the nodes I and J as

Duf gðbgÞ¼ l½ �cab M½ �ðbgÞ Ddf gðbgÞ ð6:39Þ

In which the transformation matrix l½ �cab has been defined in Eq. (2.36) and

½M�ðbgÞ ¼
NI 0 0 NJ 0 0
0 NI 0 0 NJ 0
0 0 NI 0 0 NJ

2
4

3
5 ð6:40Þ

NI ¼ � n�1
2

NJ ¼ 1þ n
2

n ¼ z
Lb=2

8><
>: ð6:41Þ

fDugðbgÞ ¼
DuxðbgÞ
DuyðbgÞ
DuzðbgÞ

8<
:

9=
;

fDdgðbgÞ ¼

DuxI
DuyI
DuzI
DuxJ
DuyJ
DuzJ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð6:42Þ
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The strain increment of the equivalent bolt-grout material is

Def gðbgÞ¼ B½ �ðbgÞ Ddf gðbgÞ ð6:43Þ

In which

½B�ðbgÞ ¼
1
Lb

0 0 1

1 0 0

0 1 0

2
64

3
75 l½ �cab

�1 0 0 1 0 0
0 �1 0 0 1 0
0 0 �1 0 0 1

2
4

3
5 ð6:44Þ

Taking into account of Eqs. (6.36) and (6.43) and application of the virtual work
principle gives rise to

k½ �ðbgÞ df gðbgÞ¼ Dff gðbgÞ þ Df vpf gðbgÞ ð6:45Þ

In which

k½ �ðbgÞ¼ pr2g

ZLb=2
�Lb=2

B½ �TðbgÞ D½ �ðbgÞ B½ �ðbgÞdz ð6:46Þ

Df vpf gðbgÞ¼ pr2g

ZLb=2
�Lb=2

B½ �TðbgÞ Drvpf gðbgÞdz ð6:47Þ

(2) Interfaces between the equivalent bolt-grout material and surrounding elements
of host rock

The relative displacement fDugj of the interface on its local Cylindrical coordinate
system (see Fig. 6.20) is related to the nodal displacement increment fDdgj as

fDugj ¼ ½B�jfDdgj ¼ l½ �cyj l½ �caj ½M�jfDdgj ð6:48Þ

In which the transformation matrices l½ �caj and l½ �cyj have been defined in
Eqs. (2.36)–(2.38) but the subscript b should be replaced by j, and

fDugj ¼
Dur
Dux
Duz

8<
:

9=
;

fDdgj ¼

Dux1
Duy1
Duz1
..
.

Dux4
Duy4
Duz4

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð6:49Þ
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½M�j ¼
�N1 0 0 �N2 0 0

0 �N1 0 0 �N2 0

0 0 �N1 0 0 �N2

�N3 0 0 �N4 0 0

0 �N3 0 0 �N4 0

0 0 �N3 0 0 �N4

2
64
N5 0 0 N6 0 0

0 N5 0 0 N6 0

0 0 N5 0 0 N6

N7 0 0 N8 0 0

0 N7 0 0 N8 0

0 0 N7 0 0 N8

3
75

ð6:50Þ

Ni ¼ 1
4 ð1þ ninÞð1þ gigÞ

Niþ 4 ¼ Ni

n ¼ z
Lb=2

g ¼ x
x0

8>><
>>: ði ¼ 1�4Þ ð6:51Þ

Taking into account of Eqs. (6.48) and (2.216)–(2.219), the virtual work prin-
ciple will give the relationship between the nodal force increment and the nodal
displacement increment of the interface as follows

½k�jfdgj ¼ fDf gj þfDf vpgj ð6:52Þ

In which

½k�j ¼ rg

ZLb=2
�Lb=2

Zx0

�x0

½B�Tj ½D�j½B�j dxdz ð6:53Þ

fDf vpgj ¼ rg

ZLb=2
�Lb=2

Zx0

�x0

½B�Tj ½D�jf _uvpgjDt dxdz ð6:54Þ

(3) Assemblage of explicit bolt element considering grout and interface

The whole bolt element is assembled by one bar element representing the bolt-grout
equivalent material and nj joint elements representing the interface patches related
to the surrounding elements of host rock. Suppose the bar element possesses nodes
I and J (see Fig. 6.21), then the interior nodes (1–4) of the joint (interface) element
are all assembled to the node I and J, meanwhile the exterior nodes (5–8) of the
same joint element are assembled to the host rock elements.
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6.5 Distinct Approach of Stranded Wire Cables

For a hydraulic structure installed with a large amount of stranded wire cables, the
primary task in the optimal layout design for reinforcement scheme is the simu-
lation of reinforcement effects on the structure safety due to the pre-stress and
additional stiffness of the cable (Stheeman 1982; Hassani and Rajaie 1990; Mitri
and Rajaie 1990; Hassani et al. 1992; Mitri et al. 1993; Kim 2003).

It is normally recommended that on the out-laid anchor head, a concentrated
force or distributed pressure of certain pattern is exerted to simulate the pre-stress,
meanwhile a concentrated force equalizing pre-stress is exerted in the bonded inside
anchorage head as “bar” or “beam” element with definite length. Since the exerting
position at the bonded inside anchorage head is difficultly pinpointed, it is cus-
tomarily postulated at the intersection of the bonded inside anchorage head with the
free length, for the safe side consideration.

The free length can be approached by an additional stiffness matrix of the anchor
element bound to the structure system which links the out-laid anchor head and the
bonded inside anchorage head.

6.5.1 Basic Assumptions and Formularization

Figure 6.22 shows a cable element c with free length Lc and sectional area Ac. It
links solid elements ei and ej whose geometry parameters are

– Dip direction /c and dip angle hc;
– Global coordinates Xci; Yci; Zcið Þ and corresponding normalized coordinates

nci; gci; fcið Þ of the out-laid anchor head A (in the element ei);
– Global coordinates Xcj; Ycj; Zcj

� �
and corresponding normalized ncj; gcj; fcj

� �
of

the bonded inside anchorage head B (in the element ej);

The mechanical parameters and variables of this free length element are the
Young’s modulus Ec, inner force increment DRc and deformation increment Ddc.

Fig. 6.21 Assemblage of an explicit bolt element considering interfaces
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The displacement increments at points A and B are related to their adjoin solid
elements by

Duf gA¼ N½ �i
��
A Ddf gi ð6:55Þ

Duf gB¼ N½ �j
���
B
Ddf gj ð6:56Þ

where N½ �i and N½ �j = shape function matrices of ei and ej; Ddf gi and Ddf gj =
nodal displacement increments of ei and ej.

The deformation increment Ddc of the free length Lc between A and B is
calculated by

Ddc ¼ l½ �Tc ð Duf gA� Duf gBÞ ð6:57Þ

In which l½ �c is the directional cosine of the cable element c.

l½ �c¼ sin/c sin hc cos/c sin hc cos hc½ �T ð6:58Þ

Suppose the cable element is elastic, the constitutive equation relating its inner
force increment and deformation increment may be simply given

DRc ¼ AcEcDdc=Lc ð6:59Þ

6.5.2 Governing Equations of the Cable Element

The virtual work of the cable reinforced system is

WF ¼
Xne
i¼1

Wi þ
Xnc
c¼1

Wc ð6:60Þ

Fig. 6.22 Anchor element for the free length AB
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where WF = virtual work of the structure system due to external actions;
Wi = virtual work contributed by the solid element ei; Wc = virtual work con-
tributed by the cable element c; ne = amount of the solid elements in the system;
nc = amount of the anchor cables.

(1) Virtual work contributed by external actions

WF ¼
Xne
i¼1

Dd�f gTi Dff gi ð6:61Þ

where Dd�f gi = virtual displacement of the element ei; Dff gi = external action
increment at the element ei.

(2) Virtual work contributed by the solid element ei

We
i ¼

ZZZ
Xi

De�f gTi Drf gi dX ð6:62Þ

where De�f gi = virtual strain increment of the solid element ei; Drf gi = stress
increment of the solid element ei.

(3) Virtual work contributed from the cable element c

Wc ¼ Dd�cDRc ð6:63Þ

where Dd�c = virtual strain increment of the anchor cable element c.

Equations (6.55)–(6.63) may be simultaneously employed in the routine oper-
ator of the virtual work principle, to provide

Dff gi ¼
ZZZ
Xi

B½ �Ti D½ �i B½ �i Ddf gidXþ AcEc

Lc
N½ �Ti

��
A lf gc lf gTc N½ �i

��
A Ddf gi

� AcEc

Lc
N½ �Ti

��
A lf gc lf gTc N½ �j

���
B
Ddf gj

Dff gj ¼
ZZZ
Xj

B½ �Tj D½ �j B½ �j Ddf gjdXþ AcEc

Lc
N½ �Tj

���
B
lf gc lf gTc N½ �j

���
B
Ddf gj

� AcEc

Lc
N½ �Tj

���
B
lf gc lf gTc N½ �i

��
A Ddf gi

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð6:64Þ

The existence of cable element c therefore contributes to its linked solid ele-
ments ei and ej in a form of additional stiffness matrices

k½ �ii¼ AcEc
Lc

N½ �Ti
��
A lf gc lf gTc N½ �i

��
A

k½ �jj¼ AcEc
Lc

N½ �Tj
���
B
lf gc lf gTc N½ �j

���
B

8<
: ð6:65Þ
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k½ �ij¼ � AcEc
Lc

N½ �Ti
��
A lf gc lf gTc N½ �j

���
B

k½ �ji¼ � AcEc
Lc

N½ �Tj
���
B
lf gc lf gTc N½ �i

��
A

8<
: ð6:66Þ

These matrices are assembled in the overall stiffness matrix of the reinforced
structure system identical to the conventional FEM algorithm.

6.5.3 Remarks

To handle with the interface failure (slippage and separation) mechanism of bonded
inside anchorage head (Yazici and Kaiser 1992; Briaud et al. 1998), different
interface models established by Goodman et al. (1968), Ghaboussi et al. (1973),
Hermann (1978), Desai et al. (1984, 1986), Beer (1985), Griffiths (1985), Hyett
et al. (1995) are available and recently, an important breakthrough using fine finite
element grid to simulate the interfaces of soil/grout and grout/strand wire has been
achieved (Kim et al. 2007). In order to overcome the pre-process difficulties with
the discretization of the bonded inside anchorage head, the composite element
method (CEM) also has been formulated by the author (Chen et al. 2015) to
explicitly simulate rock, grout, stranded wire, rock/grout interface and grout/
stranded wire interface. This study will be presented later in Chap. 15.

6.6 Engineering Applications

6.6.1 Underground Cavern: Pubugou Project, China

(1) Presentation of the project

Pubugou Hydropower Project is located on the Daduhe River, a tributary of the
Yangtze River in Sichuan Province, China. The main purpose of the project is
power generation with total installation capacity of 3300 MW (6 � 550 MW). Its
construction started on March 30, 2004, the first generator was put into operation in
December 2009 and the rest by March 2010.

The underground power house is located in the sound granite. Figure 6.23 shows
the plan of the underground power house, on which six gauge points (POINT 1–
POINT 6) for in situ geo-stress aggression are marked.

(2) Characteristics of the computation

The stabilization study for the 6th turbine generator section shown in Fig. 6.24 is
presented.
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Fig. 6.23 Plan of the underground power house: Pubugou Project, China

Fig. 6.24 Geological profile
of the 6th turbine generator
section

422 6 Reinforcement Analysis Using the Finite Element Method



The main faults explicitly simulated in the computation are f 1, f 16, f 18, gð3Þ,
bl1, gð4Þ. The joint sets implicitly simulated are

– First set. Dip angle = 11°, spacing = 1.5 m, normal stiffness kn = 209,000 GPa/
m, shear stiffness ks = 104,500 GPa/m, cohesion c = 1.3 MPa, friction angle
u = 41.78°, tensile strength rT = 1.3 MPa.

– Second set. Dip angle = −51°, spacing = 2 m, normal stiffness
kn = 209,000 GPa/m, shear stiffness ks = 104,500 GPa/m, cohesion
c = 1.3 MPa, friction angle u = 41.78°, tensile strength rT = 1.3 MPa.

The parameters of the rock masses provided by the designer are summarized in
Table 6.5.

The parameters of the final reinforcement scheme are elaborated as follows.

1. Bolts for the generator chamber

– Crest crown. Ф28@1200 � 1200 mm, L = 7 m; Ф32@1200 � 1200 mm,
L = 9 m.

– Side wall. Ф28@1500 � 1500 mm, L = 7 m.

2. Bolts for the transmission chamber

– Crest crown. Ф28@1200 � 1200 mm, L = 6 m.
– Side wall. Ф28@1500 � 1500 mm, L = 7 m.

3. Bolts for the tail water gate chamber

– Crest crown. Ф28@1200 � 1200 mm, L = 6 m.
– Side wall. Ф28@1500 � 1500 mm, L = 7 m.

4. Shotcrete lining for the generator chamber

– Crest crown.dl = 120 mm.
– Side wall.dl = 150 mm.

Table 6.5 Parameters of rock masses

Material Young’s
modulus E
(GPa)

Poisson’s
ratio l

Cohesion
c (MPa)

Friction
angle u (°)

Tensile
strength rT
(MPa)

Rock class IV + V 2 0.30 0.5 40.03 0.4

Rock class III + IV 10 0.26 1.2 47.85 1.0

Rock class II + III 20.9 0.21 2.2 56.12 1.6

Faults f 1, f 16, f 18,
gð3Þ, bl1, gð4Þ

1.66 0.35 0.7 32.25 0.4

Shotcrete 26 0.2 2.0 50.19 1.6
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5. Shotcrete lining for the transmission chamber dl = 120 mm.
6. Shotcrete lining for the tail water gate chamber dl = 120 mm.

The “effective height” of the shotcrete lining at joint is 0.8 times the shorcrete
thickness, and the “effective height” of the bolt at joint is 3 times the bolt diameter.

The mesh generated for the computation contains 37,055 elements and 37,246
nodes. Figure 6.25 shows a portion of the FE mesh around the caverns.

(3) Excavation procedure

The excavating benches in Fig. 6.26 are simulated by nine computation steps.

Fig. 6.25 Portion of the FE mesh around the caverns

Fig. 6.26 Excavation benches and the representative points
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– Step 1. Generator chamber bench I (see Fig. 6.27), tail water gate bench
chamber I.

– Step 2. Generator chamber bench II, tail water gate chamber bench II, trans-
mission chamber bench I, generator chamber bench III.

– Step 3. Transmission chamber bench II, tail water gate chamber bench III.
– Step 4. Generator chamber bench IV, transmission chamber bench III.
– Step 5. Generator chamber bench V, tail water gate chamber bench IV.
– Step 6. Tail water gate chamber bench V, generator chamber bench VI.
– Step 7. Generator chamber bench VII.
– Step 8. Tail water gate chamber bench VI, generator chamber bench VIII (see

Fig. 6.28).
– Step 9. Tail water gate chamber bench VII.

(4) Computation results and discussions

Two cases are studied by the FEM with regard to two extraordinary reinforcement
schemes:

– Case 1. Neither shotcrete nor bolt are considered.
– Case 2. The combined shotcrete and bolt reinforcement is implemented only one

step lagging behind of the excavation.

The accumulated displacements at the representative points (see Fig. 6.26) are
summarized in Table 6.6 which validate that

Fig. 6.27 Generator chamber after the bench I
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Fig. 6.28 Generator chamber after the bench VIII

Table 6.6 Accumulated displacements at representative points (unit: mm)

Point Accumulated
displacement

Case Excavation step

STEP 3 STEP 5 STEP 7 STEP 9

1
P

uy 1 −47.191 −52.687 −57.594 −62.260

2 −43.589 −46.634 −49.292 −52.373

2
P

ux 1 4.879 26.894 47.433 54.809

2 4.869 26.524 46.384 53.795

3
P

ux 1 −1.318 −14.488 −38.602 −39.952

2 −1.256 −14.202 −37.756 −38.799

4
P

uy 1 −59.209 −84.569 −109.982 −131.215

2 −53.455 −63.869 −76.797 −87.930

5
P

ux 1 29.782 52.033 49.831 59.160

2 29.836 49.616 45.683 54.305

6
P

ux 1 −4.733 −17.286 −14.048 −3.523

2 −4.553 −16.228 −12.407 −1.454

7
P

uy 1 −29.033 −34.254 −38.091 −39.828

2 −27.331 −31.335 −34.301 −35.523

8
P

ux 1 16.200 19.859 28.821 43.220

2 16.345 19.844 28.642 42.953

9
P

ux 1 −16.448 −29.189 −39.463 −47.706

2 −16.299 −28.866 −39.065 −47.298
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– The reinforcement scheme (Case 2) remarkably reduces the deformation of the
caverns.

– Since the reinforcement is implemented one excavation step lagging behind,
therefore the difference between the reinforced case 2 and the unreinforced case
1 at the lower elevation (e.g. points 2,3,8,9) are not so significant as that at the
higher elevation (e.g. points 1,4,7).

6.6.2 Cut Slope: Longtan Project, China

(1) Presentation of the project

Longtan Project is located on the Hongshuihe River—a tributary of the Pearl River,
Guangxi Zhuang Autonomous Region, China.

The project is intended for hydroelectric power generation, flood control and
navigation. It (see Fig. 6.29) comprises a large roller-compacted concrete
(RCC) gravity dam of 216.2 m high and 849.44 m long; a flood discharge structure
arranged in the river-bed dam monoliths consisting of 7 surface spillways and 2
bottom outlets; a left-bank underground power-generation system installed with 9
generator units of 6426 MW in total capacity; and a right-bank navigation structure
equipped with two-tandem vertical ship-lifts. Its construction started on July 1,
2001, the river closure was completed by November 2003, the impoundment was
initiated in October 2006, the first turbine generator unit was put into operation by
May 2007, and the whole project was completed by December 2009.

Fig. 6.29 Plan showing the layout of Longtan Project, China
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(2) Characteristics of the computation

The underground powerhouse in the left bank mountain diverts water from head-
race intake of power tunnels situated under a high slope of layered rocks. Long term
observation revealed the bending and toppling creep in the rocks under natural
conditions. The depth exhibiting time-dependent deformation is 30–76 m, the
corresponding volume of the creep body is 12 million m3.

The excavation of headrace intakes created a 420 m high and 400 m long cut
slope with surface area of 0.18 million m2 (see Figs. 6.30 and 6.31). The bending
and toppling deformation and the stability of slope, the rationality and validity of
reinforced scheme, as well as the influences of long term creep deformation on the
intake structures during its service period, were thoroughly studied before and
during the slope excavation.

The Sect. 9.9 of the 9th turbine generator (see Figs. 6.30 and 6.32) is presented
to illustrate the studies conducted. The representative faults in this section are F1,
F12, F5, F28 and F32. The rock masses can be classified into 6 types according to the
degree of weathering: surface layer (eluvium), totally weathered, strongly weath-
ered, weakly weathered, slightly weathered, and fresh (intact).

Fig. 6.30 Plan showing the left bank intakes of power tunnels: Longtan Project, China. ①—dam
foundation; ②—dam axis; ③—left bank diversion tunnel; ④—Hongshuihe River
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In situ geo-stress field of the natural rock mass consists of gravitational and
tectonic components. For deep underground structures, tectonic stresses must be
taken into account in the computation. In Longtan Project however, the excavated
portions of slope are mainly surface loose rocks, totally weathered and strongly
weathered rocks. The in situ geo-stress field is dominated by the gravity action of
rocks and therefore back analyzed using their self volumetric weight only.

Fig. 6.31 Downstream-right bank view of the intake slope (cut elevation 440 m)

Fig. 6.32 Geological section of the power tunnel intake (9th turbine generator unit)
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(3) Excavation procedure

According to the construction schedule, the Sect. 9.9 was excavated by 12 benches
from the beginning (August, 2001) to the end (September, 2003). Figure 6.33
shows the excavation benches and Table 6.7 lists the reinforcement scheme.

Fig. 6.33 Excavation benches

Table 6.7 Reinforcement scheme

Bench
sequence

Bench
elevation
(m)

Pre-installed bolt Systematic bolt Pre-stress anchor
cable

I 520.00 / 32@2000–15000 /25@2000 � 2000–5000 1 � 2000kN@6000

II 500.00 /32@2000–15000 /25@2000 � 2000–5000 1 � 2000kN@6000

III 480.00 /32@2000–15000 /25@2000 � 2000–5000 1 � 2000kN@6000

IV 460.00 /32@4000–25000 /25@2000 � 2000–5000 1 � 3000kN@6000

V 440.00 /32@2000–15000 /25@2000 � 2000–5000 1 � 2000kN@6000

VI 425.00 /32@1500–15000 /25@2000 � 2000–5000 1 � 3000kN@6000

VII 406.50 /32@1500–15000 /25@1500 � 1500–9000 1 � 2000kN@6000

VIII 382.00 /32@1500–15000 /25@2000 � 2000–5000 2 � 2000kN@6000
1 � 3000kN@6000

IX 365.00 0 /25@2000 � 2000–5000 5 � 2000kN@6000

X 345.00 0 /25@2000 � 2000–5000 5 � 2000kN@6000

XI 325.00 0 /25@2000 � 2000–5000 4 � 2000kN@6000

XII 305.00 0 /25@2000 � 2000–5000 0
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(4) Computation results and discussions

The FE mesh is so discretized as to simulate all types of weathered rock, the main
faults, the EDZ, the reinforcement components inclusive bolts and pre-stress stranded
wire cables, and the excavation procedure step by step. The mesh contains 5068
elements and 5148 nodes (see Fig. 6.34), of which 156 are explicit elements for
pre-installed bolts and cables, 1190 are implicit elements containing systematic bolts.

1. Back analysis of mechanical parameters

The back (inverse) analysis of mechanical parameters whose principles and
methods will be elaborated in Chap. 7, had been carried out. The back analyzed
parameters are presented in Tables 6.8 and 6.9.

2. Displacements

The displacement increments at the representative excavation bench XI and the
accumulated displacements after the completion of slope excavation are displayed
in Figs. 6.35 and 6.36. The incremental and accumulated displacements on the
slope surface by the computation and monitor are cross-referenced in Table 6.10, in
which the positivity of displacements means that ux points inside the mountain, or
uz points upright.

The excavation induced displacements exhibit following features

– The horizontal displacements by computation and monitor generally agree with
each other. However, it is a pity that there are no vertical displacement obser-
vations available for this slope section.

Fig. 6.34 Finite element mesh
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Table 6.8 Mechanical parameters of rocks

Rock E (MPa) l c (MPa) u(°) rT (MPa)

Eluvium 250a 0.35a 0.15a 24.23a 0.000a

Totally weathered 400a 0.34a 0.20a 26.60a 0.000a

Strongly weathered 1 1000 0.34a 0.20 26.60 0.100a

Strongly weathered 2 1250 0.34a 0.29 30.96 0.100a

Weakly weathered 1 4000 0.28a 0.49 34.99 0.500a

Weakly weathered 2 5500 0.27a 0.70 41.99 0.800a

Slightly weathered 11,000a 0.27a 0.98a 45.00a 0.800a

Intact 13,000a 0.26a 1.23a 48.50a 1.150a

Intact and integrated 15,000a 0.25a 1.48a 52.43a 1.500a

aindicates the parameter belonging with original design (without back analysis)

Table 6.9 Mechanical parameters of discontinuities

Discontinuity c (MPa) u (°)

Joint in strongly weathered rock 0.200 28.000

Joint in weakly weathered rock 0.200 30.96

Joint in slightly weathered rock 0.200 30.96

Joint in intact rock 0.200 30.96

Fault 0.030a 14.40a

Gentle dip joint 0.180a 28.81a

aindicates the parameter belonging with original design (without back analysis)

Fig. 6.35 Displacement increments (Bench XI)
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– From bench I to bench VI, the displacements on the slope surface are basically
dominated by elastic rebound directing upright and into the mountain; the
maximum accumulated horizontal and vertical displacements are 1.6 and
5.0 mm, respectively; from the bench VII, the displacement direction starts to
shift down-and-outward, this indicates that the stability of the slope starts to
undermine.

– After the completion of excavation, large accumulated displacements emerge
between the EL. 305–440 m.

Fig. 6.36 Accumulated displacements (Bench XII)

Table 6.10 Incremental and accumulated displacements

Bench Elevation (m) Computation (mm) Monitor (mm)

Dux
P

Dux Duz
P

Duz
P

Dux
P

Duz
VIII 520 0.6 0.6 −0.4 −0.4 0.4 N/A

IX 520 0.5 1.1 −0.8 −1.2 −2.0 N/A

X 520 −2.1 −1.0 −3.0 −4.2 −2.5 N/A

XI 520 −3.6 −4.6 −4.8 −9.0 −3.6 N/A

480 −8.7 −8.7 −3.6 −3.6 2.5 N/A

425 −10.6 −10.6 −4.8 −4.8 −0.8 N/A

382 −12.3 −12.3 −6.8 −6.8 −13.6 N/A

XII 520 −0.8 −5.4 −0.6 −9.6 Damaged N/A

480 −1.2 −9.9 −0.5 −4.1 Damaged N/A

425 −1.6 −12.2 −0.9 −5.7 Damaged N/A

382 −1.7 −14.0 −1.2 −8.0 Damaged N/A
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– The portion manifesting accumulated horizontal displacements in excessive of
20 mm is located between the EL. 305–420 m with an average depth 25.0 m;
the maximum depth is 40 m at the EL. 382 m.

– Joint slippage extensively occurs in the interlayer rock masses, the maximum
slippage displacement is 2 mm. This is a typical feature of slope with flexural
toppling creep.

3. Stresses of bolts

Table 6.11 gives the stresses of typical bolts on 19 November 2002, when the
excavation bench reached at the EL. 365 m, from the data listed in the table it may
be concluded that

Table 6.11 Computed and monitored bolt’s stresses

Bolt
element

Elevation
(m)

Computed
axial stress
(MPa)

Computed
shear stress
(MPa)

Sequence of the
bolt
reinforcement
meter

Monitored
axial stress
(MPa)

3162 478.00 2.496 −1.250 AS32 � 3 1# 14.00
2# −12.00
3# 20.00

3160 2.319 −0.300

3157 1.852 0.250

3155 0.868 0.439

3152 11.143 4.549

3093 470.00 −2.302 −0.486 AS32 � 4 1# 1.40
2# 1.75
3# 0.35

3086 −0.652 −0.200

3077 0.102 −0.101

3063 0.210 −0.084

2647 4.330 −1.322

2577 442.00 −1.164 −2.419 AS32 � 5 1# 4.00
2# 1.34
3# 2.84

2571 5.334 −2.374

2568 5.582 −2.048

2567 5.872 −1.815

2563 5.991 −1.530

2084 408.50 15.539 −4.446 AS32 � 9 1# 6.67
2# 6.67
3# 0.90

2079 18.488 −4.771

2076 18.963 −4.914

2071 16.560 −4.951

2056 14.966 4.342

1919 392.00 10.748 −6.014 AS32 � 11 1# 24.03
2# 40.05
3# 12.02

1914 13.131 −5.545

1910 14.547 −5.157

1907 14.507 −6.271

1904 15.987 −5.880
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– The bolts layout horizontally are in tension but that vertically are in compression.
– The stress of bolt near the slope surface undergoes larger increase than that

deeper into the slope.
– The maximum tensile stress of bolt is 20 MPa, far below from the strength of

the steel bar.

4. Stresses and plastic zones in slope

Figures 6.37 and 6.38 draw the principal stresses and yield zones after the com-
pletion of slope excavation. It may be concluded that

– The maximum stress at the bottom corner (EL. 295 m) is 9.12 MPa, this con-
centrated stress is nearly 3.1 times the in situ geo-stress.

– There is a tensile zone between the EL. 325.0–406.5 m whose maximum depth
is 12.0 m and the maximum tensile stress is 0.25 MPa.

– Interlayer slippage is the dominant factor affecting the deformation and stability
of the headrace intake slope in a form of local flexural toppling. Particularly,
when the excavation bench reaches down to the EL. 325 m, the slippage of
interlayer and fault between the EL. 325–382 m gives rise to a penetrated
bending-shear plastic zone (see the black portion in Fig. 6.38), and the likeli-
hood of a local slip body just over the subsequently excavated intake tunnels, is
rather high.

5. Remedial suggestions

– The pre-stress cable reinforcement should be strengthened, and their free
length should be elongated. The depth and amount of pre-installed bolts are
increased, too.

– The instrumentation system should be improved, particularly for the portion
below the EL. 382 m.

Fig. 6.37 Principal stresses (Bench XII)
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– The blast operation, particularly for the portion below the EL. 382 m and
beneath the intake tunnel portal, should be controlled more strictly than
beforehand stipulated according to the conventional construction regulations.

These suggestions had been accepted and observed by the designer and con-
tractor, the slope had been cut successfully and has been in service normally
insofar.

6.6.3 Dam Foundation: Xiaoxi Project, China

(1) Presentation of the project

Rock bolt reinforcement is also applicable to concrete dam foundation, particularly
during the excavation when it is found that the geological conditions are much more
adverse than anticipated. If the evidences indicate that the foundation grouting has
limited improvements, the deeper excavation and the dam body enlargement are
also restrained by the cofferdams, this countermeasure exhibits remarkable
advantages. The pioneering work of rock bolt reinforcement for dam foundation is
Tirso Gravity Dam (Italy) (Egger 1992) whose foundation rocks are composed of
micaschist, gneiss and granite. After the excavation down to the dam base level, it
was found that the rock was strongly weathered and poor in quality, therefore the

Fig. 6.38 Yield zones of faults and rock (Bench XII)
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rock bolt reinforcement on the whole foundation (20,000 m2) was installed. This
dam has been completed and operated normally.

In China, a number of concrete dams were installed with rock bolts in the
foundations, but in the design phases they were not taken into account for the safety
margin calibration, and the bolting parameters (e.g. inclination, diameter, length)
were not designed deliberately. Xiaoxi Hydropower Project (XHP) is the first
concrete dam installed with rock bolts as the principal measure for the foundation
stabilization in China.

Xiaoxi Dam is located at the middle reach of the Zijiang River, Hunan Province,
China. The normal storage level (NSL) (normal water level, NWL) is 198.0 m
corresponding to a total reservoir capacity of 141 million m3, the installed generator
capacity is 135 MW. From right bank to left bank the project is sequentially layout
in a manner of (see Fig. 6.39a) power house monoliths + spillway mono-
liths + solid dam monoliths.

(2) Characteristics of the computation

The rock masses are mainly Cambrian system (2) and Devonian system (D) whose
deformation and strength parameters are listed in Table 6.12. There are 11 faults
near or beneath the foundation, of which the largest one is the regional fault F1
passing through the center of the river bed (see Fig. 6.39b). Nearly all the 8
spillway dam monoliths are located on this regional fault which dips to the left bank
(dip angle 67°–78°) and has a cracked zone of 180 m wide. In the fault F1 there are
irregularly distributed black limestone lenses, calcareous shale intercalated with
limestone lenses, quartz sandstone intercalated with shale lenses, argillaceous siltite
intercalated with shale lenses, carbon slurry plate shale intercalated with calcite
gangues and conglomerations. Their deformation and strength parameters are listed
in the Table 6.12, too.

Since the fault F1 may result in serious problems of uneven settlement and low
stability with the dam foundation, in addition to conventional laboratory and field
tests conducted in the design phases, field direct shear tests and ultrasonic wave
inspections were also undertaken particularly within the fault F1 before the
placement of dam concrete (see Table 6.13).

The purpose of direct shear testing is to evaluate the shear resistance of dam/
foundation interface (Lo et al. 1991). Each group of direct shear tests intended to
determine the deformation/strength properties of concrete/rock interface comprises
5 samples, whereas each group of direct shear tests for determining the
deformation/strength properties of rock/rock interface comprises 6 samples. The
sample size is 20 cm � 15 cm � 20 cm (length � width � height), and the
maximum normal stress is rmax ¼ 0:3MPa. The testing configuration and procedure
are stipulated by the GB/T50266.99 (1999). The test results revealed that a majority
of sliding failures occurred 2–10 cm beneath the concrete/rock interface, leading to
a shear strength nearly identical to that of rock/rock interface, i.e. the shear resis-
tance of the dam/foundation interface at the fault F1 is totally dominated by the
shear strength of rock itself.
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The main purpose of the ultrasonic wave inspections is to evaluate the effec-
tiveness of consolidation grouting. Each group of ultrasonic inspections using
longitudinal wave comprises through-transmission between three vertical boreholes
triangularly arranged, the distance and depth of the boreholes are 1.2–3 m and
7–18 m, respectively. The result data showed an average speed Vp = 2450–
3440 m/s before the consolidation grouting. The grouting could raise the Vp by
5.6–12.6%, which means that the effectiveness of the consolidation grouting is not
very remarkable for the fault F1.

Fig. 6.39 Xiaoxi Hydropower Project, China. a Layout of the project; b geology section along
the dam axis (downstream view)
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Table 6.12 Mechanical parameters of foundation rock masses

Rock
formation

Rock type Young’s
modulus
E (GPa)

Poisson’s
ratio l

Cohesion
c (MPa)

Friction
angle u
(°)

Volumetric
weight
(MN/m3)

21
2 Siliceous plate

shale
0.45 0.3 0.45 36.9 0.025

Carbon slurry
plate shale

0.5 0.3 0.15 24.2 0.026

22 Black limestone
lens

7 0.3 0.75 43.5 0.027

Calcareous shale
intercalated with
limestone lens

4.2 0.3 0.42 33.0 0.027

D2t
1

D2t
3

Quartz sandstone
intercalated with
shale lens

4.5 0.3 0.45 35.8 0.027

D2t
2 Argillaceous

siltite intercalated
with shale lens

4.0 0.3 0.4 35.0 0.25

Rock
within the
fractured
and
disturbed
zone of the
fault F1

Quartz sandstone
intercalated with
shale lens

1.2 0.3 0.2 29.2 0.026

Quartz sandstone
intercalated with
shale lens

1.1 0.3 0.18 27.5 0.026

Argillaceous
siltite intercalated
with shale lens

0.65 0.35 0.15 27.5 0.025

Argillaceous
siltite intercalated
with shale lens

0.6 0.35 0.13 25.6 0.025

Carbon slurry
plate shale
intercalated with
calcite gangues
and
conglomerations

0.35 0.35 0.05 19.3 0.026

Siliceous plate
shale intercalated
with limestone
lens

0.63 0.35 0.15 26.6 0.025

Silicalite lens 1 0.3 0.18 28.4 0.026
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Since the rocks in the fault F1 are weak and irregularly distributed, and the shear
resistance of the dam/foundation interface is mainly dominated by the rocks,
therefore the shear strength parameters of the dam/foundation interface (see
Table 6.14) are evaluated as average values of shear properties according to the
daylight area proportions of rocks on the dam foundation surface.

(3) Stability analysis using the gravity method: before bolting

In the gravity method, sliding stability is calibrated in terms of a face FOS against
sliding [see Eq. (4.217)]. When the potential sliding surface is horizontal, this face
FOS particularly termed as K 0 in China’s design specifications is defined as the ratio
of the total resistance to the resultant horizontal loads

K 0 ¼ f 0ðPV � UÞþ c0AP
H

ð6:67Þ

where f 0 = shear friction factor;c0 = shear cohesion factor; A = area of sliding
surface;

P
H = resultant horizontal loads;

P
V = resultant vertical loads;

U = uplift.
Applied to a concrete gravity dam, K 0 on a horizontal plane should not be lower

than 3.0 for the normal load combinations. K 0 should not be lower than 2.5 under
the extreme load combinations. When seismic effect is taken into account, K 0

should be at least higher than 2.3 (Chen 2015).
To guarantee the stability of the dam foundation, the designer had proposed and

implemented a series of stabilization measures such as:

Table 6.13 Additional field tests conducted before the placement of concrete

Rock Test type

Direct shear test Ultrasonic wave
inspectionsConcrete/rock

interface
Rock/rock
interface

Before consolidation
grouting

1 (group) 2 (group) 51 (group)

After consolidation
grouting

1 (group) 0 35 (group)

Table 6.14 Average shear strength parameters of the dam/rock interface before reinforcement

Parameters Dam monolith

1# 2# 3# 4# 5# 6# 7# 8#

Friction
coefficient f 0

0.537 0.511 0.492 0.525 0.532 0.529 0.526 0.643

Cohesion c0

(MPa)
0.186 0.155 0.159 0.168 0.167 0.161 0.174 0.387
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– Enlarge the dam section, move the grout curtain towards upstream, intensify
drainage all over the dam foundation. These provisions were expected to
increase the vertical force, and in turn, the slide resistance in Eq. (6.67);

– Excavate the dam foundation dipping in the direction of upstream, which was
expected to bring down the slide driving force in Eq. (6.67);

– Link the dam body with the downstream still basin and approaching walls, to
make use of their additional resistance.

Two important load combinations are considered in the stability calibration of
the dam.

– The normal load combination includes

Gravity + silt pressure from the reservoir + static hydraulic pressure from the
reservoir and tail water at the NSL + uplift at the NSL + wave pressure at the NSL.

In this case the safety factor K 0 should not be lower than 3.0 stipulated by the
design specifications.

– The extreme (special) load combination includes

Gravity + silt pressure from the reservoir + static hydraulic pressure from the
reservoir and tail water at the reservoir level during the catastrophe flood + uplift at
the reservoir level during the catastrophe flood + wave pressure at the reservoir
level during the catastrophe flood.

In this case the safety factor K 0 should not be lower than 2.5 stipulated by the
design specifications.

According to the shear strength parameters in Table 6.14 and by the formula in
Eq. (6.67), the safety factors K 0 against the sliding of spillway dam monoliths 2#–7#

are not satisfied (see Table 6.15).
The computation results made the point that since the cofferdams had been

completed when the poor characteristics of the fault F1 were fully understood, all
the above measures merely had limited effectiveness in the improvement of the dam
stability because of the limited space within the cofferdams.

Eventually, the rock bolt reinforcement had to be adopted. Since the key issue in
the reinforcement design using the gravity method is to determine the contribution
from rock bolts to the shear cohesion c0 in Eq. (6.67), hence supplementary field
direct shear tests with regard to bolting effects had been undertaken to safeguard the
reinforcement design.

Table 6.15 Stability safety factors against sliding by the gravity method: before bolting

Dam monolith 1# 2# 3# 4# 5# 6# 7# 8#

Normal load combination 3.29 2.20 2.09 2.71 2.37 2.32 2.49 3.26

Extreme load
combination

2.95 2.09 1.98 2.28 2.22 2.17 2.34 3.24
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(4) In situ tests of bolted rock masses

1. Semi-empirical formula for bolting effects

The semi-empirical formula to determine the reinforcement effect using the index
T0 was proposed by Spang and Egger (1990)

T0 ¼ Pt½1:55þ 0:011r1:07c sin2ðaþ/Þ�r�0:14
c ð0:85þ 0:45 tanuÞ ð6:68Þ

where T0 = shear resistance due to the rock bolt (T0 ¼ T � TN ), MN; T = shear
force acting along a definite rock joint or slip surface containing bolts, MN;
TN = shear resistance of the joint or slip surface without bolt, MN;Pt = tensile
strength of the bolt, MPa; rc = compressive strength of the rock, MPa; / and
u = dilation angle and friction angle of the rock joint or potential sliding surface, °;
a = inclination of the bolt, °.

Equation (6.68) is subject to the following conditions (Spang and Egger 1990):

– Rock bolt is made of plain steel bar or screwed reinforcement bar, and is grouted
by cement mortar;

– The diameter of the drill hole is approximately twice that of the bolt;
– The compressive strength of the rock mass is rc [ 10 MPa;
– The inclination of the bolt is 0� � a� 45�.

For important project where it is possible, a series of field tests is desirable to
validate the formula in Eq. (6.68) and adjust the related parameters.

2. Test configuration

In situ direct shear tests were carried out just before the final design phase of the
bolting reinforcement for the spillway foundation. These direct shear tests are
intended to check the semi-empirical formula in Eq. (6.68), which is paramount
crucial to the design of bolted foundation. Three large direct shear samples of bolted
rock masses were processed, accompanied with one large direct shear sample
without bolt. These test samples are located on the rocks of siltite and cataclasite
within the fault F1 under spillway dam section 1#–3#, respectively.

The sample size is 100 cm (length) � 80 cm (width) � 100 cm (height), and is
made of concrete identical to that of the dam. The bolting parameters are listed in
Table 6.16. Figure 6.40 shows the configuration of the test.

Table 6.16 Bolting parameters of in situ test samples

Sample’s sequence 1# 2# 3#

Bolting parameters Diameter of steel bar (mm) 1U36 2U36 3U36

Inclination of steel bar (°) 15 25 15

Length of steel bar (m) 9 12 16

Diameter of the borehole (mm) 75 110 110
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The vertical pressure on the top of samples is supplied by one jack, the reaction
of this pressure is transferred to the ground through four rock bolts around the
sample (9 m long, diameter 2U32). The maximum vertical pressure is rmax ¼
0:3 MPa and the corresponding maximum vertical load is
Nmax ¼ 0:3 MPa � 1 m� 0:8 m ¼ 0:24 MN.

The horizontal shear force is applied by two jacks (maximum shear load
Smax ¼ 2� 3 MN) installed at the upstream side of the sample, the reaction of this
pressure is transferred to the ground through the reaction pier excavated in the rock.

At both the left and right sides of the sample there are three gauge points
lined-up from upstream to downstream, which are used to monitor the horizontal

Fig. 6.40 Configuration of the field shear test. a Photo; b left side view; c plan view
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and vertical displacements. These gauges are installed at the level of the third height
of the sample. To monitor the foundation displacement which is necessary for the
evaluation of the relative shear displacement between sample and foundation,
gauges are also installed at the foundation rock surface.

3. Test procedure and results

The vertical pressure (rmax ¼ 0:3 MPa) is exerted in 5 incremental steps, in each step
the pressure should bemaintained for a period of at least 10 min, during which at least
two readings are taken. If the displacement difference between these readings is
smaller than 0.1 mm, the pressure is raised up to the next step of loading.

When the vertical pressure reaches rmax ¼ 0:3 MPa, the gauges are adjusted to
zero as new initial reading, then the horizontal shear stress starts to apply in step
sequences. In each step, at least 20 min is demanded to maintain the pressure,
during which at least five readings are taken. If the displacement difference is
smaller than 0.1 mm, the pressure is raised to the next step of loading.

From the direct shear test sample without bolt, the average shear strength at the
concrete/rock interface is 0.61 MPa, i.e. the shear resistance without bolt is
TN ¼ 0:61 MPa � 1 m ðlengthÞ � 0:8 m ðwidthÞ ¼ 0:488 MN.

Three different scenarios in the samples containing bolt are observed:

– Sample 1#. When the shear stress at concrete/rock interface reached 1.559 MPa
(i.e. T ¼ 1:559 MPa� 1 m ðlengthÞ � 0:8 m ðwidthÞ ¼ 1:247 MN), the dis-
placements mounted suddenly after 8 min, accompanied with the decrease of
shear stress down to 1.427 MPa. In the attempt to raise the pressure of the
horizontal jacks, a loud bang accompanied with further dramatic drop of the
horizontal pressure ended the test. This is a very successful sample, by which
the deformation and failure of the bolted rock are well documented. The shear
resistance contributed from the bolt is T0 ¼ T � TN ¼ 0:759MN.

– Sample 2#. When the shear stress at the concrete/rock interface reached
1.888 MPa (i.e.T ¼ 1:888 MPa� 1 m ðlengthÞ � 0:8m ðwidthÞ ¼ 1:510MN),
the reaction pier supporting the horizontal jacks failed, leading to an unexpected
ending of the test. This is not a very successful sample since the ultimate shear
strength contributed from bolt cannot be pinpointed. However, it infers that the
ultimate shear strength of the bolted sample should be higher than 1.888 MPa,
i.e. the shear resistance contributed from the bolt is T0 ¼ T � TN 	 1:022 MN.

– Sample 3#.When the shear stress at the concrete/rock interface reached 1.386 MPa
(i.e. T ¼ 1:386 MPa� 1m ðlengthÞ � 0:8m ðwidthÞ ¼ 1:109MN), the concrete
sample itself cracked, and the test had to be stopped. This test did not provide
reasonable information concerning the ultimate shear strength of the bolted
sample. However, it provide a lower bound of T0 that T0 ¼ T � TN 	 0:661 MN.

The relations of shear stress versus shear displacement are plotted in Figs. 6.41,
6.42 and 6.43. The displacements of the foundation surface are given in these
figures, too, which can be used to calculate the relative displacement between the
sample and the foundation.
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A cross-reference of the shear resistance due to the bolt (T0) by the foregoing
direct shear tests and the semi-empirical formula [see Eq. (6.68)] is made in
Table 6.17. As has been explained above, sample 3# provides lower contribution of
bolt to the shear strength, because of too early termination of the test due to sample
concrete rupture.

(5) Reinforcement design

The total length of the 8 spillway dam monoliths is 142.5 m. With the average shear
strength parameters of the foundation rocks in Table 6.14 and taking into account
of all the aforementioned measures for dam stability apart from bolting, the safety

Fig. 6.41 Shear stress versus
shear displacement: sample 1#

Fig. 6.42 Shear stress versus
shear displacement: sample 2#
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factors of the spillway dam monoliths 2#–7# against sliding are not satisfactory (see
Table 6.15). Therefore, rock bolts are installed in the foundation of these dam
monoliths (see Figs. 6.44 and 6.45).

Each rock bolt (3U32@2 m) is made of three steel bars with diameter of 32 mm.
The distance between rock bolts is 2 m. The length of bolts is 12 m, of which
10.5 m is in the rock and 1.2 m is in the dam. The boreholes for bolt installation are
U130 in the diameter, their inclinations are alternatively varied (15° or 25°).

(6) Stability analysis using the gravity method: after bolting

Supposing the control area per bolt is S, the contribution of a bolt can be thought of
as the additional cohesion cb to a joint or slip surface

cb ¼ T0=S ð6:69Þ

Hence the factor of safety against sliding is calculated by the formula

K 0 ¼ f 0ðPV � UÞþ c0Aþ cbAP
H

ð6:70Þ

Fig. 6.43 Shear stress versus shear displacement: sample 3#

Table 6.17 Shear resistance by the direct shear tests and the semi-empirical formula

Sample sequence 1# 2# 3#

Shear resistance T0 (kN) In-situ direct shear test 759 	 1022 	 661

Semi-empirical formula [see Eq. (6.68)] 389 790 1168

Difference in the test and the formula (%) +95 	+29 �−47
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Fig. 6.44 Layout of the rock bolts at the spillway dam foundation

Fig. 6.45 Rock bolts under the construction
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The equivalent shear cohesion cb contributed from the bolts in Table 6.18 is
evaluated by the semi-empirical Eqs. (6.68) and (6.69).

Table 6.19 lists the safety factors against sliding after bolting. It is happy that
with all the countermeasures taken into account including the bolt reinforcement,
the spillway dam monoliths 2#–7# satisfy the safety criterion stipulated in the design
specifications. Since a portion of the dam monoliths 1# and 8# is already located
outside of the fault F1, their safety standard is met without bolts.

(7) Stability analysis using the finite element method

The 8 spillway dam monoliths including their foundation are discretized into
351,703 hexahedral or tetrahedral elements (foundation 291,235, dam body 60,468)
and 369,042 nodes (see Fig. 6.46).

The loads exerted on the dam/foundation are in situ geo-stresses calculated by
the volumetric weight of the rocks and lateral pressure ratio K0 ¼ 0:47; seepage
forces in the foundation calculated by the FEM (the hydraulic potential in the
foundation is plotted in Fig. 6.47); dam weight calculated by the volumetric weight
of concrete; hydraulic pressure calculated by the static water pressure under the
actions of NSL and correspondent tail water level.

Three cases are analyzed using the FEM with regard to the NSL.

– Case 1. Without bolt reinforcement, the 8 spillway dam monoliths work inde-
pendently (the transverse joints are permanent without closure grouting).

– Case 2. With bolt reinforcement, the 8 spillway dam monoliths work inde-
pendently (the transverse joints are permanent without closure grouting).

– Case 3. With bolt reinforcement, the 8 spillway dam monoliths are linked by
closure grouting the key slots and installing steel bars through the transverse
joints.

Table 6.18 Equivalent shear cohesion cb contributed from the bolts

Arrangement of bolts Inclination
angle (°)

Shear
force T0
(kN)

Shear
cohesion cb
(kPa)

Three steel bars with diameter of 32 mm; the
distance between rock bolts is 2 m (3U32@2 m)

15 878 110

25 886

Table 6.19 Stability safety factors against sliding by the gravity method: after bolting

Dam monolith 1# 2# 3# 4# 5# 6# 7# 8#

Normal load combination – 3.20 3.08 3.40 3.04 2.99 3.16 –

Extreme load combination – 3.09 2.97 2.93 2.91 2.86 3.02 –
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Fig. 6.46 FE mesh of the spillway dam and foundation

Fig. 6.47 Contours of the hydraulic potential in the foundation
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1. Displacements

– Case 1. The maximum displacement towards downstream is 13 mm.
– Case 2. The maximum displacement towards downstream is reduced to 12 mm.
– Case 3. The maximum displacement towards downstream is further reduced to

3.2 mm.

2. Stresses

The maximum tensile and compressive stresses at the dam heel and toe are
critical strength indices for gravity dam design. By the computation it is found that

– Case 1. The maximum tensile and compressive stresses under the NSL are 1.22
and −10.3 MPa, respectively.

– Case 2. The bolts can “homogenize” the stress distribution in the straggly
interpenetrated rock fault. The maximum tensile and compressive stresses under
the NSL are reduced to 1.19 and −8.99 MPa, respectively.

– Case 3. The stress distribution at the dam foundation can be further “homoge-
nized” by the closure of the transverse joints. In this case the maximum tensile
and compressive stresses under the NSL are further reduced to 1.06 and
−4.83 MPa, respectively.

3. Stability

The strength reduction factor is employed as the safety index instead of conven-
tional overloading factor, this is mainly due to the worry over the abnormally poor
of the foundation geologic conditions.

– Case 1. The minimum strength reduction factor is approximately 2.0, which is
much lower than 3.0 stipulated in the design specifications.

– Case 2. The bolts can increase the minimum strength reduction factor up to
approximately 2.8. These indices are not far from 3.0 stipulated in the design
specifications.

– Case 3. The overall strength reduction factor of the spillway comprising 8 dam
monoliths with closed transverse joints can be further raised up to approximately
3.5.
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The dam with bolted foundation was accomplished and started operation in
January, 2008 (see Fig. 6.48). Insofar it has been performing well. For example, the
monitored displacements are within the range of computational data; there are no
serious cracks and leakage in the dam and foundation.

The final account of the bolt reinforcement cost is approximately 38
Million RMB (5.7 Million USD).
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Chapter 7
Inverse and Feedback Analyses Based
on the Finite Element Method

Abstract To undertake a successful computation task concerning the construction
and operation process of hydraulic structures, one of themostly concerned obstacles is
the limited or incomplete sets of input data. This chapter presents the study on the
inverse and feedback analyses for hydraulic structures using the FEM, intended to
provide another parametric solution in addition to traditional ones (e.g. field explo-
ration and investigation, laboratory experiment and field test, as well as engineering
analogue). The principles and strategies with regard to the specific issues of in situ
geo-stresses and material parameters (mechanical, permeable and thermal), are
elaborated. The mathematical tools, particularly the algorithms for constrained non-
linear optimization problems arise from the inverse analysis, are presented. The
aggression belonging to mathematical programming algorithms and the ANN
belonging to heuristic search algorithms are implemented and validated in detail. In
addition to a number of validation examples interspersed within the context, this
chapter is closed with two engineering application cases (dam foundation, cut slope).

7.1 General

7.1.1 Concept

General-purposed numerical computation methods (e.g. the FEM) have been fully
developed since the 1960s to become powerful tools in the design of hydraulic
structures today. They have, as in other engineering fields, been performed mostly
to undertake the comprehensive simulation of construction and service processes in
details. However, difficulties with these methods were soon realized by engineers
who tried to predict the behaviors of structures through limited or incomplete sets of
input data. Many lessons have been taught that the unsuccessful numerical com-
putation is most likely resulted from the improper inputting with regard to the
constitutive relation and corresponding parameters or the boundary and initial
conditions (e.g. ground water table, geo-stress). We are often, although not always,
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puzzled that under certain circumstances the difference between the computation
and observation may be larger than ten times.

The performances of a hydraulic structure depend on many factors related to the
materials, geological settings, construction procedure and operation schedule. In the
design phases, these factors are evaluated by the comprehensive studies through the
field exploration and investigation, laboratory and field tests, and engineering
analogue.

However, by laboratory and in situ tests it ismerely theoretically possible to reach a
convincible interpretation for the parameters of rock-like materials that make up the
full-scale hydraulic works, because it is impossible to fully take into account of the
representation of test samples in light of the discontinuities, nonhomogeneities, and a
variety of environmental factors (e.g. seepage pressure). In addition, it is expensive for
large scale field investigation and tests, and difficult with the control of field test
conditions. The tests results are also strongly influenced by the factors such as sam-
pling methods, sample preparations, test methods and facilities as well as procedures.
All these rule out the possibility of detailed investigation and tests during the design
phases and in turn, introduce the possibility of large performance difference between
the designed work state and real world one.

Hoek (1990) discussed the difficulties in determining shear strength of rockmasses
and concluded that the usefulness of the information obtained from field or laboratory
tests in the decision making for parameters would be very limited. Practical engineers
actually, tried various new solutions by turning to other means such as establishing
empirical criteria (Hoek and Brown 1980), comparing the materials under consider-
ation with those of the similar works whose parameters have been well understood
(i.e. engineering analogue). Among all of their approaches, “back (or inverse) anal-
ysis” has becomemore andmore prevalent in help them to determine the physical and
mechanical parameters of rock-like materials.

For a large hydraulic project, some small cut slope failures might be encountered
during the construction of access roads, excavation of tunnel portals and pits at the
borrow areas, etc. Such failure incidents, similar to large scale direct shear tests
performed on the similar ground materials, present cases for back analysis, from
which lessons learnt are valuable in assessing the material strength parameters.

For an inactive ancient landslide, the back analysis is based on the judgment of
its present stability safety factor and the formulation of the equilibrium equations
for the typical sections. The solution of these equations provides shear strength
parameters c or/and u. According to the engineering experiences, when a landslide
is in creep compression state, constant slip state, and accelerate slip state, the
stability safety factor may be estimated as 1.01–1.10, 1.0, and 0.95–0.98,
respectively.

Launching of construction and continuing throughout the whole operation per-
iod, new geological features (e.g. discontinuities and rock weathering) may be
revealed, and monitored data concerning action effects (e.g. stresses, displacements,
temperatures, uplifts) can be collected, all these provide precious messages with
respect to the real state of the structure.
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Many countries such as Canada, USA, Australia, France, Russia, Italy, Austria,
China, etc., have enacted safety laws at the national level which are practiced in the
safety management inclusive inspecting and monitoring activities of hydraulic
structures, particularly dams, during their construction and operation phases. These
activities may also provide data for the purpose to evaluate relevant physical and
mechanical variables (e.g. the material properties of rock/concrete or the exerting
loads), or to refine their values postulated at the design phases.

7.1.2 State of the Art

An “inverse problem” in science is the process from a set of observations to the
causal factors that produced them. It is also called the “back analysis” problem
because it starts with the results and then calculates the causes. It is one of the most
important disciplines of mathematics purposed to provide us intrinsic parameters
that we cannot directly observe. This field was firstly explored in 1929 by
Soviet-Armenian physicist Viktor Ambartsumian who dealt with determining the
equations of a vibrating string by a given family of eigenvalues (Lynden-Bell and
Gurzadyan 1998). Nowadays, back analysis finds applications in communication,
medical imaging, geophysics, remote sensing, machine learning, nondestructive
testing, and many other fields.

Over the past 50 years or longer, attention has been focused on the solutions
with which to determine the properties of rock-like materials (e.g. mechanical
parameters, in situ geo-stresses, permeability, etc.), from the field observations and
readings available (Sakurai 1981; Sakurai and Takeuchi 1983; Gioda and Sakurai
1987; Romanov 1987). Intended to find the values of parameters characterizing the
material, back analysis leads to results (e.g. displacements, stresses, etc.) as close as
possible to their in situ readings. However, it is notable that not all problems are
invertible because we are not guaranteed to possess sufficient information
to uniquely determine the solution of a corresponding equation. It is also necessary
to remind that in most physical systems, we do not ever have enough information to
uniquely constrain our solutions. Therefore, most inverse problems are considered
as “underdetermined” (Groetsch 1993).

The back analysis has long been exercised in geotechnical engineering as a
critical technique for estimating the hydraulic properties of large scale geological
formations, such as the permeability and porosity, subject to the assumption of
hydraulic constitutive laws for porous media, e.g. the Darcy’s law or other
non-Newtonian fluid models. Although complexity is enhanced when thermal
processes are further involved in multiple-phased flow of fluids with various states
of saturation (Lesnic et al. 1997; Russo 1997; Hanna and Jim Yeh 1998; Nutzmann
et al. 1998; Roth et al. 1998; Wang and Zheng 1998; Chen et al. 1999; Finsterle and
Faybishenko 1999; Katsifarakis et al. 1999; Mayer and Huang 1999; Wen et al.
1999, 2002; Fatullayev and Can 2000; Li and Yang 2000; Vasco and Karasaki
2001; Jhorar et al. 2002), yet it is fortunate for us, as hydraulic engineers, to neglect
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such complexity because only the TM coupling and the HM coupling are normally
considered, attributable to the fact that the levels of stress and hydraulic pressure as
well as temperature encountered in surface founded or shallow embedded hydraulic
structures, are relatively lower.

A comprehensive review of the subject is given by de Marsily et al. (1999) with
the history of inverse methods in the past 50 years, especially the applications of
the stochastic approach using geo-statistics.

Since the displacements by extensometers with multiple anchors, and the con-
vergent displacements of tunnel walls, are the most directly in situ measurable and
computational variables, they have been used extensively to derive material prop-
erties over the years (Sakurai and Takeuchi 1983; Gens et al. 1996; Ledesma et al.
1996a, b; Yang et al. 1996, 2000, 2001; Ai-Homoud et al. 1997; Hojo et al. 1997;
Kim and Lee 1997; Mello Franco et al. 1997; Okui et al. 1997; Rossmanith and
Uenishi 1997; Sakurai 1997; Singh et al. 1997; Sonmez et al. 1998; Ohkami and
Swoboda 1999; Guo 2000; Obara et al. 2000; Pelizza et al. 2000; Chi et al. 2001;
Krajewski et al. 2001).

A large and important family of back analysis techniques in hydraulic engi-
neering is focused on the efficiency of computation and the uniqueness of solution.
The essence is to derive unknown material properties (or system geometry,
boundary condition, initial conditions) based on a limited number of laboratory or
routinely field observed dada of some key variables, using optimization techniques
(e.g. mathematical programming) of error minimization.

One of successful approaches towards this mission can be undertaken by the
FEM combined with the optimization techniques, with the help of the under-
standing of instrumentations and construction procedures, as well as the engi-
neering experiences. The principles and algorithms will be addressed in the
hereinafter coverage.

7.2 Back Analysis Issues in Hydraulic Structures

The history of back analysis in geotechnical engineering shows that its techniques
fall onto one route in terms of program structure and fundamental concepts.
Differences only lie in the selection of the material constitutive laws, the simpli-
fication of the geological structure, the treatment of multi-stage rock excavation and
concrete placement, the inclusion of measurement errors, and the way the results of
back analysis are utilized (e.g. feedback analysis and dynamic design).

To perform a back analysis, in general terms, it is necessary to use stress/
seepage/thermal computation procedures (e.g. the FEM) for determining the dis-
tribution of a physical field concerned with regard to the problem at hand. Because
the direct inversion of the field problem is normally impossible, the techniques of
optimization are frequently employed (Sakurai and Akutagawa 1995; Chen et al.
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2001). To do so, a goal, also known as a target mathematically represented by an
“objective function”, should be defined beforehand. This is a function that mea-
sures how close the predicted data from the FEM fit the observed data.

7.2.1 In Situ Geo-Stresses

The common exercises are that based on the measured data of geo-stresses at
several positions through field investigations and tests, the stress functions or the
interior/external loads are used to produce the in situ geo-stress field. The dis-
placements observed may be employed, too, subject to the clearly specified
deformation parameters (e.g. Young’s modulus) beforehand.

For the in situ geo-stress back analysis, we construct the objective function
f ðfxgÞ to be minimized

f ðfxgÞ ¼
Xn
i¼1

ðri � r�i Þ2 ¼ f ðxi; yi; zi;E; l; cr;D;U;V ;W ; T ; . . .Þ ð7:1Þ

where

n amount of measured messages;
ri geo-stress being back analyzed;
r�i measured geo-stress;
xi; yi; zi coordinates of the position concerned;
E,l, cr Young’s modulus, Poisson’s ratio, volumetric weight of the rock,

respectively;
D self-weight factor;
U;V ;W regional tectonic actions;
T geothermal.

Normally, the mechanical parameters (e.g. E, l, cr) are specified previously.
A set of boundary load combinations is defined corresponding to the regional FE
model (see Fig. 7.1), in which the factors to be back analyzed are self-weight factor
D; regional tectonic actions U;V ;W ; and geothermal T . In Fig. 7.1, U and V may
be the boundary actions in terms of displacement u, loads p and q (or alternatively
boundary stresses r and s).

7.2.2 Material Parameters

The parameters related to the fields of elasticity, plasticity, viscoplasticity, per-
meability, thermal, etc., are inversed using the messages monitored during the
construction (e.g. rock excavation, concrete placement) or/and service
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(e.g. reservoir water level fluctuation) periods. This is sophisticatedly exercised in
the practices subject to the models are appropriately prescribed in the computation
software.

(1) Mechanical parameters

The objective function to be minimized is conventionally constructed using the
computed and monitored displacements as

f ðfxgÞ ¼
Xn
i¼1

ðui � u�i Þ2 ¼ f ðxi; yi; zi; r;E; l; c;u; cr;/;DT; . . .Þ ð7:2Þ

where

n amount of measured messages;
ui computed displacement;
u�i monitored displacement;
r initial geo-stress;
xi; yi; zi coordinates of the position concerned;
E; l; c;u; cr Young’s modulus, Poisson’s ratio, cohesion, friction angle, volu-

metric weight;
/ hydraulic potential;
D T temperature variation.

Normally, the in situ geo-stress field is previously defined by a set of boundary
load combinations corresponding to the regional FE model (see Fig. 7.1), so the

Fig. 7.1 Diagram to the notation of boundary conditions
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factors to be back analyzed the moment are mainly the mechanical parameters such
as E and l.

(2) Permeability and thermal parameters

We construct the objective function to be minimized for the thermal back analysis
problem as

f ðfxgÞ ¼
Xn
i¼1

ðTi � T�
i Þ2 ¼ f ðxi; yi; zi; a; h0; T0; Ta; Tb; b; c; . . .Þ ð7:3Þ

where

n amount of measured messages;
Ti computed temperature;
T�
i monitored temperature;

T0 initial temperature;
xi; yi; zi coordinates of the position concerned;
c specific heat of concrete;
h0 adiabatic temperature rise;
b surface exothermic coefficient
a thermal diffusivity;
Tb water temperature.
Ta air temperature.

Most permeability back analysis problems may be constructed using the fol-
lowing objective function

f ðfxgÞ ¼
Xn
i¼1

ð/i � /�
i Þ2 ¼ f ðxi; yi; zi;/0; q; k;wj; aj; . . .Þ ð7:4Þ

where

n amount of measured messages;
/i computed hydraulic potential;
/�
i monitored hydraulic potential;

xi; yi; zi coordinates of the position concerned;
k principal permeability coefficient of intact rock;
wj connection coefficient of the joint set j;
aj hydraulic aperture of the joint set j.

Sometimes, use is made of multi-or single-hole packer tests (see Fig. 7.2)
towards the permeability back analysis (Louis and Maini 1970; Hsich and Neuman
1985; Hsich et al. 1985). In this case the objective function may be constructed as
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f ðfxgÞ ¼
Xn
i¼1

ðQi � Q�
i Þ2 ¼ f ðxi; yi; zi;P; k;wj; aj; . . .Þ ð7:5Þ

where

n amount of measured messages;
Qi computed inject flow;
Q�

i monitored inject flow;
xi; yi; zi coordinates of the position concerned;
k permeability coefficient of intact rock;
P inject pressure;
wj connection coefficient of joint set j;
aj hydraulic aperture of joint set j.

Normally by Eq. (7.5), the most difficultly evaluated parameters such as the
connection adjusting coefficients wi and the hydraulic apertures ai, are back ana-
lyzed subject to the prescribed other parameters.

Figure 7.3 is the sketch of the boundary conditions at the axial section of a
borehole that is generally stipulated in the back analysis, where AFE is the borehole
wall, GFE is the test segment, AB and BC are the overflow boundaries, and DC is
impervious.

Fig. 7.2 Diagram to the
single-hole test with single
packer
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7.2.3 Model Recognition

A forward analysis starts with the definition of amechanical model and correspondent
parameters. The results would be cross-referenced with the monitored (measured,
observed) data relating the current state of the structure. If necessary, parameter tuning
may be performed for better agreement between computed and monitored data.

Under certain circumstances, parametric tuning solely would not lead to a better
representation of the reality. It then becomes necessary to adjust themechanical model
(e.g. constitutive relation, failure mode) itself. Such a model tuning through back
analysis enables to achieve a better agreement between computed andmonitored data.

7.2.4 Mathematical Tools

(1) Formulation of constrained nonlinear optimization problems

Generally, the parametric identification process involves solving a certain kind of
constrained nonlinear optimization problem. Take the deformation parametric back
analysis using observed displacements for example, the optimization problem is
formulated with following general statement:

min f ðfxgÞ ð7:6Þ

Subject to the governing equation for the observed field data (e.g. u, r, T , /)

x � Dx

where

f ðfxgÞ objective function defined in Eq. (7.2);
fxg parameter vector;
Dx admissible set of the parameters.

Fig. 7.3 Sketch of the
boundary conditions for
single-hole packer test
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Admissible set of the parameters is normally defined in the form of upper and
lower bounds indicated by the superscript l and u on the parameters concerned,
according to laboratory and field experiments as well as engineering analogue

El �E�Eu

ll � m� lu

cl � c� cu

ul �u�uu

. . .. . .. . .. . .. . .. . .. . .

8>>>><
>>>>:

ð7:7Þ

It may be automated with the help of mathematical optimization algorithms to
form a generalized parameter model tuning tool. This, as it is general one, may be
applied to a wide range of linear and non-linear problems arise from the nature of
hydraulic structures.

(2) Optimization algorithms

The parametric identification process is a special treatment for the governing
equation of the FEM through a core routine relating the measured data to a list of
unknown parameters. It can be handled as an optimization problem (Gioda 1990)
which can be solved by the techniques of mathematical programming algorithms,
optimality criteria methods and heuristic search algorithms.

1. Mathematical programming algorithms

Many kinds of mathematical programming available are customarily classified in
two categories of linear and non-linear. In the linear programming, the objective
function and the associated constraints are represented in a linear combination of
design variables. The linearization of objective function or constraints is not always
easy and if the linearization techniques are used, the error in the linearized repre-
sentation is inevitable (Moses 1964; Erbatur and Al-Hussainy 1992). On the other
hand, the nonlinear programming was initially developed for un-constrained non-
linear problems. The incidence of the optimal solution is shown by the proof of
Kuhan-Tucker conditions (KT) (Kuhn and Tucker 1951) which are the necessary
conditions for the justification of the optimal solution. However, the application of
KT conditions is enormously difficult for the most of engineering problems (Camp
et al. 1998).

Aggression is the most prevailing method for the linear objective function with
regard to the parameters. Traditional regression techniques include simple linear
regression, multiple linear regression, principal component regression, stepwise
regression, etc. (Draper and Smith 1966; Chattefuee and Hadi 2006). Each of them
can be employed to analyze the relationship between dependent variables and
independent variables. Among them, stepwise regression is the most prevalent one
in the issue of dam deformation.

Non-linear optimization may be further distinguished as the gradient type and
the direct search type (Gioda and Sakurai 1987).
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As a benefit from the gradient information, the gradient-type methods are
characterized by fast and smooth convergence, of which the Gauss-Newton method
is reported to be most effective (Nocedal and Wright 1999). The direct search
methods are advantageous where the analytical expression of the gradient cannot be
determined, especially when the system equation is nonlinear (Engl et al. 1996). In
addition, it is quite flexible in the solution of back analysis problems, because these
methods can provide the optimal solution by means of only successive evaluations
of the objective function. A typical and popular direct search method is the
Nelder-Mead variable polyhedron search method (Nelder and Mead 1965), which is
an extension of the simplex method (Spendley et al. 1962). In some cases, however,
the Nelder-Mead method generates an irregular simplex, which may provide some
fake local solutions. To overcome this drawback, Box (1965) proposed the complex
method.

2. Optimality criteria methods

The optimality criteria methods (OCMs) are developed based on the combination of
KT conditions from nonlinear mathematical programming and Lagrangian multi-
pliers. In this approach, KT conditions support the necessary desires for the optimal
solution while Lagrangian multipliers guarantee the satisfaction of constrains in the
optimization problem. OCMs are used vastly in engineering problems including the
continuous and discontinuous design variables (SriVidya and Ranganathan 1995;
Kuhn 2014; Yi and Lu 2016).

3. Heuristic search algorithms

In recent years the heuristic search algorithms based on the computational intelli-
gences (CI), such as the artificial neural networks (ANN) (Yang and Zhang 1998;
Yi and Wanstedt 1998; Yi et al. 2004b), the evolutionary algorithms (EA) and the
genetic algorithm (GA) (Goldberg 1989; Yi et al. 2001, 2004a), are prevailingly
employed as a nonlinear modeling tools to fit the complex relationship between
inputs and outputs (Millar and Hudson 1994; Kim et al. 2001; Leu et al. 2001).

Being independent of objective function or/and constraint gradients, heuristic
search algorithms do not require an explicit relationship between the objective
function and constraints. With the probabilistic searching algorithm, they may save
computational time in contrast to, for example, the gradient based methods that
normally cost a considerable part of computational effort in sensitivity analysis
phase (McCall 2005). They also can be easily implemented in discrete, continuous,
and mixed optimization problems with minor adaptations. In addition, the open
format for constraint statements and the possibility of defining multiple scenarios in
the optimization process fascinate many researchers to implement heuristic search
algorithms in engineering design optimization (Lagaros et al. 2002).
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7.3 Feedback Analysis Issues in Hydraulic Structures

On the basis of back analysis, feedback analysis may be further undertaken towards
the revolution from static design to the dynamic design during the construction period
of hydraulic projects. This is normally founded on the combination of the numerical
computation (e.g. FEM), field monitor, CAD, and decision supporting system.

There are a large number of computation methods available for hydraulic
structures, each of them possesses its special merits and drawbacks. In the here-
inafter coverage of this chapter, only the FEM with the elasto-viscoplastic potential
theory and supplemented by special elements (e.g. joint element) is employed to
construct the feedback analysis system.

Towards a routine design, the mechanical parameters are suggested beforehand
by the comprehensive studies comprising laboratory and field tests and the engi-
neering analogue. So far, the situation is discontented because there are intrinsic
disadvantages with this methodology of parametric evaluation, mainly:

– High cost for large scale investigations and tests;
– Hard to control the conditions in the field tests and poor representation of the

laboratory samples;
– Impossible to investigate every details in the design phases.

All of these might cause poor representation of the parameters compared to the
advanced mechanical models and computational methods, and as a result, poor
prediction might be offered by the computation.

It is natural, therefore, that those who work on the computation for hydraulic
structures shift their focus towards finding ways to identify the missing information
from the results of field readings “ex post facto”. This trend of utilizing updated
information from engineering site effectively has led to the birth and growth of the
feedback analysis and dynamic design during the construction and service stages.

