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Supervisor’s Foreword

A large deviation function characterises the asymptotic behaviour of the probability
of the average value for stochastic variables. The theory for large deviation func-
tions was developed as a branch of probability theory about 50 years ago. Despite
the progress in mathematics, many physicists are not so familiar with this large
deviation theory. However, the situation is now changing. For a wide class of
systems out of equilibrium, a novel symmetry property, which is now called the
fluctuation theorem, was discovered. Such a simple and universal relation in phy-
sics was then clearly expressed by using the large deviation function of
time-averaged entropy production rate. This example suggests that the study of
fluctuations on the basis of the large deviation theory can discover new physical
laws. Within this context, the Springer Thesis by Takahiro Nemoto provides us a
thoughtful insight into the intersection between physics and the large deviation
theory.

An important point of view is that the basic concept of large deviation theory
was traced back to Einstein’s fluctuation theory. On the one hand, large deviation
functions are determined from fluctuation properties of thermodynamic extensive
variables, and on the other hand, thermodynamic functions are obtained by the
measurement of the heat capacity and the equation of state. Einstein’s fluctuation
theory begins with a hypothesis where these large deviation functions and ther-
modynamic functions are equivalent up to a multiplicative constant. This hypoth-
esis could be proved on the principle of equal weight, from which many non-trivial
predictions were confirmed experimentally, leading to the establishment of equi-
librium statistical mechanics. Takahiro Nemoto seeks a similar framework for
time-averaged quantities in systems out of equilibrium, by which large deviation
functions can be obtained without measuring fluctuations. He calls such a frame-
work “phenomenological structure for the large deviation principle” as an extension
of Einstein’s fluctuation theory.

Readers of this Springer Thesis can obtain the most advanced knowledge on the
phenomenological structure for the large deviation principle with a background
idea, a new theoretical method, novel formulas, and illustrative examples.
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In addition to the fundamental aspects of the problem, this framework also involves
a proposal of a new method for rare-event sampling, which could be another
interesting topic. I am sure that graduate students in theoretical physics as well as
researchers can enjoy reading this Springer Thesis.

Kyoto, Japan Prof. Shin-ichi Sasa
September 2015
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Chapter 1
Phenomenological Structure for the Large
Deviation Principle

1.1 Statistical Mechanics

The motion of moving balls is described by Newton’s equation, while the flow of
water is described by Navier–Stokes equation. Physics laws take different forms
depending on the phenomena in which we are interested. These descriptions are cor-
rect in their predictions, although some of them have overlaps in the range of their
validity. The air surrounding us is mainly constituted of oxygen and nitrogen mole-
cules, which indicates that the system is described by Newton’s law with modeling
these molecules as small balls. At the same time, it is a well-known fact that the static
property of the ideal gas is summarised by an equation known as the ideal gas law.
The former description is legitimate, and the latter one is experimentally confirmed.
But, how do we connect these two descriptions? If we restrict ourselves in equilib-
rium systems, a stiff framework connecting microscopic descriptions to macroscopic
ones has already been foundmore than one century ago. It is the statistical mechanics
which plays this role, and more precisely, which connects microscopic descriptions,
namely ones with molecules from Newton’s equation or quantum Schrödinger’s
equation, to thermodynamics [1].

The framework of statistical mechanics is useful, therefore it is worth to study
the theoretical structure behind it. For the concreteness of the argument, without
loss of generality, we restrict ourselves to the ideal gas attached to a reservoir of
temperature T (or inverse temperature β). In principle, by describing the system
and the reservoir with Newton’s equation, we completely specify the behaviour of
the system once all of the initial conditions are given. However, in reality such a
complete prediction is impossible, so we need to rely on coarse graining methods.
Now we recall the principle of equal a priori probabilities, which is regarded as one
of the basis of statistical mechanics. This principle claims that the equal probability
among any state of an isolated system gives a good description of the probability
distribution function of the microscopic states. We apply this principle to the whole
system by knowing that it is isolated. After tracing out the degrees of freedom in the

© Springer Science+Business Media Singapore 2016
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DOI 10.1007/978-981-287-811-3_1

1



2 1 Phenomenological Structure for the Large Deviation Principle

reservoir, we obtain the probability distribution function of the system. By denoting
the configuration of the system by �, the Hamiltonian of the system by H(�), and
its distribution function by pβ(�), this distribution function is written as

pβ(�) ∝ e−β H(�). (1.1)

This form of the distribution function is called canonical distribution function. We
recall that we are now considering the ideal gas, which means that the Hamiltonian
of the system has the simple form of H(�) = ∑

i p2
i /(2m), where m is the mass of

the particle and pi is the momentum of the i th particle. We thus can calculate any
expected value of the macroscopic property, for example, the energy, the pressure
and so on. The obtained result is equivalent to the phenomenology confirmed by
experiments, such as the ideal gas law. Furthermore, by noticing that the expected
value of the macroscopic variables is connected to the derivative of thermodynamic
functions within the framework of thermodynamics, we also have the formula to
obtain the thermodynamic functions. For example, the Helmholtz free energy density
fβ is calculated as

fβ = − 1

Nβ
log

∑

�

e−β H(�), (1.2)

where
∑

� e−β H(�) ≡ Zβ is a partition function.
The thermodynamic property of the system is connected to the microscopic

description through the formulas (1.1) or (1.2). Furthermore, beyond the thermo-
dynamic properties, these formulas give us another important information. That is
rare fluctuations of the system, which is summarised as the theory of large deviation
principle [2, 3]. We will explain this connection in the next subsection.

1.2 Large Deviation Functions and Thermodynamic
Functions

The easiest example to explain the large deviation principle may be the coin-flipping
problem. In this problem N coins are flipped. There are no correlations among
each flip, therefore the event can be described as the independent and identically
distributed random variables (iid). We denote by n the number of the coins taking
the head-side. The probability of n is then calculated as

p(n) = n!
N !(N − n)!

(
1

2

)n

. (1.3)

We define the ratio of the head-side coins x as x ≡ n/N . The probability of x is also
calculated from (1.3). The numerical example of the probability of x for several N
is plotted in the Fig. 1.1. As shown in this figure, the probability has a sharper peak
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Fig. 1.1 Numerical example of p(n) given as (1.3). a shows p(n) and b does the logarithm of
it. The red, blue, green, and yellow lines correspond to N = 5, N = 25, N = 125, and 625,
respectively

around x = 1/2 with the increasing of N . This represents the law of large numbers
meaning that the fluctuation of the averaged quantity becomes smaller as the average
number N increases. We next consider the speed of the convergence of this law. By
applying the Stirling formula to the factorials in (1.3), we obtain the asymptotic form
of p(x) as

p(x) ∼ e−N I (x) (1.4)

with
I (x) = (1 − x) log 2(1 − x) + x log 2x . (1.5)

This asymptotic form is called a large deviation principle, and the function I (x) is
called a large deviation function or a rate function describing the frequency of rare
events. This function takes 0 for typical events and takes values larger than 0 for rare
events. It indeed takes 0 for x = 1/2 and more than 0 for x �= 1/2 in this example as
shown in the right-hand side of Fig. 1.1. The function leads to the probability of the
deviation of the law of large numbers, which are quite rare as shown in the left-hand
side of Fig. 1.1. This is a simple example of iid, where we can exactly calculate the
distribution function. However, the large deviation principle is not restricted to this
simple example. In the following chapters, we will analyseMarkov dynamics, where
the variables are not independent to each other. Even in this case, a large deviation
principle is proved [2].

For the case of macroscopic variables, and more precisely, thermodynamic vari-
ables in equilibrium systems, the large deviation functions correspond to the ther-
modynamic functions. We will explain this next. We again consider the same sim-
ple example of the ideal gas attached to the reservoir of temperature T . Since the
system is attached to the reservoir, the energy is transferred between the system
and the reservoir. We then focus on the fluctuation of the energy-density of the
system. We denote the density of the number of the state taking the energy U by
�(U ) = ∫

d�δ(U − H(�)), where δ(x) is the Dirac delta function. Because the
distribution function of � is given as (1.1), we evaluate the distribution function of
U as
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pβ(U ) ∝ �(U )e−βU . (1.6)

Here, we note that one can easily calculate �(U ) by exploiting the simplicity of
the ideal gas system. We do not write down the explicit form, but just show the
asymptotic form of � in large system size limit. That is,

�(U ) ∼ eNs(u), (1.7)

where N is the number of the particles, u is defined as U/N and s(u) is a function
that does not depend on N . The asymptotic form (1.7) is generally true, which is
not restricted within this ideal gas example. Rather, it is a necessary condition of the
validity of thermodynamics tp a given system. One can identify s(u) as the density
of thermodynamic entropy by using the relation (1.2). The argument is as follows:
We calculate the right-hand side of (1.2) by using the saddle point approximation
with (1.7). The result is

fβ = min
u

[
u − β−1s(u)

]
, (1.8)

which means that the free energy is the Legendre transformation of s(u). This
Legendre transformation is the same form as the thermodynamic relation between a
free energy and an entropy.1 By noticing that the Legendre transformation is an invo-
lution (meaning that when it is applied twice to a function g, the obtained function is
the same as the original function g), we thus can identify s(u) as the thermodynamic
entropy density determined from the thermodynamic free energy fβ . Finally, with
the entropy function s(u) and (1.6), the large deviation function of u is written as

pβ(u) ∼ e−N I (u) (1.9)

with
I (u) = βu − s(u) + const. (1.10)

The large deviation function of the energy density is thus written as the sum of the
energy and the entropy density. This result is general, not restricted to the large
deviation function of the energy density or to this ideal gas system.

1.3 Phenomenological Structure for the Large Deviation
Principle

The thermodynamic function is constructed from the expected values ofmacroscopic
variables. On the other hand, the large deviation functions describe the frequency of
rare events. In the book “thermodynamic formalism” [4] by D. Ruelle, this structure

1We set the Boltzmann constant kB to be 1.
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Fig. 1.2 Schematic picture
representing
phenomenological structure
for the large deviation
principle

was explicitlymentioned.Due to this book, the formalismof large deviation functions
defined in general physical systems, not only in thermodynamical systems, is called
thermodynamic formalism. There has been a lot of research on thermodynamic for-
malism, like multi-fractals, chaotic systems and disordered systems. However, there
are still less studies directly motivated by this structure. Hereafter, we are going to
mention this structure many times, since it is the key of this thesis. For avoiding a
lengthy explanation each time, we call this structure the phenomenological structure
for the large deviation principle, meaning that the large deviation functions can be
phenomenologically constructed. In thermodynamics there is this structure, which
has been explained in this introduction. (See also Fig. 1.2 for the schematic picture
of these relations.) But, does another statistical system that possesses this structure
exist? This is the question that we study in this thesis, from which some nontrivial
features in non-equilibrium physics will be discovered.

For this purpose, we here see the phenomenological structure for the large devi-
ation principle in the equilibrium statistical mechanics with a generally extendable
method. The system considered is again the simple example, introduced above, con-
stituted of the ideal gas and the reservoir. To analyse the fluctuation of physical
quantities, it is useful to define a cumulant generating function G(h) [2, 3] as

G(h) = lim
N→∞

1

N
log

〈
ehU

〉
. (1.11)

Indeed, the largedeviation function is connected toG(h)byLegendre transformation:

G(h) = max
U

[hU − I (U )] , (1.12)
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which is equivalent to
I (U ) = max

U
[hU − G(h)] (1.13)

due to the involution property of the Legendre transformation. Equation (1.12) can
be easily checked by applying the large deviation form (1.9) in the definition of
the cumulant generating function (1.11). These relations represent the equivalence
between the cumulant generating function G(h) and the large deviation function
I (U ).2 As seen in this discussion, this property is not restricted to equilibrium sta-
tistical physics but is also satisfied in general large deviation statistics.

For a phenomenological construction of G(h), we now focus on the derivative of
G(h). It becomes

∂G(h)

∂h
= lim

N→∞
∑

�

H(�)

N
pβ(�; h), (1.14)

where we defined an exponentially biased ensemble as

pβ(�; h) = p(�)eh H(�)

∑
� p(�)eh H(�)

. (1.15)

This indicates that we can construct G(h) phenomenologically if the exponentially
biased ensemble has the corresponding physical system that can be realised in exper-
iments. Indeed, when the biased ensemble has the corresponding physical system,we
can replace the right-hand side of (1.14) by the corresponding expected value in the
physical system. From the integral of such expected values, the cumulant generating
function itself can then be also constructed. For equilibrium statistical physics, the
fact that the biased ensemble has the corresponding physical system can be easily
checked. Indeed, by utilising the canonical distribution function given as (1.1), we
have

pβ(�; h) = pβ−h(�), (1.16)

which means that the exponentially biased ensemble is equivalent to another equi-
librium ensemble, whose temperature is modified to β − h.

In general large deviation statistics, (1.12), (1.13), and (1.14) are satisfied, but
(1.16) is not. Since (1.16) is the key for the phenomenological structure for the large
deviation principle, we therefore replace our goal, which is to find another large
deviation statistics that possesses the phenomenological structure, to a new goal
that is to find another large deviation statistics that has the same property as (1.16).

2We should mention that we do not now consider the situation, where phase transitions are taking
place. In that case, it may happen that these two functions are not equivalent. See Ref. [3] for the
explanation of such examples.
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1.4 Large Deviation Statistics of Time-Averaged Quantity
in Non-equilibrium System

Recently, large deviation functions of time-averaged quantities in non-equilibrium
systems have been gathering attention. The examples are seen in the findings of fluc-
tuation theorem [5–10], an additivity principle for macroscopic currents [11–16],
generalisedOnsager-Machlup approach [17, 18], dynamical phase transition in kinet-
ically constrained models [19–21], a new Lyapunov function for non-equilibrium
steady state [22], exact results on ASEP [23, 24], and some studies related to the
phenomenological structure for the large deviation principle in time-series statistics
[25–31]. Motivated by these recent results, we here describe a direct benefit of the
phenomenological structure in time-series statistics.

1.4.1 Towards a Rare Event Sampling Method in Real
Experiments

Let us consider a simple example composed of a Brownian particle with a tilted
periodic potential as shown in Fig. 1.3. Most of the time, the Brownian particle will
go down the periodic potential because the potential is tilted. However, if we wait for
a long time, it is possible to observe the particle climbing up the potential as shown in
the right figure of Fig. 1.3. The latter behaviour of the particle is an example of a rare
event. This rare event is characterised by a large deviation principle as explained next.
For the concreteness of the explanation, we describe the particle by using Langevin
equation [32]:

dx

dt
= 1

γ
F(x) +

√
2T

γ
ξ(t), (1.17)

where x is the position of the particle, F(x) is the tilted periodic potential, γ is
a friction constant of the particle, T is the temperature of the system, and ξ(t) is
Gaussian white noise that satisfies 〈ξ(t)〉 = 0, 〈ξ(t)ξ(s)〉 = δ(t −s). Now, we define
a time-averaged velocity of the particle as

Fig. 1.3 Schematic picture
of a Brownian particle on a
tilted periodic potential.
Most of the time, the particle
goes down the potential as
shown in the left figure,
however, the probability of
the particle climbing up the
potential is not 0



8 1 Phenomenological Structure for the Large Deviation Principle

Table 1.1 Correspondence between equilibrium statistical mechanics and time-series statistics

Statistical mechanics Time-series statistics

Variables Configuration of the system � History (or path) of the system
(x(s))t

s=0

Distribution function Equilibrium distribution Path probability density
pF [(x(s))t

s=0]
Large deviation principle Energy density u

pβ(u) ∼ e−N I (u)
Time averaged velocity V (t)
Prob[V (t) = V ] ∼ e−t I (V )

Infinite limit Infinite system size N limit Infinite averaging time t limit

Cumulant generating function G(h) = limN→ 1
N log

〈
ehNu

〉
G(h) = limt→ 1

t log
〈
ehtV

〉

Exponentially Biased
ensemble

pβ(�; h) ∝ pβ(�)eh H(�) pF [(x(s))t
s=0; h]

∝ pF [(x(s))t
s=0]ethV (t)

Condition for
phenomenological structure

pβ(�; h) = pβ−h(�) pF [(x(s))t
s=0; h]

= pF+δw[(x(s))t
s=0]

V (t) = 1

t

∫ t

0
ds

dx

ds
. (1.18)

Since a large deviation principle is proved in general Markov dynamics [2], we
know that V (t) satisfies the following asymptotic form in the probability distribution
function:

Prob[V (t) = V ] ∼ e−t I (V ) (1.19)

with a large deviation function I (V ). We show the correspondence between this
time-series statics and equilibrium statistical mechanics in Table1.1. By considering
I (V ) for negative values of V , we thus find that the large deviation function can give
the frequency of the particle climbing up the potential.

Now, let us assume that this system possesses the phenomenological structure for
the large deviation principle. This leads to the fact that the frequency of such a rare
event can be obtained phenomenologically without waiting for it. This property may
be used for a rare event sampling in real experiments: In many systems, rare events
play an important role, such as bio-molecular reactions, nucleation, planetary sys-
tems, fully developed turbulence, and plate-tectonic activities. However, the direct
observations of these rare events are too demanding. For tackling this obstacle, sev-
eral techniques for accelerating the observation in numerical simulations have been
invented. The examples are transition path sampling [33, 34], transition interface
sampling [35, 36], forward flux sampling [37, 38], and the population dynamics
method [39, 40]. These are called rare event sampling methods. Until now, as seen in
these examples, several rare event sampling methods have been proposed, however,
the application of these methods towards real physical experiments is still diffi-
cult, because most of the rare event sampling methods explained above exploit the
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property that the experiment is not real but a numerical simulation.3 Now, we con-
sider the rare event sampling method based on the phenomenological structure for
the large deviation principle discussed above. The basic idea of this method comes
from thermodynamics. Thus, themethod should naturally posses a phenomenological
feature to apply to real experiments.

This scenario is not restricted within this simple example. For general cases, the
same expectation can be made. Since there are a lot of interesting examples of rare
events in physics, this rare event sampling method, if it is constructed, will lead to a
lot of applications. The second chapter of this thesis is devoted to this attempt.

Before going to the main argument in that chapter, we introduce some results for
approaching this problem by using a simple example of the Brownian particle.

1.4.2 Brute Force Approach to the Phenomenological
Structure in Time-Series Statistics

By restricting ourselves into the simple example of the Brownian particle, we show
how to approach this problem. From the argument in Sect. 1.3, we know that the
relation (1.16) is a sufficient condition for the phenomenological structure for the
large deviation principle. In time-series statistics, the distribution function of whole
configuration, which corresponds to pβ(�) in (1.16), is the path probability density
of the particle pF [(x(s))t

s=0] given as

pF [(x(s))t
s=0] = 1

C
exp

{

− γ

4T

∫

ds

[(
dx(s)

ds
− 1

γ
F(x(s))

)2
+ 2T

γ 2
∂ F(x(s))

∂x

]}

,

(1.20)

where the multiplication in the integral is interpreted as Stratonovich type [32],
and the subscript F represents the tilted periodic potential that appeared in (1.17).
By using this path probability density, we define an exponentially biased ensemble
p[(x(s))t

s=0; h], which corresponds to pβ(�; h) in (1.16), as

pF [(x(s))t
s=0; h] = pF [(x(s))t

s=0]ethV (t)

∫
D[(x(s))t

s=0]pF [(x(s))t
s=0]ethV (t)

. (1.21)

Now, an expectation may be made, it is that the conjugate field of the time-averaged
velocity V (t) corresponds directly to the constant force. In other words, we can
connect these two path probabilities by

3For example, in the population dynamics [39, 40], one preparesmany of the same initial conditions,
then after launching the numerical simulations, the rare-trajectories are copied and the typical-
trajectories are killed for each fixed time-intervals. This procedure finally produces trajectories
that are quite rare. But, the procedure of copying and killing seems to be difficult to apply in real
experiments.
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pF+kh[(x(s))t
s=0] ?= pF [(x(s))t

s=0; h] (1.22)

with a constant k. This is a direct extension of (1.16) to time-series statistics.However,
unfortunately the nature of time-series statistics is more difficult. The relation (1.22)
is not true in general.

In general situations, instead of using a simple constant force kh, we need a special
force δw(x) that depends on x and h. In order to know the condition determining
this special force δw(x), we here calculate the ratio between pF+δw[(x(s))t

s=0] and
pF [(x(s))t

s=0; h], which becomes

pF [(x(s))t
s=0; h]

pF+δw[(x(s))t
s=0]

= exp

{
1

2T

∫ t

0
ds

[
T

γ

∂δw(x(s))

∂x
+ δw(x(s))

γ
F(x(s)) (1.23)

+ δw(x(s))2

2γ
+ (2T h − δw(x(s)))

dx(s)

ds

]}

.

By setting this ratio to become a constant, we obtain the condition of δw(x) for
satisfying the corresponding equality to (1.16). Bydenoting the period of the potential
by L , the sufficient condition of δw(x) is written as

1

L

∫ L

0
dxδw(x) = 2T h (1.24)

and
T

γ

∂δw(x)

∂x
+ δw(x)

γ
F(x) + δw(x)2

2γ
= const. (1.25)

We verify that this condition is sufficient as follows: From the first relation, we can
eliminate

∫ t
0 ds(2T h − δw(x(s))) dx(s)

ds for large t in (1.23), because this term is
not proportional to t when t is large. Then, from the second relation, the remain-
ing terms become a constant. The existence of such a solution δw(x) is ensured by
Perron-Frobenius theory for liner Matrix [41]. Indeed, by using Cole-Hopf transfor-
mation, the equation (1.25) can be linearised. By discretising the space and using a
periodic boundary condition, we can map the non-linear problem to a linear Matrix
eigenvalue problem. Then, due to the Perron-Frobenius theory, it can be proved that
the solution exists and is unique. See the appendix in Ref. [28] for the detail of this
argument.

It indicates that we need a special external field determined by (1.24) and (1.25)
in order to obtain the phenomenological structure in time-series statistics. This fact
is not restricted to this simple Brownian particle system, but is generally true in
Markov dynamics. Many similar formulas have been derived [25–31]. For discrete-
state-continuous-timeMarkov dynamics, the corresponding formula was reported in
the paper by Jack and Sollich in [26]. For continuous-state-continuous-time Markov



1.4 Large Deviation Statistics of Time-Averaged Quantity … 11

dynamics (Langevin dynamics), the corresponding formula was also reported inde-
pendently by us [27, 28] and Chetrite-Touchette [30, 31]. Mathematically, the for-
mula can be regarded as the generalisation of Doob’s h-transform. See Ref. [30] for
the details of the explanation.

1.4.3 What Will Be Developed in the Main Chapter
of This Thesis

We have seen that we need to solve one dimensional eigenvalue problem even for
this simple Brownian dynamics. For more complicated many-body systems, we will
see that the situation becomes more demanding as the size of the matrix increases
exponentially. In order to use the phenomenological structure for the large deviation
principle as a rare-event sampling method, we need a special procedure to construct
automatically δw(x), instead of relying on the brute-force approach of solving the
eigenvalue problem.

In Chap.2, which is the main chapter in this thesis, we propose such a procedure
to obtain δw(x). See Fig. 1.4 for the schematic picture of these relations. The key
idea for achieving this is to utilise a measurement instead of solving the eigenvalue
problem, to repeat the measurement by dividing the rare-eventness into small pieces,
and to renormalise this rare-eventness gradually into the system with those repetitive
measurements. In other words, instead of solving the largest eigenvalue problem, we

Fig. 1.4 Schematic picture explaining what we will develop in Chap. 2

http://dx.doi.org/10.1007/978-981-287-811-3_2
http://dx.doi.org/10.1007/978-981-287-811-3_2
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rely on Monte-Carlo simulation (or real experiment in future), which allows us to
obtain this result faster. Then, we make a measurement-and-feedback procedure,
where we modify the parameter of the system so as to renormalise rare-eventness
gradually into the system after each measurement. We will discuss this procedure in
general Markov dynamics in Chap.2, based on our paper [42].

1.5 Towards Understanding Glass Transition in Terms
of Thermodynamic Formalism

Aside from a rare event sampling method, there are many applications of phenom-
enological structure for the large deviation principle. One of them is to understand
glass transition with kinetically constrained models, which is explained below.

Glass transition has an old history, and has been gathering the attention of
many researchers. There are several interesting features in glass transition, such as
Vogel-Fulcher law for non-Arrenius relaxation of fragile glass, a two-step relaxation
of correlation function known as α-relaxation and β-relaxation, the increase of the
dynamical correlation length as the system gets close to glass transition point known
as dynamical heterogeneity. To explain these specific features of glassy systems,
several theories have been studied [43, 44].

For one of the method to approach these problems, a class of models called kinet-
ically constrained models has been introduced [21, 43]. This is the coarse grained
model of glass formers, which is represented as spin models, where the plus spins
and the minus spins are associated with the active and the inactive regions in glass
formers. The cooperative properties of glass formers are incorporated as kinetic con-
straints, for example, the spins surrounded by minus spins can not be flipped up or
flipped down. The basic question behind this definition is, does glassy properties
come from purely dynamical origin or not? In this model, the stationary distribution
is trivial, which is ensured by the detailed balance condition, whereas the dynam-
ics is complicated due to the kinetic constraint explained above. Indeed, this model
can explain some features of glasses. For example, the dynamical slowing down,
the dynamical heterogeneity [45–51], and an ergodicity breaking transition [52–56].
Furthermore, Garrahan, Jack, Lecomte, Pitard, van Duijvendijk and van Wijland
considered recently the large deviation function of a quantity called activity, which
represented howmuch the state of the system changed, and they found that there was
a kink in the large deviation function [19–21]. This singularity indicates the existence
of dynamical phase transition. The singular behaviour appears in infinite system size
limit at the origin of that large deviation function (or dynamical free energy in their
terminology). Since the slope of the dynamical free energy at the origin corresponds
to the expected value of the activity itself, this transition represents that two values
of the activity coexist in the infinite system size limit. It is now believed that this
coexistence was related to dynamical heterogeneity [21].

http://dx.doi.org/10.1007/978-981-287-811-3_2
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As we mentioned above, the dynamical phase transition appears in infinite-size
limit. However, one may notice that we can deal with only finite size systems when
we study with numerical simulations. Motivated by this fact, after the finding of the
dynamical phase transition, finite size scaling method for extracting the property of
thedynamical phase transition fromfinite size systemshas been studied, byBodineau,
Toninelli and Lecomte [57, 58]. For constructing it, there is one important problem
in thermodynamic formalism: Although we can define an important point for finite
size systems as the argument maximising the second-derivative of the dynamical
free energy, this point is deviated from the origin in general. When it is deviated
from the origin, it is not connected anymore to the static property of the system,
because of the lack of physical correspondence in the conjugate field of the activity.
For equilibrium magnet substances, there is also a first order phase transition. In this
case, the conjugate field of the magnetisation is directly connected to the magnetic
field. However, for the case of the dynamical phase transition, there are no direct
correspondences between the conjugate field and any physical realistic field.

To this problem, we shall approach with the phenomenological structure in time-
series statistics. Like thermodynamics, the physical correspondence to conjugated
field should emerge in this structure if it is constructed. In this thesis, we focus on
Fredrickson–Andersen (FA) models [59, 60]. We especially study the 1-dimensional
version and the mean field version of FA model. (For the detailed definition of
the model, refer to the main part of this thesis.) In both cases, we focus on the
phenomenological structure in time-series statistics in these models, and investigate
some non-trivial properties behind them. Some parts of Chap. 2 are devoted to the
1-dimensional case, and the whole of Chap.3 is devoted to the mean field case. This
work is mainly based on our paper [61].

1.6 Application to van Zon–Cohen Extended Fluctuation
Theorem—The Origin in Terms of Rare Trajectories

Here, as another application of the phenomenological structure for the large deviation
principle, we consider an extended fluctuation theorem reported by van Zon and
Cohen [62, 63].

The fluctuation theorem is a symmetry property of the fluctuation of the entropy
production [25], from which several confirmed results, e.g. second law of thermody-
namics and linear response formula, were derived very beautifully (See for example,
Ref. [64]). The first experimental verification of this theorem was done by Wang
et al. [65] in 2001. They used a Brownian particle dragged by an optical tweezer,
and measured the work fluctuation in order to verify the fluctuation theorem for
the work. The detailed analysis of their set up was done by van Zon and Cohen
in [66]. Thanks to these works, the fluctuation theorem was confirmed in terms of
both of the experimental and the theoretical points of view. However, by extending
their method, van Zon and Cohen submitted another paper later that showed that the

http://dx.doi.org/10.1007/978-981-287-811-3_2
http://dx.doi.org/10.1007/978-981-287-811-3_3


14 1 Phenomenological Structure for the Large Deviation Principle

fluctuation theorem with respect to heat was different [62, 63]. Heat fluctuation did
not satisfy the fluctuation theorem, but it satisfied a different symmetry. Until now,
several features about this new symmetry have been studied [67–74]. However, the
direct understanding of it with respect to the rare trajectories of the particle has not
been explored yet. We tackle this problem by using the phenomenological structure
for the large deviation principle. This work is based on our paper [75]. Chapter4 is
devoted to this attempt.

