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Exact Results on N = 2 Supersymmetric
Gauge Theories

Jörg Teschner

The following is meant to give an overview over our special volume. The first three
Sects. 1–3 are intended to give a general overview over the physical motivations
behind this direction of research, and some of the developments that initiated this
project. These sections are written for a broad audience of readers with interest in
quantum field theory, assuming only very basic knowledge of supersymmetric gauge
theories and string theory. This will be followed in Sect. 4 by a brief overview over
the different chapters collected in this volume, while Sect. 5 indicates some related
developments that we were unfortunately not able to cover here.

Due to the large number of relevant papers the author felt forced to adopt a very
restrictive citation policy. With the exception of very few original papers only review
papers will be cited in Sects. 1 and 2. More references are given in later sections, but
it still seems impossible to list all papers on the subjects mentioned there. The author
apologises for any omission that results from this policy.

1 Background, History and Context

1.1 Strong Coupling Behavior of Gauge Theories

Gauge theories play a fundamental role in theoretical particle physics. They describe
in particular the interactions that bind the quarks into hadrons. It is well under-
stood how these interactions behave at high energies. This becomes possible due to
the phenomenon of asymptotic freedom: The effective strength of the interactions
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2 J. Teschner

depends on the energy scale, and goes to zero for large energies. It is much less well
understood how the interactions between quarks behave at low energies: The exper-
imental evidence indicates that the interactions become strong enough to prevent
complete separation of the quarks bound in a hadron (confinement). The theoretical
understanding of this phenomenon has remained elusive.

When the interactions are weak one may approximate the resulting effects rea-
sonably well using perturbation theory, as can be developed systematically using the
existing Lagrangian formulations. However, the calculation of higher order effects in
perturbation theory gets cumbersome very quickly. It is furthermore well-known that
additional effects exist that can not be seen using perturbation theory. Exponentially
suppressed contributions to the effective interactions are caused, for example, by the
existence of nontrivial solutions to the Euclidean equations of motion called instan-
tons. The task to understand the strong coupling behavior of gauge theories looks
rather hopeless from this point of view: It would require having a complete resum-
mation of all perturbative and non perturbative effects. Understanding the strong
coupling behaviour of general gauge theories remains an important challenge for
quantum field theory. However, there exist examples in which substantial progress
has recently been made on this problem: Certain important physical quantities like
expectation values of Wilson loop observables can even be calculated exactly. What
makes these examples more tractable is the existence of supersymmetry. It describes
relations between bosons and fermions which may imply that most quantum correc-
tions from bosonic degrees of freedom cancel against similar contributions coming
from the fermions. Whatever remains may be exactly calculable.

Even if supersymmetry has been crucial for getting exact results up to now, it seems
likely that some of the lessons that can be learned by analysing supersymmetric field
theories will hold inmuch larger generality. Onemay in particular hope to deepen our
insights into the origin of quantum field theoretical duality phenomena by analysing
supersymmetric field theories, as will be discussed in more detail below. As another
example let us mention that it was expected for a long time that instantons play a key
role for the behaviour of gauge theories at strong coupling. This can nowbe illustrated
beautifully with the help of the new exact results to be discussed in this volume. We
believe that the study of supersymmetric field theories offers a promising path to
enter into the mostly unexplored world of non-perturbative phenomena in quantum
field theory.

1.2 Electric-Magnetic Duality Conjectures

It is a hope going back to the early studies of gauge theories that there may exist
asymptotic strong coupling regions in the gauge theory parameter space in which a
conventional (perturbative) description is recovered using a suitable new set of field
variables. This phenomenon is called a duality. Whenever this occurs, one may get
access to highly nontrivial information about the gauge theory at strong coupling.
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For future reference let us formulate a bit more precisely what it means to have a
duality. Let us consider a family {Fz; z ∈ M} of quantum theories having a moduli
spaceMof parameters z. Thequantum theoryFz is for eachfixedvalue of z abstractly
characterised by an algebra of observables Az and a linear functional on Az which
assigns to each observable O ∈ Az its vacuum expectation value 〈O〉z . We say that
{Fz; z ∈ M} is a quantum field theory with fields � and action Sτ [�] depending on
certain parameters τ (like masses and coupling constants) if there exists a point z0
in the boundary of the moduli spaceM, a coordinate τ = τ (z) in the vicinity of z0,
and a map O assigning to each O ∈ Az a functional OO,τ [�] such that

〈 O 〉z �
∫

[D�] e−Sτ [�] OO,τ [�], (1.1)

where � means equality of asymptotic expansions around z0 and the right hand side
is defined in terms of the action S[�] using path integral methods.

We say that a theory with fields �, action Sτ [�] and parameters τ is dual to
a theory characterised by similar data S′

τ ′ [�′] if there exists a family of quantum
theories {Fz; z ∈ M} with moduli space M having boundary points z0 and z′

0 such
that the vacuum expectation values of Fz have an asymptotic expansion of the form
(1.1) near z0, and also an asymptotic expansion

〈 O 〉z �
∫

[D�′]′ e−S′
τ ′ [�′] O′

O,τ ′ [�′], (1.2)

near z′
0, with O′ being a map assigning to each O ∈ Az a functional O′

O,τ ′ [�′].
A class of long-standing conjectures concerning the strong coupling behavior of

gauge theories are referred to as the electric-magnetic duality conjectures. Some of
these conjectures concern the infrared (IR) physics as described in terms of low-
energy effective actions, others are about the full ultraviolet (UV) descriptions of
certain gauge theories. The main content of the first class of such conjectures is most
easily described for theories having an effective description at low energies involving
in particular an abelian gauge field A and some chargedmatter q. The effective action
S(A, q; τIR) will depend on an effective IR coupling constant τIR. The phenomenon
of an electric magnetic duality would imply in particular that the strong coupling
behavior of such a gauge theory can be represented using a dual action S′(A′, q ′; τ ′

IR)

that depends on the dual abelian gauge field A′ related to A simply as

F ′
μν = 1

2
εμνρσ Fρσ. (1.3)

The relation between the dual coupling constant τ ′
IR and τIR is also conjectured to be

very simple,

τ ′
IR = − 1

τIR

. (1.4)
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The relation expressing q ′ in terms of q and Amay be very complicated, in general. In
many cases one expects thatq ′ is thefield associated to solitons, localized particle-like
excitations associated to classical solutions of the equations ofmotion of S(A, q; τIR).
Such solitons are usually very heavy at weak coupling but may become light at strong
coupling where they may be identified with fundamental particle excitations of the
theory with action S′(A′, q ′; τ ′

IR).
For certain theories there exist even deeper conjectures predicting dualities

between different perturbative descriptions of the full ultraviolet quantum field theo-
ries. Such conjectures, often referred to as S-duality conjectures originated from the
observations of Montonen and Olive [MoOI, GNO], and were subsequently refined
in [WO, Os], leading to the conjecture of a duality between the N = 4 supersym-
metric Yang-Mills theory with gauge group G and coupling τ one the one hand, and
the N = 4 supersymmetric Yang-Mills theory with gauge group LG and coupling
−1/nGτ on the other hand. LG is the Langlands dual of a group G having as Cartan
matrix the transpose of the Cartan matrix of G, and nG is the lacing number1 of the
Lie algebra of G.

A given UV action S can be used to define such expectation values perturbatively,
as well as certain non-perturbative corrections like the instantons. The question is
whether all perturbative and non perturbative corrections can be resummed to get the
cross-over to the perturbation theory defined using a different UV action S′.

A non-trivial strong-coupling check for the S-duality conjecture in the N = 4
supersymmetric Yang-Mills theory was performed in [VW].2 Generalised S-duality
conjectures have been formulated in [Ga09] (see [V:2] for a review) for a large class of
N = 2 supersymmetric gauge theories which are ultraviolet finite and therefore have
well-defined bare UV coupling constants τ . It is of course a challenge to establish
the validity of such conjectures in any nontrivial example.

1.3 Seiberg-Witten Theory

A breakthrough was initiated by the discovery of exact results for the low energy
effective action of certain N = 2 supersymmetric gauge theories by Seiberg and
Witten [SW1, SW2]. There are several good reviews on the subject, see e.g. [Bi, Le,
Pe97, DPh, Tac] containing further references.3

The constraints of N = 2 supersymmetry restrict the low-energy physics con-
siderably. As a typical example let us consider a gauge theory with SU (M) gauge
symmetry. The gauge field sits in a multiplet ofN = 2 supersymmetry containing a
scalar field φ in the adjoint representation of SU (M).N = 2 supersymmetry allows

1The lacing number nG is equal to 1 is the Lie-algebra of G is simply-laced, 2 if it is of type Bn ,
Cn and F4, and 3 if it is of type G2.
2The result of [Sen] furnishes a nontrivial check of a prediction following from theMontonen-Olive
conjecture.
3A fairly extensive list of references to the early literature can be found e.g. in [Le].

http://dx.doi.org/10.1007/978-3-319-18769-3_2
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parametric families of vacuum states. The vacuum states in the Coulomb branch can
be parameterised by the vacuum expectation values of gauge-invariant functions of
the scalars like u(k) := 〈Tr(φk)〉, k = 2, . . . M . For generic values of these quantities
one may describe the low-energy physics in terms of a Wilsonian effective action
Seff [A] which is a functional of d = M − 1 vector multiplets Ak , k = 1, . . . , d, hav-
ing scalar components ak and gauge group U (1)k , respectively. The effective action
Seff [A] turns out to be completely determined by a single holomorphic functionF(a)

of d variables a = (a1, . . . , ad) called the prepotential. It completely determines the
(Wilsonian) low energy effective action as Seff = Seff

bos + Seff
fer , where

Seff
bos = 1

4π

∫
d4x

(
Im(τ kl)∂μāk∂

μal + 1

2
Im(τ kl)Fk,μν Fμν

l + 1

2
Re(τ kl)Fk,μν F̃μν

l

)
,

(1.5)

while Seff
fer is the sum of all terms containing fermionic fields, uniquely determined

by N = 2 supersymmetry. The a-dependent matrix τ kl(a) in (1.5) is the matrix of
second derivatives of the prepotential,

τ kl(a) := ∂ak ∂alF(a). (1.6)

Based on physically motivated assumptions about the strong coupling behavior
of the gauge theories under consideration, Seiberg and Witten proposed a precise
mathematical definition of the relevant functions F(a) for M = 2. This type of
description was subsequently generalised to large classes ofN = 2 supersymmetric
gauge theories including the cases with M > 2.

The mathematics underlying the definition of F(a) is called special geometry. In
many cases including the examples discussed above one may describe F(a) using
an auxilliary Riemann surface � called the Seiberg-Witten curve which in suitable
local coordinates can be described by a polynomial equation P(x, y) = 0. The
polynomial P(x, y) has coefficients determined by the mass parameters, the gauge
coupling constants, and the values u(k) parameterising the vacua. Associated to �

is the canonical one form λSW = ydx on �. Picking a canonical basis for the first
homology H1(�, Z) of �, represented by curves α1, . . . ,αd and β1, . . . ,βd with
intersection index αr ◦ βs = δrs one may consider the periods

ar =
∫

αr

λSW, aD
r =

∫
βr

λSW. (1.7)

Both ar ≡ ar (u) and aD
r ≡ aD

r (u), r = 1, . . . , d, represent sets of complex coor-
dinates for the d-dimensional space of vacua, in our example parameterised by
u = (u(2), . . . , u(M)). It must therefore be possible to express aD in terms of a. It turns
out that the relation can be expressed using a function F(a), a = (a1, . . . , ad), from
which the coordinates ar can be obtained via aD

r = ∂arF(a). It follows that F(a) is
up to an additive constant defined by � and the choice of a basis for H1(�, Z).
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The choice of the field coordinates ak is not unique. Changing the basisα1, . . . ,αd

and β1, . . . ,βd to α′
1, . . . ,α

′
d and β′

1, . . . ,β
′
d will produce new coordinates a′

r , a′D
r ,

k = 1, . . . , d along with a new functionF ′(a′)which is the prepotential determining
a dual action S′

eff [a′]. The actions Seff [a] and S′
eff [a′] give us equivalent descriptions

of the low-energy physics. This gives an example for an IR duality.

1.4 Localization Calculations of SUSY Observables

Having unbroken SUSY opens the possibility to compute some important quantities
exactly using a method called localization [W88]. This method forms the basis for
much of the recent progress in this field.

Given a supersymmetry generator Q such that Q2 = P , where P is the generator
of a bosonic symmetry. Let S = S[�] be an action such that QS = 0. Let us
furthermore introduce an auxiliary fermionic functional V = V [�] that satisfies
PV = 0. We may then consider the path integral defined by deforming the action
by the term t QV , with t being a real parameter. In many cases one can argue that
expectation values of supersymmetric observablesO ≡ O[�], QO = 0, defined by
the deformed action, are in fact independent of t , as the following formal calculation
indicates. Let us consider

d

dt

∫
[D�] e−S−t QV O =

∫
[D�] e−S−t QV QV O

=
∫

[D�] Q(e−S−t QV V O) = 0, (1.8)

if the path-integral measure is SUSY-invariant,
∫ [D�] Q(. . . ) = 0. This means that

〈O 〉 :=
∫

[D�] e−S O = lim
t→∞

∫
[D�] e−S−t QV O. (1.9)

If V is such that QV has positive semi-definite bosonic part, the only non-vanishing
contributions are field configurations satisfying QV = 0. There are cases where the
spaceM of solutions of QV = 0 is finite-dimensional.4 The arguments above then
imply that the expectation values can be expressed as an ordinary integral over the
space M which may be calculable.

The reader should note that this argument bypasses the actual definition of
the path integral in an interesting way. For the theories at hand, the definition of∫ [D�] e−S−t QV represents a rather challenging task which is not yet done. What
the argument underlying the localisation method shows is the following: If there is
ultimately any definition of the theory that ensures unbroken supersymmetry in the

4In other cases M may a union of infinitely many finite-dimensional components of increasing
dimensions, as happens in the cases discussed in Sect. 1.5.
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sense that
∫ [D�] Q(. . . ) = 0, the argument (1.8) will be applicable, and may allow

us to calculate certain expectation values exactly even if the precise definition of the
full theory is unknown.

1.5 Instanton Calculus

The work of Seiberg and Witten was based on certain assumptions on the strong
coupling behavior of the relevant gauge theories. It was therefore a major progress
when it was shown in [N, NO03, NY, BE] that the mathematical description for
the prepotential conjectured by Seiberg and Witten can be obtained by an honest
calculation of the quantum corrections to a certain two-parameter deformation of the
prepotential to all orders in the instanton expansion.

To this aim it turned out to be very useful to define a regularisation of certain
IR divergences called Omega-deformation by adding terms to the action breaking
Lorentz symmetry in such a way that a part of the supersymmetry is preserved [N],5

S → Sε1ε2 = S + Rε1ε2 . (1.10)

One may then consider the partition function Z defined by means of the path inte-
gral defined by the action Sε1ε2 . As an example let us again consider a theory with
SU (M) gauge group. This partition function Z = Z(a, m, τ ; ε1, ε2) depends on the
eigenvalues a = (a1, . . . , aM−1) of the vector multiplet scalars at the infinity of R

4,
the collection m of all mass parameters of the theory, and the complexified gauge
coupling τ formed out of the gauge coupling constant g and theta-angle θ as

τ = 4πi

g2
+ θ

2π
. (1.11)

The unbroken supersymmetry can be used to apply the localisationmethod briefly
described in Sect. 1.4, here leading to the conclusion that the path integral defining
Z can be reduced to a sum of ordinary integrals over instanton moduli spaces. The
culmination of a long series of works6 were explicit formulae for the summands
Z (k)(a, m; ε1, ε2) that appear in the resulting infinite series7 of instanton corrections

5The regularisation introduced in [N] provides a physical interpretation of a regularisation for
integrals over instanton moduli spaces previously used in [LNS, MNS1].
6The results presented in [N, NO03] were based in particular on the previous work [LNS, MNS1,
MNS2]. Similar results were presented in [FPS, Ho1, Ho2, FP, BFMT]; for a review see [V:4].
7The infinite series (1.12) are probably convergent. This was verified explicitly for the example of
pure SU (2) Super-Yang-Mills theory in [ILTy], and it is expected to follow for UV finite gauge
theories from the relations with conformal field theory to be discussed in the next section.

http://dx.doi.org/10.1007/978-3-319-18769-3_4
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Z(a, m, τ ; ε1, ε2) = Zpert(a, m, τ ; ε1, ε2)

(
1+

∞∑
k=1

qk Z (k)(a, m; ε1, ε2)

)
, (1.12)

with q = e2πiτ in the ultraviolet finite cases, while it is related to the running
effective scale � otherwise. The explicitly known prefactor Zpert(a, m, τ ; ε1, ε2)
is the product of the simple tree-level contribution with a one-loop determinant.
The latter is independent of the coupling constants qr , and can be expressed in terms
of known special functions.

In order to complete the derivation of the prepotentials proposed by Seiberg and
Witten it then remained to argue that F(a) ≡ F(a, m, τ ) is related to the partition
function Z as

F(a, m; τ ) = − lim
ε1,ε2→0

ε1ε2Z(a, m; τ ; ε1, ε2), (1.13)

and to derive the mathematical definition of F(a) proposed by Seiberg and Witten
from the exact results on Z(a, m; τ ; ε1, ε2) obtained in [N, NO03, NY, BE].

2 New Exact Results on N = 2 Supersymmetric Field
Theories

2.1 Localisation on Curved Backgrounds

Another useful way to regularise IR-divergences is to consider the quantum field
theory on four-dimensional Euclidean space-times M4 of finite volume. The finite-
size effects encoded in the dependence of physical quantities with respect to the
volume or other parameters of M4 contain profound physical information. It has
recently become possible to calculate some of the these quantities exactly. One may,
for example, consider gauge theories on a four-sphere S4 [Pe07], or more generally
four-dimensional ellipsoids [HH],

S4
ε1,ε2

:= { (x0, . . . , x4) | x2
0 + ε21(x2

1 + x2
2 ) + ε22(x2

3 + x2
4 ) = 1 }. (2.1)

The spaces S4
ε1,ε2

have sufficient symmetry for having an unbroken supersymmetry
Q such that Q2 is the sum of a space-time symmetry plus possibly an internal
symmetry. Expectation values of supersymmetric observables on S4

ε1,ε2
therefore

represent candidates for quantities that may be calculated by the localisation method.
Interesting physical quantities are the partition function on S4, and the values of
Wilson- and ’t Hooft loop observables. Wilson loop observables can be defined as
path-ordered exponentials of the general form Wr,i := TrP exp

[ ∮
C ds (i ẋμ Ar

μ +
|ẋ |φr )

]
. The ’tHooft loop observables Tr,i , i = 1, 2, can be defined semiclassically by

performing a path integral over field configurations with a specific singular behavior
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near a curve C describing the effect of parallel transport of a magnetically charged
probe particle along C. Choosing the support of the loop observables to be the circles
C1 or C2 defined by x0 = x3 = x4 = 0 or x0 = x1 = x2 = 0, respectively, one gets
operators commuting with part of the supersymmetries of the theory.

However, applying the localisationmethod to the field theories withN = 2 super-
symmetry is technically challenging [Pe07, HH, GOP]. A review of the necessary
technology and of some subsequent developments in this direction can be found in
the articles [V:6, V:7]. Appropriately modifying the action defining the theory under
consideration onR

4 gives a Q-invariant action S for the theory on S4
ε1,ε2

. A functional
V is found in [Pe07] such that QV is positive definite. The field configurations solv-
ing QV = 0 have constant values of the scalar fields, and vanishing values of all other
fields. This means that the path integral reduces to an ordinary integral over scalar
zero modes. This phenomenon may be seen as a variant of the cancellations between
contributions from fermionic and bosonic degrees of freedom that frequently occur
in supersymmetric field theories, leaving behind only contributions from states of
zero energy.

The results obtained by localisation [Pe07, GOP, HH] have the following struc-
ture:

• Partition functions:

Z(m; τ ; ε1, ε2) := 〈 1 〉S4 =
∫

da |Z(a, m; τ ; ε1, ε2)|2, (2.2)

where Z(a, m; τ ; ε1, ε2) are the instanton partition functions briefly discussed in
Sect. 1.5. More details can be found in [V:6].

• Wilson or ’t Hooft loop expectation values:

〈L 〉S4 =
∫

da (Z(a, m; τ ; ε1, ε2))
∗ DL ·Z(a, m; τ ; ε1, ε2), (2.3)

whereZ(a, m; τ ; ε1, ε2) are the instanton partition functions described in Sect. 1.5,
andDL is a difference operator acting on the scalar zeromodevariables collectively
referred to by the notation a. The difference operators D are pure multiplication
operators DL = 2 cosh(2πa/εi ) if L is a Wilson loop supported on Ci . These
results are reviewed in [V:7].

The integral over a in (2.2), (2.3) is the integration over the scalar zero modes.
One may interpret these results as reduction to an effective quantum mechanics of
these zero modes. From this point of view one would interpret the instanton partition
function Z(a, m; τ ; ε1, ε2) as the wave-function �τ (a) of a state |τ 〉0 in the zero-
mode sub-sector defined by the path integral over field configurations on the lower
half-ellipsoid S4,−

ε1,ε2
:= { (x0, . . . , x4) ∈ S4

ε1,ε2
; x0 < 0 }. The expectation value (2.3)

can then be represented as

〈L 〉S4 = 〈 τ |L0 | τ 〉0, (2.4)

http://dx.doi.org/10.1007/978-3-319-18769-3_6
http://dx.doi.org/10.1007/978-3-319-18769-3_7
http://dx.doi.org/10.1007/978-3-319-18769-3_6
http://dx.doi.org/10.1007/978-3-319-18769-3_7
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where L0 denotes the projection of the operator representing L to the zero mode
sub-sector. This point of view is further discussed in [V:12].

Although the dynamics of the zero mode sub-sector is protected by supersym-
metry, it captures very important non-perturbative information about the rest of the
theory. Dualities between different UV-descriptions of the gauge theory must be
reflected in the zero mode dynamics, and can therefore be tested with the help of
localisation calculations. But the definition of the full theory must be compatible
with these results, which is ultimately a consequence of unbroken supersymmetry.
One may view the zero-mode dynamics as a kind of skeleton of the SUSY field the-
ory. Whatever the QFT-“flesh” may be, it must fit to the skeleton, and exhibit same
dualities, for example.

The localisationmethod has furthermore recently been used to obtain exact results
on some correlation functions in N = 2 supersymmetric QCD [BNP].

2.2 Relation to Conformal Field Theory

In [AGT] is was observed that the results for partition functions of some four-
dimensional supersymmetric gauge theories that can be calculated by the method
of [Pe07] are in fact proportional to something known, namely the correlation func-
tions of the two-dimensional quantum field theory known as Liouville theory. Such
correlation functions are formally defined by the path integral using the action

SLiou
b = 1

4π

∫
d2z

[
(∂aφ)2 + 4πμe2bφ

]
. (2.5)

Liouville theory has been extensively studied in the past motivated by the relations
to two-dimensional quantum gravity and noncritical string theory discovered by
Polyakov. It is known to be conformally invariant, as suggested by the early inves-
tigation [CT], and established by the construction given in [Te01]. Conformal sym-
metry implies that the correlation functions can be represented in a holomorphically
factorized form. As a typical example let us consider

〈
e2α4φ(∞)e2α3φ(1)e2α2φ(q)e2α1φ(0) 〉Liou

b =
∫
R+

dp

2π
C21(p)C43(−p)

∣∣Fp
[
α3
α4

α2
α1

]
(q)

∣∣2,
(2.6)

where the conformal blocks Fp
[
α3
α4

α2
α1

]
(q) can be represented by power series of the

form

Fp
[
α3
α4

α2
α1

]
(q) = q

Q2

4 +p2−α1(Q−α1)−α2(Q−α2)

(
1 +

∞∑
k=1

qkF (k)
p

[
α3
α4

α2
α1

])
, (2.7)

http://dx.doi.org/10.1007/978-3-319-18769-3_12
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having coefficients F (k)
p

[
α3
α4

α2
α1

]
completely defined by conformal symmetry [BPZ].8

Explicit formulae for the coefficient functions Ci j (p) ≡ C(αi ,α j ,
Q
2 + i p), Q =

b + b−1, have been conjectured in [DOt, ZZ], andnontrivial checks for this conjecture
were presented in [ZZ]. A derivation of all these results follows from the free-field
construction of Liouville theory given in [Te01].

In order to describe an example for the relations discovered in [AGT] let us tem-
porarily restrict attention to the N = 2 supersymmetric gauge theory often referred
to as N f = 4-theory. This theory has field content consisting of an SU (2)-vector
multiplet coupled to four massive hypermultiplets in the fundamental representation
of the gauge group. The relation discovered in [AGT] can be written as

Z(a, m; τ ; ε1, ε2) ∝ N21(p)N43(p)Fp
[
α3
α4

α2
α1

]
(q), (2.8)

where |Ni j (p)|2 = Ci j (p). The factors of proportionality dropped in (2.8) are explic-
itly known, and turn out to be inessential. The parameters are identified, respectively,
as

b2 = ε1

ε2
, �

2 = ε1ε2, q = e2πiτ , (2.9a)

p = a

�
, αr = Q

2
+ i

mr

�
, Q := b + b−1. (2.9b)

In order to prove (2.8) one needs to show that the coefficients Z (k)(a, m; ε1, ε2) in
(1.12) are equal to F (k)

p

[
α3
α4

α2
α1

]
. This was done in [AGT] up order q11. A proof of this

equality for all values of k is now available [AFLT].
It furthermore follows easily from (2.8) that the partition function Z(m; τ ; ε1, ε2)

defined in (2.2) can be represented up to multiplication with an inessential, explicitly
known function as

Z(m; τ ; ε1, ε2) ∝ 〈
e2α4φ(∞)e2α3φ(1)e2α2φ(q)e2α1φ(0)

〉Liou
b . (2.10)

The relations between certain N = 2 supersymmetric gauge theories and Liou-
ville theory aremost clearly formulated in terms of the normalized expectation values
of loop-observables

〈〈L 〉〉S4 := 〈L 〉S4

〈 1 〉S4
. (2.11)

To this aim let us note that the counterparts of the loop observables within Liouville
theory will be certain nonlocal observables of the form

Lγ := tr

[
Pexp

(∫
γ

Ay

)]
, (2.12)

8A concise description of the definition of the conformal blocks can be found in ([V:12], Sect. 2.5).

http://dx.doi.org/10.1007/978-3-319-18769-3_12


12 J. Teschner

where γ is a simple closed curve on C\{0, q, 1}, and A is the flat connection

A :=
(− b

2∂zφ 0
μebφ b

2∂zφ

)
dz +

(
b
2∂z̄φ μebφ

0 − b
2∂z̄φ

)
dz̄. (2.13)

Flatness of A follows from the equation of motion. Let us furthermore define nor-
malized expectation values in Liouville theory schematically as

〈〈O 〉〉Lioub := 〈 O e2α4φ(∞)e2α3φ(1)e2α2φ(q)e2α1φ(0) 〉Lioub

〈 e2α4φ(∞)e2α3φ(1)e2α2φ(q)e2α1φ(0) 〉Lioub

. (2.14)

We then have

〈〈W 〉〉S4 = 〈〈 Lγs
〉〉Lioub , 〈〈 T 〉〉S4 = 〈〈 Lγt

〉〉Lioub , (2.15)

where γs and γt are the simple closed curves encircling the pairs of points 0, q and
1, q on C\{0, q, 1}, respectively. A more detailed discussion can be found in [V:7,
V:12].

2.3 Relation to Topological Quantum Field Theory

The localisation method is also applicable in the case when the manifold M4 has the
form M3×S1 with supersymmetric boundary conditions for the fermions on the S1. In
this case the partition function coincides with a quantity called index [Ro, KMMR], a
trace tr(−1)F

∏
i μCi

i e−β{Q,Q†} over theHilbert space of the theory on M3×R, with F
being the fermion number operator, Q being one of the supersymmetry generators,
and Ci being operators commuting with Q. The index depends on parameters μi

called fugacities. It has originally been used to perform nontrivial checks of existing
duality conjectures on field theories with N = 1 supersymmetry [DOs, SpV]. We
will in the following restrict attention to cases where the field theories have N = 2
supersymmetry which are more closely related to the rest of the material discussed
in this special volume.

As before one may use the localisation method to express the path integral for
such manifolds as an integral over the zero modes of certain fields, with integrands
obtainable by simple one loop computations. This partition function can alternatively
be computed by countingwith signs andweights certain protected operators in a given
theory. If, for example, one takes M3 = S3, the partition function of anN = 2 gauge
theory with gauge group G and N f fundamental hypermultiplets takes the following
form,

I (b; p, q, t) =
∮

[da]G IV (a; p, q, t)
N f∏
�=1

IH (a, b; p, q, t), (2.16)

http://dx.doi.org/10.1007/978-3-319-18769-3_7
http://dx.doi.org/10.1007/978-3-319-18769-3_12
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where [da]G is the invariant Haar measure, we are using the notation {p, q, t, b}
for the relevant fugacities, and IV and IH are contributions coming from free vector
multiplets and hypermultiplets, respectively. The integral over a is roughly over the
zero mode of the component of the gauge field in the S1 direction. For more details
see the article [V:9]. It is important to note that the supersymmetric partition functions
on M3 × S1 are independent of the coupling constants by an argument going back
to [W88]. Nevertheless, they are in general intricate functions of the fugacities and
encode a lot of information about the protected spectrum of the theory.

There exists a relationship between the supersymmetric partition function on
M3 × S1, the supersymmetric index, on the one hand, and a topological field theory
in two dimensions on the other hand [GPRR] which is somewhat analogous to the
relation of the S4 partition function to Liouville theory discussed above. Let us
consider the example discussed above,N = 2 supersymmetric SU (2) gauge theory
with N f = 4. The supersymmetric index of this theory can be represented in the
form (2.16) noted above. In the particular case when the fugacities are chosen to
satisfy t = q, this index is equal [GRRY11] to a four point correlation function in a
topological quantum field theory (TQFT) which can be regarded as a one-parameter
deformation of two-dimensionalYang-Mills theorywith gauge grow SU (2) [AOSV],

I (b1, b2, b3, b4; p, q, t = q) =
4∏

�=1

K(b�; q)

∞∑
R=0

C2
R

4∏
�=1

χR(b�). (2.17)

Here χR(x) is the character of a representation R of SU (2). The parameters bi

are fugacities for the
∏

i=1 SU (2)i maximal subgroup of the SO(8) flavor symmetry
group of the theory. This relation can be generalized to a large class ofN = 2 theories
and to indices depending on more general sets of fugacities [GRRY13, GRR].

3 What Are the Exact Results Good for?

In the following we will briefly describe a few applications of the results outlined
above that have deepened our insights into supersymmetric field theories consider-
ably.

3.1 Quantitative Verification of Electric-Magnetic Duality
Conjectures

Theverification of the conjectures of Seiberg andWitten by theworks [N, NO03, NY,
BE] leads in particular to a verification of the electric-magnetic duality conjectures

http://dx.doi.org/10.1007/978-3-319-18769-3_9
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about the low energy effective theories that were underlying the approach taken by
Seiberg and Witten.9

Verification of UV duality relations like the Montonen-Olive duality seems hope-
less in general (see, however, [VW]). However, in the cases where exact results on
expectation values are available, as briefly described in Sect. 2.2, one can do better.

In the case of the N f = 4 theory, for example, one expects to find weakly coupled
Lagrangian descriptions when the UV gauge coupling q is near 0, 1 or infinity
[SW2]. Let us denote the actions representing the expansions around these three
values as Ss , St and Su , respectively. A particularly important prediction of the S-
duality conjectures is the exchange of the roles of Wilson- and ’t Hooft loops,

〈〈W 〉〉Ss
= 〈〈 T 〉〉St

, 〈〈 T 〉〉Ss
= 〈〈W 〉〉St

. (3.1)

In order to check (3.1) we may combine the results (2.3) of the localisation compu-
tations with the relation (2.8) discovered in [AGT]. From the study of the Liouville
theory one knows that the conformal blocks satisfy relations such as

Fp
[
α3
α4

α2
α1

]
(q) =

∫
dp′ Fp,p′

[
α3
α4

α2
α1

]
Fp′

[
α1
α4

α2
α3

]
(1 − q), (3.2)

which had been established in [Te01]. These relations may now be re-interpreted as
describing a resummation of the instanton expansion defined by action Ss (the left
hand side of (3.2)) into an instanton expansion defined by the dual action St . This
resummation gets represented as an integral transformation with kernel Fp,p′ . Using
(2.3), (2.8), (3.2) and certain identities satisfied by the kernel Fp,p′

[
α3
α4

α2
α1

]
established

in [TV13], one may now verify explicitly that the S-duality relations (3.1) are indeed
satisfied.

In otherwords: Conformal field theory provides the techniques necessary to resum
the instanton expansion defined from a given action in terms of the instanton expan-
sions defined from a dual action. At least for the class of theories at hand, these results
confirm in particular the long-standing expectations that the instantons play a crucial
role for producing the cross-over between weakly-coupled descriptions related by
electric-magnetic dualities.

The electric-magnetic dualities can be also checked using the supersymmetric
index. Although the index does not depend on the coupling constants, in different
duality frames it is given by different matrix integrals. Duality implies that these
two matrix integrals evaluate to the same expression. In the relation of the index

9The IR duality conjectures can be used to describe the moduli space of vacua as manifold covered
by charts with local coordinates ar , aD

r . The transition functions between different charts define a
Riemann-Hilbert problem. The solution to this problem defines the function F(a). It was shown
in [N, NO03, NY, BE] that the series expansion of F(a) around one of the singular points on the
(Footnote 9 continued)
moduli space of vacua satisfies (1.13). Taken together, one obtains a highly nontrivial check of the
IR-duality conjectures underlying Seiberg-Witten theory.
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to TQFT discussed above, invariance under duality transformations in many cases
follows from the associativity property of the TQFT.

3.2 Precision Tests of AdS-CFT Duality

Another famous set of duality conjectures concerns the behaviour of supersymmetric
gauge theories in the limit where the rank of the gauge group(s) tends to infinity [Ma],
see [AGMOO] for a review. In this limit one expects to find a dual description in terms
of the perturbative expansion of string theory on a background that is equal or asymp-
totic to five-dimensional Anti-de Sitter space. This duality predicts in some cases
representations for the leading strong-coupling behaviour of some gauge-theoretical
observables in terms of geometric quantities in supergravity theories.

Some impressive quantitative checks of these duality conjectures are known in
the case of maximal supersymmetryN = 4 based on the (conjectured) integrability
of the N = 4 supersymmetric Yang-Mills theory with infinite rank of the gauge
group [Bei]. Performing similar checks for theories with less supersymmetry is much
harder. It is therefore worth noting that the localisation calculations of partition
functions and Wilson loop expectation values described above have been used to
carry out quantitative checks of AdS-CFT type duality conjectures for some gauge
theories with N = 2 supersymmetry [BRZ, BEFP].

It seems quite possible that the exact results described above can be used to carry
out many further precision tests of the AdS-CFT duality forN = 2 supersymmetric
field theories. The relevant backgrounds for string theory are not always known, but
when they are known, one may use the results obtained by localisation to check
these generalised AdS-CFT duality conjectures. Another result in this direction was
recently reported in [MP14a].

The exact results can furthermore be used to study the phase structure of these
gauge theories in the planar limit as function of the ’t Hooft coupling. A surprisingly
rich structure is found in [RZ13a, RZ13b]. It seems that the full physical content
of most of the data provided by the localisation calculations remains to be properly
understood.

3.3 Evidence for the Existence of Six-Dimensional Theories
with (2,0)-Supersymmetry

Low-energy limits of string theory can often be identifiedwith conventional quantum
field theories. The string theorist’s toolkit contains a large choice of objects to play
with, the most popular being compactifications and branes. One sometimes expects
the existence of a low-energy limit with a certain amount of supersymmetry, but
there is no known quantum field theory the limit could correspond to. Such a line of
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reasoning has led to the prediction that there exists a very interesting class of inter-
acting quantum field theories with six-dimensional (2, 0)-superconformal invariance
[W95a, St, W95b]. These theories have attracted a lot of attention over the last two
decades, but not even the field content, not to speak of a Lagrangian, are known for
these hypothetical theories, see [Sei, W09] for reviews of what is known.

Nevertheless, the mere existence of such theories leads to highly non-trivial pre-
dictions, many of which have been verified directly. One could, for example, study
the six-dimensional (2, 0)-theories on manifolds of the form M4 × C , where C is
a Riemann surface [Ga09, GMN2] (some aspects are reviewed in [V:2, V:3]). If C
has small area, one expects that the theory has an effective description in terms of
a quantum field theory on M4. The resulting quantum field theory GC is expected
to depend only on the choice of a hyperbolic metric on C [ABBR], or equivalently
(via the uniformisation theorem) on the choice of a complex structure on C . The
N f = 4-theory with four flavours mentioned above, for example, corresponds to
C = C0,4, which may be represented as Riemann sphere with four marked points at
0, 1, q,∞. One may use q as parameter for the complex structure of C0,4. When q
is near 0, 1,∞, respectively, it is natural to decompose C0,4 into two pairs of pants
by cutting along contours surrounding the pairs of marked points (0, q), (q, 1) and
(q,∞), respectively. It turns out that q can be identified with the function e2πiτ of
the complexified gauge coupling τ = 4πi

g2
+ θ

2π of the four-dimensional theory. The
limits where q approaches 0, 1 and ∞ are geometrically very similar, but q → 0
corresponds to small gauge coupling, while q → 1 would correspond to a strong
coupling limit. Note, on the other hand, that the marked points at 0 and 1, for exam-
ple, can be exchanged by a conformal mapping. This already suggests that there
might exist a dual description having a complexified gauge coupling τ ′ such that
q ′ = e2πiτ ′

vanishes when q → 1. The results described above provide a rather
non-trivial quantitative check for this prediction.

Playing with the choice of C , and with the choice of the Lie algebra g one can
generate a large class of interesting four-dimensional quantum field theories, and
predict many non-trivial results about their physics [Ga09, GMN2]. The class of
theories obtained in this way is often called class S. Arguments of this type can
be refined sufficiently to predict correspondences between four-dimensional gauge
theories on M4 and two-dimensional conformal field theories on C generalising the
relations discovered in [AGT], see [Y12, CJ14]. In the resulting generalisations of the
relation (2.10) one will find the correlation functions of the conformal Toda theory
associated to g on the Riemann surface C , in general. Considering the cases where
M4 = M3× S1, one may use similar arguments to predict that the partition functions
are related to correlation functions in a TQFTonC , generalising the example noted in
Sect. 2.3. Such correlation functions only depend on the topology ofC , corresponding
to the fact that the partition functions on M4 = M3 × S1 are independent of exactly
marginal coupling constants. This will be discussed in more detail in [V:9].

Other compactifications are also interesting, like M3 × C3 or M2 × C4, where
C3 and C4 are compact three- and four-dimensional manifolds. Compactifying on
C3 or C4 one gets interesting quantum field theories on three- or two-dimensional
manifolds M3 or M2, respectively. The origin from the six-dimensional (2, 0)-theory

http://dx.doi.org/10.1007/978-3-319-18769-3_2
http://dx.doi.org/10.1007/978-3-319-18769-3_3
http://dx.doi.org/10.1007/978-3-319-18769-3_9
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may again be used to predict various nontrivial properties of the resulting quantum
field theories, including relations between three-dimensional field theories on M3 and
complex Chern-Simons theory on C3 [Y13, LY, CJ13]. Such relations are further
discussed in [V:11].

The six-dimensional (2, 0)-theories are for d = 2, 3, 4-dimensional quantum
field theory therefore something like “Eierlegende Wollmilchsäue”, mythical beasts
capable of supplying uswith eggs, wool, milk andmeat at the same time. The steadily
growing number of highly nontrivial checks that the predictions following from its
existence have passed increase our confidence that such six-dimensional theories
actually exist. Their existence supplies us with a vantage point from which we may
get a better view on interesting parts of the landscape of supersymmetric quantum
field theories.

3.4 Towards Understanding Non-Lagrangian Theories

There are many cases where strong-coupling limits of supersymmetric field theories
are expected to exist and to have a quantumfield-theoretical nature, but noLagrangian
description of the resulting theories is known [AD, APSW, AS]. The existence
of non-Lagrangian theories is an interesting phenomenon by itself. Certain non-
Lagrangian quantum field theories are expected to serve as elementary building
blocks for the family of quantum field theories obtained by compactifying (2, 0)-
theories [Ga09, CD].

The origin from a six-dimensional theory allows us to make quantitative pre-
dictions on some physical quantities of such non-Lagrangian theories including the
prepotential giving us the low-energy effective action, and the supersymmetric index
giving us the protected spectrum of the theory.

The results described in this special volume open the exciting perspective to go
much further in the study of some non-Lagrangian theories. If the relation with two-
dimensional conformal field theories continues to hold in the cases without known
Lagrangian descriptions, one may, for example compute the partition functions and
certain finite-volume expectation values of loop operators in such theories. First steps
in this direction were made in [BMT, GT, KMST].

3.5 Interplay Between (topological) String Theory
and Gauge Theory

Superstring theory compactified on Calabi-Yau manifolds has two “topological” rel-
atives called the A- and the B-model respectively. The “topological” relatives are
much simpler than the full superstring theories, but they capture important informa-
tion about the full theories like the coefficients of certain terms in the correspond-

http://dx.doi.org/10.1007/978-3-319-18769-3_11
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ing space-time effective actions governing the low-energy physics. The A- and the
B-model are not independent but related by mirror symmetry.

The definition of the B-model topological string theory can be extended to
so-called local Calabi-Yau Y , defined (locally) by equations of the form

zw − P(u, v) = 0, (3.3)

with P(u, v) being a polynomial. Superstring theories on such local Calabi-Yauman-
ifolds are expected to have decoupling limits inwhich they are effectively represented
by four-dimensional gauge theories.10 Describing four-dimensional gauge theory as
decoupling limits of superstring theory is called geometric engineering [KLMVW,
KKV, KMV]. String-theoretic arguments [N, LMN] predict that the instanton parti-
tion function (for ε1+ε2 = 0) coincides with the topological string partition function
Z top of the B-model on Y , schematically

Z inst = lim
β→0

Z top, (3.4)

where β is related to one of the parameters for the complex structures on Y . This
prediction has been verified in various examples [IK02, IK03, EK, HIV]. It opens
channels for the transport of information and insights from topological string theory
to gauge theory and back. Interesting perspectives include:

• Results from topological string theory may help to understand 4d gauge theories
even better, possibly including non-Lagrangian ones. To give an example, let us
note that the topological vertex [AKMV, IKV] gives powerful tools for the cal-
culation of topological string partition functions. These results give us predictions
for the (yet undefined) instanton partition functions of non-Lagrangian theories,
and may thereby provide a starting point for future studies of the physics of such
theories. First steps in this directionweremade in [KPW, BMPTY, HKN, MP14b].

• Exact results on supersymmetric gauge theories may feed back to topological
string theory. As an example let us mention the development of the refined topo-
logical string, a one-parameter deformation of the usual topological string theory
that appears to exist for certain local Calabi-Yau manifolds, capturing nontrivial
additional information. The proposal was initially motivated by the observation
that the instanton partition functions can be defined for more general values of the
parameters ε1, ε2 than the case ε1 + ε2 = 0 corresponding to the usual topological
string via geometric engineering [IKV, KW, HK, HKK]. There is growing evi-
dence that such a deformation of the topological string has aworld sheet realisation
[AFHNZa, AFHNZb], and that the refinement fits well into the conjectured web
of topological string/gauge theory dualities [AS12a, AS12b, CKK, NO14]. The
relation with the holomorphic anomaly equation is reviewed in [V:14].

10This limit is easier to define in the A-model, but the definition can be translated to the B-model
using mirror symmetry.

http://dx.doi.org/10.1007/978-3-319-18769-3_14


Exact Results on N = 2 Supersymmetric Gauge Theories 19

• As another interesting direction that deserves further investigations let us note that
the topological string partition functionsZ top can be interpreted as particularwave-
functions in the quantum theory obtained by the quantisation of the moduli space
of complex structures on Calabi-Yau manifolds, as first pointed out in [W93], see
[ST] and references therein for further developments along these lines. By using
the holomorphic anomaly equation one may construct Z top as formal series in the
topological string coupling constant λ, identified with Planck’s constant � in the
quantisation of the moduli spaces of complex structures. However, it is not known
how to define Z top non-perturbatively in λ.
On the other hand it was pointed out above that the instanton partition functions
are naturally interpreted as wave-functions in some effective zero mode quantum
mechanics to which the gauge theories in question can be reduced by the local-
isation method. It seems likely that the effective zero mode quantum mechanics
to which the gauge theories localise simply coincide with the quantum mechanics
obtained from the quantisation of the moduli spaces of complex structures which
appear in the geometric engineering of the gauge theories under considerations.
These moduli spaces are closely related to the moduli spaces of flat connections on
Riemann surfaces for the A1 theories of class S. The quantisation of these moduli
spaces is understood for some range of values of ε1, ε2 [V:12]. Interpreting the
results obtained thereby in terms of (refined) topological string theory may give us
important insights on how to construct Z top non-perturbatively, at least for many
local Calabi-Yau-manifolds.

4 What Is Going to Be Discussed in This Volume?

Let us now give an overview of the material covered in this volume.
Chapter “Families of N = 2 Field Theories” [V:2] by Gaiotto describes how large

families of field theories with N = 2 supersymmetry can be described by means
of Lagrangian formulations, or by compactification from the six-dimensional theory
with (2, 0) supersymmetry on spaces of the form M4 × C , with C being a Riemann
surface. The class of theories that can be obtained in this way is called class S. This
description allows us to relate key aspects of the four-dimensional physics of class
S theories to geometric structures on C .

The next chapter in our volume is titled “Hitchin Systems inN = 2 Field Theory”
by Neitzke [V:3]. The space of vacua of class S theories on R

3 × S1 can be identified
as the moduli space of solutions to the self-duality equations in two dimensions on
Riemann surfaces studied by Hitchin. This fact plays a fundamental role for recent
studies of the spectrum of BPS states in class S theories, and it is related to the
integrable structure underlying Seiberg-Witten theory of theories of class S. This
article reviews important aspects of the role of the Hitchin system for the infrared
physics of class S theories.

In Chapter “A Review on Instanton Counting and W-algebras” by Tachikawa
[V:4], it is explained how to compute the instanton partition functions. The results
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can bewritten as sums over bases for the equivariant cohomology of instantonmoduli
spaces. The known results relating the symmetries of these spaces to the symmetries
of conformal field theory are reviewed.

Chapter “β-Deformed Matrix Models and the 2d/4d Correspondence” by
Maruyoshi [V:5] describes a very useful mathematical representation of the results
of the localisation computations as integrals having a form familiar from the study
of matrix models. Techniques from the study of matrix models can be employed to
extract important information on the instanton partition functions in various limits
and special cases.

Chapter “Localization for N = 2 Supersymmetric Gauge Theories in Four
Dimensions” by Pestun [V:6] describes the techniques necessary to apply the locali-
sation method to field theories on curved backgrounds like S4, and how some of the
results on partition functions outlined in Sect. 2.1 have been obtained.

Chapter “LineOperators in SupersymmetricGauge Theories and the 2D-4DRela-
tion” by Okuda [V:7] it is discussed how to use localisation techniques for the cal-
culation of expectation values of Wilson and ’t Hooft line operators. The results
establish direct connections between supersymmetric line operators in gauge the-
ories and the Verlinde line operators known from conformal field theory. Similar
results can be used to strongly support connections to the quantum theories obtained
from the quantisation of the Hitchin moduli spaces.

Chapter “Surface Operators” by Gukov [V:8] discusses a very interesting class of
observables localised on surfaces that attracts steadily growing attention. In the cor-
respondence to conformal field theory some of these observables get related to a class
of fields in two dimensions called degenerate fields. These fields satisfy differential
equations that can be used to extract a lot of information on the correlation func-
tions. Understanding the origin of these differential equations within gauge theory
may help explaining the AGT-correspondence itself.

There are further interesting quantities probing aspect of the non-perturbative
physics of theories of class S. Chapter “The Superconformal Index of Theories of
Class S” by Rastelli and Razamat [V:9] reviews the superconformal index. It is often
simpler to calculate than instanton partition functions, but nevertheless allows one
to perform many nontrivial checks of conjectured dualities. It turns out to admit a
representation in terms of a new type of topological field theory associated to the
Riemann surfaces C parameterising the class S theories.

The correspondence between four-dimensional supersymmetric gauge theories
and two-dimensional conformal field theories discovered in [AGT] has a very inter-
esting relative, a correspondence between three-dimensional gauge theories and
three-dimensional Chern-Simons theories with complex gauge group. It is related
to the the correspondence of [AGT], but of interest in its own right. In order to see
relations with the AGT-correspondences one may consider four-dimensional field
theories of class S on half-spaces separated by three-dimensional defects. The par-
tition functions of the three-dimensional gauge theories on the defect turns out to
be calculable by means of localisation, and the results have a deep meaning within
conformal field theory or within the quantum theory of Hitchin moduli spaces. How
to apply the localisation method to (some of) the three-dimensional gauge theo-
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ries that appear in this correspondence is explained in the Chapter “A Review on
SUSY Gauge Theories on S3” by Hosomichi [V:10]. The correspondences between
three-dimensional gauge theories and three-dimensional Chern-Simons theory with
complex gauge group are the subject of Chapter “3D Superconformal Theories from
Three-Manifolds” by Dimofte [V:11].

Chapter “Supersymmetric Gauge Theories, Quantization of Mflat, and
Liouville Theory” by the author [V:12] describes an approach to understanding the
AGT-correspondence by establishing a triangle of relations between the zero mode
quantum mechanics obtained by localisation of class S theories, the quantum theory
obtained by quantisation of Hitchin moduli spaces, and conformal field theory. This
triangle offers an explanation for the relations discovered in [AGT].

Some aspects of the string-theoretical origin of these results are discussed in the
final chapters of our volume.

Chapter “Gauge/Vortex Duality and AGT” by Aganagic and Shakirov, [V:13],
describes one way to understand an important part of the AGT-correspondence in
terms of a triality between four-dimensional gauge theory, the two-dimensional the-
ory of its vortices, and conformal field theory. This triality is related to, and inspired
by known large N dualities of the topological string. It leads to a proof of some
cases of the AGT-correspondence, and most importantly, of a generalisation of this
correspondence to certain five-dimensional gauge theories.

Chapter “B-Model Approaches to Instanton Counting”, Krefl andWalcher [V:14]
discusses the relation between the instanton partition functions and the partition
function of the topological string from the perspective of the B-model. The instanton
partition functions provide solutions to the holomorphic anomaly equations charac-
terising the partition functions of the topological string.

5 What Is Missing?

This collection of articles can only review a small part of the exciting recent progress
on N = 2 supersymmetric field theories. Many important developments in this field
could not be covered here even if they are related to the material discussed in our
collection of articles in various ways. In the following we want to indicate some of
the developments that appear to have particularly close connections to the subjects
discussed in this volume.

5.1 BPS Spectrum, Moduli Spaces of Vacua
and Hitchin Systems

BPS states are states in the Hilbert space of a supersymmetric field theory which
are forming distinguished “small” representations of the supersymmetry algebra, a

http://dx.doi.org/10.1007/978-3-319-18769-3_10
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http://dx.doi.org/10.1007/978-3-319-18769-3_13
http://dx.doi.org/10.1007/978-3-319-18769-3_14


22 J. Teschner

feature which excludes various ways of “mixing” with generic states of the spectrum
that would exist otherwise. Gaiotto, Moore and Neitzke have initiated a vast program
aimed at the study of the spectrum of BPS-states in theN = 2 supersymmetric gauge
theories GC of class S [GMN1, GMN2, GMN3], see the article [V:3] for a review of
some aspects. To this aim it has turned out to be useful to consider at intermediate
steps of the analysis a compactification of the theories GC to space-times of the form
R

3 × S1. The moduli space of vacua of the compactified theory is “twice as large”
compared to the one of GC on R

4, and it can be identified with Hitchin’s moduli
space of solutions to the self-duality equations on Riemann surfaces [Hi].

The list of beautiful results that has been obtained along these lines includes:

• A new algorithm for computing the spectrum of BPS states which has a nontrivial,
but piecewise constant dependence on the point on the Coulomb-branch of the
moduli space of vacua of GC onR

4. The spectrum of BPS states may change along
certain “walls” in the moduli space of vacua. Knowing the spectrum on one side
of the wall one may compute how it looks like on the other side using the so-
called wall-crossing formulae. Similar formulae were first proposed in the work
of Kontsevich and Soibelman on Donaldson-Thomas invariants.

• Considering the gauge theory GC compactified on R
3 × S1 one may study natural

line operators including supersymmetric versions of the Wilson- or ’t Hooft loop
observables. Such observables can be constructed using either the fields of the UV
Lagrangian, or alternatively those of a Wilsonian IR effective action. The vacuum
expectation values of such line operators furnish coordinates on the moduli space
M of vacua of GC on R

3 × S1 which turn out to coincide with natural sets of
coordinates forHitchin’smoduli spaces. The coordinates associated to observables
defined in the IR reveal the structure ofHitchin’smoduli spaces as a cluster algebra,
closely related to the phenomenon of wall-crossing in the spectrum of BPS-states.
Considering the observables constructed from the fields in the UV-Lagrangian one
gets coordinates describing the Hitchin moduli spaces as algebraic varieties. The
relation between these sets of coordinates is the renormalisation group (RG) flow,
here protected by supersymmetry, and therefore sometimes calculable [GMN3].

Even if the main focus of this direction of research is the spectrum of BPS-states, it
turns out to deeply related to the relations discovered in [AGT], as is briefly discussed
in [V:12].

5.2 Relations to Integrable Models

It has been observed some time ago that the description of the prepotentials charac-
terising the low-energy physics of N = 2 supersymmetric field theories provided
by Seiberg-Witten theory is closely connected to the mathematics of integrable sys-
tems [GKMMM, MW, DW]. There are arguments indicating that such relations to
integrablemodels are generic consequences ofN = 2 supersymmetry:N = 2 super-
symmetry implies that the Coulomb branch of vacua carries a geometric structure
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called special geometry. Under certain integrality conditions related to the quantisa-
tion of electric and magnetic charges of BPS states one may canonically construct an
integrable system in action-angle variables from the data characterising the special
geometry of the Coulomb branch [Fr].

The connections between four-dimensional field theories with N = 2-
supersymmetry and integrable models have been amplified enormously in a recent
series of papers starting with [NSc].11 It was observed that a partial Omega-
deformation of many N = 2 field theories localised only on one of the half-planes
spanning R

4 is related to the quantum integrable model obtained by quantising the
classical integrable model related to Seiberg-Witten theory. The Omega-deformation
effectively localises the fluctuations to the origin of the half plane. This can be used to
argue that the low-energyphysics canbe effectively representedby a two-dimensional
theory with (2, 2)-supersymmetry [NSc] living on the half-plane in R

4 orthogonal
to the support of the Omega-deformation. The supersymmetric vacua of the four-
dimensional theory are determined by the twisted superpotential of the effective
two-dimensional theory which can be calculated by taking the relevant limit of the
instanton partition functions. This was used in [NSc] to argue that the supersym-
metric vacua are in one-to-one correspondence with the eigenstates of the quantum
integrable model obtained by quantising the integrable model corresponding to the
Seiberg-Witten theory of the four-dimensional gauge theory under consideration.

This line of thought has not only lead to many new exact results on large families
of four-dimensional N = 2 gauge theories [NRS, NP, NPS], it has also created a
new paradigm for the solution of algebraically integrable models. More specifically

• For gauge theories GC of class S an elegant description for the two-dimensional
superpotential characterising the low-energy physics in the presence of a partial
Omega-deformation was given in [NRS] in terms of the mathematics of certain
flat connections called opers living on the Riemann C specifying the gauge theory
GC .

• In [NP] the instanton calculus was generalised to a large class of N = 2 gauge
theories G� parameterised by certain diagrams � called quivers. A generalisation
of the techniques from [NO03] allowed the authors to determine Seiberg-Witten
type descriptions of the low-energy physics for all these theories, and to identify the
integrable models whose solution theory allows one to calculate the corresponding
prepotentials.

• The subsequent work [NPS] generalised the results of [NP] to the cases where
one has a one-parametric Omega-deformation preserving two-dimensional super-
symmetry. The results of [NPS] imply a general correspondence between certain
supersymmetric observables and the generating functions of conserved quanti-
ties in the models obtained by quantising the integrable models describing the
generalisations of Seiberg-Witten-theory relevant for the gauge theories G� .

11This paper is part of a program initiated in [NSa, NSb] investigating evenmore general connections
between field theories with N = 2-supersymmetry and integrable models.
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The relations between these developments and the relations discovered in [AGT]
deserve further studies. One of the existing relations for A1-theories of class S
is briefly discussed in the article [V:12]. These results suggest that the AGT-
correspondence and many related developments can ultimately be understood as
consequences of the integrable structure in N = 2 supersymmetric field theories.
This point of view is also supported by the relations between the quantisation of
Hitchin moduli spaces and conformal field theory described in [Te10].

5.3 Other Approaches to the AGT-Correspondence

In this special volume we collect some of the basic results related to the AGT-
correspondence. The family of results on this subject is rapidly growing, and many
important developments have occurred during the preparation of this volume. The
approaches to proving or deriving the AGT-correspondences and some generalisa-
tions include

• Representation-theoretic proofs [AFLT, FL, BBFLT] that W-algebra conformal
blocks can be represented in terms of instanton partition functions. This boils down
to proving existence of a basis forW-algebramodules inwhich thematrix elements
of chiral vertex operators coincide with the so-called bifundamental contributions
representing the main building blocks of instanton partition functions.

• Another approach [MMS, MS] establishes relations between the series expan-
sions for the instanton partition functions and the expressions provided by the free
field representation for the conformal blocks developed by Feigin and Fuchs, and
Dotsenko and Fateev.

• Mathematical proofs [SchV, MaOk, BFN] that the cohomology of instanton mod-
uli spaces naturally carries a structure as aW-algebra module. This leads to a proof
of the versions of the AGT-correspondence relevant for pureN = 2 supersymmet-
ric gauge theories for all gauge groups of type A, D or E . The instanton partition
functions get related to norms of Whittaker vectors in modules of W-algebras in
these cases. For a physical explanation of this fact see [Tan]. Some aspects of this
approach are described in [V:4].

• Physical arguments leading to the conclusion that the six-dimensional (2, 0)-
theory on certain compact four-manifolds or on four-manifolds M4 with Omega-
deformation can effectively be represented in terms of two-dimensional conformal
field theory [Y12, CJ14], or as a (2, 2)-supersymmetric sigma model with Hitchin
target space [NW].

• Considerations of the geometric engineering of supersymmetric gauge theories
within string theory have led to the suggestion that the instanton partition func-
tions of the gauge theories from class S should be related to the partition functions
of chiral free fermion theories on suitable Riemann surfaces [N], see [ADKMV,
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DHSV, DHS] for related developments.12 It was proposed in [CNO] that the rele-
vant theory of chiral free fermions is defined on the Riemann surface C specifying
the gauge theories GC of class S. These relations were called BPS-CFT correspon-
dence in [CNO]. A mathematical link between BPS-CFT correspondence and the
AGT-correspondence was exhibited in [ILTe].

5.4 Less Supersymmetry

A very interesting direction of possible future research concerns possible generali-
sations of the results discussed here to theories with less (N = 1) supersymmetry.
Recent progress in this direction includes descriptions of the moduli spaces of vacua
resembling the one provided by Seiberg-Witten theory for field theories withN = 2
supersymmetry.

The rapid growth of the number of publications on this direction of researchmakes
it difficult to offer a representative yet concise list of references on this subject here.
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Families of N = 2 Field Theories

Davide Gaiotto

The main actors of this review are four-dimensional field theories with N = 2
supersymmetry. There are threewell-understoodways to build large classes ofN = 2
field theories1:

• Standard four-dimensional Lagrangian formulation
• Twisted compactification of a six-dimensional (2, 0) SCFT (“class S”)
• Field theory limit of string theory on a Calabi-Yau singularity (“geometric engi-
neering”)

These three classes of constructions have large overlaps. Most four-dimensional
Lagrangians can be engineered in the class S, and all can be engineered through
some Calabi Yau geometry. Class S theories can be further lifted to Calabi Yau
compactifications involving a curve ofADEsingularities.Conversely, only aminority
of N = 2 field theories admits a direct four-dimensional Lagrangian description.

Different UV realizations of the same theory may be better suited to answer
specific questions. The six-dimensional or string-theoretic descriptions of a theory
can be very powerful for computing properties which are somewhat protected by
supersymmetry. On the other hand, some properties, symmetries and probes of a
four-dimensional field theory may simply not be inherited from a specific UV defin-
ition of the theory. Simple four-dimensional field theory constructions may be hard
to lift to six dimensional field theory, and even harder to embed in string theory,
where every modification of the theory must involve a dynamical configuration of
supergravity fields and D-branes which solves the equations of motion. A reader

1It is also possible to define four-dimensional N = 2 field theories from a circle compactifi-
cation of a N = 1 5d SCFT, or a torus compactification of a six-dimensional (1, 0) SCFT. We
are not aware of four-dimensional N = 2 field theories which can only be built that way.
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of this special volume will have several occasions to appreciate the power of these
alternative approaches.

This chapter of the review is intended essentially as a reading guide. We refer the
reader to the original references and many excellent reviews available to learn the
basic properties ofN = 2 field theories. We do not feel we can improve significantly
on that available material. We will try to present a global overview of more recent
developments.

1 Lagrangian Theories

The requirements of N = 2 supersymmetry and renormalizability impose very
strong constraints on the possible couplings in a Lagrangian [1]. We will assume
the reader has some familiarity with the construction of N = 1 supersymmetric
Lagrangians. Already for an N = 1 theory most of the freedom would lies in the
choice of superpotential for the theory. Requiring the presence of N = 2 super-
symmetry fixes the form of the superpotential. As a result, the possible N = 2
renormalizable Lagrangians are labelled by a choice of gauge group and of the rep-
resentations the matter fields sit in.

The gauge fields belong to vectormultiplets, which decompose into a N = 1
gauge multiplet and an adjoint chiral multiplet φ. The simplest Lagrangian N = 2
theories are pure gauge theories. The chiral multiplet φ has no superpotential, and
the only free parameter in the Lagrangian is the complexified gauge coupling

τ = 4πi

gY M2
+ θ

2π
(1)

The beta functions for the gauge couplings are one-loop exact, and non-Abelian
theories are asymptotically free. Abelian gauge groups coupled to matter, on the
other hand, are IR free and have a Landau pole. The can only appear in effective
theories.

The vectormultiplet kinetic terms can be written as an integral over chiralN = 2
superspace: we can assemble the vectormultiplet into a chiral superfield

�(θ) = φ + · · · (2)

depending on two sets of chiral superspace variables θ1α and θ2α. Then the standard
kinetic terms take the form

Lkinetic = τ

∫
d4θTr�2 + c.c. (3)

A more general choice of kinetic term can be described by a local gauge-invariant
holomorphic pre-potential F(�), as
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Lkinetic = τ

∫
d4θF(�) + c.c. (4)

This kind of expression can capture, say, the two-derivative part of a low-energy
effective action.

Matter fields can be added in the form of hypermultiplets, which in an N = 1
language can be decomposed to a set of chiral multiplets qa sitting in a pseudo-real
representation of the overall symmetry group,which is the product of the gauge group
and possible flavor groups. A renormalizable N = 2 Lagrangian can be written in
N = 1 superspace in a standard way, with a superpotential

WN=1 = Trφ
(
qatabqb

) + TrM
(

qat f
abqb

)
(5)

Here tab are the gauge symmetry generators (they are symmetric, as the repre-
sentation is pseudoreal) and t f

ab are the flavor symmetry generators. We will use the
notation “hypermultiplets in representation R” to indicate a set of chiral fields in the
representation R ⊗ R̄. A set of chiral multiplets in a pseudoreal representation R will
be denoted as a “half-hypermultiplet in representation R”. In some cases, discrete
anomalies prevent half-hypermultiplets from appearing alone.

The complexmass parameters M live in the adjoint of the flavor group. Theymust
be normal, [M, M†] = 0, and can be thought as elements of the Cartan sub algebra
of the flavor group.

Thus the only parameters of standard UV complete Lagrangian N = 2 theories
are the gauge couplings and the complex mass parameters.2

The matter representation is limited by the requirement of asymptotic freedom (or
conformality). The beta functions for the gauge couplings are one-loop exact, and
receive a positive contribution from every matter field. The limitation of asymptotic
freedom allows a systematic classification of all possible Lagrangian N = 2 gauge
theories. The full classification and a very nice set of references can be found at [2].

The simplest N = 2 Lagrangian theories with matter are SU (N ) gauge theories
coupled to fundamental hypermultiplets, i.e. N = 2 SQCD, or to a single adjoint
hypermultiplet, i.e. N = 4 SYM (which is denoted as N = 2∗ when the complex
mass for the adjoint hypermultiplet is turned on). The beta function for the latter
theory vanishes, and the gauge coupling is exactly marginal. For the former theory,
the beta function vanishes if the number of flavors is twice the number of colors, i.e.
N f = 2N .

A larger class of examples are quiver gauge theories, built from
∏

a SU (Na)

gauge theories coupled to fundamental and bi-fundamental hypermultiplets. The
constraint on the number of flavors implies that twice the rank of the gauge group

2If Abelian gauge groups are present, one could turn on an FI parameter, which breaks explicitly
SU (2)R . As Abelian groups coupled to matter have Landau poles, and if an FI parameter is absent
in the UV it cannot appear in the IR, they will rarely play a role in this review. A notable exception
is the theory of BPS vortices, which can only occur in the presence of an FI parameter.
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at any given node must be bigger than the sum of the ranks at adjacent nodes.
This is only possible if the quiver takes the form of a Dynkin diagram or, in the
absence of fundamental matter, an affine Dynkin diagram. These theories will have
two sets of flavor symmetries. Each bifundamental hypermultiplet (and symmetric
or anti-symmetric hypers) is rotated by a U (1) flavor symmetry. Each group of Mi

fundamentals at the i-th node is rotated by an U (Mi ) flavor group.
Manymore possibilities exist if we addmatter in other representations, and look at

more general choices of gauge groups.Apossibilitywhichwill be important later is to
consider SU (2)n gauge theories coupled to fundamental, bi-fundamental and (half)-
trifundamental hypermultiplets. Tri-fundamental hypermultiplets are only allowed
by renormalizability for three SU (2) gauge groups, and their existence allows one to
build intricate SU (2)n Lagrangian theories labelled by an arbitrary trivalent graph.
This is not possible for other gauge groups.

The low-energy dynamics of N = 2 gauge theories is very rich, and mostly
hidden in a UV Lagrangian formulation. Many interesting quantities, even pro-
tected by supersymmetry and holomorphicity, receive crucial perturbative and non-
perturbative corrections. Initially, the low energy dynamicswas understood on a case-
by-case basis from a careful analysis of the holomorphicity properties of theN = 2
supersymmetric low-energy effective Lagrangian, starting from simple SU (2) gauge
theories [3, 4].

More systematically, many interesting results for very general quiver gauge the-
ories can be computed by localization methods, with the help of the so-called �-
deformation of N = 2 gauge theories. We refer to [5] for a general analysis and
references. Ultimately, as the our mathematical understanding of localization and
of the geometry of instanton moduli spaces improves, we may hope to extend such
calculations to all Lagrangian N = 2 theories.

An important alternative approach is basedon string theory dualities.ManyN = 2
Lagrangian field theories can be engineered by brane systems and then mapped
through dualities to configurations inM-theory [6] (but not for E and Ê-type quivers)
and IIB geometric engineering (all quivers) [7]. The power of this approach lies in
non-renormalization theoremswhich allowmanyprotected quantities to be computed
classically in the M-theory or IIB descriptions.

These constructions can be thought as providing maps which embeds (most) of
theN = 2 Lagrangian theories into larger classes ofN = 2 quantum field theories,
which are constructed through M-theory or IIB setups which equip each theory
with a simple geometric description of its low-energy dynamics, but possibly not a
straightforward four-dimensional field-theoretic UV description. These are the other
two classes of N = 2 theories mentioned in the introduction.

Before exploring these classes of theories, it is useful to discuss some general
properties ofN = 2 theories, abstracting from the possible existence of a Lagrangian
description.
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2 General Properties of N = 2 Field Theories

Most of the facts collected in this section are easily demonstrated for Lagrangian field
theories, but appear to be true for allN = 2 UV complete quantum field theories. It
is likely that they could be established in full generality by an accurate analysis of
the N = 2 tensor and conserved current supermultiplets.

The first general property is the existence of an SU (2)R R-symmetry. TheN = 2
SUSY algebra is compatible with an SU (2)R × U (1)r R-symmetry group. Both
factors appear as part of theN = 2 superconformal group, and thus are always sym-
metries ofN = 2 SCFTs. TheU (1)r is broken/anomalous for all asymptotically free
or mass-deformed theories, as the breaking of the conformal and U (1)r symmetries
are tied together by supersymmetry.

In a Lagrangian theory, the hypermultiplet scalars sit in a doublet of SU (2)R . In
appropriate conventions, the top component of the doublets areN = 1 chiral fields,
the bottom are N = 1 anti-chiral fields. The vectormultiplet scalars, on the other
hand, are charged under U (1)r . These fields are special examples of two important
classes of protected operators: Coulomb branch operators and Higgs branch opera-
tors. These two classes of operators control both the parameter spaces of deforma-
tions and moduli spaces of vacua preserving N = 2 supersymmetry. The geometry
of these spaces is rich and plays a central role throughout this volume.

Coulomb branch operators are operators annihilated by all anti-chiral super-
charges: they are chiral operators for every N = 1 sub algebra of the theory. They
never belong to non-trivial SU (2)R representations. In a SCFT they carry an U (1)r

charge proportional to their scaling dimension. The Coulomb branch operators in a
Lagrangian theory are holomorphic gauge-invariant polynomials of the vector mul-
tiplet scalar fields. For example, if we have some SU (N ) gauge fields with scalar
super partner φ, the traces Trφn are all Coulomb branch operators.

A general N = 2 may include many more Coulomb branch operators, not asso-
ciated to weakly-coupled gauge fields. As long as their scaling dimension is smaller
or equal to 2, they will be associated to more general deformation parameters ci of
the theory, written in chiral superspace as

δci

∫
d4θOi (6)

involving the appropriate super-partner Q4Oi of the Coulomb branch operators Oi .
The second class of deformations, complex masses, is also tied to vectormulti-

plets, but rather than being a coupling in a vectormultiplet Lagrangian, they are vevs
of a background, non-dynamical vectormultiplet scalar fields. More precisely, if the
theory has a continuous flavor symmetry, with Lie algebra g, we can couple it to a
non-dynamical background vectormultiplet valued in g. A complex mass deforma-
tion is introduced by turning on a vev M for the complex scalar in the background
vectormultiplet, such that [M, M†] = 0. Up to a flavor symmetry transformation,
we can take M to be valued in the complexified Cartan sub-algebra of g.
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At the level of the Lagrangian, the leading order effect of a complex mass is to
add a coupling to a super partner μa++ of a conserved flavor current J a

δMad2θ+μa
++ + c.c. (7)

The + refers to one component of a SU (2)R doublet index. Indeed, conserved cur-
rents sit in a special supermultiplet which includes an SU (2)R triplet of moment map
operators μa

AB .
Moment map operators are the typical example of a Higgs branch operator: oper-

ators which sit in non-trivial SU (2)R representations of spin n/2, OA1 A2···An , and
satisfy a shortening condition [8].

Qα
(A0

OA1 A2···An) = 0 Q̄α̇
(A0

OA1 A2···An) = 0 (8)

They never carry an U (1)r charge.

2.1 Parameter Spaces of Vacua and S-Dualities

As the beta functions of gauge couplings are one-loop exact, it is easy to construct
conformal invariant Lagrangian N = 2 field theories by tuning the total amount of
matter appropriately. These Lagrangian theories will thus have a parameter space of
exactly marginal deformations parameterized by the complexified gauge couplings.
Although many isolated, strongly-coupled N = 2 SCFTs exist, there are also large
classes of non-LagrangianN = 2 SCFTs with spaces of exactly marginal deforma-
tions. Many examples can be defined by coupling standard non-Abelian gauge fields
to the flavor symmetry currents of non-Lagrangian isolatedN = 2 SCFTs in such a
way that the gauge coupling beta function vanishes.

The space of exactly marginal deformations of an N = 2 SCFT is a complex
manifold, and several protected quantities are locally holomorphic functions on the
space of deformations.3 Thus a side payoff of exact calculations, done by localiza-
tion or M-theory/IIB engineering, is a characterization of the complex manifold of
marginal couplings.

The results, even for Lagrangian theories, are rather counter-intuitive. Naively,
the space of couplings for a Lagrangian theory should consist of a product of several
copies of the upper half plane, each parameterized by a complexified gauge coupling
τa . More precisely, as the gauge theory is invariant under τ → τ + 1, one can
parameterize the space by the instanton factors qa = exp 2πiτa . (This is a good
choice in asymptotically free theories as well, where qa becomes a dimensionful
coupling.)

3Wewould like to point out that a general analysis of the geometric properties of the space of exactly
marginal deformations of N = 2 SCFTs seems to be missing from the literature.
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At weak coupling, protected quantities can be expanded in power series in the
qa , typically convergent in the naive physical range |qa| < 1. Surprisingly, with the
exception of N = 4 SYM, the geometry of parameter space is strongly modified
at strong coupling, and |qa| = 1 is not a boundary anymore: the theory can be
analytically continued beyond |qa| = 1 into a complicated moduli space.

In all known examples, as soon as we move far enough from the original weakly
coupled region new dual descriptions of the theory emerge, possibly involving rad-
ically different degrees of freedom. Typically, the new descriptions involve weakly
coupled gauge fields interacting with intrinsically strongly-coupled matter theories
described by isolated N = 2 SCFTs. Only in some cases we find again weakly-
coupled Lagrangian theories.

The generic moniker for this type of situation, where seemingly different theories
are related by analytic continuation in the space of gauge couplings, is S-duality. The
canonical example of S-duality occurs in N = 4 SYM [9, 10]: as one approaches
the |q| = 1 boundary, new dual descriptions emerge involving magnetic monopoles
or dyons which reassemble themselves into weakly coupled N = 4 gauge fields
with the same gauge group of the original theory, or its Langlands dual group. In
that case, every description covers the whole parameter space, and the couplings are
related by SL(2, Z) transformations of the form

τ ′ = aτ + b

cτ + d
(9)

which map the upper half plane back to itself.
The N f = 2N SQCD already offers a more general situation: the full parameter

space can be described by allowing q to reach arbitrary values. At very large q we
have a dual N f = 2N SQCD description, with coupling q ′ = 1/q. At q ∼ 1 we have
a non-Lagrangian dual description, with an SU (2) weakly coupled gauge field of
coupling q ′′ ∼ 1− q, coupled to a fundamental hyper and to an isolated SCFT with
SU (2) × SU (N f ) flavor symmetry [11, 12]. Similar statements hold more general
Lagrangian theories. The possible S-dual descriptions of Lagrangian theories which
can be mapped to class S are well understood. Other examples, such as the quiver
theories in the shape of an E-type Dynkin diagram, do not appear to have been
explored systematically.

There is a neat class of examples of theories with the property that all S-dual
descriptions are Lagrangian. This will be our introduction into the class S theories.
The starting point is the observation that for SU (2) N f = 4 SQCD all three S-duality
frames, around q = 0, q = ∞, q = 1, are described by a SU (2) N f = 4 SQCD
Lagrangian. As the SU (2) fundamental representation is pseudoreal, the flavor group
is really SO(8), and the three S-dual descriptions are related by a triality operation of
the flavor group: if the quarks in the q ∼ 0 description sit in the vector representation
8v , the quarks in the q ∼ ∞ description sit in the chiral spinor representation 8s and
the quarks in the q ∼ 1 description sit in the anti-chiral spinor representation 8c.

This beautiful result, originally found in [4], has far reaching consequences. As
we mentioned before, the existence of a trifundamental half-hypermultiplet for three
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SU (2) groups allows the construction of a large class of SU (2)k Lagrangian field
theories, with SU (2) gauge groups only [12]. Each gauge group can be coupled to
at most two trifundamental blocks, and will be conformal if coupled exactly to two.
Thus we can associate such a superconformal field theory to each trivalent graph,
with an SU (2) gauge group for every internal edge and an SU (2) flavor group for
each external edge.

Two trinions coupled to the same SU (2) essentially consist of four fundamental
flavors for that group. A group coupled to two legs of the same trinion, instead,
looks like an SU (2) N = 4. Thus if we start from a frame where all couplings are
weak, andmake a single coupling strong, we can apply one of the two basic S-duality
operations to that group, and reach a new S-dual description of the whole theory. The
new description is again an SU (2)k theory, but it is associated to a possibly different
trivalent graph. Ultimately, all the theories associated to graphs with n external edges
and g loops must belong to the same moduli space of exactly marginal deformations,
represent distinct S-dual descriptions of the same underlying SCFT labelled by n
and g.

This will be the most basic example of class S theories. Furthermore, these are
the only S-duality frames for these theory. The parameter space of gauge couplings
of these theories will be identified to the moduli space of complex structures for
a Riemann surface of genus g with n punctures. Each Lagrangian description is
associated to a pair of pants decomposition of theRiemann surface,with the couplings
qa identified with the sewing parameters for the surface. The basic S-dualities of
individual SU (2) gauge groups represent basic moves relating different pair of pants
decompositions.

2.2 Moduli Spaces of Vacua

Generically, the moduli space ofN = 2 supersymmetric vacua consist of the union
of several branches, each factorized into a “Coulomb branch factor” and a “Higgs
branch factor”. ACoulomb branch factor is parameterized by the vevs ui of Coulomb
branch operators Oi . A Higgs branch factor is an hyper-Kähler cone parameterized
by the vevs of Higgs branch operators. See [13] and references therein for more
details.

It is useful to observe that the hyper-Kähler geometry of the Higgs factors does
not depend on the couplings. It can thus be usefully computed in convenient corner
of parameter space, such as a corner where the theory is weakly coupled. Flavour
symmetries act as (tri-holomorphic) isometries on the Higgs branch, and the corre-
spondingmass parameters force the theory to live at fixed points of the corresponding
isometries. Often, turning on generic complex masses completely suppresses Higgs
branch moduli.

Usually an N = 2 theory has a pure Coulomb branch of vacua, where all Higgs
branch operators have zero vet and SU (2)R is unbroken. We will refer to this branch
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simply as the Coulomb branch C of the theory. At special complex singular loci Cα

new branches may open up, of the form Cα × Hα for some Higgs factors Hα.
At low energy on the Coulomb branch, the only massless degrees of freedom

are scalar fields which parameterize motion along the Coulomb branch, which sit in
Abelian vectormultiplets. Thus the low-energydescription of physics on theCoulomb
branch involves a U (1)r gauge theory, where the rank r is the complex dimension of
theCoulomb branch. Supersymmetry implies a close interplay between the couplings
of the low energy gauge theory and the geometry of the Coulomb branch. This is the
main subject of the next section.

The supersymmetry algebra in a sector with Abelian (electric, magnetic and
flavour) chargesγ admits a central charge function Zγ , linear inγ [14]. Schematically,

[Q, Q] = Z̄ [Q, Q̄] = P [Q̄, Q̄] = Z̄ (10)

This implies that charged particles are generically massive, with mass above the BPS
bound |Zγ | [15, 16], and can be integrated out at sufficiently low energy at least at
generic points in the Coulomb branch.4

Particles which saturate the BPS bounds are called BPS particles. They will play
an important role in understanding the low energy physics of N = 2 quantum field
theories.

2.3 Seiberg-Witten Theory

The low energy dynamics in the Coulomb branch is the subject of Seiberg-Witten
theory. The study of the Coulomb branch dynamics was initiated in [3, 4]. See also
e.g. [17–19] for reviews of the subject. The central charge function for a charge
vector γ including an electric charge γe, a magnetic charge γm and a flavour charge
γ f takes the form

Zγ = a · γe + aD · γm + m · γ f (11)

The r complex fields aI are the super partners of gauge fields. They give a special
local coordinate system, where the metric coincides with the imaginary part ImτI J of
the complexified gauge couplings, which can be packaged locally in an holomorphic
prepotential F :

τI J = ∂2F
∂aI ∂a J

(12)

4Of course, there could be a separate massless sector which carries no gauge charges. This will
happen in theories where the Higgs branch is not fully suppressed at generic points in the Coulomb
branch.
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The dual fields aD
I are also given in terms of the prepotential

aD
I = ∂F

∂aI
(13)

and of course τI J = ∂aD
I

∂a J .
The prepotential depends generally on the gauge couplings and mass parameters

of the theory. The following relation, valid at fixed masses, is often useful to control
the dependence on the couplings:

daI ∧ daD
I = dui ∧ dci (14)

Here ui is the vev of the Coulomb branch operator dual to ci .
The low energy description is covariant under electric-magnetic dualities. An

electric-magnetic duality transformation rotates the gauge charges by an integer-
valued linear transformation which preserves the symplectic pairing

〈γ, γ′〉 = γm · γ′
e − γ′

m · γe (15)

The action on the gauge couplings is simply encoded by an inverse rotation of (a, aD),
so that the central charge remains invariant. It is also useful to add to the duality
group redefinitions of the flavour currents by multiples of the gauge currents. These
transformations shift γ f by multiples of γe and γm and correspondingly shift a and
aD by multiples of the mass parameters. We will often denote the set of (a, aD) as
“periods”, for reasons which will become clear soon.

The crucial insight of Seiberg and Witten is to realize that there is no electric-
magnetic duality frame which is globally well-defined over the Coulomb branch.
Rather, if we continuously vary the Coulomb branch parameters along a closed path
which winds around singular loci in the Coulomb branch, we may come back to
an electric-magnetic dual description of the original physics. Thus the (a, aD) are
multivalued functions of the Coulomb branch parameters ui . It is useful to describe
themulti-valuedness in terms of the global structure of the charge lattice�: the charge
lattice forms a local system of lattices over the Coulomb branch, with monodromies
which preserve the simplectic pairing and the sublattice � f of pure flavour charges.
The central charge is a globally defined linear map from � to the complex numbers.

The singularities of the Coulomb branch must be loci where additional light
degrees of freedom appear. In particular, they must be loci where the central charge
of some BPS particle goes to zero, as only BPS particles can modify the geometry
of the Coulomb branch through loop effects. The extra degrees of freedom must
assemble themselves into an infrared free or conformal effective description of the
low energy theory. If a Higgs branch opens up at the locus, it must be possible to
describe it in terms of the low energy degrees of freedom.

A typical example is a codimension one singularity at which a single BPS hyper-
multiplet becomes massless. Without loss of generality, we can go in a duality frame
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where the BPS hypermultiplet is electrically charged. This is an infrared free setup:
the BPS hypermultiplet of charge γ makes the IR gauge coupling run at one loop as

τI J ∼ −γI γJ
i

2π
log a · γ (16)

The behaviour of the magnetic central charges

aD
I ∼ −γI

i

2π
a · γ log a · γ (17)

shows the monodromy of the central charge, and thus of the charge lattice:

aD
I → aD

I + γI a · γ qe
I → qe

I − q J
mγJ γI (18)

In a generic duality frame, we can write the monodromy as

q → q − 〈q, γ〉γ (19)

In general, singular loci where a collection of light, IR free electrically charged
BPS hypermultiplets appear will be associated to parabolic monodromies similar
to (19). If a sufficiently large number of light particles are present, a Higgs branch
may open up, described by the vev of the corresponding hypermultiplet fields.

Singular loci where the IR description involves a non-trivial superconformal field
theory are associated to more general monodromies. We expect several periods to go
to zero at a superconformal points, scaling as interesting, possibly fractional powers
of the Coulomb branch coordinates ui . Thus the monodromies will be in general
elliptic. We are not aware of any example which involves hyperbolic monodromies.
Interesting superconformal fixed points often arise from the collision/intersection
of two or more simple singularities. The collision/intersection of singularities where
mutually non-local particles such as an electron and amonopole become light usually
produces IR superconformal field theories of the Argyres-Douglas type [20, 21].

A typical example is the collision of a point where one monopole of charge 1 is
massless, and one point where n f particles of electric charge 1 become massless.
The combined monodromy is

a → a + aD → (1 − n f )a + aD aD → aD → −n f a + aD (20)

and has trace 2 − n f . For n f = 1, 2, 3 the monodromy is elliptic, and we obtain an
Argyres-Douglas theory which possesses an SU (n f ) flavor symmetry rotating the
electrically charged particles among themselves.

The interplay between the monodromies of the charge lattice and the spectrum of
BPS particles is rather interesting, and is made more intricate by the phenomenon
of wall-crossing. General BPS particles belong to supermultiplets which can be
described as a (half) hypermultiplet tensored with a spin j representation of the
Lorentz group. The one-loop contributions from a BPS particle of generic spin j
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will be proportional to � j = (−1)2 j (2 j + 1). The sum of � j over all BPS particles
with a given charge γ is a protected index, which may jump only if the single particle
states mix with a continuum of multi particle states Generically, the mass |Zγ | is
larger than the mass of constituents of different charge |Zγ′ | + |Zγ−γ′ | and the index
is protected. At walls of marginal stability, where the central charges of particles of
different charges align, the index can jump. The jumps in the index are controlled by
a specific wall-crossing formula due to Kontsevich and Soibelman [22].

2.4 Seiberg-Witten Curves

There is a tension between two properties of the matrix of gauge couplings τI J : it
is locally holomorphic in the Coulomb branch parameters ui , and it has a positive-
definite imaginary part. In the absence of intricate monodromies, these properties
would actually be incompatible with each other. There is a rather different mathemat-
ical problem where a matrix with very similar properties appear: the period matrix
of a family of Riemann surfaces. Given a Riemann surface, a set of A cycles αI and
dual B cycles βI , with

αI ∩ αJ = 0 αI ∩ βJ = δ I
J βI ∩ βJ = 0 (21)

the period matrix τI J is computed from the contour integrals of holomorphic differ-
entials ωI on βJ , normalized so that the contour integral on αJ is δ J

I .
The period matrix has positive definite imaginary part. If we have a holomorphic

family of Riemann surfaces, it will depend holomorphically on the parameters, with
appropriate monodromies around loci where the Riemann surface degenerates. Fur-
thermore, if we are given a meromorphic form λ on the Riemann surface, such that
the variations of λ along the family are holomorphic differentials, the periods of λ
along αI and βI will behave in the same way as the periods aI , aD

I . More generally,
the homology lattice of the Riemann surface behave like the lattice of charges in a
gauge theory, with the intersection of cycles playing the role of the 〈, 〉 pairing on the
charge lattice and the period of λ on a cycle γ playing the role of the central charge
Zγ . The monodromies around simple degeneration points, where a single cycle γ
contracts, take exactly the form(19), and the behaviour of the period matrix is pre-
cisely (16). If λ has poles on the Riemann surface, the periods of lambda depend on
the homology of the Riemann surface punctured at the poles, and the residues of λ
behave like mass parameters.

Originally, this analogywas used by Seiberg andWitten as a simple computational
tool to describe their solution for the low energy dynamics of SU (2) gauge theories
with various choices of matter. These theories have a one-dimensional Coulomb
branch, and the solution was described by simple families of elliptic curves. A priori,
there was no reason to believe this tool would be useful for theories with a higher-
dimensional Coulomb branch: most matrices τI J with positive definite imaginary
part are not period matrices of a Riemann surface, because the dimension 3g − 3 of
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moduli space of Riemann surfaces of genus g is much smaller than the dimension of
the space of 2g × 2g symmetric matrices.

Surprisingly, the great majority of known N = 2 field theories do admit a low-
energy description in terms of a Seiberg-Witten curve equipped with an appropriate
differential. For many Lagrangian field theories, this fact can be verified through
hard localization calculations (see [5] for the broadest possible result, and refer-
ences therein for previous work).5 For class S theories, it follows directly from the
properties of the six-dimensional SCFTs. For theories defined by Calabi-Yau com-
pactifications, the situation is less clear. Almost by construction, the low energy
physics can be described by periods of the holomorphic three-form on the Calabi-
Yau. It is not always obvious if this can be recast in terms of periods of a differential
on a Riemann surface.

We record a useful relation which allows one to associate the UV couplings of
Seiberg-Witten theories to the corresponding Coulomb branch operators

δui ∧ δci = δaI ∧ δaD
I =

∫
�

δλ ∧ δλ (22)

This is derived through the Riemann bilinear identity.

2.5 The Coulomb Branch of Lagrangian Gauge Theories

In a pureN = 2 gauge theory, the D-term equations for the non-Abelian scalar fields
� take the form

[�,�†] = 0 (23)

Classically, the theory has a family of (N = 2) supersymmetric vacua characterized
by a generic complex vev of � belonging to some Cartan sub algebra of the gauge
group. If the vev is generic, it Higgses the gauge group down to an Abelian sub-
group U (1)r , where r is the rank of the group. The off-diagonal components of the
vectormultiplet become massive and can be integrated out at low energy.

The same analysis typically holds for theories with matter: a generic Coulomb
branch vev suppresses the vevs of hypermultiplets.

� · tabqb + M · t f
abqb = 0 (24)

The Coulomb branch survives quantum-mechanically, but the geometry of the
Coulomb branch receives important one-loop and instanton corrections. At very
weak coupling, the electric periods can be identified with eigenvalues aI of �. The
magnetic periods are derived from the perturbative pre potential, which only receives
tree level and one-loop contributions from themassiveW-bosons and hypermultiplets

5 It may also be justified through considerations based on surface defects [23].
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F = τ

2
a2+

∑
e∈�+

i

2π
(a ·e)2 log a ·e−

∑
(w,w f )∈R

i

4π
(a ·w+m ·w f )2 log(a ·w+m ·w f )

(25)

We sum over the positive roots e and the weights for the gauge and flavor represen-
tation.

Seiberg and Witten [3] observed that this cannot be the end of the story: because
of asymptotic freedom, the coefficient of the logarithms makes the gauge couplings
negative definite near the locus where aW-boson becomes naivelymassless. The pre-
potential receives instanton corrections (in the form of a power series in the instanton
factors q for the gauge groups) which must turn the behaviour around, and convert
the naive W-boson singularity into singularities at which the gauge couplings have
physically acceptable behaviour.

The canonical example is pure SU (2) gauge theory, with Seiberg-Witten curve
and differential

x2 = z3 + 2uz2 + �4z λ = x
dz

z2
(26)

At large values of u ∼ Tr�2 the theory is weakly coupled, and the integral of λ on a
circle of unit radius in the z plane gives a = √

2u + · · · . The contour integral along
a dual contour gives the expected aD = 2i

π

√
2u log u + · · · . At smaller values of u

we encounter two singular loci u = ±�2 where a magnetic monopole and a dyon
(whose charge add to the W-boson charge 2) become respectively massless.

Similarly, the Seiberg-Witten curve for pure SU (N ) gauge theory [24, 25] is

y2 + PN (x)y + �2N = 0 λ = x
dy

y

PN (x) = x N + u2x N−2 + · · · + uN (27)

The naiveW-boson singularity at the discriminant of P(x) is replaced by two simple
singular loci, at the discriminants of P ± �N . The self-intersections of the two loci
produce interesting Argyres-Douglas singularities. For example, the maximal AD
singularity corresponds to the curve

y2 = x N + c2x N−2 + · · · + uN λ = xdy (28)

3 Theories in the Class S

The basic starting point for the class S construction are the six-dimensional (2, 0)
SCFTs [26–31]. The known (2, 0) SCFTs have an ADE classifications. These are
strongly-interacting generalizations of the free Abelian (2, 0) theory, which consists
of a self-dual two-form gauge field, five scalar fields and fermions. The Abelian



Families of N = 2 Field Theories 45

theory is the world volume theory of a single M5 brane. The general SCFTs arise
in M-theory as the world-volume theory of N M5 branes (the AN−1 theory) [27],
possibly in the presence of an O5 plane (the D-type theories). They also arise in IIB
string theory at the locus of an ADE singularity [26]. The string theory construction
of these theories makes two properties manifest. A SCFT labeled by the Lie algebra g

• Provides a UV completion to five-dimensional N = 2 SYM theory with gauge
algebra g

• Has a Coulomb branch of vacua where it reduces to an Abelian 6d theory valued
in the Cartan of g, modulo the action of the Weil group.

To be precise, the 6d theory compactified on a circle of radius R should admit an
effective description as 5d SYM with gauge coupling g2 = R. The two statements
are compatible: the 6d Abelian theory on the Coulomb branch compactified on a
circle gives a 5d Abelian gauge theory, which also describes the Coulomb branch of
5d SYM.

Notice that both theories have an SO(5)R R-symmetry. In the Abelian theories,
which are related in the same way, the R-symmetry rotates the five scalar fields. The
Coulomb branch of the (2, 0) SCFT is parameterized by the vevs of Coulomb branch
operators, which have the same quantum numbers as the Weil-invariant polynomials
in the scalar fields xa of the Abelian low-energy description [32, 33]. The theory on
the Coulomb branch has five central charges, which are carried by strings rather than
particles. The BPS strings in the theories carry a charge under the Abelian two-form
fields, which coincides with a root of g. The central charges for such a string of
charge e are simply Za = e · xa .

The construction of four-dimensional field theories in the class S involves a
twisted compactification of the SCFTs on a Riemann surface C [34]. The twist-
ing uses an SO(2) subgroup of SO(5), and preserves a four-dimensional N = 2
super algebra in the four directions orthogonal to the surface. The SO(2) fac-
tor becomes U (1)r . The remaining SO(3) becomes SU (2)R . The six-dimensional
Coulombbranch operatorswhich only carry SO(2) charges becomeCoulombbranch
operators for the N = 2 super-algebra. Notice that due to the twisting an operator
of SO(2) charge k becomes a k-form on C . The construction of a general theory in
the class S may involve several further modifications of the theory, which preserve
the four-dimensional N = 2 super algebra. We will review some details in a later
section.

These twisted compactifications have a useful property: the Coulomb branch
geometry is independent of the area of C , and can be described exactly at large
area in terms of vevs of the scalar fields x of SO(2) charge 1 in the low-energy
six-dimensional Abelian description. Because of the twisting, the vevs give a locally
holomorphic one-form λ = xdz on C , valued in the Cartan of gmodulo the action of
theWeil group. On the other hand, if we make the area of C is arbitrarily small while
keeping the Coulomb branch data fixed, we will define a four-dimensional theory
which, by definition, is the class S theory.

Thus the Seiberg-Witten low energy description of a class S is readily available
from its definition. For AN−1 theories one can treatλ as a single-valued one-form on a



46 D. Gaiotto

Riemann surface� which is a rank N cover ofC [6]. Then�,λ can be identifiedwith
the Seiberg-Witten curve and differential for the class S theory. Similar approaches
work for general g.

Much more work is required to find a direct four-dimensional UV descriptions of
a given class S theory, or to find a class S description of a given Lagrangian four-
dimensional theory. We will first describe the examples involving the A1 theory,
where the variety of possible ingredients is more limited, and then sketch the general
story. We refer to Sect. 3 of [34] and to [12] for a general discussion of the general
story unitary theories and [35] and references therein for a more general discussion.

3.1 A1 Theories

The twisted A1 6d theory has a single Coulomb branch operator φ̂2 which behaves
upon twisting as a quadratic differential onC . The four-dimensional Coulomb branch
is thus parameterized by a holomorphic quadratic differential φ2, the vev of φ̂2. The
dimension of the Coulomb branch, for compactC of genus g, is 3g−3. The one-form
λ satisfies [12, 34]

λ2 = φ2 (29)

This equation defines simultaneously the double-cover � of C as a curve in T ∗C ,
and the differential λ.

The complex structure moduli of C are the exactly marginal UV couplings of this
class S theory. There are exactly as many couplings as operators in the Coulomb
branch. This can be understood from the observation that the Coulomb branch opera-
tors which come fromφ2 have the correctU (1)r charge to be dual to exactly marginal
couplings. We can extract a four-dimensional operator ûi from φ2 by contracting it
a Beltrami differential. It is natural to associate that operator with the corresponding
complex structure deformation. This can be verified from the relation (22) and is
discussed in detail in [36].

Thus the regions “at infinity” of the parameter space of exactly marginal defor-
mations should correspond to the boundaries of the complex structure moduli space
[6], where the Riemann surface C degenerates and one or more handles pinch. The
physical properties of the six-dimensional SCFT confirm this picture. Near a degen-
eration locus we can pick a metric which makes the pinching handle long and thin
compared to the rest of the surface. In that region, we should be allowed to use the
effective description as 5d SYM on a long segment, and then find at lower energy a
weakly-coupled four-dimensional SU (2) gauge group.

The 4d gauge coupling can be computed and is such that the instanton factor q
coincides with the canonical complex structure parameter which describe the length
and twist of the handle. In particular, it becomes weak when the surface pinches.
If we go to a maximal degeneration locus, where the Riemann surface reduces to a
network of 2g−2 three-punctured spheres connected by 3g−3 handles, we will find
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3g − 3 SU (2) gauge groups. The calculation of the periods in this limit agrees with
the gauge theory picture. The magnetic periods have a logarithmic behaviour which
is consistent with the presence of a bloc of trifundamental half-hypermultiplets for
each three-punctured sphere. As the gauge groups are conformal, we do not expect
any other matter fields coupled to the gauge groups.

This analysis allows us to identify a possible four-dimensional UV description
of the class S theory associated with a Riemann surface of genus g near a maximal
degeneration locus: the SU (2)3g−3 theory associated to a graphwith g loops. The six-
dimensional construction provides a global picture of how all the S-dual theories are
connected through parameter space, and the low-energy Seiberg-Witten description.

In order to improve our understanding of the physics of decoupling, it is useful
to introduce the notion of superconformal defects in the six-dimensional SCFT. A
superconformal defect is a local modification of the theory along a hyperplane which
preserves the subgroup of the conformal group which fixes the hyperplane, and an
appropriate subset of the supercharges. We are interested here in codimension two
defects, which preserve a subgroup of the 6d (2, 0) superconformal group which is
isomorphic to the 4d N = 2 superconformal group.

Although we have a relatively poor understanding of the six-dimensional theory,
there is a simple trick which allows us to define a useful class of defects in terms of
the facts we know.We can simply use the twisted compactification strategy to put the
theory on a funnel geometry, with an asymptotically flat region connected near the
origin to a semi-infinite tube. The configuration preserves N = 2 supersymmetry,
and we can flow to the infrared to find something interesting. In the tube region,
we flow to the infrared free five-dimensional SU (2) SYM. In the asymptotically
flat region, we have the standard 6d theory, modified only at the origin, in some
what which allows it to couple to the 5d SYM theory. Thus construction produces a
canonical superconformal defect equipped with an SU (2) flavor symmetry. We will
call it the regular defect.

This construction clarifies what happens in a degeneration limit of C : the handle
can be removed, leaving behind two regular defects weakly coupled to the corre-
sponding SU (2) gauge group. In general, we can now enrich our starting point, and
consider a Riemann surface C of genus g with n regular defects at points of C . This
gives the six-dimensional realization of the SU (2) quivers associated to a general
graph with g loops and n external legs. The use of regular punctures allows us to
make contact with standard brane constructions of N = 2 field theories, and verify
that the individual three-punctured sphere corresponds to a block of trifundamental
half-hypermultiplets.

The Seiberg-Witten geometry in the presence of regular defects is still given
by (29), but the quadratic differential is now allowed a double pole at the location of
the punctures:

φ2 ∼
[

m2
a

(z − za)2
+ ua

z − za
+ · · ·

]
dz2 (30)



48 D. Gaiotto

Here ma is the SU (2) mass parameter at the puncture and ua an extra Coulomb
branch parameter dual to the position za of the puncture, which is a new exactly
marginal coupling.

Through appropriate decoupling limits, we can go from these four-dimensional
SCFTs to more general asymptotically free SU (2) theories, or generalized Argyres-
Douglas theories. In the six-dimensional description, these examples involve “irreg-
ular” punctures, where the quadratic differential is allowed poles of order higher than
2. Basic examples are the pure SU (2) Seiberg-Witten theory

φ2 =
[
�2

z
+ 2ua

z2
+ �2

z3

]
dz2 (31)

and the basic Argyres-Douglas theories

φ2 = PN (z)dz2 (32)

and

φ2 =
[

PN (z) + u

z
+ m2

z2

]
dz2 (33)

where PN (z) is a degree N polynomial.

3.2 General ADE Theories

The generalization of the A1 results involves several new ingredients. The Coulomb
branch is now described by a family of differentials associated to the Casimirs of
g, with degree of the differential equal to the degree of the Casimir. The exactly
marginal couplings still coincide with the space of complex structures of C . The
decoupling limit still replaces a handle by a gauge group with Lie algebra g, and can
be understood in terms of a codimension 2 defect with flavor symmetry g, which we
will denote as a full regular defect.

The first difference is that the theory associated to a three-punctured sphere has a
non-trivial Coulomb branch, and no couplings: it is an otherwise unknown 4d SCFT
with three g flavor symmetries. In order to make contact with standard Lagrangian
field theories and their brane engineeringweneed a larger choice of regular punctures.
A simple way to understand the possible choices is to realize that the full regular
puncture has aHiggs branch, parameterized by the vevs of themomentmap operators
for the g flavor symmetry. The Higgs branch should open up at loci in the Coulomb
branch where all the Coulomb branch operators have no pole at the puncture. The
Higgs branch conjecturally coincideswith themaximal complex nilpotent orbit of gC.

If we sit at a generic point of the Higgs branch and flow to the IR, we essentially
erase the puncture. If we sit at a non-generic nilpotent element and flow to the IR,
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we will somewhat “simplify” the full regular puncture to a different type of regular
puncture, where the singularities of the Coulomb branch operators are constrained
in appropriate patterns. A nilpotent element can always be taken to be the raising
operator of an su(2) subalgebra ρ of g. Thus these new regular punctures will be
labelled by ρ. A further generalization of regular punctures is possible, in which the
operators of the 6d theory undergo a monodromy around the defect, under an outer
automorphism of g [35]. These general regular punctures allow one to make contact
with most superconformal Lagrangian quiver gauge theories. As for the A1 case, one
can also define a large variety of irregular punctures.

4 Calabi-Yau Compactifications

The compactification of string theory on non-compact Calabi-Yaumanifolds can also
give rise to four-dimensional N = 2 field theories [37]. The low-energy dynamics
can be derived in a straightforward way from the geometry in a type IIB duality
frame: the periods are identified with the periods of the holomorphic three-form
on appropriate cycles in the geometry. On the other hand, the identification of an
intermediate UV-complete four-dimensional field theory description of the theory is
more laborious. Often, the field theory is engineered through a type IIA construction,
and then mirror symmetry gives the map to IIB string theory and thus the low energy
solution of the theory.

Theories in the class S can be embedded in Type IIB string theory by engineering
the 6d SCFTs as loci of ADE singularities, fibered appropriately over the curve C .
For example, an A1 theory can be realized through the geometry

x2 + u2 + v2 = φ2(z) (34)

The geometric engineering, though, can provide solutions for theories which do
not admit a known six-dimensional construction, such as quiver gauge theories in the
shape ofE-typeDynkin diagrams. Indeed, it provides a unified picture of all the quiver
gauge theories of unitary groups, through geometries where an elliptic singularity
is fibered over a complex plane [7]. Remarkably, this provides a description of the
space of exactly marginal deformations as a moduli space of flat connections on a
torus.

A second remarkable example is a large family of Argyres-Douglas theories,
labeled by two ADE labels. Remember the A1 examples, lifted to a Calabi-Yau

u2 + v2 + x2 + PN (z) = 0 (35)

The AM−1 generalization is

u2 + v2 + x M + zN + · · · = 0 (36)
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The main idea is to write that in terms of ADE polynomials for AN−1 and AM−1 as

WAN−1(u, x) + WAM−1(v, z) = 0 (37)

and then replace either polynomials with the ones associated to D type, u2x + x N ,
or E type

u3 + x4 u3 + ux3 u3 + x5 (38)

References

[1] Wess, J., Bagger, J.: Supersymmetry and Supergravity. Princeton, University Press (1983)
[2] Bhardwaj, L., Tachikawa, Y.: Classification of 4d N = 2 gauge theories. JHEP 1312, 100

(2013). arXiv:1309.5160
[3] Seiberg, N., Witten, E.: Electric-magnetic duality, monopole condensation, and confine-

ment in N = 2 supersymmetric Yang-Mills theory. Nucl. Phys. B426, 19–52 (1994).
arXiv:hep-th/9407087

[4] Seiberg, N., Witten, E.: Monopoles, duality and chiral symmetry breaking in N = 2 super-
symmetric QCD. Nucl. Phys. B431, 484–550 (1994). arXiv:hep-th/9408099

[5] Nekrasov, N., Pestun, V.: Seiberg-Witten geometry of four dimensional N = 2 quiver gauge
theories. arXiv:1211.2240

[6] Witten, E.: Solutions of four-dimensional field theories via M-theory. Nucl. Phys. B500,
3–42 (1997). arXiv:hep-th/9703166

[7] Katz, S., Mayr, P., Vafa, C.:Mirror symmetry and exact solution of 4DN= 2 gauge theories.
I. Adv. Theor. Math. Phys. 1, 53–114 (1998). arXiv:hep-th/9706110

[8] Dolan, F., Osborn, H.: On short and semi-short representations for four-dimensional super-
conformal symmetry. Ann. Phys. 307, 41–89 (2003). arXiv:hep-th/0209056

[9] Montonen, C., Olive, D.I.: Magnetic monopoles as gauge particles? Phys. Lett. B72, 117
(1977)

[10] Sen, A.: Strong—weak coupling duality in four-dimensional string theory. Int. J. Mod.
Phys. A9, 3707–3750 (1994). arXiv:hep-th/9402002

[11] Argyres, P.C., Seiberg, N.: S-duality in N = 2 supersymmetric gauge theories. JHEP 0712,
088 (2007). arXiv:0711.0054

[12] Gaiotto, D.: N = 2 dualities. arXiv:0904.2715
[13] Argyres, P.: Supersymmetric effective actions in four dimensions
[14] Witten, E., Olive, D.I.: Supersymmetry algebras that include topological charges. Phys.

Lett. B78, 97 (1978)
[15] Prasad, M., Sommerfield, C.M.: An Exact classical solution for the ’t Hooft monopole and

the Julia-Zee Dyon. Phys. Rev. Lett. 35, 760–762 (1975)
[16] Bogomolny, E.: Stability of classical solutions. Sov. J. Nucl. Phys. 24, 449 (1976)
[17] Lerche, W.: Introduction to Seiberg-Witten theory and its stringy origin. Prepared for

CERN-Santiago deCompostela-La PlataMeeting onTrends in Theoretical Physics, CERN-
Santiago de Compostela-La Plata, Argentina, 28 April–6 May 1997

[18] Freed, D.S.: Special Kaehler manifolds. Commun. Math. Phys. 203, 31–52 (1999).
arXiv:hep-th/9712042

[19] Witten, E.: Dynamics of quantumfield theory. In: QuantumFields and Strings: ACourse for
Mathematicians. Princeton, vols. 1, 2 (1996/1997), pp. 1119–1424.AmericanMathematical
Society, Providence (1999)

[20] Argyres, P.C., Douglas, M.R.: New phenomena in SU(3) supersymmetric gauge theory.
Nucl. Phys. B448, 93–126 (1995). arXiv:hep-th/9505062

http://arxiv.org/abs/1309.5160
http://arxiv.org/abs/hep-th/9407087
http://arxiv.org/abs/hep-th/9408099
http://arXiv.org/abs/1211.2240
http://arxiv.org/abs/hep-th/9703166
http://arxiv.org/abs/hep-th/9706110
http://arxiv.org/abs/hep-th/0209056
http://arxiv.org/abs/hep-th/9402002
http://arxiv.org/abs/0711.0054
http://arXiv.org/abs/0904.2715
http://arxiv.org/abs/hep-th/9712042
http://arxiv.org/abs/hep-th/9505062


Families of N = 2 Field Theories 51

[21] Argyres, P.C., Ronen Plesser, M., Seiberg, N., Witten, E.: New N = 2 superconformal field
theories in four dimensions. Nucl. Phys. B461, 71–84 (1996). arXiv:hep-th/9511154

[22] Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson-Thomas invariants
and cluster transformations. arXiv:0811.2435

[23] Gaiotto, D.: Surface operators in N = 2 4d gauge theories. JHEP 1211, 090 (2012).
arXiv:0911.1316

[24] Klemm,A., Lerche,W., Yankielowicz, S., Theisen, S.: Simple singularities andN= 2 super-
symmetric Yang-Mills theory. Phys. Lett. B344, 169–175 (1995). arXiv:hep-th/9411048

[25] Argyres, P.C., Faraggi, A.E.: The vacuum structure and spectrum of N=2 supersymmetric
SU(n) gauge theory. Phys. Rev. Lett. 74, 3931–3934 (1995). arXiv:hep-th/9411057

[26] Witten, E.: Some comments on string dynamics. arXiv:hep-th/9507121
[27] Strominger, A.: Open p-branes. Phys. Lett. B383, 44–47 (1996). arXiv:hep-th/9512059
[28] Witten, E.: Five-branes and M-theory on an orbifold. Nucl. Phys. B463, 383–397 (1996).

arXiv:hep-th/9512219
[29] Seiberg, N.,Witten, E.: Comments on string dynamics in six dimensions. Nucl. Phys.B471,

121–134 (1996). arXiv:hep-th/9603003
[30] Seiberg, N.: Notes on theories with 16 supercharges. Nucl. Phys. Proc. Suppl. 67, 158–171

(1998). arXiv:hep-th/9705117
[31] Seiberg, N.: New theories in six dimensions and matrix description of M-theory on T 5 and

T 5/Z2. Phys. Lett. B408, 98–104 (1997). arXiv:hep-th/9705221
[32] Aharony, O., Berkooz,M., Seiberg, N.: Light-cone description of (2,0) superconformal the-

ories in six dimensions. Adv. Theor. Math. Phys. 2, 119–153 (1998). arXiv:hep-th/9712117
[33] Bhattacharya, J., Bhattacharyya, S.,Minwalla, S., Raju, S.: Indices for superconformal field

theories in 3, 5 and 6 dimensions. JHEP 02, 064 (2008). arXiv:0801.1435
[34] Gaiotto, D., Moore, G.W., Neitzke, A.: Wall-crossing, Hitchin systems, and the WKB

approximation. arXiv:0907.3987
[35] Chacaltana, O., Distler, J., Tachikawa, Y.: Nilpotent orbits and codimension-two defects of

6d N = (2, 0) theories. arXiv:1203.2930
[36] Gaiotto, D., Teschner, J.: Irregular singularities in Liouville theory and Argyres-Douglas

type gauge theories, I. JHEP 1212, 050 (2012). arXiv:1203.1052
[37] Katz, S.H., Klemm, A., Vafa, C.: Geometric engineering of quantum field theories. Nucl.

Phys. B497, 173–195 (1997). arXiv:hep-th/9609239

http://arxiv.org/abs/hep-th/9511154
http://arxiv.org/abs/0811.2435
http://arxiv.org/abs/0911.1316
http://arxiv.org/abs/hep-th/9411048
http://arxiv.org/abs/hep-th/9411057
http://arxiv.org/abs/hep-th/9507121
http://arxiv.org/abs/hep-th/9512059
http://arxiv.org/abs/hep-th/9512219
http://arxiv.org/abs/hep-th/9603003
http://arxiv.org/abs/hep-th/9705117
http://arxiv.org/abs/hep-th/9705221
http://arxiv.org/abs/hep-th/9712117
http://arxiv.org/abs/0801.1435
http://arxiv.org/abs/arXiv:0907.3987
http://arXiv.org/abs/1203.2930
http://arxiv.org/abs/1203.1052
http://arxiv.org/abs/hep-th/9609239


Hitchin Systems in N = 2 Field Theory

Andrew Neitzke

1 Introduction

This note is a short review of the way Hitchin systems appear in four-dimensional
N = 2 supersymmetric field theory.

The literature on the Hitchin system and its role in quantum field theory is a vast
one.Restricting attention just to the role ofHitchin systems inN = 2 supersymmetric
field theory (thus neglecting such fascinating topics as T -duality on the Hitchin
fibration and its relation to the geometric Langlands program [27, 37, 38, 43], the
use of Hitchin systems inN = 4 super Yang-Mills [2–4], the role of Higgs bundles
in F-theory [16], …) cuts things down somewhat but still leaves an enormous pool
of papers and topics from which to choose. In this article I focus on the points with
which I am most personally familiar. In particular, although this review is meant for
a special volume devoted to the AGT correspondence, I will have very little to say
about that. This is not because I think there is nothing to say—on the contrary, works
such as [48, 56] have demonstrated that there clearly is—but because I do not know
precisely what to say.

In one sentence, the relation betweenN = 2 theories and Hitchin systems is that
the Hitchin system arises as the moduli space of the N = 2 theory compactified
on a circle. My aim in this note is to explain a dictionary between various aspects
of the field theory (its Coulomb branch, its line defects, its surface defects, …) and
their manifestations in the Hitchin system (the Hitchin base, some distinguished
holomorphic functions, some distinguished hyperholomorphic bundles, …), along
with a few ways in which this dictionary gives insight into aspects of the Hitchin
system.
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Myperspective on this subject has been heavily influenced by a long and enjoyable
collaboration with Davide Gaiotto and Greg Moore. It is a pleasure to thank them
for this collaboration and for the many things that they have taught me. This work is
supported by NSF grant 1151693.

In Sect. 2we reviewgeneral facts aboutN = 2 theories, their relation to integrable
systems and hyperkähler geometry, and line and surface defects therein. The Hitchin
system does not appear explicitly in this section. In Sect. 3 we specialize to the case
of theories of class S; this is the class of N = 2 theories most directly related to
Hitchin systems. Finally, in Sect. 4 we give some general background on the Hitchin
system, divorced from its role in physics; this section could in principle be read on
its own, but is mainly intended as a reference for selected facts which we will need
in the other sections.

Each subsection of Sects. 2 and 3 is preceded by a brief slogan. It may be worth
reading all the slogans first, to get an idea of what is going on here.

2 N = 2 Theories and Their Circle Compactification

In this section we briefly review some facts aboutN = 2 theories T in 4 dimensions,
and their compactification on a circle R to give theories T [R] in 3 dimensions.

We will describe only general features here, without specializing to any particular
theory T ; in the next section we will explain how all of these general phenomena are
realized in the special case of theories of class S.

2.1 N = 2 Theories in the IR and Integrable Systems

Any N = 2 theory gives rise to a complex integrable system.

Consider an N = 2 supersymmetric theory T in 4 dimensions. Let B denote the
Coulomb branch. B consists of an open “regular locus” Breg plus a “discriminant
locus” Bsing.

The IR physics in vacua labeled by points u ∈ Breg is governed by pure abelian
N = 2 gauge theory, with gauge group U (1)r , where r = dimC B. Locally around
any point u ∈ Breg, this IR theory can be described in terms of classical fields, namely
rN = 2 vector multiplets. The bosonic field content is thus r complex scalars and r
abelian gauge fields. However, there is generally no single Lagrangian that describes
the IR theory globally on Breg: rather, we must use different Lagrangians in different
patches of Breg, related to one another by electric/magnetic duality transformations.
This story was first worked out in [50, 51]. Although we cannot write a single
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Lagrangian that describes the theory globally, there is a single geometric object
from which all the local Lagrangians can be derived [14, 15, 47]. This object is a
complex integrable system: a holomorphic symplectic manifold I ′, with a projection
π : I ′ → Breg, such that the fibers I ′

u = π−1(u) are compact complex Lagrangian
tori, of complex dimension r . One has the following dictionary:

Fiber of I over u ∈ Breg IR physics at u ∈ Breg

H1(I ′
u ,Z) EM charge lattice �u

Polarization of I ′
u DSZ pairing on �u

Symplectic basis of H1(I ′
u ,Z) Electric-magnetic splitting

Automorphisms of I ′
u EM duality group (� Sp(2r,Z))

Period matrix of I ′
u Matrix of EM gauge couplings

Point of I ′
u EM holonomies around surface defect

So far we have been discussing the IR physics at points u in the regular locus Breg.
At u ∈ Bsing the simple description of the IR physics by pure abelian gauge theory
breaks down, and has to be replaced by something more complicated. Correspond-
ingly, the complex integrable system I ′ generally gets extended by adding some
singular fibers (degenerations of tori) over u ∈ Bsing. Altogether we get a complete
holomorphic symplectic manifold I fibered over the whole B.

2.2 Compactification of N = 2 Theories on S1

Compactifying on S1 turns the integrable system into an honest hyperkähler
space.

In Sect. 2.1 we have reviewed the complex integrable system I which governs the
IR physics of the four-dimensional field theory T . In that discussion I appeared in
a somewhat indirect way. Now we describe a way to see I more directly.

Compactify T on S1 of length 2πR. At energies E � 1/R the resulting physics
should be described by a three-dimensional field theory T [R]. To get a first approx-
imation to the physics of T [R], we can consider the dimensional reduction of the
local IR Lagrangians describing T (at least if we stay away from Bsing). Then the
fields will be as follows: r complex scalars, r abelian gauge fields, and r periodic
real scalars (the holonomies of the gauge fields around S1). We can moreover dualize
the abelian gauge fields to get another r periodic scalars, so altogether we have r
complex scalars and 2r periodic real scalars. The complex scalars parameterize a
sigma model into B, and we can think of the 2r periodic real scalars as giving a map
into a 2r -torus; so locally we now have a sigma model into a product of B with a real
2r -torus.
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To find the global structure of this sigma model, one has to keep track of the EM
duality transformations needed to glue together the various local IR Lagrangians of
T . After so doing, one finds that T [R] is a sigma model whose target is the complex
integrable system I ′ which we described in Sect. 2.1. Thus, after compactification
the integrable system “comes to life.”

We should clarify themeaning of the statement that T [R] is a sigmamodel into I ′.
In Sect. 2.1 we described I ′ only as a holomorphic symplectic manifold. Nowwe are
getting an actual sigma model into a Riemannian manifoldM′[R]. Thus we should
ask: how is the Riemannian manifoldM′[R] related to the holomorphic symplectic
manifold I ′?

The answer is as follows. The constraints of N = 4 supersymmetry in 3 dimen-
sions dictate that the metric onM′[R] must be hyperkähler [5, 52]. SinceM′[R] is
hyperkähler, it carries a family of complex structures Jζ , parameterized by ζ ∈ CP

1,
as well as corresponding holomorphic symplectic forms �ζ . One of these complex
structures, J0, is distinguished. When considered as a holomorphic symplectic man-
ifold in the complex structure J0, M′[R] is identical to I ′.

The exact IR physics (as opposed to the physics obtained by naive dimensional
reduction) is also given by a sigma model intoM′. However, the exact hyperkähler
metric onM′[R] is not the same as the one obtained by naive dimensional reduction:
rather they differ by quantum corrections which can be computed in terms of the
spectrum of BPS particles of T4 [28, 36, 52]. The corrections due to a BPS particle
ofmass M go like e−RM in the limit R → ∞, so in this limit the twometrics converge
to one another uniformly, except around points where the mass of some BPS particle
goes to zero. The locus where this happens is precisely Bsing, so around Bsing the
quantum corrections are not suppressed even in the R → ∞ limit.1

Although the quantumcorrections change themetric onM[R], they do not change
what the space looks like in complex structure J0: even after the corrections, it is still
identical to the complex integrable system I from Sect. 2.1 [52].

2.3 Holomorphic Functions and Line Defects

Vevs of line defects are global holomorphic functions on the hyperkähler space.

The family of complex structures Jζ on M[R] (parameterized by ζ ∈ CP
1) corre-

sponds to a family of 1/2-BPS subalgebrasAζ of theN = 4 supersymmetry algebra.
Vevs of 1/2-BPS local operatorsO preservingAζ thus give Jζ -holomorphic functions
onM[R].

1The fact that quantum correction are not suppressed around Bsing is a good thing: exactly at this
locus the naivemetric becomes singular, and the quantum corrections smooth out these singularities,
in such a way that the exact corrected metric extends to a complete space M[R] which includes
fibers over Bsing. This smoothing requires a correction which is of order 1, not suppressed in R.
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For example, the complex scalarsO which descend from the vector multiplets in
the original theory T preserve A0. It follows that the vevs of these complex scalars
are J0-holomorphic functions onM[R]. Said otherwise, the projectionM[R] → B
is a J0-holomorphicmap. Of course this is just what we expect, since we have already
said that in complex structure J0, M[R] is the complex integrable system I, with
base B.

The four-dimensional origin of operators O preserving the other subalgebras
Aζ , ζ ∈ C

×, is a bit different: we consider 1/2-BPS line defects in the original
theory T . Such line defects can preserve various different subalgebras of the 4-
dimensional supersymmery. Upon circle compactification, the line defects reduce
to point operators, and their preserved subalgebras reduce to the various 1/2-BPS
subalgebras Aζ . Thus, the vevs of supersymmetric line defects wrapped on S1 are
Jζ -holomorphic functions onM[R].

Among the supersymmetric line defects there is a distinguished subset of “simple”
defects, characterized by the property that a simple defect is not expressible (in
correlation functions) as a nontrivial sumof other defects.We expect that every defect
can be uniquely decomposed as a sum of simple defects (though this statement is not
entirely trivial—see [11, 30] for more discussion.)

The existence of simple line defects implies in particular that there should be a
distinguished vector space basis of the space of Jζ -holomorphic functions onM[R].
Distinguished bases for coordinate rings of various algebraic spaces (and their quan-
tum deformations) have been studied in Lie theory (following pioneering work of
Lusztig, e.g. [46]) and more generally in algebraic geometry (see e.g. [33]). Indeed,
the investigation of these “canonical bases” was an important motivation for the
theory of cluster algebras [23]. On the other hand, it has turned out independently
that cluster algebras are closely related to the algebras of line defects (see e.g. [8,
29, 59, 60] for more on this.) Thus it seems natural to suspect that the canonical
bases studied in mathematics can be identified with the ones coming from simple
line defects. This point remains to be understood more precisely.

2.4 Hyperholomorphic Bundles and Surface Defects

Surface defects give hyperholomorphic bundles on the hyperkähler space.

