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Preface

The concrete rectangular thin plate is widely used in civil engineering field, such as
rectangular liquid-storage structure, shear wall, concrete roof plate, airport runway
and concrete rigid pavement. According to the boundary of the rectangular thin
plate, the rectangular thin plate can be generally divided into two types, with four
edges supported and with free edges. First, due to the thermal inertia of concrete
material itself, concrete thin plate under the effect of non-uniform temperature, a
larger temperature difference will be formed in the internal structure so that tem-
perature stress cannot be ignored. Due to the low tensile strength of concrete, if
effective measures are not taken to eliminate or resist the temperature stress, the
cracks in concrete structures will be caused after the structures are shortly used, and
normal use of the structure will be affected. Seriously, structural safety accidents
will happen. Second, the instability of concrete thin plate structure can be caused by
in-plane compression load, also can be caused by thermal load, if the internal
temperature of concrete thin plate structure is too high, instability and failure of
concrete structures will be led to. Finally, the vibration problem of concrete
structure under the action of mechanical load is drawing more attention nowadays,
and few people pay attention to the vibration because of thermal load. In fact, if the
existence of the thermal environment vibration is ignored, the calculation error of
structure natural frequency and deformation can be caused, so that frequency and
the deformation in structure design can overestimated or underestimated.

Since 1998, I have taken lots of design tasks of the rectangular thin plate
structure, and found that the cracks of the concrete plate will appear in different
degrees under the action of temperature. Therefore, this book describes the thermal
bending, thermal buckling, and thermal vibration of thin plates, which have
important engineering significance. This book introduces the thermal bending of
rectangular thin plate with four edges supported and with free boundary rectangular
thin plate, the thermal buckling of concrete rectangular thin plate and thermal
vibration with four edges supported, which is the sublimation and summary of my
research results about thin plate structure for many years, the publication of the
book is bound to have important theoretical significance and engineering practice
effect in the civil engineering and mechanical engineering, etc.
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The whole book is divided into five chapters. Chapter 1 is the introduction,
which mainly introduces the basic situation and the necessity of the research on the
thermodynamics of the rectangular thin plate; Chap. 2 is the thermal bending of the
rectangular thin plate with four edges supported. According to the common rect-
angular thin plate with four edges supported in engineering, the concrete rectan-
gular thin plate is divided into six types, which is four edges simply supported, four
edges clamped, three edges clamped and one edge simply supported, one edge
clamped and three edges simply supported, two adjacent edges clamped and two
adjacent edges simply supported, two opposite edges clamped and two opposite
edges simply supported, and the thermal bending of the rectangular thin plate is
introduced in detail; Chap. 3 describes the thermal bending of rectangular thin plate
with free boundary. The thermal bending problem about six types of concrete
rectangular thin plate are considered, namely, three edges simply supported and one
edge free, three edges clamped and one edge free, two opposite edges clamped one
edge simply supported and one edge free, two adjacent edges clamped one edge
simply supported and one edge free, two opposite edges simply supported one edge
clamped and one edge free, two adjacent edges simply supported one edge clamped
and one edge free; in Chap. 4, the thermal buckling of concrete rectangular thin
plate is introduced. The thermal buckling of concrete rectangular thin plate with
four sides simply supported is discussed. Chapter 5 is about the thermal vibration of
concrete rectangular thin plate structure, and the free and forced vibration of the
rectangular thin plate with four sides simply supported is introduced.

For people engaging in scientific research, engineering design and construction
technology, this book can provide important mechanics concepts, theoretical cal-
culation method and calculation table when analyzing the crack, deformation,
stability, comfort design of the concrete rectangular thin plate structure. For the
relevant professional researchers (including undergraduates and graduates) in uni-
versities and in research institutes, this book can be used as a reference material for
concrete structures, thin plate elastic mechanics.

Before the book will imminently be published, the author would like to extend
sincere thanks to people who support and care related research projects and the
organization workers of publishing. Specially, thanks to National Natural Science
Foundation Committee! Thanks to selfless care of Prof. Yong feng Du in Lanzhou
University of Technology! Thanks to Dr. Jing Wei and Xinhai Zhou, Masters Xiao
yan Zhang, Jia Chen, De Li, Bo Liu and Liang Ma! They have made an indis-
pensable contribution for publication and compilation of this book.