During the construction, new geology features may be revealed, and the con-
struction methods such as excavation and reinforcement procedures could be
changed, too. More important, a lot of monitored data will provide the messages
about the real state of the structure. All of these lead us to consider the questions
such as: what is the real state of the structure? How far is the reality shifted from the
previous postulation in design phases? Is it necessary and possible to revise/adjust
the design in time? The answer is now “yes” for both the researchers and practi-
tioners. In the tunneling engineering, the NATM provides a typical and successful
example of feedback analysis and dynamic design. Since the 1990s, the philosophy
has been expanded into the areas of cut slope and dam structures in hydraulic
engineering (Chen et al. 2001) attributable to the progresses in

– The survey and monitor technologies;
– The database management and analysis methods;
– The computational geomechanics;
– The CAD/CAM technologies;
– The decision supporting with high performance computers.
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7.4 Regression Methods

7.4.1 Multiple Linear Regression

A monitored effect value y [e.g. u�, T�, /�, Q� in Eqs. (7.2)–(7.5)] may be looked at
as a continuous random variable that observes normal distribution with mathe-
matical expectation E and variance r2.

Suppose the relationship between the dependent or response variable y and n� 1
predictor (or explanatory) variables x1; x2; . . .; xn�1 is formulated by the linear
model

y ¼ aþ b1x1 þ b2x2 þ � � � þ bn�1xn�1 þ e
e�Nð0; r2Þ

�
ð7:8Þ

or

y�Nðaþ b1x1 þ b2x2 þ � � � þ bn�1xn�1; r
2Þ ð7:9Þ

The conditional mathematical expectation Efy x1; x2; . . .; xn�1j g of y observes the
following regression equation

Efy x1; x2; . . .; xn�1j g ¼ b0 þ
Xn�1

i¼1

bixi ð7:10Þ

In which bi is the regression parameter.
Suppose there are m observations for x1; x2; . . .; xn�1, the regression equation

based on these observations is

ŷðtÞ ¼ b0 þ
Xn�1

i¼1

bixi ð7:11Þ

In which ŷ is the regression of the monitored effect value y, which is the
unbiased estimation for E of the parent body y under the environmental factors; bi
ði ¼ 0; 1; . . .; n� 1Þ are constants referred to as the model partial regression
coefficients (or simply as the regression coefficients), which is the unbiased esti-
mation for the parameters bi ði ¼ 0; 1; . . .; n� 1Þ of the parent body.

Where m\n� 1, Eq. (7.11) cannot be solved. On the contrary when
m[ n� 1, Eq. (7.11) has more than one solution, under such circumstances the
least square method may be employed to get the optimal solution of Eq. (7.11) by
minimizing the sum of the squares of the errors, which represents the L2—norm of
the misfit between the observed data and the predicted data from the model
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Q ¼
Xm
j¼1

yj � ðaþ b1x1;j þ b2x2;j þ � � � þ bn�1xn�1;jÞ
� �2 ð7:12Þ

In Eq. (7.12) Q is actually the special form of the objective function F in
Eqs. (7.2)–(7.5). The role of the objective function is to minimize the difference
between the predicted and observed data.

To minimize the objective function (i.e. solve the inverse problem) we should
make use of its gradients

@Q
@bi

¼
Pm

j¼1 ½yj � ŷj�2
@bi

¼ 0 ði ¼ 1; 2; . . .; n� 1Þ ð7:13Þ

It can be shown that the least square estimates bi ði ¼ 0; 1; . . .; n� 1Þ are given
by the solution of a set of linear equations

ð½C�½C�TÞ

a
b1
b2
..
.

bn�1

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼ ½C�

y1
y2
y3
..
.

ym

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð7:14Þ

In which

½C� ¼

1 1 1 . . . 1
x1;1 x1;2 x1;3 . . . x1;m
x2;1 x2;2 x2;3 . . . x2;m
..
. ..

. ..
. ..

. ..
.

xn�1;1 xn�1;2 xn�1;3 . . . xn�1;m

2
666664

3
777775

ð7:15Þ

The expression Eq. (7.14) is known as the “Normal Equation” and gives us a
possible solution to the inverse problem. Because the units of xi;j ði ¼ 1; 2; . . .; n�
1; j ¼ 1; 2; . . .;mÞ in Eq. (7.14) are not consistent, therefore they should be
non-dimensionally normalized.

7.4.2 Stepwise Regression

Stepwise regression is a composite method using forward and backward multiple
regressions, which removes and adds the predictive variables to the regression
model through a sequence of tests, so that the best subset of the predictors can be
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identified. It is very prevalent in China for the purpose of constructing the rela-
tionship between dam deformation and environmental variables.

The stepwise regression is essentially a forward selection (FS) procedure, but
with the added proviso that at each stage the possibility of deleting a variable as in
backward elimination (BE), is considered (Chattefuee and Hadi 2006). In this
procedure a variable that entered in the earlier stages of selection may be eliminated
at later stages. The procedure is terminated, when dropping a variable does not lead
to any further improvement in the regression accuracy. The final regression equa-
tion obtained by the stepwise regression is

ŷ ¼ b0 þ
Xk
i¼1

bixi ð7:16Þ

In which k is the finial number of predictor (or explanatory) variables,
ðk� n� 1Þ.

7.4.3 Model Tests and Diagnostics

(1) Multiple correlation coefficient ðRÞ
Multiple correlation coefficient R ð0�R� 1Þ is an important index to check the
validation of the regression. It is used as a summary gauge to judge the fitness of the
linear model y for a given body of data xiði ¼ 1; 2; . . .; kÞ

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

ðŷj � �yÞ2=
Xm
j¼1

ðyj � �yÞ2
vuut ð7:17Þ

where

�y mean of the effect value yðtÞ
When the model fits the data well, i.e. the observed values and predicted values

close to each other, R approaches to unity. On the other hand, if there is no linear
relationship between yðtÞ and the predictive variables xiðtÞði ¼ 1; 2; . . .; kÞ, i.e. the
linear model gives a poor fitting, R approaches to zero.

(2) Residual standard deviation (S)

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

½yj � ŷj�2=ðm� k � 1Þ
vuut ð7:18Þ
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The number m� k � 1 in the denominator of Eq. (7.18) is termed as the “de-
grees of freedom” (DOF). It is equal to the number of observations minus the
number of estimated regression coefficients. Residual standard deviation S is also an
important index to check the quality of regression equation. The smaller of the S,
the better fitting obtains for the regression equation.

(3) Fitting residual ej

Theoretically, the residual ejðj ¼ 1; 2; . . .;mÞ between the standard deviations of the
regressed response variable ŷj and the observed one yj, is a stochastic series that
observes normal distribution Nð0; r2Þ. If ejðj ¼ 1; 2; . . .;mÞ does not observe nor-
mal distribution and in which there are the periodical or trend terms, the regression
equation shall be improved by measures including to revise original predictive
variables.

Using statistical models, the relationship between input and output signals can be
formulated only in the sense of regression and/or correlation analysis without
physical significance. If an observation in excess of history record (e.g. a reservoir
level higher than the maximum history level), the statistical model may lose the
capability to predict and explain the monitored data, i.e. the reliability of extrap-
olated prediction cannot be guaranteed. This is why sometimes such a model is
termed by “black box”.

7.4.4 Verification Example: In Situ Geo-Stresses

Where the rock is elastic, the regression technique and the FEM can be combined to
back analyze the in situ geo-stress field using the tested in situ stresses before the
excavation. The basic procedure is illustrated as follows.

– Establish regional FE model with effort to simulate joints, fractures and terrain.
– Define a set of boundary load (or displacement) combinations with regard to the

regional FE model (see Fig. 7.1), in which the factors to be back analyzed are
self-weight factor D; regional tectonic actions U;V ;W ; and geothermal T .

– For each boundary load combination, undertake the FE analysis to obtain the
computed stresses at the in situ testing points.

– The computed stresses at the in situ testing points and the corresponding
boundary load combinations are grouped into samples for regression procedure
to get the self-weight factor, regional tectonic actions and geothermal.

Suppose the unit initial stresses ðrD; rU ; rV ; rW ; rT ; . . .Þ have been computed
under the actions of unit boundary condition as illustrated in Fig. (7.1). According
to the principle of linear superposition, the actual geo-stress is calculated by

472 7 Inverse and Feedback Analyses Based on the Finite Element Method



r ¼ b0DrD þ b0UrU þ b0VrV þ b0WrW þ b0TrT þ � � � ð7:19Þ

The regression algorithm is carried out towards Eq. (7.19) to obtain the
regression coefficients b0D; b

0
U ; b

0
V ; . . ..

For the simple example illustrated in Figs. 7.4 and 7.5, the boundary conditions
and mechanical parameters are prescribed first, then the stress field in the domain is
computed by the FEM. This stress field is regarded as the “actual in situ
geo-stresses”. Five points are selected as the testing points whose computed stresses
are extracted as the “measured in situ geo-stresses”. These measured stresses are
employed to back analyze the whole geo-stress field using the stepwise regression
as elaborated above. This regressed geo-stress field is compared with (post-check)
the actual in situ geo-stress field, to validate the method.

In the computation mesh (see Fig. 7.4), the actual in situ geo-stress field is
produced by the volumetric weight cr ¼ 0:027 MN/m3, boundary actions of surface
pressure U ¼ 3 MPa, V ¼ 2 MPa, and W ¼ 0 (see Fig. 7.5).

There are two sets of measured geo-stresses, those who used for the back
analysis are displayed in Table 7.1, whereas those who used for the post-check of
the inverse accuracy are displayed in Table 7.2.

The regression operator gives regression coefficients b0D = 1.00003,
b0U = 29.99990, b0V = 20.00000, i.e. the actions on the slope are back analyzed
as c0r = b0D cr = 0.02700 MN/m3, U0 = b0U U = 2.99999 MPa, V0 = b0V V =
2.00000 MPa. They are very close to the boundary actions previously exerted.
Table 7.3 presents the contrast between the actual and back analyzed in situ
stresses.

Fig. 7.4 Computation mesh
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Although the regression method elaborated in this section is simple and prac-
tical, yet it is subject to the limitation of elastic performance. Under the circum-
stances where the non-linear deformation is not negligible, more sophisticated
computation intelligence (CI) techniques such as ANN and GA, are demanded.

7.5 Computation Intelligence Methods

7.5.1 Concept

Since traditional optimization methods encounter difficulties in the solution of
nonlinear and non convex systems, computation intelligent (CI) methods have been
more and more prevalent for determining relations between process parameters.
This is attributable to their significant advantages such as powerful capability in
learning, non-linear and non-local mapping, memory and self-recognition; high
precision; low computation effort, etc. (Sklavounos and Sakellariou 1995). There
are a large category of the CI algorithms inclusive the immune system (Joshi 1995),
the artificial bee colony (Karaboga and Ozturk 2011), the genetic algorithm (Mitsuo
and Cheng 1997), the artificial neural network (Rumelhart et al. 1986), etc. Among
them the artificial neural network abbreviated as ANN, is the most prevalent in the
parametric back analysis for hydraulic structures.

7.5.2 Artificial Neural Networks

An artificial neural network (ANN) is a mathematical model that simulates the
structure and function of biological neural networks (e.g. human brain) (see Fig. 7.6).

Fig. 7.5 Loads and boundary
conditions
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It is a parallel processing network to determine the complex nonlinear relationships
between independent (predictor) and dependent (response) variables (Zeidenberg
1990).

In Fig. 7.6, wi is the weight representing the sense ability of the ith neuron for
the received messages, and f ðzÞ is termed as the output or “activation function”.
Mathematically, it is defined as a composition of functions, the latter may further be
defined as a composition of other functions. A widely used type of composition is
the nonlinearly weighted sum in Eq. (7.20) where f may be predefined as the
hyperbolic tangent or sigmoid function [see Eq. (7.21)].

y ¼ f ðzÞ ¼ f ð
Xn
i¼1

wixi � hÞ ð7:20Þ

f ðzÞ ¼ 1
1þ e�z

ð7:21Þ

where

h threshold

The important characteristics of the activation function is that it provides a
smooth transition as the input values change, i.e. a small change in the input
produces a small change in the output. An ANN employing the activation function
in Eq. (7.20) is also termed as the “threshold network”.

Where the wi has been fixed (by training) for a certain input set ðx1; x2; . . .; xnÞT ,
Eq. (7.20) gives output. If we expect that for every permissible input, a rational
output is provided, the model of ANN should be appropriately established and the
corresponding weight wi should be well trained.

The ANN has been found to be very effective in non-linear mapping among the
parameters involved in numerical computation and the nonlinear optimization
problem arise from the back analysis for hydraulic structures.

(1) Basic structure of the ANN

Basic ANN model possesses three layers of input, hidden, and output. Each layer
consists of several processing components, called as neurons (see Fig. 7.7).

The ANN architecture constructs the connections between the layers and neu-
rons. The role of the hidden layers is to adjust input data set to the new data set of
outputs. At first, specific random weights are assigned to inputs. This step is called

Table 7.2 In situ geo-stresses for the post-check of accuracy

Testing point In situ geo-stresses (MPa)

rx ry rz syz szx sxy

4# Measured −1.736928 −2.349351 −0.298544 0.020894 0.468770 0.522997

5# Measured −1.765756 −1.641396 0.255387 −0.026980 −0.018258 0.063837
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as the training of ANN. In this step, the extracted errors from experiments and
predicted values are returned to the beginning of the network where all corrections
to weights are made. This procedure is continued until the desired outcome has
been extracted.

The back-propagation (BP) artificial neural network commonly used in the study
of the back analysis, is a supervised training technique that computes the difference
between the ANN calculated output and the corresponding desired output from the
training data set (Werbos 1994). It uses the gradient descent algorithm to modify the
network weights Dw for minimizing the network error E.

Dwðtþ 1Þ ¼ gð� @E
@wðtÞÞþ aDwðt � 1Þ ð7:22Þ

E ¼ 1
2

Xn
i¼1

ðo�i � oiÞ2 � e ð7:23Þ

Fig. 7.6 Schematic diagram for a neuromime

Fig. 7.7 Sketch of the ANN with single hidden layer
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where

w network weight;
t tth learning cycle (iteration);
g learning rate;
a momentum factor;
oi output;
o�i desired output;
n number of output unit;
e target error

The error is then propagated backward through the net and the weights are
adjusted during a number of iterations, named “epochs”. The training ceases when
the calculated output values best approximate the desired values (Rumelhart et al.
1986).

The procedure of back propagation is summarized as follows.

– Initialize the weights of the network with small random values;
– Take the inputs of each training pattern into the network, then calculate the

outputs using the inputs and the current weights of the network;
– Compare the calculated outputs to the desired outputs, and compute the network

error E by the formula in Eq. (7.23);
– Calculate how much lower or higher the weights should be adjusted to match the

calculated outputs and the desired outputs, using the gradient descent algorithm
in Eq. (7.22);

– Adjust the weights backwards, i.e. from the output neurons to the inner neurons;
– Repeat the iteration with the modified weights, until the stopping criterion of the

network error [see Eq. (7.23)] is satisfied.

(2) Training of the BP network

The primary goal of training is to minimize the error function E by searching for a
set of connection weights and threshold values that enable the ANN to produce
outputs equal or close to targets. After the training has been accomplished, the ANN
is then capable of generating reasonable output results given new inputs.

Suppose p sets of training samples

x1; x2; . . .; xn; T1; T2; . . .; Tmf gk ðk ¼ 1; 2; . . .; pÞ ð7:24Þ

In which

T1; T2; . . .;Tmf gk ðk ¼ 1; 2; . . .; pÞ ð7:25Þ

is the kth output set comprising m members.
For each iteration (epoch), the input is executed to generate output. At the end of

each training epoch, the differences between the outputs generated by the ANN and
target outputs are calculated. The error, in turn, serves as the feedback of the next
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learning process, which is used to adjust the weights and thresholds. The training
continues until the network error falls below a specified target error e.

The selection of an appropriate input vector that will allow for an ANN to be
successfully mapped to the desired output vector is not a trivial task. Unlike tra-
ditional physically-based models, the set of variables that influence the system are
not known beforehand. In this sense an ANN should not be considered as merely a
black box, instead, to understand well the engineering needs under consideration is
an important prerequisite for the successful application of ANN. This will help to
avoid not only the loss of information if key input variables are omitted, but also the
inclusion of spurious inputs that tends to confuse the training process.

The learning rate g is a dominant parameter in the network training which
controls the step size when weights are iteratively adjusted. The momentum con-
stant a whose value ranges between 0 and 1, is usually introduced into the training
step to accelerate the convergence. The target error (or permissible error) e is
specified to collapse the training iteration where the values of the error function for
all the training samples are smaller than this target error.

With regard to the number of neurons in the hidden layer of BP network, it is
important to note that this is obtained mainly through the accumulated experience
and the in situ test data gathered from past projects without an exact analytical
expression. Recently, other optimization techniques (e.g. the GA), have been used
to optimize the number of neurons as well as the weights (Johari et al. 2011),
resulting in “hybrid optimization algorithms”.

7.5.3 Verification Example: In Situ Geo-Stresses

For the slope example with boundary conditions illustrated in Figs. 7.4 and 7.5, the
actual in situ geo-stresses are produced by the volumetric weight
cr ¼ 0:027 MN/m3, boundary actions U ¼ 3 MPa, V ¼ 4 MPa, and W ¼ 0. Five
points whose computed stresses are extracted as the tested in situ geo-stresses, are
collected in Table 7.4. Then these stresses are employed to back analyze the in situ
geo-stress field using the BP-ANN specifically illustrated as follows.

– Construct a set of boundary loading combinations.
– For each combination, the normal FE computation is carried out to extract the

stresses in the points as input set, meanwhile the boundary loads are grouped
into output set.

– A sample is composed of one input and one corresponding output.
– Train the network using the samples.
– Input the tested (measured) in situ geo-stresses into the trained ANN, the output

outcomes as back analyzed boundary load combination.
– According to the back analyzed boundary load combination provided by the

ANN, the non-linear FE computation is undertaken to give the back analyzed
in situ geo-stress field.
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28 samples are grouped to train the ANN, and 229,561 training epochs are
conducted before the error target is met. The input of measured in situ geo-stress
gives rise to back analyzed boundary load output c0r = 0.026 MN/m3,
U0 = 3.03 MPa, V 0 = 4.06 MPa. According to these loads, the non-linear FE
computation provides the back analyzed in situ geo-stress field. The cross-reference
of the back analyzed and measured in situ geo-stresses in Table 7.4 exhibits an
average relative error 4%.

7.6 Back Analysis of Permeability Tensor: Xiaowan
Project, China

7.6.1 Presentation of the Project

Vide Sect. 8.1.

7.6.2 Characteristics of the Computation

There are three dominant sets of fractures in the dam foundation/abutments whose
attitudes have been presented in Table 2.3. In addition, the permeability of the intact
rock matrix and the hydraulic aperture of joints are k ¼ 6:8	 10�8 m/s and
a ¼ 0:02 mm, respectively.

In order to study the permeability of the rock masses in the dam foundation/
abutments, a series of directional single-hole packer tests had been conducted.
ZK13-4, ZK13-3 and ZK107 are the three of them in different directions whose
positions and information are displayed in Fig. 7.8 and Table 7.5. The second
segment of ZK13-4, the second segment of ZK13-3 and the sixth segment of
ZK107 are closely located in the same family of rock mass (granite gneiss). The
packer pressure within the range of P ¼ 0.3–1.5 MPa produces linear curves of
pressure * flow that are employed for back analyzing the equivalent permeability
tensor of the rock mass around the area nearby.

7.6.3 Procedures of the Back Analysis

Parameters in the equivalent permeability tensor [see Eqs. (2.15)–(2.17)] mostly
difficult to evaluate are the connection adjusting coefficient wj and the aperture aj of
the joint set j, provided that other parameters may be specified beforehand by field
investigations and tests. The procedure towards the back analysis for wj or/and aj is
launched by a set of wj (or aj) tentatively supposed. Then for each wj or/and aj the
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relevant flow rate Qi are computed by the FEM for multi-or single-hole packer tests
(see Figs. 7.2 and 7.3). These wj or/and aj and Qi are grouped to create training
samples for the ANN to fit their relationship. After the training, the parameter wj or/
and aj can be back analyzed by inputting the in situ injected flow rate Q�

i .

(1) Choice of single-hole packer test segments

Since Q�
i is the only observed data for each single-hole packer test, therefore in

order to back analyze wj (or aj) from Q�
i , the number of single-hole packer tests

should be equal to or more than that of fracture sets. In addition, to avoid the linear
correlation of joint sets, three joint sets are the maximum to be taken into account in
the permeability back analysis. Similarly, to avoid the linear correlation of Q�

i , the
packer test holes should be drilled in different directions.

Suppose the number of single-hole packer tests is equal to that of joint sets in a
geological unit. Each packer test provides one test segment with outcomes in a form
of linear pressure * flow curve.

(2) Establishment of FE models

According to the depths, diameters, orientations and test segment locations of the
boreholes, we establish FE models for each single-hole packer test in the global
coordinate system with X-axis being eastward, Y-axis being northward, and Z-axis
being upright. If the rock mass contain three joint sets, three FE models should be
built (see Fig. 7.9). The boundary conditions are illustrated in Fig. 7.3.

(3) Preparation of ANN training samples

– Determine the amount of samples and estimate the ranges (upper and lower
bounds) of the sample variables (wj or aj) according to the field investigation.

– Uniformly parameterize the sample variables within their ranges, and discretize
them by the uniform design technique (Fang et al. 2000).

Fig. 7.8 Diagram to the position of packer tests (unit: m)
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– Simulate the packer tests by the FEM to extract the injected flow Qi under the
pressure Pi, in this procedure the equivalent permeability tensor [see Eqs. (2.15)–
(2.17)] containing wj or/and aj, is employed.

– Organize the samples consist of wj or/and aj and Qi for network training.

(4) Training of the ANN

The injected flows are the network inputs, and the connection adjusting coefficients
(or the apertures) are the network outputs.

(5) Back analysis of the connection adjusting coefficients wi or/and apertures ai

Input the in situ injected flows Q�
i into the trained ANN, the network output gives

the back analyzed outcomes of the connection adjusting coefficients or the aper-
tures. With the back analyzed wi or/and ai, the equivalent permeability tensor of the
rock mass is calculated using Eqs. (2.16) or (2.17).

7.6.4 Computation Results

The connection adjusting coefficient wj to be back analyzed ranges from 10 to 200
for the joint sets 1 and 2, and 3000 to 6000 for the joint set 3, which are all
discretized by 30 intervals. The hidden units in the hidden layer are 30, the
momentum factor is 0.2 and the learning rate is 0.8, the target error is stipulated as
ek ¼ 10�6. The back analyzed connection adjusting coefficient wj and corre-
sponding permeability tensor are given in Table 7.6.

Fig. 7.9 Sketch of the FE models for single-hole packer tests

Table 7.6 Back analyzed
results of the equivalent
permeability tensor

Joint
set

Connection
coefficient (wj)

Permeability tensor
ð	10�9 m/sÞ

1 42.6 106 −1.54 −17.2

2 20.5 −1.54 114 −3.38

3 5992.7 −17.2 −3.38 76.7
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Based on a systematic study by the geologists according to their investigations,
experiences and engineering analogue, and by the back analysis works inclusive the
example illustrated above, the permeability tensors for the major rock strata in the
site of Xiaowan Project are elaborated (see Table 2.14). These tensors are further
subject to feedback analysis and dynamic adjustment after the impounding of the
reservoir (vide Chap. 8).

7.7 Feedback Analysis of Excavated Rock Slope: Three
Gorges Project, China

7.7.1 Presentation of the Project

Three Gorges Project and its ship locks have been presented in Chap. 5 (Sect. 5.7.9).
In view that the Yangtze River is a China’s golden waterway, the overall and local
stability of the ship locksmust to be guaranteed. In addition, the time-dependent creep
deformation of the ship lock slopes during the service period has to be strictly con-
strainedwithin 5 mm, in order tomeet the requirements for the normal operation of the
miter gates.

Comprehensive studies had been conducted before the excavation by the
designers and researchers inclusive the author, which concluded that there would be
no danger of massive instability of the slope. During the construction, local failures
along discontinuities and caused by blasting damage as well as by stress relief were,
however, perceived to happen frequently. It is worthwhile to note that the studies
were unable to yield consistent results regarding the deformation of the slope. For
example, the predicted maximum displacement ranged from several centimeters to
over one hundred centimeters. Therefore, the designers and the author undertook a
supplementary study by means of the feedback analysis for the prediction of
deformations and stresses, and the dynamic stabilization design for the slope during
the construction and operation periods.

7.7.2 Characteristics of the Computation

(1) Engineering geology

The 20-20 section located at the gate chamber of the third step lock is chosen as a
typical section to present the works (see Fig. 7.10). The rock masses are classified
into 5 types according to the weathering degree: totally weathered, strongly
weathered, weakly weathered, slightly weathered and fresh. In addition, there are
two main faults f1222; f1007, the corresponding fragmentized bands, the trespasser
rock ex.
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(2) In situ geo-stresses

The in situ geo-stress field in the slightly weathered and intact rocks is back
analyzed. The back analyzed boundary actions are expressed by the boundary
stresses of overburden depth dependent

rx ¼ �4:3867� 0:1184H
ry ¼ �4:5344� 0:01129H
rz ¼ �1:4629� 0:03031H
syz ¼ 0:04623þ 0:00002H

8>><
>>:

ð7:26Þ

where

H overburden depth, m

The in situ geo-stresses in the totally weathered and strongly weathered rocks are
dominated by the gravity action and calculated by the formulas

rx ¼ 0
ry ¼ � l

1�l crH
rz ¼ �crH
syz ¼ 0

8>><
>>:

ð7:27Þ

where

cr volumetric weight of rock, kN/m3;
l Poisson’s ratio;
H overburden depth, m

Fig. 7.10 Schematic geology profile of Sect. 20-20. 1—totally weathered rock and strongly
weathered rock; 2—weakly weathered rock; 3—slightly weathered rock and intact rock; 4—
fragmentized band; 5—trespasser rock ex; 6—fault f1222; 7—fault f1007
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In the weakly weathered rock masses, the in situ geo-stress field is calculated
according to a linear interpolation between the strongly weathered rock masses
governed by Eq. (7.27) and slightly weathered rock masses governed by Eq. (7.26),
as illustrated in Fig. 7.11.

(3) Excavation benches and executive schedule

According to the construction schedule, the section was excavated by 15 benches
whose levels and the corresponding executive times are illustrated in Fig. 7.12.
Figure 7.13 shows the excavated southern slope in the February, 1998.

(4) Blasting damage relaxation band and stress relief relaxation band

According to the ultrasonic detection in the field, two sub-zones, namely the
blasting impact zone (BIZ) and the stress redistribution zone (SRZ) of the EDZ
whose mechanical parameters were deteriorating with the ongoing excavation, were

Fig. 7.11 Boundaries with regard to the in situ geo-stress field

Fig. 7.12 Excavation benches and their executive times
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defined along the excavation face. The depth of the BIZ which is induced by both
the blasting damage and the stress relief, is approximately 5 m. The depth of the
SRZ which is mainly induced by stress relief, is approximately 20 m. The boundary
between these two sub-zones is plotted in Fig. 7.14. The stability of the excavated
slope was strongly influenced by the EDZ: local failure might frequently occur and
rock bolts were systematically installed depending on the probable characteristics of
the EDZ.

(5) Instrumentation layout for displacement monitoring

It is well known that a successful parametric identification should explore the
measured data on which the parameters have great impact. From this standpoint it is
suggestible to measure displacements with high system sensitivity (Murakami et al.
1991). However, it can hardly help where more than one parameter need to be
identified (Haftka et al. 1998). So far, there is no widely accepted criterion for
designing the optimal instrumentation layout.

During the excavation construction of the ship lock, comprehensive instru-
mentation was implemented. The monitoring object (gauge) points used in the back
analysis are illustrated in Fig. 7.14 and detailed in Tables 7.7, 7.8 and 7.9.

Fig. 7.13 Ship lock in the construction, a Bird eye view; b southern slope in February, 1998
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Fig. 7.14 Installation of the object points for displacement monitoring

Table 7.7 Object point layout for the surface displacements of section 20-20

Object point Elevation
(m)

Initial date of
reading

Rock type

Northern
slope

TP13GP01
BM13GP01

200 June 1995 Strongly and totally
weathered

TP14GP01
BM14GP01

170 August 1996
April 1996

Slightly weathered and
intact

Separation
pier

TP72GP01
BM72GP01
(Northern
wall)

139 November 1997 Slightly weathered and
intact

TP99GP02
BM99GP02
(Southern
wall)

139 January 1998 Slightly weathered and
intact

Southern
slope

TP100GP02
BM100GP02

150 December 1997 Slightly weathered and
intact rock

TP33GP02
BM33GP02

170 December 1996 Slightly weathered and
intact

TP34GP02
BM34GP02

200 November 1995 Slightly weathered and
intact

TP35GP02
BM35GP02

230 March 1995 Strongly and totally
weathered

TP36GP02
BM36GP02

245 December 1994 Strongly and totally
weathered
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(6) The FE mesh and main feedback analysis procedure

The FE mesh (see Fig. 7.15) used in the calculation is carefully created to simulate
the excavation procedure step by step, and to let all the object points be located at
the nodes. The mesh contains 2250 elements and 2322 nodes.

Since the mechanical parameters of the fresh rock, slightly weathered rock,
faults f1222 and f1007, the fragmentized bands and the rock dyke are less influenced
by the relaxation due to blasting damage and stress relief, they are fixed after the

Table 7.8 Borehole inclinometer layout of section 20-20

Object point Top elevation of
the borehole (m)

Depth of the
borehole (m)

Initial date
of reading

Rock type

Northern
slope

IN05GP01 200 35.5 January
1996

Strongly and
totally
weathered

IN09GP01 170 35.0 May 1996 Slightly
weathered and
intact

Separation
pier

IN03CZ32
(Northern
wall)

139 50.0 December
1997

Slightly
weathered and
intact

IN04CZ32
(Southern
wall)

139 50.0 December
1997

Slightly
weathered and
intact

Southern
slope

IN14GP02 173 25.0 December
1996

Slightly
weathered and
intact

IN11GP02 200 30.5 December
1995

Weakly
weathered

IN10GP02 215 20.5 December
1995

Weakly
weathered

IN09GP02 230 20.5 June 1995 Strongly and
totally
weathered

IN08GP02 245 20.5 June 1995 Strongly and
totally
weathered

Table 7.9 Extensometer layout of section 20-20

Object
point

Top elevation of the
borehole (m)

Distance from the gauge point to the
top of the borehole (m)

Rock type

1# 2# 3# 4# 5# 6#

Southern
slope
M08GP02

230 33.2 27.8 22.4 17.0 11.6 6.2 Strongly and
totally weathered
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first three steps of feedback analysis. From the fourth step of excavation, the
attention is focused on the evolution of mechanical parameters in the BIZ and SRZ,
which are taken into account of in the subsequent deformation and stability
predictions.

7.7.3 Strategies of Feedback Analysis

Suppose the ith excavation step is handled using the parameters and the stress field
obtained by the ði� 1Þth step feedback analysis. The elasto-viscoplastic FEM
analysis yields the predicted displacements, stresses as well as the stability of the
slope due to the ith step of excavation. After the ith excavation step has been
executed, and the monitored data have been read, the precision of the prediction can
be checked and the back analysis is conducted afterwards. An updated set of
parameters are therefore available for the prediction of the next ðiþ 1Þth excavation
step.

During the feedback analysis, problems may give rise which cannot be solved by
the computational method and displacement messages solely, and the knowledge
from the investigation as well as the engineering expertise would be very helpful.

(1) Local minimum versus global minimum

Since the objective function f defined in Eq. (7.2) is not linear, it is liable to be
trapped in a local minimum in lieu of to get the demanded global one (see
Fig. 7.16) during the optimization analysis. The existing mathematical methods to

Fig. 7.15 FE mesh of the section 20-20

Fig. 7.16 Local minimum
and global minimum
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identify if a point emerges local minimum and swift away from this point in time, is
not robust attributable to the strong nonlinearity and implicit of the function f .

To deal with this difficulty it is suggestible that:

– To de-couple the parameters, i.e. do not try to identify all parameters at one
stroke;

– To define the upper and inferior bounds of the parameters according to the
values obtained by experiments and engineering analogues.

(2) Parameter de-coupling

Although the observation indicated no obvious creep deformation in the slope, yet
designers had been worrying that after the accomplishment of the excavation there
could be creep displacements large enough affecting the normal operation of the
miter gates in the ship lock, so eventually it was decided that the fluidity parameter
should be back analyzed. As a result, the back analysis mainly concerns five
parameters c, E, l, c and u which are coupled. If all parameters in all types of rocks
are expected to be dynamically updated, it will be found that there is no definite
solution. For a set of observation data, a possible combination may yield a high
value of E but low values of c and u, or low E but high c and u. In addition, c and
u are coupled, too. For the moment, the problem cannot be solved merely by
mathematical and mechanical theories. Therefore the following approaches are
advisable.

① With fluidity parameter c ¼ 1, the strain/stress histories are not applicable by
the potential elasto-viscoplastic theory, but the steady-state results are
identical to the conventional static elasto-plastic solution. Therefore, the
parameters E, l, c and u can be back analyzed firstly using the convergent
displacements, then the displacement history will be simulated to get real
fluidity parameter c.

② Since the Poisson’s ratio l is relatively less important than the other
parameters, it may be fixed to the data used in the design phases from the
beginning of the back analysis. After a certain steps when nearly all
the other parameters are updated, one step may be used to check the
parameter l and to make the update, if necessary. During this step all the
other parameters are fixed.

③ Since at the beginning of the excavation there are no or only limited plastic
(yield) zones in the rock slope, the monitored data of the first few steps can
be used to evaluate the elastic modulus E only. In this calculation, the
strength parameters c and u are fixed to the data used in the design phases.
Then, as the going on of excavation, the parameters c and u will be back
analyzed. After a certain calculation steps, the data of one step may be used
to check the E and to make the update, if necessary.

④ Since there are many types of rock masses and faults with different strength
parameters in a slope, it is not appropriate to evaluate all strength parameters
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of all rock masses simultaneously. At each step of back analysis, the atten-
tion should be focused on the strength parameters of the rock situated close
to the present excavation surface. In this way, the strength parameters are
back analyzed sequentially from the upper portion to the lower portion of the
slope, along with the ongoing excavation.

⑤ Since the angle of friction u is more stable, it is suggestible to fix this
parameter in antecedent step referring to the data used in the design phases,
and to conduct the back analysis with respect to the cohesion c. In the
subsequent step the cohesion c is fixed, and the new displacement readings
may be employed to adjust the friction angle u, if necessary. This iteration is
expected to offer a good and stable estimation of the strength parameters.

7.7.4 Computation Results

(1) Back analyzed parameters

According to the engineering geological conditions and the displacement readings
from the monitoring instruments, the feedback analysis had been carried out suc-
cessfully during the excavation of the ship lock. The mechanical parameters back
analyzed are summarized in Tables 7.10 and 7.11 and Figs. 7.17, 7.18 and 7.19, in
which the data used in the design phases are also provided for the sake of com-
parison. It can be found that for the slightly weathered and fresh rocks, weakly
weathered rocks, faults f1222 and f1007, the fragmentized bands, and the rock dyke ex
whose mechanical parameters are supposed to be fixed in the design phases, the
back analyzed parameters are a bit of lower. For the rock masses in the BIZ and
SRZ, the mechanical parameters back analyzed undermine remarkably as the going
down of the slope cutting.

Table 7.10 Mechanical parameters of the rock masses

Rock type Young’s modulus
E (MPa)

Cohesion c
(MPa)

Friction
angle u (°)

Poisson’s
ratio l

Totally and strongly
weathered

300a 0.2a 36a 0.35a

Weakly weathered 5000a 0.8a 47a 0.25a

Slightly weathered 32000 1.72 58.68 0.2a

Fragmentized bands 11500 1.10 44.1 0.25a

Rock dyke
(Trespasser) ex

8300 1.2 55 0.25a

f1222 3500a 0.5a 35a 0.3a

f1007 3500a 0.5a 35a 0.3a

N.B. Superscript aindicates the parameter belonging with original design (without back analysis)
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Table 7.11 Fluidity parameters of the rock masses

Rock
type

Totally and
strongly
weathered

Weakly
weathered

Slightly
weathered
and fresh

Fragmentized
bands

Rock
dyke
ex

BIZ SRZ f1222
f1007

Fluidity
1
c ðGPa:dÞ

24.9 35.0 221.0 84.6 55.7 103.0 167.4 24.0

Fig. 7.17 Young’s modulus E of the EDZ

Fig. 7.18 Friction angle u of the EDZ
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(2) Forecasted displacements

Figure 7.20 displays the accumulated displacements of the section 20-20 at April
1999, when the excavation of entire ship lock was just completed. The feedback
analysis outcomes indicate that the maximum displacement is 71.63 mm which will
occur at the southern slope. The elasto-viscoplastic analysis forecasts that there is
maximum 1.42 mm time-dependent displacement which will be converged within
7–8 months after the completion of the excavation, therefore the conclusion may be
made that if the miter gates are installed after the end of 1999, there is no risk of
hazardous displacement adverse to the normal operation of the gates. It is proud to
indicate that the field observation data so far have verified above predictions.

The displacement histories at some typical object points predicted by the feed-
back analysis are plotted in Figs. 7.21, 7.22, 7.23 and 7.24. Compared with the
observed displacement histories in the same figures it can declare that the feedback
analysis provides good prediction for the displacements of the ship lock slope.

Fig. 7.19 Cohesion c of the EDZ

Fig. 7.20 Accumulated displacements (April 1999)

496 7 Inverse and Feedback Analyses Based on the Finite Element Method



Fig. 7.21 Horizontal displacement at TP/BM13GP01

Fig. 7.22 Horizontal displacement at TP/BM99GP02

Fig. 7.23 Horizontal displacement at TP/BM72GP01
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(3) Forecasted stresses and stability

Figure 7.25 displays the stress distribution after the accomplishment of the slope
cutting. According to the prediction of the 17th step when the excavation of the
entire ship lock is just completed, the maximum stress at the bottom corner of the
southern slope is 24.7 MPa, and that at the bottom corner of the northern slope is
24.1 MPa. Since the long term creep strength �rs of rocks around these areas is
approximately 50 MPa, there is no risk of long term creep deformation which could
jeopardize the long term operation of the miter gates.

The analysis results also show that there are tensile stresses in the separation pier
of the double-lane ship lock with maximum value of 0.817 MPa and maximum
depth of 28 m from the top of the pier. It means that cracking and local failure could
occur frequently during the excavation construction, therefore more attention
should be paid to the reinforcement of this area.

The contours of the point safety Kp (see Fig. 7.26) calculated by Eq. (4.215)
justify that plastic deformation manifests at the southern and northern slopes as well
as at the middle pier. The dominant plastic zones are located in the southern slope
and the separation pier with maximum depth of 30 m. Since the viscoplastic iter-
ation is convergent, therefore the overall stability of the slope is held.

Fig. 7.24 Horizontal displacement at TP/BM36GP02

Fig. 7.25 Stress distribution after the completion of excavation
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(4) Discussions

The techniques of back analysis shine a bright light on the numerical computation
for a variety of hydraulic structures, of which the parametric identification strategies
are specially emphasized in this chapter. The feedback analysis further provides a
realistic way to overcome the indetermination of the parameters in the investigation
and design stages. Use is made of the data extracted from the monitoring instru-
mentation system during the project construction, both the parameters and the
structural design may be justified and revised in time, if necessary.

Every parametric identification method possesses its unique merits and draw-
backs. The selection among optimization methods is determined by the specific
situation. The methods presented in this chapter are not complicated from the
standpoint of mathematics and mechanics. However, as we have elucidated in the
feedback analysis of excavated rock slope (Three Gorges Project), problems such as
the local minimum and global minimum, the parameter de-coupling, etc., cannot be
solved merely by the computation directly because of the complicity of hydraulic
structures. Anyway, if we handle the problems properly with the help of investi-
gation instruments and the understanding of the construction procedure, as well as
the engineering experiences, the feedback analysis can provide quite satisfactory
results (Fig. 7.27).

Fig. 7.26 Contours of the point safety factor
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Chapter 8
Comprehensive Application of the Finite
Element Method: Xiaowan Project

Abstract Concrete arch dam exhibits remarkable spatial-time characteristics
because its working state might be evolved dramatically attributable to the dynamic
construction process and operation environment. To overcome the limitations of
routine design and analysis approaches for the high arch dam due to predetermined
modes and assumptions, further advanced study is demanded to demonstrate the
adequacy of structural analysis theories and calibration standards, as well as to
evaluate its safety credibly. In this chapter, the systematic study on Xiaowan Arch
Dam at a height of 294.5 m is exhibited, which covers the whole process from the
back analysis of in situ geo-stress to the excavation/reinforcement of abutment/
foundation, followed with the concrete placement/cooling/grouting operation until
the reservoir impoundment/service. This study is supported by a toolkit termed as
the “Digitized System of Xiaowan Arch Dam” (DSXAD) which is the combination
of the instrumentation system, the FEM system towards the fields of permeability/
temperature/deformation, and the decision making system towards engineering
judgment. The evolution of the real working state of the arch dam has been thor-
oughly revealed, and a series of difficult technical issues such as the foundation
rock EDZ and dam concrete cracks emerged during its construction, are success-
fully solved under the guidance of the DSXAD.

8.1 General

From the initial batch of arch dams over the height of 100 m in the late 1980s to the
completion of 250 m high Ertan Arch Dam in 1995, plentiful experiences con-
cerning the investigation, design, research, construction and operation of high arch
dams had been accumulated in China. Since the new Millennium, the
“Development of the West Regions” policy of China has further accelerated the
high arch dam construction in the country. For example, the completion of Xiaowan
Arch Dam (H = 294.5), Jinping 1 Arch Dam (H = 305 m) and Xiluodu Arch Dam
(H = 278 m) established a landmark as one of the Chinese great achievements
(Pan and He 2000; Jia 2013).
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As a slim shell structure flexibly based on its deformable foundation, concrete
arch dam exhibits remarkable spatial-time characteristics. This is prominent since
the working state might be evolved dramatically attributable to the dynamic con-
struction process and the operating environment, particularly for high
double-curvature arch dams with huge thrust actions from reservoir water (Chen
2015). However, the routine design and analysis approaches are limitedly available
due to the predetermined modes and assumptions postulated in these approaches,
which may only partially reflect the real working state of the arch dam under the
supposed boundary conditions. For this reason, further study is demanded to reveal
the evolution mechanism of spatial-time characteristics of high arch dams, so as to
demonstrate the adequacy of the structural analysis theories and the correspondent
calibration standards, as well as to evaluate the safety, reliability, economy and
rationality of the arch dam which is under construction or putting into operation.

At a height of 294.5 m and total hydraulic thrust force of 18 million tons,
Xiaowan Arch Dam was the most challenging hydropower project in China
(Zou 2010) facing crucial difficulties (e.g. complicated geological conditions)
beyond the existing design codes/specifications and the experiences in many
aspects. Attributable to its special leading position and current technology situation,
explorations and studies for Xiaowan Dam had been continuously conducted
throughout the whole process from the early design phases to the execution and
operation periods. Particularly, in the initial period of construction, the
information-based dynamic design concept was well accepted and the systematic
instrumentation was arranged for the dam. Therefore, this dam is an ideal and
precious object for the study on the spatial-time characteristics of high double-
curvature arch dams, because it is able to provide abundant, detailed and accurate
field data for the verification.

In this chapter, the systematic study on Xiaowan Arch Dam by the FEM is
presented, which covers the whole procedure from the in situ geo-stress back
analysis to the abutment excavation and concrete placement until the reservoir
impoundment operation. The study is elaborated by the combination of the
instrumentation system, the numerical computation, and the engineering judgment,
in a toolkit termed as the “Digitized System of Xiaowan Arch Dam” (DSXAD).
With the help of the DSXAD, the evolution of the real working state of the dam
during its construction period as well as service period has been revealed, and a
series of difficult technical issues emerged during the construction of the dam are
successfully solved (Zou et al. 2016).
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8.2 Presentation of the Project

8.2.1 Layout

The main hydraulic structures layout in the project are the double curvature arch
dam, plunge pool, auxiliary weir, flood release and diversion tunnels, and under-
ground power plant system (see Fig. 8.1). The river bed is at the EL. 950.5 m and
the dam crest is at the EL. 1245 m. The dam thickness varies from 12 m at the crest
to 72.9 m at the base of the crown cantilever (Zou 2010).

The main accessory works comprised in the arch dam are 5 overflow spillways,
6 middle elevation orifices, 2 drawing down bottom outlets, 3 diversion orifices, 2
diversion bottom outlets, drainage galleries and drainage holes, and concrete aprons
at the upstream and downstream respectively, etc. (see Fig. 8.2).

Fig. 8.1 Plan showing the layout of Xiaowan Project
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8.2.2 Engineering Geology

The project is located in a V-shaped valley stretching 2300 m long where the
gullies are deeply cut, the mountains are steep and nearly 1000 m high above the
natural river water. During dry seasons, the river water is 80–120 m wide.
A number of high and steep slopes, especially the 700 m high cut slope along the
abutment sections, have to be handled towards the layout of the permanent and
temporary structures and construction sites.

The bedrocks distributed in the project area is of moderately-to deeply meta-
morphic rock system which consists mainly of granite, gneiss and hornblende
plagioclase gneiss, intercalated with discontinuous and thin layered schist. The rock
formations trend perpendicular to the river in a form of monolithic structure, and
dip towards upstream. The rock is weathered on its superficial layer. The base
boundary of the moderately weathered rock under the dam site is changeable from
30 m deep (in the riverbed) to 35–50 m deep (in the two banks).

Stress release is one of the major engineering geological features. The superficial
rocks on both bank slopes had been relaxed due to the stress release during the river
trenching history: opening fissures are fully developed; most of the schist interca-
lations are normally argillified or softened. The depth of the stress release zone is
closely related with topography. For example, it is much deeper in the mountain
ridges with well developed opening shear fissures, whereas in the portions of gullies
very thick Quaternary topping deposits are distributed.

Fig. 8.2 Cantilever profile and upstream elevations of Xiaowan Arch dam. ①—arch dam; ②—
foundation grouting gallery; ③—overflow spillway; ④—orifice spillway; ⑤—drawing down
bottom outlet; ⑥—diversion orifice; ⑦—diversion bottom outlet; ⑧—plunge pool; ⑨—
auxiliary weir; ⑩—bottom inducing joint; ⑪—abutment thrust pier; ⑫—consolidation grout;
⑬—curtain grout; ⑭—lift shaft; ⑮—inspection gallery
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In the dam site, there exist one grade II fault (F7) with the strike angle nearly EW
and dip angle N∠74°–90°, fragment width 18.6–37 m, principal fracture width
0.8–2.5 m. The nearest distance from the fault F7 to the dam heel is 50 m.

There are more than 20 grade III faults (e.g. F11, F10, F5, F20, F3), of which only
F20 with strike angle nearly SN belongs to tensile-torsion fault, the others are all
compression-torsion faults with strike angles N75°–80°W and dip angles NE∠75°–
90°. The width of the grade III fault is normally 0.5–4 m.

A number of grade IV and V structural planes such as f and gm are grouped into
two sets: the high dip angle ones are well developed (f12, f34, f30, f15) while the low
dip angle ones are not fully developed. The high dip angle f and gm are further
distinguished according to their strikes into two sub-sets as nearly EW trending
(strike angle N70°–85°W) with average space 15 m, and nearly SN trending (strike
angle N10°W–N20°E) with average space 20 m.

There are 5 geological erosion zones in the resistance bodies influencing the
deformation and stability of dam abutments, of which E8 is in the left abutment, E1,
E4, E5 and E9 are in the right abutment. They are all nearly NS trending.

In addition, there also exist three sets of dominant joints:

① High dip angle joints across the river;
② High dip angle joints along the river; and
③ Middle/low dip angle joints along the river.

Figure 8.3 is the geological plan of the dam site. The geological features used in
the design are summarized in Tables 8.1, 8.2, 8.3 and 8.4.

According to the field explorations and tests, the maximum in situ geo-stress
near the river bed is r1 = 26.7 MPa.

The natural underground water table is approximately 40–60 m below the
ground surface.

8.2.3 Concrete Materials

Through the optimal study on the concrete composition (cement, flying ash, aggre-
gate, admixture), the dam body is casted in three concrete zones of A (C18040),
B (C18035), C (C18030). They possess properties idealized as “high strength, high
ultimate tensile strain, moderate elastic modulus, low heat productivity and shrink-
age”. However, for the implementation of the DSXAD, several special studies had
been carried, such as the comparative studies on the traditional wet-screened concrete
versus fully-graded concrete, the comparative studies on the adiabatic temperature
rise obtained from the concretes of long-age (180 days) versus standard 28 days-age,
as well as the creep degree and volumetric deformation of the concretes. In addition,
the temperatures of reservoir water and ambience were fitted by the long term field
observation. Attributable to these studies, the spatial-time characteristics of the con-
crete materials are fully available in a manner of simulating computation by dynamic
assignment of the concrete material properties.
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(1) Comparative study on the wet-screened concrete versus fully-graded concrete

The properties of concrete that affect the behaviors of the arch dam mainly involve
several relevant indices with regard to heat, permeability, and deformation.
According to the conventional tests on wet-screened concrete, the concrete
designed for Xiaowan Dam possesses ideal properties. After the start of the con-
crete placement, however, by the fully-graded concrete tests it was verified that the
concrete actually placed in the dam are subject to remarkable variations in contrast
to wet-screened tests, these are

① A compressive strength variation about 85–117%;
② A split tensile strength variation about 78–95%;
③ An axial tensile strength variation about 50–80%;
④ An ultimate tensile strain variation about 55–78%;
⑤ A creep strain variation about 50–98% (under load at 7th day–180th

day); and
⑥ An elasticity modulus variation about 95–127%.

In terms of the cracking-resistance performance of concrete, the fully-graded
concrete is poorer than that of wet-screened concrete.

Fig. 8.3 Geological plan of the dam site
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Table 8.2 Attitudes of the faults (feasibility study)

Sequence Dip direction (°) Dip angle
(°)

Coordinates of mean
point (m)

Thickness
(m)

X Y Z

F7 357 85 1000 957 1245 3.00

F19 12 77 −100 510 990 0.50

F11 10–30 83–90 700 630 930 0.30

F5 9 80 1000 368 1245 0.46

F10 5 85 0 640 990 0.11

F20 280 85 740 500 1150 0.20

F27 10 75 0 510 1150 0.15

f12 8 83 300 730 930 0.32

f14 10 80 1000 370 1245 0.30

f11 10 80 0 600 1150 0.45

f21 8 70 800 530 1150 0.10

f33 270 90 880 450 1150 0.17

f29 90 87 770 500 1150 0.20

f19 200 75 700 690 1150 0.06

f10 10 85 0 640 1150 0.20

f15 95 90 230 650 990 0.15

f36 245 80 200 560 1070 0.10

f17 5 90 850 665 1190 0.15

f30 300 90 800 620 1190 0.11

f34 275 88 880 650 1190 0.50

f32 65 85 780 660 1190 0.20

f9 10 81.5 100 680 1110 0.16

Table 8.3 Attitudes of the erosion bands (feasibility study)

Sequence Dip direction (°) Dip angle
(°)

Coordinates of mean
point (m)

Thickness
(m)

X Y Z

E1 276 87 110 650 1150 0.25–7.0

E5 265–280 90 50 650 1150 3.50–20.0

E4 265 87 40 500 1150 0.30–13.5

E8 300 90 800 620 1190 2.0–12.0
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(2) Comparative study on the adiabatic temperature rise of long-age versus 28
days-age

According to the test data of 28 days-age (stipulated in the design specifications),
the thermal parameters and its related characteristics of concrete in Table 8.5 are
employed in the feasibility study phase.

It is necessary to emphasize that the comparison study shows that the final
adiabatic temperature rise based on the long-age test (C18035, with final fitted value
of 39.2 °C) is 12.17 °C higher than that of the conventional 28 days-age test
(C18035, with final fitted value of 27.03 °C) (see Fig. 2.6).

(3) Creep degree and volume deformation

Fitting of creep degree and volume deformation of concrete had been carried out
based on the tested data (see Fig. 2.21; Tables 2.40 and 2.41), for the purpose to
fully describe the time dependent characteristics of the dam.

(4) Temperatures of reservoir water and ambience

The temperatures of reservoir water and ambience are fitted by the long term field
readings. Figure 8.4 gives the monitored and fitted reservoir water temperatures at
two typical object points.

The daily variation of ambient temperature is exactly provided by the local
meteorological station and inputted for the thermal field analysis during the

Table 8.4 Attitudes of the loosen fissure bands (feasibility study)

Sequence Dip direction
(°)

Dip angle
(°)

Coordinates of mean
point (m)

Thickness
(m)

X Y Z

L1 275 28 758 726 1170 0.05

L2 275 28 810 700 1210 0.05

R1 85 26 82 688 1170 0.05

R2 85 26 42 664 1210 0.05

Table 8.5 Thermal parameters of the concretes in Xiaowan Dam (feasibility study)

Grade Adiabatic
temperature
rise ht (°C)

Thermal
diffusivity
a (m2/h)

Volumetric
weight
c (kg/m3)

Specific
heat
c (kJ/
kg °C)

Coefficient of
thermal
expansion
a (�10−6/°C)

Surface
exothermic
coefficient
b (kJ/m2 h °C)

C18040 ht = 30t/
(3.8 + t)

0.00319 2500 1.036 8.2 47.1

C18035 ht = 27t/
(4.0 + t)

0.0032

C18030 ht = 25t/
(4.0 + t)

0.0032
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construction period of dam. For the purpose of long term performance forecast,
according to the SL282-2003 «Design specification for concrete arch dams» the
annual variation of ambient temperature is fitted by the monthly average temper-
ature observed in the dam site. Using the observed data since December 13, 2005,
the local meteorological station provided the fitted annual variation of the ambient
temperature (with the correlation index q ¼ 0:991) in the formula

T ¼ 20:584þ 5:74� cos½0:516ðt � 6:7Þ� ð8:1Þ

where t = accumulated months since December, 2005.

8.2.4 Construction Procedure

(1) Dam foundation and abutment excavation

The excavation of the dam foundation and abutments is undertaken following the
sequential benches that

– Above the EL. 1030 m, 20 m for each cut bench;
– Below the EL. 1030 m, 10 m for each cut bench.

Altogether 19 cut benches are carried out.

(2) Dam body placement

Figure 8.5 shows the placement procedure of the typical dam monolith 22# (crown
cantilever).

Fig. 8.4 Monitored and fitted temperatures of the reservoir water
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(3) Cooling scheme

Both the metal (black) cooling pipes (coefficient of heat conductivity = 262.8
kJ/m h °C) and plastic (HDPE) cooling pipes (coefficient of heat conductivity =
1.66 kJ/m h °C) are employed. The cooling pipes are serpentinely layout, the space
between pipes are

– 1.5 m � 1.5 m (horizontal � vertical) in restraint zone (near the base); and
– 1.5 m � 3.0 m (horizontal � vertical) in non-restraint zone.

8.2.5 Instrumentation

The whole dam is monitored by the installation of 215 object points for deformation
(plumb line, diffraction alignment, geometric leveling, GPS), 208 object points for
stress/strain/temperature (differential resistor sensor), 145 object points for seepage
pressure (vibrating wire sensor). The accuracy and reliability of the data extracted
from the instrumentation system in the DSXAD are rigorously checked during the
manufacture and installation of the instruments by the Chinese National
Specifications (e.g. DL/T5211-2005 «Technical specification for dam safety mon-
itoring automation», SL268-2001 «Fundamental specification of equipment of
automation system for dam safety monitoring»).

In the evaluation of the dam performance hereinafter, the relative difference ‖e‖r
and absolute difference ‖e‖a between the observed and computed variables (e.g.
temperature, hydraulic head, deformation, stress) are defined

ek kr¼
dobservation � dcomputation

dobservation

����
����

jef ka¼ dobservation � dcomputation
�� ��

8<
: ð8:2Þ

where dobservation = observed variable; dcomputation = computed variable.

Fig. 8.5 Placement schedule of the crown cantilever dam monolith 22#
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8.3 Back Analysis of the In Situ Geo-Stresses
in the Dam Site

In situ geo-stress field is an important factor in the arch dam design with regard to
the abutment deformation and stability. To determine its magnitude and orientation
by field testing, much manpower and material resource are requested. Based on the
field readings, the stress regression method should be designed to determine the
in situ geo-stress field by means of regression method, least-squares method and
others (Fairhurst 2003). In recent decades, the research shows that the hybrid
artificial neural network (ANN) and FEM performs well towards the back analysis
of in situ geo-stress field using tested stresses (Yi et al. 2004). The ANN belongs to
computation intelligence (CI) prevalently used for nonlinear data mapping to fit the
complex relationship between inputs and outputs (vide Chap. 7). The mainstream
steps towards the back analysis of the in situ geo-stress field in Xiaowan Dam site
are briefly summarized as follows.

① Establish 3D regional FE model with effort to reflect joints, fractures and
terrain.

② Define a set of boundary load combinations for the regional FE model
corresponding to the tectonic activities.

③ For each boundary load combination, implement FE analysis to obtain
the stresses at the field testing points.

④ The computed stresses at the field testing points and the corresponding
boundary load combinations are grouped into training samples for the
ANN, in which the stresses are inputs and the boundary load combi-
nations are outputs.

⑤ The ANN training is carried out using the samples defined in step ④.
⑥ Input the stress readings by the field tests into the trained ANN leads to

the “best guess” of the boundary load combination.
⑦ Apply the “best guess” of boundary load combination to the 3D regional

FE model, the in situ geo-stress field outcomes as the initial condition in
the subsequent simulation of slope and dam abutment excavation.

8.3.1 In Situ Geo-Stress Tests

All the tests were conducted using stress relief method. Two-dimensional geo-stress
tests employ single borehole with dip angle of 5°–8°; Three-dimensional geo-stress
tests employ three crossed boreholes, whose dip angles are 5°–8°.

The in situ geo-stress test indicates that the maximum principal stress is nearly
SN trending at the shallow overburden, and shifted towards NWW at the depth of
the underground cavern (machine house) with maximum value 10–25 MPa.
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Table 8.6 Tested in situ geo-stresses at Xiaowan Dam site for back analysis

Point Overburden depth
(m)

Stress components (MPa)

rx ry rz syz szx sxy
r7 134.4 −2.90 −8.20 −6.60 2.80 −0.80 3.60

r104 100.7 −6.10 −6.80 −5.60 −3.50 3.80 0.10

r13 91.9 −6.90 −14.40 −8.40 −2.50 −3.30 −0.40

PD15 169.1 −8.40 −27.60 −12.50 −0.80 3.70 2.80

Machine
chamber 1

395.5 −17.80 −15.60 −19.90 5.90 −7.10 3.30

Machine
chamber 2

283.1 −11.10 −10.00 −13.70 2.40 −2.80 0.30

Machine
chamber 3

407.4 −15.10 −14.70 −16.50 3.60 −4.10 0.10

PD57-3 55.9 −5.13 −7.67 −5.61 0.99 −2.22 4.26

Fig. 8.6 Plan showing the layout of test points for in situ geo-stresses

Table 8.6 lists the three-dimensional in situ geo-stresses of the 8 object points
for the back analysis. They are all located in the fresh (intact) or slightly weathered
rocks (see Fig. 8.6).

8.3.2 Characteristics of the Computation

(1) Computation domain

The back analysis is carried out in a domain by dividing the dam site from north to
south in a length of 6500 m, from east to west in a width of 3000 m, the bottom
elevation is −300 m.

(2) Faults

The largest faults F5, F7 are discretized explicitly using the joint element with
thickness.
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(3) Boundary conditions

The eastern and northern sides are horizontally constrained meanwhile the bottom
is vertically (Z-direction) supported. On the western and southern sides, the linearly
distributed boundary pressures are exerted for the purpose to simulate the tectonic
action of the Earth crust, whose values are back analyzed.

(4) Physical and mechanical properties

Elided.

(5) FE mesh

The mesh for the back analysis in Fig. 8.7 is discretized using hexahedral ele-
ments of 8-nodes for rocks, and joint elements with thickness for faults F5, F7. It
contains 25,000 elements and 27,846 nodes.

8.3.3 Results and Discussions

Use is made of the 8 field test points (see Table 8.6), the in situ geo-stress field is
back analyzed with the optimal weight factors respect to gravity D = 1.57, EW
tectonic pressure U = 0.42 MPa, NS tectonic pressure V = 7.02 MPa.

Figures 8.8 and 8.9 show the distribution of geo-stresses on the sections across
the river stream. Table 8.7 lists the relative error of back analyzed geo-stresses with
regard to that of measured. The average error is approximately 18%.

Fig. 8.7 FE mesh for the
back analysis of in situ
geo-stresses
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Fig. 8.8 Contours of geo-stresses at the vertical section Y = 500 m across the river (Unit: MPa).
a r1; b r2; c r3
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Fig. 8.9 Contours of geo-stresses at the vertical section Y = 700 m across the river (Unit: MPa).
a r1; b r2; c r3
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8.4 Excavation and Reinforcement of the Dam Abutments

8.4.1 Dominant Factors Influencing the Deformation
and Stability of the Dam Abutments

(1) Abutment resistance bodies

There are four grade III faults (F11, F10, F5, F20) across the downstream of the dam
abutments, which may potentially affect the deformation and stability of the
abutment resistance bodies.

The erosion zones E8 located at the left abutment and E1, E4, E5, E9 located at
the right abutment, may influence the deformation and stability of the abutment
resistance bodies, too.

These discontinuities should be taken into account of in the design of deep
reinforcement scheme for the abutments.

(2) At the vicinity of dam abutments

The dominant factors adverse to the excavated slopes at the vicinity of abutment
surfaces are the low-dip joints of SN-trending, the high-dip joints and erosion zones
of SN-trending, and the EW-trending faults of steep-inclined (e.g. grade III faults F3
and F11).

These discontinuities might give rise to various unstable rock blocks. According
to the excavation layout and geological conditions, the major failure modes of
unstable blocks or their combinations are

– Toppling from the exposure surface into the excavated pit;
– Planar slip along the low-to-middle inclined structural planes towards the river

channel or excavated pit;
– Collapse or slip of the cut slope in front of the dam.

Table 8.7 Relative error of the back analyzed in situ geo-stresses

Point Back analyzed geo-stress
components (MPa)

Relative error

rx ry rz rx ry rz
r7 −2.90 −8.43 −6.74 0.001 0.027 0.021

r104 −5.32 −6.79 −7.36 −0.128 −0.001 0.315

r13 −9.22 −13.09 −8.92 0.337 −0.091 0.062

PD15 −7.15 −11.82 −10.51 −0.149 −0.572 −0.159

Machine chamber 1 −7.15 −13.18 −15.26 −0.598 −0.155 −0.233

Machine chamber 2 −8.01 −12.81 −13.11 −0.279 0.281 −0.043

Machine chamber 3 −7.62 −13.44 −16.77 −0.495 −0.086 0.017

PD57-3 −5.17 −7.81 −4.53 0.008 0.019 −0.192

8.4 Excavation and Reinforcement of the Dam Abutments 521



8.4.2 Characteristics of the Reinforcement Analysis

(1) Computation domain

The analysis is carried out for the domain enclosing the dam site, which is 1000 m
from north to south, 1600 m from east to west. Bottom restraints are imposed at the
EL. 700 m. Figure 8.10 is the plan showing the major discontinuities explicitly
simulated in the FE mesh.

(2) Excavation bench

All together 28 benches (20 m high for each) are excavated. Figure 8.11 is the plan
of the excavated bench surface. Figures 8.12 and 8.13 show the left and right
abutments in December, 2004.

(3) Layout of reinforcement schemes

1. Layout of the deep reinforcement within the dam abutments

After the systematic study on the 8 representative reinforcement schemes, the
scheme with shear keys + concrete replacement for the fault F11 + downstream
dam heel filet, is finally recommended and implemented. Figure 8.14 is the diagram
showing the layout of this reinforcement scheme in the right abutment at the EL.
1130 m.

Fig. 8.10 Major discontinuities explicitly simulated in the FE mesh
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Fig. 8.11 Diagram of the plan showing excavated bench surfaces

Fig. 8.12 Left abutment excavation (2004–12)
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Fig. 8.13 Right abutment excavation (2004–12)

Fig. 8.14 Diagram showing the final deep reinforcement scheme at the EL. 1130 m (shear
keys + concrete replacement for the fault F11 + downstream dam heel filet)
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2. Layout of the shallow reinforcement at the vicinity of abutment surfaces

After the systematic study on the 2 representative reinforcement schemes using both
the FEM and BEM (vide Chap. 13), the finial reinforcement scheme at the shallow
vicinity of abutment surfaces focused on both the construction period and operation
period, is proposed (see Fig. 8.15; Tables 8.8, 8.9 and 8.10). Altogether more than
60,000 fully grouted bolts and more than 8000 pre-stress stranded wire cables, are
installed.

(4) FE mesh (see Fig. 8.16).
(5) Physical and mechanical parameters

Elided.

Fig. 8.15 Plan showing the final shallow reinforcement scheme

Table 8.9 Parameters of pre-stress anchor cables of the final shallow reinforcement scheme

Pre-stress (MN) 6 3 1.8 1

Length (m) 80 30–60 30–50 30–45

Horizontal space (m) 4 4–6 5 5–6

Vertical space (m) 4 4–6 8–12 4

Table 8.8 Zoning of the final shallow reinforcement scheme

Zone A B1 B2 C D E1 E2 E3

Pre-stress cable (MN) 6 3 3 1.8 1 – – –

Full-grouted bolt U25 U25 – U25 U25 U32 U25 Random
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(6) In situ geo-stress field.

The in situ geo-stress field of the dam site has been back analyzed previously
(Sect. 8.3) in a fair large overlay domain to eliminate the boundary effects with
regard to the tectonic action distribution, but consequently the effects of small faults
of grade III and IV as well as the erosion zones are over looked. Therefore, towards
the computation of abutment deformation and stability, the secondary back analysis
using smaller domain taking into account of all important III and IV grade faults as
well as the erosion zones, is demanded. The boundary conditions in the form of
deformation or stress are specified using the corresponding results obtained in the
first phase of back analysis with the larger overlay domain (Qin et al. 2008).

Table 8.10 Parameters of fully-grouted bolts of the final shallow reinforcement scheme

Diameter U32 U25

Length (m) 9 3–6

Horizontal space (m) 2.5 2.5–3

Vertical space (m) 2 1.5–3

Note All the cables and bolts are installed at a downwards dip angle 15°

Fig. 8.16 FE mesh of the arch dam foundation and abutments (29,638 elements; 32,533 nodes):
bid design
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8.4.3 Results and Discussions

The benchmark scheme without reinforcement indicates that the abutment slope
fails at the 13th excavation bench down to the EL. 1245 m, when the convergence
in the viscoplastic iteration does not hold.

The finial reinforcement layout scheme performs well with respect to the
deformation and stability. Figure 8.17 plots the plastic zones on the excavating
surface, Figs. 8.18 and 8.19 display the accumulated displacement and the adjusted
stress at the EL. 1170 m after the completion of the abutments and foundation
excavation.

(1) Displacements

In general, the displacement is lager on the upstream slope than on the downstream
slope. Taking the left abutment at the EL. 1190 m for example, the upstream slope
deflection is 2.8 cm, whereas it is 1.6 cm on the downstream slope. They are all
directed towards the cut pit. Nevertheless, the displacements of the right abutment
are all directed towards upstream, particularly at the portion of higher elevation.
This is mainly attributable to the cut of the headrace intake for the underground
power house. At the EL. 1190 m the upstream slope deflection is 1.8 cm and
downstream slope deflection is 3.5 cm.

The excavation of the headrace intake slope for the underground power house
results in perpendicular-trending but upstream-shifted deflection, of which the
maximum displacement 8.6 cm emerges at the EL. 1190 m.

Fig. 8.17 Plastic zone on the excavating surface: final reinforcement scheme
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The plunge pool excavation exhibits typical unloading performance: the dis-
placements are all directed towards the river channel, but those of the left bank are
larger than the right bank. At the EL. 1050 m the maximum excavating induced
displacement is 9.8 cm.

Fig. 8.18 Accumulated displacements at the EL. 1170 m: final reinforcement scheme

Fig. 8.19 Principal stresses at the EL. 1170 m: final reinforcement scheme
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(2) Stresses

From the excavation surface, the EW-trending stress decays quickly due to the
unloading effect, whereas the NS-trending stress decays rather slowly. Higher stress
level emerges at the upstream portion of the headrace intake for power tunnels.

(3) Point safety factors

From the inside of mountain towards the exposure surface, the point safety factor
Kp defined in Eq. (4.215) decays, but it may be maintained at around 1.2–1.8 near
the slope surface. Therefore, the point safety on the shallow portion of the slope is
basically satisfied after the reinforcement.

(4) Plastic zones

The major plastic zones near the exposure surface appear at the convex portion of
the upstream slope near the left abutment at the EL. 1070 m, the left and right
slopes of the downstream plunge pool at the EL. 1050 m, the headrace intake slope
of the power tunnels at the EL. 1170 m, and the concave portion of the intake slope
near the fault F7. All these may bring about local failures during the cut con-
struction, and the random bolts are demanded in time.

8.5 Excavation Induced EDZ

8.5.1 General Description

At near the completion of the abutment and foundation excavation, it is found that
the in situ geo-stress near the river bed exceeds 30 MPa (20 MPa at the stage of
feasibility study stage), and there is an additional set of blind joints parallel to the
valley’s surface. These factors resulted in serious excavation relaxation in the dam
foundation. Figure 8.20 shows the cracking emerged on the excavation surface,
Fig. 8.21 shows the cracking before and after the excavation revealed by the
borehole camera within the river bed.

Fig. 8.20 Cracks on the excavation surface. a Cracks along the excavation surface; b cracks
perpendicular to the excavation surface
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The degradation of rock mass quality is found to be strongly time-dependent. In
Figs. 8.22 and 8.23, we find that

– As the going on of time, the quality of rock mass in the shallow layer is subject
to further degradation;

– The degradation depth of rock mass increases quickly within 60 days;

Fig. 8.21 Cracks revealed by
the borehole camera. a After
excavation; b before
excavation
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– The acoustic velocity of rock mass basically becomes stable after 180 days.

Degradation coefficient b and recovery coefficient d are defined to quantitatively
evaluate the degree of rock degradation and recovery

b ¼ Vp1�Vp2

Vp1

d ¼ Vp3�Vp2

Vp1�Vp2

(
ð8:3Þ

where Vp1 = velocity of longitudinal wave of the intact rock mass, m/s;
Vp2 = velocity of longitudinal wave of the rock mass after degradation, m/s;
Vp3 = velocity of longitudinal wave of the rock mass after recovery, m/s.

Consolidation grouting may enhance the homogeneity and raise the wave
velocity (see Fig. 8.22). In addition, along with the concrete placement of the dam,
the degraded rock mass is gradually compacted and recovered (see Fig. 8.23) under
the action of concrete weight.

Fig. 8.22 Acoustic velocity variation below the dam base (within 5 m)

Fig. 8.23 Typical deformation history of the dam foundation
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According to the field investigation (ultrasonic, borehole camera, etc.) along the
dam axis, the foundation relaxation mainly manifests below the EL. 975 m which
can be divided into three zones (see Fig. 8.24). The deformation and strength
parameters before and after the relaxation are listed in Table 8.11.