1.7 Construction of Thesis

This thesis is composed of four chapters. Introduction, Chap. 1, was presented above.
Chapter2, which is the main chapter in this thesis, is Iterative measurement-feedback
procedure for large deviation statistics. In this chapter, we propose a computational
method for large deviation statistics, where the procedure is constituted of only
measurements and feedbacks. Since this procedure is a direct extension of thermo-
dynamics to time-series statistics, we believe that this method will become the first
rare-event sampling method used in real experiments in future. This chapter corre-
sponds to our paper [42]. Chapter3 is Common scaling function in dynamical and
quantum phase transitions. In this chapter, inspired by the finite-size scaling method
of first order phase transition for equilibrium spin models [76, 77], we propose a
finite-size scaling method for the dynamical phase transitions. Then, it turns out that
themethod can also be applied to quantum phase transitions.We confirm this method
in mean-field models, however, we believe that this method is general and becomes
a wide-ranging prescription for analysing dynamical and quantum phase transitions.
This chapter corresponds to our paper [61]. In the next chapter, Chap.4, we discuss
the application of the phenomenological structure to van-Zon extended fluctuation
theorem. This chapter corresponds to our paper [75]. Finally, Chap.5 is Conclusions
and future perspectives, where we show some future open problems.
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22. C. Maes, K. Netočný, B. Wynants, Phys. Rev. Lett. 107, 010601 (2011)
23. A. Lazarescu, K. Mallick, J. Phys. A: Math. Theor. 44, 315001 (2011)
24. M. Gorissen, A. Lazarescu, K. Mallick, C. Vanderzande, Phys. Rev. Lett. 109, 170601 (2012)
25. R.M.L. Evans, Phys. Rev. Lett. 92, 150601 (2004)
26. R.L. Jack, P. Sollich, Prog. Theor. Phys. Suppl. 184, 304 (2010)
27. T. Nemoto, S. Sasa, Phys. Rev. E 83, 030105(R) (2011)
28. T. Nemoto, S. Sasa, Phys. Rev. E 84, 061113 (2011)
29. S. Sasa, Phys. Scr. 86, 058514-1-3 (2012)
30. R. Chetrite, H. Touchette, Phys. Rev. Lett. 111, 120601 (2013)
31. R. Chetrite, H. Touchette, (2014). arXiv:1405.5157
32. C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and the Natural

Sciences (Springer, Berlin, 1983)
33. D. Frenkel, B. Smit, Understanding Molecular Simulation (Academic Press, San Diego, 2001)
34. P.G. Bolhuis, D. Chandler, C. Dellago, P.L. Geissler, Annu. Rev. Phys. Chem. 53, 291 (2002)
35. T.S. van Erp, D. Moroni, P.G. Bolhuis, J. Chem. Phys. 118, 7762 (2003)
36. T.S. van Erp, P.G. Bolhuis, J. Comput. Phys. 205, 157 (2005)
37. R.J. Allen, P.B. Warren, P.R. ten Wolde, Phys. Rev. Lett. 94, 018104 (2005)
38. R.J. Allen, D. Frenkel, P.R. ten Wolde, J. Chem. Phys. 124, 024102 (2006)
39. C. Giardina, J. Kurchan, L. Peliti, Phys. Rev. Lett. 96, 120603 (2006)
40. C. Giardina, J. Kurchan, V. Lecomte, J. Tailleur, J. Stat. Phys. 145, 787 (2011)
41. E. Seneta, Non-Negative Matrices and Markov Chains, 2nd edn. (Springer, New York, 2006)
42. T. Nemoto, S. Sasa, Phys. Rev. Lett. 112, 090602 (2014)
43. F. Ritort, P. Sollich, Adv. Phys. 52, 219 (2003)
44. P.G. Debenedetti, F.H. Stillinger, Nature (London) 410, 259 (2001)
45. J.P. Garrahan, D. Chandler, Phys. Rev. Lett. 89, 035704 (2002)
46. C. Toninelli, G. Biroli, D.S. Fisher, Phys. Rev. Lett. 92, 185504 (2004)
47. S. Whitelam, L. Berthier, J.P. Garrahan, Phys. Rev. Lett. 92, 185705 (2004)
48. A.C. Pan, J.P. Garrahan, D. Chandler, Phys. Rev. E 72, 041106 (2005)
49. C. Toninelli, M. Wyart, L. Berthier, G. Biroli, J.P. Bouchaud, Phys. Rev. E 71, 041505 (2005)
50. L. Berthier, J.P. Garrahan, J. Phys. Chem. B 109, 3578 (2005)
51. R.L. Jack, P. Mayer, P. Sollich, J. Stat. Mech. (2006) P03006
52. S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Phys. Rev. Lett. 96, 040601 (2006)
53. J.M. Schwarz, A.J. Liu, L.Q. Chayes, Europhys. Lett. 73, 560 (2006)
54. J. Reiter, F. Mauch, J. Jäckle, 1992. Physica A 184, 458 (1992)
55. C. Toninelli, G. Biroli, D.S. Fisher, Phys. Rev. Lett. 98, 129602 (2007)
56. C. Toninelli, G. Biroli, Eur. Phys. J. B 130, (2008)
57. T. Bodineau, C. Toninelli, Commun. Math. Phys. 311, 357 (2012)

http://arxiv.org/abs/1009.6113
http://arxiv.org/abs/1405.5157


16 1 Phenomenological Structure for the Large Deviation Principle

58. T. Bodineau, V. Lecomte, C. Toninelli, J. Stat. Phys. 147, 1 (2012)
59. G.H. Fredrickson, H.C. Andersen, Phys. Rev. Lett. 53, 1244 (1984)
60. G.H. Fredrickson, H.C. Andersen, J. Chem. Phys. 83, 5822 (1985)
61. T. Nemoto, V. Lecomte, S. Sasa, F. van Wijland, J. Stat. Mech. (2014) P10001
62. R. van Zon, E.G.D. Cohen, Phys. Rev. Lett. 91, 110601 (2003)
63. R. van Zon, E.G.D. Cohen, Phys. Rev. E 69, 056121 (2004)
64. K. Hayashi, S. Sasa, Physica A 370, 407 (2006)
65. G.M. Wang, E.M. Sevick, E. Mittag, D.J. Searles, D.J. Evans, Phys. Rev. Lett. 89, 050601

(2002)
66. R. van Zon, E.G.D. Cohen, Phys. Rev. E 67, 046102 (2003)
67. N. Garnier, S. Ciliberto, Phys. Rev. E 71, 060101(R) (2005)
68. F. Bonetto, G. Gallavotti, A. Giuliani, F. Zamponi, J. Stat. Phys. 123, 39 (2006)
69. M. Baiesi, T. Jacobs, C. Maes, N.S. Skantzos, Phys. Rev. E 74, 021111 (2006)
70. P. Visco, J. Stat. Mech. (2006) P06006
71. R.J. Harris, A. Rákos, G.M. Schütz, Europhys. Lett. 75, 227 (2006)
72. R.J. Harris, A. Rákosand, J. Stat. Mech. (2008) P05005
73. A. Puglisi, L. Rondoni, A. Vulpiani, J. Stat. Mech. (2006) P08010
74. J.D. Noh, J.-M. Park, Phys. Rev. Lett. 108, 240603 (2012)
75. T. Nemoto, Phys. Rev. E 85, 061124 (2012)
76. C. Borgs, R. Kotecký, J. Stat. Phys. 61, 79 (1990)
77. C. Borgs, R. Kotecký, Phys. Rev. Lett. 68, 1734 (1992)



Chapter 2
Iterative Measurement-Feedback Procedure
for Large Deviation Statistics

2.1 Introduction

In the last two decades, large deviation functions in time-series statistics have gath-
ered attention in thefield of nonequilibriumphysics. The beginning is the discovery of
the fluctuation theorem, which is the symmetry property of the large deviation func-
tion of the time-averaged entropy production rate [1–6]. After that, several results
for the large deviation functions have followed, such as an additivity principle for
driven diffusive systems [7–12], generalised Onsager–Machlup approach [13, 14],
dynamical phase transitions of kinetically constrained models [15–17], a Lyapunov
function for non-equilibrium steady states without relying on entropy production
[18], exact results for the current statistics of lattice gas models [17, 19].

Also, with these developments, there were some studies that focused on the ther-
modynamic structure in time-series statistics [20–26]. Especially in these analysis,
a technique to map a biased ensemble to another steady state ensemble has been
utilised. This mapping is well defined in mathematical sense, however, in order to
construct this mapping, we need pre-information for generating a special external
force added. That requires to solve eigenvalue problems of a matrix in a large dimen-
sion: the degrees of freedom of the system, which is demanding in computational
point of view. For overcoming this difficulty, we proposed a variational principle
constituted of observable quantities to determine that external force [24–26]. Since
the variational parameter of this variational principle was an external field of the
system, it offers a simple method for determining that external force without solv-
ing any mathematical largest eigenvalue problems. However, there is still a problem
for large size systems, because the domain of the variational functional increases
exponentially as the system size becomes larger in general.

Here in this chapter, we propose a new computational method for large deviation
statistics. This exploits a property in time-series statistics, which is an additive prop-
erty of the rareeventness with a special measurement and feedback.: By iterating
a procedure constituted of measurements and feedbacks, we gradually renormalise
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the system, and let the obtained modified systems attain the rare-event property. We
stress that this method is constituted of measurements and feedbacks. Thus, it can
be implemented in real experiment in principle. Furthermore, by combining it with
an idea of effective description of exponential family, we show a good numerical
performance of the method. Indeed, as a demonstration, we apply this method to
many-body systems, and obtain some non-trivial features of the rare fluctuations in
those systems.

The construction of this chapter is as follows. In Sect. 2.2, we show some prelim-
inaries. In Sect. 2.2.1–2.2.4, we give the definition of the model and some basics of a
large deviation principle. Then, in Sect. 2.2.5, we show and prove a mapping method
from a biased ensemble to the steady state dynamics, which is the key formula
to construct the phenomenological structure in time-series statistics. In Sect. 2.3,
we explain our computational method. From Sect. 2.3.1–2.3.3, we explain the idea
behind themethod, and in Sect. 2.3.4,we showexplicitly the procedure of themethod.
Section2.4 is devoted to the application of themethod to non-equilibriummany-body
lattice gas models. In particular, in Sect. 2.4.1, we introduce an effective description
of the exponential family, and in the following subsections, with the effective descrip-
tion,we analyse thesemany-body systems. Finally, in Sect. 2.5,wemake a conclusion
of this chapter. This chapter is based on the paper published in [27].

2.2 Preliminary

2.2.1 Model

The state space� is a finite set.On�,we consider continuous timeMarkovprocesses.
For n, n′ ∈ �, we define a transition rate w(n → n′) as an irreducible matrix that
satisfies w(n → n) = 0 and w(n → n′) �= 0 if w(n′ → n) �= 0. The escape rate is
defined as

λ(n) ≡
∑

n′∈�

w(n → n′). (2.1)

We start with an initial distribution function P0(n). Then, the distribution function of
n at time t , P(n) ≡ 〈

δn(t),n
〉
, is determined from the following Master equation [28]:

∂

∂t
P(n, t) =

∑

n

P(n)w(n → n′) − δn,n′λ(n). (2.2)

We denote the history of states during a time interval t by ω, which is specified
by the total number of transitions n, a collection of transition times (ti )n

i=1, and a
sequence of states (ni )

n
i=0, where ni = n(t) for ti ≤ t ≤ ti+1 with t0 ≡ 0, tn+1 ≡ t .

See Fig. 2.1 for the schematic diagram explaining this definition. We denote the path
probability density with an initial condition n0 by P(ω|n0). It becomes
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Fig. 2.1 The schematic
diagram to explain the
definition of the history of
states, ω

P(ω|n0) = e−λ(n0)t1
N∏

i=1

[
w(ni−1 → ni )e

−λ(ni )(ti+1−ti )
]

(2.3)

or equivalently,

P(ω|n0) = e− ∫ t
0 dt̃λ(n(t̃))

N∏

i=1

[
w(ni−1 → ni )

]
(2.4)

For the sake of completeness, we show a simple derivation of the path probability in
AppendixA.1.

2.2.2 Cumulant Generating Function

For each transition ni → ni+1, we define a quantity α(ni → ni+1). Then, we
consider the corresponding time-averaged value A(ω), which is defined as

A(ω) = 1

τ

n−1∑

i=0

α(ni → ni+1). (2.5)

Since the system is Markovian, A(ω) has a large deviation principle in the limit of
τ → ∞. That is, with a probability density for A(ω), p(A), shows the following
asymptotic form:

p(A) ∼ e−τ I (A), (2.6)

where I (A) is a large deviation function. We note that the expected value or typical
value of A(ω), 〈A(ω)〉 is determined by a variational principle

〈A(ω)〉 = Argmin
A

[I (A)] . (2.7)
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Here, we introduce a scaled cumulant generating function defined by

G(h) ≡ lim
τ→∞

1

τ
log

〈
ehτ A(ω)

〉
, (2.8)

where h is called a biasing parameter. It resembles the definition of the Helmholtz
free energy in equilibrium statistical mechanics, so that this function is called a
dynamical free energy. Similar to equilibrium thermodynamics, the large deviation
function I (A) and the cumulant generating function is connected through Legendre
transformation:

I (A) = max
h

[h A − G(h)], (2.9)

or
G(h) = max

A
[h A − I (A)]. (2.10)

We should mention that we are now considering the case that I (A) is a concave
function. Otherwise, this relationship can be broken. See Ref. [29] for the explanation
of the example.

2.2.3 Biased Ensemble

In the analysis of a large deviation principle, a class of modified pass probability
measure called an exponential family or a biased ensemble, P(ω; h), is often studied.
With a parameter h representing how much the system is biased, P(ω; h) is defined
as

P(ω; h) = 1

Z(τ , h)
P(ω)ehτ A(ω), (2.11)

where Z(τ , h) is the normalisation constant defined by Z(τ , h) = 〈
ehτ A(ω)

〉
. In this

biased ensemble, rare trajectories characterised by the large deviation principle of
A(ω) has a large (or small) probability compared with the one in the original ensem-
ble. Indeed, by denoting the probability density of A(ω) in the biased ensemble by
p(A; h), we obtain

p(A; h) = 1

Z(τ , h)
p(A)ehτ A ∼ 1

Z(τ , h)
e−τ (I (A)−h A). (2.12)

for large τ , where we used the large deviation principle of A(ω). We first notice that
the large deviation function of A(ω) in the biased ensemble is given as I (A) − h A.
Then, the following result directly yields: the expected value (or typical value) of A
in the biased ensemble is determined by the variational principle
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〈
A(ω)ehτ A(ω)

〉

Z(τ , h)
= Argmin

A
[I (A) − h A] . (2.13)

The typical value is thus deviated from 〈A(ω)〉. Furthermore it is connected to the
cumulant generating function through

∂G(h)

∂h
= lim

τ→∞

〈
A(ω)ehτ A

〉

Z(τ , h)
. (2.14)

Therefore, due to the equivalence between G(h) and I (A), we find a relation con-
necting the expected value in the biased ensemble with the large deviation function:

I (A) = max
h

⎡

⎣h A −
∫ h

0
dh̃ lim

τ→∞

〈
A(ω)eh̃τ A(ω)

〉

Z(τ , h̃)

⎤

⎦ . (2.15)

2.2.4 Revisit of the Phenomenological Structure for the Large
Deviation Principle in Equilibrium Statistical Mechanics

Here, let us revisit the phenomenological structure for the large deviation principle
in equilibrium statistical mechanics with a viewpoint of biased ensemble. The biased
ensemble (2.11) reminds us of the canonical distribution function (given in (1.6)).
We here show that this similarity leads to the key of the phenomenological structure
for the large deviation principle in equilibrium statistical physics.

In the system considered in the introduction 1.2, we define the biased ensemble
p(�; h) by

p(�; h) = 1

Z(h)
p(�)eh H(�). (2.16)

Then, we obtain the distribution function of U in the biased ensemble as

p(U ; h) = 1

Z(h)
�(U )e−(β−h)U ∼ 1

Z̃(h)
eN [s(u)−(β−h)u]. (2.17)

Because no β dependence appears here in the first term s(u) of this exponential func-
tion, this equation indicates that the biased ensemble is the equilibrium distribution
function of the systemwith temperature β−h. Thus the biasing parameter h is renor-
malised as the temperature of the system in another equilibrium system. The same
structure, namely the correspondence between biasing parameters and equilibrium
intensive parameters, is true not only for the energy density discussed here, but also
for the density of general thermodynamic extensive quantities.

This is the key for the phenomenological structure in equilibrium statistical
mechanics. Indeed, from this relation, we can connect the large deviation function

http://dx.doi.org/10.1007/978-981-287-811-3_1
http://dx.doi.org/10.1007/978-981-287-811-3_1
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I (U ) with the expected value of U in another equilibrium system, which has a new
temperature β′ = β − h. Indeed, by denoting this expected value by 〈U 〉β′=β−h̃ and
using the corresponding equation to (2.15) in equilibrium statistical mechanics, we
have

I (U ) = max
h

[

hU −
∫ h

0
dh̃ 〈U 〉β′=β−h̃

]

. (2.18)

In short, the key to the phenomenological structure for the large deviation principle
is the physical correspondence of the biased ensemble. Because the biased ensem-
ble corresponds to another equilibrium system, we can construct a large deviation
function from expected values.

2.2.5 Steady Dynamics Corresponding to Biased Ensemble

The phenomenological structure for the large deviation principle in equilibrium sta-
tistical mechanics is clarified in the previous subsection, where we found what we
need to construct the same structure in time-series statistics: It is the construction of a
physical system corresponding to the biased ensemble (2.11) in time-series statistics.
Now, in order to achieve this construction, we follow the following strategy:

1. We define a new transition rate

wh(n → n′) ≡ w(n → n′) f h(n → n′) (2.19)

with an unknown function f h(n → n′) that depends on h. Then, the new path
probability Ph(ω|n0) is given as

Ph(ω|n0) = e− ∫ t
0 dt̃λh(n(t̃))

N∏

i=1

[
w(ni−1 → ni )

] N∏

i=1

[
f h(ni−1 → ni )

]
, (2.20)

where we defined λh(n) ≡ ∑
n′ wh(n → n′).

2. We consider the ratio between this new path probability density and the biased
path probability density P(ω; h|n0),

Ph(ω|n0)
P(ω; h|n0) = e− ∫ t

0 dt̃
[
λh(n(t̃))−λ(n(t̃))

] N∏

i=1

[
f h(ni−1 → ni )e

−hα(ni−1→ni )
]

Z(t, h).

(2.21)

Then, we determine f h(n → n′) so as to make the right-hand side of (2.21)
a constant. This construction leads to the conclusion that the new system char-
acterised by wh(n → n′) has the same path probability density as the one
in this modified dynamics. In the following part, we show how to determine
f h(n → n′).
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3. First, we look at the product part (
∏[· · · ]). For obtaining a benefit from this

product structure, we set

f h(n → n′) = ehα(n→n′) φ(n′)
φ(n)

(2.22)

with an unknown function φ(n). In the product from i = 1 to i = N , a ratio in
this right-hand side will be canceled each other in total. Indeed, the total product
becomes

N∏

i=1

[
f h(ni−1 → ni )e

−hα(ni−1→ni )
] = φ(nN )

φ(n0)
. (2.23)

Since this right-hand side is small compared with the other parts in large τ limit,
we can neglect it in (2.21).
Second, we determine the unknown function φ(n) so as to make the first expo-
nential part in (2.21) a constant. For this purpose, we set a condition to φ(n)

as
λh(n) − λ(n) = const. ≡ K , (2.24)

which indeed ensures that that first exponential part a constant e−t K . This equa-
tion can be rewritten as an eigenvalue problem of an irreducible matrix

Lh
n′,n = w(n → n′)ehα(n→n′) − δn,n′λ(n). (2.25)

Indeed, we rewrite (2.24) as

∑

n′
w(n → n′)ehα(n→n′)φ(n′) − λ(n)φ(n) = Kφ(n), (2.26)

which is equivalent to ∑

n′
φ(n′)Lh

n′,n = Kφ(n). (2.27)

Here, we remember that we need to impose a condition that the eigenfunction
φ(n) is a positive vector, because the transition matrix wh(n → n′) can not take
a negative value. We thus find that the K is the largest eigenvalue of Lh

n′,n due to
Perron-Frobenius theory [30]. Also, we note that the largest eigenvalue K and
the corresponding left-eigenvector φ(n) surely exist and are unique, due to this
theory.

Therefore, by choosing φ(n) as the left-eigenvector of the largest eigenvalue of
Lh

n′,n, we will reach the desired result.

Many formulas similar to this have been derived [20–26]. Exactly the same
form as this result was reported in the paper by Jack and Sollich in [23]. For
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Langevin systems, the corresponding formulaswere also derived independently by us
[24, 25] and Chetrite, Touchette [20, 21]. Mathematically, the formula is regarded as
the generalisation of Doob’s h-transform. See Ref. [21] for the details of the expla-
nation.

Wemention that the corresponding system is characterised by a variational princi-
ple [24–26]. With a variational functional Ṽ (n), we introduce a variational transition
rate w̃Ṽ

h (n → n′) as

w̃Ṽ
h (n → n′) = w(n → n′)ehα(n→n′)−(1/2)Ṽ (n′)+(1/2)Ṽ (n). (2.28)

Also, we denote the expected value in the stationary state generated by 〈 〉Ṽ
h , and

the escape rate in the system w̃Ṽ
h (n → n′) by λ̃Ṽ

h . Then, that variational principle is
written as

wh(n → n′) = Argmax
Ṽ

〈
λ̃Ṽ − λ

〉Ṽ

h
(2.29)

and the maximum value gives the cumulant generating function itself

G(h) = max
Ṽ

〈
λ̃Ṽ − λ

〉Ṽ

h
. (2.30)

This variational principle was studied by us with a motivation to construct the cor-
responding steady state from observable quantities of the system [25]. Indeed, if
we apply it to Langevin equation, the escape rate is replaced by an entropy produc-
tion rate and the variational potential corresponds to the real potential added to the
Brownian particle. The mathematical origin of the variational principle is different
from the thermodynamic one. Rather, that variational principle is related to Donsker–
Varadhan formula for empirical measure [31]. See AppendixA.2 for the derivation
of the variational principle from Donsker–Varadhan formula. Furthermore, when the
system satisfies detailed balance condition, the variational principle can be connected
to the one in quantum mechanics. This is explained in the Chap.3, where we apply
the variational principle to a kinetically constrained model for deriving a scaling
function around the phase transition.

Here, we alsomention that there is the case that the derivation above is not correct,
where the boundary term φ(nN )/φ(n0) in (2.23) can not be neglected. This problem
is one of the origin of the extended fluctuation theorem of heat dissipation, reported
by van Zon and Cohen [32, 33]. In Chap.4, we discussed this connection explicitly.

As a corollary of this formulation, we obtain an equivalence between the largest
eigenvalue K and the cumulant generating function G(h):

K = G(h). (2.31)

Indeed, by using (2.23) and (2.24) in (2.21), we have

http://dx.doi.org/10.1007/978-981-287-811-3_3
http://dx.doi.org/10.1007/978-981-287-811-3_4
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Ph(ω|n0) = P(ω; h|n0)e
−K t φ(nN )

φ(n0)
Z(t, h) (2.32)

By taking the sum with respect to ω and considering only the dominant term in large
t limit, we obtain

K = lim
t→∞

1

t
log Z(t, h), (2.33)

which is (2.31). The cumulant generating function is obtained from the largest eigen-
value problem of Lh

n,n′ , and then the result is connected to the large deviate function
through Legendre transformation (2.9). Because it is easier to deal with the largest
eigenvalue problem than the large deviation principle itself, this structure has been
used in many situation for mathematically rigorous analysis in large deviation theory
[34]. Furthermore, the relation has been used for analysing non equilibrium systems.
The example includes the fluctuation theorembyLebowitz and Spohn [5], where they
found a symmetry property in cumulant generating function of entropy production
rate due to the fluctuation theorem.

2.3 Main Result

In the previous subsection, we finally understood how we could create the cor-
responding system to the biased ensemble, where we needed to solve the largest
eigenvalue problem of Lh

n′,n. For many body systems, however, it is demanding and
almost impossible to solve the corresponding largest eigenvalue problem because
the number of the degrees of the freedom in these systems increases exponentially
with the system size. Here in order to overcome this difficulty, we propose a method
to obtain the corresponding system with measurements and feedbacks.

2.3.1 Measurement Formula of φ(n) in Monte-Carlo
Simulations

Because the direct diagonalisation of the largest eigenvalue of Lh
n′,n is hopeless, we

rely on Monte-Carlo simulations instead. First, we show a method to obtain φ(n)

from Monte-Carlo simulations.
First, we define ψ̃(n, t |n0) obtained from the following initial condition and evo-

lution equation:
ψ̃(n, 0|n0) = δn,n0 (2.34)

∂ψ̃(n, t |n0)

∂t
=

∑

n′
ψ̃(n′, 0|n0)Lh

n,n′ . (2.35)
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Then, ψ̃(n, t |n0) equals to
〈
δn(t),neht A(ω)

〉
n0
, where 〈 〉n0

is the expected value with
respect to the Monte-Carlo simulation with an initial condition n(0) = n0:

ψ̃(n, t |n0) = 〈
δn(t),neht A(ω)

〉
n0

. (2.36)

The way to prove this is to show that
〈
δn(t),neht A(ω)

〉
n0
also satisfies (2.34) and (2.35).

This is done inAppendixA.3.Next, since Lh
n′,n is irreducible, the large timebehaviour

of ψ̃(n, t |n0) is
ψ̃(n, t |n0) ∼ φ(n0)ψ(n)et K . (2.37)

with a definition ofψ(n) as the right-largest eigenvector of Lh
n′,n. Thus, by combining

(2.36) with (2.37), we arrive at

φ(n) ∝ 〈
eht A(ω)

〉
n (2.38)

for large t . This is a basic result that directly came from the largest eigenvalue
analysis. Thanks to (2.38), we can reach φ(n) just by using aMonte Carlo simulation
in principle, however, we will face a difficulty with this formula soon, which is
explained next.

2.3.2 Rare Events Required for Measurement of
〈
ehT A(ω)

〉
n

Even though we obtain (2.38), it is easy to show that the dominant contribution of
the ensemble to obtain

〈
eht A(ω)

〉
n is rare, which is characterised by a large deviation

principle. With the large deviation principle p(A) ∼ e−t I (A), we can show that the
dominant path takes a value of A(ω) close to

A∗(h) ≡ Argmin
A

[I (A) − h A] . (2.39)

Then, the probability taking A∗(h) is exponentially small:

p(A∗) ∼ e−t I (A∗(h)) (2.40)

with I (A∗(h)) �= 0. This means that we need the rare events characterised by a large
deviation principle, in order to obtain the information of the large deviation principle
itself. We thus conclude that the direct application of (2.38) is not useful. We need
some ideas to overcome this difficulty.
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2.3.3 Renormalisation of Rare-Eventness via Measurements
and Feedbacks

Now, we explain the key idea of our method. It is composed of two parts: Firstly,
we consider small values of h in (2.40), more precisely, sufficiently small so that it
satisfies

ta I (A∗(h)) = O(1), (2.41)

where ta is the correlation time of α(n → n′). Then, we can easily say that the dom-
inant contribution to obtain

〈
eht A(ω)

〉
n is not rare, which is, in other words,

〈
eht A(ω)

〉
n

is measurable for sufficiently small h. Secondly, the exponentially biased measure
P(ω; h|n0) has a renormalisable structure with respect to the biasing with exponen-
tial function. That is,

P(ω; h + h′|n0) ∝ P(ω; h|n0)e
h′t A(ω). (2.42)

These two ideas lead to a method of the rare event sampling method. First, for suffi-
ciently small h, we measure

〈
eht A(ω)

〉
n. Then, by using the obtained result, we modify

the transition rate to create the (probability preserving) system corresponding to the
biasedmeasure P(ω; h|n0). Then, again in the new system, wemeasure

〈
eht A(ω)

〉
n for

sufficiently small h. Thanks to the property (2.42), the obtained result will lead to the
next system corresponding to the biased ensemble P(ω; 2h|n0). In this method, just
with measuring eht A(ω), we could reach the biased ensemble P(ω; 2h|n0). This is the
important property in the rare events of the large deviation principle in time-series
statistics. This property can be phrased as follows: Rare events characterised by the
large deviation principle of time-averaged quantity is additive in a sense of measure-
ment. The rare-eventness can be renormalised during the measurements through a
feedback (or a modification) to the system. See Fig. 2.2 for the schematic diagram of
this structure.

Fig. 2.2 The schematic
diagram for renormalisability
of rare-eventness
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2.3.4 Rare-Event Sampling Method Constituted of an Iterative
Measurement-and-Feedback Procedure

Byusing the property explained above,we propose amethod for rare-events sampling
method constituted of an iterative measurement-and-feedback procedure.

First we set a measurement time t to be much larger than the correlation time of
α(n → n′), tα. Then, we define a small increment δh from the condition (2.41), or
more precisely,

taδh2σ = O(1), (2.43)

where σ is a scaled variance of A(ω) defined as

σ = lim
t→∞ t

〈
A(ω)2 − (〈A(ω)〉)2〉 . (2.44)

With this δh, the procedure is defined as follows:

1. For the first step, wemeasure
〈
eτδh A(ω)

〉
n as a function of n in the original system.

Here, we remind us that the measurement is not hard because of the condition
(2.43).