Now, as in [1, 26, 30, 34], let us consider 1/2-BPS surface defects in the four-
dimensional theory T . We focus on defects which are massive in the IR, with finitely
many vacua. Let S be such a defect. Upon compactification of both T and S on S1,
S has a finite-dimensional Hilbert space of ground states, which we denote V (S).
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To be more precise, the Hilbert space V (S) actually depends on which vacuum of
the theory T [R] we are in. Thus we have a family of Hilbert spaces varying over the
moduli spaceM[R]. Said otherwise, V (S) is a Hermitian vector bundle overM. The
supersymmetry in the situation implies that this vector bundle is hyperholomorphic:
in particular, it admits a family of holomorphic structures, one for each ζ ∈ CP

1,
compatible with the family of underlying complex structures Jζ on M[R].

Suppose given two such defects, labeledS andS′, and a 1/2-BPS interface between
them. As observed in [35], such an interface can be viewed as a kind of line defect
which is restricted to live on the surface defect rather than roaming free in the 4-
dimensional bulk. Upon circle compactification, this picture reduces to a pair of line
defects separated by a local operator. The local operator preserves Aζ for some ζ
(just as in the case with no surface defects). The vev of this local operator is then a
Jζ -holomorphic section of Hom(V (S), V (S′)).

2.5 Line Defects in the IR

UV line defects can be expanded in terms of IR ones; the coefficients of this
expansion are integers which jump as parameters are varied.

In Sect. 2.3 we considered line defects from the UV perspective. On the other hand,
we could also consider the theory in the IR, in the vacuum labeled by some u ∈ B.
As we recalled in Sect. 2.1, the IR physics is governed by abelian N = 2 gauge
theory. In pure abelian gauge theory, for any ζ ∈ C

× we can concretely describe the
full set of simple ζ-supersymmetric line defects: for every γ in the EM charge lattice
�u , there is a ζ-supersymmetric abelian Wilson-’t Hooft operator L(γ).

Now, given a ζ-supersymmetric line defect LU V , we can ask how the same defect
appears in the IR. It will look like some integer linear combination of the simple
defects of the IR theory:

LU V �
∑
γ∈�u

�(LU V , γ)L I R(γ) (2.1)

The coefficients �(LU V , γ) ∈ Z of this expansion can be interpreted as indices
counting supersymmetric ground states of the theory with LU V inserted at some
fixed spatial point, extended in the time direction. These states were called framed
BPS states in [29].

Importantly, the �(LU V , γ) can jump as we vary the parameters (u, ζ): this is
the phenomenon of (framed) wall-crossing. The jumps occur when a framed BPS
bound state decays or forms, by binding or releasing an unframed BPS state; thus
the precise way in which the �(LU V , γ) jump is determined by the (unframed) BPS
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degeneracies of the theory. Indeed, studying the jumps of the �(LU V , γ) gives a lot
of information about the unframed BPS degeneracies: in particular, it is one way
of establishing that these degeneracies obey the celebrated Kontsevich-Soibelman
wall-crossing formula [44].

Now, let us again consider compactifying on S1 and taking vevs. Then (2.1)
becomes an equation relating the vev of LU V to a sum of vevs of defects L I R:

〈LU V 〉 =
∑
γ∈�u

�(LU V , γ)〈L I R(γ)〉 (2.2)

However, the quantities 〈L I R(γ)〉 are not as simple as they would be in the pure
abelian gauge theory— they are significantly corrected by contributions fromhigher-
dimension operators. Indeed, to get an indication of how subtle these quantities are,
note that 〈LU V 〉 should be continuous as a function of the parameters (u, ζ) (since
the UV theory T has no phase transition), while we have just said that the coefficients
�(LU V , γ) jump at some walls in the (u, ζ) parameter space.2 Thus, for (2.2) to be
consistent, the vevs 〈L I R(γ)〉 must also jump at these K-walls. As with �(LU V , γ),
the jumps of 〈L I R(γ)〉 are completely determined by the unframedBPSdegeneracies.

We will return to the meaning of (2.2) when we consider theories of class S,
below.

2.6 Asymptotics

Vevs of line defects are asymptotically related to functions on the Coulomb
branch.

For each ζ ∈ C
×, the ζ-supersymmetric IR line defect vev 〈L I R(γ)〉 is a Jζ -

holomorphic function on M[R]. These functions have an important asymptotic
property: as ζ → 0, they behave as [28, 29]

〈L I R(γ)〉 ∼ c(γ) exp(ζ−1πRZγ) (2.3)

where c(γ) is some ζ-independent constant, and Zγ is the central charge function,
pulled back from the Coulomb branch B.

These asymptotics are realized in a rather nontrivial way. As we have emphasized,
the 〈L I R(γ)〉 are not continuous, but have jumps corresponding to BPS states of the
theory T . If we fix a point ofM[R] and look only at the ζ dependence, then the loci
where the jumps occur are rays in the ζ-plane, all of which run into the origin. These

2These walls are known by various names: “BPS walls” in [29], “K-walls” in [31], “walls of second
kind” in [44], or parts of the “scattering diagram” in [32].
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jumps however do not destroy the asymptotics—rather the discontinuity across each
ray becomes trivial in the ζ → 0 limit. This is an example of the Stokes phenomenon.

One concrete consequence is that the expansion of each 〈L I R(γ)〉 around ζ = 0
will be given only by an asymptotic series, not a convergent one (a convergent series
would necessarily converge to a continuous function, but 〈L I R(γ)〉 is not continuous
in any disc around ζ = 0).

3 Theories of Class S and Hitchin Systems

In this section we specialize from general theories T to theories of class S, T =
S[g, C]. These are theories obtained by compactification of the (2, 0) theory from
6 to 4 dimensions; for the definition see [25, 27], or [V:2] in this volume. In these
theories we will see the role of the Hitchin system.

3.1 Theories of Class S

For theories of class S, the hyperkähler manifold which appears upon com-
pactification to three dimensions is a Hitchin system.

Now suppose that T is a theory of class S, T = S[g, C]. The general discussion
of Sect. 2.2 applies to this particular theory. Thus compactifying T on S1 gives a
sigma model T [R] into an hyperkähler manifoldM. In this case, we can understand
concretely what M is, as follows.

The 3-dimensional theory T [R] has several descriptions summarized in this pic-
ture (arrows mean “compactify and take IR limit”):

(3.1)

http://dx.doi.org/10.1007/978-3-319-18769-3_2
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The left side of the picture is how we have described T [R] up to now: T [R] is the IR
limit of the compactification of S[g, C] on S1

R , and S[g, C] in turn can be understood
as the IR limit of the compactification of the six-dimensional theory S[g] on C .
Altogether this means that T [R] is simply the IR limit of the compactification of
S[g] on C × S1, as indicated by the middle arrow of the picture. Finally we may do
this compactification in the opposite order, obtaining the right side of the picture.
We first compactify S[g] on S1

R and take an IR limit to obtain 5-dimensional super
Yang-Mills with gauge algebra g.3 Then we compactify this 5-dimensional super
Yang-Mills theory on C and take an IR limit to get T [R]. This leads to the statement
that T [R] is a sigma model into the moduli space of vacuum configurations of 5d
super Yang-Mills on C × R

2,1 which are translation invariant in the R2,1 directions.
The requirement of translation invariance alongR2,1 means that theBPS equations

on C ×R
2,1 reduce to equations for fields on C . These equations turn out to be some

celebrated equations in gauge theory: they are the Hitchin equations (4.1), which
we discuss in Sect. 4.1 below. (More precisely, the equations which appear are the
Hitchin equationsmodified by the rescalingϕ → Rϕ.) Thiswas essentially observed
in [6, 37] (in a slightly different context, but the mathematical problem is the same);
see also [9, 10] where some important special cases were rediscovered in a context
closer to ours.

Thus the target M[R] of the sigma model T [R] is the moduli space of solutions
of Hitchin equations. For the moment we do not need the detailed form of these
equations: we will just need a few basic properties of M[R]. In particular,
• M[R] is a hyperkähler space (Sect. 4.4), as required byN = 4 supersymmetry in
three dimensions.

• In its complex structure J0, M[R] can be identified with a complex integrable
system I (Sect. 4.6), as expected from Sects. 2.1–2.2.

Let us say a bit more about this integrable system, specializing to the case g =
AK−1 for concreteness.

• The base of the integrable system I is the “Hitchin base” (Sect. 4.6). On the other
hand, from Sect. 2.1 we know that the base should be the Coulomb branch of
T . Thus the Coulomb branch B of T can be identified with the Hitchin base. In
particular, the points u ∈ B correspond to algebraic curves �u ⊂ T ∗C which are
K -fold covers of C , better known as “Seiberg-Witten curves.”

• The torus fibers Iu have a concrete algebro-geometric meaning in terms of the
Seiberg-Witten curves �u , as follows: a point of Iu corresponds to a holomor-
phic line bundle L over �u , with the extra property that the determinant of the
pushforward bundle π∗L is trivial, where π : �u → C denotes the covering map
(Sect. 4.6).

3Actually, specifying gdoes not quite determine the 5-dimensional theory; for that we should really
specify a particular Lie group G with Lie algebra g. Which G we get depends on a subtle discrete
choice which appears upon compactification, as described e.g. in [24], using some subtleties of the
6-dimensional S[g] explained in [58].
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3.2 Line Defects

In the theory S[A1, C], vevs of line defects are holonomies of flat connections
along C .

In Sect. 2.3 we explained that for any N = 2 theory the vevs of ζ-supersymmetric
line defects compactified on S1 should give Jζ -holomorphic functions on M[R].
In theories of class S, these functions turns out to be something quite concrete and
understandable in terms of the curve C , as follows.

We will need one more fact about M[R] (reviewed in Sect. 4.3 below): M[R]
is diffeomorphic to the moduli space M f lat of flat GC-connections, via a map fζ
which is Jζ -holomorphic,

M fζ−→ M f lat (3.2)

x 
→ ∇(x, ζ) (3.3)

Thus, if we fix a holomorphic function F on M f lat , we can get a Jζ -holomorphic
function Fζ on M by pullback:

Fζ(x) = F(∇(x, ζ)). (3.4)

The vevs of ζ-supersymmetric holomorphic line defects arise in this way: each type
of simple line defect L corresponds to some holomorphic function F = FL on
M f lat .

What are the functions FL concretely? Let us restrict our attention to the case g =
A1. In these theories we have a complete understanding of the set of supersymmetric
line defects following [19, 29]. The story is especially simple if C has only regular
punctures. In that case, for any ζ ∈ C

×, there are simple ζ-supersymmetric line
defects corresponding to pairs {(℘, a)}, where ℘ is a non-self-intersecting closed
curve on C , and a a nonnegative integer:

L ↔ (℘, a). (3.5)

The corresponding function FL on M f lat is

FL(∇) = Tr (P∇(℘, a)), (3.6)
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where P∇(℘, a) means the parallel transport of the connection ∇ around the path ℘,
in the (a + 1)-dimensional representation of SL(2,C).4

For general g it seems very likely that there are line defects whose vevs give
holonomies of SL(K ,C) connections along closed paths, as well as defects cor-
responding to more general “spin networks”; however, the story has not yet been
completely developed, and in particular it is not yet known how to describe a com-
plete set of simple line defects. Some examples have very recently been worked out
in [60]; see also [45, 53] for related mathematical work.

3.3 Interfaces Between Surface Defects

In the theory S[A1, C], interfaces between surface defects correspond to par-
allel transport of flat connections along open paths on C .

All the discussion of Sect. 3.2 has a natural extension where we replace line defects
by interfaces between surface defects [1, 26, 30], as follows.

In the theory S[A1, C] there is a natural family of surface defects S
a
z , labeled

by an integer a > 0 and a point z ∈ C . As we have described in Sect. 2.4, each
such defect corresponds to a hyperholomorphic vector bundle V (Sa

z ) overM. In this
case, V (Sa

z ) is the a-th symmetric power of the universal harmonic bundle, restricted
to z ∈ C (see Sect. 4.5). In particular, when we view it as a holomorphic bundle in
complex structure Jζ , V (Sa

z ) is the a-th symmetric power of the universal flat bundle,
restricted to z ∈ C .

So much for the surface defects by themselves: how about interfaces between
surface defects? Much like (3.5), we have a correspondence

L ↔ (℘, a) (3.7)

where ℘ now denotes an open path ℘ from z to z′, and the corresponding L is a
ζ-supersymmetric interface between S

a
z and S

a
z′ . The corresponding vev FL should

be a holomorphic section of Hom(V (Sa
z ), V (Sa

z′)). That section is

FL(∇) = P∇(℘, a). (3.8)

Thus: in the theory S[A1, C], vevs of interfaces between surface defects are parallel
transports of SL(2,C) connections along open paths on C .

4Slightly more generally, there are also simple line defects corresponding to mutually non-
intersecting collections of closed curves on C , with nonnegative integer weights; the vev of such a
defect is simply the product of the traces associated to the individual curves in the collection.
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Note that giving the operators P∇(℘, a) for all paths ℘ is equivalent to giving
the connection ∇ itself. Thus, for any fixed ζ ∈ C

×, studying ζ-supersymmetric
interfaces between surface defects in the theory S[A1, C] is equivalent to studying
flat SL(2,C)-connections on C . (Indeed, this gives an alternative derivation of the
fact that M[R] in complex structure Jζ is isomorphic to the moduli space of flat
SL(2,C)-connections).

3.4 Line Defects in the IR

Vevs of IR line defects give local coordinate systems on the Hitchin moduli
space; one can get Fock-Goncharov and Fenchel-Nielsen coordinates in this
way.

We have said in (3.4) and (3.6) that the vevs 〈LU V 〉 are the fζ -pullback fromM f lat

of some particular holomorphic functions, namely the trace functions attached to
closed paths on C .

Something similar is true for the IR vevs 〈L I R(γ)〉. As we have commented,
these functions are not quite globally holomorphic on M[R]: rather they jump at
some codimension-1 loci (K-walls). However, suppose that we initially restrict to
a small neighborhood of some initial u, and then (if we like) extend 〈L I R(γ)〉 to a
larger domain by analytic continuation. In this case we obtain an honest holomorphic
function Fγ , defined on some domain inM[R]. These holomorphic functions should
be regarded as IR analogues of the 〈LU V 〉we considered above, and in some respects
they are similar: in particular, they are also the fζ -pullback of some holomorphic
functions Fγ onM f lat .

Precisely what functions Fγ we get in this way depends on our choice of an initial
u, and also on the parameter ζ. For any fixed choice, considering all Fγ at once
gives a local coordinate system on M f lat . In particular, one can obtain in this way
both the Fock-Goncharov and complexified Fenchel-Nielsen coordinate systems on
M f lat [27, 41]. The Fock-Goncharov coordinates are obtained for generic choices
of (u, ζ) while some special “real” (u, ζ) (related to Strebel differentials on C) give
Fenchel-Nielsen.

Incidentally, the coefficients of the expansion (2.1), i.e. the framed BPS indices,
have a concrete geometric interpretation: they are counting geometric objects on the
curve C , called “millipedes” in [29].
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3.5 (Non)abelianization

Vevs of IR line defects can be viewed as giving flat C×-connections over
spectral curves.

There is another way of viewing the vevs of IR line defects. The charge lattice �u

in the theory S[A1, C] can be described concretely in terms of the Seiberg-Witten
curve �u . Indeed, �u sits inside H1(�u,Z).5 Thus in the IR we have line defects
corresponding to paths on �. Moreover, there is a C

× connection ∇ab(ζ) over �,
such that the vev of the simple ζ-supersymmetric line defect corresponding to the
homology class γ is the holonomy of ∇ab(ζ) around any path in the homology class
γ. One can think of ∇ab(ζ) as an “abelianization” of ∇(ζ).

This construction can be summarized in a commutative diagram:

(3.9)

The left arrow fζ is the “UV”mapwhich takes a vacuum of T [R] to its corresponding
SL(2,C)-connection ∇(ζ) over C . The right arrow f abζ is the “IR” map which takes
a vacuum of T [R] to its corresponding C

×-connection ∇ab(ζ) over �. The two
differ by a third map �ζ , which we call “nonabelianization” since it takes an abelian
connection ∇ab over � to a nonabelian one ∇ over C . From the fact that the framed
BPS counts � are piecewise constant, it follows that �ζ depends in a piecewise
constant way on ζ, and its jumps are controlled by the BPS spectrum of the theory
S[A1, C].

The story is expected to be similar for arbitrary g; in particular, the nonabelian-
ization map �ζ was described in detail in [31] for g = gl(K ).

3.6 Asymptotics

Fock-Goncharov and Fenchel-Nielsen coordinates have nice asymptotic prop-
erties, when evaluated along special 1-parameter families of connections com-
ing from points of the Hitchin system.

5To be precise, consider the projection map π∗ : H1(�u ,Z) → H1(C,Z); the lattice �u is the
kernel of this projection.
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Fix a point x ∈ M[R] and some ζ0 ∈ C
×. As we have said in Sect. 3.2, there is a

corresponding real 1-parameter family of connections ∇(t) = ftζ0(x), t > 0, i.e. a
real path in M f lat . On the other hand, as we have explained in Sect. 3.4, the choice
of (x, ζ0) also determines a particular local coordinate system on M f lat (by taking
vevs of ζ0-supersymmetric IR line operators, analytically continued from the initial
point x .) In particular, thesemay be Fock-Goncharov or Fenchel-Nielsen coordinates
onM f lat .

As t → 0, the coordinates Fγ(∇(t)) thus behave according to (2.3). The general
statement (2.3) involves the central charges of the theory, but for this particular theory
they can be written more concretely:

Zγ = 1

π

∫
γ

λ (3.10)

for λ the Liouville 1-form on T ∗C . Thus (2.3) becomes

Fγ(∇(t)) ∼ c(γ) exp

(
t−1ζ−1

0 R
∮

γ

λ

)
. (3.11)

Let us make a few remarks about (3.11):

• (3.11) is a version of the WKB approximation, applied to the special family of
connections ∇(t); indeed, ∇(t) has the form (see (4.6))

∇(t) = t−1ϕ + · · · (3.12)

where ζ−1
0 ϕ is a 2 × 2 matrix-valued 1-form on C , whose 2 eigenvalues are the

values of Rλ on the 2 sheets of �.
• (3.11) provides a link between the Fock-Goncharov or Fenchel-Nielsen coordi-
nates and the periods of the spectral curve. This link plays some role in the AGT
correspondence—e.g. for Fenchel-Nielsen coordinates it seems to be used in [56].
The nature of the link is somewhat nontrivial (cf. the comments in Sect. 2.6 about
Stokes phenomena); this is in some sense to be expected, since the two objects
we are relating are holomorphic in different complex structures on the Hitchin
space. I would very much like to know whether these Stokes phenomena have
some significance in AGT.

• All of this is expected to generalize to g = gl(K ), as outlined in [31]. The coordi-
nate systems which appear there seem to be more general than Fock-Goncharov
or Fenchel-Nielsen. Presumably it generalizes further to any g of ADE type, but
this generalization has not yet been worked out.
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3.7 Operator Products and their Quantization

Keeping track of spins of framed BPS states leads to a natural quantization of
the Hitchin system.

As we have described above, the vevs of supersymmetric line defects give a natural
basis for the space of Jζ -holomorphic functions on M[R]. The algebra structure
on this space also has a natural meaning in terms of line defects: it corresponds
to the operator product. Indeed, writing L L ′ for the operator product between ζ-
supersymmetric line defects L and L ′, we have

〈L L ′〉 = 〈L〉〈L ′〉. (3.13)

In particular, this vev does not depend on the direction in which L approaches L ′;
this is a consequence of the more general fact that moving L or L ′ changes it only
by a term which vanishes in ζ-supersymmetric correlators.

There is an interesting deformation of this story, as follows. Let J3 be the generator
of a spatial U (1) ⊂ SO(3), and let I3 be a generator of some U (1)R ⊂ SU (2)R .
We are going to make a modification of the quantum field theory T , which is most
convenient to describe in Hamiltonian language: we insert the operator (−y)2(J3+I3)

in all correlation functions (so all correlation functions become functions of the
auxiliary parameter y, and when y = −1 we reduce to the original T ). The modified
theory is still supersymmetric, but now line defects can be supersymmetric only
if they are inserted along the axis x1 = x2 = 0. As a result, in computing the
operator product of supersymmetric line defects we are constrained to consider them
approaching one another along this axis. Once againmoving the defects along the line
does not affect supersymmetric correlators, but there are now two possible orderings
of the defects along the line,which have no reason to be equivalent. Thus, at least as far
as supersymmetric correlation functions are concerned, we have a noncommutative
(but still associative) deformation of the operator product of the original theory.
Upon taking vevs, this then induces a corresponding deformation of the algebra of
Jζ -holomorphic functions onM[R]. This deformation has been discussed in various
places including [18, 29, 42] (see also [49] in this volume), and essentially also in
[21, 22].

For IR line defects we can compute directly in the abelian theory to find the simple
deformation

〈L I R(γ)L I R(γ′)〉 = y2〈γ,γ′〉〈L I R(γ′)L I R(γ)〉 (3.14)

(this boils down to working out the angular momentum stored in the crossed elec-
tromagnetic fields between two dyons of charges γ and γ′.) On the other hand, as we
have described, the 〈L I R(γ)〉 are local coordinates on M[R]; in fact they are even
local Darboux coordinates, i.e.
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{L I R(γ), L I R(γ′)} = 〈γ, γ′〉L I R(γ)L I R(γ′). (3.15)

Thus (3.14) says that the deformation we are considering is a quantization of the
Poisson algebra of functions on M[R].

The precise deformation (3.14) (“quantum torus”) had appeared earlier in [13, 44]
in the context of the wall-crossing formulas for refined BPS invariants. Here we are
encountering the same deformation in our discussion of line defects and their framed
BPS states. This is not a coincidence; indeed the refined wall-crossing formula can
be understood as a necessary consistency condition for the wall-crossing of framed
BPS states [29].

In theories of class S[A1] the operator product and its quantization are given by
“skein relations” like those familiar in Chern-Simons theory (here for the 3-manifold
C × R).

4 Basics on the Hitchin System

In this section we present some background on the Hitchin system, without reference
to physics. Fix a compact Riemann surface C , and a compact Lie group G.

4.1 Harmonic Bundles

Hitchin’s equations [39] are a system of partial differential equations on C . They
concern a triple (E, D,ϕ) where

• E is a G-bundle on C ,
• D is a G-connection in E ,
• ϕ is an element of �1(End E).

For example, if G = SU (K ), then E can be considered concretely as a Hermitian
vector bundle of rank K , with trivial determinant; in a local unitary gauge, D is of the
form D = ∂+A; and both A andϕ are represented by 1-form-valued skew-Hermitian
matrices.

The equations are

FD − [ϕ,ϕ] = 0, (4.1a)

Dϕ = 0, (4.1b)

D � ϕ = 0. (4.1c)

Call a triple (E, D,ϕ) obeying these equations a harmonic bundle.
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When G is abelian, these equations are linear and it is relatively easy to describe
the harmonic bundles (it boils down to Hodge theory for 1-forms on the curve C).
For G nonabelian, harmonic bundles are harder to describe explicitly. Nevertheless
they do exist, as we will discuss below.

Note that from (4.1a) it follows that E must be topologically trivial. There is a
generalization to nontrivial bundles, but we will not consider it here.

4.2 Higgs Bundles and Flat Bundles

Given a harmonic bundle, by “forgetting” some of the structure one can obtain either
a Higgs bundle or a flat bundle. Remarkably, this “forgetful” map turns out to be
invertible, so that we can actually reconstruct the harmonic bundle from a Higgs
bundle or a flat bundle. Let us now describe how this works.

Start from a harmonic bundle (E, D,ϕ). Now suppose we replace E by its com-
plexification, a GC-bundle EC.6 For example, when G = SU (K ), E is a Hermitian
vector bundle of rank K , and passing from E to EC corresponds to forgetting the
Hermitian metric and remembering only the underlying complex vector bundle. Let
us also decompose D and ϕ into their (1, 0) and (0, 1) components:

(D,ϕ) → (D(0,1), D(1,0),ϕ(1,0),ϕ(0,1)). (4.2)

4.2.1 Higgs Bundles

Now, suppose that of the four parts (4.2) we remember only the pair

(D(0,1),ϕ(1,0)). (4.3)

Then what do we have?
The operator D(0,1) induces the structure of holomorphic GC-bundle on EC

(namely, holomorphic sections are the ones which are annihilated by D(0,1).) Let
Eh denote EC equipped with this holomorphic structure. Equations (4.1b)–(4.1c)
together imply that ϕ(1,0) is a holomorphic section of End(Eh). Let φ = ϕ(1,0).

Thus, starting from a harmonic bundle, we have produced a pair (Eh,φ) where
Eh is a holomorphic GC-bundle and φ is an End(Eh)-valued holomorphic 1-form.
Such a pair is called a Higgs bundle.

It looks difficult to recover the original harmonic bundle data (4.2) just from
the Higgs bundle data (4.3). If we remembered the underlying G-structure, we could
reconstruct D(1,0) from D(0,1), andϕ(0,1) fromϕ(1,0), just by taking adjoints.However,
we have forgotten the G-structure, so we do not have a notion of adjoint. Choosing

6The notation EC expresses the fact that the gauge group has been complexified; to avoid confusion
we emphasize that the corresponding associated vector bundles do not get complexified.
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a random G-structure will not do: this would allow us to construct some (D,ϕ), but
there is no reason why Hitchin’s equations would be satisfied.

Nevertheless, the remarkable fact [39, 54] is that given a Higgs bundle there is a
unique way to find a G-structure such that Hitchin’s equations are indeed satisfied!
(Strictly speaking this is not quite true for every Higgs bundle, but it is almost true:
one only needs to impose an appropriate condition of “stability.” This condition holds
for a generic Higgs bundle.)

So altogether we have two inverse constructions: one trivial forgetful map from
harmonic bundles to Higgs bundles, and one very nontrivial reconstructionmap from
Higgs bundles to harmonic bundles.

4.2.2 Anti-Higgs Bundles

All of what we have just said has a conjugate version, where instead of (4.3) we
remember only the pair

(D(1,0),ϕ(0,1)). (4.4)

These give directly the antiholomorphic version of a Higgs bundle, which we might
call an anti-Higgs bundle. Just as above, we have a forgetful map from harmonic
bundles to anti-Higgs bundles, and an inverse reconstruction map from anti-Higgs
bundles to harmonic bundles. Complex conjugation exchanges Higgs and anti-Higgs
bundles, in a way that commutes with all the above maps.

4.2.3 Flat Bundles

Now suppose instead that we remember a more interesting combination of the data
(4.2): fix some ζ ∈ C

×, and remember only the pair

(D(0,1) + ζϕ(0,1), D(1,0) + ζ−1ϕ(1,0)). (4.5)

We may regard these two pieces as the two halves of a complex connection ∇ in EC:

∇ = ζ−1ϕ(1,0) + D + ζϕ(0,1). (4.6)

From (4.1) it follows that ∇ is flat. Thus, given a harmonic bundle (E, D,ϕ) and a
parameter ζ ∈ C

×, we have obtained a flat bundle (EC,∇).
Given only the pair (EC,∇) it is not obvious how to recover the full harmonic

bundle (E, D,ϕ). Nevertheless this can indeed be done, in a unique way [12, 17]
(again under an appropriate “stability” condition, which is generically satisfied).
So the story is parallel to what we said above for Higgs bundles: we have a trivial
forgetful map from harmonic bundles to flat bundles, and a nontrivial reconstruction
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map from flat bundles to harmonic bundles. In fact, here we have a family of forgetful
and reconstruction maps, parameterized by ζ ∈ C

×.

4.2.4 Limits of Parameters

There is a relation between these two constructions, as follows. Evidently, for any
ζ ∈ C

×, remembering (4.5) is equivalent to remembering the pair

(D(0,1) + ζϕ(0,1), ζ D(1,0) + ϕ(1,0)). (4.7)

In the limit ζ → 0 this becomes (4.3). Thus the map between harmonic bundles and
Higgs bundles is the ζ → 0 limit of our family of maps between harmonic bundles
and flat connections. Similarly, the map between harmonic bundles and anti-Higgs
bundles arises in the ζ → ∞ limit.

4.2.5 Summing up

Starting from a harmonic bundle, by “forgetting” some information — in a way
depeding on a parameter ζ ∈ CP

1 — we can produce one of three objects:

1. a Higgs bundle (this arises at ζ = 0),
2. a flat bundle (this arises for any ζ ∈ C

×),
3. an anti-Higgs bundle (this arises at ζ = ∞).

4.3 Moduli Spaces

Now we want to discuss the moduli space of harmonic bundles.
It is convenient to fix a single topologically trivial C∞ bundle E once and for all.
Having done so, the remaining equivalences are given by the “gauge group”

G = {smooth sections of Aut E}. (4.8)

This G has an action on (D,ϕ), under which D transforms as usual for a connection
while ϕ transforms in the adjoint representation. Equations (4.1) are invariant under
this action. In particular, G acts on the space of harmonic bundles.

Similarly, the GC-bundle appearing in the definition of “Higgs bundles,” “flat
bundle” or “anti-Higgs bundle” is determined up to equivalence by the same discrete
topological invariant. Thus it will be convenient to fix this GC-bundle to be EC. Then
the remaining equivalences are given by the “complexified gauge group”

GC = {smooth sections of Aut EC}, (4.9)
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which thus acts on the space of Higgs bundles, flat bundles or anti-Higgs bundles.
Given two G-equivalent harmonic bundles, the corresponding Higgs bundles are

GC-equivalent, and vice versa; similarly, given two G-equivalent harmonic bundles,
the corresponding flat bundles are GC-equivalent, and vice versa.

Now we can describe the equivalences discussed above, at the level of moduli
spaces (and once again ignoring stability conditions):

• Let M = M(G, C, E) be the moduli space of harmonic bundles modulo G.
• Let MHiggs = MHiggs(GC, C, EC) be the moduli space of Higgs bundles
modulo GC.

• Let M f lat = M f lat (GC, EC) be the moduli space of GC-flat connections
modulo GC.7

• Let Manti−Higgs = Manti−Higgs(GC, C, EC) be the moduli space of anti-Higgs
bundles modulo GC.

If we choose the topology of E appropriately — for example if we take G =
P SU (K ) and take the Stiefel-Whitney class of E to be a generator of Z/KZ— then
M,MHiggs ,M f lat are actually smooth manifolds. For a more general choice of E
there will be some singularities to deal with, but I will mostly ignore this issue in
what follows.

What we have said above implies that there are diffeomorphisms f0 : M →
MHiggs , f∞ : M → Manti−Higgs , and a family of diffeomorphisms fζ : M →
M f lat parameterized by ζ ∈ C

×:

(4.10)

In particular, this leads to the very nontrivial statement that MHiggs and M f lat are
actually diffeomorphic (via, say, the map f1 ◦ f −1

0 ).
MHiggs , M f lat and Manti−Higgs all carry natural complex structures. It follows

thatM is also complex, inmany differentways: for any ζ ∈ CP
1, the diffeomorphism

fζ endowsMwith a complex structure.Wewrite Jζ for this complex structure onM.

4.4 Hyperkahler Structure

So far we have explained that the moduli space M of harmonic bundles carries a
natural family of complex structures Jζ , parameterized by ζ ∈ CP

1. Thismight sound
exotic at first encounter, but actually there is a natural “explanation” for this family

7We drop C here to emphasize that M f lat can be defined without using the complex structure on
C , e.g. as the space of representations π1(M) → GC up to equivalence, although of course it does
still depend on the genus of C .
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of complex structures: it comes from the fact that M carries a natural hyperkähler
metric, as we now explain.

Let us fix a G-bundle E as we did above. Then let C denote the space consisting of
pairs (D,ϕ) as in Sect. 4.1, nowwithout imposing the Hitchin equations (4.1). C is an
infinite-dimensional affine space, with a natural hyperkähler structure.Moreover C is
naturally acted on by the gauge group G. This action preserves the hyperkähler struc-
ture and has a moment map �μ; the Hitchin equations say that the three components
of �μ vanish.

Thus M = �μ−1(0)/G. But this is precisely the hyperkähler quotient C///G, as
defined in [40]. In particular, this impliesM is hyperkähler [39]. Now, every hyper-
kähler manifold carries a canonical family of complex structures parameterized by
ζ ∈ CP

1, and for our M, this family is precisely the family Jζ we discussed in
Sect. 4.3.

4.5 Universal Bundle

A point of M corresponds to a harmonic bundle on C up to isomorphism. It is thus
natural to ask whether there is a universal bundle, i.e. a bundle V over C × M
equipped with some geometric structure, which when restricted to a given x ∈ M
gives a harmonic bundle over C in the isomorphism class x . Such a bundle need not
quite exist, but at least it exists up to some twisting (so more precisely it exists as a
section of a certain gerbe over C ×M). Locally onM we may ignore this twisting,
and pretend that we have an honest universal bundle.

For our purposes the most important fact about this universal bundle is that it is
hyperholomorphic [30]: it carries a single unitary connection D, whose curvature
is of type (1, 1) relative to all of the complex structures Jζ on M (see [20, 57] for
some background on this notion).

4.6 Spectral Curves and Hitchin Fibration

The different complex structures on M expose different features of the space. Let
us focus for a moment on the complex structure J0. In this complex structure, as we
have explained, M is identified with MHiggs . One of the fundamental facts about
this space is that it is a complex integrable system. In particular, it is a fibration over
a complex base space B, where the generic fiber is a compact complex torus.

Let us describe where this fibration structure comes from. To be concrete we will
focus on the case where G = SU (K ) or G = P SU (K ).

Suppose we are given a Higgs bundle (Eh,φ). Then the eigenvalues of φ in the
standard representation of G give a K -sheeted branched cover of C :

� = {(z ∈ C,λ ∈ T ∗
z C) : det(φ(z) − λ) = 0} ⊂ T ∗C. (4.11)
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� is the spectral curve corresponding to the Higgs bundle (Eh,φ). The branch points
of the covering� → C are those points z ∈ C where φ(z) has a repeated eigenvalue.

Now, let B be the space of all K -sheeted branched covers � ⊂ T ∗C of C .
Concretely, B is a finite-dimensional complex vector space. Passing from the Higgs
bundle (Eh,φ) to its spectral curve gives a projection known as the “Hitchin fibra-
tion,”

MHiggs → B. (4.12)

B is thus called the “Hitchin base.”
We let Breg ⊂ B be the locus of smooth spectral curves, and Bsing = B \Breg. Bsing

is a divisor in B (discriminant locus).
Now, we have claimed that the fibers ofMHiggs over Breg are complex tori: where

does that come from? To understand it, note that a smooth spectral curve � comes
with a tautological holomorphic line bundle L, namely the bundle whose fiber over
(z,λ) is the λ-eigenspace of φ(z). Moreover, by pushforward one can recover the
original Higgs bundle (Eh,φ) from (�,L).

Roughly speaking, then, the fiber ofMHiggs over a given� ∈ Breg is the set of all
holomorphic line bundles over �, with the correct degree (so that their pushforward
has the same degree as E). This set is well known to be a compact complex torus.8

More precisely, this torus is not quite the one we want, because L is not an arbitrary
bundle—it constrained by the requirement that the pushforward of L to C should
produce a bundle with trivial determinant. Thus the correct statement is that the torus
fiber of MHiggs is parameterizing those holomorphic line bundles L obeying this
constraint. This torus is known as the Prym variety of the covering � → C .

4.7 Allowing Singularities

For the application to gauge theory, it is useful to slightly extend our discussion:
instead of taking (D,ϕ) to be regular everywhere, we may require them to have
singularities at some points of C , of some constrained sort.9 Broadly speaking there
are two classes of singularity which we might consider: either regular singularities
where the eigenvalues of ϕ have only a simple pole, or irregular ones where the
eigenvalues have singularities of higher order.

Essentially all of the mathematical statements we have reviewed in this section
have direct extensions to the case with singularities; the main references are [55] for
the regular case, and [7] for the irregular case.

8This is a consequence of Hodge theory for (0, 1)-forms on �. One concrete way of thinking about
it, in the case where L has degree zero, is that every L of degree zero admits a metric for which
the Chern connection is flat, and this gives an isomorphism between the set of such L and the set
of unitary flat connections over �, which is evidently a torus.
9These singularities correspond to the punctures usually included in the definition of the theories
of class S.



Hitchin Systems in N = 2 Field Theory 75

One important point to keep inmind is that in the singular case one has some “local
parameters” keeping track of the behavior near each singularity: for example, in the
case of a regular singularity, the local parameters are the residues of the eigenvalues
of ϕ and the monodromy of D. In defining the moduli space of harmonic bundles
one then has to choose whether to hold these parameters fixed or let them vary.
If one wants the resulting moduli space to carry a natural hyperkähler metric, one
should hold them fixed (morally the reason is that the metric is given by the L2 inner
product of the fluctuations, and variations which change the local parameters around
a singularity turn out to be non-normalizable).
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A Review on Instanton Counting
and W-Algebras

Yuji Tachikawa

Abstract Basics of the instanton counting and its relation to W-algebras are
reviewed, with an emphasis toward physics ideas. We discuss the case of U(N )

gauge group on R
4 to some detail, and indicate how it can be generalized to other

gauge groups and to other spaces. This is part of a combined review on the recent
developments on exact results on N = 2 supersymmetric gauge theories, edited by
J. Teschner.

1 Introduction

1.1 Instanton Partition Function

After the indirect determination of the low-energy prepotential ofN = 2 supersym-
metric SU(2) gauge theory in [1, 2], countless efforts were spent in obtaining the
same prepotential in a much more direct manner, by performing the path integral
over instanton contributions. After the first success in the 1-instanton sector [3, 4],
people started developing techniques to performmulti-instanton computations. Years
of study culminated in the publication of the review [5] carefully describing both the
explicit coordinates of and the integrand on the multi-instanton moduli space.

A parallel development was ongoing around the same time, which utilizes a pow-
erful mathematical technique, called equivariant localization, in the instanton cal-
culation. In [6], the authors studied equivariant integrals over various hyperkähler
manifolds, including the instanton moduli spaces. From the start, their approach uti-
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lized the equivariant localization, but it was not quite clear at that time exactly which
physical quantity they computed. Later in [7–9], the relation between the localiza-
tion computation and the low-energy Seiberg-Witten theory was explored. Finally,
there appeared the seminal paper by Nekrasov [10], where it was pointed out that
the equivariant integral in [6], applied to the instanton moduli spaces, is exactly the
integral in [5] which can be used to obtain the low-energy prepotential.

In [10], a physical framework was also presented, where the appearance of the
equivariant integral can be naturally understood. Namely, one can deform the theory
on R

4 by two parameters ε1,2, such that a finite partition function Z(ε1,2; ai ) is well-
defined, where ai are the special coordinates on the Coulomb branch of the theory.
Then, one has

log Z(ε1,2; ai ) → 1

ε1ε2
F(ai ) + less singular terms (1.1)

in the ε1,2 → 0 limit. The function Z(ε1,2) is called under various names, such
as Nekrasov’s partition function, the deformed partition function, or the instanton
partition function. As the partition function is expressed as a discrete, infinite sum
over instanton configurations, the method is dubbed instanton counting. In [11–14],
it was also noticed that the integral presented in [5] is the integral of an equivariant
Euler class, but the crucial idea of using ε1,2 is due to [10].

For SU(N ) gauge theory with fundamental hypermultiplets, the function Z can be
explicitly written down [10, 13, 15, 16]. The equality of the prepotential as defined
by (1.1) and the prepotential as determined by the Seiberg-Witten curve is a rigorous
mathematical statement which was soon proven by three groups by three distinct
methods [17–20]. The calculational methods were soon generalized to quiver gauge
theories, other matter contents, and other classical gauge groups [21–27]. It was
also extended to calculations on the orbifolds of R

4 in [28]. We now also know a
uniform derivation of the Seiberg-Witten curves from the instanton counting for SU
quiver gauge theories with arbitrary shape thanks to [29, 30]. Previous summaries
and lecture notes on this topic can be found e.g. in [31, 32].

An N = 2 gauge theory can often be engineered by considering type IIA string
on an open Calabi-Yau. It turned out [33–36] that the topological A-model partition
function as calculated by the topological vertex [37, 38] is then equal to Nekrasov’s
partition function of the five-dimensional version of the theory, when ε1 = −ε2
is identified with the string coupling constant in the A-model. This suggested the
existence of a refined, i.e. two-parameter version of the topological string, and a
refined formula for the topological vertex was formulated in [39–43], so that the
refined topological A-model partition function equals Nekrasov’s partition function
at ε1 + ε2 �= 0. The relation between instanton partition functions and refined topo-
logical vertexwas further studied in e.g. [44, 45]. The same quantity can be computed
in the mirror B-model side using the holomorphic anomaly equation [46–49], which
also provided an independent insight to the system.

Wewill derive the instanton partition function of four-dimensional gauge theories
by considering a five-dimensional system and then taking the four-dimensional limit.
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Therefore the review should prepare the reader so that they can understand systems
in either dimensions. In this review, we mostly concentrate on four-dimensional
theories, with only a cursory mention of the systems in five dimensions.

1.2 Relation to W-Algebras

Another recent developments concerns the two-dimensional CFT structure on the
instanton partition function, which was first observed in [50, 51] in the case of
SU(2) gauge theory on R

4, and soon generalized to SU(N ) in [52], to other classical
groups by [26, 27], and to arbitrary gauge groups by [53].

This observation was motivated from a general construction found in [54] and
reviewed in [V:2,V:3] in this volume.Namely, the 6dN = (2, 0) theory compactified
on a Riemann surface C gives rise to 4d N = 2 theories labeled by C . Put the 4d
theories thus obtained on S4. The partition function can be computed as described
in [55, 56] and reviewed in [V:6], which is given by an integral of the one-loop part
and the instanton part. The one-loop part is given by a product of double-Gamma
functions, and the instanton part is the product (one for the north pole and the other
for the south pole) of two copies of the instanton partition function as reviewed
in this review. As the one-loop part happens to be equal to that of the Liouville-
Toda conformal field theory on C as is reviewed in [V:12], the instanton part should
necessarily be equal to the conformal blocks of these CFTs. The conformal blocks
have a strong connection to matrix models, and therefore the instanton partition
functions can also be analyzed from this point of view. This will be further discussed
in [V:5] in this volume.

We can also consider instanton partition functions of gauge groupU(N ) onR
4/Zn

where Zn is an subgroup of SU(2) acting on R
4 � C

2. Then the algebra which acts
on the moduli space is guessed to be the so-called nth para-WN algebra [57–63].
For U(2) on R

4/Z2, we have definite confirmation that there is the action of a free
boson, the affine algebra SU(2)2, together with theN = 1 supersymmetric Virasoro
algebra [57, 64].

A further variation of the theme is to consider singularities in the configuration
of the gauge field along C ⊂ C

2. This is called a surface operator, and more will
be discussed in [V:8] in this volume. The simplest of these is characterized by the
singular behavior Aθdθ → μdθ where θ is the angular coordinate transverse to the
surface C and μ is an element of the Lie algebra of the gauge group G . The algebra
which acts on the moduli space of instanton with this singularity is believed to be
obtained by theDrinfeld-Sokolov reduction of the affine algebra of typeG [65–67]. In
particular, when μ is a generic semisimple element, the Drinfeld-Sokolov reduction
does not do anything in this case, and the algebra is the affine algebra of type G itself
when G is simply-laced. This action of the affine algebra was constructed almost ten
years ago [19, 20], which was introduced to physics community in [68].

http://dx.doi.org/10.1007/978-3-319-18769-3_2
http://dx.doi.org/10.1007/978-3-319-18769-3_3
http://dx.doi.org/10.1007/978-3-319-18769-3_6
http://dx.doi.org/10.1007/978-3-319-18769-3_12
http://dx.doi.org/10.1007/978-3-319-18769-3_5
http://dx.doi.org/10.1007/978-3-319-18769-3_8
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Organization

We begin by recalling why the instantons configurations are important in gauge
theory in Sect. 2. A rough introduction to the structure of the instanton moduli space
is also given there. In Sect. 3, we study the U(N ) gauge theory on R

4. We start in
Sect. 3.1 by considering the partition function of generic supersymmetric quantum
mechanics. In Sect. 3.2, we will see how the instanton partition function reduces
to the calculation of a supersymmetric quantum mechanics in general, which is
then specialized to U(N ) gauge theory in Sect. 3.3, for which explicit calculation is
possible. The result is given a mathematical reformulation in Sect. 3.4 in terms of the
equivariant cohomology, which is then given a physical interpretation in Sect. 3.5.
The relation to the W-algebra is discussed in Sect. 3.6. Its relation to the topological
vertex is briefly explained in Sect. 3.7; more details will be given in [V:13] in this
volume. In Sects. 4 and 5, we indicate how the analysis can be extended to other
gauge groups and to other spacetime geometries, respectively.

Along the way, we will be able to see the ideas of three distinct mathematical
proofs [17–20] of the agreement of the prepotential as obtained from the instanton
counting and that as obtained from the Seiberg-Witten curve. The proof by Nekrasov
and Okounkov will be indicated in Sect. 3.3, the proof by Braverman and Etingof in
Sect. 5.1, and the proof by Nakajima and Yoshioka in Sect. 5.3.

In this paper we are not going to review standard results inW-algebras, which can
all be found in [69, 70]. The imaginary unit

√−1 is denoted by i, as we will often
use i for the indices to sum over.

If the reader understands Japanese, an even more introductory account of the
whole story can be found in [71].

2 Gauge Theory and the Instanton Moduli Space

2.1 Instanton Moduli Space

Let us first briefly recall why we care about the instanton moduli space. We are
interested in the Yang-Mills theory with gauge group G, whose partition function is
given by

Z =
∫

[DAμ]e−S where S = 1

2g2

∫
tr Fμν Fμν, (2.1)

or its supersymmetric generalizations. Configurations with smaller action S con-
tribute more significantly to the partition function. Therefore it is important to find
the action-minimizing configuration:

tr Fμν Fμν = 1

2
tr(Fμν ± F̃μν)

2 ∓ tr Fμν F̃μν ≥ ∓ tr Fμν F̃μν. (2.2)

http://dx.doi.org/10.1007/978-3-319-18769-3_13
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For a finite-action configuration, it is known that the quantity

n := − 1

16π2

∫
d4x tr Fμν F̃μν (2.3)

is always an integer for the standard choice of the trace tr for SU(N ) gauge field.
For other gauge groups, we normalize the trace symbol tr so that this property holds
true. Then we find ∫

d4x tr Fμν Fμν ≥ 16π2|n| (2.4)

which is saturated only when

Fμν + F̃μν = 0 or Fμν − F̃μν = 0 (2.5)

depending if n > 0 or n < 0, respectively. This is the instanton equation. As it sets
the (anti-)self-dual part of the Yang-Mills field strength to be zero, it is also called
the (anti)-self dual equation, or the (A)SD equation for short.

The equation is invariant under the gauge transformation g(x). We identify two
solutions which are related by gauge transformations such that g(x) → 1 at infinity.
The parameter space of instanton solutions is called the instanton moduli space, and
we denote it by MG,n in this paper.

For the simplest case G = SU(2) and n = 1, a solution is parameterized by eight
parameters, namely

• four parameters for the center, parameterizing R
4,

• one parameter for the size, parameterizing R>0,
• and three parameters for the global gauge direction SU(2)/Z2 ∼ S3/Z2.

The last identification byZ2 is due to the fact that the Yang-Mills field is in the triplet
representation and therefore the element diag(−1,−1) ∈ SU(2) doesn’t act on it.
The instanton moduli space is then

MSU(2),1 = R
4 × R

4/Z2 (2.6)

where we combined R>0 and S3 to form an R
4.

As the Eq. (2.5) is scale invariant, an instanton can be shrunk to a point. This is
called the small instanton singularity, which manifests in (2.6) as the Z2 orbifold
singularity at the origin.

For a general gauge group G and still with n = 1, it is known that every instanton
solution is given by picking an SU(2) 1-instanton solution and regarding it as an
instanton solution of gauge group G by choosing an embedding SU(2) → G. It is
known that such embeddings have 4h∨(G) − 5 parameters, where h∨(G) is the dual
Coxeter number of G. Together with the position of the center and the size, we have
4h∨(G) parameters in total. Equivalently, the instanton moduli space MG,1 is real
4h∨(G) dimensional. It is a product of R

4 and the minimal nilpotent orbit of gC: this
fact will be useful in Sect. 4.3.
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When n > 0, oneway to construct such a solution is to take n 1-instanton solutions
with well-separated centers, superimpose them, and add corrections to satisfy the
Eq. (2.5) necessary due to its nonlinearity. It is a remarkable fact that this operation
is possible even when the centers are close to each other. The instanton moduli space
MG,n then has real 4h∨(G)n dimensions. There is a subregion of the moduli space
where one out of n instantons shrink to zero size, and gives rise to the small instanton
singularity. There, the gauge configuration is given by a smooth (n − 1)-instanton
solution with a pointlike instanton put on top of it. Therefore, the small instanton
singularity has the form [72]

R
4 × MG,n−1 ⊂ MG,n. (2.7)

2.2 Path Integral Around Instanton Configurations

Now let us come back to the evaluation of the path integral (2.1). We split a general
gauge field Aμ of instanton number n into a sum

Aμ = Ainst
μ + δAμ (2.8)

where Ainst
μ is the instanton solution closest to the given configuration Aμ. When δAμ

is small, we have

S = 8π2|n|
g2

+
∫

d4x[(terms quadratic in δAμ) + (higher terms)] (2.9)

and the path integral becomes

Z =
∫

[DAμ]e−S =
∑

n

∫
MG,n

d4h∨(G)n X
∫

[δAμ]e− 8π2 |n|
g2

+···
(2.10)

where X ∈ MG,n labels an instanton configuration.
It was ’t Hooft who first tried to use this decomposition to study the dynamics

of quantum Yang-Mills theory [73]. It turned out that the integral over the fluctua-
tions δAμ around the instanton configuration makes the computation in the strongly
coupled, infrared region very hard in general.

For a supersymmetricmodelwith aweakly coupled region, however, the fermionic
fluctuations and the gauge fluctuations cancel, and often the result can be written as
an integral over MG,n of a tractable function with explicit expressions; the state of
the art at the turn of the century was summarized in the reference [5]. One place the
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relation between supersymmetry and the instanton equation (2.5) manifests itself is
the supersymmetry transformation law of the gaugino, which is roughly of the form

δλα = Fαβεβ, δλ̄α̇ = Fα̇β̇ ε̄β̇ . (2.11)

Here, Fαβ and Fα̇β̇ are (A)SD components of the field strength written in the spinor
notation. Therefore, if the gauge configuration satisfies (2.5), then depending on the
sign of n, half of the supersymmetry corresponding to εα or εα̇ remains unbroken.
In general, in the computation of the partition function in a supersymmetric back-
ground, only configurations preserving at least some of the supersymmetry gives
non-vanishing contributions in the path integral. This is the principle called the
supersymmetric localization. In this review we approach this type of computation
from a rather geometric point of view.

3 U(N) Gauge Group on R
4

3.1 Toy Models

We will start by considering supersymmetric quantum mechanics, as we are going
to reduce the field theory calculations to supersymmetric quantum mechanics on
instanton moduli spaces in Sect. 3.2.

3.1.1 Supersymmetric Quantum Mechanics on C
2

Let us first consider the quantum mechanics of a supersymmetric particle on C
2,

parameterized by (z, w). Let the supersymmetry be such that z, w are invariant, and
(z̄, ψz̄) and (w̄, ψw̄) are paired. This system also has global symmetries J1 and J2,
such that (J1, J2) = (1, 0) for z and (J1, J2) = (0, 1) for w.

Let us consider its supersymmetric partition function

Z(β; ε1, ε2) = trH(−1)F eiβε1 J1eiβε2 J2 (3.1)

whereH is the total Hilbert space. As there is a cancellation within the pairs (z̄, ψz̄)

and (w̄, ψw̄), we have the equality

Z(β; ε1, ε2) = trHsusy eiβε1 J1eiβε2 J2 (3.2)

where Hsusy is the subspace consisting of supersymmetric states, which in this case
is

Hsusy �
⊕

m,n≥0

Czmwn. (3.3)
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The partition function is then

Z(β; ε1, ε2) = 1

1 − eiβε1

1

1 − eiβε2
. (3.4)

In the β → 0 limit, we have

(−iβ)2Z(β; ε1, ε2) → 1

ε1ε2
. (3.5)

3.1.2 Supersymmetric Quantum Mechanics on CP
1

Next, consider a charged supersymmetric particle moving on S2 � CP
1, under the

influence of a magnetic flux of charge j = 0, 1
2 , 1, etc. Let us use the complex

coordinate z so that z = 0 is the north pole and z = ∞ is the south pole. The
supersymmetric Hilbert space is then

Hsusy �
2 j⊕

k=0

Czk(∂z)
⊗ j , (3.6)

and is the spin j representation of SU(2) acting on CP
1. Let the global symmetry J

to rotate z with charge 1. Then we have

Z(β; ε) = trHsusy eiβε J = ei jβε + ei( j−1)βε + · · · + e−i jβε. (3.7)

This partition function can be re-expressed as

Z(β; ε) = e+i jβε

1 − e−iβε
+ e−i jβε

1 − e+iβε
. (3.8)

Its β → 0 limit is finite:

Z(β; ε) → 2 j + 1. (3.9)

3.1.3 Localization Theorem

These two examples illustrate the following localization theorem: consider a quantum
mechanics of a supersymmetric particle moving on a smooth complex space M of
complex dimension d with isometry U(1)n , under the influence of a magnetic flux
corresponding to a line bundle L on M . Then the space of the supersymmetric states
is the space of holomorphic sections of L . When L is trivial, it is just the space of
holomorphic functions on M .
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Assume the points fixed by U(1)n on M are isolated. Denote the generators of
U(1)n by J1, . . . , Jn . Then the following relation holds:

Z(β; ε1, . . . , εn) ≡ trH(−1)F eiβ
∑

i εi Ji =
∑

p

eiβ
∑

i j (p)i εi∏d
a=1(1 − eiβ

∑
i k(p)i,aεi )

, (3.10)

see e.g. [74]. Here, the sum runs over the set of fixed points p on M , and j (p)i and
k(p)i,a are defined so that

trTM|p eiβ
∑

i εi Ji =
d∑

a=1

eiβ
∑

i k(p)i,aεi (3.11)

and

trL|p eiβ
∑

i εi Ji = eiβ
∑

i j (p)i Ji . (3.12)

In the following, it is convenient to abuse the notation and identify a vector space
and its character under U(1)N . Then we can just write

TM|p =
d∑

a=1

eiβ
∑

i k(p)i,aεi , L|p = eiβ
∑

i j (p)i Ji . (3.13)

We will also use +, ×, − instead of ⊕, ⊗ and �.
In (3.4), the only fixed point is at (z, w) = (0, 0), and in (3.8), there are two

fixed points, one at z = 0 and z = ∞. It is easy to check that the general theorem
reproduces (3.4) and (3.8).

It is also clear that in the β → 0 limit, we have

(−iβ)d Z(β; ε1, . . . , εn) →
∑

p

1∏d
a=1

∑
i k(p)i,aεi

, (3.14)

which is zero if M is compact.

3.1.4 Supersymmetric Quantum Mechanics on C
2/Z2

Let us make the identification by the Z2 action (z, w) ∼ (−z,−w) in the model of
Sect. 3.1.1. Then the supersymmetric Hilbert space (3.3) becomes

Hsusy =
⊕

m,n: even
Czmwn ⊕

⊕
m,n: odd

Czmwn (3.15)
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and the partition function is therefore

Z(β; ε1, ε2) = 1 + eiβ(ε1+ε2)

(1 − e2iβε1)(1 − e2iβε2)
. (3.16)

The β → 0 limit is then

(iβ)2Z(β; ε1, ε2) → 1

2ε1ε2
. (3.17)

The additional factor 2 with respect to (3.5) is due to the Z2 identification.
The localization theorem is not directly applicable, as the fixed point (z, w) =

(0, 0) is singular. Instead, take the blow-up M of C
2/Z2, which is the total space of

the canonical line bundle of CP
1. The space is now smooth, with two fixed points.

At the north pole n,

trTM|n eiβ(ε1 J1+ε2 J2) = e2iβε1 + e−iβ(ε1−ε2), (3.18)

and at the south pole s,

trTM|s eiβ(ε1 J1+ε2 J2) = eiβ(ε1−ε2) + e2iβε2 . (3.19)

Then we have

Z(β; ε1, ε2) = 1

(1 − e2iβε1)(1 − e−iβ(ε1− ε2))
+ 1

(1 − eiβ(ε1− ε2))(1 − e2iβε2)
(3.20)

from the localization theorem, which agrees with (3.16).

3.2 Instanton Partition Function: Generalities

Let us now come to the real objective of our study, namely the four-dimensional
N = 2 supersymmetric gauge theory. The data defining the theory is its gauge group
G, the flavor symmetry F , and the hypermultiplet representation R⊕ R̄ under G × F .
With the same data, we can consider the five-dimensional N = 1 supersymmetric
gauge theory, with the same gauge group and the same hypermultiplet representation.
Weput this five-dimensional theory on aC

2 bundle over S1 givenby takingC
2×[0, β)

parameterized by (z, w, ξ 5), and making the identification

(z, w, 0) ∼ (eiβε1 z, eiβε2w, β). (3.21)

See Fig. 1 for a picture. This background space-time is often called the
 background.
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Fig. 1 The five-dimensional
spacetime. The vertical
direction is ξ5, and the R4

planes at ξ5 = 0 and ξ5 = β

are identified after a rotation

We set the vacuum expectation value of the gauge field at infinity, such that its
integral along the ξ 5 direction is given by

diag(eiβa1 , eiβa2 , . . . , eiβar ) ∈ U(1)r ⊂ G. (3.22)

We also set the background vector field which couples to the flavor symmetry, such
that its integral along the ξ 5 direction is given by

diag(eiβm1 , eiβm2 , . . . , eiβm f ) ∈ U(1) f ⊂ F. (3.23)

mi becomes the mass parameters when we take the four-dimensional limit β → 0.
We are interested in the supersymmetric partition function in this background:

Z(β; ε1,2; a1,...,r ; m1,..., f ) = trHQFT(−1)F eiβ(ε1 J1+ε2 J2+∑r
s=1 as Qs+∑ f

s=1 ms Fs ) (3.24)

where HQFT is the Hilbert space of the five-dimensional field theory on R
4;

J1,2, Q1,...,r and F1,..., f are the generators of the spatial, gauge and flavor rotation,
respectively.

We are mostly interested in the non-perturbative sector, where one has instanton
configurations on R

4 with instanton number n. Here we assume that G is a simple
group; the generalization is obvious.

Energetically, five-dimensional configurations which are close to a solution of
the instanton equation (2.5) at every constant time slice are favored within the path
integral, similarly as discussed in Sect. 2.1. We can visualize such a configuration as
one where the parameters describing the n-instanton configuration is slowly chang-
ing according to time. Therefore, the system can be approximated by the quantum
mechanical particle moving within the instanton moduli space. This approach is
often called the moduli space approximation. With supersymmetry, this approxima-
tion becomes exact, and we have

Z inst(β; ε1,2; a1,...,r ) =
∑
n≥0

e
− 8π2nβ

g2 trHn (−1)F eiβ(ε1 J1+ε2 J2+∑r
s=1 as Qs+∑ f

s=1 ms Fs )

(3.25)

where g is the five-dimensional coupling constant, andHn is the Hilbert space of the
supersymmetric quantum mechanics on the n-instanton moduli space. Its bosonic



90 Y. Tachikawa

part MG,n is the moduli space of n-instantons of gauge group G, which we reviewed
in Sect. 2.1. It has complex dimension 2h∨(G)n. In addition, the fermionic direction
V(R) has complex dimension k(R)n, where k(R) is the quadraticCasimir normalized
so that it is 2h∨(G) for the adjoint representation. This V(R) is a vector bundle over
the instanton moduli space MG,n , and is often called the matter bundle.

MG,n has a natural action of U(1)2 which rotates the spacetime C
2, and a natural

action of G which performs the spacetime independent gauge rotation. These actions
extend equivariantly to the matter bundle V(R).

Then, if MG,n were smooth and if the fixed points p under U (1)2+r ⊂ U (1)2 ×
G were isolated, we can apply the localization theorem to compute the instanton
partition function:

Z inst(β; ε1,2; a1,...,r ) =
∑
n≥0

e
− 8π2nβ

g2
∑

p

∏k(R)n
t=1 (1 − eiβwt (p))∏2h∨(G)n

t=1 (1 − eiβvt (p))
(3.26)

where vt (p) and wt (p) are linear combinations of ε1,2, a1,...,r and m1,..., f such that
we have

TMG,n|p =
2h∨(G)n∑

t=1

eiβvt (p), V(R)|p =
k(R)n∑
t=1

eiβwt (p). (3.27)

As was explained in Sect. 2.1, MG,n has small instanton singularities and the formula
above is not directly applicable. One of the technical difficulties in the instanton
computation is how to deal with this singularity. Currently, the explicit formula is
known (or, at least the method to write it down is known) for the following cases:
(i) G = U(N ) with arbitrary representations, (ii) G = SO(N ) with representations
appearing in the tensor powers of the vector representation, and (iii) G = USp(2N )

with arbitrary representations. We will discuss U(N ) with (bi)fundamentals in
Sect. 3.3, and SO(N ) and USp(2N ) with fundamentals in Sect. 4.1. For other repre-
sentations, see [24, 25].

The 5d gauge theory can have aChern-Simons coupling, it induces amagnetic flux
to the supersymmetric quantummechanics on the instantonmoduli space, which will
introduce a factor in the numerator of (3.26) as dictated by the localization theorem
(3.10) [75].

The four-dimensional limit β → 0 needs to be taken carefully. In principle threre
can bemultiple interesting choices of the scaling of the variables, resulting in different
four dimensional dynamics. Here we only consider the standard one. We would like
to take the limit β → 0 keeping ε1,2 and ai finite. Note that each term in the sum
(3.26) with fixed instanton number n has (2h∨(G) − k(R))n more factors in the
denominator, producing a factor ∝ β−(2h∨(G)−k(R))n . In order to compensate it, we
express the classical contribution to the action in (3.26) as

e
− 8π2β

g2 = (−iβ)2h∨(G)−k(R)q (3.28)
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and keep q fixed while taking β → 0. The four-dimensional limit of the partition
function is then

Z inst(β; ε1,2; a1,...,r ) =
∑
n≥0

qn
∑

p

∏k(R)n
t=1 wt (p)∏2h∨(G)n

t=1 vt (p)
. (3.29)

Note that the naive four-dimensional coupling g4d is given by the five-dimensional
coupling g5d by the relation

8π2

g24d
= 8π2β

g25d
. (3.30)

Therefore, the relation (3.28), where q is fixed and β is varied, can be thought of
as describing the running of g4d when we change the UV cutoff scale β−1. We see
that the relation (3.28) correctly reproduces the logarithmic one-loop running of g4d ,
controlled by the one-loop beta function coefficient 2h∨(G) − k(R). The dynamical
scale � is given by q = �2h∨(G)−k(R). It is somewhat gratifying to see that the
logarithmic running arises naturally in this convoluted framework.

This definition of the four-dimensional instanton partition function does not
explain why its limit

F(a1,...,r ) = lim
ε1,2→0

ε1ε2 log Z inst(ε1,2; a1,...,r ) (3.31)

is the prepotential of the four-dimensional gauge theory. For field theoretical expla-
nations, see [10] or the Appendix of [75].

3.3 Instanton Partition Function: Unitary Gauge Groups

The instanton moduli space is always singular as explained in Sect. 2.1. Therefore,
we need to do something in order to apply the idea outlined in the previous section.
When the gauge group is U(N ), there is a standard way to deform the singularities
so that the resulting space is smooth [9, 76].

ADHM construction Let the instanton number be n, and introduce the space MG,n,t

via

MG,n,t := {μC(x) = t | x ∈ XG,n}/GL(n). (3.32)

• Here XG,n is a linear space constructed from two vector spaces V , W described
below as follows

XG,n = (T ⊗−1
1 ⊕T ⊗−1

2 )⊗ V ⊗ V ∗ ⊕W ∗ ⊗ V ⊕T ⊗−1
1 ⊗T ⊗−1

2 ⊗ V ∗ ⊗W. (3.33)
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Here, Ti is a one-dimensional space on which the generator Ji has the eigenvalue
+1. As it is very cumbersome to write a lot of ⊗ and ⊕, we abuse the notation as
already introduced above, by identifying the vector space and its character:

XG,n = (e−iβε1 + e−iβε2)V V ∗ + W ∗V + e−iβ(ε1+ ε2)V ∗W. (3.34)

• V � C
n is a space with a natural GL(n) action and,

• W � C
N is a space with a natural U(N ) action.

• The ∗ operation is defined naturally by setting i∗ = −i, ε1,2∗ = ε1,2, and a1,...,r
∗ =

a1,...,r ,
• and μC is a certain quadratic function on XG,n taking value in the Lie algebra of
GL(n),

• and finally t is a deformation parameter taking value in the center of the Lie algebra
of GL(n). For generic t the space is smooth, but it becomes singular when t = 0.

This is called theADHMconstruction, and the space at t = 0, MG,n,0, is the instanton
moduli space MG,n .

The trickwe use is to replace MG,n by MG,n,t with t �= 0 and apply the localization
theorem. The answer does not depend on t as long as it is non-zero. The deformation
by t can be physically realized by the introduction of the spacetime noncommutativity
[76], but this physical interpretation does not play any role here. Mathematically, this
deformation corresponds to considering not just bundles but also torsion free sheaves,
see e.g. [9]. Note that it is not known how to perform such deformation in other gauge
groups at present.

The fixed points of the U(1)2+N action on MG,n,t was classified in [16], which
we will describe below. A fixed point p is labeled by N Young diagrams �Y =
(Y1, . . . , YN ) such that the total number of the boxes | �Y | is n. Let us denote by
(i, j) ∈ Y when there is a box at the position (i, j) in a Young diagram Y . Then,
the fixed point labeled by p = (Y1, . . . , YN ) corresponds to the action of U(1)2 and
U(1)r ⊂ G on V and W such that

Wp =
N∑

s=1

eiβas , Vp =
N∑

s=1

∑
(i, j)∈Ys

eiβ(as+(1−i)ε1+(1− j)ε2). (3.35)

Then we have

TM|p = W ∗
p Vp + eiβ(ε1+ ε2)V ∗

p Wp − (1 − eiβε1)(1 − eiβε2)VpV ∗
p , (3.36)

from which you can read off v(p)t in (3.27). As for w(p)t , we have

V(fundamental)p = e−iβm Vp, V(adjoint)p = e−iβmTM|p (3.37)

wherem is themass of the hypermultiplets. In the case of a bifundamental ofU(N1)×
U(N2), the zero modes are determined once the instanton configurations p, q of
U(N1,2) are specified:
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V(bifundamental)p,q = e−iβm(W ∗
p Vq + eiβ(ε1+ε2)V ∗

p Wq − (1 − eiβε1)(1 − eiβε2)V ∗
p Vq).

(3.38)

Note that both the adjoint and the fundamental are special cases of the bifundamental,
namely, the adjoint is when p = q, and the fundamental is when p is empty.

Then it is just a combinatorial exercise to write down the explicit formula for the
four-dimensional partition function (3.29) in terms of Young diagrams labeling the
fixed points. The explicit formulas are given below. However, before writing them
down, the author would like to stress that to implement it in a computer algebra
system, it is usually easier and less error-prone to just directly use the formulas
(3.35)–(3.38) to compute the characters and then to read off v(p)t and w(p)t via
(3.27), which can then be plugged in to (3.29).

Explicit formulas Let Y = (λ1 ≥ λ2 ≥ · · · ) be a Young tableau where λi is the
height of the i th column.We set λi = 0 when i is larger than the width of the tableau.
Let Y T = (λ′

1 ≥ λ′
2 ≥ · · · ) be its transpose. For a box s at the coordinate (i, j), we

let its arm-length AY (s) and leg-length LY (s) with respect to the tableau Y to be

AY (s) = λi − j, LY (s) = λ′
j − i, (3.39)

see Fig. 2. Note that they can be negative when the box s is outside the tableau. We
then define a function E by

E(a, Y1, Y2, s) = a − ε1LY2(s) + ε2(AY1(s) + 1). (3.40)

We use the vector symbol �a to stand for N -tuples, e.g. �Y = (Y1, Y2, . . . , YN ), etc.
Then, the contribution of an SU(N ) vectormultiplet from the fixed point p labeled

by an N -tuple of Young diagrams �Y is the denominator of (3.29), where vt (p) can
be read off from the characters of TMG,n|p once we have the form (3.27). This is
done by plugging (3.35) and (3.36). The end result is

zvect(�a, �Y ) = 1∏N
i, j=1

∏
s∈Yi

E(ai − a j , Yi , Y j , s)
∏

t∈Y j
(ε1 + ε2 − E(a j − ai , Y j , Yi , t))

.

(3.41)

Note that there are 2Nn factors in total. This is as it should be, as TMG,n is complex
2Nn dimensional, and there are 2Nn eigenvalues at each fixed point.

s

Fig. 2 Definition of the arm-length and the leg-length. For a box s in a Young tableau displayed
above, the leg-length is the number of boxes to the right of s, marked by black disks, and the
arm-length is the number of boxes on top of s
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The contribution from (anti)fundamental hypermultiplets is given by

zfund(�a, �Y , m) =
N∏

i=1

∏
s∈Yi

(φ(ai , s) − m + ε1 + ε2), (3.42)

zantifund(�a, �Y , m) = zfund(�a, �Y , ε1 + ε2 − m) (3.43)

where φ(a, s) for the box s = (i, j) is defined as

φ(a, s) = a + ε1(i − 1) + ε2( j − 1). (3.44)

They directly reflect the characters of Vp in (3.35).
When we have gauge group SU(N )× SU(M) and a bifundamental charged under

both, the contribution from the bifundamental depends on the gauge configuration of
both factors of the gauge group. Namely, for the fixed point p of MSU(N ),n,t labeled
by the Young diagram �Y and the fixed point q of MSU(N ),n labeled by the Young
diagram �W , the contribution of a bifundamental is [21, 25]:

zbifund(�a, �Y ; �b, �W ; m) =
N∏
i

M∏
j

∏
s∈Yi

(E(ai − b j , Yi , W j , s) − m)
∏

t∈W j

(ε1 + ε2 − E(b j − ai , W j , Yi , t) − m)

(3.45)

where �a and �b are the chemical potentials for SU(N ) and SU(M) respectively.
The contribution of an adjoint hypermultiplet is a special case where p = q and

�a = �b. It is

zadj(�a, �Y , m) = zbifund(�a, �Y , �a, �Y , m). (3.46)

This satisfies

zvector(�a, �Y ) = 1/zadj(�a, �Y , 0). (3.47)

Note that there are several definitions of the mass parameterm. Another definition
with

m ′ = m − 1

2
(ε1 + ε2) (3.48)

is also common. For their relative merits, the reader is referred to the thorough
discussion in [77].

Let us write down, as an example, the instanton partition function of N = 2∗
SU(N ) gauge theory, i.e. an SU(N ) theory with a massive adjoint multiplet. We just
have to multiply the contributions determined above, and we have
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Z =
∑
n≥0

qn
∑

�Y ,| �Y |= n

zadj(�a, �Y , m)zvector(�a, �Y )

=
∑

�Y
q | �Y |

N∏
i, j=1

∏
s∈Yi

(E(ai − a j , Yi , Y j , s) + m)
∏

t∈Y j
(ε1 + ε2 − E(a j − ai , Y j , Yi , t) − m)∏

s∈Yi
E(ai − a j , Yi , Y j , s)

∏
t∈Y j

(ε1 + ε2 − E(a j − ai , Y j , Yi , t))
.

(3.49)

Nekrasov-Okounkov For G = U(N ), the final result is a summation over N -tuples
of Young diagrams p = (Y1, . . . , YN ) of a rational function of ε1,2, a1,...,r andm1,..., f .
The prepotential can be extracted by taking the limit ε1,2 → 0. There, the summation
can be replaced by an extremalization procedure over the asymptotic shape of the
Youngdiagrams.Applying thematrixmodel technique, onefinds that the prepotential
as obtained from this instanton counting is the same as the prepotential as defined
by the Seiberg-Witten curve [18].

Explicit evaluation for U(2) with 1-instanton Before proceeding, let us calculate
the instanton partition function for the pure U(2) gauge theory at 1-instanton level
explicitly. It would be a good exercise, as the machinery used so far has been rather
heavy, and the formulas are although concrete rather complicated.

In fact, the calculation is already done in Sect. 3.1, since the moduli space in
question is C

2 × C
2/Z2. Here the first factor C

2 is the position of the center of the
instanton, and C

2/Z
2 ∼ R>0 × S3/Z2 parameterizes the gauge orientation of the

instanton via S3/Z2 � SO(3) � SU(2)/Z2 and the size of the instanton via R>0.
Introduce the coordinates (z, w,u, v)with the identification (u, v) ∼ (−u,−v). The
action of eiβ(ε1 J1+ε2 J2) is given by

(z, w,u, v) → (eiβε1 z, eiβε2w, eiβ(ε1+ ε2)/2u, eiβ(ε1+ ε2)/2v) (3.50)

and (u, v) form a doublet under the SU(2) gauge group. Then for diag(eiβa, e−iβa) ∈
SU(2), we have

(u, v) → (eiβau, e−iβav). (3.51)

Then the instanton partition function is given by combining (3.5) and (3.17):

Z inst(ε1,2; a) = 1

ε1ε2

1

2

1

(ε1 + ε2)/2 − a

1

(ε1 + ε2)/2 + a
. (3.52)

It is an instructive exercise to reproduce this from the general method explained
earlier in this section.

3.4 A Mathematical Reformulation

Let us now perform a mathematical reformulation, following the idea of [78]. For
G = U (N ), consider the vector space
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VG,�a =
∞⊕

n=0

VG,�a,n (3.53)

where

VG,�a,n =
⊕

p

C|p〉 (3.54)

where p runs over the fixed points of U(1)2+r action on MG,n,t . We define the inner
product by taking the denominator of (3.29):

〈p|q〉 = δp,q
1∏

t v(p)t
. (3.55)

Note that the basis vectors are independent of �a, but the inner product does depend on
�a. We introduce an operator N such that VG,�a,n is the eigenspace with eigenvalue n.

Let us introduce a vector

|pure〉 =
∞∑

n=0

∑
p

|p〉 ∈ VG,�a . (3.56)

Then the partition function (3.29) of the pure SU(N ) gauge theory is just

Z(ε1,2; �a) = 〈pure|qN|pure〉. (3.57)

A bifundamental charged under G1 = SU(N1) and G2 = SU(N2) defines a linear
map

��b,m,�a : VG1,�a → VG2,�b (3.58)

such that

〈q|�m |p〉 =
∏

t

w(p, q)t (3.59)

where the right hand side comes from the decomposition

V(bifundamental)p,q =
∑

t

e−iβw(p,q)t . (3.60)

Using this linear map ��b,m,�a , we can concisely express the partition function of
quiver gauge theories. For example, consider SU(N )1 × SU(N )2 gauge theory with
bifundamental hypermultiplets charged under SU(N )1 × SU(N )2 with mass m, see
Fig. 3 (4d). Then the instanton partition function (3.29) is just
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4d) SU(N) SU(N)

1q2q

5d)
L1L2

eq) pure| q2
N q1

N |pureΦ 2 a1

6d)

Fig. 3 Higher-dimensional setup of the quiver theory. The horizontal direction is x5. 4d) the
SU(N ) × SU(N ) quiver gauge theory in the infrared. 5d) 5d maximally supersymmetric SU(N )

theory on a segment. eq) its partition function, regarding the fifth direction as “time”. 6d) 6d
N = (2, 0) theory on a cylinder

Z(ε1,2; �a1, �a2; �m) = 〈pure|q2
N��a2,m,�a1q1

N|pure〉. (3.61)

In this section, we introduced the vector space VG,�a,n together with its inner
product using fixed points of MG,n,t . It is known that this vector space is a natural
mathematical object called the equivariant cohomology:

VG,�a,n = H∗
G×U(1)2(MG,n,t ) ⊗ SG (3.62)

where S is the quotient field of H∗
G×U(1)2(pt). A vector called the fundamental class

[MG,n,t ] is naturally defined as an element in H∗
G×U(1)2(MG,n,t ). Then the vector

|pure〉 above is

|pure〉 =
∞⊕

n=0

[MG,n,t ] ∈
∞⊕

n=0

H∗
G×U(1)2(MG,n,t ). (3.63)

For general G, there is only the singular space MG,n and not the smooth version
MG,n,t . Still, using the equivariant intersection cohomology, one can write the parti-
tion function of the pure N = 2 gauge theory with arbitrary gauge group G in the
form (3.57), see e.g. [79].

3.5 Physical Interpretation of the Reformulation

The reformulation in the previous section can be naturally understood by consid-
ering a five-dimensional setup; it is important to distinguish it from another five-
dimensional set-up we already used in Sect. 3.2.

Take the maximally supersymmetric SU(N ) gauge theory with coupling constant
g. We put the system on R

1,3 times a segment in the x5 direction, which is [0, L1] ∪
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[L1, L1+L2].Weput boundary conditions at x5 = 0, L1 and L1+L2. This necessarily
breaks the supersymmetry to one half of the original, making it to a system with 4d
N = 2 supersymmetry. At x5 = L1, we put N × N hypermultiplets, to which the
SU(N ) gauge group on the left and the SU(N ) gauge group on the right couple
by the left and the right multiplication. At x5 = 0 and x5 = L1 + L2, we put a
boundary condition which just terminates the spacetime without introducing any
hypermultiplet. See Fig. 3 (5d).

In the scale larger than L1,2, the theory effectively becomes the quiver gauge
theory treated, because the segment x5 ∈ [L1 + L2, L1] gives rise to an SU(N )

gauge group with 4d gauge inverse square coupling L2/g
2
5d , and the segment [L1, 0]

another SU(N ) gauge group with 4d inverse square coupling L1/g
2
5d . Therefore we

have, in (3.61),

log q1/ log q2 = L1/L2. (3.64)

The final idea is to consider the x5 direction as the time direction. At each fixed
value of x5, one has a state in the Hilbert space of this quantum field theory, which is
VG,�a introduced in the previous section. Then every factor in the partition function
of the quiver theory (3.61) has a natural interpretation, see Fig. 3 (eq):

• |pure〉 is the state created by the boundary condition at x5 = 0.
• qN

1 = e(log q1)N = e−L1E is the Euclidean propagation of the system by the length
L1.

• ��a2,m,�a1 is the operation defined by the bifundamental hypermultiplet at x5 = L1.
• qN

2 = e(log q2)N = e−L2E is the Euclidean propagation of the system by the length
L2.

• 〈pure| is the state representing the boundary condition at x5 = L1 + L2.

3.6 W-Algebra Action and the Sixth Direction

For G = U(N ), it is a mathematical fact [80, 81] that there is a natural action of the
WN algebra on VG,�a . The WN algebra is generated by two-dimensional holomorphic
spin-d currents Wd(z), d = 2, 3, . . . , N , and in particular contains the Virasoro sub-
algebra generated by T (z) = W2(z). The L0 of the Virasoro subalgebra is identified
with N acting on VG,�a . In particular, L−m maps VG,�a,n to VG,�a,n+m . Figuratively
speaking, L−m adds m instantons into the system. Furthermore, for generic value
of �a, VG,�a is the Verma module of the WN -algebra times a free boson. The central
charge of the Virasoro subalgebra of this WN algebra is given by the formula

c = (N − 1) + N (N 2 − 1)
(ε1 + ε2)

2

ε1ε2
. (3.65)
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Furthermore, it is believed that there is a natural decomposition

VG,�a = V�a′ ⊗ Hm (3.66)

into a WN Verma module V�a′ , and a free boson Fock space Hm . Here, we define m
and �a′ via

m =
∑

ai , �a′ = �a − m

(
1

N
, . . . ,

1

N

)
. (3.67)

Note that �a′ lives in an N −1 dimensional subspace. Then V�a′ is the Vermamodule of
the WN algebra constructed from N − 1 free scalar fields with zero mode eigenvalue
by �a′ and the background charge

�Q =
(

b + 1

b

)(
N

2
,

N

2
− 1, . . . , 1 − N

2
,− N

2

)
, b2 = ε1

ε2
, (3.68)

and Hm is the free boson Fock space with zero mode eigenvalue m. The action of a
free boson on Hm was constructed in [78]. The decomposition abovewas also studied
in [82, 83].

When ε1 + ε2 = 0, we have b + 1/b = 0 and the background charges (3.68)
vanish. In this case the systembecomes particularly simple, and it was already studied
in [84–86].

The vector |pure〉 ∈ VG,�a , from this point of view, is a special vector called a
Whittaker vector, which is a kind of a coherent state of the W-algebra [51, 87–89].
Small number of hypermultiplets in the fundamental representation also is a boundary
condition which also corresponds to a special state, studied in [90].

The linear map ��a,m,�b defined by a bifundamental hypermultiplet (3.58) should
be a natural map between two representations of WN algebras. A natural candidate
is an intertwiner of the WN algebra action, or equivalently, it is an insertion of a
primary operator of WN . If that is the case, the partition function of a cyclic quiver
with the gauge group SU(N )1 × SU(N )2 × SU(N )3,

tr qN
1 ��a,m1,�bqN

2 ��b,m2,�cqN
3 ��c,m3,�a, (3.69)

for example, is the conformal block of the WN algebra on the torus z ∼ q1q2q3z with
three insertions at z = 1, q1, and q1q2. This explains the observation first made in
[50].

Therefore the mathematically missing piece is to give the proof that ��a,m,�b is the
primary operator insertion. For N = 2 when WN is the Virasoro algebra, this has
been proven in [91, 92], but the general case is not yet settled. At least, there are
many studies which show the agreement up to low orders in the q-expansion [93,
94]. Also, the decomposition (3.66) predicts the existence of a rather nice basis in
the Verma module of WN algebra times a free boson which was not know before,
whose property was studied in [95]. The decomposition was also studied from the
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point of view of the W1+∞ algebra [96, 97] corresponding to the case ε1 + ε2 = 0.
Its generalization to the case ε1 + ε2 �= 0 was done in [98].

When one considers a bifundamental charged under SU(N1) × SU(N2) with
N1 > N2, we have a linear operator

� : VSU(N1) → VSU(N2), (3.70)

and we have an action of WNi on VSU(Ni ). The 6d construction using N = (2, 0)
theory of type SU(N1) [54] suggests that it can also be represented as a map

� : VSU(N1) → V
′, (3.71)

wherewe still have an action ofWN1 onV
′. ThenV

′ is no longer aVermamodule, even
for generic values of parameters. V′ are believed to be the so-called semi-degenerate
representations of WN1 algebras determined by N2, and there are a few checks of this
idea [99–101].

3.7 String Theoretical Interpretations

As seen in Sect. 3.5, the operatorN is theHamiltonian generating the translation along
x5. It is therefore most natural to make the identification log |z| = x5. Although the
circle direction x6 = arg z was not directly present in the setup of Sect. 3.5, it also
has a natural interpretation. Namely, the maximally supersymmetric 5d gauge theory
with gauge groupU(N ) on a space X is in fact the six-dimensionalN = (2, 0) theory
of type U(N ) on a space X × S1, such that the Kaluza-Klein momentum along the S1

direction is the instanton number of the 5d gauge theory. This again nicely fits with
the fact that Ln creates n instantons, as the operator Ln has n Kaluza-Klein momenta
along S1. The quiver gauge theory treated at the end of Sect. 3.5 can now be depicted
as in Fig. 3 (6d). There, the boundary conditions at both ends correspond to the state
|pure〉 in V. The operator ��a,m,�b is now an insertion of a primary field.

If one prefers string theoretical language, it can be further rephrased as follows.
We consider N D4-branes on the space X , in a Type IIA set-up. This is equivalent to
N M5-branes on the space X ×S1 in anM-theory set-up. TheKaluza-Kleinmomenta
around S1 are the D0-branes in the Type IIA description, which can be absorbed into
the world-volume of the D4-branes as instantons. The insertion of a primary is an
intersection with anotherM5-brane. This reduces in the type IIA limit an intersection
with an NS5-brane, which gives the bifundamental hypermultiplet.

In the discussions so far, we introduced two vector spaces associated to the
n-instanton moduli space MG,n , and saw the appearance of three distinct extra space-
time directions, ξ 5, x5 and x6.
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• First, we introduced Hn in Sect. 3.2. We put N = 1 supersymmetric 5d gauge
theory with hypermultiplets on the 
 background R

4 × S1 so that R
4 is rotated

when we go around S1. We then considered S1 as the time direction.We called this
direction ξ 5. The supersymmetric, non-perturbative part of the field theory Hilbert
space reduces to the Hilbert space of the supersymmetric quantum mechanics
on the moduli space of n-instantons plus the hypermultiplet zero modes. We did
not use the inner product in this Hilbert space. Mathematically, it is the space of
holomorphic functions on the moduli space.

• Second, we introduced Vn in Sect. 3.4. We put the maximally-supersymmetric 5d
gauge theory on R

4× a segment parameterized by x5, and considered the segment
as the time direction. The supersymmetric, non-perturbative part of the field theory
Hilbert space reduces to the space Vn . It has an inner product, defined by means of
the trace onHn . Mathematically, Vn is the equivariant cohomology of the moduli
space. In this second setup, another circular direction x6 automatically appears,
so that it combines with x5 to form a complex direction log z = x5 + i x6.

It is important to keep in mind that in this second story with x5 and x6 we kept
the radius β of ξ 5 direction to be zero. If we keep it to a nonzero value instead, the
inner product on VG,�a (3.55) is instead modified to

〈p|q〉 = δp,q
1∏

t 1 − eiβv(p)t
. (3.72)

Let us distinguish the vector space with this modified inner product from the original
one by calling it ṼG,�a . The WN action is no longer there. Instead, we have [80, 81,
102–104] an action of q-deformed WN algebra on ṼG,�a , which does not contain a
Virasoro subalgebra. Therefore, we do not generate additional direction x6 anymore.
String theoretically, the set up with ξ 5 and x5 corresponds to having N D5-branes in
Type IIB, and it is hard to add another physical direction to the system.

Relation to the refined topological vertex Now, let us picturize this last Type IIB
setup. We depict N D5-branes as N lines as in Fig. 4 (1). The horizontal direction is
x5, the vertical direction is x9, say. We do not show the spacetime directions R

4 or
the compactified direction ξ 5. In the calculation of the instanton partition function,
we assign a Young diagram to each D5-brane.

The boundary condition at fixed value of x5, introducing a bifundamental hyper-
multiplet, is realized by an NS5-brane cutting across N D5-branes, which can be
depicted as in Fig. 4 (2). When an NS5-brane crosses an D5-brane, they merge to
form a (1,1) 5-brane, which needs to be tilted to preserve supersymmetry; the figure
shows this detail.

Therefore, the whole brane set-up describing a five-dimensional quiver gauge
theory on a circle can be built from a vertex joining three 5-branes Fig. 4 (3), and
a line representing a 5-brane Fig. 4 (4). Any 5-brane is obtained by an application
of the SL(2, Z) duality to the 5-brane, so one can associate a Young diagram to any
line. The basic quantity is then a function Zvertex(ε1, ε2; Y1, Y2, Y3) which is called
the refined topological vertex. The partition function of the system is obtained by
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a1−a2

a2−a3

Y1

Y2

Y3

Y1

Y2

Y3

Y

Fig. 4 Type IIB setup, or equivalently the toric diagram.

multiplying the refined topological vertex for all the junctions of three 5-branes,
multiplying a propagator factor �(Y ) for each of the internal horizontal line, and
summing over all the Young diagrams.

The phrase ‘refined topological’ is used due to the following situation where it
was originally discovered. A review of the detail can be found in [V:13] in this
volume, so we will be brief here. We apply a further chain of dualities to the setup
we have arrived, so that the diagrams in Fig. 4 are now considered as specifying the
toric diagram of a non-compact toric Calabi-Yau space on which M-theory is put.
The direction ξ 5 is now the M-theory circle. Nekrasov’s partition function of this
setup when ε1 = −ε2 = gs is given by the partition function of the topological string
on the same Calabi-Yau with the topological string coupling constant at gs . This
gives the unrefined version of the topological vertex. The generalized case ε1 �= −ε2
should correspond to a refined version of the topological string on the Calabi-Yau,
and the function Zvertex for general ε1, ε2 is called the refined topological vertex. The
unrefined version was determined in [37, 38] and the refined version was determined
in [39, 40, 105].

In this discussion, we implicitly used the fact that the logarithm of the partition
function on the
 background (3.21) is equal to the prepotential in the presence of the
graviphoton background, which is further equal to the free energy of the topological
string. In the unrefined case this identification goes back to [106, 107]. The refined
case is being clarified, see e.g. [108–110].

As an aside, we can also perform a T-duality along the ξ5 direction in the type IIB
configuration above. This gives rise to a type IIA configuration in the fluxtrap solu-
tion, which lifts to a configuration of M5-branes with four-form background [111–
113]. For a certain class of gauge theories, we can also go to a duality frame where
we have D3-branes in an orbifold singularity with a particular RR-background. It has
been directly checked that the partition function in this setup reproduces Nekrasov’s
partition function in the unrefined case ε1 + ε2 = 0 [114–116].

Let us come back to the discussion of the refined topological vertex itself. The
summation over the Young diagrams in the internal lines of Fig. 4 (2) can be car-
ried out explicitly using the properties of Macdonald polynomials, and correctly

http://dx.doi.org/10.1007/978-3-319-18769-3_13
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reproduces the numerator of the partition function (3.26) coming from a bifunda-
mental, given by the weights in (3.38). The denominator basically comes from the
propagator factors associated to N horizontal lines [36, 41].

Here, it is natural to consider an infinite dimensional vector space

Ṽ1 =
⊕

Y

C|Y 〉 (3.73)

whose basis is labeled by a Young diagram, such that the inner product is given by
the propagator factor �(Y ) of the topological vertex. Now, the space Ṽ1 is known to
have a natural action of an algebra called the Ding-Iohara algebraDI [117]. It might
be helpful to know that this algebra is also called the elliptic Hall algebra, or the
quantum toroidal GL(1) algebra; see e.g. [118] for the quantum toroidal algebras.
Then the refined topological vertex Zvertex is an intertwiner of this algebra:

Zvertex : Ṽ1 ⊗ Ṽ1 → Ṽ1. (3.74)

The q-deformed WN -algebra action on ṼU(N ), from this point of view, should be
understood from its relation to the action of the Ding-Iohara algebra DI on

Ṽ1
⊗N � ṼU(N ). (3.75)

The WN action on VU(N ) should follow when one takes the four-dimensional limit
when the radius β of the ξ 5 direction goes to zero.

This formulation has an advantage that the instanton partition function on S1 of a
5d non-Lagrangian theory, such as the TN theory corresponding to Fig. 4 (5), can be
computed, by just multiplying the vertex factors and summing over Young diagrams.
Indeed this computation was performed in [119, 120], where the E6 symmetry of
the partition function of T3 was demonstrated.

It should almost be automatic that the resulting partition function ZTN of TN is an
intertwiner of q-deformed WN algebra, because the linear map

ZTN : ṼU(N ) ⊗ ṼU(N ) → ṼU(N ) (3.76)

is obtained by composing N (N − 1)/2 copies of Zvertex according to Fig. 4 (5). One
can at least hope that the intertwining property of Zvertex, together with the naturality
of the map (3.75), should translate to the intertwining property of ZTN .

4 Other Gauge Groups

In this section, we indicate how the instanton calculations can be extended to gauge
groups other than (special) unitary groups. We do not discuss the details, and only
point to the most relevant results in the literature.
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4.1 Classical Gauge Groups

Let us consider classical gauge groups G = SO(2n), SO(2n + 1) and USp(2n).
Physically, nothing changes from what is stated in Sect. 3.2; we need to perform
localization on the n-instanton moduli space MG,n of gauge group G. A technical
problem is that there is no known way to resolve and/or deform the singularity of
MG,n to make it smooth, when G is not unitary.

To proceed, we first re-think the way we performed the calculation when G =
U(N ). For classical G, the instanton moduli space has the ADHM description, just
as in the unitary case recalled in (3.32):

MG,n = {μC(x) = 0 | x ∈ XG,n}/K (G, n) (4.1)

Here, K (G, n) is a complexified compact Lie group, and XG,n is a vector space,
given as in (3.34) by a tensor product and a direct sum starting from vector spaces
V and W which are the fundamental representations of K (G, n) and G respectively.
One can formally rewrite the integral which corresponds to the localization on MG,n

as an integral over

XG,n ⊕ kR(G, n), (4.2)

where k(G, n) is the Lie algebra of K (G, n). The integral along XG,n can be easily
performed, and the integration on kR(G, n) can be reduced to an integration on the
Cartan subalgebra hR(G, n) of kR(G, n), resulting in a formal expression

Z inst,n(ε1,2; a1,...,r ; m1,..., f ) =
∫

φ∈hR(G,n)

f (ε1,2; a1,...,r ; m1,..., f ;φ) (4.3)

where f is a rational function.
The fact that MG,n is singular is reflected in the fact that the poles of the rational

function are on the integration locus hR(G, n). When G is unitary, the deformation
of the instanton moduli space MG,n to make it smooth corresponds to a systematic
deformation of the half-dimensional integration contour hR(G, n) ⊂ hC(G, n). Fur-
thermore, the poles are in one-to-one correspondence with the fixed points on the
smoothed instanton moduli space. A pole is given by a specific value φ ∈ hC(G, n)

which is a certain linear combinations of ε1,2, a1,...,r , and m1,..., f . In other words, the
position of a pole is given by specifying the action of U(1)2+r ⊂ U(1)2 × G on the
vector space V , which is naturally a representation of K (G, n). Finally, the residues
give the summand in the localization formula (3.29).

Although the deformation of the moduli space is not possible when G is not
unitary, the systematic deformation of the integration contour hR(G, n) ⊂ hC(G, n)

is still possible. The poles are still specified by the actions

φp : U(1)2+r
� V . (4.4)
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Then the instanton partition function (4.3) can be written down explicitly as

Z inst,n(ε1,2; a1,...,r ; m1,..., f ) =
∑

p

Resφ=φp f (ε1,2; a1,...,r ; m1,..., f ;φ). (4.5)

This calculation was pioneered in [22, 23], and further elaborated in [26].

4.2 Effect of Finite Renormalization

Let us in particular consider N = 2 SU(2) gauge theory with four fundamental
hypermultiplets, with all the masses set to zero for simplicity. Its instanton partition
function can be calculated either as the N = 2 case of SU(N ) theory, or as the N = 1
case of USp(2N ) theory, using the ADHM construction either of the SU instantons
or of the USp instantons. What was found in [26] is that the n-instanton contribution
calculated in this manner, are all different:

ZSU(2)
inst,n (ε1,2; a) �= ZUSp(2)

inst,n (ε1,2; a). (4.6)

They also found that the total instanton partition functions

Z G(q; ε1,2; a) = qa2/ε1ε2
∑
n≥0

qn Z G
inst,n(ε1,2; a; m) (4.7)

becomes the same,

ZSU(2)(qSU(2); ε1,2; a; m) = ZUSp(2)(qUSp(2); ε1,2; a; m) (4.8)

once we set

qSU(2) = qUSp(2)

(
1 + qUSp(2)

4

)−2
. (4.9)

The physical coupling qIR = e2πτIR in the infrared is then given in terms of the
prepotential:

2πτIR lim
ε1,2→0

ε1ε2 log Z G(q; ε1,2). (4.10)

This is given by

qSU(2) = θ2(qIR)4

θ3(qIR)4
(4.11)
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This finite discrepancy between the UV coupling qSU(2) and the IR coupling qIR was
first clearly recognized in [121], and the all order form was conjectured by [48]. We
see that the UV coupling qUSp(2) is different from both.

These subtle difference among qSU(2), qUSp(2) and qIR reflects a standard property
of any well-defined quantum field theory. The factor weighting the instanton number,
qG , is an ultra-violet dimensionless quantity, and is renormalized, the amount of
which depends on the regularization chosen. The choice of the ADHM construction
of the SU(2) = USp(2) instanton moduli space and the subsequent deformation
of the contours are part of the regularization. The final physical answer should be
independent (4.8), once the finite renormalization is correctly performed, as in (4.9).

In this particular case, there is a natural geometric understanding of the relations
(4.9) and (4.11) [26]. The SU(2) theory with four flavors can be realized by putting 2
M5-branes on a sphere C with four punctures a1, a2, b1, b2, whose cross ratio is the
UV coupling qSU(2). The Seiberg-Witten curve of the system is the elliptic curve E
which is a double-cover of C with four branch points at a1, a2, b1, b2. The IR gauge
coupling is the complex structure of E , and this gives the relation (4.11).

The same system can be also realized by putting 4 M5-branes on top of the M-
theory orientifold 5-plane on a sphere C ′ with four punctures, x, y, a, b, whose cross
ratio is the coupling qUSp(2). Here we also have the orientifold action around the
puncture x , y. There is a natural 2-to-1 map C → C ′ with branch points at x and
y, so that a1,2 and b1,2 on C are inverse images of a and b on C ′, respectively. This
gives the relation (4.9).

4.3 Exceptional Gauge Groups

For exceptional gauge groups G, not much was known about the instanton moduli
space MG,n , except at instanton number n = 1, because we do not have ADHM
constructions. To perform the instanton calculation in full generality in the presence
of matter hypermultiplets, we need to know the properties of various bundles on
MG,n . For the pure gauge theory, the knowledge of the ring of the holomorphic
functions on MG,n would suffice.Any instantonmoduli space decomposes as MG,n =
C

2 × Mcentered
G,n , where C

2 parameterize the center of the instanton, and Mcentered
G,n is

called the centered instanton moduli space. Therefore the question is to understand
the centered instanton moduli space better.

The centered one-instanton moduli space of any gauge group G is the minimal
nilpotent orbit of gC, i.e. the orbit under GC of a highest weight vector. The ring
of the holomorphic functions on the minimal nilpotent orbit is known [122–124],
and thus the instanton partition function of pure exceptional gauge theory can be
computed up to instanton number 1 [53].

There are 4d N = 2 quantum field theories “of class S” whose Higgs branch
is Mcentered

Er ,n
[125]. There is now a conjectured formula which computes the ring of

holomorphic functions on the Higgs branch of a large subclass of class S theories
[126]. A review can be found in [V:9] in this volume. This method can be used to

http://dx.doi.org/10.1007/978-3-319-18769-3_9
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study MEr ,2 explicitly, from which the instanton partition function of E-type gauge
theories can be found [127–129].

Moreover, the Higgs branch of any theories of class S is obtained [130] by the
hyperkähler modification [131] of the Higgs branch of the so-called TG theory. The
Higgs branch of the TG theory is announced to be rigorously constructed [132].
Therefore, we now have a finite-dimensional construction of MEr ,n . This should
allow us to perform any computation on the instanton moduli space, at least in
principle.

4.4 Relation to W-Algebras

We can form an infinite-dimensional vector space VG as in Sect. 3.4. When G =
SU(N ), there was an action of the WN algebra onVG . There is a general construction
of W-algebras starting from arbitrary affine Lie algebras Ĝ and twisted affine Lie
algebras Ĝ(s) where s = 2, 3 specifies the order of the twist; in this general notation,
the WN algebra is W (ŜU(N )) algebra. For a comprehensive account of W-algebras,
see the review [69] and the reprint volume [70].

When G is simply-laced, i.e. G = SU(N ), SO(2N ) or EN , VG has an action
of the W (Ĝ) algebra; this can be motivated from the discussion as in Sect. 3.6. We
start from the 6d N = (2, 0) theory of type G, and put it on R

4 × C2 where C2 is a
Riemann surface, so that we haveN = 2 supersymmetry in four dimensions. Then,
we should have some kind of two-dimensional system on C2. The central charge of
this two-dimensional system can be computed [133, 134] starting from the anomaly
polynomial of the 6d theory, which results in

c = rank G + h∨(G) dim G
(ε1 + ε2)

2

ε1ε2
. (4.12)

This is the standard formula of the central charge of the W (Ĝ) algebra, when G is
simply-laced.

When G is not simply-laced, we can use the physical 5d construction in Sect. 3.5,
but there is no 6d N = (2, 0) theory of the corresponding type. Rather, one needs
to pick a simply-laced J and a twist σ of order s = 2, 3, such that the invariant
part of J under σ is Langlands dual to G, see the Table1. Then, the 5d maximally

Table 1 The type of the 6d theory, the choice of the outer-automorphism twists, and the 5d gauge
group

� A2n−1 Dn+1 D4 E6

s 2 2 3 2

G Bn Cn G2 F4
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supersymmetric theory with gauge group G lifts to a 6d theory of type J , with
the twist by σ around x6. This strongly suggests that the W-algebra which acts on
VG is W (Ĝ(s)). This statement was checked to the one-instanton level in [53] by
considering pure G gauge theory. A full mathematical proof for simply-laced G is
available in [135].

5 Other Spaces

5.1 With a Surface Operator

Generalities Let us consider a gauge theory with a simple gauge group G, with a
surface operator supported on C ⊂ C

2. A detailed review can be found in [V:8], so
we will be brief here. A surface operator is defined in the path integral formalism
as in the case of ’t Hooft loop operators, by declaring that fields have prescribed
singularities there. In our case, we demand that the gauge field has the divergence

Aθdθ → μdθ (5.1)

where θ is the angular coordinate in the plane transverse to the surface operator, μ
is an element in g; the behavior of other fields in the theory is set so that the surface
operator preserves a certain amount of supersymmetry.

On the surface operator, the gauge group is broken to a subgroup L of G com-
muting with μ. Let us say there is a subgroup U(1)k ⊂ L . Then, the restriction
of the gauge field on the surface operator can have nontrivial monopole numbers
n1, . . . , nk . Together with the instanton number n0 in the bulk, they comprise a set
of numbers classifying the topological class of the gauge field. Thus we are led to
consider the moduli space MG,L ,μ,n0,n1,...,nk . It is convenient to redefine n0, . . . , nk

by an integral linear matrix so that these instanton moduli spaces are nonempty if
and only if n0, . . . , nk ≥ 0. The instanton partition function is schematically given
by

Z inst(ε1,2; ai ; q0,1,...,k) =
∑

n0,n1,...,nk≥0

qn0
0 · · · qnk

k Z inst,n0,...,nk (ε1,2; ai ) (5.2)

where Z inst,n0,...,nk (ε1,2; ai ) is given by a geometric quantity associated to
MG,L ,μ,n0,n1,...,nk .

This space is not well understood unless G is unitary. Suppose G is SU(N ) . Then
the singularity is specified by

μ = diag(μ1, . . . , μ1︸ ︷︷ ︸
m1

, μ2, . . . , μ2︸ ︷︷ ︸
m2

, . . . , μk+1, . . . , μk+1︸ ︷︷ ︸
mk+1

). (5.3)

http://dx.doi.org/10.1007/978-3-319-18769-3_8
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Then the group L is

L = S

[
k+1∏
i=1

U(mi )

]
(5.4)

which has a U(1)k subgroup.
Here,we canuse amathematical result [136, 137]which says that themoduli space

MG,L ,μ,n0,n1,...,nk in this case is equivalent as a complex space to the moduli space
of instantons on an orbifold C/Zk+1 × C. As we will review in the next section,
the instanton moduli space on an arbitrary Abelian orbifold of C

2 can be easily
obtained from the standard ADHM construction, resulting in the quiver description
of the instanton moduli space with a surface operator [138, 139]. The structure of the
fixed points can also be obtained starting from that of the fixed points on C

2. Then
the instanton partition function can be explicitly computed [68, 140], although the
details tend to be rather complicated when [m1, . . . , mk+1] is generic [66, 67, 141].
Corresponding W-algebra An infinite dimensional vector space VG,L ,�a can be
introduced as in Sect. 3.4:

VG,L ,�a =
⊕

n0,...,nk≥0

VG,L;�a;n0,...,nk (5.5)

where VG,L;�a;n0,...,nk is the equivariant cohomology of MG,L ,μ,n0,n1,...,nk with the
equivariant parameter of SU(N ) given by �a. AsV does not depend on the continuous
deformation of μ with fixed L , we dropped μ from the subscript of V.

TheW-algebrawhich is believed to be acting onVG,L is obtained as follows, when
G = SU(N ) and L is given as in (5.4). Introduce an N -dimensional representation
of SU(2)

ρ[m1,...,mk+1] : SU(2) → SU(N ) (5.6)

such that the fundamental representation of SU(N ) decomposes as the direct sum
of SU(2) irreducible representations with dimensions m1, . . . , mk+1. Let us define a
nilpotent element via

ν[m1,...,mk+1] = ρ[m1,...,mk+1](σ
+). (5.7)

Then we perform the quantum Drinfeld-Sokolov reduction of Ĝ algebra via this
nilpotent element, which gives the algebra W (Ĝ, ν[m1,...,mk+1]) which is what we
wanted to have. In particular, when [m1, . . . , mk+1] = [1, . . . , 1], the nilpotent ele-
ment is ν = 0, and the resulting W-algebra is Ĝ. When [m1, . . . , mk+1] = [N ],
there is no singularity, and the W-algebra is the standard W (Ĝ) algebra. The general
W-algebras W (Ĝ, ν) were introduced in [142].
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Let F be the commutant of ρ[m1,...,mk+1](SU(2)) in SU(N ). Explicitly, it is

F = S

[
t∏

s=1

U(�t )

]
(5.8)

where �1,...,t is defined by writing

[m1, . . . , mk] = [n1
�1 , . . . , nt

�t ]. (5.9)

Note that the rank of F is k. TheW-algebra W (Ĝ, ν[m1,...,mk+1]) contains an affine sub-
algebra F̂ . Therefore, the dimension of the Cartan subalgebra of W (Ĝ, ν[m1,...,mk+1])
is rank F +1 = k +1, and any representation of the W-algebra is graded by integers
n0, . . . , nk . This matches with the fact that VG,L is also graded by the same set of
integers (5.5).

Higher-dimenisonal interpretation From the 6d perspective advocated in Sect. 3.5,
one considers a codimension-2 operator of the 6dN = (2, 0) theory of type SU(N ),
extending along x5 and x6. Such a codimension-2 operator is labeled by a set of
integers [m1, . . . , mk], and is known to create a singularity of the form (5.1) and
(5.3) in the four-dimensional part [54, 143]. Furthermore, the operator is known to
have a flavor symmetry F as in (5.8). Therefore, it is as expected that the W-algebra
W (Ĝ, ν[m1,...,mk+1]) has the F̂ affine subalgebra. Its level can be computed by starting
from the anomaly polynomial of the codimension-2 operator; a few checks of this
line of ideas were performed in [61, 67, 144].

The partition function with surface operator of type [N − 1, 1] can also be rep-
resented as an insertion of a degenerate primary field � in the standard WN algebra
[44, 145, 146]. When N = 2, we therefore have two interpretations: one is that the
surface operator changes the Virasoro algebra to ŜU(2), the other is that the surface
operator is a degenerate primary field of the Virasoro algebra. These can be related
by the Ribault-Teschner relation [147, 148], but the algebraic interpretation is not
clear.

For general simply-laced G and L , the W-algebra which acts on VG,L is thought
to be W (Ĝ, ν), where ν is a generic nilpotent element in L . But there is not many
explicit checks of this general statement, except when L is the Cartan subgroup.

Braverman-Etingof When L is the Cartan subgroup, ν = 0, and the W-algebra is
just the Ĝ affine algebra. Its action on VG,L was constructed in [19]. The instanton
partition function Z of the pure G gauge theory with this surface operator was then
analyzed in [20]. The limit

F = lim
ε1,2→0

ε1ε2 log Z (5.10)

was shown to be independent of the existence of the surface operator; the surface
operator contributes only a term of order 1/ε1 to log Z at most. The structure of the Ĝ
affine Lie algebra was then used to show that F is the prepotential of the Toda system
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of type G, thus proving that the instanton counting gives the same prepotential as
determined by the Seiberg-Witten curve.

Before proceeding, let us consider the contribution from the bifundamental hyper-
multiplet. Again as in Sect. 3.4, it determines a nice linear map

��a,m,�b : VG,L ,�a → VG,L ,�b (5.11)

where m is the mass of the hypermultiplet. This ��a,m,�b is expected to be a primary
operator insertion of this W-algebra. This is again proven when ν = 0 and the
W-algebra is just the Ĝ affine algebra [149].

The author does not know how to incorporate hypermultiplet matter fields in this
approach.

5.2 On Orbifolds

Let us now consider the moduli space of instantons on an orbifold of C
2 by the Zp

action

g : (z, w) → (e2π is1/pz, e2π is2/pw). (5.12)

This was analyzed by various groups, e.g. [150, 151]. We need to specify how this
action embeds in G = U(N ). This is equivalent to specify how the N -dimensional
subspace W in (3.34) transforms under Zp × G:

W = e2π it1/peiβa1 + · · · + e2π itN /peiβaN . (5.13)

The moduli space MG,n has a natural action of U(1)2 × G, to which we now have
an embedding of Zp via (5.12) and (5.13). Then the moduli space of instantons on
the orbifold, Mg

G,n , is just the Zp invariant part of MG,n .
A fixed point of Mg

G,n under U(1)2+r is still a fixed point in MG,n . Therefore, it is
still specified by W and V as in (3.35). The vector space V now has an action of g,
which is fixed to be

Vp =
N∑

v=1

∑
(i, j)∈Yv

e2π i(tv+(1−i)s1+(1− j)s2)/peiβ(av+(1−i)ε1+(1− j)ε2). (5.14)

Then, the tangent space at the fixed point and/or the hypermultiplet zero modes can
be just obtained by projecting down (3.36)–(3.38) to the part invariant under the Zp

action.
It is now a combinatorial exercise towrite down a general formula for the instanton

partition function on the orbifold; as reviewed in the previous section, this includes
the case with surface operator. It is again to be said that, however, it is easier to
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implement the algorithm as written above, than to first write down a combinatorial
formula and then implement it in a computer algebra system.

Let us now focus on the case when (s1, s2) = (1,−1). Then the orbifold C
2/Zp

is hyperkähler. Let us consider U(N ) gauge theory on it. We can construct the infi-
nite dimensional space VG,p as before, by taking the direct sum of the equivariant
cohomology of the moduli spaces of U(N ) instantons on it. The vector space VG,p is
long known to have an action of the affine algebra SU(p)N [152, 153], but this affine
algebra is not enough to generate all the states in VG,p. It is now believed [83, 154,
155] that VG,p is a representation of a free boson, SU(p)N , and the pth para-WN

algebra:
ˆSU(N )p × ˆSU(N )k

ˆSU(N )p+k

(5.15)

where k is a parameter determined by the ratio ε1/ε2. For p = 2 and N = 2, the 2nd
para-W2 algebra is the standard N = 1 super Virasoro algebra, and many checks
have been made [57–60, 64]. See also [156] for the analysis of the case N = 1 for
general p.

5.3 On Non-compact Toric Spaces

There is another way to study G = U(N ) instantons on the Zp orbifolds (5.12), as
they can be resolved to give a smooth non-compact toric spaces X , where instanton
counting can be performed [17, 157, 158].

The basic idea is to realize that the fixed points under U(1)2+N of the n-instanton
moduli space MG,n on C

2 correspond to point-like n instantons at the origin of C
2,

which are put on top of each other. The deformation of the instanton moduli space
was done to deal with this singular configuration in a reliable way. The toric space
X has an action of U(1)2, whose fixed points P1, . . . , Pk are isolated. The action of
U(1)2 at each of the fixed points can be different:

TX|Pi = eiβε1;i + eiβε2;i (5.16)

where ε1,2;i are integral linear combinations of ε1,2. Then an U(N ) instanton con-
figuration on X fixed under U(1)2+N , is basically given by assigning a U(N )-
instanton configuration on C

2, at each Pi . Another data are the magnetic fluxes
�m j = (m j,1, . . . , m j,N ) through compact 2-cycles C j of X . Here it is interesting
not just to compute the partition function but also correlation functions of certain
operators μ(C j ) which are supported on C j . Then the correlation function has a
schematic form

Z X (μ(C1)
d1μ(C2)

d2 · · · ; ε1, ε2) =
∑
�m

q �mi Cij �m j fd1,d2,...( �m1, �m2, . . .)
∏
Pi

Z
C2 (ε1;i , ε2;i )

(5.17)
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where Cij is the intersection form of the cycles C j and fd1,d2,...( �m1, �m2, . . .) is a
prefactor expressible in a closed form. For details, see the papers referred to above.

Nakajima-Yoshioka When X is the blow-up Ĉ
2 of C

2 at the origin, there are two
fixed points P1 and P2, with

T Ĉ
2|P1 = eiβε1 + eiβ(ε2−ε1), T Ĉ

2|P2 = eiβ(ε1−ε2) + eiβε2 . (5.18)

We have one compact 2-cycle C . Then we have a schematic relation

Z
Ĉ2(μ(C)d; ε1, ε2) =

∑
�m

q �m· �m fd( �m)ZC2(ε1, ε2 − ε1)ZC2(ε1 − ε2, ε2). (5.19)

We can use another knowledge here that the instanton moduli space on Ĉ
2 and that

on C
2 can be related via the map Ĉ

2 → C
2. Let us assume that c1 of the bundle on

Ĉ
2 is zero. Then we have a relation schematically of the form

Z
Ĉ2(μ(C)d; ε1, ε2) =

{
ZC2(ε1, ε2) (d = 0),

0 (d > 0)
(5.20)

for d = 0, 1, . . . , 2N − 1. The combination of (5.19) and (5.20) allows us to write
down a recursion relation of the form

ZC2(ε1, ε2) =
∑

�m
q �m· �mc( �m)ZC2(ε1, ε2 − ε1)ZC2(ε1 − ε2, ε2). (5.21)

This allows one to compute the instanton partition function on C
2 recursively as an

expansion in q [17], starting from the trivial fact that the zero-instanton moduli space
is just a point. From this, a recursive formula for the prepotential can be found, which
was studied and written down in [7, 8]. The recursive formula was proved from the
analysis of the Seiberg-Witten curve in [7, 8], while it was derived from the analysis
of the instanton moduli space in [17]. This gives one proof that the Seiberg-Witten
prepotential as defined by the Seiberg-Witten curve is the same as the one defined
via the instanton counting. This method has been extended to the case with matter
hypermultiplets in the fundamental representation [159].

The recursive formula, although mathematically rigorously proved only for SU
gauge groups, has a form transparently given in terms of the roots of the gauge group
involved. This conjectural version of the formula for general gauge groups can then
be used to determine the instanton partition function for any gauge group. This was
applied to E6,7 gauge theories in [129] and the function thus obtained agreed with
the one computed via the methods of Sect. 4.3.

The CFT interpretation of this formula was explored in [61]. A similar formula
can be formulated for the orbifolds of C

2 and was studied in [150]. It is also found
that the instanton counting on C

2/Zp and that on its blowup can have a subtle but
controllable difference [160].
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β-Deformed Matrix Models and 2d/4d
Correspondence

Kazunobu Maruyoshi

Abstract We review the β-deformed matrix model approach to the correspondence
between four-dimensional N = 2 gauge theories and two-dimensional conformal
field theories. The β-deformed matrix model equipped with the log-type potential
is obtained as a free field (Dotsenko-Fateev) representation of the conformal block
of chiral conformal algebra in two dimensions, with the precise choice of integra-
tion contours. After reviewing various matrix models related to the conformal field
theories in two-dimensions, we study the large N limit corresponding to turning off
the Omega-background ε1, ε2 → 0. We show that the large N analysis produces the
purely gauge theory results. Furthermore we discuss the Nekrasov-Shatashvili limit
(ε2 → 0) by which we see the connection with the quantum integrable system. We
then perform the explicit integration of the matrix model. With the precise choice of
the contours we see that this reproduces the expansion of the conformal block and
also the Nekrasov partition function. This is a contribution to the special volume on
the 2d/4d correspondence, edited by J. Teschner.

1 Introduction

Matrix models have played a crucial role in the studies of theoretical physics. It has
turned out that thesemodels compute quantumobservables or the partition function of
quantum field theory [1] and two-dimensional gravity [2, 3] (see references therein).
Rather recent examples are a one-matrix model which describes the low energy
effective superpotential of four-dimensional N = 1 supersymmetric gauge theory
[4], and the exact partition functions of supersymmetric gauge theories in various
dimensions by localization [5, 6] which are itself written as matrix models (Reviews
can be found in [V:5, V:6] in this volume). These have already shown the usefulness
of the matrix model in theoretical physics.
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This paper reviews the matrix model introduced by Dijkgraaf and Vafa [7] which
was proposed to capture the non-perturbative dynamics of four-dimensionalN = 2
supersymmetric gauge theory and two-dimensional conformal field theory (CFT).
This proposal is strongly related with the remarkable relation between the Nekrasov
partition function [8] of four-dimensionalN = 2 supersymmetric gauge theory and
the conformal block of two-dimensional Liouville/Toda field theory found by [9].
(We refer to this relation as AGT relation.) The four-dimensional gauge theory is
obtained by a partially twisted compactification of the six-dimensional (2, 0) theory
on a Riemann surface ([10], [V:2]), and the associated conformal block is defined
on the same Riemann surface where vertex operators are inserted at the punctures
[V:4].

The conformal block has several different representations. The one we focus here
on is the Dotsenko-Fateev integral representation [11, 12], which will be interpreted
as β-deformed matrix model. This integral representation has long been known,
but regarded as describing degenerate conformal blocks where the degenerate field
insertion restricts the internal momenta to fixed values depending on the external
momenta. However the recent proposal by [7] is that it does describe the full con-
formal block. The point is the prescription of the contours of the integrations which
divides integrals into sets of integral contourswhose numbers are Ni (with

∑
Ni = N

where N is the size of the matrix.) In other words, in the large N perspective, we fix
the filling fractions when evaluating the matrix model. This gives additional degrees
of freedom corresponding to the internal momenta.

This matrix model plays an interesting role to bridge a gap between four-
dimensional N = 2 gauge theory on the � background and two-dimensional CFT.
In addition to the correspondence with the CFT mentioned above, this is because the
matrix model has a standard expansion in 1/N . The large N limit in the matrix model
corresponds to the ε1,2 → 0 limit on the gauge theory side. Therefore, the matrix
model approach is suited for the ε expansion of the Nekrasov partition function.

In Sect. 2, we derive the β-deformed matrix model with the logarithmic potential
starting from the free scalar field correlator in the presence of background charge. The
case of the Lie algebra-valued scalar field is described by the β-deformation of the
quiver matrix model [13–15]. We further see that the similar integral representation
can be obtained for the correlator on a higher genus Riemann surface. These matrix
models are proposed to be identified with the Nekrasov partition functions of four-
dimensionalN = 2 (UV) superconformal gauge theories and the conformal blocks.

In Sect. 3 we analyze thesematrixmodels, by taking the size of thematrix N large.
The leading part of the large N expansion is studied by utilizing the so-called loop
equation. We identify the spectral curve of the matrix model with the Seiberg-Witten
curve of the corresponding four-dimensional gauge theory in the form of [10, 16].
We then see evidence of the proposal by checking that the free energy at leading
order reproduces the prepotential of the gauge theory.

In Sect. 4 another interesting limit which keeps one of the � deformation para-
meter ε1 finite while ε2 → 0 in the four-dimensional side will be analyzed. This
limit was considered in [17–19] to relate the four-dimensional gauge theory on the
� background with the quantization of the integrable system. We will see that the

http://dx.doi.org/10.1007/978-3-319-18769-3_2
http://dx.doi.org/10.1007/978-3-319-18769-3_4
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β-deformation is crucial for the analysis, and that the matrix model indeed captures
the quantum integrable system.

In Sect. 5, we will perform a direct calculation of the partition function of the
matrix model keeping all the parameters finite. We compare the explicit result of the
direct integration with the Virasoro conformal block and with the Nekrasov partition
function.

We conclude in Sect. 6 with a couple of discussions. In Appendix, we present the
Selberg integral formula and its generalization which will be used in the analysis in
Sect. 5.

2 Integral Representation of Conformal Block

In this section, we introduce the β-deformed matrix model as a free field representa-
tion of the conformal block, and the proposal [7] that the matrix model is related to
the four-dimensional gauge theory. In Sect. 2.1, we see the simplest version of this
proposal: the β-deformed one-matrix model with the logarithmic-type potential1

obtained from the correlator of the single-scalar field theory on a sphere corresponds
to the four-dimensional N = 2 SU (2) linear quiver gauge theory. In Sect. 2.2, we
will introduce the quiver matrixmodel corresponding to the gauge theory with higher
rank gauge group. We will then generalize this to the one associated with a generic
Riemann surface in Sect. 2.3.

2.1 β-Deformed Matrix Model

In [9], it was found that the conformal block on a sphere with n punctures can be
identified with the Nekrasov partition function ofN = 2 SU (2)n−3 superconformal
linear quiver gauge theory. We will first review the integral representation of the
conformal block, first introduced by Dotsenko and Fateev [11, 12], and interpret it
as a β-deformedmatrix model [21, 22]. (See [23] for a review of the relation between
thematrixmodel and the CFT.)We then state the conjecture among thematrixmodel,
the Nekrasov partition function, and the conformal block.