Fig. 8.24 Simplified diagram to the foundation relaxation below the EL. 975 m. a Plan; b vertical
section along the dam axis

Table 8.11 Mechanical parameters before and after relaxation (below the EL. 975 m)

E (GPa) c (MPa) f = tgu Relaxation zones

Before relaxation 20 1.8 1.40 –

After relaxation 11 1.0 1.15 Zone I

14 1.2 1.20 Zone II

18 1.8 1.43 Zone III
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8.5.2 Preparations for Analysis

Mixed hexahedral and tetrahedral elements are used in the discretization of the
foundation and abutments. In the FE mesh shown in Fig. 8.25, 4 faults (F5, F7, F10,
F11) and 4 alteration zones (E1, E8, E9, E10) are explicitly discretized by the joint
elements with thickness.

The excavation procedure is simulated as follows: above the EL. 1030 m, 20 m
for one excavation bench, below the EL. 1030 m, 10 m for one excavation bench.
Altogether 19 excavation steps are simulated using the algorithm considering EDZ
(vide Chap. 4).

8.5.3 Results and Discussions

(1) Spatial characteristics of the relaxation

First, the conventional nonlinear FE computation (without relaxation) simulating
the foundation excavation is conducted. Next, cross-reference the calculated tensile
strain distribution in the foundation and the investigated relaxation zones (using
ultrasonic, borehole camera, etc.), the permissible tensile strain is back analyzed as
ɛl = 0.015% for the hard rock. The relaxation analysis is further carried out fol-
lowing the flow chart in Fig. 4.12, to adjust the strain and stress fields within the
relaxation zones indicated by the maximum tensile strain criterion Eq. (4.88).

In Fig. 8.26, we find that the maximum tensile strain at the vicinity of the
excavation surface below the EL. 975 m is 0.04–0.05%, whereas above the EL.
975 m it is 0.02–0.03%. In the central portion of the foundation influenced by the
alteration zone E10, the tensile strain approaches 0.1%. This means that the risk of

Fig. 8.25 FE mesh of the
dam foundation and
abutments (370,145 elements;
156,282 nodes): construction
phase
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strong relaxation becomes higher and higher with the ongoing excavation down to
the river bed. It is also found that the excavating induced tensile strain decays with
the increase of the overburden rock depth, this means that the relaxation will occur
only at the vicinity of the foundation excavating surface.

Figure 8.27 shows the principal tensile strain and principal compress stress along
the vertical direction beneath the crown cantilever. Since the permissible tensile strain
for the hard rock is 0.015%, the conclusion can be made from Fig. 8.27a that the rock
below the elevation of 950.5 m (foundation surface) will be degraded down to a
maximum depth of 22 m. This judgment agrees well to the field observation.

Fig. 8.26 Contours of maximum principal strain (Unit: �10−5). a Plan; b vertical section along
the dam axis
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It also can be found from Fig. 8.27b that as the deterioration of the mechanical
parameters below the EL. 950.5 m (excavating surface), the stress at the shallow
portion undergoes interesting adjustment: At the EL. 950.5 m, the principal stress is
reduced from 10.2 MPa (initial stress) to 6.8 MPa (adjusted after relaxation);
However, when the overburden depth is over 17 m from the excavating surface
(EL. 932.5 m), the adjusted stress starts to exceed the initial stress; There is a point

Fig. 8.27 Maximum principal tensile strain and compressive stress beneath the crown cantilever.
a Principal tensile strain; b principal compressive stress

8.5 Excavation Induced EDZ 535



(overburden depth of 33 m from the excavation surface) at which the difference in
the adjusted stress and initial stress reaches maximum value (initial 12.6 MPa vs.
adjusted 15.0 MPa). After this point when the overburden depth keeps increase, the
difference in the initial stress and relaxed (adjusted) stress becomes smaller and
smaller. At the overburden depth of 100 m (EL. 850.5 m), they are nearly identical.

The above results concerning the rock relaxation portion, range and depth, as
well as the stress distribution characteristics, are all justified by the in situ
investigations.

(2) Temporal characteristics of the relaxation

The deformation arise from the relaxation exhibits significant time-dependent
characteristics, to which high attention has been focused on because it is hazardous
to the dam construction and operation.

Sliding micrometers are installed to monitor the foundation deformation. From
their readings, the back analysis is carried out to find the fluidity parameter c of the
foundation rocks: c = 2.1 � 10−5 (MPa day)−1 for the relaxed rock and
c = 20.5 � 10−5 (MPa day)−1 for the rest ones.

With the back analyzed fluidity parameters the deformation history can be well
predicted. Figures 8.28 and 8.29 present the vertical displacement histories at the
center of the cantilever dam section (dam monolith 22#), the monitored data by the
sliding micrometers are also given in these figures.

Figure 8.30 plots the predicted vertical displacement history according to the
back analyzed fluidity parameters if there were no dam concrete placement. It is
interesting to learn that the maximum vertical displacement u = 16 mm would be
asymptotically approached at the end of 2006. Since the dam concrete started to
pour at the end of 2005, when the vertical displacement only had completed a small
portion u = 4 mm, therefore the necessity of the study concerning the interaction
between the dam body and rebounded foundation during the dam concrete place-
ment, is highlighted.

Fig. 8.28 History of the vertical displacement at the EL. 950 m (0.5 m below the foundation
surface, ‖e‖r = 24%, ‖e‖a = 0.38 mm)
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8.6 Dam Concrete Placement and Reservoir
Impoundment

8.6.1 Generation of the Computation Meshes

To handle the multi-field issues involved in the dam, three computation meshes are
constructed with regard to the fields of temperature, seepage, and strain/stress,
respectively (see Fig. 8.31).

The mesh for the temperature field (see Fig. 8.31a) completely emulates the
temperature rise process of different dam monoliths. For this purpose the mesh is
strictly built using brick elements of 0.6–1.0 m thick. The temperature control
measures and ambient boundary conditions are inputted according to the field data
from the reports of surveillance and safety review.

Fig. 8.29 History of the vertical displacement at the EL. 947 m (3.5 m below the foundation
surface, ‖e‖r = 41%, ‖e‖a = 0.18 mm)

Fig. 8.30 Predicted history of the vertical displacement: without dam
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Fig. 8.31 FE meshes of the
dam and foundation/
abutments: construction
phase. a Temperature analysis
(448,966 elements; 505,958
nodes); b seepage analysis
(1058,610 elements; 791,986
nodes); c stress/strain analysis
(1,163,662 elements; 942,608
nodes)
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The appurtenant features taken into account of the mesh for the seepage field
(see Fig. 8.31b) include:

– Grouting curtains in the dam foundation and abutments;
– Drainage systems in the dam body, dam foundation, dam abutment and

downstream resistance body (rock); and
– Major faults and alteration defects.

The mesh for the stress/strain field (see Fig. 8.31c) emulates the geological
features as follows:

– Lithology, weathering, replacement and consolidation grouting of resistance
body rock, tunnel plugs and shaft plugs (concrete replacements) in the abut-
ments, are all exactly discretized;

– Three sets of rock joints, and systematic rock bolts are implicitly approached;
– Faults F7, F11, F10, F5 and E10 are explicitly approached;
– Relaxed rock zone in dam foundation induced by excavation (20 m deep) is

sub-divided into 3 layers (i.e. 0–2, 2–6 and 6–20 m);
– Interface between the concrete and rock, base joint at the dam heel, grout

curtains, and all galleries/tunnels, are approached explicitly;
– Dam body orifices, gate piers, main galleries, all the 43 transverse joints, and all

the pre-stressed anchor cables, are approached explicitly;
– Thermal-induced concrete cracks are embedded in the dam body according to

the time of their occurrence and identified spatial distribution;
– Mesh is so designed with element sizes around 1 m, in accordance with the

actual placing process of each dam monolith;
– Abutment excavation is implemented by 19 benches and the element thickness

near the foundation surface is controlled within 2 m, for the purpose to well
simulate the EDZ.

8.6.2 Back Analysis Strategies

The physical and mechanical parameters involved in the computation are numerous
while the observation object points in the instrumentation system and the samples
for the physical (laboratory and field) tests are limited, so dominant parameters
subject to the feedback adjustment should be carefully selected according to their
variation degree and impact on the performance of the structure (Chen et al. 2001):

– For the temperature field, the premier parameter being back analyzed is the
adiabatic temperature rise with greater variation and the second parameter is
related to the temperature control measures (e.g. cooling water);

– For the seepage field, the premiere parameter being back analyzed is the diffi-
cultly gauged hydraulic aperture of rock joint and the second parameter is the
joint connectivity;
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– For the strain/stress field, the premier parameter being back analyzed is the
deformation modulus with remarkable consequence and the second parameter is
the cohesion with greater variation;

– The in situ geo-stress field regression is firstly performed on larger area based on
the tested values but ignoring most structural planes, then more structural planes
are incorporated and the size of computation domain is reduced for the sec-
ondary regression, so as to perform the cross-reference between the calculated
and measured values of the in situ geo-stress locally influenced by the existence
of these structural planes. In the secondary regression, the stresses or/and dis-
placements extracted from the precedent larger domain are interpolated to the
successive smaller domain as the input boundary conditions;

– After the launch of dam foundation excavation, the back analysis of rock
parameters should be focused on the EDZ near the excavation surface (Chen
et al. 2012a);

– After the launch of dam concrete placement, in addition to continuously
focusing on the spatial-time evolution characteristics of the EDZ, the back
analysis and adjustment of the mechanical parameters of dam concrete should be
put on agenda in time.

The Artificial Neural Network (ANN) algorithm is combined with the FEM to
create the connection between the monitoring data and the parameters that signif-
icantly influence the fields of temperature/seepage/deformation by establishing a
highly nonlinear mapping model to accomplish the back analysis (vide Chap. 7).
On this basis, the forecast of the structural performance and corresponding safety is
carried out. The necessity and possibility to revise the design schemes and/or
construction techniques, are further feedback analyzed.

8.6.3 Iterative Actions of Dam Foundation and Dam Body

The performances of the dam foundation and dam body are interconnected,
showing spatial heterogeneity in addition to obvious temporal evolution features
according to the results provided by the computation and instrumentation.

– The stresses around the two abutments are basically symmetrical.
– During the concrete placement period and the initial reservoir impounding,

higher compressive stress emerges near the dam heel. Meanwhile lower com-
pressive stress, even with locally tensile stress, emerges near the dam toe. The
bedrock undergoes compressive deformation and recovery of rock quality,
particularly near the dam heel.

– With the completion of dam concrete placement and the rise of impounding
reservoir level, the compressive stress near the dam heel is gradually declined
with locally tensile stress. Meanwhile compressive stress near the dam toe
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gradually climbs. During these periods, the rock mass exhibits certain degree of
re-degradation near the dam heel.

– Under the normal operation, the characteristics of foundation rock mass show
spatial-time periodical variation along with the periodical fluctuation of reser-
voir water level, but the extent of such fluctuation is negligible.

Figure 8.32 exhibits the histories of the principal compressive stresses on the
dam toe at the EL. 1010 m where it bears greater load. It is apparent that

– Before the dam concrete is placed up to the EL. 1210 m and the water level rises
to the EL. 1125 m, the stress level on the abutment is low;

– As the dam concrete placement goes on and the water level rises, the load on the
abutment increases gradually;

– When the dam concrete is placed up to the crest and the reservoir water rises to
the normal storage level (NSL), the maximum principal compressive stress in
the left abutment is approximately −7.0 MPa and that in the right abutment is
approximately −6.2 MPa.

8.6.4 Spatial-Time Characteristics of the Dam Body

(1) Temperature

The temperature of concrete varies along with the concrete placement and the
implementation of temperature control measures. The longest placing block for
Xiaowan Dam is almost 100 m. At the initial stage of dam concrete placement, the
temperature control measures were determined in accordance with the routine algo-
rithmic method specified in the existing design codes. However, the actual temper-
ature pickup is excessively high in the period between the end of the Stage I cooling
and the beginning of the Stage II cooling. In addition, the temperature drop range and

Fig. 8.32 Principal compressive stresses on the dam toe at the EL. 1010 m
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rate are very sharp during the Stage II cooling. These phenomena are revealed by both
the computation and thefield observationwith the help of theDSXAD (see Fig. 8.33).

After the timely adjustment of temperature control measures in light of the actual
spatial-time evolution of dam body temperature and the cracking mechanism, the
temperature field has been controlled effectively. To be specific, the temperature
basically remains unchanged when the Stage I cooling is over and drops steadily
along with the Stage II cooling, and the temperature picks up at a certain degree
when the Stage II cooling is over and the final stabled temperature is reached
around 19 °C (see Fig. 8.34). As a result, the principal tensile stress during the
construction period is limited within 0.5–0.8 MPa at the most locations (see the
stress envelope over the EL. 1110 m in Fig. 8.45).

Fig. 8.33 Typical temperature history: routine design of temperature control measures (‖e‖r =
8.6%, ‖e‖a = 1.5 °C)

Fig. 8.34 Typical temperature history: after the adjustment of temperature control measures
according to the DSXAD
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(2) Seepage

Figure 8.35 draws the isopotential contours with respect to hydraulic head under
the normal storage level (NSL) 1240 m. It can be seen that the contours near the
grout curtain are concentrated, meanwhile the hydraulic head declines significantly
beneath the cushion pool. This means that the grout curtain and the drainage system
play important roles in the control of hazardous seepage flow.

Figure 8.36 cross-references the computed and observed hydraulic heads on the
EL. 950.5 m of the dam monolith 22# (December 16, 2008 is the first day of
reservoir impounding). It demonstrates that they agree with each other well.

(3) Uplift distribution on the dam base

The uplift on the dam base is usually not important for arch dam design. However,
due to the intensive EDZ, the local shear resistance of the dam base becomes one of
the most concerns, which is associated closely with the uplift on the dam base.

Figure 8.37 shows the uplift distribution on the EL. 948.5 m under the crown
cantilever section (dam monolith 22#), where the uplift is expressed by the height
of water column. The dashed line represents design uplift, where H1 is the head
water level and H2 is the tail water level. The solid line represents computed uplift.
We find that

– The distribution pattern of both the design uplift and the computed uplift is
consistent; and

– The computed uplift is lower than the design uplift on the whole.

Fig. 8.35 Isopotential contours of the crown cantilever dam monolith 22# under the NSL 1240 m
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These demonstrate that the design uplift on the dam base is adequately stipulated
and it contributes to certain additional safety margin with regard to the local shear
resistance along the dam base.

(4) Seepage flow

To design drainage equipments and to select pump capacity economically and
efficiently, the seepage flow evaluation of each specified area is undertaken.
Table 8.12 lists the seepage flow through the whole project area under NSL
1240.0 m by the computation.

It is worthwhile to indicate that the computed flow discharge is nearly twice as
large as that of gauged. After the comprehensive comparison of the computed and

Fig. 8.36 Computed and observed hydraulic heads (EL. 950.5 m, dam monolith 22#,
‖e‖r = 9.5%, ‖e‖a = 19 m)

Fig. 8.37 Uplift on the EL. 948.5 m under the crown cantilever section (dam monolith 22#)
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gauged results concerning the seepage flows through different areas in addition to
that through the whole project area, it is confirmed that

– The effectiveness of seepage control installation is guaranteed, and;
– The permeability coefficients of the foundation rock masses might be a bit of

over-estimated in the computation.

(5) Deformation

Since the vertical plumb used for the displacement monitoring of the dam body is
installed and put into operation lag in the concrete placement, the measured dis-
placement is solely relative one while the calculated one may be either relative or
absolute (see Fig. 8.38). However, when a spatial-time relation is built using the
calculated and monitored relative displacements, the consistence and agreement
may be verified. Therefore, it may be concluded that the displacements and their

Table 8.12 Seepage flow
discharge under NSL 1240 m
(m3/day)

Flow discharge computed Flow discharge gauged

467.14 240.3

Fig. 8.38 Computed and
monitored radial
displacements of the crown
cantilever (dam monolith 22#)
under NSL 1240 m
(‖e‖r = 13.6%,
‖e‖a = 16 mm)
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distribution pattern of the dam body may be well interpreted by the computation
results, under the premise that full consideration is given to the spatial-time evo-
lution characteristics of foundation rocks and dam concrete.

The most remarkable deformation features of Xiaowan Dam are summarized
below.

– It moves toward upstream at the beginning along with the concrete placement of
the dam body. When the dam concrete placing height is about 200 m, the
deformation toward upstream reaches the maximum (about 18 mm);

– As the reservoir impounding and the dam concrete placing go on, the defor-
mation along the river course gradually tends to the downstream direction;

– When the impounding is proceeded up to the normal storage level, the maxi-
mum displacement (about 138 mm) appears at near the EL. 1210 m (see
Fig. 8.39);

– It exhibits periodical fluctuations after the project is putted into normal
operation.

(6) Stress

When the concrete of Xiaowan Dam is placed up to near the EL. 1180 m, the dam
overhanging reaches the maximum. As a result, the stress emerging in the dam
body is compressive at the dam heel and tensile at the dam toe (see Fig. 8.40a).
When the concrete is placed to the dam crest (EL. 1245 m) and the water level rises
to the EL. 1181 m, the dam body is in an ideal stressing state, namely the maximum
compressive stresses at the dam heel and dam toe are limited within −4.0 MPa (see
Fig. 8.40b). When the water level continues to climb, the compressive stress at the
dam heel reduces but that at the dam toe climbs. When the water level reaches the
normal storage level, the compressive stress at the dam toe reaches its maximum
and a certain tensile stress manifests at the dam heel (see Fig. 8.40c).

A structural-induced joint (i.e. bottom inducing joint, or base joint) is installed
along the heel of Xiaowan Dam at the maximum height of 7 m above the dam base.
The dam body below the joint is placed monolithically and strengthened with the
upstream and downstream fillet concrete (see Fig. 8.31a). The relief effect of tensile
stress at the dam heel is remarkable: the maximum tensile stress is concentrated at

Fig. 8.39 Displacements along the river course of the crown cantilever (dam monolith 22#)
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the elevation where the induced joint is installed in lieu of at the dam base. As the
ongoing of the dam concrete placement followed by the reservoir impoundment and
until the normal operation, the stress at the induced joint varies gradually (see
Fig. 8.41). When the reservoir water reaches the normal storage level (EL.
1240 m), the vertical stress close to the upstream dam face and surrounding the
induced joint is nearly null (see Fig. 8.42).

To sum up, the stressing state of the double-curvature arch dam varies all the
time in the history from the concrete placement to the normal operation, showing
remarkable spatial-time characteristics. The dam exhibits two crucial periods,
namely

– When the reservoir is completely empty during construction. The maximum
compressive stress at the dam heel is smaller than the allowable compressive
strength and the tensile stress at the dam toe is limited within the allowable
tensile strength of the dam concrete, and;

Fig. 8.40 Stresses of the crown cantilever (dam monolith 22#). a Pouring elevation 1188 m,
reservoir level 1028 m; b pouring elevation 1245 m, reservoir level 1181 m; c pouring elevation
1245 m, reservoir level 1240 m

Fig. 8.41 History of vertical stress on the induced joint (‖e‖r = 48%, ‖e‖a = 2.6 MPa)
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– When the reservoir is at NSL 1240 m. The maximum tensile stress is centralized
at the elevation where the induced joint is installed rather than at the dam base,
and the maximum compressive stress on the downstream dam toe is under the
control by the allowable strength value.

The stress field is smoothly and symmetrically distributed at other periods, and
in general the dam is under three-dimensional compression. These spatial-time
features revealed by the DSXAD fully demonstrate that the double-curvature
structure of Xiaowan Dam is under an optimal working state, and the dam design/
construction is very successful.

8.6.5 Key Issues Solved with the Help of the DSXAD

(1) Foundation relaxation

1. Safety calibration

The study indicates that after the rock relaxation due to foundation excavation,
although the overall stability of the dam/foundation system is not seriously affected,
yet the local shear resistance at the shallow depth will be remarkably undermined,
which in turn, would be hazardous to the seepage control system of the dam
foundation.

According to the (SL282-2003) «Design specification for concrete arch dams»,
both the point and surface safety factors (Kp2 and Kf2) postulating friction mech-
anism are stipulated in the local shear calibration, i.e.

Fig. 8.42 Stresses of the crown cantilever (dam concrete placed to the crest EL. 1245 m; NSL
1240 m)
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The allowable safety factors are [Kp2] = 1.1 and [Kf2] = 1.5, respectively.
By the computation, it is found that the point and surface safety factors are

reduced by more than 30% due to the relaxation (see Fig. 8.43; Table 8.13).

2. Countermeasures

① Excavation and clearance. Apart from conventional excavation and
clearance, the additional excavation and clearance are undertaken con-
sisting of the removal of obviously relaxed rock, fragrant rock cut by
open joints, and the thin layered rock.
The depth of the additional foundation clearance is approximately 1 m,
with the locally deepest of 3 m. It is worthwhile to mention that
according to the analysis, too deep of additional clearance will trigger
more serious and deeper relaxation, therefore it is wise to treat the EDZ
embedded deeper by bolting, then to pour the concrete monolith as early
as possible, to stop the residual time-dependent relaxation.

② Consolidation grouting. After the additional foundation clearance, to
compensate the reduction in the deformation modulus of the relaxed rock
shallowly embedded under the dam base, the meticulous and high
quality consolidation is carried out after the placement of base concrete,
by grouting through boreholes arranged in a pattern of grid. The

Fig. 8.43 Point safety factor Kp2 on the EL. 948.5 m under the dam monolith 22#. a Before
relaxation; b after relaxation; c after treatment

Table 8.13 Surface safety
factor Kf2 on the EL. 948.5 m
under the dam monolith 22#

Case Friction safety factor Kf2

Before relaxation 1.98

After relaxation 1.43

After treatment 2.17
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minimum overlay concrete monolith is over 5–6 m for the dam mono-
liths on the river stream, and 4.5 m for the dam monoliths on the
abutments. The split-spacing method by reducing the grout hole interval
is followed until the final spacing (2–4 m), which should be determined
during grouting operations on the basis of the results being monitored
from these operations.
The grouting quality is controlled by the acoustic velocity. The accep-
tance standard of the velocity of longitudinal wave through rock mass
after grouting Vp3 is: depth 0–2 m, Vp3 = 4750 m/s; depth 2–5 m or
even deeper, Vp3 = 5000 m/s.

③ Reinforcement. Bolting is employed in the dam foundation to raise its
shear resistance. Fully grouted, passive dowels comprising steel bars are
installed in the grouting holes under the dam monoliths 12#–32#. These
steel bars perform as rigid shear pins across any planes of discontinuities
in the rock, in this way to improve the shear resistance along the dis-
continuities in three different mechanisms: tension force in the bolt,
friction as a consequence of the increase in the normal stress, and dowel
effect (Egger 1992; Chen et al. 2012b). The rock bolts (3U32) used in
Xiaowan Dam foundation is 12 m long, of which 9 m is in the rock.
Altogether 6720 rock bolts are installed.

In recent years, pre-stress stranded anchor cables installed in the abutment slopes
at the downstream vicinity of the arch dam toe, are widely exercised in China and
the other countries (Chen et al. 2015). The pre-stress reinforcement prevents or
limits the hazardous deformation and dilation of the foundation rock that might lead
to failure.

The layout of these pre-stress cables is dependent on the computation results.
They are all dispersion-type tensile cables, whose parameters are given in
Table 8.14.

3. Effect of the treatment countermeasures

The average velocity Vp3 of longitudinal wave through the rock mass after grouting
is higher than 5000 m/s, this means that the grouting quality reaches the design
target.

The immediate concrete placement after the additional foundation clearance is
justified as a rather wise decision, to control the evolution of dam foundation

Table 8.14 Parameters of pre-stress anchor cables installed at the dam toe

Cable
capacity (kN)

Installation
elevation (m)

Number
(unit)

Borehole
depth (m)

Inclination Dip
angle
(°)

6000 965–1085 366 41–80 From dam toe toward
upstream

60–78

4000 1021–1142 136 40–65 From dam toe toward
upstream

46–60
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relaxation effectively (see Fig. 8.44). The concrete with a thickness of about 10 m
may constrain the rebounding of dam foundation rock mass at the riverbed dam
monoliths, whereas that with a thickness of about 20–30 m may constrain the
rebounding of dam foundation rock mass at the bank slope dam monoliths. When
the height of the concrete monolith is raised up to 30–40 m, the upward rebounding
deformation is totally stopped and followed with a downward re-compression
deformation. However, the continuous up-rise of the foundation causes somewhat
early age cracking in the base concrete. This gives us a new lesson that more
reasonable placement time should be further studied, to make a good compromise
between the requirements of relaxation control and concrete cracking prevention.

The safety factors after the treatments are shown in Fig. 8.43c and Table 8.13
(row 4), it is clear that the shear resistance is improved considerably by the fore-
going countermeasure.

(2) Dam cracking

1. Scenarios of dam cracking

In the early batch of dam concrete designed according to the conventional speci-
fications, the spatial gradient and temporal variation of temperature cause high
tensile stress—as high as 1.2–2.2 MPa (see the principal tensile stress envelope
below the EL. 1110 m in Fig. 8.45). Since the actual tensile strength of the dam
concrete is merely about 1.4 MPa, therefore temperature-induced cracks manifested
and extended significantly during the early phase of dam concrete placement
(Fu et al. 2011; Wang et al. 2011). The chemical grouting treatment was undertaken
for these temperature-induced cracks immediately after their detection, meanwhile

Fig. 8.44 Vertical displacement history at the EL. 950 m (0.5 m below the base) (‖e‖r = 71.2%,
‖e‖a = 2.8 mm)
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the new, high-quality post-cooling scheme was feedback analyzed and designed for
the later batch of dam concrete, both under the guidance of the DSXAD.

The tensile stresses in cracks are gradually re-compressed (see Fig. 8.46) as the
ongoing of the continuously dam concrete placement and reservoir impoundment.
At the NSL, the cracks are tightly closed. For this reason, the higher operating water
level, the higher stability conditions attains for the dam cracks.

In addition to help the successful control of the occurrence of new
temperature-induced cracks in Xiaowan Dam, the following understandings are also
provided by the computational results:

Fig. 8.45 Envelope of the tensile principal stresses and cracking of the dam monolith 22#.
a Cracks; b envelope of the tensile principal stresses

Fig. 8.46 History of the normal stress on the 24# crack
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– The routine way suggested in the design codes/specifications cannot well dis-
play the thermal stress in the arch dam with respect to its spatial-time evolution
during the construction process. Particularly, the conventionally calculated
tensile stress is rather under-estimated;

– For the high arch dam, an allowable safety factor 1.3–1.8 against cracking
stipulated in the design specifications is not sufficient when the design param-
eters are determined using wet-screened concrete tests;

– At present, the test method is unable to accurately trace the whole heat releasing
process of concrete, so exact judgment is difficultly made concerning the
hydration heat releasing and temperature field evolving of the concrete, par-
ticularly in the stage of temperature drop;

– The creep index and the coefficient of stress relaxation (approximately taken as
0.5) that are obtained from standard laboratory tests and suggested by the design
codes/specifications, are under-estimated.

2. Risks and countermeasures for dam cracking

To demonstrate the computation precision with respect to the temperature cracks
and to their stability under higher water levels, a number of typically monitoring
object points are selected and the computational results are cross-referenced with
their readings.

Figures 8.47 and 8.48 show the compressive stresses of two typical points on the
interface of dam and foundation. The point A is located at the EL. 950.5 m below
the dam monolith 22#, which is in the middle of the river bed. The point B is
located at the EL. 1004 m below the 15# dam monolith, which is on the right bank
abutment. Figures 8.49 and 8.50 show the relative displacements along the river
course of two typical points in the arch dam. The point C is located at the EL.
1010 m in dam monolith 22#. The point D is located at the EL. 1100 m in dam
monolith 15#. It can be found that the computed results agree the monitored
readings well, which validates the reliability of the computation.

Fig. 8.47 History of the compressive stress at point A (‖e‖r = 23%, ‖e‖a = 0.81 MPa)
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Although there are no readings to pinpoint the cracking initiation and its early
propagation, the computation results related to the initiation and open/closure process
of the cracks generally agree with the early inspection of engineers. Further verifi-
cation with regard to the crack initiation and early propagation by the computation
may be indirectly provided by the instrumentation readings from the object points
installed on the transverse joints between dam monoliths. A typical point E located at
the EL. 960 m on the transverse joint 22# is selected for this purposewhose computed
and monitored open/closure is cross-referenced in Fig. 8.51. This transverse joint
experienced a complicated open/closure process shortly after the concrete pouring,

Fig. 8.48 History of the compressive stress at point B (‖e‖r = 28%, ‖e‖a = 0.92 MPa)

Fig. 8.49 History of the relative displacement along river course at point C (‖e‖r = 4%,
‖e‖a = 0.6 mm)
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then followed with a continuous open process during the second stage post-cooling,
and finally a steady state was reached after the joint closure grouting.

The risks of further crack propagation during the later phase construction,
reservoir impoundment, and service under NSL, are calibrated with the help of the
Stress Intensity Factors (SIFs KI, KII, KIII) in the fracture mechanics (Chan et al.
1970; Linsbaurer et al. 1989a, b; Dhondt 1998).

Figure 8.52 shows the evolution of the SIF on the point F (EL. 1010 m) located
at the lower crack tip in the dam monolith 21#. KI exhibits a sharp drop shortly after
the tip element cracks, afterwards it rebounds gradually. However, when the dam is
poured to the EL. 1150 m, KI begins to drop again. After the chemical grouting,

Fig. 8.50 History of the relative displacement along river course at point D (‖e‖r = 25%,
‖e‖a = 1.5 mm)

Fig. 8.51 Open/closure history of the crack at point E (‖e‖r = 11%, ‖e‖a = 0.26 mm)
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KI continues to drop slowly. The history of KII is similar to that of KI before the
dam is poured to the EL. 1150 m, but after that KII continues to mount. The
chemical grouting slows down the rise of KII remarkably. The evolution of KIII is
opposite to that of KII, and the value of KIII during the reservoir impounding is
much smaller than those of KI and KII. Since all these three SIFs do not exceed the
fracture toughness of the dam concrete, i.e. 1.5 MPa m1/2, this crack will be stable
during the whole reservoir impoundment and service periods.

Figure 8.53 displays the history of the SIF on point G (EL. 980 m) located at the
lower crack tip in the dam monolith 25#. The evolution of KI is similar to that of
KII. They all rapidly drop to zero shortly after the tip element cracks, then they
maintain a small value all along. Therefore, this crack also will be stable during the
water impounding process and in the service period.

Fig. 8.52 History of the stress intensity factor at point F

Fig. 8.53 History of the stress intensity factor at point G
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According to all of the analyses concerning the SIFs, the most significant con-
clusion is made that the cracks in Xiaowan Arch Dam are stable during the water
impounding process and service period. This has been verified by the monitored
data during the reservoir impounding and the normal operation since December 16,
2008 (the first day of reservoir impounding).

8.7 Concluding Remarks

The concept of spatial-time evolution of Xiaowan Arch Dam is comprehensively
introduced into the whole computational procedure. Following the progress of
construction, the dynamic input of the parameters related to structure growth,
temperature field, permeability field and deformation/stress field, as well as their
coupling via actions, are studied in an intention to explore the performance of high
arch dams. The Digitized System of Xiaowan Arch Dam (DSXAD) is then for-
mulated by the combination of the instrumentation system, the spatial-time simu-
lation, and the engineering judgment, which may be applied to describe the
evolution of the arch dam during its construction period as well as service period. It
has been fully demonstrated that this double-curvature structure is in an optimal
working condition under huge hydraulic thrust, and the design/construction is very
successful (Fig. 8.54).

In the execution of Xiaowan Arch Dam, a series of difficult technical issues,
such as the dam foundation relaxation and dam body cracking, are successfully
solved with the help of the DSXAD. Through these practices important theoretical
insights are obtained and a new milestone for the high arch dam construction in
China is founded. In addition, these valuable experiences will provide a solid base
for the further revision and improvement of related design codes and specifications.
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Chapter 9
Fundamentals of the Block Element
Analysis

Abstract In this chapter, the principles and basic algorithms of the block element
analysis (BEA) are presented, to show how a practical method in computational
geomechanics may be inspired and established through a simple engineering
problem. An attempt to improve the limit equilibrium method (LEM) for a more
rational solution of rock wedge stability in slope gives rise to the consideration of
the deformation characteristics of slip planes. The governing equations for the block
system are formulated by taking into account of the force and moment equilibrium
condition for rigid blocks, the deformation compatibility condition between blocks,
and the elasto-viscoplastic constitutive relation of discontinuities. Since the seepage
flow imposes a remarkable influence on the stability of rock masses, the interest is
further directed to establishing a seepage analysis algorithm competent to the BEA.
With the basic assumption that the seepage is merely permitted in discontinuities
whereas the rock blocks are impervious, and use is made of the messages provided
by the block system identification, the variational function of the seepage flow in
discontinuity network can be automatically discretized and solved. Two engineer-
ing application cases related to the natural and cut slopes demonstrate unique merit
of the BEA, namely, it possesses both the reliability of the FEM and the simplicity
of the LEM.

9.1 General

In the early 1980s, due to a number of unexpected slope failure accidents encoun-
tered in the engineering consultant works, the author was attracted to a kind of
classical and simple slope problem—rock wedge stability. An attempt to improve
the limit equilibrium method of rigid body had given rise to the consideration of the
deformation characteristics of slip planes through discontinuities (Chen 1984). Later,
the idea was developed into the multi-blocky system as “Block Element Analysis”
(BEA), with the assumption of face to face contact between blocks. The governing
equations for the blocky rock system were formulated by taking into account of the
force and moment equilibrium condition for rigid blocks, the deformation
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compatibility condition between blocks, and the elasto-viscoplastic constitutive
relation of discontinuities (Chen 1987, 1992; Chen et al. 1988). The methodology
was further expanded into the areas of reinforcement analysis, stochastic analysis,
seepage analysis, hybrid analysis, and dynamic analysis (Chen 1991, 1993a; Chen
et al. 1994, 2000, 2010; Wang et al. 2001). Towards the systematical and practical
demand of hydraulic structures, the automatic identification of multi-block system
for complicated domain with irregular ground surface, drainage and grouting cur-
tains, reinforcement components, etc., had been developed, too (Chen et al. 2002).

After the displacement in each block being interpolated by a set of polynomial of
any order, the method was finally generalized into the area where the complicated
deformation pattern in rock blocks as well as at discontinuities, can be
incorporated (Chen 1993b, 1994). A more refined BEA has also be implemented by
taking into account of the rock block deformations using hierarchical refinement of
p-version, in which an overlapped hierarchical element contains a deformable block
(Chen et al. 2004).

The BEA has been recommended by the DL/T 5353–2006 “Design specification
for engineering slopes in water resources and hydropower project”.

9.2 Stability Problems of the Rock Wedge in Slope

Let’s start from the basic stability problem in the slope engineering—a rock wedge
with potentiality of slide on its two structural planes. Although the limit equilibrium
method (LEM) is very useful in the routine stability analysis of slope due to the
simplicity and the experiences accumulated in many years of applications, yet it has
certain limitations: the deformation of the rock is neglected; and the safety factor
could be overestimated when the slip surface consists of equal to or more than two
discontinuities. Postulations concerning the stress state on the slip surface often
although not always, have to be employed to make the problem statically deter-
minate (Chan and Einstein 1981; Chen 1984).

9.2.1 Limit Equilibrium Method for the Wedge Stability
Analysis

Figure 9.1a shows a rock wedge which possesses the potentiality of slide along the
intersecting line CD included by the two discontinuity planes. The LEM of rigid
body has been widely exercised in the stability analysis of such wedge in slope
engineering. However, since the LEM has overlooked some important factors
undermining the stability of rock wedge, its reliability is suspicious because
sometimes it will lead to unsafe judgment on the wedge’s stability. Indeed, a higher
permissible (allowable) safety factor in the design can be employed to overcome
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this drawback, but we still feel no full confidence in whether the stability safety is
appropriately guaranteed.

Assume the load E includes an angle c1 with the line CD and an angle c with the
line P (see Fig. 9.1b, c). The load is resolved into the S component along CD and
the N component perpendicular to CD by the formulas

S ¼ E cosc1
N ¼ E sin c1

�
ð9:1Þ

The component N forms an equilibrium force system with the reaction forces R1

and R2 on the slip planes. These reactions R1 and R2, in turn, can be resolved into
the shear forces T1 and T2 as well as the normal forces N1 and N2 on the slip planes
(see Fig. 9.1d)

N1 ¼ sinðh2 � cÞ cosða01 � h1Þ= sinðh1 þ h2Þ
N2 ¼ sinðh1 þ cÞ cosða02 � h2Þ= sinðh1 þ h2Þ
T1 ¼ sinðh2 � cÞ sinða01 � h1Þ= sinðh1 þ h2Þ
T2 ¼ sinðh1 þ cÞ sinða02 � h2Þ= sinðh1 þ h2Þ

8>><
>>: ð9:2Þ

Fig. 9.1 Diagram to the stability analysis for a rock wedge in slope
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Denoting A1; A2; f1; f2; c1; c2 as the areas, the friction coefficients and the
cohesions of the slip planes 1 and 2, respectively, then the safety factor against
sliding is calculated by the formula

Kf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN1f1 þA1c1Þ2 � ðKf T1Þ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN2f2 þA2c2Þ2 � ðKf T2Þ2

q
S

ð9:3Þ

Two basic problems arise from the above equations.

➀ Since the angles h1 and h2 are unknown, so the reactions T1, T2, N1, N2

are also unknown, therefore Kf is actually unsolved. It is normally
postulated in the engineering practice that

h1 ¼ a01
h2 ¼ a02

�
ð9:4Þ

This assumption turns out

N1 ¼ N sinða02 � cÞ= sinða01 þ a02Þ
N2 ¼ N sinða01 þ cÞ= sinða01 þ a02Þ
T1 ¼ T2 ¼ 0

8<
: ð9:5Þ

and we have

Kf ¼ N1f1 þA1c1 þN2f2 þA2c2
S

ð9:6Þ

Equation (9.4) is the well known “normal resolution assumption” (Londe 1965)
and is equally to assume that T1 and T2 perpendicular to the slip direction are zero,
in this manner the calculated Kf by Eq. (9.6) is larger than that by Eq. (9.3), i.e.
there is the danger in overestimating stability factor.

➁ In the deduction, only the condition of force equilibrium has been taken
into account. Overlooking of momentum will lead to unsafe calculation
outcomes, too (Chan and Einstein 1981).

A number of methods for minimum safety factor such as the “partition method”
(PM) (Guzina and Tucovic 1969; Copen et al. 1977), had been proposed for the
improvement. Unfortunately, they are normally too conservative, in some cases the
safety factor calculated by Eqs. (9.1) and (9.6) will be several times larger than the
“minimum safety factor” (Chen 1984).
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9.2.2 Inspiration from the Finite Element Analysis

To throw a light in the problem about whether the shear forces T1 and T2 exist or
not, use may be made of the finite element method. For example, Goodman et al.
analyzed the elastic stress distribution on the slip planes of wedge (Goodman et al.
1968; Mahtab and Goodman 1970). However, to understand the stress state on the
slip planes under limit equilibrium condition, a non-linear analysis is desirable.

Typical rock wedges studied by the elasto-viscoplastic FEM (Chen 1984, 1990)
leads to the following findings.

➀ The relationship between the stress state on the slip planes and the rock
properties of the wedge and foundation is not significant. Even if the
elastic modulus and strength parameters become very large, i.e., the
wedge and foundation are actually rigid bodies, the stresses on the slip
planes only undergo a minor variation.

➁ The main influencing factors towards the stress state on the sliding
planes are

– The angle a1 þ a2 formed by the two slip planes. If the other parameters are
fixed, the smaller of a1 þ a2, the larger of T1 and T2. When a1 þ a2 approaches
to 180°, both the T1 and T2 approach to zero.

– The deformation of the slip planes characterized by the ratio of normal stiffness
to tangential stiffness R ¼ kn=ks. If the other parameters are fixed, the larger of
R, the smaller of the T1 and T2. When R approaches to infinitely large, both the
T1 and T2 approach to zero.

– As the strength parameters of the slip planes are reduced until the wedge reaches
limit equilibrium state, T1 and T2 are reduced, too. But they will not approach to
zero, i.e. the shear forces T1 and T2 still exist in the limit equilibrium state, in
other words, the “normal resolution” is not correctly postulated.

9.2.3 Improvement of the Limit Equilibrium Method

The FEM is a more suitable computation tool towards the stability analysis of rock
wedge in slope, but its pre-and post-processing is much more complicated than the
classical LEM, especially in 3-D situation where a slope contains a large number of
wedges or rock blocks. Can we look for a new method which possesses both the
merits of the FEM’s reliability and the LEM’s simplicity?

It has been previously revealed by the elasto-viscoplastic FEM that the main
influence factors to the stress state on the slip planes are the geometry and the
deformation characteristics of the slip planes themselves. In the wedge’s case, if the
rock slope fails by the sliding along discontinuities, the rock block’s characteristics
plays minor role in the stability analysis. In light of these findings an improved
LEM can be formulated taking into account of the deformation on slip planes and
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neglecting that of wedge rock. The governing equations comprising the equilibrium
equation of the wedge, the deformation compatibility equation between the slip
planes and wedge, and the constitutive equation of slip planes, have been estab-
lished (Chen 1984, 1990).

An example of the rock wedge analyzed by the different existing methods
inclusive the improved method (IM) by the author is presented for the validation.
The computation parameters are listed in Tables 9.1, 9.2 and 9.3.

The calculated safety factors by the FEM, the conventional LEM, the partition
method (PM) (Copen et al. 1977) and the improved method (IM), are all plotted in
Fig. 9.2. It can be seen that the results by the FEM and the IM are quite close to

Table 9.1 Geometric parameters of the rock wedge (see Fig. 9.1)

a1 (°) a2 (°) b1 (°) b2 (°) b3 (°) H (m)

60 45 20 40 10 50

Table 9.2 Mechanical parameters of the slip planes

u1 (°) u2 (°) c1 (kPa) c2 (kPa) Rn ¼ kn1=kn2 Rs ¼ ks1=ks2 R ¼ kn=ks
20 25 20 20 0.48 0.48 Variable

Table 9.3 Mechanical parameters of the rock wedge

E (MPa) l c (MPa) u (°) cr (kN/m
3)

220,000 0.16 0.16 35 27

Fig. 9.2 Safety factor Kf of
the wedge versus stiffness
ratio R of the slip planes
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each other. The classical LEM with “normal resolution assumption” and the PM
provide upper and inferior bounds for the safety factor.

9.3 Establishment of the Block Element Analysis

Through the study of the rock wedge in slope it is demonstrated that apart from the
strength parameters, the deformation parameters such as the normal stiffness and
tangential stiffness of slip planes have significant influence on the stability of the
wedge. The main mechanism is that if there are two or more slip planes, the reaction
forces on the slip planes are statically indeterminate, in this case the deformation
parameters will influence the stress distribution remarkably.

Also by the rock wedge study, we have been taught that if merely the defor-
mation and strength parameters of slip planes are taken into account, an improved
method which is simpler than the FEM and more precise than the LEM can be
established. This encouraged us to have a further try to extend the improvement
LEM into the case where the rock masses consist of substantial rock blocks, and
luckily, the idea was realized in a form of work initially termed as
“elasto-viscoplastic block theory” (Chen 1987) and now we call it as the “block
element analysis” (BEA). It is mathematically the simplification version of the
DDA (Shi 1992) where only face-to-face contact is permitted between the rock
blocks. The other contact patterns are not considered because such deformation
patterns, for the moment, are not allowed for in the limit states for hydraulic
structures, other than to complicate the governing equations and algorithm as well
as parametric evaluation.

9.3.1 Coordinate Systems

In Fig. 9.3 the block rl is taken as a representative block element, the boundary
plane of the block is denoted by jrl;rm, the adjoining block contacting the block rl
through the plane jrl;rm is denoted by rm.

The block in Fig. 9.4 is delimited by seven discontinuities, the strikes, dips and
mean points of each discontinuity can be decided through geological investigation.
Let the Y-axis of global coordinate system point to the north and keep horizontal;
the X-axis point to the east and keep horizontal, too; the Z-axis be upright. For each
discontinuity patch a local coordinate system is also needed to facilitate the
mechanical deduction. The origin of the local coordinate system of plane jrl;rm is at
the plane’s centroid, the zjrl;rm -axis is perpendicular to the plane, the direction of the
xjrl;rm -axis and yjrl;rm -axis are coincident with the strike and dip directions respec-
tively, in addition, the xjrl;rm -axis must keep horizontal.

9.2 Stability Problems of the Rock Wedge in Slope 567



The origin of local coordinate system is located at the geometry center of dis-
continuity patch jrl;rm whose coordinate is denoted as ðX0

jrl;rm ; Y
0
jrl;rm ; Z

0
jrl;rmÞ, the

coordinate of the geometry center of block rl is denoted as ðX0
rl; Y

0
rl; Z

0
rlÞ.

Under the global coordinate system, the planar structural face jrl;rm may be
expressed by equation

Ajrl;rmXþBjrl;rmY þCjrl;rmZ ¼ Djrl;rm ð9:7Þ

In which Ajrl;rm ;Bjrl;rm ;Cjrl;rm ;Djrl;rm are the functions of the dip direction, dip angle,
and the global coordinates of, for example, its mean point.

The coordinate transformation is defined by the matrix ½l�jrl;rm in Eqs. (2.12) and

(2.13) where the subscript j is replaced by jrl;rm. At any point with local coordinate
xjrl;rm yjrl;rm

� �
on plane jrl;rm, the stress and deformation (relative displacement)

increments are denoted as

Fig. 9.4 Global and local
coordinate systems of the
representative block rl

Fig. 9.3 Contact of block
elements rl and rm
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Drf gjrl;rm¼ Dszx Dszy Drz½ �T
Duf gjrl;rm¼ Dux Duy Duz½ �T

(
ð9:8Þ

All external load increments exerting at the centroid of block rl are expressed in
the global coordinate system as (see Fig. 9.5)

fDFgrl ¼ DFX DFY DFZ DMX DMY DMZ½ �T ð9:9Þ

The deflection increments of the block rl are also expressed in the global
coordinate system as (see Fig. 9.5)

fDUgrl ¼ DUX DUY DUZ DWX DWY DWZ½ �T ð9:10Þ

9.3.2 Governing Equations

(1) Force and moment equilibrium equation

Integrating the stress increments on each plane jrl;rm into the resultant force with
respect to the centroid of block rl (see Fig. 9.5), we get the equilibrium equation

fDFgrl �
X
jrl;rm

Jðjrl;rmÞ
ZZ
Cjrl;rm

½P�jrl;rmfDrgjrl;rmdxjrl;rmdyjrl;rm ¼ 0 ðrl ¼ 1; 2; . . . ; nrÞÞ

ð9:11Þ

Fig. 9.5 Diagram to the
equilibrium of representative
block rl
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In which function Jðjrl;rmÞ is defined as

Jðjrl;rmÞ ¼ 1 for block rl above plane jrl;rm
�1 for block rl under plane jrl;rm

�
ð9:12Þ

and ½P�jrl;rm is a 6 � 3 matrix defined as

½P�jrl;rm ¼ ½l��1
jrl;rm

½l��1
jrl;rm ½P1�jrl;rm þ ½P2�jrl;rm ½l�

�1
jrl;rm

" #
ð9:13Þ

in which

½P1�jrl;rm ¼
0 0 yjrl;rm
0 0 �xjrl;rm

�yjrl;rm xjrl;rm 0

2
4

3
5 ð9:14Þ

½P2�jrl;rm ¼
0 �ðZ0

jrl;rm � Z0
rlÞ ðY0

jrl;rm � Y0
rlÞ

ðZ0
jrl;rm � Z0

rlÞ 0 ðX0
jrl;rm � X0

rlÞ
�ðY0

jrl;rm � Y0
rlÞ ðX0

jrl;rm � X0
rlÞ 0

2
64

3
75 ð9:15Þ

In Eq. (9.15) X0
� �

jrl;rm
¼ X0

jrl;rm Y0
jrl;rm Z0

jrl;rm

h iT
is the global coordinate of the

discontinuity jrl;rm on the block rl, and X0
� �

rl¼ X0
rl Y0

rl Z0
rl

� 	T
is the global

coordinate of the centroid of the block rl.

(2) Deformation compatibility equation

The displacement increments of the blocks rl and rm will give rise to deformation
increment Duf gjrl;rm on the plane jrl;rm (see Fig. 9.6). According to kinematics they
may be related by the formula

fDugjrl;rm ¼ Jðjrl;rmÞ½l�jrl;rmð½M�rlfDUgrl � ½M�rmfDUgrmÞ ð9:16Þ

in which

½M�rl ¼
1 0 0 0 ðZ � Z0

rlÞ �ðY � Y0
rlÞ

0 1 0 �ðZ � Z0
rlÞ 0 ðX � X0

rlÞ
0 0 1 ðY � Y0

rlÞ �ðX � X0
rlÞ 0

2
4

3
5

X
Y
Z

8<
:

9=
; ¼ ½l��1

jrl;rmfxgjrl;rm þfX0grl

8>>>>>><
>>>>>>:

ð9:17Þ
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½M�rm ¼
1 0 0 0 ðZ � Z0

rmÞ �ðY � Y0
rmÞ

0 1 0 �ðZ � Z0
rmÞ 0 ðX � X0

rmÞ
0 0 1 ðY � Y0

rmÞ �ðX � X0
rmÞ 0

2
4

3
5

X
Y
Z

8<
:

9=
; ¼ ½l��1

jrl;rmfxgjrl;rm þfX0grm

8>>>>>><
>>>>>>:

ð9:18Þ

(3) Constitutive equation

According to the potential formulation (Owen and Hinton 1980), the deformation
and stress increments at any point xjrl;rm yjrl;rm

� �
on the discontinuity plane jrl;rm

shall observe the elasto-viscoplastic constitutive relation in Eqs. (2.126)–(2.129).

(4) Equilibrium equation of the whole block system

Substituting Eqs. (2.126) and (9.16) into Eq. (9.11), the equilibrium equation of the
block rl becomes

½K�rl;rlfDUgrl þ
X
rm

½K�rl;rmfDUgrm ¼ fDFgrl þfDFvpgrl ðrl ¼ 1; 2; . . . ; nrÞ

ð9:19Þ

where rm over loops all the adjoin blocks of the block rl in corresponding to the
plane jrl;rm, and

Fig. 9.6 Deformation of
discontinuity jrl;rm attributable
to adjacent blocks rl and rm
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½K�rl;rl ¼
P
jrl;rm

RR
Cjrl;rm

½P�jrl;rm ½D�jrl;rm ½l�jrl;rm ½M�rldxjrl;rmdyjrl;rm
½K�rl;rm ¼ � RR

Cjrl;rm

½P�jrl;rm ½D�jrl;rm ½l�jrl;rm ½M�rmdxjrl;rmdyjrl;rm
fDFvpgrl ¼

P
jrl;rm

Jðjrl;rmÞ
RR

Cjrl;rm

½P�jrl;rmfDrvpgjrl;rmdxjrl;rmdyjrl;rm

8>>>>><
>>>>>:

ð9:20Þ

For the other blocks there also exist foregoing equations, assembling all of such
equations in a similar way to the FEM, the equilibrium equation set of the block
system is finally constructed

½K�fDUg ¼ fDFgþfDFvpg ð9:21Þ

In which

fDUg ¼ ½fDUgT1 . . .fDUgTnr �T
fDFg ¼ ½fDFgT1 . . .fDFgTnr �

T

fDFvpg ¼ ½fDFvpgT1 . . .fDFvpgTnr �T

8><
>: ð9:22Þ

are the displacement increment, the load increment, and the viscoplastic equivalent
force increment, of the block system, respectively.

At any time step, we solve Eq. (9.21) firstly. Then use is made of the dis-
placement increment of the block system fDUg to calculate the deformation and
stress increments by Eqs. (9.16) and (2.126). Next, identify the yield points on the
discontinuities. If yield occurs, calculate the viscoplastic strain/stress increments
and corresponding equivalent load increments using Eqs. (2.126)–(2.129) and
Eq. (9.20), afterwards go to the next time marching step.

9.3.3 Numerical Integration on Discontinuity Network

Calculation of the matrices ½K�rl;rl and ½K�rl;rm as well as the equivalent load vector
fDFvpgrl in Eq. (9.20) requires the numerical integration (quadrature) on discon-
tinuities. To get the resultant load vector attributable to the volumetric force of rock
block, and in the case where the deformation of rock blocks is taken into account
(vide Chap. 10), we need to integrate throughout entire entity blocks, too. It is
difficult to give a closed-form of the integration result, since the shapes and sizes of
discontinuity patches and rock blocks are changeable. We present here a Gaussian
quadrature method on the discontinuity as well as in the block entity as follows.
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(1) Quadrature on discontinuities

Figure 9.7 shows a discontinuity plane jrl;rm on block rl whose vortex coordinates
are known. The plane is firstly divided into triangles. For each triangle, we draw
lines from its centroid to the middle points of its edges, the plane is divided into a
set of quadrilaterals. Then Eq. (9.20) can be additively calculated using the
Gaussian quadrature on the normalized coordinates n and g of every element e

½K�rl;rl ¼
P
jrl;rm

P
e

R1
�1

R1
�1

½P�jrl;rm ½D�jrl;rm ½l�jrl;rm ½M�rl Jj jdndg

½K�rl;rm ¼ �P
e

R1
�1

R1
�1

½P�jrl;rm ½D�jrl;rm ½l�jrl;rm ½M�rm Jj jdndg

fDFvpgrl ¼ � P
jrl;rm

P
e
Jðjrl;rmÞ

R1
�1

R1
�1

½P�jrl;rmfDrvpgjrl;rm Jj jdndg

8>>>>>>>><
>>>>>>>>:

ð9:23Þ

In which e is the amount of quadrilaterals discretized from plane jrl;rm and Jj j is
the Jacobian determinant. Usually, two Caussian sampling points in each direction
may sufficiently guarantee the integral accuracy.

(2) Quadrature in blocks

Firstly the block is divided into tetrahedrons. For each tetrahedron the following
subdivide are conducted (see Fig. 9.8): drawing lines from block centroid to the cen-
troids of its surfaces, and drawing lines from surface centroids to the middle points of
edges. In this manner the tetrahedron will be subdivided into four hexahedra. After
making coordinate transform, the three-dimensional Gaussian quadrature can be
implemented for any function FðX; Y ; ZÞ defined in the block rl as

ZZZ
FðX; Y ; ZÞdXdYdZ ¼

X
e

Z1

�1

Z1

�1

Z1

�1

Fðn; f; gÞ Jj jdndfdg ð9:24Þ

In which e is the amount of integration element produced in block rl.

Fig. 9.7 Element dividing on
a discontinuity plane towards
quadrature
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9.3.4 Searching for Safety Factors

A potential failure case (mode) is defined as a portion of the slope formed by one
block or by the combination of several blocks whose safety factor is comparatively
lower than that stipulated in the design codes. If a slope contains a large amount of
blocks, theoretically there will have substantial failure cases whose search for safety
calibration will cost huge computer resources. To minimize the search effort, a
heuristic search strategy called ‘‘intelligent search method” (Xu et al. 2000) had
been proposed. The strategy is that only the possible block combinations enlight-
ened by the previously calibrated block combinations, are to be considered in the
successive search.

9.4 Seepage Field for the Block Element Analysis

Seepage flow imposes a great influence on the stability of rock masses. Hence the
interest of this section is directed to establishing a seepage analysis algorithm,
which may be easily incorporated into the deformation and stability analysis using
the elasto-viscoplastic BEA elaborated above.

Although the seepage problem is well formulated in the FEM, yet for discon-
tinuity networks there still exist issues with regard to the discontinuity network
discretization, the iteration algorithm of unconfined flow, the consideration of the
drainage and grouting curtains.

The basic assumption adopted in the study is that the seepage is merely per-
mitted in discontinuities whereas the rock blocks are impervious. With the help of

Fig. 9.8 Element dividing in
a tetrahedron towards
quadrature
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this assumption, the variational equation of the seepage flow in the discontinuity
network can be discretized into two-dimensional finite element system automati-
cally using the messages provided by the block system identification.

9.4.1 Governing Equations

Denote the hydraulic potential as / ¼ Z þ p=c, the governing equation of the
seepage field in Eq. (4.148) may be rewritten in the form of

Sf gT k½ � Sf g/þ q0 ¼ 0 ð9:25Þ

or

L/þ q0 ¼ 0 ð9:26Þ

In which the permeability tensor k½ � has been defined in Eq. (2.9).
The solution of the PDE in Eq. (9.25) is subject to the boundary conditions

defined in Eqs. (4.150)–(4.153) which will be re-expressed as follows.

1 First type (Dirichlet)

/jC1
¼ /0 ð9:27Þ

where /0 = specified hydraulic potential, m.

2 Second type (Neumann)

vn ¼ �fngT ½k�fSg/ C2j ¼ q ð9:28Þ

where q = flow rate per unit area on the boundary surface, m/s, q = 0 means the
boundary is impervious; nf g = unit normal vector outward of the boundary.

nf gT¼ lx ly lz½ � ð9:29Þ

3 Phreatic type

/ C3j ¼ Z
nf gT½k] Sf g/ C3j ¼ 0

�
ð9:30Þ
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4 Outflow type

/ C4j ¼ Z
nf gT½k] Sf g/ C4j 6¼ 0

�
ð9:31Þ

In Eqs. (9.25)–(9.31), L and fSg are the differential operators

L ¼ Sf gT½k] Sf g
Sf g ¼ @

@X
@
@Y

@
@Z

� 	T
(

ð9:32Þ

The above governing equation and boundary conditions lead to the variational
problem in Eq. (4.154). Since the rock block is assumed impervious so the per-
meability coefficient k in rock block is zero. In addition, since / is a scalar so the
variational function Ið:Þ in Eq. (4.154) can be segmentally expressed in the local
coordinate system of each discontinuity plane jrl;rm as

Ið/Þ ¼
X
jrl;rm

ZZZ
X

1
2
ðfSgjrl;rm/ÞT ½k�jrl;rmðfSgjrl;rm/Þ � q0/


 �
dxjrl;rmdyjrl;rmdzjrl;rm

þ
ZZZ

C2

q/dC ¼ min
ð9:33Þ

In which the summation index jrl;rm runs over all the discontinuities. The dif-
ferential operator fSgjrl;rm and the permeability coefficient matrix ½k�jrl;rm are

expressed in the local coordinate system

L ¼ ðfSgjrl;rmÞT½k]jrl;rmfSgjrl;rm

½k�jrl;rm ¼
k 0 0
0 k 0
0 0 k

2
4

3
5

fSgjrl;rm ¼ @
@xjrl;rm

@
@yjrl;rm

@
@zjrl;rm

h iT

8>>>>>><
>>>>>>:

ð9:34Þ

Usually the thickness (hydraulic aperture) ajrl;rm of the discontinuity is much
smaller than the size of blocks, therefore it can be assumed that

@/
@zjrl;rm

¼ 0 ð9:35Þ

Thus, Eq. (9.33) is reduced to the two-dimensional form on the discontinuity
patches
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Ið/Þ ¼
X
jrl;rm

ZZ
Xjrl;rm

1
2
ðfSgjrl;rm/ÞT ½k�jrl;rmðfSgjrl;rm/Þ � ajrl;rmq0/


 �
dxjrl;rmdyjrl;rm

þ
Z
C2

q/dC ¼ min:

ð9:36Þ

Where the differential operators Sf gjrl;rm and permeability ½k�jrl;rm are

fSgjrl;rm ¼ @
@xjrl;rm

@
@yjrl;rm

h iT
½k�jrl;rm ¼ ajrl;rm

kf 0
0 kf

� 
8><
>: ð9:37Þ

The parameter kf in Eq. (9.37) is termed as equivalent permeability coefficient of
the structural plane (see Eq. (2.11)).

9.4.2 Discretization of Governing Equations

Equation (9.36) can be discretized using the finite element mesh over the discon-
tinuity network. Taking the discontinuity plane jrl;rm shown in Fig. 9.7 for example,
it is firstly divided by triangles, then for each triangle drawing lines from its
centroid to the middle points of its edges, the triangle is divided into quadrilaterals.
For each element the shape function of the four-node isoparametric element is
employed to give the interpolation

/ ¼ N½ � /f ge ð9:38Þ

In which the shape function N½ � is defined in Eq. (4.30).
Use is made of Eq. (9.36) to conduct the variational operation, the governing

equation towards the solution of seepage field is

H½ � /f g ¼ Qf g ð9:39Þ

In which H½ � is the hydraulic conductivity matrix of the system composed of all
the patched faces. It is assembled from h½ �e of each element ejrl;rm on the disconti-
nuity jrl;rm

½h�e ¼
ZZ
ejrl;rm

fSgjrl;rm ½N�
� �T

½k�jrl;rmðfSgjrl;rm ½N�Þdxjrl;rmdyjrl;rm ð9:40Þ
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Qf g is flow vector contributed from the inner source and boundary assembled
from that Qf ge of each element ejrl;rm on the discontinuity jrl;rm

fQge ¼ ajrl;rm

ZZ
ejrl;rm

½N�ð ÞTq0dxjrl;rmdyjrl;rm�
Z
C2

½N�ð ÞTqdC ð9:41Þ

9.4.3 Key Algorithms

(1) Unconfined seepage problem

The principle of the “residual flow rate” for the unconfined seepage in the FEM
(vide Chap. 4) is revised accordingly to solve the discontinuity network seepage
field.

➀ Solve Eq. (9.39) firstly to get the element hydraulic potentiality /f ge.
➁ Use is made of Eq. (9.38) to get the hydraulic potentiality at each Gaussian

point. The phreatic surface divides a discontinuity plane jrl;rm into two parts,
namely the portion X1

jrl;rm above the phreatic surface and the portion X2
jrl;rm

below the phreatic surface, which are judged by the following conditions:

– If /r\Z (Z is the vertical global coordinate of the point concerned), the
Gaussian point belongs to X1

jrl;rm ;

– If /r [ Z, the Gaussian point belongs to X2
jrl;rm .

In this manner a tentative phreatic surface can be constructed by a set of its
embedding elements.

➂ For each element e that contains phreatic surface, the Gaussian points in
X1

jrl;rm contribute to its nodal “residual flow rate” fQrge as

fQrge ¼ �
ZZ
X1

jrl;rm

fSgjrl;rm ½N�
� �T

½k�jrl;rm fSgjrl;rm ½N�
� �

f/rgedX ð9:42Þ

➃ Accumulate the contributions from all the Gaussian points in X1
jrl;rm to form

the global “residual flow rate” fQrg, then the rth iteration for the unconfined
seepage field is carried out accordingly
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H½ � D/rf g ¼ Qrf g ð9:43Þ

➄ Solution of Eq. (9.43) gives rise to the updated hydraulic potential by

/rþ 1

� � ¼ /rf gþ D/rf g

➅ Let r ¼ rþ 1, steps ➁–➄ are recurred until the following collapse criteria are
met

– That the total number of Gaussian points in the domain where /\Z is
unchanged between the successive two iteration steps;

– That the increment of the nodal hydraulic potentiality in X2
jrl;rm is sufficiently

smaller than a specified fraction tolerance.

(2) Simulation of grout curtain and drainage curtain

The grouting curtain is looked at as a special block with small width and large
stretch, whose spatial location and other messages are generated in the block
identification procedure. Also in the identification for a block system, each dis-
continuity patch should be checked if it is intersected with the grouting curtain. This
intersecting portion is only a narrow stripe on the discontinuity and assigned with
much lower hydraulic conductivity compared to the rest portion. Usually a fraction
of 100–1000th is advisable.

The drainage curtain is approached by an equivalent discontinuity patch whose
hydraulic conductivity can be decided by the equivalent principle of flow rate
related to the rock’s conductivity, the diameter and spacing of drainage holes. For
dam engineering, an amplification of 10–100 times that of surrounding host
material, is advisable.

9.4.4 Verification Example

Figure 9.9 shows a block delimited by four surfaces (1, 2, 3, 7). Their permeability
coefficients are identically k ¼ 1:0� 10�4 m/s. The upstream water level is 12 m
and the downstream water level is 0. Near the upstream a grouting curtain is
installed whose permeability coefficient is k ¼ 1:0� 10�5 m/s.

Figure 9.10 gives the phreatic line and flow velocity on surface 2, it is found that
the phreatic line drops dramatically through the curtain.
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Fig. 9.9 Block with grouting
curtain

Fig. 9.10 Seepage field on
surface 2

580 9 Fundamentals of the Block Element Analysis



9.5 Engineering Applications

9.5.1 Natural Slope: Baozhusi Project, China

(1) Presentation of the Project

Baozhusi Project (see Fig. 9.11) is located on the Bailongjiang River, Sichuan
Province, China. Construction on the dam began in 1984, the generators were
operational between 1996 and 1998 while the rest of the facilities were complete in
2000. The project is purposed for hydroelectric power generation, flood control and
water supply towards irrigation and industrial uses. The 132 m tall and 524.48 m
long concrete gravity dam creates a 2550 million m3 reservoir. On either side of
power station at the dam’s base, there are two gate-controlled chute spillways. In
addition, there are two pairs of orifice spillways. Below the left orifice there are two
bottom outlets. The total discharge capacity of the spillways and openings is
16,060 m3/s. The dam type power station is installed with 4 � 175 MW Francis
turbine-generators.

Fig. 9.11 Plan of Baozhusi Project, China
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(2) Characteristics of the computation

The slope at the downstream left abutment of the Baozhusi Gravity Dam is illus-
trated in Fig. 9.12. Under the natural condition, two argillic intercalations (D1, D3)
and three faults (f10, F4, F10) delimit 4 potential slip blocks whose axonometric
drawings are displayed in Fig. 9.13.

Since the underground water table is below the EL. 500 m, therefore only the
saturated seepage flow attributable to rainfall is taken into account in the stability
analysis. Table 9.4 lists the parameters used in the computation.

(3) Computation results

The strength reduction is carried out until one block or block combination reaches
critical (limit) state. Altogether four failure modes are detected whose corre-
sponding safety factors are listed in Table 9.5.

The block combination of block element 1 + block element 3 possesses the
lowest safety factor. This is justified by the field observation that the rock mass in
this portion exhibits time-dependent deformation and relaxation, the local rock
collapse and rock fall had created a gully.

Fig. 9.12 Geology plan of
the abutment slope: Baozhusi
Project, China

582 9 Fundamentals of the Block Element Analysis



Fig. 9.13 Axonometric
drawing of the decomposed
movable block system in the
slope

Table 9.4 Parameters used in the computation

– D1 D3 F4 F10 f10
Strike (°) 70.0 70.0 15.0 60.0 145.0

Dip angle (°) SE28.5 SE33.0 NW59.5 NW56.0 SW84.0

Stiffness (MN/m3) kn 22.4 15.0 29.9 9.11 150.0

ks 6.41 4.27 8.55 2.6 42.7

Strength c (kPa) 10.0 10.0 0.0 20.0 0.0

u (°) 14.0 14.0 16.7 24.2 16.7

rT (kPa) 1.0 1.0 0.0 2.0 0.0

Volumetric weight of rock cr = 26.4 kN/m3

Table 9.5 Failure modes and corresponding safety factor K

Failure mode Load combination

Self weight Self weight + seepage

Block 1 1.75 1.45

Block 1 + Block 2 1.70 1.40

Block 1 + Block 3 1.40 1.05

Block 1 + Block 2 + Block 3 + Block 4 1.45 1.15
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9.5.2 Cut Slope: Longtan Project, China

(1) Presentation of the Project

Vide Chap. 6 (Sect. 6.6.2).

(2) Characteristics for the computation

Entailed by the project layout, the right dam abutment was excavated in a com-
plicated configuration (see Fig. 9.14). During the excavating, a local collapse
occurred and the failure risk of a series movable block combinations were alarmed.
The revised excavation was carried out successfully under the guidance of com-
prehensive studies inclusive the BEA illustrated hereinafter.

1 Structural planes

The large faults F89, F90(F90–1), F136, F60, F345–1(F330–6), f6 and the random inter-
layer faults as well as the low dip angle joints, are taken into account in the analysis.
Their locations and occurrences are shown in Fig. 9.15 and detailed in Table 9.6.

2 Specific block elements with high slip potentiality

The analysis identifies 5 dangerous block elements.

i. Small block

This is enclosed by the faults F136 and F89 and random interlayer fault (see
Figs. 9.16 and 9.17).

Fig. 9.14 Plan showing the
layout of excavation benches
(right dam abutment after
local collapse)
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ii. Medium block

This is enclosed by the faults F136, F89, f6 and the low dip angle joint, the
outcrop elevation is 330 m (see Figs. 9.18 and 9.19).

iii. Large block 1

This is enclosed by the faults F90 (F90–1), F89, f6 and the low dip angle joint, the
outcrop elevation is 330 m (see Figs. 9.20 and 9.21).

Fig. 9.15 Plan showing the location of major structural planes

Table 9.6 Occurrence of the major structural planes

Structural planes Strike
direction

Dip
direction

Dip angle
(°)

F60 N70°E NW/SE 90

F89 N65°E NW 75

F90 N59°E NW 60

F136 N40°E NW 65

F345–1 N20°E NW 32

F330–6 NW

Interlayer fault and f6 N5°W NE 57

Low dip angle structural
planes

Joint N70°E NW 30

Fault + joint N15°E NW 30
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Fig. 9.16 Location of the
small block element

Fig. 9.17 Axonometric
drawing of the decomposed
small block element in the
slope

586 9 Fundamentals of the Block Element Analysis



Fig. 9.18 Location of the
medium block element

Fig. 9.19 Axonometric
drawing of the decomposed
medium block element in the
slope
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iv. Large block 2

This is enclosed by the faults F90 (F90–1), F89, f6 and the low dip angle joint, the
outcrop elevation is 297 m (see Figs. 9.22 and 9.23).

v. Local collapse body

This is enclosed by the faults F90, f8 and F330–6 (F345–1), and was collapsed on
November 20, 2002 (see Figs. 9.24, 9.25, 9.26 and 9.27).

Fig. 9.20 Location of the
large block element 1

Fig. 9.21 Axonometric
drawing of the decomposed
large block element 1 in the
slope
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Fig. 9.22 Location of the
large block element 2

Fig. 9.23 Axonometric
drawing of the decomposed
large block element 2 in the
slope
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Fig. 9.24 Location of the
local collapse body

Fig. 9.25 Axonometric
drawing of the local collapse
body
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(3) Mechanical parameters

Elided.

(4) Loads

1 Volumetric weight

cr ¼ 26:5 kN=m3:

2 Groundwater

The monitored groundwater table during the construction period is employed.

3 Seismic action

The intensity of design earthquake is 7 (modified Mercalli), with corresponding
acceleration a = 0.1 g. The pseudo-static method, that conducts the static analysis
by using the results of dynamic analysis indirectly, is employed. The inertia forces
equivalent to additional static loads are calculated in terms of the maximum
earthquake acceleration stipulated for design (Chen 2015), whose direction is
identical to the slip direction of the block concerned.

(5) Results and conclusions

The main results extracted from the BEA are summarized below:

Fig. 9.26 Right abutment slope before the local collapse

9.5 Engineering Applications 591



– The safety factors against sliding of the block elements concerned may be
arranged in sequence from the lowest (small block) to the highest (large block),
with the medium block being in between (see Table 9.7).

– The local collapse body exhibits a lower safety factor of 1.092, this explains
why it failed during the excavation before the additional reinforcement. This
may be looked at as the benchmark solution by the field test. Any block ele-
ments or their combinations with safety factors lower than that of the local
collapse body may be calibrated as unstable.

– The safety factor of small block is definitely insufficient by the initial rein-
forcement design using fully grouted bolts, therefore the additional pre-stress
cables are demanded.

Fig. 9.27 Right abutment
slope after the local collapse
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– The safety factor of medium block is nearly satisfied. However, under the
circumstances of earthquake, blast vibration, or heavy rain, its possibility of
failure does exist, therefore the additional pre-stress cables are demanded, too.

– The safety factor of large block is held, therefore the additional pre-stress cables
are not necessary.