Although the book has made perfect scientific research achievements in the
thermodynamic theory problems, for the thermal bending, thermal vibration and
thermal buckling with free boundary of the concrete thin rectangular plates, the
results need further validation, and the experimental study on thermal vibration and
thermal buckling problems still need to be further designed. In order to make the
research results widely applicable in design and construction of thin plate structures
in civil engineering, the support from professional and technical personnel of civil
engineering, engineering mechanics and mechanical engineering is vigorously
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needed. The book will inevitably have some defects in the theoretical analysis, or
could even have some mistakes; criticism and comments from the researchers and
readers will be appreciated and please send your suggestions to my e-mail
chengxuansheng@gmail.com. The author will very appreciate your help.

Lanzhou, China Xuansheng Cheng
November 2016
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Chapter 1
Introduction

Abstract According to rectangular thin plates with or without the free boundary,
the rectangular thin plate can be divided into the rectangular thin plates supported
on four sides and the rectangular thin plates with free boundary. The research
progress of thermal bending, thermal buckling and thermal vibration of rectangular
thin plate is introduced in this chapter.

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2018
X. Cheng, Thermal Elastic Mechanics Problems of Concrete Rectangular
Thin Plate, Springer Tracts in Civil Engineering,
DOI 10.1007/978-981-10-4472-4_1
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1.1 The Basic Status of Rectangular Thin Plate
Thermal Problems

The study of temperature effect problem began in 1835 [1]. When giving a speech
in French Academy of Science, the French Du Hammel pointed out that for the first
time: when the temperature changes, one part of the object will be subject to the
constraints of another part, and the object inside can produce thermal stress. The
stress is superposed by the two parts, one part of stress is pressure proportional to
the temperature change and equal in all directions, and the other part of stress is
produced by strain while the temperature is constant. The derived linear thermal
stress theory was firstly advocated by the German Neumann in his book in 1841.
After the Second World War, the rapid development of thermal power, nuclear
power, machinery manufacturing, chemical industry, aircraft, spacecraft, rocket
technology and other modern science and technology greatly promoted the research
and application of the thermal stress theory [2]. After more than one hundred years
of research, thermal elastic mechanics has grown from 1960s to 1970s. Today, there
are many literatures about the thermal bending, thermal buckling and thermal
vibration [1−3].

1.1.1 Thermal Bending of Rectangular Thin Plate

The temperature internal force and deflection calculation formula of the rectangular
thin plate with four edges simply supported and four edges clamped were given by
Ugural in their researches [1−9], Jane and Hong analyzed thermal bending of
orthogonal anisotropic laminated plate with four edges simply supported by using
the Generalized Differential Quadrature (GDQ) method [10]. Shen analyzed non-
linear thermal bending response of the functionally graded rectangular plate with
four edges simply supported under lateral load [11]. Zenkour obtained the analytical
solution of the orthogonal laminated plates with four edges simply supported under
the thermal mechanical load [12]. Liu et al. gave the internal force calculation tables
of the rectangular thin plate with four edges simply supported, three edges clamped
and one edge simply supported or free in their literature [13]. To rectangular thin
plates with other boundary conditions, there are no reports in the existing literature.

To calculate the stress and deformation of the rectangular thin plate under the
thermal load, temperature field is firstly analyzed. Strictly speaking, the distribution
of temperature field is very complicated, and it is a function of three-dimensional
coordinates. But for thin plate, as the thickness of the plate is very small in size
compared with the other two directions, so for the sake of simplicity, temperature is
thought to change along the thickness direction only. People had initially taken the
uniform temperature distribution field as the calculation basis, then, began to