We start with the free scalar field φ(z)

φ(z) = q + p log z +
∑
n �=0

αn

n
z−n, (2.1)

with the following commutation relations

1The matrix model with a logarithmic potential was first studied by Penner [20] related to the Eular
characteristic of a Riemann surface.
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[αm, αn] = −mδm+n,0, [p, q] = −1. (2.2)

Thus, the OPE of φ(z) is

φ(z)φ(w) ∼ − log(z − w). (2.3)

The energy-momentum tensor is given by T (z) = − 1
2 : ∂φ(z)∂φ(z) : with the

central charge 1.
Let us introduce a background charge Q = b + 1/b at the point at infinity by

changing the energy-momentum tensor

T (z) = −1

2
: ∂φ(z)∂φ(z) : + Q√

2
: ∂2φ(z) :=

∑
n∈Z

Ln

zn+2
. (2.4)

The central charge with this background is c = 1 + 6Q2.
The Fock vacuum is defined by

αn|0〉 = 0, 〈0|α−n = 0, for n ≥ −1. (2.5)

The energy-momentum tensor satisfies the Virasoro constraints

〈Ln〉 = 0, for n ≥ −1. (2.6)

Nowwe consider the correlator 〈∏n−1
k=0 Vαk (wk)〉, where the vertex operator is defined

by Vα(z) =: e
√
2αφ(z) : with conformal dimension 	α = α(Q − α). This is nonzero

only if the momenta satisfy the condition
∑n

k=1 αk = Q. To relax the condition, let
us consider the following operators

Q+ =
∫

dλ : e
√
2bφ(λ) :, Q− =

∫
dλ : e

√
2b−1φ(λ) : . (2.7)

Since the integrand of each operator has conformal dimension 1, the screening oper-
ators are dimensionless. Therefore we can insert these operators into the correlator
without changing the conformal property. The insertion however changes themomen-
tum conservation condition, thus we refer these as screening operators. By inserting
N screening operators Q+ in the correlator we define

Ẑ =
〈

QN
+

n−1∏
k=0

Vαk (wk)

〉
, (2.8)

The momentum conservation condition now relates the external momenta and the
number of integrals as

∑n−1
k=0 αk + bN = Q. This adds one more degree of freedom,

bN , to the model. Nevertheless, it is important to note that the momenta mk (or αk)
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cannot be completely arbitrary because N is an integer. This point will be discussed
in Sect. 5.

By evaluating the OPEs, it is easy to obtain

Ẑ = C(mk, wk)Z (2.9)

where Z is of the matrix model like form

Z =
∫ N∏

I=1

dλI

∏
I<J

(λI − λJ )
−2b2

e− b
gs

∑
I W (λI ) ≡ eFm/g2s , (2.10)

with the following potential

W (z) =
n−2∑
k=0

2mk log(z − wk), C(mk, wk) =
∏

k<�≤n−2

(wk − w�)
− 2mk m�

g2s . (2.11)

We have introduced the parameter gs by defining αk = mk
gs
. (We will use parameters

αk and mk interchangeably below.) We also have taken wn−1 → ∞ by which the
corresponding term in W (z) disappeared. While the dependence on mn−1 cannot be
seen in the potential, this is recovered by the momentum conservation condition

n−1∑
k=0

mk + bgs N = gs Q. (2.12)

Note that the hermitian matrix model corresponds to the b = i case because the
first factor in the integrand is the familiar vandermonde determinant. Also the cases
with b = i/2 and 2i correspond to an orthogonal matrix and a symplectic matrix
respectively. However for generic choice of b, there is no such expression in terms
of a matrix. This integral expression is known as β ensemble or β-deformed matrix
model with β = −b2.

It is useful to rewrite the β deformed matrix model (2.10) as

Z = 〈N | exp
(

1

2π i
√
2gs

∮
dwW (w)∂φ(w)

)
QN

+|0〉, (2.13)

where we defined 〈N | := 〈0|e−√
2bNq . Thus the insertion of (the derivative of) the

scalar field φ in the correlator (2.13) is written as

∂φ(z) = −W ′(z)√
2gs

− b
√
2
∑

I

1

z − λI
, φ(z) = − W (z)√

2gs

− b
√
2 log

∏
I

(z − λI ),

(2.14)
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in the matrix model average 〈. . .〉 defined by

〈O〉 = 1

Z

∫ N∏
I=1

dλI

∏
I<J

(λI − λJ )
−2b2O e− b

gs

∑
I W (λI ). (2.15)

Note that a similar expression as (2.13) in terms of free fermions was presented in
[8] to express the instanton partition function of N = 2 gauge theory.

Relation to conformal block The proposal [7] is that the partition function of this
β-deformed matrix model can be identified with the Virasoro conformal block, and
the Nekrasov partition function of four-dimensional N = 2 SU (2)n−3 linear quiver
gauge theory. The relation to the former is

Z−1
0 Ẑ(αk, Ni , b, wk) = B(αk, α

int
p , b, wk), (2.16)

where Z0 is defined such that the Ẑ is expanded in wk as Ẑ = Z0(1 + O(wk)).
Here B is the Virasoro n-point conformal block on the sphere and defined such that
B = 1 + O(wk). We will review this in Sect. 5.1. The momenta αk are identified
with the external momenta of the conformal block, as it should be. The parameters
b and wk are defined in the conformal block side in the same way as the free field
theory. Thus, the only nontrivial point is the identification of the internal momenta
αint

p (p = 1, . . . , n − 3).
At the first sight there is no parameter corresponding to the internalmomenta in the

matrix model. However the prescription to identify themwas established by [24–27]:
as we will see in Sect. 5.1, the conformal block can be computed from the three-point
functions, denoted by the trivalent vertices, and the propagators, denoted by the lines
connecting the vertices, as in Fig. 1. The idea is that there are Ni screening operators
inserted at each vertex, with

∑n−2
i=1 Ni = N , where the momentum conservation is

satisfied as

αint
1 = α0 + αn−2 + bN1, αint

2 = αint
1 + αn−3 + bN2, . . . , (2.17)

αint
n−3 = αint

n−4 + α2 + bNn−3 = −α1 − αn−1 − bNn−2 + Q,

In the last equality we used the momentum conservation (2.12). This means that
in the integral representation we have n − 2 sets of integrals, each number of the
integrals is Ni .

Fig. 1 The n-point
conformal block. The
screening operators are
inserted at each vertex to
maintain the momentum
conservation
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The precise choice of the integration contours will be seen in Sect. 5. Here let us
see a rationale of this identification by considering the large N limit shortly. The
critical points of the eigenvalues λI are obtained from the equations of motion

n−2∑
k=0

mk

λI − wk
+ bgs

∑
J (�=I )

1

λI − λJ
= 0. (2.18)

Focusing on the first term, when the parameters are generic enough there are n − 2
critical points. Let Ni be the number of the matrix eigenvalues which are at the
i-th critical point. These critical points are diffused to form line segments by the
second term. The integrals are defined such that they include these segments. Now
we introduce the filling fractions νi = bgs Ni , and consider the matrix model by
fixing these values in the large N limit. Because of the momentum conservation, we
have n − 3 independent degrees of freedom.

Relation to Nekrasov partition function The relation to the Nekrasov partition
function is as follows:

ZU (1) Z−1
0 Ẑ(αk, Ni , b, wk) = ZNek(mk, ap, ε1, ε2, qp), (2.19)

under the following identification of the parameters.We choose three insertion points
as w0 = 0, w1 = 1 and wn−1 = ∞. The remaining parameters are identified with
the gauge theory coupling constants qp = e2π iτp (p = 1, . . . , n − 3) as follows:

w2 = q1, w3 = q1q2, . . . , wn−2 = q1q2 · · · qn−3. (2.20)

We denote the gauge group whose gauge coupling constant is qp as SU (2)p. Let
μL

a , μ
L
b and μR

a , μ
R
b be the mass parameters of hypermultiplets in the fundamental

representation of the SU (2)1 and those of the SU (2)n−3 respectively. Let alsoμi (i =
1, . . . , n−4) be the mass parameter of the hypermultiplet in the (2, 2̄) representation
of SU (2)i × SU (2)i+1. Then the mass parameters and the external momenta are
identified as

m0 = μL
a − μL

b

2
+ gs Q

2
, mn−2 = μL

a + μL
b

2
,

mn−1 = μR
a − μR

b

2
+ gs Q

2
, m1 = μR

a + μR
b

2
, mn−2−i = μi (2.21)

The identification of the parameter b with the�-deformation parameters is given by

ε1 = bgs, ε2 = gs

b
. (2.22)

Note that the case b = i corresponds to the self-dual background ε1 = −ε2. Finally,
the vacuum expectation values ai of the scalar fields in the SU (2)i vector multiplets
are identified as
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ap − μL
a −

p−1∑
q=1

μq =
p∑

q=1

bNq , (2.23)

for p = 1, . . . , n−3. By using the momentum conservation, an−3 can also be written
as an−3 + μR

a = −bNn−2.
The first factor in the right hand side of (2.19) is the so-called U (1) factor corre-

sponding to the U (1) part of the gauge theory, which is, e.g., given by

ZU (1) = (1 − q)2α1α2 , (2.24)

for the n = 4 case.2

2.2 Quiver Matrix Model and Higher Rank Gauge Theory

In this section, we briefly review the β-deformation of the ADE quiver matrix model
[13–15, 28]. We then see that the matrix model can be obtained from the CFT of a
free chiral boson valued in Lie algebra. A review of the undeformed quiver matrix
model can be found in [29].

Let g be a finite dimensional Lie algebra of ADE type with rank r , h the Cartan
subalgebra of g, and h∗ its dual. We denote the natural pairings between h and h∗ by
〈·, ·〉:

α(h) = 〈α, h〉, α ∈ h∗, h ∈ h. (2.25)

Let αa ∈ h∗ (a = 1, 2, . . . , r) be simple roots of g and (·, ·) is the inner product
on h∗. Our normalization is chosen as (αa, αa) = 2. The fundamental weights are
denoted by �a (a = 1, 2, . . . , r)

(�a, α∨
b ) = δa

b , α∨
a = 2αa

(αa, αa)
. (2.26)

In the Dynkin diagram of g we associate Na × Na Hermitian matrices Ma with
vertices a for simple rootsαa , and complex Na ×Nb matrices Qab and their Hermitian
conjugate Qba = Q†

ab with links connecting vertices a and b. We label links of the
Dynkin diagram by pairs of nodes (a, b) with an ordering a < b. Let E andA be the
set of “edges” (a, b) (with a < b) and the set of “arrows” (a, b) respectively:

E = {(a, b) | 1 ≤ a < b ≤ r, (αa, αb) = −1},
A = {(a, b) | 1 ≤ a, b ≤ r, (αa, αb) = −1}. (2.27)

2This is slightly different from the one in [9]. This is because we consider the Nekrasov parti-
tion function where the hypermultiplets are in the fundamental representation of the gauge group.
Changing the representation to the anti-fundamental one leads to α3 → Q − α3 in this case, then
we recover the factor in [9].
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The partition function of the quiver matrix model associated with g is given by

Z =
∫ r∏

a=1

[dMa]
∏

(a,b)∈A
[dQab] exp

(
1

gs
W (M, Q)

)
, (2.28)

where

W (M, Q) = i
∑

(a,b)∈A
sabTr Qba Ma Qab − i

r∑
a=1

Tr Wa(Ma), (2.29)

with real constants sab obeying the conditions sab = −sba . Note that

∏
(a,b)∈A

[dQab] =
∏

(a,b)∈E
[dQbadQab], (2.30)

∑
(a,b)∈A

sabTr Qba Ma Qab =
∑

(a,b)∈E
sab
(
Tr Qba Ma Qab − Tr Qab Mb Qba

)
. (2.31)

The integration measures [dMa] and [dQbadQab] are defined by using the metrics
Tr(dMa)

2 and Tr(dQbadQab) respectively.
Integrations over Qab are easily performed:

∫
[dQbadQab] exp

(
isab

gs

(
Tr Qba Ma Qab − Tr Qab Mb Qba

)) = det
(
Ma ⊗ 1Nb − 1Na ⊗ MT

b
)−1

,

(2.32)
where 1n is the n × n identity matrix and T denotes transposition. For simplicity we
have chosen the normalization of the measure [dQbadQab] to set the proportional
constant in the right hand side of (2.32) to be unity. Now the integrand depends
only on the eigenvalues of r Hermitian matrices Ma . Let us denote them by λ

(a)
I

(a = 1, 2, . . . , r and I = 1, 2, . . . , Na). The partition function of the quiver matrix
model reduces to the form of integrations over the eigenvalues of Ma

Z =
∫ r∏

a=1

{
Na∏

I=1

dλ(a)
I

}
	g(λ) exp

(
− i

gs

r∑
a=1

Na∑
I=1

Wa(λ
(a)
I )

)
, (2.33)

where Wa is a potential and

	g(λ) =
r∏

a=1

∏
1≤I<J≤Na

(λ
(a)
I − λ

(a)
J )2

∏
1≤a<b≤r

Na∏
I=1

Nb∏
J=1

(λ
(a)
I − λ

(b)
J )(αa ,αb). (2.34)

We then define the β deformation of the above quiver matrix model (with β = −b2)
by
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Z =
∫ r∏

a=1

{
Na∏

I=1

dλ(a)
I

}(
	g(λ)

)−b2

exp

(
− b

gs

r∑
a=1

Na∑
I=1

Wa(λ
(a)
I )

)
. (2.35)

At b = i , it reduces to the original quiver matrix model (2.33).
The partition function (2.35) can be rewritten in terms of CFT operators. Let φ(z)

be h-valuedmassless chiral field and φa(z) := 〈αa, φ(z)〉. Their correlators are given
by

φa(z)φb(w) ∼ −(αa, αb) log(z − w), a, b = 1, 2, . . . , r. (2.36)

The modes
φ(z) = q + p log z +

∑
n �=0

an

n
z−n ∈ h (2.37)

obey the commutation relations

[〈α, an〉, 〈β, am〉] = −nδn+m,0(α, β), [〈α, p〉, 〈β, q〉] = −i(α, β), α, β ∈ h∗.
(2.38)

The Fock vacuum is given by

α(an)|0〉 = 0, 〈0|α(a−n) = 0, n ≥ 0, α ∈ h∗. (2.39)

Let

〈{Na}| := 〈0| exp
(

−b
r∑

a=1

Naαa(φ0)

)
. (2.40)

It is convenient to introduce the h∗-valued potential W (z) by

W (z) :=
r∑

a=1

Wa(z)�
a ∈ h∗. (2.41)

Note that Wa(z) = (α∨
a , W (z)).

As in the previous subsection, we put the background charge Q = b +1/b which
leads to the energy-momentum tensor

T (z) = −1

2
: K(∂φ(z), ∂φ(z)

) : +Q〈ρ, ∂2φ(z)〉, (2.42)

whereK is the Killing form and ρ is theWeyl vector of g, half the sum of the positive
roots. Let Hi (i = 1, 2, . . . , r ) be an orthonormal basis of the Cartan subalgebra h
with respect to the Killing form: K(Hi , H j ) = δi j . In this basis, the components of
the h-valued chiral boson are just r independent free chiral bosons:
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φ(z) =
r∑

i=1

Hiφi (z), φi (z)φ j (w) ∼ −δi j log(z − w), (2.43)

and the energy-momentum tensor in this basis is given by

T (z) = −1

2

r∑
i=1

: (∂φi (z)
)2 : +Q

r∑
i=1

ρi∂2φi (z). (2.44)

The central charge is given by

c = r + 12Q2(ρ, ρ) = r
{
1 + h(h + 1)Q2

}
. (2.45)

Here h is the Coxeter number of the simply-laced Lie algebra g whose rank is r .
Explicitly, h An−1 = n (with r = n − 1), hDr = 2r − 2, hE6 = 12, hE7 = 18 and
hE8 = 30.

Note that for a root α, [Hi , Eα] = αi Eα with αi = α(Hi ) = 〈α, Hi 〉. Then,
the bosons φa(z) associated with the simple roots αa are expressed in this basis as
follows:

φa(z) = 〈αa, φ(z)〉 =
r∑

i=1

αi
aφi (z) ≡ αa · φ(z), a = 1, 2, . . . , r. (2.46)

For rootsα andβ, the inner product on the root space is expressed in their components
as (α, β) =∑r

i=1 αiβ i . Here αi = α(Hi ) and β i = β(Hi ).
Let us now consider the four-point correlator of this theory. The vertex operator

is defined by

Vμ̂(z) =: e〈μ̂,φ(z)〉 :, (2.47)

where μ̂ ∈ h∗. As in the one-matrix case, we introduce the screening operators
associated with the simple roots are defined by

Qa :=
∫

dz : ebφa(z) :, a = 1, 2, . . . , r. (2.48)

We define the chiral four-point correlation function

Ẑ =
〈
:

3∏
k=0

e〈μ̂k ,φ(wk )〉 : QN1
1 QN2

2 · · · QNr
r

〉
. (2.49)
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For later convenience, we set mk := gsμ̂k (k = 0, 1, 2, 3). The momentum
conservation condition is required

3∑
k=0

mk +
r∑

a=1

bgs Naαa = 0. (2.50)

Using this four-point function, we define the partition function of the β deformed
quiver matrix model by sending w3 → ∞ (2.35) with the potential Wa(z):

Wa(z) =
2∑

k=0

(mk, αa) log(wk − z). (2.51)

We will set w0 = 0, w1 = 1 and w2 = q. Using these definitions, the partition
function (2.33) can be written as follows

Z = 〈{Na}| exp
(

1

2π igs

∮
∞
dz 〈W (z), ∂φ(z)〉

)
(Q1)

N1 · · · (Qr )
Nr |0〉. (2.52)

2.3 Higher Genus Case

A generalization of the matrix model to a higher genus Riemann surface has also
been considered in [7]. The integral representation is basically obtained by changing
the two-point function of the free field on a sphere to the one on a Riemann surface,
which can be written in terms of the prime form, and by adding a term to the action
which is the integral of the holomorphic differentials on the Riemann surface. For
the conformal block on a torus with n punctures, for instance, the two-point func-
tion is proportional to the theta function and the integral representation is given by
[7, 30]

Z =
∫ N∏

I=1

dλI

∏
1≤I<J≤N

θ1(λI − λJ )
−2b2

exp

(
− b

gs

N∑
I=1

W (λI )

)
, (2.53)

where θ1(z) = 2q1/8 sin z
∏∞

n=1(1−qn)(1−2qn cos 2z +q2n), q = exp(2π iτ), and

W (z) =
n∑

k=1

2mk log θ1(z − wk) + 4π iaz. (2.54)

The last term in W (z) is the integral of the holomorphic differential on the torus, dz,
as mentioned above. Since the factor

∏
1≤I<J≤N θ1(λI − λJ )

−2b2
can be regarded as

the generalization of the Vandermonde determinant, we refer to the integral (2.53)
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as “generalized matrix model”. In [7], the potential (2.54) of the generalized matrix
model was expected from the geometrical argument of topological string theory.

In the following, we explain how the generalized matrix model is obtained from
the full Liouville correlation function [30] for the torus case and [31] for the generic
Riemann surface, based on the perturbative argument of [32]. Thismethod is different
from the one seen in the previous subsection, although the both use the free field
formalism.

The n-point function of the Liouville theory on a genus g Riemann surface Cg is
formally given by the following path integral

A ≡
〈

n∏
k=1

e2αkφ(wk ,w̄k )

〉

Liouville on Cg

=
∫

Dφ(z, z̄)e−S[φ]
n∏

k=1

e2αkφ(wk ,w̄k ), (2.55)

where the Liouville action is given by

S[φ] = 1

4π

∫
d2z

√
g(∂aφ∂aφ + Q Rφ + 4πμe2bφ). (2.56)

Here R is Ricci scalar and μ is a constant. We divide the Liouville field into the zero
mode and the fluctuation φ(z, z̄) = φ0 + φ̃(z, z̄). By integrating over φ0, we obtain

A = μN �(−N )

2b

∫
Dφ̃(z, z̄)e−S0[φ̃]e− Q

4π

∫
d2z Rφ̃

(∫
d2z e2bφ̃(z,z̄)

)N n∏
k=1

e2αk φ̃(wk ,w̄k ),

(2.57)

where

N = −
n∑

k=1

αk

b
+ Q

b
(1 − g), (2.58)

and S0 is the free scalar field action. When N ∈ Z≥0, the correlator diverges due to
the factor �(−N ). The residues at these poles AN are evaluated in the perturbation
theory in b around the free field action:

AN = (−μ)N

2bN !
∫ N∏

I=1

d2zI

〈
e− Q

4π

∫
d2z Rφ̃

N∏
I=1

: e2bφ(zI ,z̄ I ) :
n∏

k=1

: e2αkφ(wk ,w̄k ) :
〉

free on Cg

.

(2.59)

That N is integer ensures the momentum conservation in the free theory.
Now let us focus on the torus case which simplifies the expression. The �-point

function of the free theory on a torus is written in terms of the factorized expression
by introducing an additional integral as [33–35]
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〈
�∏

i=1

: eiki φ(zi ,z̄i ) :
〉

free on T 2

= 2i |η(τ)|−2δ

(∑
i

ki

)∫ ∞

−∞
da

∣∣∣∣∣∣∣

⎛
⎜⎝∏

i< j

(
θ1
(
zi j |τ

)
η(τ)3

) ki k j
2

⎞
⎟⎠ qa2 exp

⎛
⎝−2π i

�∑
j=1

k j z j a

⎞
⎠
∣∣∣∣∣∣∣

2

,

(2.60)

where zi j ≡ zi − z j , τ is the moduli of the torus and q = exp(2π iτ). By using
the explicit expression (2.60), we find that the n-point function AN of the Liouville
theory reduces to the following integral

AN = C(τ, mk , b)
∏

1≤k<l≤n

|θ1(wkl)|−4mk ml

∫ i∞

−i∞
da|q|−2a2

∫
T 2

N∏
I=1

d2zI (2.61)

×
∣∣∣∣∣exp

[
−2b

N∑
I=1

n∑
k=1

mk log θ1 (zI − wk) − 2b2
∑
I<J

log θ1(zI J ) − 4π iba
N∑

I=1

zI

]∣∣∣∣∣
2

,

where wkl ≡ wk − wl , and we have chosen the insertion points wk such that they
satisfy

∑
k mkwk = 0. The factor C(τ, mk, b) in front of the z integral is irrelevant

for the analysis below.
The discussion above is valid even for finite N . However, it is not straightforward

to divide the integral over the torus into the product of the holomorphic and the
anti-holomorphic pieces for generic N . In order to proceed, we evaluate the integral
(2.61) in the large N limit. We see that all the three terms in the exponent in (2.61)
areO(N 2). Thus, the integral (2.61) is evaluated at the critical points of the exponent
of the integrand. The conditions for the criticality of the exponent are factorized
into holomorphic equations and anti-holomorphic equations, which indicates that the
integral over the torus in (2.61) can be replaced by the product of the holomorphic and
the anti-holomorphic integrals in the large N limit. Thus we define the holomorphic
part of the correlation function as in (2.53) after introduction of gs by αk = mk/gs .

Relation to conformal block and gauge theory We propose that this generalized
matrix model (2.53) reproduces the full conformal block on the punctured torus (not
only in the large N limit), and also the Nekrasov partition function of the N = 2
elliptic SU (2)n quiver gauge theory which is obtained from two M5-branes on the
same torus.

Let us shortly see the relation of the parameters in the conformal block and the
generalized matrix model. In the toric conformal block with n punctures, we have
n external and n internal momenta, giving 2n parameters in total. The parameters
mk are directly identified with the external momenta. Then, the potential (2.54) has
n critical points for each variable zI , assuming that the parameters mk are generic.
Similar to the case in Sect. 2.1, we expect that the n critical points are “diffused” to
form line segments due to the “determinant” factor. Then, the partition function is
labelled by the filling fractions νi = bgs Ni , in which Ni out of N variables zI take
the value on the i-th line segment. Due to the momentum conservation condition the
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sum of all νi is not independent degree of freedom. Thus we have n − 1 independent
filling fractions. These and the parameter a in the potential are mapped to the internal
momenta. (See [36] for the precise identification in the n = 1 case.)

The relation to the gauge theory is stated as follows: the gauge theory coupling
constants qp = e2π iτp (p = 1, . . . , n) are identified with the moduli of the torus as

e2π iwk =
n−1∏
p=k

qp, q ≡ e2π iτ =
n∏

p=1

qp. (2.62)

The parameters mk are directly identified with the mass parameters of the bifunda-
mentals. The filling fractions and the parameters in the potential are mapped to the
vevs ap of the scalars in the vector multiplets.

g > 1 case Finally, let us quickly consider the case of the genus g Riemann surface
with n puncture. As stated above the two-point function is written in terms of the
prime form, and the generalized matrix model is the one in (2.54) where the theta
function is replaced by the prime form and the last term in the potential is the integral
of the holomorphic differential, with some additional terms. The precise form is
presented in [31]. The parameters are identified as follows [31, 36]: the conformal
block is parameterized by n + (2g − 2 + n) parameters, where the first factor is
from the external momenta and the second from the internal ones. In general the
generalizedmatrixmodel corresponding to thisRiemann surface has n mk parameters
and g parameters including in the term involving the integrals of the holomorphic
differentials. Since critical points of the potential lead to (2g − 2 + n) − 1 filling
fraction (where −1 comes from the momentum conservation), we have the same
number of the parameters as the conformal block.

3 Large N Limit

Let us start an analysis of the matrix models introduced in Sect. 2, focusing on the
relation with four-dimensional gauge theory. One way to study a hermitian matrix
model is to make use of the loop equation [37–39], and take the limit where the size
of matrix, N , is large. By this we can calculate the partition function of the matrix
model in the iterative way as in [40, 41] (see e.g., [42] for a review). The systematic
study of this method, so-called topological recursion has been performed in [43–45],
and in [22, 46, 47] for the β-deformed case. An advantage of considering the large
N limit (while gs N kept fixed) of the matrix model introduced above is that the limit
nicely corresponds to the one where ε1 and ε2 go to zero in the four-dimensional
side, as can be seen from (2.22). Thus, this section is devoted to study this limit and
see the correspondence with the four-dimensional gauge theory.

In Sect. 3.1, we derive the loop equation of the β-deformed matrix model. We
see that this equation can be interpreted as the Virasoro constraints in the conformal
field theory. Then we show in Sect. 3.2 that in the large N limit the spectral curve
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obtained from the loop equation can be identified with the Seiberg-Witten curve of
the corresponding gauge theory. The free energy of the matrix model can also be
computed and agrees with the prepotential of the gauge theory. In Sect. 3.3, we turn
to the generalized matrix model on torus, and consider the large N limit.

3.1 Loop Equation

Let us define the generator of the multi-trace operators as

R(z1, . . . , zk) = (bgs)
k
∑

I1

1

z1 − λI1

· · ·
∑

Ik

1

zk − λIk

. (3.1)

When k = 1 this is simply the generator of the single trace operators. First of all, we
consider the Schwinger-Dyson equation associated to the transformation δλI = 1

z−λI
,

keeping the potential arbitrary

0 = 1

Z

∫ N∏
I=1

dλI

∑
K

∂

∂λK

[
1

z − λK

∏
I<J

(λI − λJ )
−2b2

e− b
gs

∑
I W (λI )

]

= − 1

g2s
〈R(z, z)〉 − b + 1

b

gs
〈R(z)′〉 − 1

g2s
W ′(z)〈R(z)〉 + f (z)

4g2s
, (3.2)

where R′ is the z-derivative of the resolvent and we have defined

f (z) = 4bgs

〈∑
I

W ′(z) − W ′(λI )

z − λI

〉
. (3.3)

The expectation value is defined as the matrix model average (2.15). By multiplying
(3.2) by −g2s , we obtain

0 = 〈R(z, z)〉 + (ε1 + ε2)〈R(z)′〉 + W ′(z)〈R(z)〉 − f (z)

4
. (3.4)

In the case of the hermitian matrix model b = i , the second term vanishes and the
equation reduces to the well-known one.

We now see that this loop equation is interpreted as the Virasoro constraints in
the CFT language. To see this, let us write the energy-momentum tensor by using
the expression (2.14)

g2s T (z) = −
(
1

4
W ′(z)2 + Q

2
W ′′(z) + f (z)

4
+ (r.h.s. of (3.4))

)
. (3.5)
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The singular part in z only comes from the last term. (We here assume that the
potential is a polynomial.) Therefore the Virasoro constraint 0 = g2s 〈T (z)|sing〉 is
equivalent to the loop equation. The expectation value of g2s T (z) is simply the first
three terms in (3.5).

We now define the “quantum” spectral curve as

0 = x̂2 + g2s 〈T (z)〉 = 〈(x̂ + gs√
2
∂φ)(x̂ − gs√

2
∂φ)〉, (3.6)

where we introduce the commutation relation [x̂, z] = −Qgs .

3.2 Large N Limit and Seiberg-Witten Theory

Wenow take the large N limitwhile thefilling fractions νi ≡ bgs Ni (i = 1, . . . , n−2)
are fixed. As we saw in Sect. 2.1, there are n−3 independent filling fractions because
of the momentum conservation. Since both bgs and gs/b send to zero, this limit
corresponds to ε1,2 → 0 in the four-dimensional side.

In this limit the resolvent 〈R(z, z)〉 is factorized to 〈R(z)〉2 in the large N . There-
fore the loop equation is written as

0 = 〈R(z)〉2 + 〈R(z)〉W ′(z) − f (z)

4
, (3.7)

which is solved as

〈R(z)〉 = −1

2

(
W ′(z) −

√
W ′(z)2 + f (z)

)
. (3.8)

The sign has been chosen such that the large z asymptotics agrees with the definition
of R(z). The spectral curve (3.6) now becomes “classical” because [z, x] = 0:

x2 = 1

4
(W ′(z)2 + f (z)). (3.9)

It is easy to see that x = ±(W ′/2 + 〈R〉) from (3.8) and (3.9), which is indeed the
classical value of x̂ by using (2.14). Note that the b-dependence has disappeared by
defining the resolvent as in (3.1). Thus, in the large N limit we get the same spectral
curve for arbitrary b.

Let us then analyze f (z) by specifying the potential to (2.11). In this case,

f (z) =
n−2∑
k=0

ck

z − wk
, (3.10)
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where for k ≥ 2

ck = −4bgs

〈∑
I

2mk

λI − wk

〉
= −4g2s

∂ log Z

∂wk
= −4

∂ Fm

∂wk
. (3.11)

The remaining c0 and c1 can be written in terms of ck with k ≥ 2 as follows. First of
all, due to the equations of motion:

〈∑
I W ′(λI )

〉 = 0, the sum of ck is constrained to
vanish

∑n−2
k=0 ck = 0. In order to find another constraint, we consider the asymptotic

at large z of the loop equation. The asymptotic of the resolvent is 〈R(z)〉 ∼ bgs N
z , so

that the leading terms at large z in the loop equations satisfy

(bgs N )2 − (ε1 + ε2)bgs N + bgs N
n−2∑
k=0

2mk −
n−2∑
k=0

wkck

4
= 0. (3.12)

The leading term of order 1/z in f (z) vanishes via the first constraint. Thus, we
obtain

n−2∑
k=0

wkck = −4

(
n−2∑
k=0

mk + mn−1 − gs Q

)(
n−2∑
k=0

mk − mn−1

)
=: M2, (3.13)

where we have used the momentum conservation (2.12). Therefore, c0 and c1 can be
written in terms of ck (3.11). This means that we have n−3 undetermined parameters
in the matrix model.

By substituting the potential the curve (3.9) is of the form

x2 =
n−2∑
k=0

m2
k

(z − wk)2
+ f (z)/4 = P2n−4(z)∏n−2

k=0(z − wk)2
, (3.14)

where P2n−4 is a polynomial of degree 2n − 4, and the residues of f (z) at z = wk

(3.10) are nontrivial functions of the vacuum values of single trace operators. The
zeros of P2n−4 are the branch points on the z-plane, and there are n−2 branch cuts. Let
us define themeromorphic differentialλm = xdz

2π i . This has simple poles at z = wk,∞
with the residues mk, mn−1, by observing 〈R〉 ∼ gs N

z and W ′(z) ∼ ∑n−2
k=0 2mk/z at

large z and by using the momentum conservation. By definition, the filling fractions
are obtained by the contour integrals of this differential

νi =
∮

Ci

dzλm, (3.15)

whereCi (i = 1, . . . , n−2) are the contours around the branch cuts. These equations
relate the vevs of the single trace operators included in f (z)with the filling fraction νi .
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This is exactly the form of the Seiberg-Witten curve of the SU (2) linear quiver
gauge theory, x2 = φ2 where φ2 is a quadratic meromorphic differential on a sphere.
Moreover the differential defined above is identified with the Seiberg-Witten differ-
ential λSW =

√
φ2dz
2π i . Indeed, as proposed in Sect. 2, the filling fractions are mapped

to the vacuum expectation values of the vector multiplet scalars, since in the Seiberg-
Witten theory these are given by contour integrals of the Seiberg-Witten differential
exactly in the same way as (3.15). For the case with n = 4 associated with the
SU (2) gauge theory with four fundamental hypermultiplets, the precise identifica-
tion between the vevs of single trace operators and the Coulomb moduli parameter
has been worked out in [48]. In [49], the standard saddle point analysis developed in
[40] has been applied to determine the spectral curve, in particular the positions of
branch cuts.

This is in agreement with the argument in [9] that the φ2 appearing in the Seiberg-
Witten curve can be identified with the vacuum expectation value of the energy-
momentum tensor of the Virasoro CFT

φ2(z) = g2s 〈T (z)〉|ε1,2→0, (3.16)

by recalling our definition of the spectral curve (3.6).

Free energy So far we have seen the identification of the spectral curve of the
matrix model and the Seiberg-Witten curve of the gauge theory. However, it is still
not straightforward to see the equivalence of the free energy of the former with the
prepotential of the latter, because the special geometry relation of the Seiberg-Witten
theory: a = ∮A λSW and ∂F

∂a = ∮B λSW, where F is the prepotential, is not manifest
in the matrix model. The saddle point analysis of the matrix model can be used to
obtain the free energy and the equation like the (second) spacial geometry relation,
as in [48]. However here let us shortly see a more direct approach to the free energy
for the n = 4 case considered in [50].

Recall the relation (3.11). In the n = 4 case with w2 = q, this is

∂ Fm

∂q
= −c2

4
. (3.17)

Therefore, what we need to do is to calculate c2. (Actually we can only derive the q
dependent part of the free energy by this method.) As we discussed in the previous
subsection, the parameters c0, c1 and c2 in f (z) are related by

∑
ci = 0 and (3.13)

c1 + qc2 = 4m2
3 − 4(

∑2
i=0 mi )

2 (when ε1,2 = 0). Thus, we have (1 − q)c2 =
4(
∑2

i=0 mi )
2 − 4m2

3 − c0. Below we will compute c0 by writing the spectral curve
in terms of it.

In what follows, we consider the simple case where all the hypermultiplet masses
are equal to m: i.e., m0 = m3 = 0 and m1 = m2 = m. In this case, the polynomial
P4 in the spectral curve is reduced to degree 3: P3(z) = Cz(z − z+)(z − z−), where
we have introduced C = c0q/4 and
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z± = 1

2

(
1 + q − (1 − q)2

m2

C
± (1 − q)

√
1 − 2(1 + q)

m2

C
+ (1 − q)2

m4

C2

)
.

(3.18)

By taking the C derivative of xdz, we get the holomorphic differential with

∂

∂C
xdz = 1

2
√

Cz+
dz√

z(1 − z)(1 − k2z)
, k2 = z2−

q
. (3.19)

Since the contour integral of this differential gives the C derivative of the filling
fraction ν1 which has been identified with the vevs a by a = bgs N1. Thus by
expanding in m2

C and integrating over C , we obtain

a = √
C

(
h0(q) − h1(q)

m2

C
− h2(q)

3

m4

C2
+ O

(
m6

C3

))
, (3.20)

where hi (q) depend only on q and are given in [50]. By solving for C , substituting
it into (3.17), and integrating over q, we finally obtain the free energy

Fm = (a2 − m2) log q + a4 + 6a2m2 + m4

2a2
q

+13a8 + 100m2a6 + 22m4a4 − 12m6a2 + 5m8

64a6
q2 + O(q3). (3.21)

This agrees with the prepotential of the SU (2) gauge theory with four fundamental
hypermultiplets. The latter can be obtained from the Nekrasov partition function of
U (2) gauge theory by subtracting the terms coming from the U (1) factor.

Subleading order of large N expansion It is interesting to check the subleading
order in the large N (small ε1, ε2) expansion. On the four-dimensional side, the
Nekrasov partition function is expanded as

F := ε1ε2 ln ZNek = F0 + (ε1 + ε2)H + ε1ε2F1 + (ε1 + ε2)
2G + · · · (3.22)

Subleading terms H , F1 and G can be obtained from the geometric data of the
Seiberg-Witten theory. (See [51] for detail.) The matrix model analysis for the sub-
leading orders can also be done. In particular, it was shown that the corresponding
parts of the free energy agrees with F1 in [49] and with H and G in [52, 53]. For
generic b, this expansion of the matrix model was compared [54] with the finite N
calculation which will be explained in Sect. 5.

Themethod using the topological recursion [43–45]would be useful. In particular,
the calculation of the partition function of the β-deformed matrix model with the
logarithmic potential was considered in [47, 55] in this context.
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3.3 Higher Genus Case

Let us turn to the generalized matrix model corresponding to the torus (2.53), and
derive the loop equation. We then see the equivalence of the spectral curve obtained
by taking the large N limit and the Seiberg-Witten curve [56].

We now define the toric version of the resolvent

R(z1, . . . , zk) = (bgs)
k
∑

I1

θ ′
1(z1 − λI1)

θ1(z1 − λI1)
. . .
∑

Ik

θ ′
1(zk − λIk )

θ1(zk − λIk )
. (3.23)

From the Schwinger-Dyson equation for an arbitrary transformation δλK = θ ′
1(z−λK )

θ1(z−λK )
,

we derive

0 = g2s

〈∑
I

(
θ ′
1(z − λI )

θ1(z − λI )

)2〉
− g2s

〈∑
I

θ
′′
1 (z − λI )

θ1(z − λI )

〉
− bgs W ′(z)

〈∑
I

θ ′
1(z − λI )

θ1(z − λI )

〉

+t (z) − 2b2g2s

〈∑
I<J

θ ′
1(λI − λJ )

θ1(λI − λJ )

(
θ ′
1(z − λI )

θ1(z − λI )
− θ ′

1(z − λJ )

θ1(z − λJ )

)〉
, (3.24)

where we have multiplied by g2s and defined

t (z) = bgs

〈∑
I

θ ′
1(z − λI )

θ1(z − λI )
(W ′(z) − W ′(λI ))

〉
. (3.25)

By using the formula of the theta function and, after some algebra, we obtain [56]

0 = −〈R(z, z)〉 − (ε1 + ε2)
〈
R′(z)

〉− W ′(z) 〈R(z)〉 + b2g2s N

〈∑
I

θ
′′
1 (z − λI )

θ1(z − λI )

〉

+t (z) + b2g2s

〈∑
I<J

θ
′′
1 (λI − λJ )

θ1(λI − λJ )

〉
+ 3b2g2s η1N (N − 1), (3.26)

where η1 = 4 ∂ ln η

∂ ln q . This equation is valid for an arbitrary potential.
Let us now focus on the potential (2.54). By rewriting t (z) we finally obtain

0 = −〈R(z, z)〉 − (ε1 + ε2)
〈
R′(z)

〉+ W ′(z) 〈R(z)〉 − 3bgs (N + 1)η1
∑

k

mk (3.27)

−2bgs

n∑
k=1

mk
θ ′
1(z − wk )

θ1(z − wk )

〈∑
I

θ ′
1(λI − wk )

θ1(λI − wk )

〉
+ bgs N

∑
k

mk
θ

′′
1 (z − wk )

θ1(z − wk )
+ 4g2s

∂ ln Z

∂ ln q
.
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Let us now see the spectral curve in the large N limit. For simplicity we consider
the n = 1 case, and take w1 = 0. In this case, it is easy to see that the loop equation
reduces to

0 = −x2 + m2
1P(z) − 4u, (3.28)

where P is the Weierstrass function, x = ±(〈R〉 + W ′/2), and

u = −π2a2 + ∂

∂ ln q

(
F0 − m2

1 ln η
)
. (3.29)

We defined the free energy as F0 = limε1,2→0(ε1ε2) ln Z .
This is indeed the Seiberg-Witten curve of the SU (2) N = 2∗ theory.

4 Nekrasov-Shatashvili Limit

It has long been known that the Seiberg-Witten theory is related with the classical
integrable system [57–62]. The connection has been considered in [63] from the
recent perspective of the 6d (2,0) theory compactification. A review can be found
in [V:3]. Quite remarkably it was proposed in [19] that the gauge theory on the �

background with ε2 → 0 while ε1 kept fixed is related with the quantization of the
integrable system. In this section, we consider this limit from the matrix model side.
The limit is translated to b → ∞ and gs → 0 with bgs , gsαk and gs Ni kept finite,
and corresponds to the semiclassical limit in the CFT.

In this limit, the leading order part of the free energy is obtained from the value
of the critical points which solve the equations of motion (2.18), as in the large N
limit. We note that two terms in (2.18) are of the same order in the limit because
N and ε1 are kept finite. Let us then consider the loop equation (3.4). Again, in this
limit, the connected part of (3.1) can be ignored: 〈R(z, z)〉 → 〈R(z)〉2. Taking this
into account, (3.4) becomes

0 = 〈R̃(z)〉2 + ε1〈R̃(z)′〉 + 〈R̃(z)〉W ′(z) − f̃ (z)

4
, (4.1)

where R̃ and f̃ are R|ε2→0 and f |ε2→0 respectively. In the following, we will omit
the tildes of R and f . Then, in terms of x = 〈R(z)〉+W ′(z)/2, the equation becomes
[22, 46, 64]

0 = −x2 − ε1x ′ + U (z), (4.2)

where

U (z) = 1

4

(
W ′(z)2 + 2ε1W

′′
(z) + f (z)

)
. (4.3)

http://dx.doi.org/10.1007/978-3-319-18769-3_3
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This is a Ricatti type equation. It is then easy to see that this can be written as the
Schrödinger-type equation:

0 = −ε21
∂2

∂z2
�(z) + U (z)�(z), (4.4)

where the “wave function” �(z) is defined by

�(z) = exp

(
1

ε1

∫ z

x(z′)dz′
)

. (4.5)

This indicates the relation between the β-deformed matrix model and quantum inte-
grable system.

Note that the quantum spectral curve indeed leads to the same conclusion. Equa-
tion (3.6) becomes in this limit

0 = x̂2 − U (z). (4.6)

These variables are not commutative [x̂, z] = −ε1. Thus x̂ = −ε1
∂
∂z which leads to

(4.4).
In [65, 66], it was shown that the conformal block on a sphere with the additional

insertion of the degenerate fields V− 1
2b

(z) = e− φ(z)√
2b captures the quantization of the

integrable systems. The details can be found in [V:10]. (The similar relation between
the affine SL(2) conformal block and integrable system has been found in [67].) This
has an interpretation in the 4d gauge theory as an insertion of a surface operator [68]
(see [V:9] for a review on this part.) In the following, we will show that under the
identification of the β-deformed matrix model Z with the n-point conformal block,
the integral representation of the conformal block with degenerate field insertions
can be written in terms of the resolvent of the original matrix model [56, 69], in the
ε2 → 0 limit. We note that the similar analysis was done in [70] from the topological
string viewpoint.

Let us consider the integral representation of the (n + �)-point conformal block
where � degenerate fields are inserted

Z� =
〈

�∏
i=1

V 1
2b

(zi )

(∫
dλe

√
2bφ(λ)

)N n−1∏
k=0

Vmk
gs

(wk)

〉

=
∏
i< j

(zi − z j )
− 1

2b2
∏

0≤k<�≤n−2

(wk − w�)
− 2mk m�

g2s

�∏
i=1

n−2∏
k=0

(zi − wk)
mk
bgs

×
∫ N∏

I=1

dλI

∏
I<J

(λI − λJ )
−2b2

∏
I

n−2∏
k=0

(λI − wk)
− 2bmk

gs

�∏
i=1

(zi − λI ), (4.7)

http://dx.doi.org/10.1007/978-3-319-18769-3_10
http://dx.doi.org/10.1007/978-3-319-18769-3_9
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where we have takenwn−1 to infinity and omitted the factor including this, as we have
done above. Themomentumconservation is howevermodified by the degenerate field
insertion as

n−1∑
k=0

mk − �gs

2b
+ bgs N = gs Q. (4.8)

By dividing by Z and taking a log, we obtain

log
Z�

Z
= − 1

2b2

∑
i< j

log(zi − z j ) +
∑

i

W (zi )

2bgs
+ log

〈∏
i,I

(zi − λI )

〉
, (4.9)

where the potential W (z) is the same as (2.11). Notice that the expectation value is
definedwith themodifiedmomentum conservation (4.8). By defining eL =∏i,I (zi −
λI ), we notice that L =∑i,I log(zi − λI ) =∑i,I

∫ zi dz′
i

z′
i −λI

, where we have ignored
irrelevant terms due to the end points of the integrations. Then, we use that the
expectation value of eL can be written as log

〈
eL
〉 = ∑∞

k=1
1
k!
〈
Lk
〉
conn [69], where

〈. . .〉conn means the connected part of the correlator, 〈L2〉conn = 〈L2〉 − 〈L〉2, etc.,
while 〈L〉conn = 〈L〉. Thus, the last term in the right hand side of (4.9) can be

expressed as
∑∞

k=1
1
k!

〈(∑
i,I

∫ zi dz′
z′−λI

)k
〉

conn

.

In the limit where ε2 → 0, the terms with k > 1 of the previous expression are
subleading contributions compared with the k = 1 terms since the connected part
of the expectation value can be ignored. Also the first term in the right hand side of
(4.9) can be neglected in this limit. Thus, we obtain

Z�

Z
→

�∏
i=1

�i (zi ), �i (zi ) = exp

(
1

ε1

∫ zi

x(z′)dz′
)

. (4.10)

This indicates that the properties of the conformal block with degenerate field inser-
tions are build in the resolvent of the matrix model in the ε2 → 0 limit. This property
of “separation of variables” agrees with the corresponding result of the Virasoro
conformal block as in [65, 71]. Furthermore, this � with � = 1 is exactly the one
which satisfied the Schrödinger equation (4.4).

In summary, we have seen that the integral representation corresponding to the
insertion of the degenerate fields into the Virasoro conformal block satisfies the
Schrödinger equation, whose potential can be obtained from the loop equation.

Relation with Gaudin model The above argument is applicable for an arbitrary
potential W (z). Here we return to the logarithmic one (2.11) and see the relation [22,
56, 72, 73] with the Gaudin Hamiltonian. In this case (4.3) becomes [56]
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U (z) =
n−2∑
k=0

mk(mk + ε1)

(z − wk)2
+
∑

k

Hk

z − wk
−

n−2∑
k=0

ck/4

z − wk
, (4.11)

where

Hk =
∑
�(�=k)

2mkm�

wk − w�

. (4.12)

U (z) is indeed the vacuum expectation value of Gaudin Hamiltonian. In particular,
Hk − ck/4 are the vacuum energies of the quantum Hamiltonians.

So far, we discussed the case corresponding to the CFT on the sphere. For the
toric case, it has been shown that the loop equation of the generalized matrix model
in Sect. 3.3 gives the Hamiltonian of the Hitchin system on the torus in [56]. In
particular the n = 1 case leads to the elliptic Calogero-Moser model.

5 Finite N Analysis

In the previous section we considered the large N limit and the Nekrasov-Shatashvili
limit of the β-deformed matrix model. Here we will see a different expansion of the
matrixmodel partition function in the complex structures of the Riemann surface.We
calculate each order of the expansion by performing the direct integration. Indeed,
this expansion is more useful to compare with the Virasoro conformal block and
the Nekrasov partition function. We first review the conformal block of the Virasoro
algebra in Sect. 5.1. Then we analyze the integral representation in Sect. 5.2.

5.1 Virasoro Conformal Block

Let us review the Virasoro algebra and the conformal block [74]. (See e.g., [75, 76]
for detailed computations.) We consider the conformal symmetry generated by the
holomorphic energy-momentum tensor T (z) with

T (z) =
∞∑

n=−∞

Ln

zn+2
. (5.1)

The Virasoro algebra is

[Lm, Ln] = (m − n)Lm+n + c

12
(m3 − m)δm+n,0, (5.2)
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and we consider the case with Liouville like central charge c = 1 + 6Q2 where
Q = b + 1/b.

The primary field Vα(x) corresponds to the highest weight vector satisfying

Ln Vα = 0, L0Vα = 	αVα, (5.3)

where n > 0. The conformal dimension of the primary is 	α = α(Q − α). By
state-operator correspondence we denote the primary state with	α by |	〉. Then the
Verma module V is formed by the descendants VY,α =: L−Y Vα : which are obtained
by acting with the raising operators L−Y = (L−y1)

n1(L−y2)
n2(L−y3)

n3 . . ., where {yi }
are positive integers with y1 < y2 < · · · . Below we use the shorthand notation to
denote Y : Y = [· · · yn3

3 yn2
2 yn1

1 ], e.g., for y1 = 1 and n1 = 2, Y = [12]. Let us denote
the sum of ni yi as |Y |. The dimension of the descendant is 	α +|Y |, and we call |Y |
as level.

The OPE of these operators is given by

VY1,α1(q)VY2,α2(0) =
∑

q	−	1−	2−|Y1|−|Y2|Cα
α1,α2

∑
Y

q |Y |β	,Y
	1,Y1;	2,Y2

VY,α(0),

(5.4)

where 	 is the conformal dimension of Vα . Cα
α1,α2

depends on the dynamics of a

two-dimensional theory while β
	,Y
	1,Y1;	2,Y2

is determined from the Virasoro algebra
only and depends on the conformal dimensions and central charge. We will focus on
the latter and ignore the factors Cα3

α1,α2
coming from the dynamics.

Let us now define the two-point function

Q	(Y1, Y2) = 〈	|LY1 L−Y2 |	〉. (5.5)

This is symmetric under the exchange of Y1 and Y2, and vanishes unless |Y1| = |Y2|.
By using this, β	,Y

	1,Y1;	2,Y2
can be written in terms of the three-point function γ :

γ	1,	2,	3(Y1, Y2, Y3) = 〈VY1,α1(∞)VY2,α2(1)VY3,α3(0)〉
=
∑

Y ′
β

	3,Y
	1,Y1;	2,Y2

Q	3(Y
′, Y3). (5.6)

When |Y1| = |Y2| = ∅, the expressions for the β and γ can be simplified. Thus we
define in particular

γ	1,	2,	3(Y ) = γ	1,	2,	3(∅,∅, Y ),

β
	3
	1,	2

(Y ) = β
	3,Y
	1,∅;	2,∅. (5.7)

These Q and γ can be computed order by order in the level. Let us give a few results
of the computation for later convenience:
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Q	([1], [1]) = 2	,

Q	([2], [2]) = 4	 + c/2, Q	([2], [12]) = 6	, Q	([12], [12]) = 4	(1 + 2	),

.

.

.

γ	1,	2,	3 ([1]) = 	1 + 	3 − 	2,

γ	1,	2,	3 ([2]) = 2	1 + 	3 − 	2, γ	1,	2,	3 ([12]) = (	1 + 	3 − 	2)(	1 + 	3 − 	2 + 1),

.

.

. (5.8)

We used [Ln, Vα(z)] = zn(z∂z +(n+1)	)Vα(z) following from the conformalWard
identities when computing the three-point function. From this we can calculate β as

β
	3
	1,	2

([1]) = 	1 + 	3 − 	2

2	3
. (5.9)

Now we can write down the conformal block in terms of these functions. Let
us focus on the four-point conformal block which we refer to as B. By translation
symmetry we put three points at 0, 1 and ∞. Thus the conformal block is written
in terms of the cross ratio q which is the position of the remaining vertex operator.
Then the conformal block has the following structure:

B =
∞∑

k=0

Bkqk, Bk =
∑

|Y |=|Y ′|=k

γ	0,	2,	(Y )Q−1
	 (Y, Y ′)γ	1,	3,	(Y ′), (5.10)

and B0 = 1. The conformal block is computed by order by order. E.g., the first order
coefficient B1 is computed as

B1 = (	 + 	0 − 	2)(	 + 	1 − 	3)

2	
. (5.11)

5.2 Finite N Matrix Model

Now we consider the integral representation. Let us first see that the prescription for
themomentum conservation at the vertex (2.17) is indeed the correct one by checking
the equivalence of the three-point functions. To see this, we consider the following
OPE in the free scalar theory

: L−Y1 Vα1(q) :: L−Y2 Vα2(0) :
N∏

I=1

∫ q

0
dλI : e

√
2bφ(λI ) :

= C
∑

Y

q |Y |β	α1+α2+bN ,Y
	1,Y1;	2,Y2

∣∣∣
free

: L−Y Vα1+α2+bN (0) :, (5.12)
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where C is an irrelevant factor normalizing β
	α1+α2+bN ,∅
	1,∅;	2∅ |free = 1. The coefficient

β|free corresponds to the three-point function. Thus, it is natural to propose that [26]

β
	,Y
	1,Y1;	2,Y2

= β
	α1+α2+bN ,Y
	1,Y1;	2,Y2

∣∣∣
free

, (5.13)

under the identification of the internal momenta α = α1 + α2 + bN , where the left
hand side is the one obtained in the previous subsection.

Let us focus on the case with Y1 = Y2 = ∅ and analyze the right hand side of
(5.12) further. By calculating the OPE in the free field theory, we obtain

Vα1 (q)Vα2 (0)
N∏

I=1

∫ q

0
dλI : e

√
2bφ(λI ) :

= q−2α1α2
N∏

I=1

∫ q

0
dλI

∏
I<J

(λI − λJ )−2b2
N∏

I=1

λ
−2bα2
I (q − λI )

−2bα1 : e
√
2(α1φ(q)+α2φ(0)+b

∑
I φ(λI )) :

= qσ
N∏

I=1

∫ 1

0
dxI

∏
I<J

(xI − xJ )−2b2
N∏

I=1

x−2bα2
I (1 − xI )

−2bα1
∑
Y,Y ′

q |Y |−|Y ′ | HY,Y ′ xY ′ : VY,α(0) : . (5.14)

In the last equality we have changed the variables λI = qxI and defined HY,Y ′ such
that

: e
√
2(α1φ(q)+α2φ(0)+b

∑
I φ(λI )) :=

∑
Y,Y ′

q |Y |−|Y ′|HY,Y ′λY ′ : L−Y e
√
2(α1+α2+bN )φ(0) :,

(5.15)

where λY =∏I λ
yI

I for the partition Y = [yN , . . . , y1] with y1 ≤ y2 ≤ . . .. We sum
over all the possible Y and Y ′ with |Y | ≥ |Y ′|. By defining the following multiple
integral

〈〈xY 〉〉N =
N∏

I=1

∫ 1

0
dxI

∏
I<J

(xI − xJ )
−2b2

xY
N∏

I=1

x−2bα2
I (1 − xI )

−2bα1 , (5.16)

the three-point function β from the free scalar field theory is thus

β
	α1+α2+bN

	1,	2
(Y )

∣∣∣
free

=
∑

Y ′,|Y ′|≤|Y |
HY,Y ′

〈〈xY ′ 〉〉N

〈〈1〉〉N
. (5.17)

The multiple integral (5.16) is of the Selberg type. We will give results of the inte-
gration in Appendix. Thus, the right hand side is in principle calculable.

Let us check the equivalence of the first order. In this case Y = [1], H[1],∅ =
α1

α1+α2+bN and H[1],[1] = bN
α1+α2+bN . Combining the formula for 〈〈xY=[1]〉〉N (6.2) we

obtain
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β
α1+α2+bN
	1,	2

([1])
∣∣∣
free

= 	 + 	1 − 	2

2	

∣∣∣
α=α1+α2+bN

. (5.18)

This agrees with (5.9) with 	3 → 	. The strategy to compute the higher order
terms is the following: rewrite xY in terms of the Jack polynomial PW (x) which
is specified again by the partition W . (See Appendix for detail.) By writing xY =∑

W PW (x)CY,W , we have

β	
	1,	2

(Y )

∣∣∣
free

=
∑

Y ′,W,|Y ′ |≤|Y |
HY,Y ′CY ′,W

〈〈PW (x)〉〉N

〈〈1〉〉N
. (5.19)

The right hand side can be calculated by performing the integration 〈〈PW (x)〉〉α1,α2,b

(6.4). The equivalence with the Virasoro three-point function was checked in lower
levels in [26].

Note that this equivalence is only valid for an integer N . However, the result is a
rational function of N . Therefore we analytically continue N to an arbitrary complex
number.

Four-point conformal block Now let us compute the partition function. We will
below focus on the matrix model with n = 4 which corresponds to a sphere with
four punctures. In this case we define

Ẑ = C(q)

(
N1∏

I=1

∫ q

0
dλI

)(
N∏

I=N1+1

∫ ∞

1
dλI

)∏
I<J

(λI − λJ )
−2b2

e− b
gs

∑
I W (λI ),

(5.20)

where C(q) = q−2α0α2(1− q)−2α1α2 . As proposed in (2.17), the internal momentum
α is given by

α = α0 + α2 + bN1 = −α1 − α3 − bN2 + Q. (5.21)

The above prescription of the contour and the relation between N1, N2 and the exter-
nal momenta was first given in [24] (see [64]) and elaborated in [25, 26]. (We
are following the choice of the integration contours in [25].) This integral can be
expanded in q

Ẑ = Z0 J, J =
∞∑

k=0

Jkqk, (5.22)

where Jk are normalized such that J0 = 1, Z0 = cqδ , δ is a function of the conformal
dimensions, and c is an irrelevant factor. The proposal of the equivalence between
the integral representation and the conformal block is thus

Jk = Bk . (5.23)
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Let us check this below.
For convenience, we change the variables as

λI =
{

qxI I = 1, . . . , N1

1/yI−N1 I = N1 + 1, . . . , N1 + N2
(5.24)

by which the partition function becomes

Ẑ = C ′(q)

N1∏
I=1

∫ 1

0
dxI

N1∏
I=1

x−2bα0
I (1 − xI )

−2bα2 (1 − qxI )
−2bα1

∏
1≤I<J≤N1

(xI − xJ )−2b2

N2∏
I=1

∫ 1

0
dyI

N2∏
I=1

y−2bα3
I (1 − yI )

−2bα1 (1 − qyI )
−2bα2

∏
1≤I<J≤N2

(yI − yJ )−2b2

N1∏
I=1

N2∏
J=1

(1 − qxI yJ )−2b2 , (5.25)

whereC ′(q) = q	−	0−	2(1−q)−2α1α2 . This can be thought of as the double Selberg-
type integral. By defining 〈〈. . .〉〉N1,N2 as the average of the double Selberg integral,
the partition function is written as

Ẑ = C ′(q)〈〈1〉〉N1,N2 〈〈
N1∏

I=1

N2∏
J=1

(1 − qxI )
−2bα1(1 − qyJ )−2bα2 (1 − qxI yJ )−2b2 〉〉N1,N2 .

(5.26)

Therefore, we obtained c = 〈〈1〉〉N1,N2 , δ = 	 − 	0 − 	2 and [25]

J = (1 − q)−2α1α2〈〈
N1∏

I=1

N2∏
J=1

(1 − qxI )
−2bα1(1 − qyJ )

−2bα2(1 − qxI yJ )
−2b2〉〉N1,N2

= 〈〈exp
(
2

∞∑
k=1

qk

k

(
b
∑

I

xk
I + α2

)(
b
∑

J

yk
J + α1

))
〉〉N1,N2 . (5.27)

For example, the first order term in q is given by

2〈〈
(

b
∑

I

xk
I + α2

)(
b
∑

J

yk
J + α1

)
〉〉N1,N2 = (	 + 	0 − 	2)(	 + 	1 − 	3)

2	
,

(5.28)

by using the formulas of the Selberg integral, with the identification (5.21). This is
indeed the conformal block at the level 1, B1. In principle it is possible to compute
higher order terms in q by using the Selberg integral formula and its generalization.
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Relation to Nekrasov partition function So far we focused on the relation between
the integral representation and the conformal block. At the same time, one can argue
the relation to the Nekrasov partition function as considered in [77] following [25,
78]. To do that we use the following expression of J instead of (5.27):

J = (1 − q)−2α1α2

〈〈exp
⎛
⎝b2

∞∑
k=1

qk

k

⎛
⎝
(∑

I

xk
I + 2α2

b

)∑
J

yk
J +

∑
I

xk
I

⎛
⎝∑

J

yk
J + 2α1

b

⎞
⎠
⎞
⎠
⎞
⎠〉〉N1,N2 .

(5.29)

At this stage we note that the pre-factor (1−q)−2α1α2 is the inverse of theU (1) factor
introduced in Sect. 2.1. Therefore from (2.19) the second line is conjectured to be
identified with the Nekrasov partition function. Indeed the second line has a form of
summing over two Young diagrams, μ and ν:

∑
μ,ν

q |μ|+|ν| Zμ,ν, (5.30)

where Zμ,ν is a double Selberg average of polynomials specified by μ and ν. In
[77], it was found that by using a particular generalization of the Jack polynomial
which depends on a pair of Young diagram, Zμ,ν is identified with the corresponding
Nekrasov partition function ZNekμ,ν for given μ and ν. While the Selberg average
of the generalization of the Jack polynomial is not completely understood, this is a
profound way towards showing the AGT correspondence.

A similar calculation has been done in [79, 80] for the A-type quiver matrix
model in Sect. 2.2 by making use of the Selberg integral to see the relation with
four-dimensional SU (N ) gauge theory. This method has also been performed in the
generalized matrix model for the one-punctured torus presented in Sect. 2.3 in [36],
and the partition function has been checked to agree with the Virasoro conformal
block on the torus in the expansion in the complex structure.

6 Conclusion and Discussion

Wehave reviewed the β-deformedmatrixmodel associated to the conformal block of
two-dimensional CFT and instanton partition function of four-dimensional N = 2
gauge theory, introduced in [7]. This matrix model is originally motivated from the
topological string theory, and this interesting part will be seen in the accompanying
review [V:13] in this volume.

It would be interesting to consider the β-deformed matrix model corresponding
to asymptotically freeN = 2 gauge theory. Such models were found first in [48] for
SU (2) theory with N f = 2, 3 hypermultiplets and in [81–83] for SU (2) theory cou-
pled to superconformal field theory of Argyres-Douglas type, which are related with

http://dx.doi.org/10.1007/978-3-319-18769-3_13
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irregular conformal blocks in the CFT [84–87]. The former model was elaborated
in [88] by calculating directly the integral as in Sect. 5 and in [89, 90] by using the
loop equation to see the agreement with the subleading expansion in ε1,2. It was also
found in [91] the matrix model corresponding to the SU (2) super Yang-Mills theory.

Another interesting generalization is the q-deformed matrix model related to the
Nekrasov partition function of the five-dimensional gauge theory proposed in [49,
92, 93]. It would be interesting to elaborate this model further in the context of
topological string theory.

In [94–97] a different matrix model which describes the Nekrasov partition func-
tion has been found. While the form of the potential in particular is quite different,
it would be interesting to see the relation with the model in this review.
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Appendix: Integral Formulas

Let us define the following multiple integral

〈〈xY 〉〉N =
N∏

I=1

∫ 1

0
dxI

N∏
I=1

xα
I (1 − xI )

β
∏

1≤I<J≤N

(xI − xJ )
2γ xY (6.1)

where supposing that �β > 0, . . . for convergence of the integrals. When Y = ∅
and Y = [1k], this is the Selberg integral [98] and Aomoto integral [99]

〈〈1〉〉N =
N−1∏
j=0

�(α + 1 + jγ )�(β + 1 + jγ )�(1 + ( j + 1)γ )

�(α + β + 2 + (N + j − 1)γ )�(1 + γ )
,

〈〈xY=[1k ]〉〉N = 〈〈1〉〉N

k∏
j=1

α + 1 + (N − j)γ

α + β + 2 + (2N − j − 1)γ
. (6.2)

Another multiple integral which appeared in the main text is involving the Jack
polynomial PY (x). This is a polynomial of (x1, x2, . . . , xN ) and written as

PY (x) = mY (x) +
∑
Y ′<Y

aY,Y ′mY ′(x), (6.3)

where mY (x) is the monomial symmetric polynomial. Then the following integral is
given by [100, 101]
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〈〈PY (x)〉〉N =
N∏

I=1

∫ 1

0
dxI

N∏
I=1

xα
I (1 − xI )

β
∏

1≤I<J≤N

(xI − xJ )2γ PY (x) (6.4)

=
∏
i≥1

yi −1∏
j=0

α + 1 + j + (N − i)γ

α + β + 2 + j + (2N − i − 1)γ

∏
i≥1
∏yi −1

j=0 (N + 1 − i)γ + j∏
(i, j)∈Y (yi − j + (ỹ j − i + 1)γ )

,

where Y = [y1, y2, . . .]with y1 ≥ y2 ≥ . . . and Ỹ = [ỹ1 ≥ ỹ2 ≥ . . .] is the transpose
of Y .
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Localization for N = 2 Supersymmetric
Gauge Theories in Four Dimensions

Vasily Pestun

Abstract We review the supersymmetric localization ofN = 2 theories on curved
backgrounds in four dimensions using N = 2 supergravity and generalized confor-
mal Killing spinors. We review some known backgrounds and give examples of new
geometries such as local T 2-bundle fibrations. We discuss in detail a topological
four-sphere with generic T 2-invariant metric. This review is a contribution to the
special volume on recent developments inN = 2 supersymmetric gauge theory and
the 2d-4d relation.

1 Introduction

Non-perturbative exact results in interacting quantum field theories (QFTs) are rare
and precious and usually we explain them using non-trivial symmetries of QFT,
such as quantum groups in the theory of quantum integrable systems [1–3]. Another
instrumental symmetry for exact results in QFTs is supersymmetry. For example,
Seiberg-Witten solution [4] of four-dimensional N = 2 supersymmetric field the-
ories is explained by rigid constraints imposed by N = 2 supersymmetry on the
low-energy effective Lagrangian and certain assumptions on electric-magnetic dual-
ity. For a review of N = 2 four-dimensional theory from the modern angle of view
see contributions [V:2, V:3] in this volume.

Exact non-perturbative results in supersymmetric QFTs are suited for strong tests
of non-perturbative dualities between QFTs that have different microscopic descrip-
tion, they give a practical approximation to interesting physical phenomena in non-
supersymmetric QFTs, and they open new perspectives on fascinating geometrical
spaces such moduli spaces of instantons, monopoles, complex structures, flat con-
nections, and others.
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A fruitful non-perturbative approach is supersymmetric localization. In finite
dimensional geometry localization appeared in the Lefchetz fixed-point formula,
Duistermaat-Heckman and Atiyah-Bott formula for integration of equivariantly
closed differential forms [5]. In [6] Witten generalized the localization formula for
the infinite-dimensional geometry of the path integral of supersymmetric quantum
mechanics. Similar approach was proposed to two-dimensional sigma models [7],
four-dimensional gauge theories [8] and others. The similarity of these construc-
tions is the topological twist of a given supersymmetric QFT. The topological twist
introduces a certain background connection for the local internal R-symmetry of the
theory. Usually, this connection is such that there exists a scalar fermionic supersym-
metry generator Q for a QFT coupled to a generically curved background metric. In
topologically twisted theories the stress-energy tensor is Q-exact, and, consequently,
the theory is metric independent. A further twist to the supersymmetric localization
of gauge theories, called ε-equivariant deformation or�-backgroundR4

ε1,ε2
, has been

added by Nekrasov [9] based on the considerations of [10–13]. The construction of
the gauge theory instanton partition function is reviewed in [V:4] of this volume.
The ε-equivariant partition function Zε1,ε2 , referred as Nekrasov’s function, turned
out to be a fascinating object of mathematical physics, with profound connections
to other branches of research such as topological strings (see review [V:13, V:14] in
this volume), matrix models (see review [V:5] in this volume), quantum groups [2,
3] and integrable systems [14]. For a recent study of the instanton partition function
Zε1,ε2 for a large class of quiver theories see [15, 16]. A profound connection between
four-dimensional gauge theory supersymmetric objects (BPS) and two-dimensional
conformal field theories (CFT), called BPS/CFT correspondence in [17], was a sub-
ject of long research [9, 13, 18–22].

Another version of localizationwas used in [23] forN = 2 supersymmetric gauge
theory on a four-sphere S4 with an insertion of a Wilson operator [23] or ’t Hooft
operators [24]. The topological twist is not necessary because of rich O Sp(2|4)
symmetry that N = 2 QFT on S4 has. A similar localization was later performed
for gauge theories on S3 [25], on S2 [26, 27], on S5 [28, 29], on squashed S3

b
[30, 31], on squashed S4

ε1,ε2
[32] and other geometries. For a review of 3d localiza-

tion in this volume see [V:10], for a review of line operators (such as Wilson and
’t Hooft operators) in 4d gauge theory see review [V:7] in this volume, and for review
of surface operators see [V:8]. The four-sphere partition function of theN = 2 gauge
theory of class Sg (see [V:2] in this volume) turned out to be equal to the correlation
function of the 2d conformal g-Toda theory, the statement known as AGT conjecture
[33], which provided explicit beautiful realization of the 4d/2d BPS/CFT corre-
spondence. For a review of AGT conjecture (4d/2d BPS/CFT correspondence) in
this volume see [V:12], for review of the superconformal index see [V:9] and for a
review of the 3d/3d version of the BPS/CFT correspondence see [V:11].

A general procedure to construct a QFT on a curved manifold with some amount
of supersymmetry is to couple QFT with supergravity, choose the supegravity back-
ground fields in such a way that there exists a non-trivial supersymmetric variation
under which these background fields are invariant and then freeze the supegravity

http://dx.doi.org/10.1007/978-3-319-18769-3_4
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fields. This construction was explored forN = 1 supersymmetric four-dimensional
theories in [34].

In this notewewill partially analyze off-shellN = 2 supersymmetry backgrounds
suitable for localization, and review the case of the four-sphere [23]with a generic T 2-
invariant deformation of themetric.We employ the formalism ofN = 2 supergravity
known as superconformal tensor calculus, see [35–38] and reviews [39, 40]. For
previous analysis of N = 2 supegravity localization backgrounds see [41–43].

Acknowledgements The author is grateful to Kazuo Hosomichi for the correspon-
dence while preparing this review and discussion of the results of [32], and Takuya
Okuda for the elaborate comments on the manuscript.

2 N = 2 Supergravity

2.1 Gravity Multiplet

Away to constructN = 2 Poincare supergravity is to promote theN = 2 supercon-
formal symmetry to local gauge symmery and introduce associated gauge fields. The
gauge fields are combined with auxiliary fields to form Weyl multiplet. The notations
are collected in the Table1.

The gauge fields (ωμ̂ν̂
μ , f μ̂

μ , φ
i
μ) associated to the rotation, the special conformal

symmetry and the special conformal supersymmetry are expressed in terms of the
other fields from the constraints on superconformal covariant curvatures R̂ for the
fields eμ̂

μ,ωμ̂ν̂
μ ,ψi

μ.

Table 1 The Weyl multiplet

Symmetry Gauge field Constraint Parameter

Translation eμ̂
μ

Rotation ω
μ̂ν̂
μ R̂(eμ̂

μ)

Special conformal f μ̂
μ R̂(ω

μ̂ν̂
μ )

Dilatation bμ

Translational supersymmetry Q ψi
μ εi

Conformal supersymmetry S φi
μ R̂(ψi

μ) ηi

SU(2)R-symmetry Vμ
i
j

U(1)R̃-axial symmetry Ãμ

Auxiliary fields

Tensor Tμνa

Spinor χi

Scalar M
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Table 2 6d chirality Weyl multiplet

Field Variation 6d chirality

ψi
μ εi +1

φi
μ ηi −1

χi +1

Tμνa −1

Vector multiplet

λi +1

It is convenient to use 6d spinorial notations for the spinors of 4d N = 2 theo-
ries under dimensional reduction. We use index conventions from Appendix 1 and
chirality conventions as in Table2.

To find the action of theN = 2 Poincare supergravity interacting with nV vector
multiplets and nH hypermutiplets one considers Weyl multiplet coupled with nV +1
vector multiplets and nH + 1 hypermultiplets and then uses one vector multiplet and
one hypermultiplet as auxiliary fields to gauge fix the non-Poincare superconformal
gauge symmetries and to integrate out non-Poincare supergravity fields. Finally, one
gets the on-shell physical fields of the Poincare N = 2 supergravity: the frame eμ̂

μ,
the gravitino doublet ψi

μ and the graviphoton Aμ together with nv vector multiplets
and nh hypermultiplets (See more details in the diagram [44], p. 81).

To construct gauge theories on fixed curved backgrounds with partially preserved
off-shell supersymmetry the full machinery described above is not necessary. It is
sufficient to consider the off-shell action and the supersymmetry transformation for
the vector multiplets and hypermultiplets coupled to the Weyl gravity multiplet and
then freeze the fields of theWeyl multiplet to a supersymmetry invariant background
[32, 34, 45].

The supersymmetry transformation is a linear superposition of the Poincare super-
symmetry variation εi and the conformal supersymmetry variation ηi . Since variation
of bosonic fields in Weyl multiplet is proportional to fermionic fields of Weyl mul-
tiplet and they are set to zero in the background, the supersymmetric equation is the
vanishing variation of the independent fermions ψi

μ,χ
i . The field φi

μ is expressed in
terms of ψi

μ and χi through the curvature constraints, and the vanishing variation of
ψi

μ and χi
μ automatically implies vanishing variation of φi

μ.
We quote the variation of gravitino ψi

μ and auxiliary field χi under the Poincare
and conformal supersymmetries εi and ηi from [40], p. 429. The equations are1:

1In some N = 2 supergravity literature the auxiliary scalar field M in Weyl multiplet is denoted
D. For the conventions on the Clifford algebra see Appendix section “Clifford algebra”; the slash
symbol on tensors denotes Clifford contraction as in Eq. (4.34).
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δε,ηψ
i
μ = Dμε

i − 1
16

/T γμε
i − γμη

i = 0

δε,ηχ
i = − 1

24 [Dμ /T ]γμεi + 1
6

(
/FR

V

)i

j
ε j + 1

12
/T ηi + 1

2 Mεi = 0
(2.1)

From the first equation the conformal supersymmetry parameter η can be expressed
in terms of the Poincare supersymmetry parameter ε as

ηi = 1
4

/Dεi (2.2)

where we used (4.57). Later we use this relation to substitute ηi with 1
4

/Dεi and vice
versa. The second equation, called the auxiliary equation, can be transformed using
the Lichnerowicz formula for /D2 (4.63) and the divergence of the first equation, see
Appendix (4.65):

Dμε
i − 1

16
/T γμε

i − 1
4γμ /Dεi = 0

/Dη = − 1
2

(
1
6 R + M

)
ε + 1

16 [Dμ /T ]γμε
(
= 1

4
/D2ε

) (2.3)

Here R denotes the scalar curvature (4.62) of the background metric.
The Equation (2.3) are called generalized conformal Killing spinor equations,

and the spinor ε is called generalized conformal Killing spinor.
The generalized conformal Killing spinor equations transform covariantly with

respect to local Weyl transformation

gμν �→ e2�gμν (2.4)

with the weights

ε �→ e
1
2 �ε, M �→ e−2�M, /T �→ e−� /T (2.5)

Therefore the solutions can be classified by their conformal class.
The generalized conformal Killing spinor equations, similarly to the conformal

Killing equations, can be rewritten as the generalized parallel transport equations on
the section of doubled spinorial bundle

Dμ

(
εi

ηi

)
= 0 (2.6)

for certain Dμ. This representation could be useful to classify the solutions.
The solution to the generalized conformal Killing equations is particularly simple

for conformally flat background with vanishing auxiliary field Tμνa , flat R-symmetry
gauge connection and vanishing auxiliary scalar M . In the flat R4 coordinates xμ,
the solution is simply

εi (x) = ε̂i + /x η̂i (2.7)
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where εi and ηi are arbitrary constant spinor parameters associated with translational
and special conformal supersymmetry respectively. The maximal dimension of the
space of solutions to the parallel transport equation in a bundle is the rank of this
bundle.We see that the conformally flat backgroundwithflat R-symmetry connection
and vanishing Tμνa is maximally supersymmetric. The 16 sections are generated by
8 components of ε̂ and 8 components of η̂.

It would be interesting to find the complete classification of the solutions to the
generalized conformal Killing equation with various amounts of supersymmetry. In
this note we will focus on particular backgrounds interesting for the localization of
gauge theories.

2.2 Vector Multiplet

The 4d N = 2 vector multiplet (Am,λi , Y i j ) includes the gauge field Aμ and two
real scalar fields�a combined into the reduction of 6d gauge field (Am) = (Aμ,�a),
the SU(2)R-doublet of gaugino fermions λi , and the SU(2)R-triplet of auxiliary fields
represented by the matrix Y i j symmetric in (i j). The gaugino λi is the reduction
of the SU(2)R-doublet of 6d Weyl spinors of chirality +1 for γ6d∗ . The spinor fields
from the SU(2)R-doublet enter into the Lagrangian and supersymmetry variation
holomorphically, their complex conjugates never appear in theEuclidean formulation
of the theory.

The supersymmetry variation for the vector multiplet is

δAm = 1
2λ

iγmεi

δλi = − 1
4 Fmnγ

mnεi + Y i
jε

j + �aγ
aη + 1

8Tμνa�
aγμνε

δY i j = − 1
2

(
ε(i /Dλ j)

) (2.8)

where there are two extra two terms for δλi compared to the standard translational
supersymmetry. In our conventions the supersymmetry parameters εi , ηi are bosonic
and δε,η is fermionic, for a field φ the field δε,ηφ has opposite statistics of φ.

If ε and η = 1
4

/Dε solve the generalized conformal Killing spinor equation (2.3),
the supersymmetry transformations (2.8) closes off-shell:

δ2ε,η Aμ = 1
4 (εγ

νε)Fνμ + 1
4 [(εγaε)�a, Dμ]

δ2ε,η�a = 1
4 [(εγmε)Dm,�a] − 1

2 (ηγabε)�
b + 1

2 (ηε)�a

δ2ε,ηλ
i = 1

4

(
(εγmε)Dmλi + 1

4 Dμ(εγνε)γ
μνλi

) − 1
8 (ηγabε)γ

abλi

+ 3
4 (ηε)λi + (η(iε j))λ j

δ2ε,ηY i j = 1
4 [(εγmε)DmY i j ] + (ηε)Y i j + (η(kεi))Y j

k + (η(kε j))Y i
k

(2.9)
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Table 3 The symmetry
action of δ2ε,η

δ2ε,η Acts by Parameter

Lv vm = 1
4 (εγmε)

SO(2)R̃ R̃ab = − 1
2 (ηγabε)

SU(2)R Ri j = (η(i ε j))λ j

Dilatation (ηε)

The variation δ2ε,η contains the Lie derivative action by the 6d reduced vector field

vm = 1
4 (εγ

mε) (2.10)

The scalar components m ≡ a generate the gauge transformation by va�a (Table3).
The Lagrangian of 4d N = 2 vector multiplet coupled to the Weyl gravity mul-

tiplet can be found in [37–39], or [40], p. 433

S = − 1
g2ym

∫ √
gd4x tr

(
1
2 Fmn Fmn + λiγm Dmλi + (

1
6 R + M

)
�a�

a − 2Yi j Y
i j+

−FμνTμνa�
a + 1

4TμνaT μνb�a�b
)

(2.11)

Provided ε and η = 1
4

/Dε satisfy (2.1) the action S is invariant under δε,η

δε,η S = 0. (2.12)

3 Generalized Conformal Killing Spinor

Presently the complete classification of the solutions to the generalized conformal
Killing spinor Equation (2.1) is not available. We list some known examples. In all
these examples the U(1)R̃ connection is set to zero, the square of the supersymmetry
transformation δ2ε generates isometry transformation and possibly SU(2)R transfor-
mation but without dilatation and U(1)R̃ transformation.

3.1 Topologically Twisted Theories

One simple class of solutions which exists on any smooth 4-manifold is the
Donaldson-Witten topological twist [8]. One sets R-symmetry SU(2)R connection to
compensate right component of the Spin(4) = SU(2)L × SU(2)R spin-connection.
In the twisted theory the 8 components of the 4dN = 2 spinor generators transform
as a one-form, self-dual two-form and scalar. The scalar component yields the scalar



166 V. Pestun

supersymmetry charge defined on any smooth 4-manifold. The theory localizes to
the instanton configurations F+

A = 0.

3.2 Omega Background

Another example is the equivariant twist of the topologically twisted theory on any
manifold withU(1) isometry. To construct such theory, one uses a combination of the
scalar supersymmetry of the topologically twisted theory and the one-form super-
charge contracted with the vector field that generates U(1) isometry. Localization
of such theory on R

4 counts equivariant instantons and gives Nekrasov partition
function [9–12, 46], with two equivariant parameters ε1, ε2, each associated to the
rotation of the R2 planes in the decomposition R

4
ε1,ε2

= R
2
ε1

⊕ R
2
ε2
. For a review of

instanton counting see contribution [V:12] of this volume.

3.3 Conformal Killing Spinor

Another example is conformally flat and SU(2)R-flat metric with Tμνa = 0 and
conformal Killing spinor. A spinor of this type has been used to localize the physical
N = 2 gauge theory on S4 [23]. The isometry vector field has two fixed points: the
north and the south poles of S4. In the neighborhood of the north pole the theory
is locally isomorphic to the theory in the Omega-background with parameters ε1 =
ε2 = r−1 where r is the radius of S4, counting equivariant instantons F+

A = 0. In
the neighborhood of the south pole the theory is conjugate to the theory in Omega-
background, and it counts equivariant anti-instantons F−

A = 0.The complete partition
function on S4 is the fusion of the Nekrasov partition function and its conjugate:

ZS4 =
∫

[da] |ZR4;r−1,r−1(ia)|2 (3.1)

where ZR4;ε1,ε2(a) is the complete partition function in Omega background including
the classical and perturbative factors, and a is the gauge Lie algebra equivariant argu-
ment of ZR4;ε1,ε2 that physically is interpreted as the electrical type special coordinate
on the Coulombmoduli space of theN = 2 theory or boundary conditions at infinity
of R4

ε1;ε2 for the scalar field �a of the vector multiplet. In the formula (3.1) we omit
from the arguments of the partition function the parameters of the Lagrangian.

More generally, the cases of �-background and conformal Killing spinor could
be viewed as the specialization of local T 2-bundle geometry.

http://dx.doi.org/10.1007/978-3-319-18769-3_12
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3.4 Local T 2-Bundles

Consider a manifold X4 endowed with the metric structure of the warped product
X4 = T 2

w1,w2
×̃�2 where �2 is a Riemann surface, possibly with boundaries, and

T 2
w1,w2

is a flat 2-torus with basis cycles of length (2πw1, 2πw2). Here (w1, w2) are
locally arbitrary functions on �2. This geometry generalizes the Omega background
on R

4 and the standard conformal Killing spinor geometry on S4. The ellipsoid
solution [32] is a special example of X4. Another case was studied in [47].

We denote the coordinates along the two circles on T 2 by (φ1,φ2). We pick two
real parameters (ε1, ε2) with the aim to get δ2ε,η action by the vector field

v = ε1∂φ1 + ε2∂φ2 (3.2)

We assume that εi are such that (ε1w1)
2 + (ε2w2)

2 ≤ 1 everywhere on �. For any
generic functions (w1, w2) on � we can always find local coordinates (θ, ρ) such
that

cot θ := ε1w1

ε2w2

sin2 ρ := (ε1w1)
2 + (ε2w2)

2
⇔ w1 = ε−1

1 sin ρ cos θ

w2 = ε−1
2 sin ρ sin θ

(3.3)

After we have fixed special coordinates (θ, ρ) on�, the metric components gμν(ρ,σ)

are parametrized by three arbitrary functions gθθ(θ, ρ), gθρ(θ, ρ) and gρρ(θ, ρ).
Next we choose the frame on X4 of the form

e1 = w1(θ, ρ)dφ1

e2 = w2(θ, ρ)dφ2

e3 = e3θ(θ, ρ)dθ + e3ρ(θ, ρ)dρ

e4 = e4ρ(θ, ρ)dρ
(3.4)

Three functions e3θ(θ, ρ), e3ρ(θ, ρ), e4ρ(θ, ρ) generically parametrize 2d metric by the
relations gθθ = e3θe3θ , gθρ = e3θe3ρ and gρρ = e3ρe3ρ + e4ρe4ρ. It is convenient to denote

e3θ(θ, ρ) ≡ sin ρ f1(θ, ρ) e3ρ(θ, ρ) ≡ f3(θ, ρ) e4ρ(θ, ρ) ≡ f2(θ, ρ) (3.5)

and present solution for the background fields Tμν and Vμ
i
j in terms of f1, f2, f3.2

2In these notations the solution can be easily specialized to the Hama-Hosomichi ellipsoid [32]
metrically defined by the equation in R

5 with the standard metric

r−2
1 (X2

1 + X2
2) + r−2

2 (X2
3 + X2

4) + r−2X2
5 = 1

by taking

X1 + ı X2 = r1 sin ρ cos θeıφ1 , X3 + ı X4 = r2 sin ρ sin θeıφ2 , X5 = r cos ρ
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In the γ matrix basis (4.69) we choose the SU(2)R-doublet spinor (ε1, ε2) in the
frame (3.4) to be given by

ε1 = e
1
2 (iφ1+iφ2)

(
e−i θ

2 sin ρ
2 ,−ei θ

2 sin ρ
2 , ie−i θ

2 cos ρ
2 ,−iei θ

2 cos ρ
2

)

ε2 = e− 1
2 (iφ1+iφ2)

(
e−i θ

2 sin ρ
2 , ei θ

2 sin ρ
2 ,−ie−i θ

2 cos ρ
2 ,−iei θ

2 cos ρ
2

) (3.6)

Notice that this spinor satisfies the standard reality condition ε2 = cε̄1 where bar
is the complex conjugation and c is the Majorana bilinear matrix (4.69), and that
this spinor is the transformation to the (φ1,φ2, ρ, θ) frame of the standard conformal
Killing spinor ε(x) = εs + xμγμεc that was used in [23] for S4, where xμ are
stereographic projection coordinates on S4.

For the spinor (3.6) we find the bilinear vector field3

vm = 1
4ε

iγmεi = 1
2ε

1γmε2 : vμ|μ∈(φ1,φ2,θ,ρ) = (ε1, ε2, 0, 0)

va|a∈(5,6) = (− cos ρ,−i)
(3.7)

This vector field is the natural isometry of the T 2-bundle X4.
Under the ansatz (3.6), the equations on the background fields Vμ

i
j , Tμν, M are

inhomogeneous ordinary linear equations, which can be directly solved. Though the
system is overdetermined, as there are 32 + 8 linear equations from δψi

μ and from
δχi on 12 + 6 + 1 = 19 components for V, T, M , we find that solution always
exists for any T 2-bundle. Moreover, the solution is not unique; the space of solutions
forms a vector bundle of rank three. This is completely analogous to the case of the
Hama-Hosomichi ellipsoid [32].

Below Tμ̂ν̂ denote the components of T in the frame (3.4) eμ̂
μ, so that Tμν =

Tμ̂ν̂eμ̂
μeν̂

ν . The V denotes the connection one-form of the SU(2)R gauge field D =
d + V . The components of the T do not depend on (φ1,φ2), and the components of

(Footnote 2 continued)
and

f1(θ, ρ) = fHH(θ) =
√

r21 sin
2 θ + r22 cos

2 θ

f2(θ, ρ) = gHH(θ, ρ) =
√

r2 sin2 ρ + r21 r22 f1(θ)−2 cos2 ρ

f3(θ, ρ) = hHH(θ, ρ) = (−r21 + r22 ) f1(θ)
−1 cos θ sin θ cos ρ

In the case of round sphere S4 we set

f1(θ, ρ) = r f2(θ, ρ) = r f3(θ, ρ) = 0.

3In the Eq. (3.7) εi denotes the +1 chiral 6d spinors and γm for the 6d gamma-matrices, while in
the Eq. (3.6) the components of the spinor εi are presented with respect to the 4d Clifford algebra
representation (4.69).
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V = iσI V I , where σI are the standard Pauli matrices, depend on (φ1,φ2) as

(
V 1

V 2

)
=

(
cos(φ1 + φ2) sin(φ1 + φ2)

−sin(φ1 + φ2) cos(φ1 + φ2)

)(
V̂ 1

V̂ 2

)
, V 3 = V̂ 3 (3.8)

where V̂ is constant in (φ1,φ2).
The particular solution is

T12 = 0 T34 = 0

T13 = 2 sin θ

(
1

f1
− 1

f2

)
T23 = −2 cos θ

(
1

f1
− 1

f2

)

T14 = −2 sin θ f3
f1 f2

T24 = 2 cos θ f3
f1 f2

(3.9)

for T components and

V̂ =
(

− 1

4ε1
sin 2θ cos ρ

(
1

f1
− 1

f2

)
+ sin2 θ f3

2ε1 f1 f2

)
iσ2 dφ1+

(
1

4ε2
sin 2θ cos ρ

(
1

f1
− 1

f2

)
+ cos2 θ f3

2ε2 f1 f2

)
iσ2 dφ2+

(
−1

2
+ sin2 θ

2ε1 f1
+ cos2 θr1

2ε1 f2
+ sin 2θ cos ρ f3

4ε1 f1 f2

)
iσ3 dφ1+

(
−1

2
+ cos2 θ

2ε2 f1
+ sin2 θ

2ε2 f2
− sin 2θ cos ρ f3

4ε2 f1 f2

)
iσ3 dφ2+

(
( f1 − f2) cos ρ + sin ρ∂ρ f1 − ∂θ f3

2 f2

)
iσ1 dθ

+
(

f3
(
sin ρ ∂ρ f1 + f1 cos ρ − ∂θ f3

) − f2∂θ f2
2 f1 f2 sin ρ

)
iσ1 dρ

(3.10)

are the V components. This particular solution can be deformed by three-parametric
family

δT12 = c3 δT34 = c3 cos ρ

δT13 = −c1 cos ρ sin θ − c2 cos θ δT23 = c1 cos ρ cos θ − c2 sin θ

δT14 = c1 cos θ − c2 cos ρ sin θ δT24 = c1 sin θ + c2 cos θ cos ρ

(3.11)
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together with

δV̂ =
(

−1

4
c1 sin

2 ρ f1dθ − 1

4
sin ρc1 f3dρ − 1

4
c2 sin ρ f2dρ

)
iσ1+

(
− 1

8ε1
c1 sin 2θ sin

2 ρ dφ1 + 1

8ε2
c2 sin 2θ sin

2 ρdφ2 − 1

4
c3 sin ρ f2dρ

)
iσ2+

(
− 1

8ε1
c2 sin 2θ sin

2 ρdφ1 + 1

8ε2
c2 sin 2θ sin

2 ρdφ2 + 1

4
c3 sin

2 ρ f1dθ

+1

4
c3 sin ρ f3dρ

)
iσ3 (3.12)

where c1, c2, c3 are arbitrary functions on �. The background auxiliary scalar M is

−1

2
(
1

6
R + M) = 1

4 f 21
− 1

4 f 22
− 1

f1 f2
+ f 33

4 f 21 f 22

+ c1

(
− cos ρ

4 f1
+ 3 cos ρ

4 f2
− cot 2θ f3

2 f1 f2
+ sin ρ∂ρ f1

4 f1 f2
− ∂θ f3

4 f1 f2

)
+ sin ρ

4 f2
∂ρc1 − f3

4 f1 f2
∂θc1

+ c2

(
− cot 2θ

2 f1
+ cos ρ f3

4 f1 f2
− ∂θ f2

4 f1 f2

)
− 1

4 f1
∂θc2 − 1

16
sin2 ρ

(
c21 + c22 + c23

)

(3.13)

3.5 Four-Sphere

A topological four-sphere X4 = S4
ε1,ε2

with T 2 invariant metric can be presented as
a local T 2

w1,w2
bundle fibered over a two-dimensional digon �2. One of the cycles of

T 2
w1,w2

collapses at one edge of the digon, and the other cycle collapses at the other
edge:

S4

=
Σ2

T 2

The coordinates (θ, ρ) on the base�2 are in the range (θ, ρ) ∈ [0, π
2 ]×[0,π]. The

w1 cycle collapses at θ = π
2 and thew2 cycle collapses at θ = 0. Both circles collapse

in the corners of the digon. The corner ρ = 0 will be called the north pole, and the
corner ρ = π will be called the south pole. The metric on S4

ε1,ε2
is smooth at the cusps

and the edges of the digon �2 if the functions fi (θ, ρ) satisfy asymptotically
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f1(θ, ρ)|θ=0 = ε−1
2 , f1(θ, ρ)|θ= π

2
= ε−1

1

f1(θ, ρ)|ρ=0,π = (ε−2
1 sin2 θ + ε−2

2 cos2 θ)
1
2

f3(θ, ρ)|ρ=0,π = ±(ε−2
2 − ε−2

1 ) f1(θ, ρ)−1 cos θ sin θ

f2(θ, ρ)|ρ=0,π = (ε1ε2 f1(θ, ρ))−1

(3.14)

The metric along �2 is arbitrary in the interior. In particular, taking f2(θ, ρ) very
large in the interior, it is possible to stretch S4

ε1,ε2
to a very long cylinder with two

hemispherical caps attached at the ends. Localization on this geometry presumably
is related to the convolution of the ground state topological wave functions with its
conjugate by cutting the S4

ε1,ε2
in the middle at ρ = π

2 , as in the AGT correspondence
[33]withLiouville theory and quantumTeichmuller theory [48], [V:2] andNekrasov-
Witten construction [49].

The background fields (3.9), (3.10) and the spinor (3.6) with generic smooth
functional parameters c1, c2, c3 (3.11), (3.12) is a supersymmetric background only
in the interior of �2. The coordinates are singular at the north and the south poles
ρ = 0 and ρ = π. We need to ensure that the spinor ε and the background fields V
and T are smooth in a proper coordinate system around the poles. At the north pole
ρ = 0 we choose approximately Cartesian coordinates

x1 = 2ε−1
1 tan ρ

2 cos θ cosφ1

x3 = 2ε−1
2 tan ρ

2 sin θ cosφ2

x2 = 2ε−1
1 tan ρ

2 cos θ sin φ1

x4 = 2ε−1
2 tan ρ

2 sin θ sin φ2

(3.15)

with the standard frame eμ̂
μ = δμ̂

μ . In the x-frame the spinor (3.6) becomes

xε=e− π
4 γ12e− φ1

2 γ12− φ2
2 γ34e− π

4 γ24e
β
2 γ34ε, with sin β = ε−1

1 sin θ

ε−2
1 sin2 θ + ε−2

2 cos2 θ
(3.16)

The spinor xε is not smooth in the x-frame but is SU(2)R gauge equivalent to the
conformal class of the standard smooth spinor in the Omega-background [9] (up to
the Weyl transformation xε� → xε� cos ρ

2 ):

xε� := (ε̂s − 1
2�μν xμγνε̂s) cos

ρ
2 (3.17)

where non-zero components of � are �12 = −�12 = ε1 and �34 = −�43 = ε2.
Namely, for ε̂s = (1 + i)(0, 0, 1, 0) we find

xε1� = (1 + i)(cos ρ
2 )(−tan ρ

2 sin θeiφ2 ,−tan ρ
2 cos θeiφ1 , 1, 0)

xε1 = (1 + i)(cos ρ
2 )(−tan ρ

2 sin
β+θ
2 eiφ2 ,−tan ρ

2 cos
β+θ
2 eiφ1 , cos β−θ

2 ,

−sin β−θ
2 ei(φ1+φ2))

with ε2 found by Majorana conjugation ε2 = cε̄1.

http://dx.doi.org/10.1007/978-3-319-18769-3_2
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The SU(2)R gauge transformation relating spinor xε (3.6) and the Omega-
background spinor ε� near the north pole is

εi
� = U i

jε
j , U =

(
cos

θ−β
2 iei(φ1+φ2) sin

β−θ
2

ie−i(φ1+φ2) sin
β−θ
2 cos

θ−β
2

)
(3.18)

Requiring that SU (2)R gauge field U V = UdU−1 +U V U−1 (3.8), (3.10), (3.12)
is smooth at the origin, and that components Tμν are well defined in the x-frame, we
find the parameters

c1 =
(

1

f1
− 1

f2

)
ϕ(ρ), c2 = − f3

f1 f2
ϕ(ρ), c3 = 0 (3.19)

where ϕ(ρ) is any smooth function such that ϕ(ρ)ρ=0 = 1 + O(ρ2) and ϕ(ρ)ρ=π =
−1 + O(ρ2). Then the gauge field U V is smooth everywhere and Tρ=0 = T −,
Tρ=π = T +.

In our conventions the spinor ε is of positive chirality at the north pole (transforms
under self-dual spacial rotations) and negative-chirality at the south pole (transforms
under anti-self-dual rotation). In the zeroth order approximation the theory around
the north pole is topological Donaldson-Witten theory that localizes to configura-
tions F+ = 0, and the theory around the south pole is conjugated and localizes to
configurations F− = 0. In the first order approximation the theory around poles
is equivalent to the theory in the Omega-background, and localizes respectively to
the equivariant instantons F+ = 0 at the north pole and equivariant anti-instantons
F− = 0 around the south pole.

With the choice (3.19) at ρ = 0 we find that non-zero components of T = T − are

T12 = −T34 = ε1 − ε2 (3.20)

If the geometry in the neighborhood of the north pole is approximated by the embed-
ded ellipsoid in R

5 with radian (r1, r1, r2, r2, r) for r1 = ε−1
1 , r2 = ε−1

2 as in [32]
then the curvature of the SU(2)R background field at ρ = 0 is particularly simple

FV =
(−2r2 + r21 + r22

4r21r22
(dx1 ∧ dx3 − dx2 ∧ dx4)

)
iσ1

+
(

−−2r2 + r21 + r22
4r21r22

(dx1 ∧ dx4 + dx2 ∧ dx3)

)
iσ2

+
(

r21 − r2

2r41
dx1 ∧ dx2 + r22 − r2

2r42
dx3 ∧ dx4

)
iσ3

(3.21)

One can compare FV with the metric curvature at the north pole and notice the
difference: the SU(2)R background field differs from the usual topologically twisted
theory. The non-zero metric curvature components in the x-frame at the north pole
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are

R12
12 = r2

r21
, R34

34 = r2

r22
, R24

24 = R13
13 = R14

14 = R23
23 = r2

r21r22

(3.22)

3.6 Superconformal Index

For this geometry the base is the product of an interval and the circle�2 = I〈θ〉×S1
〈ρ〉.

At the ends of the interval I the two circles of T collapse. The slice of X4
ε1,ε2

at fixed
ρ is topologically an S3

ε1,ε2
, and then X4 = S3

ε1,ε2
× S1. A suitable SU(2)R background

field ensures existence of unbroken supercharge. The partition function on S3
ε1,ε2

× S1

computes the superconformal index [50–54] and [V:10], Sect. 4.1 and [V:9] in this
volume.

3.7 Other Geometries

It would be interesting to study more general four-manifolds with the structure of
local T 2 bundle such as S2 × S2 or T 2 × �2 where �2 is a Riemann surface.

4 Localization

Often a supersymmetric quantum field theory with a particular choice of the super-
charge can be interpreted as infinite-dimensional version of the Cartan model for
G-equivariant cohomology on the space of fields of the theory, see e.g. [8, 55]. The
supercharge Q plays the role of the equivariant differential. The path integral is
interpreted as the infinite-dimensional version of Mathai-Quillen form for the Thom
class of the BPS equations bundle over the space of fields [56, 57]. For example,
in the Donaldson-Witten topological gauge theory [8], the space of fields is the
infinite-dimensional affine space of connections A in a given principal G-bundle
on a four-manifold X4 for a compact Lie group G, the group G of the equivariant
action is the infinite-dimensional group of gauge transformations, and the fibers of
the equation bundle over A is the space of self-dual adjoint valued two-forms. The
Mathai-Quillen form for the Thom class, with a choice of section F+

A , localizes to the
zeroes of the section: instanton configurations. The construction is equivariant with
respect to the G action on A. The path integral over A/G reduces to the integration
over the instanton moduli space Minst = {A|F+

A = 0}/G.

http://dx.doi.org/10.1007/978-3-319-18769-3_10
http://dx.doi.org/10.1007/978-3-319-18769-3_9
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4.1 Omega Background

See [9–12, 46] and [V:4] in this volume. A conventional 4d N = 2 theory with
Lagrangian formulation is specifiedby the choice of a compact semi-simpleLie group
G for the gauge group and a representation R of G for the hypermultiplet matter. The
automorphism group of the representation R is the flavor group F . The path integral
of N = 2 theory in Omega background R

4
ε1,ε2

localizes to the equivariant form on
moduli space of instantons, further integration over moduli space is localized to the
fixed points the equivariant group action. The equivariant group G = L × G × F is
the product of the isometry of the space-time L =SO(4), the gauge group G that acts
on the framing at infinity, and the flavour group F . Let T be the maximal torus of the
equivariant groupT = TL ×TG×TF . The coordinates on the complexifiedLie algebra
of T are (ε, a, m). Physically, the parameters a are the asymptotics at the space-time
infinity of the scalar field � in the gauge vector multiplet, the parameters m are the
matter fields masses, and the parameters ε = (ε1, ε2) are the equivariant space-time
rotation angular momenta, the �-background parameteres. In our conventions the
subscript T denotes the dependence on (ε, a, m).

The partition function Z in theOmega background can be represented as a product
of the classical, perturbative and non-perturbative contributions:

ZT(q) = Z tree
T Z1-loop

T Z inst
T (q) (4.1)

Formally,

ZT(q) =
∑

k

qk
∫
A/Ggauge

euT(�2+ ⊗ g) euT((S− � S+) ⊗ R) (4.2)

whereA is the infinite-dimensional space of G-connections on a principal G-bundle
E → M with fixed trivialization at infinity, Ggauge = Aut(E) is the group of gauge
transformations equal to identity at the space-time infinity, �2+ ⊗ g is the infinite-
dimensional vector bundle overAwith the fiber being the space of self-dual g-valued
two-forms, S± ⊗ R is the infinite-dimensional vector bundle over A with the fiber
being the space of positive/negative chirality R-valued spinors.

Mathematically, the instanton partition function is

Z inst
T (q) =

∞∑
k=0

qk
∫
Mk

euT(ER). (4.3)

Here we are assuming that G = ×i∈I Gi where Gi are simple factors and I denotes
the set of labels for the simple gauge group factors, q = {qi |i ∈ I } is the |I |-tuple
of the exponentiated complexified gauge coupling constants qi = exp(2πiτi ), k =
{ki |i ∈ I } is an n-tuple of non-negative integers, ki is the instanton charge (second

http://dx.doi.org/10.1007/978-3-319-18769-3_4
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Chern class)4 of Gi -bundle on the space-time M = R
4 = S4\∞ = CP

2\CP1
∞

with fixed framing at infinity, theMk = ×i∈IMGi ,ki is the instanton moduli space:
MGi ,ki is moduli space of the anti-self-dual Gi -connections on R

4 with the second
Chern class ki . The integration measure euT(ER) is the T-equivariant Euler class of
thematter bundle ER → Mk where a fiber of ER is the space of the virtual zeromodes
for the Dirac operator: �(S− ⊗ R) → �(S+ ⊗ R) associated to the hypermultiplet.

Here the classical contribution is

Z tree
T (q) = exp

(
− 1

2ε1ε2

∑
i∈I

2πiτi 〈ai , ai 〉
)

(4.4)

where 〈〉 is the standard bilinear form on the Lie algebra of Gi normalized such that
the long root length squared is 2, and τ is the complexified coupling constant

τ = 4πi

g2ym
+ θ

2π
(4.5)

Let
R =

⊕
�

R� ⊗ M� (4.6)

be the decomposition of the matter representation onto the irreducible, with respect
to G, components, with the multiplicity spaces M� � C

N f
� , on which the masses have

the value m�,1, . . . , m�,N f
�
.

The one-loop contribution is expressed in terms of the special function related to
Barnes double gamma function

Gε1,ε2(x) = Reg[
∏

n1,n2≥0

(x + n1ε1 + n2ε2)] (4.7)

where Reg[] denotes regularization of the infinite product with Weierstrass
multipliers.

We find the one-loop factors for the theory in the Omega background for vector
multiplet and hypermultiplet to be given by

4For a generic compact simple Lie group G the integer k classifies the topology of G-bundle on S4

by π3(G) = Z. The instanton number k can be computed as

k = 1

8π2

∫
M

〈F,∧F〉 = − 1

16π2h∨

∫
M
Tradj F ∧ F

in the conventions where F is g-valued two-form, 〈, 〉 is the invariant positive definite bilinear form
on g induced from the standard bilinear form on h∗ in which long roots have length squared 2, the
Tradj is the trace in adjoint representation, and h∨ is the dual Coxeter number for g. For G = SU(n)
the instanton charge k is the second Chern class k = c2.



176 V. Pestun

Z1-loop; vec
T (a; m) =

∏
i

∏
α∈�+

i

Gε1,ε2(α · ai )Gε1,ε2(ε1 + ε2 − α · ai )

Z1-loop; hyper
T (a; m) =

∏
�

N f
�∏

f=1

∏
w∈P(Rl )

Gε1,ε2

(
w · ai + mlf + 1

2 (ε1 + ε2)
)−1

(4.8)

Here�+
i denotes the set of positive roots for the i-th gauge group factorGi and P(R�)

denotes the set of weights for the irreducible representation R�. These expressions
follow from the equivariant index computation by Atiyah-Singer formula for the
self-dual complex and the Dirac complex respectively. The Aityah-Singer formula
for the equivariant index of complex C evaluated at the group element g ∈ G

ind(C; g) =
∑

f ∈fixed points

trC f (g)

detT f (1 − g)
(4.9)

For the self-dual complex

�0 d→ �1 d→ �2+ (4.10)

onR4 � C
2
〈z1,z2〉 under the equivariant action z1 → t1z1, z2 → t2z2 we find that each

two-dimensional weight space of root α and its conjugate −α contributes as

ω + ω̄ + t1t2ω + t̄1 t̄2ω̄ − (t1ω + t̄1ω̄ + t2ω + t̄2ω̄)

(1 − t1)(1 − t̄1)(1 − t2)(1 − t̄2)

= ω̄
1

(1 − t̄1)(1 − t̄2)
+ ω

1

(1 − t1)(1 − t2)
(4.11)

where
ω = eiα·a t1 = eiε1 t2 = eiε2 (4.12)

Taking t̄1 = t−1
1 , t̄2 = t−1

2 and expanding the index in positive powers of (t1, t2) one
finds the Chern character of the complex. Converting the Chern character (the sum)
into the Euler character (the product) we find (4.8).

For the Dirac complex associated with the hypermultiplet of mass m, the weight
space w contributes as

t
1
2
1 t

1
2
2

(1 − t1)(1 − t2)
ωμ (4.13)

where ω = eiw·α,μ = eim . This can be seen from Atiyah-Singer formula for the

Dirac complex S+ D→ S− with numerator t
1
2
1 t

1
2
2 + t̄

1
2
1 t̄

1
2
2 − t̄

1
2
1 t

1
2
2 − t

1
2
1 t̄

1
2
2 or from the fact

that Dirac complex is the twist of Dolbeault complexs twisted by the square root of
the canonical bundle. Again, expanding in positive powers of t1, t2 and converting
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the sum to the product we find the equivariant Euler character, or the one-loop
determinant (4.8) for the hypermultiplet.

The explicit expression for Z inst
T (q) can be found for example in [22, 46] and in

Y. Tachikawa’s review [V:4] in this volume.

4.2 Supersymmetric Configurations on S4
ε1,ε2

The path integral for the partition function of QFT with an action S invariant under
a fermionic symmetry δS = 0 localizes near the supersymmetric configurations,
which are the field configurations invariant under δ. In other words the supersym-
metric configurations are the zeroes of the odd vector field δ in the space of all field
configurations [8]. The localization theorem is the infinite-dimensional generaliza-
tion of the Atiyah-Bott formula [5] for the integration of the equivariantly closed
differential forms over a manifold on which a compact Lie group G acts

∫
M

α =
∫

F

iFα

e(NF )
(4.14)

where F ⊂ M is the fixed point locus of G action on M and e(NF ) is the equivariant
Euler class of the normal bundle to F .

From the analysis of the Eq. (2.8), similar to the S4 [23] and the ellipsoid case
[32] we expect that the only smooth field configurations that satisfy δλ = 0 for
the topologically trivial gauge bundle is the trivial gauge field, vanishing scalar �5,
constant scalar �6 = const = �̊6 and a suitable auxiliary field Y i

j proportional to

�̊6. It is easy to see that such a solution exists. Under the ansatz Fmn = 0,�5 = 0
the equations turn into an overdetermined algebraic linear system of equations on
�6 and Y i

j , and this system has one-dimensional kernel corresponding to the zero
mode of �6. What is more difficult to show is the absence of other solutions, and
presumably this can be shown similarly to the analysis in [58].

With the ansatz Fmn = 0,�5 = 0 and all fermions set to zero, we find the explicit
supersymmetric configuration invariant under the δε,η (2.8)

Y i
j = Ŷ i

j�6, Ŷ i
j =

( (
1

2 f1
− ϕ(ρ) cos ρ

4 f1
+ ϕ(ρ) cos ρ

4 f2

)
(σ3)

i
j

+
(

f3
2 f1 f2

− ϕ(ρ) cos ρ f3
4 f1 f2

)
(e

1
2 (iφ1+iφ2)σ2e− 1

2 (iφ1+iφ2))i
j

)

(4.15)

It is straightforward to evaluate the classical action on the supersymmetric con-
figuration (4.15) and find

http://dx.doi.org/10.1007/978-3-319-18769-3_4
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S|susy conf = − 1
g2ym

tr �̊2
6

∫
S4

ε1 ,ε2

√
gd4x

(
( 16 R + M) + 2Ŷ i

j Ŷ
j
i − 1

16TμνT μν
)

(4.16)

From the explicit solution for the Tμν (3.9), (3.11), (3.19), the Ŷ i
j (4.15) and M

(3.13) we find that most terms in the action combine into total derivative

√
g(( 16 R + M) + 2Ŷ i

j Ŷ
j
i − 1

16 Tμν T μν) =
= f1 f2r1r2 sin

3 ρ sin θ cos θ

(
ϕ f3∂θ f2
2 f1 f 32

− ϕ∂θ f3
2 f1 f 22

+ ϕ∂ρ f1 sin ρ

2 f1 f 22
− ϕ∂ρ f2 sin ρ

2 f 32

+ ϕ f3 tan θ

2 f1 f 22
− ϕ f3 cot θ

2 f1 f 22
− ϕ∂ρ sin ρ

2 f1 f2
− 2ϕ cos ρ

f1 f2
+ 3

f1 f2
+ ∂ρϕ sin ρ

2 f 22
+ 2ϕ cos ρ

f 22

)
=

= −∂θ

(
r1r2ϕ sin 2θ sin3 ρ

f3
4 f2

)
+ ∂ρ

(
r1r2ϕ sin 2θ sin4 ρ

f1 − f2
4 f2

)
+ 3

2
r1r2 sin 2θ sin

3 ρ

(4.17)

The last term is the only term non-vanishing after integration over S4
ε1,ε2

. It gives

S|susy conf = −8π2r1r2
g2ym

tr �̊6
2

(4.18)

Therefore, the contribution from the smooth configuration of the localization locus
for the partition function is5

Zpert
S4

ε1 ,ε2
=

∫
d�̊6e−S|susy conf Z1-loop(�̊6) =

∫
d�̊6e

− 1
ε1ε2

8π2

g2ym

〈
�̊6,�̊6

〉
Z1-loop(�̊6) (4.19)

where Z1-loop(�6) needs to be computed from the fluctuations of the quantum fields
around the supersymmetric background. Since mathematically such determinant is
the sameas a certain infinite-dimensional equivariantEuler class as in theEq. (4.14), it
can be computed [23] using equivariantAtiyah-Singer index theorem for the transver-
sally elliptic operators [59]. The Atiyah-Singer index theorem computes the index
as the sum of the contributions from the fixed points: the north and the south pole of
the S4

ε1,ε2
. The result is that the Z1-loop factorizes into the product of two factors, each

related to the one-loop factor Z1-loop
T (4.8) of the gauge theory partition function in

the Omega background coming from the north or the south pole of the S4
ε1,ε2

. Careful
application of Atiyah-Singer index theorem for the transversally elliptic operator
shows that the north pole contributes the factor Z1-loop

T obtained from the expansion
of the index in the positive powers of the equivariant parameters t1 = eiε1 , t2 = eiε2

(4.8). The contribution of the south pole is obtained from the expansion of the index
in the negative powers of the equivariant parameters.

5In our conventions �6 is an element of the Lie algebra of the gauge group. For U(N) gauge group
�6 is represented by anti-Hermitian matrices. The bilinear form 〈, 〉 is the positive definite invariant
metric on the Lie algebra normalized such that the length squared of the long root is 2. For U(N)
group trf �2 = − 〈�,�〉.



Localization for N = 2 Supersymmetric Gauge Theories … 179

The argument of Z1-loop
T , the equivariant parameter a of the gauge theory in the

Omega background, relates to the scalar fields on S4
ε1,ε2

in the way

a = va�a (4.20)

where va is the vector field (3.7). At the north pole for the supersymmetric configu-
ration we find

a = −i�6 − �5 = −i�̊6 (4.21)

On X4 it is natural to assume the mass parameter pure imaginary, since the mass can
be thought as the fixed background value of the scalar field�6 in the vector multiplet
of gauged flavour symmetry, so for convenience we set that mass parameters on X4

are imwherem is real. Then, up to an overall phase, and assuming that the arguments
ai and mlf in (4.8) are pure imaginary we find

Z1-loop;S4
ε1 ,ε2

= Z1-loop,T(ia, im) (4.22)

The classical contribution also factorizes, and using (4.4), (4.5) we find the par-
tition function (4.19) can be rewritten as

Zpert
S4

ε1 ,ε2
=

∫
[da]|Zpert

T (ε1, ε2; ia, im)|2 (4.23)

The above formula for the partition function takes into account only the pertur-
bative contribution in the localization computation around the smooth solution of
the supersymmetric equations. However, the complete partition function on S4

ε1,ε2
is

also contributed by the point like instanton/anti-instanton configurations, with point
instantons supported at the north pole and the point anti-instantons supported at the
south pole [23]. This follows from the analysis of the asymptotics of the localization
equations near the north and south poles: the supersymmetric theory on S4

ε1,ε2
near

the north pole is approximated by the gauge theory in the Omega-background, and
the supersymmetric theory on S4

ε1,ε2
near the south pole is approximated by the con-

jugated version of the gauge theory in the Omega-background. This argument leads
to the complete formula

ZS4
ε1 ,ε2

=
∫

[da]|ZT(ε1, ε2; ia; im; q)|2 (4.24)

4.3 Hypermultiplets

The treatment of conformalmassless hypermultiplets is straightforward and is similar
to [32]. The mass-term are added by gauging the flavour symmetry, introducing the
vector-multiplet for the flavour-symmetry group and then freezing all the fields of
this flavour-symmetry vector field to zero except the constant scalar field (�̊0)flavour
which then plays the role of the mass parameter.



180 V. Pestun

4.4 Open Problem

It should be possible to classify all possible T 2-bundle solutions to generalized con-
formalKilling equations, construct the supersymmetric theories on such backgrounds
and localize the partition function generalizing the result (4.24).

Appendix 1: Conventions and Useful Identities

Indices

For the 4d theories with 8 supercharges (N = 2 supersymmetry in 4d) we use the
notations of the (0, 1) 6d supersymmetric theories under the dimensional reduction.
The Table4 summarizes the index notations.

The symmetrization and anti-symmetrization of tensors

t(m1...mr ) = 1
r !

∑
σ∈Perm(r)

tmσ(1),...mσ(r)

t[m1...mr ] = 1
r !

∑
σ∈Perm(r)

(−1)σtmσ(1),...mσ(r)

(4.25)

Spinors

The spinorsλ and ε in the (0, 1)Euclidean supersymmetric 6d theory are the holomor-
phic SU(2)R � Sp(1)R doublets of Weyl four-component spinors, of Weyl chirality
+1, for the 6d Clifford algebra over complex numbers C. We take λ ≡ (λi )i=1,2

where each λ1 and λ2 is 6d Weyl fermion. In total the spinor λ has 8 complex
components.6

Table 4 Indices

Type of indices Symbol Range Fields

4d space-time vectors μ, ν, ρ,σ [1, . . . , 4] Gauge field Aμ

U(1)R = SO(2)R vectors a, b [5, 6] Scalar field φa

6d vectors (the sum of above) m, n, p, q [1, . . . , 6] Am = (Aμ,φa)

SU(2)R i, j 1, 2 Gaugino doublet λi ; auxiliary
triplet Y i

j

6We construct the Lagrangian and supersymmetry algebra using only holomorphic/algebraic depen-
dence on the spinorial components. In other words, the complex conjugate of gaugino (λi ) never
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Clifford Algebra

The 8 × 8 complex matrices γm represent the 6d Clifford algebra

{γm, γn} = 2gmn (4.26)

The chirality operator γ6d∗ anticommuting with all γm is

γ∗ = iγ1 . . . γ6; {γ∗, γm} = 0; γ2
∗ = 1. (4.27)

The chirality of the spinors is the eigenvalue of γ∗. The projection operators that split
S = S+ ⊕ S− are

γ± = 1
2 (1 ± γ∗), ε± = γ±ε± = ±γ∗ε± (4.28)

Explicit formofγm matrices is not needed, but for concreteness one can recursively
define the γ(d)

m matrices of size 2d/2 × 2d/2 in even dimension d in terms of γ(d−2)
m as

follows (see e.g. [60])

γ(d)
m = σ3 ⊗ γ(d−2)

m , m ∈ [1, . . . , d − 2]
γ(d)

d−1 = σ1 ⊗ 1, γ(d)
d = σ2 ⊗ 1

γ(d)
∗ = σ3 ⊗ γ(d−2)

∗

(4.29)

where (σ0,σ1,σ2,σ3) are the 2 × 2 Pauli matrices

(σ0,σ1,σ2,σ3) = ((
1 0
0 1

)
,
(
0 1
1 0

)
,
(
0 −i
i 0

)
,
(
1 0
0 −1

))
. (4.30)

We use antisymmetric multi-index notations

γm1...mr = γ[m1 . . . γmr ]. (4.31)

and we use underline notation for the multi-index

γr is one of γm1...mr (4.32)

In the contraction of multi-index we use non-repetitive summation

(Footnote 6 continued)
appears neither in the Lagrangian, nor in the measure of the path integral, nor in the supersymmetry
transformations. The fermionic analogue of the contour of integration in the path integral or the
reality condition is not necessary since evaluation the Pfaffian or top degree form is an algebraic
operation.
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Ap Bp ≡
∑

m1<···<m p

Am1...m p Bm1...m p = 1

p! Am1...m p Bm1...m p (4.33)

For the forms we use component and slashed notation

ω ≡ 1
r !ωμ1...μr dxμ1 ∧ · · · ∧ dxμr /ω = ωμ1...μr γ

μ1...μr (4.34)

Contraction identity
γmγrγm = (−1)r (d − 2r)γr (4.35)

Multi-index contraction identity

γ pγrγp = �(d, r, p)γr (4.36)

with

�(d, r, p) = (−1)p(p−1)/2(−1)rp
min(r,p)∑

q=max(p+r−d,0)

(−1)q

(
r

q

)(
d − r

p − q

)
(4.37)

The contraction formula and the completeness of (γp)p∈[0,...,d] for d ∈ 2Z in the
matrix algebra of 2d/2 × 2d/2 matrices implies the Fierz identity

(γr )α1
α2

(γr )
α3
α4

=
d∑

k=0

�̃(d, r, k)(γk)α1
α4

(γk)
α3
α2

(4.38)

where
�̃(d, r, k) = (−1)

k(k−1)
2 2− d

2 �(d, r, k) (4.39)

The terms with k > d
2 in the Fierz identity are conveniently represented as

γkγ∗ = (−1)r(r−1)/2i−n/2γk∨ (4.40)

where γk∨ is complementary in indices of γk with a proper permutation sign. The
Fierz identity is

(γl)α1
α2

(γl)
α3
α4

=
d/2∑
k=0

�̃(d, l, k)(γk)α1
α4

(γk)
α3
α2

+ (−1)d/2
d/2−1∑

k=0

�̃(d, l, d − k)(γkγ∗)α1
α4

(γkγ∗)α3
α2

. (4.41)

This form is useful when applied to the chiral spinors.



Localization for N = 2 Supersymmetric Gauge Theories … 183

Table 5 Symmetries of Cγr

d mod 8 2 4 6 8

C1 + + −− − + +− − − ++ + − − +
C2 − + +− − − ++ + − − + + + −−

Spinor Bilinears

The spinor representation spaceS can be equippedwith an invariant complex bilinear
form (, ) : S ⊗ S → C. In components we write7

(ηε) := ηαCαβεβ (4.42)

where C is a matrix representing the bilinear form.
All operators γr are symmetric or antisymmetric with respect toC . The symmetry

of Cγr depends on the dimension d and is summarized in Table5.
The entries s0s1s2s3 with sr = ±1 denote the transposition symmetry of Cγr

for r mod 4. There are two choices of C denoted by C1 and C2 in the table. In
representation (4.29) one can take

C1 = · · · ⊗ σ1 ⊗ σ2 ⊗ σ1

C2 = · · · ⊗ σ2 ⊗ σ1 ⊗ σ2.
(4.43)

The bilinear form C2 for spinors in even dimension d can be also used as the bilinear
form for spinors in d + 1-dimensions. For the theories with 8 supercharges in d =
4, 5, 6 dimensions we are using C highlighted in the Table5.