Based on the foregoing study, the additional pre-stress cables were further
optimally designed and installed. All the pre-stress stranded wire cables are hori-
zontally installed along the direction of slip, and their lengths are entailed by the
depth of small and medium blocks.

After the additional reinforcement, the abutment has been performing well from
the construction period until the service period insofar.
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Chapter 10
Adaptive Techniques in the Block
Element Analysis

Abstract This chapter begins with a laboratory experiment showing that the
conventional BEA performs well in the safety calibration for the rock wedge, but it
is not equally competent in the deformation assessment. Since the foundation
deformation could be important for indeterminate structures (e.g. arch dams), a
pertinent improvement is desirable. The crucial breakthrough is achieved by the
displacement interpolation within the block element using mapped nodal dis-
placements bound at an overlay element. Then, with the deformation compatibility
condition of rock blocks and discontinuities as well as their elasto-viscoplastic
constitutive relation, the operation of the virtual work principle produces the
governing equation for the solution of these mapped nodal displacements.
A practical p-refinement strategy is further implemented by checking and con-
trolling the energy norm error tolerance of each block element. This chapter is
closed with a number of validation examples (cantilever, gravity dam) and one
engineering application case concerning dam-foundation system, to the latter a
parallel physical test is demonstrated for cross-reference.

10.1 General

In dam foundations and abutment slopes (resistance bodies) there usually exist a
number of discontinuities which cut the rock masses into blocks of various sizes,
shapes and positions. Computation methods such as the well known DEM (Cundall
1971; Cundall 1988; Hart et al. 1988) and DDA (Shi 1992) already possess intrinsic
abilities to solve the problems of stability and discontinuous deformation for such
rock masses reasonably. To consider the complicated displacement and stress
patterns as well as the rupture in blocks, remarkable advancements also have been
achieved by the high-order polynomial interpolation or the sub-division using
classical standard finite elements in blocks (Shyu 1993; Chang 1994; Koo and
Chern 1996; Lin and Lee 1996).

The block element analysis (BEA) established in the previous Chap. 9 of this
book looks at the rock blocks as rigid bodies meanwhile the discontinuities possess
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elasto-viscoplastic characteristics. To consider the phenomena of rock block
deformation and rupture in the BEA, a preliminary attempt was made by the
polynomial interpolation of the displacement field in rock blocks (Chen 1994), but
the further study showed that it only performs well when the order of polynomials p
is lower than 3, further upgrade of polynomial order will fail because of numerical
instability. Later, a new strategy had been proposed by defining a classical standard
finite element as overlay element to include the block element (Wang and Chen
2001; Chen et al. 2004): the displacement within the block element is interpolated
from the mapped nodal displacements bound at the overlay element; with the
deformation compatibility conditions of rock blocks and discontinuities as well as
their elasto-viscoplastic constitutive relations, the application of the virtual work
principle produces the governing equation to solve the mapped nodal displacements
on the overlay element. A practical p-version adaptive refinement was further
implemented by checking and controlling the energy norm error tolerance of each
block element.

10.2 Inspiration from Physical Experiments

10.2.1 Experimental Configuration

Figure 10.1 shows the configuration for the physical model tests using two wedges
(Chen 1993) whose geometry features are summarized in Table 10.1.

The foundation and wedges are casted by the Gypsum, the slip planes (faults) are
casted by the geo-mechanical material with much lower strength (Chen 2015),
whose mechanical parameters are listed in Table 10.2.

Fig. 10.1 Configuration of
the test model
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10.2.2 Test and Computation Results

Under each loading step, the vertical displacement at the outer edge of wedge is
recorded after an interval of ten minutes allowing for the stability of the test system.
Where the ultimate load is reached, the oil pressure for the vertical jack cannot be
maintained and the wedge collapses.

Plotting of the vertical displacements by computation and test produces curves in
Fig. 10.2. They exhibit remarkable features that

– The vertical displacement of model 1 is larger than that of model 2, this is due to
the fact that the included angle between two slip planes in model 1 is smaller
than that in model 2;

Table 10.1 Geometric
features of wedges made of
Gypsum (see Fig. 9.1)

Model
sequence

a1
(°)

a2
(°)

b1
(°)

b2
(°)

b3
(°)

H
(m)

1 35 35 55 35 0 0.1

2 45 45 55 35 0 0.1

Table 10.2 Mechanical
parameters of the faults made
of the geo-mechanical
material

kn (MN/m3) ks (MN/m3) c (kPa) tgu

38,000 15,660 110 0.8

Fig. 10.2 Vertical
displacement at the edge of
wedge versus vertical jack
pressure

10.2 Inspiration from Physical Experiments 599



– There is certain discrepancy between the computed and experimented dis-
placements. The tested displacements of either model 1 or model 2 are larger
than of the computed ones, this is due to the overlook of the block deformation
in the conventional BEA formulated in the previous Chap. 9;

– There is a knee point in the curve of displacement versus vertical load P, the
wedge fails after the load exceeding this point. For model 1, the knee point is
around P = 6217–7348 N by experiment, whereas the computation indicates a
knee point around P = 6782–7910 N; For model 2, the knee point is around
P = 5652–6217 N by both the experiment and computation.

The maximum vertical loads calculated by the LEM for these two models are
cross-referenced with these knee point loads in Table 10.3. We find that the BEA
formulated in Chap. 9 provides reasonable safety index of the wedge against
sliding. In addition, the safety of wedge will be raised as the reduction of the
included angle between its two slip planes, but the LEM exhibits exaggerated
mounting in the wedge safety.

10.3 Deformable Block Elements

10.3.1 Concept

The experimental study illustrated above validates that the conventional BEA
performs well in the safety calibration for the rock block, but its performance in the
deformation calibration is not equally competent. Since the foundation deformation
could be important for indeterminate structures (e.g. arch dams), a better description
of rock block deformation is desirable.

A preliminary attempt to introduce block deformation into the BEA was made
by the complete polynomial interpolation of the displacement field within blocks
(Chen 1994). Later, the displacement of the block was revolutionarily interpolated
from the nodal displacements of its overlay element, to attain much better numerical
stability and to allow for the adaptive refinement.

Table 10.3 Maximum loads by the experiment and computation

Model sequence Experiment Nð Þ Computation Nð Þ
LEM BEA

1 7348–7910 49,470 7910–8480

2 6217–6782 6400 6217–6782
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10.3.2 Overlay Element

We choose the block rl as the representative block, and denote its adjoin block as
the block rm connecting with the block rl through the discontinuity jrl;rm. The
deformation and stress increments on the discontinuity jrl;rm are denoted as

Duf gjrl;rm¼ Dux Duy Duz½ �Tjrl;rm ð10:1Þ

Drf gjrl;rm¼ Dszx Dszy Drz½ �Tjrl;rm ð10:2Þ

The displacement, strain, and stress increments of the block rl are denoted as

Duf grl¼ Dux Duy Duz½ �Trl ð10:3Þ

Def grl¼ Dex Dey Dez Dcyz Dczx Dcxy
� �T

rl ð10:4Þ

Drf grl¼ Drx Dry Drz Dsyz Dszx Dsxy½ �Trl ð10:5Þ

For an irregular rock block shown in Fig. 10.3, a standard or hierarchical finite
element is endued to circumscribe the block. This finite element is termed as
“overlay element”. The overlay elements corresponding to the different blocks can
be inter-overlapped. The displacements Duf grl in block rl are interpolated from the
nodal displacements Ddf grl bound at the overlay element by the formula

Duf grl¼ N½ �rl Ddf grl ð10:6Þ

In which

Ddf grl¼ Ddx1 Ddy1 Ddz1 . . .DdxfrlðpÞ DdyfrlðpÞ DdzfrlðpÞ
� �T

rl ð10:7Þ

and N½ � is termed as “shape function matrix”

Fig. 10.3 Diagram showing
the block rl and circumscribed
overlay element

10.3 Deformable Block Elements 601



N½ �rl ¼ N1½I� N2½I� . . . NfeðpÞ½I�
� � ðfor p ¼ 1; feðpÞ ¼ 8Þ ð10:8Þ

where ½I� stands for 3 � 3 unit matrix.
In Eqs. (10.6)–(10.8), N½ �rl is defined in the whole overlay element, Ddf grl is the

general displacement vector corresponding to the general degree of freedoms, frlðpÞ
is the number of the general nodes, Ni is a point, edge, face, or body shape function
as the case may be (vide Chap. 4). It should be emphasized that the interpolation
expressed in Eq. (10.6) is only valid within each inscribing block element.

10.3.3 Deformation Compatibility Equation

Within the block element rl, we have

Def grl ¼ B½ �rl Ddf grl ð10:9Þ

in which B½ �rl is the strain matrix

B½ �rl ¼ ½B1�rl ½B2�rl . . . ½BfrlðpÞ �rl
� � ð10:10Þ

Bi½ �rl ¼

Ni;x 0 0
0 Ni;y 0
0 0 Ni;z

0 Ni;z Ni;y

Ni;z 0 Ni;x

Ni;y Ni;x 0

2
6666664

3
7777775
rl

i ¼ 1; 2; . . .; frlðpÞð Þ ð10:11Þ

The relative displacement increment on the discontinuity plane jrl;rm is

Duf g
jrl;rm

¼ Jðjrl;rmÞ l½ �jrl;rm N½ �rl Ddf grl� N½ �rm Ddf grm
� � ð10:12Þ

In which the matrix l½ �
jrl;rm

has been defined in Eqs. (2.12) and (2.13), and

Jðjrl;rmÞ has been defined in Eq. (9.12).

10.3.4 Constitutive Equation

Use is made of the potential elasto-viscoplastic theory (Owen and Hinton 1980), the
stress and strain increments in block rl expressed by Eq. (2.122) can be restated as
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Drf grl¼ D½ �rl Def grl� Drvpf grl ð10:13Þ

In which the elastic matrix D½ �rl is the function of the Young’s modulus and
Poisson’s ratio (see Eq. (2.78)); the viscoplastic stress increment Drvpf grl is given
according to the associated flow rule with Drucker-Prager yield criterion.

Meanwhile the deformation and stress increments at any point on the disconti-
nuity plane jrl;rm will observe Eq. (2.126) which is restated as

Drf gjrl;rm¼ D½ �jrl;rm Duf gjrl;rm� Drvpf gjrl;rm ð10:14Þ

In which the elastic matrix D½ �jrl;rm is the function of the normal and tangential

stiffness coefficients (see Eq. (2.76)); the viscoplastic stress increment Drvpf gjrl;rm is
given according to the non-associated flow rule with the Mohr-Coulomb yield
criterion.

10.3.5 Governing Equations

(1) The virtual work principle

The virtual work principle for the block system is mathematically constructed as

Xnr
rl¼1

Wrl þ
Xnj

jrl;rm¼1

Wjrl;rm ¼ WF ð10:15Þ

In which Wrl is the virtual work contributed from block rl, Wjrl;rm is the virtual
work contributed from discontinuity jrl;rm, WF is the virtual work of external forces,
nr and nj are the amounts of blocks and discontinuities in the whole rock block
system, respectively.

If the blocks rl and rm demonstrate virtual nodal displacement vectors Dd�f grl
and Dd�f grm, then the virtual displacements inside the block elements are Du�f grl
and Du�f grm, the corresponding virtual strains are De�f grl and De�f grm, the virtual
deformation on the discontinuity jrl;rm is Du�f gjrl;rm . They must observe following
restraints

Du�f grl¼ N½ �rl Dd�f grl ð10:16Þ

Du�f grm¼ N½ �rm Dd�f grm ð10:17Þ

De�f grl¼ B½ �rl Dd�f grl ð10:18Þ
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De�f grm¼ B½ �rm Dd�f grm ð10:19Þ

Dd�f gjrl;rm¼ Jðjrl;rmÞ l½ �jrl;rm N½ �rl Dd�f grl� N½ �rm Dd�f grm
� � ð10:20Þ

1 Contribution from block rl

Wrl ¼
ZZZ
Xrl

De�f gTrl Drf grldX ð10:21Þ

2 Contribution from discontinuity jrl;rm

Wjrl;rm ¼
ZZ
Cjrl;rm

Dd�f gTjrl;rm Drf gjrl;rmdxjrl;rmdyjrl;rm ð10:22Þ

3 Virtual work of external forces

WF ¼
Xnr
rl¼1

Dd�f gTrl Dff grl ð10:23Þ

In Eq. (10.23) Dff grl is the general load vector transferred from the loads
exerting on block element rl to the respective overlay element, which will be
presented later.

(2) Equilibrium equation

Introducing Eqs. (10.9), (10.12)–(10.14) and (10.16)–(10.23) into Eq. (10.15),
and recall that Dd�f grl is arbitrary, a set of equilibrium equations will be extracted as

Dff grl¼
RRR
Xrl

B½ �Trl D½ �rl B½ �rl Ddf grldX� RRR
Xrl

B½ �Trl Drvpf grldX

þ P
jrl;rm

RR
Cjrl;rm

N½ �Trl l½ �Tjrl;rm D½ �jrl;rm l½ �jrl;rm N½ �rl Ddf grl
�

� N½ �Trl l½ �Tjrl;rm D½ �jrl;rm l½ �jrl;rm N½ �rm Ddf grm
�Jðjrl;rmÞ N½ �Trl l½ �Tjrl;rm Drvpf gjrl;rm

�
dxjrl;rmdyjrl;rm

ðrl ¼ 1; 2; 3; . . .; nrÞ

ð10:24Þ
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In which the subscript jrl;rm runs over all the discontinuities around block rl, and
the subscript rm runs over all the adjoin blocks around block rl corresponding to
discontinuity jrl;rm. Assemble Eq. (10.24) of every block into the equilibrium
equation set of the whole block system in a similar routine to that of the FEM, we
have

k½ �r1;r1 k½ �r1;r2 . . . ½k�r1;nr
k½ �r2;r1 k½ �r2;r2 . . . k½ �r2;nr
..
. ..

. ..
. ..

.

k½ �nr ;r1 k½ �nr ;r2 . . . k½ �nr ;nr

2
6664

3
7775

Ddf gr1
Ddf gr2

..

.

Ddf gnr

8>>><
>>>:

9>>>=
>>>;

¼

Dff gr1
Dff gr2

..

.

Dff gnr

8>>><
>>>:

9>>>=
>>>;

ð10:25Þ

or

K½ � Ddf g ¼ DFf g ð10:26Þ

In Eq. (10.26), K½ � is the global stiffness matrix assembled from the elementary
sub-matrices

k½ �rl;rl¼
RRR
Xrl

B½ �Trl D½ �rl B½ �rldXþ P
jrl;rm

H rl; rmð Þ RR
Cjrl;rm

N½ �Trl l½ �Tjrl;rm D½ �jrl;rm l½ �jrl;rm N½ �rldxjrl;rmdyjrl;rm

k½ �rl;rm¼ �H1 rl; rmð Þ RR
Cjrl;rm

N½ �Trl l½ �Tjrl;rm D½ �jrl;rm l½ �jrl;rm N½ �rmdxjrl;rmdyjrl;rm

H rl; rmð Þ ¼ 1 If rl and rm are adjacent
0 If rl and rm are not adjacent

�

8>>>>>><
>>>>>>:

ð10:27Þ

In which Ddf g is the global general displacement increments vector defined
below

Ddf g ¼ Ddf gT1 Ddf gT2 . . . Ddf gTnr
h iT

ð10:28Þ

and DFf g is the correspondent global general load vector

DFf g ¼ DFf gT1 DFf gT2 . . . DFf gTnr
h iT

DFf grl¼ Dff grl þ Df vpf grl

(
ð10:29Þ

Df vpf grl¼
ZZZ
Xrl

½B�Trl Drvpf grldXþ
X
jrl;rm

Jðjrl;rmÞ
ZZ
Cjrl;rm

N½ �Trl l½ �Tjrl;rm Drvpf gjrl;rmdxjrl;rmdyjrl;rm

ð10:30Þ

With the solved nodal displacements Ddf grl from Eq. (10.26), the displacements
and the strains as well as the stresses in block rl and on discontinuity jrl;rm, can be
calculated by Eqs. (10.6), (10.12), (10.13) and (10.14).
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(3) Nodal loads

There are two types of nodal load increments in Eq. (10.29). One is the equivalent
load Df vpf grl due to viscoplastic deformation given in Eq. (10.30). Another is the
external load Dff grl, which can be obtained on the virtual work consideration with
regard to the load balance.

1 Point force

If a point force Dqf g ¼ Dqx Dqy Dqz½ �T exerts on block rl, and the coordinate
of acting point is xq yq zqð Þ, then its virtual work is

Du�f gTrl Dqf g ¼ Dd�f gTrl N½ �Trl
		
xq yq zq

� � Dqf g ð10:31Þ

It must be equal to the virtual work of the external load Dff grl in a manner of

Dd�f gTrl Dff grl¼ Dd�f gTrl N½ �Trl
		
xq yq zq

� � Dqf g ð10:32Þ

Therefore we have

Dff grl¼ N½ �Trl
		
xq yq zq

� � Dqf g ð10:33Þ

2 Surface distributed force

The surface force Dpf g ¼ Dpx Dpy Dpz½ �T exerting on the discontinuity jrl;rm of
block rl can be transferred into a general load vector in the same way as

Dff grl¼
ZZ
Cjrl;rm

N½ �Ttl Dpf gdxjrl;rmdyjrl;rm ð10:34Þ

3 Volumetric force

The volumetric force Dvf g ¼ Dvx Dvy Dvz½ �T of block rl can also be balanced
by the corresponding nodal load vector

Dff grl¼
ZZZ
Xrl

½N�Trl Dvf gdX ð10:35Þ
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10.4 Procedure for Adaptive P-Refinement

Towards the formulation of a practical p-refinement BEA, the error estimation and
upgrade of the shape function order may be carried out on the block element
separately.

For the block element rl, there exist exact solutions with respect to the dis-
placement fugrl, strain fegrl and stress frgrl, whose corresponding BEA solutions
with the shape function order of p are fupgrl, fepgrl, and frpgrl, respectively. Hence
we have three error definitions

feugrl ¼ fugrl � fupgrl
feegrl ¼ fegrl � fepgrl
fergrl ¼ frgrl � frpgrl

8><
>: ð10:36Þ

To get a unified scale of the error, the error energy norm and total energy norm
are defined as

ek krl¼
ZZZ
Xrl

erf gTrl eef grldX ð10:37Þ

uk krl¼
ZZZ
Xrl

rf gTrl ef grldX ð10:38Þ

The dimensionless relative error will be

erl ¼ ek krl
uk krl

� 100% ð10:39Þ

where the relative error erl is equal to or smaller than the error tolerance et, i.e.

erl � et ð10:40Þ

The order p of the shape functions is appropriately accepted.
The rest problem is how to get the exact solutions in Eq. (10.36). To simplify the

algorithm, use is made of the successive upgrade results of order pþ 1 as the “best
guess” for the exact solutions. This approximate treatment is advantageous attri-
butable to less requirement for computation effort. Suppose the strains and stresses
are obtained using the shape functions of orders p and pþ 1, respectively. Then the
“best guess” for the exact solutions in Eq. (10.36) will be

ef grl¼ epþ 1

 �

rl ð10:41Þ

rf grl¼ rpþ 1

 �

rl ð10:42Þ
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where the error tolerance is met according to Eq. (10.40), the order of block rl will
be fixed as pþ 1. The p-refinement iteration is accomplished after the error toler-
ances of all the block elements are met.

10.5 Verification Examples

10.5.1 Cantilever Beam

An elastic cantilever beam (length L ¼ 6:0 m; width b ¼ 0:5 m; height h ¼ 1:0 m)
exerted by a concentrated force P ¼ 0:5 MPa at its free end is studied (see
Fig. 10.4). The elastic parameters used in the study are the elastic modulus E ¼
10000 MPa and the Poisson’s ratio l ¼ 0:17.

Both the p-refinement BEA and the classical FEM are employed to solve this
problem. In the former the cantilever is looked at as one block element, whereas in
the latter it is divided uniformly along the length and height into 12 sections and 4
layers (i.e. 48 elements).

Figure 10.5 shows the computed and analytically solved flexural curves of the
beam axis, and Fig. 10.6 shows the normal stress distribution on the fixed end
section. In the BEA, the shape function order p along the width is fixed to 1,
meanwhile along both the length and height directions it is adaptively upgraded

Fig. 10.4 Diagram of an elastic cantilever beam

Fig. 10.5 Flexural curve of
beam axis (I = sectional
inertia moment)
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from 1 until to 4. The degree of freedom (DOF), energy norm, relative error, and the
flexure are summarized in Table 10.4.

10.5.2 Simplified Gravity Dam

A simplified gravity dam, whose profile and block element system are illustrated in
Fig. 10.7, has been studied. The mechanical parameters of the foundation rock and
dam concrete are listed in Table 10.5. The mechanical parameters of the discon-
tinuities are listed in Table 10.6.

The dam is analyzed in parallel using both the BEA and FEM. A slice of 10 m
along the Y direction is cut for the study and the corresponding FE mesh in
Fig. 10.8 is its projection on the X � Z plane.

Towards the computation using the BEA, the shape function order p along the Y-
direction is fixed to p ¼ 1, but those along the X and Z directions are upgraded
adaptively until up to p ¼ 5. The degree of freedom, the energy norm, the relative
error, and the displacements of the upstream dam top are summarized in
Tables 10.7 and 10.8 shows the optimal shape function orders of all the 14 block

Fig. 10.6 Normal stress distribution on the fixed end section (I = sectional inertia moment)

Table 10.4 Variation of p-refinement indices of the cantilever beam

Adaptive step p System DOF Energy norm Relative error (%) Flexure (m)

1 1 24 0.0679009 96.68 0.004610

2 2 48 0.2658887 44.12 0.070694

3 3 72 0.2962777 0.35 0.087778

4 4 102 0.2962795 – 0.087782
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Fig. 10.7 Profile of a simplified gravity dam

Table 10.5 Mechanical parameters of the foundation rock and dam concrete

Parameters Rock Concrete

Young’s modulus E GPað Þ 15 20

Poisson’s ratio l 0.20 0.15

Angle of friction u ð�Þ 45.0 45.0

Table 10.6 Mechanical parameters of the discontinuities

Parameters F1 F2 F3 F4 F5 B

Normal stiffness kn GN=m3ð Þ 2.0 2.0 2.0 2.0 2.0 2.0

Tangential stiffness ks GN=m3ð Þ 0.87 0.87 0.87 0.87 0.87 0.87

Angle of friction u ð�Þ 40 40 40 40 40 45

Cohesion c MPað Þ 0.02 0.02 0.02 0.02 0.02 0.2

Strength of tension rT MPað Þ 0.02 0.01 0.01 0.02 0.02 0.02
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Fig. 10.8 FE mesh of the simplified gravity dam projected on the X � Z plane (2109 elements;
4358 nodes)

Table 10.7 Variation of p-refinement indices of the simplified gravity dam

Adaptive
step

p System
DOF

Energy
norm

Relative error
(%)

Displacements of
the upstream dam
crest

uX (m) uZ (m)

1 1 336 3.485523 39.41 0.0218 0.00347

2 2 672 3.792542 17.59 0.0346 0.00674

3 3 1008 3.852612 11.88 0.0384 0.00793

4 4 1248 3.880075 7.46 0.0382 0.00791

5 5 1392 3.890929 – 0.0390 0.00816

Table 10.8 Optimal shape function order and degree of freedom

Block
element

1 2 3 4 5 6 7 8 9 10 11 12 13 14

p 3 3 5 4 4 5 3 5 4 5 3 3 4 3

Element
DOF

72 72 138 102 102 138 72 138 102 138 72 72 102 72
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elements. The displacement in the X � Z plane obtained from the BEA and FEM
are given in Figs. 10.9 and 10.10, meanwhile the principal stresses in the X � Z
plane are given in Figs. 10.11 and 10.12.

10.6 Engineering Application: Baozhusi Project, China

10.6.1 Presentation of the Project

Vide Chap. 9 (Sect. 9.5.1).

Fig. 10.9 Displacements by
the BEA

Fig. 10.10 Displacements by
the FEM
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10.6.2 Characteristics of the Computation

The 17th dam monolith of 21.5 m thickness and 131 m high is shown in
Fig. 10.13, in which a penstock is installed. The width of the dam’s base is 92 m
(exclusive the powerhouse). The rock mass under the dam foundation is Ordovician
sand stone and at the downstream of the dam is Silurian shale (S1). The main
discontinuities are faults (F4, F2) and argillic intercalated layers (D5, D7,8, D1, D3,
D6).

Preliminary studies showed that the safety of the dam foundation against sliding
was insufficient. The designer then revised the structural design by replacing the
open and permanent joint between the dam and powerhouse with a bonded

Fig. 10.11 Principal stresses
by the BEA

Fig. 10.12 Principal stresses
by the FEM
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temporary joint, in this manner the dam and powerhouse were supposed to work
together resisting the reservoir water thrust. Before the impounded reservoir level
had risen to the EL. 550.0 m, the dam and power house were kept separate from
each other and both worked independently; after the impounded level of the EL.
550.0 m, the joint between the dam and powerhouse was grouted to link them
together.

The computation study was carried out for the revised design to analyze the
deformation and stress of the dam/foundation system, which is expected to answer
the questions with regard to “what is the failure mechanism of the structure (sliding
within the foundation or cracking in the dam body)”? “Is the safety of the dam
sufficient”? A parallel laboratory physical test was carried out, too. The main
prototype mechanical parameters used in the computation and test are listed in
Tables 10.9 and 10.10.

Fig. 10.13 Dam monolith 17#: Baozhusi Project, China ③ and ④—displacement gauge (object)
points

Table 10.9 Prototype mechanical parameters of the rock masses and concrete

Rock Unit
weight cr
(kN/m3)

Friction
angle u
(°)

Cohesion
c (MPa)

Deformation
modulus E
(Gpa)

Poisson’s
ratio l

Tensile
strength rt
(kPa)

O2�1
2 23.52 45.0 0.6 7.53 0.27 10.0

O2�2�1
2 25.97 45.0 0.6 2.89 0.30 6.6

O2�2�2
2 ,O2�3

2 25.48 45.0 1.0 18.70 0.18 47.6

O2�4
2 25.87 45.0 0.8 11.90 0.25 29.0

S1 25.48 26.6 0.4 4.00 0.30 22.0
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According to the equality principle with respect to the relative displacement of
discontinuity walls, the stiffness coefficients kn and ks input in the BEA computation
are related to the Young’s modulus E and Poisson’s ratio l of discontinuity filler by
the formulas

kn ¼ E
t

ks ¼ 1
t

E
2ð1þlÞ

�
ð10:43Þ

In which t is the thickness of the discontinuity.
Figure 10.14 shows the block system consisting of 28 block elements. The block

elements in the foundation are exactly defined by the discontinuities, whereas the
dam body and powerhouse are discretized by dummy discontinuity faces. In the
discretization of dam, the penstock and the dam/powerhouse joint are taken into
account. For the dummy discontinuity faces in the dam body and power house, the

Fig. 10.14 Block element system for the BEA computation (28 blocks)

Table 10.10 Prototype mechanical parameters of the discontinuities

Discontinuity Deformation
modulus E (Mpa)

Poisson’s
ratio l

Friction
angle u (°)

Cohesion
c (MPa)

Thickness
t (m)

Remark

D1,D3 30.0 0.40 20.8 0.01 0.01 –

D6 50.0 0.40 19.3 0.02 0.01 –

D7,8 50.0 0.40 21.8 0.01 0.01 Upstream
side of F4

D7,8 300.0 0.30 21.8 0.02 0.01 Downstream
side of F4

D5 40.0 0.40 14.0 0.01 0.01 Upstream
side of F4

D5 300.0 0.30 16.7 0.02 0.01 Downstream
side of F4
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stiffness coefficients and strength should be high enough to ensure the computation
precision. The error tolerance et in the adaptive upgrade for the shape function order
p is stipulated as et ¼ 5%.

10.6.3 Test Configuration and Procedure

The physical model is made of geo-mechanical material with high specific weight
and low elasticity and strength, which is ideal for the study of the displacement and
failure mechanism of the dam/foundation system (Fig.10.15). However, the stress
in this kind of structural model cannot be well gauged by the conventional
instruments.

The principal coefficients of scaling (Chen 2015) in the model test are

– Geometry, 170;
– Young’s modulus, 170;
– Volumetric weight, 1;
– Displacement, 17;
– Friction coefficient, 1.

The static hydraulic pressure of the reservoir is equalized by a series of jacks
arranged along the upstream dam face, the output of jacks can be controlled to
simulate the reservoir water level fluctuation. The overloading process is imple-
mented in 7 steps (see Table 10.11) to extract the failure mechanism and corre-
spondent safety factor of the dam, where the overload increments and overload
factors are calculated by the formulas

Pi ¼ 1
2
c 2Hi � Hð ÞH ð10:44Þ

Fig. 10.15 Gravity dam
model made of
geo-mechanical materials
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Ki ¼ 2
Hi

H
� 1 ð10:45Þ

In which H is the upstream normal water depth at the beginning of overloading,
Hi is the overloading water depth at the ith overloading step.

Altogether 7 displacement object points are layout in the dam and powerhouse.
In addition, a number of strain gauges are deployed on the upstream dam face to
detect dam cracking.

10.6.4 Computation Results

(1) Displacements

Figure 10.16 gives the calculated displacement increments when the overload
factor K is equal to 2.0. The displacement increments against K at the gauge points
③ and ④ (see Fig. 10.13) are plotted in Fig. 10.17.

(2) Stresses

Figure 10.18 gives the calculated principal stresses when the overloading factor
K is equal to 2.0. Unfortunately, in the geo-mechanical material test the strain
cannot be measured credibly by conventional instruments, hence there is no
cross-reference between the computation and test with regard to the strains and
stresses.

(3) Failure mechanism and safety

The overloading factor K can be regarded as a safety index of dams. In the
physical model test, it was found that the first crack appeared at the upstream dam
body near the penstock (EL. 558.4 m) when the overloading factor K = 2.0. After
the overloading factor exceeded 2.0, several cracks appeared between the penstock

Table 10.11 Overloading steps

Overloading
step

Upstream
water level
(m)

Upstream
water depth
Hi (m)

Overload
increment
Pi (mN)

Overload
factor Ki

Remark

1 594.70 130.70 – 1.00 –

2 610.38 146.38 103.90 1.24 –

3 626.07 162.07 124.01 1.48 –

4 646.98 182.98 150.82 1.80 –

5 654.82 190.82 160.88 1.92 –

6 659.50 195.50 166.87 1.99 –

7 660.05 196.05 156.83 2.00 Upstream
cracking near
penstock

10.6 Engineering Application: Baozhusi Project, China 617



and the dam heel. The crack near the penstock propagated fast and the upstream
jack pressure in the test could not be sustained, leading to the failure of the dam.
The corresponding safety factor can therefore be defined as equal to 2.0. It can
therefore be confirmed that the failure mechanism is cracking in the dam, and the
stability against the sliding in the foundation is no longer dominant consideration
after the revision of design.

Figure 10.19 shows the tensile yield zones when K ¼ 2:0 by the BEA, which are
the areas enclosed by the contour of point safety factor equal to unit and the
upstream boundary. It is clear that the failure mechanism can be well revealed by
the BEA. The computation gives a safety factor of K ¼ 2:3, which is higher than
that from the physical model test. This is mainly attributable to the perfect plasticity
(no hardening and softening) and associated flow rule postulated in the
computation.

Fig. 10.16 Accumulated displacements (computed)

Fig. 10.17 Displacements at
the gauge points versus
overload factor K
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The computation also indicates that at the upstream riverbed there is a tensile
cracking zone. It will propagate along with the overloading process, too, but much
slower than that occurs in the dam body. Therefore it is not the dominated factor
entailing the safety of the dam.
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Chapter 11
Hybrid Methods Related to the Block
Element Analysis

Abstract In this chapter, hybrid methods are elaborated meant to solve the
interaction problem of the hydraulic structure resting on its rock foundation/
abutment. The foundation/abutment is simulated with block elements whereas the
structure is discretized using arch/cantilever elements in orthodoxy, or more flexible
finite elements. On the contact surface between the structure and the foundation/
abutment, the displacement compatibility of the structure element and the foun-
dation element are enforced, in this manner the hybrid governing equation set may
be assembled to solve the displacements and stresses of the structure as well as the
stability of the foundation/abutment simultaneously. At the end of this chapter, a
successful engineering application case (arch dam) is presented.

11.1 General

There are two basic safety targets in the design of hydraulic structures (e.g. dams),
namely, the control of the strength and deformation of the structure itself, as well as
the control of the stability and deformation of its foundation or/and abutments
(Chen 2015).

Take the arch dam design for example. The conventional analysis tool for arch
dams is the “trial load method” (TLM) put forward by the United States Department
of the Interior Bureau of Reclamation (USBR) in the 1930s (Copen et al. 1977).
Following the appearance and the advancement of the computer industry, the
method has been improved at various aspects with regard to the solution techniques,
the precise consideration of the deflections of the arches and cantilevers, etc.
(Suresh and Natarajan 1981; Lin and Yang 1987; Zhu et al. 1987). The TLM
discretizes the arch dam with a series of arches and cantilevers, at which the exerted
loads are shared by these components respectively, and their stresses are calculated
separately according to the shared loads. Theoretically, the TLM may provide rather
competent stresses for arch dam design, but it leaves a questionable assumption that
the rock in its foundation/abutments is an elastic and homogeneous half space.
Based on this assumption the relationship between the deformation of the
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foundation/abutments and the thrust from the dam can be established, to cope with
the arch dam as a system of arches and cantilevers supported on the elastic foun-
dation. Actually, this is rather problematic in the arch dams with complicated
geology conditions.

The handling of the stability and deformation of foundation and abutments gives
rise to another difficulty in the arch dam design. Generally, there exist a number of
discontinuities which cut the rock masses into blocks of various sizes, shapes and
positions. Attributable to its simplicity and the experiences accumulated in the
engineering practices for long time, the conventional design makes the application
of the limit equilibrium method (LEM) taking into account of the arch dam’s thrust
calculated by the TLM. It has, however, certain limitations: the deformation of the
abutments cannot be solved, and the stability safety factor [or factor of safety
(FOS)] would be overestimated when the slip surface is composed of two or more
discontinuities (Londe 1965; Guzina and Tucovic 1969; Copen et al. 1977; Chan
and Einstein 1981; Chen 1984, 1993).

In addition, since the stability of dam abutments is dependent on the dam’s thrust
strongly, an optimal design scheme of the dam using the TLM without the con-
sideration of the stability of abutments is not the true optimal design. If the stability
analysis of the dam abutments by the LEM under the dam’s thrust gives unfa-
vorable safety condition, we have to revise the dam’s layout to improve the abut-
ment stability, subject to new optimal design procedure for the dam body with
correspondent new dam’s thrust. This revision should be iteratively repeated several
times to get an acceptable optimal design scheme compromising between the
strength of the dam’s body and the stability of the abutments. It is time costing and,
the final design is strongly dependent on the initial design scheme.

The finite element method (FEM) is advantageous in handling very complicated
configurations of the hydraulic structure and its foundation, as well as various loading
and construction procedures. Good description of discontinuities and reinforcement
components can be achieved if special elements (joint elements, bolt elements, etc.)
are properly used. Although there are no competent permissible (allowable) strengths
and overall stability criteria for the FEM in the design codes/specifications at the
moment, yet the FEM is very helpful and already widely exercised in the study of
special problems arise from the design for hydraulic structures.

The block element analysis (BEA) presented previously is able to handle the
abutment slopes containing numerous discontinuities of various scales and orienta-
tions easily. It possesses peculiarities inclusive a powerful pre-processing toolkit for
the complicated abutment slope with irregular ground surface, a comprehensive
mechanical computation module dealing with various construction and loading
processes, an intelligent searching strategy for the potential failure cases formed by the
block combinations. Nevertheless, it has to admit that this method is far from perfect
for the stability problems of arch dam. One of the main drawbacks is that it takes the
thrust loads from the arch dam as constant forces calculated by the TLM. The reality is
however, that as the deformation evolution of the dam and abutments, these thrust
loads will change in both the direction and magnitude. Furthermore, since it treats the
abutment separately from the dam, a real optimal design is cumbersome to reach.
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Hybrid methods are therefore elaborated in our study, which is meant to solve
the interaction problem of hydraulic structure and its foundation/abutments. The
foundation will be simulated with block elements whereas the structures will be
discretized by arch/cantilever elements in orthodoxy (Xu and Chen 2001; Chen
et al. 2003), or more flexible finite elements (Wang et al. 2001). Towards each
element, the stiffness matrix can be used to relate its displacements and loads. On
the contact surface between the structure and the foundation, the displacements of
the structure element and the foundation element are obligatorily compatible. With
these considerations, the hybrid governing equation set may be assembled to solve
the displacements and stresses of the structure system as well as the stability of the
foundation/abutments simultaneously.

11.2 Formulation of the Trial Load Method

11.2.1 Concept

The modern procedure of the TLM has been well formulated in a various literatures
(Chen 2015).

The whole arch dam will be divided into orthogonal arch-cantilever system (see
Fig. 11.1). As a compromise between the computation accuracy and efficiency,
normally 5–7 arch rings and 9–13 cantilevers are demanded. The number of arch
rings and cantilevers should be compatible. Suppose that the amount of arch rings is
n and the amount of cantilevers is m, very often the relation m ¼ 2n� 1 is met to let
any node at foundation be a common one (conjugate point) of the arch and can-
tilever. The conjugate nodes are as uniformly distributed as possible to cover the
whole dam body.

At each conjugate node there is six deformation components (see Fig. 11.2), i.e.
three linear deflections and three angle deflections, which are arranged in sequence
according to their importance as the radial deflection v, tangential deflection u, angle
deflection hz around axis z, angle deflection ht around tangential axis t, vertical
deflectionw, angle deflection hr around radial axis r. The correspondent external loads
on arches or cantilevers are the radial load p, tangential load q, vertical load s, hori-
zontal moment mz, vertical moments mt and mr. These deflections and external loads
may be grouped into correspondent vectors fDdgac and fDf gac ¼ fDf ga þfDf gc
ðac ¼ 1; 2; . . .; nacÞ.

Fig. 11.1 Arch-cantilever
system of an arch dam
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Theoretically, all these six deflections and their compatibility are taken into
account to get an exact load division between arches and cantilevers, which is
termed as “six directional (whole) adjustment”. However, in practice the first three
deflections are customarily adopted as independent variables through which the rest
three deflections are expressed indirectly. These three key independent variables are
solved by their deformation compatibility conditions at the conjugate nodes, which
is termed as “three-directional adjustment”. Similarly, four- or five-directional
adjustment may be exercised.

It is worthwhile to remind that the strength criteria of arch dams are based on the
three- or four-directional adjustment in the Chinese design codes for concrete arch
dams.

Suppose that the loads at an arch dam are co-carried or shared by the arches and
cantilevers respectively according to their stiffness coefficients, and use is made of
the displacement compatibility conditions at all the nodes formed by the intersec-
tion of the arches with cantilevers, a set of equilibrium equation of the arch dam is
established by which the nodal displacements may be solved. These displacements
are further employed to calculate the internal forces and in turn, the stresses,

Fig. 11.2 Deflections and
loads at a conjugate node
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according to the arch and cantilever theory. The stresses are checked and calibrated
by their permissible (allowable) tensile and compressive values. The thrust forces
are also calculated from the internal forces of the arches and cantilevers contacting
the abutments and foundation, which will be further passed to the LEM/BEA/FEM
analysis to calibrate the abutment stability.

If the strength of the dam’s body or/and the stability of the abutments are not
held, the layout of the dam or/and the reinforcement of abutments should be
modified, and the above analysis shall be recurred.

At the beginning of the 1930s when the method was initiated, the solution of an
equation set with large freedom was a difficult overhead, so the load sharing
between the arches and cantilevers should be “guessed” firstly, after the displace-
ments of the arches and cantilevers were calculated separately, the displacement
compatibility (equality) condition would be employed to check the correctness of
the load partition. Usually, a number of repeated iterations should be carried out to
get the acceptably correct load partition permitted by the displacement compati-
bility condition. Therefore, the researchers and engineers labeled the method with
“trial load”.

11.2.2 Governing Equations of Arch-Cantilever System

In Fig. 11.3, a shell patch is simplified on to its neutral surface whose four nodes
possess linear and angular deflections. The directions along the arch and cantilever
are defined as

~va ¼~c2 �~c1 ð11:1Þ

~vb ¼~c4 �~c3 ð11:2Þ

Thus the radial direction is defined by

~vr ¼~va �~vb ð11:3Þ

Fig. 11.3 Arch-cantilever
element
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In this way a locally orthogonal coordinate system is established.
We group the displacement increments of the element nodes in the global

coordinate system into a vector fDdgac. The global displacement increments fDdga
and fDdgc along the arch and cantilever directions are

fDdga ¼ ½H�afDdgac ð11:4Þ

fDdgc ¼ ½H�cfDdgac ð11:5Þ

In which ½H�a and ½H�c are the interpolation functions along the arch and can-
tilever directions, respectively. The above displacements can be transformed into
the local coordinate system as

fDdg0a ¼ ½T�afDdga ¼ ½T �a½H�afDdgac ð11:6Þ

fDdg0c ¼ ½T �cfDdgc ¼ ½T�c½H�cfDdgac ð11:7Þ

where ½T�a and ½T �c are the transformation matrices defined by

½T �a ¼ �~vb ~va ~vr �~vb ~va½ �T ð11:8Þ

½T �c ¼ ~va ~vb ~vr ~va ~vb½ �T ð11:9Þ

At the arch and cantilever directions, the displacement increments fDdg0a and
fDdg0c are linked to the load increments fDf g0a and fDf g0c by the stiffness matrices
½k�0a and ½k�0c as follows

fDf g0a ¼ ½k�0afDdg0a ð11:10Þ

fDf g0c ¼ ½k�0cfDdg0c ð11:11Þ

These load increments fDf g0a and fDf g0c are transformed into the global coor-
dinate system noted as fDf ga and fDf gc. Recall the invariance of the virtual work
and use is made of Eq. (11.6), we have

fDdgTacfDf ga ¼ fDdg0T
a fDf g0a ¼ ð½T �a½H�afDdgacÞTfDf g0a

¼ fDdgTac½H�Ta ½T�TafDf g0a ð11:12Þ

Therefore

fDf ga ¼ ½H�Ta ½T �TafDf g0a ð11:13Þ
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Performing the similar deduction gives

fDf gc ¼ ½H�Tc ½T �Tc fDf g0c ð11:14Þ

According to the principle of the TLM, the total load increment fDf gac is simply
the summation of the contribution from the arch fDf ga and the cantilever fDf gc,
i.e.

fDf gac ¼ fDf ga þfDf gc
¼ ½H�Ta ½T �TafDf g0a þ ½H�Tc ½T�Tc fDf g0c
¼ ½H�Ta ½T �Ta ½k�0a½T �a½H�afDdgac þ ½H�Tc ½T �Tc ½k�0c½T�c½H�cfDdgac
¼ ð½H�Ta ½T�Ta ½k�0a½T�a½H�a þ ½H�Tc ½T �Tc ½k�0c½T�c½H�cÞfDdgac

ð11:15Þ

Denote

½k�ac ¼ ½H�Ta ½T �Ta ½k�0a½T �a½H�a þ ½H�Tc ½T�Tc ½k�0c½T �c½H�c ð11:16Þ

We obtain the governing equation of the arch-cantilever element relating the
displacement and load increments through the stiffness matrix ½k�ac in a manner of

fDf gac ¼ ½k�acfDdgac ð11:17Þ

Equation (11.17) can be assembled by a routine procedure similar to the FEM
into the governing equation set of the arch-cantilever system

fDFgdam ¼ ½K�damfDdgdam ð11:18Þ

After the load increments (water pressure, temperature, etc.) exerting on the dam
are transferred into the nodal load vector

fDFgdam ¼ fDf gT1 ; fDf gT2 ; fDf gT3 ; . . .; fDf gTnac
h iT

, the displacement increments

fDdgdam ¼ fDdgT1 ; fDdgT2 ; fDdgT3 ; . . .; fDdgTnac
h iT

may be solved by Eq. (11.18).

Afterwards the element stress increments are calculated with these displacement
increments simply by the theory of elastic beam and arch.

11.3 Hybrid of Block Element System
with Arch-Cantilever Element System

Towards the hybrid system of block elements for foundation/abutments and
arch-cantilever elements for arch dam, their displacement increments must be
related with the help of contact (interactive) conditions. A simple treatment is to
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postulate that the contact face is rigid so that the displacement increment of an
arch-cantilever element on the contact face is identical to that of its connected block
element, namely the nodal displacement increment of the arch-cantilever element ac
contacting the block element rl should be expressed by

fDdgac ¼ ½T �fDUgrl ð11:19Þ

In this manner the arch-cantilever nodal freedoms are replaced by that of the
connected block element. The transformation matrix [T] in Eq. (11.19) is defined as

½T � ¼ ½I� ½A�
½0� ½I�

� �

½A� ¼
0 Z0

rl � Zac �ðY0
rl � YacÞ

�ðZ0
rl � ZacÞ 0 X0

rl � Xac

Y0
rl � Yac �ðX0

rl � XacÞ 0

2
4

3
5

8>>>><
>>>>:

ð11:20Þ

In which [I] is a 3 � 3 unit matrix, ðX0
rl; Y

0
rl; Z

0
rlÞ is the centroid coordinate of the

block rl and ðXac; Yac; ZacÞ is the nodal coordinate of the arch-cantilever element
which contacts the block rl. If a node does not contact the block element rl, [T] is a
unit matrix.

Similarly, the nodal load increment fDf gac of the arch-cantilever element ac can
be transferred to the centroid of its contacting block element rl by

fDf grl ¼ ½T �TfDf gac ð11:21Þ

Introducing Eqs. (11.17) and (11.19) into Eq. (11.21), the nodal displacement
and load increments of the arch-cantilever element ac contacting the block element
rl are related by

fDfhybridgrl ¼ ½T �T ½k�ac½T �fDUgrl ¼ ½k�hybridfDUgrl ð11:22Þ

In which

½k�hybrid ¼ ½T �T ½k�ac½T � ð11:23Þ

Equations (11.22), (9.19) and (11.17) are assembled according to the freedoms
of all the block elements and the rest freedoms of the arch-cantilever elements, the
hybrid governing equation set of the dam and foundation system will take the form
of

½K�fDdg ¼ fDFgþfDFvpg ð11:24Þ
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In which [K] is the system stiffness matrix, and

Ddf g ¼ fDdgT1 ; fDdgT2 ; . . .; fDdgTnac ; fDUgT1 ; fDUgT2 ; . . .; fDUgTnr
h iT

DFf g ¼ Dff gT1 ; Dff gT2 ; . . .; Dff gTnac ; Dff gT1 ; Dff gT2 ; . . .; Dff gTnr
h iT

DFvpf g ¼ f0gT1 ; f0gT2 ; . . .; f0gTnac ; Df vpf gT1 ; Df vpf gT2 ; . . .; Df vpf gTnr
h iT

8>>>>><
>>>>>:

ð11:25Þ

11.4 Hybrid of Block Element System with Finite
Element System

The subscripts rl and ei are used to denote the deformable block element and finite
element, jrl;ei is used to denote the interface (contact face) between rl and ei. The
other nomenclatures are identical to that in the foregoing chapters.

We recall that the displacement of block element rl using hierarchical shape
functions for overlay element is

fDugrl ¼ ½N�rlfDdgrl ðrl ¼ 1; 2; . . .; nrÞ ð11:26Þ

In which ½N�rl and fDdgrl are the hierarchical shape function matrix and general
displacement vector of the block element rl, respectively.

In a finite element, it is well known that

fDugei ¼ ½N�eifDdgei ðei ¼ 1; 2; . . .; neÞ ð11:27Þ

In which ½N�ei and fDdgei is the hierarchical shape function matrix and general
displacement vector of the finite element ei, respectively.

If the block element rl and finite element ei adjoins through the interface jrl;ei, the
relative displacement of this interface is

fDugjrl;ei ¼ J jrl;ei
� �½l�jrl;ei ½N�rlfDdgrl � ½N�eifDdgei

� � ð11:28Þ

In which the coordinate transformation matrix ½l�jrl;ei of the interface has been

defined in Eqs. (2.12) and (2.13) where the subscript j shall be replaced by jrl;ei, and
the function J jrl;ei

� �
has been defined in Eq. (9.12).

The strain increments of rl and ei are

fDegrl ¼ ½B�rlfDdgrl ð11:29Þ

fDegei ¼ ½B�eifDdgei ð11:30Þ
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The constitutive relations of the block element and finite element as well as the
interface have been discussed in the foregoing chapters.

The virtual work of a structural system comprising block element sub-system
and finite element sub-system is

WF ¼
Xnr
rl

Wrl þ
Xne
ei

Wei þ
Xnj
j

Wj ð11:31Þ

where WF = virtual work contributed from the external actions; Wrl = virtual work
contributed from the block element rl; Wei = virtual work contributed from the
finite element ei; Wj = virtual work contributed from the structural plane j (inclu-
sive the interfaces between block elements and finite elements); nr = amount of the
block elements; nei = amount of the finite elements; nj = amount of the structural
planes (inclusive the interfaces between block elements and finite elements).

Wrl ¼
ZZZ
Xrl

De�f gTrlfDrgrldX ðrl ¼ 1; 2; . . .; nrÞ ð11:32Þ

Wei ¼
ZZZ
Xei

De�f gTeifDrgeidX ðei ¼ 1; 2; . . .; neÞ ð11:33Þ

Wj ¼
ZZZ
Cj

Dd�f gTj fDrgjdxjdyj ðj ¼ 1; 2; . . .; njÞ ð11:34Þ

WF ¼
Xnr
rl

Dd�f gTrlfDFgrl þ
Xne
ei

Dd�f gTeifDFgei ð11:35Þ

In which the superscript * indicates the virtual quantity.
Introducing Eqs. (11.32)–(11.35) into Eq. (11.31), after the arrangement it gives

rise to the hybrid governing equation set of the structure system as follows

½K�fDdg ¼ fDFg ð11:36Þ

In which ½K�, fDdg and fDFg are the stiffness matrix, displacement vector and
load vector of the whole hybrid system.

½K� is assembled by four types of sub-matrices, namely ½k�rl;rl, ½k�rl;rm, ½k�ei;ei,
½k�rl;ei. They are respectively the contributions from block element rl solely, the
interaction of block elements rl and rm, finite element ei solely, and the interaction
of block element rl and finite element ei. For the first three types our readers are
referred to the Chaps. 4, 5 and 10, whereas for the last one it may be given as
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½K�rl;ei ¼ �H rl; eið Þ
ZZ
Cjrl;ei

½N�Trl½l�Tjrl;ei ½D�jrl;ei ½l�jrl;ei ½N�eidxjrl;ei dyjrl;ei ð11:37Þ

H rl; eið Þ ¼ 1 if rl and ei are adjacent
0 if rl and ei are not adjacent

�
ð11:38Þ

The system displacement and load vectors are simply assembled as

fDdg ¼ fDdgTr1 . . . fDdgTnr fDdgTe1 . . . fDdgTne
h iT

ð11:39Þ

fDFg ¼ fDFgTr1 . . . fDFgTnr fDFgTe1 . . . fDFgTne
h iT

ð11:40Þ

In Eq. (11.40) the load increments fDFgrl and fDFgei are composed of two
portions

fDFgi ¼ fDf gi þ Df vpf gi ði ¼ rl; neÞ ð11:41Þ

11.5 Verifications and Applications

11.5.1 Cantilever Beam Example

For the cantilever beam in Fig. 10.4, the left half portion is simulated by one
deformable block element whose shape function order is p = 1 along the thickness
direction Y, whereas the right half portion is discretized into 24 finite elements (see
Fig. 11.4). The artificial interface between the block element and finite elements is
supposed to possess very high stiffness coefficients with kn ¼ 2� 107 MPa/m and
ks ¼ 1� 107 MPa/m, to eliminate its influence on the computation results.

Figure 11.5 gives the deflection distribution along the cantilever and Fig. 11.6
shows the cross sectional distribution of the normal stress. When along both the

Fig. 11.4 Hybrid block element and finite element system on the X � Z plane
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directionsX and Z the shape function order offinite elements is p = 2 and that of block
element is p = 3, the computation and analytical results are very close to each other.

11.5.2 Engineering Application: Dahuashui Project, China

(1) Presentation of the Project

Dahuashui Project is located on the Qingshuihe River, Guizhou Province,
China. It is spanned by of a RCC double-curvature arch dam (parabolic arch ring)
with a gravity block on the left bank (see Fig. 11.7).

The main purposes of the project are the hydroelectric power generation and
flood control. The dam creates a gross reservoir storage of 276� 106 m3 which
supplies water to a power station installed with two 200 MW turbine generators.
Construction on the dam was launched in December 2003 and was expectantly
completed in May 2007, but a lack of funding delayed project completion until its
initial operation in January 2008.

The dam is located in a non-symmetric valley trenched in limestone (see
Fig. 11.8): during dry seasons, the river surface is 37 m wide at the EL. 755 m; at
the EL. 815 m the valley is 101 m wide; at the EL. 868 m (NSL) the river valley is

Fig. 11.5 Flexural curves of
the beam axis (I = sectional
moment of inertia)

Fig. 11.6 Normal stress
distribution of the fixed end
section (I = sectional moment
of inertia)

632 11 Hybrid Methods Related to the Block Element Analysis



256 wide. As a result, a gravity block pier is installed at the left abutment (see
Fig. 11.9).

The limestone bedrocks under and near the dam are intersected by the faults f1,
f2, f3, f23, f30, f4. By the borehole exploration and geophysical CT investigation,
there are no large Karst features (e.g. karrens, solution cavities, cenotes, sinkholes,
dolines, underground rivers) apart from small ones (size < 0.5–3.0 m).

The attitude of rock stratum is N10°W, SW ∠27°. The comprehensive studies on
the occurrences and mechanical properties of discontinuities, the valley topography,
as well as the thrust forces exerted by the arch dam, allowed for the definition of
those discontinuities which should be included in the analysis as follows:

Fig. 11.7 Plan showing the layout of Dahuashui Project

Fig. 11.8 Geologic section of Dahuashui Project along the dam axis
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– Three joint sets. ① N60°–90°E, NW (SE) ∠70°–90°;② N60°–90°W, SW
(NE) ∠70°–90°;③ N0°–30°E, NW (SE) ∠60°–90°.

– Eleven faults whose geological parameters are listed in the Table 11.1.

After routine works, the designer presented the final optimal design. The crest
width is 7.00 m and the length of crest is 256.19 m; the crest elevation and the
bottom elevation of the gravity block are 837.00 and 800.00 m, respectively; the
dam bottom thickness is 28.0 m and the correspondent thickness-height ratio is
0.208. With the crest elevation at 873.00 m and the bottom elevation at 738.5 m,
the maximum dam height is 134.50 m which ranked it the highest RCC arch dam in
the world. Figure 11.10 illustrates the horizontal arch rings at different elevations.

(2) Characteristics of the computation

The hybrid BEA/TLM method elaborated in this chapter has been employed
during each design phase to evaluate the strength and stability of the candidate dam
schemes. In the following a part of the results for the finally optimized dam design
will be briefly presented.

1. Mechanical parameters

The mechanical parameters of the discontinuities are assigned on the basis of a
comprehensive study including the geological investigations, the laboratory and

Fig. 11.9 Start of the gravity pier construction
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field tests, and engineering analogue. The key parameters are the normal and shear
stiffness coefficients, the cohesion and the friction angle, of the various
discontinuities.

The elastic behavior is stipulated for the dam concrete with the Young’s mod-
ulus E ¼ 20:78 GPa and the Poisson’s ratio l ¼ 0:18.

2. Block and arch-cantilever sub-systems

The foundation is discretized into block element sub-system (see Figs. 11.11,
11.12 and 11.13) meanwhile the arch-cantilever sub-system for the dam is also
constructed. The whole system includes 70 arch-cantilever elements (8 arch rings

Table 11.1 Geological parameters of the faults

Sequence Attitude Type Stretching
(m)

Width of fractured
zone (m)

f1 N80°W, NE ∠70°–
85°

Compression-torsion >200 0.20–0.50

f2 N75°–90°E, NW
∠70°–85°

Compression-torsion >200 1.00–2.00

f3 N55°–68°W, NE
∠70–85°

Compression-torsion 190 0.50–1.20

f4 N70°–90°E, SE
∠80°

Compression-torsion >200 0.50–1.60

f5 N70°–90°E, SE
∠80°

Compression-torsion >200 0.20–0.50

f6 N70°–90°E, SE
∠80°

Compression-torsion >200 0.10–0.40

f8 N65°–85°E, SE
∠70°–85°

Compression-torsion >200 0.20–1.50

f23 N0°–15°E, SE
∠60°–85°

Compression >200 0.50–2.50

f24 N35°E, SE ∠60° Compression >150 0.05–0.10

f25 N38°W, SW ∠50°–
70°

Compression >200 0.50

f26 N72°E, NW ∠82° Compression >200 2.50–3.50

Fig. 11.10 Layout of dam arch rings
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and 15 cantilever columns) and 4808 block elements (inclusive 85 blocks for the
gravity block pier).

3. Load combinations

The calculation is carried out with respect to two load combinations.

– Basic load combination. Volumetric weight of dam body + normal head water
level + corresponding tail water level + silt pressure + temperature drop.

Fig. 11.11 Dam and
foundation system:
axonometric perspective view

Fig. 11.12 Block and
arch-cantilever system: view
from downstream right bank
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– Special load combination. Volumetric weight of dam body + catastrophe flood
water level + corresponding tail water level + silt pressure + temperature rise.

It is a routine to calculate the self-weight, the water pressure, the silt pressure and
the temperature drop or rise in the dam (Chen 2015). The seepage flow in the
discontinuity network taking account of the seepage control devices such as the
drainage and grout curtains however, should be analyzed by the method illustrated
in Chap. 9.

(3) Results

1. Dam body displacements

Figures 11.14 and 11.15 give the displacement increments at the EL. 820 m
induced by the reservoir impounding only when the dam is under the basic load
combination and the special load combination, respectively. All the other horizontal
cross sections show similar displacement patterns.

It is found that under the basic load combination, the maximum displacement
35.20 mm of the dam occurs at the crest of the crown cantilever; whereas under the
special load combination, the maximum displacement 30.34 mm of the dam occurs at
the EL. 820 m of the crown cantilever in contrast to merely 20.89 mm at the crest.

The maximum displacement 13.50 mm of the left dam abutment appears at the
EL. 820 m, whereas it is about 17.19 mm at the EL. 800 m (near the fault f4) of the
right abutment.

Fig. 11.13 Block and arch-cantilever system: plan
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Fig. 11.14 Displacement increments at the EL. 820 m (basic load combination)

Fig. 11.15 Displacement increments at the EL. 820 m (special load combination)
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On the contact face of gravity block pier/arch dam, the pier exhibits river stream
oriented displacements of 5.14 mm at the EL. 860 m, 5.60 mm at the EL. 840 m,
7.07 mm at the EL. 820 m, and 6.76 mm at the EL. 800 m.

Attributable to the massive gravity pier across the weak zones, the displacements
at the left dam abutment are a bit of smaller than that at the right abutment. It
convincingly justifies the important role of the gravity pier in strengthening the left
dam abutment.

2. Dam body stresses

Figures 11.16 and 11.17 show the principal stresses on the upstream and
downstream surfaces under the basic load combination. The minimum and maxi-
mum stresses of the dam are −5.38 MPa and 2.57 MPa demonstrating at the heel
and toe of the crown cantilever, respectively.

Figures 11.18 and 11.19 show the principal stresses on the upstream and
downstream surfaces under the special load combination. The minimum and
maximum stresses of the dam are −5.27 MPa and 2.52 MPa appearing at the heel
and toe of the crown cantilever, respectively.

The maximum tensile stress is a bit of higher than the allowable (permissible)
value, it means that cracking could manifest at the dam’s heel. The suggestion is put
forward that further comprehensive analysis should be made by the other available
methods with regard to the dam heel cracking problem inclusive the FEM and
physical model test. If necessary, the dam’s shape should be appropriately adjusted.
In Fig. 11.20, a physical model of Dahuashui Arch Dam is shown, on which we

Fig. 11.16 Principal stresses on the upstream dam surface (basic load combination)
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Fig. 11.17 Principal stresses on the downstream dam surface (basic load combination)

Fig. 11.18 Principal stresses on the upstream dam surface (special load combination)
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Fig. 11.19 Principal stresses on the downstream dam surface (special load combination)

Fig. 11.20 Physical model of Dahuashui Arch Dam (downstream view)
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conducted a series of tests purposed to the optimal design of crack inducers (in-
ducing joints) for the mitigation of hazardous tensile cracking.

3. Safety factors of abutments against sliding

By the intelligent search (Xu et al. 2000) for blocks or block combinations, 32
main potential failure cases are detected whose safety factors against sliding are
relatively lower. The suggestions with regard to the abutment treatment and rein-
forcement countermeasures are put forward and implemented under the guidance of
our study.

After the completion of the project (see Fig. 11.21), it has been working well
without any serious problems insofar.
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Chapter 12
Expanding Study on the Block Element
Analysis

Abstract In this chapter the principles and algorithms of the BEA are further
extended to cover the reinforcement analysis, stochastic analysis, and seismic
analysis. This is an important step towards more widespread and practical use of the
BEA in hydraulic structures. Looked at as line segments penetrating through or
embedding on discontinuities, the positions and/or the intersecting points of rein-
forcement components (bolts, piles, keys) with regard to discontinuities are
pinpointed by the same pre-processor towards block system identification. The force
and moment equilibrium equation, deformation compatibility equation and consti-
tutive equation, are employed to establish the governing equation set for such a
reinforced block system. In order to assess the reliability of a complex block system,
stochastic analysis algorithms with the BEA are formulated using the approaches of
the first-order second moment method and the Monte-Carlo method. Seismic anal-
ysis algorithm is implemented using a procedure similar to the dynamic FEM, in
which the mass matrix, damping matrix and visco-elastic artificial boundary, are
employed.

12.1 General

Pre-stress anchors, piles (or bolts), and shear keys are widely employed as rein-
forcement countermeasures in the stabilization for hydraulic structures. The optimal
design requires a large amount of repeated computation with respect to various
tentative schemes concerning the excavation procedures and reinforcement
deployments. Looking for an efficient and convenient analysis toolkit is therefore of
practical importance.

Modern scientific study has shown that it is more reasonable to use reliability
theory in structural safety calibration than to use the normal “deterministic”
methods such as strength reduction and over load (Ang and Newmark 1977). In
recent decades more and more attention has been paid to the stochastic finite
element method (Cambou 1975; Ghanem and Spanos 1991). The author of this
book also has proposed an elastic-viscoplastic stochastic analysis algorithm based
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on the FEM, towards the reliability assessment of high rock slopes (Chen and
Xiong 1990). Although it has been widely accepted that the stochastic finite ele-
ment method is an powerful analysis tool in engineering practices, yet under certain
circumstances its applications are strongly restricted or even unfeasible, especially
when the rock mass is delimited by many large scale faults and intercalations into
complicated rock block system.

Two types of methods are distinguished in the design specifications for the
seismic stability analysis of hydraulic structures (Kramer 1996; Chen 2015),
namely the pseudo-static method and dynamic method. The former is simple and
convenient, but some important factors such as the frequency and duration of the
earthquake, the dynamic and damping characteristics of the rock-like materials, and
the acceleration amplification of the structure, are not fully taken into account. The
latter often makes use of the finite element method (Bathe 1982; Al-Homoud and
Tahtamoni 2000). Although the dynamic FEM has been prevalent in the seismic
analysis for a large family of engineering structures, yet in hydraulic structures it is
often encountered with difficulties in the simulation of numerous rock disconti-
nuities (faults, joints, etc.) which need to be discretized by special elements. New
solutions based on the discrete element methods have been developing fast which
enable to simulate a large quantity of discontinuities (Bardet and Scott 1985). At
present there are various dynamic methods available for the seismic analysis of
multi-block system, of which the DEM (Cundall and Hart 1992) and the DDA (Shi
1992) are typical.

In this chapter the principle and algorithm of the BEA are further extended to
cover the reinforcement analysis (Chen 1993), stochastic analysis (Chen et al.
1994), and seismic analysis (Chen et al. 2010). This is an important step towards the
practical use of the BEA in hydraulic structures.

12.2 Reinforcement Analysis

12.2.1 Concept

In 1993, Chen proposed a BEA model for the reinforced rock block system. It takes
the rock block as a rigid body, while the discontinuities and the reinforcement
components possess elasto-viscoplastic characteristics. The governing equations are
formulated by the consideration of the force and moment equilibrium conditions of
rock blocks, the deformation compatibility conditions between blocks, and the
elasto-viscoplastic constitutive laws of the discontinuities and the reinforcement
components. This model exploits the simplicity in the relationship of force versus
displacement, to describe both the shear and tensile actions of a reinforcement
component.
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12.2.2 Governing Equations

(1) Assumptions and nomenclatures

Use is made of the following postulations that:

– The rock blocks are rigid, but the discontinuities possess elasto-viscoplastic
properties;

– The discontinuity patch jrl;rm on any block surface is regarded as a plane;
– The anchor cables, piles and keys are regarded as line segments;
– At the cross section of cable c or pile p, the stresses are uniformly distributed,

along the width of key k, the stresses are uniformly distributed, too.

For a reinforcement component, its straight line segment is geometrically rep-
resented by

X � X0

Y � Y0
Z � Z0

8><
>:

9>=
>; ¼ lf git ði ¼ c; p; kÞ ð12:1Þ

The corresponding direction vector is

l½ �i¼ sin/i sin hi cos/i sin hi cos hi½ �T ði ¼ c; p; kÞ ð12:2Þ

where u and h = dip direction and dip angle of the reinforcement component, (°).
By the pre-processor towards block system identification (vide Chap. 3), the

positions, and/or the intersecting points of reinforcement components with dis-
continuities, can be extracted in addition to the previous information concerning the
position, shape and size of each block.

The nomenclatures of mechanical variables used in the deduction are listed
below.

DUf grl displacement increment of block element rl;
DFf grl load increment of block element rl;
Drf gjrl;rm stress increment on discontinuity jrl;rm;

fDugjrl;rm deformation increment on discontinuity jrl;rm;
DRc stress increment of cable c;
Duc deformation increment of cable c;
DRf gjrl;rm;p internal force increments (axial and shear) of pile (or bolt) p where it

penetrates discontinuity jrl;rm;
fDugjrl;rm;p deformation increment of pile (or bolt) p where it penetrates

discontinuity jrl;rm;
fDRgjrl;rm;k internal force increments (axial and shear) of key k on discontinuity

jrl;rm;
fDugjrl;rm;k deformation increment of key k on discontinuity jrl;rm
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(2) Force and moment equilibrium equations

Integrating stress increments on each plane jrl;rm of block element rl into a resultant
load vector with respect to the block centroid, we get the equilibrium equation for
block element rl

DFf grl �
X
c

½P�c lf gc DRc �
X
jrl;rm

Jðjrl;rmÞ
X
p

½P�jrl;rm;p DRf g
jrl;rm ;p

�
X
jrl;rm

Jðjrl;rmÞ
X
k

Z
tk

½P�jrl;rm;k DRf g
jrl;rm ;k

dtk

�
X
jrl;rm

Jðjrl;rmÞ
ZZ
Cjrl;rm

½P�jrl;rm Drf gjrl;rmdxjrl;rmdyjrl;rm ¼ 0

ðrl ¼ 1; . . .; nrÞ

ð12:3Þ

In which

½P�c ¼

1 0 0
0 1 0
0 0 1
0 � Zc � Z0

rl

� �
Yc � Y0

rl

� �
Zc � Z0

rl

� �
0 � Xc � X0

rl

� �
� Yc � Y0

rl

� �
Xc � X0

rl

� �
0

2
6666664

3
7777775

lf gc¼ lxc lyc lzc½ �T

8>>>>>>>><
>>>>>>>>:

ð12:4Þ

½P�jrl;rm;p ¼
½l��1

jrl;rm

½l��1
jrl;rm ½P1�jrl;rm;p þ ½P2�jrl;rm;p½l�

�1
jrl;rm

" #

½P1�jrl;rm;p ¼
0 0 yjrl;rm;p
0 0 �xjrl;rm;p

�yjrl;rm;p xjrl;rm;p 0

2
4

3
5

½P2�jrl;rm;p ¼ ½P2�jrl;rm

8>>>>>>><
>>>>>>>:

ð12:5Þ

½P�
jrl;rm ;k

¼
½l��1

jrl;rm

½l��1
jrl;rm ½P1�jrl;rm ;k

þ ½P2�jrl;rm ;k
½l��1

jrl;rm

" #

½P1�jrl;rm ;k
¼

0 0 yjrl;rm;k
0 0 �xjrl;rm;k

�yjrl;rm;k xjrl;rm;k 0

2
4

3
5

½P2�jrl;rm ;k
¼ ½P2�jrl;rm

8>>>>>>>><
>>>>>>>>:

ð12:6Þ

where Xf gc¼ Xc Yc Zc½ �T is the global coordinate of the out-laid head of

anchor cable c; X0
� �

rl¼ X0
rl Y0

rl Z0
rl

� �T
is the global coordinate of the centroid
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of block element rl; xf gjrl;rm;p¼ xjrl;rm;p yjrl;rm;p
� �T is the local coordinate where pile

p penetrates through jrl;rm; xf gjrl;rm;k¼ xjrl;rm;k yjrl;rm;k
� �T

is the local coordinate
where the straight line segment representing key k that lies on jrl;rm; the other
matrices P½ �jrl;rm , P2½ �jrl;rm , l½ �jrl;rm have been defined in previous Chapters [see

Eqs. (2.13), (9.13) and (9.15)].

(3) Deformation compatibility equations

In addition to the deformation increments fDugjrl;rm on discontinuity jrl;rm, the block
displacement increments of rl and rm will lead to the deformation increments Duc in
anchor cable c whose out-laid head is at block element rl, as well as fDugjrl;rm;p and
Duf gjrl;rm;k if a pile p or key k penetrates or lies on jrl;rm.
By kinematics principles, the relationships between foregoing deformations and

displacements can be established as

Dec ¼ flgTc ½M�cfDUgrl
Duf gjrl;rm;p¼ Jðjrl;rmÞ½l�jrl;rm ½M�rl;pfDUgrl � ½M�rm;pfDUgrm

� 	
Duf gjrl;rm;k¼ Jðjrl;rmÞ½l�jrl;rm ½M�rl;kfDUgrl � ½M�rm;kfDUgrm

� 	
Duf gjrl;rm¼ Jðjrl;rmÞ½l�jrl;rm ½M�rlfDUgrl � ½M�rmfDUgrm

� �

8>>>>><
>>>>>:

ð12:7Þ

In which

½M�c ¼
1
Lc

1 0 0 0 ðZc � Z0
rlÞ �ðYc � Y0

rlÞ
0 1 0 �ðZc � Z0

rlÞ 0 ðXc � X0
rlÞ

0 0 1 ðYc � Y0
rlÞ �ðXc � X0

rlÞ 0

2
4

3
5 ð12:8Þ

where Lc = length of anchor cable c

½M�rl;p ¼
1 0 0 0 ðZ � Z0

rlÞ �ðY � Y0
rlÞ

0 1 0 �ðZ � Z0
rlÞ 0 ðX � X0

rlÞ
0 0 1 ðY � Y0

rlÞ �ðX � X0
rlÞ 0

2
4

3
5

X

Y

Z

8><
>:

9>=
>; ¼ ½l��1

jrl;rmfxgjrl;rm;p þfX0grl

8>>>>>>><
>>>>>>>:

ð12:9Þ

½M�rm;p ¼
1 0 0 0 ðZ � Z0

rmÞ �ðY � Y0
rmÞ

0 1 0 �ðZ � Z0
rmÞ 0 ðX � X0

rmÞ
0 0 1 ðY � Y0

rmÞ ðX � X0
rmÞ 0

2
4

3
5

X

Y

Z

8><
>:

9>=
>; ¼ ½l��1

jrl;rmfxgjrl;rm;p þfX0grm

8>>>>>>><
>>>>>>>:

ð12:10Þ
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½M�rl;k ¼
1 0 0 0 ðZ � Z0

rlÞ �ðY � Y0
rlÞ

0 1 0 �ðZ � Z0
rlÞ 0 ðX � X0

rlÞ
0 0 1 ðY � Y0

rlÞ �ðX � X0
rlÞ 0

2
4

3
5

X

Y

Z

8><
>:

9>=
>; ¼ ½l��1

jrl;rmfxgjrl;rm;k þfX0grl

8>>>>>>><
>>>>>>>:

ð12:11Þ

½M�rm;k ¼
1 0 0 0 ðZ � Z0

rmÞ �ðY � Y0
rmÞ

0 1 0 �ðZ � Z0
rmÞ 0 ðX � X0

rmÞ
0 0 1 ðY � Y0

rmÞ �ðX � X0
rmÞ 0

2
4

3
5

X

Y

Z

8><
>:

9>=
>; ¼ ½l��1

jrl;rmfxgjrl;rm;k þfX0grm

8>>>>>>><
>>>>>>>:

ð12:12Þ

The other matrices M½ �rl, M½ �rm and l½ �jrl;rm have been defined in previous
Chapters (see Eqs. (2.13), (9.17) and (9.18)).