2. Then, depending on the value of
〈
eτδh A(τ )

〉
n, we modify the transition rate to

wδh(n → n′) = w(n → n′)eδhα(n→n′)

〈
eτδh A(ω)

〉
n′

〈
eτδh A(ω)

〉
n

. (2.45)

3. Next, in the created modified system, wemeasure the expected value of the same
quantity eτδh A(ω). We denote the obtained expected value by

〈
eτδh A(ω)

〉δh

n .
4. Again, we define the second modified transition rate as

w2δh(n → n′) = wδh(n → n′)eδhα(n→n′)

〈
eτδh A(ω)

〉δh

n′
〈
eτδh A(ω)

〉δh

n

. (2.46)

5. We iterate this procedure for many times. Then, we obtain a set of transition
rates

wlδh(n → n′) = w(n → n′)elδhα(n→n′)
l−1∏

k=0

〈
eτδh A(ω)

〉kδh

n′
〈
eτδh A(ω)

〉kδh

n

(2.47)

with l = 0, 1, 2, . . . .
6. Our computational method is based on the following formula. We denote by

〈 f 〉h the expected value of time-extensive quantities f (ω) in the system with
the modified transition rate wh (h = 0, δh, 2δh, . . .). Then, 〈 f 〉h equal to the
expected values by biased ensemble P(ω; h). That is,
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〈 f (ω)〉h �
〈
f (ω)ehτ A(ω)

〉

〈
ehτ A(ω)

〉 . (2.48)

Here and hereafter in this chapter, � represents the asymptotic equality when
τ � τα.

7. From the formula, we obtain the expected value of any quantity in biased ensem-
ble. For example, for the large deviation function of A(ω), by combining (2.48)
with (2.15), we reaches a formula

I (A) = max
h

[

h A −
N−1∑

k=0

〈 f (ω)〉h̃ δh

]

+ O(δh2) (2.49)

with h = Nδh. We write this formula as

I (A) = max
h

[

h A −
∫ h

0
dh̃ 〈 f (ω)〉h̃

]

, (2.50)

which shows the correspondence to the formula (2.18) in equilibrium statistical
mechanics.

We showed the basic strategy to derive (2.48) in the previous subsection. For a
mathematically rigorous derivation, see AppendixA.4.

2.4 Applications

As a demonstration, we apply our method to non-equilibrium many-body lattice
gas models. The first example is an asymmetric simple exclusion process (ASEP)
with non equilibrium open boundary conditions, and the second one is Fredrickson–
Andersen (FA) model, which is one of kinetically constrained models.

2.4.1 Effective Descriptions of Exponential Family

Before going to the demonstration, we here introduce a strategy to approach many
body systems. That is, effective descriptions of the exponential family.

The rare trajectories most contributing to G(h) are generated by the modified
transition rate wh(n → n′) in (2.47). Then, the modification rate

∏l−1
k=0

〈
eτδh A(ω)

〉kδh

n
in (2.47) is a function of the configuration of the system. Thus, it may be difficult to
apply the method to many-body systems, because the degree of the freedom in them
exponentially increases and the computation time for obtaining wh(n → n′) does as
well.
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Fig. 2.3 Schematic picture
explaining the effective
description of exponential
family

However, we expect that there are many physical examples that allow us to use
the effective description of the exponential family. It is to introduce an effective
transition rate with K unknown parameters for each value of h, where these unknown
parameters are determined by employing (2.47). We then assume that these effective
descriptions describe very well the statistical property of the rare trajectories. See
Fig. 2.3 for the explanation of this effective description. The system that we are going
to analyse in this section has indeed these effective descriptions.

2.4.2 Asymmetric Simple Exclusion Process (ASEP)

Definition of the Model

Let us consider a one dimensional lattice of size L with open boundary condi-
tions. Each site accommodates one particle at most. The configuration of the par-
ticles is denoted by n ≡ (ni )

L
i=1, where ni takes a value of 1 (occupied) or 0

(empty). The transition rate w(n → n′) is defined as follows: For a configuration
n = (n1, n2, n3, . . . , ni , ni+1, . . . , nL), we define an exchange operator Fi,i+1 as

Fi,i+1n = (n1, n2, n3, . . . , ni+1, ni , . . . , nL). (2.51)

Also we define a removing, or filling operator F1 and FL for the boundaries as

F1 = (1 − n1, n2, n3, . . . , ni , ni+1, . . . , nL) (2.52)

and
FL = (n1, n2, n3, . . . , ni , ni+1, . . . , 1 − nL). (2.53)

Then, by using these operators, we define w(n → n′) as

w(n → Fi,i+1n) = δni ,0δni+1,1q + δni ,1δni+1,0, (2.54)

w(n → F1n) = δn1,0α + δn1,1γ, (2.55)
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Fig. 2.4 Schematic picture representing the definition of ASEP

w(n → FL n) = δnL ,0δ + δnL ,1β, (2.56)

and
w(n → n′) = 0 (2.57)

for any other transition that cannot be expressed by using the operators Fi,i+1, F1,
and FL . Equation (2.54) means that a particle moves to the left empty site with a
rate q and to the right empty site with a rate 1, when the target site is not occupied.
Equation (2.55) and (2.56) represents the injection and the remove of a particle: A
particle is injected into the boundary site i = 1 (i = L) with a rate α (δ) and the
particle at the boundary site i = 1 (i = L) is removed with a rate γ (β). See Fig. 2.4
for the schematic picture to explain these transitions. This model is called ASEP and
has been studied as a cornerstone of non-equilibrium physics. See the introduction
of Ref. [17] and also Ref. [35] for the review.

In this model, we study the fluctuation of time-averaged bulk current. We first
define an instantaneous current at i th site as ji (n → n′) = ±1, which takes the
value 1 (or −1) when a particle moves from i to i + 1 (i + 1 to i). By using this
instantaneous current, we then define the bulk current as

α(n → n′) = 1

L − 1

L−1∑

i=1

ji (n → n′). (2.58)

The time-averaged bulk current A(ω) is defined as the time-averaged quantity of this
α(n → n′). See Sect. 2.2.2 for the definition or A(ω).

Numerical Check of Our Formulation

We first verify our formulation numerically. On one hand, we evaluate

l−1∏

k=0

〈
eτδh A(ω)

〉kδh

n (2.59)

for a integer l, which is the modification factor appeared in (2.47). On the other hand,
with a Monte Carlo simulation, we evaluate the left-eigenvector φ(n) corresponding
to the largest eigenvalue of Lh

n′,n defined in (2.25). According to our formulation,
(2.59) is proportional to φ(n), which can be seen by comparing (2.22) with (2.47).
See Fig. 2.5 for the examples of the obtained results.
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Exact
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Fig. 2.5 Numerical check of our formulation for the open boundary ASEP.We set q = 0.5, L = 8,
α = 0.8, β = 0.8, γ = 0.2, and δ = 0.2. We perform our computational method on Monte Carlo

simulations with setting l = 100 and 300 with δh = −0.02. The obtained
∏l−1

k=0

〈
eτδh A(ω)

〉kδh
n

are plotted on a (for l = 100) and b (for l = 300) labeled as our method. In the figure, the x
axis represents m(n) = ∑L−1

i=0 nL−i2i , which is the decimal value of the binary number n. On the
same figures, we also plot φ(n) that is the left eigenvector corresponding to the largest eigenvalue
of Lh

n′,n defined in (2.25) for h = −2 and h = −6 (Exact). In these two figures, we can see

the coincidence very well between
∏l−1

k=0

〈
eτδh A(ω)

〉kδh
n and φ(n). Reprinted with permission from

Ref. [27]. Copyright 2014 by American Physical Society

The Effective Description

Next, we study an effective description of the exponential family. First, we define an
effective transition rate wh

eff(n → n′) with L + 1 unknown parameters (ψh,i )
L
i=0 as

wh
eff(n → Fi,i+1n) ≡ w(n → Fi,i+1n)e(ni −ni+1)h/(L−1)

(
ψh,i+1

ψh,i

)ni −ni+1

. (2.60)

For the left and right boundary transitions, we also define

wh
eff(n → F1n) ≡ w(n → F1n)(ψh,1/ψh,0)

1−2n1 (2.61)

and
wh

eff(n → FL n) ≡ w(n → FL n)(ψh,L/ψh,0)
1−2nL . (2.62)

Here, we note that this new transition rate corresponds to anASEP that has a spatially
varying transition rate as shown in Fig. 2.6. Furthermore, in a sense of local detailed
balance condition [1], the effective transition rate represents the system, where a
one-body external potential is applied.

Fig. 2.6 An example of an effective description for ASEP. In this figure, each transition rate is
given as follows: qleft(i, h) = qe−h/(L−1)ψh,i−1/ψh,i , qright(i, h) = qeh/(L−1)ψh,i+1/ψh,i ,α(h) =
αψh,1/ψh,0, γ(h) = γψh,0/ψh,1, β(h) = βψh,0/ψh,L and δ(h) = δψh,L/ψh,0
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We determine the values of the parameters (ψh,i )
L
i=0 from our computational

method as follows:

1. For l = 0 (h = 0), we have ψh,i = 1 for i = 0, . . . , L .
2. For given (ψlδh,i )

L
i=0, we determine the next (ψ(l+1)δh,i )

L
i=0 from the following

procedure: We measure
〈
eτδh A(ω)

〉lδh

n for L + 1 different configurations n = n j

( j = 0, 1, 2, . . . , L). Especially, here, we choose (n j )i = δi j as the simplest
choice.

3. Next, by applying (2.47) to the effective transition rate (2.60), we obtain

ψ(l+1)δh,i = ψlδh,i
〈
eτδh A(ω)

〉lδh

ni
(2.63)

for i = 0, . . . , L . Thus, we obtain the next parameters (ψ(l+1)δh,i )
L
i=0 from

(ψlδh,i )
L
i=0.

4. By iterating this procedure, we obtain the effective description of the exponential
family.

Now, we apply our computational method toMonte-Carlo simulations. We calcu-
latedG(h), then plot it in Fig. 2.7.On the samefigure, for the comparison,we also plot
the largest eigenvalue of Lh

n,n′ , K , because it is equal to G(h) as shown in (2.31). For
further comparison, we also plot the truncated cumulant expansions up to the second
order: G2(h) = hg1+h2g2 and the fourth order: G4(h) = hg1+h2g2+h3g3+h4g4,
where the coefficients gi are defined as (1/ i !)∂i G(h)/∂hi |h=0. These coefficients
are calculated from the exact formula in Refs. [17, 19]. Even though one can see a
small deviation between our result (red dotted line) and the exact result (green dashed
line) around h = −7, the accuracy of our one is considerably better than the one
for the truncated cumulant expansions (blue and yellow solid lines). We thus claim
that rare fluctuations of the ASEP in a sense of the large deviation of the current
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Fig. 2.7 G(h) in the open boundary ASEP obtained from our effective description.We set q = 0.5,
L = 8, α = 0.8, β = 0.8, γ = 0.2, and δ = 0.2. Following the procedure for the effective
description described in the text, we performMonte Carlo simulations with fixed δh = −0.02. The
result is labeled as Eff. desc. For comparison, we also plot the largest eigenvalue of Lh

n,n′ (Exact),

the truncated cumulant expansions up to the second order: G2(h) = hg1 + h2g2 (2nd) and the
fourth order: G4(h) = hg1 + h2g2 + h3g3 + h4g4 (4th), where the coefficients gi are defined as
(1/ i !)∂i G(h)/∂hi |h=0. These coefficients are calculated from the exact formula in Refs. [17, 19].
Reprinted with permission from Ref. [27]. Copyright 2014 by American Physical Society
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with this parameter set are well described by the effective transition rate (2.60).We
expect that there are somemathematical formulas related to this observation.For this,
we mention a variational principle determining the large deviation function of the
current in lattice gas models in thermodynamic limit (infinite size limit), which was
proposed in [7, 8]. In the paper, Bodineau and Derrida derived the formula from a
phenomenology called an additivity principle. If we restrict ourselves to the system
of SSEP or (WASEP), this variational principle, on the other side, can be derived
from the general variational principle given as (2.30). In the derivation,we assume the
effective transition rate in thermodynamic limit [36]. We need further investigation
for clarifying the applicability of this effective-description approach upon general
lattice gas models.

2.4.3 Fredrickson–Andersen (FA) Model

Definition of the Model

Next, we consider a Fredrickson–Andersen (FA) model [37, 38]. This is an example
of kinetically constrainedmodels (KCMs), which has been studied for understanding
the glassy features from the dynamical aspect of the system.We define an occupation
variable ni = 1 or 0 on each site of a one-dimensional lattice. The size of the lattice
is L , and the boundary condition is periodic. For a configuration n = (n1, . . . , nL),
we define a flipping operator Ci as

Ci n = (n1, . . . , 1 − ni , . . . , nL). (2.64)

Then, from a configuration n to Ci n, we define the corresponding transition rate as

w(n → Ci n) = [(1 − c)ni + c(1 − ni )] fi (n), (2.65)

with the definition of fi (n) as

fi (n) ≡ ni−1 + ni+1. (2.66)

See Fig. 2.8 for the schematic picture explaining the definition of this FA model. The
transition rate is a product of two parts. The one is a part without any interaction
[(1−c)ni +c(1−ni )], and the other one is a part for the kinetically constraint fi (n).
Only the first part takes responsibility for the stationary state. Indeed, if we consider
the detailed balance condition, fi (n) is canceled out. Then the stationary probability
p(n) is just determined from this non interacting part [(1− c)ni + c(1− ni )], which
leads to

p(n) =
L∏

i=1

[cni + (1 − c)(1 − ni )]. (2.67)
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Fig. 2.8 Schematic picture
explaining FA model

The second part fi (n) actually represents a kinetic constraint. For example, we look
at the configuration, where i th site is surrounded by unoccupied site. In this case,
the flipping is indeed blocked due to fi (n). Although the stationary state is trivial,
the system shows the same features as the one in glassy systems, due to this kinetic
constraint. See Ref. [15, 39] for this review. Recently, for studying these features,
the approach using a large deviation principle gathered attention. In 2007, Garrahan,
Jack, Lecomte, Pitard, van Duijvendijk and van Wijland considered a dynamical
activity defined as

α(n → n′) = 1, (2.68)

which represents how often the state of the system changes. Then, in several KCMs,
they numerically calculated the cumulant generating function of this time-averaged
activity, and found the singularity in it in L → ∞ [15, 16, 40]. This represents a
dynamical phase transition of the system,which is believed to be related to dynamical
heterogeneities. After the finding, the finite size effect of the singularity has been
studied by Bodineau, Lecomte and Toninelli [41, 42]. Since the system that we
can simulate is always finite, the study to extract the property of dynamical phase
transition from finite-size systems is important. In this section, we approach to this
problem with our formulation, especially, by looking at the effective description of
the system.

The Effective Description

First, we define the effective transition rate as

wh
eff(n → Ci n) ≡ w(n → Ci n)eh[Ch((ni± j )

r
j=1)]1−2ni , (2.69)

where r is a truncating number of the interaction range and the function
Ch((ni± j )

r
j=1) is an unknown function of local variables. See Fig. 2.9 for the

schematic picture explaining this effective transition rate. This is defined for investi-
gating howmuch the long-rang interactions can affect the dynamical phase transition.
The transition rate becomes more accurate as r increases up to r � L/2. For fixed r ,
like the application to ASEP in the previous subsection, we determine the function
Ch((ni± j )

r
j=1) as follows:
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Fig. 2.9 Schematic picture explaining an example of the effective description in FA model

1. For l = 0 (h = 0), we have Ch((ni± j )
r
j=1) = 1.

2. For given Clδh((ni± j )
r
j=1), we determine the next C (l+1)δh((ni± j )

r
j=1) with the

following procedure: We measure
〈
eτδh A(ω)

〉lδh

n for 22r+1 different configura-
tions n = n j ( j = 1, 2, . . . , 22r+1). Here, we choose n j = (0, n2, . . . , nr+1,

0, . . . , 0, nL−r+1, . . . nL) with ni = 1 or 0 (i = 2, . . . , r + 1, L − r + 1 . . . , L)

and n j = (1, n2, . . . , nr+1, 0, . . . , 0, nL−r+1, . . . nL) with ni = 1 or 0 (i =
2, . . . , r +1, L −r +1 . . . , L). Because the system has translational invariance,
we can regard the site i = 1 as the centre of the systemwithout loss of generality.

3. Next, by applying (2.47) to the effective transition rate (2.60), we obtain

C (l+1)δh((n1± j )
r
j=1) = Clδh((n1± j )

r
j=1)

〈
eτδh A(ω)

〉lδh

C1n
〈
eτδh A(ω)

〉lδh

n

(2.70)

for i = 1, . . . , 22r+1. Thus, we obtain the next parameters C (l+1)δh((n1± j )
r
j=1)

from Clδh((n1± j )
r
j=1).

4. By iterating this procedure, we obtain the effective description of the exponential
family.

First, we check the validity of our formulation by launching Monte Carlo simula-
tions for small system sizes. We diagonalise the matrix Lh

n′,n defined in (2.25), then
we calculate

φ(C1n)/φ(n) (2.71)

with n = (0, n2, . . . , nr+1, 0, . . . , 0, nL−r+1, . . . nL), which corresponds to
Ch((n1± j )

r
j=1) in our formulation. The examples of this result are shown inFig. 2.10a.

Next, we investigate the long-range nature of the dynamical phase transition. We
fix relatively large values of L , where the direct diagonalization of the matrix Lh

n′,n
is too demanding. Then, we launch the Monte Carlo simulations and obtain G(h) for
several values of r . On the other hand, we apply the population dynamics method
to the same system, which is a numerical technique to calculate large deviation
functions [43, 44]. We plot all the obtained results in Fig. 2.10b. In the figure, we can
see that the curves obtained r = 3, 4 shows the convergence, especially for the region
h < 0. Since this part h < 0 takes responsibility for the dynamical phase transition
explained above [41, 42], this result suggests that the long-range interactions for the
modified transition rate is not relevant to it. We mention that the long-range nature of
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Our method

Exact
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Fig. 2.10 Statistical properties of an activity for the FAmodelwith c = 0.3. aWeset L = 10, r = 4,
l = 40 and δh = −0.0025, then we perform our formulation. We plot obtained Clδh((n1+ j )

r
j=1)

(Our method), where the x axis represents m(n) = ∑r−1
i=0 nL−i2i +∑2r−1

i=r n2r+1−i2i . On the same
figure, we also plot φ(C1n)/φ(n) with n = (0, n2, . . . , nr+1, 0, . . . , 0, nL−r+1, . . . nL ) obtained
from the left eigenvector corresponding to the largest eigenvalue of Lh

n,n′ for L = 10 with h = −0.1
(Exact). b We set L = 30 and δh = −0.0025, and we perform our formulation for several r . The
obtained G(h)/L are plotted on the figure. At the same time, we also perform the population
dynamics method [43, 44] for obtaining G(h)/L . The obtained result is plotted as a black dashed
line (P. D.) in the figure. Reprinted with permission from Ref. [27]. Copyright 2014 by American
Physical Society

the effective interactions has also been studied very recently in Ref. [45] for the East
model. They solved analytically a variational principle that characterises modified
systems (which is the same as the one that we explained in Sect. 2.2.5). Then, they
focused on the part h > 0 and concluded that the long range interaction could not
be negligible. This result is not contradictory to ours, because they focused on the
different region of h, and also, they measured different quantities from ours. Indeed,
in Fig. 2.10b for h > 0, we can see a small difference between results with effective
interactions and the one with population dynamics.

In this system, for investigating the singular behaviour of G(h) more precisely, a
scaled biasing parameter h̃ ≡ hL has been introduced by Bodineau, Lecomte, and
Toninelli [41, 42]. They proved that

G̃(h̃) = G(h̃/L) (2.72)

is not an analytic function in the limit L → ∞. However, the nature of the singularity,
for example how the singularity arrises as the systemsize becomes larger, has not been
understood yet. The problem was in the numerical study of it because the population
dynamics method does not exhibit good convergence of G̃(h̃) for relatively large
values of L [41]. In AppendixA.5, we show that our method can also be applied for
obtaining the reliable L dependence of G̃(h̃) even in this situation.
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2.5 Conclusion

In this chapter, we studied the phenomenological structure for the large deviation
principle in time-series statistics. By using this structure, we proposed a rare-event
sampling method composed of a measurement and feedback, which produced a
set of transition rates that had the same statistical properties as those in the biased
ensemble of large deviation statistics. For applying the method to spatially extended
many-body systems, where the number of degrees of freedom increased exponen-
tially, we also proposed a method to construct an effective description of the biased
ensemble. The example of the effective description is as follows: For the case of
ASEP, spatially varying one-body potentials instead of many-body potentials can be
this effective description. For FA model, the finite-size effect of dynamical phase
transition appearing in G(h) is well described by the effective description without
long-range interactions.

Here, we mention a future possibility related to this effective description. In order
to get a good effective description, physical intuition and some efforts with trial-and-
error are needed. But once after we get a good effective description, the computation
time of large deviation statistics will be shortened very much.What we need to know
now is the theory to determine such effective descriptions automatically if a system
is given. For constructing this theory, we need many examples of effective descrip-
tions in many systems. We start with a simple problem such as heat conduction, then
increase the complexity of the problem gradually. One of the challenging goals to
achieve is to find an effective description of fully-developed turbulence. (See Con-
clusion for the detail.) Since there is an important problem related to rare-events in
turbulence, such a description, if it is found, will certainly promote the understanding
of turbulence, especially from a viewpoint of rare-event sampling application to real
experiments.
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Chapter 3
Common Scaling Functions in Dynamical
and Quantum Phase Transitions

3.1 Introduction

KCMs (Kinetically constrained models) have a dynamical phase transition when it
is biased by the activity of the system [1–3]. For studying the singularity appearing
in the dynamical free energy, numerical simulations of KCMs are useful. The main
obstacle here is that the singularity appears in infinite system size limit. For finite size
systems, which are only the settings that we can consider in numerical simulations,
we need some special technique to extract the property of the singularity. This is the
purpose of finite size scaling, which has been studied by Bodineau, Toninelli, and
Lecomte [4, 5]. Until now, several mathematical results have been obtained. However,
the understanding is not yet enough to make quantitative connections between the
dynamical phase transition and the glassy features such as dynamical heterogeneity.
Further studies are needed.

For the finite-size scaling, one important problem, which is specific to thermody-
namic formalism in time-series statistics, arrises. It is related to the lack of the direct
connection from a biased ensemble to a physical system (or Monte Carlo simulation):
Even for finite-size systems, a special value of the biasing field s can be defined as the
one giving the local maximum of the second derivative of the cumulant generating
function. However, this value is deviated from the origin whenever we consider finite
size systems [4, 5]. Only rare trajectories, generated by an exponential biasing, is
related to this special point.

Here, we remind us of the phenomenological structure for the large deviation
principle explained in Chap. 1. With this structure, such rare trajectories are realised
in a stationary state of another (modified) system. Until now, some studies that focus
on this structure in the dynamical phase transition has been done, for example by Jack,
Sollich [6] and by us [7]. The studies are based on some numerical technique, and
any analytical expression, which accelerates the understanding of dynamical phase
transition, is not obtained yet. Especially, there is a lack of the detailed study on a
simple and solvable example, like mean-field model of ferromagnet. In this chapter,
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we conduct such a detailed study on a mean field model, which is the simplest
KCMs called mean-field FA model. We focus on the Hamiltonian corresponding to
the dynamical phase transition point. We find that the Hamiltonian itself is a singular
function with infinite system size limit, and that the system is naturally divided into
two regions, namely active and inactive regions due to that singular point. This is
explained in Sect. 3.2.2 in this chapter.

Furthermore, we have some by-products thanks to this formulation. One of them
is a scaling function around the dynamical phase transition point. For equilibrium fer-
romagnetic models, a finite size scaling function was found by Borgs and Koteckeý
in 1990 [8, 9]. In their theory, they assumed that the partition function at the coexis-
tence region was written as the sum of each partition function corresponding to each
coexisting phase. From this assumption, they derived a universal scaling function for
those models. For the case of dynamical phase transition, we ask if the same argument
is possible or not. In this chapter, we answer “yes” to this question. But the theory
of Borgs and Koteckeý cannot be applied directly. We need another procedure that
is intrinsic to the time-series statistics. It is the variational principle for determining
the corresponding stationary state (2.29). We explain the detail in Sect. 3.2.3 in this
chapter.

Interestingly, the scaling function obtained in the dynamical phase transition can
be seen in another type of phase transition. It is quantum phase transition, which is
defined in temperature zero limit in quantum systems. Mathematically, it is known
that the statistical physics with zero-temperature limit and biased ensemble defined
in time-series statistics are equivalent. (We revise this known fact in Sect. 3.3.1.)
Thus, a natural question will arise that the property obtained in the dynamical phase
transition can be imported to the quantum phase transition. We also answer “yes”
to this question and show that transverse mean-field Ising spin has exactly the same
scaling function. Until now, in the studies of the quantum phase transitions, several
interesting results have been obtained. As an example, an exponentially small energy
gap between the ground state and the excited state has been studied by Jörg et al. [10]
and Bapst and Semerjian [11], and some quantitative formulas about this gap have
been reported. We show that our result is compatible with these previous ones. We
apply our formulation to a quantum ferromagnet in order to determine the width of
the coexistence region, and show that the obtained formula is equivalent to the one
derived by Bapst and Semerjian in Ref. [11], which gives the energy gap explained
above at the quantum phase transition point.

Here is the organisation of this chapter. In Sect. 3.2, we analyse a mean-field
Fredrickson–Andersen (FA) model. Section 3.2.1 is devoted to preliminaries, where
the definition of the model and the dynamical activity are given. The known result
of the dynamical phase transition in this simple model is also shown in this subsec-
tion. In Sect. 3.2.2, we show the analytical expression of the modified Hamiltonian
at the transition point, from which the domain of the state of the system can be natu-
rally divided into two regions, namely, active and inactive phases. In Sect. 3.2.3, we
propose an ansatz to obtain the scaling function around the dynamical phase transi-
tion, which is valid not only in the dynamical phase transition but also in quantum
phase transitions. In Sect. 3.3, as announced before, we analyse the quantum phase

http://dx.doi.org/10.1007/978-981-287-811-3_2
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transition for a mean-field quantum ferromagnet model. In Sect. 3.3.1, we show the
mathematical equivalence between the dynamical phase transition and the quantum
phase transition. In the next Sect. 3.3.2, we apply our formulation to this system. We
first derive the same scaling functions as the one obtained for KCMs. Then, we derive
a formula that has the same expression as the one derived by Bapst and Semerjian in
Ref. [11]. In Sect. 3.4, we make a conclusion of this chapter. The discussion in this
chapter is based on our published paper [12]

3.2 Finite-Size Structure in Mean-Field FA Model

3.2.1 Preliminaries

Definition of the Model

Let us consider a lattice with site L , where an occupation variables n = (ni )
L
i=1 is

defined on each site. We don’t specify the shape of the lattice because we consider
mean-field model defined below. The variable ni takes 0 (unoccupied) or 1 (occu-
pied). And follows a continuos-time-Markov dynamics. (See the Sect. 2.2.1 for some
basics about continuous-time Markov dynamics). With parameter c that takes value
between 0 and 1, the transition rate w(n → n′) is defined as

w(n → Ci n) = [(1 − c)ni + c(1 − ni )] f M
i (n), (3.1)

where Ci is the spin-flip operator defined in (2.64) and fM(n) is a fully connected
kinetic constraint defined as

f M
i (n) ≡ 1

L

∑

i �= j

ni . (3.2)

As explained in Sect. 2.4.3, this constraint factor f M
i (n) doesn’t affect the equilibrium

distribution function.
Now we change the variable of the system to more simple quantity. Unlike the

1-FA model introduced in Sect. 2.4.3, in this case, the evolution equation has an
exact-closed description. By defining a total spin by

n =
∑

i

ni , (3.3)

we obtain an alternative continuous time Markov dynamics of n with a transition rate

w(n → n + 1) =
∑

i

(1 − ni )
c

L

∑

j �=i

n j = 1
Lcn(L − n) (3.4)

http://dx.doi.org/10.1007/978-981-287-811-3_2
http://dx.doi.org/10.1007/978-981-287-811-3_2
http://dx.doi.org/10.1007/978-981-287-811-3_2
http://dx.doi.org/10.1007/978-981-287-811-3_2
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and

w(n → n − 1) =
∑

i

ni
1 − c

L

∑

j �=i

n j = 1

L
(1 − c)n(n − 1) . (3.5)

Note that there are no transitions for reaching n = 0. We choose the initial condition
as the one that doesn’t have any probability of n = 0, so that the system never reach
n = 0 state after that. The domain of n is thus 1 ≤ n ≤ L . In this system, the escape
rate is written as

λ(n) =
∑

n′
w(n → n′) = cn(1 − n/L) + (1 − c)n(n − 1)/L . (3.6)

The transition rate satisfies a detailed balance condition

Peq(n)w(n → n′) = Peq(n
′)w(n′ → n) (∀ n, n′) (3.7)

with respect to the equilibrium distribution function Peq(n)

Peq(n) = L!
n!(L − n)!

1

1 − (1 − c)L
cn(1 − c)L−n. (3.8)

The expected value of n is

〈n〉eq = cL + O((1 − c)L), (3.9)

the variance of n is

〈
(n − 〈n〉)2〉

eq = c(1 − c)L + O((1 − c)L). (3.10)

Here, we note that the parameter c is interpreted as the mean density of occupied
sites in the large size limit from (3.9). Also, from (3.9) and (3.10), we obtain the
expected value of the escape rate as

〈λ〉eq = 2(1 − c)c2 L + O(1). (3.11)

There is a large deviation principle for the probability distribution of the fraction
ρ = n/L . Indeed, from the distribution function of n (3.8), we obtain an asymptotic
expression of L−1 Peq(Lρ)

L−1 Peq(Lρ) ∼ e−L fe(ρ) (3.12)

with

fe(ρ) = (1 − ρ) log
1 − ρ

1 − c
+ ρ log

ρ

c
(3.13)
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for large L . The function fe(ρ) is the large deviation function. Here and hereafter
in this chapter, we use the free energy terminology when we mention the particle
number large deviation function fe(ρ). As explained below, when we indicate the
large deviation function of time-averaged quantity, we refer to them as dynamical
free energy.