The matricesCγr represent bilinear forms on S valued in r -forms, in other words,
for spinors η and ε the

ωr = (ηγrε) (4.44)

transform covariantly as the rank r form. Since

γ∗C = (−1)
d
2 Cγ∗ (4.45)

it follows that8

7Often in the physics literature the dual spinor ηβ = ηαCαβ (an element of the dual space S∨) is
denoted ε̄ and is called Majorana conjugate to ε. We have chosen here to avoid the bar notation to
avoid confusion with complex conjugation.
8Consistent with the fact that for d

2 ∈ 2Z the tensor product S+ ⊗S− contains odd rank forms; and
S+ ⊗ S+,S− ⊗ S− contains even rank forms; in particular for d

2 ∈ 2Z the representation S± is
dual to S±; while for d

2 ∈ 2Z + 1 the representation S± is dual to S∓.
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(ηγrε) = (η+γrε+) + (η−γrε−), d
2 + r ∈ 2Z

(ηγrε) = (η−γrε+) + (η+γrε−), d
2 + r ∈ 2Z + 1

(4.46)

In d = 6 the bilinears in the spinors of the same chirality transform as forms of
odd rank; while the bilinears in the spinors of opposite chirality transform as forms
of even rank.

d = 6 :
{

(ε+γrε
′+) �= 0 only for r ∈ {1, 3, 5}

(η−γrε+) �= 0 only for r ∈ {0, 2, 4, 6} (4.47)

The bilinear form valued in 1-forms is antisymmetric in d = 6 for either choice of
C . To construct the standard fermionic action (λγm Dmλ) we need the symmetric
1-form valued bilinear form. For the minimal 6d (0, 1) supersymmetry we introduce
a SU(2)R-doublet of Weyl fermions (λi )i=1,2 and then use C ⊗ ε, where ε = εi j

is the standard 2 × 2 antisymmetric symbol, as the symmetric bilinear form on the
S+ ⊗ C

2. The resulting 1-form valued bilinear is symmetric and there is a proper
fermionic kinetic action

(λi /Dλi ) ≡ (λi /Dλ j )ε j i (4.48)

We use the standard antisymmetric 2× 2 tensor εi j to raise and lower the SU(2)R
indices i, j in the pattern i

i :

λi := εi jλ j , λ j := λiεi j

εi jεik = δ
j
k , (ε[ jηi]) = 1

2 ε
i j (εkηk)

(4.49)

When the SU(2)R indices are omitted, the contraction i
i is assumed

(εγrε
′) ≡ (εiγrε

′
i ) (4.50)

d = 6 Fierz Identities

For d = 6 and l = 1 we find

k 0 1 2 3 4 5 6

�̃(6, 1, k) 3
4 − 1

2 − 1
4 0 − 1

4
1
2

3
4

Notice that �̃(6, 1, k) = (−1)k�̃(6, 1, 6 − k). Therefore if we project Fierz
identity (4.41) with γ+ applied to the α2 and α4 indices, we find that terms with even
k vanish. In addition the middle term k = 3 vanishes too. Finally

(γ1)α1
α2

(γ1)α3α4 = −(γ1)α1
α4

(γ1)α3α2 projected by (γ±)
α2

α′
2
(γ±)

α4

α′
4

(4.51)
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A frequently used form of the above identity involves cylic permutation of three
+-chiral spinor doublets εi ,κi ,λi . Taking the sum of

(ε jγmκ j )γ
mλi = −(ε jγmλi )γmκ j

(λ jγmκ j )γ
mεi = −(λ jγmεi )γmκ j

(4.52)

we find
(εγmκ)γmλ + (λγmκ)γmε + (εγmλ)γmκ = 0 (4.53)

Now we consider projection of 6d Fierz identity at p = 1 on spinors of opposite
chirality. Take +-chiral doublet εi and −-chiral doublet ηi . We find

(ε jγ1ε j )γ1η
i = 3

2 (ε
jηi )ε j − 1

2 (ε
jγ2ηi )γ2ε j

(ε jγ2ηi )γ2ε j = − 5
4 (ε

jγ1ε j )γ1η
i

(4.54)

where at l = 2 the explicit coefficients in (4.41) are given as follows:

k 0 1 2 3 4 5 6

�̃(6, 2, k) − 15
8 − 5

8 − 1
8 − 3

8 + 1
8 − 5

8 + 15
8

Hence, from the Eq. (4.54) we find another useful 6d Fierz identity

(ε jγmε j )γmηi = 4(ε jηi )ε j , (ε = γ+ε, η = γ−η) (4.55)

6d (0, 1) Theory Conventions

The spinor ε is +-chiral, the spinor η is −-chiral

ε = γ∗ε = γ+ε, η = −γ∗η = γ−η (4.56)

The tensor field Tμνa is 6d anti-self-dual, ∗6d T = −T . Useful contraction identi-
ties

γμ /F = /Fγμ − 4Fmμγ
m, /T = Tμνaγ

μνa (4.57)

γμ /T γμ = γa /T γa = γm /T γm = 0 (4.58)

Tμνaγ
μν = 1

2 {/T , γa}, Tμνbγ
νb = 1

4 {/T , γμ} (4.59)

The Bianchi identity on the field strength

Dm Fpq + Dq Fmp + Dp Fqm = 0, γmpq Dm Fpq = 0 (4.60)
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Positive chirality of ε ≡ ε+ and negative chirality of T ≡ T − implies

/T γ2rε = 0

(εγrε) = 0, r mod 4 ∈ {2, 3}; (ε(iγrε
j)) = 0, r mod 4 ∈ {0, 1}

γρ{/T , γa}ε = {/T , γρ}γaε,
1
2Tμνaγργ

μνε = Tρνbγ
νbγa

γρTμνaγ
νaε = Tρνaγ

νaγμε, γaTμνbγ
μνε = Tμνaγ

μνγbε

TμνaTρσbγ
ργμνγσbε = 4Tρνaγ

νTρσbγ
σbε = 4TρνaTρνbγ

bε

(4.61)

The spin-connection and the metric curvatures

Dμv
ρ̂ = ∂μv

ρ̂ + ωρ̂
σ̂μv

σ̂

Rρ̂
σ̂μν = [Dμ, Dν]ρ̂σ̂, Rσν = Rμ

σμν, R = Rμ
μ

(4.62)

The covariant derivative on spinors, the curvature and the Lichnerowicz formula

Dμε
i = ∂με

i + 1
4ω

ρσ
μγρσεi + (V R

μ )i
jε

j

/D2 = Dμ Dμ − 1
4 R + 1

2
/FR

V

(4.63)

where (V R
μ )i

j is the SU(2)R-connection.

Supersymmetry Equations

The divergence of the first equation in the system (2.1) implies

Dμ Dμε − 1
16 [Dμ /T ]γμε − 1

4
/T η = 1

4
/D2ε (4.64)

which together with Lichnerowicz formula (4.63) produces

1
4

/D2ε + 1
3 (

1
4 Rε − 1

2
/FRε − 1

16 [Dμ /T ]γμε − 1
4
/T η) = 0 (4.65)

and the linear combination with the second equation in (2.1) produces

1
4

/D2ε = − 1
2

(
1
6 R + M

)
ε + 1

16 [Dμ /T ]γμε (4.66)

The 6d and 4d Spinor Conventions

As in (4.29) we take

γ(6)
μ =

(
γ(4)

μ 0

0 −γ(4)
μ

)
, γ(6)

5 = (
0 1
1 0

)
, γ(6)

6 = (
0 −i
i 0

)

C (6) =
(

0 −c(4)γ(4)∗
−c(4)γ(4)∗ 0

)
, ε(6)

+ =
(

ε(4)
+

ε(4)
−

)
, η(6)

− =
(

η(4)
−

−η(4)
+

) (4.67)
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where ε(4)
± denote the ±-chiral spinors of the 4d Clifford algebra with respect to γ(4)∗ ,

the C (6) is the bilinear form for the 6d Clifford algebra of type (−−++), and c(4) is
the bilinear form of the 4d Clifford algebra of type (− − ++). In these conventions
the bilinears computed in 4d and 6d notations agree:

ε(6)
+ C (6)η(6)

− = ε(4)
+ c(4)η(4)

+ + ε(4)
− c(4)η(4)

−
ε(6)
+ C (6)γ(6)

μ ε̃(6)
+ = ε(4)

+ c(4)γ(4)
μ ε̃(4)

− + ε(4)
− c(4)γ(4)

μ ε̃(4)
+

(4.68)

For the explicit form of spinors we use 4d gamma-matrices, the 4d chirality operator
and 4d bilinear form in terms of (4.30)

(γi , γ4) = (σ2 ⊗ σi ,σ1 ⊗ σ0),

γ(4)
∗ = −γ1 . . . γ4 = −σ3 ⊗ σ0

c(4) = −iσ0 ⊗ σ2

(4.69)

We decompose
Tμνaγ

a = Tμν−γ− + Tμν+γ+ (4.70)

in terms of

Tμν− = (Tμν5 − iTμν6) γ− = 1
2 (γ

5 + iγ6) γ−γ56
∗ = −γ−

Tμν+ = (Tμν5 + iTμν6) γ+ = 1
2 (γ

5 − iγ6) γ+γ56
∗ = +γ+

(4.71)

with γ56∗ = −iγ56. Since Tμνa is of negative 6d chirality, the Tμν± has ∓ 4d chirality.
We define

T (4)
μν ≡ Tμν+ − Tμν− = 2iTμν6 (4.72)

In terms of the 4d spinors the generalized conformal Killing equation (2.1) takes
form

Dμε − 1
16T (4)

ρσ γρσγμε = γμη (4.73)

Other 6d-4d notational definitions are

�± = 1
2 (�

5 ∓ i�6), �± = (�5 ± i�6)

Tμνaγ
μν�aε(6)

+ = T (4)
μν γμν(�+ε(4)

− − �−ε(4)
+ ), �aγaη = 2�−η(4)

− − 2�+η(4)
+

(4.74)
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Appendix 2: Supersymmetry Algebra

The Off-Shell Closure of the Supersymmetry on the Vector
Multiplet

Here we explicitly compute δ2 on vector multiplet for δ defined by:

δAm = 1
2λ

iγmεi

δλi = − 1
4 Fmnγ

mnεi + Y i
jε

j + �aγ
aηi + 1

8Tμνa�
aγμνεi

δY i j = − 1
2 (ε

(i /Dλ j))

(4.75)

provided that spinors (ε, η) with η = 1
4

/Dε satisfy generalized conformal Killing
equations (2.3).

We find a contribution of several terms in δ2λi . In the flat space we drop the terms
proportional to Dμε, η and T and find

δ2flatλ
i = δ(− 1

4 Fmnγ
mnεi ) + δ(Y i

jε
j ) (4.76)

with

δ
(− 1

4 Fmnγ
mnεi

)
= − 1

4 Dp
(
λ jγqε j

)
γ pqεi = 1

4

(
ε /Dλ

)
εi − 1

4

(
ε jγq Dpλ j

)
γ pγqεi (4.51)=

= 1
4

(
ε /Dλ

)
εi + 1

4

(
εγqε

)
Dqλ

i − 1
8

(
εγqε

)
γq /Dλi (4.55)= 1

4

(
εγqε

)
Dqλ

i

+ 1
4

(
ε /Dλ

)
εi − 1

2

(
ε j /Dλi

)
ε j

(4.77)
and together with the δ(Y i

jε
j ) we find

δ2flatλ
i = 1

4 (εγ
qε)Dqλ

i + 1
4 (ε

j /Dλ j )ε
i − 1

2 (ε
[ j /Dλi])ε j

(4.49)= 1
4 (εγ

qε)Dqλ
i

(4.78)
Next we account for Dμε and η terms, still keeping T = 0. The transformation would
be complete on conformally flat space. The δ2cflatλ acquires new contributions

δ2cflatλ
i = δ2flatλ

i + termc (4.79)

where
termc = − 1

4 (λγqγμη)γμqεi + 1
2 (λγaε)γ

aηi (4.53) on γqγq

=
= − 1

2 (εγqλ)γqη + 1
4 (ηγμqε)γ

μqλ + (ηε)λ + (ηλ)ε
(4.80)

Then we expand the middle term in 4d indices
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1
4 (ηγμqε)γ

μqλ = + 1
8 (ηγμνε)γ

μνλ + 1
8 (ηγpqε)γ

pqλ − 1
8 (ηγabε)γ

abλ (4.81)

and apply Fierz identity (4.38) to the first and the last term in (4.80) to find

− 1
2 (ε

jγqλ j )γ
qηi = − 3

4 (ε
jηi )λ j + 1

8 (ε
jγpqη

j )γ pqλ j

(η jλ j )ε
i = 1

4 (η
jεi )λ j − 1

8 (η
jγpqε

i )γ pqλ j

(4.82)

All γpqγ
pq terms are cancelled using (4.49) and the scalar terms are simplified as

(ηε)λ − 3
4 (ε

jηi )λ j + 1
4 (η

jεi )λ j = 3
4 (ηε)λ + (η(iε j))λ j (4.83)

and the contribution from the non-flat but conformally flat terms is

termc = + 1
8 (ηγμνε)γ

μνλ − 1
8 (ηγabε)γ

abλ + 3
4 (ηε)λ + (η(iε j))λ j (4.84)

Then we compute the T -terms in

δ2λi = δ2cflatλ
i + termT (4.85)

and find

termT = 1
64 (εγμ /T γqλ)γμqε + 1

16Tμνa(εγ
aλ)γμνε

(4.53) on γqγq ,(5.35)=
= − 1

64 (εγμ /T γqε)γ
μqλ + 1

64 (εγqλ)γμγq /T γμε + 1
32 (εγaλ) /T γaε =

= − 1
64 (εγμ /T γqε)γ

μqλ + 1
32 (εγpλ) /T γ pε

(4.53) on γpγ
p

=
= − 1

64 (εγμ /T γqε)γ
μqλ − 1

64 (εγqε) /T γqλ
(4.59)= 1

32Tμνa(εγ
aε)γμνλ

(4.86)

The termT can be combined with the termc:

1
8 (ηγμνε)γ

μνλ + 1
32Tμνa(εγ

aε)γμνλ = 1
16 Dμ(εγνε)γ

μνλ (4.87)

so that finally

δ2ε,ηλ
i = 1

4 (εγ
mε)Dmλi + 1

16 Dμ(εγνε)γ
μνλi − 1

8 (ηγabε)γ
abλi + 3

4 (ηε)λi +(η(iε j))λ j

(4.88)
The variation δ2ε,ηY i j and δ2ε,η Am are computed similarly.

The Invariance of the Lagrangian

The 4dN = 2 supersymmetric Lagrangian for vectormultiplet in curved background
for vanishing fermionic fields of Weyl multiplet is proportional to (2.11)
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1
2 Fmn Fmn + λiγm Dmλi + ( 16 R + M)�a�

a − 2Yi j Y
i j − FμνTμνa�

a

+ 1
4TμνaT μνb�a�b (4.89)

The trace is implicitly implied in all terms. To check the invariance under (2.8) we
first consider the flat background with Dμε = 0, η = 0, T = 0, M = 0. After that
we will add the variational terms in conformally flat background, and finally we will
add the remaining T -terms. We find modulo total derivative

δflat(
1
2 Fmn Fmn) = −(εγnλ)Dm Fmn

δflat(λγm Dmλ) = 1
2 (λγm Dm Fpqγ

pqε) + 2Y i
j (ε

j /Dλi )
(4.60)=

= (λγnε)Dm Fmn − 2Yi j (ε
j /Dλi )

δflat(−2Yi j Y
i j ) = 2Yi j (ε

i /Dλ j )

(4.90)

that all terms add to zero. In conformally flat background the new terms appear in
the variation of fermionic kinetic term and the coupling of scalars to the curvature

δcflat((
1
6 R + M)�a�

a) = ( 16 R + M)(λγa�aε)

δcflat(λγm Dmλ) = δflat(λγm Dmλ) + termc
(4.91)

where

termc = −2(λ[ /Dγa�aη
i ]) + 1

2 (λγμFpqγ
pq Dμε)

(2.1)=
= −2(λγma Fmaη) + 2�a(λγa /Dηi ) + 2(λFmaγ

maη) = 2(λγa�a /Dηi )
(2.1)=

= −( 16 R + M)(λγa�aε)
(4.92)

so all terms in (4.91) cancel when added together.
Next we consider the remaining T -terms for a generic background. We set

L = Lcflat + LT (4.93)

where
LT = −FμνTμνa�

a + 1
4TμνaT μνb�a�b (4.94)

and we find

δ(LT ) = (λγνε)[DμTμνa]�a

+ (λγνε)Tμνa Fμa︸ ︷︷ ︸
1©

− 1
2 (λγaε)FμνTμνa︸ ︷︷ ︸

2©

+ 1
4 (λγaε)TμνaTμνb�

b

︸ ︷︷ ︸
3©

(4.95)
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In the variation of the fermionic action the new terms are

δ(λγm Dmλ) = δcflat(λγm Dmλ) + termT1 + termT2 (4.96)

where termT1 comes from T -terms in generalized conformal Killing equation (2.3)
and termT2 comes from the T -term in the variation δε,ηλ (2.8)

termT1 = 2�a(λγa /Dη)T + 1
32 (λγμ /F /T γμε) (4.97)

Then we find

1
32 (λγμ /F 1

16
/T γμε) = 1

2 (λγaε)FμνTμνa︸ ︷︷ ︸
2©

− 1
2 (λγνε)Tμνa Fμa

︸ ︷︷ ︸
1©

+ 1
2 (λγνabε)Tμνa Fμb

︸ ︷︷ ︸
4©

(4.98)

and

termT2 = − 1
4λ /D(Tμνa�

aγμνε) =
= − 1

4 (λγργμνε)[DρTμνa]�a − 1
2 (λγνε)Tμνa Fμa︸ ︷︷ ︸

1©
− 1

4 (λγρμνε)Tμνa Fρa︸ ︷︷ ︸
4©

− 1
4 (λγaε)TμνaTμνb�

b

︸ ︷︷ ︸
3©

(4.99)

Using (4.61) all T F terms cancel between (4.99) and (4.95) and finally the [DT ]�
terms in (4.95), (4.97), (4.99) cancel as well as

(4.95) : (λγνε)[DμTμνa]�a

(4.97) : 1
2 (DμTμνa)�b(λγbγνaε) = − 1

2 (λγνε)DμTμνa�a + 1
2 (λγνabε)�b DμTμνa

(4.99) : − 1
4λDρ(Tμνa)�aγργμνε = − 1

2 (λγμε)DμTμνa�a − 1
4 (λγμνρε)�a DρTμνa

(4.100)
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Line Operators in Supersymmetric Gauge
Theories and the 2d-4d Relation

Takuya Okuda

Abstract Four-dimensional gauge theories withN = 2 supersymmetry admit half-
BPS line operators. We review the exact localization methods for analyzing these
operators. We also review the roles they play in the relation between four- and two-
dimensional field theories, and explain how the two-dimensional CFT can be used
to obtain the quantitative results for 4d line operators. This is a contribution to the
special LMP volume on the 2d-4d relation, edited by J. Teschner.

1 Introduction

Gauge theory, a fundamental description of nature in our current understanding of
particle physics, remains a central subject in theoretical physics. Any quantum field
theory with gauge fields possesses a set of universal observables, namely Wilson-’t
Hooft line operators, also known as loop operators. TheWilson loop Tr P exp(i

∮
A)

exhibits an area law in a confining vacuum. A magnetic analog, the ’t Hooft loop,
is a disorder operator defined by a singular boundary condition of the gauge field.
A Higgs phase can be characterized by a ’t Hooft loop obeying an area law. More
generally, the behavior of mixed Wilson-’t Hooft operators can be used to classify
the vacuum structures of gauge theories [1]. Quantitative understanding of these
operators in a non-abelian gauge theory such as QCD is an important open problem.

Four-dimensional theories with extended supersymmetry admit BPS line opera-
tors, which represent infinitely massive BPS particles. While they have no known
role as order parameters for low-energy physics, the BPS line operators serve as
useful probes of various dualities. BPS Wilson loops in N = 4 super Yang-Mills
theory were first introduced in [2, 3], and for many years they were studied mostly in
the context of the AdS/CFT correspondence. In [4] it was found that the perturbative
ladder diagram contributions to the expectation value of a half-BPS circular Wilson
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loop inN = 4 theory with SU(N ) gauge group reproduce the large ’t Hooft coupling
result from AdS. The ladder diagram contributions can be neatly packaged into a
Gaussian matrix model, and the authors of [4] conjectured that the matrix model
computes the Wilson loop vev in the large N limit. Based on a conformal anomaly,
[5] further conjectured that the agreement should hold to all orders in 1/N and in
the ’t Hooft coupling. The agreement was finally proved to be exact in the paper [6],
where general N = 2 theories were also treated.

This article reviews the recent developments in the study of BPS line operators in
4d N = 2 gauge theories. There are two main ideas: localization and the 2d-4d cor-
respondence. The former, whosemodern versionwas invented by Pestun [6] building
upon earlier works [7, 8], can be applied to line operators in various geometries to
obtain exact results. The latter, in particular the AGT correspondence [9], can be
used to compute the expectation values of line operators by 2d CFT techniques.

This article is organized as follows. In Sect. 2 we will review the definition of
Wilson-’t Hooft line operators and the classification of charges, as well as their
counterparts in two dimensions. In Sect. 3 we will review the localization methods
applied to line operators. Section4 is devoted to explaining the 2d CFT techniques
used to compute 4d observables involving line operators. The line operators exhibit
interesting algebraic structures, which are closely related to a quantization of the
Hitchin moduli space. These matters will be reviewed in Sect. 5. The appendix sum-
marizes some relevant facts.

Our emphasis is on the intrinsic UV dynamics of 4d line operators. The exact
computation of disorder line operators, which was made possible by localization
and was inspired by the 2d-4d relation, is a remarkable progress. The 2d theories
themselves also display very rich physics.Other review articles in this volume discuss
closely related subjects from different angles.

2 Charges of Line Operators

In this section we review the classification of BPS line operators in an N = 2 gauge
theorywith gauge group G.We begin by considering all line operators allowed by the
Lie algebra ofG and thematter content.Wewill also explain the basic correspondence
between line operators and closed curves on a Riemann surface. Then we will review
the recent progress on the discrete choice one must make to fully specify a quantum
field theory, and how it relates to the spectrum of line operators.

2.1 Definition and Charges of 4d Line Operators

Let us recall some basics of Lie algebras and set notation. (See for example the
appendix of [10] for a useful summary.) We denote by t the Cartan subalgebra of G,
and by t∗ the dual of t. The roots and weights of G take values in t∗, and generate the
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root lattice �r and the weight lattice �w respectively. We have �r ⊂ �w. We define
the coroot lattice �cr ⊂ t to be the dual of �w, and the coweight lattice �cw ⊂ t to
be the dual of �r.

Wilson line operators that preserve some supersymmetry were first introduced in
the context of AdS/CFT correspondence [2, 3]. For an N = 2 gauge theory on R

4,
let us focus on the half-BPSWilson operators along a straight line or a circle, defined
as

WR = TrR P exp

[∮
(i A + Reφ ds)

]
, (1)

where φ is a complex scalar in the vector multiplet and ds is the line element deter-
mined by the metric. There exist more general curves and scalar couplings that
preserve some amount of supersymmetry; their classification may be possible by
extending the methods of [11]. Charges of supersymmetric Wilson operators are
classified by irreducible representations R, or equivalently their highest weights
w ∈ �w. Physically, Wilson operators represent the worldline of an electrically
charged BPS particle with infinite mass.

The magnetic analogue, ’t Hooft operators, were originally introduced to classify
the low-energy behavior of non-conformal gauge theories [1], and represent the
trajectory of an infinitely heavy magnetic monopole in spacetime. These operators
were generalized to preserve a half of supersymmetry in [12]. A ’t Hooft operator
is a disorder operator, meaning that it is defined by a singular boundary condition
on the fields in the path integral. In the present case, we define the operator T (B)

by demanding that we integrate over the field configurations with Dirac monopole
singularities

F ∼ B

4
εi jk

x i

r3
dxk ∧ dx j = − B

2
sin θdθ ∧ dϕ , φ ∼ i

B

2r
. (2)

In writing this, we assumed that the theta angles of the gauge theory are zero; if they
are not we need to excite Reφ as well as electric components of the field strength
on top of (2), for the gauge Noether charge to vanish [13] and supersymmetry to be
preserved. We have introduced (x1, x2, x3) and (r, θ,ϕ), locally-defined Cartesian
and spherical coordinates in the directions orthogonal to the trajectory. The ’t Hooft
operator preserves the same set of supercharges as the Wilson operator (1) when
placed along the same curve. The magnetic charge B is constrained by the Dirac
quantization condition. Namely, the gauge potential A ∼ −(B/2)(1− cos θ)dϕ has
a Dirac string singularity along θ = π. For the Dirac string to be unphysical the
matter fields must be single-valued. Thus, if we denote by 〈 , 〉 the natural pairing
between coweights and weights, the magnetic charge B must satisfy

〈B, w〉 ∈ Z (3)
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(a) (b)

Fig. 1 a A one-punctured torus C1,1 is decomposed into a pair of pants with one leg degenerate.
A trivalent graph � is drawn on the decomposed surface. b The red curve, a pants leg, has (p, q) =
(0, 1) and corresponds to the minimal Wilson operator in N = 2∗ theory. The blue curve with
(p, q) = (1, 0) corresponds to the minimal ’t Hooft operator

for the highest weight w ∈ �w of any irreducible representation in which a matter
field transforms. The coweights B satisfying (3) form a lattice �m, the dual of the
lattice generated by roots and the weights of matter representations.

More generally, dyonic operators, or mixed Wilson-’t Hooft operators, are clas-
sified by pairs (B, w) ∈ �m ×�w modulo the action of the Weyl group. The weight
w may be interpreted as the highest weight of a representation corresponding to the
Wilson loop for the subgroup unbroken by B, for an appropriate choice of represen-
tative (B, w).

It is illuminating to consider the class S theories of type A1, reviewed in the
Appendix and [V:2]. A weakly coupled description of such a theory is specified by a
choice of pants decomposition and a trivalent graph� drawn on Cg,n . (See Fig. 1a for
an example.) The universal covering of the gauge group G is G̃ = SU (2)3g−3+n =:∏

i SU (2)i , where i = 1, . . . , 3g −3+n labels the internal edges of �. The external
edges labeled by e = 3g − 2 + n, . . . , 3g − 3 + 2n correspond to the factors in the
flavor group GF = SU (2)n =: ∏

e SU (2)e. In addition to the electric and magnetic
charges for G, it turns out to be convenient to allow line operators to have the
magnetic charges for GF by coupling the theory, via the Cartan of GF, to non-
dynamical gauge multiplets of the form (2). Thus we consider the coweights 	p =
(p1, . . . , p3g−3+2n) ∈ �cw(G̃ × GF) = Z

3g−3+2n of the extended group and the
weights 	q = (q1, . . . , q3g−3+n) ∈ �w(G̃) = Z

3g−3+n of the gauge group. Each
trivalent vertex of the graph � corresponds to a half-hypermultiplet with its scalars
� jkl transforming in the trifundamental representation of SU(2) j ×SU (2)k×SU (2)l ,
where j, k, l correspond to either a gauge or flavor symmetry and do not need to be
distinct. For� jkl to be single-valued around a Dirac string, the coweight must satisfy

p j + pk + pl ∈ 2Z. (4)

The conditions (4), imposed for all triplets ( j, k, l) corresponding to vertices, define
the lattice �m ⊂ �cw. We also identify the charges related by the Weyl group
Z
3g−3+2n
2 . Thus the charges of the line operators in this theory are classified by

the set of integers ( 	p, 	q), subject to the conditions (4) for each trivalent ver-
tex, with the charges identified if they are related by the Weyl group action, i.e.,
(pi , qi ) 
→ (−pi ,−qi ) for some internal edge i or pe 
→ −pe for an external edge

http://dx.doi.org/10.1007/978-3-319-18769-3_2
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e. Identification by the Weyl group action is equivalent to requiring that pi , pe ≥ 0,
and also that qi ≥ 0 if pi = 0. Ordinary Wilson-’t Hooft operators, without non-
dynamical fields involved, correspond to ( 	p, 	q) with pe = 0 for all external edges e.

2.2 Correspondence of Charges and Curves

Weare ready to describe the basic 2d/4d relation for the charges of line operators in the
A1-theories [14].We fix one pants decomposition and use it to describe all homotopy
classes of closed curves onCg,n without self-intersection, aswell as homotopy classes
of arcs connecting punctures without self-intersection. We allow the curve γ to have
multiple components, but we assume that no component is homotopic to a point or a
curve arbitrarily close to apuncture.Letγ1,…,γ3g−3+n bepairwise disjoint connected
curves without self-intersection whose complement is a pants decomposition ofCg,n;
these are known as pants legs. Also let γ3g−3+n+1, …, γ3g−3+2n be simple closed
curves near the punctures. In order to describe the correspondence, we define the
intersection number p j = #(γ ∩ γ j ) for 1 ≤ j ≤ 3g − 3 + 2n to be the minimum
of the number, without a sign, of intersection points as γ and γ j vary among non-
self-intersecting curves in their respective isotopy classes. We also need a notion of
twisting number q j for 1 ≤ j ≤ 3g − 3 + n. Roughly, q j counts how many times γ
winds around in a direction parallel to γ j . We refer the reader to [14] for a precise
definition. The crucial mathematical fact for the correspondence is the following
theorem.

Dehn’s Theorem. Let Cg,n be an oriented punctured Riemann surface of genus g
and negative Euler characteristic with n punctures. Let us define a map

γ 
→ (#(γ ∩ γ j ); q j ) ∈ (Z≥0)
3g−3+2n × Z

3g−3+n (5)

which assigns, to each isotopy class of closed curves without self-intersection or
arcs connecting punctures without self-intersection, its intersection number p j =
#(γ ∩ γ j ) with γ j (1 ≤ j ≤ 3g − 3+ 2n) and its twisting number q j with respect to
γ j (1 ≤ j ≤ 3g − 3 + n). Note that the intersection and twisting numbers depend
only on the homotopy class of γ. With this definition the map is injective, and its
image in (5) is

{(p1, p2, . . . , p3g−3+2n; q1, q2, . . . , q3g−3+n)

| if p j = 0 then q j ≥ 0, and p j + pk + pl ∈ 2Z

when γ j ∪ γk ∪ γl is the boundary of a pair of pants}.

The integers p j , q j are known as the Dehn-Thurston parameters of γ.
It is immediate to recognize (6) as the same data that classify the line oper-

ator charges in the A1-theory corresponding to Cg,n . This is the most basic 2d-4d
correspondence involving line operators [14]. An example in Fig. 1b shows curves on
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the one-punctured torus corresponding to line operators in the SU(2) N = 2∗ theory.
The rules for the action of the modular groupoid on the Dehn-Thurston parameters
are explicitly known [15]. Since this action is interpreted as S-duality according
to the 2d/4d correspondence, the line operators with charges ( 	p, 	q) are believed to
transform according to the same rules.

2.3 Spectrum of Line Operators and Discrete Theta Angles

The specification of a gauge theory, before picking a spacetime geometry, requires
several discrete choices. The choice can be phrased in terms of line operators [16, 17].

On R
4 for some purposes one considers all “line operators” that are allowed by

the Lie algebra of the gauge group and the matter content. This is useful in the
classification of massive phases of a gauge theory [1] by representations of the ’t
Hooft commutation relation

W · T = e2πi/N T · W (6)

for fundamentalWilson (W ) and ’t Hooft (T ) loops. Here the gauge group has the Lie
algebra of SU(N ), and we consider two closed curves CW and CT that are contained
and Hopf-linked in a constant time slice. We place T on CT while we displace W
infinitesimally from CW forward and backward in time, so that the two sides of (6)
arise as operator products that are differently time-ordered. Massive phases such as
confining andHiggs vacua arise as representations of (6). Even thoughCW andCT are
linked within the three-dimensional slice, CT and displaced CW are, for dimensional
reasons, not linked in the ambient spacetime. The relation W · T �= T · W means that
the two operators cannot both be genuine line operators. If the gauge group is SU(N ),
W is a genuine loop operator that is invariant under all gauge transformations, even
when it is placed along a homotopically non-trivial curve. On the left hand side of
(6) we can link W with the surface swept by the Dirac strings that extend from T in
the future time direction. Then W · T picks up the phase e2πi/N , relative to T · W ,
from the holonomy around the Dirac string. One cannot continuously deform one
configuration to the otherwithoutW hitting theDirac sheet of T . Thus T is a boundary
of a surface operator defined by the Dirac sheet. For gauge group SU(N )/ZN with
a zero theta angle, T is a genuine line operator and W is a boundary of a surface
operator [18].

For a general gauge group G and two pairs of charges (B1, w1), (B2, w2) ∈
�cw × �w, the product of two would-be loop operators acquires a phase

exp (2πi〈B2, w1〉 − 2πi〈B1, w2〉) (7)

when one operator moves around along a surface that links the other. The correlation
function of two genuine loop operators is well-defined only if the phase vanishes,
in which case they are mutually local. In a consistent theory line operators must be
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mutually local, and their spectrum must be maximal in the sense that one cannot
add more line operators without violating mutual locality [16, 17]. The center Z
of the universal covering G̃ of G, and its dual Z∗, are isomorphic to �cw/�cr and
�w/�r , respectively. The phase (7) depends only on the elements z1, z2 ∈ Z × Z∗
that correspond to the two loop operators. A maximal mutually local spectrum then
translates to a maximal isotropic subgroup of Z × Z∗.

The authors of [17] showed that the choice of a maximal coisotropic subgroup
is equivalent to the choice of what they call discrete theta angles. These parameters
give, in the Euclidian path integral, non-trivial phases dependent on the topological
classes of gauge bundles. Correspondence with line operators arises because the
discrete magnetic flux through the S

2 surrounding a line operator induces, combined
with discrete theta angles, a discrete electric charge, much as in the usual Witten
effect [13]. For A1 theories of class S corresponding to a Riemann surface C with
no puncture, the discrete choice corresponds to a maximal coisotropic subgroup �

of H 1(C, C), where C is the center of the simply connected group with Lie algebra
g [16, 19].

3 Exact Results for Line Operators by Localization

Line operators with electric andmagnetic charges constructed in the previous section
fit nicely the framework of supersymmetric localization [7]. In this section we review
the exact localization computation of loop/line operators in 4d N = 2 theories on S

4

and other geometries. Since details on the S
4 localization can be found in [6] as well

as in the review article [V:6], we restrict ourselves to the bare basics and focus on
the features specific to ’t Hooft operators. The results will be successfully matched
with 2d computations in Sect. 4.2.

3.1 Localization for Wilson loops on SSS
4

The general procedure in a localization computation consists of the following
steps [6].

1. Pick a supercharge Q that annihilates the operator one wants to evaluate. If Q2

contains terms that vanish on shell, i.e., vanish by the equation of motion, add
auxiliary fields so that such terms do not appear. Then Q2 is a linear combination
of bosonic symmetry generators.

2. Choose a Q2-invariant functional V such that the bosonic terms of Q · V are
positive-semidefinite. Add tQ · V to the action where t is a constant. Find the
saddle points of the path integral

∫
e−Scl−tQ·V in the limit t → +∞, in other

words find the configurations such that Q · V = 0.
3. Evaluate the classical action Scl and the inserted operator at the saddle point.

http://dx.doi.org/10.1007/978-3-319-18769-3_6
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4. Compute the fluctuation determinant at the saddle points. This involves gauge-
fixing and the inclusion of ghost fields. Either expand fields in the eigenmodes
of kinetic operators, or use the equivariant index theorem to compute the deter-
minant.

5. Sum and integrate the above contributions over all the saddle points.

It is possible to define N = 2 non-conformal supersymmetry on S
4, and the steps

above were carried out in [6] to compute the partition functions and the Wilson loop
vevs for N = 2 gauge theories on S

4.
One of the key steps is the computation of the fluctuation determinant. This is

the ratio det�o/(det�e)
1/2, where (�e,�o) are the differential operators acting on

bosons and fermions in Q · V . On S
4 we choose V = ∑

(fermion) ·Q(fermion), and
(�e,�o) can be expressed in terms of simpler differential operators in V . Super-
symmetry implies many cancellations among the eigenvalues, and one can show that
the determinant is given by

det�o

(det�e)1/2
=

(
detcokerDQ2

detkerDQ2

)1/2

, (8)

where D is a differential operator in V , and we recall that Q2 is a sum of bosonic
symmetry generators. Schematically,

Q2 ∼ J + R + a + m, (9)

where J , R, a, and m generate an isometry, an R-symmetry rotation, a gauge trans-
formation, and a flavor symmetry transformation. Despite the huge cancellations the
fluctuation determinant (8) is still an infinite product and takes the form

∏
j w

c j /2
j

with c j = ±1. The weights w j and the signs c j can be read off from the equivariant
index

indD ≡ TrkerDeQ
2 − TrcokerDeQ

2 =
∑

c j e
w j , (10)

which can be computed by the Atiyah-Singer index theory. In particular, the fixed
point formula expresses the index as a sum of contributions from the fixed points of
the isometry J . Thus the fluctuation determinant for each saddle point configuration,
computed by the index theory, naturally factorizes into the contributions from the
fixed points, namely the north and south poles of S

4.
At the north pole, the differential operator D acts on the vector multiplet fields as

the linearization of the anti-self-duality equations, which govern instantons on C
2:

�1(ad E)
D†⊕(1+∗)D

−−−−−−−−−→ �0(ad E) ⊕ �2+(ad E). (11)

On the hypermultiplet D acts as the Dirac operator. The structure at the south pole
is similar, with anti-instantons replacing instantons.
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Non-perturbative contributions arise as small instantons and anti-instantons local-
ized at the north and south poles respectively. More precisely, these are the Q2-fixed
points on the instantonmoduli space. Let us denote by Zpole

1-loop

(
ia, im f

)
the north pole

contribution to the fluctuation determinant in the topologically trivial backgrounds.
The variable a, taking values in the Cartan subalgebra t, parametrizes the saddle
point configurations and is identified with the background value of a vector multiplet
scalar Reφ. The parametersm f denote themasses ofmatter hypermultiplets. A topo-
logically non-trivial configuration at the north pole contributes the universal factor
Zpole
1-loop

(
ia, im f

)
, accompanied by an extra rational function of a and m f . The sum

of the rational functions over the invariant instanton configurations is the instanton
partition function Z inst [8] with the omega deformation parameters specialized to the
values ε1 = ε2 = 1/r , where r is the radius of S

4. The contributions from the south
pole have a similar structure.

Factorization of the determinants implies that the total partition function takes the
form

ZS4 = 〈1〉S4 =
∫
t

da
∣∣Zpole(a)

∣∣2 , (12)

where the integral is taken over the Cartan subalgebra t, and

Zpole(a) = Zcl (ia, τ ) Zpole
1-loop

(
ia, im f

)
Z inst

(
ia, r−1 + im f ; r−1, r−1; τ

)
. (13)

We factorized the classical part by hand: e−Scl = |Zcl|2. The precise expressions of
various factors in (13) in a similar convention can be found in [20]. The instanton
partition function Z inst(a, m f ; ε1, ε2; τ ) defined in [8] arises as a sum of the rational
functions over Q-invariant instanton configurations localized at each pole. To com-
pute the vev of the Wilson loop defined by (1) with an integral along the equator, we
only need to evaluate it in each saddle point as indicated in step above:

〈WR〉S4 =
∫
t

da
∣∣Zpole(a)

∣∣2 TrRe2πira . (14)

In particular, this reduces to the Gaussian matrix model for N = 4 theory, proving
the conjecture [4, 5] mentioned in the introduction.

3.2 Instanton/Monopole Correspondence

We now review a similar localization calculation for a ’t Hooft operator [20]. A nice
technical tool is a correspondence between singular monopoles on R

3 and U (1)-
invariant instantons on a Taub-NUT space, discovered by Kronheimer [21]. For our
purposes, it is enough to specialize to the single-center Taub-NUT space with metric

ds2 = V (dρ2 + ρ2dθ2 + ρ2 sin2 θdϕ2) + V −1(dψ + ω)2, (15)



204 T. Okuda

where V = l +1/(2ρ),ω = (1/2)(1−cos θ)dϕ, l > 0 is a constant, and (ρ, θ,ϕ) are
the polar coordinates for R

3. This is a circle fibration over the flat R3. The variable ψ
has periodicity 2π in our convention. From the three-dimensional fields (A,�) with
singularities

A ∼ − B

2
(1 − cos θ)dϕ, � ∼ B

2ρ
(16)

near the origin, we construct a four-dimensional gauge connection

A ≡ g

(
A + �

dψ + ω

V

)
g−1 − igdg−1 (17)

and its curvatureF = dA+iA∧A.Here g = ei Bψ is a singular gauge transformation.
The singularities in A and � cancel out in (17), and we obtain a smooth four-
dimensional gauge field A.

The four-dimensional fieldA is invariant under theU (1)K actionψ → ψ+const.,
which acts on the circle fiber as well as the gauge bundle. The correspondence states
that the Bogomolny equations

Di� = 1

2
εi jk Fjk (i, j, k = 1, 2, 3) (18)

on R
3 are equivalent to the anti-self-dual equations

F + ∗4F = 0. (19)

Since the Taub-NUT space is isomorphic to C
2 as a complex manifold, we can use

instantons on C
2 to perform calculations for ’t Hooft operators.

3.3 Localization For ’t Hooft Loops on SSS
4

Let us consider a supersymmetric ’t Hooft loop T (B), specified by the coweight B
and placed along a large circle of S

4, which we refer to as the equator. See Fig. 2.
Since the ’t Hooft operator is a disorder operator, we need to evaluate the path integral
with the boundary conditions (2) which affect the saddle point configurations. We
introduce a convenient set of coordinates, in which the standard round metric on S

4

of radius r is given by

ds2 = r2

(
1 − |	x |2

4r2

)2

(
1 + |	x |2

4r2

)2 dτ 2 +
∑3

i=1 dx2
i(

1 + |	x |2
4r2

)2 . (20)
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Fig. 2 Instanton, monopole
and anti-instanton field
configurations

This is Weyl-equivalent to the metric on S
1 ×H

3, where H
3 is the three-dimensional

hyperbolic space. In terms of the Weyl-rescaled fields on S
1 × H

3, the only Q-
invariant configurations, smooth away from the operator and subject to the boundary
condition (2), are given by

Fjk = − B

2
εi jk

xi

|	x |3 , Reφ = a

1 + |	x |2
4r2

, Imφ = B

2|	x | . (21)

We again assumed that ϑ = 0. Note that a ∈ t is the only unfixed parameter which
we must integrate over. In this background, the usual classical action diverges due to
the infinite mass of the Dirac monopole. Suitable boundary terms [20, 22] cancel the
divergence and make the action finite. The values of φ at the north and south poles
are now shifted. The basic effect of the ’t Hooft loop is to shift the argument a of
Zpole(a) by i B/2r .

The one-loop determinant receives extra contributions. The differential operator
D in V is now modified, and indD receives contributions not only from the north
and south poles, but also from the equator. In the neighborhood of the equator, which
can be approximated by S

1 × R
3, D acts on the vector multiplet as the differential

in the complex defined on R
3:

DBogo : �1(ad E) ⊕ �0(ad E) → �0(ad E) ⊕ �1(ad E). (22)

The arrow involves the dual of the gauge transformation and the linearization of the
Bogomolny equation (18). The instanton/monopole correspondence above can be
extended to the correspondence between the U (1)K -invariant sections of the self-
dual complex (11) and the sections of the Bogomolny complex (22). Thus the index
of the latter can be obtained from that of the former by averaging over the U (1)K

action. On the hypermultiplet, D acts as DDH, the Dirac operator with a coupling
to the Higgs field �. The one-loop contribution from the equator Z eq

1-loop(ia, im f , B)

can then be read off from ind(DBogo) + ind(DDH) by taking into account also the
Fourier modes along the S

1.
There are also extra non-perturbative contributions.Recall that zero-size instantons

and anti-instantons localized at the north and south poles provide non-perturbative
saddle points, even though the configurations are singular. Similarly, infinitesimal
dynamical monopoles, which get attached to the Dirac monopole defining the ’t
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Hooft loop and screen the magnetic charge, also provide non-perturbative saddle
points. The saddle point configurations are invariant under Q, and hence also under
Q2. Thus the saddle points are the fixed points, with respect to a certain group action,
in the moduli space M(B) of solutions of the Bogomolny equations on R

3 with a
Dirac singularity.

The moduli spaceM(B) has components labeled by v ∈ �cr + B with |v| ≤ |B|.
All the fixed points in M(B, v) take the form of the ’t Hooft background (21)
except that B is replaced by v. The classical contribution depends only on v and is
universal among the fixed points inM(B, v). We also need to include the fluctuation
determinant from each fixed point. By factoring out Z eq

1-loop(ia, im f , v), we denote
the sum of such determinants by

Z eq(a; B, v) ≡ Z eq
1-loop(ia, im f , v)Z eq

mono(ia, im f , B, v) ≡
∑

fixed points
in M(B,v)

∏
j

w
c j /2
j . (23)

This equation defines Z eq
mono.

Collecting all the contributions (see Fig. 2), the result for the ’t Hooft loop expec-
tation value on S

4 is

〈T (B)〉S4 =
∫
t

da
∑

v

|Zpole(a + iv/2r)|2Z eq(a; B, v). (24)

For example, the vev of the minimal ’t Hooft loop T ≡ L1,0 in the SU(2) N = 2∗
theory is given by

〈T 〉S4 =
∑

v=±1/2

∫ ∞

−∞
|Zpole(a + iv/2r)|2 cosh

1/2(πr(2a + m)) cosh1/2(πr(2a − m))

cosh(2πra)
.

(25)
This has no bubbling contribution. See [20] for examples with non-trivial bubbling,
as well as examples with dyonic charges.

3.4 Other Geometries

3.4.1 SSS
1 ×b RRR

3

As we saw above, the geometry in the neighborhood of the equatorial S
1 in the

four-sphere is essentially S
1 × R

3. This suggests that the contributions intrinsic to
the loop operators are most naturally formulated on S

1 × R
3 itself rather than on

S
4. The main advantage of S

1 × R
3 is that we can cleanly introduce an analog of

omega deformation parameter [8]. In particular the fundamental definition of Z eq
mono,

the bubbling contributions, is given in this geometry, just as the instanton partition
functions are defined on flat C

2 in the omega background. While there are other
geometries that admit an omega deformation, the vevs of ’t Hooft operators in such
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geometries are expressed in terms of the quantities defined on S
1 × R

3. Another
motivation to consider the omega-deformed product S

1 × R
3 comes from the study

of the IR dynamics in the same set-up ([16], [V:3]).
We wish to evaluate the expectation values of line operators wrapping the S

1 in
S
1×R

3. To preserve SUSY, themetric need not be a direct product;R3 may be fibered
over S

1. If we regard the circle as the time direction, the line operator, an infinitely
heavy particle, modifies the theory and defines a Hilbert spaceHL(R3). The fibration
of R

3 is accounted for by the insertion of the operator e2πib2 J3 , where J3 generates
rotations about the 3-axis. It should be accompanied by e2πib2 I3 for supersymmetry,
where I3 is a generator of the SU(2) R-symmetry group. We will denote such a
space by S

1×b R
3 to indicate the twist. Recall that an omega deformation is a SUSY-

preservingmodification of a theory by (equivariant) parameters (ε1, ε2) for the action
of the U (1) × U (1) isometry [8]. In our case the action U (1) × U (1) acts as the
rotation of the S

1 factor and a spatial rotation in R
3. The rotation commutes with

supersymmetry if the ratio of the rotation angles is ε1/ε2 = b2.We can also introduce
flavor symmetry generators Ff and their dual variables m f , which play the role of
masses. The expectation value of a line operator (more generally the correlation
function of such operators) can be represented as a supersymmetric trace

〈L〉S1×bR
3 = TrHL (R3)(−1)F e−2πRH e2πib2(J3+I3)e−2πim f F f . (26)

This quantity, in particular the one-loop and bubbling contributions ZS
1×bR

3

1-loop and

ZS
1×bR

3

mono , can be computed by localization in the same way as for the equator contri-
butions to 〈L〉S4 . The main difference is that in the current case the isometry can act
on S

1 andR
3 with a variable ratio b2 ∈ R of rotation angles. The result of localization

for the ’t Hooft operator TB is [23]

〈TB〉S1×bR
3 =

∑
v

e2πiv·b ZS
1×bR

3

1-loop (a, m f , b; v)Zmono(a, m f , b; B, v), (27)

where a and b are respectively the vevs of Reφ and Imφ suitably rescaled and
complexified by the gauge field. Since the bubbling contribution on this geometry
is most fundamental, we simply write Zmono ≡ ZS

1×bR
3

mono . Indeed Zmono(B, v) serve
as building blocks for the line operator correlation functions in other geometries. In
particular, it is related to the equator contribution on S

4 as Z eq
mono(a, m f ; B, v) =

Zmono(ra, rm f + 1/2,λ = 1; B, v). The shift in mass appears because the curved
metric affects the periodicity of spinors.

For the minimal ’t Hooft operator in the SU(2) N = 2∗ theory,

〈T 〉S1×bR
3 = (

e2πi b + e−2πi b)
(

sin (2πa + πm) sin (2πa − πm)

sin
(
2πa + π

2 b2
)
sin

(
2πa − π

2 b2
)
)1/2

, (28)

with a, b ∈ C. See [23] for more examples.

http://dx.doi.org/10.1007/978-3-319-18769-3_3
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3.4.2 SSS
1 ×b SSS

3

Given an N = 2 superconformal theory, one can perform radial quantization on R
4

by regarding the radial direction as time. One can compactify this direction, and the
resulting path integral, the partition function of a supersymmetric theory onS

1×S
3, is

known as the superconformal index ([24, 25], [V:9]). One can refine this by including
line operators [26]. Line operators, wrapping the S

1 and inserted at arbitrary points
along a great circle of S

3, preserve some common supersymmetry [26]. In particular,
if one starts with a line operator passing through the origin, by radial quantization
one ends up with a line operator L at the north pole of S

3, and its conjugate L̄ at the
south pole. Let us denote by HL ,L̄(S3) the Hilbert space on S

3 with such insertions.
The index with the line operator insertions can be represented as a supersymmetric
trace

〈L · L̄〉S1×bS
3 = TrHL ,L̄ (S3) (−1)F e2πib2(JL +JR+I3)

∏
f

η
Ff

f . (29)

Here JL and JR are the Cartan isometry generators for S
3, b plays the role of an

omega deformation parameter, and η f are the flavor chemical potentials. Recall also
from (26) that I3 and Ff are the R- and flavor symmetry generators respectively.

This was computed in [27] by a hybrid method, where the one-loop contributions
are computed by counting BPS states on S

3, and the bubbling contributions, which
we expect to be localized to the line operators and given by Zmono above, are put
by hand. The classical contribution vanishes as it should for an index. The results
agree with a prescription proposed in [26], as well as the predictions of S-duality in
N = 4 theory. In addition, the Wilson line operator index for SU(N ) N = 4 theory
in the large N limit was found to agree with the counting of fluctuation modes on
the fundamental string (for the fundamental representation) and on the D5-brane (for
the anti-fundamental representation).

3.4.3 SSS
4
b

Since the CFT side has a variable b parametrizing the central charge, it was immedi-
ately recognized after the discovery of the AGT correspondence that the localization
computations on S

4 should be generalized. This was done in [28] and is reviewed in
[V:6]. Themetric of the new geometry, the ellipsoid S

4
b, is given by ds2 = ∑4

I=0 d X2
I ,

where

X2
0 + b−2(X2

1 + X2
2) + b2(X2

3 + X2
4) = r2. (30)

This geometry has an obvious isometry U (1) × U (1), whose action commutes with
supersymmetry if the ratio of rotation angles is ε1/ε2 = b2. Setting b to 1 gives
back the round S

4 of radius r . The reference [28] formulated N = 2 gauge theory

http://dx.doi.org/10.1007/978-3-319-18769-3_9
http://dx.doi.org/10.1007/978-3-319-18769-3_6
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(with reduced SUSY) on this geometry by introducing a background gauge field for
R-symmetry and other auxiliary fields in the N = 2 supergravity multiplet. The
partition function now takes the form

ZS
4
b
=

∫
da|Zpole(a, m f ; b; τ )|2 (31)

where Zpole(a, m f ; b; τ ) includes the one-loop and instanton contributions, with
omega deformation parameters (ε1, ε2) = (b, b−1). For any fixed value of X0 ∈
(−r, r), there are two circles along which we can place BPS loop operators: the
circle S

1
(b) (X3 = X4 = 0) on the 12-plane, and another circle S

1
(1/b) on the 34-plane.

The computation of theWilson loop vev and S-duality suggests that the ’t Hooft loop
vev is independent of X0. Let us focus on S

1
(b) at X0 = 0. The vev of the Wilson

loop WR was computed in [28]; we just insert TrR e2πibra into (31). We emphasize
that ’t Hooft loops on S

4
b have not been treated yet at the time of writing. We expect

that the essential part of computation is determined by the symmetry generated by
Q2; in particular it generates the U (1) × U (1) isometry with equivariant parameters
(b, b−1). Generalizing (24), we should get

〈TB〉S4b
expected=

∫
t

da
∑

v

Z eq
(
a, m f ; b; B, v

) ∣∣∣Zpole
(

a + ib
v

2r
, m f ; b; τ

)∣∣∣2 , (32)

where Z eq
(
a, m f ; b; B, v

) := ZS
1×bR

3

1-loop+mono(ibra, ibrm f + 1/2; b; B, v) [23]. We
will compare this with the CFT computations in the next section.

3.5 1/8-BPS Wilson Loops in N = 4 Theory and the 2d
Yang-Mills

OnR
4 or S

4,N = 4 super Yang-Mills has a variety of loop operators that preserve at
least one supercharge [11]. The half-BPS Wilson loop given in (1), where we regard
N = 4 theory as an N = 2 theory with a massless adjoint hypermultiplet, is one of
them. There are different classes of line operators to which the localization method
has been applied [29].

These include 1/8-BPS Wilson loops along arbitrary contours on a two-sphere.
One can also place a half-BPS ’t Hooft loop that links the S

2. Certain local operators
can be further inserted on S

2. Localization can be performed using the common
supercharge preserved by the operators. The results are rather different from the
case in the previous subsection; the path integral has been shown to reduce, up to
the assumption that the one-loop determinant is trivial, to another quantum field
theory, namely the bosonic two-dimensional Yang-Mills on the S

2. The correlation
functions of the operators turn out to be captured by the analogous observables
in the two-dimensional theory, as conjectured in [30]. For certain combinations of
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the operators, the theory further reduces to multi-matrix models. The results have
been tested in a variety of ways using AdS/CFT and S-duality. For more details,
see [22, 31, 32] and the references therein.

4 CFT Techniques for Line Operators

In this section we review two-dimensional methods for computing the expectation
values of loop operators on S

4
b. We mostly consider the A1-theories of class S and

the corresponding 2d theory, namely Liouville theory. Generalization to higher rank
gauge theories and the SU(N ) Toda theories will be explained in Sect. 4.3.

4.1 Verlinde Operators

As we saw in Sect. 2.2, line operator charges in an A1-theory are in a one-to-one cor-
respondence with closed curves on the Riemann surface Cg,n . In a conformal field
theory, one can associate to any closed curve γ an operation on conformal blocks,
defined in terms of the monodromy of a degenerate field along γ. This operation,
called the Verlinde operator, was introduced by E. Verlinde and applied to the char-
acters (torus conformal blocks) of rational CFT’s to argue that the modular S-matrix
diagonalizes the coefficients in the fusion rule [33]. Moore and Seiberg proved this
conjecture, known as the Verlinde formula, by expressing the Verlinde operators in
terms of the fusion and braiding moves, which are the basic ingredients for a general
modular transformation of conformal blocks [34, 35]. It turns out that the same con-
struction works even for non-rational CFT’s such as Liouville and Toda theories. See
[V:12] for a more rigorous discussion of the Verlinde operator. As we will elaborate
in Sect. 4.3, there is an alternative definition of a Verlinde operator as a topological
defect, whose definition may be conceptually cleaner.

A degenerate field is a primary for which the Kac determinant vanishes. As such
it has a descendant that is orthogonal to all states and is decoupled [36]. In the
standard parametrization of the Liouville central charge c = 1 + 6Q2 (Q = b +
b−1), primaries Vα have the conformal weight �(α) = α(Q − α). The most basic
degenerate fields are Vα with momenta α = −b/2 and α = −1/2b. In view of the
quantum symmetry b ↔ b−1 of Liouville theory, it suffices to consider V−b/2. The
condition for decoupling can be stated as

(
∂2

z + b2T (z)
)

V−b/2(z) = 0 or equivalently (L2
−1 + b2L−2) · V−b/2 = 0, (33)

where T (z) is the energy-momentum tensor and Ln are the standard Virasoro gen-
erators. Using this, one can show that V−b/2 and Vα obey the fusion rule [36]

[V−b/2][Vα] = [Vα−b/2] + [Vα+b/2]. (34)

http://dx.doi.org/10.1007/978-3-319-18769-3_12
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In particular, the OPE of two degenerate fields V−b/2 contains the vacuum state
V0 = 1.

Since (33) involves only a holomorphic coordinate z, the full correlation function
with V−b/2, as well as the corresponding conformal blocks, obeys the resulting dif-
ferential equation. In particular the conformal blocks transform linearly (i.e., there
is monodromy) when z is transported along a closed curve.

We are now ready to define the Verlinde operator. Let us consider a conformal
block F specified by a trivalent graph � on Cg,n . Pick also a closed curve γ on Cg,n ,
and assume that it has only one connected component. We can define an extended
conformal block F̂(z, z0) by inserting V−b/2(z) and V−b/2(z0) at two nearby points z
and z0, taking their OPE, and projecting onto the identity state. Let�(α) = α(Q−α)

denote the conformal weight of Vα. We can recover the original block F from F̂ by
taking the limit z → z0:

F̂(z, z0) ∼ 1

(z − z0)2�(−b/2)
F . (35)

Apriori F̂(z, z0) is defined only for z close enough to z0.We can analytically continue
F̂ and transport z along a closed curve homotopic to γ, and then take the limit z → z0

F̂(z, z0) ∼ c0
(z − z0)2�(−b/2)

Lγ · F . (36)

We included a universal normalization constant c0, which we will specify. The map
F 
→ Lγ · F is the Verlinde operator.

As an illustration, let us take as F̂ a four-point conformal block with two degen-
erate fields at 0 and z, and two primaries with momentum α at 1 and ∞. The block
can be expressed in terms of the Gauss hypergeometric function 2F1:

F̂(z, 0) =

α −b/20

α −b/2

=
(1 − z)bα

z2Δ(−b/2) 2F1 1 + b2, 2bα; 2 + 2b2; z
)

.

(37)

The solid lines carry a generic momentum, the wiggly ones degenerate states, and
the dashed line represents the identity state. The monodromy around z = 1 can be
computed by a hypergeometric identity and yields a linear combination of (37) and
the block with internal momentum −b. One can check that the coefficient of the
former is

e2πba + e−2πba

eπibQ + e−πibQ
, (38)
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where we defined a by α = Q/2 + ia. We now choose c0 = 1/(eπibQ + e−πibQ).
Then the corresponding Verlinde operator is the multiplication by e2πba + e−2πba ,
which is the trace of a matrix in the fundamental representation of SU(2).

More generally the Verlinde operator Lγ as defined above can be computed very
explicitly by fusion and braiding moves. These moves relate the conformal blocks
assigned to two trivalent graphs that differ by a local modification. A sequence of
such modifications allows us to analytically continue the block as a function of z
along γ. Since our aim is to transport a degenerate field V−b/2(z), we only need to
implement these moves when the modification involves at least one external edge
with V−b/2. In this special case, the fusion move is expressed in terms of a 2 × 2
matrix Fs1s2 (s1, s2 = ±). See (58). Since the fusion move, by definition, locally
modifies a trivalent graph by replacing an s-channel with a t-channel, it is enough to
describe its action on a four-point block:

α4 α1α1 − s1
b
2

α3 −b/2

=
∑

s2=±
Fs1s2

[
α3 −b/2
α4 α1

] ×

α4 α1

α3 −b/2

α3 − s2
b
2

(39)

We also use the braiding move

α1

α2 α3

= eπi(Δ(α1)−Δ(α2)−Δ(α3)) ×
α1

α3 α2

(40)

where �(α) = α(Q − α) is the conformal dimension of the operator Vα and the
two exchanged vertex operators are rotated by 180 ◦. If the rotation is in the other
direction the phase is the opposite.

The curve for a spin 1/2 Wilson operator for a gauge SU(2) factor corresponds
to an internal edge of the trivalent graph [37, 38]. Indeed the action of the Verlinde
operator LW along this curve is calculated by the following sequence of moves.

(41)
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The result is
LW · F = (e2πba + e−2πba)F . (42)

Of course this agrees with (38) divided by c0, and is the trace of an SU(2) matrix.
More generally, a closed curve that traverses at least one pair of pants corresponds

to a line operatorwith non-zeromagnetic charge, and the associatedVerlinde operator
involves a non-trivial shift in Liouville momenta. For example, the Verlinde operator
corresponding to theminimal ’tHooft loop inN = 2∗ theory is givenby the following
moves.

α

αe
→ α′

α

αe
→

α′′α′

α

αe
→

α′

αe

The momentum α is replaced by α′ = α ± b/2. Explicitly we find

[L1,0 · F](α,αe) =
∑
±

H±(α,αe)F(α ± b/2,αe), (43)

where

H±(α,αe) = �(±2b(α − Q/2))�(±2b(α − Q/2) + bQ)

�(±2b(α − Q/2) + bαe)�(±2b(α − Q/2) − bαe + bQ)
. (44)

See [37, 38] for many more examples of Verlinde operators in Liouville theory.

4.2 Comparison with Gauge Theory

Let us now compare the CFT results with the gauge theory results in Sect. 3. We will
write 	α = (α j )

3g−3+n
j=1 .

According the AGT correspondence [9], extended to generic b [28], the S
4
b parti-

tion function (31) of the A1-theory is the Liouville correlation function on Cg,n:

ZS
4
b
=

∫
[dα]C(	α)F(	α)F(	α). (45)

Here C(	α) is an appropriate product of the three-point functions and F(	α) is the
conformal block. A conjecture put forward in [37, 38], again generalized to arbitrary
b, is that the expectation value of a loop operator L( 	p, 	q) on S

4
b is given by the

“expectation value” of the Verlinde operator Lγ :

〈L( 	p, 	q)〉S4b =
∫

[dα]C(	α)F(	α)Lγ · F(	α). (46)
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In order to compare gauge theory and CFT, it is natural to adopt a different
normalization of conformal blocks [20, 23]:

B(	α) := C(	α)1/2F(	α). (47)

This normalization is also natural for the quantization of the Hitchin system and
for the interpretation of the fusion move as an analog of the 6 j-symbols [39, 40].
The new block B is identified with Zpole, which contains not only the instanton
contributions, but also the one-loop contributions from the north pole. We define the
action of a Verlinde operator on B as

(Lγ · B)(	α) := C(	α)1/2(c0Lγ · F)(	α) (48)

by absorbing c0 into Lγ . In terms of B and Lγ , (46) becomes

〈L( 	p, 	q)〉S4 =
∫

[dα] B(	α) Lγ · B(	α). (49)

The Verlinde operator corresponding to a Wilson operator is still multiplicative:

LW · B = (e2πba + e−2πba)B. (50)

For Verlinde operators that involve shifts in 	α, the action is modified. For example,
the Verlinde operator L1,0 on the one-punctured torus computed in (43) and (44)
becomes

L1,0 =
∑
s=±1

ei s
4 b∂a

(∏
±

cosh(2πba ± πbm)

sinh(±2πba + π
2 ib2)

)1/2

ei s
4 b∂a , (51)

where α = Q/2 + ia, αe = Q/2 + im.
For the pureWilson operator, the equality (49) immediately follows from Pestun’s

computation of theWilson loop vev [6] and its generalization [28] reviewed in Sect. 3.
One can also confirm that the gauge theory result (25) for the minimal ’t Hooft loop
inN = 2∗ theory agrees with the CFT result (49) combined with (51) for b = 1. The
expected expression (32) for the ’t Hooft loop on S

4
b is consistent with (49). Many

more tests of the correspondence were made in [23, 38].
The exact calculation of the disorder operators such as ’t Hooft loops, and its

verification by independent methods, is one of the important advances that became
possible by localization and the 2d-4d correspondence.

4.3 Higher Rank Gauge Groups and Toda Theories

The higher rank (N > 2) AN−1-type theories of class S are quiver theories that
involve SU(n) gauge groups (2 ≤ n ≤ N ) as well as non-Lagrangian theories whose
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non-Abelian flavor symmetries are gauged ([41], [V:2]). In a higher rank extension
of the AGT relation [9, 42], these theories correspond to the SU(N ) Toda CFT on a
Riemann surface C . Liouville theory is a special case (N = 2) of Toda theory. The
Toda theory possesses an extended chiral algebra, the WN -algebra.

The complete dictionary between gauge theory line operators and geometric
objects on C has not been developed yet for N > 2. Still, for simple theories
such as SU(N ) N = 2∗ theory and the SU(N ) theory with NF = 2N flavors,
one expects from brane constructions that the dictionary for minimal Wilson and
’t Hooft operators is essentially the same as in the N = 2 case. The WN -algebra
possesses representations with various degeneracy conditions. Using the so-called
semi-degenerate fields Vμ, one can construct Verlinde operators [43–45].

For the Wilson loops in the fundamental and anti-fundamental representations,
the Verlinde operator was calculated in [44] by themonodromy of a degenerate block
given in terms of a generalized hypergeometric function, of which (37) is a special
case. The Verlinde operators for the minimal ’t Hooft loops in N = 2∗ theory and
the conformal SQCD were computed in [45], by determining the relevant fusion
move matrices from the monodromy of generalized hypergeometric functions. The
agreement between the 4d and 2d results reviewed in Sect. 4.2 extends to the higher
rank case.

The authors of [43] expressed the Verlinde operator for the Wilson loop curve in
terms of the fusion andbraidingmoves.General identities that follow from the axioms
of CFT imply that such a Verlinde operator inserts Sμ,α/S0,α into the Toda version of
(45), where μ is the semi-degenerate representation, α is the generic representation
propagating across the curve, and S denotes the modular S-matrix. (See also [46].)
This turns out to be the same as the insertion of a so-called topological defect along
the curve. The latter is a one-dimensional object in CFT, defined by the condition
that the holomorphic and anti-holomorphic generators of the chiral algebra commute
with it. Topological defects were originally constructed in [47] for rational CFT and
in [48] for Liouville theory. Since the Verlinde operators and the topological defects
transform in the same way under the modular groupoid, they must be identical. The
definition of a topological defect is local and does not require introducing conformal
blocks. It is also possible to compute ’t Hooft loops using topological defects in
Liouville theory [49]. Another feature of a higher-rank Toda theory is that Verlinde
operators/topological defects can be defined on networks with trivalent vertices [43,
50]. The identification of the corresponding line operators is an interesting open
problem.

5 Line Operator Algebras and the Hitchin Moduli Space

The previous two sections concerned the expectation values and correlation functions
of line operators. It turns out that the line operators also possess interesting algebraic
structures.

http://dx.doi.org/10.1007/978-3-319-18769-3_2
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5.1 Operator Product Expansion from SUSY Quantum
Mechanics

Let us consider a general N = 2 theory on R × I × C, where I is an interval and
C (not to be confused with C) is a Riemann surface. With a suitable twist along C,
the theory depends on the complex structure of C but not on its Kähler structure
[51, 52]. It is also independent of the gauge coupling and can be analyzed at weak
coupling. A Wilson-’t Hooft operator along R, inserted at a point (s, z) ∈ I × C, is
annihilated by a fermionic charge Q which is a scalar along C. The correlator of two
such operators Li (i = 1, 2) depends holomorphically on the complex coordinates
zi on C, and is (locally) independent of the positions si on I . We impose suitable
boundary conditions at the two ends of I .

At low energies, the theory reduces to an N = 2 quantum mechanics whose
target space is the moduli space of solutions of the Bogomolny equations on I × C,
possibly with Dirac monopole singularities of charge Bi at (si , zi ). The data for
N = 2 quantum mechanics also include a holomorphic vector bundle determined
by the electric charges of Li , as follows from the construction of dyonic operators
in Sect. 2.1. In simple cases the moduli space can be described rather explicitly. The
BPS Hilbert space is the L2 Dolbeault cohomology of the vector bundle.

Let us set z1 = z2 and take s1 �= s2. The moduli space in the limit s1 → s2
develops a singularity. In simple examples, the singularity corresponds to shrinking
exceptional divisors. The L2 cohomology then splits into several parts, one with
elements localized to the smooth part of themoduli space, and the others with support
in the vicinity of a divisor. The latter correspond to smaller magnetic charges, and is
a manifestation of the phenomenon “monopole bubbling” [52].

This method was applied in [52–56] to compute the operator product expansion
(OPE) of line operators in the form

L(B1, w1) · L(B2, w2) = L(B1 + B2, w1 + w2) +
∑

j

(−1)s j L(B j , w j ), (52)

where (−1)s j are signs, and (Bk, wk) ∈ �m × �w in the notation of Sect. 2.1. The
signs arise because we weight the BPS Hilbert space by the fermion number. Various
checks have been made by S-duality.

The results in [56] should be compared with the two-dimensional methods devel-
oped in [50, 57–60] for higher-rank theories. It appears that more work is needed to
have a unified view on the algebra of line operators for higher-rank class S theories.

5.2 Non-commutative Algebra of Line Operators

The set-up R × I × C above can be identified with S
1 ×b R

3 (=S
1 ×b R × R

2)
without omega deformation (b = 0) by the identification (R, I, C) → (S1, R, R

2).
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Recall also that the latter geometry with general b is the effective geometry in the
neighborhood of the loop operator in S

4
b and S

1 ×b S
3. Thus the algebra of line

operators on S
1 ×b R

3 captures the counterparts in other geometries.
The OPE of two operators on S

1 ×b (R×R
2)with b �= 0 depends on the ordering

along the R. Namely, L1 · L2 (for s1 > s2) in general does not equal L2 · L1 (for
s1 < s2). This is because the Poynting vectors in the two cases contribute to the trace
(26) with opposite signs of angular momentum J3 [16]. The OPE takes the form

L(B1, w1) · L(B2, w2) = es12πib2
L(B1 + B2, w1 +w2)+

∑
j

c j (b)L(B j , w j ), (53)

where s12 = 〈B2, w1〉 − 〈B1, w2〉 is a symplectic pairing and the coefficients c j

( j �= 1, 2) depend on b. In fact the localization analysis shows that 〈L1 · L2〉S1×bR
3 =

〈L1〉S1×bR
3 ∗ 〈L2〉S1×bR

3 , where ∗ is the Moyal product:

( f ∗ g)(a, b) ≡ ei b2

4π (∂b·∂a′−∂a ·∂b′ ) f (a, b)g(a′, b′)
∣∣∣
a′=a,b′=b

. (54)

This product is associative but non-commutative, and is associated with the holo-
morphic symplectic structure � = da ∧ db with � = b2/2π [23]. Also, the relation
between S

4
b and R

1 ×b R
3, together with the AGT correspondence, suggests that the

corresponding Verlinde operator L acting on the normalized conformal blocks B in
(47) is the Weyl ordering of 〈L〉S1×bR

3 viewed as a function of a and b [23].

5.3 Quantization of the Hitchin Moduli Space

The various 4d geometries considered in Sect. 3 admit a natural action of U (1) ×
U (1) isometries. In the tubular neighborhood of a supersymmetric loop operator, or
two such operators very close to each other, the local geometry can be effectively
approximated by S

1 ×b R
3, where one U (1) rotates the S

1 and the other acts as
rotations about the 3-axis. Since the algebra of supersymmetric line operators is a
UV property of the theory, it suffices to analyze the theory on S

1 ×b R
3.

For class S theories, line operators are intimately related to functions on the
Hitchin moduli space. One can see this most clearly as follows [16]. Recall that a
class S theory is specified by a simply laced Lie algebra g and a Riemann surface C
([41, 61], [V:2]). For simplicity we assume that there is no puncture. For b = 0 such a
theory on S

1×b R
3 is simply the 6dN = (0, 2) theory on S

1×R
3×C , topologically

twisted along infinitesimally small C . If instead the size of C is much bigger than
the radius of the S

1, a better description is the 5d maximally supersymmetric Yang-
Mills theory on R

3 × C . The condition for preserving supersymmetry is precisely
the Hitchin equations on C [16, 62]:

Fzz̄ = [ϕz, ϕ̄z̄] , Dz̄ϕz = 0 , Dzϕ̄z̄ = 0, (55)

http://dx.doi.org/10.1007/978-3-319-18769-3_2
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where ϕz and its complex conjugate ϕ̄z̄ arise from two real scalars via twisting.
The space of solutions modulo gauge transformations taking values in the simply
connected group G̃ with Lie algebra g is the Hitchin moduli space MH (G̃, C). The
Coulomb moduli space of the 5d theory on R

3 × C is believed to be the quotient
MH (G̃, C)/� by a discrete group �. Here � is a subgroup of the group of flat line
bundles whose structure group is the center C of G̃, and can be identified with the
maximal coisotropic subgroup of H 1(C, C) denoted by the same symbol in Sect. 2.3
[16, 19]. The line operators in the 4d theory arise from surface operators in the 6d
theory wrapping a curve (or a trivalent network) onC . The surface operators descend
toWilson loops for a complex gauge field obtained from (Az,ϕz) in the 5d theory.We
note that the twist along C eliminates dependence of BPS observables on the scale
of the metric on C , and that the 5d theory is IR free. It is then natural to expect [16]
that the correlation functions of BPS line operators on S

1 ×b=0 R
3 are given by the

classical holonomies on C . This expectation was shown to be consistent with wall-
crossing [16] in the 4d IR theories, and was also directly demonstrated [23] for a few
examples by noting that the parameters (a, b) in Sect. 3.4.1 are the complexification
of the Fenchel-Nielsen coordinates on the Hitchin moduli space.

In order to see that the omega deformation S
1 ×b R

3 induces non-commutativity,
one approach is to reduce the theory by the action ofU (1)×U (1) to two dimensions
[63]. This can be done for a topologically twisted theory, and in the limit that the
orbits of the action become small, the reduced 2d theory is the N = (4, 4) sigma
model with target spaceMH (G̃, C)/�. The 4d geometry reduces to a half plane, and
line operators get inserted along the boundary. The presence of a B-field accounts
for non-commutativity [64].

If we reduce S
4
b by the action of U (1) × U (1) above, the neighborhood of the

equator S
3
b of S

4
b reduces to a two-dimensional strip, as considered in [63]. By topo-

logically twisting the 4d theory, one obtains a two-dimensional sigma model. The
line operators along the circle S

1
(b) define the boundary chiral ring Ab on the left

boundary, while those along S
1
(1/b) define another ring A1/b on the right boundary.

The A1-theory on S
4
b realizes the quantization of the Hitchin moduli space with a

Hilbert space; the two rings act on the Hilbert space of conformal blocks. If we
included all the operators labeled by �m × �w/(Weyl group), Ab and A1/b would
not commute because the two circles S

1
(b) and S

1
(1/b) are linked inside the S

3
b in the

constant time slice {X0 = 0} [1], as explained in Sect. 2.3:

L(b)
γ1

· L(1/b)
γ2

= (−1)〈γ1,γ2〉L(1/b)
γ2

· L(b)
γ1

, (56)

where we denote by γ j the corresponding charges ( 	p j , 	q j ), and 〈γ1, γ2〉 is a symplec-
tic product. Indeed as explained in Sect. 2.3, we must restrict to a maximal mutually
local subset of �m ×�w/(Weyl group) such that 〈γ1, γ2〉 is even for any pair of line
operators. Then Ab and A1/b commute with each other, as they should because they
are chiral rings on two separate boundary components. As explained above such a
restriction modifies the target space from MH (C, SU (2)) to its quotient by a finite
group � [16].
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These are manifestations of the relation between the AN−1-gauge theories and
quantization of MH (C, SU (N )) associated with the curve C . See [V:3] for dis-
cussions and references. The connection between the gauge theory and the Hitchin
system can also be used to study line operators from the IR point of view, where
a different class of Darboux coordinates naturally appears ([16], [V:3]). For some
theories the non-commutative algebra of line operators can be computed using IR
quiver quantum mechanics [65]. An important open problem is the comparison of
the algebraic relations obtained in different approaches.
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Appendix: Summary of Relevant Facts

Class S Theories of Type A1

The low-energy theory in the world-volume of two M5-branes is a six-dimensional
N = (0, 2) supersymmetric theory with no known Lagrangian description. An A1-
theory of class S is believed to arise by compactifying the six-dimensional theory on
the Riemann surface Cg,n of genus g with n punctures, with each puncture carrying
a codimension-two defect of the (0, 2) theory ([41, 61], [V:2]). The A1-theories of
class S provide basic examples of 2d-4d correspondence.

A weakly coupled description of such a theory may be encoded in a choice of
decomposition of Cg,n into 3g − 3+ n pairs of pants, and a trivalent graph � drawn
on Cg,n . Each pair of pants contains one vertex, and three edges come out through
distinct boundary components (pants legs). An example is shown in Fig. 1a.We allow
a pants leg to degenerate to a puncture. The graph� has 3g−3+n internal edges and
n external edges ending on the punctures. The field content in this description of the
N = 2 theory can be read off from � by associating to each internal edge an SU(2)
gauge group and to each vertex eight half-hypermultiplets in the trifundamental
representation of the SU(2)3 group associated to the three attached edges. When the
edge is external the SU(2) symmetry corresponds to a flavor symmetry. A change of
pants decomposition and � corresponds to a S-duality transformation.

http://dx.doi.org/10.1007/978-3-319-18769-3_3
http://dx.doi.org/10.1007/978-3-319-18769-3_3
http://dx.doi.org/10.1007/978-3-319-18769-3_2
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Liouville Theory

Liouville field theory is formally defined by the path integral over a single real field
φ weighted by e−S , where

S = 1

4π

∫
C

(
∂μφ∂μφ + 4πμe2bφ + Q Rφ

)
. (57)

Here R is the scalar curvature, and Q = b + 1/b parametrizes the central charge
c = 1 + 6Q2. The “cosmological constant” μ can be absorbed into a shift of φ, and
affects the theory in a verymild way. Liouville theory is a non-rational CFT, meaning
that it contains infinitely many representations of the Virasoro algebra. The spectrum
of representations is continuous, and the conformal dimension � is parametrized by
the Liouville momentum α ∈ Q/2 + iR≥0 as � = α(Q − α). We denote the
corresponding primary field by Vα.

Fusion move coefficients Fs1s2 = Fs1s2

[
α3 −b/2
α4 α1

]
in (39) are explicitly known:

F++ = �(b(2α1 − b))�(b(b − 2α3) + 1)

�(b(α1 − α3 − α4 + b/2) + 1)�(b(α1 − α3 + α4 − b/2))
,

etc.
(58)
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Surface Operators

Sergei Gukov

Abstract We give an introduction and a broad survey of surface operators in 4d
gauge theories, with a particular emphasis on aspects relevant to AGT correspon-
dence. One of the main goals is to highlight the boundary between what we know
and what we don’t know about surface operators. To this end, the survey contains
many open questions and suggests various directions for future research. Although
this article is mostly a review, we did include a number of new results, previously
unpublished.

1 What Is a Surface Operator?

Surface operators (a.k.a. surface defects) in a four-dimensional gauge theory are
operators supported on two-dimensional submanifolds in the space-time manifold
M . They are particular examples of non-local operators in quantumfield theory (QFT)
that play the role of “thermometers” in a sense that, when introduced in the Feynman
path integral, their correlation functions provide us with valuable information about
the physics of a QFT in question (phases, non-perturbative phenomena, etc.).

In general, non-local operators can be classified by dimension (or, equivalently,
codimension) of their support, which in four dimensions clearly can range from zero
to four, so that we have the following types of operators:

• codimension 4: the operators of codimension 4 are the usual local operatorsO(p)

supported at a point p ∈ M . These are themost familiar operators in this list, which
have been extensively studied e.g. in the context of the AdS/CFT correspondence.
Typical examples of local operators can be obtainedby considering gauge-invariant
combinations of the fields in the theory, e.g. O(p) = Tr(φn . . .).
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• codimension 3: line operators. Important examples of such operators are Wilson
and ’t Hooft operators, which are labeled, respectively, by a representation, R, of
the gauge group, G, and by a representation L R of the dual gauge group L G.

• codimension 2: surface operators. These are perhaps least studied among the oper-
ators and defects listed here, and will be precisely our main subject.

• codimension 1: domain walls and boundaries.

After giving the reader a basic idea about different types of non-local operators
classified by (co)dimension of their support, perhaps it is worthmentioning that some
of them—usually called “electric”—can be constructed directly from elementary
fields present in the path integral formulation of the theory. In the above classification,
we already mentioned examples of such operators that are actually local, i.e. any
gauge-invariant combination of elementary fields gives an example. Among non-
local operators, a typical example of “electric” operators is a Wilson line operator
labeled by a representation R of the gauge group G:

WR(K ) = TrR HolK (A) = TrR

(
Pexp

∮
A

)
(1.1)

Another type of operators, called “magnetic” (a.k.a. disorder operators) can not be
defined via (algebraic) combinations of elementary fields and calls for alternative
definitions, which will be considered below and which will be crucial for defining
surface operators.

A surface operator in four-dimensional gauge theory is an operator supported
on a 2-dimensional submanifold D ⊂ M in the space-time manifold M . In other
words, according to the above classification, it is an operator whose dimension and
codimension are both equal to 2:

4 = 2 + 2 (1.2)

This simple equation illustrates how the dimension of the space-time manifold M
splits into the tangent and normal spaces to the support, D, of the surface operator.
Note, that 2 also happens to be the degree of the differential form F , the curvature
of the gauge field A. This basic fact and Eq. (1.2) make surface operators somewhat
special in the context of 4d gauge theory.

Indeed, since the degree of the 2-form F matches the dimension of the tangent as
well as normal space to D ⊂ M , we can either write an integral

exp

(
iη

∫
D

F

)
(1.3)

which defines an electric surface operator analogous to (1.1) in abelian U (1) gauge
theory, or write a relation

F = 2παδD + · · · (1.4)
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where δD is a 2-form delta-function Poincaré dual to D. In (1.3) and (1.4) we used
the basic fact that, respectively, dimension and codimension of the surface operator
(or, to be more precise, its support) equals the degree of the differential form F .
These relations define magnetic (resp. electric) surface operators in abelian 4d gauge
theory—with any amount of supersymmetry, including N = 2 that will be of our
prime interest in this note—and admit a simple generalization to non-abelian theories
that will be discussed shortly.

Already at this stage, however, it is a good idea to pause and ask the following
questions that shall guide us in the exploration of surface defects:

• How can one define surface operators?
• What are they classified by?
• Are there supersymmetric surface operators?
• What are the correlation functions of surface operators?
• What is the OPE algebra of line operators in the presence of a surface operator?
• How do surface operators transform under dualities?

The answer to many of these questions is not known at present, except in some
special cases. One such special case is that of abelian gauge theory with gauge group
G ∼= U (1)r = L, where all of the above questions can be answered:

• By combining the above constructions (1.3) and (1.4) for each U (1) factor in G
one can produce a surface operator that, in general, preserves some part of the
gauge group, L ⊆ G.

• The resulting surface operators are labeled by a discrete choice of L ⊆ G and two
sets of continuous parameters

(α, η) ∈ T × T
∨ (1.5)

where T = G/L and T
∨ is its dual.

• They are compatible with any amount of supersymmetry and define half-BPS
surface operators in SUSY gauge theories.

• Physically, the world-volume D of such a surface operator can be interpreted as a
“visible” Dirac string for a dyon with electric and magnetic charges (η,α) that do
not obey Dirac quantization condition.

• Aremarkable property of abelian 4d gauge theory is that it enjoys electric-magnetic
duality, even in the absence of supersymmetry [1, 2]. This duality exchanges the
role of α and η:

(α, η) → (η,−α) (1.6)

• A novel feature of surface operators is that they are labeled not only by discrete
but also by continuous parameters. A kink-like configuration within the surface
operator that represents an adiabatic change of continuous parameters along a
closed loop in the parameter space (1.5) represents aWilson-’t Hooft line operator.
In other words, line operators correspond to closed loops in the space of continuous
parameters and are labeled by elements of
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π1
({parameters}) (1.7)

Many of these aspects have analogues in non-abelian gauge theory, where essential
features may look similar though dressed with lots of quantum and non-perturbative
effects, which potentially can not only affect the details, but also lead to new physics.
As one might anticipate, such effects are under better control in supersymmet-
ric theories and in situations where surface operators preserve some fraction of
supersymmetry.

1.1 Construction of Surface Operators

Now, once we have presented the basic idea of what a surface operator is, we can
elaborate on various points, starting with the definition. In the standard formulation
of quantum field theory, based on a Feynman path integral, there are several (often,
equivalent) ways to define surface operators [3, 4]:

• as singularities or boundary conditions for the gauge filed Aμ (and, possibly, other
fields) along a surface D in four-dimensional space-time;

• as a coupled 2d-4d systems, namely a 2d theory supported on D with a flavor
symmetry group G that is gauged upon coupling to 4d theory on M .

The latter option, in turn, is often subdivided into two large classes of models where
the 2d theory on D is either (a) gauge theory itself, or (b) non-linear sigma-model.
Clearly, these two classes do not exhaust all possibilities and, yet, there are models
which belong to both. A prominent example of such amodel that has the advantage of
being looked at from several viewpoints is a 2d sigma-modelwith target spaceCP1 =
C

2//U (1) that can be equivalently described as a GLSM with U (1) gauge group. It
defines a surface operator in 4d gauge theory with gauge group G = SU (2) that is a
symmetry ofCP1 (and for whichC

2 is the defining two-dimensional representation).
As for the first way of defining surface operators, we already saw examples in

(1.3) and (1.4) where one did not need to introduce any additional 2d degrees of
freedom. In particular, the disorder operator (1.4) has an obvious analogue in a non-
abelian gauge theorywith a general gauge groupG. Namely, one can define operators
supported on a surface D by requiring the gauge field A (and, possibly, other fields)
to have a prescribed singularity along D:

Hol�(A) ∈ C (1.8)

where � is a small loop that links surface D ⊂ M in the space-time 4-manifold M , and
C is a fixed conjugacy class in the gauge group G (or, possibly, its complexification
GC). The latter option, C ⊂ GC, is realized inN ≥ 2 supersymmetric gauge theory,
where the gauge field A combines with a Higgs field φ in a complex combination
A = A + iφ (see e.g. Fig. 1 for a list of complex conjugacy classes in SO(7) and
Sp(6) gauge theory).
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Fig. 1 Surface operators
shown in red and labeled by
∗ appear to spoil
electric-magnetic duality
between SO(7) and Sp(6)
gauge theories. In order to
restore a nice match, one has
to introduce a larger class of
surface operators
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1.2 Classification of Surface Operators

A careful definition of surface operators essentially gives an answer to the question
about classification of surface operators.

In general, parameters of surface operators can be divided into discrete data and
continuous parameters. In a way, the former is analogous to the choice1 of a represen-
tation that labels line operators, cf. (1.1), while the latter are a novel feature of surface
operators. Moreover, it turns out that understanding these continuous parameters is
the key to addressing other important questions about the properties of surface oper-
ators. For example, the non-commutative structure of line operators supported on a
surface operator—that will be discussed in Sect. 3—is described by the fundamental
group (1.7) of the suitable (sub)space of continuous parameters.

In our previous discussion we already saw examples of both discrete and con-
tinuous parameters. In (1.5), the parameters α and η are examples of continuous
parameters, whereas the choice of the subgroup L ⊆ G, called the Levi subgroup,
preserved by the surface operator along D is a typical example of the discrete para-
meter. Although we introduced these parameters in the simplest (abelian) examples,
they have immediate analogues in a very broad class of surface operators known at
present. The number of continues parameter can vary, usually from 0 to the rank
of the gauge group G (multiplied by N ). The surface operators which do not have
continuous parameters at all are usually called rigid.

The classification problem consists of making a list of discrete and continues
parameters that label surface operators in a given gauge theory. At present, this is
an open problem, which is very far from satisfactory solution. One might hope to

1For example, in N = 2∗ theory with gauge group G = SU (N ) this choice includes the choice
of a partition of N . When G is a classical group of Cartan type B, C , or D, the choice of partition
must satisfy certain conditions, as illustrated in Fig. 1. In particular, the transformation of surface
operators under electric-magnetic duality becomes a rather non-trivial matter in non-abelian gauge
theories.
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makemore progress by imposing additional conditions, e.g. focusing onSUSYgauge
theories and requiring surface operators to preserve some fraction of supersymmetry.
Thus, onemight hope that the general construction of [4] is not too far froma complete
classification of half-BPS surface operators in the maximally supersymmetric gauge
theory in four dimensions. The next natural step is the classification of half-BPS
surface operators in N = 2 gauge theories (that will be of our main interest here),
followed by 1

4 -BPS surface operators and surface operators in N = 1 and N = 0
gauge theories.2

Let us illustrate how this construction and classification of half-BPS surface oper-
ators works in the simplest case, namely in N = 4 super-Yang-Mills, which can be
viewed as a special case ofN = 2 gauge theory with amassless hypermultiplet in the
adjoint representation of the gauge group G. (Its deformation by turning on the mass
parameter m 
= 0 for the adjoint hypermultiplet is usually called N = 2∗ theory.)
Much like in our preliminary discussion around (1.4), we can produce a large class
of half-BPS surface operators which break the gauge group down to a Levi subgroup
L ⊂ G and which also break the global R-symmetry group,

SO(6)R → SO(4) × SO(2) (1.9)

by introducing a singularity for the gauge field that corresponds to the monodromy
(1.8) and for two components of the Higgs field, say ϕ = φ1 + iφ2,

A = αdθ + · · · , (1.10)

ϕ = 1

2

(
β + iγ

)dz

z
+ · · · (1.11)

Here, z = x2 + i x3 = reiθ is a local complex coordinate, normal to the surface
D ⊂ M , and the dots stand for less singular terms. In order to obey the supersymmetry
equations [3], the parameters α, β, and γ must take values in theL-invariant part of t,
the Lie algebra of the maximal torus T of G. Moreover, gauge transformations shift
values of α by elements of the cocharacter lattice, �cochar. Hence, α takes values in
T = t/�cochar.

In addition to the classical (or “geometric”) parameters (α,β, γ), the surface
operators of this type are also labeled by quantum parameters (1.3), the “theta angles”
of the two-dimensional theory on D ⊂ M . It is easy to see that parameters η take
values in the L

∨-invariant part of the maximal torus of the Langlands/GNO dual
group G∨. We can summarize all this by saying that maximally supersymmetric
(N = 4) super-Yang-Mills theory admits a large class of surface operators labeled
by a choice3 of the Levi subgroup L ⊂ G and continuous parameters

(α,β, γ, η) ∈ (
T × t × t × T

∨)
/W (1.12)

2See [5, 6] for discussion of 1
4 -BPS surface operators in 4d N = 2 gauge theories.

3In a theory with gauge group G = SU (N ) this choice is equivalent to a choice of a partition of N .
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invariant under the Weyl group WL of L. Similar surface operators exist in N = 2
supersymmetric gauge theories; the only difference is that they don’t have parameters
β and γ.

These surface operators naturally correspond to the so-called Richardson conju-
gacy classes in the complexified gauge group GC, cf. (1.8) and, in a theory with
gauge group G = SU (N ), cover all half-BPS surface operators which correspond
to singularities with simple poles.

1.3 Surface Operators in 4d N = 2 Gauge Theory

The construction described in the end of the previous section can be easily generalized
to define half-BPS surface operators in N = 2 gauge theories, see e.g. [7–11] and
subsequentwork. As a result, one finds a fairly large class of surface operators labeled
by the Levi subgroup L ⊆ G and continuous parameters (α, η) ∈ (

T × T
∨)

/W ,
which in N = 2 theories conveniently unify into holomorphic combinations

t = η + τα (1.13)

where τ is the coupling (matrix) of the N = 2 gauge theory.
A novel feature of such half-BPS surface operators inN = 2 theories—compared

tomaximally supersymmetricYang-Mills or abelian (N = 0) theorieswithout super-
symmetry discussed above—is that one must be wary of quantum effects, which can
not only renormalize the values of various parameters but also change the nature of a
surface operator altogether. In other words, defined as a singularity for the gauge field
(and, possibly, other fields) as described in Sect. 1.1, a surface operator is defined
at a given energy scale in the 4d theory. It can be a UV theory, or an IR theory, or
some effective theory at intermediate energy scale. An interesting question, then, is
to study what becomes of such surface operator at other energy scales and/or regimes
of parameters.

In order to answer such questions, it is often helpful to use another definition of
surface operators described in Sect. 1.1. Namely, one can define a surface operator
supported on D ⊂ M by introducing additional 2d degrees of freedom along D, with
their own Lagrangian and a global symmetry group G that becomes gauged upon
coupling to 4d degrees of freedom. Of course, if 4d gauge theory in question has
matter fields Q, they too can be coupled to 2d degrees of freedom supported on D in a
gauge invariant manner. As explained in [3, 4], integrating out 2d degrees of freedom
leaves behind a singularity (obviously, supported on D) in the field equations of the
four-dimensional theory:

F23 − Q Q† = 2πδ2(�x)μ1 (1.14)

Dz̄ Q = πδ2(�x)(μ2 + iμ3)
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Table 1 Half-BPS surface operators in SUSY gauge theories can be described as coupled 2d-4d
systems with suitable amount of supersymmetry in 2d theory

4d theory on M 2d theory on D Superconformal symmetry

N = 4 N = (4, 4) P SU (2, 2|4) → P SU (1, 1|2) × P SU (1, 1|2) × U (1)

N = 2 N = (2, 2) SU (2, 2|2) → SU (1, 1|1) × SU (1, 1|1) × U (1)

N = 1 N = (0, 2) SU (2, 2|1) → SU (1, 1|1) × SL(2, R) × U (1)

The last column is only relevant to superconformal theories and describes the symmetry breaking
pattern due to surface operator

where N = 4 SYM corresponds to a special case when Q transforms in the adjoint
representation of the gauge group G.

Which two-dimensional theories can one use in this construction? In general, any
2d theory will do as long as it has a symmetry group G that can be gauged and as
long as it is free of anomalies. In fact, coupling 2d degrees of freedom to 4d gauge
theory even allows one to experiment with anomalous 2d theories where anomalies
can be canceled by the inflow from the four-dimensional bulk [12].

When one aims to build a surface operator that preserves certain symmetries
of the four-dimensional gauge theory, the 2d theory on the defect must be chosen
accordingly, so that it also enjoys the desired symmetries. For instance, if the goal
is to build a half-BPS surface operator in a supersymmetric 4d gauge theory, the 2d
theory on D must have at least half of the supercharges present in 4d, as illustrated
in Table1.

A simple way to achieve this is to take 2d theory to be a sigma-model with
the desired supersymmetry and a target space X that has a symmetry group G. Of
course, depending the on the desired amount of supersymmetry, the space X may
also need to be Kähler or hyper-Kähler for applications toN = 2 andN = 4 gauge
theory, respectively. Large class of such targets that have all the desired properties are
coadjoint orbits (or, via the exponentiation map, conjugacy classes X = C) and their
complexifications. Indeed, they admit Kähler and hyper-Kählermetrics, respectively,
in addition to a G-action that one needs for coupling to 4d degrees of freedom. In
the N = 2 case, let μ1 be the moment map for the action of G on the Kähler target
space X and, similarly, in theN = 4 theory let �μ = (μ1,μ2,μ3) be the hyper-Kähler
moment map for the action of G on X .

Then, integrating out 2d degrees of freedom in these cases leads to surface opera-
tors defined as singularities (1.14), where the holonomy of the (complexified) gauge
field is required to be in a fixed conjugacy class, cf. (1.8). This provides a link between
twoways of defining surface operators described in Sect. 1.1, namely, as singularities
and as coupled 2d-4d systems.

Supersymmetry also often tightly constrains the geometry of the surface D ⊂ M .
A popular example is D = R

2 linearly embedded in M = R
4 which breaks the

Lorentz symmetry as, cf. (1.2):

SO(1, 3) → SO(1, 1)01 × SO(2)23 (1.15)
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where, for concreteness, we chose the surface operator to be oriented along the
(x0, x1) plane. Since surface operators break Lorentz symmetry, they must break at
least part of the supersymmetry and someof the R-symmetries. Thus, inN = 4gauge
theory the R-symmetry breaking pattern is (1.9). Similarly, a generic N = 2 gauge
theory has R-symmetry group SU (2)R × U (1)r , of which U (1)r may be broken by
quantum effects. A half-BPS surface operator further breaks SU (2)R down toU (1)R .

Of particular interest to us, especially in applications to the AGT correspondence
[13] will be half-BPS surface operators in superconformal gauge theories. The con-
formal group in four dimensions is SO(4, 2) ∼ SU (2, 2), and a surface operator
oriented along the (x0, x1) plane breaks it down to a subgroup, cf. (1.15):

SO(2, 2) × U (1)23 ⊂ SO(4, 2) (1.16)

Here, SO(2, 2) ∼= SL(2, R)L× SL(2, R)R is the conformal group in two dimensions
and U (1)23 is the rotation symmetry in the (x2, x3) plane transverse to the surface
operator.

The analogous symmetry breaking patterns in supersymmetric theories are sum-
marized in Table1. In particular, the superconformal symmetry group of 4d N =
2 gauge theory is SU (2, 2|2). Its bosonic subgroup is S[U (2, 2) × U (2)] ∼
SU (2, 2) × SU (2)R × U (1)r , where SU (2, 2) is the familiar conformal group and
SU (2)R ×U (1)r is the R-symmetry group mentioned earlier. Apart from the confor-
mal symmetry (1.16), a half-BPS surface operator also preserves U (1)L × U (1)R ⊂
SU (2)R ×U (1)r part of the R-symmetry group and four (out of eight) supercharges
Q2−, Q̃1

−̇,Q1+, Q̃2
+̇ of the four dimensional theory. The bosonic subgroup SL(2, R)L×

U (1)L combines with the supersymmetriesQ2−, Q̃1
−̇ to form SU (1, 1|1)L. Similarly,

the remaining charges generate SU (1, 1|1)R, so that in total a half-BPS surface oper-
ator inN = 2 superconformal theory preserves SU (1, 1|1)L× SU (1, 1|1)R×U (1)e

subgroup of SU (2, 2|2), where U (1)e is the commutant of the embedding.

1.4 Their Role in AGT Correspondence

Now we are ready to review the role of surface operators in the 2d-4d correspon-
dence [13] that relates Liouville conformal block on a Riemann surface C and the
equivariant instanton partition function [14] of the class S gauge theory [15, 16]
labeled by the Riemann surface C :
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Fig. 2 Upon the
hemispherical stereographic
projection on two copies of
R
4, surface operators on S4

factorize into a two surface
operators, a north and a
south half, glued together at
the equator

S

4

R
4

S
4

N
R

Z inst(a, τ , ε) = ZLiouv(α, q, b)

ε1 : ε2 = b : 1/b (1.17)

exp(2πiτUV) = q

a = α − Q/2

where Q = b+1/b is the standard notation in the literature on Liouville theory. Note,
the left-hand side of this dictionary involves supersymmetric gauge theory in four
dimensions, whereas the right-hand side is about a non-supersymmetric 2d theory.
There is a similar version of this correspondence [17] that relates superconformal
index of the 4d N = 2 gauge theory T [C] labeled by C and a certain deformation
of 2d non-supersymmetric Yang-Mills theory on C which we shall briefly discuss in
Sect. 4.

The conformal block in (1.17) represents a “chiral half” of the full Liouville
correlation function, which has the form of an integral of the absolute value squared
of a conformal block and also admits a nice interpretation in 4d gauge theory as a
partition function [18] on a 4-sphere S4. Indeed, dividing S4 into the northern and
southern hemispheres illustrated in Fig. 2 corresponds to the chiral decomposition
of the Liouville CFT correlation functions into “left-moving” and “right-moving”
chiral halves.

The�-deformation of the EuclideanN = 2 gauge theory on M = R
4, used in the

definition of the instanton partition function, involves the subgroup of the rotation
symmetry

SO(2) × SO(2) ⊂ SO(4) (1.18)

which is precisely the part of the symmetry preserved by a surface operators, cf.
(1.15). Therefore, following [14], one can introduce�-deformation and the partition
function in the presence of a surface operators:

Z inst
k,m(ε1, ε2) =

∮
Mk,m

1 (1.19)

Here, Mk,m is the moduli space of “ramified instantons” on M\D labeled by the
ordinary instanton number k := c2(E) and the monopole number
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m = 1

2π

∫
D

F (“monopole number”) (1.20)

that measures the magnetic charge of the gauge bundle E restricted to D. Then, the
path integral of the �-deformed N = 2 gauge theory in the presence of a surface
operator of Levi type L gives the generating function

Z inst(a,�, ε; L, z) =
∞∑

k=0

∑
m∈�L

�2Nkeiz·m Z inst
k,m(a, ε) (1.21)

where the coefficients Z inst
k,m are precisely the integrals (1.19).

The basic surface operator (with next-to-maximal L = S[U (1) × U (N − 1)]) is
labeled by a single complex parameter z = η + iα that takes values in C . Incorpo-
rating this surface operator in the instanton partition function on R

4
ε1,ε2

or S4
ε1,ε2

on
the Liouville side corresponds to inserting a degenerate primary operator at a point
z ∈ C ,

�2,1(z) = e−(b/2)φ(z) (1.22)

There are several ways to argue for this identification:

• using higher-dimensional constructions (that will be discussed below),
• using the “semi-classical limit” ε1,2 → 0,
• studying line operators within the surface operator,
• using tests based on direct computations of both sides.

Since higher-dimensional constructions and line operators will be discussed in
Sects. 2 and 3, respectively, let us make a few comments on the semi-classical limit
ε1,2 → 0. One of the main results of [14] is that, in this limit, the (logarithm of
the) instanton partition function has a second order pole, whose coefficient is the
Seiberg-Witten prepotential F(ai ). This matches the structure of the Liouville con-
formal block in the limit �

2 = ε1ε2 → 0. The insertion of a degenerate field does
not affect the leading singularity, but leads to a new first-order pole

ZLiouv ∼ exp

(
−F(ai )

�2
+ bW(ai , z)

�
+ · · ·

)
(1.23)

which has an elegant translation to the language of 4d N = 2 gauge theory.
Indeed, using basic properties of the AGT correspondence, one can identify the

function W(ai , z) with the an integral [10]:

W =
∫ p

p∗
λSW (1.24)

along some path on the Seiberg-Witten curve, starting at some reference point p∗
(see Fig. 3). This is precisely how the insertion of a surface operator modifies the
instanton partition function:
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Fig. 3 The effective twisted
superpotential W can be
expressed as an integral over
an open path on the
Seiberg-Witten curve �

Z inst ∼ exp

(
−F(ai )

ε1ε2
+ W(ai , t)

ε1
+ · · ·

)
(1.25)

The leading singularities here come from the “regularized” equivariant volume con-
tributions of the 4d bulk degrees of freedom supported on M = R

4
ε1,ε2

and the 2d
contribution of a surface operator supported on D = R

2
ε1
:

Vol(R4
ε1,ε2

) =
∫

R4
ε1,ε2

1 = 1

ε1ε2
, Vol(R2

ε1
) =

∫
R2

ε1

1 = 1

ε1
(1.26)

Naturally, here we are more interested in the contribution of a surface operator. The
function W(ai , z) that depends on both the Coulomb branch parameters of the 4d
theory as well as continuous parameters of the surface operator has a simple physical
interpretation: it is the effective twisted superpotential of the 2d N = (2, 2) theory
on D. The relation

dW = ηda + αdaD (1.27)

tells us that the IR parameters (α, η) coincide with the points on the Jacobian of the
Seiberg-Witten curve. Indeed, differentiating with respect to a,

∂aW = η + τα (1.28)

and using (1.24) we conclude that the map

ti = ∂W
∂ai

=
∫ p

p∗

∂λ

∂ai
=

∫ p

p∗
ωi (1.29)

is precisely the Abel-Jacobi map from a Riemann surface to its Jacobian.
Note, the shifts of W by nea + nmaD correspond to the monodromies of α and

η. In Sect. 3 we relate them to line operators localized within a surface operator.
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2 Surface Operators from Higher Dimensions

Four-dimensionalN = 2 gauge theories—that are of our prime interest here in view
of the AGT correspondence—can be realized in a variety of higher-dimensional
models, that include 6d (0, 2) theory, type II string theory, and M-theory. Even
though such constructions involve more sophisticated higher-dimensional systems,
theyoften shed light on strongly coupledgaugedynamics andhelp understandvarious
aspects ofN = 2 gauge theories, such as the Seiberg-Witten exact solution [19, 20]
and Nekrasov’s (K-theoretic) instanton partition function [14].

For example, a nice heuristic derivation of theAGT correspondence (1.17) follows
from the (0, 2) superconformal theory in six dimensions, which combines the 2-
manifold C (where the Liouville theory lives) and the 4-manifold M = R

4
ε1,ε2

(where
the 4d N = 2 gauge theory lives):

6d (0, 2) theory
on C × R

4
ε1,ε2↙ ↘

2d Liouville theory 4d N = 2 theory T [C]
of C on R

4
ε1,ε2

Here, the two sides of the AGT correspondence (1.17) are simply the two ways of
reducing the 6d theory, either on a 2-manifold C or on a 4-manifold M = R

4
ε1,ε2

(or
M = S4

ε1,ε2
). In order to preserve supersymmetry, the formermust be accompanied by

a partial topological twist [21], whereas the latter involves deformed supersymmetry
algebra that can be conveniently understood via coupling to the corresponding off-
shell supergravity theory [22].

The 6d (0, 2) theory itself admits surface operators (a.k.a. codimension-4 defects)
which, upon reduction on C , give rise to surface operators in 4dN = 2 theory T [C].
The existence of such surface operators can be deduced by realizing 6d (0, 2) theory
itself on the world-volume of N five-branes supported on C × M × {pt} in 11d
M-theory on T ∗C × M × R

3. And, in order to reduce to a surface operator on M ,
the codimension-4 defect of the six-dimensional theory must be supported at a point
on C . From the viewpoint of the 4d gauge theory, its position z ∈ C becomes a
continuous parameter that labels half-BPS surface operator.

Note, six-dimensional (0, 2) superconformal theory also has codimension-2
defects that can also produce half-BPS surface operators in four dimensions upon
wrapping all of the Riemann surface C [23]. Since codimension-2 defects carry G-
bundles, such surface operators are naturally labeled by points x ∈ BunG(C). These
surface operators are dual to the surface operators that arise from codimension-4
defects [24].
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2.1 Brane Constructions

In addition, there exist various string constructions of surface operators. The one
relevant to our discussion here is based on the brane realization of N = 2 gauge
theory in type IIA string theory [25], where basic surface operators (with next-to-
maximal L) can be described by introducing semi-infinite D2-branes [10]:

NS5 : 012345

D4 : 0123 6

D2 : 01 7 (2.1)

Lifting this configuration to M-theory, we obtain a M5-brane with world-volume
R

4 × � and a M2-brane (ending on the M5-brane) with world-volume R
2 × R+.

Here, D = R
2 is the support of the surface operator in the four-dimensional space-

time M = R
4, and � is the Seiberg-Witten curve of the N = 2 gauge theory

(Fig. 4).
In this construction, the M2-brane is localized along � (the choice of the point

t ∈ � corresponds to the IR parameters of the surface operator) and has a semi-
infinite extent along the direction x7, as described in (2.1).

Similar construction can be used to define UV surface operators in 4d N =
2 superconformal theories obtained from compactifications of 6d (0, 2) fivebrane
theory on a UV Riemann surface C .

(b)
NS5

α

x

x

x

4,5

6

7

(a)
NS5

D4

D2
M

2

M5

Fig. 4 The brane construction ofN = 2 super Yang-Mills theory with a half-BPS surface operator
in type IIA string theory (a) and its M-theory lift (b)
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Fig. 5 U (1) toric geometry
with a single Lagrangian
brane

2.2 Geometric Engineering

Let us consider a four-dimensional N = 2 gauge theory that can be geometrically
engineered via type IIA string “compactification” on a Calabi-Yau space CY3. In
other words, we take the ten-dimensional space-time to be M × CY3, where M is a
4-manifold (whereN = 2 gauge theory lives) andCY3 is a suitable Calabi-Yau space
[26]. We recall that such CY3 is non-compact and toric, and that its toric polygon
coincides with the Newton polygon of the Seiberg-Witten curve �. As in most of
our applications, one can simply take M = R

4.
Aiming to reproduce half-BPS surface operators supported on D = R

2, we need
an extra object that breaks part of the Lorentz symmetry (along M = R

4) and half
of the supersymmetry. It is easy to see that D4-branes supported on supersymmetric
3-cycles in CY3 provide just the right candidates [27]. Indeed, if the world-volume
of a D4-brane is R

2 × L , where

space-time: R
4 × CY3

∪ ∪
D4-brane: R

2 × L
(2.2)

and L is a special Lagrangian submanifold of X , then such a D4-brane preserves
exactly the right set of symmetries and supersymmetries as the half-BPS surface
operators discussed in Sect. 1.3.

A nice feature of this construction is that it is entirely geometric: all the parameters
of a surface operators (discrete and continuous) are encoded in the geometry of L ⊂
CY3. In particular, among the different choices of L we should be able to find those
which correspond to half-BPS surface operators of Levi type L with the continuous
parameters α and η. When L = S[U (1) × U (N − 1)] is the next-to-maximal Levi
subgroup, the corresponding surface operator is geometrically engineered [28] by a
simple Lagrangian submanifold L ∼= S1 × R

2 invariant under the toric symmetry of
CY3 (see Fig. 5).

The space of IR parameters of such a surface operator is the algebraic curve �

which is mirror to the original Calabi-Yau 3-fold CY3 via local mirror symmetry.4

Equivalently, from the viewpoint of CY3 these continuous parameters are open string
moduli of L corrected by world-sheet disk instantons. Just like open string moduli

4In the case of non-compact toric Calabi-Yau 3-folds mirror symmetry (often called “local mirror
symmetry”) relates enumerative invariants of CY3 with complex geometry of a Riemann surface�.
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become parameters of the surface operator in 4d N = 2 gauge theory, the gauge
theory itself is determined by closed string moduli, which are Kähler parameters of
CY3. (Note, a non-compact toric Calabi-Yau 3-fold CY3 is rigid, i.e. has no complex
structure deformations.)

4d gauge theory geometry of CY3

parameters of 4d N = 2 theory closed string moduli
(ai , mi , �) (Kähler moduli Q)

�-background string coupling/graviphoton
ε1 and ε2 q1 = eε1 and q2 = eε2

surface operator Lagrangian submanifold
parameters of surface operator open string moduli

�L H1(L; Z)/torsion

(2.3)

The geometric realization of a half-BPS surface operator (2.2) allows to express
many interesting partition functions in terms enumerative invariants of the pair
(CY3, L). For example, the instanton partition function of the 4d N = 2 gauge
theory relevant to the AGT correspondence (1.17) and its variant with a half-BPS
surface operator (1.21) both find a natural home on the right-hand side of the dictio-
nary (2.3) as so-called “closed” and “open” BPS partition functions, respectively. To
be more precise, the K-theoretic instanton counting on M is captured by counting
refined BPS invariants on CY3:

Z inst
K (�, ai ; q1, q2) = Z closed

BPS (Q; q1, q2). (2.4)

Similarly, in the presence of a surface operator the K-theoretic analogue of (1.21) is
equal to the generating function of open (as well as closed) refined BPS invariants
of the pair (CY3, L):

Z inst
K−theory(�, ai , z; q1, q2) = ZBPS(Q, z; q1, q2). (2.5)

An important special case of this relation is the limit � → 0 (i.e. Q� → 0) and
(q1, q2) → (q, 1). On the gauge theory side, this decouples the four-dimensional
theory from the surface operator, and counts vortices on the surface operator with
respect to two-dimensional rotations (but not R-charge). The resulting partition func-
tion counts only 2d vortices and not 4d instantons:

Zvortex
K−theory(z, ai ; q) = Zopen

BPS (Q� = 0, Qai , z; q, 1). (2.6)

For example, in the case of CY3 shown in Fig. 5 that engineers U (1) gauge theory,
this limit corresponds to a degeneration upon which (CY3, L) is replaced by (C3, L).
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2.3 Surface Operators and BPS States

Upon lift to M-theory, the BPS states in the system (2.2) are represented by mem-
branes, with and without boundary, as illustrated in (2.11) and (2.14) below. They
are completely localized along M and besides their support in CY3 have non-trivial
extent only along the “eleventh” dimension of M-theory, which can be treated as
“time”:

space-time: R × M × CY3

‖ ∪ ∪
M5-brane: R × D × L

‖ ∪
M2-brane: R × {pt} × �g

(2.7)

In the five-dimensional gauge theory on R × M such BPS states (open or closed) all
look like particles. Therefore, one can equivalently talk about BPS particles in 5d
theory with a surface operator supported on R × D. This system is very similar to
our original 2d-4d system and can be related to that via reduction along one of the
dimensions of M . For either system, one can introduce the space of BPS states that
can move in 4d (resp. 5d) bulk as well as the space of BPS states localized on 2d
(resp. 3d) surface operator, Hbulk

BPS and Hsurface
BPS . The space Hbulk

BPS depends only on the
4d/5d gauge theory on M (resp. R× M), whereas the spaceHsurface

BPS depends on both
4d/5d gauge theory as well as the surface operator.

What is the relation betweenHbulk
BPS andHsurface

BPS ? The geometric engineering (2.7)
can teach us an important lesson and help to answer this question. It has been known
for a long time thatHbulk

BPS form an algebra [29], and recently it was further conjectured
[30] that the space ofBPS states localized on a surface operator forms a representation
of this algebra

BPS states on a surface operator : Hsurface
BPS

�
BPS states in 4d/5d gauge theory : Hbulk

BPS

(2.8)

Indeed, the space of BPS states in bulk gauge theory is graded by a charge lat-
tice �, which in the context of geometric engineering can be identified with even
cohomology of local toric Calabi-Yau manifold:

� = H even(CY3; Z). (2.9)

Then, as explained in [29], two BPS states of the bulk theory, B1 and B2, of charge
γ1, γ2 ∈ � can form a bound state, B12 of charge γ1 + γ2, as a sort of “extension” of
B1 and B2,

0 → B2 → B12 → B1 → 0, (2.10)

thereby defining a product on Hbulk
BPS:
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(2.11)

Mathematical candidates for the algebraHbulk
BPS include variants of the Hall algebra

[31], which by definition encodes the structure of the space of extensions (2.10):

[B1] · [B2] =
∑
B12

|0 → B2 → B12 → B1 → 0| [B12] (2.12)

In the present case, the relevant algebras include the motivic Hall algebra [32], the
cohomological Hall algebra [33], and its various ramifications, e.g. cluster algebras.
In Sect. 3.1 we will also discuss algebras of line operators localized on a surface
operator that preserve the same amount of symmetry and supersymmetry as BPS
states discussed here. In fact, line operators can be viewed as infinite mass limits
of BPS states discussed here; this viewpoint explains many similarities between
algebras of BPS states discussed here and algebras of line operators discussed in
Sect. 3.

In the last line of (2.11) we illustrate the process of bound formation in the context
of geometric engineering (2.7), where from the Calabi-Yau viewpoint each BPS
state in the bulk gauge theory is represented by a closed membrane on �g ⊂ CY3.
Similarly, BPS states localized on a surface operator in the system (2.7) correspond
to open membranes with boundary on L:

Hbulk
BPS = Hclosed

BPS (=refined closed BPS states) (2.13)

Hsurface
BPS = Hopen

BPS (=refined open BPS states)

Specifically, the BPS states discussed here are, in fact, the so-called refined BPS
states: besides grading by the charge lattice�, their space has an additionalZ-grading
by the difference between U (1)23 and U (1)R symmetries. From the viewpoint of a
surface operator, this symmetry behaves in many ways as non-R flavor symmetry
and plays an important role in [28, 34]. We will return to the role of this symmetry
in Sect. 4.

By analogy with (2.11), when a bulk BPS state Bbulk
1 ∈ Hbulk

BPS forms a bound state

with a BPS state localized on a surface operator Bsurface
2 ∈ Hsurface

BPS we obtain another
BPS state localized on a surface operator Bsurface

12 ∈ Hsurface
BPS :
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(2.14)

This defines an action of the algebra of bulk BPS states on the space of BPS states
localized on a surface operator. For example, when CY3 is the total space of the
O(−1) ⊕ O(−1) bundle over CP1 and L is defined by a knot in S3 (cf. Sect. 2.4),
the space of BPS states localized on a surface operator can be identified with a
homological knot invariant,

Hsurface
BPS

∼= Hknot (2.15)

and the action (2.8) defines a plethora of anti-commuting operators (i.e. differentials)
acting on this space.

2.4 Relation to 3d-3d Correspondence and Integrable Systems

The fivebrane configuration (2.7) encountered in the previous section has several
interesting interpretations. We already discussed the five-dimensional point of view:
in gauge theory on R × M the fivebrane defines a codimension-2 defect supported
on R × D. Likewise, from the vantage point of CY3 it defines a defect supported
on a special Lagrangian submanifold L and relates BPS state count to enumerative
invariants of the pair (CY3, L).

Here, we briefly comment on another interpretation of the system (2.7), from
the viewpoint of the fivebrane observer on R × D. It leads to yet another, equivalent
description of physics—including the spectrum of BPS objects localized on a surface
operator—in terms of 3dN = 2 theory that in general depends on both L and CY3.
Particular choices of the Calabi-Yau 3-fold that have been extensively studied in
the literature and play an important role in many applications include CY3

∼= C
3,

T ∗L , and the conifold geometry. In particular, since neighborhood of any special
Lagrangian submanifold L looks like the total space of the cotangent bundle, the
choice CY3

∼= T ∗L is especially canonical and depends only on L . In this case, the
effective 3d N = 2 theory on R × D also depends only on the 3-manifold L (and
the total number of M5-branes), so that we get a correspondence

L � T [L], (2.16)

often called 3d-3d correspondence. In our presentation, we tried to emphasize its
similarity to the study of surface operators. Indeed, compactification of the system
(2.7) on a circle, obtained by replacing R with S1, yields the familiar construction
(2.2) of a half-BPS surface operator in 4d gauge theory. Moreover, there are many
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parallels between the space of SUSY vacua in the theory T [L] on a circle and
the space of vacua in the surface operator theory. Both are described by algebraic
equations

MSUSY = {Ai = 0} (2.17)

which play the role of Ward identities for line operators in 3d N = 2 theory [35].
Specifically, for 3d N = 2 theories (2.16) labeled by 3-manifolds, the algebraic
relations Ai = 0 define the moduli space of complex flat connections on L:

MSUSY(T [L]) = Mflat(L) (2.18)

Besides this basic property, there are many other elements of the dictionary between
3-manifolds and 3dN = 2 gauge theories that are described in [35] and summarized
in a companion contribution to this volume [V:11].

As we reviewed in Sect. 1.4, for applications to the AGT correspondence one is
interested in turning on the �-background, so that M = R

4
ε1,ε2

and D = R
2
ε1
. This

has the following effect on the surface operator theory or 3d theory T [L], where
the role of ε1 and ε2 is clearly very different. The �-deformation along the surface
operator controlled by the parameter ε1 has the effect of “quantizing” the system, i.e.
replacing the polynomials Ai by their non-commutative deformation

Ai
ε1 
=0−−−→ Âi (2.19)

so that classical equations Ai = 0 are replaced by the Schrodinger-like equations
Âi Z = 0. In a particular class ofmodels where A(x, y) = 0 realize spectral curves of
integrable systems, deformation by ε1 leads to Baxter equations of the corresponding
integrable systems [6]. For general values of the S1 radius, the integrable systems in
question are trigonometric (also called hyperbolic in some of the literature), whose
prominent examples include the XXZ spin chain and the trigonometric Ruijsenaars
model.

The role of ε2 is very different. Turning on ε2 
= 0 (while keeping ε1 = 0) does
not make Ai non-commutative and leads to the Nekrasov-Shatashvili duality [36]
between N = 2 theory on S1 × D and, in general, a different integrable system.
The relation between the two integrable systems is some sort of spectral duality [6]
which in the present physical setup clearly corresponds to exchanging the role of ε1
and ε2 (or, equivalently, the support of surface operator inside M = R

4
ε1,ε2

). Note, the
two relations with integrable systems invoke rather different aspects, e.g. one goes
via Baxter equation, as was mentioned earlier, while the Nekrasov-Shatashvili cor-
respondence goes via Bethe equations. Conversely, Bethe equations are not manifest
in a duality with ε2 = 0, while Baxter equations are not manifest in a duality with
ε1 = 0.

http://dx.doi.org/10.1007/978-3-319-18769-3_2
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3 Surface Operators and Line Operators

Line operators remain, even at present time, the most familiar and better under-
stood representatives in the list of non-local operators in Sect. 1. They have a wide
range of applications, from supersymmetric gauge theories—where they play an
important role in computations of partition functions a la [18, 37, 38] as discussed
e.g. in a companion contribution to this volume [V:7] —to phase structure of non-
supersymmetric gauge theories, where they serve as excellent order parameters
(cf. Sect. 5). This justifies the study of line operators in their own right.

Here, we will focus on rather specific aspects of line operators that have to do with
how they interact with surface operators. In fact, themain aspect wewish to discuss is
that, in the presence of a surface operator, the OPE algebra of line operators becomes
non-commutative. And, then, we shall give some examples of such non-commutative
structure and explain its simple geometric interpretation. It is useful to keep in mind
the parallel discussion of BPS states confined to a surface operator in Sect. 2.3: in
both cases we deal with one-dimensional world-lines within a surface operator that
lead to a non-commutative algebra. Moreover, the rotation symmetry in two space-
time dimensions transverse to the surface operator gives rise to a deformation of the
algebra by the parameter q = e�.

First, let us consider a four-dimensional gauge theory on a space-timemanifold M
without surface operators. (As usual, for concreteness, one can keep in mind a simple
example of M = R

4.) It is well known that line operators form an algebra—very
similar to the algebra of BPS states discussed earlier—with the product

L1 × L2 ∼
∑

i

Vi Li (3.1)

given by the operator product expansion (OPE). In many familiar examples, that
include topological and supersymmetric theories, this product is commutative simply
because one can continuously exchange positions of line operators by moving them
around each other in four dimensional space.

One important aspect of the product (3.1) is that its coefficients Vi are, in fact,
vector spaces. This aspect is not yet about surface operators per se, but does become
more pronounced in the presence of surface operators, as we explain shortly. In many
applications, Vi ’s can be replaced by numbers, especially in situations where only
dimensions vi = dim Vi are relevant to a particular application in question. This
happens, for instance, when line operators are compactified (either effectively or
explicitly) on a circle. Then, the OPE product of the resulting “loop operators” has
the form of a typical OPE of local operators

O1 × O2 ∼
∑

i

viOi (3.2)

with numerical coefficients vi .

http://dx.doi.org/10.1007/978-3-319-18769-3_7
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Fig. 6 Line operators
confined to a surface
operator do not commute

LL1 2

Now, let us imagine that line operators L1 and L2 are stuck to a two-dimensional
subspace D ⊂ M , as illustrate in Fig. 6. For example, as in our previous discussion,
turning on the �-background in directions transverse to D inside M will not allow
line operators to move off from the surface D without breaking the SO(2)23 rotation
symmetry of the transverse space (∼=R

2
�
). What this means is the following: The

rotation symmetry SO(2)23 makes Vi ’s into graded vector spaces, graded by the
angular momentum h23. And, therefore, the operator product expansion (3.1) has a
“refinement” with graded vector spaces as coefficients, as long as line operators are
confined within the surface D. In other words, the product (3.1) is commutative, but
its graded version in general is not.