(4) Constitutive equations

According to the potential theory of viscoplasticity, if an explicit time stepping
scheme is employed, the deformation and stress increments will observe the fol-
lowing constitutive relations.

– At any point xjrl;rm yjrl;rm
� �

on discontinuity jrl;rm

fDrgjrl;rm ¼ D½ �jrl;rm Duf gjrl;rm� Drvpf gjrl;rm

½D�jrl;rm ¼
ks 0 0
0 ks 0
0 0 kn

2
4

3
5

Drvpf gjrl;rm¼ cjrl;rm\Fjrl;rm [ ½D�jrl;rm
@Fjrl;rm

@frgjrl;rm


 �
Dt

Fjrl;rm ¼ s2zx þ s2yz

� 	1=2
þ rztgujrl;rm � cjrl;rm for rz � rTjrl;rm\0

Fjrl;rm ¼ ðs2zx þ s2yz þ r2z Þ1=2 for rz � rTjrl;rm � 0

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð12:13Þ

– For anchor cable c whose out-laid head being located on block element rl

DRc ¼ AcEcDec�DRvp
c

DRvp
c ¼ AcEc\Fc [ ccDt

Fc ¼ Rc � Acrc

8<
: ð12:14Þ
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– For pile p penetrating discontinuity jrlrm

fDRgjrl;rm;p ¼ D½ �jrl;rm;pfDugjrl;rm;p þfDRvpgjrl;rm;p

½D�jrl;rm;p ¼
Ap

ajrl;rm
cos bp

Gp 0 0
0 Gp 0
0 0 Ep

2
4

3
5

fDRvpgjrl;rm;p ¼ cp\Fjrl;rm ;p [ ½D�jrl;rm;p
@Fjrl;rm ;p

@fRgjrl;rm ;p


 �
Dt

Fjrl;rm;p ¼ ðR2
zx;p þR2

zy;pÞ1=2 þRz;ptgup � cpAp= cos bp for Rz;p � rpAp= cos bp\0

Fjrl;rm;p ¼ ðR2
zx;p þR2

zy;p þR2
z;pÞ1=2 for Rz;p � rpAp= cos bp � 0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð12:15Þ

– For key k located on the discontinuity plane jrl;rm

DRf gjrl;rm;k¼ D½ �jrl;rm;k Duf gjrl;rm;k� DRvpf gjrl;rm;k

½D�jrl;rm;k ¼ Bk
ajrl;rm

Gk 0 0
0 Gk 0
0 0 Ek

2
4

3
5

DRvpf gjrl;rm;k¼ ck\Fjrl;rm;k [ ½D�jrl;rm;k
@Fjrl;rm ;k

@fRgjrl;rm ;k


 �
Dt

Fjrl;rm;k ¼ ðR2
zx;k þR2

zy;kÞ1=2 þRz;ktguk � ckBk for Rz;k � rkBk\0

Fjrl;rm;k ¼ ðR2
zx;k þR2

zy;k þR2
z;kÞ1=2 for Rz;k � rkBk � 0

8>>>>>>>>>>><
>>>>>>>>>>>:

ð12:16Þ

Where cjrl;rm , cc, cp and ck = fluidity parameters; rTjrl;rm , ra, rp and rR = tensile
strengths; ujrl;rm , up and uk = friction angles; cjrl;rm , cp and ck = cohesions; kn,
ks = normal and tangential stiffness coefficients; Ec, Gp, Ep, Gk and Ek = elastic
moduli; Ac and Ap = cross sectional areas of cable c and pile p; Bk = width of key
k; bp = included angle of pile p and outward normal of discontinuity jrl;rm;
ajrl;rm = mechanical aperture of discontinuity jrl;rm.

12.2.3 Equilibrium Equation of Reinforced Block System

Introducing Eqs. (12.13)–(12.16) into Eq. (12.3), then use is made of Eq. (12.7),
we obtain

½K�rl;rl DUf grl þ
P ½K�rl;rm DUf grm¼ DFf grl þ DFvpf grl ðrl ¼ 1; 2; . . .; nrÞ

ð12:17Þ
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In which

½K�rl;rl ¼
X
jrl;rm

ZZ
Cjrl;rm

½P�jrl;rm ½D�jrl;rm ½l�jrl;rm ½M�rldxjrl;rmdyjrl;rm þ
X
c

AcEc½P�cflgcflgTc ½M�c

þ
X
jrl;rm

X
p

½P�jrl;rm;p½D�jrl;rm;p½l�jrl;rm ½M�rl;pþ
X
jrl;rm

X
k

Z
tk

½P�jrl;rm ;k½D�jrl;rm;k½l�jrl;rm ½M�rl;kdtk

½K�rl;rm ¼�
ZZ
Cjrl;rm

½P�jrl;rm ½D�jrl;rm ½l�jrl;rm ½M�rmdxjrl;rmdyjrl;rm

�
X
p

½P�jrl;rm;p½D�jrl;rm;p½l�jrl;rm ½M�rm;p �
X
k

Z
tk

½P�jrl;rm ;k½D�jrl;rm;k½l�jrl;rm ½M�rm;kdtk

fDFvpgrl ¼
X
jrl;rm

Jðjrl;rmÞ
ZZ
Cjrl;rm

½P�jrl;rmfDrvpgjrl;rmdxjrl;rmdyjrl;rm þ
X
c

½P�cflgcDRvp
c

þ
X
jrl;rm

Jðjrl;rmÞ
X
p

½P�jrl;rm;pfDRvpgjrl;rm;p þ
X
jrl;rm

Jðjrl;rmÞ
X
k

Z
tk

½P�jrl;rm;kfDRvpgjrl;rm;kdtk

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð12:18Þ

For the other blocks there also exist similar foregoing equations. Assemble all of
the equations corresponding to the blocks in the reinforced block system, the
equilibrium equation set is finally established as

½K�fDUg ¼ fDFgþfDFvpg ð12:19Þ

In which DUf g ¼ DUf gT1 . . . DUf gTrl. . . DUf gTnr
h iT

, DFf g ¼ DFf gT1 . . .
�

DFf gTrl. . . DFf gTnr �
T and DFvpf g ¼ DFvpf gT1 . . . DFvpf gTrl. . . DFvpf gTnr

h iT
are the

vectors of displacement increment, load increment, and viscoplastic equivalent
force increment of the block system, respectively.

12.3 Stochastic Analysis

12.3.1 Concept

In practical engineering, the actual values of design parameters are always affected
by a certain degree of uncertainty (Ayyub and Klir 2006). The ability to incorporate
non-deterministic properties in computation is hence of great importance in order to
allow for realistic reliability assessment of engineering structures.

In most areas related to civil and hydraulic engineering, probability theory is
prevalent to handle uncertainties affecting design parameters, and structural relia-
bility is defined as the probable ability of a structure to complete its designed
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functions under definite period and working conditions. The structural performance
may be treated in probabilistic terms by means of limit state function (LSF) with
regard to the most important uncertainties—the basic random variables.

A limit state of a structure entails its loads at which the structure is just on the
verge of failing to undertake the intended function, which is given by a set of values
of the input random variables

Z ¼ g p1; p2; . . .; pnð Þ ¼ 0 ð12:20Þ

Where Z and g �ð Þ = function of structure (state function);
piði ¼ 1; 2; . . .; nÞ = random variables that independently contribute to the mathe-
matical model concerning geometry, strength properties and actions.

A LSF is actually the boundary of reliable and unreliable of the structure con-
cerned. It divides the domain of the design model in three sets of safe, limit state
and unsafe. Limit state may be distinguished as failure events (collapse) and ser-
viceability deterioration.

The structural reliability Ps with respect to a LSF is defined by

Ps ¼ P Z� 0f g ð12:21Þ

Since the cases Z � 0f g and Z\0f g are complementary, therefore the failure
probability Pf is calculated accordingly by

Pf ¼ P Z\0f g ¼ 1� P Z� 0f g ¼ 1� Ps ð12:22Þ

Equation (12.22) indicates that larger Pf leads to smaller reliability Ps and vice
versa. Therefore, the failure probability Pf is customarily employed to gauge the
reliability of structures.

Suppose fp1p2...pn p1; p2; . . .; pnð Þ is the joint probability density function (PDF) of
the Z dependent on the random variables p1; p2; . . .; pnð Þ, then the probability of
failure Pf may be determined in terms of

Pf ¼
ZZZ

fp1p2...pn p1; p2; . . .; pnð Þdp1dp2. . .dpn ð12:23Þ

This integral formula is, however, non-trivial to solve except few cases (e.g.
linear LSF and normal distributed variables). Therefore numerical approximations
are expedient.

Another commonly employed quantification index—reliability index b, has a
simple geometrical interpretation defined as the shortest distance from the origin to
the plane (or the hypersurface) forming the boundary between the safe domain and
the failure domain. The point on the failure surface with the shortest distance to the
origin is commonly termed as the “design point” or “most likely failure point”.
Where the basic random variables p1; p2; . . .; pnð Þ are not independent or not
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normally distributed, the function Z is no longer in linear form, and b may only be
calculated approximately (e.g. the JC method or design point method) (Zhao and
Jin 2000).

In order to assess the reliability of a complex hydraulic structure, the use of
numerical integral methods is inevitable because the closed-form solution for the
integration of failure probability Pf is seldom accessible. One of the well-known
methods for estimating Pf defined in Eq. (12.23) is the Monte-Carlo simulation
(MCS) method directly using Eqs. (12.20)–(12.22) (Bjerager 1988), which needs
very large amount of evaluations of the LSF defined Eq. (12.20). Since each eval-
uation is accomplished through a numerical computation using, for example, the
FEM or BEA, hence the computational effort will be tremendous with large-scale
structures. Another well-known method, namely the first-order reliability method
(FORM) (Hasofer and Lind 1974; Rackwitz and Fiessler 1978) also demands a large
computation effort, although much more acceptable, when a large number of random
variables is involved. In order to alleviate the computational burden, it is more and
more prevalent to use a response surface function (RSF) as a surrogate model to
approach the LSF (Bucher and Bourgund 1990; Zhao and Qiu 2013).

Another obstacle arise from the applicability of probabilistic approach in
hydraulic structures is that available data are normally insufficient or ambiguous,
vague or imprecise, to define fp1;p2;...;pn p1; p2; . . .; pnð Þ (Moens and Vandepitte 2005).
Under such circumstances, uncertainties may be handled using alternative approa-
ches based on non-probabilistic concepts, such as convex models, fuzzy-set theory,
interval model, etc. (Elishakoff and Ohsaki 2010; Moens and Hanss 2011; Corotis
2015; Sofi et al. 2015). Since the mid 1990s, the interval model originated from the
classical interval analysis (CIA) (Moore 1966) representing the uncertain parameters
as interval variables with given lower bound (LB) and upper bound (UB), has been
applied in finite element analysis giving rise to the so-called Interval Finite Element
Method (IFEM). It can be applied in cases where it is not possible to access reliable
probabilistic characteristics of the structure (Rao and Berke 1997; Chen et al. 2002).

The “target reliability” (or design reliability) stipulated in (GB50199-94)
“Unified design standard for reliability of hydraulic engineering structures”—the
complement of the maximum permissible failure probability, should depend fore-
most on the measurable consequences of failure in question, which are the injury or
loss of life, the direct and indirect economic losses (including repair/replacement
expenditures, loss of revenue, compensation for damages, etc.), the environmental
pollution and so on. Target reliabilities also should depend on the algorithm of
reliability analysis, on the types of uncertainties considered in the analysis, and on
the strategies of future maintenance. Due to the difficulties with complicated
analysis and insufficient statistics, the “code calibration” is normally employed to
evaluate target reliability level, which is determined by the calibration for existing
practices (i.e. on existing codes), assuming that these existing practices are optimal.
Hydraulic structures such as dams, tunnels, spillways, and cut slopes, that have a
history of successful service, can be deemed sufficiently safe, and their reliability
levels may be used as the targets for new structures of the same kind.
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As a phase of the research activities, stochastic analysis algorithms on the base of
the BEA were formulated by the author. These were achieved in two approaches,
namely the first-order second moment method and the Monte-Carlo method (Chen
et al. 1994).

12.3.2 First-Order Second Moment Method

In the structural reliability theory, the limit state function (LSF) g is generally
defined as the difference between the resistance R and the load effect S. The limit
state equation entails the case when g is equal to zero

g ¼ R� S ð12:24Þ

The LSF g must be the function of the N random variables pf g ¼
p1; p2; . . .; pNf g which influence the reliability of the structure, i.e.

g ¼ gðp1; . . .; pNÞ ð12:25Þ

Transforming all the random variables into standardized form Nð0; 1Þ (normal
distribution with zero mean and unit variance) denoted as q1; q2; . . .; qNf g, the limit
state equation can be interpreted in the N-dimensional space of standardized vari-
ables as a hypersurface, the safety index b is then defined as the shortest distance
from the origin to this hypersurface

b ¼ min:

ffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i

q2i

vuut ð12:26Þ

and the point q�1; q
�
2; . . .; q

�
N

� �
at which b achieves minimum is termed as the

“checking point” or “design point”.
Since the first-order Taylor series expansion of gðp1; . . .; pNÞ is adopted for the

iteration of the checking point and safety index, and only the means and standard
deviations of the random variables are considered, the method gets its name with
“first-order second moment”.

(1) Random variables

Random variables can be arranged into a vector fpg
fpg ¼ ½p1. . .pN �T ð12:27Þ

In which N is the amount of random variables. The mean and variance of fpg are
Efpg ¼ f�pg ¼ ½�p1. . .�pN �T
Var½p� ¼ ½Covðpn1; pn2Þ�



ð12:28Þ
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Following six random variables for discontinuity jrl;rm are considered in our
study

p6ðjrl;rm�1Þþ 1 ¼ kn
p6ðjrl;rm�1Þþ 2 ¼ ks
p6ðjrl;rm�1Þþ 3 ¼ c
p6ðjrl;rm�1Þþ 4 ¼ tgu
p6ðjrl;rm�1Þþ 5 ¼ /
p6ðjrl;rm�1Þþ 6 ¼ h

8>>>>>><
>>>>>>:

ð12:29Þ

In fact, external loads are also random variables, but we do not consider their
variation at the moment.

The random variables should be normalized at the “checking point” firstly at any
iteration step. We keep to denote the normalized random vector using fpg, and the
Cholesky decomposition of a symmetric positive definite Var½p� is made as

Var½p� ¼ ½H�½H�T

½H� ¼
h11 . . . h1N

h22 . . .
. . .

Sym hNN

2
664

3
775

8>>>><
>>>>:

ð12:30Þ

In which hnn is the standard deviation of the normalized random variable pn. In
this manner the former normalized random vector fpg becomes the function of the
standardized random vector fqg

fpg ¼ ½H�fqgþEfpg ð12:31Þ

If we further postulate that all random variables are independent then we will have

hn1n2 ¼ 0 n1 6¼ n2ð Þ ð12:32Þ

Under such circumstances, the stochastic algorithm will be simplified greatly.

(2) Limit state function

There are different LSFs according to different failure mechanisms under consid-
eration. If we are focused on the sliding failure of the block system, the LSF will be
constructed by the difference of the shear strength against sliding to the driving
shear force on the slip planes.

We define a failure mode as a block or block combination sliding along a
discontinuity plane or the intersecting line of two discontinuity planes. There will
be many failure modes if the amount of blocks is large, and for each failure mode
there is a corresponding LSF.

Since it is time consuming and unnecessary to consider all the existing failure
modes one by one, deterministic BEA with means of parameters is carried out
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firstly to search main failure modes. This is similar to a lower level reliability
testing (Ben-Gal et al. 2002) in advance intended to preliminarily estimate failure
modes and their probability.

Suppose a main failure mode m is delimited by nm discontinuity planes, on jrl;rm
the resistance to sliding Rjrl;rm and the driving shear force Sjrl;rm are calculated by the
formulas

Rjrl;rm ¼ RR
Cjrl;rm

CSjrl;rmðcjrl;rm � tgujrl;rmrzÞdxjrl;rmdyjrl;rm

Sjrl;rm ¼ RR
Cjrl;rm

CSjrl;rm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2zx þ s2zy

q
dxjrl;rmdyjrl;rm

8>><
>>: ð12:33Þ

In which CSjrl;rm ¼ cos ajrl;rm , where ajrl;rm is the included angle between the slip
direction and the resultant shear force on discontinuity plane jrl;rm. The LSF of the
main failure mode m therefore can be defined as

gm ¼
Xnm

jrl;rm¼1

DIFjrl;rm ð12:34Þ

In which

DIFjrl;rm ¼
ZZ
Cjrl;rm

CSjrl;rm cjrl;rm � tgujrl;rmrz �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2zx þ s2zy

q� 	
dxjrl;rmdyjrl;rm ð12:35Þ

(3) Stochastic algorithm

The LSF in Eq. (12.34) is an implicit function of random vector fpg because the
stresses rz, szx and szy are all the functions of the random vector. Taken into account
of Eq. (12.31), gm can be further expressed as the function of the vector fqg

gm ¼ GmðEfpgþ ½H�fqgÞ ð12:36Þ

Denote

an ¼ @Gm

@qn
fqg¼fq�g
 ¼ @gm

@pn
hnn fpg¼Efpgþ ½H�fq�g

 ð12:37Þ

If fq�gi is the ith iterative value of the checking point, the Lagrangian multiplier
method for the minimum value of function will lead to the following well-known
iterative algorithm for calculating fq�giþ 1 (Melchers 1987; Provan 1987).

fq�giþ 1 ¼ ðfq�giÞTfagi � Gðfq�giÞ
ðfagiÞTfagi fagi ð12:38Þ
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The safety index at any iterative step for the main failure mode m is given by

biþ 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfq�giþ 1ÞTfq�giþ 1

q
ð12:39Þ

From Eqs. (12.38)–(12.39) it can be seen that for each iteration step the key
difficulty lies in the calculation for the derivates of the LSF to the random variables

@gm
@pn

¼
Xnm
jrl;rm

ZZ
Cjrl;rm

½@CSjrl;rm
@pn

cjrl;rm � tgujrl;rmrz �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2zx þ s2zy

q� 	

þ CSjrl;rmð
@cjrl;rm
@pn

� @tgujrl;rm

@pn
rz � tgujrl;rm

@rz
@pn

�
@szx
@pn

szx þ @szy
@pn

szyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2zx þ s2zy

q Þ�dxjrl;rmdyjrl;rm ð12:40Þ

In which the derivates of stresses are given by the accumulation of the derivates
of stress increments. From the constitutive relation Eq. (2.126) it can be directly
written

@fDrgjrl;rm
@pn

¼
@½D�jrl;rm
@pn

fDugjrl;rm þ ½D�jrl;rm
@fDugjrl;rm

@pn
� @fDrvpgjrl;rm

@pn
ð12:41Þ

However, to get the derivate items on the right-hand side would be proved the
rather cumbersome work. For detailed expression our readers are referred to the
literature (Chen et al. 1994).

12.3.3 Monte-Carlo Method

It is essential to reproduce random vectors in Monte-Carlo method. There are
various methods of random vector production, and the problem will be simplified if
all random variables observe normal distribution, under such circumstances we can
use computer produced pseudo-random number series to simulate random vector
easily.

The first step is to get the uniform distributed random number series frg on the
region (0, 1), statistics test must be carried out to check the independence and
uniformity of these pseudo-random number series. The random number series fq2ng
calculated by the following formulas observes Nð0; 1Þ distribution

q2n�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�2 ln r2n�1Þ

p
cosð2pr2nÞ

q2n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�2 ln r2n�1Þ

p
sinð2pr2nÞ



ð12:42Þ
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After the covariance matrix Var½p� has be resolved into the multiplication of
triangle matrix, the sample of random vector fpg are calculated by Eq. (12.31).

For each stochastic simulation with a sample of vector fpg given in Eq. (12.31),
we firstly analyze the block system with the conventional BEA to get the stress and
deformation state on the discontinuities, then use is made of Eq. (12.34) to calculate
the value of LSF gmð Þ of each failure mode m to assess its stability. Suppose that the
amount of simulation is Nt, and the failure of block system occurs Nf times, the
failure probability will be

Pf ¼ Nf =Nt ð12:43Þ

The amount of simulation must satisfy

Nt [ 100=Pf ð12:44Þ

From the failure probability Pf the safety index b is easily obtained.

12.3.4 Verifications and Applications

(1) Single rock wedge in slope

The rock wedge in Fig. 9.1 is delimited by four boundary planes inclusive two faults
F1 andF2 and two exposure surfaces S1 and S2.We choose the lower intersecting point
of the F1 and F2 as the origin of global coordinate system, the means of parameters
adopted in the calculation are listed in Table 12.1, the coefficients of variation are
listed in Table 12.2, and the calculated results are displayed in Table 12.3.

Table 12.1 Means of parameters

Parameter F1 F2 S1 S2
Strike direction (°) SW210.6 SE161.1 NE90.0 NE90.0

Dip angle (°) 35.6 48.3 10.0 60.0

Stiffness (MN/m3) kn 1138.0 1897.0 – –

ks 379.0 632.0 – –

Strength c (kPa) 20.0 20.0 – –

u (°) 20.0 25.0 – –

rT (kPa) 0.0 0.0 – –

Table 12.2 Coefficients of variation of parameters

Fault Strike direction Dip angle Stiffness Strength

kn ks f ¼ tgu c

F1 0.095 0.281 0.5 0.5 0.2 0.5

F2 0.124 0.207 0.5 0.5 0.2 0.5
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(2) Multi-block system in slope

The slope located at the downstream left abutment of Baozhusi Gravity Dam (vide
Sect. 9.5, Chap. 9) has been studied, its block system considered in the stochastic
analysis is shown in Figs. 9.12 and 9.13. Only the variation in the strength
parameters of discontinuities is taken into account whose means and coefficients of
variation are listed in Tables 12.4 and 12.5.

Both the first-order second moment method and the Monte-Carlo method are
exercised for the calibration of this slope. The calculated results are presented in
Table 12.6.

Table 12.3 Failure probability and safety index of the wedge

Method Monte-Carlo First-order second moment

Pf 0.149 0.1611

b 1.075 0.99

Table 12.4 Means of parameters

Parameter D1 D3 F4 F10 f10
Strike direction (°) 70.0 70.0 15.0 60.0 145.0

Dip angle (°) SE28.5 SE33.0 NW59.5 NW56.0 SW84.0

Stiffness (MN/m3) kn 22.4 15.0 29.9 9.11 150.0

ks 6.41 4.27 8.55 2.6 42.7

Strength c (kPa) 10.0 10.0 0.0 20.0 0.0

u (°) 14.0 14.0 16.7 24.2 16.7

rT (kPa) 1.0 1.0 0.0 2.0 0.0

Volumetric weight of rock cr = 26.4 kN/m3

Table 12.5 Coefficients of variation of parameters

Parameter F4 F10 D1 D3

f ¼ tgu 0.2 0.2 0.2 0.2

c 0.5 0.5 0.5 0.5

Table 12.6 Failure probability and safety index of the slope

Main failure mode Monte-Carlo First-order second moment

Pf b Pf b

Block 1 + Block 3 0.123 1.16 0.142 1.07

Block 1 + Block 2 + Block
3 + Block 4

0.149 1.04 0.171 0.95

Whole system 0.181 0.91 0:289[Pf [ 0:171 0:95[b[ 0:557
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12.3.5 Remarks

As for the comparison between the first-order second moment method and the
Monte-Carlo method elaborated in this section, the following points are worthwhile
to make that

– The Monte-Carlo method is theoretically a precise method but the first-order
second moment method is only an approximate one. In addition, the
Monte-Carlo method can calculate not only the safety index of each main failure
mode but also that of the whole block system. On the contrary, the first order
second moment method can only give some upper and lower bounds with
respect to the safety index of the whole block system if there are more than one
failure modes appearing in the block system.

– The Monte-Carlo method requires a huge amount of random simulation, par-
ticularly where the failure probability is small [see Eq. (12.44)]. For each
simulation an elastic-viscoplastic BEA should be undertaken so that the com-
putation time could be extraordinarily long, in some cases it is actually unfea-
sible for large block system. In contrast, the iteration effort for the checking
point in the first-order second moment method is relatively smaller, therefore it
is a more feasible tool in solving the problem of large block system with small
failure probability.

– Towards the solution of structural system reliability, a promising comprise
between the Monte-Carlo method and the first-order second moment method
may be achieved by the application of the Bayesian networks (BN) (Pearl 1988;
Torres-Toledano and Sucar 1998; Mahadevan et al. 2001) which is a proba-
bilistic directed acyclic graphical model (a type of statistical model) that rep-
resents a set of random variables and their conditional dependencies via
a directed acyclic graph (DAG).

– At present, we may use the Monte-Carlo method as a standard “benchmark” to
check the accuracy of other approximate methods under study.

12.4 Seismic Analysis

12.4.1 Governing Equations

Suppose the block elements are rigid bodies and discontinuities are elastic inter-
layers, and for the time being the damping is not taken into account. The coordinate
system and the deformation compatibility equation as well as constitutive equation
are all identical to that in Chap. 9. Only the force and moment equilibrium equation
is changed by taking the inertia of block element into account, namely Eq. (9.11) is
replaced by
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ZZZ
Xrl

M½ �Trl pif grldXþ
X
jrl;rm

Jðjrl;rmÞ
ZZ
Crl;rm

P½ �jrl;rm rf gjrl;rmdxjrl;rmdyjrl;rm ¼ FðtÞf grl

rl ¼ 1; 2; . . .; nrð Þ ð12:45Þ

In which nr is the amount of block elements, FðtÞf grl is the external load acting
at the centroid of block element rl, pif grl is the volumetric inertia acting at the
centroid of block element rl

pif grl¼ �q M½ �rl
@2 Uf grl
@t2

ð12:46Þ

Introducing Eqs. (2.126), (9.16) and (12.46) into Eq. (12.45), the dynamic
equilibrium equation of block element rl becomes

m½ �rl €U
� �

rl þ K½ �rl;rl Uf grl þ
P
rm

K½ �rl;rm Uf grm ¼ FðtÞf grl ðrl ¼ 1; 2; . . .; nrÞ

ð12:47Þ

Where rm runs over all the adjoin block elements around block element rl in
corresponding to discontinuity plane jrl;rm, and

K½ �rl;rl¼
X
jrl;rm

ZZ
Cjrl;rm

P½ �jrl;rm D½ �jrl;rm l½ �jrl;rm M½ �rldxjrl;rmdyjrl;rm

K½ �rl;rm¼ �
ZZ
Cjrl;rm

P½ �jrl;rm D½ �jrl;rm l½ �jrl;rm M½ �rmdxjrl;rmdyjrl;rm:

8>>>>>><
>>>>>>:

ð12:48Þ

m½ �rl¼
ZZZ
Xrl

M½ �Trlq M½ �rldX ð12:49Þ

Assemble all the block elements governed by Eq. (12.47) in a similar way to the
dynamic FEM, the dynamic governing equation set of the elastic block system
without damping is formulated as

M½ � €U
� �þ K½ � Uf g ¼ FðtÞf g ð12:50Þ

In which €U
� � ¼ €U

� �T

1
€U

� �T

2 . . . €U
� �T

nr

h iT
, Uf g ¼ Uf gT1

�
Uf gT2 . . . Uf gTnr �

T and FðtÞf g ¼ Ff gT1 Ff gT2 . . . Ff gTnr
h iT

are the acceleration,

displacement and load of the block system, respectively.
Damping is normally demanded in practical applications. Similar to the dynamic

FEM, we employ the Rayleigh damping (Bathe 1982) in a manner of
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C½ � ¼ a0 M½ � þ a1 K½ � ð12:51Þ

In which a0 and a1 are defined in Eq. (4.111).
The dynamic governing equation set of the elastic block element system with

damping is therefore becomes

M½ � €U
� �þ C½ � _U

� �þ K½ � Uf g ¼ F tð Þf g ð12:52Þ

Where _U
� � ¼ _U

� �T

1
_U

� �T

2 . . . _U
� �T

nr

h iT
is the velocity of the rock

block system.
For the earthquake problem, Eq. (12.52) can be further expressed as

M½ � €U
� �þ C½ � _U

� �þ K½ � Uf g ¼ � M½ � af g ð12:53Þ

In which af g is the earthquake acceleration of ground.
Equation (12.52) or Eq. (12.53) is formality similar to that of the dynamic FEM.

Therefore, the Wilson or Newmark method (Bathe 1982) prevalent in the dynamic
FEM can be applied to solve them without difficulty.

12.4.2 Visco-Elastic Artificial Boundary

For many hydraulic structural problems, the calculation is conducted merely in a
portion of the foundation or surrounding rock that is cut from the Earth crust. The
seismic wave will be completely reflected on the foundation boundary if it is not
appropriately handled, which will lead to erroneous results. Therefore, it is nec-
essary to introduce restraints at the boundary to eliminate the boundary reflection.
Such restraints are referred to as an “artificial boundary condition” (Clayton and
Engquist 1980; Higdon 1986).

Various artificial boundaries are available due to the seminal work of Lysmer
and Kuhlemeyer (1969). In our study, the visco-elastic artificial boundary condition
proposed by Deeks and Randolph (1994) is adopted for the dynamic BEA, which is
the development of the visco boundary condition. The general forms of such
condition in the dynamic FEM can be expressed as

rli tð Þ ¼ �Kliuli tð Þ � Cli _uli tð Þ ð12:54Þ

In which rli tð Þ, uli tð Þ and _uli tð Þ are the stress, displacement, and velocity of the
node l along the direction i at time t; Kli and Cli are the elastic modulus and
damping factor of the node l along the direction i. They are the functions of the
material characteristics.
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The physical meaning of the visco-elastic boundary is that at every point along
each direction of the boundary, an element containing spring and damping is
designed, which is used to simulate the absorption and recovery of the boundary.

In terms of the dynamic BEA, the spring-damping element is put at the boundary
as illustrated in Fig. 12.1.

For the block element rl contacted to the boundary j, the dynamic governing
equation can be written as

m½ �rl €U
� �

rl þ C½ �rl;rl _U
� �

rl þ
X
rm

C½ �rl;rm _U
� �

rm þ K½ �rl;rl Uf grl þ
X
rm

K½ �rl;rm Uf grm
¼ F tð Þf grl þ pf grl

ð12:55Þ

In which pf grl is integrated from the visco-elastic stress rf gj at the artificial
boundary j

pf grl¼ �
X
j

J jð Þ
ZZ
Cj

P½ �j rf gjdxjdyj ð12:56Þ

By the general concept of visco-elastic boundary in Eq. (12.54), we have

rf gj¼ � D½ �j uf gj� C½ �j _uf gj ð12:57Þ

In which uf gj and _uf gj are the displacement and displacement rate at the
artificial boundary j.

According to the deformation compatibility condition of the BEA [see Eq. (9.16)],
for the block element rl contacted to the artificial boundary j, we have

Fig. 12.1 Visco-elastic boundary in the dynamic BEA
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uf gj¼ J jð Þ L½ �j M½ �j Uf grl ð12:58Þ

_uf gj¼ J jð Þ L½ �j M½ �j _U
� �

rl ð12:59Þ

and

D½ �j¼
ksj 0 0
0 ksj 0
0 0 knj

2
4

3
5 ð12:60Þ

C½ �j¼
Csj 0 0
0 Csj 0
0 0 Cnj

2
4

3
5 ð12:61Þ

Where knj, ksj = normal and shear elastic stiffnesses; Cnj, Csj = normal and shear
dampings.

Introducing Eqs. (12.56)–(12.61) into Eq. (12.55) gives rise to

m½ �rl €U
� �

rl þ C½ �rl;rl þ C½ �rl
� 	

_U
� �

rl þ
X
rm

C½ �rl;rm _U
� �

rm þ K½ �rl;rl þ K½ �rl
� 	

Uf grl

þ
X
rm

K½ �rl;rm Uf grm ¼ F tð Þf grl
ð12:62Þ

In which

K½ �rl¼
X
j

ZZ
Cj

M½ �Trl l½ �Tj D½ �j l½ �j M½ �rldxjdyj ð12:63Þ

C½ �rl¼
ZZ
Cj

M½ �Trl l½ �Tj C½ �j l½ �j M½ �rldxjdyj ð12:64Þ

From Eq. (12.62) we find that the introduction of a visco-elastic artificial
boundary condition only changes the diagonal elements of the stiffness and
damping matrices.
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12.4.3 Verification Example

Figure 12.2 shows a semi-space bar exerted by a pulse action of Dirac differential
function F tð Þ at its left end. The dynamic BEA is conducted for the case when the
bar is truncated 50 m in length at its right and restrained with artificial boundary.

The parameters used in the calculation are E ¼ 80 MPa, l ¼ 0:25,
q ¼ 2000 kg/m3, duration of action time T ¼ 1:0 s.

The analytical solution for these ideal bar problem of unlimited length is pro-
vided by Eringen and Suhubi (1974)

Fig. 12.2 Semi-space bar example
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In which G ¼ E
2 1þlð Þ is the shear modulus, H sð Þ is Heaviside function, cs=cp ¼

1ffiffi
3

p and cp ¼
ffiffiffi
E
q

q
are the shear and volumetric wave speeds, s ¼ cst

x is the dimen-

sionless time, and

v21 ¼ 1
4

v22 ¼ 3� ffiffi
3

p
4
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p
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8><
>: ð12:66Þ

Ki ¼ � 1
16 1�c2s=c

2
pð Þ v2i �v2jð Þ v2i �v2kð Þ ; i 6¼ j 6¼ k ð12:67Þ

This is a general dynamic problem in terms of the BEA, where the history of
load is input in Eq. (12.52). The outputs by the dynamic BEA are the responses in
terms displacement, velocity, and acceleration. The vibration history at x ¼ 0:25 m
(point A) is plotted and cross-referenced to the analytical solution [see
Eqs. (12.65)–(12.67)] in Fig. 12.3, from which the validation of the dynamic BEM
with visco-elastic artificial boundary is evident.
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Chapter 13
Comprehensive Application of the Block
Element Analysis: Xiaowan Project

Abstract Since it is stipulated in China’s design specifications that, in addition to the
classical structural analyses and the physical model experiments, for high grade
hydraulic structures one or two advanced methods should be employed in parallel.
Hence in this chapter the systematic study on Xiaowan Project by the BEA is pre-
sented, which covers thewhole process from the excavation/stabilization of the slopes
related to tunnel intakes and arch dam foundation/abutments, to the performance of
dam-foundation system.

13.1 General

At the height of 294.5 m and total hydraulic thrust force of 18 million tons,
Xiaowan Arch Dam was one of the most challenging dam structures in China
(Zou 2010). Studies on this dam had been continuously conducting throughout the
design stages as well as the construction and operation periods.

In Chap. 8, the systematic study on Xiaowan Project by the FEM has been
presented, which covers the whole procedure from the in situ geo-stress back
analysis to the foundation/abutments excavation followed by concrete placement
until the impoundment operation. Since it is stipulated in the China’s design
specifications for high grade hydraulic structures that at least two different methods
should be employed for their structural analysis in addition to the classical structural
computations and the physical model experiments, therefore the author has been
undertaking a parallel study for the key issues with respect to the deformation,
strength and stability of the hydraulic structures in Xiaowan Project with the help of
the BEA (Chen et al. 2000, 2002, 2003, 2010). A summary of the results are
presented in this chapter.
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13.2 Presentation of the Project

Vide Chap. 8.

13.3 Construction Period: Excavation and Reinforcement
of the Headrace Intake Slope

13.3.1 Characteristics of the Computation

The headrace intake slope for the underground power plant (installation capacity of
4200 MW) (see Fig. 13.1) is steeply excavated in the sound gneiss rock embedded
with various IV grade faults (f1, f2, f3, f5, f6, f89-1, f89-6, gm89-8) (see Fig. 13.2) and
joint sets of which the dominant one is SN-trending and with high dip angle (nearly
90°). They give rise to the risk of rock block sliding failure, particularly during the
excavating period before the mass concrete placement of the intake structure
offering extra support to the slope.

After the consideration that all the potential unstable blocks are included, the
calculation domain is defined with 200 m along the flow direction (N50°E) and
160 m perpendicular to the flow direction (see Fig. 13.2). The computation
parameters are listed in Tables 13.1 and 13.2.

Fig. 13.1 Axonometric
drawing of the water intake
slope
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Fig. 13.2 Geological plan showing faults and excavation benches

Table 13.1 Attitude parameters of dominant discontinuities

Discontinuity Dip direction (°) Dip angle (°)

f1 10 65

f2 15 85

f3 5 42

f5 15 82

f6 30 85

f89-1 300 90

f89-6 0 40

gm89-8 30 46

SN-trending and high dip angle joint J1 105 90

Virtual joint along the flow direction 320 90
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13.3.2 Stability of the Cut Slope Without Reinforcement

Altogether 35 movable blocks are identified. By the search of dangerous slip modes,
the block combinations enclosed by the SN-trending and high dip angle joint J1 and
f89-1 possess lower static stability (see Table 13.3). Table 13.4 displays three com-
binations particularly concerned due to their very low stability factors. Figures 13.3,
13.4, 13.5 and 13.6 illustrate two of them enclosed by f3-J1f5 and f3-J1f6.

13.3.3 Particularities in the Seismic Analysis

In the analysis of the intake slope, particular attention was paid to the three block
combinations (f3-J1f6, f3-J1f5 and f89-6-J1f2) listed in Table 13.4, to whom the
seismic analysis was additionally carried out.

(1) Assumptions

There was no appropriate record of the seismic history in the Xiaowan Dam site at the
time being, so the EI Centro earthquake (MC 7.2, California, USA, 1940) N-S wave
was used in the seismic analysis of the intake slope (duration time is 10 s). Since the
Mercalli intensity of the earthquake stipulated in the Xiaowan Project is 9 with the
corresponding peak acceleration of a = 0.4 g (g = 9.81 m/s2), the input seismic
wave is amplified according to the acceleration ratio between these two earthquakes.
The horizontal earthquake shake along the X axis (perpendicular to the river valley) is
highlighted in the dynamic study of this slope. In the calculation, the curve of
earthquake acceleration vs time is input, the general outputs are the response pro-
cedures with regard to the displacement, velocity, and acceleration. These messages
are further employed to calibrate the seismic safety of the intake slope.

Table 13.2 Mechanical parameters of dominant discontinuities

Discontinuity Cohesion
c (MPa)

Friction coefficient
f ¼ tgu

Normal stiffness
kn (MPa/m)

Shear stiffness
ks (MPa/m)

f1 0.04 0.50 10,000 4000

f2 0.04 0.50 10,000 4000

f3 0.04 0.45 10,000 4000

f5 0.04 0.50 10,000 4000

f6 0.04 0.50 10,000 4000

f89-1 0.045 0.50 10,000 4000

f89-6 0.03 0.40 10,000 4000

gm89-8 0.04 0.045 10,000 4000

J1 0.125 0.80 15,000 6000

The volumetric weight of the rock is 0.027 MN/m3
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(2) Dynamic safety factors

Dynamic stability state can be defined on the basis of safety factor or on the
permanent displacement (Ang and Newmark 1977). For the elastic dynamic anal-
ysis the safety factor is conventionally defined by

Kf ¼ T
S

ð13:1Þ

where T = sliding resistant force; S = sliding driving force.
For the dynamic BEA, the safety factor of any block element combination at

time t can be calculated by the formula

Table 13.3 Block combinations with lower stability

Sequence Notation Description of block
combination

Volume
(104m3)

Static
stability

Dynamic
stability

1 f3-J1f5 Enclosed by f3, J1, f5 20.44 No No

5 f3-f89-1f5 Enclosed by f3, f89-1, f5 10.53 No Ok

6 f3-J1f2 Enclosed by f3, J1, f2 13.36 No Ok

10 f3-f89-1f2 Enclosed by f3, f89-1, f2 5.62 No Ok

11 f3-J1f6 Enclosed by f3, J1, f6 8.14 No No

15 f3-f89-1f6 Enclosed by f3, f89-1, f6 2.82 No Ok

16 f89-6-J1f5 Enclosed by f89-6, J1, f5 12.90 No Ok

20 f89-6-
f89-1f5

Enclosed by f89-6, f89-1, f5 5.67 No Ok

21 f89-6-J1f2 Enclosed by f89-6, J1, f2 8.80 No No

25 f89-6-
f89-1f2

Enclosed by f89-6, f89-1, f2 3.25 No Ok

26 f89-6-J1f6 Enclosed by f89-6, J1, f6 5.47 No Ok

30 f89-6-
f89-1f6

Enclosed by f89-6, f89-1, f6 1.64 No Ok

31 f1-J1 Enclosed by f1, J1 1.14 No Ok

33 gm89-8-
J1f6

Enclosed by gm89-8, J1, f6 1.11 No Ok

34 gm89-8-
J1f6

Enclosed by gm89-8, J1, f6 0.37 No Ok

Table 13.4 Rock block element combinations particularly concerned

Block element combination Description Static safety factor

f3-J1f6 Enclosed by f3, SN joint J1, f6 0.93

f3-J1f5 Enclosed by f3, SN joint J1, f5 0.92

f89-6-J1f2 Enclosed by f89-6, SN joint J1, f2 1.04
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Fig. 13.3 Plan showing block combination f3-J1f5

Fig. 13.4 Axonometric drawing of block combination f3-J1f5
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Kf ¼

Pnm
jrl;rm¼1

RR

Cjrl;rm
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� �

dxjrl;rmdyjrl;rm
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Cjrl;rm

CSjrl;rm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2zx þ s2zy

q
dxjrl;rmdyjrl;rm

ð13:2Þ

In which CSjrl;rm ¼ cos ajrl;rm where ajrl;rm is the included angle between the slip
direction and the total shear force on the discontinuity plane jrl;rm.

Figure 13.7 plots the history of the dynamic stability safety factor of rock block
combination f3-J1f6 during the earthquake. It can be found that the dynamic stability
safety factor fluctuates around the static one.

Theoretically, if the dynamic stability safety factor is lower than an allowable
(permissible) value, the slope is unstable. However, there is no such allowable safety
factor stipulated insofar for the dynamic BEA (nor for the dynamic FEM as well) in

Fig. 13.5 Plan of block combination f3-J1f6

13.3 Construction Period: Excavation and Reinforcement … 677



the slope design specifications. One possibility to establish the dynamic stability
criterion is to make use of permanent displacement (Ang and Newmark 1977)
accumulated in the earthquake history, which demands the consideration of plasticity
and to stipulate the permissible permanent displacement. Another possibility lies in
the fact that, the practitioners are used to the “pseudo-static method” in the design of
rock slope under the actions of earthquake. This method calculates the inertia force

Fig. 13.6 Axonometric drawing of block combination f3-J1f6

Fig. 13.7 Dynamic stability safety factor of block combination f3-J1f6
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through earthquake acceleration first, then a resultant force of this inertia and other
static loads is employed in the stability analysis. However, the “pseudo-static
method” normally overlooks the difference in the acceleration of the different por-
tions of rock slope. Hence the study on the dynamic amplification factors of the rock
block combinations located at different portions of the intake slope is practically
important.

(3) Dynamic amplification factors

The dynamic amplification factor is defined as the ratio of output acceleration of the
slope to the input earthquake acceleration. Obviously the dynamic amplification
factor has complex distribution within the slope and it has relationship with the
height and configuration of the slope concerned. Since this factor is paramount in
the pseudo-static analysis and is difficult to recommend in the slope design spec-
ifications, a case study of the issue would be helpful. Table 13.5 summarizes the
amplification factor of each block combination at its geometric center, from which
the relationship of the dynamic amplification with the altitude may be elucidated.

13.3.4 Reinforcement Schemes

The reinforcement study is dynamically accomplished via three phases following
the progress in the project construction.

(1) First phase

It was initiated from the November 2002 and finished in the March 2003. The block
combinations related to the structural planes f3, f89-6, f2, f5, f6, f89-1 and SN-trending
high dip angle joint were designed to be all reinforced by pre-stress cables. The
sensitive analysis with regard to the cable dip angle, friction angle of the structural
faces, dip direction of f3, ground water table, etc., were conducted.

The basic reinforcement scheme was proposed to install cables along the flow
direction of intake, i.e. dip direction = S50°W. The dip angle of all the cables is
−10°. Figure 13.8 shows the zoning of the cable capacity. The total pre-stress force
is 1350 MN.

Table 13.5 Dynamic amplification factors

Block element combination Geometric centre (m)
(X, Y, Z)

Dynamic amplification factor

f3-J1f6 (982.81, 836.77, 1177.39) 1.15

f3-J1f5 (972.54, 810.28, 1226.05) 1.18

f89-6-J1f2 (962.13, 783.41, 1252.51) 1.20
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(2) Second phase

It was initiated from the April 2003 and finished in the June 2003. We revised the
reinforcement scheme according to the latest geological phenomenon revealed and
construction schedule adjusted. The revised scheme was proposed to reinforce the
fault f3 with the combination of cables and shear keys (the concrete replacement of
grade C35). The cables of 3MN are employed below the elevation 1245 m, their
space is 5 m � 4 m (horizontal � vertical). The layout of the keys on the f3 is
illustrated in Fig. 13.9 and the zoning of the cable capacity is shown in Fig. 13.10.
The total pre-stress force is reduced to 630 MN.

(3) Third phase

It was initiated from the July 2003 and finished in the December 2003. We
re-checked the reinforcement scheme according to the latest geological phe-
nomenon revealed and construction schedule adjusted. In addition, the sensitive
analysis with regard to the dip angles of f3 and J1 were conducted.

Through the three phase studies as described above, the conclusions are made
for the intake slope that:

Fig. 13.8 Layout of pre-stress anchor cables: first phase. ①—400 MN; ②—200 MN;
③—200 MN; ④—200 MN; ⑤—150 MN; ⑥—100 MN; ⑦—100 MN
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– Construction excavation is the most critical period of the intake slope.
– The final reinforcement scheme may guarantee the safety of the slope during the

construction and service periods.
– The dip angle of cable is not sensitive with regard to the slope stability. If it is

additionally dipped down by 5°, the safety factor tends to an augment of 0.02–
0.05 only.

– The friction angle of the discontinuities is rather sensitive with regard to the
slope stability. Under the circumstances of groundwater table maintaining at 1/4
height of the block, an augment of friction angle 2° results in a safety factor
augment around 0.08.

– Dip angle of f3 is very sensitive with regard to the slope stability. The lower of
dip direction of f3, the higher is the safety factor. Where the dip angle is lowered
down from 15° to 10°, a number of block combinations will slide along the two
intersected surfaces instead of the formerly single surface slip mode. This will
raise the safety factor considerably.

– The groundwater table is very sensitive with regard to the slope stability. The
draining holes should be strengthened and elongated in the slope to ensure its
stability.

Fig. 13.9 Layout of shear resistance keys: second phase
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The slope excavation and reinforcement construction was completed success-
fully (see Fig. 13.11) under the guidance of the foregoing studies.

13.4 Construction Period: Excavation and Reinforcement
of the Dam Abutments

13.4.1 Characteristics of the Computation

During the construction period, the excavated abutment slopes will be temporarily
created. The maximum slope height perpendicular to the left spandrel groove is 95–
112 m, and the maximum slope height perpendicular to the right spandrel groove is
110–130 m. The stability safety of the abutment slope during the excavation before
the completion of dam concrete placement was strongly worried over by the owner,
designer and contractor.

Fig. 13.10 Layout of pre-stress anchor cables: second phase. ①—279 MN; ②—21 MN; ③—
198 MN; ④—91 MN; ⑤—51 MN
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The dominated structural planes influencing the abutment slope stability are that
of low angle and SN-trending, high angle and SN-trending (e.g. high angle joint
SN, erosion bands), high angle and nearly EW-trending (e.g. III grade faults F3,
F11). They delimit various adverse block combinations that endanger the abutment
excavation and concrete placement works (see Fig. 13.12).

For performing the reinforcement optimization, two phases of work were carried
out: first, the comparison and screen of alternative reinforcement schemes; then the
detailed study on the finial reinforcement scheme.

Fig. 13.11 Headrace intake after completion (2007–08)
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13.4.2 Comparison and Screen of Alternative
Reinforcement Schemes

(1) Emulative schemes

According to the two emulative excavation schemes for the arch dam abutments,
altogether 30 faults, 4 geological alteration zones, and three major joint sets are
taken into account. The excavation is executed by 22 benches, each bench step is
20 m high.

The pre-processor identifies a block system containing 7873 block elements. The
volumetric weight of rock and natural seepage field are considered in the back
analysis of in situ geo-stress field first. Then the stress release and the variation of
seepage field following the change of exit condition due to abutment excavation as
well as the reinforcement component installation, are simulated step by step
according to the ongoing of the abutment cut operation.

The excavated slope is reinforced by systematic rock bolts (steel bar U25II) and
pre-stress cables of 1, 3 and 6 MN. The following three cases are analyzed.

– Case 1. Scheme 1 with reinforcement layout shown in Fig. 13.13 and param-
eters listed in Table 13.6;

– Case 2. Scheme 2 with reinforcement layout shown in Fig. 13.14 and param-
eters listed in Table 13.7;

– Case 3. Without reinforcement.

(2) Performances of emulative schemes

1. Displacements

It is found that both the reinforcement schemes perform well in the control of
excavating induced displacements. The displacement under the reinforcement

Fig. 13.12 Plan showing excavation benches and faults: phase 1
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scheme 2 is smaller than that under the scheme 1. The maximum displacements are
4.0 mm for the reinforcement scheme 1, 4.4 mm for the scheme 2, and 5.5 mm for
the scheme 3 (without reinforcement).

2. Stability

Use is made of the intelligent search strategy (Xu et al. 2000), altogether 533
potential block combinations with lower safety factors are detected. In Figs. 13.15
and 13.16, we present 14 typical block combinations.

The analysis evidences that without reinforcement the abutment slope failures
could manifest because the safety factors are not sufficient for a number of rock
block combinations around the areas. In contrast, both the two reinforcement
schemes may ensure the stability of the abutment slopes during the excavation.
Since the reinforcement scheme 2 demands fewer pre-stress cables and its rein-
forcement cost is lower compared to the scheme 1, it is recommended as the basic
scheme in the formulation of final optimal scheme.

13.4.3 Optimal Analysis for the Finial Reinforcement
Scheme

(1) Configuration of the finial scheme

The optimal scheme is the adjustment and expansion of the scheme 2 to include the
headrace intake slope and a portion of plunge pool slopes (see Fig. 8.10). Its
reinforcement zoning is illustrated in Fig. 8.15 and the correspondent parameters
are listed in Tables 8.8, 8.9 and 8.10. The dip angle of pre-stress cables and passive,
fully-grouted bolts are all dipped at an angle of 15° downward into the slope
surfaces.

Fig. 13.13 Layout of reinforcement scheme 1
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(2) Performances of the final scheme
1. Displacements

The displacement on the upstream slope is large than that on the downstream slope at
the left abutment groove. On the contrary, the displacement on the upstream slope is
smaller than that on the downstream slope at right abutment groove. With regard to
the upstream slopes, the displacement at the left abutment groove is large than that at
the right abutment groove. On the downstream slopes, in contrast, the displacement at
the left abutment groove is smaller than that at the right abutment groove. The
maximum displacement 7.8 cm emerges at the headrace intake.

These conclusions agree well with that from the FEM previously presented in
Chap. 8 (Sect. 8.4).

Fig. 13.14 Layout of reinforcement scheme 2

Table 13.7 Zoning and reinforcement parameters (scheme 2)

Reinforcement
component

6 MN
pre-stress
cable

3 MN
pre-stress
cable

1 MN
pre-stress
cable

Systematic fully-grouted
bolt

Length (m) 60 40 30 8

Horizontal space (m) 5 4 5 3

Vertical space (m) 6 6 8 3

Dip direction (°) EW EW EW Perpendicular to
exposure face

Dip angle (°) 10
(downward)

10
(downward)

10
(downward)

Perpendicular to
exposure face

Young’s modulus
(GPa)

1800 1800 1800 2000

Tensile strength
(MPa)

1000 1000 1000 310

Poisson’s ratio 0.3 0.3 0.3 0.3
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2. Stability

Altogether 596 potential slip modes are detected and their safety is calibrated. In
Figs. 13.17 and 13.18, we present 16 typical slip modes at left and right abutments,
respectively.

The computation evidences that the final reinforcement scheme may meet the
stability requirements during the construction period. However, the large dis-
placement manifesting at the headrace intake slope sends warning alarm that,
during the construction period, the critical portion is the headrace intake slope.
Consequently, the particular care should be paid for its reinforcement design, which
has been elaborated previously in this chapter (Sect. 13.3).

Fig. 13.15 Location of potential failure block combinations (1): phase 1

Fig. 13.16 Location of potential failure block combinations (2): phase 1
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Fig. 13.17 Location of potential failure block combinations (1): phase 2

Fig. 13.18 Location of potential failure block combinations (2): phase 2
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13.5 Service Period: Abutment Slope Stability

13.5.1 Characteristics of the Computation

Towards the deformation and stability analysis of the abutment slopes under the
action of dam thrusts, the block system is identified and illustrated in Figs. 13.19
and 13.20.

Since the rock masses are distinguished into four grades I, II, III and IV (see
Table 2.27), the problem is therefore put forward that the parameters of one dis-
continuity can be changed from a grade of embedded rock to the other. To deal with
such variation we construct rock grade boundaries in a similar way to the ground
surface using Eq. (3.22). The points for building the boundaries are extracted from
geological investigations. They divide the calculated domain into four sub-domains
in which a discontinuity can possess different parameters. Each Gaussian quadra-
ture point on a discontinuity is therefore pinpointed to a rock grade zone by its
position with respect to the boundary surfaces of the sub-domains (see Fig. 13.21).

Fig. 13.19 Block system of Xiaowan Arch Dam foundation and abutments: plan
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The boundary conditions postulated for the computation of seepage field are that

– The upstream, downstream, and bottom boundary faces are postulated as the
second type (without flow exchange);

– The left and the right bank boundary faces are postulated as the first type, on
which the groundwater table is 50 m below the ground surface.

13.5.2 Computation Procedure

– The initial seepage field under the natural level of river water is computed with
the boundary conditions prescribed;

– The initial in situ geo-stress field is back analyzed taking account of the rock
weight and the initial seepage field;

– The dam is constructed and the reservoir is impounded, the thrust forces
exerting at the abutment rocks are transferred from the conventional TLM;

Fig. 13.20 Block system of Xiaowan Arch Dam foundation and abutments: view from
downstream left bank
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– The seepage field is calculated again according to the changed boundary con-
ditions dominated by the reservoir water level;

– Apply the dam thrust forces and seepage force increment after impounding, the
deformation and stress of the rock masses are analyzed.

To assess the safety of the dam abutments, the safety factors are calculated by
the strength reduction procedure.

13.5.3 Computation Results

(1) Seepage flow

Seepage fields before and after the reservoir impounding are analyzed respectively.
The contours of phreatic surfaces are plotted in Figs. 13.22 and 13.23.

It is found that the influence of reservoir impounding is only limited at the
vicinity of dam foundation and abutments. Since the groundwater table at the
natural state is quite high, the grouting and draining curtains deployed at the dam’s
foundation and abutments show no significant effect on bringing down the phreatic
surface and reducing seepage force in the abutment resistance bodies. Therefore, it
is strongly suggested that more attention should be paid to the auxiliary drainage
system in the slopes downstream of the abutments (resistance bodies), whose effects
may be perceived clearly in Figs. 13.24 and 13.25, where the phreatic surface drops
suddenly due to the auxiliary drainage system.

Fig. 13.21 Zoning of discontinuity parameters
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Fig. 13.22 Phreatic surface before reservoir impounding

Fig. 13.23 Phreatic surface after reservoir impounding
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(2) Deformation

When the reservoir is at the normal storage level (NSL) 1240 m, the abutment
displacement at the horizontal cross section EL. 1090 m induced by impounding is
shown in Fig. 13.26.

The maximum abutment displacement takes place at about the one third of the
dam’s height, and the displacement at the left bank is greater than that at the right
bank. Therefore, it is suggested that more attention should be paid to the left bank
abutment in the foundation treatment design.

(3) Stability

Seven modes with higher likelihood of failure formed by block elements or block
element combinations, and their corresponding safety factors are summarized in
Table 13.8. According to the arch dam design codes of the country, the safety
factors of the potential failure modes 4–7 are not sufficiently high since they are
lower than 3.5, the strengthened reinforcement measures are therefore desirable for
these portions.

Fig. 13.24 Flow velocity
after reservoir impounding in
F11 (left abutment)
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13.6 Service Period: Abutment Stability and Dam
Strength

13.6.1 Characteristics of the Computation

(1) Configuration of the dam body

After a long and iterative works, the designer proposed the final optimal scheme of
the dam body whose arch rings and layout are provided in Figs. 13.27 and 13.28.

(2) Discretization of the dam and foundation/abutments

The hybrid BEA/TLM system towards the evaluation of dam strength and abutment
stability is discretized in Fig. 13.29, in which the block elements for the dam
foundation and the arch-cantilever elements for the dam body are displayed. The
whole system consists of 2231 block elements and 88 arch-cantilever elements (9
arch rings and 17 cantilevers).

(3) Parameters used in the analysis

The mechanical parameters of the discontinuities are identical to that in Sect. 13.5.

Fig. 13.25 Flow velocity
after reservoir impounding in
F11 (right abutment)
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Fig. 13.26 Displacements of the abutments at the cross section EL. 1090 m

Table 13.8 Potential failure modes and corresponding safety factors

Failure mode
sequence

Description of the failure mode Safety factor

BEA LEM

1 Fault F5, nearly transverse river joint + nearly river trending
and low dip joint + nearly river trending and high dip angle
joint + ground surface

3.8 5.7

2 Nearly transverse river joint + nearly river trending and low
dip angle joint + nearly river trending and high dip angle
joint + ground surface

4.2 4.3

3 Nearly transverse river joint + nearly river trending and low
dip angle joint + nearly river trending and high dip angle
joint + ground surface

3.4 3.9

4 Nearly river trending and low dip angle joint + nearly river
trending and high dip angle joint + ground surface

2.0 2.3

5 Nearly river trending and low dip angle joint + nearly river
trending and high dip angle joint + ground surface

1.6 2.9

6 Fault f12 + fault F5 + nearly river trending and low dip angle
joint + nearly river trending and high dip angle joint + ground
surface

2.3 3.0

7 Fault f12 + nearly river trending and low dip angle
joint + nearly river trending and high dip angle joint + ground
surface

1.2 1.6
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The elastic behavior is stipulated for the dam concrete whose Young’s modulus
and Poisson’s ratio are E = 20.78 GPa and l = 0.18, respectively.

(4) Loads

The calculation is carried out towards the basic load combination comprising:
self-weight + water pressure of the normal storage level (▽1240 m) + water
pressure of the downstream tail water level (▽1004 m) + silt pressure of the
inactive storage level (▽1097 m) + temperature drop + seepage increment.

Fig. 13.27 Decomposed arch rings of Xiaowan Arch Dam
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The seepage field in the dam foundation and abutments illustrated in the
Sect. 13.5 will be employed directly. The mean temperature drop and the linear
temperature variation (see Fig. 13.30) are evaluated according to the method stip-
ulated by design specifications SL282-2003 and DL/T5346-2006. For the calcu-
lation of other loads, our readers are referred to the literature (Chen 2015).

13.6.2 Computation Results

(1) Displacements

Figures 13.31 and 13.32 present the displacements induced by the reservoir
impounding at the cross section of EL. 1090 m and EL. 1245 m, when the reservoir
is at the normal storage level 1240 m. All the other cross sections show similar
displacement patterns.

It is remarkable that the maximum downstream displacement of the arch dam
appears on the crest of the crown cantilever, which is about 0.1544 m. In addition,
the displacement of the left bank abutment slope is greater than that of the right
bank. For example, the maximum displacements of the abutment slope manifesting
at the elevation of 1090–1010 m are 0.027 m at the left abutment and 0.020 m at
the right abutment, respectively. The explanation is that there are two deeper gullies
at the upstream and downstream of the left abutment. The existence of these gullies
makes the rock masses easier to be deflected under the combined actions of
self-weight and dam thrust forces. It is, therefore, suggested that more attention
should be paid to the left bank in the design of the foundation and abutment
treatment.

(2) Stresses

Figure 13.33 plots the contours of the principal stresses at the crown cantilever,
Figs. 13.34, 13.35, 13.36 and 13.37 plot the horizontal and vertical stresses on the
upstream and downstream dam surfaces meanwhile Figs. 13.38 and 13.39 exhibit
the principal stresses. The minimum and maximum stresses of the dam are −16.07
and 3.84 MPa, respectively, which appear at the toe and heel of the crown

Fig. 13.28 Layout of Xiaowan Arch Dam: plan
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Fig. 13.29 Axonometric perspective of discrete system of Xiaowan Arch Dam. a View from
downstream left bank; b view from downstream right bank
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Fig. 13.30 Temperature variation on the dam surface. a Average; b gradient

Fig. 13.31 Displacements of dam and abutments at the cross section EL. 1090 m
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cantilever. The maximum tensile stress is a bit of larger than the allowable value, it
means cracking risk does exist at the dam’s heel. The suggestion is therefore put
forward that further comprehensive analysis should be made by the other available
methods (e.g. FEM, geo-material model test) concerning the dam heel cracking
problem. Eventually, a base joint at dam heel is installed near the upstream dam
base. This base joint at dam heel may transfer compression stress but has no
resistance to the tensile stress. It is actually a variant of peripheral joint (Chen
2015).

(3) Stability

By the intelligent search strategy, 17 modes (blocks or/and block combinations)
with higher likelihood of failure are detected whose safety factors are comparatively
lower and the reinforcement treatment is desirable. It is also found that more
potential failure cases are located at the left abutment (12 modes) than at the right
abutment (5 modes). The explanation is that the left abutment is weaker due to the
existence of deeper gullies. Figure 13.40 show the location and size of failure mode
4 which possesses a stability safety factor K = 2.1.

Fig. 13.32 Displacements of dam and abutments at the cross section EL. 1245 m
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Fig. 13.33 Contours of principal stresses at the crown cantilever (MPa). a r1; b r3

Fig. 13.34 Contours of stress rx on the upstream dam surface (MPa)
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Fig. 13.35 Contours of stress rz on the upstream dam surface (MPa)

Fig. 13.36 Contours of stress rx on the downstream dam surface (MPa)

Fig. 13.37 Contours of stress rz on the downstream dam surface (MPa)
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Fig. 13.38 Principal stresses on the upstream dam surface

Fig. 13.39 Principal stresses on the downstream dam surface
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Chapter 14
Fundamentals of the Composite Element
Method

Abstract This chapter summarizes the principles related to the composite element
method (CEM), which is one of the most promising computational methods in
handling discontinuities, bolts, drainage holes, and cooling pipes explicitly to give
their detailed description using simple computation mesh. The FE mesh should be
generated beforehand to discretize the structure concerned, where the deployment
and size of finite elements are dominated by the structure configuration and the
gradient of basic variables (displacement, hydraulic potential, temperature).
A certain number of sub-elements representing heterogeneous components (joints,
bolts, draining holes, cooling pipes) are allocated within an element (standard or
hierarchical) that is named as the composite element. The basic variables within
each sub-element are interpolated from the correspondent nodal variables bound at
the composite element. According to the virtual work or variational principle, the
governing equations are established to solve these basic variables. In this manner,
less restraint is imposed on the mesh generation with considerable amount of
heterogeneous components, which allows for a great simplification in the pre-
process work towards the computation for complex hydraulic structures.

14.1 General

As we have discussed in Chap. 6 that in general, the FEM to simulate the dis-
continuities, bolts and drainage holes fall into the implicit (equivalent) approach
which takes into account of their influences on the compliance/permeability tensor
but neglects their exact positions (Barenblatt et al. 1960; Snow 1969; Huyakorn
et al. 1983; Pande and Gerrard 1983; Guan et al. 1984; Dershowitz et al. 1985;
Long et al. 1985; Oda 1986; Sharma and Pande 1988; Chen and Pande 1994; Chen
and Egger 1999) and the explicit (distinct) approach which uses special elements to
exactly simulate their geological and mechanical properties (Mahtab and Goodman
1970; Wilson and Witherspoon 1974; Duiguid and Lee 1977; Streltsova 1981; Zhu
1982; Du et al. 1984; Fipps et al. 1986; Andersson and Dverstorp 1987; Aydan
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1989; Cacas et al. 1990; Du et al. 1991; Swoboda et al. 1991, 1992; Nordqvist et al.
1992; Wang et al. 1992; Long 1996; Chen and Egger 1997; Wang et al. 2001). The
former can be applied to very complex engineering problems with a large quantity
of discontinuities and bolts as well as drainage holes, whereas the latter possesses
the potentiality to describe them in much more detail and consequently gives more
precise solution.

The simulation of bolts within the framework of the discrete element methods
was initiated by incorporating the performance of point anchored bolt in the DEM
(Lorig 1984, 1985) in which a reinforcement component is simulated by the
one-dimensional bar element. Fully bonded reinforcement however, is more diffi-
cult to represent in the discrete element methods, as it contributes significant shear
stiffness and strength to a discontinuity through which it passes. In Chap. 12, we
take the bolt/pile as one-dimensional beam element which applies
elasto-viscoplastic restraint to the relative shear displacements of a block with
respect to its prescribed adjacent block. The BEA elaborated in this book also
simulates the grouting/drainage curtain using a special block stripe with very low/
high hydraulic conductivity (see Chap. 9). Although these treatments may extract
the overall effects on the stress/stability and permeability of hydraulic structures, yet
a portion of details with regard to the reinforcement components and seepage
mitigation devices are lost. For example, fully bonded reinforcement is difficult to
be satisfactorily simulated, as in addition to the contribution of shear stiffness and
strength to discontinuities, it also contributes significant axial stiffness to the block
system, which is crucial in the evaluation of its pull-out failure.

The temperature fluctuation in a concrete structure due to the hydration process
and thermal flow results in temperature differences (drop or rise) which in turn,
produce thermal stresses attributable to the restraint conditions present in the
structure. The most adverse effect of the thermal stresses is the concrete cracking
(ACI 1987), which is one of the main issues in structural design, in particular when
mass concrete is encountered (Chen et al. 2011). Methods often exercised for
bringing down the temperature gradients within a structure, and thus also the risk of
cracking, are to place concrete in layered column embedded with exposure surfaces
(lift joints) and to cool the inner core with embedded cooling pipes in which water
performs as the cooling medium. Such techniques were firstly employed to con-
struct Hoover Dam (BOR 1971). Lift joints influence not only the deformation and
seepage flow but also the temperature field of mass concrete structures. This is
particularly important in the application of Roller Compacted Concrete
(RCC) technique (Tatro and Schrader 1985, 1992; Ishikawa 1991; Springenschmid
et al. 1994; Zhang and Garga 1996).

To prevent early age cracking, one of the paramount tasks for structure designers
is the evaluation of the thermal field and its history in concrete. Based on this
evaluation the structural configuration can be adjusted, the protection and cooling
requirements also can be proposed. Various methods are reported in the literatures
for the thermal analysis of concrete, which are ranged from complex
three-dimensional finite element method to simple manual calculation. Today, the
FEM is more and more prevalent in the thermal analysis for the hydraulic structures
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with complex configuration and construction schedule, of which two approaches
are generally distinguished with regard to lift joints (Zhu 1991, 1998, 2006; Huang
and Yang 1999; Liu et al. 2008). The first one is to handle the lift joint as a contact
face without thickness along which only one layer of nodes is discretized, the nodal
temperature at the lift joint is always the average one related to the adjacent old and
new concrete elements. This approach is simple and easy to be implemented, but it
is unable to take into account of the strong thermal gradient across the new and old
concrete lifts. The second approach uses thin transition elements along which two
layers of nodes are deployed. This approach is able to simulate the strong thermal
gradient across the new and old concrete lifts, but the elementary thickness and
parameters are difficult to evaluate, and much larger computation effort is deman-
ded. All the above two approaches have one common drawback, namely the
computation mesh generation would be tightly restrained by enormous lift joints.

Similarly, the simulation of cooling pipe lattice can also be distinguished as
implicit (or equivalent) approach and the explicit (or distinct) approach. The former
looks at a volume of concrete containing cooling pipe segments as negative heat
inner source, whose intensity is represented by an average coefficient related to the
concrete conductivity, the diameter and the orientation as well as the spacing of
pipes (Zhu and Cai 1989; Zhu 1991, 1998; Toshiaki et al. 2000). The latter includes
some well known models such as the sub-structure technique (Liu and Liu 1997;
Zhu and Zhang 2002; Malkawi et al. 2003; Liu 2004). The implicit approach can be
applied to very complicated problems with a large number of cooling pipes,
whereas the explicit approach has the potentiality to describe the cooling pipes in
detail and consequently gives more precise solution.

From the point view of practitioners, the crucial difficulty in the explicit simu-
lation of fractures/joints as well as bolts/drainage holes/cooling pipes with the FEM
lies in the pre-process to discrete the calculation domain. This is arise from the
reality that on one hand, there are a large amount of discontinuities/joints of dif-
ferent shapes and sizes, and a large amount of drainage holes, cooling pipes, and
bolts of small size (e.g. at a diameter of 3–10 cm) deployed within a small width
and largely stretched zone (e.g. spaced at 1.5–3 m); on the other hand, the special
elements available possess definite nodes, and some of them should be the common
nodes of the host entity elements. Consequently, this, plus the complicity in the
configuration and construction of hydraulic structures, will lead to time consuming
and tedious pre-process overheads.

In recent decades the composite element method (CEM) has been developed
which is good at simulating joints, bolts, drainage holes, and cooling pipes within
the structures explicitly (Chen et al. 2002, 2003; Chen and Qiang 2004; Chen et al.
2004, 2004; Xu and Chen 2005; Chen and Feng 2006; Chen et al. 2007, 2008;
Chen and Shahrour 2008; Chen et al. 2010, 2011a, b; Ding and Chen 2013; Chen
et al. 2015). The most attractive advantage with this method is that it may give a
detailed description of the non-homogenous and discontinuous properties within an
element using simple computation mesh. In this way less restraint is imposed on the
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mesh generation for complicated hydraulic structures with considerable amount of
joints/bolts/drainage holes/cooling pipes, which allows for a great simplification in
the pre-process work towards the engineering application.

14.2 Strain-Stress Problems

14.2.1 Bolts

Suppose an element (standard or hierarchical) r of rock-like material contains nb
sub-elements representing bolt segments (nb ¼ 2 in Fig. 14.1) and ng sub-elements
representing grout segments (ng ¼ 2 in Fig. 14.1). These sub-elements are not
necessarily classical finite elements. The contact face between rock r and grout g is
denoted as jr;g, meanwhile the contact face between grout g and bolt b is denoted as
jg;b.