2 1 Introduction



consider the temperature gradient of concrete structure (temperature difference) for
the constant crack damage of concrete structure. At first, it was thought that the
temperature distribution was linear. Later, with the progress of the experimental
research, people realized that the concrete structure of the temperature internal
distribution was nonlinear [14]. Therefore, in engineering calculation, the British
Stephenson analyzed the temperature distribution of the concrete structure along the
direction of wallboard thickness by using exponential function Tx ¼ A0e�ax based
on surface temperature amplitude, where A0 is the surface temperature fluctuation.
New Zealander Priestley also obtained the nonlinear distribution rules by the model
test study of Auckland new market viaduct, and his expression is Tx ¼ T0e�ax,
where T0 is the temperature difference between the inside and outside surface, and
index a is chosen as 10. German scholars Fritz Leonhardt and Kehlbeck et al. also
identified the nonlinear temperature field distribution rules in their works. Guo and
Shi researched reinforced concrete plate temperature field, and proved that the
temperature changes along the plate thickness was a nonlinear change but not much
[15]. The author had simplified the three-dimensional heat conduction equation to
one-dimensional heat conduction equation, and obtained the nonlinear parabolic
temperature field distribution rules combining the boundary condition, and analyzed
and discussed the temperature stress of statically indeterminate structures [16−18].

1.1.2 Thermal Buckling of Rectangular Thin Plate

Gossard et al. studied the thermal buckling problems of rectangular thin plate [19].
Klosner and Forray studied the buckling of temperature field under the condition of
absolutely uniformly distributed in space [20]. Prabhu and Durvasula researched the
thermal buckling problems of rectangular plate with two opposite edges clamped
using Galerkin method [21]. Uemura studied the buckling behavior of non-uniform
temperature field [22]. Sadovský analyzed the thermal buckling of compressed
square plate under non-uniform temperature field with simply supported [23]. Shen
and Lin studied the post buckling behavior of thin rectangular plate [24]. Murphy
and Ferreira analyzed thermal buckling of aluminum plate with four edges clamped
using the energy principle and the test [25]. Wu et al. studied the buckling behavior
of functionally gradient rectangular plate, and obtained the calculating formula of
the critical buckling temperature [26]. Gong calculated buckling uniform temper-
ature field of thin rectangular plate [27]. Jones analyzed thermal buckling of the
uniaxial symmetry orthogonal fiber-reinforced laminates with four edges simply
supported under uniform heating [28]. Morimoto et al. analyzed thermal buckling
of a functionally graded rectangular plate under partially thermal [29]. Kabir et al.
analyzed thermal buckling response of skew symmetric laminated plates with four
edges clamped [30].
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1.1.3 Thermal Vibration of Rectangular Thin Plate

At present, with the rapid development of science and technology and wide
application in engineering, many studies on the thermal vibration behavior of thin
plate have been carried out. Chang et al. analyzed the nonlinear free vibration of
heated orthotropic anisotropic rectangular thin plate [31, 32]. Ding et al. studied
free vibration of cross isotropic rectangular thin plate under thermal environment
with simply supported edges [33]. Huang et al. analyzed the vibration character-
istics of Functionally Grated Materials plate under thermal environment [34−37].
Hong and Jane studied the shear deformation of vibration under temperature load
by using the Generalized Differential Quadrature (GDQ) method [38]. He et al.
made theoretical analysis on concrete plate dynamic response under blast loading,
and obtained the theoretical calculation formula of large plastic deformation of
concrete square plates with edges clamped [39]. Niu analyzed the coupled vibration
of elastic thin plate under thermal environment [40].

1.2 The Necessity of Concrete Rectangular Thin Plate

When concrete rectangular thin plates are under the solar radiation, sudden cooling
(such as sudden cold at night and cold current lowering temperature) or temperature
difference effect caused by other temperature, the temperature of the structure surface
rises of falls rapidly. Due to the thermal inertia of the concrete material itself, most of
structure internal region is still in the state of original temperature, thus a large
temperature gradient (hereinafter referred to as the “temperature difference”) in the
thickness direction of the plate is formed [41]. The deformation caused by temper-
ature difference effects is restricted by the redundant internal constraints of concrete
thin plate structure [42], so the temperature stress cannot be ignored. Generally
speaking, when the engineering structure is statically determinate structure or free
body, the temperature difference cannot cause temperature stress. But rectangular thin
plate structures are general statically indeterminate structure, therefore, the temper-
ature will inevitably lead to temperature tension on the lower temperature side of the
plate. So, under the effect of the temperature or sunshine, cracks will occur soon after
use due to the low tensile strength of concrete, and the normal use of the structure will
be affected; or even safe incidents of the structure will occur.