A more dramatic way to make the product (3.1) non-commutative is to introduce
surface operators supported on D ⊂ M . This has several important ramifications.
First, it breaks the 4d Poincaré invariance and, therefore, does not allow to naively
move around line operators L1 and L2 in three transverse directions. Moreover, in
the presence of a surface operator there can exist additional line operators which are
supported on the surface operator and can not move into the rest of the 4-manifold
M . Since such line operators are confined to the surface D ⊂ M , they can not be
passed through each other without encountering a singularity. As a result, the OPE
algebra of such line operators in general is non-commutative.

For example, in applications to AGT correspondence, one can consider line oper-
ators localized within a surface operator in 4d N = 2 theory T [C, g], where C is
a Riemann surface (possibly with punctures). From the six-dimensional perspective
reviewed in Sect. 2, these are line operators localized on the 2-dimensional world-
sheet p×D×{0}of a surface operator (=codimension-4defect) in the six-dimensional
(2, 0) theory on C × D × R

2
�
, where

M = D × R
2
�

(3.3)

is the 4d space-time of the N = 2 gauge theory. It was argued in [3] that such line
operators generate an affine Hecke algebra Haff of type g with parameter q = e�.
Note that this affine Hecke algebra is “local onC .” In other words, it does not depend
on the details of the Riemann surface C away from the point p. This observation will
be useful to us in what follows since for the purpose of deriving the non-commutative
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algebra associated with the presence of surface operator (=ramification at p ∈ C)
one can take C to be something simple, e.g. a torus or a disk. For instance, in the
basic case G = SU (2) the affine Hecke algebra is generated by T , X , and X−1,
which obey the relations (see e.g. [39]):

(T + 1)(T − q) = 0

T X−1 − XT = (1 − q)X (3.4)

X X−1 = X−1X = 1

The affine Hecke algebra has two close cousins: the affine Weyl group Waff ,
which corresponds to the limit q → 1, and its “categorification”, the affine braid
group Baff . They too have a simple physical interpretation which, moreover, offers
an intuitive explanation of the non-commutative product of line operators within
a surface operator. It follows from a compactification of our 2d-4d system on a
circle, which can be achieved e.g. by taking D = S1 × R. From the six-dimensional
perspective, reduction on S1 gives the maximally supersymmetric Yang-Mills, and a
further reduction onC yields a 3dN = 4 sigma-model with target spaceMH (G, C),
the moduli space of Higgs bundles on C (also known as the ‘Hitchin moduli space’)
[40, 41]. The presence of a surface operator introduces ramification at p ∈ C , so
that in the present case MH is the moduli space of ramified Higgs bundles [3].

In the sigma-model onMH , line operators correspond to functors acting on branes
(or, boundary conditions). According to (1.7), these functors form a group which
often can be identified with the fundamental group of the (sub)space of parameters of
a surface operator. Indeed, kinks on a surface operators are nothing but line operators.
In order to see this, consider a kink corresponding to an (adiabatic) variation of the
continuous parameters of a surface operator. On the one hand, it traverses a closed
loop in the space of parameters. On the other hand, it is localized in one dimension
(=“space”) and extended along the other dimension (=“time”) on D, just like line
operators illustrated in Fig. 6.

Line operators preserving certain symmetry and supersymmetry correspond to
varying particular parameters (that don’t break these symmetries). For example, in
applications to the geometric Langlands correspondence [42], the Galois side corre-
sponds to the B-model of MH . Branes and boundary conditions that preserve this
particular supersymmetry are described by the derived category of coherent sheaves
on MH and their charges are described by the K-theory. Therefore, depending on
whether one is interested in D-branes (as objects of the derived category of coherent
sheaves on MH ) or in D-brane charges (classified by K-theory) one finds the fol-
lowing groups acting the on the K-theory/derived category of the moduli space of
ramified Higgs bundles5:

5For simplicity, here we consider only one ramification point p ∈ C . For the case of ramification
at several points, one finds several group actions, one for each ramification point.
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Claim [3]: affine Weyl group Waff acts on K (MH )

affine Hecke algebra Haff acts on K C
∗
(MH )

affine braid group Baff acts on Db(MH )

This result can be regarded as a categorification of the affine Hecke algebra, which in
the local version ofMH was also obtained by Bezrukavnikov [43] using a “noncom-
mutative counterpart” of the Springer resolution Ñ → N . The action of Waff and
Baff in the first and the last part of this claim can be understood as the monodromy
action in the space of parameters of the surface operator (1.7).

For example, let us illustrate how this group action arises at the level of D-brane
charges, which are classified by K (MH ). The space of D-brane charges K (MH )

varies as the fiber of a flat bundle over the space of parameters away from the points
where MH develops singularities. Since for the purposes of this question we are
interested only in the geometry of MH , we can ignore the “quantum” parameter
η. Hence, the relevant parameters are (α,β, γ), which take values in the space, cf.
(1.12):

(α,β, γ) ∈ (
t × t × t

)
/Waff (3.5)

Moreover, MH becomes singular precisely for those values of (α,β, γ) which are
fixed by some element ofWaff . The set of such points is at least of codimension three
in t3 (since it takes three separate conditions to be satisfied for (α,β, γ) to be fixed
by some element of Waff ). Therefore, the space of regular values of (α,β, γ) ∈ t3

where MH is non-singular is connected and simply-connected, and since Waff acts
freely on this space, the fundamental group of the quotient is

π1
({(α,β, γ)}reg) = Waff (3.6)

This is the group that acts on D-brane charges, that is on K (MH ). In a similar
way, one can deduce the action of the affine braid group Baff on Db(MH ) as the
fundamental group of the Kähler moduli space. Indeed, for the B-model in complex
structure J the complexified Kähler parameters are η+iβ, and from (1.12) one finds:

π1
({(β, η)}reg) = Baff (3.7)

The same results can be derived more directly in the description of surface operators
as 2d-4d coupled systems.

3.1 Line Operators and Hecke Algebras

In Sect. 1 we explained that a surface operator in 4d gauge theory can be equivalently
defined as a 2d sigma-model supported on D and with a target space X that has G-
action. Here we use this description of surface operators to explain more directly how
algebra of line operators localized on a surface operator leads to the affine Hecke
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algebra Haff or its close cousins Waff and Baff . This particular approach offers an
alternative derivation of the results in [3] and to the best of our knowledge has not
appeared in the literature. For concreteness and in order to keep things simple we
shall restrict our attention to gauge theory with G = SU (2).

When the surface operator is described by a sigma-model with target space X ,
line operators (which act on branes on X ) in turn can be viewed as branes on X × X .
In the language of derived category, this means that an objectZ ∈ Db(X × X) called
the “kernel” defines an exact functor �Z : Db(X) → Db(X), such that

�Z(E) := p2∗(Z ⊗ p∗
1(E)) (3.8)

where p1 (resp. p2) is the projection to the first (resp. the second) factor.6 We can
define a product of two line operators A and B by bringing them together (as in
Fig. 6) which leads to a composition of the transforms �A and �B. This gives a new
transform

�B�A ∼= �A ◦ �A (3.9)

with the kernel
B � A = p13∗(p∗

12A ⊗ p∗
23B) (3.10)

where pi j are the obvious projection maps from X × X × X to X × X . In particular,
the diagonal 	X : X ↪→ X × X gives the identity. The product (3.10) is associative

C � (B � A) ∼= (C � B) � A (3.11)

We are interested in the case where X = N is the nilpotent cone for SL(2, C) or
its Springer resolution Ñ . This is a special case of a larger class of examples where
X is (the minimal resolution) of the Kleinian quotient singularity C

2/� for a finite
subgroup � ⊂ SL(2, C). In this case, there is an equivalence (the derived McKay
correspondence):

Db(X) ∼= Db
�(C2) (3.12)

The category Db
�(C2) has simple objects

Si = ρi ⊗ Op (3.13)

whereρi are irreducible representations of� andOp is the skyscraper sheaf supported
at the origin of C

2. These are precisely the fractional branes on C
2/�. In the derived

category of the minimal resolution X , the simple objects (3.13) are represented
by [44],

6To be more precise, the pull-back p∗
1 is left-derived and the push-forward p2∗ is right-derived.



248 S. Gukov

S0 = O∑
Ci (3.14)

Si = OCi (−1)[1]

where Ci are the exceptional divisors.
An important feature of fractional branes is that, in the derived category of X , they

are described by spherical objects and, therefore, according to the results of Seidel
and Thomas [45], define twist functors Ti which generate the braid group Br(�).
As the name suggests, an object E ∈ Db(X) is called d-spherical if Ext∗(E, E) is
isomorphic to H∗(Sd , C) for some d > 0,

Exti (E, E) =
{

C if i = 0 or d

0 otherwise
(3.15)

A spherical B-brane defines a twist functor TE ∈ Auteq(Db(X)) which, for any
F ∈ Db(X), fits into exact triangle

Hom∗(E,F) ⊗ E −→ F −→ TE(F) (3.16)

where the first map is evaluation. The functor TE can be written as a Fourier-Mukai
transform (3.8) associated with the brane Z on X × X ,

Z = Cone
(
E∨ � E → O	X

)
(3.17)

where E∨ denotes the dual complex, 	X is the diagonal in X × X , and E � F =
p∗
2E ⊗ p∗

1F is the exterior tensor product. At the level of cohomology, the twist
functor TE acts as,

x �→ x + (v(E) · x) v(E)

where v(E) = ch(E)
√

T d(X) ∈ H∗(X) is the D-brane charge (the Mukai vector)
of E . Summarizing, “spherical branes” (spherical objects in Db(X)) lead to autoe-
quivalences of Db(X). What is the group they generate?

Given an An chain of spherical objects, that is a collection of spherical objects
E1, . . . , En which satisfy the condition

∑
k

dim Extk(Ei , E j )

{
1 |i − j | = 1

0 |i − j | > 1
(3.18)

with some minor technical assumptions Seidel and Thomas [45] showed that the
corresponding twist functors TEi generate an action of the braid group Brn+1 on
Db(X). More generally, a chain of spherical objects associated with � gives rise to
the action of the braid group Br(�) onB-branes. The generators of Br(�) correspond
to vertices of the affine Dynkin diagram of � and obey the relations
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Ti Tj Ti = Tj Ti Tj (3.19)

if the vertices i and j are connected by an edge, and Ti Tj = Tj Ti otherwise. In
particular, in the situation we are interested in, namely when X is the minimal res-
olution quotient singularity C

2/�, the braid group Br(�) is the essential part of
the group of autoequivalences of X . Specifically, the group of autoequivalences of
X is [46, 47]:

Auteq(Db(X)) = Z × (Aut(�) � Br(�)) (3.20)

where the first factor is generated by the shift functor [1], the group Aut(�) is the
group of symmetries of the affine Dynkin diagram associated to �, and Br(�) is the
braid considered above.

In particular, for � = Z2 which is relevant to the SU (2) gauge theory, the group
Auteq(Db(X)) is generated by the functors T± and R (and the shift functor, of
course). Indeed, in the present case there are two spherical objects (two fractional
branes (3.13)) which lead to the twist functors T+ and T−. These two are exchanged
by R, the generator of Aut(�) ∼= Z2, so that in total we obtain the group generated
by T± and R which obey the relations

T+ R = RT− (3.21)

R2 = 1

Notice, for � = Z2 there are no braid relations of the form (3.19). Nevertheless, we
still shall refer to the resulting group as the affine braid group of type Â1.

To make contact with our earlier discussion, we can identify the autoequivalences
that generate the braid group with the monodromies in the category of B-branes
around special points in the Kähler moduli space of X . In the case at hand, there
are three such points: (i) the large volume limit, (i i) the “conifold limit” (where
X = C

2/Z2 with zero B-field), and (i i i) the orbifold limit (where X = C
2/Z2

with B = 1
2 ). A monodromy around each of these points defines a Fourier-Mukai

transform associated with a certain brane on X × X . Following [48], we denote these
branes, respectively, as L, K, and G. The corresponding transforms will be denoted
by �L, �K, and �G .

As we shall see below, the monodromy �L has infinite order and, therefore, is
related to the generator X in (3.4) or the generator T± in (3.21). On the other hand,
while the monodromies around the conifold point and the orbifold point are both of
order 2 at the level of K-theory charges, in the derived category we have

�2
G = 1, �2

K 
= 1 (3.22)

Therefore, �G which comes from the quantum Z2 symmetry of C
2/Z2 should be

identified with the generator R in (3.21) which has a similar origin. The monodromy
around the orbifold point is a composition of the monodromies around the conifold
point and the large radius limit. Therefore, from (3.9) we get
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G = K � L (3.23)

Now, let us describe explicitly L, K, and G, and verify (3.22). The monodromy
around the large radius limit is always associated with

L = O	X (1) (3.24)

SinceD-branewrappedon the exceptional divisorC becomesmassless at the conifold
point, the monodromy around the conifold point is the twist functor TE associated
with the spherical object E = OC . Therefore,

K = (
O∨

C � OC → O	X

)
(3.25)

and using (3.23) we get

G = (
OC(−1)∨ � OC → O	X (1)

)
(3.26)

Now, to verify (3.22) we can either compute how the functors �L, �K, and �G act
on simple branes, such as the 0-brane Op, or to study their composition using (3.9).
In particular, computing �n

K(Op) we can verify that �K is indeed of infinite order.
Similarly, we find

G � G = O	X

which is the first relation in (3.22).
The transforms �L, �K, and �G are autoequivalences of Db(X). In fact, they

generate the entire group (3.21) which we found earlier by looking at the fractional
branes on C

2/Z2. This can be shown by explicitly matching the generators. First,
one of the generators T± is the twist functor associated with the spherical object
E = OC . Without loss of generality, we assume that this generator is T+. According
to (3.25), it should be identified with the monodromy around the conifold point,�K.
Similarly, the order-2 generator R should be identified with the monodromy around
the orbifold point �G which is also of order 2 and has a similar origin (both come
from the quantum Z2 symmetry of C

2/Z2). Summarizing,

�K ←→ T −1
+ (3.27)

�G ←→ R

The remaining generator can be expressed as a product of these two, cf. (3.21) and
(3.23). In particular, we conclude that the monodromy around the large volume limit
�L should be identified with T+ R = RT−.

As we mentioned earlier, at the level of K-theory charges the OPE algebra of line
operators that we are considering should reduce to the affine Weyl group Wa f f or
affine Hecke algebra Ha f f . From (3.24)–(3.26) it is easy to see that the monodromies
�L, �K, and �G act on the charges of D0, D2, and D4 branes as
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ML =
⎛
⎝1 0 0
1 1 0
1
2 1 1

⎞
⎠ , MK =

⎛
⎝1 0 0
0 −1 0
0 0 1

⎞
⎠ , MG =

⎛
⎝ 1 0 0

−1 −1 0
1
2 1 1

⎞
⎠ (3.28)

It is easy to verify that
MG = MKML (3.29)

in agreement with (3.23), and that both MK and MG are of order two:

M2
K = 1, M2

G = 1 (3.30)

Via the identification (3.27) this implies that, in addition to the relation R2 = 1which
is already included in (3.21), we need to impose an extra condition T 2+ = 1 which,
of course, implies T 2− = 1 as well:

T 2
i = 1 (3.31)

Therefore, at the level of K-theory charges, the group generated by the monodromies
is a semidirect product of Z2 (generated by T+) and Z (generated by T+ R). This is
precisely the affine Weyl group Waff for G = SU (2).

More generally, instead of the quadratic relations (3.31),we can consider imposing
extra relations

T 2
i = (q1/2 − q−1/2)Ti + 1 (3.32)

on all the generators Ti ∈ Baff which correspond to the simple reflections inWaff. As
we discussed earlier, this should lead to the affine Hecke algebra Haff. In the example
we are considering, we require T+ (and T−) to obey (3.32). Furthermore, motivated
by the specialization to the affine Weyl group considered above, we introduce the
notations

T = q1/2T+ (3.33)

X = T+ R = RT−

Then, the quadratic constraint (3.32) on T+ implies a similar constraint on T ,

T 2 = (q − 1)T + q (3.34)

which is precisely one of the relations in the affine Hecke algebra (3.4). Moreover,
from (3.32) we obtain

T −1
± = T± + (q−1/2 − q1/2)

which can be used to find

X−1 = T− R + (q−1/2 − q1/2)R (3.35)
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Now, using (3.21), (3.33), and (3.35), it is easy to check that X and T satisfy

T X−1 − XT = (1 − q)X (3.36)

which is precisely the second relation in the affine Hecke algebra (3.4). Therefore,
we verified that imposing extra relations (3.32) on the generators of the affine braid
group leads to the affine Hecke algebra.

Conversely, starting with (3.32) and using the identifications (3.33), it easy to
verify that T± and R obey (3.21) with the additional relations (3.32). For example,

R = q−1/2T X + (q−1/2 − q1/2)X (3.37)

so that after a little algebra we get R2 = 1.
Finally,we conclude our discussion of line operators confined to a surface operator

with one more deformation of the Hecke algebra that depends on two deformation
parameters, q and t . This deformation is called the double affine Hecke algebra, or
DAHA for short. It already made an appearance in the physical literature [49, 50] on
refined BPS states and knot invariants that we mentioned in Sect. 2.3 and cries out
for an interpretation either as algebra of BPS states or algebra of line operators.

In fact, a convenient starting point for defining DAHA (which for simplicity we
explain in the basic case of G = SU (2)) is the orbifold fundamental group of the
elliptic curve quotient, cf. (3.7):

πorb
1 ({E\0}/Z2) ∼= πorb

1 ({E × E\diag}/Z2) (3.38)

generated by X , Y , and T with the relations

T XT = X−1

T Y −1T = Y (3.39)

Y 1X−1Y XT 2 = 1

Deforming the last relation to Y 1X−1Y XT 2 = t−1/2 gives the so-called elliptic braid
group Bell. Furthermore, imposing by now familiar quadratic Hecke relation as in
(3.4), (3.32), or (3.34) with another deformation parameter q leads to the complete
definition of DAHA:

DAHA = C[Bell]/((T − q1/2)(T + q−1/2)) (3.40)

as a quotient of the group algebra of Bell. The operator Y in this algebra is called the
difference Dunkl operator.

Comparing the fundamental group (3.38)–(1.7), (1.5) and (1.12), we see that it
classifies monodromies of the parameters (α, η) ∈ [(T × T

∨)/W]reg of a surface
operator in SU (2) gauge theory. In other words, it classifies line operators that corre-
spond to monodromies of the parametersα and η, which are precisely the parameters
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of the basic surface operator in N = 2 gauge theory, cf. Sect. 1.3. Of course, such
surface operators can be also embedded inN = 4 gauge theory (with the same gauge
group) where (3.38)means classifyingmonodromies ofα and η, while keeping β and
γ fixed. This is similar to what we encountered in (3.7), except that now the relevant
problem involves the B-model of MH in complex structure I , where β + iγ is the
complex structure parameter, while η + iα represents the Kähler modulus (stability
condition). See [3] for more details.

Therefore, we expect that the algebra of line operators confined to a surface
operator in N = 2 gauge theory (or in N = 4 gauge theory with supersymmetry of
type BI ) is intimately related, if not equal, to the double affineHecke algebra. It would
be interesting to tackle a similar physical realization of quantum affine algebras and
Kac-Moody algebras acting on the equivariant K-theory of certain quiver varieties
constructed by Nakajima [51, 52]. It is natural to expect that this action can be lifted
to an action of the fundamental group of the Kähler moduli space on the derived
category of the quiver variety involved in this construction.

4 Superconformal Index

The AGT correspondence has a sister that, on the one hand, is simpler, but in another
respect is more mysterious. It relates another observable (partition function) of the
4dN = 2 theory T [C] to the partition function of a non-supersymmetric 2d theory
on the Riemann surface C ,

I4d(T [C]) = Z2d(C) (4.1)

where I4d(T [C]) is a superconformal index of the theory T [C], defined as

I4d(p, q, t) = Tr(−1)Fph23−rqh01−r tR+r . (4.2)

For a theory with weakly coupled Lagrangian description the index is computed by
a matrix integral:

I4d(p, q, t) =
∫

[dU ] exp
( ∞∑

n=1

∑
j

1

n
f ( j)4d (pn, qn, tn)χR j (U

n, V n)

)
. (4.3)

Here,U andV denote elements of gauge andflavor groups, respectively. The invariant
Haar measure integral

∫ [dU ] imposes the Gauss law over the Fock space. The sum
is over differentN = 2 supermultiplets appearing in the Lagrangian, with R j being
the representation of the j th multiplet under gauge and flavor group, and χR j the
character of R j . The function f ( j) is called single letter index. It is equal to either
f vector4d or f half-hyper4d depending on whether the j th multiplet isN = 2 vector multiplet
or half-hypermultiplet [17]:
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Table 2 Embedding of 2d N = (2, 2) algebra into 4d N = 2

4d 2d

{Q1−, (Q1−)†} = E + h01 + h23 − (2R + r) Broken

{Q1+, (Q1+)†} = E + h01 − h23 − (2R + r) {G+
L , (G+

L )†} = 2HL − JL
{Q2−, (Q2−)†} = E − h01 + h23 + (2R − r) {G+

R , (G+
R )†} = 2HR + JR

{Q2+, (Q2+)†} = E + h01 − h23 + (2R − r) Broken

{Q̃1
−̇, (Q̃1

−̇)†} = E − h01 − h23 − (2R − r) {G−
R , (G−

R )†} = 2HR − JR

{Q̃1
+̇, (Q̃1

+̇)†} = E + h01 + h23 − (2R − r) Broken

{Q̃2
−̇, (Q̃2

−̇)†} = E − h01 − h23 + (2R + r) Broken

{Q̃2
+̇, (Q̃2

+̇)†} = E + h01 + h23 + (2R + r) {G−
L , (G−

L )†} = 2HL + JL

f vector4d = −p − q − t + 2pq + pq/t

(1 − p)(1 − q)
f half-hyper4d =

√
t − pq/

√
t

(1 − p)(1 − q)
. (4.4)

Now let us incorporate half-BPS surface operators supported on (x0, x1) plane in
a four-dimensional space-time. As discussed in Sect. 1.3 (cf. Table1), such surface
operators preserve SU (1, 1|1)L × SU (1, 1|1)R × U (1)e subgroup of the supercon-
formal symmetry group, which is basically the superconformal symmetry of a 2d
N = (2, 2) theory on the (x0, x1) plane. The standard bosonic generators of this
two-dimensional superconformal algebra can be easily identified via embedding into
4d N = 2 algebra summarized in Table2:

HL,R = 1

2
(E ± h01) , (4.5)

JL,R = h23 + (2R ± r)

Luckily, the unbroken part of the symmetry and supersymmetry suffices for defining
the superconformal index (4.2) even in the presence of surface operators, with all
of the fugacities. Moreover, since half-BPS surface operators can be defined via
coupling to 2d N = (2, 2) theory supported on D, it gives a very convenient way
of computing the index: one simply needs to add the contribution of 2d degrees
of freedom, namely the so-called “flavored elliptic genus” of the 2d N = (2, 2)
system [6]:

I2d(a j ; q, t) = Tr(−1)F q HL+ 1
2 JL t−JL

∏
j

a
f j

j . (4.6)

As the ordinary elliptic genus [53], it depend on the “Jacobi variables” q and t that
can be identifiedwith the 4d fugacities (p, q, t) bymeans of the embedding in Table2:

q = q, t = pq/t, e = p2/t. (4.7)
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Much like the basic building blocks of 4d N = 2 theories are vector- and hyper-
multiplets whose contributions to the index are summarized in (4.4), the basic build-
ing blocks of 2d N = (2, 2) theories are chiral and vector multiplets. Their contri-
butions to the flavored elliptic genus, respectively, are

I2d chiral = θ(at; q)

θ(a; q)
(4.8)

and

IU (n)
2dvector =

( (q; q)2

θ(t; q)

)n ∏
i 
= j

(
(1 − ai

a j
)
θ(tai/a j ; q)

θ(ai/a j ; q)

)−1
(4.9)

where θ(x; q) := (x; q)(q/x; q) and (x; q) = ∏∞
i=0(1−xqi ). With these basic tools

one can easily compute the index of any 2d-4d coupled system that, as in Sect. 1,
describes a fairly generic surface operator. One interesting question, that still remains
open since the pioneering work [17], is the identification of 2d TQFTwhose partition
function on a Riemann surface C matches the index in (4.1).

For further discussion of the superconformal index with surface operators see e.g.
[54–58].

5 Surface Operators as Order Parameters

Finally, going back to the origins, we wish to explain that surface operators can
serve as order parameters, in particular, they can distinguish the IR phases of 4d
gauge theories. Typically, the information captured by surface operators is roughly
equivalent to the spectrum of line operators in the low-energy theory [59].

Extending standard arguments that show how ’t Hooft and Wilson line operators
exhibit “area law” in Higgs and confining phases, respectively, one can quickly con-
clude that surface operators can exhibit a “volume law” in phases that admit domain
walls which can end on surface operators. Not much is known about such peculiar
domain walls, and exploring this direction would be an excellent research topic. In
particular, by studying the spectra of domain walls in 4d supersymmetric gauge the-
ories one might hope to learn whether surface operators can detect interesting phases
not distinguished by Wilson and ’t Hooft operators, cf. [60].

Here,we present a slightly differentmechanism for the “volume law” behavior due
to thermal effects. Thismaterial is new and has not appeared in the previous literature.
It will also give us an excellent opportunity to illustrate how surface operators are
described in the holographic dual of gauge theory, which is a convenient way to study
thermal physics. As usual, in order to study 4d gauge theory at finite temperature
T , we compactify the time direction on a circle of circumference β = 2π/T and
study the theory on a space-time manifold M = S1

β × S3 with thermal (anti-periodic)
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boundary conditions on fermions. Following [61], we can study this system using a
holographic dual description, which is available for many 4d gauge theories.

For concreteness, let us focus on N = 2 gauge theory with a massless adjoint
hypermultiplet or, equivalently,N = 4 super-Yang-Mills, for which the gravity dual
is especially simple and well studied [62–64]. After all, at finite temperature the
precise details of the spectrum and interactions are expected to be less important and
we expect that results should apply to more general N = 2 gauge theories. Surface
operators in this theory are well understood and have a simple description in the
holographic dual [3, 4, 65].

Specifically, the holographic dual of N = 4 super-Yang-Mills is type IIB string
theory on X5 × S5, where the 5-manifold X5 is either a “thermal AdS”

X5
∼= B4 × S1 (low temperature)

in the low temperature phase, or the Schwarzschild black hole on AdS space

X5
∼= S3 × B2 (high temperature)

in the high temperature phase [61]. Note, that both of these manifolds are bounded
by S1 × S3, which is precisely M where the boundary gauge theory lives.

Now,we can introduce surface operators supported on D ⊂ M . For generic values
of the continuous parameters α and η, in the holographic dual such surface operators
are represented by D3-branes with four-dimensional world-volume

Q × S1 ⊂ X5 × S5

where Q ⊂ X5 is a volume-minimizing 3-dimensional submanifold bounded by
D = ∂Q, and S1 is a great circle in the S5. Indeed, notice that such a D3-brane probe
breaks the isometry/superconformal symmetry precisely as described in Table1.

There are two qualitatively different choices of D, which correspond to spatial
surface operators with D ⊂ S3 or temporal surface operators with D = γ × S1

β , for
some closed path γ ⊂ S3. In the low temperature confining phase we have

〈Otemporal〉 = 0

since S1
β is not contractible in X5, and so there is nominimal submanifold Q bounded

by D. On the other hand, spatial surface operators exhibit the area law in this phase:

〈Ospatial〉 ∼ e−Area(D)

As we decrease the value of β, the theory undergoes a phase transition to a
deconfining phase [61] with X5

∼= S3× B2, which does admit minimal submanifolds
Q ∼= γ× B2 bounded by temporal surface operators. Hence, in this high temperature
phase we have
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Fig. 7 A surface operator of
the boundary theory is
represented by a D3-brane in
the holographic dual

Q

boundaryhorizon

Σ

〈Otemporal〉 
= 0 (5.1)

and the spatial surface operators exhibit a “volume law”:

〈Ospatial〉 ∼ e−Volume(D) (5.2)

since in the AdS black hole geometry the warp factor is bounded from below, as
illustrated in Fig. 7. Since finite temperature breaks supersymmetry explicitly and
makes scalars and fermions massive, this behavior is expected to be generic, in
particular, present in pure gauge theory or more general N = 2 gauge theories.

Also note, that in the limitβ→0 the theory reduces to a pure (non-supersymmetric)
three-dimensional Yang-Mills theory, which is expected to exhibit confinement and
a mass gap. Since under this reduction a temporal surface operator turns into a line
operator (supported on γ) in the 3d gauge theory, the behavior (5.1) is certainly
expected.
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The Superconformal Index of Theories
of Class S
Leonardo Rastelli and Shlomo S. Razamat

Abstract We review different aspects of the superconformal index ofN = 2 super-
conformal theories of class S. In particular we discuss the relation of the index of
classS theories to topological QFTs and integrablemodels, and review how this rela-
tion can be harnessed to completely determine the index. This is part of a combined
review on 2d-4d relations, edited by J. Teschner.

Keywords Conformal field theory · Supersymmetry · Class S · Topological field
theory

1 Introduction

This volume surveys the 4d/2d relations that arise in the study of class S, the set of
four-dimensionalN = 2 supersymmetric field theories obtained by compactification
of a six-dimensional (2, 0) theory on a punctured Riemann surface C.1 There is
an extensive 4d/2d dictionary relating several protected observables of the four-
dimensional theory T [C] to observables of certain natural theories defined on the
associated surface C. In this chapter we focus on the superconformal index of T [C]

1See [V:2] in this volume for a general introduction to class S.
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and on its re-interpretation as a topological quantum field theory (TQFT) living
on C. We shall restrict our discussion to the subset of theories that enjoy conformal
invariance, for which the general index is well-defined.

The superconformal index, or index for short, encodes some detailed information
about the protected spectrum of a superconformal field theory. By construction, it
is invariant under exactly marginal deformations of the SCFT. A basic item of the
4d/2d dictionary equates the conformalmanifold of T [C] (i.e., the space of its exactly
marginal gauge couplings) with the complex structure moduli of C. We should then
expect on general grounds that the index is computed by a TQFT living on C. A
concrete description of this TQFT as an explicit 2d theory is only available for
certain specializations of the general index, in particular the so-called Schur index
corresponds toq-deformed two-dimensionalYang-Mills theory in the zero-area limit.
The TQFT viewpoint is however very fruitful also in the general case. As different
TQFT correlators compute the indices of different 4d theories, we are led to study
consistency conditions in theory space. This turns out to be a very effective strategy,
which allows for the complete determination of the general index for theories of
class S.

2 The Superconformal Index

Let us introduce the main character of this review. To a superconformal field theory
in d space-time dimensions one can associate its superconformal index [1, 2], which
is nothing but the Witten index of the theory in radial quantization, refined to keep
track of a maximal set of commuting conserved quantum numbers {Ci },

I(μi ) = Tr (−1)F
∏

i

μ
Ci
i e−βδ , δ := {Q ,Q†}. (2.1)

The trace is taken over the Hilbert space of the radially quantized theory on S
d−1,

F is the fermion number and Q a chosen Poincaré supercharge. In a given theory,
the index is thus a function of the “fugacities” {μi } that couple to the conserved
charges {Ci }. The conserved charges are chosen as to commute with each other, with
the chosen supercharge Q and with its conjugate (conformal) supercharge Q†. If
the theory is unitary, which we shall always assume, then δ := {Q ,Q†} � 0. By a
familiar argument, the index counts (with signs) cohomology classes of Q. Indeed
the Hilbert space decomposes into the subspace of states with δ = 0, which are
automatically killed by both Q and Q† (these are the “harmonic representatives” of
the cohomology classes), and the subspace with δ �= 0, where one can choose a
basis such that all states belong to a pair (ψ,Qψ), with Q†ψ = 0. The paired states
have the same charges {Ci } but opposite statistics, so their combined contribution
to the trace vanishes. Since the trace in (2.1) receives contributions only from the
harmonic representatives, the index is in fact independent of β. The states with δ = 0
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are annihilated by some of the supercharges and as such they belong to shortened
representation of the superconformal algebra.

As the energy (conformal dimension) of a generic long multiplet of the supercon-
formal algebra is lowered to the unitarity bound, the long multiplet breaks up into a
direct sum of short multiplets, containing states with δ = 0, but by continuity their
total contribution to the index is zero. So even within the δ = 0 subspace there may
be fermion/boson cancellations between states with the same charges {Ci }, associ-
ated to recombinations of short multiplets into long ones. In fact one can equivalently
characterize the index as the most general invariant that counts short multiplets, up to
the equivalence relation setting to zero combinations of short multiplets that have the
right quantum numbers to recombine into long ones [2]. It follows, at least formally,
that the index is invariant under changes of continuous parameters of the theory pre-
serving superconformal invariance, i.e. it is constant over the conformal manifold of
the theory. As the exactly marginal couplings are varied, long multiplets may split
into short ones or short multiplets recombine into long ones, but this is immaterial
for the index. In other contexts, the formal independence of supersymmetric indices
on continuous parameters is known to fail, leading to rich wall-crossing phenomena.
In our case, however, we are dealing with theories that have a discrete spectrum of
states, and such that the subspaces with fixed values of the quantum numbers {Ci }
are finite-dimensional, so the formal argument is completely rigorous. The index is
thus truly invariant under exactly marginal deformations preserving the full super-
conformal algebra of the model.

The superconformal index can be defined for theories in various spacetime dimen-
sions, and with different amounts of superconformal symmetry. We have given the
“Hamiltonian” definition in terms of a trace formula, but the index has an equivalent
“Lagrangian” interpretation as a supersymmetric partition function onS

d−1×S
1,with

twisted boundary conditions around the “temporal” S
1 to incorporate the dependence

on the various fugacities. See [V:6] in this volume for more details on this approach.
Viewed as a partition function, the index makes sense for non-conformal theories,
though in those cases it should be more properly referred to as a supersymmetric
index. One can show that such a partition function is independent on the RG scale,
so that the superconformal index of a theory realized as the IR fixed point of some
RG flow can be often computed using the non-conformal UV starting point of the
flow [1, 3, 4]. Examples where this is a very useful strategy include N = 1 gauge
theories in four dimensions, and susy gauge theories in three and two dimensions.
The partition function interpretation is also useful to obtain the index in the presence
of various BPS defects, by the techniques of supersymmetric localization. In this
review we will mostly stick to the trace interpretation of the index, and localization
will not play a role. We will determine the index of the N = 2 SCFTs of class S
(even in the presence of certain BPS defects) by a more abstract algebraic viewpoint.
A direct localization approach would not be an option since these theories do not
generally admit a known Lagrangian description.

We now specialize to the case of interest, namelyN = 2 superconformal theories
in four dimensions. The N = 2 superconformal index depends on three supercon-
formal fugacities (p, q, t) and on any number of fugacities {ai } associated to flavor

http://dx.doi.org/10.1007/978-3-319-18769-3_6
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symmetries (which, by definition, commute with the superconformal algebra),2

I(p, q, t; ai ) := Tr(−1)F

(
t

pq

)r

p j12 q j34 t R
∏

i

a fi

i e−βδ2−̇ , (2.2)

where
2δ2−̇ := {Q̃2−̇, Q̃†

2−̇} = E − 2 j2 − 2R + r . (2.3)

We will always assume that

|p| < 1 , |q| < 1 , |t | < 1 , |ai | = 1 ,

∣∣∣ p q

t

∣∣∣ < 1. (2.4)

Our notations are as follows. We denote by E the conformal hamiltonian (dilatation
generator), by j1 and j2 the Cartan generators of of the SU(2)1 × SU(2)2 isometry
group of S

3, by R and r the Cartan generators of the SU(2)R × U (1)r the super-
conformal R-symmetry. We have also defined j12 := j2 − j1 and j34 := j2 + j1,
which generate rotations in two orthogonal planes (thinking of S

3 as embedded in
R

4). Finally { fi } are the flavor symmetry generators. In our conventions, we label
the supercharges as

QI
α Q̃Iα̇ Sα

I S̃Iα̇, (2.5)

where α = ± is an SU(2)1 index, α̇ = ±̇ an SU(2)2 index and I = 1, 2 an SU(2)R

index. We have S = Q† and S̃ = Q̃†. Writing an explicit trace formula for the index
involves a choice of supercharge. With no loss of generality, we chose in (2.2) to
count cohomology classes of Q̃2−̇, which has quantum numbers E = R = −r = 1

2 ,
( j1, j2) = (0,− 1

2 ). The states that to this index are the “harmonic representatives”
satisfy δ ≡ δ2−̇ = 0. All other choices of a Poincaré supercharge would give an
equivalent index [2].

In Appendix 2 we review the shortening conditions of the N = 2 superconfor-
mal algebra and the recombination rules of short multiplets into long ones. Explicit
formulae for the index of individual short multiplets are given in Appendix B of [6]
and will not be repeated here. It is important to keep in mind that knowledge of the
index alone is in general not sufficient to completely reconstruct the spectrum of
short representations of a given theory. Schematically, the issue is the following [8].
Suppose that two short multiplets, S1 and S2, can recombine to form a long multiplet
L1,

S1 ⊕ S2 = L1, (2.6)

2In this review we follow the conventions of [5]. In comparing with [6, 7], the only significant
change is j1 → − j1 in the definitions of j12 and j34. The conventions for labeling supercharges
are also slightly different in these two sets of references, but notations aside all of them choose
“same” supercharge to define the general index (i.e. the supercharge with quantum numbers E =
R = −r = 1

2 , ( j1, j2) = (0,− 1
2 ).
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and similarly that S2 can recombine with a third short multiplet S3 to give another
long multiplet L2,

S2 ⊕ S3 = L2. (2.7)

By construction, the index evaluates to zero on long multiplets, so

I(S1) = −I(S2) = I(S3). (2.8)

The index cannot distinguish between the two multiplets S1 and S3. (Note that S2 is
distinguished from S1 ∼ S3 by the overall sign.) A detailed discussion of equivalence
classes of multiplets that have the same N = 2 superconformal index can be found
in Sect. 5.2 of [8].

2.1 Free Field Combinatorics

The simplest examples of conformal quantumfield theories are free theories. In a free
theory, the general local operator is obtained from normal ordering of the elementary
fields, and its quantum numbers including the conformal dimension take their clas-
sical “engineering” values. By the state/operator map, local operators inserted at the
origin are in one-to-one correspondence with states. Enumerating states reduces then
to the simple combinatorial problem of enumerating all possible composite “words”
(or “multi-particles”) built out of the elementary “letters” (or “single-particles”),
which are the elementary fields and their space-time derivatives.

For our purposes, we are interested in enumerating states with δ = 0, and since in
a free theory the value of δ of a composite operator is simply the sum of the values of
δ of its elementary letters, wemay from the start restrict to the letters with δ = 0. The
letters contributing the index of the free N = 2 hypermultiplet and of the free vector
multiplet N = 2 are shown in Table1. One immediately finds the following single-
particle indices (i.e., the indices computed over the set of single-particle states):

Is.p.

H = t
1
2

1 − p q
t

(1 − p)(1 − q)
(a + a−1) χ�(x), (2.9)

Is.p.

V = − q

1 − q
− p

1 − p
+

p q
t − t

(1 − p)(1 − q)
. (2.10)

Here a is a U (1) fugacity under which the two half-hypers have opposite charges
and χ�(x) is the character of the representation of some global symmetry. The multi
particle-indices are given by the plethystic exponentials of the single-particle ones.
In particular the index of a free hypermultiplet in a bi-fundamental representation of
SU(n) × SU(n), which will play an important role in our discussion, is given by
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Table 1 Contributions to the index from single-particle (letter) operators of the two basic N = 2
multiplets: the vector multiplet and the hypermultiplet

Letters E j1 j2 R r I(p, q, t)

φ 1 0 0 0 −1 pq/t

λ1± 3
2 ± 1

2 0 1
2 − 1

2 −p, −q

λ̄2+̇ 3
2 0 1

2
1
2

1
2 −t

F̄+̇+̇ 2 0 1 0 0 pq

∂−+̇λ1+ +
∂++̇λ1− = 0

5
2 0 1

2
1
2 − 1

2 pq

Q 1 0 0 1
2 0

√
t

ψ̄+̇ 3
2 0 1

2 0 − 1
2 −pq/

√
t

∂±+̇ 1 ± 1
2

1
2 0 0 p, q

We denote by (φ, φ̄, λI
α , λ̄I α̇ , Fαβ, F̄α̇β̇ ) the components of the adjointN = 2 vector multiplet, by

(Q, Q̄, ψα, ψ̄α̇) the components of theN = 1 chiral multiplet, and by ∂αα̇ the spacetime derivatives

IH (a, x, y; p, q, t) = PE

⎡
⎣t

1
2

1 − p q
t

(1 − p)(1 − q)
(a + a−1)

(
n∑

i=1

xi

)⎛
⎝ n∑

j=1

y j

⎞
⎠

⎤
⎦

=
n∏

i, j=1

�(t
1
2 a xi y j ; p, q) �(t

1
2 (a xi y j )

−1; p, q). (2.11)

We collect the definitions of the plethystic exponenential, elliptic Gamma function,
and related objects in Appendix 1.

Conversely, one of the hallmarks of a free theory is the fact that the plethystic log
of the index is simple. For example, formally analogous to the counting problem in
free field theory is the counting problem for large N theories. It often happens that
the conformal gauge theories come in families labeled by the rank of the gauge group
and in the limit of large rank they have a dual description in terms of supergravity in
AdS backgrounds [2]. In such cases the operators counted by the index are dual to
free supergravity modes. Thus, taking the limit of large N the index reduces again to
a simple plethystic exponential of the towers of single trace operators dual to the
finite number of free supergravity fields.

2.2 Gauging

After we dealt with free theories, let us turn to interacting models. In general, we
should not expect any simple combinatorial description of the set of local operators
in an interacting theory. An important exception are the superconformal field theories
that admit a Lagrangian description, which by definition are continuously connected
to freefield theories by turning off the gauge couplings. Since the index is independent
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of exactly marginal deformations, wemay as well compute it in the free limit (setting
to zero all gauge couplings). Theonly effect of the gauging is theGauss lawconstraint,
i.e. the projection onto gauge invariant states.

More generally, starting from a SCFT T , we can obtain a new superconformal
field theory TG by gauging a subgroup G of the flavor symmetry of T , provided of
course that the gauge coupling beta functions vanish. If the index of T is known, we
find the index of TG by multiplying by the index of a vector multiplet in the adjoint
representation of G, and then integrating over G with the invariant Haar measure to
enforce the projecting over gauge singlets,

I[TG] =
∫

[dz]G IV (z) I[T ](z). (2.12)

In fact we can treat the index IT (z) as a “black-box”: it might be the index of
a collection of free hypermultiplets, the index of a gauge theory, or the index of
an interacting theory for which we do not know a useful description in terms of a
Lagrangian. Whenever a flavor symmetry is gauged in four dimensions, the effect on
the index is simply to introduce the vector multiplet and project onto gauge-invariant
states.3

In all known examples, conformal manifolds of N = 2 SCFTs are parametrized
by gauge couplings. It is tempting to speculate that the most general N = 2 SCFT is
obtained by gauging a set of elementary building blocks, each of which is an isolated
theorywith no exactlymarginal couplings. The simplest of such an elementary build-
ing block is the free hypermultiplet theory. We will encounter below several other
examples of building blocks with no known Lagrangian description. Determining the
index of such isolated theories would appear to be very challenging. Fortunately, for
theories of class S we can leverage the additional structure of generalized S-duality.
Let us turn to a concrete illustration.

3 Interlude: Duality and the Index of E6 SCFT

In this section, we will sketch how to determine the index of a canonical example of
isolated non-Lagrangian theory, the SCFT with E6 flavor symmetry of Minahan and
Nemeschansky [9]. The general idea is to couple the isolated theory to some extra
stuff, and use dualities to relate the larger theory to a more tractable model.

For the case at hand, we exploit Argyres-Seiberg duality [10]. On one side of
the duality we have an SU(3) SYM with N f = 6 flavors. On the other side of the
duality we have a hypermultiplet in the fundamental representation of gauged SU(2)
under which also a strongly-coupled theory with E6 flavor symmetry [9] is charged.

3In other dimensions the situation can be slightly more involved. For example, in three dimensions
a gauge theory contains local monopole operators which have to be introduced into the index
computations along with the vector multiplets.
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The SU(2) gauged group is a sub-group of the E6 flavor symmetry. By the rules of
computing the index reviewed in the previous section, this duality can be written as
equality of two integrals [11],

∫
[dz]G=SU(3) ISU(3)

V (z) I(1)
H (z, y, x, a, b) = (3.1)

∫
[dz]G=SU(2) ISU(2)

V (z) I(2)
H (z, (a/b)3/2) IE6(x, y, {z(ab)−

1
2 , z−1(ab)−

1
2 }).

Here IE6(x1, x2, x3) is the unknown index of the theory with E6 flavor symmetry
with {xi } being the fugacities for SU(3)3 maximal subgroup of E6; y and x are SU(3)
fugacities and a, b are twoU (1) fugacities. The quantity I(1)

H (z, y, x, a, b) represents
the index of a collection of hypermultiplets in the bi-fundamental representation of
flavor of SU(3)2 and the gauged SU(3), whereas I(2)

H (z, (a/b)3/2) is a fundamental
hypermultiplet of SU(2). The powers of U (1) fugacities a and b on the right-hand
side of the equality are a consequence of the details of the map of global symmetries
between the two duality frames. In general from equalities of integrals of this sort one
cannot extract the precise values of the integrands. However, in this particular case
the integral on the right-hand side is invertible and just by assuming the Argyres-
Seiberg duality as manifested for the index in (3.1) one can explicitly deduce the
index IE6 . Schematically, this inversion procedure takes the following form

IE6 (x, y, {c(ab)−
1
2 , c−1(ab)−

1
2 }) =

∮
C

d h

2π ih

(h, c)

∫
[dz]G=SU(3) ISU(3)

V (z) I(1)
H (z, y, x, a, b).

Here C is a well-defined integration contour and
 is a specific inversion kernel [12].
Physically, the fact that the integral is invertible means that the extra hyper-multiplet
introduced while gauging a sub-group of the E6 symmetry adds enough structure so
that the information about the protected spectrum of the E6 theory itself, a-priori lost
after gauging, can be still recovered.

We thus are able to completely fix the superconformal index of a theory not
connected to a free theory by a continuous parameter. The trick is to enlarge the
theory with the bigger theory admitting an alternative description which can be
connected to a free theory by continuous deformation. This basic idea will be behind
the general procedure we will outline in the next sections.

Before turning to the general discussion of class S theories, let us illustrate in this
concrete example what kind of physical information can be extracted from the index.
Explicitly computing (3.2) one obtains to the lowest orders in the series expansion
in fugacities

IE6 = P E[Iu] P E[IH (χ78)] P E[IT ] ×(
1 − (t2 − p q t + t2(p + q)) (χ650 + 1) − p3q3

t2
+ p q t χ78 + · · ·

)
.

(3.2)
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In the first line we have the protected multiplets appearing in this theory: Iu is the
Coulomb branch multiplet (the dual of u = T rφ3 of the SU(3) gauge theory), IH is
the Higgs branch generator, X , in 78 of the E6 global symmetry, and IT is the stress-
energy multiplet. The quantum numbers of these multiplets are different from free
fields. Moreover, on the second line we have constraints appearing removing some
of the contributions generated on the first line: these constraints are the footprint of
the non-trivial dynamics of the theory. For example one constraint encoded here is

[X ⊗ X ]650⊕1 = 0, (3.3)

which is the Joseph’s relation discussed in [13].

4 Derivation of the Index for Theories of Class S

In this section we will determine the index for all theories of class S. Broadly speak-
ing,wewill be using the samekind of physical input as in the previous section, namely
knowledge of the index for Lagrangian theories and the assumption of generalized
S-duality. We will however exploit these ingredients in a different way, arriving at a
particularly elegant and uniform description of the general index. For simplicity we
focus on the basic index (the S

3 × S
1 partition function), and to the simplest class S

theories of type A. Several generalizations will be mentioned in Sect. 6.

4.1 Class S

A lightening review of class S is in order. A 4d superconformal field theory of class
S is specified the following data4:

• A choice of the type g of the (2, 0) theory, where g = {An, Dn, E6, E7, E8} is a
simply-laced Lie algebra.

• A choice of UV curve Cg,s , where g indicates the genus and s the number of
punctures of the curve. Only the complex structure moduli of Cg,s matter. They are
interpreted as the exactly marginal gauge couplings of the 4d SCFT.

• Each puncture corresponds to a codimension two defect of the (2, 0) theory. We
restrict to the so-called regular defects,which are labelled by a choice of embedding
� : su(2) → g. The centralizer h ⊂ g of the image of� in g is the flavor symmetry
associated to the defect. All in all, the theory enjoys at least5 the flavor symmetry
algebra ⊕s

i=1hi .

4These are the “basic” theories. A larger list is obtained by allowing for “irregular” punctures.
Further possibilities arise by decorating the UV curve with outer automorphisms twist lines , see
[14].
5In some special cases, the symmetry is enhanced by additional generators which are not naturally
assigned to any puncture.
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We will label the corresponding 4d SCFT as T [g; Cg,s; {�i }]. We summarize the
basics of class S dictionary in (Table2).

From now on we will restrict our discussion to class S theories of type A,
g = An−1. The embeddings � : su(2) → su(n) are in one-to-one correspondence
with partitions of n, [n�1

1 , n�2
2 , . . . n�k

k ] with ∑
i �i ni = n and ni > ni+1, which indi-

cate how the fundamental representation of su(n) decomposes under representations
of �(su(2)). For the trivial embedding � = 0, associated to the partition [1n], we
have maximal flavor symmetry h = su(n) and the corresponding puncture is called
maximal. The other extreme case case is the principal embedding, associated to the
partition [n], leading to h = 0 (no flavor symmetry), so the puncture is effectively
deleted. Another important case is the subregular embedding, associated to the par-
tition [n − 1, 1], which leads to h = u(1), the smallest non-trivial flavor symmetry,
so the corresponding puncture is called a minimal puncture.6

The surface Cg,s can be assembled by gluing together three-punctured spheres,
or “pairs of pants” (viewed as three-vertices) and cylinders (viewed as propagators).
Each cylinder is associated to a simple gauge group factor of the 4d SCFT, with the
plumbing parameter interpreted as the corresponding marginal gauge coupling. The
degeneration limit of the surface where one cylinder becomes very long corresponds
to the weak coupling limit of that gauge group. Cutting a cylinder is interpreted as
“ungauging” an SU(n) gauge group, leaving behind two maximal punctures, each
carrying SU(n) flavor symmetry. Conversely, gluing two maximal punctures corre-
sponds to gauging the diagonal subgroupof theirSU(n)×SU(n)flavor symmetry. The
basic building blocks of class S are thus the theories associated to three-punctured
spheres, T �1,�2,�3

n := T [su(n); C0,3;�1 �2 �3]. These are isolated SCFTs with no
tunable couplings, in harmony with the fact that three-punctured spheres carry no
complex structure moduli. Most of them have no known Lagrangian description.

Table 2 The basic class S dictionary

4d theory T [C] Riemann surface C
Conformal manifolds Complex structure moduli of C
SU(n) gauge group with coupling τ Cylinder with sewing parameter

q = exp(2π iτ)

Flavor-symmetry factor H ⊂ SU(n) Puncture labelled by SU(2) → SU(n) with
commutant H

Weakly-coupled frame Pair-of-pant decomposition of C
Generalized S-duality Moore-Seiberg groupoid of C
Partition function on S4 Correlator in Liouville/Toda on C
Superconformal index Correlator in a TQFT on C

6Throughout this reviewwewill often associate punctureswith flavor symmetry factors. For theories
of type A this association is well motivated (although there can be two different punctures with same
flavor symmetry), but one has to remember that for type D and E theories one can have non-trivial
punctures with no flavor symmetry associated with them.
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An important exception is the theory associated to two maximal and one minimal
puncture, T [1n ] [1n ] [n−1,1]

n , which is identifiedwith the free hypermultiplet in the bifun-
damental representation of SU(n) × SU(n).

Different pairs-of-pants decompositions of the UV curve correspond to different
weakly coupled descriptions of the same SCFT, related by generalized S-dualities.
The Moore-Seiberg groupoid of the UV curve is thus identified with the S-duality
groupoid of the SCFT.

4.2 TQFT Interpretation of the Index

The index of T [g; Cg,s; {�i }] is a function of the superconformal fugacities (p, q, t)
and of the flavor fugacities ai , i = 1, . . . s, associated to the Cartan generators of the
global symmetry group H1 ⊗· · ·⊗ Hs , but it is independent of the complex structure
moduli of the UV curve Cg,s . We can thus regard the index as a correlator of a TQFT
defined on the UV curve [15],

Ig[p, q, t; ai ] = 〈O(a1) . . . O(as)〉Cg,s , (4.1)

where we have formally introduced “local operators” O(ai ) associated to the punc-
tures. This is natural, because the index enjoys the kind of factorization property
expected for a TQFT correlator. Given a pair-of-paints decomposition of Cg,s we
may cut an internal cylinder and disconnect the surface into the two surfaces7 Cg1,s1+1

and Cg2,s2+1, with g1 + g2 = g and s1 + s2 = s. By applying the general gauging
prescription (2.12), we have the “factorization” formula8

Ig[a1, . . . as] =
∫

[db]G Ig1[a j , b] IV (b) Ig2 [b, ak] , j ∈ S1, k ∈ S2, (4.2)

where S1 and S2 are the set of indices labeling the punctures on the two components,
with S1 ∪ S2 = {1, . . . s}. As the index is invariant under generalized S-dualities,
one must obtain the same answer by applying the factorization formula in different
channels. This is the essential property thatmust be satisfied by a 2d TQFT correlator.

To make the connection with the standard treatment of 2d TQFT more explicit,
let us make a change of basis, from a continuous to a discrete set of operators. For
simplicity we restrict to the case where all punctures are maximal, carrying the full
flavor symmetry g. The operator O(a) is labelled by the flavor fugacity a dual to
the Cartan subalgebra of g. Consider now a complete set of Weyl invariant functions
{ψα(a)}, where the label α runs over the finite-dimensional irreps of G, and define
the discrete set of operators Oα by the integral transform

7This is the generic situation. The remaining possibility is that cutting the cylinder yields the
connected surface Cg−1,s+2. This case can be treated analogously.
8We’ll often omit the dependence on the superconformal fugacities to avoid cluttering.
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Oα :=
∫

[da]G IV (a) ψα(a)O(a). (4.3)

It is convenient to choose the {ψα(a)} to be orthonormal under the propagator mea-
sure, ∫

[da]G IV (a)ψα(a)ψβ(a) = δαβ. (4.4)

In this discrete basis, the factorization property reads simply

Ig
α1,...αs

= Ig1
{α j } β Ig2

β {αk }, (4.5)

where the repeated index β is summed over. It is then clear that the general correlator
on an surface of arbitrary topology can be obtained by successive contractions of the
three-point correlator, i.e. the index of the three-punctured sphere, Ig=0

α1α2α3
=: Cα1α2α3 .

These “TQFT structure constants”Cα1α2α3 are symmetric functions of the three labels
αi and must satisfy the associativity constraint that follows from demanding that
factorization of Ig=0

α1α2α3α4
in two different ways must yield the same result,

Cα1α2β Cβα3α4 = Cα1α3γ Cγα2α4 . (4.6)

This condition is in fact sufficient to ensure independence of the general correlator on
any specific choice of pair-of-pants decomposition. The structure that we have just
described is very close to the standard axiomatic description of 2d TQFTs, but with
the caveat that in the mathematical literature the state-space of the TQFT is usually
taken to be finite-dimensional, whereas we have the infinite-dimensional space of
finite-dimensional irreps of g.

It is a simple linear algebra fact that one may always9 perform a further change
of basis to a preferred discrete basis, in which associativity relations (4.6) become
trivial (seeAppendixA of [6] for an explicit example). This is the so-called Frobenius
basis, which is still orthonormal under the propagator measure and is such that the
structure constants have the diagonal structure

Cλ1λ2λ3 = Cλ δλλ1 δλλ2 δλλ3 . (4.7)

In the Frobenius basis the non-vanishing components of the index associated to Cg,s

take the very simple form
Ig

λ...λ = C2g−2+s
λ , (4.8)

which just follows from the observation that Cg,s can be built by gluing (2g − 2+ s)
three-punctured sphere, and that the contractions of indices implementing the gluings
are all trivial in this basis. Going back to the continuous fugacity basis,

9Here we should mention that since the state-space of the QFT obtained from the index is infinite
dimensional theremight be in principle issues of convergeswhen changing basis. Such complication
though do not actually arise in practice in the index computations.
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Ig[a1, . . . as] =
∑

λ

C2g−2+s
λ ψλ(a1) . . . ψλ(as). (4.9)

In summary, the task of evaluating the general index is reduced to the task of finding
the Frobenius basis {ψλ(a)} and the structure constants Cλ.

4.3 Bootstrapping the Index

The structure just outlined is so constraining that it essentially fixes the index of class
S theories, when supplemented with the extra physical input about the special cases
that have a Lagrangian description [7].

We focus on An−1 theories. Let us first aim to find the index for theories containing
only maximal punctures. For n > 2, none of these theories have a Lagrangian
description. Nevertheless, their index must obey compatibility conditions that follow
bygluing in an extra three-punctured sphere of type T [1n ] [1n ] [n−1,1]

n , which is identified
with the free hypermultiplet theory in the bifundamental of SU(n) × SU(n). The
physical input mentioned above is then

I[T [1n ] [1n ] [n−1,1]
n ] = IH (a, x, y), (4.10)

where the explicit expression of IH is given in (2.11). Recall that a is the U (1)
fugacity associated with minimal puncture while x, y the SU(n) fugacities associated
with the two maximal punctures.

Let the index of T [C] with all maximal punctures be some unknown function10

IC(xi ), symmetric under permutations of the arguments xi , i = 1, . . . s. We con-
struct a larger theory with s maximal and one minimal puncture by gluing in a free
hypermultiplet. The resulting index is given by

I(a, x1, x2 · · · xs) =
∫

[dz] IV (z) IH (a, x1, z) IC(z−1, x2, . . . , xs). (4.11)

While in the above expression x1 appears to be treated asymmetrically from x2, . . . xs ,
generalized S-duality (the TQFT structure of the index) demands that the integral
be invariant under permutations of all the xi . Remarkably, this will be sufficient to
determine the function IC . To reach this conclusion, we take an apparent detour and
study the analytical properties of the integral as a function of the U (1) fugacity a.

One can show that the integral has simple poles for

pr qst
n
2 a−n = 1, (4.12)

10The dependence on the superconformal fugacities (p, q, t) is again left implicit.
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where r and s non-negative integers. To see this one notices that the poles in z in the
integrand move around when one varies a. At the special values (4.12) pairs of poles
pinch the integration contours and cause the whole integral to diverge. A toy example
of this mathematical phenomenon is as follows. Consider (|t a|, |t b|, |t c| < 1)

∮
dz

2π i z

∮
dy

2π iy

1

t a − y

1

t b − z

1

t−1c−1 − z y
=

∮
dz

2π i z

1

t b − z

1

t−1c−1 − z t a

= t c

1 − t3 a b c
.

We have a pole at t3a b c = 1. This can be viewed as the pole in y at t a colliding
with pole in y at t−1c−1z−1 simultaneously with pole in z at t b colliding with the
pole at t−1c−1y−1.

The residues of the poles (4.12) are easy to compute. This residue gets contribu-
tions in the z contour integrals only from the finite number of poles that pinch the
integration contours. The simplest case is the residue at t

n
2 a−n = 1,

IV Rest
n
2 a−n→1I(a, x1, x2, . . .) = IC(x1, x2, . . .), (4.13)

where IV is the index of U (1) N = 2 vector multiplet. So picking up the residue
at a2t−1 = 1 has the effect of “deleting” the extra U (1) puncture. A slightly more
involved calculation gives the residue at q t

n
2 a−n = 1,

IV Resqt
n
2 a−n→1I(a, x, y, . . .) = (4.14)

= θ(t; p)

θ(q−1; p)

n∑
i=1

∏
j �=i

θ( t
q xi/x j ; p)

θ(x j/xi ; p)
IC({xi → q− 1

2 xi , x j �=i → q
1
2 x j }, y, . . .)

=: θ(t; p)

θ(q−1; p)
S(r=0,s=1)(x) IC(x, y, . . .).

We see that the residue is computed by the action on IC of an interesting difference
operator, which we have named S(r=0,s=1)(x), shifting the values of the fugacity x.
The residues can be easily computed for general values of r and s in (4.12), and are
again given by acting on IC with certain difference operators S(r,s)(x) which we
will not write explicitly. The operatorsS(r,s)(x) all commute with each other and are
self-adjoint under the propagator measure.

As we have already observed, there is nothing special about the puncture labelled
by x. What singled out x in the above calculation is the choice of a pair-of-pants
decomposition where the punctured labelled by x belongs to the three-punctured
sphere associated to the free hypermultiplet theory. A different pair-of-pants decom-
position would single out a different puncture. By generalized S-duality, acting with
S(r,s) on different punctures must give the same answer:

S(r,s)(xk) IC(x1, . . . , xs) = S(r,s)(x�) IC(x1, . . . , xs) (4.15)
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Fig. 1 Two different pair of
pants decompositions
corresponding to two
different S-duality frames of
the field theory. In the two
duality frames the minimal
puncture labeled by a sits in
a pair-of-pants with a
different maximal puncture.
The index computed in the
two frames should give the
same result

2 1

21

aa

for any choice of k, � = 1, . . . s. This is the basic relation that allows to fix the index
(Fig. 1).

Consider a complete basis of simultaneous eigenfunctions of the difference oper-
ators,

S(r,s)(x) ψλ(x) = E (r,s)
λ ψλ(x). (4.16)

If the eigenvalues are non-degenerate (as can indeed be checked to be case), these
functions are automatically orthogonal under the propagator measure, and can be
normalized to be orthonormal. The punchline is now simply stated: this is precisely
the Frobenius basis introduced in the previous section for the TQFT of the index.
Indeed, expanding the index associated to the three-punctured sphere as

I(x1, x2, x3) =
∑

λ1,λ2,λ3

Cλ1λ2λ3 ψλ1(x1) ψλ2(x2) ψλ3(x3), (4.17)

we see from (4.15) and the assumption of non-degenerate eigenvalues that the struc-
ture constants can be non-vanishing only for λ1 = λ2 = λ3.

The eigenfunctions ψλ are not known in closed analytic from for general values
of the superconformal fugacities (q, p, t), but there are well-defined algorithms to
find them as series expansions (see e.g. [16]). Moreover, as we will see in detail in
the following section, closed analytic forms are available for special limits of the
superconformal fugacities.

To complete the computation, it remains to determine the structure constants Cλ.
First, expanding the index of the free hypermultiplet theory as

IH (a, x, y) =
∑

λ

φλ(a) ψλ(x) ψλ(y), (4.18)

we define the functions φλ(a) associated to the minimal puncture. The functions
ψλ are chosen to be orthonormal under the vector multiplet measure but functions



276 L. Rastelli and S.S. Razamat

φλ do not have natural normalization properties at this level of the discussion and
their normalization is defined by (4.18).11 Second, we consider the theory associated
to the sphere with two maximal and n − 1 minimal punctures.12 This theory has
two equivalent descriptions, depicted respectively in the top and bottom pictures in
Fig. 2: (i) It can be obtained by gluing to the basic non-Lagrangian building block
T [1n ] [1n ] [1n ]

n a superconformal tail [17], which is Lagrangian quiver SCFT with flavor
symmetry SU(n − 1) × U (1)n−1. (ii) It can be obtained in a completely Lagrangian
setup as a linear quiver. For the index this implies the following equality:

∑
λ

ψλ(x)ψλ(y)

n−1∏
i=1

φλ(bi ) =
∑

λ

Cλ ψλ(x)ψλ(y)

∫
[dz] 
(z; {bi }) ψλ({z, b}),

(4.19)
where z is an SU(n − 1) fugacity and an appropriate function of the bi fixed by
matching the U (1) symmetries on the two sides. The function 
(z; {bi }) can be
easily calculated from the superconformal tail. Since all quantities are known except
the structure constants Cλ, this relation allows to fix them explicitly. This completes
the derivation of the index of class S theories of type A, with maximal and minimal
punctures.

To include punctures of general type �, we need more general superconformal
tails. For each �, there exists a minimal integer n(�) such that the theory associated
to one maximal puncture, one puncture of type � and n(�) minimal punctures can
be described by a Lagrangian quiver gauge theory [17]. This can in fact be viewed
as a definition of the puncture of type �. By equating the abstract definition of the
index of such a theory, namely

∑
λ

ψλ(x) φ�
λ (y�)

n(�)∏
i=1

φλ(bi ), (4.20)

with the explicit integral expression of the same index given by Lagrangian quiver
description we can determine the factor φ�

λ (y�) associated to the puncture of type�.
In summary, we have described an algorithm that determines the superconformal

index for all theories of class S with regular punctures. The index takes an elegant
general form in terms of structure constants Cλ(p, q, t) and of “wavefunctions”
{φ�i

λ (y�i ; p, q, t)} associated to the punctures,13

11The same will hold for functions φ�
λ associated to general punctures we will define later in this

section.
12We take n > 2 as the n = 2 case is trivial. For n = 2 there is no distinction between minimal
and maximal punctures. The basic building block T2 is identified with a free hypermultiplet in the
trifundamental representation of SU(2)3. The structure constants can then be obtained directly by
expanding the free hypermultiplet index.
13Comparing with (4.9), we have reabsorbed some factors of Cλ into wavefunctions, by setting a
new normalization for the wave function of the maximal puncture, φ[1n ]

λ := Cλψλ.
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2N − 1 N − 2 N − 3

1 1 1

1

φλ(b2) φλ(bN−2)

Cλ

ψλ(y)

ψλ(x)

[z] Δ(z; {bi})ψλ({z, b})

1 1

N N N N NN

11

φλ(b1) φλ(bN−1)

ψλ(x) ψλ(y)

Fig. 2 One can determine the structure constants Cλ of the An−1 theories by studying the theory
associated to a sphere with two maximal and n − 1 minimal punctures (top picture). In one duality
frame (middle picture) this is given by a Tn theory, involving Cλ, coupled to a “superconformal tail”
quiver. In another duality frame (bottom picture) this is given by a linear quiver with an SU(n)n−2

gauge group, where each SU(n) is coupled to 2n hypermultiplets. For n = 3, the equivalence of the
two frames is the celebrated Argyres-Seiberg duality, whose consequences for the index of T3 (≡
the E6 SCFT) have already been explored in Sect. 3

I =
∑

λ

C2g−2
λ

s∏
j=1

φ
�i
λ (y�i ), (4.21)

where the sum is over the set of finite-dimensional irreps of g = su(n).
A caveat is in order. Not every possible choice of Riemann surface decorated by a

choice of {�i } at the punctures corresponds to a physical SCFT. An indication that a
choice of decorated surface may be unphysical is if the sum in (4.21) diverges, which
happens when the flavor symmetry is “too small”. There are subtle borderline cases
where the sum diverges, but the theory is perfectly physical—this can happen when
the theory has additional “accidental” flavor symmetries not associated to punctures.
An example of such a theory is the rank two E6 SCFT. These cases have to be treated
with more care [18].

We will discuss how to calculate explicit expressions for the wavefunctions and
structure constants in the next section. In the rest of this section we offer two view-
points that illuminate the structure of the result, the first related to Higgsing and the
second to dimensional reduction.
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4.4 Higgsing: Reduced Punctures and Surface Defects

The index is a meromorphic function of flavor and superconformal fugacities, with
a rich structure of poles. A large class of these poles has a nice physical interpreta-
tion [7].

Consider a schematic version of the index,

I(a, b) = Tr(−1)F a f t R, (4.22)

where f and R are two conserved charges. Let us assume that I has a pole in fugacity
a,

I = Ĩ(a, t)

1 − a fO t RO
. (4.23)

It is natural to associate the pole to a bosonic operator O, with charges f = fO and
R = RO, such that an infinite tower of composites of the form On contribute to the
index. In the simplest case, O is the generator of a ring spanned by {On}, and the
pole appears by resumming the geometric sum,

1 + a fO t RO + (a fO t RO )2 + · · · (4.24)

In more complicated cases, there can be several generators obeying non-trivial rela-
tions, which are encoded in the numerator of (4.23). The residue at a fO t RO = 1 is
given by Ĩ(t−RO/ fO , t), which can be interpreted as

Tr′(−1)F t R̄ , R̄ := R − RO
fO

f, (4.25)

where the prime on the trace indicates that we are omitting the infinite set of states
with R̄ = 0, which are of course the states responsible for the pole in the first
place. The shifted charge R̄ is the linear combination of charges preserved in a
background where O has acquired a non-zero vacuum expectation value (vev). In
a path integral representation of the index as the S

3 × S
1 partition function, the

divergence at a fO t RO = 1 arises from the integration over a bosonic zero mode,
which heuristically we identify with 〈O〉. Following this intuition, we expect the
residue to be controlled by the behavior of theory “at infinity” in the moduli space
parametrized by 〈O〉, that is, by the properties of the IR theory reached at the endpoint
of the the RG flow triggered by giving O a vev. We interpret Ĩ as the index of this
IR fixed point.

Reducing punctures
As a first application of these ideas, let us obtain more directly the index in the
presence of punctures of general type, taking as starting point the index with max-
imal punctures. The idea is that the theory with a partially-closed puncture can be
obtained from the theory with a full puncture by partially higgsing the full su(n)
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flavor symmetry, and flowing to the IR.14 The role of the operatorO that featured the
above general discussion is played by the moment map operatorμ. The moment map
is the superconformal primary of the supermultiplet that contains the flavor symme-
try current, and thus transforms in the adjoint representation of su(n).15 Given an
embedding � : su(2) → su(n), we choose the vev of μ to be

〈μ〉 = �(t−) ∈ adjsu(n), (4.26)

where t− is the lowest weight of su(2). The flavor symmetry is broken down to
the centralizer of � in su(n), which we call g�. We expect to find poles in the
wavefunction φλ(a) in correspondence to each component of μ that receives a vev.
Extracting the residues with respect to such poles should give the wave function
φ�

λ (x�) associated to the reduced puncture. More precisely, the symmetry breaking
also generates Goldstone modes that give a decoupled free sector, and we should
remove their contribution if we are interested in the interacting IR SCFT. Finally
we should remember to redefine charges, following the general principle outlined
in (4.25). In our case, the vev for μ breaks the SU(2)R symmetry, however a linear
combination R̄ of the original R Cartan generator and of flavor Cartan generators
is preserved; we expect this symmetry to enhance in the IR to the full non-abelian
SU(2)R̄ of the interacting fixed point.16 All in all, we have the prescription

G�(a�) φ�
λ (a�) = Resa→fug�(a�,t) φλ(a), (4.27)

where the prefactor G�, which is easily computable, accounts for the contribution to
the index of the Goldstone bosons induced by the symmetry breaking. The fugacity
replacement a → fug�(a�, t) can be obtained with a little representation theory.
Any representation R of g = su(n) decomposes as

R =
⊕

j

R(R)
j ⊗ Vj , (4.28)

where R(R)
j is some (generally reducible) representation of g� and Vj the spin

j representation of su(2). Then fug�(a�, t) is the solution for a in the character
decomposition equation,17

14The equivalence between the realization of general punctures by superconformal tails (as sketched
in the previous subsection) and the higgsing procedure that we are about to implement is explained
in Sect. 12.5 of [19].
15The moment map is also an SU(2)R triplet and U (1)r singlet. We consider the highest SU(2)R
weight (which has R = 1), since it is the component that contributes to the index.
16It might be that the vev actually preserves the diagonal subgroup of the UV su(2)R-symmetry and
some su(2) subgroup of the flavor symmetry. In such a case there is no need for the IR enhancement
of the R-symmetry. We thank C. Beem, D. Gaiotto, and A. Neitzke for pointing this out to us.
17The solution is unique up to the action of the Weyl group.
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χ
g
f (a) =

∑
j

χ
g�

R(f)

j

(a�) χ
su(2)
Vj

(t
1
2 , t− 1

2 ). (4.29)

One can check that (4.27) reproduces the wavefunctions obtained using supercon-
formal tails by the method outlined in the previous subsection. Let us give a couple
of simple examples.

Taking g = su(2) and � : su(2) → su(2) the principal embedding, which in this
case is just the identity map, the centralizer is of course trivial and (4.29) reads

a + a−1 = t
1
2 + t− 1

2 , (4.30)

which has the two solutions a = t
1
2 , t− 1

2 , related by the action of the Weyl group
a ↔ a−1. Since we are interested in the vev of the su(2) lowest weight μ− of the
moment map, whose contribution to the index is a−2t , we should pick a = t

1
2 ; the

other solution t− 1
2 would be associated to the su(2) highest weight μ+. The lesson

(which generalizes) is that if we are interested in giving a vev to specific operator,
we should fix a representative of the Weyl orbit. Extracting the residue at a2t−1 = 1
will give the index of the IR theory at the end of the RG flow triggered by 〈μ−〉,
times the contribution from the free Goldstone bosons. In this case, the Goldstone
bosons consist of a free hypermultiplet in the fundamental of the flavor su(2). Both
the flavor and R symmetry are broken by the vev, but the combination R̄ = R + f/2
is preserved. Under the new SU(2)R̄ , the scalars of the free hypermultiplet transform
as 3 + 1, with the singlet corresponding to the states responsible for the divergence.
Extracting the pole is precisely equivalent to omitting this singlet states. Setting
a = t

1
2 in (2.9) we see that under this new charge assignment the non-singlet states

of the free hypermultiplet give a contribution to the index exactly equal to the inverse
of the index of a free U (1) vector multiplet, so the Goldstone boson factor in (4.27)
is G = I−1

V . All in all, we have derived from general principles the following
prescription to close an su(2) puncture,

IV Resa−2t→1 φ
[12]
λ (a) = φ

[2]
λ ≡ 1. (4.31)

In the last equality we have just reminded ourselves that the wavefunction of a fully
closed puncture is identically equal to one. One can check (4.31) using the expression
for φ

[12]
λ derived by the methods of the previous subsection.

A sightly more involved example is g = su(3) and � the subregular embedding,
corresponding to the partition [2, 1]. The centralizer is g� = u(1). If a1, a2, a3 with
a1a2a3 = 1 are the su(3) fugacities, and b the u(1) fugacity, (4.29) takes the form

a1 + a2 + a3 = b (t
1
2 + t− 1

2 ) + b−2. (4.32)

The only solution (up to the action of theWeyl group, which permutes the ai ) is a1 =
t
1
2 b, a2 = t− 1

2 b, a3 = b−2. Extracting the residue and removing the contribution of
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the Goldstone bosons accomplishes the reduction of the full puncture to the minimal
puncture.

Surface defects
Next, we would like to interpret in a similar light the poles (4.12) that played such a
crucial role in the previous subsection. Recall the basic setup: we “glued” the bifun-
damental hypermultiplet theory T [1n ] [1n ] [n−1,1]

n to a general theory T [C], connecting
a maximal puncture of one theory with a maximal puncture of the other theory by
gauging the diagonal SU(n) symmetry. We then extracted residues with respect to
the fugacity a for the U (1) global symmetry of the hypermultiplet. This is the U (1)
baryon symmetry, under which the complex scalars q and q̃ have charge −1 and
+1 respectively. It is then clear that the operator associated to the simplest pole, at
a−nt

n
2 = 1, is the baryon operator B = det q. Giving a vev to B higgses the SU(n)

gauge group, triggering an RG flow whose IR endpoint is the original theory T [C]
and a collection of decoupled free fields [7]. This explains (4.13).18

By the same logic, the poles at pr qst
n
2 a−n = 1 are naturally associated to holo-

morphic derivatives of the baryon operator in the 12 and 34 planes, ∂r
12 ∂s

34 det q. We
expect the residue at these poles to describe the IR physics of the flow triggered by
a spacetime-dependent vev of the form 〈B〉 ∼ zrws . Consider first the r = 0, s �= 0
case. Away from the w = 0 plane, the endpoint of the flow is still T [C]. However
some extra degrees of freedom survive at w = 0, which we interpret as a surface
defect for T [C] extended in the 12 plane. Similarly, the endpoint of the flow with
r �= 0, s = 0 is T [C] decorated with an extra surface defect extended in the 34 plane.
In the general case with rs �= 0 both type of defects will be present. In the S

3 × S
1

geometry, these surface defects fill the “temporal” S
1 and the two maximal circles

inside the S
3 fixed by the j12 and j34 rotations, respectively. This proposal has been

checked [20] in a set of examples where T [C] admits a Lagrangian description, and
surface defects can be added by coupling the 4d SCFT to a (2, 2) sigma model; the
index can then be independently evaluated by localization techniques, confirming
the prescription that we have just outlined.

In summary, we have found a physical interpretation for the difference operators
S(r,s): their action on the index of T [C] yields the index of the same theory decorated
by some extra surface defect [7]. Since the difference operators act “locally” on the
generalized quiver, we should associate them to special punctures of the UV curve.
This agrees with the M-theory picture, where the surface defects correspond to M2
branes localized on the UV curve. Acting with a difference operator on a given
flavor fugacity corresponds pictorially to colliding the special puncture with a flavor
puncture. The location of the special punctures on the UV curve is immaterial, so
collision of the same special puncture with different flavor punctures is bound to give
the same result—which is a restatement of (4.15).

This description of surface defects bears a striking kinship with the analogous
picture that arises in the AGT correspondence [21, 22]. The introduction of sur-
face defects in the S

4 partition function is accomplished by the insertion of special,

18For n = 2, theU (1) baryon symmetry enhances to SU(2), B ≡ μ− (the lowest weight component
of the moment map), and (4.13) is precisely equivalent to (4.31).
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Fig. 3 The difference operatorsS(r,s), which compute residues and introduce surface defects, can
be visualized as special punctures on the UV curve. The action of S(r,s) on a flavor fugacity is
interpreted as the collision of the special puncture with a flavor puncture. We can act on different
punctures and obtain the same result for the index (top and middle pictures). We can also define the
action ofS(r,s) on a long tube (bottom picture), by cutting open a cylinder, acting on one of the open
punctures and gluing the surface back. S-duality guarantees that this is a well-defined procedure.
In this way we can introduce the special punctures S(r,s) on a UV curve with no flavor punctures
at all

semi-degenerate operators in the Toda CFT correlator defined on the UV curve.
These operators are the key to the solution of Liouville theory by the conformal
bootstrap [23]: considering their fusion with normalizable vertex operators one can
derive functional equations that admit a unique solution. Similarly, we have special
punctures in our 2d TQFT that insert surface defects in the S

3 × S
1 partition func-

tion. Their fusion with ordinary flavor punctures leads to the topological bootstrap
equations (4.31), which uniquely fix the superconformal index (Fig. 3).

4.5 Reduction to 3d

The index of theories of class S has a very definite structure (4.21). This structure
is natural since it is a manifestation of the 2d TQFT nature of the index of the
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T(1,1,1,1)[su(4)] :

T(3,1)[su(4)] :
4

4 1

4 3 2 1

Fig. 4 On the left we have an example of a star-shaped quivermirror of the A3 theory corresponding
to a sphere with four punctures, two of which are maximal and one is minimal. On the right
the quiver theories for T(1,1,1,1)[su(4)] corresponding to the maximal puncture and T(3,1)[su(4)]
corresponding to minimal puncture are depicted

theories at hand as was anticipated in Sect. 4.2. It is however an important question
to understand better the physical meaning of the different ingredients entering (4.21).
For example, we would like to gain more insight into the physical significance of
the eigenfunctions φ

�i
λ (y�i ) and the eigenvalues E (r,s)

λ . Let us consider here a very
informative 3d interpretation of (4.21).19

We can consider theories of class S onM3×S
1 withM3 some three dimensional

manifold. Upon reduction on the S
1 we obtain a 3d theory on M3. The N = 2 class

S theories admitting a known description in terms of a Lagrangian upon dimensional
reduction on S

1 are described in terms of the same field content and same gauge and
superpotential interaction as the 4d parent theory. The 3d Lagrangians however are
not conformal and the theories flow in general to an interacting N = 4 3d SCFT
in the IR. The 4d conformal S-dualities imply IR (Seiberg-like) dualities of the 3d
models. Thus the complex moduli of the Riemann surface defining the model in 4d
do not translate to physical parameters in 3d: the topology of the surface and the
information at the punctures alone are sufficient to completely specify the 3d model.
An extremely interesting fact about the class S theories in 3d is that they possess
yet another dual description. All theories of class S reduced to 3d, with and without
known Lagrangian description in 4d, have a mirror description in 3d in terms of a
star-shaped quiver theory [25].

This mirror symmetry states that a theory corresponding to a Riemann surface
with genus g and s punctures of types �i is dual to a quiver theory coupling s linear
quivers T�i [g] [26] associated to Lie algebra g = su(N ) by gauging the common g
with an addition of g N = 4 adjoint hypermultiplet, see Fig. 4 for an example.

19A 6d physical interpretation of this equation can be also entertained [24] but we will not discuss
it in this review.
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The dimensional reduction on S
1 can be performed at the level of the index. Here

M3 is S
3 and upon reduction of the index on S

1 we obtain the partition function of
the dimensionally reduced theory on a squashed sphere S

3
b [27–29] (see also [30]).

The reduction is done by first parametrizing the fugacities as

t = e2π ir1(γ+ i
2r3

(b+b−1))
, z = e2π ir1σ , p = e2πbr1/r3 , q = e2πb−1r1/r3 , (4.33)

where r1 is the radius of S
1 and r3 is the radius of S

3. Then the radius of S
1, r1, is

sent to zero. The parameter b is the squashing parameter of the sphere.
We have defined the functions φ

�i
λ (y�i ) as eigenfunctions of difference operators

S(r,s) and argued that this operators have a physical interpretation of introducing
linked surface defects to the index computation. The surface defects corresponding
to S(0,s) and S(r,0) span the S

1 and one of the two equators of S
3. Upon reduction

on the S
1 these become line defects sitting on one of the two equators of S

3
b. When

sending r1 → 0 the difference operators have very simple limit. For example in the
A1 case we have20

S(0,1) · f (z) → T (σ ) · f̂ (σ ) = (4.34)

=
sinh πb

(
i(b−b−1)

2 − γ + 2σ

)

sinh 2πbσ
f̂ (σ + ib

2
) +

sinh πb

(
i(b−b−1)

2 − γ − 2σ

)

sinh−2πbσ
f̂ (σ − ib

2
),

where f̂ (σ ) = limr1→0 f (e2π ir1σ ). Interestingly a set of eigenfunctions of this opera-
tor is given by the S

3
b partition functions of theT[su(2)] theory. TheT[su(N )] theory

has global su(N )H ×su(N )C symmetry with the su(N )H acting on the Higgs branch
and su(N )C acting on the Coulomb branch. Turning on real mass parameters, σH

and σC , for the two symmetries the S
3
b partition function of T[su(N )] can be denoted

by φ(γ,b)(σH |σC) and we have the property

T (σC) · φ(γ,b)(σH |σC) = W(σH ) φ(γ,b)(σH |σC). (4.35)

The eigenvalue W(σH ) is the expectation value of the Wilson loop for the su(N )H

global symmetry. This eigenvalue property of the partition function thus suggests
the physical interpretation that the line defect for the gauge symmetry of T[su(N )]
is equivalent to a Wilson line for the global su(N )H symmetry. This fact is not
surprising since the T[su(N )] theories make their appearance as models living on
S-duality domain wall separating two S-dual N = 4 SU(N ) SYM theories. Since
under 4d S-duality defect (’t Hooft) line operators map to Wilson operators our 3d
eigenvalue statement is natural.

Further, the S
3
b partition function of a star shaped quiver mirror dual say to the A1

theory with genus g and s punctures has the following form,

20This operator is called the Macdonald operator in math literature and we will shortly encounter
a different incarnation of it in 4d index context.
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Zg,s({σ (i)
C }s

i=1) =
∫

dσH ZV (σH ) ZH(σH )g
s∏

i=1

φ(γ,b)(σH |σ (i)
C ). (4.36)

Here ZH(σH ) is the contribution of anN = 4 3d adjoint hypermultiplet and ZV (σH )

is the contribution of the vector. Note the striking structural similarity between (4.21)
and (4.36). This is not a coincidence [31]. One can argue that indeed in the r1 → 0
limit the eigenfunctions φ�

λ (y�) reduce to the S
3
b partition functions of T�[su(N )].

The discrete labels of the eigenfunctions, λi , become (linear combinations of) the real
masses of the symmetry rotating the Coulomb branch of T�[su(N )], σ (i)

C : roughly,
taking the r1 → 0 limit we should also concentrate on large representations and keep
r1 λi fixed.

Let us summarize the 3d interpretation of the eigenfunctions,

• The difference operators introduce line defects.
• The eigenfunctions are S

3
b partition functions of T�[su(N )].

• The eigenvalues are expectation values of Wilson loops.
• The existence of the eigenvalue equation follows from 4d S-duality through the
statement that Wilson and’t Hooft lines are S-dual to each other.21

In particular the fact that the index of theories of class S in 4d can be written in the
form (4.21) is a 4d manifestation of the fact that the dimensionally reduced theories
admit a mirror description. That is the index written as (4.21) is a 4d precursor of
the 3d mirror symmetry. The interested reader might consult [33] for more thorough
discussion of these issues.

Finally let us also mention that the 3d eigenfunctions, S
3
b partition functions of

T�[su(N )], provide a connection between the 4d index and the 4d S
4 partition

functions of theories of class S. As we mentioned T�[su(N )] models are obtained
by considering N = 4 4d theories with a duality domain wall. The kernel which
implements the insertion of such duality wall in the S

4 partition function computation
is precisely the S

3
b partition function of T�[su(N )] [34]. In particular the difference

operatorwe obtained by reduction to 3d are the same difference operators introducing
line defects into Liouville-Toda/S4 (AGTcorrespondence [21]) computations [7] (see
also [35]).

5 Integrable Models and Limits of the Index

The discussion of the previous section reduces the physical problem of determining
the superconformal index of class S theories to the mathematical problem of finding
a complete set of orthonormal eigenfunctions of the difference operators S(r,s)(x).
Remarkably, these operators are closely related to theHamiltonians that define awell-
known class of integrable models, the elliptic relativistic Ruijsenaars-Schneider (RS)
models, aka relativistic elliptic Calogero-Moser-Sutherland models.

21Whenwriting this equation as a difference operator annihilating the partition function, it gives rise
actually to the difference operator annihilating holomorphic blocks of the 3d partition function [32].
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The operator (4.14),S(0,1)(x), is related to the basic RS Hamiltonian H1(t, q; p)

by a similarity transformation,

H1(t, q; p) = θ(q−1; p)

θ(t; p)

1∏
i �= j �(t zi/z j ; p, q)

S(0,1)(z)
∏
i �= j

�(t zi/z j ; p, q).

(5.1)
Under the same similarity transformation, the propagator measure in the An−1 case
becomes

1

n!
∮ n−1∏

i=1

dzi

2π i zi

∏
i �= j

�(t zi/z j ; p, q)

�(zi/z j ; p, q)
· · · . (5.2)

Higher operators, H�, can be constructed as polynomials in S(0,s). One can think
of the n − 1 independent H� operators as associated to antisymmetric representa-
tions of SU(n), whereas S(0,s) are associated to symmetric representations. Then
by exploiting group theory and the fact that the fundamental representation can be
trivially thought as either symmetric or antisymmetric one can translate between H�

and S(0,s) (see for example [35]).
The parameters p, q, and t appear in the Hamiltonian H1(t, q; p) on different

footing: (i) the parameter t plays a role of coupling constant, (ii) q is the shift para-
meter of the difference operator and can be understood as an exponent of the “speed
of light” parameter of the relativistic integrable system, (iii) the integrable model
is associated to an elliptic curve parametrized by p. Given an eigenfunction of H1

dressing it with an arbitrary elliptic function in q a huge class of new eigenfunctions
can be obtained. This arbitrariness is lifted by the demand that the eigenfunction we
are after diagonalize both operatorsS(0,s) andS(s,0) and in particular are symmetric
with respect to exchanging p and q.

The RS models have a long history of rich connections with gauge theories in
various dimensions (see e.g. [36, 37]). Nevertheless, for general values of (p, q, t)
determining the exact eigenfunctions and eigenvalues of the difference operators is
still an open problem. For some natural limits of the parameters the eigenfunctions
are well known. Curiously, many of the same limits have independent physical inter-
est, because they lead to a supersymmetry enhancement of the S

3 × S
1 partition

function. One can systematically classify the limits of the index that enjoy enhanced
supersymmetry, and relate them to integrablemodels.Wewill shortly review some of
the salient results in this direction. Physical properties of theories of class S impose
additional constraints on φλ(z). For example, since some of the theories have known
Lagrangian description the indices can be explicitly computed as integrals of elliptic
Gamma functions and the results have to match the expressions evaluated using the
eigenfunctions. Exploiting the known expressions for the eigenfunctions for special-
ized values of the parameters and the additional physical constraints one can set up
a perturbative scheme around the known results to compute the eigenfunctions for
general values of the parameters [7, 16].

Wenow turn to discuss several useful limits of the index forwhich explicit expressions
for eigenfunctions are known.
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Schur index
The trace formula (2.2) that defines the general index can be written in the following
equivalent form (we suppress flavor fugacities to avoid cluttering):

I(q, p, t) = Tr(−1)F p
1
2 δ1− q

1
2 δ1+ t R+r e−β ′δ2−̇ , (5.3)

where

2δ1+ := {Q1+ , (Q1+)†} = E + 2 j1 − 2R − r � 0 (5.4)

2δ1− := {Q1− , (Q1−)†} = E − 2 j1 − 2R − r � 0

2δ2−̇ := {Q̃2−̇ , (Q̃2−̇)†} = E − 2 j2 − 2R + r � 0.

The inequalities follow fromunitarity of the representation andwill be usefulmomen-
tarily. The equivalence of (2.2) and (5.3) follows immediately by recalling that only
states with δ2−̇ = 0 contribute to the trace. The Schur index is the “unrefined” index
obtained by setting q = t . . One readily observes that on this slice the combination
of conserved charges appearing in the trace formula commute with a second super-
charge, Q1−, in addition to the supercharge Q̃2−̇ that leaves invariant the general
index. As the p dependence is Q1−-exact, it drops out, and we are left with a simple
expression that depends on q alone,22

ISchur := Tr(−1)F q E−R . (5.5)

The index counts operators with δ1− = δ2−̇ = 0, or equivalently

L̂0 := E − ( j1 + j2)

2
− R = 0 , Z := j1 − j2 + r = 0. (5.6)

In fact, the unitarity inequalities in (5.4) give L̂0 � |Z|
2 , so the first condition implies

the second. We refer to operators obeying L̂0 = 0 as Schur operators. A Schur
operator is annihilated by two Poincaré supercharges of opposite chiralities (Q1− and
Q̃2−̇ in our conventions). This is a consistent condition because the supercharges have
the same SU(2)R weight, and thus anticommute with each other. No analogous BPS
condition exists in an N = 1 supersymmetric theory, because the anticommutator
of opposite-chirality supercharges necessarily yields a momentum operator, which
annihilates only the identity.

22In principle the Schur index might make sense also for non-conformal N = 2 theories quantized
on S

3 × R, although we are not aware of a detailed analysis of the requisite deformations needed to
define an N = 2 theory on such a curved background (the analysis of [38] might be of help here).
The N = 1 analysis of [4] is not sufficient, because the Schur index cannot be understood as a
special case of theN = 1 index. Of course, in the non-conformal case one cannot relate S

3 × R to
R
4 by a Weyl rescaling and there is no state/operator map.
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Table 3 This table summarizes the manner in which Schur operators fit into short multiplets of the
N = 2 superconformal algebra

Multiplet OSchur h := E+( j1+ j2)
2 r Lagrangian

“letters”

B̂R �11...1 R 0 Q, Q̃

DR(0, j2) Q̃1
+̇�11...1

+̇...+̇ R + j2 + 1 j2 + 1
2 Q, Q̃, λ̃1+̇

D̄R( j1,0) Q1+�11...1+···+ R + j1 + 1 − j1 − 1
2 Q, Q̃, λ1+

ĈR( j1, j2) Q1+Q̃1
+̇�11...1

+···+ +̇...+̇ R + j1 + j2 + 2 j2 − j1 Dn
++̇ Q, Dn

++̇ Q̃,

Dn
++̇λ1+, Dn

++̇λ̃1+̇
We use the naming conventions for supermultiplets of Dolan and Osborn [39]. For each supermul-

tiplet, we denote by � the superconformal primary. There is then a single conformal primary Schur

operatorOSchur, which in general is obtained by the action of some Poincaré supercharges on�. We

list the holomorphic dimension h and U (1)r charge r of OSchur in terms of the quantum numbers

(R, j1, j2) that label the shortened multiplet (left-most column). We also indicate the schematic

form that OSchur can take in a Lagrangian theory by enumerating the elementary “letters” from

which the operator may be built. We denote by Q and Q̃ the complex scalar fields of a hypermul-

tiplet, by λI
α and λ̃I

α̇ the left- and right-moving fermions of a vector multiplet, and by Dαα̇ the

gauge-covariant derivatives. Note that while in a Lagrangian theory Schur operators are built from

these letters, the converse is false—not all gauge-invariant words of this kind are Schur operators,

only the special combinations with vanishing anomalous dimensions

A summary of the different classes of Schur operators, organized according to how
they fit in shortened multiplets of the superconformal algebra, is given in Table3 [5].
The first line lists the half-BPS operators belonging to the Higgs branch N = 1
chiral ring, which have E = 2R and j1 = j2 = 0. In a Lagrangian theory, these are
operators of the schematic form Q Q . . . Q̃ Q̃. The SU(2)R highest weight component
of the moment map operator μ11, which has E = 2R = 2 (and transforms in the
adjoint representation of the flavor group) is in this class. The second and third lines
of the table list more general N = 1 antichiral (respectively chiral) operators. In
a Lagrangian theory they may be obtained by considering gauge-invariant words
that contain λ̃1

+̇ (respectively λ1+) in addition to Q and Q̃. Finally the forth line lists
the most general class of Schur operators, belonging to supermultiplet obeying less
familiar semishortening conditions. An important operator in this class is theNoether
current for the SU(2)R R-symmetry, which belongs to the same superconformal
multiplet as the stress-energy tensor and is universally present in anyN = 2 SCF. Its
J 11
++̇ component, with E = 3, R = 1, j1 = j2 = 1

2 , is a Schur operator. Finally, note
that the half-BPS operators of the Coulomb branch chiral ring (of the form Tr φk in
a Lagrangian theory) are not Schur operators.

The Schur index earns its name from the fact that the wavefunctions are pro-
portional to Schur polynomials, and simple closed form expressions are available
for all the ingredients that enter the TQFT formula for the index (4.21). We will
quote the full expressions below in the more general Macdonald limit. The structure
constants Cλ(q) turn out to be inversely proportional to the quantum dimension of
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the representation λ. One recognizes [40] the TQFT of the index as the zero-area
limit23 of q-deformed 2d Yang-Mills theory [43], which can also be understood as
an analytic continuation of Chern-Simons theory on C × S

1. This observation has
been reproduced by a top-down approach [44, 45], starting from the (2, 0) theory on
the geometry S

3 × S
1 × C, first reducing on S

1 to obtain 5d YM, and then reducing
further on S

3 and using supersymmetric localization to obtain a bosonic gauge theory
on C, which is argued to coincide with q-YM.

In q-YM theory, introducing flavor punctures correspond to fixing the holonomies
of the gauge fields around the punctures. One can also define additional local oper-
ators by fixing the dual variables at the punctures [46]—in the language of Chern-
Simons theory on C×S

1, this corresponds to adding aWilson loop along the temporal
S
1. These operators are the natural candidates to correspond to the surface defects

discussed in the previous section [7, 47].
Perhaps the most interesting fact about the Schur index is that it can be viewed

as the character of a 2d chiral algebra canonically associated to the 4d SCFT [5], as
we shall review in Sect. 7. A related point is that the Schur index enjoys intriguing
modular properties encoding conformal anomalies [48]. For example the indices of
a hypermultiplet and the vector multiplets in the Schur limit become combinations
of theta functions,

IH = 1

θ(q
1
2 a; q)

, 
Haar(z) IV (z) = 1

n! (q; q)2n−2
∏
i �= j

θ(qzi/z j ; q), (5.7)

which have simple modular properties under

q = e2π iτ → q ′ = e− 2π i
τ , z = e2π iζ → z′ = e

2π iζ
τ . (5.8)

Here 
Haar is the Haar measure and we specialized for concreteness to SU(n) vector
field. An index of the gauge theory is given by contour integrals with the integrand
built from products of theta functions. The combination of theta functions in in the
integrand, Iinteg.(z; q), always forms an elliptic function in the fugacities, z corre-
sponding to the gauged symmetries,

Iinteg.(q z; q) = Iinteg.(z; q). (5.9)

The gauge fugacities z can be thus thought as taking values on a torus with modular
parameter τ . The contour integral defining the Schur index of a gauge theory then
can be thought of as an integral over a cycle of the torus while the index after modular
transformation is given as an integral over the dual cycle. These properties beg the
question of the relation of the Schur index to mock modular forms, a relation which
is yet to be explored (Fig. 5).

23On a surface of finite (non-zero) area, q-YM is not topological, but it still admits a natural class
S interpretation [41] as the supersymmetric partition function of the (2, 0) theory on S

3 × S
1 × C

where the UV curve C is kept of finite area [42].
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τ → −1
τ

z
z

Fig. 5 The Schur index of a gauge theory is given by an integral over fugacities z taking value in
a torus with modular parameter τ . After modular transformation, τ → − 1

τ
, the index is written as

an integral over the dual cycle

Macdonald limit
Taking p → 0 in (5.3) is a well-defined limit, thanks to positive-definiteness of the
associated charge δ1−. The trace formula reads

IMac(q, t) := TrM(−1)F q E−2R−r t R+r = TrM(−1)F q2 j1 t R+r , (5.10)

where the subscript in the trace indicates that we are restricting by hand to the states
with δ1− = 0. Clearly, we are concentrating on the operators that are also annihilated
by the superchargeQ1−, in addition to Q̃2−̇. These are of course the same as the Schur
operators, but we are now refining their counting by keeping track of the quantum
number R + r . For q = t , we recover the Schur index.

This limit is mathematically very interesting. Our difference operators and our
integration measure become identical (up to conjugation) to the well-studied Mac-
donald difference operators andMacdonald measure [49]. The diagonalization prob-
lem is completely solved in terms of Macdonald polynomials, a beautiful two-
parameter generalization of the Schur polynomials. In the Macdonald limit we set
the elliptic curve of the Ruijsenaars-Schneider model, p, to zero the integrable model
becomes thus trigonometric (but still relativistic). For example, in the A1 case after
conjugation (5.1) the basic hamiltonian becomes,24

H1 · f (z) ∼ 1 − t z2

1 − z2
f (q

1
2 z) + 1 − t z−2

1 − z−2
f (q− 1

2 z). (5.11)

We are then able to find closed form expressions for the general wavefunctions
and for the structure constants [6]. The wavefunction for a general choice of puncture
(embedding) and representation now takes the following form,

ψ�
R(z�; q, t) = K�(z�; q, t) Pg

R(fug�(z�; t); q, t). (5.12)

Here Pg
R(z; q, t) are theMacdonald polynomials labeled by finite dimensional repre-

sentationsR of Lie algebra g and orthonormal under theMacdonald measure, which,

24Note that this is the same operator that we obtained in a quite different context of the reduction
of the elliptic difference operator S(0,1) to three dimensions 4.34.
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e.g., for g = su(n) is given by,


q,t (z) = 1

n!
∏
i �= j

(zi/z j ; q)

(t zi/z j ; q)
. (5.13)

The K -factors admit a compact expression as a plethystic exponential [50],

K�(z�; q, t) = P.E.

⎡
⎣∑

j

t j+1

1 − q
χh�

R(adj)
j

(z�)

⎤
⎦ , (5.14)

where the summation is over the terms appearing in the decomposition of Eq. (4.28)
applied to the adjoint representation,

adjg =
⊕

j

R(adj)
j ⊗ Vj . (5.15)

χh�

R(adj)
j

(z) is the Schur polynomial of Lie algebra h� corresponding to representation

R(adj)
j . For the maximal puncture, corresponding to the trivial embedding �max ≡ 0,

the wavefunction reads,

ψ
�max
R (x; q, t) = Kmax(x; q, t) Pg

R(x; q, t) , Kmax(x; q, t) := P.E.

[
t

1 − q
χ
g
adj(x)

]
.

(5.16)
At the other extreme, for the principal embedding � = ρ, the decomposition of
Eq. (5.15) reads

adjg =
rank g⊕
i=1

Vdi −1, (5.17)

where {di } are the degrees of invariants of g, so in particular di = i + 1 for su(n).
We then find

ψ
ρ

R(q, t) = P.E.

[
rank g∑

i

t di

1 − q

]
Pg
R(fugρ(t)). (5.18)

For g = su(n), the fugacity assignment associated to the principal embedding takes
a particularly simple form,

fugρ(t) = (t
n−1
2 , t

n−3
2 , . . . t− n−1

2 ). (5.19)

Provided that,
CR(q)−1 = ψ

ρ

R(q, t), (5.20)
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we thus obtain an expression for the Macdonald index of any class S theory with
regular punctures,

IMac(q, t; x) =
∑
R

CR(q, t)2g−2+s
s∏

i=1

ψ
�i
R (x�i ; q, t) , (5.21)

with all the ingredients explicitly given above.
In theMacdonald limit, the TQFT of the index is recognized as a certain deforma-

tion of q-YM, closely related to the refinedChern-Simons theory on C×S
1 discussed

in [51]; the refinement amounts to changing the measure in the path integral of q-YM
from Haar to Macdonald.

Hall-Littlewood limit
Proceeding one step further, we can take the q → 0 limit in the Macdonald index.
The trace formula reads

IHL(t) := TrHL(−1)F t R+r , (5.22)

where we are restricting the trace to states with δ1+ = δ1− = 0. In the q → 0 limit,
Macdonald polynomials reduce to the much more manageable Hall-Littlewood (HL)
polynomials. The HL index of theories of class S takes a relatively simple form: it
is always a rational function of t .

TheHL index receives contributions fromoperators annihilated by the three super-
chargesQ1+,Q1+ andQ2−̇. This is precisely the subset of Schur operators with j1 = 0,

corresponding to the B̂ and D multiplets, listed in the first two rows of Table3. Since
such Hall-Littlewood operators are killed by both spinorial components of Q1

α , they
are chiral25 with respect to an N = 1 subalgebra, and thus form a ring, which is
consistent truncation of the full N = 1 chiral ring. In a Lagrangian theory, they are
composite operators made with the complex hypermultiplet scalars Q and Q̃ and
the λ1

+̇ component of the gaugino, but no derivatives. There is a further consistent
truncation of the ring to operators with j2 = 0: this is the Higgs branch chiral ring,
spanned by the bottom component of the B̂R multiplets.

For an N = 2 SCFTs associated to a linear quiver, one can show that only the B̂R

multiplets contribute to the HL index. This is the case because the gauginos are in
one-to-one correspondence with the F-term constraints on the Higgs branch chiral
operators, so their contribution to the index (which comes with a minus sign) is
precisely such to enforce those constraints. It follows that for linear quivers the HL
index coincides [6] with the Hilbert series of the Higgs branch (see e.g. [52, 53]).
The equivalence between the HL index and the Higgs branch Hilbert series appears
also to hold for the Tn building blocks (see [6]), and so by the same reasoning it
extends to all class S theories associated to curves of of genus zero. One can then
use the HL index to compute the Hilbert series of multi-instanton moduli spaces for
En groups [18, 54], which are quite intricate to compute using other methods (see

25To be pedantic, antichiral.



The Superconformal Index of Theories of Class S 293

e.g. [55]). The HL index and the Higgs Hilbert series are not the same for theories
with genus one or higher, where D multiplets play a role.26

Coulomb limit
There is another limit of the index that leads to supersymmetry enhancement: one
takes t, p → 0 while keeping q and p q

t fixed. It is called the Coulomb limit because
in a Lagrangian theory the hypermultiplet single-particle index (2.9) goes to zero;
the only supermultiplets that contribute in this limit are the short multiplets of type
Ē−�(0,0) (in the notations of [39]), whose lowest components are the operators of
the Coulomb branch chiral ring, of the form Tr φk . That there should exist a limit
of the general index for which only {Ē−�(0,0)} contribute is a priori clear from the
fact that these multiplets do not appear in any of the recombination rules, so their
multiplicities define an index.

In a Lagrangian theory with simple gauge group G, the Coulomb index is given
by [6]

IC =
∮

[dz]G 
q,
pq
t
(z) = PE

⎡
⎣ ∑

�∈exp(G)

Ĩ�+1

⎤
⎦ , (5.23)

where exp(G) stands for the set of exponents of G, 
q,
pq
t
(z) is the Macdonald

measure (5.13) (which arises by taking the Coulomb limit of the usual propagator
measure), and Ĩ�+1 is the index of an individual Ē−�(0,0) multiplet. This is a well-
known mathematical equality, going by the name of the the Macdonald central term
identity. It can be understood physically as the statement that the Coulomb chiral
ring is freely generated by a set of operators in one-to-one correspondence with the
Casimir invariants of G, for example {Tr φk }, k = 2, . . . n for G = SU(n).27

6 Some Generalizations

The discussion in previous sections can be extended and generalized in several ways.
Wewill discuss some of the open problems in Sect. 8, while here let us brieflymention
some of the work that has already appeared in the literature.

• In this review we have concentrated on class S theories of type A. A similar
analysis can be performed for theories of type D and E . Following our TQFT
intuition the indices should be expressible in terms of a complete set of functions.

26Assuming that the Higgs branch of the 4d theory of class S is isomorphic to the Higgs branch of
the dimensionally reduced theory, we can consider the Coulomb index [33, 56, 57] of the mirror
dual theory (see Sect. 4.5). The 3d Coulomb index of the mirror coincides with the Hilbert series
of the Higgs branch of theories of class S for any genus. We refer the reader to [33] for further
discussion of this issue.
27The fact that the Coulomb branch is freely generated is known to be true by inspection for theories
of class S of type A we discuss here, but is not obvious for theories of type D and E : it would be
interesting to clarify this issue. We thank Y. Tachikawa for this comment.
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The integrable models we discussed here for which the relevant set of functions
for the A case is a set of eigenfunctions have natural generalizations to the D
and E cases. In particular the eigenfunctions for D and E cases are known in the
Macdonald limit. These eigenfunctions have been used to compute indices for the
three-punctured spheres D type class S theories [58, 59] and for the E type class
S theories [60]. One can also consider indices with outer-automorphism twists
around the temporal S

1 as was done in [50].
• Performing a different twist of the 6d putting Riemann surface can result in a 4d
theory with N = 1 supersymmetry rather than N = 2 [61]. The resulting N = 1
theories are closely related to the N = 2 class theories and in particular their
indices can be exactly computed resulting in expressions which are very similar
to the ones discussed here [62, 63]. The N = 1 theories can be also built using
outer-automorphism twists and the corresponding indices can be computed as was
done in [64].

• In the process of determining the index we have found it useful to consider indices
of theories with surface defects. The theories of interest admit a variety of other
supersymmetric defects in presence ofwhich the index canbe computed. For exam-
ple, one can compute the Schur index in presence of supersymmetric line operator
wrapping the S

1 [65, 66]. Here the answers are easily obtained in case of Wilson
lines but in case of’t Hooft lines the computation is much more involved [66] if
one chooses to perform the computation without making use of S-duality. Other
examples of extended objects involve domain walls [67] and more general surface
defects than discussed here [35, 47].28

• Finally let us mention that the dualities satisfied by the theories of class S imply
highly non-trivial identities satisfied by the superconformal indices. These iden-
tities take usually the form of equalities between different integrals of elliptic
Gamma functions and or (infinite) sums of orthogonal functions. To give an exam-
ple let us write down the index of the SU(N ) N = 2 SYM with 2N flavors. This
theory corresponds to a sphere with two maximal and two minimal punctures and
its index is proportional to [11],

∮ N−1∏
�=1

dz�

2π i z�

∏
i �= j

�(
pq
t zi /z j ; p, q)

�(zi /z j ; p, q)

N∏
i=1

2N∏
α,β=1

�(t
1
2 (zi yαa)±1; p, q)�(t

1
2 (z−1

i xβb)±1; p, q).

(6.1)

Here a and b are fugacities for the U (1) symmetries associated with the minimal
punctures and x with y are fugacities associated with the maximal punctures. The
S-duality exchanging the two minimal punctures implies that the above integral
is invariant under exchange of a and b. Mathematically this property is not at
all obvious and was proven for the SU(2) case in [69]. As far as we know no
mathematical proof for higher rank cases exists as of this moment. Another simple

28The index of theories of class S in presence of codimension two defects of the 6d theory wrapping
the Riemann surface [68] has not been analyzed yet.
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example of an unproven identity following from S-duality propertied of the index
is the equality of the indices of SO(2n + 1) and S P(n) N = 4 theories [15].

7 Chiral Algebras and the Schur Index

In this section, we give a brief outline of the structure discovered in [5]. The basic
claim is that any N = 2 SCFT admits a closed sector of operators and observables,
isomorphic to a two-dimensional chiral algebra. The Schur index is recognized as
the character of this chiral algebra,

Tr2d (−1)F q L0 ≡ ISchur(q). (7.1)

To understand this surprising claim, we start with the following seemingly innocent
observation. The states that contribute to the Schur index can be equivalently char-
acterized as belonging to the cohomology of a single nilpotent supercharge, a linear
combination of Poincaré and conformal supercharges,

Q := Q1
− + S̃−̇2. (7.2)

Indeed,
{Q ,Q †} = 2L̂0 = E − ( j1 + j2) − 2R, (7.3)

so the harmonic cohomology representatives obey the Schur condition (5.6). By
the state/operator map, states are as always in correspondence with local operators
inserted at the origin. So Schur operators OSchur(0) inserted the origin belong to the
cohomology of Q .

What is the cohomology ofQ more generally? One easily shows thatZ defined in
(5.6) isQ -exact, so a local operator can beQ -closed only if it lies on the plane fixed
by j1 − j2, which we call the chiral algebra plane. We use the complex coordinate
z (and its conjugate z̄) to parametrize the chiral algebra plane. The global conformal
algebra on the chiral algebra plane is the standard sl(2) × sl(2), with generators Ln

and L̄n , for n = −1, 0, 1, and is of course a subalgebra of the four-dimensional
conformal algebra. For example,

L0 = E + j1 + j2
2

, L̄0 = E − ( j1 + j2)

2
. (7.4)

It turns out that
[Q , Ln] = 0 but [Q , Ln] �= 0, (7.5)

so a Schur operator OSchur(z, z̄) inserted away from the origin is not Q -closed.
There is however a simple fix. We introduce a twisted algebra ŝl(2) as the diagonal
subalgebra of sl(2) × su(2)R ,
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L̂−1 := L̄−1 + R− , L̂0 := L̄0 − R , L̂+1 := L̄+1 − R+. (7.6)

(In retrospect, this explains why the combination of charges in the first equation of
(5.6) was denoted by L̂0). Remarkably, the twisted generators L̂n are Q -exact. It
follows that starting from a Schur operator inserted at the origin, we can act with
twisted translations to obtain a Q -closed operator defined at a generic point (z, z̄)
on the chiral algebra plane,

O(z, z̄) = ezL−1+z̄ L̂−1OSchur(0, 0)e
−zL−1−z̄ L̂−1 . (7.7)

ASchur operator is necessarily an su(2)R highestweight state, carrying themaximum
eigenvalue R of the Cartan. Indeed, if this were not the case, states with greater values
of R would have negative L̂0 eigenvalue, violating unitarity. We denote the whole
spin k representation of su(2)R asO(I1···I2k ), with Ii = 1, 2. Then the Schur operator
is OSchur = O11···1(0), and the twisted-translated operator at any other point is given
by

O(z, z̄) := uI1(z̄) · · · uI2k (z̄) O(I1···I2k )(z, z̄) , uI(z̄) := (1, z̄). (7.8)

By construction, such an operator is annihilated by Q , and Q -exactness of L̂−1

implies that its z̄ dependence isQ -exact. It follows that the cohomology class of the
twisted-translated operator defines a purely meromorphic operator,

[O(z, z̄)]Q � O(z). (7.9)

Operators constructed in this manner have correlation functions that are meromor-
phic functions of the insertion points, and enjoy well-defined meromorphic OPEs at
the level of the cohomology. These are precisely the ingredients that define a two-
dimensional chiral algebra! The relation (7.1) of the chiral algebra character with the
Schur index follows at once by observing that L̂0 = 0 implies L0 = E − R, so the
trace formula (5.5) that defines the Schur index is reproduced.

There is a rich dictionary related properties of the 4d SCFT with properties of
its associated chiral algebra. Let us briefly mention some universal features of this
correspondence:

• The global sl(2) symmetry is enhanced to the full Virasoro symmetry, with the
2d holomorphic stress tensor T (z) arising from the Schur operator in the SU(2)R

conserved current, T (z) := [JR(z, z̄)]Q . The 2d central charge is given by

c2d = −12 c4d , (7.10)

where c4d is one of conformal anomaly coefficients of the 4d theory (the one
associated to the Weyl tensor squared).

• The global flavor symmetry of the SCFT is enhanced to an affine symmetry in the
associated chiral algebra, with the affine current J (z) arising from the moment
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map operator, J (z) := [M(z, z̄)]Q . The 2d level is related to the 4d level by
another universal relation,

k2d = −k4d

2
. (7.11)

• The generators of the HL chiral ring give rise to generators of the chiral algebra.
Remarkably, the geometry of the 4d Higgs branch is encoded algebraically in
vacuum module of the chiral algebra: Higgs branch relations correspond to null
states.

Free SCFTs are associated to free chiral algebras. The free hypermultiplet cor-
responds to the chiral algebra of symplectic bosons (q, q̃), of weights ( 12 ,

1
2 ), while

the free vector multiplet corresponds to a (b, c) ghost system of weights (1, 0).
There is also a chiral algebra counterpart of the index gauging prescription (2.12).

We start with a SCFT T , whose chiral algebraχ [T ] is known, and define a newSCFT
TG by gauging a subgroup of the flavor symmetry, such that the gauge coupling is
exactly marginal. A naive guess for finding the chiral algebra associated TG is to take
the tensor product of χ [T ] with a (bAcA) ghost system in the adjoint representation
of G, and restrict to gauge singlets. This would be the direct analog of (2.12), and
is indeed the correct answer at zero gauge coupling. But at finite coupling, some
of the Schur states are lifted and the chiral algebra must be smaller. There is an
elegant prescription to find the quantum chiral algebra: one is instructed to pass to
the cohomology of

QBRST :=
∮

dz

2π i
jBRST(z), jBRST := cA

[
J A − 1

2
f AB

C cBbC

]
, (7.12)

where J A is the G affine current of χ [T ]. This BRST operator is nilpotent precisely
when the βG = 0, which amounts to k2d = −2h∨, where h∨ is the dual Coxeter
number of G. By this prescription, we can in principle find χ [T ] for any Lagrangian
SCFT T .

The chiral algebra contains much more information that the Schur index. The
state space of the chiral algebra can be regarded as a “categorification” of the Schur
index: it consists of the cohomology classes ofQ , whereas the index only counts such
cohomology classes with signs, and so it knows about sets of short multiplets that are
kinematically allowed to recombine but do not. In addition, there may be multiplets
that cannot recombine but nonetheless make accidentally cancelling contributions to
the index, and these are also seen in the categorification. And of course, the chiral
algebra structure goes well beyond categorification—it is a rich algebraic system that
also encodes the OPE coefficients of the Schur operators, and is subject to non-trivial
associativity constraints.

For theories of classS, there is a generalized topological quantum field theory that
associates to a decorated Riemann surface the corresponding chiral algebra. Asso-
ciativity of the gluing of Riemann surfaces imposes highly non-trivial requirements
on the chiral algebras of the elementary building blocks Tn . Finally, let us mention
that the task of reducing the rank of a puncture can be accomplished directly in the
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chiral algebra setting, by a generalization of quantum Drinfeld-Sokolov reduction.
We refer to [5, 70] for a detailed discussion of this very rich structure.

8 Some Open Questions

We conclude by discussing some open problems and possible generalizations of
the topics discussed in this review. The main focus of this review was the partition
function on S

3 × S
1 for N = 2 superconformal theories in four dimensions: gener-

alizations and extensions of our logic can be entertained by relaxing each of these
qualifiers.

• More partition functions
A rather natural generalization is to consider indices with the theory quantized on
more generic manifolds, i.e. M3 × S

1. For example, one can take M3 = S
3/Zr ,

the lens space [71]. The superconformal index discussed in this paper is a special
case of the partition functions defined using this sequence of manifolds, r = 1.
The lens space with r > 1 has a non-contractable cycle and thus is sensitive to
non-local objects in the theory. In particular, unlike the superconformal index it
can distinguish theories differing by choices of allowed line operators and/or by
choices of the global structure of the gauge groups. One would expect that as
long as the manifold on which the partition function is computed has an S

1 the
arguments of this paper can be reiterated. In particular the partition functions in
these cases should be computable by a 2d TQFT. This has been discussed in the
case of the lens space [72, 73], and it would be interesting to extend the analysis
to other partition functions, e.g. T

2 × S
2 [74, 75].

• More theories
The superconformal index is not yet fixed for all N = 2 theories in 4d. For
example, we do not know at the moment how to compute the index depending
on the most general set of fugacities for Argyres-Douglas theories and theories
corresponding to Riemann surfaces with irregular singularities [76].29 It would be
very interesting to fill this gap in our current understanding. To do so it might be
useful to exploit the chiral algebra associated to these theories and its relation to
the (Schur) index. Another, related, question is what kind of partition functions
can be exactly computed for N = 2 theories which are not superconformal.

• Properties of the index
The indices which we can compute have many interesting properties not all of
whichwere sufficientlywell studied. For example, the 4d indices have factorization
properties [78, 79] similar to the ones studied for the partition functions of 3d
theories [32, 80, 81]. Another example is that of modular properties the indices
have under non linear transformations of some of the chemical potentials [48, 82]
(see also [30, 83–85]).

29See however [77] for some recent discussion.
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• Less supersymmetry and/or other space-time dimensions
A very important open question is whether the methodology which allowed us to
fix the index of a large class of N = 2 theories can be applied to theories with less
supersymmetry and/or theories in different space-time dimensions: this remains
to be seen.

• Relations to mathematics
The superconformal index is directly related to different branches of exciting
mathematics. To list just couple examples: it is a goldmine for extracting identities
satisfied by elliptic hypergeometric integrals; and it is closely related to quantum
mechanical integrable systems with their very rich mathematical structure. There
is a real chance here for a mutually beneficial dialogue between the mathematics
community working on these topics and the physics community.
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Appendix 1: Plethystics

In this appendix we collect the definitions of some special functions and combi-
natorial objects used in the bulk of the review. The Pochammer symbol is defined
as

(z; p) :=
∞∏

�=0

(1 − z p�). (8.1)

The theta-function is given by

θ(z; p) := (z; p) (p z−1; p). (8.2)

The plethystic exponential is given by

PE [ f (x, y, . . .)] := exp

[ ∞∑
�=1

1

�
f (x�, y�, . . .)

]
. (8.3)
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In particular

PE[x] = 1

1 − x
, PE[−x] = 1 − x . (8.4)

The inverse of the plethystic exponential is the logarithm, given by

PL [ f (x, y, . . .)] :=
∞∑

�=1

μ(�)

�
ln f (x�, y�, . . .), (8.5)

whereμ(�) is theMobiusmu-function. Finally the ellipticGamma function is defined
as

�(z; p, q) := PE

[
z − p q

z

(1 − p)(1 − q)

]
=

∞∏
i, j=0

1 − pi+1q j+1z−1

1 − pi q j z
. (8.6)

Appendix 2: N = 2 Superconformal Representation Theory

In this appendix (adapted from [5]) we review the classification of short representa-
tions of the four-dimensional N = 2 superconformal algebra [2, 39, 86].