Dynamical Activity

For a given transition n → n′, we define a quantity α(n → n′) as

α(n → n′) = 1. (3.14)

Because α(n → n′) represents how the system actives, it is called dynamical activity.
Then, for a given path ω generated by continuos-time Markov dynamics (See the
Sect. 2.2.1, for exapmle), the time-averaged dynamical activity A(ω) during time
interval t is

A(ω) = N

t
, (3.15)

where N is the total number of jumps. The expected value of A(ω) in stationary state
is equal the one of λ. Indeed,

〈A(ω)〉 =
∑

n,n′
Peq(n)w(n → n′)α(n → n′) =

∑

n,n′
Peq(n)w(n → n′) = 〈λ〉 .

(3.16)
Thus, like (3.11), it is also calculated as

〈A(ω)〉 = 2(1 − c)c2 L + O(1). (3.17)

Fluctuation of the Dynamical Activity

Although the expected value of A(ω) is trivial, higher moment has singular property
as shown below. For this, we define the cumulant generating function, or dynamical
free energy as

G(s) = 1

L
lim

t→∞
1

t
log
〈
e−sKt

〉
. (3.18)

We note that the definition of the biasing parameter is different from the one in
Chap. 2, h. The relation between h and s is s = −h.

From (2.31), G(s) is calculated as the largest eigenvalue of a matrix Ls
n′,n:

Ls
n′,n ≡ w(n → n′)e−s − δn,n′λ(n) (3.19)

and ∑

n′
φ(n′)Ls

n′,n = LG(s)φ(n). (3.20)

http://dx.doi.org/10.1007/978-981-287-811-3_2
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The Variational Principle for Determining G(s)

Here, we recall the variational principle for determining G(s) given as (2.30). In this
case, it is written as

LG(s) = max
�F̃

∑

n

P̃(n)
[
λ̃(n) − λ(n)

]
, (3.21)

where the distribution function P̃(n) and modified escape rate r̃(n) are defined as

P̃(n) = Peq(n)e−�F̃(n)

∑
ñ Peq(ñ)e−�F̃(ñ)

(3.22)

and
λ̃(n) = nc

(
1 − n

L

)
e− 1

2 [�F̃(n+1)−�F̃(n)]−s

+ n(1 − c)

(
n

L
− 1

L

)

e− 1
2 [�F̃(n−1)−�F̃(n)]−s .

(3.23)

Due to (2.29), which represents that the optimal system corresponds to the biased

system characterised by the largest eigenvector, the optimal �F̃(n) is connected to
φ(n) as

�F̃(n) = −2 log φ̃(n), (3.24)

In the system that satisfies the detailed balance condition, like the system that we
are now considering, the formula (3.21) can be mapped to a well-known variational
principle determining the ground state energy in quantum mechanics. See Appendix
B.4. Then, that equivalent formula to (3.21) has been used to detect the dynamical
phase transition [1–3]. Next, as a preliminary of the dynamical phase transition, we
show this argument with a viewpoint of a large deviation principle, and introduce
the dynamical phase transition in this system.

Dynamical Phase Transition

Here, we show the dynamical phase transition with the variational principle (3.21).
First, we assume a large deviation principle in the optimal modified system:

P̃(n) ∼ e
−L
[

fe(n/L)+ f̃ (n/L)
]

(3.25)

for large L , where f̃ (ρ) is an unknown free energy we determine below. This is
equivalent to an assumption that the variational free energy �F̃(n) scales like L f̃ (ρ)

with ρ = n/L for large L . Then with these assumptions, we rewrite (3.23) as

r̃(Lρ)

L
= e−s

[
ρc (1 − ρ) e− 1

2 f̃ ′(ρ) + ρ2(1 − c)e
1
2 f̃ ′(ρ)

]
+ O(1/L) (3.26)

http://dx.doi.org/10.1007/978-981-287-811-3_2
http://dx.doi.org/10.1007/978-981-287-811-3_2
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where f̃ ′(ρ) = ∂ f̃ (ρ)

∂ρ
. By using this expression in (3.21), we obtain the leading term

of it as

G(s) = max
f̃ >0

∫

dρ
{

e−s
[
ρc
(
1 − ρ

)
e− 1

2 f̃ ′(ρ) + ρ2(1 − c)e
1
2 f̃ ′(ρ)

]
− r(Lρ)/L

}
e−L[ fe(ρ)+ f̃ (ρ)]

∫

dρ e−L[ fe(ρ)+ f̃ (ρ)]

(3.27)
Then, we perform the saddle point approximation in the integrals over ρ with an
assumption that the optimal function fe(ρ) + f̃ (ρ) reaches its minimum at a unique
point ρ0. The result is,

G(s) = max
0≤ρ0≤1

{
e−s
[
ρ0c
(
1 − ρ0

)
e− 1

2 f̃ ′(ρ0) + (ρ0)2(1 − c)e
1
2 f̃ ′(ρ0)

]
− r(Lρ0)/L

}
,

(3.28)

where f̃ ′(ρ0) is determined by a condition

f̃ ′(ρ0) + fe
′(ρ0) = 0. (3.29)

Finally, by using the explicit expression of fe(ρ) in it, we arrive at

G(s) = max
0≤ρ≤1

{
2e−s

√
ρ3(1 − ρ)c(1 − c) − [ρc(1 − ρ) + (1 − c)ρ2

]}
. (3.30)

This type of variational principle, which describes the large-size behaviour of large
deviation, is well known. As stated already, Garrahan et al. derived this formula and
confirm the dynamical phase transition in [1–3]. Indeed, by drawing the variational
function for several values of s, namely s1 < 0, s2 = 0, and s3 > 0 in Fig. 3.1, we see
that the argument ρ for realising the maximum value jumps at s = 0 suddenly. Due to
this jump, the dynamical free energy G(s) has a kink-like structure in the system size
infinite limit as shown in the green line in Fig. 3.2. This first order phase transition is
called the dynamical phase transition. Not only for this mean-field model, but also
for several finite dimensional KCMs, this property was observed in Refs. [1–3] by
using the population dynamics [13, 14], which is a numerical technique to obtain
large deviation functions in time-series statistics.

For the interpretation of this property, we recall the biased ensemble introduced in
Sect. 2.2.3. From the relation (2.14), which connects the derivative of G(s) with the
expected value of the activity in the biased ensemble, we can see that the singularity
represents the biased ensemble to show the first order phase transition in the limit
L → ∞. Since, in this limit, the singular point is located at the origin s = 0, it
indicates that the unbiased system (s = 0) has two expected values of the activity.
One is 0, and the other one is (3.17), where the former represents inactiveness and
latter does activeness. In other words, the unbiased system lies at the coexistence
between the active and inactive phases.

http://dx.doi.org/10.1007/978-981-287-811-3_2
http://dx.doi.org/10.1007/978-981-287-811-3_2
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Fig. 3.1 The variational function in (3.30) as functions of ρ for several s. We set c = 0.3. The
blue, red, and yellow lines correspond to s = −0.01, s = 0, and s = 0.01, respectively. One can
see that ρ that maximises the function is located around c = 0.3 for s < 0, and located around 0 for
s > 0. For s = 0, these two phases coexist, which means that there is a first order phase transition
at s = 0
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Fig. 3.2 Dynamical free energy G(s) for c = 0.3 obtained from the variational formula (3.30)
(green), and numerical diagonalisation of (3.20) for L = 50 (blue), L = 100 (red), L = 150
(yellow). The inset is a magnified picture of the blue line (L = 50) around the cusp, which shows
the rounding of it due to the finite-size effect. We estimate the numerical examples of sc(L) de-
fined by (3.31). For L = 50, L = 100, and L = 150, these are 0.0479... , 0.02390..., and
0.01591..., respectively. These values are close to 1/(2Lc(1−c)) due to the formula (3.32). Indeed,
1/(2Lc(1 − c)) takes 0.04762..., 0.02381... and 0.01587... for L = 50, 100, and 150, respectively.
© IOP Publishing. Reproduced with permission. All rights reserved

Finite Size Structure of the Dynamical Phase Transition

This first order phase transition gradually arises as the system size become larger.
For seeing this, in Fig. 3.2, we show numerical examples of G(s) for c = 0.3, L =
50, 100, 150 obtained by solving the largest eigenvalue problem (3.19). For each
system size, we observe a cusp, even though the cross point is rounded as shown in
the inset. This cross point becomes shaper as the system size becomes larger, and
finally, in the system size infinite limit, G(s) has an in continuity of the derivative at
s = 0 (green line) as proved in the previous section.
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For finite size system, even though the singularity is under developing, we can
also define a remarkable point sc(L) by the special s that maximise the derivative of
G(s):

sc(L) ≡ Argmax
s

G ′′(s). (3.31)

As shown in Fig. 3.2, this point is not located at 0. For example, in this model, sc

scales like

sc(L) = 1

(2c(1 − c))

1

L
+ O

(
1

L2

)

, (3.32)

where the derivation is in the end of Sect. 3.2.3. We show the numerical example
in Fig. 3.2. In general KCMs, it is believed that sc(L) is scaled as the inverse of the
system size [1–3]. The remarkable point is deviated from the origin. However, not like
the equilibrium statistical physics, there are no direct correspondence of the biasing
parameter s to physical field. (See Sect. 2.2). This has prevented the understanding
of the dynamical phase transition. The purpose of this chapter is to shed a light on
it with the phenomenological structure for large deviation priniciple. Indeed, with
the formulation in Sect. 2.2.5, we can define the corresponding stationary state to
the dynamical phase transition even if the system is finite, and the corresponding
magnetization and susceptibility in it.

Free Energy, Modified Magnetization, and Modified Susceptibility

In the model we now consider, the unmodified (original) system satisfies the detailed
balance condition (3.7). Furthermore, the quantity we consider is the dynamical
activity defined as (3.14), which always takes 1. In this case, A detailed balance
condition corresponding to the modified system directly follows from the definition
of the modified transition rate ws(n → n′) (2.19) with (2.22). Indeed, ws(n → n′)
satisfies

Ps(n)ws(n → n′) = Ps(n′)ws(n′ → n) (3.33)

with the equilibrium modified distribution Ps(n) given as

Ps(n) = C Peq(n)φ(n)2, (3.34)

where C is the normalisation constant and φ(n) is the left-eigenvector of (3.19).
Here, from the distribution function Ps(n), we define a modified free energy Fs(n)

and modifying free energy �Fs(n) as

Fs(n) ≡ − log Ps(n), (3.35)

and
�Fs(n) ≡ −2 log φ(n). (3.36)

http://dx.doi.org/10.1007/978-981-287-811-3_2
http://dx.doi.org/10.1007/978-981-287-811-3_2
http://dx.doi.org/10.1007/978-981-287-811-3_2
http://dx.doi.org/10.1007/978-981-287-811-3_2
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There is a relationship between these two functions as

Fs(n) = − log Peq + �Fs(n) + const. (3.37)

Since we have the modified equilibrium distribution function, it might be also
interesting to define a modified magnetization ρ(s) and a modified susceptibility
χ(s) as

ρ(s) =
∑

n

(n/L)Ps(n), (3.38)

χ(s) = L
∑

n

(n/L − ρ(s))2 Ps(n). (3.39)

In the following subsections, we approach to the dynamical phase transition by
analyzing these modified properties.

3.2.2 Free Energy at s = sc and the Finite-Size Correction

Numerical Examples of ρ(s) and χ (s)

We first show the numerical examples of ρ(s) and χ(s) in Fig. 3.3. We solved the
largest eigenvalue problem (3.19), then we constructed Ps(n) from (3.34) and calcu-
lated ρ(s) and χ(s). For the x-axis, we use a scaled variable s̃ = s/L . In the figure,
we can see the clear mark of the first order phase transition of the variable ρ around
s̃ = 1/(2c(1 − c)), which becomes clearer as L becomes larger.

Numerical Examples of the Free Energies

To see the first order phase transition more clearly, we next see the free energies at
the transition point. In Fig. 3.4, we show the equilibrium free energy −log Peq(n)/L ,
the modifying free energy �Fs(n)/L , and the modified free energy Fs(n)/L for
s = 0.95sc, s = sc and s = 1.05 sc. The x-axis represents the density ρ = n/L . At
s = sc, we observe that the modified free energy Fs(n) reaches its minimum value
at the two densities ρ0 and ρ1. One density characterises the inactiveness (ρ � 0),
and the other one does activeness (ρ � c).

Analytical Expression of the Free Energy in L → ∞ Limit

Now, we derive the analytical expression of the free energy, which might give us
some insights behind the dynamical phase transition. We start with the eigenvalue
equation (3.19) at the transition point s = sc(L). In this expression, what we do is

1. assuming the large deviation property for the left-largest eigenvector φ(n):

φ(n)|s=sc(L) ∼ e−L� fsc(L)(n/L)/2, (3.40)
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Fig. 3.3 The modified
magnetisation ρ(s) (a) and
the modified susceptibility
χ(s) (b) given in (3.38) and
(3.39) as functions of
λ = s/L . We numerically
solve the largest eigenvalue
problem (3.19), construct the
distribution function Ps(n)

from (3.34), and calculate
ρ(s) and χ(s). We set
c = 0.3, and L = 20 (blue),
L = 40 (red), L = 60
(yellow). We note that the
position of the peak of χ(s)
is equal to sc(L) defined in
(3.31), so that it close to
λc = 1/(2c(1 − c)) due to
(3.32). Indeed, from the
figure, we estimate it as
λ = 2.398... for L = 60, to
which the corresponding λc
is 2.381... © IOP Publishing.
Reproduced with permission.
All rights reserved
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where � fs(ρ) is given as

� fs(ρ) = lim
L→∞

1

L
�Fsc(ρL) (3.41)

2. evaluating the leading order in L → ∞ limit for the (left) largest eigenvalue
problem (3.19).

Indeed, from s = sc(L), we can set

LG(sc) = −c + O(1/L), (3.42)

where we used (3.32). This leads to

φ(n + 1) cn
L (L − n)e−sc + φ(n − 1) (1−c)

L n(n − 1)e−sc

−φ(n)
[
c n

L (L − n) + (1 − c) n
L (n − 1) − c + O(1/L)

] = 0. (3.43)

Then, from the assumption (3.40), we replace φ(n) in (3.43) by � fsc(ρ). The leading
term in L → ∞ limit is

e−(1/2)∂� fsc (ρ)/∂ρcρ(1 − ρ) + e(1/2)∂� fsc (ρ)/∂ρ(1 − c)ρ2

− [cρ(1 − ρ) + (1 − c)ρ2
] = 0. (3.44)
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Fig. 3.4 Numerical
examples of the modifying
free energy �Fs(ρL)/L
(blue), the modified free
energy Fs(n)/L (yellow),
and the original equilibrium
free energy − log Peq(ρL)/L
(red) for c = 0.3, L = 100.
We set s = 0.95sc (a), s = sc
(b) and s = 1.05sc (c). ©
IOP Publishing. Reproduced
with permission. All rights
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This differential equation can be solved easily: There are two solutions,

∂� fsc(ρ)/∂ρ = 0 (3.45)

and

∂� fsc(ρ)/∂ρ = −2 log

[
(1 − c)ρ

c(1 − ρ)

]

= −2
∂ fe(ρ)

∂ρ
, (3.46)

which are equivalent to
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� fsc(ρ) = const., (3.47)

and
� fsc(ρ) = −2 fe(ρ) + const. (3.48)

Next, by looking at the numerical example of �Fsc in Fig. 3.4 (the blue line),
we expect that these two solutions are connected non-analytically. That is, with a
connecting point ρ∞

c , � fsc(ρ) is given as

� fsc(ρ) = −2 fe(ρ) + 2 fe(0). (3.49)

for ρ ≤ ρ∞
c and

� fsc(ρ) = −2 fe(ρ
∞
c ) + 2 fe(0). (3.50)

for ρ > ρ∞
c . The connecting point ρ∞

c is determined from the condition of first
order phase transition, which means that the inactive (ρ � 0) and the active (ρ � c)
configurations have the same weight:

fe(c) + � fsc(c) = fe(0) + � fsc(0). (3.51)

With the explicit expression of fe and � fsc , we obtain an equation for ρ∞
c as

2

[

(1 − ρ∞
c ) log

1 − ρ∞
c

1 − c
+ ρ∞

c log
ρ∞

c

c

]

= − log(1 − c). (3.52)

We show the solution of this equation as a function of c in Fig. 3.5. Then, in Fig. 3.6,
we plot the obtained � fsc(ρ) for c = 0.3. On the same figure, we also plot fe(ρ)

and fsc(ρ). We find that the distribution of the density ρ is naturally divided into two
domains by ρ∞

c . The active domain given as ρ > ρ∞
c has the same distribution as

the unbiased system, whears the inactive domain given as ρ < ρ∞
c has a deep trap

at the origin ρ ∼ 0.

Fig. 3.5 Connecting point
ρ∞

c given as (3.52). We
numerically solve (3.52) and
plot it as a function of c. ©
IOP Publishing. Reproduced
with permission. All rights
reserved
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Fig. 3.6 Analytical expression of the modifying free energy for s = sc given as (3.49) and (3.50). We
plot it with blue line. We also plot the corresponding modified free energy given as fe(ρ)+� fsc (ρ)

with yellow line, and the unbiased equilibrium free energy fe(ρ) with red line. © IOP Publishing.
Reproduced with permission. All rights reserved

Finite Size Correction

It is hard to diagonalise the matrix (3.19) for sufficiently large L to check the obtained
expression of � fsc(ρ). Here, we seek for the finite size correction of � fsc(ρ) in order
to confirm our analytical expression. It will be turned out that those corrections will
be used to derive the finite-size scaling of the large deviation function, as explained
in the next subsection.

First, for finite-size systems, we define a finite-size connecting point ρL
c as

∑

n≤nL
c

Ps(n) =
∑

n>nL
c

Ps(n), (3.53)

where nc = 
LρL
c �. Here, we note that the Eq. (3.53) can give a non-integer value of

ρL
c , because the distribution function Ps(n) has a ρL

c dependence as shown below.
To obtain the next order correction of � fsc(ρ), we use a perturbation analysis. More
precisely, for each active and inactive region, we assume the following scaling form

�L(n) = exp
{−(L/2)

[
� fsc(n/L) + (1/L)� f (1)

sc
(n/L)

]}
, (3.54)

substitute it in the eigenvalue equation (3.43), and derive the equation for � f (1)
sc

(n/L).
We don’t show the precise derivation here. That is done in Appendix B.1. The result
is

� f (1)
sc

(ρ) = − log
ρ(1 − ρ)

(c − r)2
− ρ(1 − 2c)

c(1 − c)
+ const. (3.55)

for ρ ≤ ρL
c , and

� f (1)
sc

(ρ) = −2

[
ρ(2c − 1)

2c(1 − c)
− log ρ

]

+ const. (3.56)
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Fig. 3.7 Numerical example of ρL
c (blue) obtained by solving (3.53) as a function of L with its

infinite limit ρ∞
c = limL→∞ ρL

c (purple) determined by (3.52). We set c = 0.3. The figure shows
the slow convergence of ρL

c to ρ∞
c . © IOP Publishing. Reproduced with permission. All rights

reserved
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Fig. 3.8 Numerical check of the analytical expression of the modifying free energy for finite-size
system given as � fsc (n/L) + (1/L)� f (1)

sc (n/L). We set c = 0.3, s = sc, L = 50 (blue), L = 100

(red) and L = 150 (yellow). We plot analytical expression � fsc (n/L)+ (1/L)� f (1)
sc (n/L) in solid

lines, and also �Fs(Lρ)/L obtained from numerical diagonalisation of Ls
n,n′ with dashed lines. ©

IOP Publishing. Reproduced with permission. All rights reserved

for ρ > ρL
c , where the two constants are determined by the conditions � f (1)

sc

(1/L) = 0 and limρ→ρL
c
� f (1)

sc
(ρ) = limρ→ρL

c
� f (1)

sc
(ρ). We note that the latter

constant depends on ρL
c , so that Ps(n) (n > nL ) does as well. This ensures that

ρL
c defined in (3.53) is not a trivial-integer as shown in Fig. 3.7, where we plot the

numerical examples of ρL
c as a function of L together with ρ∞

c .
Finally, in Fig. 3.8, we plot our finite-size free energy with the numerical results

obtained by direct diagonalization of Ls
n,n′ for c = 0.3, s = sc, L = 50, 100, 150.

We can see a clear agreement between them as L increases.

3.2.3 Scaling Function Around s = sc

In the previous subsection, we observed that the system showed a phase coexistence
for the density ρ, which was similar to the well-known equilibrium phase transition
although the mechanism behind it might be different. In this subsection, for more deep
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understanding of the dynamical phase transition, apart from the original motivation
about the glassiness of the system, we study more precisely what is the difference
between the dynamical phase transition and equilibrium phase transition. Especially,
we focus on the scaling function around the transition point. For the equilibrium
ferromagnetic model, the scaling functions around the 1st order phase transition point
have been determined by Borgs and Kotecký in [8, 9]. In the paper, they derived a
scaling function by assuming that the distribution function at the phase coexistence
point is written as the sum of the distribution function of each phase. That scaling
function was universal for general ferromagnet model. What we consider below is if
this universality is valid or not even for the case of dynamical phase transition. Then,
if it is not valid, the next question would be how we modify the method to apply to
those dynamical phase transitions.

Numerical Confirmation of the Existence of Scaling Functions

We first numerically confirm the existence of the scaling functions. For this, we define
the width of the phase transition region for finite size systems. As seen in Fig. 3.3,
for a given L , the width of the phase transition region is inversely proportional to the
derivative of ρ(s) at sc. We thus define a scaling ratio κ as

κ = −∂ρ(s)

∂s

∣
∣
∣
∣
s=sc

. (3.57)

We plot the logarithm of κ for various values of c as a function of L in Fig. 3.9. From
the figure, we find that log κ is proportional to L . This means that the width of the
first order coexistence region shrinks with an exponentially fast speed as the system
size L becomes larger.

Next, by using κ , we define a scaled variable x as

x = κ(s − sc(L)). (3.58)
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Fig. 3.9 The logarithm of the scaling ratio κ defined in (3.57) as a function of L for c = 0.2 (red),
c = 0.3 (blue), c = 0.4 (green), c = 0.5 (yellow), c = 0.6 (purple), c = 0.7 (gray) and c = 0.8
(black). We solved the eigenvalue equation of Ls

n,n′ and calculate κ for several L and c. These
are plotted as dots. Solid lines are the liner fit obtained from those data points. © IOP Publishing.
Reproduced with permission. All rights reserved
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Fig. 3.10 Numerical
examples of the rescaled
magnetisation ρ̃(x) (a) and
the rescaled susceptibility
χ̃(x) (b). We set c = 0.3, and
L = 60 (blue), L = 70 (red),
L = 80 (green), L = 90
(yellow), and L = 100
(black). © IOP Publishing.
Reproduced with permission.
All rights reserved
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Also, we define rescaled magnetisation and susceptibility as

ρ̃(x) = ρ
(
xκ−1 + sc(L)

)
, (3.59)

and

χ̃ (x) = χ
(
xκ−1 + sc(L)

)

χ(sc(L))
. (3.60)

These definitions represent the magnetisation and susceptibility magnified around
the dynamical phase transition point. We plot these functions in Fig. 3.10 for large
values of L . Converging of the resealed function is observed in the figure.

Ansatz to Determine the Analytical Expression of the Scaling Properties

Here, we propose an ansatz to determine the analytical expression of the scaling
properties. Before showing it, we first recall the finite-size free energy at the coexis-
tence point s = sc. With � fsc(ρ) and 1

L � f (1)
sc

(ρ) given as (3.49), (3.50), (3.55), and
(3.56), we obtained the active and inactive finite-size modifying free energy fi and
fa as

fi(ρ) = � fsc(ρ) + 1

L
� f (1)

sc
(ρ) (3.61)
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for ρ ≤ ρL
c

fa(ρ) = � fsc(ρ) + 1

L
� f (1)

sc
(ρ) (3.62)

for ρ > ρL
c . Then, the corresponding distribution function is

Psc(n) = Pi(n) 1n≤nL
c

+ Pa(n) 1n>nL
c
, (3.63)

where Pi(n) and Pa(n) are defined as

Pi(n) = 1

Z i + Za
Peq(n)e−L fi(n/L) (3.64)

Pa(n) = 1

Z i + Za
Peq(n)e−L fa(n/L) (3.65)

with the normalization constant

Z i =
∑

n≤nc

Peq(n)e−L fi(n/L), (3.66)

Za =
∑

n>nc

Peq(n)e−L fa(n/L). (3.67)

By using the distribution function at s = sc, we approach to the problem around
sc (s ∼ sc). Our ansatz to determine the scaling function is composed of following
two parts:

1. For around sc (s ∼ sc), we assume that the distribution function is given as

Ps(n) = [1 + a∗(s)]δn≤nc Pi(n) + [1 − a∗(s)]δn>nc Pa(n), (3.68)

where a∗(s) is a ‘mixing function’ to determine. We note that the distribution
function satisfies the normalization condition due to Z i = Za.

2. The mixing function a∗(s) is determined from the variational principle (2.29) for
the corresponding stationary state to biased ensemble.

For the first part, this definition of the distribution function is inspired by the method
used by Borgs and Kotecký for obtaining the scaling function in equilibrium first
order phase transition of ferromagnet [8, 9]. However, we should mention that our
distribution function Ps(n) doesn’t describe a superposition between two elementary
distributions not like the method by them. Rather, our method represents a separa-
tion of the domain of occupation number n into two phases. The second part is
specific to our method, because there are no corresponding variational principle in
equilibrium statistical mechanics. For equilibrium statistical mechanics, the biased
ensemble directly corresponds to another equilibrium distribution function, whereas

http://dx.doi.org/10.1007/978-981-287-811-3_2
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for time-series statistics, we need to use the variational principle (2.29) to create the
corresponding another distribution function as explained in Sect. 2.2.5.

Here we recall the variational formula for obtaining G(s), (3.30), derived in
Sect. 3.2.1. Naively, one might think a blunt perturbation in 1/L around this formula
is working. However, it isn’t true. This is mainly due to the reason that there is a 1st
order phase transition so that the saddle point is not only one but two. Our method
contains this fact as the first part of the assumption. In other words, by combining
the finite size scaling method by Borgs and Kotecký with the variational principle,
we overcome this difficulty. To the best of our knowledge, this ansatz hasn’t been
used up to now.

Determination of a*(s)

Here, we show the details of the calculation for determining a∗(s). First, from the
ansatz (3.68) with the relation (3.34), we construct φ(n) as

φ(n) ∝ δn≤nc

√
1 + a∗(s)e−L fi(n/L)/2 + δn>nc

√
1 − a∗(s)e−L fa(n/L)/2, (3.69)

also the magnetisation ρ(s), susceptibility χ(s) around sc as

ρ(s) = 〈ρ〉i

2

[
1 + a∗(s)

]+ 〈ρ〉a

2

[
1 − a∗(s)

]
, (3.70)

χ(s) = L

{〈
ρ2
〉
i

2

[
1 + a∗(s)

]+
〈
ρ2
〉
a

2

[
1 − a∗(s)

]− ρ(s)2

}

, (3.71)

where 〈 〉i and 〈 〉a are the expected values in the active and the inactive phases defined
as

〈g〉i = 2
∑

n≤nc

Pi(n)g(n) (3.72)

and
〈g〉a = 2

∑

n>nc

Pa(n)g(n), (3.73)

respectively. These formulas expresses that we can calculate every scaling property
around sc from a∗(s).

In order to determine a∗(s), we use the variational principle (2.29). By combining
it with the transition rate w(n → n′), the stationary distribution function (3.68), and
φ(n) given as (3.69), we obtain the following equations:

∂
(a)/∂a|a=a∗(s) = 0 (3.74)

with


(a) = 1

L

∑

n

Ps(n)
[
r̃(n) − r(n)

]
, (3.75)

http://dx.doi.org/10.1007/978-981-287-811-3_2
http://dx.doi.org/10.1007/978-981-287-811-3_2
http://dx.doi.org/10.1007/978-981-287-811-3_2
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where r̃(n) is defined as

r̃(n) = nc
(

1 − n

L

) φ(n + 1)

φL(n)
e−s + n(1 − c)

(
n

L
− 1

L

)
φ(n − 1)

φ(n)
e−s . (3.76)

We show the details of the calculation in Appendix B.2. Here, we just write down
the result. The answer of (3.74) is

a∗(s) = A√
1 + A2

, (3.77)

A = (�< − �>)/�=, (3.78)

where �<, �>, and �= are defined as

�= = 2
nc

L
c(1 − nc

L
)Pi(nc)

e−L fa((nc+1)/L)/2

e−L fi(nc/L)/2
e−s, (3.79)

�< = 1

2L

〈
r̃ie

−s − r
〉
i , (3.80)

�> = 1

2L

〈
r̃ae−s − r

〉
a , (3.81)

with the definition of r̃i,a(n) as

r̃i,a(n) = nc
(

1 − n

L

) e−L fi,a((n+1)/L)/2

e−L fi,a(n/L)/2
+ n(1 − c)

(
n

L
− 1

L

)
e−L fi,a((n−1)/L)/2

e−L fi,a(n/L)/2
.

Analytical Expression of (1/L) log κ

From now on, by using the obtained a∗(s), we discuss the scaling properties. We
first obtain the analytical expression of (1/L) log κ , where the κ is the scaling ratio
define by (3.57).