The displacements Duf gr, Duf gg, Duf gb within each sub-element (see
Fig. 14.2) are interpolated from the correspondent nodal displacements bound at the
composite element by

Duf gr ¼ ½N� Ddf gr
Duf gb ¼ ½N� Ddf gb ðb ¼ 1; . . . nbÞ
Duf gg ¼ ½N� Ddf gg ðg ¼ 1; . . . ngÞ

8<
: ð14:1Þ

In which ½N� stands for the shape function matrix (standard or hierarchical) of the
FEM defined over the whole composite element (see Eq. 4.57). However, it should
be emphasized that the interpolation Eq. (14.1) is valid merely in each of the
sub-element respectively.

The loads exerting at each sub-element are transferred to the respective nodal
forces at the composite element, then the governing equations are established
according to the virtual work principle to relate the nodal displacements with the
nodal forces.

Fig. 14.1 Schematic drawing
of a composite element
containing fully-grouted bolts
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14.2.2 Structural Planes

Finite element mesh should be generated to discretize the structure firstly. The
deployment and sizes of elements are dependent on the structure configuration and
stress gradient, cares over the existence of the discontinuity system need not to be
taken. Then the algebra and geometry calculi will be conducted with the messages
of the discontinuity/joint system and the prescribed FE mesh, to construct the CE
mesh. In such a CE mesh there are several elements containing discontinuity/joint
segments, which are defined as composite elements.

Figure 14.3 shows a composite element containing 4 structural plane segments
dividing the element into 4 sub-elements which are not necessarily to be the
classical finite elements. Generally, we denote nr as the number of sub-elements
(nr = 4 in Fig. 14.3) and jrl;rm as the discontinuity segment between the
sub-element rl and sub-element rm.The displacement fDugrl within each
sub-element is interpolated from the correspondent nodal displacements fDdgrl
bound at the composite element (see Fig. 14.4) by

fDugrl ¼ ½N�fDdgrl within the sub-element rlðrl ¼ 1; . . . nrÞ ð14:2Þ

In which ½N� stands for the shape function matrix of the FEM defined over the
whole composite element.

The displacements, the strains and stresses within the sub-element rl are cal-
culated by the corresponding nodal displacements fDdgrl. Meanwhile, the relative
displacements, the strains and stresses of the discontinuity segment jrl;rm within the

Fig. 14.2 Diagram to the displacement interpolation in a composite element containing
fully-grouted bolts
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composite element are calculated by the nodal displacements fDdgrl and fDdgrm of
its adjacent sub-elements. These displacements can be solved by the governing
equations established using the virtual work in a similar procedure of the FEM.

14.3 Seepage Problems

14.3.1 Drainage Holes

Suppose a composite element contains nd sub-element representing drainage hole
segments (nd ¼ 2 in Fig. 14.5). At the boundary of rock/drainage hole there is a
virtual interface jr;d leading to the discontinuous characteristics of the hydraulic
potential.

Fig. 14.3 Schematic drawing
of a composite element
containing structural planes

Fig. 14.4 Diagram to the
displacement interpolation in
a composite element
containing structural planes
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The hydraulic potentials in each sub-element /r and /d (see Fig. 14.6)
respectively are interpolated from their nodal hydraulic potentials /f gr and /f gd
bound at the composite element by

/r ¼ ½N� /f gr
/d ¼ ½N� /f gd ðd ¼ 1; . . . ndÞ

�
ð14:3Þ

In which ½N� stands for the shape function matrix in the FEM defined over the
whole composite element. It should be noted that the interpolation Eq. (14.3) is

Fig. 14.5 Schematic drawing
of a composite element
containing drainage holes

Fig. 14.6 Diagram to the head interpolation in a composite element containing drainage holes
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only valid in each of the sub-element respectively. Use is made of the variational
principle to establish the governing equations for the solution of /f gr and /f gd .

14.3.2 Structural Planes

Suppose a domain shown in Fig. 14.3 contains nr sub-elements that probably
possess different seepage characteristics. At the boundary of the sub-domains rl and
rm there is an interface jrl;rm representing discontinuity/joint segment. A standard or
hierarchical finite element called composite element is defined to cover the whole
domain.

The hydraulic potential /rl within each sub-element rl (see Fig. 14.7) is inter-
polated from the correspondent nodal hydraulic potential f/grl bound at the
composite element as

/rl ¼ ½N�f/grl within the sub-element rlðrl ¼ 1; . . . nrÞ ð14:4Þ

In which ½N� stands for the shape function matrix of the FEM defined over the
whole composite element.

By the variation principle, the governing equations can be established to solve
the unknown nodal hydraulic potential f/grl.

Fig. 14.7 Diagram to the head interpolation in a composite element containing structural planes
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14.4 Thermal Problems

14.4.1 Cooling Pipe

The FE mesh should be generated to discretize the structure beforehand. The
refinement and sizes of the finite elements are mainly dependent on the structure
configuration, concrete placement process, and temperature gradient. Then, the
presence of cooling pipes transfers related finite elements into composite elements
through geometrical calculi. Figure 14.8 shows such a composite element con-
taining one concrete sub-element c, nw cooling water sub-elements wi (nw ¼ 4 in
Fig. 14.8) and the same number of cooling pipe sub-elements jc;wi looked at as the
interface between concrete sub-element c and water sub-elements wi.

There are independent nodal variables (temperatures) for the concrete

sub-element and the cooling water sub-elements assembled in a vector fTg ¼

Tf gTc ; Tf gTw1; Tf gTw; . . .; Tf gTnw
h iT

(see Fig. 14.9), which can be used directly in

the temperature interpolations

Tc ¼ N½ � Tf gc
Twi ¼ N½ � Tf gwi ðwi ¼ 1; 2; . . .; nwÞ

�
ð14:5Þ

The temperature of pipe is not an independent variable and will be averaged by
the formula

Tpi ¼ ðTc þ TwiÞ=2 ð14:6Þ

In Eq. (14.5), ½N� stands for the shape function matrix defined over the whole
composite element.

Fig. 14.8 Schematic drawing
of a composite element
containing cooling pipes
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It should be emphasized that the interpolation Eqs. (14.5) and (14.6) are only
valid in each of the sub-element merely to ensure the segmental characteristics of
the temperature T.

14.4.2 Lift Joints

In the finite element mesh for a concrete structure, the presence of lift joints gives
rise to a number of composite elements through the geometric calculation using the
messages of the FE mesh and lift joints. Figure 14.10 shows a typical composite
element contains nc sub-elements connected by nc � 1 lift joint segments.

Nodal temperatures are associated to the composite element including both the
“real” nodal temperatures and additional temperatures used for the interpolation
only. Generally, the DOF of a composite element composed of nc sub-elements is
nc times that of the conventional finite element. In Fig. 14.11 all the nodal

Fig. 14.9 Diagram to the temperature interpolation in a composite element containing cooling
pipes

Fig. 14.10 Schematic
drawing of a composite
element containing lift joints
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temperatures of the nc sub-elements bound at the composite element are arranged as

one nodal temperature vector fTg ¼ Tf gTc1; Tf gTc2; . . .; Tf gTnc
h iT

. In the following

discussion the subscripts ci and jcl;cm will be used for the variables of the concrete
sub-element and the lift joint segment between the concrete sub-elements cl and cm,
respectively.

The temperature Tci in each sub-element is interpolated from the nodal tem-
perature Tf gci bound at the composite element by

Tci ¼ ½N� Tf gci within the sub-element ci ðci ¼ 1; . . . ncÞ ð14:7Þ

In which ½N� stands for the matrix of shape function defined in the whole
composite element. The nodal temperatures Tf gci can be solved by the governing
equations based on the variational principle similar to that of the FEM.
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Chapter 15
Reinforcement Analysis Using
the Composite Element Method

Abstract This chapter implements the composite element method (CEM) towards
the explicit simulation of jointed rock mass reinforced by fully-grouted bolts and
pre-stress anchor cables. The joint, bolt/stranded wire, and grout are all embedded
within the composite element, meanwhile the bolt/grout and rock/grout interfaces
are taken into account. Use is further made of p-refinement to enlarge the shape
function space for the complex deformation pattern within a composite element
containing reinforcement components and discontinuities. This chapter is closed
with a number of validation examples cross-referenced by FEM computation/
physical test and two successful engineering application cases related to gravity
dam and underground cavern.

15.1 General

Discontinuities or structural planes—the general term of rock faults, joints, bed-
dings, etc., dominate the deformation and stability of dam foundation, cut slope and
underground cavern. Rock bolting is widely employed as a principal countermea-
sure for the stabilization of hydraulic structures. Towards the optimal design of
reinforcement scheme, the assessment of both the shear and tension resistances of
bolts are crucial. Many laboratory and field tests have been conducted from which
the detailed understandings with regard to the interaction mechanism between rock
bolts and rock masses are revealed. Based on these understandings, the
semi-empirical formulas, the implicit or explicit FEM algorithms (vide Chap. 6), as
well as the BEA algorithm (vide Chap. 12), may be elaborated.

However, as has been indicated previously, one of the main difficulties lies in the
explicit simulation of bolts using the FEM is the pre-process to discretize the
calculation domain, whereas the use of the BEA leads to a partial loss of detailed
performance of bolts. The question is naturally put forward that can we, let the
special elements representing bolts be located inside conventional elements
(standard or hierarchical)? Inspirited by this ideal, we proposed the composite
element method (CEM) to explicitly simulate bolts embedded within a finite
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element (Chen et al. 2003, 2004). In this method the bolt and grout are handled with
separately, the bolt/grout and rock/grout interfaces are taken into account, and the
elasto-viscoplastic deformations are considered. The research then was pushed
forward to cover the issues of simulating hollow bolts (Chen et al. 2002, 2003),
discontinuities/joints (Chen et al. 2007, 2008), the interaction of bolt and joint
(Chen and Shahrour 2008), and the pre-stress stranded wire cables (Chen et al.
2015).

15.2 Fully-Grouted Rock Bolts

15.2.1 Concept

In the computation for a reinforced structure with the CEM, the FE mesh need be
generated beforehand without taking into account of the existence of rock bolts.
Then the dip directions and dip angles as well as the collar coordinates of the bolts
will be put in. By the simple algebra calculations, the intersecting messages of each
bolt with the FE mesh can be obtained. Figure 15.1 shows a composite element
containing one bolt segment. Within which there are five sub-elements representing
the rock material, the grout material, the bolt material, the rock/grout interface, and
the grout/bolt interface, respectively.

15.2.2 Coordinate Systems and Transformation

A global coordinate system is defined for the formulation of overall governing
equations, with its Y-axis pointing northward, the X-axis pointing eastward, and the

Fig. 15.1 Schematic drawing
of a composite element
containing five sub-elements
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Z-axis being vertical. For each bolt a local Cartesian system and a local Cylindrical
system are also needed to simplify the deduction (see Fig. 2.16). The subscripts r,
g, b, jr;g and jg;b are employed to denote the variables of rock, grout, bolt, rock/grout
interface, grout/bolt interface, respectively; the superscripts ca and cy are used to
denote the variables in the local Cartesian system and Cylindrical coordinate sys-
tem, respectively.

Towards the establishment of governing equations, use is made of the following
basic assumptions:

– At the cross section of a bolt (grout as well), there are three stress increments
comprising one normal stress (zb direction) and two shear stresses (xb and yb
directions);

– At the interfaces of rock/grout and bolt/grout, there are three stress increments
comprising one normal stress perpendicular to the interface (r direction) and two
shear stresses along the interface (x and z directions).

For the bolt segment b, the displacement transformation between the global and
the local Cartesian coordinate systems is given by

fDugcab ¼ ½l�cab fDugb ð15:1Þ

In which the transform matrix ½l�cab has been defined in Eq. (2.37).
The displacement transformation between the local coordinate systems of

Cartesian and Cylindrical is given by

fDugcyb ¼ ½l�cyb fDugcab ð15:2Þ

In which the transforming matrix ½l�cyb has been defined in Eq. (2.38).
For the grout material around the bolt the transformations are defined similarly

fDugcag ¼ ½l�cag fDugg ð15:3Þ

fDugcyg ¼ ½l�cyg fDugcag ð15:4Þ

Since the transformation matrices ½l�cab and ½l�cyb are normally identical to ½l�cag and
½l�cyg , therefore in the hereinafter deduction of this chapter, their subscripts b and
g are all neglected.

15.2.3 Constitutive Equations

See Eqs. (2.122)–(2.130).
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15.2.4 Equilibrium Equations

(1) Relationship between strain increment and nodal displacement increment

There are three sets of nodal displacement increments bound at a composite element
if there is one bolt segment, each of them will be employed to interpolate the
displacement increments of rock, grout, and bolt, respectively by the formulas

fDugr ¼ ½N�fDdgr ð15:5Þ

fDugcag ¼ ½l�ca½N�fDdgg ð15:6Þ

fDugcab ¼ ½l�ca½N�fDdgb ð15:7Þ

In which the shape function matrix ½N� is identical to that of the FEM [see
Eq. (4.57)].

The strain increments of the rock, grout, and bolt materials are then calculated by

fDegr ¼ ½B�rfDdgr ð15:8Þ

fDegcag ¼ ½B�g½L�cafDdgg ð15:9Þ

fDegcab ¼ ½B�b½L�cafDdgb ð15:10Þ

where ½B�r is identical to Eq. (4.60), and

½B�b ¼ ½B�g ¼ ½B�ca1 ½B�ca2 . . . ½B�cafeðpÞ
j k

ð15:11Þ

½B�cai ¼
@Ni
@zca 0 @Ni

@xca

0 @Ni
@zca

@i
@yca

0 0 @Ni
@zca

2
664

3
775 ð15:12Þ

½L�ca ¼ ½l�cað ÞT ½l�cað ÞT . . . ½l�cað ÞT
� �T ð15:13Þ

A similar expression for the transformation matrix ½L�cy will be employed later is
constructed by ½l�cy [see Eq. (2.38)].

½L�cy ¼ ½l�cyð ÞT ½l�cyð ÞT . . . ½l�cyð ÞT
� �T ð15:14Þ

The displacement increments manifesting in the rock, grout, and bolt materials
will give rise to relative displacement increments on the rock/grout interface and the
bolt/grout interface, these increments will be expressed in the local Cylindrical
coordinate system by
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fDugcyjr;g ¼ ½l�cy½l�ca½N�ðfDdgr � fDdggÞ ð15:15Þ

fDugcyjg;b ¼ ½l�cy½l�ca½N�ðfDdgg � fDdgbÞ ð15:16Þ

(2) Relationship between nodal displacement increment and load increment

Suppose following virtual displacements take place in the rock, grout and bolt that

Du�f gr¼ ½N� Dd�f gr ð15:17Þ

Du�f gcag ¼ ½l�ca½N� Dd�f gg ð15:18Þ

Du�f gcab ¼ ½l�ca½N� Dd�f gb ð15:19Þ

The corresponding virtual strains and relative displacements will be

De�f gr¼ ½B�r Dd�f gr ð15:20Þ

De�f gcag ¼ ½B�g½L�ca Dd�f gg ðg ¼ 1; . . .; ngÞ ð15:21Þ

De�f gcab ¼ ½B�b½L�ca Dd�f gb ðb ¼ 1; . . .; nbÞ ð15:22Þ

Du�f gcyjr;g¼ ½l�cy½l�ca½N�ð Dd�f gr� Dd�f ggÞ ð15:23Þ

Du�f gcyjg;b¼ ½l�cy½l�ca½N�ð Dd�f gg� Dd�f gbÞ ð15:24Þ

The virtual work principle for the composite element will be written as

Wr þ
Xng
g¼1

Wg þ
Xnb
b¼1

Wbþ
Xng
g¼1

Wjr;g þ
Xnb
b¼1

Wjg;b ¼ ð Dd�f grÞT Dff gr þ
Xng
g¼1

ð Dd�f ggÞT Dff gg

þ
Xnb
b¼1

ð Dd�f gbÞT Dff gb ð15:25Þ

In which fDf gr, fDf gg and fDf gb are the nodal force increments bound at the
composite element which are transferred from the load increments exerting at the
rock, grout and bolt according to the algorithm identical to the FEM; Wr, Wg, Wb,
Wjr;g and Wjb;g are the virtual works contributed from the embedded components
inclusive the rock, grout, bolt, rock/grout interface and bolt/grout interface.

1. Rock material

Wr ¼
ZZZ
Xr

ð De�f grÞTfDrgr dX ð15:26Þ
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Given the constitutive relation in Eq. (2.122) and strain-displacement relation in
Eq. (15.8), the virtual work of rock material is

Wr ¼
ZZZ
Xr

ð Dd�f grÞT ½B�Tr ½D�rð½B�rfDdgr � _evpf grDtÞ dX ð15:27Þ

2. Grout material

Wg ¼
ZZZ
Xg

ð De�f gcag ÞTfDrgcag dX ðg ¼ 1; . . .; ngÞ ð15:28Þ

Introducing the constitutive relation in Eq. (2.122) and the strain-displacement
relation in Eq. (15.9) into Eq. (15.28) gives rise to

Wg ¼
ZZZ
Xg

ð Dd�f ggÞTð½L�caÞT ½B�Tg ½D�gð½B�g½L�cafDdgg � _evpf gcag DtÞ dX

ðg ¼ 1; . . .; ngÞ
ð15:29Þ

3. Bolt material

By the similar way to the grout material, the virtual work contributed from the bolt
material is

Wb ¼
ZZZ
Xb

ð Dd�f gbÞTð½L�caÞT ½B�Tb ½D�bð B½ �b½L�cafDdgb � _evpf gcab DtÞ dX

ðb ¼ 1; . . .; nbÞ
ð15:30Þ

4. Rock/grout interface

Wjr;g ¼
ZZ
Cjr;g

ð Du�f gcyjr;gÞ
TfDrgcyjr;g dC ð15:31Þ
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Introducing the constitutive relation in Eq. (2.126) and the strain-displacement
relation Eq. (15.15) into Eq. (15.31), we have

Wjr;g ¼
ZZ
Cjr;g

ðð Dd�f grÞT � ð Dd�f ggÞTÞ½N�Tð½l�caÞTð½l�cyÞT ½D�jr;g

ð½l�cy½l�ca½N�ðfDdgr � fDdggÞ � _uvpf gcyjr;gDtÞ dC
ð15:32Þ

5. Grout/bolt interface

Similar to the rock-grout interface, the virtual work contributed from the grout/bolt
interface can be written directly

Wjg;b ¼
ZZ
Cjg;b

ðð Dd�f ggÞT � ð Dd�f gbÞÞ½N�Tð½l�caÞTð½l�cyÞT ½D�jg;b

ð½l�cy½l�ca½N�ðfDdgg � fDdgbÞ � _uvpf gcyjg;bDtÞ dC
ð15:33Þ

We now introduce the component virtual works in Eqs. (15.26)–(15.33) into
Eq. (15.25), and arrange the result regarding the different virtual displacements
corresponding to the rock sub-element, the grout sub-element, and the bolt
sub-element. Remember that the virtual displacements ð Dd�f grÞ, ð Dd�f ggÞ and
ð Dd�f gbÞ are arbitrary vectors, the validity of the virtual work principle will leads to

½k�r;r. . . ½k�r;g 0 � � � ½k�r;ng 0
. . . . . . . . . . . . . . .

½k�g;r � � � ½k�g;g ½k�g;b � � � 0 0
0 ½k�b;g ½k�b;b � � � 0 0
. . . . . . . . . . . . . . .

½k�ng;r � � � 0 � � � 0 � � � ½k�ng;ng ½k�ng;nb
0 � � � 0 � � � 0 � � � ½k�nb;ng ½k�nb;nb

2
666666664

3
777777775

fDdgr
. . .
fDdgg
fDdgb
. . .
fDdgng
fDdgnb

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

fDf gr
. . .
fDf gg
fDf gb
. . .
fDf gng
fDf gnb

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

þ

Df vpf gr
. . .
Df vpf gg
Df vpf gb

. . .
Df vpf gng
Df vpf gnb

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð15:34Þ
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In which

½k�r;r ¼
ZZZ
Xr

½B�Tr ½D�r½B�rdX

þ
Xng
g¼1

ZZ
Cjr;g

½N�T ½l�cað ÞT ½l�cyð ÞT ½D�jr;g ½l�
cy½l�ca½N�dC

½k�g;g ¼
ZZZ
Xg

½L�cað ÞT ½B�Tg ½D�g B½ �g½L�cadX

þ
ZZ
Cjr;g

½N�T ½l�cað ÞT ½l�cyð Þ½D�jr;g ½l�
cy½l�ca½N�dC

þ
ZZ
Cjg;b

½N�T ½l�cað ÞT ½l�cyð ÞT ½D�jg;b ½l�
cy½l�ca½N�dC

½k�b;b ¼
ZZZ
Xb

½L�cað ÞT ½B�Tb ½D�b B½ �b½L�cadX

þ
ZZ
Cjg;b

½N�T ½l�cað ÞT ½l�cyð ÞT ½D�jr;b ½l�
cy½l�ca½N�dC

k½ �r;g¼ �
ZZ
Cjr;g

½N�T ½l�cað ÞT ½l�cyð ÞT ½D�jr;g ½l�
cy½l�ca½N�dC

k½ �g;b¼ �
ZZ
Cjg;b

½N�T ½l�cað ÞT ½l�cyð ÞT ½D�jg;b ½l�
cy½l�ca½N�dC

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð15:35Þ

Df vpf gr¼
ZZZ
Xr

½B�Tr ½D�r _evpf grDt dXþ
Xng
g

ZZ
Cjr;g

½N�T ½l�cað ÞT ½l�cyð ÞT ½D�jr;g _uvpf gcyjr;gDt dC

Df vpf gg¼
ZZZ
Xg

½L�cað ÞT ½B�Tg ½D�g _evpf gcag Dt dXþ
ZZ
Cjg;b

½N�T ½l�cað ÞT ½l�cyð ÞT ½D�jg;b _uvpf gcyjg;bDt dC

�
ZZ
Cjr;g

½N�T ½l�cað ÞT ½l�cyð ÞT ½D�jr;g _uvpf gcyjr;gDt dC

Df vpf gb¼
ZZZ
Xb

½L�cað ÞT ½B�Tb ½D�b _evpf gcab Dt dX�
ZZ
Cjg;b

½N�T ½l�cað ÞT ½l�cyð ÞT ½D�jg;b _uvpf gcyjg;bDt dC

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð15:36Þ
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15.3 Bonded Anchorage Head of Stranded Wire Cable
in Tension

Extensive experimental studies concerning the performance of anchors have been
reported in numerous literatures (Fuller and Cox 1975; Weerasinghe and Littlejohn
1997; Stheeman 1982; Stillborg 1984, 1994; Goris and Conway 1987; Hassani and
Rajaie 1990; Hassani et al. 1992; Hyett et al. 1992, 1995; Kaiser et al. 1992;
Benmokrane et al. 1995a, b; Barley 1997a, b; Jarrel and Haberfield 1997; Woods
and Barkhordari 1997; Briaud et al. 1998; Kim 2003). They provide important
insights into the issues such as the dominant factors in the bond-strength at anchor/
grout interface (e.g. interface smoothness, anchor diameter, borehole diameter, steel
grade), the effect of the rigidity of host medium on the performance of anchor, the
load transfer mechanism from anchor to ground, etc.

Nowadays, the most prevalent approach of anchor cables in the FEM makes use
of beam-column models which have been well documented by Desai et al. (1986),
Mitri and Rajaie (1990), Mitri et al. (1993). Typical algorithms for cables to
investigate their stress and deformation patterns in anchor-solid systems have been
provided by these authors, too. To handle the phenomena of interface failure such
as slippage and separation, a number of interface models established by Goodman
et al. (1968), Mahtab and Goodman (1970), Ghaboussi et al. (1973), Hermann
(1978), Desai et al. (1984), Beer (1985), Griffiths (1985), are available. An
important progress using fine finite element grid to simulate solid/grout and grout/
strand wire interfaces has been achieved, too (Kim et al. 2007). In engineering
practice, however, a large amount of anchor cables are ordinarily installed for a
hydraulic structure. Under such circumstances, the attempt to deal with all the
stranded wires and the interfaces of cables individually would be too ambitious, or
even infeasible mainly restrained by pre-process and computation capability.

In Chap. 6 (Sect. 6.5), a simplified model for pre-stress cables to evaluate the
reinforced structures in a manner of pre-stress force and additional free-length
stiffness has been established. On the out-laid anchor head, concentrated com-
pressive force or distributed pressure of certain pattern is exerted to simulate
pre-stress action, meanwhile a concentrated tensile force equal to the pre-stress is
exerted at the bonded inside anchorage head—a “bar” or “beam” element with
certain length. It is customarily postulated that such a concentrated tensile force is
exerted at the intersection of bonded inside anchorage head with free length, for the
safe side. In this model, however, the detailed performance of bonded inside
anchorage head is totally neglected.

In the following coverage of this section we present an important extension of
the CEM for the bonded inside anchorage head of tension cable anchor, in which
one composite element contains the sub-elements corresponding to the rock, grout,
stranded wires, rock/grout interface and grout/stranded wire interfaces. This kind of
composite elements can be easily implemented in FE programs accompanied by the
out-laid anchor head force and additional free-length stiffness (vide Sect. 6.5,
Chap. 6), to simulate cable reinforced structures much more rationally.
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15.3.1 Sub-Element Analysis

(1) Coordinate systems and nomenclatures

Figure 15.2 shows the schematic diagram of the composite element containing a
bonded inside cable head with nw-stranded wires (nw = 7 in this figure). The entity
sub-elements ðw ¼ 1; 2; . . .nwÞ representing nw stranded wires are connected to the
entity sub-element g representing grout through the nw interface sub-elements of
grout/stranded wire jg;w ðw ¼ 1; 2; . . .nwÞ. The grout entity sub-element g is, in turn,
connected to the host rock sub-element r through the interface sub-element of rock/
grout jr;g.

The independent displacements corresponding to the sub-elements are

bound at the nodes of the composite element as fDdg ¼ fDdgTr ; fDdgTg ; fDdgT1 ;
h

fDdgT2 ; . . .; fDdgTnw �
T (see Fig. 15.3). In the local coordinate systems, the stress and

strain increments are denoted as fDrgj ¼ Drr Dsrx Dsrz½ �T and fDugj ¼
Dur Dux Duz½ �T for the interface [see Eqs. (2.25) and (2.60)], which means that

only compression/tension and shear on the interface are considered; fDegw ¼
Dczx Dczy Dez

� �T
and fDrgw ¼ Dszx Dszy Drz½ �T for the wire or grout

[see Eqs. (2.61)–(2.62) and (2.64)–(2.65)], which means that only compression/
tension and shear on the wire section perpendicular to the axis are considered.

The nodal displacement transformation between the global and local Cartesian
coordinate systems is defined by

fDdgcag ¼ ½L�cafDdgg
fDdgcaw ¼ ½L�cafDdgw

�
ð15:37Þ

The transformation matrix ½L�ca is identical to that in Eq. (15.13).

Fig. 15.2 Schematic drawing
of the composite element
containing 3þ 2� nw
sub-elements
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The nodal displacement transformation between the local Cartesian and
Cylindrical coordinate systems with respect to the stranded wire sub-element is
defined by

fDdgcyg ¼ ½L�cyfDdgcag
fDdgcyw ¼ ½L�cyfDdgcaw

�
ð15:38Þ

The transformation matrix ½L�cy has been defined in Eq. (15.14).

(2) Displacement interpolation

The displacement increment in each entity sub-element is interpolated from its
corresponding nodal variables bound at the composite element as follows (see
Fig. 15.3)

fDugr ¼ ½N�fDdgr ð15:39Þ

fDugcag ¼ ½l�ca½N�fDdgg ð15:40Þ

fDugcaw ¼ ½l�ca½N�fDdgw ðw ¼ 1; 2; . . .:nwÞ ð15:41Þ

where [N] stands for the shape function matrix in the whole composite element [see
Eq. (4.57)].

Fig. 15.3 Independent nodal
displacements and their
interpolation
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(3) Strain computation

1. Entity sub-elements

The strains of rock, grout, and stranded wire can be calculated in terms of corre-
sponding nodal displacements by

Def gr¼ B½ �r Ddf gr ð15:42Þ

fDegcag ¼ ½B�g½L�cafDdgg ð15:43Þ

fDegcaw ¼ ½B�w½L�cafDdgw ðw ¼ 1; 2; . . .:nwÞ ð15:44Þ

In which ½B�r is identical to that in Eq. (4.60), ½B�g is identical to that in
Eqs. (15.11)–(15.12), and ½B�w ¼ ½B�g.
2. Interface sub-elements

For the interface elements (jr;g and jg;w), the strains will be replaced by the relative
displacements expressed in the local Cylindrical coordinate system

fDugcyjr;g ¼ fDugcyr � fDugcyg ¼ ½l�cy½l�ca½N�ðfDdgr � fDdggÞ ð15:45Þ

fDugcyjg;w ¼ fDugcyg � fDugcyw ¼ ½l�cy½l�ca½N�ðfDdgg � fDdgwÞ ðw ¼ 1; 2; . . .nwÞ
ð15:46Þ

(4) Constitutive equations

See Eqs. (2.122)–(2.130).

15.3.2 Composite Element Analysis

Suppose a virtual displacement increment fDd�g manifests at the composite ele-
ment containing bonded inside cable head, then the corresponding virtual dis-
placements and virtual strains within the sub-elements may be calculated according
to Eqs. (15.39)–(15.44). The application of the virtual work principle to the com-
posite element leads to

Wr þWg þ
Xnw
w¼1

Ww þWjr;g þ
Xnw
w¼1

Wjg;w ¼ ð Dd�f grÞTfDf gr þð Dd�f ggÞTfDf gg

þ
Xnw
w¼1

ð Dd�f gwÞTfDf gw

ð15:47Þ

In which fDf gr, fDf gg, fDf gw are the nodal forces bound at the composite
element that are transferred from the loads exerting on the rock, grout, and stranded
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wires according to the similar algorithm of the conventional FEM; Wr, Wg, Ww,
Wjr;g and Wjg;w are the virtual works contributed from the rock, grout, stranded wire,
rock/grout interface, and grout/stranded wire interface, which may be respectively
expressed by

Wr ¼
ZZZ
Xr

ðfDd�grÞT½B�Tr ½D�rð½B�rfDdgr � f_evpgrDtÞdX ð15:48Þ

Wg ¼
ZZZ
Xg

ðfDd�ggÞTð½L�caÞTð½B�gÞT½D�gð½B�g½L�cafDdgg � f_evpggDtÞ dX ð15:49Þ

Ww ¼
ZZZ
Xw

ðfDd�gwÞTð½L�caÞTð½B�wÞT½D�wð½B�w½L�cafDdgw � f_evpgwDtÞ dX

ð15:50Þ

Wjr;g ¼
ZZ
Cjr;g

ððfDd�grÞT � ðfDd�ggÞTÞ½N�Tð½l�caÞTð½l�cyÞT½D�jr;g

ð½l�cy½l�ca½N�ðfDdgr � fDdggÞ � f _uvpgjr;gDtÞ dC
ð15:51Þ

Wjg;w ¼
ZZ
Cjg;w

ððfDd�ggÞT � ðfDd�gwÞTÞ½N�Tð½l�caÞTð½l�cyÞT½D�jg;w

ð½l�cy½l�ca½N�ðfDdgg � fDdgwÞ � f _uvpgjg;wDtÞ dC
ð15:52Þ

We introduce Eqs. (15.48)–(15.52) into Eq. (15.47), and arrange the resulted
equation regarding the different components of virtual displacements. Bearing in
mind that the virtual displacement Dd�f g is arbitrary, we get

½k�r;r ½k�r;g 0 . . . 0
½k�g;r ½k�g;g ½k�g;1 . . . ½k�g;nw
0 ½k�1;g ½k�1;1 . . . 0
. . . . . . . . . . . . . . .
0 ½k�nw;g 0 . . . ½k�nw;nw

2
66664

3
77775

fDdgr
fDdgg
fDdg1
. . .

fDdgnw

8>>>><
>>>>:

9>>>>=
>>>>;

¼

fDf gr
fDf gg
fDf g1
. . .

fDf gnw

8>>>><
>>>>:

9>>>>=
>>>>;

þ

Df vpf gr
Df vpf gg
Df vpf g1
. . .

Df vpf gnw

8>>>><
>>>>:

9>>>>=
>>>>;

ð15:53Þ
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where

½k�r;r ¼
ZZZ
Xr

½B�Tr ½D�r½B�r dXþ
ZZ
Cjr;g

½N�T ½l�cað ÞT ½l�cyð ÞT ½D�jr;g ½l�
cy½l�ca½N� dC

½k�g;g ¼
ZZZ
Xg

½L�ca� �T ½B�Tg ½D�g B½ �g½L�ca dXþ
ZZ
Cjr;g

½N�T ½l�cað ÞT ½l�cyð ÞT ½D�jr;g ½l�
cy½l�ca½N� dC

þ
Xnw
w¼1

ZZ
Cjg;w

½N�T ½l�cað ÞT ½l�cyð ÞT ½D�jg;w ½l�
cy½l�ca½N� dC

½k�w;w ¼
ZZZ
Xw

½L�ca� �T ½B�Tw½D�w B½ �w½L�ca dX

þ
ZZ
Cjg;w

½N�T ½l�cað ÞT ½l�cyð ÞT ½D�jg;w ½l�
cy½l�ca½N� dC

k½ �r;g¼ �
ZZ
Cjr;g

½N�T ½l�cað ÞT ½l�cyð ÞT ½D�jr;g ½l�
cy½l�ca½N� dC

k½ �g;w¼ �
ZZ
Cjg;w

½N�T ½l�cað ÞT ½l�cyð ÞT ½D�jg;w ½l�
cy½l�ca½N� dC

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð15:54Þ

Df vpf gr ¼
ZZZ

Xr

½B�Tr ½D�r _evpf grDt dXþ
ZZ
Cjr;g

½N�T ½l�cað ÞT ½l�cyð ÞT ½D�jr;g _uvpf gcyjr;gDt dC

Df vpf gg¼
ZZZ
Xg

½L�ca� �T ½B�Tg ½D�g _evpf gcag Dt dX�
ZZ
Cjr;g

½N�T ½l�cað ÞT ½l�cyð ÞT ½D�jr;g _uvpf gcyjr;gDt dC

þ
Xnw
w¼1

Z Z
Cjg;w

½N�T ½l�cað ÞT ½l�cyð ÞT ½D�jg;w _uvpf gcyjg;wDt dC

Df vpf gw¼
ZZZ
Xw

½L�ca� �T ½B�Tw½D�w _evpf gcaw Dt dX�
Z Z
Cjg;w

½N�T ½l�cað ÞT ½l�cyð ÞT ½D�jg;w _uvpf gcyjg;wDt dC

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð15:55Þ

15.4 Hollow Friction (Swellex) Bolts

The “Swellex” bolt is a hollow metallic tube which is directly connected to the host
medium (rock mass). In the structural analysis it is essential to use a bolt element
which may simulate the radial expansion and compression effects in addition to the
common shear-tension effects along the axis of hollow bolt.
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Figure 15.4 shows an element which contains one hollow bolt segment. As we
have indicated above, this element can be defined as the composite element, within
which there are three sub-elements r, b, jr;b representing the rock material, the bolt
material and the rock/bolt interface, respectively.

There are two sets of nodal displacement increments bound at the composite
element if there is only one hollow bolt segment, each of them will be used to
interpolate the displacement increments of the rock material and the bolt material,
respectively by the formulas

fDugr ¼ ½N�fDdgr ð15:56Þ

fDugcab ¼ ½l�ca½N�fDdgb ðb ¼ 1; . . .; nbÞ ð15:57Þ

where [N] = shape function matrix covering the whole composite element identical
to the finite element method [see Eq. (4.57)].

The strain increments of the intact rock and bolt materials are then calculated by

fDegr ¼ ½B�rfDdgr ð15:58Þ

fDegcab ¼ ½B�b½L�cafDdgb ð15:59Þ

The displacement increments in the rock and bolt materials will result in relative
displacement increment on the rock/bolt interface, which is expressed in the local
Cylindrical coordinate system as

fDugcyjr;b ¼ ½l�cy½l�caðfDugr � fDugbÞ ¼ ½l�cy½l�ca½N�ðfDdgr � fDdgbÞ ð15:60Þ

By the virtual work principle, the equilibrium equation of the composite element
containing nb hollow bolts can be deduced as follows

Fig. 15.4 Schematic drawing
of the composite element
containing one hollow bolt
segment
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½k�r;r � � � ½k�r;b � � � ½k�r;nb
. . . . . . . . .

½k�b;r � � � ½k�b;b � � � ½k�b;nb
. . . . . . . . .

½k�nb;r � � � ½k�nb;b � � � ½k�nb;nb

2
66664

3
77775

fDdgr
. . .
fDdgb
. . .
fDdgnb

8>>>><
>>>>:

9>>>>=
>>>>;

¼

fDf gr
. . .
fDf gb
. . .
fDf gnb

8>>>><
>>>>:

9>>>>=
>>>>;

þ

Df vpf gr
. . .
Df vpf gb

. . .
Df vpf gnb

8>>>><
>>>>:

9>>>>=
>>>>;

ð15:61Þ

In which

½k�r;r ¼
RRR
Xr

½B�Tr ½D�r½B�r dX

þ Pnb
b¼1

RR
Cjr;b

½N�T ½l�cað ÞT ½l�cyð ÞT ½D�jr;b ½l�
cy½l�ca½N� dC

½k�b;b ¼
RRR
Xb

½L�ca� �T ½B�Tb ½D�b B½ �b½L�ca dX

þ RR
Cjr;b

½N�T ½l�cað ÞT ½l�cyð ÞT ½D�jr;b ½l�
cy½l�ca½N� dC

½k�r;b ¼ ½k�b;r ¼ � RR
Cjr;b

½N�T ½l�cað ÞT ½l�cyð ÞT ½D�jr;b ½l�
cy½l�ca½N� dC

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð15:62Þ

fDf vpgr ¼
RRR
Xr

½B�Tr ½D�rf_evpgrDt dX

þ Pnb
b¼1

RR
Cjr;b

½N�T ½l�cað ÞT ½l�cyð ÞT ½D�jr;b _uvpf gcyjr;bDt dC

Df vpf gb¼
RRR
Xb

½L�ca� �T ½B�Tb ½D�b _evpf gcab Dt dX

� RR
Cjr;b

½½N�T ½l�cað ÞT ½l�cyð ÞT ½D�jr;b _uvpf gcyjr;bDt dC

8>>>>>>>>>><
>>>>>>>>>>:

ð15:63Þ

15.5 Discontinuities

15.5.1 Concept

Now we generalize the concept of composite element to handle discontinuity
(structural plane) segments. The finite element mesh should be generated to
discretize the hydraulic structure beforehand. The deployment and sizes of the
elements are dependent on the structure configuration and stress gradient but without
take care of the existence of discontinuity system. Then the algebra and geometry
calculation will be conducted with the messages of the discontinuity system and the
FE mesh, to construct the corresponding CE mesh in which there are a number of
CE elements containing discontinuity segments. Suppose a composite element
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contains nr discontinuity segments (nr ¼ 4 in Fig. 15.1) which delimit it into nr
sub-elements allowing for different mechanical properties. These sub-elements are
not necessarily to be the classical finite elements. The loads exerting at each
sub-element are transferred to the respective nodal values bound at the composite
element as fDf grl and the equilibrium equation is established according to the virtual
work principle to solve the nodal displacements fDdgrl, then the strains as well as the
stresses in each sub-element can be calculated routinely.

15.5.2 Constitutive Equations

See Eqs. (2.122)–(2.130).

15.5.3 Equilibrium Equations

(1) Relationship between strain increment and nodal displacement increment

The displacement increment fDugrl in the sub-element rl is interpolated from the
nodal displacement increment fDdgrl bound at the composite element using
Eq. (14.4).

The strain increments of the intact rock sub-elements are routinely calculated by
the formula

fDegrl ¼ ½B�rlfDdgrl ðrl ¼ 1; . . .nrÞ ð15:64Þ

In which ½B�rl is identical to that in Eq. (4.60).
The displacement increments in the rock sub-elements will give rise to relative

displacement increments on the discontinuity segments, which will be expressed in
the local Cartesian coordinate system as

fDugjrl;rm ¼ ½l�jrl;rmðfDugrl � fDugrmÞ ¼ ½l�jrl;rm ½N�ðfDdgrl � fDdgrmÞ ð15:65Þ

In which rl and rm are the sub-elements of intact rock separated by the dis-
continuity segment jrl;rm, and the coordinate transformation matrix ½l�jrl;rm has been

defined in Chap. 2 [see Eq. (2.13)].

(2) Relationship between the nodal displacement and load increments

Suppose virtual displacements manifest in the rock sub-elements

Du�f grl¼ ½N� Dd�f grl ðrl ¼ 1; . . .nrÞ ð15:66Þ
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The corresponding virtual strains and relative displacements will be

De�f grl¼ ½B�rl Dd�f grl ðrl ¼ 1; . . .nrÞ ð15:67Þ

fDu�gjrl;rm ¼ ½l�jrl;rm ½N�ðfDd�grl � fDd�grmÞ ð15:68Þ

And the virtual work principle for the composite element containing disconti-
nuities will be

Xnr
rl¼1

Wrl þ
Xnj

jrl;rm¼1

Wjrl;rm ¼
Xnr
rl¼1

ðfDd�grlÞTfDf grl ð15:69Þ

where fDf grl are the nodal load increments bound at the composite element which
can be transferred from the load increments exerting at the rock sub-elements
according to the identical algorithm to the FEM. The component virtual works Wrl

and Wjrl;rm contributed from the rock sub-elements and the discontinuity segments
will be elaborated as follows.

1. Rock material

Wrl ¼
ZZZ
Xrl

ð De�f grlÞTfDrgrldX ðrl ¼ 1; . . .nrÞ ð15:70Þ

Take the constitutive relation Eq. (2.122) and the strain-displacement relation
Eq. (15.64) into account, the virtual work in the rock material will become

Wrl ¼
ZZZ
Xrl

ð Dd�f grlÞT ½B�Trl½D�rlð½B�rlfDdgrl � _evpf grlDtÞ dX

ðrl ¼ 1; . . .nrÞ
ð15:71Þ

2. Discontinuity segment

Wjrl;rm ¼
ZZ
Cjrl;rm

ðfDu�gjrl;rmÞTfDrgjrl;rmdC ð15:72Þ

Introducing the constitutive relation Eq. (2.126) and the strain-displacement
relation Eq. (15.65) into Wjrl;rm , we have

Wjrl;rm ¼
ZZ
Cjrl;rm

ððfDd�grlÞT � ðfDd�grmÞTÞ½N�Tð½l�jrl;rmÞ
T ½D�jrl;rmð½l�jrl;rm ½N�ðfDdgrl � fDdgrmÞ � _uvpf gjrl;rmDtÞ dC

ð15:73Þ
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We introduce Eqs. (15.71) and (15.73) into Eq. (15.69), and arrange the resul-
tant equation regarding the different virtual displacements. Because Dd�f gr is an
arbitrary vector, the validity of the virtual work principle will leads to

½k�r1;r1 :: :: :: ½k�jr1;nr
:: :: :: :: ::
:: ½k�rl;rl :: ½k�jrl;rm ::
:: :: :: :: ::

½k�jnr ;r1 :: :: :: ½k�nr ;nr

2
66664

3
77775

fDdgr1
� � � � � � � � �
fDdgrl

� � � � � � � � �
fDdgrm
� � � � � � � � �
fDdgnr

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

fDf gr1
� � � � � � � � �
fDf grl

� � � � � � � � �
fDf grm
� � � � � � � � �
fDf gnr

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

þ

fDf vpgr1
� � � � � � � � �
fDf vpgrl
� � � � � � � � �
fDf vpgrm
� � � � � � � � �
fDf vpgnr

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð15:74Þ

In which

½k�rl;rl ¼
RRR
Xrl

½B�Trl½D�rl½B�rl dX� Pnj
rm¼1;rm 6¼rl

H1ðrl; rmÞ½k�jrl;rm
½k�jrl;rm ¼ � RR

Cjrl;rm

½N�T ½l�Tjrl;rm ½D�jrl;rm ½l�jrl;rm ½N� dC

H1ðrl; rmÞ ¼ 1 if rl and rm are adjacent
0 if rl and rm are not adjacent

�

8>>>>>><
>>>>>>:

ð15:75Þ

Df vpf grl¼
RRR
Xrl

½B�Trl½D�rlf_evpgrlDt dX

� Pnj
rm¼1;rm 6¼rl

Df vpf gjrl;rm
Df vpf gjrl;rm¼ �H2ðrl; rmÞ

RR
Cjrl;rm

½N�T ½l�Tjrl;rm ½D�jrl;rm _Duvp
n o

jrl;rm
Dt dC

H2ðrl; rmÞ ¼
1 if rl[ rm
�1 if rl\rm
0 if rl and rm are not adjacent

8<
:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð15:76Þ

Equations (15.74)–(15.76) govern a composite element containing nr entity
(rock) sub-elements. Generally, if a composite element consists of nr rock
sub-elements, its DOF will be nr times that of the finite element, whereas if an
element contains no discontinuity segments, it will be degenerated automatically to
the classical finite element. In this way the composite elements and the finite
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elements can be hybrid well in one discrete system and there is no essential diffi-
culty in the computational programming.

15.6 Jointed Rocks Reinforced by Fully-Grouted Bolts

15.6.1 Sub-Element Analysis

(1) Displacement interpolation

Figure 15.5 shows a composite element containing one joint segment and one bolt
segment, respectively. This element is composed of two rock material sub-elements
cut by the joint segment, two bolt sub-elements connected through the grout/bolt
interface with two grout sub-elements, which are in turn, connected through the
rock/grout interface with the rock material sub-elements.

Fig. 15.5 Schematic drawing of the composite element containing one bolt segment and one joint
segment
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The displacements in each sub-element are interpolated from the nodal dis-

placements fDdg ¼ fDdgTr1 fDdgTr2 fDdgTg1 fDdgTg2 fDdgTb1 fDdgTb2
h iT

bound at the composite element (see Fig. 15.6) as follows

fDugrl ¼ ½N�fDdgrl ðrl ¼ 1; 2Þ ð15:77Þ

fDugcagl ¼ ½l�ca½N�fDdggl
fDugcygl ¼ ½l�cy½l�ca½N�fDdggl

�
ðgl ¼ 1; 2Þ ð15:78Þ

fDugcabl ¼ ½l�ca½N�fDdgbl
fDugcybl ¼ ½l�cy½l�ca½N�fDdgbl

�
ðbl ¼ 1; 2Þ ð15:79Þ

In which [N] stands for the shape function matrix in the whole composite ele-
ment. The nodal displacement transformation matrices ½l�ca and ½l�cy have been
defined in Eqs. (2.37) and (2.38) in which the subscript b or g is neglected.

The displacements in the rock sub-elements rl and rm will manifest relative
displacement on the joint segment jrl;rm, which is expressed in the local Cartesian
coordinate system as

fDugjrl;rm ¼ ½l�jrl;rmðfDugrl � fDugrmÞ ¼ ½l�jrl;rm ½N�ðfDdgrl � fDdgrmÞ
ðrl 6¼ rm; rl; rm ¼ 1; 2Þ

ð15:80Þ

The transformation matrix ½l�jrl;rm is the function of the dip direction /jrl;rm and dip

angle hjrl;rm of the joint defined in Eq. (2.13).

Fig. 15.6 Interpolation of
displacement within the
composite element containing
one bolt segment and one
joint segment
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Similarly, the relative displacements at rock/grout and grout/bolt interfaces (jrl;gl
and jgl;bl) can be expressed in the local Cylindrical coordinate system as

fDugcyjrl;gl ¼ fDugcyrl � fDugcygl ¼ ½l�cy½l�ca½N�ðfDdgrl � fDdgglÞ ðrl ¼ gl ¼ 1; 2Þ
ð15:81Þ

fDugcyjgl;bl ¼ fDugcygl � fDugcybl ¼ ½l�cy½l�ca½N�ðfDdggl � fDdgblÞ ðbl ¼ gl ¼ 1; 2Þ
ð15:82Þ

(2) Strain computation

The strains in the rock, grout, and bolt sub-elements can be calculated in terms of
their nodal displacements

fDegrl ¼ ½B�rfDdgrl ðrl ¼ 1; 2Þ ð15:83Þ

fDegcagl ¼ ½B�gl½L�cafDdggl ðgl ¼ 1; 2Þ ð15:84Þ

fDegcabl ¼ ½B�bl½L�cafDdgbl ðbl ¼ 1; 2Þ ð15:85Þ

In which ½B�r is identical to that in Eq. (4.60), ½B�bl and ½B�gl is identical to that in
Eqs. (15.11)–(15.12).

According to the laboratory tests (Spang and Egger 1990), bending of the bolt at
joint becomes predominant even when the shear force is small, which will create
two hinges above and below the joint plane. The vertical height of the bended bolt
is about 2–4 times the bolt diameter db. It is named as “effective height”, corre-
sponding to an “effective length” of Lb ¼ hb= cos hb (see Fig. 6.4). This height
depends on the quality of the rock (or the grout mortar) and bolt, as well as on the
bolt’s diameter and the inclined angle.

It is therefore naturally to assume that for a bolt at joint there is an “effective
length” within which nearly all deformations will demonstrate. If we further pos-
tulate that the relative displacement between the two hinges is equal to the relative
displacement of the joint walls at the intersection point, and the strains are uni-
formly distributed along the “effective length” Lb (Chen and Egger 1999), then the
relationship between the strains and nodal displacements of the bolt b (and grout
g as well) is

fDegcajgl;gm ¼ ½L�ca½N�ðfDdggl � fDdggmÞ=Lb ðgl 6¼ gm; gl; gm ¼ 1; 2Þ ð15:86Þ

fDegcajbl;bm ¼ ½L�ca½N�ðfDdgbl � fDdgbmÞ=Lb ðbl 6¼ bm; bl; bm ¼ 1; 2Þ ð15:87Þ

742 15 Reinforcement Analysis Using the Composite Element Method



(3) Constitutive equations

See Eqs. (2.122)–(2.130).

15.6.2 Composite Element Analysis

Suppose a virtual displacement vector Dd�f g appears at the composite element,
then the corresponding virtual displacements and virtual strains within the
sub-elements can be calculated according to Eqs. (15.77)–(15.87).

The application of the virtual work principle to the composite element leads to
the following expression

Wr1 þWr2 þWg1 þWg2 þWb1þWb2þWjr1;r2 þWjg1;g2 þWjb1;b2 þWjrl;gl þWjgl;bl

¼ ð Dd�f gr1ÞT Dff gr1 þð Dd�f gr2ÞTfDf gr2 þð Dd�f gg1ÞTfDf gg1
þð Dd�f gg2ÞTfDf gg2 þð Dd�f gb1ÞT Dff gb1þð Dd�f gb2ÞT Dff gb2

ðrl ¼ gl ¼ bl ¼ 1; 2Þ

ð15:88Þ

In which fDf grl, fDf ggl, fDf gbl are the nodal forces bound at the composite
element, which can be transferred from the forces exerting at the rock, grout, and
bolt materials according to the algorithm identical to the FEM. Wrl, Wgl, Wbl, Wjrl;rm ,
Wjgl;gm , Wjbl;bm , Wjrl;gl and Wjgl;bl are the virtual works contributed from the rock, grout
in rock, bolt in grout, joint, grout at joint, bolt at joint, rock/grout interface, and
grout/bolt interface, respectively

Wrl ¼
ZZZ
Xrl

ð Dd�f grlÞT ½B�Trl½D�rl½B�rlfDdgrl dX ðrl ¼ 1; 2Þ ð15:89Þ

Wjrl;rm ¼
ZZ
Cjrl;rm

ðð Dd�f grlÞT � ð Dd�f grmÞTÞ½N�T ½l�Tjrl;rm ½D�jrl;rm ½l�jrl;rm ½N�ðfDdgrl � fDdgrmÞ dC

ðrl 6¼ rm; rl; rm ¼ 1; 2Þ
ð15:90Þ

Wgl ¼
ZZZ
Xgl

ð Dd�f gglÞTð½L�caÞTð½B�glÞT ½D�gl½B�gl½L�cafDdggl dX

ðgl ¼ 1; 2Þ
ð15:91Þ

Wbl ¼
ZZZ
Xbl

ð Dd�f gblÞTð½L�caÞTð½B�blÞT ½D�bl½B�bl½L�cafDdgbl dX

ðbl ¼ 1; 2Þ
ð15:92Þ
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Wjrl;gl ¼
ZZ
Cjrl;gl

ð Dd�f grl� Dd�f gglÞT ½N�Tð l½ �caÞTð l½ �cyÞT ½D�jrl;gl l½ �
cy l½ �ca½N�ð Ddf grl� Ddf gglÞ dC

ðrl ¼ gl ¼ 1; 2Þ
ð15:93Þ

Wjgl;bl ¼
ZZ
Cjgl;bl

ð Dd�f ggl� Dd�f gblÞT ½N�Tð½l�caÞTð½l�cyÞT ½D�jgl;bl ½l�
cy½l�ca½N�ðfDdggl � fDdgblÞ dC

ðgl ¼ bl ¼ 1; 2Þ
ð15:94Þ

Wjg1;g2 ¼
1
L2b

ZZZ
Xjg1;g2

ð Dd�f gg1� Dd�f gg2ÞT ½N�Tð½l�caÞT ½D�jg1;g2 ½l�
ca½N�ðfDdgg1 � fDdgg2Þ dX

ð15:95Þ
Wjb1;b2 ¼

1
L2b

ZZZ
Xjb1;b2

ð Dd�f gb1� Dd�f gb2ÞT ½N�Tð½l�caÞT ½D�jb1;b2 ½l�
ca½N�ðfDdgb1 � fDdgb2Þ dX

ð15:96Þ
Since it has been assumed that the strains of the bolt between two hinges are

uniformly distributed along the effective length La, Eqs. (15.95) and (15.96) can be
reduced as

Wjg1;g2 ¼
1
L2b

ZZ
Cjg1;g2

ð Dd�f gg1� Dd�f gg2ÞT ½N�Tð½l�caÞT ½D�jg1;g2 ½l�
ca½N�ðfDdgg1 � fDdgg2Þ dC � Lb

¼ 1
Lb

ZZ
Cjg1;g2

ð Dd�f gg1� Dd�f gg2ÞT ½N�Tð½l�caÞT ½D�jg1;g2 ½l�
ca½N�ðfDdgg1 � fDdgg2Þ dC

ð15:97Þ

Wjb1;b2 ¼
1
Lb

ZZ
Cjb1;b2

ð Dd�f gb1� Dd�f gb2ÞT ½N�Tð½l�caÞT ½D�jb1;b2 ½l�
ca½N�ðfDdgb1 � fDdgb2Þ dC

ð15:98Þ

We introduce Eqs. (15.89)–(15.98) into Eq. (15.88), then arrange the equation
according to the different components of the virtual displacements. Recall that the
virtual displacement vector Dd�f g is arbitrary, we have

½k�fDdg ¼ fDf gþ Df vpf g ð15:99Þ
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fDdg ¼ fDdgTr1 fDdgTr2 fDdgTg1 fDdgTg2 fDdgTb1 fDdgTb2
h iT

fDf g ¼ fDf gTr1 fDf gTr2 fDf gTg1 fDf gTg2 fDf gTb1 fDf gTb2
h iT

Df vpf g ¼ Df vpf gTr1 Df vpf gTr2 Df vpf gTg1 Df vpf gTg2 Df vpf gTb1 Df vpf gTb2
h iT

8>>>><
>>>>:

ð15:100Þ

½k� ¼

½k�r1 þ ½k�jr1;g1 þ ½k�jr1;r2 �½k�jr1;r2 �½k�jr1;g1
�½k�jr1;r2 ½k�r2 þ ½k�jr2;g2 þ ½k�jr1;r2 0

�½k�jr1;g1 0 ½k�g1 þ ½k�jr1;g1 þ ½k�jg1;b1 þ ½k�jg1;g2
0 �½k�jr2;g2 �½k�jg1;g2
0 0 �½k�jg1;b1
0 0

2
6666666664

0 0 0

½k�jr2;g2 0 0

�½k�jg1;g2 �½k�jg1;b1 0

½k�g2 þ ½k�jg2;b2 þ ½k�jr2;g2 þ ½k�jg1;g2 0 �½k�jg2;b2
0 ½k�b1 þ ½k�jg1;b1 þ ½k�jb1;b2 �½k�jb1;b2

�½k�jg2;b2 �½k�jb1;b2 ½k�b2 þ ½k�jg2;b2 þ ½k�jb1;b2

3
7777777775

ð15:101Þ

In which

½k�rl ¼
RRR
Xrl

ð½B�rlÞT ½D�rl½B�rl dX ðrl ¼ 1; 2Þ

½k�bl ¼
RRR
Xbl

ð½L�caÞTð½B�blÞT ½D�blð B½ �blÞT ½L�ca dX ðbl ¼ 1; 2Þ

½k�gl ¼
RRR
Xgl

ð½L�caÞTð B½ �glÞT ½D�gl½B�gl½L�ca dX ðgl ¼ 1; 2Þ

½k�jrl;gl ¼
RR
Cjrl;gl

½N�Tð½l�caÞTð½l�cyÞT ½D�jrl;gl ½l�
cy½l�ca½N� dC ðrl ¼ gl ¼ 1; 2Þ

½k�jgl;bl ¼
RR
Cjgl;bl

½N�Tð½l�caÞTð½l�cyÞT ½D�jgl;bl ½l�
cy½l�ca½N� dC ðgl ¼ bl ¼ 1; 2Þ

½k�jg1;g2 ¼ 1
Lb

RR
Cjg1;g2

½N�Tð½l�caÞT ½D�jg1;g2 ½l�
ca½N� dC

½k�jb1;b2 ¼ 1
Lb

RR
Cjb1;b2

½N�Tð½l�caÞT ½D�jb1;b2 ½l�
ca½N� dC

½k�jr1;r2 ¼
RR

Cjr1;r2

ð½l�jr1;r2Þ
T ½N�T ½D�jr1;r2 ½N�½l�jr1;r2 dC

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð15:102Þ
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Df vpf grl¼
RRR
Xrl

ð½B�rlÞT ½D�rlf_evpgrlDt dX ðrl ¼ 1; 2Þ

Df vpf gbl¼
RRR
Xbl

ð½L�caÞTð B½ �blÞT ½D�blf_evpgblDt dX ðbl ¼ 1; 2Þ

Df vpf ggl¼
RRR
Xgl

ð½L�caÞTð B½ �glÞT ½D�glf_evpgglDt dX ðgl ¼ 1; 2Þ

Df vpf gjrl;gl¼
RR

Cjrl;gl

½N�Tð½l�caÞTð½l�cyÞT ½D�jrl;gl _Duvp
n o

jrl;gl
Dt dC ðrl ¼ gl ¼ 1; 2Þ

Df vpf gjgl;bl¼
RR

Cjgl;bl

½N�Tð½l�caÞTð½l�cyÞT ½D�jgl;bl _Duvp
n o

jgl;bl
Dt dC ðgl ¼ bl ¼ 1; 2Þ

Df vpf gjg1;g2¼ 1
Lb

RR
Cjg1;g2

½N�Tð½l�caÞT ½D�jg1;g2 _Duvp
n o

jg2;;b2
Dt dC

Df vpf gjb1;b2¼ 1
Lb

RR
Cjb1;b2

½N�Tð½l�caÞT ½D�jb1;b2 _Duvp
n o

jb1;b2
Dt dC

Df vpf gjr1;r2¼
RR

Cjr1;r2

½N�Tð½l�jr1;r2Þ
T ½D�jr1;r2 _Duvp

n o
jr1;r2

Dt dC

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð15:103Þ

15.7 Key Algorithms

The CE approach elaborated in this chapter has been implemented in the software
CORE3 in which both the equivalent and explicit FE approaches of the jointed rock
masses with reinforcement components (vide Chap. 6) already had been imple-
mented. Towards the implementation of the CE approach, the following algorithms
are worthwhile to be explained.

15.7.1 Numerical Integration

Equations (15.35) and (15.36), (15.54) and (15.55), (15.62) and (15.63), (15.75)
and (15.76), (15.102) and (15.103) require the integral calculation in irregular
sub-elements and discontinuity segments.

It is recommended that solid sub-element is firstly divided into tetrahedrons, then
each tetrahedron is further divided into four hexahedrons, in this manner the con-
ventional Gaussian quadrature at the global coordinate system may be applied easily.

Whereas for the discontinuity segment the division into triangles will be
undertook firstly, then each triangle is further divided into three quadrilaterals, and
the conventional Gaussian quadrature at the local coordinate system can be
undertaken. For the sub-elements corresponding to the grout material, bolt material,
rock/grout as well as grout/bolt interfaces, the integration conducted at the local
Cylindrical coordinate system would be suggestible.
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15.7.2 Assemble of Global Stiffness Matrix and Load Vector

When the governing equations of all the composite elements and finite elements
have been formulated in a structure system, they can be assembled into the gov-
erning equation of the whole discrete system in a manner similar to the FEM.

It is advisable that in assembling the overall stiffness matrix of the whole
structure system, the sub-matrices corresponding to the rock sub-elements will be
put in the first portion of the overall matrix, the relevant load vector is assembled
correspondingly. Then, all the sub-matrices of the grout and bolt sub-elements are
put in the second portion. Should the reinforcement scheme be optimized, this
assembling procedure allows for repeated calculations of different reinforcement
schemes with only a bit change of the stiffness matrix and load vector. This idea is
similar to the technique of the p-version refinement FEM.

15.7.3 Hierarchical Refinement

A composite element comprising bolt segments undergoes complicated deformation
pattern. Consequently, the use of p-refinement for the CEM may enlarge the
function space by the upgrade of basis functions and correspondent virtual nodes, in
this way the complex deformation within a composite element containing rein-
forcement components and discontinuities may be simulated with sufficient accu-
racy even in a coarse mesh.

In the p-refinement composite element, the general nodes for each sub-element
are arranged according to standard nodes and hierarchical edges, faces, and body
corresponding to general basis functions. In this manner the p-refinement elaborated
in Chap. 5 may be routinely employed (He and Chen 2006).

15.8 Verification Examples

15.8.1 Fully-Grouted Bolt

(1) Characteristics of the computation

Six rock samples at size of 5 m � 5 m � 5 m (length � width � height) has been
studied. In the center of sample there is a fully-grouted bolt (see Fig. 15.7) exerted
by a pull-out force P on its top.

This bolt is embedded within the composite elements below the pull-out force
(see Fig. 15.8). The length of bolt is 3 m, the radii of bolt and grout are 20 and
38 mm, respectively. The pull-out force P is exerted by 4 incremental steps from
300 to 600 kN and 720 kN until 900 kN. The bottom of the sample is fixed and the
four vertical surfaces are free.
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These tests were carried out at the excavated rock slope of the ship lock in Three
Gorges Project, China (Rong et al. 2001). They are distinguished into two sets: the
first set comprises four samples (1, 2, 3, 4), whereas the second set comprises two
samples (5, 6). Tables 15.1, 15.2, 15.3 and 15.4 list the mechanical parameters used
in the study.

(2) Computation results

During the field experiment, the axial stresses along the bolt and the displacements
of the borehole collar are recorded. Unfortunately, the shear stresses and the

Fig. 15.7 Schematic
configuration of the test
sample containing a rock bolt

Fig. 15.8 Computation mesh
of the test sample containing
one rock bolt
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displacements along the whole bolt cannot be extracted because of the technical
difficulties.

Figures 15.9, 15.10, 15.11, 15.12, 15.13 and 15.14 present the experimental and
computational results. The experimental results exhibit, as common in the field test
for the rock engineering, large variance. However, if the parameters can be eval-
uated properly, the computation can provide reasonable results.

Figures 15.15, 15.16, 15.17 and 15.18 display the other computed results
(without test results for cross-reference) for the second sample set which give us a
general idea with regard to the displacements of the whole bolt and grout as well as
the shear stresses along the interfaces.

Table 15.1 Mechanical parameters of the materials of the first test set (sample 1,2,3,4)

Material E (GPa) l c (MPa) u
(°)

rT
(MPa)

ry
(MPa)

ru
(MPa)

cvpu

Steel 200 0.25 – – – 310 500 0.18

Grout 26.0 0.17 2.5 58.0 1.1 – – –

Rock 15.0 0.25 1.1 44.0 1.1 – – –

Table 15.2 Mechanical parameters of the interfaces of the first test set (sample 1,2,3,4)

Interface kn (MPa) ks (MPa) c (MPa) u(°) /(°) rT (MPa)

Rock/grout 10,000 500 1.0 44 44 1.0

Grout/bolt 10,000 3000 2.0 58 58 1.0

Table 15.3 Mechanical parameters of the materials of the second test set (sample 5,6)

Material E (GPa) l c (MPa) u
(°)

rT
(MPa)

ry
(MPa)

ru
(MPa)

cvpu

Steel 200 0.25 – – – 310 500 0.18

Grout 26.0 0.17 2.5 58.0 1.1 – – –

Rock 32.0 0.2 1.7 59 1.1 – – –

Table 15.4 Mechanical parameters of the interfaces of the second test set (sample 5,6)

Interface kn (MPa) ks (MPa) c (MPa) u (°) / (°) rT (MPa)

Rock/grout 10,000 2000 1.0 50 50 1.0

Grout/bolt 10,000 3000 2.0 58 58 1.0
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Fig. 15.9 Axial stress distribution along the bolt under 600 kN pull out force (first set)

Fig. 15.10 Axial stress distribution along the bolt under 720 kN pull out force (first set)

Fig. 15.11 Displacements of the borehole collar against pull out forces (first set)
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Fig. 15.12 Axial stress distribution along the bolt under 600 kN pull out force (second set)

Fig. 15.13 Axial stress distribution along the bolt under 720 kN pull out force (second set)

Fig. 15.14 Displacements of the borehole collar against pull out forces (second set)
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15.8.2 Hollow Bolt

The rock sample shown in Fig. 15.7 is analyzed by both the CEM and FEM. In the
center of the rock block a hollow bolt is exerted by a pull-out force P at its top
extremity. The length of the bolt is 3 m, its interior and exterior diameters are 60
and 70 mm respectively.

Fig. 15.15 Displacement
along the bolt (second set)

Fig. 15.16 Displacement
along the grout (second set)

Fig. 15.17 Shear stress along
the interface between bolt and
grout (second set)

Fig. 15.18 Shear stress along
the interface between rock
and grout (second set)
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In the CE mesh the hollow bolt is embedded in the four top central composite
elements (see Fig. 15.19a), whereas in the FE mesh the hollow bolt and rock are all
discretized into standard elements meanwhile the rock/bolt interface is discretized
into joint elements without thickness (see Fig. 15.19b). Tables 15.5 and 15.6 list
the mechanical parameters used in the computation.

Figures 15.20 and 15.21 present the axial and the shear stresses by the CEM and
FEM under the pull-out force P ¼ 200 kN.

Fig. 15.19 Computation meshes for the sample containing a hollow bolt. a CEM (486 elements;
700 nodes); b FEM (3274 elements; 3813 nodes)

Table 15.5 Mechanical parameters of the solid materials

Material E (GPa) l c (MPa) u (°) ry (MPa) ru (MPa) cvpu
Steel 200 0.25 – – 310 500 0.18

Rock 15 0.25 1.1 44 – – –

Table 15.6 Mechanical parameters of interface

kn (MN/m3) ks (MN/m3) c (MPa) u (°) / (°) rT (MPa)

10,000 1500 1 44 44 1
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15.8.3 Stranded Wire Cable

(1) CEM versus FEM

Figure 15.22 shows a rock sample with size of 36 m (length) � 5 m (width) � 5 m
(height) containing one horizontal anchor cable with 7-stranded wires ðnw ¼ 7Þ,
each of their diameter is 1 cm. The bonded length is 3 m, and the diameter of the
borehole is D ¼ 10 cm. A pull-out load P ¼ 350t (3430 kN) exerts on the out-laid
anchor head (left end).

Two computation meshes are designed for this sample. The first one (see
Fig. 15.23) comprises 36,029 nodes and 35,162 standard finite elements, in which
the rock, stranded wires, grout, and interfaces, are all discretized explicitly. The

Fig. 15.20 Axial stress along the bolt under the pullout force P ¼ 200 kN

Fig. 15.21 Shear stress along the rock/bolt interface under the pullout force P ¼ 200 kN

754 15 Reinforcement Analysis Using the Composite Element Method



interfaces are discretized using joint elements without thickness; the intact rock,
stranded wires and grout are all discretized using solid (entity) elements. This fine
FE mesh performs as a “benchmark” intended to validate the basic algorithm of the
composite element method.

The second one (see Fig. 15.24) comprises 4908 nodes and 3971 elements (15
composite elements containing bonded inside anchorage head plus 3956 standard
finite elements).

Stranded wire detial 

R=0.005
R=0.0010.001

0.1

0.
2

R=0.05

B-B Section

B

B

Detial 1

Detial 1

A-A Section

5

5

A

5

P=350t P=350t

A 36 27

Fig. 15.22 Configuration of the rock sample containing one horizontal anchor cable

Fig. 15.23 Fine element mesh. a Axonometric view; b cross sectional view

Fig. 15.24 Composite element mesh. a Axonometric view; b cross sectional view
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The mechanical parameters used in the computation are listed in Tables 15.7 and
15.8.

The computation results of the stranded wire 7# by the FEM using fine mesh and
by the CEM are comparatively drawn in Figs. 15.25, 15.26, 15.27 and 15.28. It is
clear that they are very close to each other.

Table 15.7 Mechanical parameters of materials

Material Young’s modulus E (GPa) Poisson’s ratio l

Stranded wire 210 0.3

Grout 17.8 0.20

Rock 17.8 0.20

Table 15.8 Mechanical parameters of interfaces

Interface Normal stiffness kn (MN/m3) Shear stiffness ks (MN/m3)

Grout/rock 20,000 10,000

Grout/wire 40,000 20,000

Fig. 15.25 Axial displacement along stranded wire 7#

Fig. 15.26 Axial stress along stranded wire 7#
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(2) CEM versus in situ test

The data from the in situ test for a bonded inside anchorage head with 6 stranded
wires (see Fig. 15.29, nw = 6) (Gu et al. 1998) will be used to validate the CEM
computation.

Fig. 15.27 Shear stress along the interface of grout/stranded wire 7#

Fig. 15.28 Shear stress along the interface of rock/grout

6

5
4

3

2

1

Fig. 15.29 Cross sectional
layout of stranded wires
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A 5 m � 5 m � 5 m cubic rock with the bonded inside anchorage head is
discretized in Fig. 15.30. It comprises 2000 nodes and 1539 elements, of which
there are 15 composite elements containing bonded inside anchorage head, in a
column onset from the center of the top surface. Tables 15.9, 15.10 and 15.11 list
the parameters used in the computation.