Short representations occur when the norm of a superconformal descendant state
in what would otherwise be a long representation is rendered null by a conspiracy of
quantum numbers. The unitarity bounds for a superconformal primary operator are
given by

E � Ei , ji �= 0 ,

E = Ei − 2 or E � Ei , ji = 0, (8.7)

where we have defined

E1 = 2 + 2 j1 + 2R + r , E2 = 2 + 2 j2 + 2R − r , (8.8)

and short representations occur when one or more of these bounds are saturated.
The different ways in which this can happen correspond to different combinations
of Poincaré supercharges that will annihilate the superconformal primary state in
the representation. There are two types of shortening conditions, each of which has
four incarnations corresponding to an SU(2)R doublet’s worth of conditions for each
supercharge chirality:

BI : QI
α |ψ〉 = 0 , α = 1, 2 (8.9)

B̄I : Q̃Iα̇|ψ〉 = 0 , α̇ = 1, 2 (8.10)
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Table 4 Unitary irreducible representations of the N = 2 superconformal algebra

Shortening Quantum number
relations

DO KMMR

∅ E � max(E1, E2) A

R,r( j1, j2)

aa
, j1, j2,r,R

B1 E = 2R + r j1 = 0 BR,r(0, j2) ba0, j2,r,R

B̄2 E = 2R − r j2 = 0 B̄R,r( j1,0) ab j1,0,r,R

B1 ∩ B2 E = r R = 0 Er(0, j2) ba0, j2,r,0

B̄1 ∩ B̄2 E = −r R = 0 Ēr( j1,0) ab j1,0,r,0

B1 ∩ B̄2 E = 2R j1 = j2 =
r = 0

B̂R bb0,0,0,R

C1 E = 2+ 2 j1 + 2R + r CR,r( j1, j2) ca j1, j2,r,R

C̄2 E = 2+ 2 j2 + 2R − r C̄R,r( j1, j2) ac j1, j2,r,R

C1 ∩ C2 E = 2+2 j1 + r R = 0 C0,r( j1, j2) ca j1, j2,r,0

C̄1 ∩ C̄2 E = 2+2 j2 − r R = 0 C̄0,r( j1, j2) ac j1, j2,r,0

C1 ∩ C̄2 E = 2 + 2R + j1 + j2
r = j2 − j1

ĈR( j1, j2) cc j1, j2, j2− j1,R

B1 ∩ C̄2 E = 1 + 2R + j2
r = j2 + 1

DR(0, j2) bc0, j2, j2+1,R

B̄2 ∩ C1 E = 1+2R + j1−r =
j1 + 1

D̄R( j1,0) cb j1,0,− j1−1,R

B1 ∩ B2 ∩ C̄2 E = r = 1 + j2r =
j2 + 1R = 0

D0(0, j2) bc0, j2, j2+1,0

C1 ∩ B̄1 ∩ B̄2 E = −r = 1 + j1
−r = j1 + 1R = 0

D̄0( j1,0) cb j1,0,− j1−1,0

CI :
{

εαβQI
α |ψ〉β = 0 , j1 �= 0

εαβQI
α QI

β |ψ〉 = 0 , j1 = 0
, (8.11)

C̄I :
{

εαβQ̃Iα |ψ〉β = 0 , j2 �= 0

εαβQ̃IαQ̃Iβ |ψ〉 = 0 , j2 = 0
, (8.12)

The different admissible combinations of shortening conditions that can be simulta-
neously realized by a single unitary representation are summarized in Table4, where
the reader can also find the precise relations that must be satisfied by the quan-
tum numbers (E, j1, j2, r, R) of the superconformal primary operator, as well as
the notations used to designate the different representations in [39] (DO) and [2]
(KMMR).30

At the level of group theory, it is possible for a collection of short representations
to recombine into a generic long representation whose dimension is equal to one of
the unitarity bounds of (8.7). In the DO notation, the generic recombinations are as
follows:

30We follow the R-charge conventions of DO.
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A2R+r+2+2 j1
R,r( j1, j2)

� CR,r( j1, j2) ⊕ CR+ 1
2 ,r+ 1

2 ( j1− 1
2 , j2), (8.13)

A2R−r+2+2 j2
R,r( j1, j2)

� C̄R,r( j1, j2) ⊕ C̄R+ 1
2 ,r− 1

2 ( j1, j2− 1
2 ), (8.14)

A2R+ j1+ j2+2
R, j1− j2( j1, j2)

� ĈR( j1, j2) ⊕ ĈR+ 1
2 ( j1− 1

2 , j2) ⊕ ĈR+ 1
2 ( j1, j2− 1

2 ) ⊕ ĈR+1( j1− 1
2 , j2− 1

2 ).

(8.15)

There are special cases when the quantum numbers of the long multiplet at thresh-
old are such that some Lorentz quantum numbers in (8.13) would be negative and
unphysical:

A2R+r+2
R,r(0, j2)

� CR,r(0, j2) ⊕ BR+1,r+ 1
2 (0, j2), (8.16)

A2R−r+2
R,r( j1,0)

� C̄R,r( j1,0) ⊕ B̄R+1,r− 1
2 ( j1,0), (8.17)

A2R+ j2+2
R,− j2(0, j2)

� ĈR(0, j2) ⊕ DR+1(0, j2) ⊕ ĈR+ 1
2 (0, j2− 1

2 ) ⊕ DR+ 3
2 (0, j2− 1

2 ), (8.18)

A2R+ j1+2
R, j1( j1,0)

� ĈR( j1,0) ⊕ ĈR+ 1
2 ( j1− 1

2 ,0) ⊕ D̄R+1( j1,0) ⊕ D̄R+ 3
2 ( j1− 1

2 ,0), (8.19)

A2R+2
R,0(0,0) � ĈR(0,0) ⊕ DR+1(0,0) ⊕ D̄R+1(0,0) ⊕ B̂R+2. (8.20)

The last three recombinations involve multiplets that make an appearance in the
associated chiral algebra described in this work. Note that the E , Ē , B̂ 1

2
, B̂1, B̂ 3

2
, D0,

D̄0, D 1
2
and D̄ 1

2
multiplets can never recombine, along with B 1

2 ,r(0, j2) and B̄ 1
2 ,r( j1,0).
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A Review on SUSY Gauge Theories on S3

Kazuo Hosomichi

Abstract We review the exact computations in 3D N = 2 supersymmetric gauge
theories on the round or squashed S3 and the relation between 3D partition functions
and 4D superconformal indices. This is part of a combined review on the recent
developments of the 2d–4d relation, edited by J. Teschner.

1 Introduction

Localization principle has been a powerful tool in the study of supersymmetric field
theories which allows one to evaluate certain SUSY-preserving quantities by explicit
path integration. It was first applied to 3D SUSY gauge theories on S3 in [1], where
a closed formula for partition function and Wilson loop was obtained for a class of
N ≥ 2 superconformal Chern-Simons matter theories. With generalization by [2,
3], exact formula is now available for arbitrary 3DN = 2 SUSY gauge theories. The
essential idea of localization is that, since nonzero contribution to supersymmetric
path integrals arise only from SUSY invariant configurations of bosonic fields called
saddle points, infinite dimensional path integrals can be reduced to finite-dimensional
integrals over saddle points. It turned out that the analysis of 3D gauge theories on
S3 is much simpler than the case of 4D N = 2 SUSY gauge theories on S4 [4] (see
[V:6] for a review in this volume), due to the absence of saddle points with non-trivial
topological quantum numbers.

The exact partition function, which depends on the radius of S3 as well as some
of the coupling constants, is one of the most basic quantities characterizing N = 2
supersymmetric theories. More information about the theories can be obtained by
putting them on different 3D backgrounds preserving rigid supersymmetry and eval-
uating partition functions. In [5] it was shown that one can construct rigid N = 2
SUSY gauge theories on the ellipsoid S3

b with U (1) × U (1) isometry,
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b2(x2
0 + x2

1 ) + b−2(x2
2 + x2

3 ) = 1, (1.1)

with a suitable background vector and scalar fields. The additional fields which
are required to make the ellipsoid supersymmetric have their origin in the off-shell
supergravity [6], where the fully generalized form of Killing spinor equation appears
as local SUSY transformation laws of fermions in the supergravity multiplet. The
ellipsoid partition function was shown to depend on the squashing parameter b in
a nontrivial manner. Another important background with rigid supersymmetry is
S2 × S1 which leads to the path integral definition of the 3D superconformal index
[7, 8]. There are also results on more general 3D manifolds with a slightly different
formalism based on topological twist [9, 10].

Another useful approach to find supersymmetric deformations of the round S3

is the Scherk-Schwarz like reduction of S1 × S3, which means that one includes
finite rotation in the S3 direction in the periodic identification of fields along S1. This
approach also makes an explicit connection between the 3D partition functions and
4D superconformal indices [11–14], and in particular the relation between nonzero
angular momentum fugacity in 4D and the deformed geometry in 3D [15, 16]. As
was shown in [17, 18], the dimensional reduction results in the familiar squashed
S3 with SU (2) × U (1) isometry, with some additional background fields turned
on. However, there are two inequivalent reductions whose effect on the 3D physical
quantities are totally different.

Meanwhile, the study of certain domain walls in 4D N = 2 superconformal
gauge theories in connection with AGT relation led to a conjecture that there is a
precise agreement between quantities in 3D gauge theories on S3 and the represen-
tation theory of Virasoro or W algebras [19, 20]. In general, compactification of a
(2, 0) theory on a Riemann surface � gives rise to several different (Lagrangian)
descriptions that are related to one another by S-duality [21]. The S-duality domain
walls are defined by gluing two mutually S-dual theories along an interface, and
therefore have a natural connection to the elements of the mapping class group or
Moore-Seiberg groupoid operation acting on conformal blocks. In this respect, it is
important that the squashing parameter b corresponds to the Liouville or Toda cou-
pling constant. Indeed, one of the building blocks of the ellipsoid partition function
is the double-sine function sb(x), which in our context is most conveniently defined
as the zeta-regularized infinite product [22]

sb(x) =
∏

m,n∈Z≥0

mb + nb−1 + Q
2 − i x

mb + nb−1 + Q
2 + i x

.

(
Q ≡ b + 1

b

)
(1.2)

The same function appears in the structure constants of Liouville or Toda CFTs with
coupling b.

This review is organized as follows. In Sect. 2 we review the correspondence
between a 3D gauge theory and 2D conformal field theories in the canonical example
of the S-duality domain wall in N = 2∗ SU (2) super Yang-Mills theory. In Sect. 3
we review the localization computation for 3D gauge theories on the round S3 and the
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ellipsoid S3
b , and summarize the formulae for partition function as well as expectation

values of loop observables. In Sect. 4 we review the path integral computation of 4D
superconformal index, and see how the squashed S3 background arises as a result of
Scherk-Schwarz reduction.

2 3D AGT Relation

We review here the correspondence between 3D gauge theories and 2D conformal
field theories in one typical example. The original idea was given in [19] which
discussed the S-duality domain walls in 4DN = 2 superconformal theories of class
S, namely the compactification of (2, 0)-theories on puncturedRiemann surfaces (see
[V:2] for a review). It is important to recall here that, for this class of theories, there are
different gauge theory descriptions corresponding to different pants decomposition σ

of the surface�, and they are equivalent (S-dual) to one another. Also, if Lagrangian
description is available, its gauge couplingq is determined from the complex structure
of � which we regard to take values in Teichmüller space.

2.1 Janus and S-Duality Domain Walls

A Janus domain wall is a supersymmeric deformation of gauge theories whichmakes
the complexified gauge coupling jump across thewall. Consider a theory of class S on
S4 with a Janus wall along the equator S3 where the two (left and right) hemispheres
with couplings q and q ′ meet. The 4D partition function in the presence of the wall
should be given by

Z =
∫

dν(a) F (σ )
a,m(q̄)F (σ )

a,m(q ′), (2.1)

as the product of the instanton partition functionsF integrated over the real Coulomb
branch parameters a with an appropriate measure. Here m denotes a collection of
mass parameters, and σ labels a choice of pants decomposition. For generic complex
structure q there is a natural pants decomposition which leads to a weakly coupled
gauge theory description, and we choose σ to be the natural one at q.

As q ′ is varied away from q, the gauge theory on the right hemisphere becomes
strongly coupled. To analytically continue the formula (2.1) in such a situation, one
needs to S-dualize the right hemisphere and move to another pants decomposition
σ ′ which gives a weakly coupled description at q ′. We then have a system of two
mutually S-dual theories meeting along the so-called S-duality domain wall. In the
special case where q ′ is an image of q under the mapping class group, σ and σ ′ are
equivalent so the theories on the two sides of the wall are the same. However, their
degrees of freedom are connected across the wall via S-duality.

http://dx.doi.org/10.1007/978-3-319-18769-3_2
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Under the AGT relation, the instanton partition functions correspond to Liouville
or Toda conformal blocks labeled by a fusion channel σ and the internal and external
momenta a, m. They should therefore transform under S-duality in the sameway that
the corresponding conformal blocks transform under the Moore-Seiberg groupoid
operation g,

F (σ )
a,m(q ′) =

∫
dν(a′) ga,a′,m F (σ ′)

a′,m(q ′). (2.2)

By substituting (2.2) into (2.1) we obtain a formula for the S4 partition function in
the presence of an S-duality domain wall. Now the integration variables get doubled,
as the Coulomb branch parameters on the two sides of the wall can vary indepen-
dently. At this point, it is natural to expect that the integration kernel ga,a′,m in (2.2)
corresponds to the degrees of freedom localized on the S-duality wall between the
two 4D theories in their vacua a, a′.

In general, the S-duality walls should be described by some local 3Dworldvolume
field theories coupled to the 4D bulk degrees of freedom. In the following we take the
example ofN = 2∗ SYM theory, which is a deformation ofN = 4 SYM by a mass
of the adjoint hypermultiplet. The S-duality transformations for this theory form the
group SL(2,Z) and we are interested in the wall corresponding to the “S-element”.
For SU (N ) gauge group, we expect the correspondence with the AN−1 Toda theory
on a one-punctured torus. In the Liouville case N = 2, the kernel for the S-duality
operation acting on torus 1-point conformal block is known explicitly [23],

g(p,p′,pE ) = 2
3
2

sb(pE )

∫
R

dσ
sb

(
p′ + σ + 1

2 pE + i Q
4

)

sb

(
p′ + σ − 1

2 pE − i Q
4

) sb

(
p′ − σ + 1

2 pE + i Q
4

)

sb

(
p′ − σ − 1

2 pE − i Q
4

)e4π i pσ .

(2.3)

Here b is the Liouville coupling and Q ≡ b+b−1. The Liouville momenta p, p′, pE

are related to the conformal weight h labeling the Virasoro highest weight represen-
tations by the formula h = p2 + Q2/4. The double-sine function sb(x) is defined by
(1.2), and will appear frequently later in this article.

2.2 Example: N = 2∗ SYM

A classification of boundary conditions and domain walls for N = 4 SYM theories
with general gauge group G was given in [24, 25], and the action of S-duality on
these objects was also studied. The 3D theory on the S-duality domain walls, called
T [G], plays a central role in this story. For SU (N ) gauge group, it was shown that
the wall theory T [SU (N )] is given by a 3D N = 4 SUSY quiver gauge theory
corresponding to the diagram in the left of Fig. 1. Here the circles and the square
correspond respectively to the gauge symmetry U (1) × U (2) × · · · × U (N − 1)
and a global U (N ) symmetry, and the links correspond to hypermultiplets. The
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Fig. 1 The quiver diagram and a type IIB brane construction for the 3D gauge theory T [SU (N )]

Coulomb and Higgs branch moduli spaces both have an SU (N ) symmetry which
can be coupled to the gauge fields in the bulk.

A simple type IIB brane construction can reproduce this fact. Consider N D3-
branes stretched along the directions 0126 with −L ≤ x6 ≤ L , ending on the
D5-branes at x6 = ±L extending in the directions 012789. Due to the boundary
condition at D5-branes, the massless modes on D3-brane wordlvolume decompose
into 3DN = 4 vector and hypermultiplets. The vectormultiplet fields obey Dirichlet
boundary condition, so for small L they are frozen to take vacuum configuration. As
was explained in [24], to avoid D3-branes developing Nahm poles at the boundary,
we need to introduce N D5-branes at each end so that each D5-brane has precisely
one D3-brane ending on it. Nonzero (real) Coulomb branch parameter a can then be
introduced by putting the i th D5-branes at, say, (x3, x4, x5) = (ai , 0, 0) at each end.

Consider next the same brane configuration but now with an S-duality domain
wall on the D3-brane worldvolume at x6 = 0. It can be eliminated by applying the
type IIB S-duality combined with the exchange of 345 and 789 directions to the right
half space x6 ≥ 0, but then the N D5-branes at x6 = L turn into N NS5-branes
(012345). The resulting brane configuration as shown on the right of Fig. 1 is what
precisely gives rise to the above-mentioned quiver gauge theory. The D5-branes and
NS5-branes are now free to move independently. The positions of NS5-branes a turn
into N − 1 Fayet-Iliopoulos parameters, whereas those of D5-branes a′ determine
the masses of the U (N − 1) × U (N ) bifundamental hypermultiplets.

Let us now focus on the simplest nontrivial case N = 2. In 3D N = 2 termi-
nology, the wall theory T [SU (2)] is a U (1) gauge theory with five chiral multiplets
φ, q1, q2, q̃1, q̃2. The neutral chiral field φ is a part ofN = 4 U (1) vector multiplet
and has R-charge 1. The two electrons q1, q2 and the two positrons q̃1, q̃2 have the
R-charge 1/2, and they form two flavors of hypermultiplets.N = 4 supersymmetry
requires a cubic superpotential of the form q̃ iφqi .

As we have seen, the Coulomb branch parameter a appears in the wall theory as
theU (1) FI parameter, while a′ is the mass for charged chiral fields which breaks the
SU (2) flavor symmetry to U (1). In addition, the bulk N = 2∗ mass parameter
m should also show up in the wall theory in a way that preserves 3D N = 2
supersymmetry as well as the SU (2) isometries of the Coulomb and Higgs branches.
It was argued in [20] that m is the mass for the chiral fields associated to the global
symmetry under which qi , q̃ i have charge +1 and φ has charge −2.
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It was observed in [20] that the exact partition function of this mass-deformed
T [SU (2)] theory on S3 agrees precisely with the kernel of the S-duality transforma-
tion (2.3) for b = 1, under the identification

p = a, p′ = a′, pE = m. (2.4)

It was then shown in [5] that the formula (2.3) for general values of the coupling b
can be reproduced by deforming the round S3 into an ellipsoid S3

b . The derivation of
the formulae which are necessary to confirm this agreement will be reviewed in the
next section.

2.3 A 3D Picture

Aswe have seen, Janus or S-duality domainwalls correspond to smooth evolutions of
the complex structure of a surface, and therefore have an interpretation asM5-branes
wrapping three-manifolds. Let us explain this in the example of N = 2∗ SYM.

Consider a Janus domain wall corresponding to a path in Teichmüller space
between two points of extreme weak coupling that are S-dual image of each other.
As one approaches towards one end from any point along the path, the torus �

becomes thinner and thinner until it looks like the Moore-Seiberg graph �1 for the
torus one-point conformal blocks. In this process, two-dimensional part of the M5-
brane worldvolume sweeps out a 3D solid torus B1 with a codimension-2 defect �1

left inside (Fig. 2 left). One of the two basis 1-cycles α, β of the torus, say α, shrinks
to zero length inside B1. Starting from the same point on the path and moving toward
the other end, one obtains another solid torus B2 with a defect �2, inside which the
cycle β shrinks to zero length. The two solid tori B1 and B2 glued together makes an
S3 with a defect � which is the union of the two graphs �1, �2 joined at the external

Fig. 2 (left) The process of a one-punctured torus degenerating into aMoore-Seiberg graph, thereby
sweeping out a solid torus with a network of defect inside. (right) Two such solid tori glued together
to make an S3 with a network of defect
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legs (Fig. 2 right).� therefore consists of two circle defects and a segment connecting
them, and the three components are naturally labeled by the momenta p, p′, pE .

The 3D theories on domain walls or boundaries of 4D class S theories are now
regarded as part of a much bigger class of theories which arise from M5-branes
wrapping hyperbolic 3-manifolds. The relation between 3D SUSY gauge theories
and hyperbolic 3-manifolds also gives rise to an AGT-like correspondence between
3D supersymmetric theories and Chern-Simons theories with non-compact gauge
groups. For more details on this topic, see the review [V:11] in this volume.

3 3D Partition Function

In this section we review the construction of 3D N = 2 supersymmetric gauge
theories on a class of rigid SUSY backgrounds. Then we concentrate on the theories
on the round sphere and the ellipsoids, and show how to compute partition function as
well as the expectation values ofWilson and vortex loops using localization principle.

3.1 3D N = 2 SUSY Theories

Let us begin by summarizing our convention for 3D spinor calculus. We use the
standard Pauli’s matrices for the Diracmatrices γ a , and also γ ab = 1

2 (γ
aγ b −γ bγ a).

To define bilinear products of spinors, we use an anti-symmetric 2×2 matrix C with
nonzero elements C12 = −C21 = 1. Writing the spinor indices explicitly, various
bilinears are defined as follows.

εψ ≡ εαCαβψβ, εγ aψ ≡ εαCαβ(γ a)βγ ψγ , etc. (3.1)

In rigid SUSY theories on curved backgrounds, the parameters of SUSY trans-
formation ε are no longer constants, but are solutions to the Killing spinor equation.
For 3D N = 2 supersymmetric theories, the SUSY is parametrized by two Killing
spinors ε, ε̄ of R-charge +1,−1. The most general form of the Killing spinor equa-
tion can be found from off-shell supergravity [26] as the condition that gravitini are
invariant under local SUSY for a suitable choice of parameters ε, ε̄.

Dmε =
(
∂m + 1

4
ωab

m γ ab − iVm

)
ε = i Mγmε − iUmε − 1

2
εmnpU nγ pε,

Dm ε̄ =
(
∂m + 1

4
ωab

m γ ab + iVm

)
ε̄ = i Mγm ε̄ + iUm ε̄ + 1

2
εmnpU nγ p ε̄. (3.2)

Here γm ≡ ea
mγ a with ea

m the vielbein, and throughout this article we regard ε, ε̄

as Grassmann even. Supersymmetric backgrounds are therefore characterized by the
metric as well as theU (1)R gauge field Vm and other auxiliary fields M, Um in the off-
shell gravity multiplet. In this section we restrict our discussion to the backgrounds

http://dx.doi.org/10.1007/978-3-319-18769-3_11
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with
Um = 0, (3.3)

which include the round sphere and ellipsoids. More general supersymmetric back-
grounds were studied systematically in three and four dimensions in [26–29]. For
3D N = 2 systems it was shown that the existence of a Killing spinor implies that
the background admits an almost contact metric structure.

The fields in 3D N = 2 theories are grouped into two kinds of supermultiplets.
A vector multiplet consists of a vector Am , a real scalar σ , a pair of spinors λ, λ̄

and an auxiliary scalar D which are all Lie algebra valued. They transform under
supersymmetry as

δAm = − i

2
(εγm λ̄ + ε̄γmλ),

δσ = 1

2
(ελ̄ − ε̄λ),

δλ = 1

2
γ mnεFmn − εD − iγ mεDmσ,

δλ̄ = 1

2
γ mn ε̄Fmn + ε̄D + iγ m ε̄Dmσ,

δD = i

2
ε
(
γ m Dm λ̄ + [σ, λ̄] + i M λ̄

)
− i

2
ε̄
(
γ m Dmλ − [σ, λ] + i Mλ

)
. (3.4)

A chiral multiplet consists of a scalar φ, a spinor ψ and an auxiliary scalar F in an
arbitrary representation R of the gauge group. Their conjugate fields (φ̄, ψ̄, F̄) are
in the conjugate representation R̄. If one assign the R-charge r to φ and −r to φ̄,
the R-charge of the remaining fields is determined from the supersymmetry as in
Table1. The transformation rule for these fields is given by

δφ = εψ, δψ = iγ m ε̄Dmφ + i ε̄σφ + 2ri

3
γ m Dm ε̄φ + εF,

δφ̄ = ε̄ψ̄, δψ̄ = iγ mεDm φ̄ + iεφ̄σ + 2ri

3
γ m Dmεφ̄ + ε̄ F̄,

δF = ε̄(iγ m Dmψ − iσψ − i λ̄φ) + i

3
(2r − 1)Dm ε̄γ mψ,

δ F̄ = ε(iγ m Dmψ̄ − iψ̄σ + i φ̄λ) + i

3
(2r − 1)Dmεγ mψ̄. (3.5)

Table 1 The scaling weight and the R-charge of the fields

Fields ε ε̄ Aa σ λ λ̄ D̃ φ φ̄ ψ ψ̄ F F̄

Weight − 1
2 − 1

2 1 1 3
2

3
2 2 r r r + 1

2 r + 1
2 r + 1 r + 1

R-charge 1 −1 0 0 1 −1 0 r −r r − 1 1 − r r − 2 2 − r
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Here the quantities in the representation R (R̄) are regarded as the column vectors
(resp. row vectors), so that the vector multiplet fields act on them from the left (right).

Supersymmetric Lagrangian consists of the following invariants. Those involving
only vector multiplet fields are the Chern-Simons term (for which wewrite the action
integral),

SCS = ik

4π

∫
Tr

(
AdA − 2i

3
A3 − √

gd3x
(
λ̄λ + 2σ D + 4Mσ 2

) )
, (3.6)

the Yang-Mills term and the Fayet-Iliopoulos term for abelian gauge symmetry.

Lg = Tr

(
1

2
Fmn Fmn + Dmσ Dmσ + D2 + i λ̄γ m Dmλ − i λ̄[σ, λ] − M λ̄λ

)
,

LFI = − iζ

π
(D + 4Mσ) . (3.7)

The kinetic term for chiral matters is given by

Lm = Dm φ̄Dmφ + φ̄σ 2φ + 4i(r − 1)M φ̄σφ − 2r(2r − 1)M2φ̄φ + r R

4
φ̄φ − i φ̄Dφ

+F̄ F − iψ̄γ m Dmψ + iψ̄σψ − (2r − 1)Mψ̄ψ + iψ̄λ̄φ − i φ̄λψ, (3.8)

with R the scalar curvature of the background. The F-termof gauge invariant products
of chiral multiplets with R-charge r = 2 is also invariant, but one can show that the
result of localization computation does not depend on the F-term couplings. Note
that, while the bosonic part of Lg is positive definite, that of Lm has positive definite
real part only when the value of r is chosen appropriately. For example, for round
sphere the positivity holds only when 0 < r < 2.

The real mass for matters can be introduced by gauging the flavor symmetry by
a background vector multiplet. The value of the background fields is chosen so as to
preserve supersymmetry,

σ (bg) = m (constant), D(bg) = A(bg)
m = λ(bg) = λ̄(bg) = 0. (3.9)

3.2 SUSY Localization

To apply localization principle to supersymmetric path integrals, one first chooses
an arbitrary supercharge δ, and then argue that the nonzero contribution to the path
integral can be localized to the vicinity of saddle points, namely bosonic field con-
figurations invariant under δ. This means that δ-transform of all the fermions must
vanish on saddle points. For the theories of our interest, a useful observation is that
both Lg and Lm are SUSY exact for any choice of δ, which follows from
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ε̄ε · Lg = δεδε̄Tr
(
λ̄λ + 4Dσ + 8Mσ 2

)
,

ε̄ε · Lm = δεδε̄

(
ψ̄ψ − 2i φ̄σφ + 4M(r − 1)φ̄φ

)
. (3.10)

Namely, they can be written as δ-variation of some fermionic quantities, so they have
to vanish at saddle points. A necessary condition for vector multiplet fields at saddle
points follows from Lg = 0,

Fmn = Dmσ = D = 0. (3.11)

This is actually sufficient for the saddle point condition δλ = δλ̄ = 0 to be satisfied.
For theories on the round S3 or its deformations, saddle points are thus labeled by
constant scalar field σ and vanishing gauge field, up to gauge transformations. For
non-simply connected manifolds such as lens spaces, one also has choices of Wilson
lines along non-contractible loops [30–32]. Formattermultiplets, an obvious solution
to δψ = δψ̄ = 0 is

φ = φ̄ = F = F̄ = 0. (3.12)

To show that this is the unique saddle point, the simplest way is to check that the
kinetic operator for φ in Lm has no zeromodes, so that Lm vanishes only at (3.12).
For theories on the round sphere, one can show by a full spectrum analysis that there
are no zeromodes on all the saddle points as long as 0 < r < 2. This allows us to
assume that the spectrum remains free of zeromodes on the ellipsoids S3

b as long as
b is reasonably close to 1. The exact partition function on S3

b turns out to be analytic
in b, so it can be continued to arbitrary b > 0.

Since Lg and Lm are exact, the value of supersymmetric path integrals does not
change if one adds them to the original Lagrangian with arbitrary coefficients tg, tm.
By making those coefficients very large, one can bring the theory into extreme weak
coupling. In this limit the path integral simplifies and can be performed in two steps.
One first integrates over fluctuations around each saddle point, for which Gaussian
approximation is exact. The result is then integrated over the space of saddle points
labeled by constant σ .

3.3 Partition Function on the Round Sphere

As the simplest and yet the most important case, let us reproduce here the exact
partition function of general N = 2 SUSY theories on the unit round S3.

We write the unit round metric as ds2 = eaea , and identify the dreibein ea =
ea

mdxm with the left-invariant one-forms on the SU (2) group manifold via

g−1dg = ieaγ a, g ∈ SU (2). (3.13)
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The isometry SU (2)L × SU (2)R acts on g from its left and right. Note that, under
the above choice of the local Lorentz frame, SU (2)R acts on fields as local Lorentz
rotation as well as isometry rotation.

Let us summarize here the spectrum of free fields on the round sphere. We first
notice that one can use the inverse dreibein eam to define a triplet of vector fields
Ra ≡ 1

2i eam∂m which generates SU (2)R. Using them, the kinetic terms for free
complex scalars and spinors can be rewritten as

φ̄ �scalar
S3 φ ≡ gmn∂m φ̄∂nφ = φ̄ · 4RaRaφ,

−iψ̄ /DS3ψ ≡ −iψ̄γ m Dmψ = ψ̄
(
4SaRa + 3

2

)
ψ, (3.14)

where Sa = 1
2γ

a is the generator of local Lorentz SU (2) acting on spinors. Likewise,
for a free Maxwell field A = Aaea and its field strength ∗dA = Faea , one finds

Fa = 2iεabcRb Ac + 2Aa, or 	F = (2 + 2RaT a) 	A, (3.15)

where T a is the generator of local Lorentz SU (2) in the triplet representation. The
Maxwell kinetic operator for gauge field is given by �vector

S3 ≡ (∗d)2. The space of
scalar, spinor and vector wave functions on S3 thus form the following representation
of SU (2)L × SU (2)R.

Hscalar =
⊕
n≥0

(
n
2 ,

n
2

)
n(n+2) ,

Hspinor =
⊕
n≥0

{ (
n
2 ,

n+1
2

)
n+3/2 ⊕ (

n+1
2 , n

2

)
−n−3/2

}
,

Hvector =
⊕
n≥0

{ (
n
2 ,

n+2
2

)
(n+2)2 ⊕ (

n+1
2 , n+1

2

)
0 ⊕ (

n+2
2 , n

2

)
(n+2)2

}
. (3.16)

For convenience, we put the eigenvalue of �scalar
S3 ,−i /DS3 or �vector

S3 for each irre-
ducible representation as suffix. Note that the nonzero eigenmodes of �vector

S3 are
divergenceless vectors while the zero eigenmodes are total divergences.

On the unit round S3, the simplest form of the Killing spinor equation

(
∂m + 1

4
ωab

m γ ab
)
ε = i Mγmε, M = ±1

2
(3.17)

has solutions. First, in the left-invariant local Lorentz frame, any constant spinor
satisfies (3.17) with M = + 1

2 . The two independent solutions are left-invariant and
transform as a doublet of SU (2)R. In addition, there are two independent solutions
to (3.17) with M = − 1

2 both of which are given by g−1 times a constant spinor.
They are therefore right-invariant and form an SU (2)L doublet. In this subsection,
we choose the background Vm = 0, M = 1

2 .
Let us now turn to the computation of partition function using the localization

principle. The supersymmetric saddle points are labeled by the constant value
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of the vector multiplet scalar σ(x) = a. The Chern-Simons or Fayet-Iliopoulos
Lagrangians take nonzero value at the saddle point a according to the formula

e−SCS = eiπkTr(a2), e−SFI = e4π iζa, (3.18)

In addition, we need the one-loop determinant which arise from integrating over
all the fluctuation modes at the saddle point a under Gaussian (= one-loop)
approximation.

Wefirst study the vectormultiplet for a non-abelian gauge symmetryG. Following
the general prescription, we add to the original Lagrangian a SUSY exact regulator
term tgLg and take tg → ∞. In this limit the regulator term dominates the path
integral weight, and the Gaussian approximation becomes exact. The quadratic part
of Lg in the Lorentz gauge ∂m Am = 0 is

Lg = Tr

[
	A(

�vector
S3 +a2

adj

) 	A + σ̂�scalar
S3 σ̂ + D2 − λ̄

(−i /DS3 + 1
2 + iaadj

)
λ

]
. (3.19)

Here we introduced the notation aadj for a in the adjoint representation, namely
aadjλ ≡ [a, λ], and σ̂ denotes the fluctuation of σ around its saddle point value a. To
fix the gauge, we express the gauge field A as a sum of a divergenceless vector field
Â and a total derivative dϕ, and insert the delta functional for ϕ. The Faddeev-Popov
ghost determinant is trivial since gauge symmetry is just the shift of ϕ (up to terms
irrelevant in the saddle-point approximation). But since TrAm Am = Tr( Âm Âm +
∂mϕ∂mϕ), this change of integration variables gives rise to a Jacobian

DA = D ÂD′ϕ · (Det′�scalar
S3 )

1
2 dimG, (3.20)

where the primes indicate that the constant modes are excluded. This Jacobian is
canceled against the determinant arising from σ̂ -integration.

The integration over the remaining physical fields λ, λ̄ and Â gives rise to the
following ratio of determinants,

Z1-loop
vec = detλ

(−ia − 1
2 + i /DS3

)
det Â(a2 + �vector

S3
)
1
2

=
∏
n≥0

[detadj(−ia − n − 2)](n+1)(n+2) · [detadj(−ia + n + 1)](n+1)(n+2)

[detadj(a2 + (n + 2)2)](n+1)(n+3)
. (3.21)

Let us take the Cartan-Weyl basis of G and assume that the saddle point parameter
takes values in the Cargan subalgebra, namely a = ai Hi with Hi Cartan generators
satisfying Tr(Hi Hj ) = δi j . The above expression can then be rewritten further,



A Review on SUSY Gauge Theories on S3 319

Z1-loop
vec =

∏
n≥1

n2rkG
∏

α∈�+

(n2 + (a · α)2)2 = (2π)rkG
∏

α∈�+

(
2 sinh(πa · α)

a · α

)2

,

(3.22)
whereα runs over all the positive roots. The divergent infinite productswere evaluated
using zeta function regularization.

The constant value a of the scalar field can always be gauge-rotated into Cartan
subalgebra. The domain of integration can therefore be reduced to Cartan subalgebra,
but this in turn introduces a Vandermonde determinant in the measure which cancel
nicely with the denominator of (3.22). The exact partition function for a theory with
G vector multiplet is thus an integral over its Cartan subalgebra with the measure

1

|W|
∏

i

dai

∏
α∈�+

(
2 sinh(πa · α)

)2
. (3.23)

Here we modded out by the order of the Weyl groupW , which is the residual gauge
symmetry after a has been gauge rotated into Cartan subalgebra.

Let us next turn to the matter fields. In the weak coupling limit, the action Lm for
the matter fluctuations at the saddle point a is given by

Lm = φ̄{�scalar
S3 + a2 + 2i(r − 1)a + r(2 − r)}φ + F̄ F + ψ̄

{
−i /DS3 + 1

2
+ ia − r

}
ψ.

(3.24)

Let us choose the basis vectors {|w〉} of the matter representation R so as to diago-
nalize Cartan generators, i.e. Hi |w〉 = wi |w〉. Then the matter one-loop determinant
becomes,

Z1-loop
matter = detψ

( 1
2 + ia − r − i /DS3

)
detφ(�scalar

S3
+ 1 − (r − 1 − ia)2)

=
∏
n≥0

[detR(n + 2 + ia − r)](n+1)(n+2) · [detR(−n − 1 + ia − r)](n+1)(n+2)

[detR((n + 1)2 − (r − 1 − ia)2)](n+1)2

=
∞∏

n=1

∏
w

(n + 1 − r + ia · w)n

(n − 1 + r − ia · w)n
=

∏
w

sb=1(i(1 − r) − a · w), (3.25)

where w runs over all the weights of R.
We thus arrived at an integral formula for exact partition function of general 3D

N = 2 SUSY gauge theories on the unit round sphere. The basic building blocks
for the integrand are the classical action evaluated at saddle points (3.18) and the
matter one-loop determinant (3.25), and their product is integrated over the Cartan
subalgebra of the gauge symmetry with the measure (3.23). For theories with matter
mass, the mass parameter m of (3.9) enters into the one-loop determinant (3.25) in
the same way as a, but we do not integrate over it.
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3.4 Partition Function on Ellipsoids

Let us next consider the deformation from the round sphere to ellipsoids S3
b defined

by (1.1). With a suitable polar coordinate system, the metric can be written as

ds2 = 1

b2
cos2 θdϕ2 + b2 sin2 θdχ2 + f 2dθ2,

f (θ) =
√

b−2 sin2 θ + b2 cos2 θ. (3.26)

A natural choice for the dreibein and the resulting spin connection are

e1 = 1

b
cos θdϕ, e2 = b sin θdχ, e3 = f dθ,

ω12 = 0, ω13 = − 1

b f
sin θdϕ, ω23 = b

f
cos θdχ. (3.27)

The ellipsoid can be made supersymmetric by turning on a suitable U (1)R gauge
field in the background. This was found in [5] rather heuristically by taking a pair of
Killing spinors on the (unit) round sphere with Vm = Um = 0 and M = 1

2 ,

ε = 1√
2

(
−e

i
2 (χ−ϕ+θ)

e
i
2 (χ−ϕ−θ)

)
, ε̄ = 1√

2

(
e

i
2 (−χ+ϕ+θ)

e
i
2 (−χ+ϕ−θ)

)
, (3.28)

and studying the effect of squashing the metric. On the ellipsoid (3.26) they were
found to satisfy the Killing spinor equation (3.2) with Um = 0 and

V = − 1

2

(
1 − 1

b f

)
dϕ + 1

2

(
1 − b

f

)
dχ, M = 1

2 f
. (3.29)

The supersymmetric observables on this background depend on the squashing para-
meter b in an nontrivial manner. Similar supersymmetric deformations from the
round D-sphere into ellipsoids were studied for 4D N = 2 theories by [33] and for
2D N = (2, 2) theories by [34].

Note that, in finding the dreibein, spin connection and background fields, the
precise form of the function f is actually not needed as long as it is independent of
ϕ and χ . It was pointed out in [35] that the above construction works for arbitrary
smooth f (θ), with the only requirement coming from the smoothness at θ = 0 and
π
2 ,

f (θ = 0) = b, f
(
θ = π

2

)
= 1

b
. (3.30)

More general supersymmetric backgrounds of sphere topology was studied in [29,
36], but itwas also shown that supersymmetric observables dependon the background
only through a single parameter b. See also [37, 38].
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The partition function on the ellipsoid background can be computed again by
applying the localization principle. First, the saddle points are given by the solutions
to (3.11) and (3.12) as for the round sphere, and are therefore labeled by the constant
value of the vector multiplet scalar σ . The value of the CS and FI actions SCS, SFI
also remain the same as (3.18). However, the evaluation of the one-loop determinants
on the ellipsoids (3.26) or other backgrounds with more general f (θ) becomes more
complicated since one can no longer work out the full spectrum using spherical
harmonics.

An alternative approach to compute the one-loop determinants is to study how the
supersymmetry relates bosonic and fermionic eigenmodes of the Laplace or Dirac
operators. Most of the eigenmodes are paired by the supersymmetry so that their net
contribution to the one-loop determinant is trivial. It is therefore important to know
the spectrum of the eigenmodes without superpartner.

Let us begin with a chiral multiplet in a representation R of the gauge group G.We
first move to a new set of fields in terms of which the cancellation between bosonic
and fermionic eigenvalues is most transparent. Let us introduce the Grassmann-odd
scalar functions �, �̄,� ′, �̄ ′ and Grassmann-even scalars F ′, F̄ ′ by

ψ = ε� ′ − ε̄�, F = F ′ − i ε̄γ m ε̄Dmφ,

ψ̄ = ε̄�̄ ′ + ε�̄, F̄ = F̄ ′ + iεγ mεDm φ̄. (3.31)

They transform under supersymmetry as follows,

δφ = �,

δφ̄ = �̄,

δ� = Hφ,

δ�̄ = Hφ̄,

δ� ′ = F ′,
δ�̄ ′ = F̄ ′,

δF ′ = H� ′,
δ F̄ ′ = H�̄ ′, (3.32)

where H is the square of SUSY acting on scalar functions. To be more explicit, it
acts on φ carrying the R-charge r as follows.

Hφ = i ε̄γ mεDmφ − iσφ + r

f
φ

=
{
−ib∂ϕ + ib−1∂χ − ia + Qr

2

}
φ .

(
Q ≡ b + b−1

)
(3.33)

Here the second equality holds up to non-linear terms which are irrelevant in the
saddle point analysis.

To compute the one-loop determinant, we add a SUSY exact regulator Lreg = δV
to the original Lagrangian with a large coefficient. We choose

2V = (φ̄, F̄ ′)
(
D 2D+
0 1

) (
�

� ′

)
− (�̄, �̄ ′)

(
D 0

2D− −1

)(
φ

F ′

)
, (3.34)

where
D ≡ H + 2ia, D+ ≡ −iεγ mεDm, D− ≡ i ε̄γ m ε̄Dm . (3.35)
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One can show that the operatorsD± commutes withH by taking their R-charges ±2
into account correctly. The regulator LagrangianLreg in the quadratic approximation
consists of the following terms,

Lreg

∣∣
F = (�̄, �̄ ′)

(
D D+
D− −H

) (
�

� ′

)
,

Lreg|B = (φ̄, F̄ ′)
(

DH D+
−D− 1

) (
φ

F ′

)
= F̄ F + φ̄�φ ,

� = DH + D+D− = a2 − (ε̄γ mεDm)2 + εγ mεDm · ε̄γ n ε̄Dn. (3.36)

Note that the bosonic part is positive definite. Thus the one-loop determinant is given
by the ratio of the determinants for the Dirac operator (the 2 × 2 matrix in the first
line of (3.36)) and the Laplace operator �.

As was shown in [5], generically a scalar eigenmode of � and a pair of Dirac
eigenmodes form a multiplet which yields no net contribution to the one-loop deter-
minant. The modes which do not participate in this multiplet structure arise from φ

in the kernel of D− and � ′ in the kernel of D+. It is easy to see from the matrix
expression forLreg that the one-loop determinant is given by the ratio of determinants
of H evaluated on such modes,

Z1-loop
mat =

det� ′(−H)
∣∣
KerD+

detφ(H)
∣∣
KerD−

. (3.37)

The spectrum of H which is relevant for the above one-loop determinant can be
explicitly worked out. First, let us consider the spectrum of H on the scalar φ of
R-charge r which is annihilated by D−. Assuming the form φ = φ̂(θ)eimϕ−inχ , one
finds

ei(χ−ϕ)ε̄γ n ε̄Dnφ =
{
−b sin θ

cos θ
(m − r Vϕ) + cos θ

b sin θ
(n + r Vχ ) − 1

f
∂θ

}
φ = 0,

Hφ =
{

mb + nb−1 − ia + Qr

2

}
φ . (3.38)

The first equation determines the form of φ̂(θ). In particular, from its behavior near
the two ends θ = 0 and π

2 ,

φ̂(θ) ∼ cosm θ sinn θ, (3.39)

it follows that the eigenmode is normalizable only whenm, n ≥ 0. The same analysis
can be repeated for the scalar � ′ of R-charge (r − 2) in the kernel of D+. We thus
obtain the matter one-loop determinant
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Z1-loop
mat =

∏
m,n≥0 detR

(
mb + nb−1 + ia − Q(r−2)

2

)
∏

m,n≥0 detR
(
mb + nb−1 − ia + Qr

2

)
=

∏
w

sb
( i Q

2 (1 − r) − a · w
)
, (3.40)

where w runs over all the weight vectors in the representation R. This generalizes
the formula (3.25) on the round sphere.

The form of the matter one-loop determinant (3.37) shows that it can be computed
from the index of the differential operators D± which commute with H. In [39] the
relevant index was analyzed by regarding the ellipsoid as a Hopf fibration with the
fiber direction ∂ϕ −∂χ . By decomposing the fields into Fourier modes carrying differ-
ent KK momentum along the fiber, one can reduce the index to that of a differential
operator on S2 and apply the fixed point formula.

Let us next consider vector multiplet. Our starting point is the following formula
for the one-loop determinant,

Z1-loop
vec =

detλ
(
−ia − 1

2 f + i /D
)

det Â(a2 + �vector)1/2
=

detλ
(
−ia − 1

2 f + i /D
)

det Â(−ia − ∗d) , (3.41)

which follows from the samegaugefixingprocedure as for the round sphere (3.21).As
before, the denominator is the determinant evaluated on the space of divergenceless
vector wave functions. We evaluate this by finding out the maps between the spinor
and vector eigenmodes,

νλ = −iaadjλ + i /Dλ − 1

2 f
λ, (3.42)

ν Âm = −iaadj Â
m − εmnp∂n Âp, Dm Âm = 0. (3.43)

We first notice the following identity holds for arbitrary vector field Am .

(
i /D − 1

2 f

)
(γ mε Am) = iε · Dm Am − γmε · εmnp∂n Ap. (3.44)

It follows that, for each generic vector eigenmode Âm , one can construct a spinor
eigenmode λ of the same eigenvalue by the map λ[ Â] = γ mε Âm . This map fails
for the vector eigenmodes satisfying γ mε Âm = 0. Such modes can be expressed in
terms of a scalar Y with R-charge −2 as,

Âm = εγmε · Y. (3.45)

The divergence-free condition and the eigenmode equation (3.43) are translated into
the following conditions on Y ,
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D+Y = 0, HY = νY. (3.46)

The normalizable solutions for Y are in one-to-one correspondence with the vector
eigenmodes without spinor superpartners.

Next we notice that the following identity holds for arbitrary spinor λ,

ε̄γm

(
i /Dλ − 1

2 f
λ
)
dxm − id(ε̄λ) = − ∗ d(ε̄γmλdxm). (3.47)

It follows that, for each generic spinor eigenmode λ, one can construct the corre-
sponding vector eigenmode Â by the following map,

Â[λ] = (ν + iaadj)ε̄γmλdxm − id(ε̄λ). (3.48)

To find the kernel of thismap, let us introduce two scalar functions�0,�2 and denote
λ = ε�0 + ε̄�2. Then Â[λ] vanishes when

D−�0 = 0, H�0 = ν�0, D+�0 = 2(ν + iaadj)�2. (3.49)

For any λ in the kernel, one can show by applying ∗d onto (3.48) that the right
hand side of (3.47) vanishes as long as (ν + iaadj) is nonzero. Using this one can
show that generic elements λ in the kernel automatically satisfies the eigenvalue
equation (3.42). The only exceptional element in the kernel is λ = ε which does
not satisfy (3.42), corresponding to �0 = const,�2 = 0 and ν = −iaadg. The
normalizable solutions to (3.49) are thus in almost one-to-one correspondence with
the spinor eigenodes without vector superpartners.

Thus the one-loop determinant for vector multiplet can be expressed again as the
ratio of determinants of H,

Z1-loop
vec = det′�0

(H)KerD−

detY (H)KerD+
, (3.50)

where the prime in the enumerator indicates that the contribution from constant
modes is excluded. Apart from this minor difference, it is just the inverse of the
matter one-loop determinant for r = 0, R = adj. Up to an a-independent overall
constant, we obtain

Z1-loop
vec =

∏
α∈�

sb
(
a · α − i Q

2

)
(−ia · α)

=
∏

α∈�+

4 sinh(πba · α) sinh(πb−1a · α)

(a · α)2
. (3.51)

The general formula for the ellipsoid partition function can be summarized as
follows. Vector multiplets yield the integration measure over Cartan subalgebra of
the gauge symmetry algebra,
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1

|W|
r∏

i=1

dai

∏
α∈�+

4 sinh(πba · α) sinh(πb−1a · α), (3.52)

chiral multiplets yields the determinants,

∏
w∈R

sb
( i Q

2 (1 − r) − a · w
)
, (3.53)

and the classical Lagrangians make the following contribution to the integrand.

e−SCS = eiπka·a, e−SFI = e4π iζa . (3.54)

Let us compare the above formula with the known result in pure Chern-Simons
theory [40]. Using the above formula together with Weyl denominator formula

∏
α∈�+

2 sinh(πα · u) =
∑
w∈W

ε(w)e2πw(ρ)·u, (3.55)

one can express the partition function for pure SUSY Chern-Simons theory as a sum
of simple Gaussian integrals. Assuming the level k to be positive, one finds

ZCS = 1

|W|
∫ r∏

i=1

dai

∏
α∈�+

4 sinh(πba · α) sinh(πb−1a · α) · exp(iπka · a)

= exp

(
iπ

4
dimG + iπ

12k
(b2 + b−2)y dimG

)
· k

r
2

∏
α∈�+

2 sin
(πα · ρ

k

)
.

(3.56)

Here y is the dual Coxeter number of G and ρ is the Weyl vector. We also used the
formula

ρ2 = 1

12
dimG y. (3.57)

Apart from some phase factors, we recover the the known answer for bosonic Chern-
Simons theory at the level k−y. Themismatch in the level is because there is no finite
renormalization of the Chern-Simons level for the case withN = 2 supersymmetry
[41].

3.5 Loop Observables

Here we introduce two kinds of supersymmetric Loop operators, the Wilson and
vortex loops, and present the formulae for their expectation values. Similar loop
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operators in 4D N = 2 theories are reviewed in [V:7] and play important role in
understanding the AGT relation.

Supersymmetric Wilson loop operator is defined by

WR(C) ≡ TrRP exp
∮

C
(i A + σd�) , (3.58)

where C is a closed loop that winds along the direction of the Killing vector field
ε̄γ mε, and d� denotes the length element along C . For theories on the unit round S3

where the Killing vector is along the circle fiber of Hopf fibration, any C is a great
circle of radius 2π . The expectation value of Wilson loops can be calculated in the
same way as partition function, by just inserting into the integrand their classical
value at the saddle point a,

WR(C)
∣∣
saddle = TrR(e2πa). (3.59)

For theories on the ellipsoidswith generic squashingparameterb (b2 being irrational),
the only supersymmetric closed loops are the ones at θ = 0 and θ = π

2 in the polar
coordinate system (3.26), since no other curves along the Killing vector ε̄γ mε form
closed loops. The two choices lead to different expectation values since they have
radii b−1 and b, respectively.

WR(θ = 0)
∣∣
saddle = TrR(e2πa/b), WR

(
θ = π

2

) ∣∣
saddle = TrR(e2πab). (3.60)

There are additional supersymmetric loops for special values of the squashing para-
meter. When b = √

p/q with (p, q) coprime integers, torus knots winding p and q
times along the ϕ and χ -directions at fixed θ �= 0, π

2 become supersymmetric [42].
The vortex loop is a one-dimensional defect along which the gauge field develops

a singularity. For a vortex line lying along the z-axis of the flat EuclideanR3(x, y, z),
the gauge field strength has delta function singularity along the line,

Fxy = 2π Hδ(x)δ(y) + regular, (3.61)

where the flux H takes values in the Cartan subalgebra of the gauge symmarty
algebra. In terms of the polar coordinate system on the xy-plane (x + iy = reiθ ), the
singular behavior of the gauge field near the vortex line is given by Aθ = H . Also,
it follows from (3.4) that we need to impose singular boundary condition on D as
well,

D = 2π i Hδ(x)δ(y) + regular, (3.62)

in order to avoid the transformation rule of λ and λ̄ becoming singular.
For a vortex loop to be supersymmetric, it has to lie along the direction of the

Killing vector ε̄γ mε. We orient the vortex loops so that the +z direction always
agrees with the direction of Killing vector and define the flux H accordingly. For

http://dx.doi.org/10.1007/978-3-319-18769-3_7
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generic ellipsoid backgrounds, supersymmetric vortex loops can only lie along the
direction of (−ϕ) at θ = 0, or the direction of (+χ) at θ = π

2 . These two vortex
loops are expressed by the flat gauge fields,

(θ = 0) A = Hdχ,
(
θ = π

2

)
A = −Hdϕ. (3.63)

Let us hereafter restrict the discussion to the vortex loops in abelian gauge theory
and evaluate their expectation value. First, notice that the introduction of a vortex
loopwith flux H in Chern-Simons theory at level k induces aWilson loopwith charge
−k H . To see this, let us decompose the vector multipet fields in the presence of a
vortex loop into the singular and regular parts, A = Asing + Areg. Then the SUSY
Chern-Simons action integral for such A becomes

SCS[Asing + Areg] = ik H
∮

C
(Areg − iσregd�) + SCS[Areg] . (3.64)

Therefore, the value of classical Chern-Simons action at the saddle point a gets
shifted because of the vortex loop as

eiπk(a2+2iab−1H) or eiπk(a2+2iabH). (3.65)

The value of the FI term e−SFI = e4π iζa remains the same. Now one can go through
the evaluation of the one-loop determinant again, where the only difference is that
there is a nonzero flat gauge field in addition to a constant scalar a. Since it enters in
the operator H as follows,

Hφ =
{
−ib(∂ϕ − i Aϕ) + ib−1(∂χ − i Aχ ) − ia + Qr

2

}
φ, (3.66)

the effect of the vortex loop can be incorporated by shifting a in our previous formula
by −ibAϕ + ib−1 Aχ . Depending on whether the vortex loop is put at θ = 0 or π

2 ,
the saddle point parameter a is shifted by ib−1H or ibH .

Since the parameter a is to be integrated over, the shift of a by ib±1H can be
undone by shifting its integration contour. This also eliminates the shift of classical
Chern-Simons action by a Wilson line. As a result, the effect of a vortex loop of
flux H in abelian Chern-Simons theory at level k, FI coupling ζ just amounts to a
multiplication of the factor

exp
(
iπkb∓2H 2 + 4πζb∓1H

)
. (3.67)

Our argument so far assumed that H is small. The computation of one-loop
determinants on ellipsoids was based on the spectrum of normalizable eigenmodes
of H in the kernel of the operators D±, but normalizability of the eigenmodes is
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affected by nonzero H . Also, the shift of a-integration contour may hit poles in the
integrand. See [39, 43] for further discussions.

Vortex loops can alsobe introduced forflavor symmetryofmatter chiralmultiplets,
by coupling the corresponding current to a singular background gauge field with
nonzero flux H localized along a loop. Its effect is similar to that of real mass
deformation, namely we have the appearance of ib∓1H in place of the real mass m
in the matter one-loop determinants.

4 4D Superconformal Index

Superconformal index was introduced for 4D N = 1 superconformal field theories
by Römelsberger [11, 13] and for more general cases by Kinney et al. [12], as a
quantity which encodes the spectrum of BPS operators. In superconformal theories,
the spectrum of BPS operators is in correspondence with the spectrum of states in
radial quantization. The index can therefore be formulated in terms of path integral
on S1 × S3, with an appropriate periodicity condition along the S1. The periodicity
can be twisted by various symmetries of the theory in such a way to preserve part
of SUSY. The index is then a function of the fugacity variables that parametrize the
twist.

The superconformal index is invariant under any SUSY-preserving continuous
deformation of the theory and, in particular, independent of the gauge coupling. The
indices of nontrivial theories at the RG fixed point can therefore be evaluated using
the weak coupling description at high energy where saddle point approximation
becomes exact.

Here we present the path integral derivation of the superconformal index for 4D
N = 1 SUSY theories. Our purpose here is to explain the connection between
3D partition functions on S3 and 4D superconformal indices which was studied
in [15–17]. Interestingly, some of the fugacity variables turn into parameters of
supersymmetric deformations of the round S3 upon dimensional reduction. As an
important example, we reproduce two inequivalent SUSY backgrounds which are
both based on the same squashed S3 with SU (2) × U (1) isometry but characterized
by different Killing spinor equations [5, 18].

The superconformal indices for 4D N = 2 theories of class S are in correspon-
dence with partition function of 2D q-deformed Yang-Mills theory, as reviewed in
[V:9] in this volume.

4.1 4D N = 1 SUSY Theories

We again begin by fixing the notations. In four dimensions there are two kinds of
doublet spinors ψα and ψ̄ α̇ , corresponding to two copies of SU (2) that form the 4D
rotation symmetry. Their spinor indices are raised or lowered by antisymmetric ε

http://dx.doi.org/10.1007/978-3-319-18769-3_9
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tensors with nonzero elements ε12 = −ε12 = 1. We introduce the 2 × 2 matrices,

σa = σ̄a = Pauli matrix (a = 1, 2, 3); σ4 = i, σ̄4 = −i, (4.1)

with index structure (σa)αβ̇ and (σ̄a)
α̇β , satisfying standard algebra. We also use

σab ≡ 1
2 (σa σ̄b − σbσ̄a) and σ̄ab ≡ 1

2 (σ̄aσb − σ̄bσa).
Although 4D N = 1 supersymmetric theories on general curved backgrounds

and the equations for Killing spinors can be obtained from off-shell supergravity [6],
here we take a heuristic approach.We consider the followingKilling spinor equation,

Dmε = σm κ̄, Dm ε̄ = σ̄mκ for some κ, κ̄. (4.2)

where the covariant derivative Dm contains the gauge field Vm forU (1)R under which
ε, ε̄ are charged +1,−1. Using these Killing spinors we set the transformation rule
for N = 1 vector multiplets,

δAm = i

2
(εσm λ̄ − ε̄σ̄mλ),

δλ = 1

2
σ mnεFmn − εD,

δλ̄ = 1

2
σ̄ mn ε̄Fmn + ε̄D,

δD = − i

2
εσ m Dm λ̄ − i

2
ε̄σ̄ m Dmλ, (4.3)

and chiral multiplets,

δφ = −εψ, δψ = iσ m ε̄Dmφ + 3ir

4
σ m Dm ε̄φ + εF,

δφ̄ = +ε̄ψ̄, δψ̄ = i σ̄ mεDm φ̄ + 3ir

4
σ̄ m Dmεφ̄ + ε̄ F̄,

δF = i ε̄σ̄ m Dmψ + i(3r − 2)

4
Dm ε̄σ̄ mψ − i ε̄λ̄φ,

δ F̄ = −iεσ m Dmψ̄ − i(3r − 2)

4
Dmεσ mψ̄ − iεφ̄λ. (4.4)

Here r is the R-charge of the field φ. The scaling weight and the R-charge of the
fields are summarized in Table2.

Table 2 The scaling weight and the R-charge of the fields

Fields ε ε̄ Aa λ λ̄ D φ φ̄ ψ ψ̄ F F̄

Weight − 1
2 − 1

2 1 3
2

3
2 2 3r

2
3r
2

3r+1
2

3r+1
2

3r+2
2

3r+2
2

R-charge 1 −1 0 1 −1 0 r −r r − 1 1 − r r − 2 2 − r
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Given a 3D background M with a pair of Killing spinors ε, ε̄ satisfying (3.2)
and (3.3), one can construct a 4D N = 1 supersymmetric background M × R by
choosing the metric and the U (1)R gauge field as follows.

ds2(4D) = eaea = ds2M + dt2 (e4 ≡ dt), V(4D) = V(3D) − i Mdt. (4.5)

The 3D Killing spinors ε, ε̄ are promoted to 4D Killing spinors satisfying

Dmε = −Mσm σ̄4ε, Dm ε̄ = M σ̄mσ4ε̄. (4.6)

The following supersymmetric Lagrangians on this background are relevant in the
computation of the index.

Lg = Tr
(1
2

Fmn Fmn + D2 + i λ̄σ̄ m Dmλ
)
,

Lm = Dm φ̄Dmφ + (3r − 2)M(D4φ̄φ − φ̄D4φ)

+
{r R

4
− 3r(3r − 2)M2

}
φ̄φ − i φ̄Dφ

−iψ̄σ̄ m Dmψ − i(3r − 2)Mψ̄σ̄4ψ + iψ̄λ̄φ + i φ̄λψ + F̄ F. (4.7)

Here D4 is the fourth component of Da ≡ em
a Dm .

It is a useful observation that the above 4D transformation rules and Lagrangians
can actually be obtained from the corresponding 3D quantities by the simple replace-
ment σ → At + i∂t .

4.2 Path Integral Formulation of the Index

Let us choose M to be the unit round sphere and set M = 1
2 , V = − i

2dt . The
Killing spinor equation (4.6) on this background has two independent solutions for
each of ε and ε̄, which are all constant spinors in the left-invariant frame. Besides
these four solutions, there are four solutions to (4.6) with the right hand side sign-
flipped. These eight solutions correspond to the eight supercharges in the 4DN = 1
superconformal algebra, but the Lagrangians in (4.7) with M = 1

2 are invariant only
under the first four.

From the four Killing spinors satisfying (4.6), let us pick up the two characterized
by γ3ε = −ε and γ3ε̄ = ε̄, and denote the corresponding supercharges by S and Q.
The R-charges and SU (2)R spins of S, Q are opposite to those of the corresponding
Killing spinors, so S has R = −1, J3

R = + 1
2 while Q has R = 1, J3

R = − 1
2 . The

anticommutator ofS andQ can be found from the algebra of the corresponding SUSY
transformations acting on fields. With a suitable normalization of ε, ε̄ one finds

{S, Q} = −∂t + i At − 2J3
R − R, (4.8)
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where At is the component of dynamical gauge field and Ja
R is the sum of isometry

rotation of S3 and local Lorentz rotation. Note that, since we have turned on the
background U (1)R gauge field so that the Killing spinors corresponding to S, Q are
time independent, the time derivative −∂t + i At should not be simply related to
the dilation D. Rather it should be identified with D − 1

2R which commutes with the
supercharges S and Q. Thus we have reproduced an important subalgebra of the 4D
N = 1 superconformal algebra,

{S, Q} = D − 2J3
R − 3

2
R ≡ H. (4.9)

Now let us compactify the time direction t ∼ t + β. The path integral on the
resulting background S3 × S1 defines the superconformal index. In the simplest
example where all the fields obey periodic boundary condition, one obtains

I = Tr
[
(−1)FqD− 1

2 R
]
. (q ≡ e−β) (4.10)

This form can be generalized by twisting the periodicity of fields by various symme-
tries which commute with the supercharges S, Q. Some of such symmetries are in the
superconformal algebra. The Cartan subalgebra of its bosonic part is generated by
the dilationD, theU (1)R-chargeR and the two rotation generators J3

L, J3
R, of which

three linear combinations commute with S and Q. Also, in theories with additional
global symmetry, one can use any of its elements m to modify the periodicity. The
fully generalized index is then given by

I = Tr
[
(−1)FqD− 1

2 Rx2J3R+R y2J3Leimβ
]
, q = e−β, x = eiβξ , y = eiβη (4.11)

and is a function of the fugacity parameters ξ, η and m as well as β. An important
remark here is that the only states which contribute to the index are those annihilated
by the supercharges Q, S and also by their anticommutator H. The index therefore
depends on q and x only through their product qx = e−β+iβξ .

The index (4.11) is given by a path integral over fields obeying twisted periodicity
condition. By a suitable field redefinition, it can be rewritten into a path integral over
ordinary periodic fields but with a deformed Lagrangian. In this process, the twists
by R- or flavor symmetries turn into a constant background gauge fields along the
t direction. On the other hand, the twist by rotational symmetries means Scherk-
Schwarz like compactification,

(t, g) ∼ (t + β, e−iβηγ 3
geiβξγ 3

). (4.12)

This can be brought into a systemwith ordinary time periodicity by a suitable change
of coordinates, but then themetric written in the new coordinates squires off-diagonal
components



332 K. Hosomichi

ds2 = dt2 + g(S3)
mn (dxm + umdt)(dxn + undt), u ≡ 2iξR3 + 2iηL3. (4.13)

Here the vector fields La,Ra are properly normalized generators of SU (2)L,R. In
fact, the effect of this deformation of the metric on field theory is simply to modify
the time derivative ∂t by the rotation generator. For example, the kinetic term for a
free scalar becomes

1

2
(∂tφ − um∂mφ)2 + 1

2
gmn

(S3)
∂mφ∂nφ. (4.14)

A little more work shows that, for spinor fields, the time derivative is modified by
a combination of um∂m and a local Lorentz transformation which makes precisely
the action of the rotation symmetry. Summarizing, the general index (4.11) can
be computed by path integral over periodic fields on S1 × S3, with the following
replacement in the Lagrangian (4.7)

i∂t �−→ i ∂̂t ≡ i∂t + ξ(2J3
R + R) + 2ηJ3

L + m. (4.15)

4.3 Evaluation of the Index

Let us turn to the evaluation of the index. Since the index is invariant under defor-
mations preserving the algebra of S, Q, H, we introduce the sum of Lg and Lm in
(4.7) with a large overall coefficient into the path integral weight so that the argument
of exact saddle point analysis apply. This time, the saddle points are labeled by the
constant value of gauge field along time direction At = a.

Let us evaluate the one-loop determinant, first for the vector multiplet with gauge
group G. It is most convenient to work in the temporal gauge At = a, for which
we need to introduce ghosts with kinetic term Tr(c̄Dt c). The Gaussian integral over
fluctuations gives

Detλ
(
∂̂t − ia − 1

2 + i /DS3

)
Det′c(∂̂t − ia)

DetA(−(∂̂t − ia)2 + �vector
S3 )

1
2

. (4.16)

Here the prime indicates that the constant modes of the ghosts are excluded, and ∂̂t is
defined in (4.15). Expanding the fields into spherical harmonics which diagonalizes
the Laplace or Dirac operators on S3, the above determinant can be rewritten into an
infinite product of 1D Dirac determinants on the circle of circumference β,

det(∂t − i x) =
∏
k∈Z

(2π ikβ−1 − i x) = − 2i sin
βx

2
. (4.17)

The integral over the ghost modes with SU (2)L × SU (2)R spin (0, 0) yields
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det′adj(∂t − ia) = βrkG
∏

α∈�+

(2 sin(βα · a/2)

α · a

)2
, (4.18)

where we assumed a to take values in Cartan torus. Combinedwith the Vandermonde
determinant, this gives an appropriate measure factor for the integration over Cartan
torus.

dμ(a) = 1

|W|
r∏

i=1

dâi

2π

∏
α∈�+

4 sin2
α · â

2
. (â ≡ βa) (4.19)

The integral over the remaining modes of all the fields gives, after an enormous
cancellation between bosonic and fermionic contributions, the following.

Ivec =
∏
n≥1

detadj
(
∂t − ia + n(1 − iξ + iη)

)
detadj

(
∂t − ia + n(1 − iξ − iη)

)
.

= I0(q1, q2)
rkG ·

∏
α∈�,n≥1

(1 − qn
1 eiα·â)(1 − qn

2 eiα·â), (4.20)

where

I0(q1, q2) ≡
∏
n≥1

(1 − qn
1 )(1 − qn

2 ),

q1 ≡ qxy = e−β(1−iξ−iη), q2 ≡ qx/y = e−β(1−iξ+iη). (4.21)

The first line in (4.20) can be regarded as a refinement of the 3D result (3.22) corre-
sponding to the addition of one more dimension with periodicity β and twists ξ, η.
Note that, in going to the second line, an infinite zero-point energy has been regular-
ized so that the result agree with what we would obtain from canonical quantization.

To compute the index from canonical formalism, we decompose the vector multi-
plet fields on S1×S3 using spherical harmonics and reduce the free super-Yang-Mills
theory to a quantum mechanics of infinitely many bosonic and fermionic harmonic
oscillators. The oscillatormodes all carry definite eigenvalues ofR, J3

L, J3
R, and their

frequency determines the eigenvalue of D − 1
2R. In computing the index as a trace

over the Fock space, it is convenient to first consider the trace over one-particle states
called the letter index. For a vector multiplet for gauge group G it is given by

ivec ≡ Tr(1p)
[
(−1)FqD− 1

2 Rx2J3R+R y2J3Leiâ
]

= tradjU ·
∑
n≥0

(
qn+2χ n+2

2 , n
2

+ qn+2χ n
2 , n+2

2
− xqn+1χ n+1

2 , n
2

− x−1qn+2χ n
2 , n+1

2

)
,

U ≡ eiâ ∈ G, χ j, j̄ ≡ tr( j, j̄)[x2J3R y2J3L ]. (4.22)

In fact, all the oscillators not saturating the bound H ≥ 0 form pairs and do not
contribute to the letter index. Indeed, the above letter index can be simplified as
follows,
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ivec = −
(

q1

1 − q1
+ q2

1 − q2

)
tradj(U ) . (4.23)

The full index is then obtained as its plethystic exponential,

Ivec = PE
[
ivec(q1, q2, U )

]
≡ exp

(∑
n≥1

1

n
ivec(q

n
1 , qn

2 , U n)

)
, (4.24)

integrated over U in the Cartan torus with the invariant measure (4.19).
Let us next consider the chiral multiplet of R-charge r in the representation R of

the gauge group. Its one-loop determinant is

Imat =
Detψ

(
∂̂t − ia + r − 1

2 + i /DS3

)

Detφ(−(∂̂t − ia + r − 1)2 + �scalar
S3 + 1)

=
∏

m,n≥0

detR(−∂t + ia + (1 − iξ)(m + n + 2 − r) − iη(m − n))

detR(∂t − ia + (1 − iξ)(m + n + r) − iη(m − n))
. (4.25)

This can again be regarded as a refinement of the one-loop determinant (3.25) for
3D chiral multiplet. With an appropriate regularization of the zero-point energy, one
can rewrite this further as a product over the weights of the representation R,

Imat =
∏
w

�(eiw·â(q1q2)
r
2 ; q1, q2), (4.26)

where �(z; q1, q2) is the elliptic Gamma function

�(z; q1, q2) =
∏

m,n≥0

1 − z−1qm+1
1 qn+1

2

1 − zqm
1 qn

2

. (4.27)

This result can also be obtained from canonical formalism, as the plethystic expo-
nential of the letter index,

imat = trR(U ) ·
∑
n≥0

(
xr qn+rχ n

2 , n
2
− xr−1qn+r+1χ n+1

2 , n
2

)

+trR̄(U ) ·
∑
n≥0

(
x−r qn+2−rχ n

2 , n
2
− x1−r qn+r+1χ n

2 , n+1
2

)

= (q1q2)
r
2 trR(U ) − (q1q2)

1− r
2 trR(U−1)

(1 − q1)(1 − q2)
. (4.28)
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4.4 Squashed S3 from Twisted Compactifications

In the limit β → 0 where one can neglect the KK modes, the 4D superconformal
index reduces to 3D partition function, but with a new dependence on additional
parameters ξ, η. They enter into the 3D partition function through the squashing
parameter b,

b2 = 1 − iξ + iη

1 − iξ − iη
. (4.29)

Recall that we have chosen the background S3 × S1 with M = 1
2 at the beginning

of Sect. 4.2, and that our computation was preserving a pair of left-invariant super-
chargesQ, S. In this case, the above relation shows that the twist by J3

R (accompanied
by an appropriate R-twist) has a rather trivial effect on the partition function, but the
twist by J3

L does change the partition function in a non-trivial manner. So the dif-
ferent Scherk-Schwarz twists lead to qualitatively different 3D backgrounds after
dimensional reduction.

To understand the effect of two different twists upon 3D geometry, let us consider
instead the twisted compactification with ξ �= 0, η = 0 and try different choices of
unbroken supersymmetry. After moving to the coordinate system with ordinary time
periodicity, the metric is given by

ds2 = Ea Ea = e1e1 + e2e2 + (e3 + ξdt)2 + dt2. (4.30)

On this space, one can either preserve left-invariant or right-invariant supercharges
by choosing the background U (1)R gauge field appropriately to make the corre-
sponding Killing spinors t-independent. For Vt = − i

2 + ξ , the Killing spinor equa-
tion (4.6) with M = 1

2 has a pair of time-independent solutions satisfying γ3ε = −ε

and γ3ε̄ = +ε̄, which we identified with the left-invariant supercharges S, Q. The
solutions corresponding to the other pair of left-invariant supercharges become time-
independent when Vt = − i

2 − ξ . For Vt = i
2 , the Killing spinor equation (4.6) with

M = − 1
2 has solutions corresponding to the four right-invariant supercharges.

To do the dimensional reduction along S1, we rewrite the metric (4.30) into the
form

ds2 = Êa Êa = e1e1 + e2e2 + u2e3e3 + u−2(dt + u2ξ e3)2, (4.31)

where u ≡ (1+ξ 2)−1/2. Since this can be regarded as a local Lorentz transformation,
the Killing spinors on the new local Lorentz frame satisfy

Dmε = −Mσm(σ̄aha)ε, Dm ε̄ = M σ̄m(σaha)ε̄, (4.32)

where M = 1
2 or − 1

2 for the left- or right-invariant Killing spinors, and

ha = (0, 0,−uξ, u). (4.33)
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By dropping the last term on the right hand side of (4.31) we obtain the 3D metric
of the familiar squashed S3 with SU (2)L × U (1)R isometry. But the nature of the
dimensionally reduced theory depends also on which supersymmetries have been
preserved in the reduction.

If we set M = 1
2 and Vt = − i

2 + ξ upon dimensional reduction, the supersym-
metry of the resulting 3D theory is characterized by the Killing spinor equation

(
∂m + 1

4
ωab

m γ ab + iuξ 2Vm

)
ε = iu

2
γmε,

(
∂m + 1

4
ωab

m γ ab − iuξ 2Vm

)
ε̄ = iu

2
γm ε̄, (4.34)

where Vm ≡ Ê3
m = ue3m . The above Killing spinor equation takes the form of (3.2)

with Um = 0, and 1/4 of the supersymmetry on the round S3 remains unbroken
after squashing due to the background U (1)R gauge field −uξ 2Vm . It was shown in
[5] that the exact partition function on this squashed S3 background is essentially
the same as that on the round S3, in consistency with the discussion in the previous
subsection. For the case M = 1

2 and Vt = − i
2 + ξ , the 3D Killing spinor equation

takes the same form as above but the U (1)R gauge field appears with the opposite
sign.

If we set M = − 1
2 and Vt = i

2 , the Killing spinor equation of the 3D theory is

(
∂m + 1

4
ωab

m γ ab
)
ε = − iu

2
γmε − uξV nγmnε,

(
∂m + 1

4
ωab

m γ ab
)
ε̄ = − iu

2
γm ε̄ + uξV nγmn ε̄, (4.35)

again with Vm ≡ Ê3
m = ue3m . This case preserves 1/2 of the Killing spinors on

the round S3. The above Killing spinor equation can be identified with (3.2) with
Um �= 0. It was shown in [18] that the partition function on this background depends
nontrivially on ξ through the squashing parameter

b = u(1 − iξ). (4.36)

For a real ξ , the squashing parameter b is a complex phase.
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3d Superconformal Theories
from Three-Manifolds

Tudor Dimofte

We review here some aspects of the 3d N = 2 SCFT’s that arise from the compacti-
fication of M5 branes on 3-manifolds. The program to systematically describe these
theories and their properties began in a series of papers [1–3], inspired by earlier
physical studies [4–6], and has since been extended and clarified in [7–12], among
other works.

Part of the “3d-3d correspondence” includes an analogue of the AGT relation
[13–16] and the index-TQFT relation of [17–19], discussed in much of the rest of
this volume. Recall that for theories of classS, i.e. 4dN = 2 theories TK [C] obtained
by wrapping K M5 branes on C , one expects

Partition function of TK [C] on Partition function of on C
S4

b = Liouville theory
R

4
ε � D4

b = Liouville theory (conformal block)
S3 ×q S1 = q-Yang-Mills or generalizations

(1)

The basic logic is that one takes the 6d geometry supporting the (2,0) theory on the
worldvolume of the M5 branes to be of the form X × C , where X is one of the
geometries in the left column of (1); then compactifying first on C leads to TK [C]
on X , whereas compactifying first on X should lead to some other theory (the right
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column of (1)) on C . Similarly, if we denote by TK [M] the effective 3d field theory
obtained from wrapping K M5 branes on M , we expect1

Part’n function of TK [C] on Part’n function of on M
S3

b = SL(K ,C) Chern-Simons at level k = 1 [1, 11]
S2 ×q S1 = SL(K ,C) Chern-Simons at level k = 0 [3, 12]
R
2 ×q S1 = holomorphic sector of SL(K ,C)C S [20, 4, 21]

SUSY vacua on R
2 × S1 = flat SL(K ,C) connections on M [20, 4].

(2)

The 3d-3d and 2d-4d correspondences fit very nicely together when M has a
boundary. We will describe in Sect. 1 that when ∂M is nontrivial, the theory TK [M]
is best interpreted as a boundary condition or domain wall for the 4d N = 2 theory
TK [∂M] [1, 8, 22]. This has some natural implications for partition functions. For
example, if M has two distinct boundaries of the same type, ∂M = C � C , then
TK [M] describes a domain wall in the 4d theory TK [C]. In turn, the 3d partition
functions of TK [M] on a space Y (from the right column of (2)) should act on the
4d partition functions of TK [C] on a half-space X with ∂X = Y . Examples of this
type and others have been explored in [5, 6, 23–25], and we will elaborate a bit
further on them in Sect. 2.2. Similar ideas about domain walls also constituted a
major ingredient in the recent 4d-2d correspondence of [26].

The current successes of the “3d-3d” program include a systematic prescription
for associating theories T̃K [M] to a wide class of 3-manifolds M with boundary [1,
2, 7], which we discuss in Sects. 3–4. Sometimes the theories T̃K [M] only contain a
subsector2 of the full theory TK [M] of K M5 branes on M ; though in special cases
one does recover the full TK [M]. In particular, one recovers the full TK [M] when
M is a 3-manifold encoding a duality domain wall in a 4d N = 2 TK [C], as long
as χ(C) < 0. We will revisit this subtlety in Sect. 4.1; in the following we drop the
tilde on T̃K [M] to simplify notation.

The main technique of [1, 2, 7] is to triangulate the manifold, cutting it up into
tetrahedra, and then to “glue” TK [M] together from elementary 3d theories T� associ-
ated to the tetrahedron pieces. One obtains this way an abelian Chern-Simons-matter
theory—a theory of “classR”—that flows to the desired SCFT TK [M] in the infrared.
Quite beautifully, different triangulations of M lead to different UV Chern-Simons-
matter theories that flow to the same TK [M]. In other words, the UV theories are

1Here S3
b denotes a “squashed” 3-sphere with ellipsoidal metric. It is also useful to note that complex

SL(K ,C) Chern-Simons theory has two coupling constants or levels (k,σ), one quantized and the
other continuous, cf. Sects. 2.1 and 2.2. It is only the quantized level that is being fixed in (2). The
general pattern following from work of [11] is that TK [C] on a squashed Lens space L(k, 1)b is
equivalent to SL(K ,C) Chern-Simons at level k.
2To be precise: after compactification on S1, the subsectors only contain SUSYvacua corresponding
to irreducible SL(K ,C) flat connections on M , with given boundary conditions, rather than all flat
connections as prescribed by (2). The relation between these subsectors and the “full” TK [M] began
to be analyzed in [27].
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related by a generalized 3d mirror symmetry. The 3d-3d program therefore leads to
the geometric classification of a huge subset of abelian 3d mirror symmetries.

Mathematically, the study of 3-manifold theories based on triangulations has led
to the new concepts of “framed” 3-manifolds and moduli spaces of “framed” flat
connections on them [7, 8]. They generalize the framework of [28] for studying
higher Teichmüller theory on 2d surfaces—which in turn played a central role in the
2d-4d explorations of Gaiotto, Moore, and Neitzke, cf. [29, 30].

Despite many exciting achievements, there is still much to develop in the 3d-3d
program. One interesting direction of study would be to find nonabelian UV descrip-
tions for theories TK [M], dual to the abelian ones that come from triangulations.3

This may come from cutting manifolds into simpler pieces along smooth surfaces
(rather than sharp tetrahedron boundaries, which have edges and corners), much as
was done for cutting 2d surfaces in [32]. Such smooth cutting and gluing should
provide the construction of TK [M] for general closed 3-manifolds as well, and may
circumvent the difficulties with irreducible flat connections and subsectors (cf. Foot-
note 2) encountered so far. Finally, while computations of sphere partition functions
and indices of TK [M] are easy and accessible, it would be extremely interesting
to analyze the actual Q-cohomology of the space of BPS states of a theory TK [M]
on (say) S2 × R. This would have immediate applications to the categorification of
quantum 3-manifold invariants, along the lines of [20, 33].

1 The 6d Setup

Before discussing methods to construct TK [M], let’s first try to understand exactly
what it means to associate a 3dN = 2 theory to an oriented 3-manifold M , and what
properties the theory should have.

One way to think about this is to start in 11-dimensional M-theory, wrapping K
M5branes on M ×R

3. If wewant to preserve supersymmetry wemust make sure that
M is a supersymmetric cycle. Taking the ambient 11-dimensional geometry to be a
cotangent bundle T ∗M ×R

5 (with M its zero-section), we can preserve at least four
supercharges.4 If we subsequently decouple gravity, taking a field-theory limit on
the M5 branes, and flow to low energy so that fluctuations along M can be neglected,
we expect to obtain a 3-dimensional N = 2 theory on R

3. In the far infrared, the
theory generically hits a superconformal fixed point, which we might call TK [M].

3In a few examples, nonabelian duals are already known: the basic tetrahedron theory has an SU (2)
dual discussed in [31]; and the theory for the basic S-duality wall in 4d N = 2 SU (2) theory with
N f = 4 (associated to the manifold in Fig. 4b) has an SU (2) dual found in [24]. Some basic ideas
about smooth gluing were also discussed in [5].
4The counting goes as follows. First, the cotangent bundle T ∗M is a noncompact Calabi-Yau
manifold. M-theory on a generic Calabi-Yau background preserves eight supercharges (cf. [34,
35]). An M5 brane wrapping a special Lagrangian cycle in the Calabi-Yau (such as the zero-section
M in T ∗M) is half-BPS, and preserves four of the eight supercharges.
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In this brane construction, the starting metric on M might be chosen arbitrarily.
All the details of the metric enter (as couplings) into an effective field theory on
R

3. However, in the process of flowing to the infrared the metric is expected to
“uniformize,” acquiring constant curvature.5 Correspondingly, renormalization flow
washes away most of the coupling dependence in the effective theory on R

3. Most
topological 3-manifolds admit a metric with constant negative curvature [38], i.e. a
hyperbolic metric, and they are the ones we’ll be interested in.6 Moreover, if M is
closed, the hyperbolicmetric is unique [39]. In this case, TK [M] is indeed expected to
be a superconformal theory, which depends only on the topology of M , has no flavor
symmetry, and admits no (obvious) marginal deformations. Just as the hyperbolic
structure on M is rigid, we might say that TK [M] is rigid.

We may also understand TK [M] directly in field theory. The 6d theory on K M5
branes is the (2, 0) SCFT with Lie algebra AK−1. It must be topologically twisted
along M in order to preserve supersymmetry. (In general, the required topological
twist is prescribed by the normal geometry of the supersymmetric cycle M ⊂ T ∗M
[40]; but in this case the choice is unique.) In particular, the SO(3)E part of the
Lorentz group corresponding to M is twisted by an SO(3)R subgroup of the SO(5)R

R-symmetry group (cf. [4, 20]). The unbroken R-symmetry is the commutant of
SO(3)R ⊂ SO(5)R , namely SO(2)R � U (1)R , as appropriate for an N = 2 theory
in 3d. We again are welcome to choose any metric on M that we want. In the UV,
the effective field theory on R3 will depend on the metric, but after flowing to the IR
one hopes to obtain an SCFT that does not.

This is all entirely analogous to compactification of K M5 branes, or the AK−1

(2,0) theory, on 2d surfaces C . In that case, the IR theory TK [C] (a theory of “class
S”) depends on the conformal class of a metric on C , which is equivalent to a choice
of hyperbolic metric. In contrast to 3d, the hyperbolic metric on a closed surface
allows continuous deformations, and the 4d N = 2 theory TK [C] has corresponding
exactly marginal gauge couplings [V:2].

The story becomes much more interesting, and in many ways much more man-
ageable, if we allow M to have defects and boundaries.

Codimension-two defects placed along knots in M add flavor symmetry to TK [M].
In the 6d AK−1 (2,0) theory, there are different types of “regular” defects, labelled by
partitions of K , and carrying various subgroups of SU (K ) as their flavor symmetry
[32].7 In M-theory, each regular defect along a knot K ⊂ M comes from a stack of
K or fewer “probe” M5 branes that wrap the noncompact supersymmetric 3-cycle
N ∗K ⊂ T ∗M (the conormal bundle of K) as well as R3. The flavor symmetry can

5See, e.g., the supergravity solutions of [36] involving special Lagrangian 3-cycles. For the anal-
ogous compactifications on 2d surfaces, the flow of the metric to constant curvature was analyzed
in [37].
6Notable exceptions include spheres, tori, lens spaces, and more general Seifert-fibered manifolds,
which have the structure of an S1 fibration over a surface. The 3d theories resulting from com-
pactification on such manifolds are qualitatively different from the hyperbolic case. For example,
compactification on a 3-torus yields N = 8 SYM in 3d, while compactification on the 3-sphere
yields a gapped theory that breaks SUSY.
7Also described in Sect. 3.1–3.2 of Families of N = 2 field theories by D. Gaiotto.

http://dx.doi.org/10.1007/978-3-319-18769-3_2
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be understood as arising from the symmetry group of the probes. In the presence of
a defect, the hyperbolic metric on M acquires a cusp-like singularity, cf. [41].

In order to add boundaries to M , we must be somewhat more creative, since M5
branes cannot end. Alternatively, the (2, 0) theory does not admit ordinary super-
symmetric boundary conditions because it is chiral. We create boundaries for M at
“infinity” by allowing asymptotic regions that look like R+ × C for some surface C
(Fig. 1). Then M is no longer compact. Wrapping M5 branes on M leads not to an
isolated 3d theory but to a half-BPS superconformal boundary condition (preserving
3d N = 2 SUSY) for the 4d theory TK [C]. We might call this boundary condition
TK [M]. If M has multiple asymptotic regions with cross-sections Ci , then TK [M] is
a common boundary condition for a product of theories TK [Ci ], which do not interact
with each other in the 4d bulk; equivalently, TK [M] can be thought of as a half-BPS
domain wall between one subset of 4d theories

∏
i<I TK [Ci ] and its complement∏

i≥I TK [Ci ] (Fig. 2). Note that defects in M (orange lines in the figures) may enter
asymptotic regions, where they look like punctures in the surfaces Ci .

In the presence of asymptotic boundaries Ci , the hyperbolic metric on M is no
longer rigid. It depends (at least) on a choice of hyperbolic structure for each surface
Ci , i.e. on a choice of boundary conditions. This choice, of course, parametrizes the
bulk couplings of

∏
i TK [Ci ].

We can try to transform the boundary condition TK [M] into a stand-alone 3d
N = 2 theory by decoupling the 4d bulk theories

∏
i TK [Ci ]. However, there is no

unique way to do this. Suppose, for example, that there’s just a single boundary C .
Working with a nonabelian SCFT TK [C], we attain a (non-canonical) weak-coupling
limit by adjusting the hyperbolic metric on C so as to stretch it into pairs of pants

M
T [M ]

×R
3

C1

C2

T [C1] × T [C2]

Fig. 1 Compactifying M5’s on a 3-manifold with asymptotic boundaries to obtain a boundary
condition T [M]

M

T [M ]

×R
3

C1 C2

T [C1] T [C2]

Fig. 2 Re-interpreting the boundary condition of Fig. 1 as a domain wall
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Fig. 3 Shrinking a pants
decomposition of a
one-punctured torus into a
network of defects

connected by long, thin tubes [32]. There is a weakly coupled SU (K ) gauge group
in TK [C] associated to each tube. In the limit of infinite stretching, we may hope to
leave behind a 3d theory TK [M, p], labelled by the chosen pants decomposition p
of C . TK [M, p] should have a residual SU (K ) flavor symmetry for every stretched
tube (which would get gauged in re-coupling to a 4d bulk).

Wemay represent this 4d–3ddecoupling geometrically by “shrinking”C to a triva-
lent network ofmaximal codimension-two defects, as dictated by the pants decompo-
sition p (Fig. 3).8 This effectively compactifies M . The trivalent junctures of defects
survive as asymptotic regions of M with the cross-section of a 3-punctured sphere.
Thus, the theory TK [M, p] is still potentially coupled to a collection of 4d “trinion”
theories, and this coupling takes a little extra work to undo. For example, in the case
K = 2, the trinion theory just consists of four free hypermultiplets, coupled to the 3d
boundary theory by superpotentials. One can adjust bulk parameters to make some
of these hypermultiplets very massive. This is discussed in [1] and especially [8].

Alternatively, we can move onto the 4d Coulomb branch of TK [C] and flow to
the IR. Then TK [C] is a Seiberg-Witten theory, with some abelian gauge symmetry
U (1)d . The electric-magnetic duality group is Sp(2d,Z). We decouple the Seiberg-
Witten theory by choosing an electric-magnetic duality frame �, and adjusting pa-
rameters and moduli so that all the electric gauge couplings in that frame become
weak. Again, a little more is needed to decouple BPS hypermultiplets. In the end, we
obtain a purely 3d theory TK [M,�] with U (1)d flavor symmetry left over from the
bulk gauge group. We will usually represent the manifold giving rise to TK [M,�]
as simply having its asymptotic region C × R+ cut off at finite distance.

1.1 Duality Walls

A very simple application of the above constructions is to represent duality walls
for 4d N = 2 theories of class S by 3d geometries [5, 6, 8]. To this end, we take
M = R × C for some punctured surface C . In other words, M has two asymptotic
boundaries C . The punctures of C just become defects running the entire “length” of

8This “shrinking” procedure turns parts of M that look like S1 × R × R+ (i.e. the neighborhoods
of tubes) into defects. An identical setup was used to create defects in [32].
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M . Naively, TK [M] just becomes a trivial domain wall between two copies of TK [C].
However, we can make it look non-trivial by taking different decoupling limits on
the two ends.

For example, if we work with TK [C] as a UV SCFT, we can take two different
weak-coupling limits corresponding to pants decompositions p, p′. The 3d theory
TK [M, p, p′] that is left behind is the theory of anS-duality domainwall. For example,
if C is a punctured torus (with a minimal puncture), then TK [C] is 4dN = 2∗ theory
with gauge group SU (K ). Lettingp andp′ shrink theA andB-cycles of the punctured
torus, respectively, we should obtain the S-duality wall whose 3d theory is usually
called (mass-deformed) T [SU (K )] [42].

As discussed above, we can represent decoupling limits geometrically by shrink-
ing appropriate legs/tubes of C to defects at the two ends of M , so that we obtain a
compact manifold Mp,p′ with a trivalent network of defects. In the case of S-duality
for a one-punctured torus, the resulting manifold is a “Hopf network” of defects
in S3, shown in Fig. 4a. By using the methods of Sect. 4, its 3d theory was shown
in [8] to be equivalent to T [SU (2)] (for K = 2). Similarly, if we take C to be a
four-punctured sphere (with appropriate minimal/maximal punctures) and set p, p′
to correspond to its “s and t channel” decompositions, we get the basic S-duality
for N = 2 SQCD with N f = 2K = 2Nc. The 3d geometry for the duality wall is
shown in Fig. 4b; its associated 3d theory appeared in [8, 24].

We can also put theories TK [C] on their Coulomb branch, and choose decoupling
limits �,�′ at the two ends of M that are appropriate for Seiberg-Witten theory.
The theory TK [M,�,�′] becomes a “Seiberg-Witten duality wall” that implements
abelian IR dualities. The simplest such walls (involving duality for gauge multiplets
alone) were discussed from a field-theory perspective in [43]. In general, one can
also act on hypermultiplets, as discussed in [1].

Finally, decoupling one end of M in the UV and one in the IR (on the Coulomb
branch), we can obtain the 3d theory TK [M, p,�] for an “RG wall” [8]. It has the
property that operators hitting the wall on the UV side are decomposed into a basis
of IR operators on the other side, cf. [44]. For supersymmetric line operators, such
UV-IR maps have been discussed (e.g.) in [45, 46], and RG walls give them a novel
physical interpretation. The 3d geometry representing an RGwall forN = 2∗ theory
is shown in Fig. 4c. (Note how two of these geometries can be glued along their outer
boundaries to form the UV S-duality manifold of Fig. 4a.)

S3 S3

D2 × S1
(a) (b) (c)

Fig. 4 Geometries representing various S-duality and RGwalls: a a Hopf network of defects in S3;
b a tetrahedral network of defects in S3; and c a network of defects in a solid torus, corresponding
to a particular pants decomposition and connecting to a puncture on the boundary
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2 3d Theories, SL(K ) Connections, and Chern-Simons

One of the most interesting geometric properties of a 3-manifold theory TK [M] is the
relation between its vacua and flat SL(K ,C) connections on M . The other AGT-like
correspondences between partition functions of TK [M] and Chern-Simons theory
on M in (2) can be understood as quantizations of this basic semi-classical relation.
Strictly speaking, the relation to flat connections holds when TK [M] is compactified
on a circle S1 of finite radius. So let us do this, assuming that the full 6d geometry is
now M × R

2 × S1.
The 6d (2,0) theory on a circle gives rise to 5d maximally supersymmetric Yang-

Mills on M × R
2, with gauge group SU (K ),9 and with a partial topological twist

along M . We may explicitly write down the 5d BPS equations. The partial twist
transforms three real scalars in the gauge multiplet into an adjoint-valued 1-form ϕ
on M . TheBPS equations on M then take the formof “Hitchin equations” generalized
to three dimensions10:

[Di , D j ] = 0 (i, j = 1, 2, 3) ,
∑

i j

gi j [Di , D†
j ] = 0, (3)

where Di is the gauge-covariant derivative with respect to a complexified gauge field
Ai + iϕi , and gi j is a chosen background metric on M , cf. [4, 20, 47]. The equations
are invariant under real SU (K ) gauge transformations. The set of solutions to (3),
modulo real gauge transformations, is equivalent (up to a lower-dimensional subset)
to the solutions of the equations [Di , D j ] = 0 alone, modulo complex SL(K ,C)

gauge transformations. But this means that the solutions are complex SL(K ,C) flat
connections on M . Let us denote this moduli space as

L̃K (M) = { flat SL(K ,C) connections on M}. (4)

We expect it to correspond to the space of vacua of TK [M] on S1 × R
2.

In terms of branes, the M5 branes wrapping M × S1 × R
2 become D4 branes

wrapping M ×R
2. The worldvolume theory of the D4’s is 5d SYM. The three adjoint

scalar fields that were promoted to a 1-form ϕ are the translation modes of the D4’s
in the fibers of the cotangent bundle T ∗M . In the infrared, one expects the stack of
K D4 branes to separate in T ∗M , becoming a single multiply-wrapped brane, and
forming a spectral cover M̃ of M . The pattern of separation then is encoded in the
eigenvalues of the 1-form ϕ.

9It is also possible to arrive at a theory where the center of SU (K ), or subgroups of the center,
are not gauged. Then instead of getting a relation to SL(K ,C) connections, we find a relation to
P SL(K ,C) connections, or similar. The details are subtle (see [8]), but the correct relation can
ultimately be derived by examining the charges of fundamental line operators in TK [M].
10The structure of Hitchin equations in two dimensions and their relation to 4d N = 2 theory on a
circle is reviewed in [V:3].

http://dx.doi.org/10.1007/978-3-319-18769-3_3
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Wemight remark that starting from a flat complex connectionA and obtaining the
spectral 1-formϕ is not an easy task. To do so, onemust find the right complex gauge
transformation h so that the transformedAh satisfies the real equation gi j [Di , D†

j ] =
0, in addition to the complex flatness equations. Then the imaginary part of this
particular Ah is ϕ. Therefore, ϕ and the spectral cover it encodes depend on the
choice of metric gi j for M—even though the notion of a flat complex connection
does not.

It is also useful to observe that after splitting equations (3) into real and imaginary
parts they reduce to FA = d A + A2 = ϕ2, along with dA ϕ = dA ∗ϕ = 0. The latter
equations say that ϕ is a covariantly harmonic one-form on M . The eigenvalues of
ϕ give rise (roughly) to a harmonic one-form on the spectral cover, which plays the
role of a Seiberg-Witten form for TK [M] [2].

If M is compact and hyperbolic, the flat SL(K ,C) connections on M typically turn
out to be rigid. We note, however, that mathematically it is still unknown precisely
when rigidity holds.11 If the flat connections are indeed rigid, then L̃K (M) consists
of a discrete collection of points, and TK [M] will have isolated vacua (no moduli
space) on R2 × S1.

A more interesting situation arises when M has asymptotic boundary C , so that
TK [M] is a boundary condition for the 4d theory TK [C]. Suppose that we move
onto the Coulomb branch of TK [C]. After compactification on a circle S1, the theory
TK [C] can be described in the IR as a 3d sigma model whose target is the moduli
space of flat SL(K ,C) connections on C [48]

PK (C) = {flat SL(K ,C) connections on C}. (5)

This space arises physically from a standard 2d version of Hitchen’s equations (3). It
is actually a hyperkähler space, as appropriate for 4d N = 2 supersymmetry. How-
ever, we will only consider it in a single complex structure—the complex structure
associated to the 3d N = 2 subalgebra that the boundary condition TK [M] pre-
serves. Then, for us, PK [C] is simply a complex symplectic space. Its holomorphic
symplectic form is given by the Atiyah-Bott formula

� =
∫

C
Tr

[
δA ∧ δA]

, (6)

where δA is the deformation of a complex connection. The holomorphic coordinates
onPK [C] are eigenvalues or traces of SL(K ,C) holonomies (or somemore elemen-
tary cross-ratio coordinates, à la [28], fromwhich holonomies can be constructed, see

11One can attempt to use algebraic Mostow rigidity [39] to analyze the problem. This requires
knowing that the representation ρ : π1(M) → SL(K ,C) defined by the holonomies of a flat con-
nectionA is a lattice. That is, ρ(π1(M)) ⊂ SL(K ,C) is a discrete subgroup, with no accumulation
points, such that SL(K ,C)/ρ(π1(M)) has finite volume. This is true if M is hyperbolic and A is
the flat connection related to the hyperbolic metric; but is unknown in general.
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Sect. 4.1). In TK [C] these coordinates are the vevs of supersymmetric line operators
that wrap S1 [45, 49].12

Now, the moduli space L̃K (M) of flat connections on M generically projects to
a Lagrangian submanifold LK (M) ⊂ PK (C), which parameterizes the flat connec-
tions on the boundary C that extend to M :

LK (M) = {flat SL(K ,C) connections on ∂M that extend to M}. (7)

The expectation that this is Lagrangian follows from the fact that flatness equations
are elliptic; at a basic level, only half of the classical parameters on the boundary are
needed to specify a flat connection in the bulk. Moreover, both PK (C) and LK (M)

are algebraic. The equations that cut outLK (M) can be interpreted asWard identities
for line operators in TK [C] in the presence of the boundary condition TK [M]. In the
effective 3d sigma-model to PK (C), LK (M) is quite literally a Lagrangian brane
boundary condition [1].

If we decouple the 4d bulk theory TK [C] to leave behind a 3d theory TK [M, p] or
TK [M,�], the Lagrangian LK (M) acquires a more intrinsic interpretation. Let us
consider the Seiberg-Witten description of TK [C] for simplicity. Then the choice of
duality frame� needed for the decoupling maps precisely to a choice of polarization
for PK (C). This is a local splitting of coordinates into “positions” x (corresponding
to IRWilson lines of TK [C]) and “momenta” p (corresponding to IR ’t Hooft lines).

The decoupled theory TK [M,�] has U (1)d flavor symmetry, where 2d =
dimC PK (C). The positions x are twisted masses13 for each U (1) symmetry, com-
plexified by U (1) Wilson lines around S1. The momenta p can be thought of as
effective FI parameters for the flavor symmetries; or equivalently as the vevs of
complexified moment map operators for each U (1). The Lagrangian LK (M) then
describes the subset of twisted masses and effective FI parameters that allow super-
symmetric vacua to exist on R

2 × S1—it is the “supersymmetric parameter space”
of TK [M,�].

More concretely, by compactifying TK [M,�] on a circle we obtain a 2-dimen-
sional N = (2, 2) theory, whose IR behavior is governed by an effective twisted
superpotential W̃ . After extremizing W̃ with respect to dynamical fields, it retains a
dependence on complexified masses x . The supersymmetric parameter space is then
defined by [6]14

LK (M) : exp
(

xi∂xi W̃ (x)
)

= pi , i = 1, . . . , d. (8)

12See Sect. 2 of Hitchin systems in N = 2 field theory by A. Neitzke.
13Explicitly, if we re-introduce the radius β of the compactification circle, these dimensionless
coordinates arise as x = exp

(
βm3d + i

∮
S1 A

)
, where A is the background gauge field for a 3d

flavor symmetry, and m3d is its real mass. A factor of β also enters (8) to keep W̃ dimensionless.
14This Lagrangian and its quantization also plays a role in the study of surface operators in 4d
N = 2 theories, and their lifts to 3d defects in 5d theories—see Sect. 2.4 of [V:8].

http://dx.doi.org/10.1007/978-3-319-18769-3_8
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The description ofLK (M) andPK (∂M) can be generalized to geometries M that
include codimension-two defects. It is necessary to impose boundary conditions for
flat connections at the defects. These effectively increase the dimension ofPK (∂M),
basically as if all defects had been regularized to small tubular pieces of boundary.
This is natural, since defects enlarge the flavor symmetry group of TK [M]. Mathe-
matically, PK (∂M) and LK (M) most accurately take the form of moduli spaces of
“framed” flat connections, which we discuss in Sect. 4.1.

2.1 Quantization and 3d-3d Relations

Having understood the fundamental relation between flat connections and the pa-
rameters/observables of TK [M], one can further deform the R

2 × S1 geometry to
quantize the pair LK (M) ⊂ PK (∂M). The basic idea is that adding angular momen-
tum, so that R2 � C fibers over S1 with twist z → qz, leads to a non-commutative
algebra ofWilson and ’t Hooft line operators that satisfy p̂x̂ = q x̂ p̂ [45, 50], ([V:3],
Sect. 3). The algebraic equations for LK (M) are promoted to operators that annihi-
late partition functions of TK [M,�] (or TK [M, p]), enforcing Ward identities in the
twisted geometry.

The quantization of the pair LK (M) ⊂ PK (∂M) also has a natural interpreta-
tion on the “geometric” side of the 3d-3d correspondence. It is useful to recall that
flat SL(K ,C) connections on a 3-manifold are the classical solutions of quantum
SL(K ,C) Chern-Simons theory. The spacePK (∂M) is just the semi-classical phase
space that Chern-Simons theory associates to a boundary of M , and its quantiza-
tion produces the algebra of operators acting on a quantum Chern-Simons Hilbert
space HK (∂M) [51–53]. Similarly, the Lagrangian LK (M) is just a semi-classical
wavefunction, and its quantization produces a distinguished element of the opera-
tor algebra that annihilates the Chern-Simons wavefunction on M , an element of
HK (∂M).

One expects, therefore, that partition functions of TK [M, ∗] on spacetimes with
angular momentum are equivalent to wavefunctions in complex Chern-Simons the-
ory, leading to the correspondences of (2). A precise choice of spacetime is required
to fully specify how the Chern-Simons Hilbert space should be quantized—in par-
ticular to specify the level of the Chern-Simons theory. However, the structure of
the quantum line-operator algebra (the algebra of operators in CS theory) remains
essentially independent of this choice. Here are some options that have been studied:

• On spinning R2 ×q S1 as above, the partition function of TK [M,�] depends on a
discrete choice α of boundary condition (basically a massive vacuum) at infinity
on R

2, in addition to q and the complex masses x . Geometrically, α is a choice
of flat connection on M given boundary conditions x . The resulting partition
functions Bα(x; q) [21, 54], which count BPS states of TK [M, ∗], correspond to
partition functions in analytically continued SU (K ) Chern-Simons theory on M ,
with exotic choices of integration contour labelled by α, much as in [53, 55, 56].

http://dx.doi.org/10.1007/978-3-319-18769-3_3
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• The partition function of TK [M, ∗] on a spinning S2 ×q S1 geometry computes
a supersymmetric index [57–59]. It was conjectured in [3] and derived in [12]
that the index corresponds to a wavefunction of SL(K ,C) Chern-Simons theory
at level k = 0. This is not a trivial theory! To be more precise, we must recall
that complex Chern-Simons theory has two levels (k,σ), one quantized and one
continuous. Here only the quantized level is set to zero; the continuous σ is related
to the spin in the index geometry as q ∼ e2π/σ .

• The partition function of TK [M, ∗] on an ellipsoid S3
b , computed via methods of

[60, 61],15 was conjectured in [1, 5, 6] to correspond to an SL(K ,R)-like Chern-
Simons wavefunction. A careful supergravity calculation in [11, 62] then derived
a direct relation to SL(K ,C) Chern-Simons theory at level k = 1. The Hilbert
spaces of these two Chern-Simons theories are very similar—see Sect. 2.2.

• It was conjectured in [21] that the index and ellipsoid partition functions can
both be written as sums of products of “holomorphic blocks” Bα(x; q), providing
a direct relation between the three types of partition functions above. This is
essentially holomorphic-antiholomorphic factorization in complex Chern-Simons
theory, and involves a 3d analogue of topological/anti-topological fusion [63, 64]
for TK [M, ∗].

• Extending the results of [11], one expects that the partition function of TK [M, ∗]
on a squashed lens space L(k, 1)b (which can be computed via methods of [65])
agrees with a wavefunction of SL(K ,C) Chern-Simons theory at general level k.

The relation between S3
b partition functions of T2[M, ∗] and complex Chern-

Simons theory provided some of the first concrete tests of 3d-3d duality. For 3-
manifolds with boundary, the relevant Chern-Simons partition functions could be
computed using methods of [66–68] (and are now understood to capture SL(2,C)

Chern-Simons at level k = 1). In the case of S2 ×q S1, however, techniques for
computing the index of TK [M, ∗] led to a new algorithm for computing SL(K ,C)

Chern-Simons wavefunctions at level k = 0, which has since been formalized math-
ematically [69, 70]. Repeating this exercise for squashed lens spaces should prove
equally interesting.

2.2 Connection to AGT

As anticipated in the introduction, the fact that 3d theories TK [M, ∗] naturally define
boundary conditions for 4d theories TK [∂M] of class S leads to a close interplay
between the partition functions involved in 3d-3d and 2d-4d relations.

The basic physical idea is that if X is a 4-manifold with boundary allow-
ing supersymmetric compactification of N = 2 theories, the partition function
ZX

(
TK [∂M], p

)
should depend on supersymmetric boundary conditions, and can

be interpreted as a wavefunction in some Hilbert space HK [∂M, p]. Here we write

15See also A review on SUSY gauge theories on S3 by K. Hosomichi.
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ZX
(
TK [∂M], p

)
to emphasize that the way one prescribes boundary conditions may

depend on a choice of weak-coupling duality frame for TK [∂M], given (say) by a
pants decomposition p for ∂M . For example, if X = D4

b is half of the squashed
4-sphere S4

b (equivalently, for computational purposes, to the omega-background
X = R

4
ε ), then ZX

(
T2[∂M], p

)
is an instanton partition function of T2[∂M]. The

instanton partition function depends on Coulomb moduli ai for each gauge group
that is manifest in the duality frame p. Via the AGT correspondence, it is natural to
identify the instanton partition function with a wavefunction in the Hilbert space of
Liouville conformal blocks H2[∂M, p].

Here we should emphasize a technical point. In this interpretation, HK [∂M, p] is
not the (enormous) full physicalHilbert space of TK [∂M] on∂X . Rather,HK [∂M, p]
is a “BPS” subsector of the full Hilbert space, whose elements are supersymmetric
ground states of TK [M] on ∂X . The supersymmetric partition functions that we
describe belong to this subsector, which has finite functional dimension.

Now if M is any 3-manifold with boundary ∂M , then the partition function of
TK [M, p] on ∂X should also be a wavefunction in the Hilbert space HK [∂M, p].
In order to calculate the partition function of TK [∂M] on X , coupled to the theory
TK [∂M, p] on ∂X , we simply take an inner product

〈ZX
(
TK [∂M], p

) ∣∣Z∂X
(
TK [M, p]) 〉

. (9)

For example, if X = D4
b , then ∂X = S3

b , and Z∂X
(
T2[M, p]) is simply the ellipsoid

partition function of the 3d theory T2[M, p]. Note that the 3d theory T2[M, p] has
flavor symmetries with complexified twisted masses ai for every gauge symmetry
of the bulk theory T2[∂M] (in duality frame p); thus both the right and left sides
of (9) depend on the same parameters ai , and taking an inner product just means
integrating them out with the right measure.

By using the doubling trick of Fig. 2, these constructions can easily be extended
to domain walls. For example, one might insert an S-duality domain wall carrying
theory T2[M; p, p′] on the equator S3

b ⊂ S4
b . Here ∂M = C � C for some sur-

face C , so the ellipsoid partition function belongs to a product of Hilbert spaces
ZS3

b

(
T2[M; p, p′]) ∈ H2[C]∗ ⊗ H2[C]. The partition function on the whole S4

b with
the domain wall becomes

〈ZD4
b

(
T2[C], p

) ∣∣ZS3
b

(
T2[M, p, p′]) ∣∣ZD4

b

(
T2[C], p′) 〉

. (10)

Such configurations with S-duality domain walls in S4
b have been studied at length,

e.g. in [5, 6, 23, 24] (see [V:10]). The 3d partition function ZS3
b

(
T2[M, p, p′]) can

be identified with a Moore-Seiberg kernel in Liouville theory—it acts naturally on
H2[C], changing the basis from one labelled by p to one labelled by p′. In this
case, the LagrangianL2(M) and its quantization describes the transformation of line
operators from one side of thewall to the other. An analogous setup involving domain
walls on the equator of the index geometry S2 ×q S1 ⊂ S3 ×q S1 was considered in
[3, 25, 71].

http://dx.doi.org/10.1007/978-3-319-18769-3_10
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We remark that while physically it is clear that all wavefunctions appearing in
formulas such as (9) must belong to the same Hilbert space—namely, the space
describing basic supersymmetric boundary conditions on ∂X—this is sometimes a
little less clear on the “geometric” side of the 3d-3d and 2d-4d correspondences.
There remain a few interesting details to be worked out here. For example, the 2d-4d
correspondence says that T2[∂M] belongs to a space of Liouville conformal blocks on
∂M , while the 3d-3d correspondence says that T2[M, ∗] belongs to the Hilbert space
of SL(2,C) Chern-Simons theory, at level k = 1, on ∂M . These are not obviously
equivalent. A promising observation is that the Liouville Hilbert space is a boundary
Hilbert space for SL(2,R)Chern-Simons [72].16 In turn, the quantization of a model
phase space (R)2 in SL(2,R) theory yields H = L2(R); while the quantization of a
model (C∗)2 in SL(2,C) theory at level k yieldsH = L2(R)⊗Vk , where dim Vk = k
[3]; these model descriptions agree when k = 1.

3 Top-Down Construction

Currently there exist two closely related approaches for producing 3d N = 2 La-
grangian gauge theories that flow in the IR to 3-manifold theories TK [M]. Both
approaches lead to abelian Chern-Simons-matter theories of classR, whose superpo-
tentials may contain nonperturbative monopole operators. Going in reverse chrono-
logical order, we will first introduce the more intuitive “top-down” construction of
[2] here, and then discuss the more concrete but also more technical “bottom-up”
construction of [1, 7] in Sect. 4.

It is important to keep in mind that many different UV Lagrangian theories can
have the same IR fixed point TK [M]. We will say that such UV theories are “mirror
symmetric,” after the first dualities of this type found in [73–76]. The phenomenon
is entirely analogous to Seiberg duality for 4d N = 1 theories (and sometimes even
arises from reducing 4d dualities [77]). For nowwe note that the abelian Lagrangians
described here could easily have non-abelian mirrors.

The basic idea of [2] is to derive the BPS particle content and interactions for a
UV description of TK [M] from the geometry of a K -fold spectral cover M̃ of M , and
then to use them (optimistically) to reconstruct an entire 3d Lagrangian. For example,
in M-theory, the K coincident M5 branes wrapping M are expected to deform at low
energy17 in the fiber directions of T ∗M , recombining into a single brane that wraps
the cover M̃ . The BPS states and their interactions then arise from M2 branes that
end on this M5.

16Quantization of SL(2,R) flat connections on a surface is reviewed in this volume in Supersym-
metric gauge theories, quantization of Mflat , and conformal field theory by J. Teschner.
17Here we mean low energy from the point of view of M-theory dynamics, which is still UV for
3d field theories on R

3. See related comments below about being able to choose arbitrary metric
for M .
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We can understand the appearance of a spectral cover M̃ , governed by a multi-
valued harmonic one-form λ on M (or a single-valued harmonic one-form λ on M̃),
directly in M theory. In order to preserve supersymmetry, an M5 brane must wrap
a special Lagrangian 3-cycle in T ∗M . The zero-section M is one such cycle, but it
can be deformed. Small deformations preserving the special Lagrangian condition
are precisely parametrized by real harmonic 1-forms λ on M . We should emphasize
again that λ depends on a choice of metric for M , which is entirely up to us—we
are not working in the ultra low-energy limit where only the hyperbolic metric is
relevant.

Alternatively, we could obtain the spectral cover in field theory by starting with
the nonabelian Hitchin-like construction of Sect. 2, and sending the compactification
radius to infinity. This radius β implicitly entered the definition of the complexified
connection A + iβϕ in (3); as β → ∞, a rescaled Higgs field ϕ survives. So long
as the three components of ϕ are simultaneously diagonalizable, we saw that their
eigenvalues define a multi-valued harmonic 1-form. A more direct 6d construction,
along the lines of [32, 78], would extract λ from certain operators of the 6d (2, 0)
theory.

From M̃ and λ, one can attempt to read off the content of a UV Lagrangian
description of TK [M], which we’ll call T̃K [M]. First, the integral of λ around any
1-cycle γ ⊂ M̃ produces a real scalar σ in a 3d N = 2 vector multiplet. The integral
of the (abelian) M5-brane B-field on the same cycle leads to the actual 3d abelian
gauge field Aμ, the superpartner of σ. Thus, to a first approximation, the number of
gauge multiplets in T̃K [M] is the first Betti number b1(M). In fact, if there is any
torsion in H1(M̃,Z), it indicates the presence of additional gauge multiplets that are
killed (dynamically) by nonzero Chern-Simons terms. The full claim is that if

H1(M̃,Z) � Z〈γ1, . . . , γd〉
/(

� j ki jγ j = 0
)
, (11)

then T̃K [M] has d abelian gaugemultiplets coupledwith aChern-Simons levelmatrix
ki j .

If M has defects, they lift to defects in the spectral cover M̃ . Then, much as in the
setting of compactification on 2d surfaces with punctures, the non-trivial 1-cycles in
M̃ that link the defects give rise to non-dynamical gauge fields and flavor symmetries
in T̃K [M]. Note that defects impose boundary conditions on λ that forbid a trivial
solution λ ≡ 0.

Similarly, if M has an asymptotic boundary of the form C × R+, the spectral
cover M̃ will have asymptotic regions of the form � × R+, where � is a K -fold
cover of C . It is the Seiberg-Witten curve for the 4d theory TK [C]. If we pass to
a weak-coupling limit � of TK [C] to obtain a pure 3d theory TK [M,�], half of
the cycles in the Seiberg-Witten curve will get pinched off. The remaining cycles
contribute to H1(M̃), and lead to non-dynamicalU (1) gaugemultiplets in T̃K [M,�],
corresponding to the expected U (1) flavor symmetries.

Most interestingly, M2 branes ending on the M5 wrapping the spectral cover lead
to BPS particles and superpotential interactions in TK [M]. The basic case is a non-



354 T. Dimofte

M2
M2

γ

γ1 γ2

γ3

β

W = φ1φ2φ3φ

M M2 M2

M2

M(a) (b)

Fig. 5 Producing BPS chirals and superpotentials from M2 branes wrapped on M̃

contractible cycle γ ⊂ M̃ of minimum volume that bounds a disc Dγ ⊂ T ∗M . An
M2 brane wrapping D × R ⊂ T ∗M × R

3 gives rise to a BPS particle of charge
γ, hence a chiral multiplet φ in T̃K [M] (Fig. 5a). If the M2 brane instead ends on a
2-cycle β ⊂ M̃ (filling in a ball in T ∗M), then it looks like an instanton inR3, which
can generate a superpotential involving a monopole operator. It is the monopole for
the gauge field associated to the 1-cycle γ dual to β. Finally, suppose we have a
collection of M2 branes wrapping some discs Di , with ∂Di = γi , giving rise to
chirals φi . Then an additional M2’ brane might wrap a ball in T ∗M whose boundary
is a union of the discs Di and an open 2-cycle in M̃ connecting their boundaries γi

(Fig. 5b). This latter M2’ brane also looks like an instanton in R
3, and generates a

superpotential interaction among the chirals, W = ∏
i φi .

Altogether, the vectormultiplets and their Chern-Simons interactions, and the chi-
ral multiplets and their superpotential interactions, all obtained geometrically from
M̃ , could specify the abelian Chern-Simons matter theory T̃K [M] (or T̃K [M,�],
etc.). Unfortunately, the prescription can be extremely difficult to implement in gen-
eral. The problem is that, given an arbitrary background metric on M , one cannot
easily solve for the harmonic form λ and the minimum-volume cycles on M̃ .

One way to circumvent this problem is to deform the metric on M so that the
cover M̃ becomes “especially nice,” making it easy to read off the particle content
of T̃K [M]. We will explain this further in the next sections. Often there are multiple
“especially nice” limits, which lead to different mirror-symmetric theories T̃K [M].

3.1 Seiberg-Witten Domain Walls

A basic scenario that can allow a simple description of the spectral cover M̃ is for M
representing a Seiberg-Witten domain wall, as discussed in Sect. 1.1. Suchmanifolds
were the focus of study in [2, 9].

We take M = R × C , where C is a punctured surface. The punctures become
defects running the entire length of M . At the two asymptotic ends of M , we consider
the theory TK [C] on its Coulomb branch. Globally, we picture the spectral cover
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M̃ as a fibration over the infinite direction R, whose fiber over a point x3 ∈ R

is a Seiberg-Witten curve �x3 for TK [C]. The Seiberg-Witten curve comes with a
holomorphic Seiberg-Witten differential λSW (x3). As x3 varies from −∞ to ∞, we
want to smoothly vary the UV gauge couplings (i.e. the metric on C), as well as
mass parameters coming from the defects and Coulomb moduli in such a way that
the theory TK [C] decouples at x = ±∞ according to some chosen polarizations
�,�′.

In order to preserve 3-dimensional N = 2 supersymmetry, the variation we
choose cannot be completely arbitrary. Geometrically, we need the real part of the
varying Seiberg-Witten differential λSW (x3) to form two of the three components of
a harmonic 1-form λ on M̃ . Alternatively, in field-theory terms, we recall that the 3d
N = 2 central charges are the real parts18 of 4d N = 2 central charges (just as the
scalar in a 3d gauge multiplet is the real part of the scalar in a 4d gauge multiplet).
A necessary condition for unbroken 3d SUSY is

∂3Re[a(x3)] = ∂3Re[aD(x3)] = ∂3Re[m(x3)] = 0, (12)

i.e. the real parts of all 4d central charges, coming from periods of λSW , are fixed.
A 4d theory TK [C] whose parameters vary19 in the x3 direction subject to (12) can
be called a generalized Janus configuration, cf. [80]. The condition (12) ensures that
∂3Re λSW is an exact 2-form on �, i.e. ∂3Re λSW = d� f , where d� is the exterior
derivative along �. Then Re λSW − f dx3 is a closed real 1-form on M̃ , which can
be further corrected20 to produce the harmonic 1-form λ.

The fundamental example of a Seiberg-Witten domain wall involves the Seiberg-
Witten curve

�� : z2 = −w2 + m, λSW = z dw, (13)

where m is a complex mass parameter. Note that the curve is a double cover of the
complex w-plane, which we identify as C , with branch points at w = ±√

m, and
that the only nontrivial period comes from the cycle γ connecting the branch points:

1

π

∮
γ

λSW = 2

π

∫ √
m

−√
m

λSW = m. (14)

Indeed, the Seiberg-Witten theory corresponding to the curve (13) has a single BPS
hypermultiplet of central charge m (and mass |m|). More generally, the curve (13)

18More generally, we have Z3d = Re[ζ−1Z4d ], where the phase ζ characterizes the 4d → 3d
supersymmetry breaking. The 4d R-symmetry group SU (2)R ×U (1)r is broken toU (1)R (a Cartan
of SU (2)R), and this ζ is rotated by the broken U (1)r . This same phase also happens to select the
complex structure that one should use for the hyperkähler moduli spaces of flat connections [29,
48], as discussed in Sect. 2.
19Similar half-BPS configurations in 3d N = 2 theories were discussed in [79].
20The correction requires solving the potential problem ∇2σ = ∂3 f . Then λ = Re λSW

− f dx3 + dσ.
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can also be thought of as a local model for any Seiberg-Witten fibration � → C
where two branch points are coming close together.

To build a domain wall from (13), we vary the imaginary part of m while keeping
the real part fixed, say m = m0 + i x3. The two branch points of σ → C sweep out
branch lines of a 3d fibration M̃ → M . As x3 → ±∞, the branch lines move very
far apart, the mass |m| of the 4d BPS state grows infinitely, and the 4d theory TK [C]
decouples. At x3 = 0, the branch lines are minimally separated, and an M2 brane
wrapping the cycle γ between them produces a “trapped” 3d BPS chiral φ. Its 3d
real mass is m0. We find that TK [M,�,�′] =: T� (which will eventually be called
the “tetrahedron theory”) contains a single free chiral transforming under the U (1)
flavor symmetry coming from the cycle γ. If we want a true SCFT, we should set
m0 = 0; otherwise the 3d theory is mass-deformed.

In field-theory terms, the full domain wall TK [M], can be understood roughly as
follows. Let us denote by TK [C−] and TK [C+] the 4d Seiberg-Witten theories on the
left and right half-spaces R3 ×R±. Each of these theories has a BPS hypermultiplet
�− and�+, which we rewrite as a pair of 3dN = 2 chirals (X−, Y −) and (X+, Y +).
Here X and Y have opposite flavor charge. On both the left and the right, we give
X± Dirichlet boundary conditions and Y ± Neumann boundary conditions. Then,
at x3 = 0, we couple the (free) boundary values of Y ± to our 3d chiral φ via a
superpotential [1]

W = Y −φ − φY + ∣∣
x3=0. (15)

These couplings modify the Dirichlet b.c. for the X ’s to X−|x3=0 = φ = X+|x3=0,
via a mechanism studied in [81, 82].

In the far infrared, we can simply use (15) to integrate out φ, obtaining Y + = Y −
and X+ = X−. Thus we recover a single 4d theory TK [C] on all of R4. This is not
unexpected: in the deep IR, all Seiberg-Witten “duality” walls are basically trivial!
However, if we first send Im m → ∞ on the left and right sides of the wall to freeze
out the 4d hypers, we are left with the decoupled 3d theory T� containing a nontrivial
chiral φ.