From a∗(sc) = 0, we have

�<|s=sc = �>|s=sc . (3.82)

Then, by expanding this equation around s = sc, we obtain

A = − s − sc

�c=

[〈 r

2L

〉

i
−
〈 r

2L

〉

a

]
+ O((s − sc)

2), (3.83)

where we denote �=|s=sc by �c=. From the definition of κ = −∂ρ(s)/∂s|s=sc and
(3.70), we thus find the analytical expression of it as
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κ = 1

�c=

[〈ρ

2

〉

i
−
〈ρ

2

〉

a

] [〈 r

2L

〉

i
−
〈 r

2L

〉

a

]
. (3.84)

To see the exponential dependence of κ , we recall that Pi(nc) in �c= goes to 0 in
L → ∞ with exponentially fast speed due to the large deviation principle, wheras
the other terms converges to each corresponding value in the limit. By combining it
with the explicit expression of the free energy fi (ρ), we thus arrive at

lim
L→∞

1

L
log κ = fi(ρ

∞
c ) = −1

2
log(1 − c). (3.85)

In the Fig. 3.11, we plot the right-hand side of (3.85), − 1
2 log(1 − c), as a function of

c (blue line). On the same figure, we plot the slope of the straight line in Fig. 3.11 for
c = 0.2, 0.3, . . . , 0.8 (red dots), which corresponds to the left-hand side of (3.85).
We can see the coincide very well.

Our formula claims that (1/L) log κ converges to the height of the large deviation
function from the bottom to the connecting point (ρ = ρ∞

c ). We note that this fact
reminds us the instantonic approach in [10] by Jörg, Krzakala, Kurchan, Maggs,
Pujos, and in [11] by Bapst, Semerjian for obtaining the exponentially small gap in
the quantum ferromagnet. In the next section, by bridging the time-series statistics
to quantum systems, we re-derive their formula by using our approach.

Analytical Expressions of ρ̃(x) and χ̃(x)

Next, we obtain ρ̃(x) and χ̃ (x). From the definition of x in (3.58) with (3.83)
and (3.84), we have

A = 2x

〈ρ〉a − 〈ρ〉i
+ O(κ−1). (3.86)

Then, by combining it with (3.70), (3.71) and (3.77), we obtain

Fig. 3.11 Numerical check
of the formula giving κ

(3.85). We estimated
(1/L) log κ for
c = 0.2, 0.3, . . . , 0.8 from
the fitting lines in Fig. 3.9
and plot them with red dots.
On the same figure, we draw
the analytical result
− 1

2 log(1 − c) with blue line.
The agreement is relatively
good although red dots are
obtained from finite size L .
© IOP Publishing.
Reproduced with permission.
All rights reserved
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ρ̃(x) = 1

2

⎡

⎣〈ρ〉i + 〈ρ〉a − 2x
√

1 + 4x2
[〈ρ〉i − 〈ρ〉a

]−2

⎤

⎦ , (3.87)

χ̃ (x) = 1
〈
ρ2
〉
i + 〈ρ2

〉
a − [〈ρ〉i + 〈ρ〉a

]2
/2

×
⎡

⎣
〈
ρ2
〉
i + 〈ρ2

〉
a − 2x

[〈
ρ2
〉
i − 〈ρ2

〉
a

] [〈ρ〉i − 〈ρ〉a

]−1

√

1 + 4x2
[〈ρ〉i − 〈ρ〉a

]−2
− 2ρ̃(x)2

⎤

⎦ ,

(3.88)

where we omit the exponentially small term O(κ−1). Finally, by noticing limL→∞
〈ρ〉i = 0 and limL→∞ 〈ρ〉a = c from the free energies (3.49) and (3.50), we arrive
at the scaling functions as

ρ̃∞(x) = lim
L→∞ ρ̃(x) = 1

2

[

c − 2x√
1 + 4x2c−2

]

, (3.89)

χ̃∞(x) = lim
L→∞ χ̃(x) = c2

c2 + 4x2
. (3.90)

For the numerical conformation, we use the expressions (3.87) and (3.88), which
contains the finite-size correction of (3.89) and (3.90). These expressions are also
constituted of the expected value and the variance of ρ in each of the active and
inactive phases, so that it is suggestive about its universal form. We plot (3.87) and
(3.88) (red solid lines) in Fig. 3.12 with the corresponding numerical results (blue
dashed lines). We can see the coincidence between them very well. On the same
figure, we also plot the infinite size scaling functions (3.89) and (3.90) as yellow lines.
Since there is a deviation between the yellow lines and the others, we understand the
importance of the finite size corrections in the formulas (3.87) and (3.88).

Until now, we have focused on the scaling property of ρ(s) and χ(s). As the
corollary of the result, one can obtain the scaling functions for the expected value
and the susceptibility of the activity given as ∂G(s)/∂s and ∂2G(s)/∂s2. It is worth
mentioning that even though ∂2G(s)/∂s2 is not connected directly to the equilibrium
distribution function Ps , an expression for the scaling functions can be derived thanks
to the results (3.87) and (3.88). See Appendix B.3 for the details.

Derivation of the Analytical Expression of sc

By using our formulation, we also can derive an analytical expression of sc as

sc = 1

2Lc(1 − c)
+ O(1/L2), (3.91)

which is numerically confirmed in Fig. 3.2. Here, we show the derivation.
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Fig. 3.12 Numerical check
of the analytical expressions
of the rescaled magnetisation
ρ̃(x) given in (3.87) (a) and
the susceptibility χ̃(x) given
in (3.88) (b). We set c = 0.3
and L = 100. The solid red
lines are the analytical
results, ant the dashed blue
lines are the corresponding
numerical results obtained
from the diagonalisation of
the matrix Ls

n,n′ . On the
same figure, for a
comparison, we also plot the
infinite-size scaling
functions (3.89) and (3.90)
with yellow solid lines. The
deviation of yellow lines
from the others show the
importance of the finite size
corrections in (3.87) and
(3.88). © IOP Publishing.
Reproduced with permission.
All rights reserved
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We evaluate the both sides of (3.82) up to O(1/L) with the explicit results of r ,
r̃i, and r̃a. We first consider the left-hand side of (3.82). By taking the saddle point
of the summation, we rewrite it as

1

L

(
r̃ie

−sc − r
) ∣∣
∣
n=1

+ O(1/L2) = c

L
e−sc

e−L fi(2/L)/2

e−L fi(1/L)/2
− c

L
+ O(1/L2). (3.92)

Here, the first term is O(1/L2) because

e−L fi(2/L)/2

e−L fi(1/L)/2
= O(1/L). (3.93)

We thus find that the left-hand side of (3.82) is

− c/L + O(1/L2). (3.94)

Then, on the other side, the right-hand side of (3.82) becomes
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1
L

(
r̃ae−sc − r

) ∣∣
∣
n=Lc

+ O(1/L2)

= c2(1 − c)
[
e− 1

2
∂ fa (ρ)

∂ρ
|ρ=c−sc + e

1
2

∂ fa (ρ)

∂ρ
|ρ=c−sc − 2

]
+ O(1/L2). (3.95)

due to the saddle point approximation. Here, we notice that ∂ fa(ρ)/∂ρ|ρ=c and sc

are O(1/L). We thus we rewrite (3.95) as

− 2sc c2(1 − c) + O(1/L2). (3.96)

Therefore, by comparing the both sides of (3.82), that is, (3.94) and (3.96), we finally
arrive at

sc = 1

2Lc(1 − c)
+ O(1/L2). (3.97)

3.3 Mean-Field Quantum Ferromagnet and the Scaling
Function

For time-series statistics, when the system satisfies the detailed balance condition,
the largest eigenvalue problem (3.20) can be symmetrized. This indicates that the
mathematical structure behind the largest eigenvalue problem for time-series statis-
tics, and the eigenvalue of problem of the ground state are common. For example,
the variational principle (3.21) and the variational principle for the ground state in
quantum systems are equivalent as shown in Appendix B.4. With keeping this corre-
spondence in our mind, here in this section, we apply our finite-size scaling method
to a mean-field quantum ferromagnet. Especially, we focus on the quantum phase
transition in the model. As a result, we find the same scaling functions as the one for
dynamical phase transition. Furthermore, to this system, by applying our formula
(3.85), which was used for obtaining the width of the coexistence region of the dy-
namical phase transition in the previous section, we obtain the same expression of
the formula that gives the exponentially small energy gap between the ground state
and the first excited state. This is exactly the same as the one that was obtained by
Bapst and Semerjian in Ref. [11].

3.3.1 Preliminary

Definition of Model

We consider L interacting 1/2 spins, where the Hilbert space is spanned by the space
{|�σ 〉 | �σ = (σ1, . . . , σL) ∈ {−1,+1}L}. The Pauli matrices acting on the i th spin
are denoted by σ̂ x

i , σ̂
y

i , and σ̂ z
i . They satisfy σ z

i |�σ 〉 = σi |�σ 〉, σ x
i |�σ 〉 = |�σ (i)〉, where

�σ (i) is the configuration in which the i-th spin is flipped. We define the transverse
magnetisation and the longitudinal magnetisation as
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m̂x = 1

L

L∑

i=1

σ̂ x
i , (3.98)

m̂z = 1

L

L∑

i=1

σ̂ z
i . (3.99)

By using these definitions, the Hamiltonian is defined as

Ĥ = −L(m̂z)p − �Lm̂x . (3.100)

This model is called a mean-field quantum p-spin ferromagnet. It is known that a
quantum phase transition takes place in this model for a special value of � . We
note that for the p = 2 (quantum Curie-Weiss model), the transition is second-order,
whereas for the p ≥ 3 the transition is first-order. See Ref. [11] for the details of the
thermodynamic properties of this model. Hereafter, we focus on the case that p ≥ 3.

Mapping from the Ground State Eigenvalue Problem
to the Formulation in Time-Series Statistics

Here, we show a mapping of the ground state eigenvalue problem to the formulation
in time-series statistics. Thanks to it, we will be able to apply the method developed
in the previous method to the quantum phase transition in this system.

We denote the ground state of Ĥ by |�〉 and the ground energy by E :

Ĥ |�〉 = E |�〉 (3.101)

Then, it is known that the ground state of Ĥ lies in a symmetries subspace, where
the interchanges of two spins are permitted:

〈�σ |�〉 = �(mz(�σ)), (3.102)

with a definition of mz(�σ) as mz = (1/L)
∑L

i=1 σ z
i . See Ref. [11] for the example of

the proof. By multiplying (3.101) by 〈�σ | from the left, we obtain

− L(mz)p〈�σ |�〉 − �L
1

L

L∑

i=1

〈�σ (i)|�〉 = E〈�σ |�〉. (3.103)

Then, by using (3.102), we rewrite it as

−L(mz)p�(mz) − �L 1
L
∑L

i=1

[
1+σ z

i
2 �(mz − 2/L) + 1−σ z

i
2 �(mz + 2/L)

]

= E�(mz).

(3.104)
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This means that the eigenvalue equation (3.101) for the ground state is reduced to
another eigenvalue equation that has much smaller size (L + 1) than before (2L ):

∑

m ′∈M
Hm,m ′�(m ′) = E

L
�(m), (3.105)

with M = {−1,−1 + 2/L , . . . , 1 − 2/L , 1} and

Hm,m ′ = −(m)pδm,m ′ − �

[
1 + m

2
δm−2/L ,m ′ + 1 − m

2
δm+2/L ,m ′

]

. (3.106)

We note that the matrix Hm,m ′ is not symmetric even though the Hamiltonian Ĥ is
Hermitian.

We denote the number of the state by p(m):

p(m) ≡
∑

�σ
δmz(�σ),m = L!

((1 + m)L/2)!((1 − m)L/2)!
1

2L
. (3.107)

With this function, the expected value of a function g(m̂z) in the ground state is
calculated as 〈�|g(m̂z)|�〉

〈�|�〉 =
∑

m

g(m)p�(m), (3.108)

where we define a distribution function p�(m) as

p�(m) = p(m)|�(m)|2
∑

m p(m)|�(m)|2 . (3.109)

As the function g(m̂z), we especially focus on the expected value and the variance
of m̂z , which are denoted by m(�) and σ(�):

m(�) =
∑

m

mp�(m), (3.110)

σ(�) = L
∑

m

(m − m(�))2 p�(m). (3.111)

It is well known that the ground state of quantum system is characterised by a
variational principle:

E = min|
〉
〈
|Ĥ |
〉
〈
|
〉 , (3.112)

where the optimal |
〉 is reached at the ground state |�〉. Then, from the same
calculation for deriving (3.105), we rewrite (3.112) as
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E

L
= min

�̃>0

∑

m

p̃(m)
∑

m ′
�̃(m)−1 Hm,m ′�̃(m ′), (3.113)

where p̃(m) is defined as

p̃(m) = p(m)�̃(m)2

∑
m p(m)�̃(m)2

. (3.114)

We note that the optimal p̃ is equal to the ground state distribution function p� .
Now, we can see the clear correspondence between this system and the one in

the previous section. The eigenvalue equation (3.105) corresponds to (3.20). By us-
ing the eigenvector of (3.105), the distribution function (3.109) is defined, which
structure corresponds to the distribution function in the biased ensemble (3.34). The
transverse field corresponds to the biasing field s. The magnetisation and suscep-
tibility directly corresponds to (3.38) and (3.39). Finally, the variational principle
(3.113) corresponds to (2.29). The quantum phase transition takes place as the first
order phase transition of m(�) and σ(�) as shown below. Here, we ask if we can
apply to this system the same formulation as the one in the previous section.

Some Basics About the Quantum Phase Transition

Before going to the finite size scaling, here, we introduce some basics of the quantum
phase transition in this model.

In the variational principle (3.113), we assume the large deviation principle of
p̃(m) for the ground state:

p̃(m) ∼ e−L f̃ (m) (3.115)

with a large deviation function f̃ (m). Here, we recall that the number of the state
p(m) also satisfies the large deviation principle:

p(m) ∼ exp

[

−L

(
1 + m

2
log(1 + m) + 1 − m

2
log(1 − m)

)]

, (3.116)

which indicates that �̃(m) also satisfies the large deviation scaling:

�̃ ∼ e−Lφ̃(m)/2 (3.117)

with a large deviation function φ̃(m) defined as

φ̃(m) = f̃ (m) −
[

1 + m

2
log(1 + m) + 1 − m

2
log(1 − m)

]

. (3.118)

The saddle point equation for the sum of m in (3.113) is

∂ f̃ (m)

∂m
= 0, (3.119)

http://dx.doi.org/10.1007/978-981-287-811-3_2
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which is equivalent to
∂φ̃(m)

∂m
= 1

2
log

1 + m

1 − m
(3.120)

from (3.118). With these relations, by performing the saddle point approximation in
the variational principle (3.113), we obtain a simple formula

E

L
= min

m

[
−m p − �

√
1 − m2

]
. (3.121)

This variational formula is a basics for this quantum phase transition and is well-
known as shown in Ref. [11], for example. By solving (3.121), we obtain an equation
for determining the expected value of the magnetization, which we denote by m∗:

m∗� = p
(
m∗)p−1

√

1 − (m∗)2. (3.122)

Since we are considering the system of p ≥ 3, the system has the first order phase
transition as follows. We denote the special value of � by �∞

c , where the phase transi-
tion takes place. The phase transition is detected as the two solutions in the variational
principle (3.121). Those two solutions correspond to paramagnetic solution and fer-
romagnetic solution. We thus denote them by mpa

∞(= 0) and mfe∞, respectively. In
order to determine �∞

c and mfe∞, we use a condition of first order phase transition:

[
−m p − �∞

c

√
1 − m2

] ∣∣
∣
∣
mpa

∞=0

=
[
−m p − �∞

c

√
1 − m2

] ∣∣
∣
∣
m=mfe∞

(3.123)

and the relation of m∗ and � as shown in (3.122).
We numerically solve the variational principle (3.121) for p = 3, and plot the

obtained E/L and m in Fig. 3.13. On the same figure, we also plot the numerical
examples of E/L , m(�), and σ(�) obtained from diagonalising the matrix (3.106)
for finite-size systems. The first order phase transition is observed around �∞

c � 1.3
in the figure. We also observe the finite size correction of m andσ in it. In the following
section, we approach to this finite size structure, where the problem doesn’t allow
us to utilise the naive perturbation approach from the formulation explained here.
In order to obtain the finite size correction, we need to use the same formulation
developed in the previous section for the KCM.

3.3.2 Finite-Size Scaling

Definition of Scaling Function

First, we define the transition point for finite-size system L , �L
c , as

�L
c = Argmax�σ (�). (3.124)
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Fig. 3.13 Numerical
examples of the ground state
energy E/L (a), the
magnetisation m(�) (b), and
the susceptibility σ(�) (c).
Blue, red, yellow, and green
lines correspond to the
system size L = 50, L = 40,
L = 30, and L = 20,
respectively. The black lines
are obtained from the
variational principle (3.121),
which represents the result in
L → ∞ limit. © IOP
Publishing. Reproduced with
permission. All rights
reserved
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Then, we quantify the width of the first order phase transition point by using the
derivative of m(�L

c ):
κ ≡ −∂m(�L

c )/∂�, (3.125)

which is inversely proportional to the width. With this κ , we introduce scaling func-
tions by

m̃(x) = m(�L
c + xκ−1), (3.126)

and
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σ̃ (x) = σ(�L
c + xκ−1)

σ (�L
c )

. (3.127)

Application of Our Method to Quantum Phase
Transition—Scaling Function

Here, to quantum phase transition, we apply our method developed in the previous
section (Sect. 3.2.3). Before applying our method, we divide the distribution function
at the coexistence point p�L

c (m) into two regions:

p�L
c (m) = δm≤mc Pp(m) + δm>mc Pf(m), (3.128)

where mc is the boundary of these two regions, which is defined as

∑

m≤mc

Pp(m) =
∑

m>mc

Pf(m) = 1/2. (3.129)

The region m ≤ mc corresponds to paramagnet region, whereas, the region m > mc

corresponds to ferromagnet region.
Now, around this coexistence point, we assume that the distribution function is

written by using a mixing function a∗(�):

p�(m) = (1 + a∗(�))δm≤mc Pp(m) + (1 − a∗(�))δm>mc Pf(m). (3.130)

We note that the normalization condition is satisfied thanks to (3.129). The mixing
function a∗(�) is determined by the variational principle (3.113) as follows. From
(3.109) and (3.130), we have �(m) in terms of the mixing function a∗(�):

�(m) ∝
√

(1 + a∗(�))
Pp(m)

p(m)
δm≤mc +

√

(1 − a∗(�))
Pf(m)

p(m)
δm>mc . (3.131)

We substite (3.130) and (3.131) into the variational principle (3.113), and maximise
it with respect to a∗(�). The obtained maximiser is the desired mixing function.
Since the calculation is almost the same as the one in the Sect. 3.2.3, we don’t repeat
it. We only write down the result here.

a∗(�) = x
[〈m〉p − 〈m〉f

]−1

√
1 + 4x2

[〈m〉p − 〈m〉f

]−2
+ O(κ−1). (3.132)

with x = κ(� − �c).
Once we obtain the distribution function around the coexistence region, the scaling

function of m(�), σ(�) directly follows. Indeed, m(�) and σ(�) are written in terms
of the distribution function as

m(�) = 〈m〉p

2

[
1 + a∗(�)

]+ 〈m〉f

2

[
1 − a∗(�)

]
, (3.133)
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σ(�) = L

{〈
m2
〉
p

2

[
1 + a∗(�)

]+
〈
m2
〉
f

2

[
1 − a∗(�)

]− m(�)2

}

, (3.134)

where 〈 〉p and 〈 〉f are defined as 〈g〉p = 2
∑

m≤mc
Pp(m)g(m) and 〈g〉f = 2

∑
m>mc

Pf(m)g(m), which corresponds to the expected values in the paramagnetic phase
and the ferromagnetic phase, respectively. Then, from the definition of the scaling
functions (3.126) and (3.127), we obtain

m̃(x) = 1

2

⎡

⎣〈m〉p + 〈m〉f − 2x
√

1 + 4x2
[〈m〉p − 〈m〉f

]−2

⎤

⎦ , (3.135)

and

σ̃ (x) =
1
C

[
〈
m2
〉
p + 〈m2

〉
f − 2x

[〈m2〉p−〈m2〉f

]
[〈m〉p−〈m〉f ]−1

√
1+4x2[〈m〉p−〈m〉f ]−2

− 2m̃(x)2

]

, (3.136)

where C is
C = 〈m2

〉
p + 〈m2

〉
f − 2m̃(0)2. (3.137)

Finally, by taking L → ∞ limit and noticing

lim
L→∞

〈m〉p = lim
L→∞

〈
m2
〉
p = 0, (3.138)

lim
L→∞

〈m〉f = mfe
∞, (3.139)

and
lim

L→∞
〈
m2
〉
f = (mfe

∞)2, (3.140)

we arrive at

m̃∞(x) = lim
L→∞ m̃(x) = 1

2

[

mfe
∞ − 2x

√
1 + 4x2(mfe∞)−2

]

, (3.141)

σ̃∞(x) = lim
L→∞ σ̃ (x) = (mfe∞)2

(mfe∞)2 + 4x2
. (3.142)

(3.135), (3.136) have the same form as (3.87), (3.88) , and also (3.141), (3.142) have
the same as (3.89), (3.90). We numerically check (3.135) and (3.136). For fixed finite
L , we numerically evaluate 〈m〉p,

〈
m2
〉
p, 〈m〉f , and

〈
m2
〉
f . Then, we plot (3.135) and
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Fig. 3.14 Numerical check
of the analytical expressions
of the rescaled magnetisation
m̃(x) (a) and the
susceptibility χ̃(x) (b). We
set p = 3 and L = 100. The
red solid lines are the
analytical results obtained
from (3.135) and (3.136). In
order to use the formulas, we
need the expected values of
magnetisation only at x = 0
(� = �L

c ). For this, we
diagonalise the
corresponding eigenvalue
problem at only that point.
The blue dashed lines are the
numerical results obtained
from diagonalising the
eigenvalue problem for every
x (or �). On the same figure,
for a comparison, we also
plot the infinite-size scaling
functions (3.141) and (3.142)
with yellow solid lines. ©
IOP Publishing. Reproduced
with permission. All rights
reserved
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(3.136) in Fig. 3.14. On the same figure, we also plot the scaling function obtained
from solving the largest eigenvalue problem (3.105) for each s with the same system
size L . We can see the good agreement of them. Finally, for seeing the speed of
convergence to the infinite-size scaling functions (3.141) and (3.142), we plot them
in Fig. 3.14 with yellow lines. We understand that larger system sizes are required
for observing the convergences to them.

Application of Our Method to Quantum Phase Transition—Scaling
Factor and Exponentially Small Gap

Here, to quantum phase transition, we apply our formula for obtaining the width
of the coexistence region. Then, we find that the obtained expression is exactly the
same as the one derived by Bapst and Semerjian for giving the exponentially small
energy gap between the ground state and the first excited state when the quantum
phase transition takes place [11].

We first denote the free energy density for the ground state at the transition point
�∞

c by f�∞
c
(m):

f�∞
c
(m) = − lim

L→∞
1

L
log p�∞

c (m). (3.143)
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Then, by applying our formulation developed in Sect. 3.2.3, we obtain the same
formula as (3.85). That is,

lim
L→∞

1

L
log κ = f�∞

c
(m∞

c ), (3.144)

where we denote correcting point between two phases in infinite size limit m∞
c by

m∞
c ≡ lim

L→∞ mc. (3.145)

Next, we determine the free energy. From (3.105), the eigenvalue equation of
ground state at � = �∞

c is

−m p − �∞
c

[
1 + m

2

�(m − 2/L)

�(m)
+ 1 − m

2

�(m + 2/L)

�(m)

]

= E

L
. (3.146)

In this equation, we assume a large deviation principle in the function �(m):

�(m) = e−(L/2)g(m). (3.147)

We evaluate the leading term of (3.146), which becomes

− m p − �∞
c

[
1 + m

2
e∂g/∂m + 1 − m

2
e−∂g/∂m

]

= e∞
c , (3.148)

with the definition of e∞
c as limL→∞ E/L|�=�∞

c
≡ e∞

c . There are two solutions of
this differential equation. We denote them by g±(m). Those are given as

g±(m) =
∫ m

0
dm̃ log

⎡

⎣− m̃ p + e∞
c

(1 + m̃)�∞
c

±
√(

m̃ p + e∞
c

(1 + m̃)�∞
c

)2

− 1 − m̃

1 + m̃

⎤

⎦ . (3.149)

We also denote the corresponding free energies to g±(m) by f±(m), which are given
as

f±(m) ≡ g±(m) + 1 + m

2
log(1 + m) + 1 − m

2
log(1 − m)

=
∫ m

0
dm̃ log

⎡

⎢
⎣− m̃ p + e∞

c√
1 − m̃2�∞

c

±
√
√
√
√

(
m̃ p + e∞

c√
1 − m̃2�∞

c

)2

− 1

⎤

⎥
⎦

(3.150)

The true free energy f�∞
c
(m) is the combination of f+(m) and f−(m). For construct-

ing it, we recall
f�∞

c
(0) = f�∞

c
(m∞

fe ) = 0, (3.151)
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∂ f+(m)

∂m

∣
∣
∣
∣
m=0

> 0, (3.152)

and
∂ f−(m)

∂m

∣
∣
∣
∣
m=0

< 0. (3.153)

From these relations and an assumption that there is only one connecting point, the
free energy f�∞

c
(m) is uniquely determined as

f�∞
c
(m) = f+(m) (3.154)

for m ≤ m∞
c , and

f�∞
c
(m) = f−(m) + const. (3.155)

for m > m∞
c , where the constant and m∞

c is determined from (3.151) and the conti-
nuity condition

lim
m→mc+0

f�∞
c
(m) = lim

m→mc−0
f�∞

c
(m). (3.156)

From the obtained free energy with the values of the parameters �∞
c , e∞

c , and
m∞

fe determined from (3.121)–(3.123), one can calculate the gap given by (3.144) in
principle. Here, however, we show that the gap can be expressed as a much simpler
form with the aide of a relation

f+(m) = − f−(m) + const., (3.157)

which is confirmed by the direct substitution. Indeed, from this, we obtain

f+(m∞
c ) = 1

2
f+(m∞

fe ), (3.158)

which leads to

lim
L→∞

1

L
log κ = 1

2
f+(m∞

fe )

=
∫ m∞

fe

0
dm log

⎡

⎢
⎣− m p + e∞

c√
1 − m2�∞

c

+
√
√
√
√

(
m p + e∞

c√
1 − m2�∞

c

)2

− 1

⎤

⎥
⎦

=
∫ m∞

fe

0
dm cosh−1

(
m p + e∞

c√
1 − m2�∞

c

)

, (3.159)

where we used a basic mathematical fact that the following equations are equivalent:
cosh x = A and ex = A ± √

A2 − 1. The expression of this formula is equivalent to
the one for determining the exponentially small gap between the ground state energy
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and the first excited energy at the coexistence region derived by Bapst and Semerjian
in Ref. [11]. This indicates that the width of the coexistence region and the energy
gap are quantitatively equivalent.

3.4 Conclusions

In this chapter, we analysed a mean-field FA model. Especially, we focused on
the stationary state corresponding to the biased ensemble (Sect. 2.2.5). Then, we
derived an analytical expression of the static free energy at the transition point. The
free energy itself had a singularity in the infinite system size limit, from which
the domain of the variable of the system was divided into two regions naturally.
Furthermore, we proposed a method to obtain an analytical expression of scaling
functions around the phase transition point, where the method was an extension of
the one by Borgs and Kotecký for equilibrium ferromagnets [8, 9]. For the extension,
we combined the variational formula (2.29) with their methods to fill the gap between
equilibrium phase transitions and dynamical phase transitions. Finally, by utilising
the mathematical fact that dynamical phase transitions and quantum phase transitions
are mathematically equivalent, we also derived the same scaling function in the mean-
field p-spin model.

As a future problem, we here mention the application of our method to finite
dimensional systems. We expect that our basic idea to derive scaling functions should
be applied in any dimension. This basic idea is as follows: For a given distribution
function at the coexistence region, we define the distribution function around the
coexistence region as the sum of each phase (obtained from the distribution function at
each coexistence phase) with multiplying each of them by a special coefficient, which
is an unknown function of s. Then, these unknown coefficients are determined by the
variational principle (2.29). Since the method by Borgs and Kotecký [8, 9] is generally
true even for finite dimensional systems, this expectation is quite legitimate. Indeed,
soon after the submission of our work, Campostrini and collaborators presented some
results independently about scaling functions of quantum first order phase transition
for a finite dimensional case [15]. Interestingly, the scaling functions take the form
similar to ours. They derived these results based on an approach with a two-level
effective model. Yet, the connection between ours and theirs is not clarified. Further
studies are needed.

Apart from the scaling functions, it is also interesting to see the modified free
energies at the coexistence region in finite dimensional cases. In the case of mean-
field model, the modified free energy itself has a singularity, from which the domain is
divided into two regions. The next question may be whether there is a similar structure
in finite dimensional cases. Since it is difficult to obtain analytical results in finite
dimensional cases in general, we will need to rely on some numerical simulations.
Furthermore, it will not be a straightforward problem to know which type of free
energy (large deviation function) shows interesting behaviour. However, we believe

http://dx.doi.org/10.1007/978-981-287-811-3_2
http://dx.doi.org/10.1007/978-981-287-811-3_2
http://dx.doi.org/10.1007/978-981-287-811-3_2
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that it is worth to challenge this research, since, if we success in this research, it may
be possible to connect quantitatively the dynamical phase transitions with the origin
of glassy features such as dynamical heterogeneities.
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Chapter 4
van Zon–Cohen Singularity and a Negative
Inverse Temperature

4.1 Introduction

A symmetry property of the fluctuation of entropy production was found in 1993.
This property was called the fluctuation theorem [1], which took the form of the
extension of the linear response theory, and also the well-known second law of
thermodynamics [2–6]. The property included the higher order fluctuation, so that
the experimental verification of the theorem required small size systems described
by Stochastic thermodynamics [7]. Wang et al. were the first group that verified the
fluctuation theorem in a real experiment in 2001 [8]. For this experiment, a Brownian
particle dragged by an optical tweezerwas studied, and the fluctuation theorem for the
work done by the tweezer was confirmed. See also Ref. [9] for the detailed analysis
of the system that they studied.