The distribution of the shear stresses along the interfaces illustrated in
Figs. 15.31 and 15.32 is primarily employed for the verification of the CEM

Fig. 15.30 Axonometric view of the CE mesh

Table 15.9 Geometrical parameters of the bonded inside anchorage head

Stranded
wire

Grout Borehole
inclination (°)

Borehole
diameter (cm)

Length of bonded inside
anchorage head (m)

6U5 Cement
mortar

0 16 4

Table 15.10 Mechanical parameters of materials

Material E (GPa) l c (MPa) u (°) rT (MPa)

Stranded wire 196 0.25 – – 1860

Grout 26.3 0.18 2.0 58 2.0

Rock 25 0.20 1.7 59 1.1
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Table 15.11 Mechanical parameters of interfaces

Interface kn
(MN/m3)

ks
(MN/m3)

c u
(°)

/
(°)

rT
(MPa)ci

(MPa)
cr
(MPa)

cvpu
(mm)

Grout/
rock

100,000 35,000 8 0 1 50 50 1.0

Grout/
wire

100,000 36,000 25 0 1 58 58 1.0

Fig. 15.31 Shear stress along the grout/stranded wire interface

Fig. 15.32 Shear stress along the rock/grout interface
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algorithm. Generally, the computation results by the CEM agree with the in situ test
data well concerning the distribution patterns. However, it is also remarkable that
the computed curves always go up or/and down more steeply than the tested ones.
The exaggerated high values of the stiffness coefficients and strength parameters
(particularly dilatancy angle) of the interfaces, may be probably blamed for these
phenomena.

Entailed by the range of pull-out load P ¼ 400�800 kN and the parameters
stipulated in Tables 15.10 and 15.11, the shear stress distributions on the interfaces
exhibit following remarkable features that

– The shear stress of the grout/stranded wire interface keeps maximum at the
outermost end and fades away at the innermost end in an approximately expo-
nential pattern, this means that the grout/stranded wire interface maintains elastic
bonding. The maximum (peak) shear stress is around 8–10 times of the average
one. Since the peak value is kept at the outermost end, it means that the bonding of
the grout/stranded wire interface is very well maintained under the pull-out load
P ¼ 400�800 kN. The pull-out loadP ismainly sustained by the outer end portion
of the bonded anchorage head within a length of 2 m.

Table 15.12 Parameters used in the computation

Material Young’s modulus E
(GPa)

Poisson’s
ratio l

Stiffness

Normal kn
(GPa)

Shear ks
(GPa)

Rock 25 0.20 – –

Steel 200 0.25 – –

Grout/bolt
interface

– – 100 8

Grout/rock
interface

– – 100 5

Fig. 15.33 Computation meshes. a Standard FEM; b standard CEM; c hierarchical CEM
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– The shear stress of the rock/grout interface reaches maximum at a depth of 0.4–
0.5 m from the outermost end and fades away in both the outer and inner
directions, this means that the rock/grout interface around the outer end has
entered shear failure state. The maximum (peak) shear stress is around 4–8 times
of the average one, and it keeps increase with the increase of the pull-out load
P. However, the position where the shear stress reaches maximum value only
appears a small shift deeper along with the increase of the pull-out load
P (within the tested range). This is probably due to the large dilatancy angle of
the interfaces adopted in the computation.

15.8.4 Hierarchical Refinement

(1) Characteristics of the computation

The rock block sample (see Fig. 15.7) with size of 5 m � 5 m � 5 m (length �
width � height) has been studied using the p-refinement CEM. The mechanical
parameters are postulated in Table 15.12.

Three cases are analyzed using the program CORE3.

1. Standard FEM

Figure 15.33a is the FEM mesh containing 1701 elements and 2064 nodes. The
rock, grout and bolt are all discretized with solid elements, the rock/grout and grout/
bolt interfaces are all discretized with joint elements without thickness.

2. Standard CEM

Figure 15.33b is the CEM mesh containing 564 standard elements and 800 nodes.
From the top, the central six elements in successive column containing bolt seg-
ments are defined as the composite elements.

3. Hierarchical CEM

Figure 15.33c is the CEM mesh containing 36 elements and 80 nodes. From the
top, the central three elements in successive column containing bolt segments are
defined as the hierarchical composite elements. The order of basis functions can be
adjusted during the adaptive p-refinement.

(2) Computation results

Figure 15.34 presents the main results extracted from the hierarchical CEM with
different polynomial order p using the coarse mesh in Fig. 15.33c. It can be
observed that the third order CEM, i.e. p ¼ 3, gives rather well distributed stresses
and displacements, which are generally in accordance with the theoretical studies of
pull-out tests (Farmer 1975): the axial stresses and the displacements of the bolt
decline exponentially from the point of loading to its extremity end before a
decoupling of the interfaces occurs.
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Fig. 15.34 Results by the
hierarchical CEM of
p-refinement. a Displacement
of bolt; b axial stress of bolt;
c shear stress of grout/bolt
interface
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Results obtained with the hierarchical CEM (p = 3) are cross-referenced
between the standard FEM (see Fig. 15.33a) and CEM (see Fig. 15.33b) in
Figs. 15.35, 15.36, 15.37, 15.38 and 15.39. We find that the CEM with the
p-refinement technique may provide very good results even on a coarse mesh.

15.8.5 Joint Reinforced by Fully-Grouted Bolt

(1) Characteristics of the computation

The verification work is conducted towards the rock sample of same size in
Fig. 15.7, but it contains a horizontal joint in addition to the vertical bolt driven

Fig. 15.36 Axial
displacement of grout

Fig. 15.35 Axial
displacement of bolt
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Fig. 15.37 Axial stress of
bolt

Fig. 15.38 Shear stress along
the grout/bolt interface

Fig. 15.39 Shear stress along
the grout/rock interface
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from the top center (see Fig. 15.40). Table 15.13 summarizes the parameters used
in the computation.

The computation using the CEM in parallel to the FEM is carried out for the
simulation of vertical pull-out test (pull-out force P = 100 kN acting at the top of
the bolt, Fig. 15.40a) and the direct shear test (shear force P = 20 MN acting at the
upper portion of the block, Fig. 15.40b).

(2) Computation results

Figure 15.41a is the FEM mesh containing 2916 standard elements and 3354
nodes. The rock, grout and bolt are all discretized into solid elements, the interfaces
of rock/grout and grout/bolt as well as the joint are all discretized into joint ele-
ments without thickness. Figure 15.41b is the CEM mesh containing 567 elements
and 800 nodes. From the top, the central six elements in successive column con-
taining bolt segments are defined as composite elements. It is obvious that the FEM
mesh is more complicated than the CEM mesh.

Fig. 15.40 Schematic configuration of the test sample containing a bolt and a joint. a Pull-out
test; b Shear test

Table 15.13 Parameters used in the computation

Material Young’s modulus
E (GPa)

Poisson’s
ratio l

Stiffness

Normal kn
(GPa)

Shear ks
(GPa)

Rock 25 0.20 – –

Steel 200 0.25 – –

Joint – – 20 1

Grout/bolt
interface

– – 100 8

Grout/rock
interface

– – 100 5
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Figure 15.42 displays the axial displacements and stresses of the bolt under the
pull-out force. It can be observed that the results from the FEM and CEM are very
close.

Figure 15.43 shows the axial stresses along the bolt under the shear action. It can
be observed that the results by the two methods are very close, too. In Fig. 15.43a,
b, the “front axial stress” and “rear axial stress” are corresponding to the axial
stresses at the left side and right side of the bolt in the test sample, respectively. The
results also validate that under the shear action, the bolt at the joint undergoes very
strong bending process, as has been identified in the laboratory tests (Spang and
Egger 1990).

Fig. 15.41 Computation meshes of the test sample containing a bolt and a joint. a FEM; b BEM

Fig. 15.42 Computation results of the bolt under pull-out action. a Displacement; b axial stress
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15.9 Engineering Applications

15.9.1 Gravity Dam: Baozhusi Project, China

(1) Presentation of the Project

Vide Chap. 9 (Sect. 9.5.1).

(2) Characteristics of the computation

The dam section 17# illustrated in Fig. 10.13 is analyzed in parallel by the FEM
and CEM.

The origin of each discontinuity is denoted in Fig. 15.44. It will be used later in
the discussion of computation results. Take O F4 Down and O F4 Up for
example, O means the origin for the distance along the discontinuity, F4 denotes
the discontinuity, Down or Up means the lower or upper portion.

These computations may also be validated with the help of the geo-mechanical
test illustrated in Chap. 10. The main prototype parameters used in the computation
are listed in Tables 10.9 and 10.10. Since the designer of Baozhusi Dam cannot
provide the parameter of dilatancy angle, the associated flow rule is adopted in the
computation.

The overloading method is executed to explore the failure process and to assess
the safety factor of the dam by increasing the water level. The detailed overloading
procedures are listed in Table 10.11.

In neglecting the penstock, the dam can be simulated as a two-dimensional
structure. Since the program CORE3 is three-dimensional, a dam slice of 1 m thick
is cut for the computation. Figure 15.45a is the FE mesh projected at the X � Z
plane, it includes 4544 elements and 9420 nodes. Figure 15.45b is the CE mesh

Fig. 15.43 Axial stress along the bolt under the shear action. a Frontal axial stress; b rear axial
stress
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projected at the X � Z plane, it includes 4897 elements and 10,062 nodes. The
displacements along the Y-axis is restrained to ensure the plane strain state.

It can be perceived that the CE mesh is more regular than the FE mesh.

(3) Computation results

The dam is assumed to be built at one concrete placement batch. The load con-
sidered after the filling of reservoir is the static hydraulic pressure acting on the
upstream dam surface and the reservoir bottom.

1. Displacements

With regard to the working condition under the reservoir impounding, Fig. 15.46
gives the overall displacements in the dam and its foundation meanwhile
Table 15.14 gives the displacements at the key points. It can be confirmed that the
FEM and the CEM provide rather close results.

Figure 15.47 plots the displacement increments against the overload factor at the
gauge points ③ and ④. Again, it may be confirmed that the FEM and the CEM
agree with each other well. However, the numerical computation gives larger dis-
placements than the model test. One of the possible explanations is that the
deformation modulus used in the model test is a secant modulus including a partial
of non-linear deformation, if this deformation modulus is input as elastic modulus
in the perfect elasto-viscoplastic computation (FEM and CEM), the stiffness of the
structure would be under estimated.

2. Stresses

Under the NSL, Table 15.15 provides the stresses at the Gaussian points close to
the dam heel and toe. Figure 15.48 shows the distribution of principal stresses in

Fig. 15.44 Origins of discontinuities
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the dam. Figures 15.49, 15.50, 15.51 and 15.52 give the distribution of stresses at
several typical discontinuities whose origins are defined in Fig. 15.44.

These results validate that

– Generally, the stresses in the dam and foundation by the FEM and the CEM are
close to each other. However, the difference in stress is larger than that in
displacements, because stresses are more strongly affected by the mesh
refinement.

– The stresses at the discontinuities obtained by the FEM and the CEM are close,
too. At the intersection points between discontinuities, stresses undergo severe
fluctuation due to the complicated deformation patterns around these areas.

Fig. 15.45 Computation meshes of Baozhusi Gravity Dam. a FEM; b CEM
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3. Failure mechanism and safety factors

The point (local) safety is defined as the ratio of resistance to the action effect.
Given the Drucker-Prager criterion, the point safety factor may be calculated by the
formula in Eq. (4.215). In Fig. 15.53 we show the contours of point safety under
the actions corresponding to the NSL.

The overloading factor K can be regarded as an index of global (overall) safety.
In the laboratory test, the first crack appears at the upstream dam body near the
penstock (EL. 558.4 m) when the overloading factor K = 2.0. After the overloading

Fig. 15.46 Displacements induced by the reservoir impounding. a FEM; b CEM
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factor exceeds 2.0, several cracks appear between the penstock and the dam heel.
The crack near the penstock propagates fastest and the pressure of upstream jacks
cannot be sustained, this means the failure of the dam and the corresponding safety
factor can be assessed as K = 2.0. From this result it also can be confirmed that the
failure mechanism is the crack propagation in the dam, and the stability against the
sliding in dam foundation is no longer the major concern attributable to the revision
of design.

Figure 15.54 illustrates the tensile yield zones when K = 2.2 by the computa-
tion. The main crack by the model test is also shown in this figure. In the
computation the tensile yield zone near the penstock propagates very fast when the
overload factor approaches 2.3, and no convergent results can be obtained.
Therefore, the computation gives a safety factor K = 2.2 which is higher than that
from the model test. This is mainly due to the perfect plasticity (no hardening and

Table 15.14 Displacement at key positions

Dam crest Dam toe

Horizontal uX (cm) Vertical uZ (cm) Horizontal uX (cm) Vertical uZ (cm)

FEM 6.77581 1.22786 1.5736 −0.69935

CEM 6.31993 1.12105 1.50264 −0.66740

Fig. 15.47 Displacement
increments against the
overload factor at the gauge
points. a Gauge points ③;
b gauge point ④
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Table 15.15 Principal stresses at the Gaussian points most vicinity to the key positions

Dam heel Dam toe

r1
(MPa)

r3
(MPa)

Included angle of
r1 and X axis (°)

r1
(MPa)

r3
(MPa)

Included angle of
r1 and X axis (°)

FEM −0.736 −3.190 13.54 −0.553 −1.744 33.00

CEM −0.619 −3.763 10.04 −0.587 −1.699 37.47

Fig. 15.48 Principal stresses under the NSL. a FEM; b CEM
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softening) and associated flow rule adopted in the computation. The other reason
for such difference would be the lack of localization trace towards the crack
propagation in the computation software hence only wide tensile yield zones may
be captured.

The computation also indicates that at the dam heel there is a tensile cracking
zone. It will propagate during the overloading procedure, too, but not as fast as that

Fig. 15.49 Stress distribution along F4 (below the EL. 428.98 m) under the NSL. a Shear stress;
b normal stress

Fig. 15.50 Stress distribution along F4 (above the EL. 428.98 m) under the NSL. a Shear stress;
b normal stress

Fig. 15.51 Stress distribution along D5 (upstream of F4) under the NSL. a Shear stress; b normal
stress
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in the dam body. Therefore it is not the major mechanism dominating the failure of
the dam.

15.9.2 Underground Cavern: Saizhu Project, China

(1) Presentation of the project

Saizhu Hydropower Project is the cascade 2 project on the Ximahe River, Yunnan
Province, China. It possesses the first double-curved arch dam of full-sectional RCC
built on high earthquake risk zone, a headrace (diversion) tunnel of 4.82 km long
for the power generation on the right bank, and an underground power station.

The underground power station (see Fig. 15.55) is accommodated in the thick
layer limestone with the stratum strike N30°–60°W, dip direction NE and dip angle
10°–20°. The well developed fracture are grouped into set I with attitude N40°–50°
W, SW∠70°–80°; set II with attitude N50°–60°E, NW∠50°–70°.

The size of the underground power house is 74.4 m � 17.4 m � 37.6 m (length
width � height), the size of the transmission cavern is 58.42 m � 13.6 m � 25.55 m
(length � width � height). The overburden rock above the power house is 120–
160 m.

(2) Characteristics of the computation

The excavation of the power house is divided into 6 benches illustrated in
Fig. 15.56. The excavation and reinforcement procedures are detailed in
Table 15.16.

U25 steel bars are employed for the systematic reinforcement of the caverns,
with the space of 1.5 m � 1.5 m and the length of 9 and 6 m alternatively. The
bolts reinforcing the crane girder to the rock wall are U36 steel bars, with a length
of 9 m (see Fig. 15.57).

In the design of the rock bolt crane girder (see Fig. 15.58), it is very important to
understand the working states with respect to the contact interfaces of girder/rock

Fig. 15.52 Stress distribution along D5 (downstream of F4) under the NSL. a Shear stress;
b normal stress
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and bolt/rock, particularly the bolt’s performance at the girder/rock contact interface
(Cao et al. 1996). To fulfill these tasks a credible computation appropriately con-
sidering excavation procedure and bolting mechanism is demanded.

To help the understanding of the computation results, the local coordinate sys-
tems of the supporting bolts and girder/rock contact interface of the crane girder
(left wall) are defined in Fig. 15.59, where LUO, LMO, LDO are the origins of the
local coordinates of the three girder bolts; LO is the origin of the local coordinate of
the girder/rock contact interface.

The in situ geo-stress field is back analyzed under the gravity action only.

Fig. 15.53 Contours of point safety factors Kp under the NSL. a FEM; b CEM
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The crane girder is installed after the completion of the third bench excavation.
The linear load density exerting at the crane girder is: P(vertical) = 1.0 MPa/m, H
(horizontal) = 0.03 MPa/m (see Fig. 15.59).

A slice of 3 m thick along the axis of the caverns is discretized in the study. The
systematic bolts around the caverns are approached by the “equivalent model”
which takes into account of the influences of the joints (or contact face) and rock
bolts but overlooks their exact position (vide Chap. 6). Whereas, the supporting
rock bolts which reinforce the crane girder to the rock wall and the girder/rock
contact interfaces are simulated by two explicit approaches: the FEM that refines
the mesh around the girder area and makes use of special elements (joint element
and bar element); plus the CEM that takes no care of the bolts and contact interfaces
in the mesh generation, because they are embedded in the composite elements.

The FE mesh and CE mesh generated for the computation are shown in
Figs. 15.60 and 15.61, respectively. It is obvious that the FEM mesh is more
complicated than the CEM mesh, because the former is restrained strongly by the
existence of bolts and contact interface.

Fig. 15.54 Tensile yield zones by the computation and main crack by the model test (K = 2.2).
a FEM; b CEM
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Fig. 15.55 Plan of the underground power station: Saizhu Project, China. ①—main machine
hall; ②—main transformer chamber; ③—tailrace tunnel; ④—access tunnel; ⑤—ventilating
tunnel

Fig. 15.56 Schematic drawing of the excavation benches
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Fig. 15.57 Reinforcement layout of the typical cross section

Table 15.16 Excavation and reinforcement procedures of the powerhouse

Excavation
step

Power house Transmission cavern

Excavation
elevation (m)

Reinforcement
elevation (m)

Excavation
elevation (m)

Reinforcement
elevation (m)

I 1136.10–
1130.00

– – –

II 1130.00–
1123.00

1136.10–
1130.00

1141.15–
1133.00

–

III 1123.00–
1115.00

1130.00–
1123.00

1133.00–
1125.00

1141.15–
1133.00

IV Installation of
girder

1123.00–
1115.00

– 1133.00–
1125.00

V 1115.00–
1107.00

– 1125.00–
1115.60

–

VI 1107.00–
1103.80

1115.00–
1107.00

– 1125.00–
1115.60

– 1107.00–
1103.80

– –
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Fig. 15.58 Details showing the rock bolt crane girder (left wall): Saizhu Project, China

Fig. 15.59 Configuration of the rock bolt crane girder (left wall)
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The parameters used in the computation are listed in Tables 15.17 and 15.18.

(3) Computation results

1. Displacements

Figures 15.62 and 15.63 show the accumulated displacements in the rock mass and
girders after the completion of the caverns.

The FEM and CEM provide nearly identical results. The maximum displacement
occurs at the top of the power house, which are 7.02 mm (by FEM) and 6.96 mm
(by CEM) respectively. The displacements of the crane girder are 3.00–3.58 mm.

2. Stresses

Figures 15.64 and 15.65 show the stresses in the girders. Generally, the stresses
obtained by the FEM and CEM exhibit similar distribution patterns.

The stresses in the surrounding rock mass are ranged within −15 to 1.14 MPa
and in the girder are ranged within −15.9 to 4.27 MPa.

Typical axial stresses of the rock bolts (left crane girder only) during the
operation period are plotted in Figs. 15.66, 15.67 and 15.68, we can find that they
undergo a sudden mounting in the vicinity of the contact interface between rock and
crane girder.

Fig. 15.60 Finite element mesh (17,335 elements; 20,916 nodes). a Overall view of the cavern;
b detailed view around the rock bolt crane girder
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Fig. 15.61 Composite element mesh (5910 elements; 8000 nodes). a Overall view of the cavern;
b detailed view around the rock bolt crane girder

Table 15.17 Parameters used in the computation (rock)

Material Volumetric
weight c (kN/
m3)

Young’s
modulus
E (GPa)

Poisson’s
ratio l

Stiffness

Normal
kn (GPa)

Shear ks
(GPa)

Slightly
weathering
rock

27.0 7 0.28 – –

Fresh rock 10 0.27 – –

Girder/rock
interface

– – – 20 1

Grout/bolt
interface

– – – 100 8

Rock/grout
interface

– – – 100 5

Table 15.18 Parameters used in the computation (concrete and bolt)

Material Young’s modulus E(GPa) Poisson’s ratio l Volumetric weight c (kN/m3)

Concrete 30 0.167 25

Steel 200 0.30 78.5
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Typical shear stresses on the rock/bolt contact interfaces by the CEM (left crane
girder only) are plotted in Figs. 15.69, 15.70 and 15.71 which are indispensable in
the assessment of the pull-out resistance. These contact shear stresses cannot be
provided by the conventional FEM with bar elements.

Fig. 15.62 Accumulated
displacements of the rock
mass and girders (FEM)

Fig. 15.63 Accumulated
displacements of the rock
mass and girders (CEM)
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Typical stresses on the girder/rock contact interfaces are plotted in Figs. 15.72
and 15.73 (left crane girder).

(4) Computation efficiency

The computer used in this study is: P4 CPU, 3.0 GHz, 512MDDR memory. The
freedom and the computation time by the FEM and CEM are comparatively pre-
sented in Table 15.19, by which it can be concluded that

– For different excavation steps, the difference in the computation time of FEM is
attributable to the difference in the DOF;

Fig. 15.64 Stresses in
girders (FEM)

Fig. 15.65 Stresses in
girders (CEM)
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– Before the installation of the crane girder, the difference in the computation time of
the CEM is attributable to the difference in the DOF, too. However, the installation
of the crane girder introduces composite elements containing bolts or/and contact
interfaces, which results in a remarkable increase of computation time.

– The CEM actually uses extra calculation overhead to replace a part of
pre-process works in the FEM.

Fig. 15.66 Axial stresses of
bolts during the operation
period (first row, left crane
girder)

Fig. 15.67 Axial stresses of
bolts during the operation
period (second row, left crane
girder)
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Fig. 15.68 Axial stresses of
bolts during the operation
period (third row, left crane
girder)

Fig. 15.69 Shear stresses on
the rock/bolt interface (first
row, left crane girder, CEM
only)

Fig. 15.70 Shear stresses on
the rock/bolt interface (second
row, left crane girder, CEM
only)
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Fig. 15.71 Shear stresses on
the rock/bolt interface (third
row, left crane girder, CEM
only)

Fig. 15.72 Normal stresses
on the girder/rock interface
(left crane girder)

Fig. 15.73 Shear stresses on
the girder/rock interface (left
crane girder)
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Chapter 16
Seepage Analysis Using the Composite
Element Method

Abstract In this chapter the research interest is directed to the simulation of
seepage field, which takes into account of both the discontinuities and drainage
holes explicitly located within composite elements. It is an algorithm competent to
the structural problems formulated in Chap. 15. As the first step, the “air element”
model filled with a virtual matter of much higher permeability is proposed to
eliminate the strong dependence of computation mesh on the deployment of drai-
nage holes. Then the presence of discontinuities and drainage holes transfers a
number of finite elements into composite elements. The p-refinement is further
implemented to enlarge the shape function space, in this way the complex flow
pattern in a composite element may be handled appropriately, and the restraints on
the mesh generation can be further relaxed. This chapter is closed with a number of
validation examples and two successful engineering application cases related to
sluice foundation and dam foundation.

16.1 General

Seepage flow is a very important factor influencing the deformation and stability of
hydraulic structures. To control its hazardous effects, seepage control devices such
as the drainage curtain and grouting curtain, are conventionally installed. The
seepage analysis is one of the cornerstones for the design of seepage control system.

In Chap. 15 the composite element method (CEM) has been proposed and
implemented towards the simulation of bolts and discontinuities in strain/stress
computations. In this chapter a competent algorithm will be elaborated for the
seepage field, which takes into account of both the discontinuities and drainage
holes explicitly located within composite elements (Chen et al. 2004; Xu and Chen
2005; Chen and Feng 2006; Chen et al. 2010a, b).
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16.2 Air Element for Drainage Holes

The “air element” was initiated for the purpose to eliminate the strong dependence
of computation mesh on the deployment of drainage holes, by the simplifications in
handling the boundary conditions on the hole wall as well as the judgment/
treatment of the hole intersected with the phreatic surface (Hu and Chen 2003).

16.2.1 Concept

Generally, it is supposed that a drainage hole is hollow and filled with air or water.
In its explicit modeling, the wall of the drainage hole is taken as a boundary with
conditions defined in Eqs. (4.150)–(4.153), and the space within the hole itself will
not be included in the variational function defined in Eq. (4.154). This treatment,
termed as “exact method”, is precise but, as can be anticipated, will impose very
strong restraint on the finite element mesh generation, and an system equation with
large DOF will be produced. Furthermore, when the phreatic surface is intersected
with drainage holes, the iteration procedure using “residual flow method” will
demand a huge computation overhead, too.

From the practical point of view, we may imagine that an empty hole makes no
essential difference to the hole filled by a kind of material with much higher
permeability compared to the host material surrounding the hole. In this manner
drainage holes will be included in the variational function defined in Eq. (4.154).
Consequently, boundary conditions on the wall of holes will be deleted and the
mesh discretization should cover the holes themselves using “air element” (Hu and
Chen 2003). These air elements enable to facilitate the pre-process and calculation
procedures and may further be incorporated in the composite element method.

The intrinsic question should be answered is that, what should be an appropriate
permeability coefficient endued to the virtual filler material in air elements?
Towards this question, several examples concerning parametric studies will be
presented in the hereafter coverage.

16.2.2 Parametric Studies

Two types of drainage holes are commonly encountered in hydraulic structures.
One with water spilling over the hole top, in this case the hydraulic potential on the
hole wall is identical to the elevation of the hole top; another with water exiting
down from the hole bottom, in this cases the hydraulic potential on the hole wall is
identical to the corresponding elevation concerned.
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(1) Holes of spilling over

Figure 16.1 shows an entity domain containing one drainage hole with diameter D.
Its four lateral sides and top surface are stipulated as the first boundary with
specified potential /0 = 3.5 and 3 m, respectively, the bottom surface is the second
boundary without flow rate, i.e. q ¼ 0. The permeability coefficient of the entity
material is kr ¼ 1, the permeability coefficient kd of the virtual filler in the hole is
variable. The permeability coefficient proportion R ¼ kd=kr is employed to describe
the relative permeability of the filler in the drainage hole. The computation results
by the air element and the exact solution are cross-referenced, the latter discretizes
the whole entity with empty hole and specifies boundary conditions on the wall of
hole. The error E is defined as the maximum difference in the hydraulic potential on
the wall of hole by the air element solution and exact solution.

Figure 16.2 shows the relation of E versus lgR. From the calculation results it
can be found that when lgR� 3, namely the permeability coefficient of the air
element is larger than 1000 times that of the host medium, the computation error is
lower than 5%.

According to the Figs. 16.2 and 16.3, the change of the hole diameter D has no
significant influence on the computation error E.

Figure 16.4 indicates that the maximum error manifests on the hole wall.
Figure 16.5 indicates that the maximum error emerges at the bottom of the hole,
where H is the height from the bottom.

Fig. 16.1 Entity domain
containing one over spilling
drainage hole
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Fig. 16.2 Diagram of E
versus lgR

Fig. 16.3 Diagram of E
versus D

Fig. 16.4 Diagram of E
versus r

Fig. 16.5 Diagram of E
versus H
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(2) Holes of exiting down

Figure 16.6 displays a slice of domain embedded with a segment of tunnel and
installed with one drainage hole of D= 0.1 m whose exit is at the tunnel crest. The
left and right sides are stipulated as the first boundary with specified potential
/0= 15 m, the front and rear sides as well as the bottom surface observe the second
boundary condition without flow rate, i.e. q ¼ 0. The permeability coefficient of the
host medium is kr ¼ 1, whereas the permeability coefficient kd of the virtual filler in
the hole is variable. The computations using the air element solution and exact
solution are carried out in parallel.

From the result showing in Fig. 16.7 it may be concluded that when
2:1\ lgR� 2:7, namely the permeability coefficient of the air element is approx-
imately 300–1000 times the host medium, the error E is lower than 5%.

Figure 16.8 shows the exact solution of isopotential contours at the section
through the hole axis, Fig. 16.9 is the corresponding air element solution. They
validate that the air element may be employed to simulate drainage holes with

Fig. 16.6 Tunnel installed
with one drainage hole on its
crown

Fig. 16.7 Diagram of E
versus lgR
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considerable accuracy, subject to an appropriate selection of the permeability
coefficient for the virtual hole filler.

Based on the foregoing studies, it may be generally advised that when the
proportion R ¼ kd=kr ranges around 102–103, the solution precision may be satis-
factory with the air element for drainage hole of either spilling over or exiting down
type.

Fig. 16.8 Exact solution of
isopotential contours

Fig. 16.9 Air element
solution of isopotential
contours
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16.3 Composite Element for Drainage Holes

16.3.1 Coordinate Systems and Nomenclatures

See Fig. 2.5.

16.3.2 Governing Equations

(1) Sub-element element analysis

1. Solid material

The variational function Eq. (4.154) for solid material may be reduced as

Ið/Þr ¼
ZZZ
Xr

1
2

Sf g/rð ÞT k½ �r Sf g/rð Þ � q0/r

� �
dXþ

ZZ
Cr

q/r dC ð16:1Þ

where q0 = inner source; q = boundary flow rate; Sf g = @
@X

@
@Y

@
@Z

� �T
.

According to the interpolation Eq. (14.3) we have

Ið/Þr ¼
ZZZ
Xr

1
2

/f gTr Sf g N½ �ð ÞT k½ �r Sf g N½ � /f gr
� �� q0 N½ � /f gr

� �
dXþ

ZZ
Cr

q N½ � /f gr dC

The application of variational operator gives rise to

h½ �r /f gr¼ Qf gr ð16:2Þ

In which h½ �r and Qf gr are the conductivity matrix and equivalent nodal flow (or
right item) of the solid material (e.g. rock) calculated by

h½ �r¼
ZZZ
Xr

Sf g N½ �ð ÞT k½ �r Sf g N½ �ð Þ dX ð16:3Þ

Qf gr¼
ZZZ
Xr

½N�q0 dX�
ZZ
Cr

½N�q dC ð16:4Þ

2. Drainage hole

For drainage hole d, the variational function Eq. (4.154) may be expressed as
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Ið/Þd ¼
ZZZ
Xd

1
2

Sf g/dð ÞT k½ �d Sf g/dð Þ � q0/d

� �
dXþ

ZZ
Cd

q/d dC ð16:5Þ

The interpolation using Eq. (14.3) leads to

Ið/Þd ¼
ZZZ
Xd

1
2

/f gTd Sf g N½ �ð ÞT k½ �d Sf g N½ � /f gd�q0 N½ � /f gd
� �

dX þ
ZZ
Cd

q N½ � /f gd dC

ð16:6Þ
The application of variational operator gives rise to

h½ �d /f gd¼ Qf gd ð16:7Þ

In which h½ �d and Qf gd are the conductivity matrix and equivalent nodal flow (or
right item) contributed from hole d.

h½ �d¼
ZZZ
Xd

Sf g N½ �ð ÞT k½ �d Sf g N½ �ð Þ dX ð16:8Þ

Qf gd¼
ZZZ
Xd

½N�q0 dX�
ZZ
Cd

½N�q dC ð16:9Þ

In Eq. (16.8) the virtual permeability coefficient kd may be approximately input
as 102–103 times kr (vide Sect. 16.2).

3. Solid/hole interface

There is no independent nodal hydraulic potential for interface jr;d . The differential
of the hydraulic potential within the interface in Eq. (4.154) should be expressed by
the difference in the nodal values corresponding to the host material and the drai-
nage hole respectively.

Since the hydraulic potential / is a scalar, therefore the variational function in
Eq. (4.154) for the interface can be expressed in the local Cylindrical coordinate
system as

Ið/Þjr;d ¼
ZZZ
Xjr;d

1
2

fSg/ð ÞT ½k�jr;d fSg/ð Þ
� �

dX ð16:10Þ

In Eq. (16.10) the inner source item and the boundary source item are all ruled
out. Normally, the interface possesses a thickness a much smaller compared to the
diameter D of drainage hole, therefore it can be postulated that along the thickness
direction r (see Fig. 2.5) we have
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ðfSgUÞ ¼ constant ð16:11Þ

So Eq. (16.10) in the local Cylindrical coordinate system defined in Fig. 2.5 is
transformed into

Ið/Þjr;d ¼
ZZZ
Xjr;d

1
2

fSgcy/ð ÞT ½k�jr;d fSgcy/ð Þ
� �

rdrdxdz

¼D
2
� a�

ZZ
Cjr;d

1
2

fSgcy/ð ÞT ½k�jr;d fSgcy/ð Þ
� �

dxdz
ð16:12Þ

In which D is the diameter of drainage hole, fSgcy is the differential operator in
the local Cylindrical coordinate system.

fSgcy ¼ @
@r

1
r

@
@x

@
@z

� �T ð16:13Þ

The assumption is further made that in the local Cylindrical coordinate system,
the differential of the hydraulic potential / within the interface jr;d will be

@/
@r

¼ /r � /d

a
� c1

1
r
@/
@x

¼ /r � /d

a
� c2

@/
@z

¼ /r � /d

a
� c3

8>>>>>><
>>>>>>:

ð16:14Þ

In which c1, c2, c3 are deflection coefficients and

c21 þ c22 þ c23 ¼ 1 ð16:15Þ

Use is made of Eqs. (16.13–16.14), Eq. (16.12) yields

Ið/Þjr;d ¼
D
2
� a�

ZZ
Cjr;d

1
2

c1
/r � /d

a

c2
/r � /d

a

c3
/r � /d

a

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

T

½k�jr;d

c1
/r � /d

a

c2
/r � /d

a

c3
/r � /d

a

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

0
BBBBBBB@

1
CCCCCCCA

dxdz

¼ Da
4a2

ZZ
Cjr;d

c1ð/r � /dÞ
c2ð/r � /dÞ
c3ð/r � /dÞ

8>><
>>:

9>>=
>>;

T

½k�jr;d

c1ð/r � /dÞ
c2ð/r � /dÞ
c3ð/r � /dÞ

8>><
>>:

9>>=
>>;

0
BB@

1
CCA dxdz

¼ D
4a

ðc21k1 þ c22k2 þ c23k3Þ
ZZ
Cjr;d

ðf/gr � f/gdÞT ½N�T ½N�ðf/gr � f/gdÞ dxdz

¼ M
2

ZZ
Cjr;d

½f/gTr ð½N�T ½N�f/gr � ½N�T ½N�f/gdÞ

� f/gTd ð½N�T ½N�f/gr � ½N�T ½N�f/gdÞ� dxdz ð16:16Þ
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In which

M ¼ D
2a

ðc21k1 þ c22k2 þ c23k3Þ ð16:17Þ

where k1, k2, k3 = principal permeability coefficients of interface jr;d .
Let k1 ¼ k2 ¼ k3 ¼ kjr;d and use is made of Eq. (16.15), we have

M ¼ D
2a

kjr;d ¼
Dk
2

ð16:18Þ

In which k is the conductive coefficient of interface jr;d expressed by

k ¼ kjr;d
a

ð16:19Þ

The permeability coefficient kjr;d can be postulated as equal to kd of the virtual
filler in drainage hole. Theoretically, the interface thickness a should be very small
to get the exact solution, however, numerical testing for some very simple examples
shows that R=a ¼ 100 will lead to precision satisfactory solution in which R is the
radium of drainage hole.

The application of variation principle towards the function Ið/Þjr;d defined in

Eq. (16.16) gives rise to

h½ �r;r /f gr þ h½ �r;d /f gd¼ 0

h½ �d;r /f gr þ h½ �d;d /f gd¼ 0

(
ð16:20Þ

In which the hydraulic conductivity matrix and the corresponding right side item
of the solid/hole interface are

h½ �r;r ¼ M
RR
Cjr;d

½N�T ½N� dxdz

h½ �d;d ¼ M
RR
Cjr;d

½N�T ½N� dxdz

h½ �r;d ¼ �M
RR
Cjr;d

½N�T ½N� dxdz

h½ �d;r ¼ �M
RR
Cjr;d

½N�T ½N� dxdz

8>>>>>>>>>><
>>>>>>>>>>:

ð16:21Þ

(2) Composite element analysis

Based on the above deduction, the variational operator throughout a composite
element containing nd drainage segment will leads to the governing equation below
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H½ �r;r H½ �r;1 . . . H½ �r;nd
H½ �1;r H½ �1;1 . . . 0
. . . . . . . . . . . .
H½ �nd ;r 0 . . . H½ �nd ;nd

2
664

3
775

/f gr
/f g1
. . .

/f gnd

8>>><
>>>:

9>>>=
>>>;

¼

Qf gr
Qf g1
. . .

Qf gnd

8>>><
>>>:

9>>>=
>>>;

ð16:22Þ

In which

H½ �r;r ¼ h½ �r þ
Pnd
d¼1

h½ �r;r
H½ �d;d ¼ h½ �d þ h½ �d;d
H½ �r;d ¼ h½ �r;d
H½ �d;r ¼ h½ �d;r

8>>>><
>>>>:

d ¼ 1; . . .; ndð Þ ð16:23Þ

This elementary governing equation will be further assembled into the overall
governing equation of the structure system in a similar way to the FEM.

16.3.3 Numerical Integrations

(1) Solid entity sub-element

The integral domain should be the whole host element minus the space occupied by
the holes. Accordingly, in the calculation of h½ �r and Qf gr [see Eqs. (16.3) and
(16.4)] the integration will be undertaken as

½h�r ¼
Z
Z

Z
Y

Z
X

fSg½N�ð ÞT ½k�rðfSg½N�Þ dXdYdZ

�
Xnd
d¼1

Z
z

Z
x

Z
r

fSg½N�ð ÞT ½k�rðfSg½N�Þ rdrdxdz

fQgr ¼
Z
Z

Z
Y

Z
X

½N�q0 dXdYdZ �
ZZ
Cr

½N�q dC

�
Xnd
d¼1

Z
z

Z
x

Z
r

½N�q0 rdxdrdzþ
Xnd
d¼1

ZZ
Cd

½N�q dC

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð16:24Þ

(2) Drainage hole sub-element

The local Cylindrical coordinate system is convenient for undertaking the
integral of Eqs. (16.8) and (16.9) in a form of
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½h�d ¼
Z
x

Z
r

Z
z

fSg½N�ð ÞT ½k�dðfSg½N�Þ rdxdrdz

fQgd ¼
Z
x

Z
r

Z
z

½N�q0 rdxdrdz�
ZZ
Cd

½N�q dC

8>>>>><
>>>>>:

ð16:25Þ

Using the transformation between the local Cartesian and Cylindrical coordinate
systems, we may have general integral transformation for any function Fðx; y; zÞ as
follows.ZZZ

Xd

Fðx; y; zÞ dxdydz ¼
ZZZ
Xd

Fðr cos x; r sin x; zÞ rdrdxdz ð16:26Þ

The integration of h½ �d is thus performed with the help of Gaussian quadrature as

h½ �d¼
ZZZ
Xd

Sf g N½ �ð ÞT k½ �d Sf g N½ �ð Þ dX

¼
Z rd

0

Z
2p

0

Z Ld

0

Sf g N½ �ð ÞT k½ �d Sf g N½ �ð Þ rdrdxdz

¼
Z 1

�1

Z 1

�1

Z 1

�1

Sf g N½ �ð ÞT k½ �d Sf g N½ �ð Þr Jj j dndgdf

ð16:27Þ

In which Ld is the length of drainage hole within the composite element
concerned.

The Gaussian points in the hole are calculated by the formulas

nr ¼
r
2

1þ nð Þ

gx ¼ 2p
2

1þ gð Þ

fz ¼
Ld
2
ð1þ fÞ

8>>>>><
>>>>>:

ð16:28Þ

where n, g, f = normalized coordinates of the Gaussian quadrature point in the local
Cartesian system; nr, gx, fz = coordinates of the Gaussian quadrature point in the
local Cylindrical system.

(3) Interface

The matrices ½h�r;r, ½h�d;d and ½h�r;d in Eq. (16.21) are expressed in the local
Cylindrical system whose quadrature operation is generally undertaken by the
formula.
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Z 2p

0

Z Ld

0
Fðx; zÞ dxdz ¼ 2p

2
� Ld

2

Z 1

�1

Z 1

�1
Fðg; fÞ dgdf ð16:29Þ

Specifically

h½ �r;r ¼ M
ZZ

½N�T ½N� dxdz

¼ M � 2p
2

� Ld
2

Z 1

�1

Z 1

�1

½N�T ½N� dgdf

h½ �d;d ¼ M
ZZ

½N�T ½N� dxdz

¼ M � 2p
2

� Ld
2

Z 1

�1

Z 1

�1

½N�T ½N� dgdf

h½ �r;d ¼ �M
ZZ

½N�T ½N� dadz

¼ �M � 2p
2

� Ld
2

Z 1

�1

Z 1

�1

½N�T ½N� dgdf

h½ �d;r ¼ �M
ZZ

½N�T ½N� dxdz

¼ �M � 2p
2

� Ld
2

Z 1

�1

Z 1

�1

½N�T ½N� dgdf

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð16:30Þ

The transformation of the coordinates of the Gaussian point on interface is
identical to that of drainage hole [see Eq. (16.28)].

16.4 Composite Element for Discontinuities

16.4.1 Coordinate Systems and Nomenclatures

See Fig. 2.2.

16.4.2 Governing Equations

(1) Sub-element analysis

1. Solid material

The variational function of sub-element rl (see Fig. 14.3) is given by
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Ið/Þrl ¼
ZZZ
Xrl

1
2

Sf g/rlð ÞT k½ �rl Sf g/rlð Þ � q0/rl

� �
dX

þ
ZZ
Crl

q/rl dC ðrl ¼ 1; . . .; nrÞ
ð16:31Þ

Introducing Eq. (14.4) into Eq. (16.31) gives rise to

Ið/Þrl ¼
ZZZ
Xrl

1
2

�
/f gTrl Sf g N½ �ð ÞT k½ �rl Sf g N½ � /f grl

�

�q0 N½ � /f grl
��

dXþ
ZZ
Crl

q N½ � /f grl dC ðrl ¼ 1; . . .; nrÞ
ð16:32Þ

The variation operator leads to

h½ �rl /f grl¼ Qf grl ðrl ¼ 1; . . .; nrÞ ð16:33Þ

In which h½ �rl and Qf grl are the conductivity matrix and equivalent nodal flow
rate of sub-element rl, respectively

h½ �rl¼
ZZZ
Xrl

Sf g N½ �ð ÞT k½ �rl Sf g N½ �ð Þ dX ð16:34Þ

Qf grl¼
ZZZ
Xrl

½N�q0 dX�
ZZ
Crl

½N�q dC ð16:35Þ

2. Discontinuity

Suppose discontinuity segment jrl;rm is a contact face of adjacent sub-elements rl
and rm, the variational function in this discontinuity sub-element is given by

Ið/Þjrl;rm ¼
ZZZ
Xjrl;rm

1
2

fSg/ð ÞT ½k�jrl;rm fSg/ð Þ
� �

dX ð16:36Þ

Since the hydraulic aperture ajrl;rm of the discontinuity segment is much smaller
than the dimension of composite element, it can be postulated that the hydraulic
potential gradient along the aperture of discontinuity is constant, therefore
Eq. (16.36) can be reduced as
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Ið/Þjrl;rm ¼ ajrl;rm

ZZ
Cjrl;rm

1
2

fSgjrl;rm/ÞT ½k�jrl;rm ðfSgjrl;rm/
� 	

dxjrl;rmdyrl;rm ð16:37Þ

In which Sf gjrl;rm is the differential operator in the local Cartesian coordinate
system of discontinuity segment jrl;rm

Sf gjrl;rm¼
@

@xjrl;rm
@

@yjrl;rm
@

@zjrl;rm

h iT
ð16:38Þ

The hydraulic gradient in the discontinuity segment is simply computed by the
formulas

@/
@xjrl;rm

¼ @ 1
2 ð/rl þ/rmÞ
� �

@xjrl;rm
¼ 1

2
@/rl

@xjrl;rm
þ @/rm

@xjrl;rm

� �
@/

@yjrl;rm
¼ @ 1

2 ð/rl þ/rmÞ
� �

@yjrl;rm
¼ 1

2
@/rl

@yjrl;rm
þ @/rm

@yjrl;rm

� �
@/

@zjrl;rm
¼/rl � /rm

ajrl;rm

8>>>>>>>><
>>>>>>>>:

ð16:39Þ

Denoting

Nxjrl;rm

h i
¼ @N

@xjrl;rm


 �

Nyjrl;rm

h i
¼ @N

@yjrl;rm


 �
8>>><
>>>:

ð16:40Þ

And use is made of Eq. (14.4), the variational function of Eq. (16.37) becomes

Ið/Þjrl;rm ¼ ajrl;rm
2

ZZ

kx
4
ðf/gTrl½Nxjrl;rm

�T ½Nxjrl;rm
�f/grl þ 2f/gTrl½Nxjrl;rm

�T ½Nxjrl;rm
�f/grm

þf/gTrm½Nxjrl;rm
�T ½Nxjrl;rm

�f/grmÞþ
ky
4
ðf/gTrl½Nyjrl;rm

�T ½Nyjrl;rm
�f/grl þ 2f/gTrl½Nyjrl;rm

�T ½Nyjrl;rm
�f/grm

þf/gTrm½Nyjrl;rm
�T ½Nyjrl;rm

�f/grmÞþ
kz

a2jrl;rm
ðf/gTrl½N�T ½N�f/grl � 2f/gTrl½N�T ½N�f/grm

þf/gTrm½N�T ½N�f/grmÞ

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

dxjr;lrmdyjrl;rm

ð16:41Þ

where kx, ky,kz = principal permeability coefficients of the discontinuity.

16.4 Composite Element for Discontinuities 805



The operation of the variational principle leads to

h½ �rl;rl /f grl þ h½ �rl;rm /f grm¼ 0

h½ �rm;rl /f grl þ h½ �rm;rm /f grm¼ 0

(
ð16:42Þ

In which

h½ �rl;rl¼ h½ �rm;rm¼
ajrl;rm
2

RR
Cjrl;rm

kx
2
½Nxjrl;rm

�T ½Nxjrl;rm
� þ ky

2
½Nyjrl;rm

�T ½Nyjrl;rm
�

þ 2kz
a2jrl;rm

½N�T ½N�

0
BB@

1
CCA dxjrl;rmdyjrl;rm

h½ �rl;rm¼ h½ �rm;rl¼
ajrl;rm
2

RR
Cjrl;rm

kx
2
½Nxjrl;rm

�T ½Nxjrl;rm
� þ ky

2
½Nyjrl;rm

�T ½Nyjrl;rm
�

� 2kz
a2jrl;rm

½N�T ½N�

0
BB@

1
CCA dxjrl;rmdyjrl;rm

8>>>>>>>>>>><
>>>>>>>>>>>:

ð16:43Þ

(2) Composite element analysis

The governing equation of the composite element can be obtained through the
assemblage of all its sub-elements. Suppose the composite element contains nr rock
sub-elements and nj structural plane sub-elements, its governing equation relating
the nodal displacement vector and load vector will be

H½ �1;1 H½ �1;2 . . . H½ �1;nr
H½ �1;1 H½ �2;2 . . . 0
. . . . . . . . . . . .
H½ �nr ;1 0 . . . H½ �nr ;nr

2
664

3
775

/f g1
/f g2
. . .

/f gnr

8>>><
>>>:

9>>>=
>>>;

¼

Qf g1
Qf g2
. . .

Qf gnr

8>>><
>>>:

9>>>=
>>>;

ð16:44Þ

In which

H½ �rl;rl¼ h½ �rl þ
Xnr

rm¼1;rm 6¼rl

Hðrl; rmÞ h½ �rl;rl

H½ �rl;rm¼ Hðrl; rmÞ h½ �rl;rm
Hðrl; rmÞ ¼ 1 if rl and rm are adjacent

0 if rl and rm are not adjacent

�

8>>>>>><
>>>>>>:

ðrl; rm ¼ 1; . . .; nrÞ

ð16:45Þ

Generally, if a composite element is composed of nr rock sub-elements, its
degree of freedom (DOF) will be nr times the classical finite element. Whereas a
composite element without discontinuity segments will be retrogressed to the
classical finite element. Attributable to this feature the composite elements and the
finite elements can joint-work well in one hybrid discrete system and there is no
essential difficulty in the algorithm implementation.
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16.5 Composite Element for Jointed Rocks Drained
by Holes

16.5.1 Concept

The FE mesh should be generated beforehand to discrete the structure concerned,
where the deployment and size of finite elements are dominated by the structure
configuration and hydraulic potential gradient. Then the presence of discontinuities
and drainage holes transfers a number of finite elements into composite elements.
Figure 16.10 shows a composite element containing nr rock sub-elements, nd
drainage sub-elements and nj joint sub-elements, at its nodes there are independent
nodal hydraulic potentials corresponding to rock and drainage sub-elements

f/g ¼ f/gTr1; /f gTr2; . . .; /f gTnr ; /f gTd1; /f gTd2; . . .; /f gTnd
h iT

, that are used in the

interpolations Eqs. (14.3–14.4).

16.5.2 Sub-element Analysis

(1) Rock sub-element rl

See Eqs. (16.33–16.35).

(2) Drainage hole sub-element di

See Eqs. (16.7–16.9).

Fig. 16.10 Schematic diagram of a composite element containing discontinuities and drainage
holes
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(3) Discontinuity sub-element jrl;rm

See Eqs. (16.42–16.43).

(4) Solid/hole interface jrl;di

See Eqs. (16.20–16.21).

(5) Interface jdi;dj between drainage sub-elements di and dj

This interface does only exist when drainage sub-elements di and dj belong to a
same drainage hole intersected with discontinuity sub-element jrl;rm. The variational
function Eq. (4.154) for this interface can be expressed in the local Cylindrical
coordinate system as

Ið/Þjdi;dj ¼
ZZZ
Xjdi;dj

1
2

fSg/ð ÞT ½k�jdi;dj fSg/ð Þ
� �

dX ð16:46Þ

The thickness of this interface may be looked at as identical to the hydraulic
aperture ajrl;rm of sub-element jrl;rm. Since it is normally much smaller compared to
the diameter of drainage hole, therefore we can postulate that along the thickness
ajrl;rm the flow velocity is constant. By the procedure similar to Eqs. (16.42–16.43)
for jrl;rm, we obtain

h½ �di;di /f gdi þ h½ �di;dj /f gdj¼ 0

h½ �dj;di /f gdi þ h½ �dj;dj /f gdj¼ 0

(
ð16:47Þ

h½ �di;di¼ h½ �dj;dj¼
ajrl;rm
2

RR
Cjdi;dj

k1 þ k2 þ k3ð Þ dC

h½ �di;dj¼ h½ �dj;di¼
ajrl;rm
2

RR
Cjdi;dj

k1 þ k2 � k3ð Þ dC

8>><
>>: ð16:48Þ

In which k1 ¼ kd
2

@½N�
@xcy

� 	T
@½N�
@xcy

� 	
, k2 ¼ kd

2
@½N�
@ycy

� 	T
@½N�
@ycy

� 	
, k3 ¼ 2kd

a2jrl;rm
½N�T ½N�; xcy and

ycy are the local coordinate of the drainage hole.

16.5.3 Composite Element Analysis

Giving above sub-element analyses, the consideration of the variational principle
for the whole composite element will lead to its governing equation as
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H½ �1;1 H½ �1;2 . . . H½ �1;nr H½ �1;nr þ 1 . . . H½ �1;nr þ nd

H½ �2;1 H½ �2;2 . . . H½ �2;nr H½ �2;nr þ 1 . . . H½ �2;nr þ nd

. . . . . . . . . . . . . . . . . . . . .

H½ �nr ;1 H½ �nr ;2 . . . H½ �nr ;nr H½ �nr ;nr þ 1 . . . H½ �nr ;nr þ nd

H½ �nr þ 1;1 H½ �nr þ 1;2 . . . H½ �nr þ 1;nr H½ �nr þ 1;nr þ 1 . . . H½ �nr þ 1;nr þ nd

. . . . . . . . . . . . . . . . . . . . .

H½ �nr þ nd ;1 H½ �nr þ nd ;2 . . . H½ �nr þ nd ;nr H½ �nr þ nd ;nr þ 1 . . . H½ �nr þ nd ;nr þ nd

2
666666666664

3
777777777775

/f g1
/f g2

. . .

/f gnr
/f gnr þ 1

. . .

/f gnr þ nd

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼

Qf g1
Qf g2

. . .

Qf gnr
Qf gnr þ 1

. . .

Qf gnr þ nd

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð16:49Þ

In which

H½ �rl;rl¼ h½ �rl þ
Pnr

rm¼1;rl 6¼rm
Aðrl; rmÞ h½ �rm;rm þ Pnd

di¼1
Bðrl; diÞ h½ �di;di ðrl ¼ 1; . . .; nrÞ

H½ �rl;rm¼ Aðrl; rmÞ h½ �rl;rm ðrl 6¼ rm; rl; rm ¼ 1; . . .; nrÞ
H½ �rl;nr þ di¼ Bðrl; diÞ h½ �rl;di ðdi ¼ 1; . . .; nd; rl ¼ 1; . . .; nrÞ

A rl; rmð Þ ¼ 1 if rl and rm are adjacent sub� elements

0 if rl and rm are not adjacent sub� elements

(

B rl; dið Þ ¼ 1 if di is within sub� element rl

0 if di is not within sub� element rl

(

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð16:50Þ

H½ �nr þ di;nr þ di¼ h½ �di þ
Pnd

dj¼1;dj6¼di
Cðdi; djÞ h½ �di;dj þ

Pnr
rl¼1

Bðdi; rlÞ h½ �di;di ðdi ¼ 1; . . .; ndÞ

H½ �nr þ di;nr þ dj¼ Cðdi; djÞ h½ �di;dj ðdi 6¼ dj; di; dj ¼ 1; . . .; ndÞ
H½ �nr þ di;rl¼ Bðdi; rlÞ h½ �di;rl ðdi ¼ 1; . . .; nd ; rl ¼ 1; . . .; nrÞ

C di; djð Þ ¼ 1 if di and dj are connected drainage hole

0 if di and dj are not connected drainage hole

(

B di; rlð Þ ¼ 1 if sub� element di is within sub� element rl

0 if sub� element di is not within sub� element rl

(

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð16:51Þ
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16.6 Hierarchical Refinement

Since a composite element with drainage hole segments exhibits complicated flow
pattern, its size should be sufficiently small to ensure the computation accuracy. As
a result, the CE mesh will be rather tightly restricted and the advantage of the CEM
could be undermined to certain extent.

The motivation to apply the p-refinement for the CEM is to enlarge the function
space by upgrading the basis functions and the correspondent virtual nodes, in this
way the complex flow pattern in a composite element may be handled appropri-
ately, and the restraints on the mesh generation can be further relaxed (Chen et al.
2010a).

In the p-refinement CEM, the edge based functions, the face based functions,
and the body based functions will be successively added to upgrade the order p of
basis functions hierarchically. The definition of these basis functions has been given
in Chap. 4. Based on the concepts of general nodes and hierarchical shape func-
tions, the formalist algorithm for the permeability problem using the CEM elabo-
rated foregoing sections, is held.

16.7 Validation Examples

16.7.1 Drainage Hole

(1) Characteristics of the computation

The validation study is carried out for a rock block (length 200 m � width
200 m � height 4 m) schematically illustrated in Fig. 16.11. It contains a vertical
drainage hole with diameter of 0:1 m drilled from its top center. At its four vertical
boundary faces the hydraulic potential is fixed to 60 m, meanwhile its top and
bottom surfaces are impervious. The hydraulic potential (head) inside the drainage
hole is fixed to 10 m.

The classical FEM with fine mesh (see Fig. 16.12) and the hierarchical CEM
with coarse mesh (see Fig. 16.13) are carried out in parallel.

Figure 16.12 shows the FEM mesh projected on the X � Y plane. The rock is
discretized into solid elements, and the nodes on the drainage hole wall are defined
as the first type boundary by Eq. (4.151) (/0 ¼ 10 m). This computation is to
provide a “benchmark” for the hierarchical CEM computation.

Figure 16.13 shows the CEM mesh projected on the X � Y plane. The central
element is defined as the composite element containing drainage hole whose order
of shape functions p can be adaptively adjusted.

The permeability coefficients adopted in the computation are kr ¼ 1ðm=dÞ and
kd ¼ 1000ðm=dÞ.
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(2) Computation results

Figure 16.14 shows the flow rate on the X � Y plane by the FEM (with fine mesh).
Figures 16.15, 16.16, 16.17 and 16.18 show the flow rate at the same horizontal
plane by the hierarchical CEM up to p ¼ 4. It is clear that by the p-refinement
technique, the CEM can present very delicate flow pattern even with coarse mesh.

Fig. 16.11 Diagram to the computation of a drainage hole example

Fig. 16.12 FEM mesh
(17,600 elements; 22,025
nodes)
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16.7.2 Jointed Rock Drained by Hole

The rock block (length 15 m � width 5 m � height 2 m) schematically illustrated
in Fig. 16.19 is studied using the FEM and CEM in parallel. It contains a horizontal

Fig. 16.13 CEM mesh (17
elements; 40 nodes)

Fig. 16.14 Flow rate on the
X � Y plane (FEM)
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fault of thickness 0:1 m and a vertical drainage hole of 0:1 m in diameter. At the
upstream face (X ¼ 0 m) and the downstream face (X ¼ 15 m) the hydraulic
potential is fixed to 40 m, the other four faces are isolated without flow exchange.

Fig. 16.15 Flow rate on the
X � Y plane (CEM, p ¼ 1)

Fig. 16.16 Flow rate on the
X � Y plane (CEM, p ¼ 2)
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Figure 16.20a shows the FEM mesh, in which the rock is discretized into solid
elements meanwhile the fault is explicitly discretized into joint elements. The nodes
on the hole wall are defined as the first type boundary by Eq. (4.150) (/0 ¼ 15 m).

Fig. 16.17 Flow rate on the
X � Y plane (CEM, p ¼ 3)

Fig. 16.18 Flow rate on the
X � Y plane (CEM, p ¼ 4)

814 16 Seepage Analysis Using the Composite Element Method



This computation with fine finite element mesh is to provide a “benchmark” in the
verification study.

Figure 16.20b shows the CEM mesh. The drainage hole and fault are embedded
within the corresponding composite elements in lieu of explicitly discretization.

The permeability coefficients adopted in the computation are kr ¼ 1:15�
10�5ðm=sÞ for the rock, kj ¼ 1:15� 10�4ðm=sÞ for the fault, kd ¼ 1:15�
10�2ðm=sÞ for the virtual material (filler) in the drainage hole.

The flow rate vectors in Figs. 16.21, 16.22, 16.23 and 16.24 confirm that the
computation results by the FEM and CEM are close. It is also validated that the
FEM provides a more delicately distributed flow rate field, this is mainly attribu-
table to, on one hand, its fine element density around the fault and drainage hole; on
the other hand, its counterpart CEM mobilizing a basis function order p ¼ 1 only.

16.8 Engineering Applications

16.8.1 Foundation Drainage: Luohansi Sluice Project,
China

(1) Presentation of the project

Built on a sandy foundation, Luohansi Sluice (see Fig. 16.25) is located on the left
dyke of the Hanjiang River (Chainage 273 + 400 m), Tianmen City, Hubei
Province, China. The principal purpose of this sluice is to intake the river water for

Fig. 16.19 Diagram to the computation of the jointed rock drained by a hole
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the irrigation canal. Since 1961, severe piping incidents in its foundation have
frequently manifested. Towards the rehabilitation design of the sluice, 17 pressure
relief wells were deployed at the downstream foundation of the sluice, whose
functions and effects on the mitigation of piping risk were analyzed using the FEM
and CEM.

Fig. 16.20 Calculation meshes, a FEM (23,040 elements; 27,391 nodes); b CEM (1508 elements;
2100 nodes)
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Fig. 16.21 Flow rate on the X � Y plane (FEM, Z ¼ 1:0 m)

Fig. 16.22 Flow rate on the X � Y plane (CEM, Z ¼ 1:0 m)

Fig. 16.23 Flow rate on the X � Z plane (FEM, Y ¼ 2:5 m)
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Fig. 16.24 Flow rate on the X � Z plane (CEM, Y ¼ 2:5 m)

Fig. 16.25 Bird eye view of Luohansi Sluice, China
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(2) Characteristics of the computation

The 17 relief wells of radium 0.127 m are installed by two arrays (see Fig. 16.26).
The soil stratum and their properties are summarized in Table 16.1.
The upstream (Hanjiang River) head water level is 45.56 m, the downstream

(canal) tail water level is 34.8 m.
The computation domain is 771 m long along the canal axis and 150 m wide.

The bottom is on the top of sand stone stratum.
Figure 16.27 is the FE mesh for exact solution in which the relief well wall is

handled as the outflow boundary, Fig. 16.28 shows the detailed local drawing
surrounding the relief wells.

Figure 16.29 is the CE mesh for the solution where the wells are filled by a
virtual material of high permeable, Fig. 16.30 shows the detailed local drawing
surrounding the relief wells.

(3) Computation results

Figure 16.31 plots the seepage pressure contours at the sluice base (EL.27.62 m)
without pressure relief wells. Figures 16.32 and 16.33 illustrate the seepage pres-
sure contours with pressure relief wells.

Fig. 16.26 Sequence of the
relief wells

Table 16.1 Soil stratum and their properties

Soil Distribution Permeability
coefficient (cm/s)

Earth fill Dyke of the Hanjiang River, dyke of the canal conduit 1 � 10−6

Clay loam Dyke of the Hanjiang River, bottom of the sluice
between EL. 24.0 and 29.6 m

1.75 � 10−5

Fine
powder
sand

Bottom of the sluice between EL. 10.0 and 27.0 m 7.76 � 10−3

Sand gravel Bottom of the sluice between EL. 1.0 and −9.0 m 2.5 � 10−2

Sand stone Bottom of the sluice between EL. −2.0 and −10.0 m 1 � 10−7

Filter
material

Surrounding the relief well 4 � 10−2
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The main conclusions by the computation are that

– The pressure relief wells play an important role in the seepage stabilization for
the foundation of Luohansi Sluice;

– The composite element method performs well in the simulation of the sluice
foundation drained by relief well array.

Fig. 16.27 Overall FM mesh (23,954 elements; 27,536 nodes)

Fig. 16.28 Detailed drawing of local mesh surrounding relief wells (FE solution)
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Fig. 16.29 Overall CE mesh (20,189 elements; 22,654 nodes)

Fig. 16.30 Detailed drawing of local mesh surrounding relief wells (CE solution)

Fig. 16.31 Pressure contours at the sluice base without pressure relief wells (FEM and CEM)
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16.8.2 Foundation Seepage Control: Baozhusi Project,
China

(1) Presentation of the Project

Vide Chap. 9 (Sect. 9.5.1).

(2) Characteristics of the computation

The simplified profile of Baozhusi Gravity Dam with the grouting curtain and
drainage curtain installed in the dam foundation is shown in Fig. 16.34. To facil-
itate the presentation of calculated results, local one-dimension coordinate systems
of discontinuities are defined in Fig. 15.44. The permeability coefficients used in
the study are given in Tables 16.2 and 16.3.

The grouting curtain is looked at as a continuous cement wall constructed by
cement grouting and discretized by solid elements with small permeability coeffi-
cient (see Table 16.2). The drainage curtain is actually composed of an array of
drainage hole, whose diameter and spacing are 15 cm and 3 m, respectively.

Use is made of the FEM and CEM implemented in the same program CORE3.
Figure 16.35 gives the FE mesh in which the rocks and concrete are discretized
with solid elements, meanwhile the faults and intercalated layers are all discretized
with joint elements. The nodes on the drainage wall are defined as the first type

Fig. 16.32 Pressure contours at the sluice base with pressure relief wells (FEM)

Fig. 16.33 Pressure contours at the sluice base with pressure relief wells (CEM)
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boundary with specified hydraulic potentials according to their positions.
Figure 16.36 gives the CE mesh which contains 508 composite elements embedded
by faults or/and drainage holes.

(3) Computation results

The flow velocities in the foundation (see Figs. 16.37 and 16.38), as well as the
flow velocity distribution along the intercalation D8 (see Figs. 16.39 and 16.40
where the origins for the distance along discontinuities are defined in Fig. 15.44),
all demonstrate that the flow velocities obtained by the FEM and CEM agree each
other well. It is also found that at the intersection points of discontinuities as well as
at the intersection points of discontinuity/seepage control device, the flow velocity
exhibits strong fluctuation due to the complicated flow patterns around these areas.

In Fig. 16.41 we present the uplift distribution at the dam/foundation interface. It
is evident that the uplift at the dam/foundation interface by the FEM and CEM are
nearly identical, and the grouting and drainage curtains perform well in the control
of uplift pressure.

Fig. 16.34 Simplified profile of Baozhusi Gravity Dam, China

Table 16.2 Permeability coefficients of rock masses and concrete

Material Concrete Grouting
curtain

O2�1
2 O2�2�1

2 O2�2�2
2 ,O2�3

2 O2�4
2 S01 S1

Permeability
kð10�5m=sÞ

10�6 10�5 10�3 10�3 10�3 10�3 10�3 10�3
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Fig. 16.35 FE mesh of Baozhusi Dam (17,552 elements; 22,307 nodes). a Mesh projected on the
X � Z plane; b mesh of the section A-A

Fig. 16.36 CE mesh of Baozhusi Dam (4170 elements; 7596 nodes). a Mesh projected on the
X � Z plane; b mesh of the section A-A
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Fig. 16.37 Flow velocities without grouting and drainage curtains. a FEM, Y ¼ 1:5 m; b CEM,
Y ¼ 1:5 m
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The parameters of the PC used in this study is Intel(R) Core(TM)2 Duo CPU
E7200, 2.53 GHz, memory 1.95G RAM. The computation time and the degree of
freedom (DOF) are summarized in Table 16.4.

According to foregoing results, the conclusions may the derived that:

– If the result by the FEM with special elements and high mesh density is looked
at as an “exact solution”, the calculation error of the hydraulic potential or uplift
by the CEM is below 1%, whereas the calculation error of the flow rate or
velocity is approximately 10% with respect to Baozhusi Dam.

Fig. 16.38 Flow velocities with grouting and drainage curtains. a FEM, Y ¼ 1:5 m; b CEM,
Y ¼ 1:5 m
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Fig. 16.39 Flow velocity
distribution along the fault D8

(upstream side of F4)

Fig. 16.40 Flow velocity
distribution along the fault D8

(downstream side of F4)

Fig. 16.41 Uplift
distribution at the dam/
foundation interface

Table 16.4 Computation
time and DOF of Baozhusi
Dam

Degree of freedom Computation time (s)

FEM 22,307 807.05

CEM 9951 943.23
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– Since the discontinuities and drainage holes are embedded within composite
elements, the computation mesh for the CEM is much simpler, and less restraint
is imposed on the mesh generation for complicated hydraulic structures with
considerable amount of discontinuities and drainage holes. Actually this is the
paramount merit with the CEM.

– The CEM takes more CPU to complete the computation because it uses extra
computation effort to replace a portion of pre-process works. This is a
remarkable drawback with the CEM.
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Chapter 17
Thermal Analysis Using the Composite
Element Method

Abstract This chapter presents a further extension of the CEM towards the mass
concrete in which a large amount of cooling pipes and lift joints are embedded. The
remarkable peculiarity lies in the combination of cooling pipe system or/and lift joint
system with the FE mesh, the latter is generated mainly according to the structure
configuration and the temperature gradient. A composite element contains several
sub-elements defined by cooling pipe segments, lift joint segments, and concrete
material itself. The temperature within each sub-element is interpolated from the
corresponding nodal temperatures bound at its overlay composite element, which can
be solved by the governing equation set established according to the variational
principle for thermal field.This chapter is closedwith a number of validation examples
and two successful engineering application cases related to CVC and RCC dams.

17.1 General

In Chaps. 15 and 16, the composite element method (CEM) has been implemented
towards the simulation of rock bolts, rock discontinuities, and drainage holes within
hydraulic structures. This chapter will present a further extension towards the mass
concrete with large amount of cooling pipes and lift joints embedded within the
composite elements (Chen et al. 2011a, b; Ding and Chen 2013). The remarkable
peculiarity lies in the combination of cooling pipe system or/and lift joint system
with the FE mesh, the latter is generated mainly according to the structure con-
figuration and the temperature gradient. A composite element contains several
sub-elements defined by cooling pipe segments, lift joint segments, and concrete
material itself. The temperature within each sub-element is interpolated from the
corresponding nodal temperatures (see Figs. 14.8, 14.9, 14.10 and 14.11), which
can be solved by the governing equations established according to the variational
principle. The composite element containing cooling pipes may be retrogressed to a
classical finite element automatically after the accomplishment of artificial cooling
operation, and may be activated again, if necessary, where the later phase cooling is
demanded.

© Springer Nature Singapore Pte Ltd. 2019
S.-H. Chen, Computational Geomechanics and Hydraulic Structures,
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17.2 Cooling Pipes

17.2.1 Governing Equations

The governing equations with respect to the temperature field in a concrete structure
are well known and have been elaborated in Chap. 4. The PDE in Eq. (4.176)
together with the boundary conditions [see Eqs. (4.177–4.180)] or their equivalent
variational operator [see Eq. (4.182)] may provide solid theoretical basis to for-
mulate the CE algorithm in the form of

dI ¼ 0 ð17:1Þ

where

IðTÞ ¼
ZZZ
X

a
2

Sf gTð ÞT Sf gTð Þþ @T
@t

� @h
@t

� �
T

� �
dX

þ
ZZ
C3

�b
1
2
T2 � TaT

� �
dC

ð17:2Þ

In which fSg ¼ @
@X

@
@Y

@
@Z

� �T
is the differential operator; �b ¼ b=cq, b is the

surface exothermic coefficient, q is the material density and c is specific heat; h =
adiabatic temperature rise; a = thermal diffusivity; Ta = temperature of the water or
air; k = thermal conductivity.

1. Sub-element analysis

Firstly, a FE mesh should be generated to discretize the structure concerned. The
sizes of the finite elements are mainly dependent on the structure configuration and
temperature gradient. Then the presence of cooling pipes transfers a number of
finite elements into composite elements (Fig. 14.8) through geometrical calculation.

For the cooling water and pipe, the local Cartesian and Cylindrical systems are
needed to simplify the formulation of algorithm (see Fig. 2.7). The subscript jc;wi will
be employed to indicate the pipe (as an interface) between the concrete sub-element c
and the water sub-element wi. The superscripts ca and cy are employed to denote the
variables in the local Cartesian and Cylindrical coordinate systems, if necessary.

There are independent nodal temperatures for the concrete and the cooling water
sub-elements assembled as a elementary vector fTg ¼ fTgTc ; Tf gTw1; Tf gTw2; . . .;

�
Tf gTnw �

T bound at the composite element, which can be used for the temperature
interpolations within the sub-elements (see Figs. 14.5, 14.6, 14.7 and 14.8).

(1) Concrete sub-element c

According to Eq. (17.2) the variational function for the concrete sub-element c may
be directly expressed as
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IðTÞc ¼
ZZZ
Xc

ac
2

Sf gTcð ÞT Sf gTcð Þþ @Tc
@t

� @hc
@t

� �
Tc

� �
dX þ

ZZ
C3

�b
1
2
T2
c � TaTc

� �
dC

ð17:3Þ

(2) Cooling water sub-element wi

The hydration and boundary effects are neglected for the cooling water in the pipe.
Since the temperature is a scalar, the variational function for the cooling water
sub-element wi may be expressed in the local Cylindrical coordinate system as

IðTÞwi ¼
ZZZ
Xwi

awi
2

Sf gcyTwið ÞT Sf gcyTwið Þþ @Twi
@t

Twi

� �
dXwi

ðwi ¼ 1; 2; . . .; nwÞ
ð17:4Þ

In which Sf gcy¼ @
@r

1
r

@
@x

@
@z

� �T
is the differential operator at the local

Cylindrical coordinate system.