Note that the choices � and �′ that we made to decouple the two sides in this
example had nothing to do with dynamical electric/magnetic gauge fields. They
simply selected which halves of the hypers (X±, Y ±) got Neumann versus Dirichlet
boundary conditions.21 More generally, one may augment couplings to 3d chirals as
in (15) with true changes of polarization, which are implemented by pure 3d N = 2
Chern-Simons theories living on the domain wall [43] (see also Sect. 4.2).

21It may seem like � = �′ in this example. This is not the case, due to the relative orientation on
the two halves. The setup corresponding to � = �′ involves X getting Dirichlet b.c. on one side
and Y getting Dirichlet b.c. on the other, with the remaining (Neumann) halves coupled directly by
a superpotential W = Y − X+ at x3 = 0. This flows immediately to TK [C] on all of R4.
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4 Bottom-Up Construction: Symplectic Gluing

In the last section, wementioned that a judicious choice of metric on M can lead to an
especially simple spectral cover M̃ , so that the full abelian Chern-Simons Lagrangian
of a theory T̃K [M] can be read off. What we had in mind was a cover branched along
a set of lines, so that the branch lines are well separated almost everywhere. In
a few isolated regions, the branch lines pass close by one another, and each such
region might be modeled on the example (13) of Sect. 3.1. Graphically, each region
of closest-approach may be represented as a tetrahedron � in a 3d triangulation of
M . Then we can attempt to associate a canonical “tetrahedron theory” T� to each
tetrahedron—basically the theory of a free 3d chiral multiplet—and then to glue
them together properly. This is what was done in [1] for K = 2, and generalized to
arbitrary K ≥ 3 in [7].

The idea of [1] was to develop a complete, consistent set of gluing rules for
tetrahedron theories,working from the ground up. Physically, the gluing rules amount
to introducing superpotential couplings for internal edges in a triangulated manifold,
and possibly gauging U (1) flavor symmetries. The rules are very precise, and make
many properties of TK [M] manifest—such as the presence of various marginal and
relevant operators, and the existence of an unbrokenU (1)R symmetry in the infrared.
On the other hand, one always obtains abelian Chern-Simons matter Lagrangians
with abelian flavor symmetries, and it can be quite nontrivial to see that some of the
flavor symmetries have expected nonabelian enhancements, e.g. to SU (K ). More
seriously, as mentioned in the introduction, the theories obtained from triangulations
sometimes capture only a sub-sector of the full TK [M]; we will explain why in
Sect. 4.1.1.

Geometrically, the approach of [1] mimics a construction of classical and quan-
tum flat SL(K ) connections on 3-manifolds via “symplectic gluing.” The method of
symplectic gluing for quantized connections on triangulated manifolds was devel-
oped in [68], generalizing classical observations of Neumann and Zagier [83] and
Thurston [84] in hyperbolic geometry. The basic idea, going back to work of Atiyah
and A. Weinstein, is that when gluing M = M1 ∪� M2 along some boundary �, the
standard notion of “taking an inner product of wavefunctions in boundary Hilbert
spaces” can be replaced by a formally equivalent procedure of quantum symplectic
reduction. The latter procedure is easy to implement even when only partial pieces
of boundary are glued.

Since the gluing rules for theories TK [M] are built to match the gluing of quantum
connections, many of the relations between sphere partition functions of TK [M] and
Chern-Simons wavefunctions on M that were summarized in Sect. 2 can be proven
combinatorially. More interestingly, one realizes that for a manifold M with bound-
ary, the theory TK [M,�] should itself be viewed as a sort of wavefunction—with
its flavor symmetries playing the role of “position variables” that the wavefunction
depends on.

Weproceed to summarize someof the results of [1, 7, 68], startingwith symplectic
gluing in geometry and then extending the gluing to 3d gauge theory.
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(a) (b) (c)

Fig. 6 Truncated tetrahedra (a), which can be glued together to form a framed 3-manifold M (b).
The small vertex-triangles of tetrahedra tile the small tubular boundaries of M (c)

4.1 Framed 3-Manifolds and Framed Flat Connections

It is useful to introduce a topological class of framed 3-manifolds [7, 8], which
represent the 3-manifolds with asymptotic boundaries and networks of defects from
Sect. 1 that were used to compactify the 6d (2, 0) theory. A framed 3-manifold22 is
a 3-manifold M with non-empty boundary ∂M , along with a separation of ∂M into
“big” and “small” pieces:

• The big boundary consists of surfacesC of arbitrary genus g and h ≥ 1 holes, such
that −χ(C) = 2g − 2 + h > 0. (In particular, these surfaces admit 2d hyperbolic
metrics.)

• The small boundary consists of discs, annuli, or tori. The S1 boundaries of small
discs and annuli connect to the holes on the big boundary.

Each of the big boundaries C is meant to represent an asymptotic boundary of a
compactification manifold—or rather an asymptotic boundary that has been “cut
off” to isolate a 3d theory. Each of the small boundaries represents a codimension-
two defect that has been regularized to a long, thin tube.

An oriented framed 3-manifold can be glued together from oriented, truncated
tetrahedra (Fig. 6), which are themselves framed 3-manifolds. The big boundary of a
tetrahedron is a 4-holed sphere, tiled by four big hexagons. The small boundary con-
sists topologically of four small discs, the triangular vertex neighborhoods. In order
to form any more complicated framed 3-manifolds, the big hexagons on tetrahedron
faces are glued together in pairs—so some parts of the big boundary may remain
unglued—while the small boundary is never glued.

Notice that a 3d triangulation of a framed 3-manifold induces a 2d “ideal triangu-
lation” of its big boundary, i.e. a triangulation where all edges begin and end at the
holes/punctures. Having fixed the big-boundary triangulation, all possible 3d trian-
gulations of the interior are related by performing sequences of 2–3 moves, shown
below in Fig. 9.

Geometrically, on a framed 3-manifold M we can study framed flat connections.
This is a precise mathematical object that ultimately reproduces (an algebraically
open subset of) the correct supersymmetric parameter space of a theory TK [M,�]

22Such manifolds were called “admissible” in [7].
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on a circle, refining (4)–(7). (Framed flat connections in two dimensions played a
prominent role in [28, 30].)

A framed flat P SL(K ,C) connection on M is a standard flat P SL(K ,C) con-
nection together with a choice of invariant flag on each small boundary component.
It might be useful to recall that a flag is a set of nested subspaces

{0} ⊂ F1 ⊂ · · · ⊂ FK = C
K , dim FK = K . (16)

For example, a flag inC2 is just a complex line inC2, a.k.a. a point inCP1. What we
require for the framing of a flat connection is a choice of flat section of an associated
flag bundle on ∂M that’s invariant under the P SL(K ,C) holonomy around each
small boundary. Then we set

PK (∂M)={framed flat P SL(K ,C) connections on ∂M\ (all small discs)}, (17)

LK (M)={ connections in PK (∂M) that extend to framed flat connections on M}.

As discussed in Footnote 9, one sometimes needs to lift these spaces to SL(K ) rather
than P SL(K ), depending on the precise theory of interest. Herewewill use P SL(K )

for concreteness.
The choice of framing for a flat connection is usually unique, or almost so. For

example, a P SL(K ) holonomy matrix with distinct eigenvalues has a unique set of
K eigenvectors. Choosing an ordering of the eigenvectors, one can then construct an
invariant flag. On the other hand, if eigenvalues coincide there may be a continuous
choice of invariant flag. This choice resolves singularities in the naive moduli spaces
PK (M), LK (M). An analogous physical resolution of moduli spaces is well known
to exist in the presence of defects on surfaces, cf. [29, 50, 55].

The fundamental example of a framed pair (17) is for a truncated tetrahedron �,
with K = 2. On the boundary ∂�, viewed as a sphere with four holes, we consider
framed flat connections with unipotent holonomy around the holes. (It is necessary
to ask for unipotent holonomy, i.e. unit eigenvalues, in order for flat connections to
potentially extend to the interior.) At each hole, we choose a complex line in C

2

that’s an eigenline of the holonomy there. If the holonomy is parabolic, of the form(
1 a
0 1

)
with a �= 0, the eigenline is unique. On the other hand, if the holonomy

becomes trivial
(
1 0
0 1

)
, the eigenline is completely undetermined. This extra choice

in the latter scenario blows up a singularity in the unframed moduli space.
We can parametrize a generic framed flat P SL(2) connection on ∂�with “cross-

ratio coordinates” of Fock and Goncharov [28], as follows.23 Every edge E in the
natural triangulation of ∂� is contained in a unique (truncated) quadrilateral. We
parallel-transport the eigenlines at the four vertices of this quadrilateral to any com-
mon point pE inside the quadrilateral, and take their cross-ratio24 to define a co-

23These coordinates generalize Thurston’s classic shear coordinates in Teichmüller theory, later
studied by Penner, Fock, and others.
24Recall that lines in C

2 are just points in CP
1, so an SL(2)-invariant cross-ratio can be formed.
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Fig. 7 Defining six edge-coordinates for a tetrahedron by parallel-transporting lines A, B, C, D to
common points pE , then taking cross-ratios

ordinate xE . The product of these cross-ratio coordinates around any tetrahedron
vertex is −1 (due to the unipotent holonomy), which also implies that coordinates
on opposite edges are equal. Relabeling the edge-coordinates z, z′, z′′ as on the left
of Fig. 7, we find that

P2(∂�) ≈ {
z, z′, z′′ ∈ C

∗ ∣∣ zz′z′′ = −1
} =: P∂�, (18)

with expected complex dimension 2. The complex symplectic structure on P∂�

induces Poisson brackets {log z, log z′} = {log z′, log z′′} = {log z′′, log z} = 1.
Similarly, we may consider framed flat connections in the bulk of �. But now,

since � is contractible, any flat connection is gauge-equivalent to a trivial one.
Nevertheless, the choice of four eigenlines at the vertices (modulo the overall action
of P SL(2)) remains, and is parametrized by the Lagrangian submanifold

L� = {z′′ + z−1 − 1 = 0} ⊂ P∂�. (19)

The relation z′′+z−1−1 = 0 (which could equivalently bewritten as z+z′−1−1 = 0
or z′ + z′′−1 − 1 = 0) is simply a standard Plücker relation among the cross-ratio
coordinates, reflecting the fact that after the tetrahedron is filled in we may parallel-
transport all eigenlines to a common point in the interior of � and simultaneously
calculate all cross-ratios there.

For a general framed 3-manifold M , we may choose a 2d triangulation of the big
boundary and again construct cross-ratio coordinates xE there. Their Poisson bracket
is such that

{log xE , log xE ′ } = oriented # of faces shared by E, E ′. (20)

These are supplemented by holonomy eigenvalues around A- and B-cycles of small
torus boundaries, and by a combination of holonomy eigenvalues and canonically
conjugate “twist” coordinates for each small annulus, altogether forming a system
of coordinates for an algebraically open patch of P2(∂M) that’s isomorphic to a
complex torus (C∗)2d . The fundamental result is that if M is cut into N truncated
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tetrahedra (in any manner that’s consistent with the chosen boundary triangulation)
then this patch of P2(∂M) is a symplectic quotient

P2(∂M) =
( N∏

i=1

P∂�i

)//
(C∗)N−d . (21)

The N − d moment maps μI in the symplectic reduction are simply the products of
tetrahedron edge-coordinates zi , z′

i , z′′
i around every internal edge EI created in the

gluing. Fixing μI = 1 ensures that a classical flat connection is smooth at that edge.
In addition, every C

∗ coordinate in P2(∂M) is expressed as a Laurent monomial
in tetrahedron edge-coordinates (well defined up to multiplication by the μI ). For
example, every xE on the big boundary of M is a product of the tetrahedron edge-
coordinates incident to the edge E .

The Lagrangian L2(M) ⊂ P2(∂M) can also be obtained25 by “pulling” a canon-
ical product Lagrangian

∏
i L�i ⊂ ∏

i P∂�i through the symplectic reduction (21).
This means projecting

∏
i L�i along the (C∗)N−d flows of the moment maps μI , and

intersecting with the locus μI = 1. This gives a very hands-on algebraic construction
of a moduli space that otherwise may appear extremely complicated.

It is known how to generalize the symplectic-gluing construction of LK (M) ⊂
PK (∂M) to arbitrary K . Moreover, it is straightforward to quantize the entire con-
struction [68]. Combinatorially, quantization requires taking logarithms of all cross-
ratio coordinates, and consistently keeping track of their imaginary parts. This cor-
responds physically to keeping track of the U (1)R symmetry of TK [M] on curved
backgrounds.

4.1.1 Limitations

We have noted in passing that when we construct Lagrangian LK [M] from tetra-
hedra by symplectic gluing, we may only recover an algebraically open patch of
the full moduli space of framed flat connections on M . The basic limitation is that
all cross-ratio coordinates z, z′, z′′ for tetrahedra in a triangulation of M must be
non-degenerate: not equal to 0, 1, or ∞. Equivalently, the four framing flags at the
vertices of any tetrahedron must be distinct after parallel transport to the center. This
restriction can sometimes cause the glued Lagrangian LK [M] to miss entire families
of flat connections. Then, if we use an analogous gluing construction to build a 3d
N = 2 theory, as in the next section, we may only recover a subsector of the full
TK [M], whose vacua on S1 correspond only to some of the flat connections on M .
This was recently emphasized in [27].

25Strictly speaking, this is true only for a sufficiently generic or refined triangulation of M . In
particular, one must make sure that the (C∗)N−d action in the quotient is transverse to the product
Lagrangian

∏
i L�i .
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To illustrate what we mean in terms of flat connections, suppose that M is a knot
complement, i.e. S3 with a knotted defect inside, which has been regularized to a
small torus boundary. A flat SL(2,C) connection on M induces (via its holonomies)
a representation ρ : π1(M) → SL(2,C), and can be classified by the “reducibility”
of this representation, i.e. the subgroup of SL(2,C) that commutes with the image
ρ(π1(M)). For example, only the identity element commutes with a fully irreducible
representation, while a full GL(1) ⊂ SL(2,C) commutes with an “abelian” rep-
resentation (whose holonomies can all be simultaneously diagonalized). Typically
both types of representations exist: there is always an abelian representation, while
for hyperbolic knot complements the holonomy of the hyperbolic metric is always
irreducible. If we now choose a triangulation for M and choose a framing line on
∂M = T 2, we find that all vertices of all tetrahedra share the same framing line (since
all vertices land on the same T 2), and the only way to get non-degenerate cross-ratios
is to have non-trivial parallel transport inside the tetrahedra. However, the parallel
transport of an abelian flat connection acts trivially on the framing lines—and tetra-
hedron cross-ratios for an abelian flat connection are always degenerate. Therefore,
only non-abelian representations are captured by symplectic gluing of tetrahedra.

This is not a serious problem when K = 2 and all components of ∂M have
genus > 1, such as for manifolds encoding duality domain walls in theories T2[C]
of class S, when C has negative Euler character. In this case, generic choices of
boundary conditions (eigenvalues of boundary holonomies) completely forbid re-
ducible flat connections on M . For example, the manifold in Fig. 4a, encoding the
S-duality wall forN = 2∗ theory, has a total boundary of genus 2. Then triangulation
methods readily reconstruct T2[M] � T [SU (2)], without missing any branches of
vacua [8].

In higher rank (K ≥ 3) the issue is more severe. Non-degeneracy of cross-ratios
requires all the defects in a manifold M to be of “maximal” type, carrying maximal
SU (K ) flavor symmetry (so that all eigenvalues of boundary holonomies can be
distinct). Subsequently, only fully irreducible flat connections are captured by the
standard symplectic gluing of [7].

The precise physical significance of the subsector of TK [M] coming from gluing
tetrahedra is still being elucidated. Thinking of TK [M] as the theory of K M5 branes
wrapping M ×R

3 ⊂ T ∗M ×R
3 ×R

2, as in Sect. 1, a plausible conjecture is that the
subsector obtained by gluing tetrahedra only captures the physics of configurations
where the K M5’s reconnect into a single M5 wrapping a spectral cover of M . Thus
the subsector is missing configurations where the K M5’s reconnect into multiple
components (or remain fully disconnected), and are thus able to separate in the R2

direction. Such configurations would correspond to the missing branches of vacua.
This conjecture is in line with findings of [27], where it was argued in examples that
the full TK [M] contains an additional U (1)t flavor symmetry, involving rotations
of R2.
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4.2 The Tetrahedron Theories

Just as framed 3-manifolds are glued together from tetrahedra, the 3-manifold the-
ories TK [M] (or more precisely TK [M,�] or TK [M, p]) are glued together from
tetrahedron theories. For simplicity, wewill review how thisworks in the case K = 2.

The first step is to identify the theory of a single truncated tetrahedron. As we first
tried tomotivate physically in Sect. 1, however, there should be no unique tetrahedron
theory. Rather, there is an infinite family of 3d theories T2[�,�] labelled by choices
of polarization � on the boundary of the tetrahedron—a.k.a. ways of decoupling an
abelian 4d bulk gauge theory from a 3d boundary condition. Now we can understand
the polarization in a purely geometric setting: � is a choice of “electric”C∗ position
coordinate and canonically conjugate “magnetic”C∗ momentum coordinate forP∂�.
Choosing

� = �z :=
(

position = z
momentum = z′′

)
, (22)

with canonical Poisson bracket {log z′′, log z} = 1, the tetrahedron theory was con-
jectured in [1] to be

T� := T2[�,�z] =
{
free chiral φz with U (1)zflavor symmetry ;
background CS level − 1/2 for U (1)z .

(23)

This agrees beautifully26 with the theory intuited froman analysis of the tetrahedron’s
spectral cover in Sect. 3.1.

The symplectic group Sp(2,Z) acts both on a formal polarization vector such
as (22) and on a 3d SCFT with a U (1) flavor symmetry, as described in [43]. The
provides a concrete way to change the polarization of a theory; for example, we
expect

T2[�, g ◦ �z] = g ◦ T2[�,�z], g ∈ Sp(2,Z). (24)

Concretely, the generator T =
(
1 0
1 1

)
acts on a theory by adding +1 to the back-

ground Chern-Simons level for the flavor symmetry. The generator S =
(
0 −1
1 0

)
gauges the flavorU (1), after which there appears a new “topological” flavor symme-
try U (1)J . These actions can be understood as the effect of electric-magnetic duality
on the 3d boundary of a 4d abelian gauge theory.

Although we can choose any polarization we want for the tetrahedron theory,
three of them are special: the polarizations in which one of the edge-coordinates
themselves (i.e. z, z′, or z′′ rather than an arbitrary Laurent monomial like z3z′−1)

26Note that the half-integer background Chern-Simons term is corrected by the standard parity
anomaly of a 3d N = 2 theory (cf. [74]) to be an integer in the IR, given any nonzero real mass
for φz .
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is a position. We can call these �z , �z′ , and �z′′ . In fact, since the cyclic rotation
symmetry of the tetrahedron permutes z → z′ → z′′ → z, we might even expect
that the resulting theories are all equivalent:

T2[�,�z] � T2[�,�z′ ] � T2[�,�z′′ ]. (25)

This is indeed true. For example, to pass from�z to�z′ , we act with ST ∈ Sp(2,Z),

�z′ =
(

z′
z

)
=

(− 1
zz′′
z

)
=

(−1 −1
1 0

)
·
(

z
z′′

)
= ST ◦ �z, (26)

where the linear transformation acts multiplicatively (i.e.
(

a b
c d

)
· ( z

w

) =
(

zawb

zcwd

)
),

and we are ignoring signs27 such as (−1) 1
zz′′ . Correspondingly, we find

T2[�,�z′ ] = ST ◦ T2[�,�z] =
⎧⎨
⎩

U (1) gauge theory with chiral φz′ of charge +1 ;
CS level +1/2 for the dynamical U (1) ;
topological U (1)z′ flavor symemtry.

(27)

In the infrared, this theory flows to the same SCFT T� as in (23). The monopole
operator of (27) (which creates free vortices) matches the free chiral of (23) [1, 74].
Thismatch is strong evidence that the tetrahedron theory has been properly identified.

Yet another piece of evidence that (23) is correct comes from compactifying the
theory on a circle S1 and calculating its supersymmetric parameter space (8). A
straightforward summation of Kaluza-Klein modes (cf. [85]) leads to the twisted
superpotential W̃ (z) = Li2(z−1), where log z is the complexified mass associated to
the U (1)z flavor symmetry. Then the definition of the effective FI parameter

exp
∂W̃ (z)

∂z
= z′′ ⇒ z′′ + z−1 − 1 = 0 (28)

reproduces the tetrahedron Lagrangian L� from (19), as desired.

4.3 Gluing Together Theories

Now suppose that a framed 3-manifold M is glued together from N tetrahedra. In
order to define an isolated 3d theory T2[M,�], we need to choose a polarization �

27The signs, and indeed the full lift to logarithms of the edge-coordinates, becomes relevant when
keeping track of a choice of U (1)R symmetry for a theory. Then symplectic Sp(2N ,Z) actions are
promoted to affine-symplectic I Sp(2N ,Z) actions.
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for the big boundary of M ,28 or rather for the part of P2(∂M) corresponding to the
big boundary. For any small tori in ∂M , we also choose A- and B-cycles. For small
annuli, though, the choice of non-contractible “A-cycles” (and so the polarization)
is canonical.

We build T2[M,�] by first taking a “tensor product” of tetrahedron theories

T× = T�1 × · · · × T�N , (29)

which is basically a collection of N free chirals φzi with flavor symmetry∏
i U (1)zi � U (1)N . This product theory corresponds to a product polarization

�× = (positions zi ; momenta zi”) on the product phase space
∏

i P∂�i .
Now the symplectic group Sp(2N ,Z) acts to change the polarization of T×. This

is a natural extension of the Sp(2,Z) action on theories with a singleU (1) symmetry:
the action of an element g ∈ Sp(2N ,Z) just modifies various CS levels, gauges some
of the U (1)’s in U (1)N , and/or permutes the U (1) factors in U (1)N .

We then choose a new polarization �̃× = g ◦ �× for T×, determined by the
following algebraic properties:

1. all the position and momentum coordinates of � (as monomial functions on∏
i P∂�i ) are positions and momenta, respectively, in �̃×; and

2. all themomentmapsμI (products of tetrahedron edge-coordinates around internal
edges in M) are positions in �̃×.

The first requirement simply makes �̃× compatible with our desired final polariza-
tion �. The second requirement, however, is absolutely crucial for the gluing: it
guarantees29 that the transformed product theory g ◦ T× will contain chiral opera-
tors OI associated to each internal edge EI of M . Each of these operators OI will
transform under a flavor symmetry associated to the internal-edge coordinate μI .

The final step in the gluing is to add the N − d internal-edge operators OI to the
superpotential of g ◦T×. This breaks N −d U (1) flavor symmetries, and implements
the symplectic reduction (21) on the gauge-theory level. The result is a UV abelian
Chern-Simons-matter theory with manifest U (1)d flavor symmetry, which flows in
the IR to T2[M,�].

28In Sect. 1, we also talked about isolating 3d theories TK [M, p] based on a pants decomposition
p of the topological boundary of M . This was meant to correspond to decoupling a nonabelian 4d
gauge theory in some duality frame. Such a choice is already built in to the definition of a framed
manifold M : a pants decomposition for a boundary component C corresponds to a splitting of that
boundary into a network of small annuli connected by big 3-punctured spheres when selecting a
framing.
29Just like in the gluing of classical Lagrangian submanifolds, some extra regularity conditions
need to be imposed on a 3d triangulation to truly guarantee the existence of the gluing operators
OI . See Sect. 4.1 of [1] or the Appendix A of [7].
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5 Examples

We finish with a brief look at two simple framed 3-manifolds M and their effective
theories at K = 2.We’ll mainly follow the bottom-up approach of symplectic gluing
from tetrahedra; though both examples are amenable to top-down analyses as well.

The first example, introduced in [1], is a triangular bipyramid (Fig. 8, left). Like
a truncated tetrahedron, it only has disc-like small boundaries (at the five truncated
vertices), and a big boundary consisting of a five-holed sphere. The bipyramid can
be assembled from gluing either two or three tetrahedra together. The IR equivalence
of the glued theories that result (containing either two or three chirals) provides the
local proof of triangulation independence for general glued theories T2[M,�] (in
fact also for K > 2).

The second example is a 3-manifold with topology M = C × I , where C is a
cylinder and I = {0 ≤ t ≤ 1} an interval. We picture M as a solid cylinder with
a core drilled out (Fig. 8, right). To specify M as a framed 3-manifold, we take the
boundary C0 at t = 0 (the core in the solid-cylinder picture) to be a small annulus.
The remainder of ∂M is split into a big annulus C1, glued to two big punctured discs
(the ends of the solid cylinder, ∂C × I ), with two additional small discs sandwiched
inbetween (drawn as tiny triangular regions in Fig. 8). Thus, topologically, total full
big boundary of M is a 4-holed sphere. This manifold turns out to be the basic
building block of RG domain walls, as well as more general UV S-duality walls, as
discussed in Sect. 1.1 (and in great detail in [8]). Geometrically, M represents the
local shrinking of an annular region on any surface to a long, thin tube, and ultimately
to a defect. We will see that the theory T2[M,�] has SU (2)×U (1) flavor symmetry,
allowing a coupling to a nonabelian 4d gauge group on one side, and an abelian gauge
group on the other.

5.1 2–3 Move and Mirror Symmetry

Let M be the triangular bipyramid. Let’s first observe that M has a boundary phase
space P2(∂M) � (C∗)4. It is easy to see this: one can construct cross-ratio coordi-
nates xE for each of the nine edges on the boundary, while each of the five vertices
imposes a relation that the product of edge-coordinates around that vertex equals
±1 (for unipotent holonomy). Thus dimC P2(∂M) = 9 − 5 = 4. We will choose a

Fig. 8 The bipyramid (left)
and the thickened annulus
representing the RG
manifold (right)

SU(2)

U(1)C1

C0
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Fig. 9 Gluing together the bipyramid from two or three tetrahedra

polarization�eq forP2(∂M) such that two of the three equatorial edges of the bipyra-
mid (x1, x2) carry electric/position coordinates, as in the center of Fig. 9. Since the
product of all equatorial edges is one, this implies that the third edge x3 = x−1

1 x−1
2

is electric or “mutually local” as well. Note that specifying the position (but not
momentum) coordinates in a polarization is sufficient to define a theory T2[M,�eq]
up to background Chern-Simons levels.

Now, suppose that we glue together a bipyramid M from three tetrahedra, as on the
LHS of Fig. 9.Wemust polarize the tetrahedra, and we choose standard polarizations
(22), in such a way that the unprimed position coordinates z, w, v all lie along the
internal edge of M . Now the three equatorial edges on the boundary of the bipyramid
also get coordinates z, w, v (from opposite edges of the three tetrahedra). So no
changeof polarization is needed tomake theproduct polarization�z×�w×�v on the
tetrahedra compatible with our final desired �eq. The bipyramid theory T2[M,�eq]
is then easy to write down: it is just the product T�z × T�w × T�v containing three
chirals φz,φw,φv , in which theU (1)3 flavor symmetry is broken toU (1)2 by a cubic
superpotential

OI = φzφwφv (30)

corresponding to the internal edge. This theory is usually called the “XYZ model.”
Note how the individual operatorsφz,φw,φv are each associated to one of the electric
edges on ∂M .

Let us also explain the symplectic reduction geometrically.We can explicitlywrite
the boundary phase space as

P2(∂M) = (P∂�z × P∂�z × P∂�z
)//

C
∗

� {z, z′′, w,w′′, v, v′′ ∈ C
∗}/(z′′, w′′, v′′) ∼ (t z′′, tw′′, tv′′)

∣∣
zwv = 1, (31)

wherewehavequotientedwith respect to theflowsof themomentmapμI = zwv, and
intersected with the locus μI = 1. Notice that all products of tetrahedron coordinates
on external edges (such as z, w, v, or z′w′′, w′v′′, etc.), commute with μI , and so
form good coordinates xE on the quotient. (For a computation of the Lagrangian
submanifold L2(M) and its quantization, see [68] or [1].)
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Alternatively, if we form the bipyramid from two tetrahedra, there are no internal
edges created, but a nontrivial change of polarization is required. Let us assign
triples of coordinates to the tetrahedra as on the RHS of Fig. 9, and choose standard
polarizations �r , �s for them. The equatorial coordinates for the bipyramid are
related to tetrahedron coordinates as

x1 = rs ′′, x2 = r ′′s,
(
x3 = r ′s ′ = (rr ′′ss ′′)−1 = (x1x2)

−1
)
, (32)

and so involve both tetrahedron positions (r, s) and momenta (r ′′, s ′′). The Sp(4,Z)

change of polarization that relates �r × �s to �eq acts on the theory T�r × T�s by
gauging30 the anti-diagonal subgroup of the flavor symmetry group U (1)r × U (1)s .
The resulting theory is just 3d N = 2 SQED, which is mirror symmetric to the
XYZ model [74]. It has an axial U (1)ax and a topological U (1)J flavor symmetry,
matching the U (1)2 flavor symmetry of the XYZ model. Moreover, it has monopole
and anti-monopole operators η± in addition to the gauge-invariant meson ϕ = φrφs ,
which together match the three chiral operators φz,φw,φv of the XYZ model, and
label the equatorial edges of the bipyramid.

5.2 The Basic RG Wall

Now let M be the RG-wall manifold. Just like the bipyramid, it also has a 4-complex
dimensional phase space. Independent coordinates onP2(M) are nowgiven by cross-
ratios (xm, xd) on two edges of the big annulus C1 (compare Figs. 8 and 10) together
with an eigenvalueλ of the P SL(2) holonomy31 around the girth of the small annulus
C0 and its canonical conjugate, a twist coordinate τ :

P2(M) � {xm, xd ,λ, τ } � (C∗)4, (33)

{log xd , log xm} = 2, {log τ , logλ} = 1, other brackets vanishing.

We will choose a polarization �e with position coordinates λ and xe = (xm xd)
−1/2.

We can build M from two truncated tetrahedra, as shown in Fig. 10. There are no
internal edges, so no superpotentials will be needed. We give the tetrahedra edge-
coordinates z, z′, z′′ and w,w′, w′′ and standard polarizations �z,�w. Then we find

λ =
√

z

w
, xe = √

zw (34)

30The precise Sp(4,Z) action first removes the background Chern-Simons coupling for the anti-
diagonal subgroup of U (1)r × U (1)s , and then gauges it. It is a nice exercise to demonstrate this.
31Two technical clarifications here: first, the choice of eigenvalue λ versus λ−1 depends on the
choice of framing for the flat connection at the small annulus; second, to get a well defined sign for
λ one actually needs to lift to SL(2) rather than P SL(2) holonomies around the small annulus.
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Fig. 10 Forming the RG-wall manifold M by identifying two faces of the bipyramid, as indicated
by labels ‘A’ on the left. On the right, we show the triangulation on the big boundary of M

(as well as xm = z′′w′′, xd = z′w′, τ = λz′′/w′′). Since λ and xe are just made from
tetrahedron positions z, w, the change of polarization �z × �w → �e involves
no gauging, just a redefinition of flavor symmetries. We find that T2[M,�e] is a
theory of two free chirals φz,φw transforming with charges (+1,−1) and (+1,+1),
respectively, under U (1)λ and U (1)e flavor symmetries associated to λ and xe. Of
course the vectorU (1)λ symmetry is actually enhanced to SU (2)λ. As promised, the
extremely simple theory T2[M,�e] can couple both to SU (2) and U (1) 4d gauge
groups.

Alternatively, had we chosen a polarization �m with λ and xm as positions, we
would instead have described T2[M,�m] as a theory of two chirals φz,φw whose
axial U (1)e symmetry is gauged at Chern-Simons level −1, and replaced by a topo-
logical U (1)m . This is roughly the UV GLSM description of a 3d CP1 sigma model.
Now the theory has a monopole operator Om associated to the external “electric”
edge with coordinate xm . Similarly, we could have chosen a polarization�d to obtain
a theory T2[M,�d ] whose axial U (1)e is gauged at Chern-Simons level +1.

The claim of [8], a full review of which is beyond our scope, is that the theories
T2[M, ∗] are effective theories for an RG domain wall in pure SU (2) Seiberg-Witten
theory. In the respective polarizations �e,�m,�d , the 3d theories couple to the
abelian 4d theory on its Coulomb branch—in 4d duality frames so that the electric,
magnetic, or dyonic gauge fields are fundamental. In all these polarizations, the
3d theory couples on the other side of the wall to the nonabelian UV gauge group
SU (2)λ.

One way to create an RG wall in pure SU (2) theory is by engineering a Janus
configuration (cf. (12)) where the UV cutoff � varies (relative to a fixed observation
scale) as a function of the space coordinate x3. To the left of the wall, � can be
arbitrarily close to zero, effectively putting the 4d theory in the UV; while to the right
of the wall � can be sent close to infinity. We observe the theory at an intermediate
energy scale throughout. This traps 3d degrees of freedom on the wall. We can even
make an educated guess at what they should be.

Passing through the wall from left to right, the imaginary part of a(x3) is forced
to infinity (relative to our observation scale), breaking SU (2) → U (1) and Hig-
gsing the 4d theory. However, close to the (left of the) wall, the SU (2) gauge
fields are effectively non-dynamical, since the gauge coupling is infinitesimally
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small. Thus Goldstone bosons cannot be eaten up by W -bosons, and parametrize
a CP

1 � SU (2)/U (1) -worth of degrees of freedom at the wall. This beautifully
matches the bottom-up constructions of T2[M, ∗].

The RG walls (and nonabelian S-duality walls) of more complicated 4d theories
always involve components that look like the theories T2[M, ∗]. Indeed, whenever
one has a framed 3-manifold M̂ with a network of small annuli connecting big
boundaries, the neighborhood of every small annulus can be made to look exactly
like our RG-manifold M . This proves, among other things, that in a bottom-up
construction of T2[M̂], all the U (1) symmetries associated to small annuli will be
enhanced to SU (2)’s—as must be the case if the small annuli are to represent defects
in a 6d compactification.

Finally, let us see what information is contained in the Lagrangian submanifold
L2(M) of the RG-wall manifold. By rewriting the tetrahedron Lagrangians z′′ +
z−1 − 1 = w′′ + w−1 − 1 = 0 in terms of xm, xd ,λ, τ and xe = 1/

√
xm xd , we find

(
Wilson 1

2

)
λ + λ−1 = xe + x−1

e − xexm (35a)

(
’t Hooft 1

2

) (τλ)
1
2 − (τλ)− 1

2

λ − λ−1
= 1√

xm
(35b)

(
’t Hooft-Wilson 1

2

) (τ/λ)
1
2 − (τ/λ)− 1

2

λ − λ−1
= √

xd . (35c)

The first equation relates the spin-1/2 UVWilson line of pure SU (2) Seiberg-Witten
theory to IR line operators of abelian electric and magnetic charge [6, 45]. The
second and third equations (which are not independent) relate the spin-1/2 UV ’t
Hooft lines and mixed ’t Hooft-Wilson lines to the IR magnetic and dyonic line
operators. The honest SU (2) theory should only contain magnetic UV operators of
spin-one, corresponding (roughly) to squaring equations (35b-35c), which then gets
rid of the square roots. The quantization of relations (35) turns out to match operator
equations known from quantum Teichmüller theory on the annulus [86, 87], giving
a beautiful geometric interpretation of the latter.
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Supersymmetric Gauge Theories,
Quantization of Mflat,
and Conformal Field Theory

Jörg Teschner

Abstract We review the relations between N = 2-supersymmetric gauge theories,
Liouville theory and thequantizationofmoduli spaces offlat connections onRiemann
surfaces.

1 Introduction

Alday et al. [AGT] discovered remarkable relations between the instanton parti-
tion functions of certain four-dimensional N = 2-supersymmetric gauge theo-
ries and the conformal field theory called Liouville theory. These relations will
be referred to as the AGT-correspondence. We will discuss an explanation for the
AGT-correspondence based on the observation that both instanton partition func-
tions and Liouville conformal blocks are naturally related to certain wave-functions
in the quantum theory obtained by quantising the moduli spaces of flat PSL(2, R)-
connections on certain Riemann surfaces C . We will be considering a class of gauge
theories referred to as class S, see ([V:8], [GMN2]) or the contribution [V:2] in this
volume. The gauge theories GC,g have elements labelled by the choice of a Riemann
surface C and a Lie-algebra g of type A, D or E . In the following we will restrict
attention to the case where g = A1, and denote the corresponding gauge theories
as GC . However, the reader will notice that many of the arguments below generalise
easily to more general theories of class S.

The root for the relations between the gauge theories and moduli spaces of flat
connections will be found in the identification of the algebra generated by the super-
symmetric Wilson- and ’t Hooft loop operators with the algebra of trace-functions
which represent natural coordinates for the moduli spaces of flat connections. This
algebra may become non-commutative if the gauge theories are defined on curved
spaces, or deformed by supersymmetry-preserving deformations like the Omega-
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deformation [N]. It turns out that the resulting non-commutativity is the same as the
one resulting from the quantisation of the relevant moduli spaces of flat connections.

Concerning the other side of the coin we are going to review the definition of
the conformal blocks of Liouville theory. Formulated in the right way, part of the
relation to the quantization of moduli spaces of flat connections becomes obvious.
There furthermore exists a natural representation of the quantized algebra of trace
functions on the spaces of conformal blocks.

We are going to explain how the AGT-correspondence follows from the relation
between supersymmetric loop operators and trace functions, combined with cer-
tain consequences of unbroken supersymmetry. Knowing precisely which algebra is
generated by the supersymmetric loop operators, one may reconstruct expectation
values of loop operators on backgrounds like the four-ellipsoid. From these data
one may in particular recover the low-energy effective actions of the considered
gauge theories. This approach relates the AGT-correspondence to some of the work
of Gaiotto et al. [GMN2, GMN3]. It is in some respects similar to the one used by
Nekrasov et al. [NRS] to study the case with Omega-deformation preserving two-
dimensional N = 2 super-Poincaré invariance.

2 Theories of Class S

2.1 A1 Theories of Class S

ToaRiemann surfaceC of genusg andn punctures onemayassociate ([G09, GMN2],
[V:2]) a four-dimensional gauge theory GC withN = 2 supersymmetry, gauge group
(SU(2))h , h := 3g − 3+ n and flavor symmetry (SU(2))n . The theories in this class
are UV-finite, and therefore characterised by a collection of gauge coupling constants
g1, . . . , gh . In the cases where (g, n) = (0, 4) and (g, n) = (1, 1) one would get the
supersymmetric gauge theories commonly referred to as N f = 4 andN = 2∗-theory,
respectively. The correspondence between data associated to the surface C and the
gauge theory GC is summarised in the table below.

Riemann surface C Gauge theory GC

Pants decomposition C + trivalent Lagrangian description with
graph � on C, σ = (C, �) action functional Sσ

τ

Gluing parameters qr = e2πiτr , UV-couplings τ = (τ1, . . . , τh),

r = 1, . . . , 3g − 3 + n τr = 4πi

g2r
+ θr

2π

r th tube r th vector multiplet (Ar,μ,φr , . . . )

n boundaries n hypermultiplets
Change of pants decomposition S-duality

http://dx.doi.org/10.1007/978-3-319-18769-3_2
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More details can be found in [V:2] and references therein. To the kth boundary
there corresponds aflavor group SU (2)k withmass parameter Mk . Thehypermultiplet
masses are linear combinations of the parameters mk , k = 1, . . . , n as explained in
more detail in [G09, AGT]. The relevant definitions and results fromRiemann surface
theory are collected in Appendix 1. It is necessary to refine the pants decomposition
by introducing the trivalent graph � in order to have data that distinguish action
functionals with theta angles θr differing by multiples of 2π. This will be done such
that

Sσ
τ+er

= Sδr .σ
τ , (2.1)

where er is the unit vector with r th component equal to one, and δr .σ denotes the
action of the Dehn twist along the r th tube on σ = (C, �), which will map the graph
� on C to another one.

2.2 Realisation of S-Duality

Different Lagrangian descriptions of the theories GC are related by S-duality. Two
actions Sσ1

τ1
and Sσ2

τ2
describe different perturbative expansions for one and the same

theory. The respective perturbative expansions will be valid in the regimes where
all coupling constants g1,r and g2,r are small. To formulate the meaning of S-duality
more precisely let us assume that there exists a non-perturbative definition of GC

allowing us to define normalised expectation values of observables O like 〈〈O 〉〉GCτ

non-perturbatively as functions of τ , a set of parameters for the complex structure on
C . S-duality holds if for each observable O there exist functionals Fσi

O constructed
using the fields in actions Sσi

τi
together with choices of coupling constants τi = τi (τ ),

i = 1, 2, such that

〈〈 O 〉〉
GCτ

� 〈〈Fσ1
O

〉〉
S

σ1
τ1

and
〈〈O 〉〉

GCτ
� 〈〈 Fσ2

O
〉〉

S
σ2
τ2

, (2.2)

in the sense of equality of asymptotic expansions.
The passage from one Lagrangian description Sσ

τ to another may be decomposed
into the elementary S-duality transformations corresponding to the cases where one
of the coupling constants gr gets large, while all others gs , s �= r stay small. The
arguments given in [G09] suggest that S-duality is realized in the following way: In
the regime where qr = e2πiτr → 1 one may use the Lagrangian description with
action Sσ;r

τ ′ associated to the data σ;r = (C;r , �;r ) obtained from σ = (C, �) by a local
modification which is defined as follows: There is a unique subsurface Cr ↪→ C
isomorphic to either C0,4 or C1,1 that contains γr in the interior of Cr . σ;r = (C;r , �;r )
is defined by local substitutions within Cr depicted in Figs. 1 and 2 for the two cases,
respectively. If Cr = C0,4 there is another strongly coupled regime which can be
described in terms of a dual action. It corresponds to qr → ∞, and the dual action
Sσ:r

τ ′ is associated to the data σ:r obtained from σ by the composition of the B-move
depicted in Fig. 3 with an F-move.

http://dx.doi.org/10.1007/978-3-319-18769-3_2
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Fig. 1 The F-move
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Fig. 2 The S-move
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Fig. 3 The B-move,
represented by (indecently)
looking into the pair of pants
from above. 2 2 11

B

v v
*

*

3 3

An important feature of the mapping between the respective sets of observables is
that the Wilson- and ’t Hooft loops defined using Sσ

τ will correspond to the ’t Hooft
and Wilson loops defined using Sσ;r

τ ′ , respectively. This is the main feature we shall
use in the following.

Any transition between two pants decompositions σ1 and σ2 can be decomposed
into the elementary F-, S-, and B-moves. It follows that the groupoid of S-duality
transformations coincides with the Moore-Seiberg groupoid for the gauge theories
of class S, see Appendix 1, subsection “The Moore-Seiberg Groupoid”.

2.3 Gauge Theories GC on Ellipsoids

It may be extremely useful to study quantum field theories on compact Euclidean
space-times or on compact spaces rather than R

4. Physical quantities get finite size
corrections which encode deep information on the quantum field theory we study.
The zero modes of the fields become dynamical, and have to be treated quantum-
mechanically.

In the case of supersymmetric quantum field theories there are not many compact
background space-times that allow us to preserve part of the supersymmetry. A par-
ticularly interesting family of examples was studied in [HH], extending the seminal
work of Pestun [Pe]. A review can be found in the Article [V:6] in this volume.

Let us consider gauge theories GC on the four-dimensional ellipsoid

E4
ε1,ε2

:= {(x0, . . . , x4) | x2
0 + ε21(x2

1 + x2
2 ) + ε22(x2

3 + x2
4 ) = 1} . (2.3)

http://dx.doi.org/10.1007/978-3-319-18769-3_6
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It was shown in [Pe, HH], see also [V:6], for some examples of gauge theories
GC that one of the supersymmetries Q is preserved on E4

ε1,ε2
. It should be possible

to generalize the proof of existence of an unbroken supersymmetry Q to all four-
dimensional N = 2 supersymmetric field theories with a Lagrangian description.

Interesting physical quantities include the partition function ZGC , or more gen-
erally expectation values of supersymmetric loop operators Lγ such as the Wilson-
and ’t Hooft loops. Such quantities are formally defined by the path integral over
all fields on E4

ε1,ε2
. It was shown in a few examples for gauge theories from class

S in [Pe, HH], reviewed in [V:6], how to evaluate this path integral by means of
the localization technique. A variant of the localization argument was used to show
that the integral over all fields actually reduces to an integral over the locus in field
space where the scalars φr take constant real values φr = diag(ar ,−ar ) = const,
and all other fields vanish. This immediately implies that the path integral reduces
to an ordinary integral over the variables ar . It seems clear that this argument can be
generalized to all theories of class S with a Lagrangian.

For some theories GC it was found in [Pe] that the result of the localization
calculation of the partition function takes the form

ZGC

E4
ε1 ,ε2

(m, τ ; ε1, ε2) =
∫

dμ(a) |Z inst(a, m, τ ; ε1, ε2)|2 . (2.4)

The main ingredients are the instanton partition function Z inst(a, m, τ ; ε1, ε2) which
depends on the zeromodes a = (a1, . . . , ah) of the scalar fields, hypermultiplet mass
parameters m = (m1, . . . , mn), UV gauge coupling constants τ = (τ1, . . . , τh), and
two parameters ε1, ε2. The instanton partition functions can be defined as the partition
function of theOmega-deformation ofGC onR

4 [N], andmay be calculated bymeans
of the instanton calculus [LNS, MNS1, MNS2, NS04], as reviewed in [V:4] in this
volume.

It is expected that the form (2.4) will hold for arbitrary theories GC , but the
instanton partition function Z inst(a, m, τ ; ε1, ε2) can only be calculated for the cases
where C has genus 0 or 1, and the pants decomposition is of linear or circular quiver
type, respectively.

2.4 Supersymmetric Loop Operators

Supersymmetric Wilson loops can be defined as path-ordered exponentials of the
general form

Wr,i := TrP exp

[ ∮
C

ds (i ẋμ Ar
μ + |ẋ |φr )

]
. (2.5a)

The choice of contour C is severely constrained by the requirement that the resulting
observable is supersymmetric. Two possible choices for the four-manifold M4 of

http://dx.doi.org/10.1007/978-3-319-18769-3_6
http://dx.doi.org/10.1007/978-3-319-18769-3_6
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interest are M4 = R
3 × S1 and the four-ellipsoid. In the first case one may take a

contour C that wraps the S1. For the case M4 = E4
ε1ε2

it was shown in [Pe, HH, GOP]
that these observables are left invariant by the supersymmetry Q preserved on E4

ε1,ε2
if C is one of the contours Ci , i = 1, 2, with C1 and C2 being the circles with constant
(x0, x3, x4) = 0 and (x0, x1, x2) = 0, respectively. Throughout this section we will
assume that C is identified with one of the two Ci .

The ’t Hooft loop observables Tr,i , i = 1, 2, can be defined semiclassically for
vanishing theta-angles θ = 0 by the boundary condition

Fr ∼ Br

4
εklm

xk

|�x |3 dxm ∧ dxl , (2.6)

near the contour C. The coordinates xk , k = 1, 2, 3, are local coordinates for the space
transverse to Ci , and Br is an element of the Cartan subalgebra of SU (2). In order
to get supersymmetric observables one needs to have a corresponding singularity at
S1

i for the scalar fields φr . For the details of the definition and the generalization to
θ �= 0 we refer to [GOP].

Application of the localisation technique to the calculation of Wilson loop oper-
ators [Pe, HH], see [V:6, V:7] for reviews, leads to results of the form

〈
Wr,i

〉
E4

ε1ε2

=
∫

dμ(a) |Z inst(a, m, τ ; ε1, ε2)|2 2 cosh(2πar/εi ) , (2.7)

where i = 1, 2. A rather nontrivial extension of the method from [Pe] allows one to
treat the case of ’t Hooft loops [GOP] as well, see [V:7] for a review. The result is of
the following form:

〈
Tr,i

〉
E4

ε1,ε2

=
∫

dμ(a) (Zinst(a, m, τ ; ε1, ε2))
∗ Dr,iZinst(a, m, τ ; ε1, ε2) , (2.8)

with Dr,i being a difference operator acting only on the variable ar of Zinst(a, m, τ ;
ε1, ε2), which has coefficients that depend on a, m and εi , in general.

2.5 Relation to Quantum Liouville Theory

The authors of [AGT] observed in some examples of theories from class S that one
has (up to inessential factors Zspur(m, τ ; ε1, ε2)) an equality between the instanton
partition functions and the conformal blocks ZLiou(β,α, τ ; b) of Liouville theory,

Z inst(a, m, τ ; ε1, ε2) = Zspur(m, τ ; ε1, ε2)ZLiou(β,α, q; b) , (2.9)

assuming a suitable dictionary between the variables involved. The “spurious” fac-
tor Zspur(m, τ ; ε1, ε2) will turn out to be inessential, dropping out of normalised

http://dx.doi.org/10.1007/978-3-319-18769-3_6
http://dx.doi.org/10.1007/978-3-319-18769-3_7
http://dx.doi.org/10.1007/978-3-319-18769-3_7
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expectation values 〈〈Lγ

〉〉
E4

ε1,ε2

:= (〈
1
〉
E4

ε1 ,ε2

)−1〈 Lγ

〉
E4

ε1,ε2

, (2.10)

as follows easily from the general form of the results for the expectation values
quoted in (3.7), and is therefore called “spurious”.

We’ll now briefly review the definition of the right hand side of (2.9) for the cases
of Riemann surfaces C of genus zero with n punctures. The definition for Riemann
surfaces C of arbitrary genus is discussed in [TV13].

The Virasoro algebra Virc has generators Ln , n ∈ Z, and relations

[Ln, Lm] = (n − m)Ln+m + c

12
n(n2 − 1)δn+m,0. (2.11)

The relevant conformal blocks can be constructed using chiral vertex operators. Let
us use the notation �α := α(Q − α), with Q being a variable parameterising the
value c of the central element in (2.11) as c = 1 + 6Q2. We will denote the highest
weight representation with weight �β by Vβ . A chiral vertex operator is an operator
V α

β2β1
(z) : Vβ1 → Vβ2 that satisfies the crucial intertwining property

[Ln, V α
β2β1

(z)] = zn(z∂z + (n + 1)�α)V α
β2β1

(z) . (2.12)

The property (2.12) defines the operator V α
β2β1

(z) as a formal power series in zk

uniquely up to multiplication with a complex number. The normalization freedom
can be parameterized by the number Nα

β2β1
defined by

V α
β2β1

(z) eβ1 = z�β2−�β1−�α
[
Nα

β2β1
eβ2 + O(z)

]
, (2.13)

where eβ is the highest weight vector of the representation Vβ . A particularly useful
choice for the normalization factor Nα

β2β1
will be

Nα
β2β1

= √
C(ᾱ3,α2,α1) , (2.14)

where ᾱ3 = Q − α3, and C(α3,α2,α1) is the three-point function in Liouville
theory. An explicit formula for C(α3,α2,α1) was conjectured in [DO, ZZ], and a
derivation was subsequently presented in [T01].

Using the invariant bilinear form 〈 ., . 〉β : Vβ ⊗ Vβ → C one may then construct
conformal blocks as matrix elements of products of chiral vertex operators such as

ZLiou
s (β,α, q; b) := 〈

eαn , V αn−1

αn , βn−3
(zn−1) V αn−2

βn−3, βn−4
(zn−2) · · · V α2

β1α1
(z2) eα1

〉
αn

.

(2.15)
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The parameters q = (q1, . . . , qn−3) are given by the ratios qr = zr+1/zr+2, with
r = 1, . . . , n − 3. Equation (2.15) defines conformal blocks associated to particular
pants decompositions of C0,n . In the case of n = 4, for example, one gets the
conformal blocks associated to the pants decomposition depicted on the left of Fig. 1.

We may now state the dictionary between the variables appearing in the relation
(2.9) between Liouville conformal blocks and the instanton partition functions of the
corresponding gauge theories:

qr = zr+1

zr+2
= e2πiτr , βr = Q

2
+ i

ar

�
, r = 1, . . . , n − 3 , (2.16a)

αk = Q

2
+ i

Mk

�
, k = 1, . . . , n , �

2 = ε1ε2 . (2.16b)

In order to construct conformal blocks associated to general pants decompositions of
surfacesC0,n of genus zero let us introduce the descendants of a chiral vertex operator
V α

β2β1
(z). The descendants may be defined as the family of operators V α

β2β1
[v](z) :

Vβ1 → Vβ2 that satisfy

V α
β2β1

[L−2v](z) = : T (z)V α
β2β1

[v](z) : ,
V α

β2β1
[L−1v](z) = ∂z V α

β2β1
[v](z) ,

V α
β2β1

[eα](z) = V α
β2β1

(z) , (2.17)

where : T (z)V α
β2β1

[v]z : is defined as

: T (z)V α
β2β1

[v](z) : =
∑

n≤−2

z−n−2Ln V α
β2β1

[v]z + V α
β2β1

[v](z)
∑

n≥−1

z−n−2Ln . (2.18)

With the help of the descendants one has a new way to compose chiral ver-
tex operators, allowing us, for example, to construct conformal blocks on C =
P
1 \ {0, z2, z3,∞} as

ZLiou
t (β,α, z; b) := 〈

eα4 , V β
α4α1

[
V α3

βα2
(z3 − z2)eα2

]
(z2) eα1

〉
α4

. (2.19)

This conformal block is associated to the pants decomposition on the right of Fig. 1.
By considering arbitrary compositions of chiral vertex operators one may construct
conformal blocks associated to arbitrary pants decompositions of a surface C with
genus zero and n boundaries.

The relations (2.9) have fully been proven [AFLT] in the cases where the relevant
conformal blocks are of the from (2.15) corresponding to the so-called linear quiver
gauge theories. It is not straightforward to generalise this proof to more general pants
decompositions like those corresponding to conformal blocks of the form (2.19).
The technical difficulties encountered for more general pants decompositions are
considerable and not yet resolved in general, see [HKS] for partial results in this
direction.
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3 Reduction to Quantum Mechanics

3.1 Localization as Reduction to Zero Mode Quantum
Mechanics

Wemay assign to the expectation values 〈L〉 of a loop observableL an interpretation
in terms of expectation values of operators LL which act on theHilbert space obtained
by canonical quantization of the gauge theory GC on the space-timeR× E3

ε1,ε2
, where

E3
ε1,ε2

is the three-dimensional ellipsoid defined as

E3
ε1,ε2

:= {(x1, . . . , x4) | ε21(x2
1 + x2

2 ) + ε22(x2
3 + x2

4 ) = 1} . (3.1)

This is done by interpreting the coordinate x0 for E4
ε1,ε2

as Euclidean time. Noting
that E4

ε1,ε2
looks near x0 = 0 as R× E3

ε1,ε2
, we expect to be able to represent partition

functions ZGC (E4
ε1,ε2

) or expectation values
〈L 〉

GC (E4
ε1 ,ε2

)
as matrix elements of states

in the Hilbert spaceHGC defined by canonical quantization of GC onR× E3
ε1,ε2

. More
precisely

ZGC (E4
ε1,ε2

) = 〈 τ | τ 〉, 〈 L 〉
E4

ε1 ,ε2

= 〈 τ | LL | τ 〉 , (3.2)

where 〈 τ | and | τ 〉 are the states created by performing the path integral over the
upper/lower half-ellipsoid

E4,±
ε1,ε2

:= {(x0, . . . , x4) | x2
0 + ε21(x2

1 + x2
2 ) + ε22(x2

3 + x2
4 ) = 1 , ±x0 > 0} , (3.3)

respectively, and LL is the operator that represents the observable L within HGC .
The form (2.7), (2.8) of the loop operator expectation values is naturally inter-

preted in the Hamiltonian framework as follows. In the functional Schroedinger
picture one would represent the expectation values

〈L 〉
E4

ε1 ,ε2

schematically in the

following form 〈L 〉
E4

ε1 ,ε2

=
∫

[D�] (�[�])∗ LL�[�] , (3.4)

the integral being extended over all field configuration on the three-ellipsoid E3
ε1,ε2

at x0 = 0. The wave-functional �[�] is defined by means of the path integral over
the lower half-ellipsoid E4,−

ε1,ε2
with Dirichlet-type boundary conditions defined by

the field configuration �.
The fact that the path integral localizes to the locus LocC defined by constant

values φr = diag(ar ,−ar ) = const. of the scalars and zero values for all other fields
([Pe, HH], [V:6]) implies that the path integral in (3.4) can be reduced to an ordinary
integral of the form

〈L 〉
E4

ε1 ,ε2

=
∫

da (�τ (a))∗ π0(LL)�τ (a) , (3.5)

http://dx.doi.org/10.1007/978-3-319-18769-3_6


384 J. Teschner

with �τ (a) defined by means of the path integral over the lower half-ellipsoid E4,−
ε1,ε2

with Dirichlet boundary conditions � ∈ LocC , φr = diag(ar ,−ar ), r = 1, . . . , h.
The Dirichlet boundary condition � ∈ LocC , φr = ar is naturally interpreted as
defining a Hilbert subspace H0 within HGC . States in H0 can, by definition, be
represented by wave-functions �(a), a = (a1, . . . , ah). π0(LL) is the projection of
LL to H0.

Note that the boundary condition � ∈ LocC preserves the supercharge Q used
in the localization calculations of ([Pe, HH], [V:6])—that’s just what defined the
locus LocC in the first place. We may therefore use the arguments from [Pe, HH] to
identify the wave-functions �τ (a) in (3.5) with the instanton partition functions,

�τ (a) = Z inst(a, m, τ ; ε1, ε2) . (3.6)

The form of the results for expectation values of loop observables quoted in (2.7),
(2.8) is thereby naturally explained.

3.2 S-Duality of Expectation Values

In each Lagrangian description with action Sσ
τ one will be able to express loop

operator expectation values in the form

〈L 〉Sσ
τ

E4
ε1 ,ε2

=
∫

da (�σ
τ (a))∗ Dσ

L �σ
τ (a) , (3.7)

defining representations of the algebra Aε1ε2 in terms of operators Dσ
L . The Wilson

loops Wr,1 and Wr,2 act diagonally as operators of multiplication by 2 cosh(2πar/ε1)
and 2 cosh(2πar/ε2), respectively. The’t Hooft loops Tr,i will be represented by
difference operators denoted as Dσ

r,i .
In order for S-duality to hold, we need that the representations of the algebra of

loop operators associated to any two pants decompositions σ1 and σ2 are unitarily
equivalent. This means in particular that the eigenfunctions�σ1

τ (a) and�σ2
τ (a)must

be related by an integral transformations of the form1

�σ2
τ (a2) =

∫
da1 Kσ2σ1

(a2, a1)�σ1
τ (a1) . (3.8)

If Sσ
τ and Sσ′

τ ′ are two actions with τ and τ ′ differing only by shifts of the theta-angle
θr → θr + 2πkr , it follows from (2.1) that we must have

�σ
τ ′(a) = �σ′

τ (a) , (3.9)

1Considering theories GC associated to Riemann surfaces with genus g > 1 one has to allow for an
additional factor on the right hand side of the relation (3.8). This is discussed in [TV13].

http://dx.doi.org/10.1007/978-3-319-18769-3_6
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with τ ′ = τ + kr er . By using the transformations (3.8) one finds that we must have

�σ
μ.τ (a) = �μ.σ

τ (a) , (3.10)

for any Dehn twist μ ∈ MCG(C). The notation�σ
μ.τ (a) on the left hand side denotes

the analytic continuation of �σ
τ (a) with respect to τ defined by the element μ ∈

MCG(C).
By combining (3.8) and (3.10) we get

�σ
μ.τ (a2) =

∫
da1 Kμ.σ,σ(a2, a1)�σ

τ (a1) . (3.11)

Assuming that we know the kernels Kμ.σ,σ(a2, a1), we would thereby get a Riemann-
Hilbert type problem2 for the wave-functions �σ

τ (a1). Equation (3.11) describes the
effect of a monodromy in the gauge theory parameter space in terms of an integral
transformation with kernel Kμ.σ,σ(a2, a1).

Let’s note, however, that the kernels Kμ.σ,σ(a2, a1) are by nomeans arbitrary: They
are strongly constrained by the fact that (3.8) must intertwine the representations of
the algebra Aε1ε2 defined by the actions Sσ1 and Sσ2 , respectively. Concretely, we
must have, in particular,

−→Dσ2
r,i · Kσ2σ1

(a2, a1) = Kσ2σ1
(a2, a1) 2 cosh(2πa1,r/εi ) ,

Kσ2σ1
(a2, a1) · ←−Dσ1

r,i = 2 cosh(2πa2,r/εi ) Kσ2σ1
(a2, a1) ,

(3.12)

expressing the fact that S-duality exchangesWilson and’t Hooft loops. The equations
represent a system of difference equations that turns out to determine Kσ2σ1

(a2, a1)

uniquely up to normalization. This means that the kernels are essentially determined
by the representation theory of the algebra Aε1ε2 .

We will in the following describe how to identify the algebra Aε1ε2 . This infor-
mation may then be used [TV13] to determine the kernels Kμ.σ,σ(a2, a1) defining the
Riemann-Hilbert problem (3.11). Fixing the τ -asymptotics by means of perturbative
information one gets a Riemann-Hilbert problem which has an essentially unique
solution, thereby characterizing the wave-functions �σ

τ (a) completely.
Keeping in mind (3.6) we conclude that the instanton partition functions Z inst

can be characterized using the representation theory of Aε1ε2 . Note that the prepo-
tential F giving the low-energy effective action of GC is recovered from Z inst via
F = limε1,ε2→0 ε1ε2 logZ inst . This means that the low-energy effective action is

2The Riemann-Hilbert problem is often formulated as the problem to find vectors of multivalued
analytic functions on a punctured Riemann surface C with given monodromy, a representation of
π1(C) in SL(N , C). Our Eq. (3.11) generalises the Riemann-Hilbert problem in two ways: The
Riemann surface C is replaced by the moduli spaceM(C) of complex structures on the surface C ,
and the monodromy takes values in the group of unitary transformations of an infinite-dimensional
Hilbert-space rather than SL(N , C).
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encoded abstractly within the algebra Aε1ε2 . These observations motivate why this
algebra was called “non-perturbative skeleton” of GC in [TV13].

4 The Algebra of Loop Operators

In order to realise the program outlined at the end of the previous section it will
be essential to know the algebra Aε1ε2 precisely. We are now going to explain how
Aε1ε2 is related to the non-commutative algebra obtained by quantising the space of
functions on the moduli space of flat PSL(2)-connections. This section is meant to
give a guide to the literature on the known relations between the algebra generated
by the supersymmetric Wilson- and’t Hooft loop operators on the one hand, and the
(quantised) algebra of functions on the moduli space of flat PSL(2)-connections on
the other hand.

4.1 The Algebra of Supersymmetric Loop Operators

The algebra of gauge theory observables contains the supersymmetric Wilson- and
’t Hooft loop observables. The product of such loop operators will generate further
loop observables supported at the same loop C. The generalizations ofWilson- and ’t
Hooft loop operatorsLγ that are generated in this way describe the effect of inserting
heavy “dyonic” probe particles, and can therefore be labelled by pairs γ = (r, s) of
electric and magnetic charge vectors, see [DMO], and the article [V:7] for a review.
We will be interested in the algebraA generated by polynomial functions of the loop
operators.

One should note that the labelling of loop operators by charges is based on a
given Lagrangian description of the theory. A particularly simple example for the
dependence of the underlying Lagrangian is provided by the Witten-effect: Two
actions S1 and S2 which differ only by a shift of the theta-angle θr by 2π will define
the same expectation values after proper identification of the loop operators: A loop
observable with charge γ1 defined by S1 gets identified with the loop observable with
charge γ2 defined by S2 iff the magnetic charges coincide and the electric charges of
γ1 and γ2 differ by certain multiples of the magnetic charges. A precise statement
for the A1 theories of class S of interest here can be found in [DMO], see also [V:7].

It should also be remarked that the precise specification of a gauge theory of class
S depends on certain discrete topological data [AST, Ta13] defining in particular
the set of allowed charges for the line operators. This phenomenon is related to
interesting subtleties showing up when the gauge theory GC is studied on more
general four-manifolds, but it is not relevant for what is discussed in this article as we
are exclusively dealing with four manifolds having the topology of the four-sphere.

http://dx.doi.org/10.1007/978-3-319-18769-3_7
http://dx.doi.org/10.1007/978-3-319-18769-3_7
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4.2 UV Versus IR Loop Operators

It will be instructive to consider the four-ellipsoid E4
ε1ε2

in the limit where ε1 = 0. In
this case the four-ellipsoid E4

ε1,ε2
degenerates into E2

ε2
× R

2, where

E2
ε2

:= {(x0, . . . , x2) | x2
0 + ε22(x2

3 + x2
4 ) = 1} . (4.1)

This implies that only theWilson- and ’t Hooft loopswrapped on the remaining circle
C2 will remain.Wemay still relate expectation values tomatrix elements by choosing
x0 as (Euclidean) time coordinate. Near the “equator” x0 = 0, the two-ellipsoid E2

ε2

looks likeR×S1. Onemay expect that studying the gauge theory GC onR
2×E2

ε1
will

allow us make contact with the work of Gaiotto et al. [GMN1, GMN2, GMN3], who
have studied the gauge theories GC on the circle compactification R

3 × S1. Aspects
relevant for us are reviewed in [V:3].

Considering the theory GC on R
3 × S1 at low energies, it was argued in [GMN1]

that GC becomes effectively represented by a three-dimensional sigma model with
hyperkähler target space M(C). This means in particular that the hyperkähler space
M(C) represents the moduli space of vacua of GC on R

3 × S1.
The supersymmetricWilson- and ’tHooft loops supported on S1 are calledUV line

operators in ([GMN3], [V:3]). Vacuum expectation values of these line operators3

Lγ(m) := 〈Lγ 〉m , m ∈ M(C) , (4.2)

represent coordinate functions on the moduli space of vacua of GC on R
3 × S1. We

see that the algebra A of UV line operators must coincide with a (sub-)algebra of
the algebra of functions on the moduli space of vacua M(C).

Other useful sets of coordinate functions forM(C) have been defined in [GMN1]
using the effective low-energy description of GC : They are denoted as Xη(m), are
labelled by vectors η in the charge lattice �, and represent Darboux coordinates for
the holomorphic symplectic structure � on M(C). The functions Xη(m) have been
interpreted in [GMN3] as expectation values of IR line operators describing the effect
of the insertion of a heavy dyonic source of charge η into the low-energy effective
field theory.

It has been argued in [GMN3, CN], see also [V:3], that the expectation values
Lγ(m) can be alternatively computed using the effective IR description of GC on
R

3 × S1, leading to a relation between UV and IR line operators of the following
form:

Lγ(m) =
∑
η∈�

�γ,η Xη(m) . (4.3)

3Comparing with [V:3] let us note that on R
3 × S1 one may consider families of line operators

preserving different supersymmetries, parameterised by a parameter ζ in [V:3]. We here focus on
the case ζ = 1 corresponding to the line operators studied on E4

ε1ε2
. Let us furthermore note that

the label γ used for UV line operators here is used for IR line operators in [V:3].

http://dx.doi.org/10.1007/978-3-319-18769-3_3
http://dx.doi.org/10.1007/978-3-319-18769-3_3
http://dx.doi.org/10.1007/978-3-319-18769-3_3
http://dx.doi.org/10.1007/978-3-319-18769-3_3
http://dx.doi.org/10.1007/978-3-319-18769-3_3
http://dx.doi.org/10.1007/978-3-319-18769-3_3
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The positive-integer coefficients�γ,η have an interesting physical interpretation as an
index counting certain BPS states that exist in the presence of line defects [GMN3].

4.3 Relation with Moduli Spaces of Flat Connections

The following table summarizes known connections between the moduli spaces
Mflat(C) of flat SL(2)-connections4 on the surfaces C and the moduli space of
vacua M(C) on R

3 × S1:

Riemann surface C Gauge theory GC

Moduli space of flat connections Mflat(C) Moduli space of vacua M(C) on R
3 × S1

Trace functions Lγ on Mflat(C) UV line operators Lγ

Fock-Goncharov coordinates IR line operators Xη

We have gathered the relevant definitions and results concerningMflat(C) in Appen-
dix 2. The mapping between trace functions Lγ and UV line operators Lγ is defined
by identifying the Dehn-Thurston parameters classifying closed loops on C (see
Appendix 2, subsection “Topological Classification of Closed Loops” for a short
summary) with the charge labels γ = (r, s) of the line operators ([DMO], [V:7]).5

The definition of the Fock-Goncharov coordinates for Mflat(C) is briefly reviewed
in Appendix 2, subsection “Fock–Goncharov Coordinates”, and the relations to IR
line operators are discussed in [GMN2, GMN3].

An argument in favor of the identification between Mflat(C) and M(C) starts by
considering the six-dimensional (2, 0) theory on S1×R

3×C . Compactifying first on
C and then on S1 gives the three-dimensional sigma model with target space M(C),
asmentioned above. It may alternatively be obtained from the six-dimensional theory
by first compactifying on S1 followed by compactification onC . After compactifying
on S1 one would then find the maximally supersymmetric five-dimensional super-
Yang-Mills theory on R × R

2 × C . Further compactification on C yields a nonlinear
sigma-model with target being MHit(C), the moduli space of solutions to Hitchin’s
self-duality equations using a variant of the argument presented in [BJSV]. More
details and references can be found in ([GMN2], Sect. 3.1).MHit(C) is a hyperkähler
space naturally related to Mflat(C) in one of its hyperkähler structures ([Hi], [V:3]).

4This may be SL(2, C)- or SL(2, R)-connections depending on the context, as will be discussed
later.
5The set of allowed charges γ = (r, s) in a theory GC is generically smaller than the set of allowed
Dehn-Thurston parameters [AST, Ta13]. This subtlety does not affect our discussions: For each
allowed Dehn-Thurston parameter there exists a choice of the extra discrete data specifying gauge
theories GC such that the corresponding UV line operator Lγ can be defined within GC . Having
determined the set of allowed charges in the duality frame corresponding to a particular pants
decomposition, one may figure out the allowed charges in any other duality frame by some simple
rules.

http://dx.doi.org/10.1007/978-3-319-18769-3_7
http://dx.doi.org/10.1007/978-3-319-18769-3_3
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A way to find the identification between particular coordinate functions on
Mflat(C) and the UV line operators summarised in the table above was described in
([GMN3], Sect. 7).

4.4 Quantization

An interesting generalization of the set-up considered in Sect. 4.2 (compactification
on S1) is obtained by imposing certain twisted boundary conditions with parameter
b along S1 [GMN3, IOT]. The resulting deformation, denoted R

3 ×b S1 of the
background R

3 × S1 is related to the Omega-deformation, and it can be used to
model the residual effect of the curvature in the vicinity of the circles Ci on E4

ε1,ε2
which represent the support of the loop operators [V:7].

It has been argued in [GMN3, IOT], see also [V:7], that the effect of the twisted
boundary conditions is to deform the algebra A into a non-commutative algebra Ab.
In the case of the A1 theories of class S it was argued in [GMN3] that the result-
ing algebra is nothing but the quantized algebra of functions on Mflat(C), denoted
Fun�(Mflat(C)), here with � = b2. There should in particular exist a deformed ver-
sion of the relation (4.3) between UV and IR line operators. The left hand side of
this relation, the deformed UV line operator, should be independent of the choice of
coordinates that appear on the right hand side. As different sets of coordinatesXη are
related by (quantized-) cluster transformations, it will suffice to figure out the quan-
tum analog of (4.3) for particular triangulations. This is what was done in ([GMN3],
Sect. 11) for the A1-case, leading to the conclusion that the algebra generated by the
deformed UV line operators is the quantisation of the the algebra of trace functions
on Mflat(C) that will be described in more detail in the following section.

Highly nontrivial support for this proposal has been given by explicit calculations
for some theories of class S ([IOT], [V:7]). A rather different line of arguments
leading to the same conclusion was proposed by Nekrasov and Witten [NW].

4.5 Back to the Ellipsoid

As mentioned above, one may expect that the twisted boundary conditions defining
R

3×b S1 would model the residual effect of the curvature in the vicinity of the curves
Ci on E4

ε1,ε2
([IOT], [V:7]), at least as far as the algebraic properties of loop operators

are concerned. The comparison of the results of localisation calculations on the two
spaces ([GOP] for S4, and [IOT] forR

3×b S1) provides highly nontrivial quantitative
evidence for this claim. In the case of the four ellipsoid E4

ε1,ε2
one thereby expects to

get a (twisted) product of two copies of Fun�(Mflat(C)) associated to the two circles
Ci supporting supersymmetric loop observables.

http://dx.doi.org/10.1007/978-3-319-18769-3_7
http://dx.doi.org/10.1007/978-3-319-18769-3_7
http://dx.doi.org/10.1007/978-3-319-18769-3_7
http://dx.doi.org/10.1007/978-3-319-18769-3_7
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However, there is a crucial difference between the cases of R
3 ×b S1 and E4

ε1,ε2
. In

the case of R
3 ×b S1 one will generically get complex values for expectation values

of loop observables which are functions of the scalar expectation values at infinity,
the holonomy of the gauge field around S1 and the complexified gauge coupling
constants τ . The precise relation was given in [IOT].

In the case of E4
ε1,ε2

, on the contrary, one gets only real numbers larger than 2 for
the expectation values ofWilson loops from the localisation calculations of [Pe, HH].
By S-duality this will imply that the ’t Hooft loops will define positive self-adjoint
operators onH0 with the same spectrum. This means that the relevant moduli spaces
to consider in this case will not be the moduli spaces MC

flat(C) of flat PSL(2, C)-
connections, but rather its real slice MR

flat(C) defined by having real values bounded
below by 2 for all trace coordinates.

It is known that MR

flat(C) breaks up into finitely many disconnected components
MR,d

flat (C), |d| = 0, . . . , 2g − 2 + n, and there exists a distinguished component

MR,0
flat (C) which has the necessary properties. This component is isomorphic to the

Teichmüller spaces of Riemann surfaces [Go88, Hi] and therefore referred to as the
Teichmüller component, see Appendix 2, subsection “The Teichmüller Component”.

The resulting situation is summarised in the table below.

Riemann surface C Gauge theory GC

Quantised algebras of functions Algebra Ab generated by

Fun
b2

(Mflat(C)) Wilson- and ’t Hooft loops on R
3 ×b S1

Quantized algebras of functions Algebra Aε1ε2 generated by

Funb2 (MR,0
flat (C))×̃Funb−2 (MR,0

flat (C)) Wilson- and ’t Hooft loops on E 4
ε1,ε2

The notation ×̃ indicates that the representatives of the factors commute only up to
a sign, in general.

5 Quantization of Moduli Spaces of Flat Connections

We now have the input we need to develop the program outlined in Sect. 3.2—the
reconstruction of instanton partition functions from the algebra of loop operators. In
the rest of this section we shall briefly describe the quantization of MR,0

flat (C).

5.1 Quantization of the Fock-Goncharov Coordinates

The simplicity of the Poisson brackets of the Fock-Goncharov coordinates makes
part of the quantization quite simple. To each edge e of a triangulation t of a Riemann
surface Cg,n associate a quantum operator Xt

e corresponding to the classical phase
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space function X t
e . Canonical quantization of the Poisson brackets (6.59) yields an

algebra Bt with generators Xt
e and relations

Xt
e, Xt

e′ = e2πib2 nee′ Xt
e′ Xt

e , (5.1)

where nee′ is the number of intersections of e with e′, counted with a sign.
Note furthermore that the variables Xe are positive for the Teichmüller com-

ponent. The scalar product of the quantum theory should realize the phase space
functions Xe as positive self-adjoint operators Xt

e. By choosing a polarization one
may define a Schrödinger type representations πt in terms of multiplication and finite
shift operators. It can be realized on suitable dense subspaces of the Hilbert space
Ht � L2(R3g−3+n).

There exists a family of automorphisms which describe the relation between
the quantized variables associated to different triangulations [F97, Ka1, CF1]. If
triangulation te is obtained from t by changing only the diagonal in the quadrangle
containing e, we have

Xte
e′ =

⎧⎪⎪⎨
⎪⎪⎩

Xt
e′

|ne′e|∏
a=1

(
1 + eπi(2a−1)b2

(Xt
e)

−sgn(ne′e)
)−sgn(ne′e) if e′ �= e ,

(Xt
e)

−1 if e′ = e .

(5.2)

It follows that the quantum theory ofMR,0
flat (C) has the structure of a quantum cluster

algebra [FG2].
It is possible to construct [Ka1] unitary operators Tt1,t2 that represent the quantum

cluster transformations (5.2) in the sense that

Xt2
e = T−1

t1t2
· Xt1

e · Tt1t2 . (5.3)

The operators Tt2t1 describe the change of representation when passing from the
quantum theory associated to triangulation t1 to the one associated to t2. It follows
that the resulting quantum theory does not depend on the choice of a triangulation
in an essential way.

As indicated in Sect.4.4, one may intepret the coordinates X τ
e as expectation

values of IR line operators. The formula (5.1) describes the quantum deformation
induced by the twisted boundary condition on R

3 ×b S1, and (5.2) describes the
behavior of the IR line operators under (quantum-) wall-crossing ([GMN1, GMN3],
[V:3]).

5.2 Quantization of the Trace Functions

There is a simple algorithm (reviewed in Appendix 2, subsection “Trace Functions in
Terms of Fock-Goncharov Coordinates”) for calculating the trace functions in terms

http://dx.doi.org/10.1007/978-3-319-18769-3_3
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of the variables X t
e leading to Laurent polynomials in the variables Xe of the form

Lγ =
∑
ν∈F

Ct
γ(ν)

∏
e

(X t
e )

1
2 νe , (5.4)

where the summation is taken over a finite set F of vectors ν ∈ Z
3g−3+2n with

components νe.
According to ([GMN3], [V:3]) one may interpret the trace functions as UV line

operators. Formula (5.4) thereby becomes identified with (4.3).
For curves γ havingCt

γ(ν) ∈ {0, 1} for all ν ∈ F it has turned out to be sufficient to
replace (X t

e )νe in (5.4) by exp(
∑

e νe logXt
e) in order to define the quantum operator

Lt
γ associated to a classical trace functionLγ . For other triangulations onemay define

Lt′
γ using

Lt′
γ = T−1

tt′ · Lt
γ · Ttt′ . (5.5)

It turns out that this is sufficient to define the operators Lt
γ in general [T05]. It follows

from (5.5) that we may regard the algebras of quantised trace functions generated
by the operators Lt

γ as different representations πt of an abstract algebra Ab which
does not depend on the choice of a triangulation, Lt

γ ≡ πt(Lγ) for Lγ ∈ Ab.
The operators Lt

γ are positive self-adjoint with spectrum bounded from below by
2, as follows from the result of [Ka4]. Two operators Lt

γ1
and Lt

γ2
commute if the

intersection of γ1 and γ2 is empty. It is therefore possible to diagonalise simultane-
ously the quantised trace functions associated to a maximal set of non-intersecting
closed curves defining a pants decomposition [T05, TV13].

5.3 Representations Associated to Pants Decompositions

Mutual commutativity of the quantized trace-functions Lt
γr
ensures existence of oper-

ators Rσ|t which map the operators Lt
γr
, r = 1, . . . , h associated to the curves

C = (γ1, . . . , γh) defining a pants decomposition to the operators of multiplication
by 2 cosh(lr/2). The states in the image Hσ of Rσ|t can be represented by functions
ψ(l), l = (l1, . . . , lh) depending on variables lr ∈ R

+ which parameterise the eigen-
values of Lt

γr
. The operators Rσ|t define a new family of representations πσ of Ab

via
πσ(Lγ) := Rσ|t · πt(Lγ) · (Rσ|t)−1 . (5.6)

The representations are naturally labelled by the data σ = (C, �) we had encoun-
tered before. The unitary operators Rσ|t : Ht → Hσ were constructed explicitly in
[T05, TV13].

http://dx.doi.org/10.1007/978-3-319-18769-3_3
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5.3.1 Transitions Between Representation

The passage between the representations πσ1 andπσ2 associated to two different pants
decompositions is then described by

Uσ2σ1 := Rσ2|t · (Rσ1|t)
−1 .

The unitary operators Uσ2σ1 intertwine the representations πσ1 and πσ2 ,

πσ2(Lγ) · Uσ2σ1 = Uσ2σ1 · πσ1(Lγ) . (5.7)

Explicit representations for the operators Uσ2σ1 have been calculated in [NT, TV13]
for pairs [σ2,σ1] related by the generators of the Moore-Seiberg groupoid. The B-
move is represented as

(Bψs)(β) = Bl3
l2l1

ψs(β) , B
l3
l2l1

= eπi(�l3−�l2−�l1 ) , (5.8)

where �l = (1 + b2)/4b + (l/4πb)2. The F-move is represented in terms of an
integral transformation of the form

ψs(ls) ≡ (Fψt )(ls) =
∫

R+
dlt Flslt

[ l3
l4

l2
l1

]
ψt (lt ) . (5.9)

A similar formula exists for the S-move. The explicit expressions can be found in
[TV13].

The operators Uσ2σ1 define a unitary projective representation of the Moore-
Seiberg groupoid,

Uσ3σ2 · Uσ2σ1 = ζσ3σ2σ1Uσ3σ1 , (5.10)

where ζσ3σ2σ1 ∈ C, |ζσ3σ2σ1 | = 1. The explicit formulae for the relations of the
Moore-Seiberg groupoid in the quantisation of M0

flat(C) are listed in [TV13].
Having a representation of the Moore-Seiberg groupoid automatically produces a

representation of the mapping class group. An element of the mapping class group μ
represents a diffeomorphism of the surface C , and therefore maps anyMS graph σ to
another one denoted μ.σ. Note that the Hilbert spaces Hσ and Hμ.σ are canonically
isomorphic. Indeed, the Hilbert spaces Hσ depend only on the combinatorics of the
graphs σ, but not on their embedding into C . We may therefore define an operator
Mσ(μ) : Hσ → Hσ as

Mσ(μ) := Uμ.σ,σ . (5.11)

It is automatic that the operators M(μ) define a projective unitary representation of
the mapping class group MCG(C) on Hσ .
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The kernels of the operators Uσ2σ1 , Tt2t1 and Rσ|t are related to the partition func-
tions of d = 3 gauge theories on duality walls, see ([DGV], [V:11]) and references
therein. The relations are summarised in the following table:

Riemann surface C Gauge theory GC

Kernels representing operators Uσ2σ1 UV duality walls T2[M, p, p′]
Kernels representing operators Rσ|t RG domain walls T2[M, p,�]
Kernels representing operators Tt2t1

IR duality walls T2[M,�,�′]

5.3.2 Representations

The representations πσ(Lγ) were calculated explicitly for the generators of Ab

in [TV13].
As a prototypical example let us consider the casewhereσ corresponds to the pants

decomposition of C0,4 depicted on the left of Fig. 1. Wemay associate generators Ls ,
Lt and Lu ofAb to the simple closed curves γs , γt , and γu introduced in Appendix 2,
subsection “Generators and Relations”, respectively. The generatorsLr r = 1, . . . , 4
are associated to the boundary components of C � C0,4. The representation of Ab

will be generated from the operators Ls , Lt and Lu defined as follows:

Ls := 2 cosh(l/2) . (5.12a)

Lt := 1

2(cosh ls − cos 2πb2)

(
2 cosπb2(L2L3 + L1L4) + Ls(L1L3 + L2L4)

)

(5.12b)

+
∑
ε=±1

1√
2 sinh(ls/2)

eεk/2

√
c12(Ls)c34(Ls)

2 sinh(ls/2)
eεk/2 1√

2 sinh(ls/2)

where
l ψσ(l) = lψσ(l) , k ψσ(l) = −4πib2 ∂lψσ(l) ,

and ci j (Ls) is defined as

ci j (Ls) = L2
s + L2

i + L2
j + Ls Li L j − 4 . (5.12c)

Lu is given by a similar expression [TV13]. The operators l and k are quantum coun-
terparts of the Fenchel-Nielsen coordinates, see Appendix 2, subsection “Fenchel-
Nielsen Coordinates for MR,0

flat (C)” for a definition.
As indicated above, one may interpret the trace functions Ls, Lt , Lu as UV line

operators, here for the N f = 4 theory associated to C0,4. Ls , Lt and Lu correspond
to the Wilson loop, ’t Hooft loop, and simplest dyonic loop, respectively. The formulae

http://dx.doi.org/10.1007/978-3-319-18769-3_11
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above are directly related to the expectation values of these line operators on R
3×b S1

calculated in [IOT].

5.3.3 The Algebra of Trace Functions

Using the explicit representations for the generators of Ab obtained in [TV13] it
becomes straightforward to calculate the relations that they satisfy. As a prototypical
example, let us again consider the case C = C0,4. There are two main relations:
Quadratic relation:

Q(Ls,Lt ,Lu) := eπib2LsLt − e−πib2LtLs (5.13)

− (e2πib
2 − e−2πib2

)Lu − (eπib2 − e−πib2
)(L1L3 + L2L4) .

Cubic relation:

P(Ls,Lt ,Lu) = −eπib2LsLtLu (5.14)

+ e2πib
2L2

s + e−2πib2L2
t + e2πib

2L2
u

+ eπib2Ls(L3L4 + L1L2) + e−πib2Lt (L2L3 + L1L4)

+ eπib2Lu(L1L3 + L2L4)

+ L2
1 + L2

2 + L2
3 + L2

4 + L1L2L3L4 − (
2 cosπb2)2 .

The generators Lk , k = 1, . . . , 4 are central elements in Ab(C0,4), associated to
the boundary components. The quadratic relations represent the deformation of the
Poisson bracket (6.57), while the cubic relation is a deformation of the relation
(6.50a).

6 Relation to Liouville Theory

Having worked out the quantization of MR,0
flat (C), we have determined the mon-

odromy data we need to define the Riemann-Hilbert type problem discussed in
Sect. 3.2. In order to derive the AGT-correspondence along these lines it remains
to observe that the Liouville conformal blocks provide solutions to this Riemann-
Hilbert problem.

Our goal in this section is to explain why Liouville conformal blocks are the wave-
functions solving the Riemann-Hilbert problem (3.11). To this aim we are going to
explain that

Liouville theory is just another way to represent the

quantum theory of MR,0
flat (C) defined in Sect. 5.
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The identification between conformal blocks and wave-functions in the quantum
theory of moduli spaces of flat connections will follow naturally.

6.1 Complex-Analytic Darboux Coordinates for M0
flat(C)

Our explanations will be based on the fact that MR,0
flat (C) is isomorphic to the Teich-

müller space T (C) (see Appendix 2, subsection “The Teichmüller Component”).
This implies that there exists an alternative quantisation scheme using holomorphic
coordinates forT (C).We are going to explain that the quantum theory in the resulting
quantisation scheme is naturally related to conformal field theory.

For simplicity, we will here restrict attention to C = C0,4 = P
1 \ {z1, z2, z3, z4}.

We do not lose generality when we assume that z1 = 0, z3 = 1, z4 = ∞. The
value of q := z2 defines a complex-analytic coordinate for the moduli space M(C)

of complex structures on C . The Fuchsian group corresponding to the complex
structure parameterized by a value of q defines a flat PSL(2, R)-connection. We
may therefore regard q as a local coordinate for M0

flat(C) which is related to the
Fenchel-Nielsen coordinates (k, l) in a very complicated way. The relation becomes
reasonably simple only in the limit |q| → 0 ⇔ l → 0, where one has

l

2π
� π

log(1/|q|) , 2πk � arg(q) , (6.1)

where the notation � indicates equality to leading order in this limit.
The complicated nature of the dependence of q on the Darboux coordinates (k, l)

is reflected in the fact that the Poisson structure on MR,0
flat (C) is represented in terms

of q in a much more complicated way. A useful way to describe the Poisson structure
using the coordinate q is to find a function h = h(q, q̄) that is canonically conjugate
to q in the sense that

{q, h(q, q̄)} = −i . (6.2)

Such a function can be found from the metric ds2 = e2ϕdyd ȳ of constant negative
curvature associated to q by writing the function t (y) = −(∂yϕ)2 +∂2

yϕ in the form

t (y) = δ3

(y − 1)2
+ δ1

y2
+ δ2

(y − q)2
+ υ

y(y − 1)
+ q(q − 1)

y(y − 1)

h

y − q
. (6.3)

The residue h = h(q, q̄) in (6.3) is indeed the sought-for conjugate variable to q, as
follows from the beautiful results [TZ87a, CMS, TZ03] that the classical Liouville
action Scl[ϕ] is the Kähler potential for the symplectic form on T (C) � M0

flat(C)

corresponding to the Poisson-structure we consider, and that

h(q, q̄) = − ∂

∂q
Scl[ϕ] . (6.4)
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The function h(q, q̄) is called the accessory parameter. Having real monodromy
(subgroup of PSL(2, R)) of the differential operator ∂2

y + t clearly requires fine-
tuning of the residue h in (6.3) in a way that depends on the complex structure q.

6.2 Quantization of Complex-Analytic Darboux Coordinates
for M0

flat(C)

One may then consider an alternative representation for the quantum theory of
M0

flat(C) which is such that the operator representing the complex-analytic coor-
dinate q is realized as a multiplication operator q,

q ψ(q) = qψ(q) . (6.5)

The quantization of the observable h should then give an operator h that satisfies

[h, q] = b2 , (6.6)

and can therefore be represented as

h ψ(q) = b2 ∂

∂q
ψ(q) . (6.7)

In order for such a representation to be equivalent to the representation we had
previously defined using the Darboux coordinates (k, l) we should consider wave-
functions φ(q) that are holomorphic in q. Such a representation can be seen as an
analog of the coherent state representation of quantum mechanics.

It will be useful for us to think of the wave-functionsψ(q) in such a representation
as overlaps 〈 q | ψ 〉 of the abstract state | ψ 〉with an eigenstate 〈 q | of the operator q.

6.3 Geometric Definition of the Conformal Blocks

In order to see how the quantisation of T (C) is related to conformal field theory,
let us present a more geometric approach to the definition of the conformal blocks
going back to [BPZ].

Let C be the Riemann surface C = P
1 \ {z1, . . . , zn} of genus 0 with n marked

points z1, . . . , zn . At each of the marked points zr , r = 1, . . . , n, let us choose the
local coordinates wr = y − zr . We associate highest weight representations Vr , of
Virc to Pr , r = 1, . . . , n. The representations Vr are generated from highest weight
vectors er with weights �r .

The conformal blocks are then defined to be the linear functionals F : V[n] ≡
⊗n

r=1Vr → C that satisfy the invariance property
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F(T [χ] · v) = 0 ∀v ∈ V[n], ∀χ ∈ Vout, (6.8)

whereVout is the Lie algebra of meromorphic differential operators on C which may
have poles only at z1, . . . , zn . The action of T [χ] on ⊗n

r=1Rr → C is defined as

T [χ] =
n∑

r=1

id ⊗ · · · ⊗ L[χ(r)]
(rth)

⊗ · · · ⊗ id, L[χ(r)] :=
∑
k∈Z

Lkχ
(r)
k ∈ Virc,

(6.9)

where χ(r)
k are the coefficients of the Laurent expansions of χ at the points P1, . . . Pn ,

χ(zr ) =
∑
k∈Z

χ(r)
k wk+1

r ∂wr ∈ C((wr ))∂wr , (6.10)

with C((t)) being the space of Laurent series in the variable t .
The vector space of conformal blocks associated to the Riemann surface C with

representations Vr associated to the marked points Pr , r = 1, . . . , n will be denoted
asCB(V[n], C). It is the space of solutions to the defining invariance conditions (6.8).

The space CB(V[n], C) is infinite-dimensional in general. Considering the case
n = 4, for example, one may see this more explicitly by noting that the defining
invariance property allows us to express the values F(v4 ⊗ v3 ⊗ v2 ⊗ v1) in terms of
the complex numbers

Z (k)(F , C) := F(e4 ⊗ e3 ⊗ Lk
−1e2 ⊗ e1), k ∈ Z

>0 , (6.11)

were ei are the highest weight vectors of Vi , i = 1, 2, 3, 4. We note that F is com-
pletely defined by the valuesZ (k)(F , C). The space of conformal blocksCB(V[4], C)

is therefore isomorphic as a vector space to the space of formal power series in one
variable.

This definition of conformal blocks is closely related, but not quite identical to
the one introduced previously in Sect. 2.5. To indicate the relation let us note that
matrix elements like

Fβ(v4 ⊗ v3 ⊗ v2 ⊗ v1) := 〈
eα4 , V α3

α4 ,β[V3](z3) V α2
β, α1

[V2](z2) eα1

〉
α4

, (6.12)

will represent particular examples for conformal blocks as defined in this section.
Validity of the defining invariance property (6.8) follows from the covariance prop-
erties of the chiral vertex operators.
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6.4 Deformations of the Complex Structure of C

A key point that needs to be discussed about the spaces of conformal blocks is the
dependence on the complex structure of C , here specified by the positions z1, . . . zn

of the marked points. There is a natural way to represent infinitesimal variations of
the complex structure of C on the spaces of conformal blocks. By combining the
definition of conformal blocks with the so-called “Virasoro uniformization” of the
moduli space M0,n of complex structures on C = C0,n one may construct a natural
representation of infinitesimal motions on M0,n on the space of conformal blocks.

The “Virasoro uniformization” of the moduli space M0,n may be formulated as
the statement that the tangent space T M0,n to M0,n at C can be identified with the
double quotient

T M0,n = �(C \ {z1, . . . , zn},	C)

∖ n⊕
k=1

C((wk))∂k

/ n⊕
k=1

wkC[[wk]]∂k, (6.13)

where C[[wk]] are the spaces of Taylor series in the local coordinates wk for k =
1, . . . , n, respectively, and �(C \ {z1, . . . , zn},	C) is the space of vector fields that
are holomorphic on C \ {z1, . . . , zn}, embedded into

⊕n
k=1 C((wk))∂k via (6.10).

Given a tangent vector ϑ ∈ T M0,n , it follows from the Virasoro uniformization
(6.13) that we may find elements ηϑ of

⊕n
k=1 C((tk))∂k , which represent ϑ via (6.13).

Let us then consider F(T [ηϑ]v) with T [η] being defined in (6.9) in the case that v

is the product of highest weight vectors, v = en ⊗ · · · ⊗ e1. Equation (6.13) allows
us to define the derivative δϑF(v) of F(v) in the direction of ϑ ∈ T M0,n as

δϑF(v) := F(T [ηϑ]v), (6.14)

Dropping the condition that v is a product of highest weight vectors, one may use
(6.14) to define δϑF in general. And indeed, it is well-known that (6.14) leads to
the definition of a canonical flat connection on the space CB(V[n], C) of conformal
blocks [BF].

6.5 Conformal Blocks Versus Function on T0,n

In the case n = 4 it is easy to see that (6.14) can be reduced simply to

∂zF(v4 ⊗ v3 ⊗ v2 ⊗ v1) = F(v4 ⊗ v3 ⊗ L−1v2 ⊗ v1) . (6.15)

Let us introduce the notation

ZLiou(F , C) = F(e1 ⊗ · · · ⊗ en) , (6.16)
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for the value of F on the product of highest weight vectors. Equation (6.15) allows
us to identify the values Z (k)(F , C) defined in (6.11) as the kth derivatives of the
partition functionsZLiou(F , C).We had seen above that the collection of the numbers
Z (k)(F , C) characterizes the conformal blocks F ∈ CB(V[4], C) completely.

One may define the parallel transport of conformal blocks over M0,4 via

ZLiou(F , Cw) =
∞∑

k=0

1

n! (w − z)nZ (k)(F , Cz) . (6.17)

We see that there is a one-to-one correspondence between functions Y(w) defined
on some open, simply connected neighborhood Uz of a point z in T0,4 and conformal
blocks F for which the series (6.17) converges for all w ∈ Uz : The Taylor expansion
coefficients Yk of Y(w) can be used to define a conformal block FY ∈ CB(V[4], C)

such that Z (k)(FY , C) = Yk . Conversely, for “well-behaved” conformal blocks
F ∈ CB(V[4], Cz) one may use (6.17) to define a family of conformal blocks in a
neighborhood Uz(F).

We are ultimately not interersted in the most crazy conformal blocks, but rather
in those whose partition functions can be analytically continued over all of T (C),
and which have reasonably mild singular behaviour at the boundaries of T (C).
Such a subspace will be denoted CBreg

(V[4], C). It was proposed in [TV13] that
the conformal blocks defined previously with the help of chiral vertex operators
generate a basis for CBreg

(V[4], C) in a suitable sense. This proposal is based on
the highly nontrivial results of [T01, T03a] that the partition functions ZLiou can be
analytically continued over all of T (C), and that the bases associated to different
pants decompositions are linearly related.

6.6 Verlinde Loop Operators

The construction of conformal blocks using chiral vertex operators, ormore generally
by gluing conformal blocks associated to three-punctured spheres gives another way
to define a natural family of operators acting on spaces of conformal blocks. The
resulting operators will be identified with quantized trace functions.Wewill describe
the construction in the case of genus 0 in terms of chiral vertex operators.

Let us consider chiral vertex operators V α
β2β1

(z) in the special case where α =
−b/2, assuming that Q is represented as Q = b + b−1. If furthermore β2 and β1 are
related as β2 = β1 ∓ b/2, the vertex operators ψs(y) ≡ ψβ1,s(y) := V −b/2

β1−sb/2,β1
(y),

s ∈ {1,−1}, are well-known to satisfy a differential equation of the form

∂2
yψβ1,s(y) + b2 : T (y)ψβ1,s(y) := 0 , (6.18)

with normal ordering defined in (2.18). The chiral vertex operatorsψβ1,s(y) are called
degenerate fields. It follows from (6.18) that matrix elements such as
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Fss ′(α;β | z | y0 | y ) := 〈α4 | ψs(y0)ψs ′(y) | 	s+s ′ 〉 , (6.19)

| 	s+s ′ 〉 := V α3

α4+(s+s ′) b
2 ,β

(z3)V α2
βα1

(z2)V α1
α1,0(z1)| 0 〉,

will satisfy the partial differential equation DBPZF = 0, with

DBPZ := 1

b2

∂2

∂y2
+ �− b

2

(y − y0)2
+ 1

y − y0

∂

∂y0
+

3∑
k=1

(
�αk

(y − zk)2
+ 1

y − zk

∂

∂zk

)
.

(6.20)

As explained previously, we may regard the matrix elements (6.19) as the partition
functions of conformal blocks in CB(V ′

[6], C0,6), where now V ′
[6] = V[4] ⊗ V⊗2

−b/2.

Using these ingredients it is straightforward to show that the analytic continuation
of the matrix elements Fss ′(α;β | z | y0 | y ), s, s ′ ∈ {1,−1} with respect to y along
closed paths γ onC0,5 can be expressed as a linear combination of thematrix elements
Fss ′′(α;β′ | z | y0 | y ) having parameters β′ that differ from β by integer multiples
of the parameter b,

Fss ′(α;β | z | y0 | y ) =
∑
s ′′=±

Mγ(β, Tβ)s ′′
ss ′ · Fss ′′(α;β | z | y0 | y ) (6.21)

where T is the operator which shifts the argument β of Fss ′ by the amount b. The
matrices Mγ define representations of the fundamental group π1(C0,5) on the space
CB(V ′

[6], C0,6).
The definition of the Verlinde loop operators is based on the simple fact that

CB(V[4] ⊗ V0, C0,5) is canonically isomorphic to CB(V[4], C0,4) if V0 is the vacuum
representation. One may furthermore note that there exists a linear combination∑

s Ksψs(y0)ψ−s(y)which is a descendant of the chiral vertex operatorV 0
β,β

[
ψ+(y0−

y)e− b
2

]
(y) associated to the vacuum representation. These observations allow us to

define both an embedding ı and a projection ℘,

ı : CBreg
(V[4], C0,4) ↪→ CBreg

(V ′
[6], C0,6) ,

℘ : CBreg
(V ′

[6], C0,6) → CBreg
(V[4], C0,4) ,

(6.22)

in a natural way. The Verlinde loop operators can then be defined as the composition

Vγ := ℘ ◦ Mγ ◦ ı . (6.23)

Concretely this boils down to taking a certain linear combination of the matrix ele-
ments Mγ(β, Tβ)s ′′

ss ′ representing the monodromy along γ on CBreg
(V[6], C0,6). The

explicit calculations of the operator Vγ in [AGGTV, DGOT] shows that the Verlinde
loop operators define a representation of Fun�(Mflat(C)) on the space of conformal
blocks CBreg

(V[4], C0,n) which is equivalent to the one defined in Sect. 5.3.2 if we
identify variables
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β = Q

2
+ i

l

4πb
, αk = Q

2
+ i

lk

4πb
, k = 1, . . . , 4. (6.24)

Let us summarize the observations made in this section in the following table:

Quantisation of ... ... is realised in CFT via

Darboux coordinates (q, h) conformal Ward indentities

Fenchel-Nielsen coordinates (k, l) Verlinde loop operators

The degenerate fields have a beautiful interpretation in the gauge theories GC in
terms of a family of observables called surface operators [AGGTV], explained also
in the article [V:8] in this collection.

6.7 Liouville Conformal Blocks as Solutions
to the Riemann-Hilbert Problem

We claim that the solution to the Riemann-Hilbert type problem defined in Sect. 3.2
is given by the Liouville conformal blocks in the following sense

Z inst
σ (a, m; τ ; ε1, ε2) = Zspur

σ (α; τ ; b)ZLiou
σ (β,α; q; b) . (6.25)

The solution of the Riemann-Hilbert problem defined in Sect. 3.2 is unique up tomul-
tiplication with meromorphic functions which may have poles only at the boundary
of M(C0,4). The resulting freedom can be absorbed into Zspur

σ (α, τ ; b).
In order to verify (6.25) we need to show that the representation of the mapping

class group on spaces of Liouville conformal blocks is the same as the one coming
from the quantum theory of MR,0

flat (C) as described in Sect. 5. This boils down to
the comparison of the respective realizations of B and F-moves. The coincidence of
B-moves is trivial to verify. The realization of the F-move on Liouville conformal
blocks was calculated in [T01], where a relation of the form

ZLiou
s (β1, q) =

∫
S

dβ2 Fβ1β2

[
α3
α4

α2
α1

]ZLiou
t (β2, q) , S ≡ Q

2
+ iR+ , (6.26)

was found. For the normalization defined in (2.14) we find the same kernel
Fβ1β2

[
α3
α4

α2
α1

]
in the relation (6.26), as was found within the quantum theory of

MR,0
flat (C) described in Sect. 5.

This is good enough to conclude that (6.25) must hold. To round off the pic-
ture, let us exhibit the meaning of the partition functions ZLiou

σ (β,α; q; b) within the
quantisation of MR,0

flat (C).

http://dx.doi.org/10.1007/978-3-319-18769-3_8
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In this sectionwe have described two different representations for the quantisation
of one and the same Poisson-manifold, obtained by quantisation of the coordinates
(q, h) and (l, k), respectively. One may expect that these two representations should
be unitarily equivalent. The eigenstates |l〉 of the operator l are complete in Hσs . It
should therefore be possible to relate the wave-function ψ(q) ≡ 〈q|ψ〉 representing
a state |ψ〉 in the holomorphic representation to the wave-function �(l) ≡ 〈l|ψ〉
representing the same state in the length representation as

ψ(q) ≡ 〈 q | ψ 〉 =
∫

dl 〈 q | l 〉〈 l | ψ 〉 . (6.27)

The kernel 〈 q | l 〉 is the complex conjugate of thewave-function 〈 l | q 〉 of the “coher-
ent” state | q 〉 in the length representation.

One may use essentially the same arguments as presented in Sect. 3.2 to conclude
that 〈 q | l 〉must solve the same Riemann-Hilbert problem as discussed above. Com-
bined with a discussion of the asymptotics at the boundary of T (C) we may thereby
conclude [T03b, TV13] that

〈 q | l 〉 = ZLiou
σ (β,α; q; b) . (6.28)

We have thereby identified more precisely which wave-functions the conformal
blocks are: They describe the change of representation between the two natural
representations for the quantum theory of MR,0

flat (C) discussed in this section.

6.8 The Nekrasov-Shatashvili Limit

The results reviewed in this article are related to the work [NRS] in an interesting
way. In order to explain the relations to [NRS] let us consider the limit ε2 → 0
corresponding to the classical limit for the quantum theory discussed in the previous
sections. This will also provide further insight into the meaning of 〈 q | l 〉 = ZLiou. It
can be shown [T10] that the conformal blocks behave as

logZLiou
σ (β,α; q; b) ∼ − 1

ε2
Y(l, m; q; ε1) , (6.29)

assuming that the variables are related by (2.16).Y(l, m; q; ε1) is defined as follows:
For given values of l and q let us consider differential operators of the form ε21(∂

2
y +

t (y)), with t (y) of the form (6.3). It can be argued that there is a unique choice
h = h(l, q) for the residue h such that ε21(∂

2
y + t (y)) has monodromy with trace

equal to 2 cosh(l/2). Y(l, m; q; ε1) is defined up to a constant by the condition that

∂

∂q
Y(l, m; q; ε1) = −h(l, q) . (6.30)
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The constant can be fixed by demanding that the constant term Y0(l, m; ε1) in

Y(l, m; q; ε1) ∼
q→0

−(δ − δ1 − δ2) log q + Y0(l, m; ε1) + O(q) , (6.31)

is one half of the sum of the Liouville actions on the three-punctured spheres into
which C0,4 splits when q → 0. We furthermore have

k(l, q) = 4πi
∂

∂l
Y(l, m; q; ε1) . (6.32)

To verify (6.32) note, on the one hand, that the Verlinde loop operators reduce to
the trace functions in the limit ε2 → 0. Recall that the trace functions may be para-
meterised by the (complexified) Fenchel-Nielsen coordinates (l, k). The resulting
expression may be compared to one following from (5.12) and (6.29) in this limit,
giving (6.32).

The pairs of coordinates (l, k(l, q)) describe a Lagrangian sub-manifold denoted
Opsl2(C) within Mflat(C) sometimes called the “brane of opers”. It follows from
(6.32), (6.30) that Y(l, m; q; ε1) is the generating function of this sub-manifold. We
thereby arrive at the description for the ε2-limit of the instanton partition functions
that was proposed in [NRS]. One may therefore view the results of [TV13] reviewed
in this article as the generalisation of the results from [NRS] to nonzero ε2.

6.9 Quantization of Seiberg-Witten Theory

It will furthermore be instructive to consider the limit where both ε1, ε2 → 0, in
which E4

ε1,ε2
turns into R

4, and we can make contact with Seiberg Witten theory.
To begin with, let us note that ε21∂

2
y + t (y) turns into the quadratic differential

−ϑ(y) when ε1 → 0. Using ϑ(y) we define the Seiberg-Witten curve � as usual by

� = { (v, u) | v2 = ϑ(u) } . (6.33)

It follows by WKB analysis of the differential equation (ε21∂
2
y + t (y))χ = 0 that the

coordinates le have asymptotics that can be expressed in terms of the Seiberg-Witten
differential � on � defined such that �2 = ϑ(u)(du)2. We find

l ∼ 4π

ε1
a , k ∼ 4π

ε1
aD , (6.34)

where a and aD are periods of the Seiberg-Witten differential � defined as

a :=
∫

α

�, aD :=
∫

β

�, (6.35)
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with α and β being lifts of γs and γt to cycles on � that project to zero, respectively.
The prepotential F is obtained in the limit ε1, ε2 → 0 as follows:

F(a, m, q) : = − lim
ε1,ε2→0

ε1ε2 logZ inst
σ (a, m, q; ε1, ε2)

= lim
ε1→0

ε1Y(a, m; q; ε1) .
(6.36)

F(a, m; q) satisfies the relations

aD = ∂

∂a
F(a, q) , h = − ∂

∂q
F(a, q) . (6.37)

A proof of the relations (6.37) that is valid for all A1-theories of class S was given
in ([GT], Sect. 7.3.2). The relations (6.37) are equivalent to the statement that both
the coordinates (a, aD) describing the special geometry underlying Seiberg-Witten
theory, and the coordinates (q, h) introduced above canbe seen as systemsofDarboux
coordinates for the same space T ∗T (C). The prepotential F(a, m, q) is nothing but
the generating function of the change of variables between (a, aD) and (q, h).

These observations show that the relations between the quantum theory on
M0

flat(C) and the gauge theories GC discussed in this article can be seen as the
quantization of the special geometry used in Seiberg-Witten theory. The dual zero
modes a and aD turn into the Darboux coordinates l and k upon partial compactifi-
cation to S1 × R

3 or E2
ε1

× R
2. Further compactification to a four-ellipsoid leads to

the quantization of these zero modes.
It is intriguing to observe that very similar ideas have been discussed in the context

of topological string theory, where it has been proposed that the partition function
of the topological string has an interpretation as a wave-function arising from the
quantization of special geometry. The geometric engineering of gauge theories within
string theory leads to relations between topological string and instanton partition
functions, see the articles [V:13, V:14] in this volume for a review. One may hope
that the relations with the quantization of moduli spaces of vacua discussed in this
article may help us to get a more unified picture.

Acknowledgments The author would like to thank T. Dimofte, M. Gabella, A. Neitzke and
T. Okuda for very useful remarks on a preliminary version of this article.

Appendix 1: Riemann Surfaces: Basic Definitions
and Results

This appendix introduces basic definitions and results concerning Riemann surfaces
C that will be used throughout the paper. A Riemann surface C is a two-dimensional
topological surface S togetherwith a choice of complex structure on S.Wewill denote
by M(S) the moduli space of complex structures on a two-dimensional surface S,

http://dx.doi.org/10.1007/978-3-319-18769-3_13
http://dx.doi.org/10.1007/978-3-319-18769-3_14
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and by T (C) the Teichmüller space of deformations of complex structures on the
Riemann surface C .

Complex Analytic Gluing Construction

A convenient family of particular coordinates on the Teichmüller spaces T (C) is
defined by means of the complex-analytic gluing construction of Riemann surfaces
C from three punctured spheres [Ma, HV]. Let us briefly review this construction.

Let C be a (possibly disconnected) Riemann surface. Fix a complex number q
with |q| < 1, and pick two points Q1 and Q2 on C together with coordinates zi (P)

in a neighborhood of Qi , i = 1, 2, such that zi (Qi ) = 0, and such that the discs Di ,

Di := { Pi ∈ C; |zi (Pi )| < |q|− 1
2 }, i = 1, 2 ,

do not intersect. One may define the annuli Ai ,

Ai := { Pi ∈ C; |q| 1
2 < |zi (Pi )| < |q|− 1

2 }, i = 1, 2 .

To glue A1 to A2 let us identify two points P1 and P2 on A1 and A2, respectively, iff
the coordinates of these two points satisfy the equation

z1(P1)z2(P2) = q . (6.38)

If C is connected one creates an additional handle, and if C = C1 � C2 has two
connected components one gets a single connected component after performing the
gluing operation. In the limiting case where q = 0 one gets a nodal surface which
represents a component of the boundary ∂M(S) defined by the Deligne-Mumford
compactification M(S).

By iterating the gluing operation onemay build any Riemann surfaceC of genus g
with n punctures from three-punctured spheres C0,3. Embedded into C we naturally
get a collection of annuli A1, . . . , Ah , where

h := 3g − 3 + n . (6.39)

The construction above can be used to define a 3g − 3 + n-parametric family of
Riemann surfaces, parameterised by a collection q = (q1, . . . , qh) of complex para-
meters. These parameters can be taken as coordinates for a neighbourhood of a
component in the boundary ∂M(S) which are complex-analytic with respect to its
natural complex structure [Ma].

Conversely, assume given a Riemann surface C and a cut system, a collection
C = {γ1, . . . , γh} of homotopy classes of non-intersecting simple closed curves on
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C . Cutting along all the curves in C produces a pants decompostion,C \C � ⊔
v Cv

0,3,
where the Cv

0,3 are three-holed spheres.
Having glued C from three-punctured spheres defines a distinguished cut system,

defined by a collection of simple closed curves C = {γ1, . . . , γh} such that γr can be
embedded into the annulus Ar for r = 1, . . . , h.

An important deformation of the complex structure of C is the Dehn-twist: It
corresponds to rotating one end of an annulus Ar by 2π before regluing, and can be
described by a change of the local coordinates used in the gluing construction. The
coordinate qr can not distinguish complex structures related by a Dehn twist in Ar .
It is often useful to replace the coordinates qr by logarithmic coordinates τr such
that qr = e2πiτr . This corresponds to replacing the gluing identification (6.38) by its
logarithm. In order to define the logarithms of the coordinates zi used in (6.38), one
needs to introduce branch cuts on the three-punctured spheres, an example being
depicted in Fig. 4.

By imposing the requirement that the branch cuts chosen on each three-punctured
sphere glue to a connected three-valent graph � on C , one gets an unambiguous
definition of the coordinates τr . We see that the logarithmic versions of the gluing
construction that define the coordinates τr are parameterized by the pair of data
σ = (Cσ, �σ), where Cσ is the cut system defined by the gluing construction, and
�σ is the three-valent graph specifying the choices of branch cuts. In order to have a
handy terminology we will call the pair of data σ = (Cσ, �σ) a pants decomposition,
and the three-valent graph �σ will be called the Moore-Seiberg graph, or MS-graph
associated to a pants decomposition σ. The construction outlined above gives a
set of coordinates for the neighbourhood Uσ of the boundary component of T (C)

corresponding to σ.
The gluing construction depends on the choices of coordinates around the punc-

tures Qi . There exists an ample supply of choices for the coordinates zi such that
the union of the neighbourhoods Uσ produces a cover of M(C) [HV]. For a fixed
choice of these coordinates one produces families of Riemann surfaces fibred over
the multi-discs Uσ with coordinates q. Changing the coordinates zi around Qi pro-
duces a family of Riemann surfaces which is locally biholomorphic to the initial one
[RS].

3

12

Fig. 4 A spherewith three punctures, and a choice of branch cuts for the definition of the logarithms
of local coordinates around the punctures.



408 J. Teschner

The Moore-Seiberg Groupoid

Let us note [MS, BK] that any two different pants decompositions σ2, σ1 can be
connected by a sequence of elementary moves localized in subsurfaces of Cg,n of
type C0,3, C0,4 and C1,1. The elementary moves are called the B, F , Z and S-moves,
respectively. Graphical representations for the elementary moves F , S and B are
given in Figs. 1, 2 and 3, respectively. The Z -move is just the change of distinguished
boundary component in a three-punctured sphere.

One may formalize the resulting structure by introducing a two-dimensional CW
complex M(C) with set of vertices M0(C) given by the pants decompositions σ,
and a set of edges M1(C) associated to the elementary moves. The Moore-Seiberg
groupoid is defined to be the path groupoid of M(C). It can be described in terms of
generators and relations, the generators being associated with the edges of M(C),
and the relations associatedwith the faces ofM(C). The classification of the relations
was first presented in [MS], and rigorous mathematical proofs have been presented
in [FG1, BK]. The relations are all represented by sequences of elementary moves
localized in subsurfaces Cg,n with genus g = 0 and n = 3, 4, 5 punctures, as well
as g = 1, n = 1, 2. Graphical representations of the relations can be found in
[MS, FG1, BK].

Uniformization

The classical uniformization theorem ensures existence and uniqueness of a hyper-
bolic metric, a metric of constant negative curvature, on a Riemann surface C . In
a local chart with complex analytic coordinates y one may represent this metric
in the form ds2 = e2ϕdyd ȳ, with ϕ being a solution to the Liouville equation
∂∂̄ϕ = μe2ϕdyd ȳ.

The solutions to the Liouville equation may be parameterized by a function t (y)

related to ϕ as
t := −(∂yϕ)2 + ∂2

yϕ . (6.40)

t (y) is holomorphic as a consequence of the Liouville equation. The solution to the
Liouville equation can be reconstructed from t (y) by first finding the solutions to

(∂2
y + t (y))χ = 0 . (6.41)

Picking two linearly independent solutions χ± of (6.41) with χ′+χ− − χ′−χ+ = 1
allows us to represent e2ϕ as e2ϕ = −(χ+χ̄− − χ−χ̄+)−2. The hyperbolic metric
ds2 = e2ϕdyd ȳ may then be written in terms of the quotient A(y) := χ+/χ− as

ds2 = e2ϕdyd ȳ = ∂ A∂̄ Ā

(Im(A))2
. (6.42)
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It follows that A(y) represents a conformal mapping from C to a domain � in the
upper half plane U with its standard constant curvature metric. The monodromies
of the solution χ are represented on A(y) by Moebius transformations. These Moe-
bius transformations describe the identifications of the boundaries of the simply-
connected domain � in U which represents the image of C under A. C is therefore
conformal to U/�, where the Fuchsian group � is the monodromy group of the
differential operator ∂2

y + t (y).

Appendix 2: Moduli Spaces of Flat Connections

In this appendix we shall review some of the basic definitions and results concerning
the moduli spaces Mflat(C).

Moduli of Flat Connections and Character Variety

Wewill consider flat PSL(2, C)-connections∇ = d − A on Riemann surfacesC . Let
Mflat(C) be themoduli space of all such connections modulo gauge transformations.

Given a flat PSL(2, C)-connection∇ = d − A, one may define its holonomy ρ(γ)

along a closed loop γ as ρ(γ) = P exp(
∫
γ A). The assignment γ �→ ρ(γ) defines

a representation of π1(C) in PSL(2, C). As any flat connection is locally gauge-
equivalent to the trivial connection, one may characterize gauge-equivalence classes
of flat connections by the corresponding representations ρ : π1(C) → PSL(2, C).
This allows us to identify the moduli space Mflat(C) of flat PSL(2, C)-connections
on C with the so-called character variety

Mchar(C) := Hom(π1(C),PSL(2, C))/PSL(2, C) . (6.43)

The moduli space Mflat(C) has a natural real slice, the moduli space MR

flat(C) of
flat PSL(2, R)-connections.

The Teichmüller Component

There is a well-known relation between the Teichmüller space T (C) and a connected
component of the moduli space MR

flat(C) of flat PSL(2, R)-connections on C . This
component is called theTeichmüller component andwill be denoted asMR,0

flat (C). The
relation between T (C) and M0

flat(C) may be described as follows. To a hyperbolic
metric ds2 = e2ϕdyd ȳ let us associate the connection ∇ = ∇′ + ∇′′,
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∇′′ = ∂̄, ∇′ = ∂ + M(y)dy, M(y) =
(
0 −t
1 0

)
, (6.44)

with t constructed from ϕ(y, ȳ) as in (6.40). This connection is flat since ∂y ∂̄ȳϕ =
μe2ϕ implies ∂̄t = 0. The Fuchsian group � characterizing the uniformization of C
is nothing but the holonomy ρ of the connection ∇ defined in (6.44).

The Fuchsian groups � fill out the connected component MR,0
char(C) � T (C) in

MR

flat(C) called the Teichmüller component.

Fock–Goncharov Coordinates

Let τ be a triangulation of the surface C such that all vertices coincide with marked
points on C . An edge e of τ separates two triangles defining a quadrilateral Qe with
corners being the marked points P1, . . . , P4. For a given local system (E,∇), let
us choose four sections si , i = 1, 2, 3, 4 that obey the condition ∇si = 0, and are
eigenvectors of the monodromy around Pi . Out of the sections si form [FG1, GMN2]

X τ
e := − (s1 ∧ s2)(s3 ∧ s4)

(s2 ∧ s3)(s4 ∧ s1)
, (6.45)

where all sections are evaluated at a common point P ∈ Qe. It is not hard to see that
X τ

e does not depend on the choice of P .
There exists a simple description of the relations between the coordinates asso-

ciated to different triangulations. If triangulation τe is obtained from τ by changing
only the diagonal in the quadrangle containing e, we have

X τe
e′ =

{
X τ

e′
(
1 + (X τ

e )−sgn(ne′e)
)−ne′e if e′ �= e ,

(X τ
e )−1 if e′ = e .

(6.46)

This reflects part of the structure of a cluster algebra that Mflat(C) has.

Trace Functions

The trace functions
Lγ := νγ tr(ρ(γ)) , (6.47)

represent useful coordinate functions for MC

flat(C). The signs νγ will be chosen
such that the restriction to Lγ to the Teichmüller component MR,0

char(C) satisfies
Lγ = 2 cosh(lγ/2) > 2, where lγ is the length of the hyperbolic geodesic on U/�

isotopic to γ.
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Fig. 5 The symmetric
smoothing operation

L2L1

= +S

The coordinate functions Lγ generate the commutative algebra A(C) �
Funalg(Mflat(C)) of functions on Mflat(C). The well-known relation tr(g)tr(h) =
tr(gh)+ tr(gh−1) valid for any pair of SL(2)-matrices g, h implies that the geodesic
length functions satisfy the so-called skein relations,

Lγ1 Lγ2 = L S(γ1,γ2) , (6.48)

where S(γ1, γ2) is the loop obtained fromγ1,γ2 bymeans of the smoothing operation,
defined as follows. The application of S to a single intersection point of γ1, γ2
is depicted in Fig. 5. The general result is obtained by applying this rule at each
intersection point, and summing the results.

Topological Classification of Closed Loops

With the help of pants decompositions one may conveniently classify all non-
selfintersecting closed loops on C up to homotopy. To a loop γ let us associate
the collection of integers (re, se) associated to all edges e of �σ which are defined
as follows. Recall that there is a unique curve γe ∈ Cσ that intersects a given edge e
on �σ exactly once, and which does not intersect any other edge. The integer re is
defined as the number of intersections between γ and the curve γe. Having chosen
an orientation for the edge er we will define se to be the intersection index between
e and γ.

Dehn’s theorem (see [DMO] for a nice discussion) ensures that the curve γ is
up to homotopy uniquely classified by the collection of integers (r, s), subject to the
restrictions

(i) re ≥ 0 ,

(ii) if re = 0 ⇒ se ≥ 0 ,

(iii) re1 + re2 + re3 ∈ 2Z whenever γe1, γe2 , γe3 bound the same trinion.

(6.49)

We will use the notation γ(r,s) for the geodesic which has parameters (r, s) : e �→
(re, se).
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Generators and Relations

The pants decompositions allow us to describe A(C) in terms of generators and
relations. As set of generators for A(C) one may take the functions L(r,s) ≡ Lγ(r,s) .
The skein relations imply various relations among the L(r,s). It is not hard to see that
these relations allow one to express arbitrary L(r,s) in terms of a finite subset of the
set of L(r,s).