When we consider the higher order fluctuation of heat or work, the relationship
between these two fundamental quantities are not trivial. For the expectation value of
these quantities are equivalent (in reverse sign). This is the first law of thermodynam-
ics. However, we can no longer rely on this law for higher order moments. In the case
of the Brownian particle dragged by an optical tweezer, this relation was explicitly
studied by van Zon and Cohen [10, 11], where the heat was defined as the energy
dissipated by the particle. In one hand, they derived the fluctuation theorem for the
work, but on the other hand, they derived another fluctuation theorem for the heat.
This new fluctuation theorem has a different form from the one that had been known,
and they called this property, an extended fluctuation theorem. After this discovery,
several studies to clarify this new symmetry have been done. See Refs. [12–19], for
example.

For explaining the extended fluctuation theorem, we here consider a cumulant
generating function,

© Springer Science+Business Media Singapore 2016
T. Nemoto, Phenomenological Structure for the Large Deviation
Principle in Time-Series Statistics, Springer Theses,
DOI 10.1007/978-981-287-811-3_4
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G(h) = 1

t
log

〈
ehQ(t)

〉
, (4.1)

and a biased distribution function,

Ph(x, t) = e−tG(h)
〈
δ(x(t) − x)ehQ(t)

〉
, (4.2)

where x(t) is the position of the particle at time t , Q(t) is the accumulated heat
from time t = 0 to t = t , the parameter h is a biasing field, and Ph(x, t) is the
expectation value of δ(x(t)−x)with respect to the path probability density biased by
an exponential factor ehQ(t)−tG(h). It means that Ph(x, t) is the distribution function of
x(t) in the exponentially biased ensemble introduced as (2.11). The rare trajectories
characterised by the large deviation principle of Q(t) has larger weight in this biased
ensemble for h > 0, and smaller weight for h < 0. As reported in the original
papers [10, 11], the extended fluctuation theorem appears with a singularity of the
cumulant generating function G(h). More precisely, G(h) becomes singular, when
we set |h| to be a value larger than a special value hc. Here in this chapter, we call
this singularity a van Zon–Cohen singularity.

van Zon–Cohen singularity is related to rare trajectories, since this singularity
emerges when the biasing field is larger than hc. However, the relationship between
this singularity and the behaviour of the particle in rare trajectories is not clarified
yet. Recently, the significance of fluctuation in non equilibrium physics has been
recognized, as explained in the introduction of this thesis. Thus, it is important to
study this singularity with a systematic method and clarify the relationship between
them, and furthermore, to seek for the same kind of singularity for the other quantities
than heat. In this chapter, we tackle this problem.

We consider a Brownian particle on a moving periodic potential. The model is the
over-damped version of the one studied by Lebowitz and Spohn [6]. We systemati-
cally analyse this system by using a boundary layer analysis, and then we calculate
the cumulant generating function and the corresponding biased ensemble of heat and
work. We find that the biased distribution function becomes a canonical distribution
function in which the inverse temperature is modified by h, when the period and the
depth of the potential are both large. Then, since the inverse temperature is mod-
ified by the parameter, when |h| > hc, the inverse temperature becomes negative
and the two limiting operations, which are the trapping particle limit and the large
observation time limit, become non-interchangeable. This non-interchangeability
corresponds to the van Zon–Cohen singularity. Furthermore, by checking the con-
ditional distribution function given Q(t)/t = q, we see that how hard to observe
the trajectories causing the singularity is. These discussions indicate that the similar
kind of singularities may exist in the other quantities.

The organization of this chapter is the following. In Sect. 4.2, we define the model
we study and have a brief introduction of the biased process. In Sects. 4.3 and 4.4,
we explain our main results and then, we derive them. Finally, we make concluding
remarks in Sect. 4.5. The Boltzmann constant kB is set to be 1 throughout this chapter.
The discussion in this chapter is based on our published paper [20].

http://dx.doi.org/10.1007/978-981-287-811-3_2
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4.2 Set up

4.2.1 Model

A one-dimensional Brownian particle is considered. We denote the temperature of
the solvent by T and the position of the particle by x(t) ∈ R. We exert a force
−∂U (x)/∂x on the particle, where U (x) is a periodic potential. The period of the
potential is denoted by 2L , which means that U (x) satisfies

U (x) = U (x + 2nL) (4.3)

for n = ±1,±2, . . .. Then, we move the potential toward the negative direction of
x with a constant velocity v. We mention that adding force in this manner in real
experiments is possible, using an optical tweezer [21]. In this setting, the motion of
the particle is described by the Langevin equation

ẋ(t) = − 1

γ

∂

∂y
U (y)

∣
∣
∣
∣
y=x(t)+vt

+
√
2T

γ
ξ(t), (4.4)

where γ is a friction constant, and ξ(t) is the Gaussian white noise satisfying
〈ξ(t)〉 = 0 and 〈ξ(t)ξ(s)〉 = δ(t − s).

For making the analysis easier, we define a new variable y(t) as the position of
the particle measured by the reference frame, which is moving with the periodic
potential. In other words, y(t) is defined as

y(t) ≡ x(t) + vt − 2nL , (4.5)

where n is an integer determined by −L ≤ x(t)+vt −2nL < L . Here, we note that
y(t) is confined to [−L , L). We also have the Langevin equation for y(t), which is
obtained from (4.4). That is written as

ẏ(t) = − 1

γ

∂

∂y
U (y(t)) + v +

√
2T

γ
ξ(t). (4.6)

Recently, this type of systems has been used for experimental tests of several non-
equilibrium relations [22–24].

Then, we specify the condition of the potential that we study. Since we consider
the trapped particle limit, we consider U (x) satisfying the condition

lim
L→∞

∂U (y)

∂y

∣
∣
∣
∣
y=Y L

= ∞ (4.7)

for 0 < |Y | ≤ 1. For example, the harmonic potential
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Uharmo(x) = 1

2
k(x − 2nL)2 (4.8)

and the quartic potential

Uquart(x) = 1

4
k4(x − 2nL)4, (4.9)

with an integer n determined by

−L ≤ x − 2nL < L , (4.10)

satisfy this condition (4.7). However, we mention that the linear potential

Ulinear(x) = k1|x − 2nL| (4.11)

does not satisfy the condition (4.7). We show the numerical example of the harmonic
potential (4.8) in Fig. 4.1.

Next, we specify the quantity we consider the work W (t) done by the periodic
potential and the heat Q(t) dissipated by the particle are considered. They are cal-
culated from a particle trajectory as follows: Since the periodic potential exerts the
force −∂U (y)/∂y|y=x(t)+vt on the particle and it moves with the constant velocity
−v, Ẇ (t) is calculated as

Ẇ (t) = (−v)

[

− ∂

∂y
U (y)

∣
∣
∣
∣
y=x(t)+vt

]

. (4.12)

Also, according to Sekimoto’s argument [7], the rate of the heat dissipation Q̇(t) is
evaluated as

Q̇(t) = ẋ ◦
[
γ ẋ − √

2γT ξ(t)
]
, (4.13)

where the multiplication ◦ represents the Stratonovich interpretation [25]. We note
that the first law of thermodynamics is satisfied:

Fig. 4.1 The harmonic
potential (4.8) with k = 2
and L = 1. This is an
example of the potential that
satisfies the condition (4.7).
Reprinted with permission
from Ref. [20]. Copyright
2012 by American Physical
Society
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∫ t2

t1

dt
(
Ẇ (t) − Q̇(t)

) = U (x(t2) + vt2) − U (x(t1) + vt1), (4.14)

and that these Q̇(t) and Ẇ (t) can be expressed as the function of y(t),

Ẇ (t) = v
∂

∂y
U (y(t)) , (4.15)

Q̇(t) = 1

γ

(
∂U (y)

∂y

)2

−
√
2T

γ

∂U (y)

∂y
◦ ξ(t). (4.16)

The expectation value with respect to the realisation of the noise (ξ(s))∞s=0 with
an initial distribution function p(y0) = 〈δ(y(0) − y0)〉 is denoted by 〈 〉p. With this
notation, we define a joint distribution function P(y0, y, t |p) as

P(y0, y, t |p) = 〈δ(y(0) − y0)δ(y(t) − y)〉p . (4.17)

4.2.2 Biased Process and Cumulant Generating Functions

Here, we briefly introduce a biased process. For the detailed introduction, see the
Sect. 2.2 in this thesis. We denote by f (t) a function of time, which depends on the
trajectory of the particle (y(s))t

s=0. We define the expectation value of f (t) with
respect to a biased process as

〈 f (t)〉hw,hq
p ≡ e−tG(hw,hq ,t |p)

〈
f (t)eW (t)hw+Q(t)hq

〉
p , (4.18)

where G(hw, hq , t |p) is a cumulant generating function

G(hw, hq , t |p) = 1

t
log

〈
eW (t)hw+Q(t)hq

〉
p . (4.19)

The cumulant generating function corresponds to a thermodynamic free energy in
terms of thermodynamic formalism [26]. The two parameters hw and hq are called

biasing fields. The biased expectation value 〈 f (t)〉hw,hq
p becomes back to the original

expectation value 〈 f (t)〉p when we set hw = hq = 0, and also the cumulant gener-
ating function G(hw, hq , t |p) becomes 0 in the same setting hw = hq = 0. Finally
with (4.18), we define a biased joint distribution function as

Phw,hq (y0, y, t |p) = 〈δ(y(t) − y)δ(y(0) − y0)〉hw,hq
p . (4.20)

http://dx.doi.org/10.1007/978-981-287-811-3_2
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Next, we define two functions that help us to analyse the asymptotic behaviour
of G(hw, hq , t |p) in t → ∞. The first one is the limiting value of G(hw, hq , t |p) in
t → ∞,

Gscaled(hw, hq) = lim
t→∞ G(hw, hq , t |p), (4.21)

which is called a scaled cumulant generating function [27]. The second function is
the one representing the deviation of G(hw, hq , t |p) from that limiting value,

Hex(hw, hq |p) = lim
t→∞ t

[
G(hw, hq , t |p) − Gscaled(hw, hq)

]
, (4.22)

which is called an excess quantity of the cumulant generating function. We note that
this excess cumulant generating function was used for the calculation of an excess
heat in Ref. [28]. We also note that we explicitly indicated the initial distribution
function dependence in (4.22) as p, because the excess cumulant generating function
depends on it in general. By using these two functions, we can expressG(hw, hq , t |p)
as

G(hw, hq , t |p) 
 Gscaled(hw, hq) + 1

t
Hex(hw, hq |p). (4.23)

We mention that the difference of the left-hand side and the right-hand side of (4.23)
is O(e−at ), where a is a positive constant, as shown (4.67) below.

4.2.3 Biased Distribution Function and Conditional
Distribution Function

Here, let us show a useful relationship between the biased distribution function and
a conditional distribution function for a fixed heat.

A joint distribution function of y(0), y(t), and Q(t)/t , which is defined by

P(y0, y, q, t |p) ≡ 〈δ(y(0) − y0)δ(y(t) − y)δ(Q(t)/t − q)〉p , (4.24)

is considered. We use this definition in the right-hand side of (4.20). Then, we obtain

log P0,hq (y0, y, t |p) + tG(0, hq , t |p) = log
∫

dq P(y0, y, q, t |p)etqhq . (4.25)

Next, we introduce a function I (y0, y, q, t |p), which corresponds to a large deviation
function in t → ∞ limit, as

I (y0, y, q, t |p) ≡ −1

t
log P(y0, y, q, t |p). (4.26)
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Since the large deviation principle is satisfied, we assume the following asymptotic
form for I (y0, y, q, t |p),

I (y0, y, q, t |p) = I0(q) + 1

t
I1(y0, y, q|p) + o(1/t) (4.27)

for large t . Here, I0(q) is the large deviation function of Q(t)/t . We evaluate the
right-hand side of (4.25) by using this asymptotic form, with a saddle point method.
We then obtain

t max
q

[
hqq − I0(q)

] − I1(y0, y, q∗|p) + 1

1/t
o(1/t), (4.28)

where q∗ is defined as
q∗ ≡ argmax

q

[
hqq − I0(q)

]
. (4.29)

From (4.23), (4.25) and (4.28), the scaled cumulant generating functionGscaled(0, hq)

and the excess cumulant generating function Hex(0, hq |p) are connected with these
quantities,

Gscaled(0, hq) = max
q

[
hqq − I0(q)

]
, (4.30)

and

log P0,hq (y0, y, t |p) + Hex(0, hq |p) = −I1(y0, y, q∗|p) + 1

1/t
o(1/t). (4.31)

Here, we note that (4.30) is a well-known relation between a large deviation function
and a scaled cumulant generating function [27, 29]. Finally, by combining (4.31)
with (4.27) and using the normalization condition for P0,hq (y0, y, t |p), we arrive at

P0,hq (y0, y, t |p) = P(y0, y, q∗, t |p)

P(q∗, t |p)
+ 1

1/t
o(1/t), (4.32)

where P(q∗, t |p) is a normalization constant defined by

P(q∗, t |p) ≡
∫

dy0dyP(y0, y, q∗, t |p). (4.33)

This equation means that the biased distribution function is equivalent to the condi-
tional distribution function of y(0) and y(t) for given Q(t)/t = q∗.
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4.3 Results

In this section, we explain our results. The derivation of them will be developed in
the following section.

The stationary distribution function of y is denoted by pU,v,β
st (y), where the

superscripts U , v and β indicate the shape of the periodic potential, the velocity
of the moving potential, and the inverse temperature of the solvent, respectively. We
then define a canonical distribution function pU,v,β

can (y) as

pU,v,β
can (y) ≡ 1

Z(v,β)
e−βU (y)+γvβy, (4.34)

where Z(v,β) is a normalization constant determined by

Z(v,β) =
∫ L

−L
dye−βU (y)+γvβy. (4.35)

The first result is about the convergence of the distribution function of y to this
canonical distribution function in L → ∞. More precisely, this statement is formu-
lated as

pU,v,β
st (y) ∼ pU,v,β

can (y) (4.36)

for y = Y L with Y ∈ {Y : −1 < Y < 1}, where the definition of the symbol∼ is the
following: For given two functions A(Y ) and B(Y ), where both of them depend on
L , we define A(Y ) ∼ B(Y ) for−1 < Y < 1 as limL→∞(1/L) log[A(Y )/B(Y )] = 0
for a given Y ∈ {Y : −1 < Y < 1} fixed. We use this symbol ∼ throughout this
chapter.

The second result is about the asymptotic form of the scaled cumulant generating
function Gscaled(hw, hq). This function always converges to a quadratic function in
L → ∞ limit,

lim
L→∞ Gscaled(hw, hq) = γv2(hw + hq) + T γv2(hw + hq)

2. (4.37)

Here, we stress that this result is always true whenever the periodic potential satisfies
the condition (4.7). We also mention that, from (4.23) and this relation,

lim
L→∞ lim

t→∞ G(hw, hq , t |p) = γv2(hw + hq) + T γv2(hw + hq)
2

(4.38)

is satisfied for any hw and hq .
The system that we now considerwas analyzed byLebowitz and Spohn inRef. [6].

They proved the fluctuation theorem of the work and the heat in this system. The
theorem was written as
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Gscaled(hw, hq) = Gscaled(−hw,−β − hq)|v→−v, (4.39)

where |v→−v means that the sign of v is reversed. We will re-derive (4.39) in Sect. 4.4
for the sake of completeness. From (4.39),

lim
L→∞ lim

t→∞ G(hw, hq , t |p) = lim
L→∞ lim

t→∞ G(−hw,−β − hq , t |p)|v→−v (4.40)

is obtained. We note that this equality is consistent with the expression (4.38), which
can be checked by a direct substitution.

From now on, we set the initial distribution function p(y) to be the stationary
distribution function pU,v′,β′

st (y), where β′(> 0) and v′ represent an inverse temper-
ature and a velocity in a different system from the original one (β, v). The third
result is about the asymptotic behaviour of the biased joint distribution function
Phw,hq (y0, y, t |pU,v′,β′

st ), when both of t and L are large. The initial part (about y0)
and the final part (about y) become independent, and the both parts take the canonical
distribution function form with different temperatures and velocities:

Phw,hq (y0, y, t |pU,v′,β′
st ) ∼ pU,vi,βi

can (y0)pU,vf ,βf
can (y) + O(e−at ) (4.41)

for y0 = Y0L , y = Y L (−1 < Y0,Y < 1) with

βi = β′ − hq , (4.42)

vi = v′β′ + v(hq + hw)

β′ − hq
, (4.43)

βf = β + hq , (4.44)

vf = v(β + hq + hw)

β + hq
. (4.45)

From these canonical distribution forms, we find that the inverse temperatures in
the initial and the finial time can take negative values. Then below, we show that the
excess cumulant generating function has different asymptotic behaviours in L → ∞,
depending on the sign of this inverse temperature. This is the fourth result: For large
L , the excess cumulant generating function Hex(hw, hq |pU,v′,β′

st ) satisfies

Hex(hw, hq |pU,v′,β′
st ) = O(U (L)) (4.46)

for βi < 0 or β f < 0, and

Hex(hw, hq |pU,v′,β′
st ) = O(1) (4.47)
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for βi > 0 and β f > 0. Therefore, from (4.23) and these relations, we find

lim
t→∞ lim

L→∞ G(hw, hq , t |p) = ∞ (4.48)

for βi < 0 or β f < 0, and

lim
t→∞ lim

L→∞ G(hw, hq , t |p) = lim
L→∞ lim

t→∞ G(hw, hq , t |p) (4.49)

for βi > 0 and β f > 0. (4.49) means the following things: When βi and βf are
both positive, the two limiting operations, which are L → ∞ and t → ∞, are
interchangeable, and furthermore, the symmetry property of the fluctuation theorem
is satisfied. However, on the other side, when βi or βf is negative, the two limiting
operations become non-interchangeable. In other words, if we take t → ∞ first, the
cumulant generating function satisfies the fluctuation theorem (4.40). On the other
hand, if we take L → ∞ first, the cumulant generating function diverges as shown
in (4.48). This divergence corresponds to the van Zon–Cohen singularity [10, 11].

4.3.1 Negative Inverse Temperature and the van Zon–Cohen
Singularity

Here, we consider this negative inverse temperature in terms of the conditional dis-
tribution function that we introduced in Sect. 4.2.3.

First, we connect the condition q∗ and the biasing field hq , (4.29) and (4.30), in
terms of the quadratic form of the cumulant generating function given as (4.37). The
result is

hq = q∗ − γv2

2T γv2
. (4.50)

By using this relation, we connect the third result stated above, with the conditional
distribution function (4.32), as

P(y0, y, q, t |pU,v′β′
st )

P(q, t |pU,v′β′
st )

∼ pU,ṽi,β̃i
can (y0)pU,ṽf ,β̃f

can (y) + 1

1/t
o(1/t) (4.51)

for y0 = Y0L , y = Y L , where Y,Y0 ∈ {Y,Y0 : −1 < Y0,Y < 1}, with the
parameters defined as

β̃i = β′ − q − γv2

2T γv2
, (4.52)

ṽi = v′β′ + (q − γv2)/(2T γv)

β′ − (q − γv2)/(2T γv2)
, (4.53)
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β̃f = β + q − γv2

2T γv2
, (4.54)

ṽf = v. (4.55)

Whenwe set q to be larger than γv2(2β′/β+1), the initial inverse temperature (4.52)
becomes negative. This means that, with the condition of Q(t)/t > γv2(2β′/β +1),
the particle tends to climb down the potential at the initial time 0. On the other hand,
when we set q to be smaller than−γv2, the finial inverse temperature (4.54) becomes
negative. This means that, with the condition ofQ(t)/t < −γv2, the particle tends
to climb up the potential at the final time t. In the following paragraph, we show
the singularity of the cumulant generating function, from these rare trajectories, by
using an intuitive argument.

Let us consider the situation that we measure the trajectories of the particle and
evaluate G(0, hq , t |pU,v′,β′

st ) from them. We set t to be sufficiently large. Then,

the trajectories needed for the calculation of G(0, hq , t |pU,v′,β′
st ) have to satisfy

Q(t)/t = q∗ due to (4.30), where q∗ is connected to hq through (4.50). Now, we con-
sider the case that βf takes negative value. This indicates that the trajectories needed
for the calculation of G(0, hq , t |pU,v′,β′

st ) satisfy y(t) = L in a high probability. Here,

by using Jensen’s inequality in G(hw, hq , t |pU,v′,β′
st ), we obtain

G(hw, hq , t |pU,v′,β′
st ) ≥ 1

t

∫ t

0
dt

[
hq

〈
Q̇(t)

〉

pU,v′,β′
st

+ hw

〈
Ẇ (t)

〉

pU,v′,β′
st

]

= − hq

t
〈U (y(t)) − U (y(0))〉

pU,v′,β′
st

+ hw + hq

t

∫ t

0
dt

〈
Ẇ (t)

〉

pU,v′,β′
st

,

(4.56)

where (4.14) is used at the final line. In the right-hand side of this expression, we
use the trajectories discussed above. With these trajectories (that satisfy y(t) = L),
we approximate the first term of (4.56) as −hqU (L)/t , where we used the fact that
U (y(0)) is O(1). We then neglect the second term as well by assuming that the
particle moves around the bottom of the potential most of the time, then suddenly
climbs up the potential before the time t and finally reaches the top of the potential
at the time t . We therefore have

G(hw, hq , t |p) � −hq

t
U (L), (4.57)

which leads to (4.48).
For the case that βi is negative, we can also discuss by following the same argu-

ment as the one for βf < 0. In this case, the difference is that the particle climbs
down the potential from the top, instead of climbing up it from the bottom. From
these arguments, we understand how hardly measurable trajectories can cause the
van Zon–Cohen singularity.
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4.4 Derivation of the Results

Here in this subsection, we derive the results stated above. In Sect. 4.4.1, we show
how to analyze the system for a given finite L . Then, in Sect. 4.4.2, we perform a
boundary layer analysis by considering the limit L → ∞ in the framework that
we developed in Sect. 4.4.1. Finally in Sect. 4.4.3, we derive the main results of this
chapter by using the result of the boundary layer analysis.

4.4.1 The Method of the Largest Eigenvalue
Problem and the Cole–Hopf Transformation

First, we define an operator L(y)
hw,hq

as

L(y)
hw,hq

· ϕ = − ∂

∂y

[(

− 1

γ

∂

∂y
U (y) + v

)

ϕ

]

+ hwv

(
∂

∂y
U (y)

)

ϕ

+ hq

[
1

γ

(
∂U (y)

∂y

)2

− T

γ

∂2

∂y2
U (y)

]

ϕ + T

γ

∂2

∂y2
ϕ

+ T

γ

(
∂U (y)

∂y

)2

(hq)
2ϕ + 2T

γ
hq

∂

∂y

[
∂U (y)

∂y
ϕ

]

. (4.58)

We then denote the eigenfunctions of this operator by ψn (n = 0, 1, 2, . . .) and
the corresponding eigenvalues to them by μn (n = 0, 1, 2, . . .). Here we note that
the eigenvalues are labeled with a descending order with the label n ascending:
Re(μn) ≤ Re(μm) for n > m, where Re(a) is the real part of a. We also consider
the adjoint operator of L(y)

hw,hq
given as

L(y)†
hw,hq

· ϕ =
(

− 1

γ

∂

∂y
U (y) + v

)
∂

∂y
ϕ + hwv

(
∂

∂y
U (y)

)

ϕ

+ hq

[
1

γ

(
∂U (y)

∂y

)2

− T

γ

∂2

∂y2
U (y)

]

ϕ + T

γ

∂2

∂y2
ϕ

+ T

γ

(
∂U (y)

∂y

)2

(hq)
2ϕ − 2T

γ
hq

(
∂U (y)

∂y

)
∂

∂y
ϕ. (4.59)

Again, the eigenfunctions of L(y)†
hw,hq

are denoted by φn (n = 0, 1, 2, . . .) and the
corresponding eigenvalues to them are denoted by νn (n = 0, 1, 2, . . .). Here, we
can set

νn = (μn)
∗ (4.60)
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without loss of generality. By using the Perron-Frobenius theory, following theo-
rems are satisfied: The largest eigenvalues of L(y)†

hw,hq
and L(y)

hw,hq
are real and do not

degenerate, which indicates
ν0 = μ0. (4.61)

Furthermore, the eigenfunctions corresponding to the largest eigenvalue are real. See
the Appendix B of Ref. [30] for the derivation. The orthonormal conditions for these
eigenfunctions are written as

∫ L

−L
dy(φn(y))

∗ψm(y) = δn,m (4.62)

(n,m = 0, 1, 2, . . .), where δn,m is the Kronecker δ.
Now, we define qhw,hq (y0, y, t |p) as

qhw,hq (y0, y, t |p) = etG(hw,hq ,t |p)Phw,hq (y0, y, t |p). (4.63)

As shown inAppendix C.1,L(y)
hw,hq

is the time evolution operator of qhw,hq (y0, y, t |p),
which means

∂

∂t
qhw,hq (y0, y, t |p) = L(y)

hw,hq
· qhw,hq (y0, y, t |p). (4.64)

Then, we expand qhw,hq (y0, y, t |p) in terms of the eigenfunctions (ψn(y))
∞
n=0 and

substitute it into this time evolution equation. By solving it, we determine the time
dependence of the expansion coefficients inqhw,hq (y0, y, t |p)with an initial condition
qhw,hq (y0, y, 0|p) = p(y0)δ(y − y0). The result is

qhw,hq (y0, y, t |p) = p(y0)
∞∑

n=0

(φn(y0))
∗ ψn(y)e

μn t . (4.65)

Here,we consider the behaviour of this functionwhen t is large. Since the exponential
term eμn t in (4.65) determines the time-dependency of qhw,hq (y0, y, t |p), we find that
the n = 0 term (largest eigenvalue term) gives a dominant contribution. Thus, with
(4.63), we obtain

Phw,hq (y0, y, t |p) =e(μ0−G(hw,hq ,t |p))t
[

p(y0)φ0(y0)ψ0(y) + O
(

e−(μ0−Re(μ1))t
)]

.

(4.66)

This is the asymptotic form of the biased distribution. Then, the expression of the
cumulant generating function is derived from the integration of this asymptotic form
with respect to y0 and y,

G(hw, hq , t |p) = μ0 + 1

t
log c0c̃0 + O

(
e−(μ0−Re(μ1))t

)
, (4.67)
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where c0 and c̃0 are defined as

c0 =
∫ L

−L
dyφ0(y)p(y), (4.68)

c̃0 =
∫ L

−L
dyψ0(y). (4.69)

Finally, by comparing (4.23) with (4.67), we arrive at the expression of the scaled
and excess cumulant generating functions,

Gscaled(hw, hq) = μ0, (4.70)

Hex(hw, hq |p) = log c0c̃0. (4.71)

Here, (4.70) is well-known. See [27, 29] for example. (4.70) has been used in many
applications, such as the analysis of the fluctuation theorem [6], for example. Also the
result (4.71) was used for the calculation of an excess heat in Ref. [28] recently. We
note that the expression (4.66) leads to an expression of the biased joint distribution
function, such as

qhw,hq (y0, y, t |p) ∼ p(y0)φ0(y0)ψ0(y)e
−Hex(hw,hq |p) (4.72)

when t is large, due to (4.70) and (4.71). We also note that essentially the same result
was discussed in Ref. [31].

Next, by using the specific property of Langevin equation, we write down the
formula to obtain φ0 and ψ0 appeared above. Especially, we apply the Cole-Hopf
transformation to the largest eigenvalue problems L(y)

hw,hq
and L(y)†

hw,hq
, then we rewrite

them as a non-linear eigenvalue problem. The details of the derivation is developed
in Appendix C.2. Here we show only the results. We define a non-linear operator
Mh,v as

Mh,v · ϕ =2T hv
∂U

∂y
+ 1

2γ
ϕ2 +

(

− 1

γ

∂U

∂y
+ v

)

ϕ + T

γ

∂

∂y
ϕ. (4.73)

Then, with this operator, we define a non-linear eigenvalue problem

Mh,v · wh,v = Kh,v, (4.74)

where the constant Kh,v and the periodic function (eigenfunction)wh,v(y) are simul-
taneously determined from the boundary condition wh,v(−L) = wh,v(L) and the
normalisation condition ∫ L

−L
dywh,v(y) = 0. (4.75)
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From this eigenvalue problem, we define a function wh,v . This is connected to φ0

and ψ0 as follows: First, we introduce a potential function of wh,v(y) by

Vh,v(y) = −
∫ y

0
dzwh,v(z) + const. (4.76)

Then, we can derive the following relations

φ0(y) = 1

C
exp

[

hqU (y) − Vhq+hw,v(y)

2T

]

, (4.77)

ψ0(y) = 1

C̃
exp

[

− (
hq + β

)
U (y) − V−β−hq−hw,−v(y)

2T

]

, (4.78)

Gscaled(hw, hq) = Khq+hw,v

2T
, (4.79)

where the coefficients (C)∗C̃ are the normalisation constant (4.62). SeeAppendixC.2
for the details of the derivation of these relations. We mention that similar arguments
were presented in Refs. [30, 32].