(3) Cooling pipe sub-element pi

Looked at as a concrete/water interface jc;wi between the concrete sub-element c and
water sub-element wi, there is no independent nodal temperature for cooling pipe
sub-element pi. We substitute for the differential of the temperature potential within
this interface by the difference in the nodal temperatures correspondent to the
concrete and cooling water respectively [see Eq. (14.6)], the variational function of
the cooling pipe can be written as

IðTÞjc;wi ¼
ZZZ
Xjc;wi

ajc;wi
2

Sf gcyTjc;wi
� �T

Sf gcyTjc;wi
� �þ @Tjc;wi

@t
Tjc;wi

� �
dX

ðjc;wi ¼ 1; 2; . . .; nwÞ
ð17:5Þ

Since the thickness tp of the pipe is rather smaller compared to its diameter, it
can be postulated that along the pipe thickness we have

ðfSgcyTjc;wiÞ ¼ const: ðjc;wi ¼ 1; 2; . . .; nwÞ ð17:6Þ

Thus Eq. (17.5) can be transformed to

IðTÞjc;wi ¼ RRR
Xjc;wi

ajc;wi
2 Sf gcyTjc;wi
� �T

Sf gcyTjc;wi
� �þ @Tjc;wi

@t Tjc;wi
� 	

rdrdxdz

¼ Rtp
RR

Cjc;wi

ajc;wi
2 Sf gcyTjc;wi
� �T

Sf gcyTjc;wi
� �þ @Tjc;wi

@t Tjc;wi
� 	

dxdz

ðjc;wi ¼ 1; 2; . . .; nwÞ

ð17:7Þ
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In which R is the radius of the cooling pipe.
Additional assumption is further made that in the local Cylindrical coordinate

system, the differential of the temperature within the interface will be

@Tjc;wi
@r ¼ Tc�Twi

tp

1
r

@Tjc;wi
@x ¼ 0

@Tjc;wi
@z ¼ 0

8>><
>>: ðjc;wi ¼ 1; 2; . . .; nwÞ ð17:8Þ

Thus Eq. (17.7) becomes

IðTÞjc;wi ¼ Rtp

ZZ
Cjc;wi

ajc;wi
2

Tc�Twi
tp

0

0

0
B@

1
CA

T Tc�Twi
tp

0

0

0
B@

1
CAþ @ðTc þ TwiÞ

2@t
ðTc þ TwiÞ

2

0
B@

1
CA dxdz

ðjc;wi ¼ 1; 2; . . .; nwÞ
ð17:9Þ

2. Composite element analysis

Taking into account of Eqs. (17.3), (17.4) and (17.9), the variational function of the
composite element containing nw cooling pipes is specified below

IðTÞ ¼ IðTÞc þ
Xnw
i¼1

IðTÞwi þ
Xnw
jc;wi¼1

IðTÞjc;wi

¼
ZZZ
Xc

ac
2

Sf gTcð ÞT Sf gTcð Þþ @Tc
@t

� @hc
@t

� �
Tc

� �
dX

þ
ZZ
C3

�b
1
2
T2
c � TaTc

� �
dC

þ
Xnw
i¼1

ZZZ
Xwi

awi
2

Sf gcyTwið ÞT Sf gcyTwið Þþ @Twi
@t

Twi

� �
dX

þRtp
Xnw
jc;wi¼1

ZZ
Cjc;wi

ajc;wi
2

Sf gcyTjc;wi
� �T

Sf gcyTjc;wi
� �þ @Tjc;wi

@t
Tjc;wi

� �
dxdz

ð17:10Þ

Introducing Eq. (14.5) into Eq. (17.10) firstly, then let @IðTÞ=@ Tf gc¼ 0 and
@IðTÞ=@ Tf gwi¼ 0, finally we discretize the time domain t by implicit differential
scheme to produce
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½H�c þ
Pnw
i¼1

½H�jc;wi
� �

Tf gc;t�
Pnw
i¼1

½h�jc;wi Tf gwi;t¼ ff gc
½H�w1 þ ½H�jc;w1
� 	

Tf gw1;t�½h�jc;w1 Tf gc;t¼ ff gw1
. . .
½H�wi þ ½H�jc;wi
� 	

Tf gwi;t�½h�jc;wi Tf gc;t¼ ff gwi
. . .
½H�nw þ ½H�jc;nw
� 	

Tf gnw;t�½h�jc;nw Tf gc;t¼ ff gnw

8>>>>>>>>><
>>>>>>>>>:

ð17:11Þ

where

H½ �c¼ K½ �c þ R½ �c þ 1
Ds C½ �c

½H�jc;wi ¼ K½ �jc;wi þ
C½ �jc;wi
Dt

½h�jc;wi ¼ K½ �jc;wi�
C½ �jc;wi
Dt

ff gc ¼ 1
Dt C½ �c Tf gc;t�Dt þ Ff gc þ

Pnw
i¼1

C½ �jc;wi
2Dt Tf gc;t�Dt þ

C½ �jc;wi
2Dt Tf gwi;t�Dt

� �
½H�wi ¼ K½ �wi þ 1

Dt C½ �wi
ff gwi ¼ 1

Dt C½ �wi Tf gwi;t�Dt þ
C½ �jc;wi
2Dt Tf gc;t�Dt þ

C½ �jc;wi
2Dt Tf gwi;t�Dt ðwi ¼ 1; . . .nwÞ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð17:12Þ

In which Tf gc;t�Dt and Tf gw;t�Dt are the nodal temperatures at time t � Dt
corresponding to the concrete and cooling water, and

K½ �c¼
RRR
Xc

ac S½ � N½ �ð ÞT S½ � N½ �ð Þ dX

R½ �c¼
RR
C3

�b N½ �T N½ � dC3

C½ �c¼
RRR
Xc

N½ �T N½ � dX

K½ �jc;wi¼
Rajc;wi
tp

RR
Cjc;wi

N½ �T N½ � dxdz

C½ �jc;wi¼
Rtp
2

RR
Cjc;wi

N½ �T N½ � dxdz

K½ �wi¼
RRR
Xwi

awi S½ �cy N½ �ð ÞT S½ �cy N½ �ð Þ dX

C½ �wi¼
RRR
Xwi

N½ �T N½ � dX

Ff gc¼
RRR
Xc

@hc
@t N½ � dXþ RR

C3

�bTa N½ � dC

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

ð17:13Þ

Equation (17.11) may be further assembled into the global governing equation
of the structure system according to the connection among nodes following a
similar way of the FEM.
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17.2.2 Simplification of the Governing Equations

(1) Simplification step 1

In view that the element size should be very small to simulate concrete placement
procedure by lifts, it is desirable and feasible to discretize the CE mesh in a way that
each composite element contains one cooling pipe segment only. In this manner
Eqs. (17.11–17.13) can be simplified as

K½ �c þ R½ �c þ
1
Dt

C½ �c þ K½ �jc;w þ
C½ �jc;w
Dt

 !
Tf gc;t� K½ �jc;w�

C½ �jc;w
Dt

 !
Tf gw;t

¼ 1
Dt

C½ �c Tf gc;t�Dt þ Ff gc þ
C½ �p
2Dt

Tf gc;t�Dt þ
C½ �p
2Dt

Tf gw;t�Dt

ð17:14Þ

K½ �w þ
1
Dt

C½ �w þ K½ �jc;w þ
C½ �jc;w
Dt

 !
Tf gw;t� K½ �jc;w�

C½ �jc;w
Dt

 !
Tf gc;t

¼ 1
Dt

C½ �w Tf gw;t�Dt þ
C½ �p
2Dt

Tf gw;t�Dt þ
C½ �p
2Dt

Tf gc;t�Dt

� � ð17:15Þ

(2) Simplification step 2

The further simplification can be made if the temperature of cooling water is
regarded as a separated variable which may be evaluated independently. In this
manner, respectively summation of the both sides of Eqs. (17.14) and (17.15) leads
to

K½ �c þ R½ �c þ
1
Dt

C½ �c þ
2 C½ �jc;w
Dt

 !
Tf gc;t ¼

1
Dt

C½ �c þ
C½ �jc;w
Dt

 !
Tf gc;t�Dt

þ 1
Dt

C½ �w þ
C½ �jc;w
Dt

 !
Tf gw;t�Dt þ Ff gc� K½ �w þ

1
Dt

C½ �w þ
2 C½ �jc;w
Dt

 !
Tf gw;t

ð17:16Þ

(3) Simplification step 3

It is also reasonable to postulate that the temperature of the cooling water inside the
pipe segment of one composite element is uniformly distributed (i.e. without spatial
variation), hence Eq. (17.16) can be simplified as
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K½ �c þ R½ �c þ
1
Dt

C½ �c þ
2 C½ �jc;w
Dt

 !
Tf gc;t ¼ Ff gc

þ 1
Dt

C½ �c þ
C½ �jc;w
Dt

 !
Tf gc;t�Dt þ

1
Dt

C½ �w þ
1
Dt

C½ �jc;w
� �

If gTw;t�Dt

� K½ �w þ
1
Dt

C½ �w þ
2 C½ �jc;w
Dt

 !
If gTw;t

ð17:17Þ

In which If g is the unit vector.

(4) Simplification step 4

Figure 17.1 is the cooling pipe schematically sketched as a straight line. This pipe is
discretized into segments sequentially embedded within adjacent composite ele-
ments (e). Suppose at any time t the inlet temperature of the cooling water T0

w;t is
known, the water temperature increment DTe

w;t of the cooling pipe segment located
in the composite element e is given by the heat balance principle

cwqwqwDT
e
w;t ¼ �k

Z
@T
@r

dt ð17:18Þ

or

DTe
w;t ¼ � k

cwqwqw

Z
@T
@r

dt ð17:19aÞ

In which cw; qw; qw are the specific heat, density and flow rate of the cooling
water respectively; k is the thermal conductivity from concrete to running water.
Since the radial temperature gradient may be calculated by @T

@r ¼ Tc;t�Dt�Tw;t�Dt

tp
, so we

have

DTe
w;t ¼ � k

cwqwqw
� Tc;t�Dt � Tw;t�Dt

tp
Dt ð17:19bÞ

In which tp is the thickness of pipe.
The cooling water temperatures at composite elements eþ 1 and e are therefore

related by

Fig. 17.1 Temperature variation along a cooling pipe
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Teþ 1
w;t ¼ Te

w;t þDTe
w;t ð17:20Þ

The cooling water temperatures calculated by Eqs. (17.19) and (17.20) are then
introduced in Eq. (17.17) for the solution of concrete temperature Tf gc;t.

17.3 Lift Joints

17.3.1 Segmental Form of Variational Function

In Fig. 14.11 all the nodal temperatures of nc sub-elements bound at the composite
element are assembled as one nodal temperature vector fTg ¼ Tf gTc1;

�
Tf gTc2; . . .; Tf gTnc �

T . The temperature Tci in each sub-element is interpolated by
Eq. (14.7).

In the following discussion the subscripts ci and jcl;cm will be employed to denote
the concrete sub-element and the lift joint segment between concrete sub-elements
cl and cm, respectively.

A global coordinate system X; Y ;Zð Þ is used to formulate the overall governing
equations. For each lift joint segment jcl;cm, a local coordinate system is defined in
Fig. (2.2). The coordinate transformation between the global and local coordinate
systems is identically defined in Eqs. (2.12) and (2.13).

The differential equation for the thermal field [see Fig. (4.176)] in a composite
element containing nc sub-elements can be written in a segmental form

@Tci
@t

¼ aci
@2Tci
@2X

þ @2Tci
@2Y

þ @2Tci
@2Z

� �
þ @hci

@t
i ¼ 1; . . .; ncð Þ ð17:21Þ

which is subject to appropriate initial condition

Tci ¼ T0 i ¼ 1; . . .; ncð Þ ð17:22Þ

and boundary conditions

Tci ¼ Tb C1j i ¼ 1; . . .; ncð Þ ð17:23Þ

�k
@Tci
@n

¼ baðTci � TaÞ C3j i ¼ 1; . . .; ncð Þ ð17:24Þ

�k
@Tci
@n

� �
¼ 1

Rc
Tci � Tciþ 1

� �
jci;ciþ 1



 ¼ bc Tci � Tciþ 1

� �
jci;ciþ 1




ði ¼ 1; . . .; nc � 1Þ

ð17:25Þ
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In Eqs. (17.21–17.25), n is the external normal direction to the boundary or lift
joint, h is the adiabatic temperature rise, a is the thermal diffusivity, k is the thermal
conductivity, c is the specific heat, ba is the concrete surface exothermic coefficient,
Rc is the thermal resistance between concrete, Ta is the ambient air temperature, Tb
is the reservoir water temperature.

The variational function corresponding to Eqs. (17.21–17.25) is

IðTÞci ¼
ZZZ
Xci

aci
2

Sf gTcið ÞT Sf gTcið Þþ @Tci
@t

� @hci
@t

� �
Tci

� �
dX

þ
ZZ
C3

�ba
1
2
T2
ci � TaTci

� �
dC

þ
Z Z
jci;ciþ 1

�bci
1
2
T2
ci � Tciþ 1Tci

� �
dC

þ
ZZ
jci;ci�1

�bci
1
2
T2
ci � Tci�1Tci

� �
dC ðci ¼ 1; . . .; ncÞ

ð17:26Þ

In which fSg ¼ @
@X

@
@Y

@
@Z

� �T
is the differential operator; �ba ¼ ba

cq and
�bc ¼ 1

Rccq
, q is the material density and c is the specific heat.

17.3.2 Governing Equations of the Composite Element
Containing Lift Joints

Introducing Eq. (14.7) into Eq. (17.26), then let dIðTÞci ¼ 0 followed by the finite
difference approximation in the time domain t, we have

K½ �ci þ R½ �ci þ K½ �ci;ci�1 þ K½ �ci;ciþ 1 þ
1
Dt

C½ �ci
� �

Tf gci;t�½K�ci;ci�1 Tf gci�1;t

� ½K�ci;ciþ 1 Tf gciþ 1;t¼
1
Dt

C½ �ci Tf gci;t�Dt þ Ff gci;t ðci ¼ 1; . . .; ncÞ
ð17:27Þ
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In which

K½ �ci¼
RRR
Xci

aci Sf g N½ �ð ÞT Sf g N½ �ð Þ dX

½K�ci;ci�1 ¼
RR

Cjci;ci�1

�bci N½ �T N½ � dC

½K�ci;ciþ 1 ¼
RR

Cjci;ciþ 1

�bci N½ �T N½ � dC

½R�ci ¼
RR
C3

�ba N½ �T N½ � dC

½C�ci ¼
RRR
Xci

N½ �T N½ � dX

Ff gci;t¼
RRR
Xci

@hci
@t N½ � dXþ RR

C3

�baTa N½ � dC ðci ¼ 1; . . .; ncÞ

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð17:28Þ

where ½K�ci is the heat stiffness (conduction and convection) matrix contributed
from sub-element ci itself, K½ �ci;ciþ 1 and K½ �ci;ci�1 are the heat stiffness matrices of
sub-element ci contributed from sub-elements ciþ 1 and ci� 1 through lift joints
jci;ciþ 1 and jci;ci�1 respectively, R½ �ci is the convection matrix of sub-element ci, C½ �ci
is the capacitance matrix of sub-element ci, Ff gci is the heat load vector due to the
hydration and convection actions of sub-element ci.

By considering the contribution from the nc sub-elements given in Eqs. (17.27)
and (17.28), the governing equations of the composite element containing nc lifts
can be simply constructed as

H½ �c1;c1 . . . H½ �c1;ci . . . H½ �c1;nc
. . . . . . . . . . . . . . .

H½ �ci;c1 . . . H½ �ci;ci . . . H½ �ci;nc
. . . . . . . . . . . . . . .

H½ �nc;c1 . . . H½ �nc;ci . . . H½ �nc;nc

2
6666664

3
7777775

fTgc1;t
. . .

Tf gci;t
. . .

fTgnc;t

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

¼

1
Dt

C½ �c1 Tf gc1;t�Dt þ Ff gc1;t
. . .

1
Dt

C½ �ci Tf gci;t�Dt þ Ff gci;t
. . .

1
Dt

C½ �nc Tf gnc;t�Dt þ Ff gnc;t

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð17:29Þ
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where

H½ �ci;ci¼ K½ �ci þ R½ �ci þ K½ �ci;ci�1 þ K½ �ci;ciþ 1 þ 1
Dt C½ �ci

� 	
ðci ¼ 2; . . .; nc � 1Þ

H½ �c1;c1¼ K½ �c1 þ R½ �c1 þ K½ �c1;c2 þ 1
Dt C½ �c1

� 	
H½ �nc;nc¼ K½ �nc þ R½ �nc þ K½ �nc;nc�1 þ 1

Dt C½ �nc
� 	

H½ �ci;cj¼
� K½ �ci;cj ðj 6¼ iÞ if ci and cj are contacted
0 ðj 6¼ iÞ if ci and cj are not contacted

�

8>>>>>>><
>>>>>>>:

ð17:30Þ

Equation (17.29) is further assembled with that of other finite elements or
composite elements to form the overall governing equation of the structure system.
Any composite element contains no lift joint will be retrogressed to the classical
finite element automatically.

17.4 Verifications and Applications

17.4.1 Concrete Block Containing a Single Cooling Pipe

This verification study is carried out on the concrete block (1 m in width) illustrated
in Fig. 17.2. At its center, a cooling pipe with inner diameter of 0:014 m and outer
diameter of 0:016 m is embedded. The parameters used in the computation are:
initial temperature of the casted concrete T0 ¼ 0 °C, cooling water temperature
Tw ¼ 0 °C, a ¼ 0:0040 m2=h, k1 ¼ 1:66 kJ/(m h °C), h tð Þ ¼ 25ð1� e�0:35tÞ. All
the boundary surfaces are isolated.

Fig. 17.2 Concrete block
containing one cooling pipe
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The standard FEM with fine mesh and the CEM with two mesh refinements are
generated for the study.

Figure 17.3 shows the FEM mesh projected on the X � Z plane. The concrete is
discretized into solid elements, and the nodes on the inner wall of the cooling pipe
are defined as the first type boundary [Tb ¼ 0 °C in Eq. (4.178)]. This computation
is intended to provide a “benchmark” for the CEM computation.

Figure 17.4 shows the fine and coarse CEM meshes projected on the X � Z
plane, where the central element is defined as the composite element containing a
cooling pipe.

Figure 17.5 displays the history of the temperature averaged over the whole
concrete block. It agrees well to the analytical solution (Zhu 1998). Figures 17.6,

Fig. 17.3 FE mesh projected on the X � Z plane (3800 elements; 4800 nodes). a Overall view;
b detailed view near the cooling pipe

Fig. 17.4 CE mesh projected on the X � Z plane. a Fine mesh 1 (514 elements; 1052 nodes);
b coarse mesh 2 (29 elements; 64 nodes)
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17.7, 17.8 and 17.9 present the temperature histories of typical points A, B, C, D
(see Fig. 17.2). It can be found that:

– The nearer to the cooling pipe, the lower is the peak temperature, and the faster
is the temperature drop.

– The density of composite elements has remarkable influence on the computation
accuracy, especially in the vicinity of the cooling pipe.

Fig. 17.6 Temperature
history at point A

Fig. 17.5 History of the
temperature averaged over the
whole concrete block

Fig. 17.7 Temperature
history at point B
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17.4.2 Concrete Block Containing a Single Lift Joint

The size of the concrete block is 10.0 m � 2.0 m � 1.0 m (length � width �
height), at Z = 0.5 m there is a horizontal lift joint with thickness of 0.05 m (see
Fig. 17.10). Two cases are studied to show the precision of the CEM using simpler
mesh in contrast to its counterpart FEM using fine mesh with thin-layer elements
for the lift joint.

Fig. 17.8 Temperature
history at point C

Fig. 17.9 Temperature
history at point D

Fig. 17.10 Finite element mesh of case 1 (60 elements; 132 nodes)
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(1) Case 1

The initial temperature of the upper lift is 10 °C, and that of the lower lift is 20 °C.
All the boundaries are isolated, and hydration heat is not considered.

Figure 17.10 shows the finite element mesh in which the lift joint is discretized
by the thin-layer elements of 0.05 m thick. This computation is intended to provide
a “benchmark” for the CEM computation. Figure 17.11 shows the composite ele-
ment mesh. It contains 66 nodes and 20 elements with the lift joint embedded at
their horizontal center.

The conductivity coefficient k of the concrete and lift joint are 200 and 100 kJ/
(m.d.) respectively. The thermal resistance Rc is trialed from 0.1 to 0.01 until 0.001
(m2 h °C/kJ), respectively. The temperature history at the center of the concrete
block represented by points ① (CEM) and ⑤ (FEM) is displayed in Fig. 17.12,
which validates that a thermal resistance Rc = 0.01 (m2 h °C/kJ) gives rise to the
best agreement between the FEM and CEM.

Figures 17.13 and 17.14 present the temperature history at the dual points
located at the vicinity sides of the lift joint (see Figs. 17.10 and 17.11). It can be
found that the temperature gradient between two lifts will be lowered down as the
ongoing of the time, and the final stable (static) temperature of the whole concrete
block is exactly the average of the initial temperature over the two lifts.

Fig. 17.12 Temperature
history at the center of
concrete versus thermal
resistance Rc

Fig. 17.11 Composite element mesh of case 1 (20 elements; 66 nodes)
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(2) Case 2

Suppose the lower concrete lift is old with stable temperature of 20 °C. At initial
time t ¼ 0 the upper lift is placed with initial temperature 10 °C and with the
adiabatic temperature rise given by

h ¼ 22:42s=ð2:8þ sÞ ð17:31Þ

Figure 17.15 illustrates the temperature history at dual points ① and ②, ③ and
④ (see Fig. 17.11), from which the following phenomena can be observed.

– Point ①. The temperature is influenced both by the old concrete below and the
hydration heat of itself. It mounts fast at the beginning, as the time goes on it
slows down until to the stable temperature.

– Point ②. The temperature drops first, which is due to the lower placing (initial)
temperature of the upper lift. Then the temperature climbs again pushed by the
hydration heat from the upper lift.

Fig. 17.14 Temperature
history at dual points ⑤ and
⑥ (FEM)

Fig. 17.13 Temperature
history at dual points ① and
② (CEM)
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– Points ③ and ④. The temperature histories at these dual points are similar to
that at points ① and ②, but their temperature fluctuations are not so strong,
which is attributable to their longer distance from the lift joint.

17.4.3 CVC Arch Dam: Xiaowan Project, China

1. Presentation of the project

Vide Chap. 8.

2. Characteristics of the computation

(1) CE mesh

Among many technical problems need to cope with, the simulation of temperature
field is crucial one in each design phase of Xiaowan Arch Dam. It is related to many
factors such as the ambient conditions, cooling schemes (see Fig. 17.16), con-
struction and impounding schedules and so on. A 3D model for the 22# dam
monolith is presented herein towards the simulation and feedback analysis of the
thermal field during the construction period, which is intended to support the design
of temperature control and cracking countermeasures.

The 22# dam monolith is simulated from the first concrete batch at base
(EL.950.5 m) until the pouring elevation of 1050 m. The CE model is constructed
by 452,760 elements and 474,057 nodes, of which 43,846 are composite elements
containing cooling pipe segments (see Fig. 17.17). The arrangement of cooling
pipes in the CE mesh is illustrated in Fig. 17.18.

(2) Thermal parameters

According to the laboratory test and statistical regression, the thermal parameters of
the initially designed concrete are listed in Table 8.5.

Fig. 17.15 Temperature history at dual points ① and ②, ③ and ④
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Fig. 17.17 CE mesh of dam
monolith 22# (452,760
elements; 474,057 nodes)

Fig. 17.16 Layout of cooling pipes on the lift of dam monolith 22#
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(3) Construction schedule

The pouring process of dam monolith 22# is implemented according to Fig. 17.19.

(4) Air temperature

According to the observed data of the meteorological station at Xiaowan Dam
site (Fig. 17.20), the air temperature is fitted by the formula

Fig. 17.18 Layout of cooling
pipes in dam monolith 22#
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T ¼ 19:784þ 7:54� cos½0:0172� ðt � 169Þ� ð17:32Þ

In which t is the last time (day) from the date 2006-01-15.

(5) Cooling scheme

The specific requirements of Xiaowan Arch Dam for cooling pipes are:

– Material. The metal pipes [the coefficient of thermal conductivity is 262.8 kJ/
(m h °C)], and the plastic cooling pipes [the coefficient of thermal conductivity
is 1.66 kJ/(m h °C)] are selectively used for cooling.

– Arrangement. Snakelike arrangement is implemented for the layout of cooling
pipes, their spacing is 1.5 m � 1.5 m (horizontal � vertical) in restrained zones
and 1.5 m � 3.0 m (horizontal � vertical) in unrestrained zones.

– Water. The water flux is 1.3–1.5 m3/h for single pipe and its flow direction is
reverted per 24 h.

– Standard of the first phase cooling. The highest temperature is controlled below
29 °C in the first cooling, the target temperature is 18–20 °C at the end of the
first cooling phase. The cooling operation is undertaken within 15–25 days.

– Standard of the second phase cooling. The second cooling phase should be
started 45 days before the joint grouting for the arch dam closure, where the
cooling water temperature is 6–8 °C, the water flux is 1.2–1.4 m3/h.

Fig. 17.19 Pouring process of dam monolith 22#

Fig. 17.20 Air temperature history at Xiaowan Dam site
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3. Computation results

(1) Parametric inversion

In the inverse (back) analysis for the adiabatic temperature rise, the formula h ¼
h0s=ðsþ nÞ is generally applicable. However, we find that the formula h ¼
h0ð1� e�msÞ is able to fit the temperature rise better after the second cooling phase.
Related parameters by the inverse analysis are summarized in Table 17.1.

The inversion for cooling parameters shows that in the first cooling, the actual
cooling water temperature is 7–9 °C and the cooling duration is 18–22 days; while
in the second cooling, the actual cooling water temperature is 9–11 °C and the
cooling duration is 20–30 days.

(2) Contrast between the computation and monitoring data

There are instrumentation points systematically layout in the 22# dam monolith at
different elevations. The typical points at the EL.975 m, EL.1005.5 m, and
EL.1030 m are selected for the contrast study (see Figs. 17.21, 17.22, 17.23 and
17.24).

It can be seen that the calculation results are nearly identical to the monitoring
data. During the concrete pouring period, the temperature mounts rapidly. Due to
the first cooling, the temperature gradually steps down afterwards. Then in the
suspension period from the finish of the first cooling phase to the start of the second
cooling phase, the concrete temperature rise resumes to a certain extent. In the
second cooling, the concrete temperature is further significantly reduced, and after
the second cooling, there is solely a minor temperature fluctuation.

Fig. 17.21 Temperature history at point A (0.1 m from upstream dam surface at EL.975 m)

Table 17.1 Thermal parameters by the inverse analysis

Grade Adiabatic temperature rise before
secondary cooling h (°C)

Adiabatic temperature rise after
secondary cooling h (°C)

C40 h ¼ 30s=ð3:8þ sÞ (design) h ¼ 6:0ð1� e�0:006sÞ (inversion)
h ¼ 30:4s=ð3:92þ sÞ (inversion)
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In conclusion, the concrete temperature after the first cooling is under the control
of stipulated design value. But there is a 3–5 °C residual rise of temperature after
the first cooling, which may bring about an adverse effect during the second stage
cooling. There is also a residual temperature rise after the second cooling, which
may result in an additional compressive stress after the transverse joints grouting.

Fig. 17.23 Temperature history at point C (58 m from upstream dam surface at EL.1005.5 m)

Fig. 17.24 Temperature history at point D (9.4 m from upstream dam surface at EL.1030 m)

Fig. 17.22 Temperature history at point B (31 m from upstream dam surface at EL.975 m)
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17.4.4 RCC Gravity Dam: Guangzhao Project, China

(1) Presentation of the project

Guangzhao Hydropower Project with a RCC gravity dam at the height of 200.5 m
and with the installated generator capacity of 1040 MW (4 � 260 MW), is located
on the Beipanjiang River, Guizhou Province, China. The main purpose of the
project is electricity power generation with additional benefits in water regulation
and irrigation. The normal storage level (NSL) of the reservoir is EL.745.00 m, and
the corresponding reservoir capacity is 3135 million m3. The dam is accommodated
with three spillway chutes on its surface capable of the maximum discharge
9857 m3/s. The whole crest length is 410 m and the dam consists of 20 monoliths
(Fig. 17.25).

The concrete placement was launched in May, 2005, the reservoir impounding
was started on December 30, 2007, and the dam construction was completed in
July, 2008. Figure 17.26 is Guangzhao Dam during the construction phase
(2007-05-15).

In the whole construction period, the feedback analysis for the thermal field and
thermal stress field was carried out for the purpose of temperature and crack control.

Figure 17.27 shows the profile of the overflow dam monolith whose thermal
study will be demonstrated hereafter.

(2) Characteristics of the computation

There are altogether 58 concrete lifts whose thickness is approximately 3 m.
Table 17.2 lists the thermal parameters of the concrete and Table 17.3 displays the
construction schedule with placing temperatures.

Fig. 17.25 Layout of Guangzhao Project (Downstream elevation view)
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Figure 17.28 is the finite element mesh discretized by 5330 nodes and 2379
elements, in which the concrete is discretized into solid elements and the lift joints
are discretized into thin-layer elements of 0.05 m thick. Figure 17.29 is the com-
posite element mesh discretized by 1008 nodes and 440 composite elements con-
taining lift joints.

Fig. 17.26 Guangzhao Dam during construction (2007-05-15)

Fig. 17.27 Profile of the
overflow dam monolith of
Guangzhao Project
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Table 17.2 Thermal parameters of concrete

Concrete Specific heat c
(kJ/kg °C)

Density q
(kg/m3)

Thermal diffusivity a
(kJ/m h °C)

Adiabatic temperature
rise h (°C)

C1, Cb1, Cb2,
C3, C4

0.97 2450 8.38 h ¼ 22:4s=ðsþ 2:80Þ

R I 0.956 2445 8.29 h ¼ 20:2s=ðsþ 3:02Þ
R II 0.935 2438 8.14 h ¼ 17:0s=ðsþ 3:25Þ
R III 0.917 2464 8.11 h ¼ 16:5s=ðsþ 3:50Þ
R IV 0.973 2452 8.42 h ¼ 22:0s=ðsþ 2:89Þ
R V 0.964 2450 8.25 h ¼ 19:6s=ðsþ 2:91Þ

Table 17.3 Concrete placing temperature versus time since May, 2005

Time (day) 0 28 42 52 59 75 89 96 102 113

Placing temperature (°C) 18.5 20.4 23.4 23.4 22.5 23.5 28 24.5 30 28.1

Time (day) 128 144 158 174 207 215 221 231 244 254

Placing temperature (°C) 30.9 29 30 31 30 29 29 29.6 29.4 29.5

Time (day) 262 273 287 303 313 320 332 338 345 351

Placing temperature (°C) 30 29.5 29.5 26 26 25 20 18 17 18

Time (day) 372 386 393 398 412 448 453 457 467 492

Placing temperature (°C) 17 21 21 22 24 27 26 28 28.5 29.5

Time (day) 499 505 512 518 526 533 539 545 552 599

Placing temperature (°C) 32 32 31.5 29.5 32 31.5 30.5 31.5 32.5 30.5

Time (day) 612 662 667 672 677 682 687 692 – –

Placing temperature (°C) 28.6 26.8 28.7 23.4 22.5 24.5 18.2 18.2 – –

Fig. 17.28 Finite element mesh (2379 elements; 5330 nodes). a Overall view; b detailed drawing

17.4 Verifications and Applications 855



(3) Computation results

Figures 17.30 and 17.31 show the temperature distributions in the dam body on the
400th day after the starting of concrete placement. These results tell us that:

– The thermal fields obtained by the CEM and FEM exhibit similar distributions.
– At the lower and central portion (older concrete) of the dam, the temperature

gradient is small.
– The temperature gradient is much larger at the vicinity of the upstream and

downstream surfaces. This is mainly due to the difference in the concrete
temperature and ambiance temperature. These portions should be tightly mon-
itored to control the surface cracking.

Fig. 17.29 Composite element mesh (440 elements; 1008 nodes). a Overall view; b detailed
drawing

Fig. 17.30 Dam temperature
on the 400th day after the
starting of concrete placement
(FEM)
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– The temperature gradient is very large and complicatedly distributed at the
vicinity of the top surface of fresh concrete. This is mainly attributable to the
difference in the concrete temperature and ambiance temperature, and to the
temperature discontinuity between the old/new lifts as well. The vertical
cracking could manifest easily if the temperature control countermeasures are
not well observed.

Figures 17.32 and 17.33 illustrate the temperature histories on the vicinity sides
of a lift joint at monitoring point ① (see Fig. 17.27), which indicate clearly the
temperature difference between the upper and lower lifts: it emerges at the begin-
ning of concrete placement, and reaches the maximum after a short period, then
decays as the ongoing of time.

Figure 17.34 is the monitored temperature history at the same point. This
monitored temperature can be looked at as “averaged” one around the position,
since the conventional monitoring facilities are not able to detect the temperature
difference between lifts. Bearing this in mind, it can be announced that this mon-
itored temperature provides positive validation for the computation results by both
the CEM (see Fig. 17.33) and FEM (see Fig. 17.32).

The RCC gravity dam example justifies that the CEM algorithm, on one hand, is
able to provide high precision results concerning the overall spatial-time

Fig. 17.31 Dam temperature
on the 400th day after the
starting of concrete placement
(CEM)

Fig. 17.32 Temperature
history at monitoring point ①
(FEM)
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distribution of temperature field as well as the detailed characteristics of the tem-
perature gradient across lift joint; on the other hand, is simpler in the pre-process
attributable to the abandonment of thin-layer elements demanded by lift joints.

After the accomplishment of Guangzhao Dam (Fig. 17.35), it has been working
under perfectly condition insofar.

Fig. 17.33 Temperature
history at monitoring point ①
(CEM)

Fig. 17.34 Temperature
history at monitoring point ①
(monitoring)
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Chapter 18
Comprehensive Application
of the Composite Element Method:
Numerical Test of Jointed Rock Masses

Abstract With the significant progress in computational geomechanics,
multi-scale or multi-level computation termed as the numerical testing (NT) or
numerical material (NM), has become more and more acceptable towards the study
on the mechanical behaviors of rock-like materials. Nevertheless, it is rather
cumbersome that the NT for the properties of rock-like materials demands large
computation efforts arise from various sizes of testing specimen and stochastic
distributions of aggregate in a concrete mass or discrete fracture network (DFN) in a
rock sampling window. Therefore, from practical motivations it is attractive to
introduce the CEM with facilitated pre-process into the NT that allows for
repeatedly testing on a large number of specimens. In this chapter, the philosophy
and roadmap of the NT towards the permeability matrix and elastic compliance
matrix as well as their corresponding REV for fractured rocks are elucidated by the
hybrid DFN/CEM.

18.1 General

The major tasks in the material property study of rock-like materials are multi-fold
including the description of seepage characteristics (Louis 1969; Snow 1969; Long
1996; Hall and Hoff 2012) and deformation/strength characteristics (Zienkiewicz
and Pande 1976; Pande and Gerrard 1983; Sitharam et al. 2001; Mehta and
Monteiro 2006). As we have previously declared, the computation methods for
rock-like materials fall into implicit (or equivalent continuum) approach and
explicit (or discrete) approach. The former takes the influences of intrinsic material
structures (e.g. discontinuities, aggregates) into account by means of the perme-
ability and elasticity (compliance) matrices but neglects their exact positions;
whereas the latter considers the material structures deterministically. The crucial
difficulty lies in the explicit approach is the pre-process for generating computation
mesh in addition to the consumption of large computer capacity, whereas the
applicability of implicit approach is tightly linked with the existence of equivalent
parameters such as the permeability tensor and elasticity compliance matrix and the
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corresponding representative element volume (REV). Nevertheless, we have to
reluctantly admit that the quantitative solution of them through laboratory and field
tests is very difficult and expensive.

With the advance in computer technology, multi-scale or multi-level computa-
tion based on numerical methods (e.g. the FEM) termed as the “Numerical Testing”
(NT) or “Numerical material” (NM), has become acceptable towards the study on
the mechanical behaviors of rock-like materials. Take the ‘‘numerical concrete” for
example (Roelfstra et al. 1985; Wittmann et al. 1985), it numerically builds
meso-scale samples for concrete as a three-phase composite material consisting of
coarse aggregates (greater than 4.75 mm in size), mortar matrix, and interfacial
transition zone (ITZ) between them. Then the computations emulating the physical
tests with regard to stress/deformation, temperature conductivity, and water
seepage/absorption, are carried out systematically to explore their response mech-
anisms, equivalent parameters, and of course, the correspondent REV (Keskin et al.
2011; Zhou et al. 2013; Abyaneh et al. 2014; Li et al. 2016; Xu and Chen 2016; Xu
et al. 2017; Li et al. 2017).

In geotechnical literature, a “fracture” is any separation in a geologic formation,
such as a joint or a fault, that frequently forms a deep fissure or crevice in the rock
and divides the rock into pieces. In this chapter, we observe the convention to use
the term “fractures” in lieu of and only for the term “joints” that most frequently
occur as joint sets and systems.

The DFN method is a special discrete method that initially considered fluid flow
and transport processes in rock masses through a system of connected fractures. It
was created in the early 1980s and nowadays is most useful for the study on the
flow in fractured rock for the derivation of their equivalent continuum flow and
transport properties (Schwartz et al. 1983; Long et al. 1985; Andersson and
Dverstop 1987; Dershowitz and Einstein 1987; Zimmerman and Bodvarsson 1996).
Solution of flow field for individual fracture in the DFN may been obtained using
the closed-form formulas, the pipe models (Cacas et al. 1990) and the channel
lattice models (Tsang and Tsang 1987).

The stochastic simulation of fracture system is the geometric basis of the DFN
method (Louis and Maini 1970; Baecher et al. 1977; Cruden 1977; Hudson and
Priest 1983; Kulatilake and Wu 1984; Hakami and Larsson 1990; Kulatilake et al.
1993; Nicholl et al. 1999). A critical issue is the treatment of bias in the estimation
of fracture densities, trace lengths and connectivity from conventional surface or
borehole mappings. Development using circular windows also has been reported in
Mauldon (1998), Mauldon et al. (2001). Power law has been found to exist for the
trace length of fracture and has been applied for representing fracture system
connectivity (Renshaw 1999). The fractal concept also has been adopted in order to
consider the scale dependence of the fracture system and for up-scaling the per-
meability properties (Barton and Larsen 1985; Chiles 1988; Barton 1995).

In recent years, computation methods such as the FEM and DEM are exercised
for stochastic rock samples containing complicated fracture system to get the
permeability tensor (Wei et al. 1995; Zhang et al. 1996; Kulatilake and Panda 2000;
Öhman and Niemi 2003; Min et al. 2004) and the elastic compliance matrix
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(Wei and Hudson 1986; Kulatilake et al. 1993; Min and Jing 2003) as well as the
corresponding REV. The algorithm is generally formulated in the following steps.

– First, a DFN in a sampling window is generated which will be used as the parent
stochastic DFN;

– Next, a series of fractured rock blocks with different sizes and orientations are
defined as test samples for each stochastic DFN;

– Then the numerical methods (e.g. the FEM or DEM) are applied to the fractured
rock samples to evaluate their fluid flow fields or deformation fields;

– Finally the permeability matrices or elastic compliance matrices of the samples
are obtained and the existence of REV is verified.

It is obvious that the numerical estimation of permeability tensor or elastic com-
pliance matrix demands large computation efforts related to various sample sizes and
orientations. The situation becomesmore rigorous if the stochastic characteristics of a
rock fracture system are taken into account, where many discrete fracture networks in
a sampling window are generated as the parent stochastic DFNs, on which the NT is
operated. Therefore, from practical reasons it is attractive to introduce the CEM into
the NT that allows for repeatedly tests of rock samples containing stochastic fracture
networks, attributable to its greatly facilitated pre-process operation.

In the hereinafter coverage of this chapter, we will be focused on the philosophy
and roadmap of the NT towards fractured rocks by the hybrid of the discrete
fracture network (DFN) method and the CEM (Chen et al. 2008, 2012).

18.2 Mathematical and Mechanical Tools

18.2.1 Generation of Discrete Fracture Networks

The Monte-Carlo method is employed to generate discrete fracture network (DFN),
which includes the following main steps.

– Investigation and record of the fracture system for a sampling window in the
geology unit concerned;

– Statistics analysis of the measured data;
– Use is made of the Monte-Carlo method to produce random fractures;
– Construction of the fracture network in the sampling window.

In general, the characteristics (mid position, dip direction, dip angle, trace length,
aperture, deformation and strength parameters) of rock fractures are correlated (e.g.
fracture length versus aperture), studies on the correlations between the charac-
teristics and fractal dimension may also be found in Charkaluk et al. (1998). These
correlations request extra field measuring data which are not easy to be accessed by
conventional engineering practices. Without loss of generality, the independent
assumption of these characteristics is adopted in this book to simplify the stochastic
parent DFN generation.
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In the following discussion, Nsjoint denotes the amount of fracture sets, Njoint

denotes the amount of fractures in the fracture set Isjoint, N denotes the amount of
stochastic parent DFNs generated in a sampling window. By the assumption that
the geometrical characteristics (mid position, dip direction, dip angle, trace length,
aperture) of each fracture are independent, the DFN generating algorithm is flow
charted in Fig. 18.1.

18.2.2 Seepage Flow in Rock Fracture

Vide Sect. 2.4.2 (Chap. 2).

18.2.3 Characteristics of the Permeability Tensor

For a two-dimensional problem, if the new coordinate system x0 � z0 rotates by an
angle of a with respect to the old coordinate system x� z, the transformation of the
permeability tensor can be defined as

kx0x0
kz0z0
kx0z0

8<
:

9=
; ¼

cos2 a sin2 a sin 2a
sin2 a cos2 a � sin 2a

� sin 2a
2

sin 2a
2

cos 2a

2
64

3
75 kxx

kzz
kxz

8<
:

9=
; ð18:1Þ

If the condition kx0z0 ¼ 0 is imposed to the third row of Eq. (18.1), the equation
for the solution of principal direction can be gotten

tanð2aÞ ¼ 2kxz
kxx � kzz

ð18:2Þ

And the principal permeability coefficients are calculated according to

k1 ¼ kxx þ kzz
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkxx�kzz

2 Þ2 þ k2xz

q
k2 ¼ kxx þ kzz

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkxx�kzz

2 Þ2 þ k2xz

q
8<
: ð18:3Þ

One of the important characteristics of the permeability tensor is the existence of
permeability ellipse (2D) or permeability ellipsoid (3D), which can be visualized
easily in two-dimensional case. Suppose the x axis and z axis are the principal
permeability directions (see Fig. 18.2), then according to Eq. (18.1) the perme-
ability coefficient at the direction forming an included angle of a anti-clockwise
with the x axis can be calculated by the formula
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Fig. 18.1 Flow chart for the fracture network generation
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ka ¼ k1 cos2 aþ k2 sin2 a ð18:4Þ

Denoting

x ¼ cos a=
ffiffiffiffiffi
ka

p
z ¼ sin a=

ffiffiffiffiffi
ka

p
�

Equation (18.4) becomes

x2

ð 1ffiffiffi
k1

p Þ2 þ z2

ð 1ffiffiffi
k2

p Þ2 ¼ 1 ð18:5Þ

Equation (18.5) is visualized by the ellipse in Fig. 18.2, with long axis 1=
ffiffiffiffiffi
k2

p
and short axis 1=

ffiffiffiffiffi
k1

p
. At the a direction the length of elliptical radius vector is

1=
ffiffiffiffiffi
ka

p
.

18.2.4 Characteristics of the Elastic Compliance Matrix

In the engineering computation, second-order stress and strain tensors are expressed
by corresponding vectors, and fourth-order elastic tensor is expressed by elastic
matrix. The latter is the inverse of the elastic compliance matrix, i.e.

D½ � ¼ C½ ��1 ð18:6Þ

For a two-dimensional plane stress problem, if the new coordinate system x0 � z0

rotates by an angle of a with respect to the old coordinate system x� z, the
transformation of elastic compliance matrix can be defined by

Fig. 18.2 Ellipse of a
permeability tensor
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C0½ � ¼ T½ ��1
� �T

C½ � T½ ��1 ð18:7Þ

T½ � ¼
cos2 a sin2 a 2 sin a cos a
sin2 a cos2 a �2 sin a cos a

� sin a cos a sin a cos a cos2 a� sin2 a

2
4

3
5 ð18:8Þ

where C½ � and C0½ � are the elastic compliance matrix in the old and the new
coordinate systems, respectively; T½ � is the transformation matrix.

Any component of the elastic compliance matrix C0½ � can be plotted against the
rotation angle a to form polar diagram. Under the circumstances of orthotropic
symmetry where a rock mass contains two sets of orthogonal and continuous
fractures in two-dimensional case (see Fig. 18.3), the elastic compliance matrix can
be explicitly constructed as

½C� ¼
1
E þ 1

kn1s1
� l

E 0
1
E þ 1

kn2s2
0

Sym: 2ð1þlÞ
E þ 1

ks1s1
þ 1

ks2s2

2
664

3
775 ð18:9Þ

In which E is the Young’s modulus of the intact rock; l is the Poisson’s ratio of
the intact rock; knj is the fracture normal stiffness; ksj is the fracture shear stiffness; sj
is the fracture spacing.

According to Eqs. (18.7)–(18.9), when the application of normal stress r is not
perpendicular to the fractures (see Fig. 18.3), the compliance component Ca of the

Fig. 18.3 Sketch showing the notations of orthogonal fracture sets
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fractured rock mass along the direction of stress with an rotation angle a is cal-
culated by

Ca ¼ 1
E
þ 1

s1kn1
cos4 aþ 1

s1ks1
cos2 a sin2 aþ 1

s2ks2
cos2 a sin2 aþ 1

s2kn2
sin4 a

ð18:10Þ

Suppose that the Young’s modulus and the Poisson’s ratio of the intact rock are
E ¼ 1:8� 104 (Mpa) and l ¼ 0:28 respectively; the normal stiffness and shear
stiffness are kn1 = 100 (Mpa/m) and ks1 = 50 (Mpa/m) for the first fracture set
(vertical), and kn2 ¼ 200 (Mpa/m) and ks2 ¼ 100 (Mpa/m) for the second fracture
set (horizontal), respectively; the spacing is s1 ¼ 1 (m) for the first fracture set and
s2 ¼ 1.5 (m) for the second fracture set, respectively. Figure 18.4 draws the cor-
responding polar diagram where the solid line is the analytical solution by
Eq. (18.10), while the broken line is the NT solution which will be illustrated later
in this chapter.

When the fractures are neither orthogonal nor persistent, the analytical form of
Eq. (18.9) does not hold. However, by the NT such polar diagram always can be
obtained, which is useful for the fluctuation examination of elastic compliancematrix.

18.3 Numerical Test for Permeability Characteristics

18.3.1 Configuration of the Test

For the nth parent DFN in the sampling window, a series of smaller rock samples
are extracted, which exhibit different sizes and orientations. Figure 18.5 shows a
fractured rock sample which forms an included angle of a referring to the x axis, the
regular composite element mesh is also plotted (in broken lines) in this figure.

Fig. 18.4 Polar diagram of
elastic compliance with two
sets of orthogonal persistent
fractures
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18.3.2 Computation of Permeability Coefficients

A careful design of the boundary conditions may facilitate the permeability coef-
ficient computation.

We write the general form of the Darcy’s law

Qx ¼ �kxx
@/
@x Syz � kxy

@/
@y Syz � kxz

@/
@z Syz

Qy ¼ �kyx
@/
@x Sxz � kyy

@/
@y Sxz � kyz

@/
@z Sxz

Qz ¼ �kzx
@/
@x Sxy � kzy

@/
@y Sxy � kzz

@/
@z Sxy

8>>><
>>>:

ð18:11Þ

where Syz, Sxz and Sxy are the areas of the boundary surfaces which can be calculated
by

Syz ¼ Ly � Lz
Sxz ¼ Lx � Lz
Sxy ¼ Ly � Lx

8<
: ð18:12Þ

Here the pseudo three-dimensional problem is concerned that the sample is a
right hexahedron with unit thickness Ly along the y axis. At the x� z plane (see
Fig. 18.6), the length along the x axis is Lx and the length along the z axis is Lz. The
fracture network is symmetry respecting to the x� z plane, this means that in
Eq. (18.11) we may postulate that

Fig. 18.5 Sample rotated by
an angle of a
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kxy ¼ kzy ¼ 0 ð18:13Þ

The two boundary surfaces perpendicular to the y direction are supposed to be
imperious, this further means that in Eq. (18.11) we have

Qy ¼ 0 ð18:14Þ

At the two boundary surfaces perpendicular to the x direction, the hydraulic
potentials are defined as / ¼ h1 and / ¼ h2, respectively; at the two boundary
surfaces perpendicular to the z direction, the hydraulic potential / varies linearly
from h1 to h2. The average hydraulic gradients are calculate by

@/
@x ¼ h2�h1

Lx
@/
@y ¼ 0
@/
@z ¼ 0

8><
>: ð18:15Þ

According to the calculated flow velocities in the intact rock and fractures, the
flow rates at the four pervious boundary surfaces can be obtained. It is worthwhile
to point out that usually the flow rates are not identical at the two parallel boundary
surfaces, i.e.

Fig. 18.6 Design of a numerical test sample
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Qx1 6¼ Qx2

Qz1 6¼ Qz2

�

Therefore the average flow rates are calculated as

Qx ¼ Qx1 þQx2
2

Qz ¼ Qz1 þQz2
2

�
ð18:16Þ

According to Eqs. (18.11)–(18.16), the permeability coefficients along and
perpendicular to the x direction can be calculated by the formulas

kxx ¼ � ðQx1 þQx2ÞLx
2ðh2�h1ÞSyz

kxz ¼ � ðQz1 þQz2ÞLx
2ðh2�h1ÞSxy

(
ð18:17Þ

When the sample is subjected to the rotating transformation with an angle of a
anti-clockwise (see Fig. 18.5), Eq. (18.17) is held. In this case the permeability
coefficients calculated by Eq. (18.17) are that along the directions of a and b, which
will be denoted as ka and kb, respectively. This rotating operation is important in the
study of permeability tensor and its REV.

18.3.3 Identification of Permeability Tensor and REV

The applicability of the equivalent continuum theory dependents on the following
conditions: the REV for hydraulic behavior exists and whose size is much smaller
than the characteristic dimension of the structure concerned. The REV is theoret-
ically defined as the size beyond which the hydraulic permeability tensor remains
unchanged. In the practical study however, the REV is normally identified when the
permeability components only exhibit small fluctuation following the augment in
the size of rock sample.

Denote vi as the ith attempt of the REV volume, the procedure for the identi-
fication of permeability tensor and REV is flow charted in Fig. 18.7.

18.4 Numerical Test for Deformation Characteristics

18.4.1 Configuration of the Test

For two-dimensional plane stress problem, both the parent DFN and the sampling
window are right hexahedron with unit thickness, and all fractures are perpendicular
to the plane studied.
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Fig. 18.7 Flow chart for the identification of permeability tensor and REV
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The displacement boundary conditions in Fig. 18.8 are so designed to let the
sample be statically determinate imposing not extra local stresses within the sample.
Figure 18.8 also shows the loads applied on the test sample, which are all uniformly
distributed at the sample edges. In Fig. 18.8 the local coordinate system x0 � z0 for
the extracted test sample is defined, too.

In order to obtain the compliance matrix, three independent load combinations
are applied respectively. We use three kinds of independent unit load to facilitate
the deduction of compliance matrix which are noted in Fig. 18.9, where
rx0 ¼ �1 MPa, rz0 � 1 MPa and sx0z0 ¼ 1 MPa. Although these boundary unit
loads lead to a complicated stress distribution within the sample, yet the equivalent
stresses uniformly distributed within the sample can be simply represented by these
boundary unit loads.

Fig. 18.8 Sketch showing the boundary conditions and loads of a numerical test sample
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18.4.2 Computation of Deformation Coefficients

For each unit load the computation using CEM produces an overall displacement
field in the sample, then the equivalent strains ef ga, ef gb and ef gc corresponding to
Fig. 18.9a–c can be calculated accordingly. Use is made of the definition of elastic
compliance matrix, three equations can be established to link these equivalent
strains and the corresponding unit loads in the form of

eax0
eaz0
cax0z0

8<
:

9=
; ¼ C0½ �

rx0
0
0

8<
:

9=
; ð18:18Þ

ebx0
ebz0
cbx0z0

8<
:

9=
; ¼ C0½ �

0
rz0
0

8<
:

9=
; ð18:19Þ

ecx0
ecz0
ccx0z0

8<
:

9=
; ¼ C0½ �

0
0
sx0z0

8<
:

9=
; ð18:20Þ

Solution of Eqs. (18.18)–(18.20) offers the elastic compliance matrix ½C0� in the
local coordinate system

C0½ � ¼
C0
11 C0

12 C0
13

C0
21 C0

22 C0
23

C0
31 C0

32 C0
33

2
4

3
5 ¼

eax0=rx0 ebx0=rz0 ecx0=sx0z0
eaz0=rx0 ebz0=rz0 ecx0=sx0z0
cax0z0=rx0 cbx0z0=rz0 ccx0z0=sx0z0

2
4

3
5 ð18:21Þ

Since the elastic compliance matrix should be symmetric, the non-diagonal
components of the matrix are averaged in a manner of

Fig. 18.9 Diagram to illustrate independent unit loads
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C0½ � ¼
C0
11 ðC0

12 þC0
21Þ=2 ðC0

13 þC0
31Þ=2

C0
22 ðC0

23 þC0
32Þ=2

Sym: C0
33

2
4

3
5 ð18:22Þ

The elastic compliance matrix C½ � and elastic matrix D½ � in the global coordinate
system can be finally given through the transformation defined in Eqs. (18.6)–
(18.8).

When the sample is subjected to the rotating transformation by an angle of a
anti-clockwise, a compliance matrix of the rotated sample can be calculated. This
rotation testing is important in the study of elastic compliance matrix and REV.

18.4.3 Identification of Elastic Compliance Matrix and REV

The applicability of equivalent or implicit approach in the deformation problem of
fractured rock masses depends on the following conditions: REV for the elastic
behavior exists and whose size is much smaller than the characteristic dimension of
the structure concerned. The REV is theoretically defined as the size beyond which
the elastic compliance matrix will be unchanged. In practice the REV is identified
when the elastic compliance matrix only exhibits small fluctuation following the
augment in the size of rock sample.

Denote vi as the ith attempt of the REV volume, the procedure for the identi-
fication of elastic compliance matrix and REV is flow charted in Fig. 18.10.

18.5 Verification Examples

18.5.1 Permeability Tensor and REV

(1) Probability models and parameters

A numerical sampling window for a statistically homogeneous rock mass is used to
elucidate the application of the NT established in this book. To describe the fracture
geometry, it is necessary to specify the density, the mid position, the attitude (dip
direction and dip angle), the trace length and the aperture, of the fracture sets. The
probability models and parameters are listed in Table 18.1 referring to field data.
Three fracture sets are considered in the study.

The permeability coefficient of the intact rock is 0.1 m/s. The permeability
coefficient of the virtual filler is 1.0 m/s for the first fracture set, and 2.0 m/s for the
second and the third fracture sets, respectively.

Altogether N ¼ 10 stochastic parent DFNs are generated in a square region of
20 m � 20 m in size. For each stochastic DFN, a series of rock samples are
extracted whose sizes are variable ranging from 6 m � 6 m to 16 m � 16 m.
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Fig. 18.10 Flow chart for the identification of compliance tensor and REV
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The effect of boundaries on the flow patterns and on the overall permeability of the
defined fracture networks is avoided when the parent DFN is sufficiently larger than
the rock samples.

For each rock sample, the average hydraulic gradient along the direction con-
cerned is 1.0, and those of the other two directions are zero.

The first stochastic DFN (n ¼ 1) extracted by the rock sample with size of 10 m
� 10 m is illustrated in Fig. 18.11.

(2) Fluctuation test

Tables 18.2, 18.3, 18.4 and 18.5 collect the calculated permeability coefficients
along the directions of a ¼ 0�; 90�; 180�; 270� for the first stochastic DFN (n ¼ 1)
with different rock sample sizes. Figures 18.12, 18.13, 18.14 and 18.15 display the
fluctuation of these permeability coefficients.

Fig. 18.11 Stochastic DFN at the x� z plane (sample size = 10 m)

Table 18.2 Permeability coefficients along the positive direction of x (a ¼ 0�Þ
Sample
size (m)

Qa1

(m3/s)
Qa2

(m3/s)
Qa

(m3/s)
ka
(m/s)

Qb1

(m3/s)
Qb2

(m3/s)
Qb

(m3/s)
kab
(m/s)

6.0 1.0658 1.0965 1.0812 0.1802 0.6807 −0.1355 0.2726 0.0454

8.0 1.1232 1.1325 1.1279 0.1410 0.6684 −0.1484 0.2600 0.0325

10.0 1.3549 1.3556 1.3553 0.1355 0.7096 −0.1795 0.2651 0.0265

12.0 1.5846 1.7328 1.6587 0.1382 0.7787 −0.2054 0.2867 0.0239

14.0 1.9145 1.8501 1.8823 0.1344 0.8919 −0.2143 0.3388 0.0242

16.0 1.9956 2.2346 2.1151 0.1322 0.9891 −0.2735 0.3578 0.0224
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Table 18.3 Permeability coefficients along the positive direction of z (a ¼ 90�Þ
Sample size (m) Qa1

(m3/s)
Qa2

(m3/s)
Qa

(m3/s)
ka
(m/s)

Qb1

(m3/s)
Qb2

(m3/s)
Qb

(m3/s)
kab
(m/s)

6.0 0.7795 0.7337 0.7566 0.1261 0.6983 −0.1068 0.2958 0.0493

8.0 0.7035 0.6919 0.6977 0.0872 0.6351 −0.1698 0.2327 0.0291

10.0 0.8338 0.8370 0.8354 0.0835 0.8249 −0.2168 0.3041 0.0304

12.0 0.9287 0.9710 0.9499 0.0792 0.9826 −0.3584 0.3121 0.0260

14.0 1.0197 1.0376 1.0287 0.0735 1.1245 −0.3764 0.3741 0.0267

16.0 1.1706 1.1833 1.1769 0.0736 1.1874 −0.3692 0.4091 0.0256

Table 18.4 Permeability coefficients along the negative direction of x (a ¼ 180�Þ
Sample size (m) Qa1

(m3/s)
Qa2

(m3/s)
Qa

(m3/s)
ka
(m/s)

Qb1

(m3/s)
Qb2

(m3/s)
Qb

(m3/s)
kab
(m/s)

6.0 1.1006 1.1206 1.1106 0.1851 0.6626 −0.1298 0.2664 0.0444

8.0 1.1132 1.1309 1.1221 0.1403 0.6729 −0.1518 0.2606 0.0326

10.0 1.3239 1.3681 1.3460 0.1346 0.6935 −0.1883 0.2526 0.0253

12.0 1.5032 1.7319 1.6176 0.1348 0.8153 −0.1928 0.3113 0.0259

14.0 1.9098 1.8667 1.8883 0.1349 0.8822 −0.2174 0.3324 0.0237

16.0 2.0421 2.2117 2.1269 0.1329 1.0302 −0.2646 0.3828 0.0239

Table 18.5 Permeability coefficients along the negative direction of z (a ¼ 270�Þ
Sample
size (m)

Qa1

(m3/s)
Qa2

(m3/s)
Qa

(m3/s)
ka
(m/s)

Qb1

(m3/s)
Qb2

(m3/s)
Qb

(m3/s)
kab
(m/s)

6.0 0.7859 0.7746 0.7802 0.1300 0.6892 −0.1114 0.2889 0.0482

8.0 0.7106 0.6918 0.7012 0.0876 0.6989 −0.1711 0.2639 0.0330

10.0 0.8327 0.8430 0.8378 0.0838 0.8383 −0.2027 0.3178 0.0318

12.0 0.9917 0.9724 0.9821 0.0818 1.0826 −0.2184 0.4321 0.0360

14.0 1.0281 1.0417 1.0349 0.0739 1.1358 −0.2272 0.4543 0.0325

16.0 1.1835 1.2009 1.1922 0.0745 1.3167 −0.3055 0.5056 0.0316

Fig. 18.12 Fluctuation of
permeability coefficient at
direction a ¼ 0�
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These fluctuation tests validate that

– The smaller of the sample size, the larger is the permeability coefficients.
– When the sample size is equal to or larger than 10 m, the permeability coeffi-

cients start to be stable.
– The size of REV can be estimated preliminary between 8 and 12 m, which is,

subject to the further verification using tensor ellipse.

Fig. 18.13 Fluctuation of
permeability coefficient at
direction a ¼ 90�

Fig. 18.14 Fluctuation of
permeability coefficient at
direction a ¼ 180�

Fig. 18.15 Fluctuation of
permeability coefficient at
direction a ¼ 270�
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(3) Permeability tensor identification

To identify the permeability tensor and REV, the sample with size of 10 m �
10 m will be rotated by the angle of a. Tables 18.6 and 18.7 present the identifi-
cation results for the first stochastic DFN (n ¼ 1), and Fig. 18.16 shows the cor-
responding identified permeability ellipse.

Table 18.6 Permeability coefficients of the first stochastic DFN (sample size = 10 m)

a (°) Direction a Direction aþ 90� Direction
aþ 180�

Direction
aþ 270�

ka (m/s) 1=
ffiffiffiffiffi
ka

p
ka
(m/s)

1=
ffiffiffiffiffi
ka

p
ka
(m/s)

1=
ffiffiffiffiffi
ka

p
ka
(m/s)

1=
ffiffiffiffiffi
ka

p

0 0.1355 2.7164 0.0835 3.4599 0.1346 2.7257 0.0838 3.4548

15 0.1131 2.9741 0.0649 3.9268 0.1170 2.9231 0.0671 3.8605

30 0.1760 2.3839 0.0584 4.1368 0.1282 2.7925 0.0686 3.8188

45 0.1709 2.4193 0.0522 4.3757 0.1804 2.3546 0.1068 3.0598

60 0.1154 2.9434 0.0724 3.7156 0.1517 2.5672 0.0708 3.7594

75 0.1759 2.3842 0.0724 3.7158 0.1226 2.8559 0.0869 3.3930

Table 18.7 Permeability tensor of the first stochastic DFN (sample size = 10 m)

Principal direction 1 Principal direction 2 Permeability tensor in the x� z
plane

Angle
a (°)

Principal
permeability
(m/s)

Angle
b (°)

Principal
permeability
(m/s)

kxx (m/s) kzz (m/s) kxz (m/s)

32.7 0.1484 122.7 0.0649 0.1240 0.0893 0.0380

Fig. 18.16 First stochastic
permeability ellipse (sample
size = 10 m)
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(4) Statistic characteristics

To obtain the statistic characteristics of the permeability tensor, altogether 10
stochastic DFNs are used (n ¼ 1; 2; . . . 10). The main results are summarized in
Tables 18.8 and 18.9.

The average ellipse (a; 1=
ffiffiffiffiffi
ka

p
) is shown in Fig. 18.17, it validates that when the

sample size is 10 m, the permeability tensor can be well fitted.
According to the fitted ellipse, the average permeability tensor on the x� z plane

is identified in Table 18.10.

Table 18.8 Statistics of the stochastic tests (sample size = 10 m)

Sequence of
stochastic DFN

Principal direction 1 Principal direction 2

Angle a
(°)

Principal
permeability (m/s)

Angle
b (°)

Principal
permeability (m/s)

1 32.7 0.1484 122.7 0.0649

2 29.1 0.1647 119.1 0.0557

3 28.5 0.1652 118.5 0.0538

4 33.1 0.1255 123.1 0.0706

5 32.9 0.1147 122.9 0.0814

6 26.7 0.1768 116.7 0.0477

7 27.2 0.1882 117.2 0.0516

8 25.8 0.2091 115.8 0.0358

9 35.7 0.0979 125.7 0.0825

10 30.4 0.1331 120.4 0.0702

Mean 30.21 0.1524 120.21 0.0614

Covariance 3.11 0.0330 3.11 0.0143

Table 18.9 Average permeability coefficients at the direction of a (sample size = 10 m)

a (°) Direction a Direction aþ 90� Direction aþ 180� Direction aþ 270�

ka (m/s) 1=
ffiffiffiffiffi
ka

p
ka (m/s) 1=

ffiffiffiffiffi
ka

p
ka (m/s) 1=

ffiffiffiffiffi
ka

p
ka (m/s) 1=

ffiffiffiffiffi
ka

p

0 0.1391 2.6808 0.0915 3.3054 0.1502 2.5802 0.0908 3.3180

15 0.1557 2.5344 0.0755 3.6389 0.1819 2.3450 0.0828 3.4757

30 0.1736 2.3998 0.0686 3.8182 0.1747 2.3928 0.0704 3.7702

45 0.1682 2.4380 0.0769 3.6064 0.1860 2.3185 0.0909 3.3167

60 0.1469 2.6092 0.0922 3.2935 0.1588 2.5096 0.0954 3.2369

75 0.1217 2.8662 0.1123 2.9845 0.1260 2.8173 0.1267 2.8092
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18.5.2 Elastic Compliance Tensor and REV

(1) Example 1

This example is intended to verify the NT algorithm by an analytical solution of the
rock mass containing two orthogonal and continuous fracture sets (see Fig. 18.3).
The elastic modulus and the Poisson’s ratio of the intact rock are E ¼ 1:8�
104 Mpað Þ and l ¼ 0:28 respectively; the normal stiffness and shear stiffness are
kn1 ¼ 100 Mpa=mð Þ and ks1 ¼ 50 Mpa=mð Þ for the first fracture set, and kn2 ¼
200 Mpa=mð Þ and ks2 ¼ 100 Mpa=mð Þ for the second fracture set, respectively. No
stochastic characteristics are considered.

The outcomes by the algorithm elaborated previously in this chapter show that

– The fluctuation amplitude of elastic compliance matrix decays as the increase in
the size of fractured rock samples (see Fig. 18.18);

– When the sample size exceeds 8 m, the maximum fluctuation amplitude of
elastic compliance matrix is below 0.0003 (1/MPa), which is much smaller than
the analytical solution C0

11 ¼ 0:01089 ð1=MPaÞ using Eq. (18.10).

Fig. 18.17 Average permeability ellipse (sample size = 10 m)

Table 18.10 Average permeability tensor (sample size = 10 m)

Principal direction 1 Principal direction 2 Permeability tensor in the x� z
plane

Angle
a (°)

Principal
permeability (m/s)

Angle
b (°)

Principal
permeability (m/s)

kxx (m/s) kzz (m/s) kxz (m/s)

29.1 0.1668 119.1 0.0729 0.1446 0.0951 0.0399
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The polar diagram by the computation is plotted in Fig. 18.4 (broken line,
REV = 8 m � 8 m), and the fluctuation of compliance component C0

11 (rotation
angle a ¼ 30�) is shown in Fig. 18.18. It is worthwhile to indicate that the com-
pliance fluctuation by the computation is resulted from the non-uniform augment of
volumetric joint count following the increase of sample size. Obviously, this
phenomenon is not taken into account in the derivation of Eq. (18.10).

(2) Example 2

This example is to exhibit the ability of the NT algorithm by a complicated sam-
pling window from a statistically homogeneous rock mass.

1 Probability models and parameters

The probability models and parameters are given in Table 18.11 based on the data
from field studies. The mechanical parameters of intact rock and fractures are
identical to that of the example 1.

Altogether N ¼ 10 stochastic parent DFNs are generated in a square region of
60 m � 60 m in size. For each stochastic DFN, a series of fractured rock samples
are extracted whose sizes are variable ranging from 2 m � 2 m to 20 m � 20 m.
The fractured sample at the x� z plane extracted from the first stochastic parent
DFN (n ¼ 1) is illustrated in Fig. 18.19, the regular composite element mesh is also
plotted (in broken lines) in this figure.

Fig. 18.18 Fluctuation of components of compliance C0
11 at direction a ¼ 30�(example 1)

Table 18.11 Probability models and parameters of fracture sets

Fracture
set

Quantity Mid
position

Trace length Attitude

Probability
model

Density
(m−2)

Probability
model

l
(m)

Probability
model

l
(°)

r
(°)

1 Poisson 0.06 Uniform Negative
exponent

16.0 Normal 10 3

2 Poisson 0.10 Uniform Negative
exponent

8.0 Normal 80 6
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2 Fluctuation tests

Figures 18.20, 18.21, 18.22 and 18.23 display the fluctuation of the compliance
component C0

11 of the first stochastic (n ¼ 1) DFN. All the other components of
elastic compliance matrix exhibit similar fluctuation characteristics that

– The fluctuation amplitude of the elastic compliance matrix decays as the
increase in sample size.

– The compliance C0
11 at the direction a ¼ 90� undergoes largest fluctuation.

When the sample size exceeds 10 m, the maximum fluctuation amplitude of the
compliance C0

11 at the direction a ¼ 90� is below 0:0009 (1/MPa), which is much
smaller than its stable solution C0

11 ¼0:009 (1/MPa) obtained under the sample size
exceeding 20 m. Therefore, from the practice standpoint, it may be approximately
estimated that REV � 10 m � 10 m.

Fig. 18.19 Fractured DFN at
the x� z plane (sample
size = 10 m)

Fig. 18.20 Fluctuation of compliance C0
11 at direction a ¼ 0�
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Fig. 18.21 Fluctuation of compliance C0
11 at direction a ¼ 30�

Fig. 18.22 Fluctuation of compliance C0
11 at direction a ¼ 60�

Fig. 18.23 Fluctuation of compliance C0
11 at direction a ¼ 90�
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Figure 18.24 displays the polar diagram of the elastic compliance C0
11 (Ca) when

the sample size = 10 m � 10 m, which is plotted according to the computation on
the samples rotated at the angles of a ¼ 0�; 15�; 30�; 45�; 60�; 75�; 90�,
respectively.

3 Statistic compliance matrix

To obtain the statistic compliance matrix, altogether 10 stochastic tests are used
(n ¼ 1; 2; . . .10). The polar diagram of the average results is drawn in Fig. 18.25,
the elastic matrix in the global coordinate system (x� z plane) is presented in
Eqs. (18.23)–(18.24).

Fig. 18.24 Polar diagram of
elastic compliance Ca (sample
size 10 m � 10 m)

Fig. 18.25 Average polar
diagram of compliance matrix
with a sample size
10 m � 10 m
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C½ � ¼
0:00434 �0:000362 0:00276

0:0089 0:0013
Sym: 0:0218

2
4

3
5 MPa�1� � ð18:23Þ

D½ � ¼
253 15:1 �32:9

114 �8:74
Sym: 50:5

2
4

3
5 MPað Þ ð18:24Þ

18.5.3 Concluding Remarks

In this chapter we show one possible way to study the permeability and deformation
characteristics of fractured rock masses using numerical test procedures established
on the hybrid stochastic DFN and CEM. Since it concerns a large quantity of
stochastic DFNs and rock samples of different sizes and orientations, the selection
of competent computation method with simplified pre-process is essential.

The application of the CEM allows for a large amount of stochastic tests of
fractured rock samples: the information of composite element mesh is obtained by
the geometrical relation of the stochastic DFN and regular CE mesh, in this way the
pre-process is facilitated greatly. Through systematic tests, the stochastic charac-
teristics of permeability or elastic tensor and the existence of representative element
volume (REV) can be routinely identified.

It should be admitted that only 10 stochastic tests conducted in our verification
examples are not sufficient, and a criterion should be put forward concerning the
amount of stochastic tests.

It is also worthwhile to point out that the validation of the NT algorithms is
subjected to further study through laboratory and field tests as well as engineering
practices. Normally, we can postulate that the principal directions and the pro-
portions of the principal values obtained by the NT are acceptable, whereas the
absolute values with respect to the tensor components are desirably to be adjusted
through field tests inclusive pumping (or packer) test, plate bearing test, etc.
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