Let us temporarily restrict attention to surfaces with genus zero and n = 4 bound-
aries. The Moore-Seiberg graph �σ will then have only one internal edge, allowing
us to drop the index e labelling the edges. Let us introduce the geodesics γs = γ(0,1),
γt = γ(2,0) and γu = γ(2,1). The geodesics γs and γt are depicted as red curves on
the left and right half of Fig. 1. We will denote Lk ≡ Lγk , where k ∈ {s, t, u}. The
trace functions Ls , Lt and Lu generate A(C).

These coordinates are not independent, though. Further relations follow from the
relations in π1(C). It can be shown (see e.g. [Go09] for a review) that the coordinate
functions Ls , Lt and Lu satisfy an algebraic relation of the form

P(Ls, Lt , Lu) = 0 . (6.50a)

The polynomial P in (6.50) is explicitly given as6

P(Ls, Lt , Lu) := − Ls Lt Lu + L2
s + L2

t + L2
u

+ Ls(L3L4 + L1L2) + Lt (L2L3 + L1L4) + Lu(L1L3 + L2L4)

− 4 + L2
1 + L2

2 + L2
3 + L2

4 + L1L2L3L4 . (6.50b)

In the expressions above we have denoted Li := Lγi , where γi , i = 1, 2, 3, 4
represent the boundary components of C0,4, labelled according to the convention
defined in Fig. 1.

Trace Functions in Terms of Fock-Goncharov Coordinates

Assume given a path �γ on the fat graph homotopic to a simple closed curve γ on
Cg,n . Let the edges be labelled ei , i = 1, . . . , r according to the order in which they
appear on �γ , and define σi to be 1 if the path turns left at the vertex that connects
edges ei and ei+1, and to be equal to −1 otherwise. Consider the following matrix,

Xγ = VσrE(zer ) · · ·Vσ1E(ze1), (6.51)

where ze = log Xe, and the matrices E(z) and V are defined respectively by

6Comparing to [Go09] note that some signs were absorbed by a suitable choice of the signs νγ in
(6.47).
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E(z) =
(

0 +e+ z
2

−e− z
2 0

)
, V =

(
1 1

−1 0

)
. (6.52)

Taking the trace of Xγ one gets the hyperbolic length of the closed geodesic isotopic
to γ via [F97]

Lγ ≡ 2 cosh(lγ/2) = |tr(Xγ)|. (6.53)

Wemay observe that the classical expression for Lγ ≡ 2 cosh 1
2 lγ as given by formula

6.53 is a linear combination of monomials in the variables u±1
e ≡ e± ze

2 of the very
particular form (5.4).

Fenchel-Nielsen Coordinates for MR,0
flat (C)

One may express Ls , Lt and Lu in terms of the Fenchel-Nielsen coordinates l and k
[Ok, Go09]. Explicit expressions are for C0,4,

Ls = 2 cosh(l/2) , (6.54a)

Lt
(
(Ls)

2 − 4
) = 2(L2L3 + L1L4) + Ls(L1L3 + L2L4) (6.54b)

+ 2 cosh(k)
√

c12(Ls)c34(Ls) ,

Lu
(
(Ls)

2 − 4
) = Ls(L2L3 + L1L4) + 2(L1L3 + L2L4) (6.54c)

+ 2 cosh((2k − l)/2)
√

c12(Ls)c34(Ls) ,

where Li = 2 cosh li
2 , and ci j (Ls) is defined as

ci j (Ls) = L2
s + L2

i + L2
j + Ls Li L j − 4 . (6.55)

These expressions ensure that the algebraic relations Pe(Ls, Lt , Lu) = 0 are satisfied.
By complexifying (l, k) one gets (local) coordinates for MC

flat(C) [NRS].

Poisson Structure

There is also a natural Poisson bracket on A(C) [Go86], defined such that

{ Lγ1 , Lγ2 } = L A(γ1,γ2) , (6.56)
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Fig. 6 The anti-symmetric
smoothing operation

L2L1

= −A

where A(γ1, γ2) is the loop obtained from γ1, γ2 by means of the anti-symmetric
smoothing operation, defined as above, but replacing the rule depicted in Fig. 5 by
the one depicted in Fig. 6. This Poisson structure coincides with the Poisson structure
coming from the natural symplectic structure on Mflat(C) which was introduced by
Atiyah and Bott.

The resulting expression for the Poisson bracket { Ls, Lt } can bewritten elegantly
in the form

{ Ls, Lt } = ∂

∂Lu
P(Ls, Lt , Lu) . (6.57)

It is remarkable that the same polynomial appears both in (6.50) and in (6.57), which
indicates that the symplectic structure on Mflat is compatible with its structure as
algebraic variety.

The Fenchel-Nielsen coordinates are known to be Darboux-coordinates for
Mflat(C), having the Poisson bracket

{ l, k } = 2 . (6.58)

The Poisson structure is also rather simple in terms of the Fock-Goncharov coordi-
nates,

{X τ
e ,X τ

e′ } = ne,e′ X τ
e′ X τ

e , (6.59)

where ne,e′ is the number of faces e and e′ have in common, counted with a sign.
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Gauge/Vortex Duality and AGT

Mina Aganagic and Shamil Shakirov

Abstract AGT correspondence relates a class of 4d gauge theories in four dimen-
sions to conformal blocks of Liouville CFT. There is a simple proof of the corre-
spondence when the conformal blocks admit a free field representation. In those
cases, vortex defects of the gauge theory play a crucial role, extending the corre-
spondence to a triality. This makes use of a duality between 4d gauge theories in a
certain background, and the theories on their vortices. The gauge/vortex duality is a
physical realization of large N duality of topological string which was conjectured
in Dijkgraaf and Vafa (Toda theories, matrix models, topological strings, and N = 2
gauge systems [1]) to provide an explanation for AGT correspondence. This paper
is a review of Aganagic et al. (Gauge/Liouville triality [2]), written for the special
volume edited by J. Teschner.

1 Introduction

Large N duality plays the central role in understanding dynamics of physical string
theory. This duality is inherited by the simpler, topological string with target space
a Calabi-Yau three-fold [3–5]. The topological large N duality, like the large N
duality of the physical string theory, relates the gauge theory on D-branes to closed
topological string on a different background. In the topological string case, the duality
is in principle tractable, since topological string is tractable.

In some cases, study of topological string theory is related to studying supersym-
metric gauge theory in 4d withN = 2 supersymmetry, see e.g. ([6, 7], [V:14]). It is
natural to ask what the large N duality of topological string theory means in gauge
theory terms. We will see that the large N duality of topological string becomes
a gauge/vortex duality [8–10] which relates a 4d gauge theory in a variant of 2d �
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background with flux, and the theory living on its vortices.1 The vortices in the gauge
theory play the role of D-branes of the topological string. In fact, the gauge theory
duality implies the topological string duality, but not the other way around.

What does this have to do with AGT correspondence [16]? As we will review, [1]
conjectured that large N duality of topological string provides a physical explanation
for AGT correspondence, under certain conditions: Conformal block should admit
free field representation, and Liouville theory should have central charge c = 1 to
correspond to topological string.

We interpret this purely in the gauge theory language, in the context of the
gauge/vortex duality, and show that this leads to a proof of correspondence in a fairly
general setting. The partition function of the 4d N = 2 gauge theory associated in
[17, 18] to a genus zero Riemann surface with arbitrary number of punctures equals
the conformal block of Liouville theory with arbitrary central charge c, on the same
surface. The free field representation of conformal blocks implies Coulomb moduli
are quantized, but all other parameters remain arbitrary. The crucial role vortices play,
extends AGT correspondence to a triality—between the gauge theory, its vortices,
and Liouville theory. The striking aspect of this result, which appeared first in [2],
is the simplicity of the proof. While in this review we focus on the simplest variant
of AGT correspondence, relevant for Liouville theory, same ideas apply for more
general Toda CFTs (Liouville theory corresponds to A1 Toda). The generalization to
An Toda case can be found in [19].2

2 Background

Alday et al. [16] conjectured a correspondence between conformal blocks of Liou-
ville CFT and partition functions of a class of four-dimensional theories, in 4d �-
background [6]. The 4d theories are conformal field theories withN = 2 supersym-
metry defined in [17, 18] (see also [V:2]) in terms of a pair of M5 branes wrapping
a Riemann surface C , which we will call the Gaiotto curve. Specifying both the
conformal block and the 4d theory T4d in this class, involves a choice of the curve
C with punctures, data at the punctures and pants decomposition. The conjecture is
often referred to as 4d/2d correspondence.

2.1 4d Gauge Theory

Let � be the Seiberg-Witten curve of T4d ,

� : p2 + φ(2)(z) = 0. (2.1)

1For early studies leading to [8–10], see [11–15].
2Proofs of (some aspects of) AGT correspondence using different ideas appeared in [20–24].

http://dx.doi.org/10.1007/978-3-319-18769-3_2
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withmeromorphic one formλ = pdz.� is a double cover ofC , z is a local coordinate
on C , and φ(2)(z)(dz)2 is a degree 2 differential on C , whose choice specifies the
IR data of the theory (the point on the Coulomb branch). Specifying the UV data of
the theory requires fixing the behavior of the Seiberg-Witten differential λ near the
punctures.

At a puncture at z = zi , the λ has a pole of order 1, with residues

p ∼ ± αi

z − zi

on the two sheets. These lead to second order poles ofφ(2)(z)dz2. In the gauge theory,
αi ’s and z j ’s are the UV data; the mass parameters and the gauge couplings. � also
depends on the IR data of the gauge theory, the choice of Coulomb branch moduli.
These are associated to the sub-leading behavior of the φ(2)(z) near the punctures.

Let
ZT4d (�)

be the partition function of the theory, in 4d �-background. Given a gauge theory
description of T4d , ZT4d (�) can be computed using results of Nekrasov in [6] (see
also [V:4]). In addition to the geometric parameters entering �, ZT4d depends on

ε1, ε2,

the two parameters of the � background [6]. Z can in principle depend on data
beyond the geometry of �; different choices of the pants decomposition can lead to
different descriptions of the theory with different but related Z’s.

2.2 2d Liouville CFT

The Liouville CFT has a representation in terms of a boson φ:

SLiouv. =
∫

dzdz̄
√

g [gzz̄∂zφ ∂z̄φ + QφR + e2bφ].

Consider a conformal block on C with insertions of primaries with momenta αi at
points zi :

B(α, z) = 〈Vα0(z0) · · · Vα�
(z�)Vα∞(∞)〉,

where
Vα(z) = exp

(
−α

b
φ(z)

)

is the vertex operator of a primary with momentum α. Above, Q is the background
charge, Q = b + 1

b ; Liouville theory with this background charge has central charge

http://dx.doi.org/10.1007/978-3-319-18769-3_4
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c = 1+ 6Q2. In addition to momenta and positions of the vertex operators inserted,
the conformal block depends on the momenta in the intermediate channels; in denot-
ing the conformal block by B(α, z)we have suppressed the dependence on the latter.

2.3 The Correspondence

The conjecture of [16] is that the partition function ZT4d (�) computes a conformal
block of Liouville CFT on C :

ZT4d (�) = B(α, z),

where b is related to two parameters ε1,2 by

b =
√

ε1

ε2
,

while the parameters αi , zi of � map to the corresponding parameters in the confor-
mal block and the Coulomb branch parameters map to the momenta in intermediate
channels.

3 AGT and Large N Duality

In [1] Dijkgraaf and Vafa explained the correspondence, in a particular case of the
self-dual �-background,

ε1 = gs = −ε2, (3.1)

in terms of a large N duality in topological string theory. The argument of [1] has
three parts, which we will now describe. As everywhere else in this review, we
will focus on the case when the Gaiotto curve C is genus zero. One can extend the
argument more generally [1], as all the ingredients generalize to � a double cover
of an arbitrary genus g Riemann surface C .

3.1 The Physical and the Topological String

The gauge theory partition function ZT4d (�) in the self-dual �-background is con-
jectured in [1] to be the same as the partition function

Z(Y�)
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of the topological B-model on a Calabi-Yau manifold Y� , with topological string
coupling gs . The Calabi-Yau Y� is a hyper surface

Y� : p2 + φ(2)(z) = uv, (3.2)

with holomorphic three-zero form dudpdz/u. The geometry of Y� and the Seiberg-
Witten curve � (2.1) are closely related: the latter is recovered from the former by
setting u or v to zero.

This is a consequence of two facts. First, one observes that IIB string theory on
Y� is dual to M-theory with an M5 brane wrapping �.3 This gives us another way
to obtain the same 4d, N = 2 theory T4d . Second, the partition function of IIB
string theory on Y� times the self-dual � background is the same as the topological
B-model string partition function on Y� [6, 25, 26]. Thus, one can simply identify
the physical and the topological string partition functions

ZT4d (�) = Z(Y�). (3.3)

The power of this observation is that the topological B-model partition function is
well defined even when the Nekrasov partition function is not—because for exam-
ple, the gauge theory lacks a Lagrangian description. It is also important that some-
times one and the same topological string background gives rise to several different
Lagrangian descriptions for one and the same theory—for example, SU (2)l−2 with
four fundamentals vs. SU (l)with 2l fundamentals. The former is the theory which is
usually associated in the AGT literature to Liouville theory on the sphere with l + 1
punctures; the latter is the one that naturally comes out from our approach.

3.2 Large N Duality in Topological String

Next, [1] show that the B-model on Y� has a dual, holographic description, in terms
of N topological B-model branes on a different Calabi-Yau, related to Y� , by a
geometric transition. Let us first describe the Calabi-Yau that results. Then, we will
explain the duality.

3.2.1 A Geometric Transition

By varying Coulomb branch moduli of T4d we can get the Seiberg-Witten curve �

to degenerate. Let us call the degenerate curve that results the S-curve:

3This follows by compactifying M-theory with M5 brane on � on a T 2 transverse to the M5 brane.
Since the T 2 is transverse to the branes, it does not change the low energy physics. By shrinking one
of the cycles of the T 2 first, we go to down to IIA string with an NS5 brane wrapping�. T-dualizing
on the remaining compact transverse circle, we obtain IIB on Y� .
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S : p2 − (W ′(z))2 = 0. (3.4)

Here

W ′(z) =
�∑

i=0

αi

z − zi
,

is determined by keeping the behavior of the Seiberg-Witten differential fixed at the
punctures. The S-curve describes the degeneration of the Seiberg-Witten curve to
two components, p ± W ′(z) = 0. Correspondingly, a single M5 brane wrapping �

breaks into two branes, wrapping the two components.
The S-curve corresponds to a singular Calabi-Yau YS:

YS : p2 − (W ′(z))2 = uv, (3.5)

with singularities at u, v, p equal to zero and points in the z-plane where

W ′(z) = 0.

The Calabi-Yau we need is obtained by blowing up the singularities. One can picture
this by viewing YS as a family of A1 surfaces, one for each point in the z-plane. At
every z there is an S2 in the A1 surface whose area is proportional to |W ′(z)|, The
singularity occurs where the S2 shrinks. After blowing up, we get a family of S2’s
of non-zero area, one at each point in the z plane, and all homologous to each other.
The minimal area S2’s are where the singularities were—at points in the z plane with
W ′(z) = 0.

The geometric transition tradesY� for the blowupofYS . For economyof notations,
we will denote YS and its blowup in the same way, since their complex structure is
the same, given by (3.5).

3.2.2 Large N Duality

TheB-model onY� has a holographic description in terms ofB-model on (the blowup
of ) YS with N topological B-model D-branes wrapping the S2 class. The branes get
distributed between the minimal S2’s at points in the z-plane where W ′(z) vanishes.
This breaks the gauge group from U (N ) to

∏�
i=0 U (Ni ), with

∑
i Ni = N . The

Coulomb-branch moduli of Y� get related to t’Hooft couplings Nigs in the theory
on B-branes. The remaining parameters, α, z and the topological string coupling gs

are the same on both sides. This is the topological B-string version of gauge/gravity
duality [4].

The large N duality relates the closed topological string partition function of the
B-model on Y� , and thus the partition function Z(�), to partition function of the N
topological B-branes on (the blowup of) YS ,
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Z(Y�) = Z(YS; N ).

The right hand side depends not only on the net number of branes, but also how they
are split between the different P

1’s.
The partition function of N B-type branes wrapping the S2 in a Calabi-Yau of the

form of (3.5) was found in [4]. It equals

1

vol(U (N ))

∫
d� exp(TrW (�)/gs), (3.6)

where vol(U (N )) is the volume of U (N ). The integral is a holomorphic integral,
over N × N complex matrices �. In evaluating it, one has to pick a contour, ending
at a critical point of the potential. In the present case,

W (x) =
∑

i

αi log(x − zi ).

Diagonalizing � and integrating over the angles, the integral reduces to

Z(YS; N ) = 1

N !
∫

d N x
∏
I<J

(xI − xJ )
2
∏
I,i

(xI − zi )
αi /gs . (3.7)

Here N ! is the order of the Weyl group that remains as a group of gauge symmetries.
The claim is that large N expansion of the integral equals topological B-model

partition function on (3.2). At the level of planar diagrams this can be seen as follows.
In the matrix integral, define an operator

∂φ(z) = W ′(z) + gs

∑
I

1

z − xI
, (3.8)

where xI are the eigenvalues of �. The expectation value of

T (z) = (∂φ)2

computed in the matrix theory captures the geometry of the underlying Riemann
surface by identifying φ(2)(z) in (2.1) with

φ(2)(z) = 〈T (z)〉.

There are two limits inwhich a classical geometry emerges from this. First, by simply
sending gs to zero we recover the S-curve, since then 〈T (z)〉 = (W ′)2. But, there is
also a new classical geometry that emerges at large N . Letting Ni ’s go to infinity,
keeping Nigs fixed we get

〈T (z)〉 ∼ (W ′(z))2 + f (z),
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with

f (z) =
〈
gs

∑
I

W ′(z) − W ′(xI )

z − xI

〉
.

From the form of the potential W (z), it follows that f (z) has the form

f (x) =
∑

i

μi

x − zi

with at most single poles. Thus, the branes deform the geometry of the Calabi-Yauwe
started with. The resulting Calabi-Yau is exactly of the form Y� (3.2), corresponding
to the Seiberg-Witten curve � in (2.1) at a generic point of its moduli space.

The large N duality is expected to hold order by order in the 1/N expansion; we
just gave evidence it holds in the planar limit (the full proof of the correspondence
in the planar limit is easy to give along these lines, see [4]). The good variable in the
large N limit turns out to be the chiral operator φ(z) we defined in (3.8). The field
φ(z), is in fact the string field of the B-model.

The B-model string field theory, called Kodaira-Spencer theory of gravity, was
constructed in [27], capturing variations of complex structure. For Calabi-Yau man-
ifolds of the form (3.2) the Kodaira-Spencer theory becomes a two dimensional
theory on the curve �. The theory describes variations of complex structures of Y� ,
so the Kodaira-Spencer field can be identified with fluctuations of the holomorphic
(3, 0) form of the Calabi-Yau. For Y� fluctuations of the (3, 0) form are equivalent
to fluctuations of the meromorphic (1, 0) form on �:

δλ = δ pdz = ∂φdz.

The Kodaira-Spencer field is a chiral boson φ which lives on �. When � is a double
cover of a curve C , a single boson on � is really a pair of bosons φ1, φ2 on C , one
corresponding to each sheet. The field φ that arises in the matrix model in (3.8) can
be thought of as off diagonal combination of the two. The diagonal combination is a
center of mass degree of freedom and decouples from the dynamics of the branes.4

3.3 Topological D-Branes and Liouville Correlators

To complete the argument, [1] observe that the B-brane partition function Z(YS; N )

equals the Liouville correlator at c = 1, when written in the free-field or Dotsenko-
Fateev representation [28, 29],

4The full topological string partition function in the presence of branes is given by the matrix
integral in (3.6) and (3.7), describing open strings, times a purely closed topological string partition
function of YS . This will be relevant later on.
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Z(YS; N ) = B(α/gs, z; N )|c=1. (3.9)

One treats the Liouville potential as a perturbation and computes the correlator
in the free boson CFT

B(α, z; N ) = 〈Vα1(z1) . . . Vα�
(z�)Vα∞(∞)

∮
dx1S(x1) · · ·

∮
dxN S(xN )〉0,

(3.10)
where we took the chiral half. Here, S(z) is the screening charge

S(z) = e2bφ(z),

whose insertions come from bringing down powers of the Liouville potential. It
follows that (3.10) vanishes unless

α∞
b

+
�∑

i=0

αi

b
= 2bN + RQ,

constraining the net U (1) charge of the vertex operator insertions to be the number
of screening charge integrals. This constraint can be found directly from the path
integral, by integrating over the zero modes of the bosons [28–30]. We will place
a vertex operator at infinity of the x plane, and then the equation determines the
momentum of the operator at infinity in terms of the momenta of the �+1 remaining
vertex operators at finite points and numbers of screening charge integrals.

An integral expression for the expectation value of the correlator in (3.10) is easy
to obtain, for example, by using the free boson mode expansion

bφ(z) = φ0 + h0 log z +
∑
k �=0

hk
z−k

k
,

where φ0 is a constant, and hm satisfy the standard algebra

[hk, hm] = −b2

2
k δk+m,0 (3.11)

where k, m ∈ Z. From this one obtains the two point functions:

〈Vα(z)Vα′(z′)〉 = (z − z′)
−αα′
2b2 ,

〈Vα(z)S(z′)〉 = (z − z′)α,

〈S(z)S(z′)〉 = (z − z′)−2b2
.
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The final result is that (3.10) equals

B(α, z; N ) = r

N !
∫ ∏

d N x
∏
i,I

(xI − zi )
αi

∏
J≤I

(xI − xJ )
−2b2

,

where the integrals are over the position of screening charge insertions and

r =
∏
i, j

(zi − z j )
−αi α j
2b2

is a constant, independent on the integration variables. This is the free-field β-
ensemble (with β = −b2) reviewed in [V:5].

Setting ε1 = −ε2 (taking b2 = −1 in Liouville CFT) and rescaling α by gs , it fol-
lows immediately that the free field expression for the conformal blockB(α/gs, z; N )

agrees with the partition function Z(S; N ) of B-branes in topological string on YS

as we claimed in (3.9). Moreover, in the large N limit, the holomorphic part of the
Liouville field φ(z) can be identified with the matrix model operator (3.8). This
completes the argument of [1].

3.4 Discussion

The AGT conjecture, for ε1 + ε2 = 0 can thus be understood as a consequence of a
triality relating the closed B-model on Y� , the holographic dual theory of B-branes
on the resolution of YS and the DF conformal blocks. The first two are conjectured
to be related by large N duality5 in topological string theory, the latter two by the
fact that the partition function of B-branes equals the DF block:

Z(Y�)
Large N= Z(YS; N ) = B(α/gs, z; N )|c=1. (3.12)

We also used the embedding of topological string into superstring theory, which
implies that the topological string partition function Z(Y�) is the same as the physical
partition function ZT4d (�).

While this gives an explanation for the AGT correspondence in physical terms, it
is by no means a proof: while the partition function of B-branes is manifestly equal
to the Liouville conformal block in free field representation, the large N duality is
still a conjecture. The exact partition function of the B-model on Y� is not known,
so one can only attempt a proof, order by order in the genus expansion. In addition,

5It may be useful to summarize what the large N asymptotic regime is, on each side of the corre-
spondence. On the B-model side, it is sending gs to zero while keeping the combination Ngs fixed.
On the gauge theory side, it is sending ε1 = −ε2 to zero while keeping the Coulomb parameters
fixed. On the Liouville side, it is sending all the momenta as well as the number N of screening
insertions to infinity, while keeping their ratios fixed.

http://dx.doi.org/10.1007/978-3-319-18769-3_5
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there is a string theory argument, but no proof, that the partition function of the gauge
theory ZT4d (�) and topological string partition function Z(Y�) agree.

Thirdly, from the perspective of the 4d gauge theory, it is very natural to consider
the partition function on general�-background, depending on arbitrary ε1, ε2. Topo-
logical string on the other hand requires self-dual background, so the argument of
[1] can not be extended in this case.6 In [1], it was suggested to formulate the refine-
ment at the level of B-model string field theory. This remains to be developed better:
refinement exists for any Calabi-Yau of the form F(p, z) = uv; the predictions from
a naive implementation of this idea work for some, but not all choices of F(p, z).

In the rest of the review, we will explain how to solve the last problem, and as it
turns out the first two as problem as well, by following a different route.

The relation between topological string and superstring theory suggests one may
be able to reformulate [1] in string theory language, replacing topological string
branes by branes in string or M-theory. While topological string captures the ε1+
ε2 = 0 case only, the full superstring or M-theory partition function makes sense for
any ε1, ε2. In fact, will will do something simpler yet: We will formulate the gauge
theory analogue of [1] for any ε1, ε2. We will see that this approach is powerful—in
fact it leads to a rigorous yet simple proof that the gauge theory partition function
ZT4d (�) agrees with the free field Liouville conformal block for C a sphere with
arbitrary number of punctures.

The triality of relations between the 4d gauge theory, its vortices, and Liouville
conformal blockswhich admit free field representation impliesAGTcorrespondence,
however it stops short of the most general case. The restriction to blocks that admit
free field representation means, from the 4d perspective, that the Coulomb moduli
are quantized to be—arbitrary—integers, which get related to vortex charges on one
hand, and numbers of screening charge integrals on the other.

4 Gauge/Vortex Duality

Translated to gauge theory language, the large N duality of topological string theory
becomes a duality between the 4d N = 2 gauge theory T4d and the 2d N = (2, 2)
theory on its vortices; we will denote the later theory V2d . Observations of relations
between the two theories go back to [11–14]. Recently [8, 9] proposed that the two
theories are dual—indeed this is the “other” 2d/4d relation. On the face of it, the
statement is strange at best: to begin with, not even the dimensions of the 4d and the
2d theories match.

In this section we will show that, placed in a certain background, the 4d and the 2d
theory describe the same physics, and thus there is good reason why their partition

6For general ε1,2 the background does not simply decouple into a product of a Calabi-Yau manifold
times the � background where the gauge theory lives. Turning on arbitrary � background requires
the theory to have an U (1) ∈ SU (2)R R-symmetry to preserve supersymmetry. This requires the
target Calabi-Yau manifold to admit a U (1) action; this U (1) action is used in constructing the
background.
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functions agree [10]. The large N duality of [1, 4] becomes a duality between two
d = 2,N = (2, 2) theories: the 4d gauge theory T4d we started with, in a variant of
2d �-background with vortex flux turned on, and the 2d theory V2d on its vortices.

4.1 Higgs to Coulomb Phase Transition and Vortices

In gauge theory language, the geometric transition that relates B-model on a Calabi-
Yau Y� , first to a singular Calabi-Yau YS and then to a blowup of YS , is a Coulomb
to Higgs phase transition. This follows from embedding of the B-model into IIB
superstring on a Calabi-Yau, and the relation between the string theory and the
gauge theory which arises in its low energy limit [31]. The same transition, in the
language of M5 branes corresponds to degenerating a single M5 brane wrapping �,
to a pair of M5 branes wrapping two Riemann surfaces p ± W ′(z) = 0 that the
S-curve consists of, and then separating these in the transverse directions (these are
x7,8,9 directions in the language of [32]).

The geometric transition becomes a topological string duality, as opposed to a
phase transition, by adding N B-branes on the S2 in the blowup of YS . In terms of
IIB string, the N B-branes on the S2 are N D3 branes wrapping the S2 and filling
2 of the 4 space-time directions. In terms of M5 branes, the vortices are M2 branes
stretching between the M5 brane wrapping p − W ′ = 0 and the one wrapping
p + W ′ = 0. In the gauge theory on the Higgs branch, N branes of string/M-theory
become N BPS vortices, as explained in [33, 34] and [13, 14].7

The vortices in question are non-abelian generalization of Nielsen-Olesen vortex
solutions whose BPS tension is set by the value of the FI parameters. These were
constructed explicitly in [13, 14]. The net BPS charge of the vortex is N = ∫

TrF
where F is the field strength of the corresponding gauge group and the integral is
taken in the 2 directions transverse to the vortex.8

4.2 Gauge/Vortex Duality

Consider subjecting the 4d N = 2 theory T4d to a two-dimensional �-background
in the two directions transverse to the vortex. We set ε1 = � to zero momentarily
since the duality we want to claim holds for any �. This is the Nekrasov-Shatashvili

7One should not confuse the vortices here with surface operators in the gauge theory, studied for
example in [35–37]. The surface operators are solutions on the Coulomb branch, with infinite
tension. From the M5 brane perspective, surface operators are semi-infinite M2 branes ending on
M5’s.
8Usually, the gauge theories on M5 branes wrapping Riemann surfaces are said to be of special
unitary type, rather than unitary type. There is no contradiction; theU (1) centers of the gauge groups
that arise on branes are typically massive by Green-Schwarz mechanism. This does not affect the
BPS tension of the solutions, see e.g. discussion in [38].
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background studied in [39]. The 2d �-background depends on the one remaining
parameter, ε = ε2. (The equivalence of two theories is a stronger statement that the
equivalence of their partition functions. The later assumes a specific background,
while the former implies equivalence for any background. We will let � be arbitrary
once we become interested in the partition functions, as opposed to the theories
themselves.)

As in [39], we view this partial �-background as a kind of compactification: it
results in a 2d theory with infinitely many massive modes, with masses spaced in
multiples of ε. The background also preserves only 4 out of the 8 supercharges. Under
conditions which we will spell out momentarily, the effective 2d N = (2, 2) theory
that we get is equivalent to the theory on its vortices. The condition that is clearly
necessary is that we turn on vortex flux. We assume it is also sufficient.

The vortex charge is
∫

D Fi = Ni where i labels aU (1) gauge field in the IR, and Fi

is the corresponding field strength. Here, D is the cigar, the part of the 4d space time
with 2d � deformation on it. It is parameterized by one complex coordinate, which
we will call w. Without the � deformation, turning on Ni �= 0 would be introducing
singularities in space-time which one would interpret in terms of surface operator
insertions [35]. In � background, one can turn on the vortex flux without inserting
additional operators—in fact, the only effect of the flux is to shift the effective values
of the Coulomb branch moduli. Let us explain this in some detail.

In the � background, D gets rotated with rotation parameter ε, in such a way
that the origin is fixed. The best way to think of the theory that results [39, 40]
is in terms of deleting the fixed point of the rotation, and implementing a suitable
boundary condition. Because the disk is non-compact, we really need two boundary
conditions: one at the origin of the w plane and one at infinity. Turning on flux
simply changes the boundary condition we impose at the origin. Without vortices,
one imposes the boundary condition [40] that involves setting Ai,w = 0, where Ai,w

is the connection of i th U (1) gauge field along D. With Ni units of vortex flux on
D, we need instead Ai,w = Ni/w.

In the �-background, the 4d theory in the presence of Ni units of vortex flux
Ai,w = Ni/w and with Coulomb branch scalar ai turned on is equivalent to studying
the theory without vortices, at Ai,w = 0, but with ai shifted by

ai → ai + Niε.

This comes about because in the� background, ai always appears in the combination
[40]

ai + εwDi,w,

where Dw = ∂w + Ai,w is the covariant derivative along the w-plane traverse to the
vortex. Thus, in the � background, at the level of F-terms, turning on vortex flux is
indistinguishable from the shift the effective values of the Coulomb branch moduli.9

9In [40] one proves that any flat gauge field on the punctured disk preserves supersymmetry of the
� background.
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The 4d theory placed in 2d �-background, with vortex flux turned on has an
effective description studied in [39, 40] in terms of the 2d theory with N = (2, 2)
supersymmetry with massive modes integrated out. The (2, 2) theory has a non-zero
superpotential W(a, ε; N ) = WN S(ai + Niε, ε),where WN S(ai , ε) is the effective
superpotential derived in [39], and the shift by Niε is due to the fluxwe turned on. The
critical points of the superpotential correspond to supersymmetric vacua of the theory.
In the A-type quantization, considered in [39], the vacua are at exp(∂aiWN S/ε) = 1
or, equivalently, at aD,i/ε = ∂aiWN S/ε ∈ Z. In the B-type quantization, they are at
ai/ε ∈ Z [8, 9, 41]. Choosing ai = 0, for all i is the vacuum at the intersection of
the Higgs and the Coulomb branch. Choosing ai = Niε corresponds to putting the
theory at the root of the Higgs branch—but in the background of Ni units of flux.10

There is a second description of the same system. If we place the theory at the root
of the Higgs branch, the 4d theory has vortex solutions of charge Ni even without the
�-deformation. These are the non-abelian Nielsen-Olsen vortices of [13, 14].We get
a second 2d theory with N = (2, 2) supersymmetry—this is the theory on vortices
themselves. In the theory on the vortex, the only effect of the �-deformation is to
give the scalar, parameterizing the position of the vortex in thew-plane, twisted mass
ε. From this perspective, turning on ε is necessary since it removes a flat direction
(position of vortices in the trasverse space).

Similarity of the two theories at the level of the BPS spectrum was observed in
[11–15]. For a class of theories, this duality was first proposed in [8, 9], motivated by
study of integrability. The physical explanation for gauge/vortex duality we provided
implies the duality should be general, and carry over to many other systems.11

4.3 Going up a Dimension

The duality between T4d , in the variant of the 2d �-background we described above,
and V2d lifts to a duality in one higher dimension, between a pair of theories, T5d and
V3d , compactified on a circle.Wewill prove the stronger, higher dimensional version,
of the duality. T4d lifts to a five-dimensional theory T5d withN = 1 supersymmetry.
From 4d perspective, one gets a theory with infinitely many Kaluza-Klein modes.
One can view this theory as a deformation of T4d , depending on one parameter,
the radius R of the circle. Note that T5d is not simply placed in a product of 2d
�-background times a circle—rather the background is a circle fibration

(D × S1)t ,

where as one goes around the S1 D rotates by t , sending w → wt .12 Similarly, the
2d theory on the vortex, V2d lifts to a 3d theory V3d , on a circle of the same radius.

10We thank Cumrun Vafa for discussion relating to this point.
11See [42] for a highly nontrivial example.
12This 3d background was used in [6, 25, 40, 43] as a natural path to defining the 2d�-background.
For a review see [44].
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The claim is that the two d = 2, N = (2, 2) theories we get in this way are dual,
where the duality holds at least at the level of F-type terms. In the limit when R goes
to zero, the KK tower is removed, and we recover the theories we started with.

In the next section we will prove the duality by showing that partition functions
of the two theories agree. When we compute the partition function of the 5d theory,
we submit it to the full Nekrasov background depending on both ε and �. This is the
background

(D × C × S1)q,t , (4.1)

where as one goes around the S1, we simultaneously rotate D by t = eRε, and C by
q−1 = e−R�. In the 3d theory on vortices, ε is a twisted mass, but � is a parameter of
the � background along the vortex world volume. The background for V3d is fixed
once we choose the background for T5d , simply by the 5d origin of the vortices. V3d

is compactified on

(C × S1)q . (4.2)

As we go around the S1, C rotates by q−1, and we turn on aWilson line t for a global
symmetry rotating the adjoint scalar (and thus giving it mass ε).

5 Building up Triality

When T5d is a lift of theM5 brane theory of Sect. 2 to a one higher dimensional theory
on a circle of radius R, the gauge/vortex duality extends to a triality. The triality is a
correspondence between the 5d gauge theory T5d , the 3d theory on its vortices V3d ,
both on a circle of radius R and a q-deformation of Liouville conformal block. As
R goes to zero, the q deformation goes away and we recover the conformal blocks
of Liouville. The q-deformation of the Virasoro algebra was defined in [45, 46], and
studied further and as well as extended to W-algebras in [47].

The triality comes about because the partition function of the vortex theory V3d

will turn out to equal the q-deformed Liouville conformal block,

ZV3d = Bq , (5.1)

analogously to the way the partition function of topological D-branes was the same
as the conformal block of Liouville at b2 = −1. The relation between T5d and V3d is
the gauge/vortex duality. The duality implies that their partition functions are equal,

ZT5d = ZV3d . (5.2)
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The left hand side is computed on (4.1) and the right hand side, by restriction, on
(4.2). Thus, combining the two relations, we get a relation between R-deformation
of the partition function of T4d and the q-deformation of the Liouville conformal
block,

ZT5d = ZV3d = Bq . (5.3)

In a limit, both deformations go away and we recover the relation between a partition
function of the 4d,N = 2 theory T4d and the ordinary Liouville conformal block B.
We will prove this for the case when C is a sphere with any number of punctures.
The equality in (5.2), as we anticipated on physical grounds, holds for special values
of Coulomb branch moduli—those corresponding to placing the 5d theory at a point
where the Higgs branch and Coulomb branches meet, and turning on fluxes. By
taking the large flux limit, where Ni goes to infinity, ε goes to zero keeping their
product Niε fixed, all points of the Coulomb branch and arbitrary conformal blocks
get probed in this way.

In the rest of the section we will spell out the details of the theories involved, and
their partition functions. Then, in the next section, we will prove their equivalence.

5.1 The 5d Gauge Theory T 5d

The 5d N = 1 theory T5d per definition reduces to, as we send R to zero, the 4d
theory T4d arising from a pair of M5 branes wrapping a genus zero curve C with
� + 2 punctures.

The T5d theory turns out to be very simple: at low energies it is described by
a U (�) gauge theory with 2� hyper-multiplets: � hypermultiplets in fundamental
representation, � in anti-fundamental, and 5d Chern-Simons level zero.13 Except for
� = 2, the U (�) gauge theory theory is different from the generalized quiver of [17].
This is nothing exotic: there are different ways to take R to zero limit, and different
limits can indeed result in inequivalent theories. At finite R, the theory we get is
unique, but with possibly more than one description.

The Coulomb branch of the 4d theory T4d is described by a singleM5 brane wrap-
ping the 4dSeiberg-Witten curve (2.1). The Seiberg-Witten curve ofT5d compactified
on a circle can be written as

� : Q+(ex )ep + P(ex ) + Q−(ex )e−p = 0, (5.4)

with the meromorphic one form equal to λ = pdx (see, e.g. [50]). We will denote
both the 4d and the 5d Seiberg Witten curves by the same letter, � even though the
curves are inequivalent; it should be clear from the context which one is meant. Here,
Q± are polynomials of degree � in ex ,

13At very short distances there is a UV fixed point corresponding to it, which is a strongly coupled
theory, accessible via its string or M-theory embedding [48, 49].



Gauge/Vortex Duality and AGT 435

Q±(ex ) = e±ζ/2
�∏

i=1

(1 − ex/ f±,i ),

and P(x) is a polynomial of degree � in x . At pointswhere theHiggs and theCoulomb
branch meet, � degenerates to:

S : (Q+(ex )ep − Q−(ex ))(e−p − 1) = 0. (5.5)

The 5d Seiberg-Witten curve in (5.4) and the S-curve in (5.5) reduce to the 4d ones
in (2.1), and (3.4), by taking the R to zero limit. The limit one needs corresponds to
keeping ζ/R and p/R fixed and taking

f+,i = zi , f−,i = zi qαi . (5.6)

Finally, one defines z = ex , and replaces p by pz to get (3.4), the curve with its
canonical one form λ = pdz. Note that one of the punctures we get is automatically
placed at z = 0.14

5.1.1 Partition Function in �-background

The 5d �-background is defined as a twisted product

(C × C × S1)q,t , (5.7)

where as, one goes around the S1, one rotates the two complex planes by q =
exp(Rε1) and t−1 = exp(Rε2) (the first copy of C is what we called D before).
These are paired together with the 5d U (1)R ⊂ SU (2)R symmetry twist by tq−1, to
preserve supersymmetry. The 5d gauge theory partition function in this background
is the trace

ZT5d (�) = Tr(−1)F g5d , (5.8)

corresponding to looping around the circle in (5.7). Insertion of (−1)F turns the
partition function of the theory to a supersymmetric partition function. One imposes
periodic identifications with a twist by g where g is a product of simultaneous rota-
tions: the space-time rotations by q and t−1, the R-symmetry twist, flavor symme-
try rotations fi,± = exp(−Rmi,±), and gauge rotation by ei = exp(Rai ) for the
i’th U (1) factor. The latter has the same effect as turning on a Coulomb-branch

14The second four-dimensional limit gives the 4d N = 2 U (�) gauge theory with 2� fundamental
hypermultiplets by [17, 32]. In the Seiberg-Witten curve, one writes fi as fi = eRμi , and takes R
to zero keeping x/R, ep R, eζ R and the μ’s fixed in the limit. The effect of this is that the 4d curve
has the same form as (5.4), but with Q and P replaced by polynomials of the same degree, but in
x , rather than ex .
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modulus ai (see [44] for a review). The partition function of T5d in this background
is computed in [6], using localization. The partition function is a sum

ZT5d (�) = r5d

∑

R

I 5d

R , (5.9)

over �-touples of 2d partitions


R = (R1, . . . , R�),

labeling fixed points in the instanton moduli space. The instanton charge is the net
number of boxes | 
R| in the R’s. The coefficient r5d contains the perturbative and the
one loop contribution to the partition function.

The contribution
I 5d


R = qζ| 
R| zV, 
R × zH, 
R × zH †, 
R

of each fixed point is a product over the contributions of the U (�) vector multiplets,
the � fundamental and anti-fundamental hypermultiplets H , H † in T5d . The instanton
counting parameter, related to the gauge coupling of the theory, is qζ . I 5d depends
on � Coulomb branch moduli encoded in 
e, and the 2� parameters 
f related to the
masses of the 2� hypermultiplets. The vector multiplet contributes

zV, 
R =
∏

1≤a,b≤�

[NRa Rb(ea/eb)]−1.

The � fundamental hypermultiplets contribute

zH, 
R =
∏

1≤a≤�

∏
1≤b≤�

N∅Rb(v fa/eb),

and the � anti-fundamentals give

zH †, 
R =
∏

1≤a≤�

∏
1≤b≤�

NRa∅(vea/ fb+�).

The basic building block is the Nekrasov function

NR P(Q) =
∞∏

i=1

∞∏
j=1

ϕ
(
Qq Ri −Pj t j−i+1

)
ϕ
(
Qq Ri −Pj t j−i

) ϕ
(
Qt j−i

)
ϕ
(
Qt j−i+1

) ,

with ϕ(x) =
∞∏

n=0
(1 − qn x) being the quantum dilogarithm [2, 51]. Furthermore,

TR = (−1)|R|q‖R‖/2t−‖Rt ‖/2, and v = (q/t)1/2 as before (we use the conventions of
[52]). In what follows, it is good to keep in mind that there is no essential distinction
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between the fundamental and anti-fundamental hypermultiplets.15 In keeping with
this, it is natural to think of all the 2� matter multiplets at the same footing, and write
the partition function, say, in terms of the fundamentals alone, whose masses run
over 2� values, fa, f�+a , with a = 1, . . . , �.

5.2 The Vortex Theory V3d

The non-abelian generalization of Nielsen-Olesen vortices was found in [13, 14]. In
particular, startingwith a bulk non-abelian gauge theory likeT5d , with 8 supercharges,
U (�) gauge symmetry and 2� hypermultiplets in fundamental representation, they
constructed the theories living on its half BPS vortex solutions. The theory on charge
N vortices is very simple: it is a U (N ) gauge theory with 4 supercharges, with �

chiral multiplets in fundamental, and � in anti-fundamental representation, as well as
a chiral multiplet in the adjoint representation. The theory has a U (�) × U (�) flavor
symmetry rotating the chiral and anti-chiral multiplets separately. This symmetry
prevents their superpotential couplings. Since T5d is five dimensional, the theory on
its vortices is three dimensional N = 2 theory, which we will denote V3d . Presence
of the 2d � background transverse to the vortex gives the adjoint chiral field twisted
mass ε. In addition, the theory is compactified on a circle of radius R. The masses of
2� hypermultiplets of T5d get related to the 2� twisted masses of the chiral multiplets
in V3d . We will see the precise relation momentarily.

5.2.1 Partition Function in �-Background

We compactify V3d on the 3d � background:

(C × S1)q .

As we go around the S1 we simultaneously rotate the complex plane by q and twist
by the U (1)R-symmetry, to preserve supersymmetry. The partition function of the
theory in this background in computes the index

ZV3d (S; N ) = Tr(−1)F g3d , (5.10)

15By varying the Coulomb branch and the mass parameters, the real mass m of the 5d hyper-
multiplet can go through zero. This exchanges the fundamental hypermultiplet of mass m for an
anti-fundamental of mass −m, while at the same time the 5d Chern-Simons level jumps by 1 [53].
A relation between the anti-fundamental and the fundamental hypermultiplet contributions to the
partition function reflects this, see [2] for details.
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where g3d is a product of space-time rotation by q, an U (1)R symmetry transforma-
tion by q−1, as well as the global symmetry rotation by t . The partition function of the
theory can be computed by first viewing the U (N ) symmetry as a global symmetry:
in this case, since the theory is not gauged, and due to the 3d� background, the index
in (5.10) is simply a product of contributions from matter fields and the W -bosons,
all depending on the N Coulomb branch parameters xI .

The contribution of the flavor in the fundamental representation is

�F (x) =
∏

1≤I≤N

ϕ(eRxI −Rm−)

ϕ(eRxI −Rm+)
, (5.11)

where m± are the twisted masses. The right hand side is written in terms of Faddeev-
Kashaev quantum dilogarithms [2, 51],

ϕ(z) =
∞∏

n=0

(1 − qnz).

There are different ways to show this, for example, one can reduce the 3d theory
down to quantummechanics on the circle and integrate out a tower of massive states.
Alternatively, the index can be obtained by counting holomorphic functions on the
target space of the quantum mechanics, see [44]. We can think of the flavor in the
fundamental representation in one of two equivalent ways: it is a pair of N = 2
chiral multiplets, one in the fundamental and the other in the anti-fundamental repre-
sentation. Alternatively, it contains a chiral multiplet and an anti-chiral multiplet, but
both transform in the fundamental representation. The above way of writing �F (x)

is adapted to the second viewpoint.
The N = 4 vector multiplet, the adjoint chiral field and the W -bosons, give a

universal contribution for any U (N ) gauge group:

�V (x) =
∏

1≤I<J≤N

ϕ( eRxI −RxJ )

ϕ(t eRxI −RxJ )
. (5.12)

The numerator is due to the W-bosons, and the denominator to the adjoint of mass
scalar of mass ε. Finally, since the gauge group is gauged, we integrate over x’s. This
simply projects to gauge invariant functions of the moduli space,

ZV3d (S; N ) = 1

N !
∫

d N x �V (x)

�∏
a=1

�Fa (x) eζ Trx/�. (5.13)

The integrand is a product including all contributions of the massive BPS particles
in the theory, the W bosons, flavors �’s, and the adjoint. The exponent contains the
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classical terms, the FI parameter ζ, and the Chern-Simons level k which is zero in
our case. If the gauge symmetry were just a global symmetry, x’s would have been
parameters of the theory and the partition function of the theory would have been the
integrand. Gauging the U (N ) symmetry corresponds to simply integrating16 over x .

We need to determine the contour of integration to fully specify the path integral.
The choice of a contour in the matrix model corresponds to the choice of boundary
conditions at infinity in the space where the gauge theory lives [65]. At infinity, fields
have to approach a vacuum of the theory. For small q and t , the vacua are the critical
points of

W (x) =
�∑

a=1

log
ϕ(eRx−Rm−,a )

ϕ(eRx−Rm+,a )
.

There are � vacua of W (x) both before and after the R-deformation. Splitting the N
eigenvalues so that Na of them approach the ath critical point, we break the gauge
group,

U (N ) → U (N1) × · · · × U (N�).

Wecan think of all the quantities appearing in the potential as real; then the integration
is along the real x axis. To fully specify the contour of integration, we need to
prescribe howwe go around the poles in the integrand. The integral can be computed
by residues, with slightly different prescriptions for how we go around the poles for
the different gauge groups. In this way, we get � distinct contours CN1,...,N�

, and with
them the partition function,

ZV3d (S; N ) = 1∏�
a=1 Na !

∮
CN1 ,...,N�

d N x �V (x);
�∏

a=1

�Fa (x) e−ζ Trx/�.

Dividing by Na ! corresponds to dividing by the residual gauge symmetry, permuting
the Na eigenvalues in each of the vacua. For q = t this is a topological string partition
function of the B-model on YS studied in [66], and related to Chern-Simons theory.
The q �= t partition function is the partition function of refined Chern-Simons theory
[54], with observables inserted.

Wewill show that the partition function of V3d is nothing but the q-deformation of
the free-fieldfree field conformal block of the Liouville CFT on a sphere with � + 2
punctures. Since the q deformation of Liouville CFT might be not familiar, let us
review it.

16This partition function is the index studied in [54–56] with application to knot theory; see also
[57]. The index is a chiral building block of the S3 or S2 × S1 partition functions [58–64], deformed
by t , the fugacity of a very particular flavor symmetry.
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5.3 q-Liouville

In this section, we will show that the free field integrals of a q-deformed Liouville
conformal field theory [45, 46, 67] have a physical interpretation. They are partition
functions of the 3d N = 2 gauge theory, which we will called V3d , in the 3d �-
background (C × S1)q . The equivalence of the q-Liouville conformal block and
the gauge theory partition function is manifest. The screening charge integrals of
DF are the integrals over the Coulomb branch of the gauge theory. Inserting the
Liouville vertex operators corresponds to coupling the 3d gauge theory to a flavor.
The momentum and position of the puncture are given by the real masses of the two
chirals within the flavor.

The q-deformed Virasoro algebra is written in terms of the deformed screening
charges

S(z) = : exp
⎛
⎝2φ0 + 2h0 log z +

∑
k �=0

1 + (t/q)k

k
hk z−k

⎞
⎠ ,

where

[hk, hm] = 1

1 + (t/q)k

1 − t k

1 − qk
m δk+m,0.

The defining property of the generators of the q−deformed Virasoro-algebra, is
that they commute with the integrals of the screening charges S. The primary vertex
operators get deformed as well. The vertex operator carrying momentumα becomes:

Vα(z) = : exp
⎛
⎝− α

b2
φ0 − α

b2
h0 log z +

∑
k �=0

1 − q−αk

k(1 − t−k)
hk z−k

⎞
⎠ .

Note, that these operators manifestly become the usual Liouville operators in the
limit where q = eRε1 , t = e−Rε2 go to 1, by sending R to zero.

Just as before, using these commutation relations, one computes the correlator
and obtains the following free field integral:

Bq(α, z; N ) = r∏�
a=1 Na !

∮
C1,...,C�

d N y �2
q,t (y)

�∏
a=0

Va(y; za), (5.14)

where the measure is the q, t-deformed Vandermonde

�2
q,t (y) =

∏
1≤I �=J≤N

ϕ(yI /yJ )

ϕ(t yI /yJ )
,
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and the potential equals

Va(y; za) =
N∏

I=1

ϕ
(
qαa za/yI

)
ϕ
(
za/yI

) .

In particular, using the properties of the quantum dilogarithm, it is easy to find that
V0(y; 0) = (y1 . . . yN )α0 . As in the undeformed case, the relation holds up to a
constant of proportionality r . In this paper, we avoid detailed consideration of this
normalization constant. The meaning of the constant r , on the Liouville side, is to
account for all possible two-point functions between the vertex operators Vα(za).
Like in the undeformed case, the N eigenvalues are grouped into sets of size Na ,
a = 1, . . . , �, by the choice of contours they get integrated over.17

6 Gauge/Liouville Triality

In what follows, we will prove that there is a triality that relates the 5d and 3d
gauge theories T5d and V3d , compactified on a circle, and q-deformation of Liouville
conformal blocks. We will show this in two steps.

6.1 q-Liouville and V3d

The first step is to show that q-deformation of the Liouville conformal block (5.14),
corresponding to a sphere with � + 2 punctures equals the partition function of V3d :

ZV3d (S; N ) = Bq(α, z; N ).

This follows immediately by a simple change of variables that sets

za = e−Rm+,a , qαa = eRm+,a−Rm−,a , y = e−Rx . (6.1)

The insertion of a primary vertex operator in Liouville gets related to coupling the
3d gauge theory on the vortex to a flavor: the mass splitting is related to Liouville
momentum, the mass itself to the position of the vertex operator. The puncture at
z = 0 arises from the Fayet-Iliopolous potential, if we set α0 = ζ/� − 1.

17The contours of integration are the same as in the undeformed case—encircling the segments
[0, za]. The q deformation affects the operators and the algebra, but not the contours. It is important
to emphasize that these contours agree with the alternative approach [68] where the free field
integrals are replaced by Jackson q-integrals: in our picture, the latter are the residue sums for the
former.
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6.2 V3d and T5d: Gauge/Vortex Duality

The second step is to show that the partition function of the 5d gauge theory T5d and
partition function of its vortices, described by the 3d gauge theory V3d agree

ZV3d (S, N ) = ZT5d (�).

For this we place T5d at the point where the Coulomb and Higgs branches of T5d

meet, ea = fa /v with v = (q/t)1/2 as before, and � degenerates to S. In addition
we turn on Na units of vortex flux.18 In the �-background this is equivalent to not
turning on flux and shifting the Coulomb-branch parameters of T5d so that

ZT5d (�) = r5d

∑

R

I 5d

R

is evaluated at
ea = t Na fa /v, (6.2)

where a runs form 1 to �. Here, fa are the masses of � of the 2� hypermultiplets, and
the integer shifts correspond to Na units of vortex flux turned on. Note that as long
as Na are arbitrary, this is no restriction at all.

To recover T5d at an arbitrary point of its Coulomb branch, we take the limit
Na → ∞, ε = ln(t) → 0 keeping the product Naε fixed. The gauge/vortex duality
is the gauge theory realization of large N duality.

6.2.1 Residues and Instantons

We start by computing the partition function of V3d by residues. Then we show
that the sum over the residues is the instanton sum of the 5d gauge theory T5d . The
positions of the poles are labeled by tuples of partitions, and the integrands are equal
to Nekrasov summands.

With the change of variables in (6.1), the 3d partition function of V3d becomes:

ZV3d (N ; S) = 1∏�
a=1 Na !

∮
C1,...C�

d N y I 3d(y), (6.3)

where the integrand I 3d(y) equals

I 3d(y) = V0(y) �V (y)

�∏
a=1

�Fa (y),

18The shift by v is due to the� background. It is natural that the partition function becomes singular
at the point where the two branches meet; this determines the shift.
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and, in terms of the new variables,

�V (y) =
∏

1≤I �=J≤N

ϕ(yJ /yI )

ϕ(t yJ /yI )
, �Fa (y) =

N∏
I=1

ϕ(qαa za/yI )

ϕ(za/yI )
, V0(y) =

N∏
I=1

yα0
I .

The � contours C1, . . . C� run around the intervals in the complex y plane: Ca circles
the interval from y = 0 to y = za , where za is the location of a pole in the integral
corresponding to a chiral multiplet goingmassless. The quantum dilogarithmϕ(y) =∏∞

n=0 (1 − qn y) [2, 51] has zeros at y = q−n , hence the integrand has poles there.
The contour is chosen so as to pick up the residues of the poles. For each of the �

the groups of eigenvalues we choose the contour that runs from 0 to za , circling the
poles at

y = qn za, n = 0, 1, . . . .

For |t |, |q| < 1, the poles interpolate between y = 0 and y = za , and the contours
Ca circle around the interval (this is also where the critical points of the integral are
located). However, not all the poles contribute—the numerator in �V (y) eliminates
some: all those for which poles for a pair yI , yJ coincide up to a q shift. At the same
time, the denominator of �V (y) introduces new poles with y’s shifted by t , up to a
multiple of q. Up to permutations, the poles that end up contributing are labeled by
�-tuples of 2d Young diagrams:


R = (R1, . . . , Ra, . . . , R�), (6.4)

where Ra has at most Na rows. The poles corresponding to the ath group of variables
are at

y = y 
R,

where, up to permutations the components of y 
R equal

y(N1+···+Na−1)+i = q Ra,i t Na−i za, (6.5)

where i runs from 1 to Na and a from 1 to �. The sum over the residues of the integral
becomes the sum over the Young diagrams

�∏
a=1

1

Na !
∮
C1,...C�

d N y →
∑


R
.

While the integrand itself does not make sense at a pole, the ratio of its values at
different poles turns out to be finite. This implies that ratio of the residues at the
poles labeled by 
R and 
∅

I 3d

R = res−1

∅
· resR I 3d(y)
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is simply equal to the ratio of the integrand itself at the two poles:

I 3d

R = qα0| 
R| · �V (y 
R)

�V (y 
∅)
·

∏�
a=1 �Fa (y 
R)∏�
a=1 �Fa (y 
∅)

. (6.6)

Note that V0(y 
R)

V0(y 
∅)
= qα0| 
R|. This makes the sum over residues easy to find:

ZV3d (N ; S) = r3d

∑

R

I 3d

R (N , f ),

where
r3d = res∅ I 3d(y).

The structure of the answer is reminiscent of the 5d partition function ZT5d (�),
except that the sum in ZT5d (�) runs over �-touples of Young diagrams of arbitrary
size.

However, from the gauge/vortex duality, we only expect the 3d and the 5d partition
functions to equal on the locus (6.2). Restricting to the locus (6.2), the Nekrasov sum
truncates to a sum over diagrams Ra with at most Na rows. Moreover, for every
such �-touple, the summand I 5d


R indeed becomes equal to I 3d

R . The detailed proof is

presented in [2], here we only give a sketch.
Recall

I 5d

R = qζ|R| · zV, 
R · zH, 
R · zH †, 
R .

The � hypermultiplet contributions zH †, 
R each contain NRa∅(vea/ fa), as a factor.
Restricting this to (6.2) we get NRa∅(t Na ), which, as one can show19 vanishes if Ra

has more than Na rows. So at this point, I 5d

R is non-zero only for those �-touples

of Young diagrams 
R = (R1, . . . , Ra, . . . R�) for which Ra has no more that Na

rows, for each a between 1 and �. Thus, the non-zero fixed point contributions to the
instanton sum are the same as the poles of the 3d partition function. Not only does
the sum over Young diagrams truncate, but moreover one can prove that the value of
the summand in the instanton partition function is exactly I 3d


R :

I 3d

R (N , f ) = I 5d


R (e, f ),

with identifications
ea/ fa = t Na /v.

Recall we let fa = f+,a and fa+� = f−,a for a running from 1 to �. Finally, we have
qζ = qα0q.

19See [2] for a proof, and [52, 69] for earlier work making use of this.
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The vector multiplet contributions in 5d are related to vector multiplet contri-
butions in 3d, and the 5d hypermultiplets to 3d flavors and the instanton counting
parameter in 5d to FI term contributions to the potential in 3d. The 5d partition
function is actually a product of the instanton sum I 5d


R together with the perturbative
and the one loop factors contained in r5d . This equals the partition function of the
5d gauge theory at the root of the Higgs and Coulomb branches in the absence of
vortices. On the 3d gauge theory side, one can prove that this is accounted by the
product of r3d , the residue at the y = y 
∅ pole, together with a contribution that is not
captured by the theory on the vortex—this is the partition function of the bulk gauge
theory, at the root of the Higgs branch in the absence of vortices. (From the string
theory perspective, this contribution is the partition function of YS without branes).
One can prove that, taking this into account, the full partition functions on the two
sides of the duality are equal.

We have thus proven our main claim (5.3) for the case the Gaiotto curve C has
genus zero with arbitrary number of punctures. It is elementary to extend this to the
case when C is a genus one curve, with arbitrary punctures. We expect the triality
to generalize to the case when the Liouville CFT gets replaced by ADE type Toda
CFT. The generalization to An case will be presented in [19].
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B-Model Approach to Instanton Counting

Daniel Krefl and Johannes Walcher

Abstract The instanton partition function of N = 2 gauge theory in the general
�-background is, in a suitable analytic continuation, a solution of the holomorphic
anomaly equation known from B-model topological strings. The present review of
this connection is a contribution to a special volumeon recent developments inN = 2
supersymmetric gauge theory and the 2d-4d relation, edited by J. Teschner.

1 Introduction and Key Ideas

The instanton partition function of N = 2 supersymmetric quantum field theories

Z inst(a, ε1, ε2;�) (1.1)

is of algebra-geometro-physical interest for at least three different, though related,
reasons. First of all, by its very definition, Z inst encapsulates the cohomology of the
moduli space of instantons, supersymmetric solutions of the underlying classical field
theory, and the algebraic structures on that space (Chapter [V:4]). Secondly, within
the 2d-4d correspondences of Alday-Gaiotto-Tachikawa, and Nekrasov-Shatasvhili
(Chapter [V:12]), the instanton partition function connects supersymmetric field the-
ories with the world of completely integrable systems and their quantization, specif-
ically Hitchin systems (see Chapter [V:3]). Thirdly, Z inst(a, ε1, ε2;�) contains in-
formation about the structure of the Coulomb branch that goes beyond the weakly
coupled description in a Lagrangian field theory. After a suitable analytic continua-
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tion, it allows to calculate interesting physical quantities everywhere in the moduli
space of vacua and marginal couplings, and thereby to study a variety of dualities.

It is in fact, this latter aspect of the instanton partition function that is closest to
the approach pioneered by Seiberg and Witten for solving the low-energy dynamics
of N = 2 supersymmetric field theories, by exploiting the global constraints on the
structure of the moduli space coming from special geometry andmodular invariance.
The basic ideas are easily explained.

The instanton partition function Z inst calculated via localization (see Chapter
[V:4]) is a series

Z inst ∼
∑

n

�n Rn(a, ε1, ε2), (1.2)

with rational functions Rn of the �-background parameters ε1,2, and the Coulomb
branch parameters a, that converges well for small instanton counting parameter
�. As explained by Nekrasov [1], the Seiberg-Witten solution for the low-energy
effective action is recovered in the non-equivariant limit ε1,2 → 0. Specifically, the
N = 2 prepotential is the residue

F (0)(a;�) = lim
ε1,ε2→0

(
ε1ε2 log Z inst(a, ε1, ε2;�)

)
, (1.3)

after the perturbative expansion of the free energy for small � (in the asymptotically
free case, this is equivalent to the weak-coupling limit a → ∞). It coincides with
the prepotential obtained from the Seiberg-Witten effective geometry (the family of
hyper-elliptic curves together with the differential), which captures the low-energy
dynamics and is the basis for the various embeddings into string theory. Most specifi-
cally, theF (0) appears in the so-called geometric engineering limit of the prepotential
governing the compactification of type II string on a (non-compact) Calabi-Yauman-
ifold [2].

It has been a natural question to ask for the analytic and geometric characterization
of the terms in Z inst of higher order in ε1, ε2, and their physical interpretation. As
anticipated already by Nekrasov [1], the answer is most immediate on the special
slice in coupling constant space ε1 = −ε2. By a detour in one higher dimension,
one can see that in general, the �-background in the gauge theory arises in the
string/M-theory constructions from a vacuum expectation value of the gravi-photon
field strength, of the form

F = ε1dx1 ∧ dx2 + ε2dx3 ∧ dx4 (1.4)

(itself a limit of the Melvin background, or “flux-trap” [3] in other duality frames).
The specialization ε1 = −ε2 corresponds to a self-dual gravi-photon background,
and the expansion coefficients of the supersymmetric free energy in ε1 = −ε2 =: gs

are identified with the higher-derivative F-term couplings R2F2g−2 in the effective
action [4], which can be computed as the topological string genus-g free energy
[5]. In the geometric engineering limit, one recovers the expansion of the instanton
partition function.

http://dx.doi.org/10.1007/978-3-319-18769-3_4
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log Z inst(a, gs,−gs;�) =
∞∑
g=0

g2g−2
s F (g)(a) (1.5)

A natural way to test this physical interpretation is to re-calculate the F (g) using
the string theory methods. In the topological B-model, the most universal of these
methods is the holomorphic anomaly of BCOV [5].

The basic message of the holomorphic anomaly method is that the higher order
corrections F (g)(a) can still be continued throughout moduli space, in particular
any strong coupling regions, but (in distinction to the prepotential F (0)), they are no
longer holomorphic functions of a. The physical origin of this non-holomorphicity
are the infrared effects, degenerating Riemann surfaces in the perturbative string
theory [5], or the distinction between 1 PI and Wilsonian effective action from the
point of view of the field theory [6]. Mathematically, the holomorphic anomaly is an
expression of the competition between holomorphy and modular invariance [5], and
can also be viewed as an embodiment of the wave-function nature of the topological
partition function [7].

The holomorphic anomaly equation dictates the non-holomorphic dependence
of F (g)(a, ā) recursively in the order of the expansion, 2g − 2. The meromorphic
function on moduli space that is thereby left undetermined at each order is known as
the holomorphic ambiguity and can, under favorable circumstances, be determined
by imposing appropriate principal parts or “boundary conditions” at the various
singular points.

It was shown by Klemm and Huang [8] that the holomorphic anomaly commutes
with the geometric engineering limit, and can be used to completely recover the
F (g) in the expansion (1.5). Even though a detailed derivation of the holomorphic
anomaly from the gauge theory point of view is missing, the equation itself can be
written down based solely on the special geometry data on the moduli space that
can be obtained from the prepotential F (0). And at least in all examples with low-
dimensional moduli space, the boundary conditions at the monopole/dyon points
are sufficient to completely fix the holomorphic ambiguity, and thereby make the
holomorphic anomaly “integrable” in that sense.

From the point of view of instanton counting (1.1), this discussion of the holomor-
phic anomaly appears as rather tangential. After all, the holomorphy and integrability
of the higher order corrections is built into the formalism, while the underlying spec-
tral geometry is completely determined by the first order classical term, i.e., the pre-
potential. There are nevertheless several very good reasons to explore the connection
further, and in particular, to understand the extension of the holomorphic anomaly
to the full two-parameter �-background, away from the specialization ε1 = −ε2.

From the gauge theory point of view, the precise role of the holomorphic anomaly,
or the wave-function nature of Z inst is not completely understood, for instance in
the context of the quantum integrable systems. Moreover, the possible calculation
of Z inst as a “sum over instantons” (or some other semi-classical configurations)
around other points in moduli space remains to be explored. While conformal field
theory in principle provides formal expressions for Z inst in terms of certain contour
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integrals also elsewhere in moduli space, these have been evaluated explicitly only in
a limited number of situations. The continuation of theF (g) to other points in moduli
space via the holomorphic anomaly provides a very welcome benchmark for such
calculations.

From the string theory point of view, the existence of the second deformation
parameter itself is the most intriguing aspect. Indeed, while the role of gs = √−ε1ε2
as the genus-counting parameter, i.e., the topological string coupling constant, is
readily appreciated, the existence of a second “string-coupling like” parameter is
muchmoremysterious. Since, inmuchmore generality than the restricted topological
context, string theory does not have any free parameters, the absence of a worldsheet
description would be in tremendous tension with the overall picture. To be sure, the
role of the second parameter from the macroscopic space-time, or M-theory point of
view is completely clear, see [1, 9], as well as the connection with refinement and
categorification [10]. What is missing is the microscopic explanation.

The main point of the present contribution is to highlight the observation that
with the right choice of parameterization of the coupling constants, the deformation
away from the special slice ε1 = −ε2 is indeed as simple as it could be: The higher
order corrections for general ε1, ε2 still satisfy the holomorphic anomaly equations,
with deformation only in the boundary conditions. In particular, a single infinitesimal
coupling constant is sufficient. This was first pointed out in [11–13]. These methods
therefore allow the calculation (via “analytic” continuation) of Z inst around points in
moduli space other than the weak coupling regime. This constitutes a benchmark for
testing the 2d-4d relation this special volume is about away from � → 0. Coming
back to string theory, these observations have allowed the application of the holo-
morphic anomaly equation for the B-model calculation of refined BPS invariants of
local Calabi-Yau manifolds [14, 15]. This can be viewed as further evidence that
the second parameter should be lifted to the topological string (not necessarily as a
coupling constant, but rather as a deformation parameter), and has been as well ap-
plied and interpreted in the context of quantum geometry and quantum integrability
[16]. Among the possible stringy explanations of the refinement, we will outline in
somewhat more detail an intriguing relation to orbifolds and orientifolds, following
[11, 17].

Before closing this introduction, it seems worthwhile to emphasize once again
that in this Chapter, we are discussing the instanton partition function from the point
of view of the “B-model”, meaning the global structure of the moduli space, special
geometry and modular invariance. In contrast to (1.2), which is exact in ε1, ε2, but
perturbative in �, the B-model provides answers that are exact in the instanton
expansion, but perturbative in ε1, ε2.

2 Geometric Engineering

Large classes of supersymmetric gauge theories in various dimensions can be system-
atically obtained from string-, M- and F-theory compactifications. This is usually re-
ferred to as geometric engineering, as the geometry of the compactification manifold
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X determines the effective gauge theory in the field theory limit. We only give a
lightning overview, excellent pedagogical reviews being available in the canonical
literature, see for instance, [18, 19].

Any given gauge theory can typically be realized in several ways in string the-
ory. These different constructions are then related by various dualities and limiting
procedures. Hence, depending on the gauge theory to be investigated via geometric
engineering, and the specific gauge theory property under investigation, a convenient
duality frame has to be chosen. A common feature of all geometric engineering ap-
proaches is that in order to decouple string and gravity effects, the compactification
manifold X has to feature a local singularity, perhaps in the guise of a brane.

We are interested in N = 2 supersymmetric gauge theories in four dimensions,
their low-energy effective prepotentialF (0)(a, m), and higher derivative F-term cou-
plings. These are (modulo the holomorphic anomaly) holomorphic functions of the
Coulomb moduli ai and masses of matter fields mi , and receive their essential con-
tributions from the space-time instantons. This class of theories can be conveniently
engineered and investigated in a type IIA/B superstring framework by compacti-
fication on a local (non-compact) Calabi-Yau 3-fold, which yields, under certain
conditions, a four-dimensional N = 2 supersymmetric gauge theory theory with
decoupled gravity.

To be specific, consider type IIA string theory compactified on a Calabi-Yau 3-
fold X . Four-dimensional abelian gauge fields arise in the Ramond-Ramond sector
by dimensional reduction on the even cohomology of X . But since perturbative
string states do not carry Ramond-Ramond charge, in order to obtain interesting
non-abelian gauge groups, we must include non-perturbative effects. In particular,
D2-branes wrapped on the (compact) 2-cycles of the compactification geometry
represent objects electrically charged under the corresponding abelian gauge fields.
The masses of these states being proportional to the Kähler class (volume) t fi of
the wrapped 2-cycles, one needs t fi → 0 in order to have massless charged gauge
bosons.

In fact, it is best to view theCalabi-Yau compactification as the dimensional reduc-
tion of a K3 compactification near an ADE singularity. The gauge group originates
in six dimensions from the (compact) homology of the singularity (of ADE type
for ADE gauge group), while further dimensional reduction (on a copy, B ∼= P

1,
of complex projective space to be specific) leads to an N = 2 gauge theory in four
dimensions. In this process, the bare gauge coupling gYM of the four-dimensional
theory is proportional to the Kähler class tB of the 2-dimensional manifold used for
the reduction, i.e., tB ∼ 1/g2YM . In order to decouple gravity (and stringy effects) it
is sufficient to send the coupling constant to zero, since it pushes the string scale to
infinity [2]. This means that we are interested in the limit tB → ∞.

In order to satisfy the Calabi-Yau condition, the compactification space can not
be given by a direct product, but rather must have the structure of a fibration,

F → X → B, (2.1)
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where the fiber geometry F (with the ADE singularity) determines the gauge group
while the base geometry B the effective gauge coupling in four dimensions. Note that
the fibration structure also allows to incorporatematter content via local enhancement
of the fiber singularity.

It is important to keep in mind that the limits tB → ∞ and t fi → 0 of base
and fiber Kähler classes are not independent. This can be illustrated best at hand of
a concrete example. Consider the geometric engineering of pure SU (2) along the
lines sketched above, as originally discussed in [2]. To obtain the two charged gauge
bosons, W+ and W−, it is sufficient to fiber a P

1 over the base P
1. [The different

ways this can be done are labeled by an integer and the corresponding geometries
correspond to the Hirzebruch surfaces. The Calabi-Yau 3-fold itself is the total space
of the anti-canonical bundle over this complex surface. All Hirzebruch surfaces give
rise to pure SU (2) in four dimensions.] Recall that in the weak coupling regime the
running of the gauge coupling is given by

1

g2Y M

∼ log
m

�
, (2.2)

where m denotes the mass of the W-bosons and � the dynamical scale. With the
above identifications, we learn that we have to take the limit in a way such that
tB ∼ log t f holds. The precise proportionality constant can be fixed as follows: We
know that at weak coupling the instanton corrections to the bare gauge coupling go
in powers of (�/a)4, with a the Coulomb modulus. Correspondingly, we have to
scale e−tb ∼ δ4 �4 and t f ∼ δ a as δ → 0, which constitutes the map between the
string moduli and the gauge theory parameters, for pure SU (2).

The useful property of the type IIA string construction is that the space-time
instanton corrections are mapped to world-sheet instanton corrections. Qualitatively,
this is clear from the relation between the 2-cycles and the gauge coupling and gauge
bosons sketched above: The Euclidean string worldsheet is wrapped around the 2-
cycles of the geometry with worldsheet instanton action S ∼ db tb + d f t f , where db

and d f refer to wrapping numbers. In particular, this means that we do not have to
consider the full type IIA string theory to investigate the gauge theory from a string
point of view. Rather, the topological sector is sufficient, i.e., the topological string
amplitudes which capture world-sheet instanton corrections.

Starting from the topological string tree-level amplitude, taking the above gauge
theory limit yields the space-time instanton corrections to the gauge theory prepoten-
tial. The higher-genus amplitudes encode the gravitational corrections, as sketched
in the introduction. In this way, the string theory provides both a conceptual frame-
work, and a host of computational methods to investigate non-perturbative effects in
supersymmetric gauge theories.

There is, however, one important subtlety to keep in mind. Since the geometric
engineering limit involves t fi → 0, the compactification geometry is in fact singular,
and we are not expanding the string amplitudes around the large volume point in
moduli space. Hence, if we compute the topological string amplitudes using the usual
A-model techniques, which are valid at large volume (such as, localization [20] or the
topological vertex [21]), these amplitudes have to be analytically continued beforewe
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can take the limit. (The necessity of this analytic continuation is quite clear already
from the fact that the large volume expansion of the topological amplitudes is a series
in the exponentiated Kähler moduli, whereas the gauge theory prepotential at weak
coupling is an expansion into negative powers of the Coulomb branch parameter.)

For the topological string amplitudes of the SU (2) engineering geometry sketched
above, the analytic continuation can be achieved via a relatively simple resummation
[22]. In more complicated examples, one has to switch to the B-model mirror of
the type IIA string background in order to perform the analytic continuation. We
recall that in general, mirror symmetry maps worldsheet instanton corrections to
the expansions of classical geometric quantities. For instance, tree-level worldsheet
instantons in type IIA are encoded in the period integrals of the type IIB mirror
geometry. As these periods can be calculated as solutions of simple linear differential
equations, their analytic continuation all over moduli space is straight-forward.

Under the geometric engineering limit along the lines reviewed above, mirror
symmetry may be seen as the stringy origin of the Seiberg-Witten solution ofN = 2
gauge theory. That is, the Seiberg-Witten curve and differential arise in the limit
of the mirror Calabi-Yau threefold which is mirror dual to the type IIA engineering
geometry. In particular, as its B-model parent, the Seiberg-Witten geometry naturally
provides a global description of the moduli space.

So far we mainly had in mind spherical world-sheet instantons yielding instanton
corrections to the gauge theory prepotential. However, perhaps the most useful prop-
erty of this stringy construction is that it allows to calculate gravitational corrections
to theN = 2 gauge theory, originating from world-sheet instantons of higher genus.
In detail, the genus-g topological string amplitude yields R2F2g−2 corrections to the
gauge theory [4], which can be calculated very efficiently via a specific topological
string B-model technique, namely the holomorphic anomaly equation, all over the
Coulomb moduli space. This is the subject to which we now turn.

3 B-Model

It has been observed some time ago in [8] that the free energy of four dimensional
N = 2 supersymmetric gauge theory with gravitational corrections satisfies the
holomorphic anomaly equations of [5, 23]. This can be seen as a consequence of the
geometric engineering approach to N = 2 gauge theories, where the gauge theory
free energy follows as a specific limit of the topological string free energy on a
corresponding engineering Calabi-Yau, as outlined in the previous section.

Since the gravitational corrections captured by the topological string are a specific
specialization of the�-deformed gauge theory, ε1 = −ε2, it is natural to ask whether
the �-deformed theory with general equivariant parameters satisfies as well a kind
of anomaly equation. The main point of interest is that the holomorphic anomaly
equation allows to analytically continue the �-deformed partition function over all
of the Coulomb moduli space. In contrast, the instanton counting partition function
of [1] and as well the CFT calculations for the partition function via the AGT corre-
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spondence [24] are most useful only for the asymptotically free theories at a weakly
coupled point in Coulomb moduli space (see however [25]).

The complete partition function Z inst(ε1, ε2) obtained via instanton counting is ex-
act in the two equivariant parameters ε1,2. In order to get startedwith the investigation
of the anomaly equation, one has to choose a parameterization of the infinitesimal
neighborhood of ε1,2 = 0, and the form of the answer will naively depend on the
choice. It turns out that the correct expansion from the topological string point of
view is to choose the same parameterization as occurring in theAGT correspondence,
used in this context in [11, 13]. Namely, we write

ε1 = √
βgs , ε2 = − 1√

β
gs, (3.1)

with β a fixed constant and gs being the only infinitesimal expansion parameter.
Hence (leaving theCoulombmoduli a implicit)we define the perturbative amplitudes
F (g)(β) as the coefficients in the expansion

log Z inst(ε1, ε2) = F(ε1, ε2) =
∞∑
g=0

F (g)(β) g2g−2
s . (3.2)

We note in particular that the Seiberg-Witten prepotential defined via the limit (1.3),
is independent of β, i.e.,

F(ε1, ε2) = F (0)g−2
s + O(g0s ). (3.3)

Of course, onemight also envisage a double expansion in the two-parameters ε1, ε2, as
performed in this context in [12]. However, it is not hard to see that the two-parameter
expansion is related via a finite resummation to the one-parameter expansion (3.2).
This is related to the fact that the F (g)(β) are polynomial in β. As a consequence, an
anomaly equation for a two-parameter expansion scheme is algebraically equivalent
with the anomaly for the one-parameter expansion (cf., the discussions in [26, 27]).
Our results, and specifically, the fact that only the holomorphic ambiguity depends
on β, make it clear that the one-parameter expansion (3.2) is most economical and
therefore preferred.1

Note that with the four-dimensional Lorentz invariance, the expansion (3.2) goes
in evenpowers of gs only, reflecting the symmetry ε1,2 → −ε1,2 of the�-background.
As noted in [1, 28], localization in the presence of mass parameters in principle can
violate this symmetry, and odd powers of gs will be present as well. However, this
odd sector is not fundamental, and can be “gauged away” by a linear shift of the
appropriate mass parameters. Notably, this does not apply to the theories in the
presence of additional extended objects like surface operators (discussed in Chap-
ter [V:8]). Such a setup breaks 4-d Lorentz invariance and a true odd sector in gs

1This is not to say that the microscopic origin of the holomorphic anomaly might not be better
explained in the two-parameter scheme, see [27].

http://dx.doi.org/10.1007/978-3-319-18769-3_8
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will be generated. We will here only consider the even in gs case, while emphasiz-
ing that the general case can be treated as well [11], by appealing to the extended
holomorphic anomaly equations of [29, 30].

So let us now explain in detail the method of the holomorphic anomaly for the
calculation of the F (g)(β). We begin with the role of F (0) in special geometry. We
denote by u a global coordinate on the moduli spaceM of vacua, which is identified
with the base space of an appropriate family of complex curves, Cu . (For simplicity,
wewill write equations only in the case thatM is one-dimensional. The reader might
have in mind SU (2) Seiberg-Witten theory with N f < 4 fundamental flavors. Some
aspects of the higher-rank theory are discussed in [12, 15].) The family of curves
is equipped with a meromorphic one-form λSW, such that for appropriate choice of
one-cycles A and AD on Cu , the periods

a =
∮

A
λSW , aD =

∮
AD

λSW, (3.4)

satisfy the relation

aD = ∂F (0)

∂a
, (3.5)

after eliminating u from (3.4). We do not need to be explicit about this auxiliary
geometric data, for which we refer to chapter [V:2]. However, one should keep in
mind, as already mentioned in the previous section, that this auxiliary data originates
from the mirror Calabi-Yau geometry of the corresponding geometric engineering
geometry.

For expansion in different regions ofmoduli space, it ismost convenient to base the
development on the Picard-Fuchs equation, a third order system of linear differential
equations,

L	(u) = 0, (3.6)

satisfied by all periods of λSW. Using a as a local coordinate around u → ∞, the
Picard-Fuchs operator takes the form2

L = ∂a
1

Caaa
∂2

a , (3.7)

where
Caaa = ∂3

aF (0) = ∂2
a aD(a) = ∂aτ(a), (3.8)

is a (meromorphic) rank three symmetric tensor over M, which in the topological
string context is referred to as the Yukawa coupling, and τ(a) corresponds to the
complexified effective gauge coupling. In particular, g ∼ Imτ is the Weil-Petersson
(or σ -model) metric on M, which plays a central role in special geometry on M.

2As is now evident, the constant is a third solution of the differential equation. This solution
decouples in special cases, such as SU (2) gauge theory with massless hypermultiplets.

http://dx.doi.org/10.1007/978-3-319-18769-3_2
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Another important feature is the existence of canonical (flat) coordinates [5], which
provide a meaningful expansion parameter around any interesting point u = u∗ in
M. In such a flat coordisnate t = t (u), vanishing at u = u∗, the Picard-Fuchs
operator takes again the form (3.7) with a → t , i.e.,

L = ∂t
1

Cttt
∂2

t , Cttt =
(∂u

∂t

)3
Cuuu . (3.9)

We are now ready towrite down the holomorphic anomaly equations of [5]. Recall
that the specialization of the gauge theory amplitude F (g)(β) to β = 1, (namely, the
self-dual background ε1 = −ε2) arises via geometric engineering from the genus-g
topological string amplitude. The statement of BCOV is that the topological string
amplitudes, while holomorphic in the Kähler moduli, are not well-behaved globally
over the moduli space. Instead, one should view the topological string amplitudes
as a holomorphic limit of non-holomorphic, but globally defined objects. Under the
gauge theory limit sketched in the previous section, this translates to the statement
that one should view the gauge theory F (g)(a) (for g ≥ 1) as the holomorphic limit
ā → ∞ of non-holomorphic, but globally defined objects F (g)(u, ū), arising from
the topological string amplitudes in the gauge theory limit. (These are customarily
denoted by the same letter, as confusion can not arise.) Similarly, the holomorphic
anomaly equation satisfied by the topological string amplitudes translates to a recur-
sive relation for the gauge theory F (g>1)(u, ū), i.e.,

∂̄ūF (g) = 1

2

∑
g1 + g2 = g

gi > 0

C̄ uu
ū F (g1)

u F (g2)
u + 1

2
C̄ uu

ū F (g−1)
uu , (3.10)

whereF (g)
uu = DuF (g)

u = D2
uF (g), Du is the covariant derivative overM, and indices

are raised and lowered using the Weil-Petersson metric. The holomorphic limit of
the connection of the Weil-Petersson metric (entering the covariant derivative) on
M takes the simple form

lim
t̄→0

�u
uu = ∂u log

∂t (u)

∂u
. (3.11)

The “one-loop” amplitude satisfies the special equation

∂̄ū∂uF (1) = 1

2
C̄ uu

ū Cuuu . (3.12)

At the level of the topological string, the holomorphic anomaly originates from
topological anomalies, that is, under coupling to gravity (including integration over
moduli of Riemann surfaces), the theory is only “almost” topological, as there are
contributions from the boundaries of moduli spaces of genus-g Riemann surfaces
to certain topologically trivial correlator insertions. More specifically, a genus-g
Riemann surface can degenerate either to a genus-(g − 1) surface with two extra
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punctures via pinching of a handle, or to two disconnected surfaces with an extra
puncture of genus ga and gb (with g = ga + gb) via pinching of a tube. These
two boundary contributions are reflected in the holomorphic anomaly Eq. (3.10).
Although the topological string origin of the anomaly equation (and in particular of
F (g)(u, ū)) is clear, less so is the precise supergravity (or gauge theory) meaning
and/or origin thereof. Hence, the main justification of (3.10) at the level of gauge
theory comes as a limit of the topological string via geometric engineering. However,
an independent justification can be given along the lines of Witten’s wave-function
interpretation of the topological string partition function [7]. The reasoning leading
to this interpretation of theF (g) and the recursive relations between them relies solely
on the special geometry (the holomorphic symplectic structure) of the moduli space
(viewed as a clasical phase space). Starting from the Seiberg-Witten geometry, this
reasoning can therefore also be applied directly to the gauge theory. We will come
back to this interpretation in Sect. 5.

The natural question to ask is how (3.10) should be modified away from β = 1.
The answer provided by [11] is the simplest possible not at all! More precisely,
in [11], the use of the localization formulas of [1] resulted in the presence of non-
vanishing terms of odd order in gs , suggesting a role for the extended holomorphic
anomaly equation of [29, 30], as well as a relation to topological string orientifolds.
The extension data (the term at order g−1

s ) was also identified in simple geometric
terms on the Seiberg-Witten curve. In [13] it was observed that the shift of the mass
parameters [28] removes those odd terms, as mentioned above. While it is reassuring
to see that the formalism works well with either prescription, we here only present
the shifted version, as it is more economical.

The content of the Eqs. (3.10) and (3.12) is that due to the anti-holomorphic deriv-
ative, the F (g) are determined up to holomorphic terms, the so-called holomorphic
ambiguity. The standard technique to fix this ambiguity is by taking known charac-
teristics of the F (g) at specific points in moduli space as boundary conditions into
account. For instance, topological string amplitudes expanded near a point in moduli
space where the target space develops a conifold singularity show a characteristic
“gap” structure [8, 31] (we denote the modulus of the deformation as tc)

F (g>1) = 
(2g−2)(1) t−2g+2
c + O(t0c ), (3.13)

with leading non-vanishing coefficients 
(g)(1) of the singular terms given by the
free energy of the c = 1 string at the self-dual radius R = 1 [32] (we use here a
normalization different from the one usually used in the CFT context). Knowledge of
the conifold expansion (3.13) is usually sufficient to fix the holomorphic ambiguity
to very high genus [31], or, even to fix it completely [33], depending on the specific
model. The coefficient of the singular term in (3.13), 
(n)(1), can be seen as due to
integrating out a single massless hypermultiplet in the effective action [34] and is
therefore rather universal.3 In particular, expansion of the gauge theory free energy

3It that sense, the singularity structure (but not the regular terms) in those strong coupling regions
does follow from a field theory computation.



460 D. Krefl and J. Walcher

near a point in moduli space with a massless monopole/dyon (hypermultiplet) should
show the same behavior, and indeed does [8].

In the generalization to arbitrary β 	= 1 we then must have that the boundary
conditions are not given by integrating out a massless hypermultiplet in an anti-
selfdual background, but rather in the�-background. Hence, the coefficients
(g)(1)
change to β-dependent functions 
(n)(β) captured by the Schwinger type integral

Fc=1(ε1, ε2; tc) :=
∫

ds

s

e−tcs

4 sinh
(

ε1s
2

)
sinh

(
ε2s
2

) ∼ · · · +
∑
n>0


(n)(β)

(
gs

tc

)n

,

under the usage of (3.1). Interestingly, the free energy Fc=1(ε1, ε2; tc) still corre-
sponds to the c = 1 string free energy, albeit at general radius R = β. The corre-
sponding partition function is also known as Gross-Klebanov partition function, and
we have for the expansion coefficients the following closed expressions [35]


(0)(β) = − 1

24

(
β + 1

β

)
,


(n)(β) = (n − 1)!
n+2∑
k=0

(−1)k Bk Bn+2−k

k!(n + 2 − k)! (2
1−k − 1)(2k−n−1 − 1) βk−n/2−1.

(3.14)

Using the coefficients (3.14) as boundary conditions for general (real) β and
analytically continuing back to the weakly coupled regime, somewhat surprisingly
reproduces for SU (2) with massless N f < 4 flavors the instanton counting results
of [1] (after appropriate choice of gauge of mass parameters, cf., discussion above),
as first reported in [11, 13].

Similarly, using (3.14) as boundary conditions for the topological string expanded
near a conifold singularity of specific local Calabi-Yau geometries reproduces under
analytic continuation the refined free energy defined via the 5d instanton counting.
However, there is one important subtlety, which is usually not explicitly mentioned
in the literature. Namely, even for a simple Calabi-Yau like local P2 or P1 × P

1, the
boundary conditions (3.14) alone are not sufficient to completely fix the holomorphic
ambiguity. The actual difference comes in at 1-loop. Generally, the 1-loop holomor-
phic ambiguity possesses not only a contribution from the conifold discriminant, but
also from the large volume divisor. For example, the 1-loop ambiguity a(1)(β) of
refined local P2 reads [16]

a(1)(β) = 
(0)(β) log� + κ(β) log z, (3.15)

with � parameterizing the conifold locus, i.e., � := (1 − 27z) and

κ(β) = −
(0)(β) − 2

3
. (3.16)
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Note that in contrast to 
(n)(β), we do not know how to infer κ(β) from first princi-
ples. Rather κ(β) has to be manually chosen appropriately to reproduce the desired
1-loop free energy model by model.

4 Refinement Versus Orbifolds

We observed in the previous section that refinement near a conifold point in moduli
space can be interpreted as a radius deformation of the c = 1 string. The well-
known duality between integer radius deformations and orbifolding suggests that
at least locally and for integer β, refinement can also be given a more geometric
interpretation in terms of a Zβ orbifold. Namely, one may view the refinement in the
B-model (for fixed integer β) near a conifold point in moduli space effectively as a
replacement of the conifold singularity with an Aβ singularity.

There is an apparent puzzle in this proposed orbifold interpretation. In the orbifold
case, we have only an anti-selfdual background, so howdo the coefficients
(β) arise
then? Well, the answer is relatively simple. Under the Zβ action, we do not have just
one, but β massless hypermultiplets contributing to the leading coefficient of (3.13).
This is reflected in the fact that we can decompose the above Schwinger integral
representation as (cf., [36])

Fc=1(ε1, ε2; tc) =
β−1∑
n=0

Fc=1(ε1,−ε1; tn),

with tn := tc −nε2−(ε1+ε2)/2. Hence, the heart of the proposed orbifold interpreta-
tion for integer β lies in the fact that we can trade a single massless hypermultiplet in
the corresponding �-background for β massless hypermultiplets in an anti-selfdual
background.

It is well known that the coefficients 
(2n−2)(1) correspond to the virtual Euler
characteristic of the moduli space of complex curves of genus n, and one might ask
for a similar interpretation for general β. As observed in [37, 38], up to a shift the
coefficients for general β in fact match with the parameterized Euler characteristic
interpolating between the virtual Euler characteristic of the moduli space of real and
complex curves proposed in [39] (see also [40] for a more detailed discussion of this
correspondence). The c = 1 string orbifold interpretation sketched above now allows
us to conjecture a geometric interpretation of this parameterized Euler characteristic
for integer β. Namely, it should correspond to the virtual Euler characteristic of genus
n curves with a Zβ action.

These local facts lead to the important question whether there exists as well a
purely geometric interpretation of the refined partition function at large volume.
That is, we should ask if there exists a target space X̂β such that the refined free
energy corresponds to the count of maps
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�(g) → X̂β. (4.1)

Naively, one would suspect that X̂β corresponds to a free Zβ orbifold of the original
Calabi-Yau X (for integer β). In particular, the only visible effect of such a free
orbifold on the level of the holomorphic anomaly equations would be a mere change
of boundary conditions, as we observed for refinement.

Indeed, one can find for specific models and values of β concrete proof that the
refined partition function is dual to the usual topological string on an orbifold of the
original geometry. The simplest example has been already given in [11], where it was
observed that the quotient of local P1 × P

1 by its obvious Z2 symmetry equals the
refined partition function on the original geometry at β = 2. A similar observation
can be made for orbifolding local P2 by its cyclic Z3 symmetry, which corresponds
to the refined partition function at β = 3 [17].

One should note that the a priori undetermined function κ(β) leaves the free-
dom for different analytic continuations of the Zβ symmetry of the conifold to large
volume. The necessity of such an ambiguity is intuitively clear, as there might ex-
ist at large volume differently acting symmetries, which still yield under analytic
continuation the same leading singular behavior at the conifold point. For instance,
there might be differently acting Z2 orbifolds at large volume, which, due to the high
symmetry of the conifold, all possess the same coefficients 
(n)(2) (the massless
hypermultiplet does not care which symmetry it feels).

In general, however, it is far from clear how, if at all, the Zβ symmetry of the
conifold point in moduli space translates to the large volume regime (i.e., is globally
preserved). In the above two examples, the correspondence between the refined
topological string for particular values of β to the usual topological string on a
different (orbifold) background could be argued to be a consequence of the large
global symmetry group, and therefore somewhat accidental. This still leaves open
the possibility for the existence of a new classical target space X̂β , which could be
obtained for instance in the case of β integer as a suitable partial compactification
of an orbifold of the conifold.

5 Wave-Function Interpretation

The special geometry relation (3.5) between the flat coordinate a and the magnetic
dual aD is identical to the relation between canonically conjugate variables (p, q)

of a classical integrable system. In particular, comparison with the Hamilton-Jacobi
equation H(q, ∂S

∂q ) = 0 shows that in this interpretation, the prepotential F (0)(a)

should be identified with Hamilton’s principal function (or classical action) effecting
the canonical transformation to the action-angle variables.

Consider now the full perturbative partition function Z expanded as a series in gs ,
as in (3.2). We have

Z = f (a, gs, β) e
1
g2s

∫
aD da

, (5.1)
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with f (a, gs, β) some regular series in g2s . This expansion shows that the partition
function should be interpreted as a WKB-type wavefunction in a semi-classical ap-
proximation to a quantization of the original hamiltonian system.

In this context, it is important to keep in mind that quantization is intrinsically
ambiguous, i.e., in general on cannot associate a unique quantumoperator Ĥ to a clas-
sical Hamiltonian H . This is most clearly apparent in the ordering ambiguities that
plague the lifting of functions of the phase-space coordinates to quantum-mechanical
operators. While the semi-classical terms are universal, the higher order terms in the
expansion (5.1) are sensitive to these ambiguities.

The holomorphic anomaly plays in interesting role in this so-called “wavefunc-
tion interpretation” of the topological partition function. In fact, as pointed out by
Witten [7], the holomorphic anomaly equation simply expresses the change of the
wavefunction under a change of polarization of the underlying classical system (i.e.,
the separation of the canonical coordinates into position and momentum variables).
Above, we considered a real polarization, but complex polarizations are natural
as well. In the sense of this wave-function interpretation, the topological partition
function Z is a representation of the true ground state for a particular choice of
polarization.

Witten’s original proposal was made for the partition function of topological
strings (for which the holomorphic anomaly was first discovered), but given the re-
sults of [8, 11] that we have reviewed above, the interpretation is very natural in the
context of gauge theory as well (cf., [41]). An interesting consequence of the fact
that the holomorphic anomaly equation is insensitive to the deformation parameter
β is that the refined partition function corresponds to a family of quantum states
with the same semi-classical expansion. On the other hand, it remains unclear how
to determine the additional conditions that would select the topological partition
function as the unique ground state of the system. To our knowledge, the wavefunc-
tion interpretation has not been successfully exploited for fixing the holomorphic
ambiguity.

Via the AGT conjecture (for which there is now substantial evidence, as reviewed
elsewhere in this volume), quantumLiouville theory provides an answer to the quanti-
zationproblem that is in principle independent from the relation to topological strings,
and has the advantage of being algorithmic. Yet another approach to the quantization
problem are the so-called topological recursions of Eynard-Orantin [42]. A detailed
comparison between these various schemes remains an interesting avenue for further
research.

6 Outlook

We see two major open problems whose solution would constitute significant
progress. The first, more technical in nature, is the direct and explicit calculation
of the gauge theory partition function at strong coupling either via instanton count-
ing or CFT. The results reviewed here, specifically the holomorphic limit of the F (g)
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as t̄D = 0, tD → 0, provide a benchmark for such a calculation. A first indication
that the 2d-4d relation holds beyond weak coupling has been found at hand of an
explicit example recently in [25]. However, the general picture is far from clear. The
perhaps most closely related work from a CFT point of view is [43]. Ultimately, a
simple state like construction, as in [44], for the strongly coupled expansion would
be desirable.

The second major open problem is to obtain a better understanding of the defor-
mation parameter β in the topological string context. The core question is whether
the deformation really involves a newworld-sheet theory (for instance, with a second
string coupling, in case the extra parameter is viewed as an infinitesimal coupling
constant), or whether it might be sufficient to view the β-degree of freedom entirely
as a geometric deformation of the target space of the usual topological string. In this
review, we somewhat focussed on the latter point of view.

Thoughwe did not discuss them in this review, it has to bementioned that there are
several explicit proposals in the literature [15, 27, 45, 46], supporting the possibility
for an actual world-sheet interpretation with two infinitesimal coupling constants. In
the mathematical formulation of the perturbative topological string (Gromov-Witten
theory), this might involve a sort of refined count of holomorphic maps [9, 27]

�(g1,g2) → X, (6.1)

withworldsheets� of genus g = g1+g2, carrying an additionalZ2 valued decoration
of the handles.

Finally, another proposed interpretation involves replacing the B-model geometry
by a sort of “quantum geometry” Ỹq (encoding one of the parameters in a suitable
parameterization). In this approach the tree-level special geometry depends explicitly
on the extra parameter [16, 47]. This is analogous to the replacement of the spectral
curve with a “quantum” spectral curve in the β-deformed matrix models reviewed
in chapter [V:5], and the “quantization” of Seiberg-Witten theory outlined in chapter
[V:12].

One should note that the quantum geometry Ỹq is not directly related to the
wave-function interpretation of the partition function discussed in Sect. 5 (at least
the precise relation is not known). While in the former we quantize the underlying
curve, in the latter we quantize the periods. In this sensewe can understand the refined
topological string also as a double quantization. For Ỹq the ordinary special geometry
relation is lifted to a so-called quantum special geometry relation and the ordinary
periods to quantum periods (depending on the extra parameter). Quantizing similarly
as in Sect. 5 the quantum periods, will again lead to the holomorphic anomaly equa-
tion, now for the (double) quantum states.

While neither proposal is entirely convincing in the present form, a possible con-
nection between the two proposed target space deformations might even be more
tantalizing. Optimistically, it might indicate a new type of classical-quantum duality
relating the topological string on X̂β with that on Ỹq . If in addition a refined topolog-
ical string exists, in the sense of a deformed world-sheet theory, this duality would
extend to a triality. This, at least, is the inspiration that we take away.

http://dx.doi.org/10.1007/978-3-319-18769-3_5
http://dx.doi.org/10.1007/978-3-319-18769-3_12


B-Model Approach to Instanton Counting 465

Acknowledgments We would like to thank J. Teschner for the invitation to participate in this
joint review effort, his hard work and patience. We thank all other contributors for their valuable
comments and input. The work of D.K. has been supported in part by a Simons fellowship, the
Berkeley Center for Theoretical Physics and the National Research Foundation of Korea Grant No.
2012R1A2A2A02046739. The research of J.W. is supported in part by an NSERC discovery grant
and a Tier II Canada Research Chair.

References

[1] Nekrasov, N.A.: Seiberg-Witten prepotential from instanton counting. Adv. Theor. Math.
Phys. 7, 831 (2004). arXiv:hep-th/0206161

[2] Kachru, S., Vafa, C.: Exact results for N = 2 compactifications of heterotic strings. Nucl.
Phys.B450, 69 (1995). arXiv:hep-th/9505105.Kachru, S., Klemm,A., Lerche,W.,Mayr, P.,
Vafa, C.: Nonperturbative results on the point particle limit of N=2 heterotic string compact-
ifications. Nucl. Phys. B459, 537 (1996). arXiv:hep-th/9508155. Katz, S.H., Klemm, A.,
Vafa, C.: Geometric engineering of quantum field theories. Nucl. Phys. B497, 173 (1997).
arXiv:hep-th/9609239. Katz, S., Mayr, P., Vafa, C.: Mirror symmetry and exact solution of
4-D N=2 gauge theories: 1. Adv. Theor. Math. Phys. 1, 53 (1998). arXiv:hep-th/9706110

[3] Hellerman, S., Orlando, D., Reffert, S.: String theory of the omega deformation. JHEP
1201, 148 (2012). arXiv:1106.0279 [hep-th]

[4] Antoniadis, I., Gava, E., Narain, K.S., Taylor, T.R.: Topological amplitudes in string theory.
Nucl. Phys. B413, 162 (1994). arXiv:hep-th/9307158

[5] Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Kodaira-Spencer theory of gravity and
exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311 (1994).
arXiv:hep-th/9309140

[6] Shifman, M.A. Vainshtein, A.I.: Solution of the anomaly puzzle in SUSY gauge theories
and the Wilson operator expansion. Nucl. Phys. B277, 456 (1986) [Sov. Phys. JETP 64,
428 (1986)] [Zh. Eksp. Teor. Fiz. 91, 723 (1986)]

[7] Witten, E.: Quantum background independence in string theory. arXiv:hep-th/9306122
[8] Huang, M.-x., Klemm, A.: Holomorphic anomaly in gauge theories and matrix models.

JHEP 0709, 054 (2007). arXiv:hep-th/0605195
[9] Hollowood, T.J., Iqbal, A., Vafa, C.: Matrix models, geometric engineering and elliptic

genera. JHEP 0803, 069 (2008). arXiv:hep-th/0310272. Iqbal, A., Kozcaz, C., Vafa, C.:
The refined topological vertex. JHEP 0910, 069 (2009). arXiv:hep-th/0701156

[10] Gukov, S., Schwarz, A.S., Vafa, C.: Khovanov-Rozansky homology and topological strings.
Lett. Math. Phys. 74, 53 (2005). arXiv:hep-th/0412243

[11] Krefl, D., Walcher, J.: Extended holomorphic anomaly in gauge theory. Lett. Math. Phys.
95, 67 (2011). arXiv:1007.0263 [hep-th]

[12] Huang, M.-x., Klemm, A.: Direct integration for general � deformed B-model for rigid
N = 2 backgrounds. arXiv:1009.1126 [hep-th]

[13] Krefl, D.,Walcher, J.: Shift versus extension in refined partition functions. arXiv:1010.2635
[hep-th]

[14] Krefl, D., Walcher, J.: Unpublished (2010)
[15] Huang, M.-x., Kashani-Poor, A.-K., Klemm, A.: The� deformed B-model for rigid N = 2

theories. Ann. Henri Poincare 14, 425 (2013). arXiv:1109.5728 [hep-th]
[16] Aganagic, M., Cheng, M.C.N., Dijkgraaf, R., Krefl, D., Vafa, C.: Quantum geometry of

refined topological strings. JHEP 1211, 019 (2012). arXiv:1105.0630 [hep-th]
[17] Krefl, D.: unpublished (2012)
[18] Klemm, A.: On the geometry behind N=2 supersymmetric effective actions in four-

dimensions. In: Trieste 1996, High Energy Physics and Cosmology, pp. 120–242.
arXiv:hep-th/9705131

http://arxiv.org/abs/hep-th/0206161
http://arxiv.org/abs/hep-th/9505105
http://arxiv.org/abs/hep-th/9508155
http://arxiv.org/abs/hep-th/9609239
http://arxiv.org/abs/hep-th/9706110
http://arxiv.org/abs/1106.0279
http://arxiv.org/abs/hep-th/9307158
http://arxiv.org/abs/hep-th/9309140
http://arxiv.org/abs/hep-th/9306122
http://arxiv.org/abs/hep-th/0605195
http://arxiv.org/abs/hep-th/0310272
http://arxiv.org/abs/hep-th/0701156
http://arxiv.org/abs/hep-th/0412243
http://arxiv.org/abs/1007.0263
http://arxiv.org/abs/1009.1126
http://arxiv.org/abs/1010.2635
http://arxiv.org/abs/1109.5728
http://arxiv.org/abs/1105.0630
http://arxiv.org/abs/hep-th/9705131


466 D. Krefl and J. Walcher

[19] Mayr, P.: Geometric construction of N = 2 gauge theories. Fortsch. Phys. 47, 39 (1999).
arXiv:hep-th/9807096

[20] Kontsevich, M.: Enumeration of rational curves via torus actions. arXiv:hep-th/9405035
[21] Aganagic, M., Klemm, A., Marino, M., Vafa, C.: The topological vertex. Commun. Math.

Phys. 254, 425 (2005). arXiv:hep-th/0305132
[22] Klemm, A., Marino, M., Theisen, S.: Gravitational corrections in supersymmetric gauge

theory and matrix models. JHEP 0303, 051 (2003). arXiv:hep-th/0211216
[23] Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Holomorphic anomalies in topological

field theories. Nucl. Phys. B405, 279 (1993). arXiv:hep-th/9302103
[24] Alday, L.F., Gaiotto, D., Tachikawa, Y.: Liouville correlation functions from four-

dimensional gauge theories. Lett. Math. Phys. 91, 167 (2010). arXiv:0906.3219 [hep-th]
[25] Krefl, D.: Penner type ensemble for gauge theories revisited. arXiv:1209.6009 [hep-th]
[26] Krefl, D., Shih, S.-Y.D.: Holomorphic anomaly in gauge theory on ALE space.

arXiv:1112.2718 [hep-th]
[27] Prudenziati, A.: Double genus expansion for general� background. arXiv:1204.2322 [hep-

th]
[28] Okuda, T., Pestun, V.: On the instantons and the hypermultiplet mass of N=2* super Yang-

Mills on S4. JHEP 1203, 017 (2012). arXiv:1004.1222 [hep-th]
[29] Walcher, J.: Extended holomorphic anomaly and loop amplitudes in open topological string.

Nucl. Phys. B817, 167 (2009). arXiv:0705.4098 [hep-th]
[30] Walcher, J.: Evidence for tadpole cancellation in the topological string. Commun. Num.

Theor. Phys. 3, 111 (2009). arXiv:0712.2775 [hep-th]
[31] Huang, M.-x., Klemm, A., Quackenbush, S.: Topological string theory on compact

Calabi-Yau: modularity and boundary conditions. Lect. Notes Phys. 757, 45 (2009).
arXiv:hep-th/0612125

[32] Ghoshal, D., Vafa, C.: C = 1 string as the topological theory of the conifold. Nucl. Phys.
B453, 121 (1995). arXiv:hep-th/9506122

[33] Haghighat, B., Klemm, A., Rauch,M.: Integrability of the holomorphic anomaly equations.
JHEP 0810, 097 (2008). arXiv:0809.1674 [hep-th]

[34] Vafa, C.: A stringy test of the fate of the conifold. Nucl. Phys. B447, 252 (1995).
arXiv:hep-th/9505023

[35] Gross, D.J., Klebanov, I.R.: One-dimensional string theory on a circle. Nucl. Phys. B344,
475 (1990)

[36] Gopakumar, R., Vafa, C.: Topological gravity as large N topological gauge theory. Adv.
Theor. Math. Phys. 2, 413 (1998). arXiv:hep-th/9802016

[37] Krefl, D., Walcher, J.: ABCD of beta ensembles and topological strings. JHEP 1211, 111
(2012). arXiv:1207.1438 [hep-th]

[38] Krefl, D., Schwarz, A.: Refined Chern-Simons versus Vogel universality. J. Geom. Phys.
74, 119 (2013). arXiv:1304.7873 [hep-th]

[39] Goulden, I.P., Harer, J.L., Jackson, D.M.: A geometric parametrization for the virtual Euler
characteristic of the moduli space of real and complex algebraic curves. Trans. Am. Math.
Soc. 353, 4405 (2001)

[40] Chair, N.: Generalized Penner model and the Gaussian beta ensemble. Nucl. Phys. B (in
press)

[41] Aganagic, M., Bouchard, V., Klemm, A.: Topological strings and (almost) modular forms.
Commun. Math. Phys. 277, 771 (2008). arXiv:hep-th/0607100

[42] Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. Commun.
Number Theory Phys. 1, 347 (2007). arXiv:math-ph/0702045

[43] Gaiotto, D., Teschner, J.: Irregular singularities in Liouville theory and Argyres-Douglas
type gauge theories, I. JHEP 1212, 050 (2012). arXiv:1203.1052 [hep-th]

[44] Gaiotto, D.: Asymptotically free N=2 theories and irregular conformal blocks.
arXiv:0908.0307 [hep-th]

http://arxiv.org/abs/hep-th/9807096
http://arxiv.org/abs/hep-th/9405035
http://arxiv.org/abs/hep-th/0305132
http://arxiv.org/abs/hep-th/0211216
http://arxiv.org/abs/hep-th/9302103
http://arxiv.org/abs/0906.3219
http://arxiv.org/abs/1209.6009
http://arxiv.org/abs/1112.2718
http://arxiv.org/abs/1204.2322
http://arxiv.org/abs/1004.1222
http://arxiv.org/abs/0705.4098
http://arxiv.org/abs/0712.2775
http://arxiv.org/abs/hep-th/0612125
http://arxiv.org/abs/hep-th/9506122
http://arxiv.org/abs/0809.1674
http://arxiv.org/abs/hep-th/9505023
http://arxiv.org/abs/hep-th/9802016
http://arxiv.org/abs/1207.1438
http://arxiv.org/abs/1304.7873
http://arxiv.org/abs/hep-th/0607100
http://arxiv.org/abs/math-ph/0702045
http://arxiv.org/abs/1203.1052
http://arxiv.org/abs/0908.0307


B-Model Approach to Instanton Counting 467

[45] Antoniadis, I., Hohenegger, S., Narain, K.S., Taylor, T.R.: Deformed topological partition
function and Nekrasov backgrounds. Nucl. Phys.B838, 253 (2010). arXiv:1003.2832 [hep-
th]. Antoniadis, I., Florakis, I., Hohenegger, S., Narain, K.S., Zein Assi, A.: Worldsheet
realization of the refined topological string. Nucl. Phys. B875, 101 (2013). arXiv:1302.6993
[hep-th]. Antoniadis, I., Florakis, I., Hohenegger, S., Narain, K.S., Zein Assi, A.: Non-
perturbative Nekrasov partition function from string theory. arXiv:1309.6688 [hep-th]

[46] Nakayama, Y., Ooguri, H.: Comments on worldsheet description of the omega background.
Nucl. Phys. B856, 342 (2012). arXiv:1106.5503 [hep-th]

[47] Mironov,A.,Morozov,A.:Nekrasov functions and exact Bohr-Zommerfeld integrals. JHEP
1004, 040 (2010). arXiv:0910.5670 [hep-th]

http://arxiv.org/abs/1003.2832
http://arxiv.org/abs/1302.6993
http://arxiv.org/abs/1309.6688
http://arxiv.org/abs/1106.5503
http://arxiv.org/abs/0910.5670

	Contents
	Exact Results on mathcalN=2 Supersymmetric Gauge Theories
	1 Background, History and Context
	1.1 Strong Coupling Behavior of Gauge Theories
	1.2 Electric-Magnetic Duality Conjectures
	1.3 Seiberg-Witten Theory
	1.4 Localization Calculations of SUSY Observables
	1.5 Instanton Calculus

	2 New Exact Results on mathcalN=2 Supersymmetric Field Theories
	2.1 Localisation on Curved Backgrounds
	2.2 Relation to Conformal Field Theory
	2.3 Relation to Topological Quantum Field Theory

	3 What Are the Exact Results Good for?
	3.1 Quantitative Verification of Electric-Magnetic Duality Conjectures
	3.2 Precision Tests of AdS-CFT Duality
	3.3 Evidence for the Existence of Six-Dimensional Theories with (2,0)-Supersymmetry
	3.4 Towards Understanding Non-Lagrangian Theories
	3.5 Interplay Between (topological) String Theory  and Gauge Theory

	4 What Is Going to Be Discussed in This Volume?
	5 What Is Missing?
	5.1 BPS Spectrum, Moduli Spaces of Vacua  and Hitchin Systems
	5.2 Relations to Integrable Models
	5.3 Other Approaches to the AGT-Correspondence
	5.4 Less Supersymmetry

	References

	Families of mathcalN=2 Field Theories
	1 Lagrangian Theories
	2 General Properties of calN=2 Field Theories
	2.1 Parameter Spaces of Vacua and S-Dualities
	2.2 Moduli Spaces of Vacua
	2.3 Seiberg-Witten Theory
	2.4 Seiberg-Witten Curves
	2.5 The Coulomb Branch of Lagrangian Gauge Theories

	3 Theories in the Class calS
	3.1 A1 Theories
	3.2 General ADE Theories

	4 Calabi-Yau Compactifications
	References

	Hitchin Systems in mathcalN=2 Field Theory
	1 Introduction
	2 mathcalN=2 Theories and Their Circle Compactification
	2.1 mathcalN=2 Theories in the IR and Integrable Systems
	2.2 Compactification of mathcalN=2 Theories on S1
	2.3 Holomorphic Functions and Line Defects
	2.4 Hyperholomorphic Bundles and Surface Defects
	2.5 Line Defects in the IR
	2.6 Asymptotics

	3 Theories of Class S and Hitchin Systems
	3.1 Theories of Class S
	3.2 Line Defects
	3.3 Interfaces Between Surface Defects
	3.4 Line Defects in the IR
	3.5 (Non)abelianization
	3.6 Asymptotics
	3.7 Operator Products and their Quantization

	4 Basics on the Hitchin System
	4.1 Harmonic Bundles
	4.2 Higgs Bundles and Flat Bundles
	4.3 Moduli Spaces
	4.4 Hyperkahler Structure
	4.5 Universal Bundle
	4.6 Spectral Curves and Hitchin Fibration
	4.7 Allowing Singularities

	References

	A Review on Instanton Counting  and W-Algebras
	1 Introduction
	1.1 Instanton Partition Function
	1.2 Relation to W-Algebras

	2 Gauge Theory and the Instanton Moduli Space
	2.1 Instanton Moduli Space
	2.2 Path Integral Around Instanton Configurations

	3 U(N) Gauge Group on mathbbR4 
	3.1 Toy Models
	3.2 Instanton Partition Function: Generalities
	3.3 Instanton Partition Function: Unitary Gauge Groups 
	3.4 A Mathematical Reformulation
	3.5 Physical Interpretation of the Reformulation
	3.6 W-Algebra Action and the Sixth Direction
	3.7 String Theoretical Interpretations

	4 Other Gauge Groups
	4.1 Classical Gauge Groups
	4.2 Effect of Finite Renormalization
	4.3 Exceptional Gauge Groups
	4.4 Relation to W-Algebras

	5 Other Spaces
	5.1 With a Surface Operator
	5.2 On Orbifolds
	5.3 On Non-compact Toric Spaces

	References

	β-Deformed Matrix Models and 2d/4d Correspondence
	1 Introduction
	2 Integral Representation of Conformal Block
	2.1 β-Deformed Matrix Model
	2.2 Quiver Matrix Model and Higher Rank Gauge Theory
	2.3 Higher Genus Case

	3 Large N Limit
	3.1 Loop Equation
	3.2 Large N Limit and Seiberg-Witten Theory
	3.3 Higher Genus Case

	4 Nekrasov-Shatashvili Limit
	5 Finite N Analysis
	5.1 Virasoro Conformal Block
	5.2 Finite N Matrix Model

	6 Conclusion and Discussion
	References

	Localization for mathcalN=2 Supersymmetric Gauge Theories in Four Dimensions
	1 Introduction
	2 mathcalN=2 Supergravity
	2.1 Gravity Multiplet
	2.2 Vector Multiplet

	3 Generalized Conformal Killing Spinor
	3.1 Topologically Twisted Theories
	3.2 Omega Background
	3.3 Conformal Killing Spinor
	3.4 Local T2-Bundles
	3.5 Four-Sphere
	3.6 Superconformal Index
	3.7 Other Geometries

	4 Localization
	4.1 Omega Background
	4.2 Supersymmetric Configurations on S4ε1,ε2
	4.3 Hypermultiplets
	4.4 Open Problem

	References

	Line Operators in Supersymmetric Gauge Theories and the 2d-4d Relation
	1 Introduction
	2 Charges of Line Operators
	2.1 Definition and Charges of 4d Line Operators
	2.2 Correspondence of Charges and Curves
	2.3 Spectrum of Line Operators and Discrete Theta Angles

	3 Exact Results for Line Operators by Localization
	3.1 Localization for Wilson loops on mathbbS-.44 
	3.2 Instanton/Monopole Correspondence
	3.3 Localization For 't Hooft Loops on mathbbS-.44
	3.4 Other Geometries
	3.5 1/8-BPS Wilson Loops in mathcalN=4 Theory and the 2d Yang-Mills

	4 CFT Techniques for Line Operators 
	4.1 Verlinde Operators
	4.2 Comparison with Gauge Theory
	4.3 Higher Rank Gauge Groups and Toda Theories

	5 Line Operator Algebras and the Hitchin Moduli Space
	5.1 Operator Product Expansion from SUSY Quantum Mechanics
	5.2 Non-commutative Algebra of Line Operators
	5.3 Quantization of the Hitchin Moduli Space

	References

	Surface Operators
	1 What Is a Surface Operator?
	1.1 Construction of Surface Operators
	1.2 Classification of Surface Operators
	1.3 Surface Operators in 4d mathcalN=2 Gauge Theory
	1.4 Their Role in AGT Correspondence

	2 Surface Operators from Higher Dimensions
	2.1 Brane Constructions
	2.2 Geometric Engineering
	2.3 Surface Operators and BPS States
	2.4 Relation to 3d-3d Correspondence and Integrable Systems

	3 Surface Operators and Line Operators
	3.1 Line Operators and Hecke Algebras

	4 Superconformal Index
	5 Surface Operators as Order Parameters
	References

	The Superconformal Index of Theories  of Class S
	1 Introduction
	2 The Superconformal Index
	2.1 Free Field Combinatorics
	2.2 Gauging

	3 Interlude: Duality and the Index of E6 SCFT
	4 Derivation of the Index for Theories of Class calS
	4.1 Class calS
	4.2 TQFT Interpretation of the Index
	4.3 Bootstrapping the Index
	4.4 Higgsing: Reduced Punctures and Surface Defects
	4.5 Reduction to 3d

	5 Integrable Models and Limits of the Index
	6 Some Generalizations
	7 Chiral Algebras and the Schur Index
	8 Some Open Questions
	References

	A Review on SUSY Gauge Theories on S3
	1 Introduction
	2 3D AGT Relation
	2.1 Janus and S-Duality Domain Walls
	2.2 Example: calN=2ast SYM
	2.3 A 3D Picture

	3 3D Partition Function
	3.1 3D calN=2 SUSY Theories
	3.2 SUSY Localization
	3.3 Partition Function on the Round Sphere
	3.4 Partition Function on Ellipsoids
	3.5 Loop Observables

	4 4D Superconformal Index
	4.1 4D calN=1 SUSY Theories
	4.2 Path Integral Formulation of the Index
	4.3 Evaluation of the Index
	4.4 Squashed S3 from Twisted Compactifications

	References

	3d Superconformal Theories  from Three-Manifolds
	1 The 6d Setup
	1.1 Duality Walls

	2 3d Theories, SL(K) Connections, and Chern-Simons
	2.1 Quantization and 3d-3d Relations
	2.2 Connection to AGT

	3 Top-Down Construction
	3.1 Seiberg-Witten Domain Walls

	4 Bottom-Up Construction: Symplectic Gluing
	4.1 Framed 3-Manifolds and Framed Flat Connections
	4.2 The Tetrahedron Theories
	4.3 Gluing Together Theories

	5 Examples
	5.1 2--3 Move and Mirror Symmetry
	5.2 The Basic RG Wall

	References

	Supersymmetric Gauge Theories, Quantization of mathcalMflat,  and Conformal Field Theory
	1 Introduction
	2 Theories of Class mathcalS
	2.1 A1 Theories of Class mathcalS
	2.2 Realisation of S-Duality
	2.3 Gauge Theories mathcalGC on Ellipsoids
	2.4 Supersymmetric Loop Operators
	2.5 Relation to Quantum Liouville Theory

	3 Reduction to Quantum Mechanics
	3.1 Localization as Reduction to Zero Mode Quantum Mechanics
	3.2 S-Duality of Expectation Values

	4 The Algebra of Loop Operators
	4.1 The Algebra of Supersymmetric Loop Operators
	4.2 UV Versus IR Loop Operators
	4.3 Relation with Moduli Spaces of Flat Connections
	4.4 Quantization
	4.5 Back to the Ellipsoid

	5 Quantization of Moduli Spaces of Flat Connections
	5.1 Quantization of the Fock-Goncharov Coordinates
	5.2 Quantization of the Trace Functions
	5.3 Representations Associated to Pants Decompositions

	6 Relation to Liouville Theory
	6.1 Complex-Analytic Darboux Coordinates for mathcalMflat0(C)
	6.2 Quantization of Complex-Analytic Darboux Coordinates for mathcalMflat0(C)
	6.3 Geometric Definition of the Conformal Blocks
	6.4 Deformations of the Complex Structure of C
	6.5 Conformal Blocks Versus Function on mathcalT0,n
	6.6 Verlinde Loop Operators
	6.7 Liouville Conformal Blocks as Solutions  to the Riemann-Hilbert Problem
	6.8 The Nekrasov-Shatashvili Limit
	6.9 Quantization of Seiberg-Witten Theory

	References

	Gauge/Vortex Duality and AGT
	1 Introduction
	2 Background
	2.1 4d Gauge Theory
	2.2 2d Liouville CFT
	2.3 The Correspondence

	3 AGT and Large N Duality
	3.1 The Physical and the Topological String 
	3.2 Large N Duality in Topological String
	3.3 Topological D-Branes and Liouville Correlators
	3.4 Discussion

	4 Gauge/Vortex Duality
	4.1 Higgs to Coulomb Phase Transition and Vortices
	4.2 Gauge/Vortex Duality
	4.3 Going up a Dimension

	5 Building up Triality
	5.1 The 5d Gauge Theory calT5d
	5.2 The Vortex Theory calV3d
	5.3 q-Liouville

	6 Gauge/Liouville Triality
	6.1 q-Liouville and calV3d 
	6.2 calV3d and calT5d: Gauge/Vortex Duality 

	References

	B-Model Approach to Instanton Counting
	1 Introduction and Key Ideas
	2 Geometric Engineering
	3 B-Model
	4 Refinement Versus Orbifolds
	5 Wave-Function Interpretation
	6 Outlook
	References