4.4.2 Boundary Layer Analysis in Large L Limit

Here, we evaluate the asymptotic behaviour ofwh,v(y) and Kh,v when L is large. We
especially use the boundary layer analysis technique [33].1

First, we define scaled wh,v function, w̃h,v(Y ), as

w̃h,v(Y ) ≡ wh,v(LY ), (4.80)

where−1 ≤ Y ≤ 1.With this scaled function, we rewrite the left-hand side of (4.74)
as

2T hv
∂U (Y L)

∂y
+ 1

2γ
(w̃h,v)

2 +
(

− 1

γ

∂U (Y L)

∂y
+ v

)

w̃h,v + 1

L

T

γ

∂

∂Y
w̃h,v.

(4.81)

Now, we regard L−1 as a perturbation parameter. In this equation, we find that the
coefficient of ∂w̃h,v/∂Y is O(L−1). We thus expect that there is a domain of Y , Ib,
where ∂w̃h,v/∂Y becomes large, (or in other words, w̃h,v(Y ) changes rapidly), due
to the reason that the periodic boundary condition and the normalisation condition
of this nonlinear eigenvalue problem have to be satisfied. This is written as

1In this calculation, we use the condition (4.7).
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∣
∣
∣
∣
∂w̃h,v(Y )

∂Y

∣
∣
∣
∣ � ∣

∣w̃h,v(Y )
∣
∣ (4.82)

for Y ∈ Ib. It is a convention to call this region a boundary layer, when the width of
the region Ib becomes 0 in L → ∞ limit. We assume the existence of a boundary
layer in this problem, and use a well-known basic strategy to solve this problem. It
is, (i) constructing the solution inside the boundary layer that is called inner solution,
(ii) constructing the solution outside the boundary layer that is called outer solution,
and (iii) matching those solutions asymptotically with keeping the continuity and
the boundary conditions satisfied. See Ref. [33] for the details of this boundary layer
analysis. In this chapter, we consider only the outer solution and obtain the leading
order of w̃h,v(Y )byusing a fewassumptions.We show the results here. The derivation
is developed in Appendix C.3.

By using the condition (4.7), we obtain an asymptotic form in L → ∞ as

w̃h,v(Y ) =
{
2T γhv −1 ≤ Y ≤ a−
2γ [−v(1 + T h) + (1/γ)∂U (Y L)/∂y] a− ≤ Y ≤ 1

(4.83)

for hv ≤ 0 and

w̃h,v(Y ) =
{
2γ [−v(1 + T h) + (1/γ)∂U (Y L)/∂y] −1 ≤ Y ≤ a+
2T γhv a+ ≤ Y ≤ 1

(4.84)

for hv ≥ 0, where the coefficients a+ and a− are determined from the normalisation
condition (4.75):

γva− (1 + 2T h) − γv + U (L) − U (a−L)

L
= 0 (4.85)

and

γva+ (1 + 2T h) + γv − U (La+) − U (−L)

L
= 0. (4.86)

We plot these functions for the case of Uharmo and Uquart in Fig. 4.2 as green dashed
lines and purple dotted lines. In the same figure, we also plot the numerical results
of w̃h,v(Y ) obtained from the method used in Ref. [30]. These lines are plotted as red
solid lines. The figure shows the coincidence between these analytical and numerical
results.

Next, by substituting an expression of w̃h,v(Y ) = 2T γhv into the eigenvalue
Eq. (4.74), we find that Kh,v is

Kh,v = 2T
(
γv2h + T γv2h2

)
, (4.87)
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Fig. 4.2 Numerical and analytical results of w̃h,v(Y ) for a harmonic potentialUharmo(y) = (k/2)y2

(a) and for a quartic potentials Uquart(y) = (k4/4)y4 (b). Quantities are converted to dimensionless
forms with setting γ = T = v = 1. We set k = 1, k4 = 1 and h = −8, and also, we set L = 18
for Uharmo(y) and L = 3 for Uquart(y). The green dashed lines and purple dotted lines corresponds
to the analytical results (4.83). These lines are 14 + 36Y and −16 for Uharmo(y), and 14 + 54Y 3

and −16 for Uquart(y). The red solid lines are numerical results. Reprinted with permission from
Ref. [20]. Copyright 2012 by American Physical Society

which leads to

Gscaled(hw, hq) = γv2(hw + hq) + T γv2(hw + hq)
2. (4.88)

We check this result in Fig. 4.3, by comparing it with numerical ones. We stress that
(4.88) is always satisfied for any periodic potentials, as long as the potential satisfies
the condition (4.7).

4.4.3 Derivation of the Main Results

Finally, we derive the main results of this chapter, which was explained in Sect. 4.3.
First, from (4.85) and (4.86), we find

lim
L→∞ a± = ∓1, (4.89)

which indicates
lim

L→∞ w̃h,v(Y ) = 2T γhv (4.90)

for fixed Y (−1 < Y < 1). From this relation, we evaluate the limiting value of
Vhq+hw,v(y) and V−β−hq−hw,−v(y) in L → ∞, as
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Fig. 4.3 The eigenvalue Kh,v/(2T ) for a harmonic potential Uharmo(y) = (k/2)y2 (a), a quartic
potential Uquart(y) = (k4/4)y4 (b), and a linear potential Ulinear(y) = k1|y| (c). Quantities are
converted to dimensionless forms by setting γ = T = v = 1. We set k = 1, k4 = 1 and k1 = 1,
and Kh,v/(2T ) is numerically evaluated. For Uharmo, dashed dotted line (aqua blue), dotted line
(purple) and dashed line (green) correspond to L = 6, L = 12 and L = 18, respectively. ForUquart ,
these lines correspond to L = 6, L = 12 and L = 18, and for Ulinear , these lines correspond to
L = 5, L = 25 and L = 50. In all figure, we also plot red solid lines. This corresponds to h + h2,
which is an analytical result predicted by (4.87). We can see that Kh,v approaches h +h2 for Uharmo
and Uquart , as L becomes larger. However, this convergence does not occur for Ulinear . This is due
to the condition (4.7): Uharmo and Uquart satisfy it, but Ulinear does not. Reprinted with permission
from Ref. [20]. Copyright 2012 by American Physical Society

lim
L→∞ Vhq+hw,v(Y L)/L = − lim

L→∞
1

L

[∫ Y L

0
dzwhq+hw,v(z) + const.

]

= −2T γv(hq + hw)Y + const.

(4.91)

for fixed Y (−1 < Y < 1) and

lim
L→∞ V−β−hq−hw,−v(y)/L = − lim

L→∞
1

L

[∫ Y L

0
dzw−β−hq−hw,−v(z) + const.

]

= −2T γv(β + hq + hw)Y + const.
(4.92)



4.4 Derivation of the Results 95

for fixed Y (−1 < Y < 1). We thus obtain p(y0)φ0(y0) and ψ0(y) from these
expressions by combining them with (4.77) and (4.78). The results are

p(y0)φ0(y0) ∼ 1

C ′ exp
[
hqU (y0) + log p(y0) + γv

(
hq + hw

)
y0

]
(4.93)

for y0 = Y0L (−1 < Y0 < 1) and

ψ0(y) ∼ 1

C̃ ′ exp
[− (

β + hq
)

U (y) + γv(β + hq + hw)y
]

(4.94)

for y = Y L (−1 < Y < 1), where C ′ and C̃ ′ are normalisation constants determined
from (4.62).

Now, we derive the main results in this chapter. First we derive (4.36). Since
this is the result about the unbiased system (hw = hq = 0), we set hw = hq = 0
in (4.94). Then, we use the obtained expression of the biased distribution function
(4.66), which leads to (4.36). This means that the stationary distribution function
pU,v,β
st (y) in L → ∞ is the canonical distribution function.
Then, we notice that the asymptotic form of the scaled cumulant generating func-

tion (4.37), which is the second result, is nothing but (4.88). Furthermore, by looking
at the expression of φ0(y) andψ0(y) in terms of the potential function Vh,v(y), which
are (4.77) and (4.78), we find

φ0(y) = ψ0(y)|(hw,hq ,v)→(−hw,−β−hq ,−v). (4.95)

From this relation with (4.61) and (4.70), the fluctuation theorem for the scaled
cumulant generating function is obtained as

Gscaled(hw, hq) = Gscaled(−hw,−β − hq)|v→−v, (4.96)

which is (4.39).
Next, we set the initial distribution function to be the stationary distribution func-

tion pU,v′,β′
st (y). Then, we obtain (4.41), which is the third result, by substituting

(4.93) and (4.94) into (4.66).
Finally, we derive (4.46) and (4.47). We substitute the expression of φ0(y) and

ψ0(y), which are (4.77) and (4.78), into (4.71). Then, by noticing the normalization
condition (4.62), we obtain
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Hex(hw, hq |p) = log
∫ L

−L
dy exp

[

hqU (y) + log p(y) − Vhq +hw,v(y)

2T

]

+ log
∫ L

−L
dy exp

[

− (
hq + β

)
U (y) − V−β−hq −hw,−v(y)

2T

]

− log
∫ L

−L
dy exp

[

−βU (y) − 1

2T

(
Vhq +hw,v(y) + V−β−hq −hw,−v(y)

)
]

.

(4.97)

We substitute the potential functions Vh,v(y) appearing in these expressions, by the
asymptotic forms shown in (4.91) and (4.92). After this substitution, by defining

H ≡ log
∫ L

−L
dy exp

[
hqU (y) + log p(y) + γv

(
hq + hw

)
y
]
, (4.98)

H̃ ≡ log
∫ L

−L
dy exp

[− (
hq + β

)
U (y) + γv(β + hq + hw)y

]
(4.99)

and

Z ≡ − log
∫ L

−L
dy exp

[−βU (y) + γv(β + 2hq + 2hw)y
]
, (4.100)

we write down the excess cumulant generating function as

Hex(hw, hq |p) 
 H + H̃ + Z . (4.101)

Now we consider the dependence of L in each terms of this expression. First, Z is
always O(1):

Z = O(1). (4.102)

The other terms, H and H̃ , depend on the parameter hq . H̃ depends on the sign of
hq + β. It becomes O(1) for hq + β > 0, but O(U (L)) for hq + β < 0,

H̃ =
{
O(1) hq > −β

O(U (L)) hq < −β.
(4.103)

H depends on the initial distribution function p(y) as well. For seeing this depen-
dence, we define a parameter βp as

βp ≡ lim
L→∞

− log p(L)

U (L)
, (4.104)

which takes a value from 0 to ∞. This parameter represents an effective temperature
of the initial distribution function. By using this effective temperature βp, we obtain
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H =
{

O(U (L)) hq > βp

O(1) hq < βp.
(4.105)

Then, from these L-dependencies (4.102), (4.103) and (4.105), we arrive at the
dependence of L for the excess cumulant generating function Hex(hw, hq |p),

Hex(hw, hq |p) =

⎧
⎪⎨

⎪⎩

O(U (L)) hq < −β

O(1) −β < hq < βp

O(U (L)) hq > βp.

(4.106)

In this expression, by setting p = pU,v′,β′
st (y), we obtain (4.46) and (4.47).

4.5 Conclusions

In this chapter, the fluctuation of the work and the heat of a Brownian particle on
a moving periodic potential was studied. Especially the special limit, where the
particle was trapped by the periodic potential, was considered in order to study the
van Zon–Cohen singularity for an extended fluctuation theorem. As a result, we
discovered that the conditional distribution function, given the heat dissipation rate
Q(t)/t = q, became a canonical distribution function. Also, we discovered that,
when q was larger (or smaller) than a special value, the inverse temperature of the
conditional distribution function became negative. Thismeant that the particle tended
to climb up (climb down) the potential, where this tendency led to the vanZon–Cohen
singularity.

Before ending this chapter, we briefly discuss the possibility of observing the
singularity, taking place not only in the heat but also in other quantities. We found
that the singularity occurred due to the non-interchangeability of two types of limits.
The first one was the large observation time limit, and the second one was the trapped
particle limit. We showed that these two limits became non-interchangeable, which
leads to the van Zon–Cohen singularity. This indicates that we may find another
system by looking for the one that has the same limit-structure as the one studied in
this chapter. In other words, we look for the system re-defined in a limit from another
system, where this limit is non-interchangeable with the large observation time limit,
in order to find another example of van Zon–Cohen singularity. We would like to
explore such a system for a deeper understanding of fluctuation in nonequilibrium
physics.
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Chapter 5
Conclusions and Future Perspectives

In this thesis, we have studied phenomenological structure for the large deviation
principle in time-series statistics. For equilibrium statistical mechanics, an exponen-
tially biased ensemble was directly connected to the distribution function in another
equilibrium system. We called this structure the phenomenological structure for the
large deviation principle, and then we sought for another example of large deviation
statistics that also possesses this structure. We focused on time-series statistics and
set three problems.Onewas about a rare event sampling method discussed inChap.2.
The second one was about dynamical phase transitions in KCMs for understanding
glassy features, in Chap.3. The last one was about the application of this structure to
van Zon-Cohen extended fluctuation theorem, in Chap. 4. For all of these works, we
discussed several future problems, in the conclusion of each chapter. Here in the final
conclusion, beyond each subject, we discuss general possibility of large deviation
statistics in time-series statistics.

The fluctuation theorem found in 1993 was a turning point in non-equilibrium
physics [1]. One of the astonishing point was that the theorem could be regarded as
an extension of several important results in statistical physics: The second law of
thermodynamics is well-known as a basis of thermodynamics, which gives a bound
to the expected value of entropy production 〈�S〉 in total systems, such as 〈�S〉 > 0.
The fluctuation theorem states that there is an equality behind this inequality. That
equality includes the higher order moments of �S, and written as a simple form
as

〈
e−�S

〉 = 1. (The second law of thermodynamics directly follows this equality.)
Furthermore, by considering liner response regime in a non-equilibrium condition,
one can derive the liner response formula [2] from this theorem. As expected from
the form of this theorem, this relation is expressed as a formula of large deviation
functions [3]. Due to the finding of this fluctuation theorem, formal studies in non-
equilibrium physics have been enhanced. Also, related to this fluctuation theorem,
some exact solutions in mathematical models were found. These findings are impor-
tant, but there is a tendency that theory proceeds real physics. For breaking this trend,
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it is a good opportunity now to apply these obtained results and techniques to inter-
esting physical systems, where some rare fluctuations play an important role. Below,
as an example of it, we introduce a fully developed turbulence.

The studies of fully developed turbulence are old but still there are several interest-
ing questions remained [4]. In the study using numerical simulations such as solving
Navier–Stokes equation, we need to give up to follow each realisation of this equation
for a detailed prediction, because this dynamical equation has chaoticity. But instead
of the detail of each realisation, we can discuss statistical properties originated from
the randomness of this chaoticity. There were several studies that focus on the dif-
ference between this randomness with the randomness originated from equilibrium
thermal reservoirs. The examples of the comparisons are the diffusion coefficient of
the Brownian particle immersed in the turbulent flow and thermal reservoirs, entropy
production of these particles to ask if the fluctuation theorem holds in fully developed
turbulence, and so on. One of the famous statistical properties of fully developed tur-
bulence is Kolmogorov law, which was found in 1941 [4]. In homogeneous isotropic
fully developed turbulence, the velocity difference between two points is denoted by
dv(r), where r is the distance between them. Then, Kolmogorov derived a scaling
law with an assumption that the turbulence is scale invariant. The relation is written
as 〈dv(r)n〉 ∼ Ern/3, where E is the energy injection to the system. This law was
confirmed in both of real experiments and numerical simulations for small n. How-
ever, it was also observed that there was a deviation from this law for large n (higher
order moments) [4]. This deviation is believed to be related to the intermittency of the
turbulence. The main obstacle here is that the observation of higher order moments
becomes harder as n becomes larger.

Even though it is believed that the deviation of Kolmogorov law is related to
the higher order moments, namely, rare fluctuations, there has been no research to
connect this deviation and the large deviation property in time-series statistics. (with
the large deviation property in with scale variables, we say “yes”. See Ref. [4] for
example.) This is mainly due to the fact that it seems difficult, at first glance, to
find the connection between the large deviation property (the rare fluctuation of
time-averaged quantity) and instantaneous higher order fluctuation. However, it is
possibly true that the intermittency is related to rare trajectories somehow, because
the assembly of those intermittent trajectories make one long-time trajectory, which
is characterized by the large deviation principle of time-averaged quantity. If one
succeeds to make a map from the problem to the one in large deviation statistics,
there is an important benefit from it. That is, one can utilize several techniques
developed in non-equilibrium physics to them.

As the beginning of this research, we start with a simple toy model that shows
the Kolmogorov law and its deviation. As an example of such a model, we consider
the shell model [5]. This is an effective dynamical model that describes the Fourier
components of the velocity fields in turbulence. With introducing a scaled wave
number and the corresponding variables (shell variables), the number of the variables
are incredibly reduced compared with the one in the direct simulation of Navier–
Stokes equation. Indeed, around 20 variables, we can observe the Kolmogorov law
for small n, and the deviation of Kolmogorov law for large n, which appears in the
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sameway as the one observed in real turbulence (observed inNavier–Stokes equation
or real experiments) [5]. To this system, we apply the population dynamics method
to calculate the large deviation function, which was proposed by Giardina et al. in
[6, 7]. We will calculate several large deviation functions, and investigate which
time-averaged quantity is related to the deviation of Kolmogorov law. The examples
of the time-averaged quantities may be time-averaged energy, time-averaged energy
current between two adjacent scales, the largest Lyapunov exponent, and so on. Since
the intermittency is related to the deviation of Kolmogorov law, by controlling the
intermittency with the population dynamics, it is certainly possible that we will find
the connection between the deviation of Kolmogorov law and the large deviation
properties of time-averaged quantities.

After we understand the relation between large deviation functions and the devi-
ation of Kolmogorov law, we next apply our phenomenological method developed
in Chap.2 to this turbulent system. We seek for the corresponding steady state to
the biased ensemble that shows, on which the deviation of Kolmogorov law is con-
trolled. Since the proof of our method was done on the system described by Markov
dynamics, the application is not straightforward. Also, we expect that we need to find
an effective description introduced in Chap. 2. But, if we succeed in the application
of our method and if the effective description is simple enough to be implemented
in real experiments, we can propose to experimentalists the method to observe the
deviation of Kolmogorov law in operational manner, meaning that, in the way that we
change the settings of the experiment, the deviation of Kolmogorov law is observed
as a typical property of its new stationary state.

This is one of the challenging goals of our research: Rare events are hardly
observed, but they are important in physics. Due to the lack of the method to accel-
erate the observation of rare evens, approaching these problems with experiments is
difficult. The rare event sampling method for real experiments proposed in Chap.2
is applied to them and such experimental approaches take place. After these suc-
cesses, further studies follow. Finally, a new field called rare-event samplings in real
experiments appears. We believe that this thesis might be the first step of such an
attempt.
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Appendix A
For Chapter 2

A.1 Derivation of the Path Probability Density (2.4)

In this appendix, we define continuous timeMarkov processes by taking a continuous
time limit in discrete time Markov processes. Then, we derive the path probability
density (2.4) in this formulation. Finally, with the obtained path probability density,
we show that the probability distribution P(n, t) satisfies the Master equation (2.2).

We consider a finite set �, on which a discrete time Markov process is defined.
We set an initial time t = 0, and fix the initial condition to be n0 ∈ �. Then after
each time interval�t , we determine if the state n jumps to another state n′ or remains
in the same state n, according to the transition probability

Prob�t (n′|n) = δn′,n [1 − λ(n)�t] + w(n → n′)�t, (A.1)

where w(n → n′) is the transition rate introduced in Sect. 2.2.1, and λ(n) is the
escape rate defined in (2.1). This means that the state remains in the same state with
a probability λ(n)�t , and on the other hand, when the system jumps, the place after
the jump is determined by a probability that is proportional to w(n → n′). After a
certain time t , we have the trajectory of the state, ω, which can be specified by the
total number of the jumps n, a collection of transition times (ti )n

i=1 (ti = k�t with
some integers k), and a sequence of states (ni )

n
i=0, where ni = n(t) for ti ≤ t ≤ ti+1

with t0 = 0, tn+1 = t . See Fig. 2.1 for the schematic diagram. From the definition of
the transition probability (A.1), the path probability Prob(ω|n0) is calculated as

Prob(ω|n0) = [1 − λ(n0)�t]
t1
�t

N∏

i=1

[
w(ni−1 → ni )�t [1 − λ(ni )�t]

ti+1−ti
�t

]

(A.2)

Nowwe take�t → 0 limit in this formulation. The obtainedmodel is a continuous
timeMarkov process. The path probability density P(ω|n0) is obtained from (A.2) as
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P(ω|n0) ≡ lim
�t→0

Prob(ω|n0)

�t N
= e−λ(n0)t1

N∏

i=1

[
w(ni−1 → ni )e

−λ(ni )(ti+1−ti )
]
,

(A.3)

which corresponds to (2.3).
Lastly, we derive the master equation (2.2) from this formulation. By using the

path probability density (2.3), the distribution function of n(t) is given as

〈
δn(t),n

〉 =
∞∑

N=0

∑

n0,n1,...,nN

∫ t

0
dtN

∫ tN

0
dtN−1 · · ·

∫ t2

0
dt1P0(n0)

δn(t),ne− ∫ t
0 dt̃λ(n(t̃))

N∏

i=1

[
w(ni−1 → ni )

]
.

(A.4)

Then, by using δn(t),n, we rewrite this as follows:

〈
δn(t),n

〉 =
∞∑

N=0

∑

n0,n1,...,nN−1

∫ t

0
dtN

∫ tN

0
dtN−1 · · ·

∫ t2

0
dt1e− ∫ t

0 dt̃λ(n(t̃)) P0(n0)

×
N−1∏

i=1

[
w(ni−1 → ni )

]
w(nN−1 → n)

(A.5)

Finally, we take the derivative of this expression with respect to t . By noticing that
the derivative is taken at the end-time of the integral with respect to tN and at the
exponential of the time-integral of the escape rate, and by calculating a little bit after
that, we obtain

∂
〈
δn(t),n

〉
n0

∂t
=
∑

n′

〈
δn(t),n′

〉
n0

w(n′ → n) − λ(n)
〈
δn(t),n

〉
n0

, (A.6)

which is the Master equation (2.2).

A.2 Derivation of the Variational Principle (2.29) and (2.30)
from Donsker–Varadhan Formula

Here, we derive the variational principle (2.29) and (2.30) from Donsker–Varadhan
formula. This derivation was given by C. Maes in a private discussion in Nordita,
Stockholm.
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A.2.1 Donsker–Varadhan Functional

We first introduce Donsker–Varadhan formula [2]. For a given path ω, we define an
empirical measure ρ̂(n;ω) by

ρ̂(n,ω) ≡ 1

t

∫ t

0
dsδn(s),n. (A.7)

In the limit t → ∞, due to the law of large numbers, ρ̂(n, t) is equal to the stationary
distribution function with probability 1. For the large but finite time t , ρ̂(n, t) takes
almost the same form as the stationary distribution function, it certainly deviates from
it. The probability distribution of this deviation is given as a large deviation principle.
Donsker andVaradhan proved it for generalMarkov dynamics with amathematically
rigorous manner, and derived a formula determining the large deviation functional:
For large t , the probability of ρ̂(n, t) satisfies a large deviation principle

Prob[ρ̂(n, t) = ρ(n)] ∼ e−t I [ρ(n)]. (A.8)

with a large deviation functional

I [ρ] = −min
φ̃>0

∑

n,n′
ρ(n)

[
(w(n → n′) − λ(n)δn,n′

]
φ̃(n′)

φ̃(n)
, (A.9)

where φ̃(n) is a variational parameter (vector),where each component takes a positive
value. By defining a potential Ṽ (n) as Ṽ (n) = −2 log φ̃(n), we rewrite it in terms
of the modified transition rate w̃Ṽ

h and the corresponding escape rate λ̃Ṽ
h introduced

in (2.28). The result is

I [ρ] = −min
Ṽ

∑

n

ρ(n)
[
λ̃Ṽ
0 (n) − λ(n)

]
, (A.10)

Below, we show that the variational formula (2.29) and (2.30) are derived from this
Donsker–Varadhan formula.

A.2.2 Correspondence Between Biased Ensemble
and Modified System

The key idea to derive (2.29) and (2.30) is to construct a correspondence between the
biased ensemble and the modified system. We denote the path probability density
of w̃Ṽ

h -system by PṼ
h (ω|n0) with a given initial condition n0. The path probability

density is given as
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PṼ
h (ω|n0) = e− ∫ t

0 dt̃ λ̃Ṽ
h (n(t̃))

N∏

i=1

[
w(ni−1 → ni )

] N∏

i=1

[
ehα(ni−1→ni )−(1/2)Ṽ (ni )+(1/2)Ṽ (ni−1)

]

= eht A(ω)−(1/2)Ṽ (nN )+(1/2)Ṽ (n0)−
∫ t
0 dt̃ λ̃Ṽ

h (n(t̃))
N∏

i=1

[
w(ni−1 → ni )

]

= e
ht A(ω)−(1/2)Ṽ (nN )+(1/2)Ṽ (n0)−

∫ t
0 dt̃

[
λ̃Ṽ

h (n(t̃))−λ(n(t̃))
]

P(ω|n0).
(A.11)

We then neglect−(1/2)Ṽ (nN )+ (1/2)Ṽ (n0), since these terms are not proportional
to t . Finally, by expressing the time integral with the empirical measure ρ̂(n,ω), we
arrive at

eht A(ω) P(ω|n0) 	 PṼ
h (ω|n0)e

t
∑

n ρ̂(n,ω)
[
λ̃Ṽ

h (n)−λ(n)
]

(A.12)

for large t .

A.2.3 Derivation of (2.29) and (2.30)

We set Ṽ to be 0 in (A.12). Then, we substitute it into the definition of the cumulant
generating function (2.8).We consider theDonsker–Varadhan formula in w̃0

h-system,
for which we denote the Donsker–Varadhan functional in this system by I 0h [ρ]. By
using I 0h [ρ] in the obtained expression and evaluating it by using a saddle-point
method, we obtain the cumulant generating function as

G(h) = max
ρ̃

[
∑

n

ρ̃(n)
(
λ̃0

h(n) − λ(n)
)

− I 0h [ρ̃]
]

. (A.13)

Here, we recall the expression of theDonsker–Varadhan formula (A.9).We denote by
V ∗

h the optimal Ṽ that appeared in the variational principle in the Donsker–Varadhan
formula:

V ∗
h = argmin

Ṽ

[
∑

n

ρ(n)
(
λ̃Ṽ

h (n) − λ0
h(n)

)
]

. (A.14)

By combining this definition with (A.13), we thus obtain

G(h) = max
ρ̃

[
∑

n

ρ̃(n)
[
λ̃

V ∗
h

h (n) − λ(n)
]
]

. (A.15)

The obtained formula (A.15) is basically the same as (2.30). The only difference in
it is the variational parameter ρ̃. As the final step,we replace this variational parameter
ρ̃ by a potential. First, we consider the variational equation for the minimization
problem (A.14), which determines V ∗

h (n). The equation is

http://dx.doi.org/10.1007/978-981-287-811-3_2
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∑

n,n′
ρ̃(n)

[
δṼ (n) − δṼ (n′)

]
w̃

V ∗
h

h (n → n′) = 0. (A.16)

It is further rewritten as

∑

n

δṼ (n)
∑

n′

[
ρ̃(n)w̃

Ṽ ∗
h

h (n → n′) − ρ̃(n′)w̃V ∗
h

h (n′ → n)
]

= 0. (A.17)

Since δṼ is arbitrary, we obtain

∑

n′

[
ρ̃(n)w̃

V ∗
h

h (n → n′) − ρ̃(n′)w̃V ∗
h

h (n′ → n)
]

= 0. (A.18)

It means that V ∗
h (n) is determined in such away that ρ̃(n) is the stationary probability

for the modified system with w̃
V ∗

h
h . (For to the uniqueness and existence, see Propo-

sition III.1 in Ref. [1].) Since the stationary probability ρV
h is determined uniquely

for a given w̃V
h , we find the one-to-one correspondence between V ∗

h and ρ̃. Thus, we
may rewrite (A.15) as

G(σ) = max
V

[
∑

x

μV
σ (x)

(
DV

σ (x) − D(x)
)
]

. (A.19)

This is exactly the same as (2.30), which directly leads to (2.29).

A.3 Derivation of (2.36)

Here, we show that
〈
δn(t),neht A(ω)

〉
n0
satisfies the same equations as (2.34) and (2.35),

which leads to (2.36). For the derivation of (2.34), by substituting t in
〈
δn(t),neht A(ω)

〉
n0

by 0, we can easily check
〈
δn(t),neht A(ω)

〉
n0

= δn,n0 . On the other hand, for (2.35), we

start with the path probability density (2.4). From the expression,
〈
δn(t),neht A(ω)

〉
n0
is

written as

〈
δn(t),neht A(ω)

〉
n0

=
∞∑

N=0

∑

n1,n2,...,nN

∫ t

0
dtN

∫ tN

0
dtN−1 · · ·

∫ t2

0
dt1

δn(t),neht A(ω)e− ∫ t
0 dt̃λ(n(t̃))

N∏

i=1

[
w(ni−1 → ni )

]
.

(A.20)

Then, in this expression, we make δn(t),neht A(ω) included inside the path-probability.
The result is
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〈
δn(t),neht A(ω)

〉

n0
=

∞∑

N=0

∑

n1,n2,...,nN−1

∫ t

0
dtN

∫ tN

0
dtN−1 · · ·

∫ t2

0
dt1e− ∫ t

0 dt̃λ(n(t̃))

×
N−1∏

i=1

[
w(ni−1 → ni )e

hα(ni−1→ni )
]
w(nN−1 → n)ehα(nN−1→n)

(A.21)

We differentiate this expression with respect to t . The differentiation is taken at the
end-time of the integral with respect to tN and at the exponential of the time-integral
of the escape rate. After some calculations, we arrive at

∂
〈
δn(t),neht A(ω)

〉
n0

∂t

=
∑

n′

〈
δn(t),n′eht A(ω)

〉
n0

w(n′ → n)ehα(n′→n) − λ(n)
〈
δn(t),neht A(ω)

〉
n0

,
(A.22)

which is the corresponding equation to (2.35).

A.4 Derivation of the Theoretical Basis (2.48)
of the Rare-Event Sampling Method

We denote by φ(n; h) the left-eigenvector corresponding to the largest eigenvalue of
the matrix Lh

n′,n defined in (2.25). In this appendix, then, we derive

φ(n; lδh) ∝
l−1∏

k=0

〈
eτδh A(ω)

〉kδh

n (A.23)

for l = 1, 2, 3, . . . From this relation, it is easy to check (2.48) follows. Indeed, by
combining this relation with the argument in Sect. 2.2.5, we obtain (2.48).

First, we define

wh(n → n′) = w(n → n′)ehα(n→n′) φ(n′; lδh)

φ(n; lδh)
. (A.24)

Then, by using wh(n → n′), we define a matrix

Lh,h′
n,n′ ≡ wh′

(n′ → n)ehα(n′→n) − λwh′
(n)δn,n′ , (A.25)

where λwh′
(n) ≡ ∑

n′ wh′
(n → n′). Let K h,h′

and φh,h′
be the largest eigenvalue

and the corresponding left-eigenvector of (A.25). Then, we can prove the following
multiplicative property for the eigenvector and additive property for the eigenvalue

http://dx.doi.org/10.1007/978-981-287-811-3_2
http://dx.doi.org/10.1007/978-981-287-811-3_2
http://dx.doi.org/10.1007/978-981-287-811-3_2
http://dx.doi.org/10.1007/978-981-287-811-3_2
http://dx.doi.org/10.1007/978-981-287-811-3_2
http://dx.doi.org/10.1007/978-981-287-811-3_2
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of the matrix (A.25):
φh+h′,0 = φh,h′

φh′,0, (A.26)

K h+h′,0 = K h,h′ + K h′,0. (A.27)

• Proof:
First, we write the eigenvalue equations for φh+h′,0, φh′,0, and φh,h′

. Those are

∑

n′
w(n → n′)e(h+h′)α(n→n′) φ

h+h′,0(n′)
φh+h′,0(n)

− λ(n) = K h+h′,0, (A.28)

∑

n′
w(n → n′)eh′α(n→n′) φ

h′,0(n′)
φh′,0(n)

− λ(n) = K h′,0, (A.29)

∑

n′
w(n → n′)e(h+h′)α(n→n′) φ

h,h′
(n′)φh′,0(n′)

φh,h′
(n)φh′,0(n)

− λuh′
(n)

= K h,h′
.

(A.30)

We sum up (A.29) and (A.30). Since the first term of (A.29) is the same as the
second one in (A.30), these terms cancel each other. The result is

∑

n′
w(n → n′)e(h+h′)α(n→n′) φ

h,h′
(n′)φh′,0(n′)

φh,h′
(n)φh′,0(n)

− λ(n)

= K h,h′ + K h′,0.

(A.31)

From the Perron-Frobenius theory for irreducible matrices [3], the eigenvector of
Lh,0

n,n′ that takes positive value is unique, and the corresponding eigenvalue should
become the largest one Gh+h′,0. Thus, by comparing (A.28) with (A.31), we obtain
(A.26) and (A.27).

Next, we denote by 〈 〉wh
the expected value in the stationary state of the system

generated by the transition rate wh(n → n′). We will show that this expected value
and the expected value 〈 〉h defined in Sect. 2.3.4 are equal. Meanwhile, we show a
formula for 〈 〉wh

and finally we will show the equivalence. First, we have a relation

φh,h′
(n) ∝ 〈

eth A(ω)
〉wh′

n (A.32)

for large t (> ta). The derivation is the same as the one for (2.38), so we don’t repeat
it here. Then, by combining (A.32) with (A.28), we obtain

φh+h′,0(n) ∝ 〈
eth A(ω)

〉wh′

n φh′,0(n), (A.33)

http://dx.doi.org/10.1007/978-981-287-811-3_2
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or equivalently,

φh+h′,0(n) ∝ 〈
eth A(ω)

〉wh′

n

〈
eth′ A(ω)

〉0

n
, (A.34)

where we used (A.32). The equivalence between 〈 〉wh
and 〈 〉h is easily checked.

Indeed, by using (2.38) in the definition of 〈 〉h , the relation follows. We thus have

φh+h′,0(n) ∝ 〈
eth A(ω)

〉h′

n

〈
eth′ A(ω)

〉0

n
. (A.35)

The generalisation to the case, where a given h is divided into l pieces, is straight-
forward. Therefore, we arrive at (A.23).

A.5 Application of Our Method to Obtain a L Dependence
of G̃(h̃) in (2.72)

For investigating the singular behaviour of G(h) in greater detail, a scaled biasing
parameter h̃ ≡ hL has been used [4, 5]. The problem was in the numerical study
of it because the population dynamics method does not exhibit good convergence of
G̃(h̃) for relatively large L [5]. In this appendix, we show that our method can also
be applied to obtain the reliable L dependence of G̃(h̃) even in this case.

A.5.1 (i) Sufficiently Large Truncating Number r for Severe L

We investigate r dependence of G̃(h̃) for several L . We will conclude that r = 4 is
sufficiently large to obtain G̃(h̃) ≡ G(L−1h̃) for h̃ < 0. First, we define G̃(h̃, r) as
the obtained cumulant generating function with the truncating number r . Then, we
show the numerical examples of G̃(h̃, r) in Fig.A.1. In the figure, we plot G̃(h̃, 1),
G̃(h̃, 2), G̃(h̃, 3), and G̃(h̃, 4) for L = 10 (i), 20 (ii), 30 (iii), and 60 (iv). In the
same figure, we also plot the straight line (Ex) with the slope 4c2(1 − c), which
is the expected value of the activity in the unmodified system (h̃ = 0). We note
that the straight line corresponds to G̃(h̃, 0), because r = 0 means that there are
no modifications. From the figure, we find that the differences between G̃(h̃, 3) and
G̃(h̃, 4) are small even for larger L (say L = 20, 30, and 60).

We then quantitatively evaluate those small differences. For this, we introduce a
difference function

δG̃(h̃, r) = G̃(h̃, r + 1) − G̃(h̃, r). (A.36)

Then, in Fig.A.2, we plot the logarithm of δG(r, h) as a function of r for h̃ =
−0.225,−0.45,−0.675 and −0.9 with L = 20 (i), 30 (ii), and 60 (iii). We can see

http://dx.doi.org/10.1007/978-981-287-811-3_2
http://dx.doi.org/10.1007/978-981-287-811-3_2
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Fig. A.1 G̃(h̃, r) for r = 1, 2, 3, 4 with L = 10 (a), 20 (b), 30 (c), and 60 (d), where we set
c = 0.3. We also plot the straight line of slope 4c2(1 − c) (Ex) in each figure, which corresponds
to G̃(h̃, 0)

the linear dependence of log [δG(r, h)] on r . This means exponentially fast decay of
δG̃, which may indicate that larger r isn’t needed to obtain the correct G̃(h̃).

Finally, we evaluate the error due to the truncation of r = 4. From Fig.A.2, we
assume that the decaying of δG̃(h̃, r) with r is well described by an exponential
function:

δG̃ lin(h̃, r) = ea(h̃)r+b(h̃), (A.37)

where a(h̃) and b(h̃) are coefficients determined from the least squares fit of data
points δG̃(h̃, r). The examples of the least squares fit are shown in Fig.A.2. By using
this difference function, we define an (exponential decaying) approximation function
of G̃(h̃, r) as

G̃ lin(h̃, r) ≡ G̃(h̃, 4) +
r−1∑

s=4

δG̃ lin(h̃, s) (A.38)

for r = 5, 6, . . . Especially, here, we denote G̃ lin(h̃, L/2 − 1) by G̃ lin(h̃):

G̃ lin(h̃) ≡ G̃ lin(h̃, L/2 − 1). (A.39)
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Fig. A.2 The logarithm of the difference function δG̃(h̃, r) for r = 0, 1, 2, and 3 with L = 20 (a),
30 (b), and 60 (c). We set c = 0.3. We also plot straight lines obtained from a least squares fit of
those data points

Since G̃(h̃, r)with r 	 L/2 is equal to G̃(h̃), we regard G̃ lin(h̃) as an approximation
function of G̃(h̃). We plot G̃ lin(h̃) and G̃(h̃, r) for r = 1, 2, 3, 4 in Fig.A.3. The
figure shows that the differences between G̃ lin(h̃) and G̃(h̃, 4) are quite small even
for large L . Therefore, we judge that r = 4 is sufficiently large to obtain G̃(h̃) even
for those large L .

A.5.2 (ii) L Dependence of G̃(h̃) Obtained from Truncation

In the previous subsection, we judged that r = 4 was sufficiently large to obtain
G̃(h̃). Here, by using this result, we show the L dependence of G̃(h̃). In Fig.A.4,
we plot G̃(h̃) with r = 4 for various values of L . Even though it was conjectured
that G̃(h̃) has a non-differentiable point in the limit L → ∞ [4], our result does not
show any clear sign of such a cusp. More and more larger system sizes are required
for investigating the singular behaviour of G̃(h̃).
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Fig. A.3 G̃(h̃, r) and G̃ lin(h̃) for r = 1, 2, 3, 4 with L = 20 (a), 30 (b), and 60 (c), where we set
c = 0.3

Fig. A.4 G̃(h̃) for various
values of L with r = 4 fixed.
We also plot the straight line
(Ex) of slope 4c2(1 − c) that
corresponds to the expected
value of the activity in the
unbiased system (h = 0)
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Appendix B
For Chapter 3

B.1 Derivation of Finite-Size Corrections to Modifying Free
Energy � f (1)

sc (ρ) in (3.55) and (3.56)

In this appendix, we derive the finite-size correction � f (1)
sc (ρ) given in (3.55)

and (3.56).

B.1.1 For the Region ρ > ρL
c

We first focus on the region ρ > ρL
c , which corresponds to (3.56). In this region,

from the expression of the leading order of the free energy (3.50), we know that
φ(n) doesn’t satisfy any large deviation principle. We thus define φ̃(ρ) = φ(ρL) and
assume the differentiability of it:

φ̃(ρ ± 1/L) = φ̃(ρ) ± ∂φ̃

∂ρ

1

L
+ O(1/L2). (B.1)

By using this scaling property, we rewrite the left-hand side of (3.13). The result is

φ̃(ρ) {−s̃cρ [c + (1 − 2c)ρ] + c} + ∂φ̃(ρ)

∂ρ
ρ(c − ρ) + O(1/L2) = 0, (B.2)

where we defined s̃c ≡ sL . By solving this differential equation, we obtain the
modifying free energy with finite-size correction, which we denote by −2 log φ̃, as
follows:
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− 2 log φ̃(ρ)

= −2
[
s̃cρ(2c − 1) − log ρ + (−s̃c2c(1 − c) + 1) log |c − ρ|]+ const.

= −2

[
ρ(2c − 1)

2c(1 − c)
− log ρ

]

+ const.,

(B.3)

where we used a relation s̃c = 1/(2c(1− c)) + O(1/L) from the second to the third
line. Since the leading term to the modifying free energy is constant as shown in
(3.50), we arrive at

� f (1)
sc (ρ) = −2

[
ρ(2c − 1)

2c(1 − c)
− log ρ

]

+ const. (B.4)

for ρ > ρL
c , which corresponds to (3.56).

B.1.2 For the Region ρ ≤ ρL
c

Next, we focus on the region ρ ≤ ρL
c , which corresponds to (3.55). In this region,

φ(n) satisfies a large deviation principle. We thus directly substitute the definition
(3.54)with the aide of the result of the leading order give by (3.49) into the eigenvalue
equation (3.43). In the calculation, we evaluate φ(n + 1)/φ(n) as

φ(n + 1)

φ(n)
= e∂ fe/∂ρ+1/(2L)∂2 fe/∂ρ2−1/(2L)∂� f (1)

sc /∂ρ

= (1 − c)ρ

c(1 − ρ)
e(1/(2Lρ(1−ρ)))e−1/(2L)∂� f (1)

sc /∂ρ.

By using this expression in (3.43), we arrive at a differential equation

∂� f (1)
sc (ρ)

∂ρ
= 2

ρ
− 2

c
ρ

+ [(1 − c)ρ + c(1 − ρ)]
[

1
2ρ(1−ρ)

− 1
2c(1−c)

]

−(1 − c)ρ + c(1 − ρ)

= −1

ρ
+ 1

1 − ρ
− 2

c − ρ
− 1 − 2c

c(1 − c)
, (B.5)

which leads to

� f (1)
sc (ρ) = − log

ρ(1 − ρ)

(c − ρ)2
− ρ(1 − 2c)

c(1 − c)
+ const. (B.6)

This corresponds to (3.55).
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B.2 Derivation of a∗(s) Given in (3.77)

Here, we derive the expression a∗(s) given as (3.77) by solving (3.74).
In order to evaluate the variational function �(a) given in (3.75), we divide the

domain of the summation in (3.75) into three parts:

(i) n < nc

�<(a) ≡ (1/L)
∑

n<nc

Ps(n)
[
r̃(n) − r(n)

]
, (B.7)

(ii) n > nc + 1
�>(a) ≡ (1/L)

∑

n>nc

Ps(n)
[
r̃(n) − r(n)

]
, (B.8)

(iii) n ≡ nc, nc + 1

�=(a) ≡ (1/L)
∑

n=nc,nc+1

Ps(n)
[
r̃(n) − r(n)

]
. (B.9)

The dependence of a in (i) and (ii) is linear because r̃(n) is an independent function
of a. For these part, we define two constants �< and �> that doesn’t depend on a:

�< = 1

2L

〈
r̃ie

−s − r
〉
i , (B.10)

�> = 1

2L

〈
r̃ae

−s − r
〉
a , (B.11)

where r̃i,a(n) is defined as

r̃i,a(n) = nc
(
1 − n

L

) e−L fi,a((n+1)/L)/2

e−L fi,a(n/L)/2
+ n(1 − c)

(
n

L
− 1

L

)
e−L fi,a((n−1)/L)/2

e−L fi,a(n/L)/2
.

(B.12)
By using these constants, �<(a) and �>(a) are written as

�<(a) = (1 + a)�<, (B.13)

�>(a) = (1 − a)�>. (B.14)

On the other hand, the dependence of a in (iii) is more complicated. We first write
down �=(a) as

�=(a) = nc

L
c(1 − nc

L
)
φ(nc + 1)

φ(nc)
Ps(nc)e

−s

+ (nc + 1)

L
(1 − c)

nc

L

φ(nc)

φ(nc + 1)
Ps(nc + 1)e−s + · · · ,

(B.15)
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where · · · represents the terms that are proportional to a. Since this linear dependence
of a is exponentially smaller than the one in �<(a) and �>(a), we omit this part
hereafter. Next, with a relation between Ps(n) and φ(n)

Ps(n + 1)
φ(n)

φ(n + 1)
= Ps(n)

φ(n + 1)Peq(n + 1)

φ(n)Peq(n)
, (B.16)

we find that the first term and the second term in the right hand side of (B.15) are
equal. Also, by recalling a dependence of Ps(n) and φ(n), we find that this term is
proportional to

√
(1 − a2). Thus, by defining the coefficient of it, �=(a), as

�= ≡ 2
nc

L
c(1 − nc

L
)Pi(nc)

e−L fa((nc+1)/L)/2

e−L fi(nc/L)/2
e−s, (B.17)

we arrive at
�=(a) =

√
1 − a2�=. (B.18)

The non-linear dependence in �=(a) is important. Even though �=(a) is expo-
nentially small compared with the other parts �>(a), �<(a), due to the non-liner
dependence, we need to consider this term. As seen in the main text, this smallness
of �=(a) is the origin of the exponentially small width of the coexistence region.

From (B.13), (B.14), and (B.18), we obtain

�(a) = �< + �> + a(�< − �>) +
√
1 − a2�=. (B.19)

By maximising �(a) with respect to a, we finally obtain the expression of a∗(s) as

a∗(s) = A√
1 + A2

, (B.20)

with
A = (�< − �>)/�=. (B.21)

This is (3.77).

B.3 Analytical Expressions of the Scaling Functions
for ∂G(s)/∂s and ∂2G(s)/∂s2

Here, we derive the scaling function for ∂G(s)/∂s and ∂2G(s)/∂s2.
Wefirst recall the relation between ∂G(s)/∂s and the expected values of ρ = n/L .

As already introduced in Sect. 3.2.1, we have
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−∂G(s)

∂s
=
∑

n

∑

n′
Ps(n)w(n → n′) =

∑

n

Ps(n)λ(n)

= ρ(s)(Lc + c − 1) + ρ(s)2L(1 − 2c) + (1 − 2c)χ(s).

(B.22)

Then, by substituting these ρ(s) and χ(s) by the one in (3.70) and (3.71), changing
the variables to x , and using (3.77) and (3.86), we rewrite it as

− ∂G(s)

∂s

∣
∣
s=sc+κ−1x

= 1

2

[〈ρ〉i + 〈ρ〉a

]
(Lc + c − 1) + 1 − 2c

2
L
[〈
ρ2
〉
i + 〈

ρ2
〉
a

]

+ 2x
[〈ρa〉 − 〈ρ〉i

]−1

√

1 + 4x2
[〈ρa〉 − 〈ρ〉i

]−2

{
1

2

[〈ρ〉i − 〈ρ〉a

]
(Lc + c − 1)

+ 1 − 2c

2
L
[〈
ρ2
〉
i
− 〈

ρ2
〉
a

]
.

}

Then, by taking L → ∞, we arrive at

− lim
L→∞

1

L

∂G(s)

∂s

∣
∣
∣
∣
s=sc+κ−1x

= c2(1 − c)

[

1 − 2xc−1

√
1 + 4x2c−2

]

. (B.23)

Since the expression of ∂G(s)/∂s is determined, we can obtain ∂2G(s)/∂s2 just by
taking the derivative of it. By noticing that ∂2G(s)/∂s2 is not directly connected
to the equilibrium distribution function Ps(n) from the definition, this property is
suggestive. We thus obtain

lim
L→∞

1

Lκ

∂2ψ(s)

∂s2

∣
∣
∣
∣
s=sc+κ−1x

= 2c(1 − c)
1

(1 + 4x2c−2)3/2
. (B.24)

B.4 Variational Principle to Determine the Ground State
Energy in Quantum Systems

Here, we show that the variational principle (3.21) that gives the cumulant generating
function, when the system satisfies detailed balance condition, is reduced to the one
for determining the ground energy in quantum systems. The key is a symmetrisation
of the matrix Ls

n′,n in the largest eigenvalue problem (3.20). Thanks to the detailed
balance condition, such a symmetrisation is possible. For symmetric matrices, a
variational principle for determining the largest (or lowest) eigenvalue problem is
well known in quantummechanics. We apply this variational principle to the system,
and show that this formula and (3.21) is equivalent.
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The detailed balance condition is given as (3.7). By using this condition, we
rewrite Ls

n′,n as

Ls
n′,n = w(n → n′)e−s − δn,n′λ(n)

= Peq(n
′)w(n′ → n)Peq(n)−1e−s − δn,n′λ(n)

= Peq(n
′)1/2

[
Peq(n

′)1/2w(n′ → n)Peq(n)−1/2e−s − δn,n′λ(n)
]

Peq(n)−1/2

= Peq(n
′)1/2 L̃s

n′,n Peq(n)−1/2,

(B.25)
where we defined

L̃s
n′,n = Peq(n

′)1/2w(n′ → n)Peq(n)−1/2e−s − δn,n′λ(n). (B.26)

Here, we note that the matrix L̃s
n′n ,n is symmetric. Indeed, by using detailed balance

condition, we have

L̃s
n′,n = Peq(n

′)1/2w(n′ → n)Peq(n)−1/2e−s − δn,n′λ(n)

= Peq(n
′)1/2

[
Peq(n)w(n → n′)Peq(n

′)−1
]

Peq(n)−1/2e−s − δn,n′λ(n)

= Peq(n)1/2w(n → n′)Peq(n
′)−1/2e−s − δn′,nλ(n)

= L̃s
n,n′ .

(B.27)
Then, we recall a variational principle for symmetric matrices, which is well-

known in quantum physics. By applying it to L̃s
n′,n , we have

E = max
�0>0

∑
n,n′ �0(n′)L̃s

n′,n�
0(n)

∑
n �0(n)2

, (B.28)

where E is the largest eigenvalue of L̃s
n,n′ . In this variational principle, by introducing

a variational function �F̃(n) by a relation

�0(n)2 = Peq(n)e−�F̃(n), (B.29)

we change the variational parameter from�0(n) to�F̃(n). The variational functional
is also rewritten as follows

http://dx.doi.org/10.1007/978-981-287-811-3_3
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∑
n,n′ �0(n′)L̃s

n′,n�0(n)
∑

n �0(n)2
=
∑

n,n′ �0(n′)Peq(n′)−1/2Ls
n′,n Peq(n)1/2�0(n)

∑
n �0(n)2

=
∑

n,n′ e−�F̃(n′)/2Ls
n′,n Peq(n)e−�F̃(n)/2

∑
n Peq(n)e−�F̃(n)

=
∑

n

Peq(n)e−�F̃(n)

∑
n′ Peq(n′)e−�F̃(n′)

∑

n′
e−�F̃(n′)/2Ls

n′,ne�F̃(n)/2.

(B.30)
Thus, by introducing P̃(n) as

P̃(n) = Peq(n)e−�F̃(n)

∑
n′ Peq(n′)e−�F̃(n′)

, (B.31)

and by using the explicit expression of the transition ratew(n → n′) in the variational
functional, we arrive at

∑
n,n′ �0(n′)L̃s

n′,n�
0(n)

∑
n �0(n)2

=
∑

n

P̃(n)
[
λ̃(n) − λ(n)

]
, (B.32)

where λ̃(n) is defined as (3.23). This functional is exactly the same expression as the
variational functional in (3.21). Therefore, by combining it with (B.28) and noticing
the fact that the largest eigenvalue of Ls

n′,n and L̃s
n′,n are the same, we obtain (3.21).
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C.1 Derivation of (4.64)

Here, we derive (4.64). We consider a joint distribution function of y(0), y(t), W (t)
and Q(t) defined as

P(y0, y, W, Q, t |p) = p(y0) 〈δ(y(t) − y)δ(W (t) − W )δ(Q(t) − Q)〉y0 .

(C.1)

By using the Langevin equations (4.6), (4.15), and (4.16), we derive the Fokker-
Planck equation for P(y0, y, W, Q, t |p) as

∂P

∂t
= L(y,W,Q)

FP · P (C.2)

with the Fokker-Planck operator L(y,W,Q)

FP given as

L(y,W,Q)

FP · ϕ = − ∂

∂y

[(

− 1

γ

∂

∂y
U (y) + v

)

ϕ

]

− v

(
∂

∂y
U (y)

)
∂

∂W
ϕ

−
[
1

γ

(
∂U (y)

∂y

)2

− T

γ

∂2

∂y2
U (y)

]
∂

∂Q
ϕ + T

γ

∂2

∂y2
ϕ

+ T

γ

(
∂U (y)

∂y

)2 ∂2

∂Q2
ϕ − 2T

γ

∂2

∂Q∂y

[
∂U (y)

∂y
ϕ

]

. (C.3)

We multiply (C.3) by eW hw+Qhq and integrate it with respect W and Q. Finally by
noticing the definitions of the biased distribution function Phw,hq and qhw,hq given as
(4.20) and (4.63), we obtain (4.64).
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C.2 Derivation of (4.77)–(4.79) with the Cole-Hopf
Transformation

Here, (4.77)–(4.79) are derived from the largest eigenvalue problems of L(y)

hw,hq
and

L(y)†
hw,hq

. We note that Similar calculations were seen in Refs. [1, 2], for example.

We first consider the largest eigenvalue problem of L(y)†
hw,hq

,

L(y)†
hw,hq

· φ0 = ν0φ0. (C.4)

We divide this equation by φ0 and simplify the obtained expression. The result is

ν0 = (hq + hw)v
∂U

∂y
+ T

γ

[
∂

∂y

(
logφ0 − hqU

)
]2

+
(

− 1

γ

∂

∂y
U + v

)
∂

∂y

(
logφ0 − hqU

)+ T

γ

∂

∂y

[
∂

∂y

(
logφ0 − hqU

)
]

.

(C.5)

We then introduce a potential function V0(y) as

V0(y) = −2T
(
logφ0(y) − hqU (y)

)
. (C.6)

This means we change the function we consider, φ0(y), to the new one V0(y). This
changing (or transformation) is called the Cole-Hopf transformation. We substitute
this potential function (C.6) into (C.5), and we combine it with (4.61) and (4.70).
This leads to

Mhw+hq ,v ·
(

−∂V0

∂y

)

= 2T Gscaled(hw, hq), (C.7)

Next, the largest eigenvalue problem of L(y)

hw,hq
,

L(y)

hw,hq
· ψ0 = μ0ψ0 (C.8)

is considered. By dividing this equation by ψ0 and simplifying it, we obtain

μ0 = −
(
1

T
+ hq + hw

)

(−v)
∂U

∂y
+ T

γ

[
∂

∂y

(

logψ0 +
(

hq + 1

T

)

U

)]2

+
(

− 1

γ

∂U

∂y
− v

)
∂

∂y

[

logψ0 +
(

hq + 1

T

)

U

]

+ T

γ

∂

∂y

[
∂

∂y

(

logψ0 +
(

hq + 1

T

)

U

)]

.

(C.9)
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We then define

Ṽ0(y) = −2T

[

logψ0(y) +
(

hq + 1

T

)

U (y)

]

(C.10)

and substitute it into (C.9). Finally, by combining it with (4.70), we arrive at

M−β−hw−hq ,−v ·
(

−∂Ṽ0

∂y

)

= 2T Gscaled(hw, hq). (C.11)

We note that the sign of the velocity in the left-hand side of (C.11) is reversed, which
represents a reversed protocol of moving the periodic potential.

From these results (C.6), (C.7), (C.10) and (C.11), we obtain (4.77)–(4.79). Here,
we mention that the uniqueness of the solution of the non-linear eigenvalue problem
(4.74) is guaranteed from the Perron-Frobenius theory, since (4.74) can be rewritten
as the same form as (C.4), by following the (reversed) calculation, from (C.7) to
(C.4).

C.3 Derivation of (4.83) and (4.84) with Boundary Layer
Analysis

Here, we derive (4.83) and (4.84), by using boundary layer analysis. First, the outer
solution of (4.74), w̃o

h,v(Y ), is considered, which satisfies

∣
∣
∣
∣
∂w̃o

h,v(Y )

∂Y

∣
∣
∣
∣ ≈ ∣

∣w̃o
h,v(Y )

∣
∣ , (C.12)

where ≈ means that the left-hand side and the right-hand side are the same order of
magnitude with respect to L . We then solve (4.74) for w̃h,v(Y ), which can be easily
done, because this is just a quadratic equation of w̃h,v(Y ). The result is

w̃h,v(Y ) = γ

[

− v + 1

γ

∂U (Y L)

∂y
±
∣
∣
∣
∣v(1 + 2T h) − 1

γ

∂U (Y L)

∂y

∣
∣
∣
∣

√
1 + R(Y )

]

,

(C.13)

where R(Y ) is defined as

R(Y ) ≡ −v24T h(1 + T h) + 2Kh,v/γ

[v(1 + 2T h) − (1/γ)∂U (Y L)/∂y]2
+ −2T/(γ2L)∂w̃h,v/∂Y

[v(1 + 2T h) − (1/γ)∂U (Y L)/∂y]2
.

(C.14)

Now, we set w̃h,v(Y ) = w̃o
h,v(Y ) in the right-hand side of this R(Y ). Then, according

to the following argument, we find that R(Y ) is negligible: By using (C.12) and (4.7),
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we neglect the second term of R(Y ). We then assume that Kh,v = O(1), where Kh,v

is equal to 2T Gscaled(hw, hq)|hw+hq=h .1 By using this assumption and (4.7), we also
neglect the first term of R(Y ). Therefore, we omit R(Y ) in w̃h,v . The result leads to
an expression of the outer solution w̃o

h,v(Y ) as

w̃o
h,v(Y ) =

{
2T γhv

2γ [−v(1 + T h) + (1/γ)∂U (Y L)/∂y] .
(C.15)

Finally, we connect these two expressions in w̃o
h,v(Y ). For this purpose, we assume

the following things: Firstly, the number of the connecting points is minimized.
Secondly, the one of the connecting points is located as the one where the potential
has a discontinuity. Especially, in the case of U = Uharmo and U = Uquart, the
derivatives of the potentials have discontinuities at Y = ±1.2 By combining these
two assumptions with the normalization condition (4.75), we uniquely determine the
solution w̃h,v(Y ) as (4.83) and (4.84).
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