Strictly speaking, concrete is an anisotropic and heterogeneous composite
material [43]. But in fact, the actual size of the member is more than four times the
maximum aggregate particle size, so the book assumes that concrete is isotropic
material. Moreover, the proportion of steel in reinforced concrete thin plate is very
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small, and the heat conduction coefficient of steel is very large, so the reinforced
effect can be ignored. Therefore, for simplicity and engineering practical reasons,
the reinforced concrete plate is considered in isotropic conditions.

In 1998, the author undertook the design task of 15,000 tons/year mucilage
mixing tank (Fig. 1.1) and coagulant configuration tank (Fig. 1.2) in NBR device.
The height of the mucilage mixing tank is 7.3 m, the length is 20.7 m, the width is
13.2 m, and the tank liquid temperature is 60 °C; the height of the coagulant
configuration tank is 4.5 m, the length is 12.5 m, the width is 9 m, the tank liquid
temperature is 45 °C. According to the survey, the plate thickness and reinforce-
ment amount were large in similar project design, and the theory of thermal elas-
ticity showed that: the bigger plate thickness is, the bigger bending stiffness is. So
the amount of reinforcement caused by temperature difference is greater. The
concrete rectangular liquid storage structure is composed of rectangular plates, so
the book discusses thermal bending of concrete rectangular thin plate with four
edges clamped and with free boundary, and discusses the thermal vibration and
thermal buckling of concrete rectangular plate with simply supported.

Fig. 1.1 Mucilage mixing tank
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1.3 The Main Contents of the Book

1.3.1 Thermal Bending of Concrete Rectangular
Thin Plate

According to the boundary condition of the rectangular thin plate, it can be divided
into two types, which are four edges supported and with free boundary rectangular
thin plate. Four edges supported rectangular thin plate can be divided into six types,
which are the rectangular thin plates with four edges simply supported, four edges
clamped, three edges clamped and one edge simply supported, one edge clamped
and three edges simply supported, two adjacent edges clamped and two adjacent
edges simply supported, two opposite edges clamped and two opposite edges
simply supported. Rectangular thin plate with free boundary (this book only discuss
the situation with one free boundary) also can be divided into six types, which are
the rectangular thin plates with three edges simply supported and one edge free,
three edges clamped and one edge free, two opposite edges clamped one edge

Fig. 1.2 Coagulant configuration tank
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simply supported and one edge free, two adjacent edges clamped one edge simply
supported and one edge free, two opposite edges simply supported one edge
clamped and one edge free, two adjacent edges simply supported one edge clamped
and one edge free.

Usually, temperature effect is not considered when calculating the thin plate. But
if the temperature of one side is higher than the other, in order to guarantee the
normal use of structure, it is necessary to calculate the temperature stress and
deformation of the plate structure. For example, for the chemical liquid-storage
structure when it stores high temperature liquid, or from the perspective of the use
of liquid-storage structure, because of the changes of temperature, many cracks of
concrete liquid-storage structure are to appear due to temperature stress, which
affects the normal use of liquid-storage structure. For rectangular thin plate made of
isotropic materials under the temperature action, only the rectangular thin plate with
four edges simply supported and rectangular thin plate with four edges clamped are
derived in the existing literature, and analytical solutions are obtained. For rect-
angular thin plate with four edges simply supported, the deflection equation satisfies
the boundary condition of w = 0 only, but does not satisfy the boundary condition
that bending moment is zero. And so it remains to be further researched whether
other deflection function can be obtained. For rectangular thin plate with four edges
clamped, according to the existing research results, the rectangular thin plate is
statically indeterminate structure, the lower temperature side should be in tension
and the higher temperature side should be in compression. Moreover, due to the
ubiquitous continuation of the upper and lower sides of the thin plate and the
existence of material elastic modulus, it remains to be further researched that
whether it is suitable to take the deflection function w = 0 directly in the literature
existed, and whether there is other deflection function. Though Liu et al. showed the
calculation table of rectangular thin plate with three edges clamped and one edge
simply supported in their works [13], the horizontal bending moment in the situ-
ation of clamped edges were greater than solutions obtained by w = 0. For tem-
perature effect calculation of rectangular thin plate with other four edges supported,
there have been no reports in the literature. Therefore, various deflection equations
and internal force analytic solution of rectangular thin plate under thermal load with
four edges supported and with free boundary are derived in this book based on
small deflection theory of thin plate.

1.3.2 Thermal Buckling of Concrete Rectangular
Thin Plate

Concrete rectangular thin plate buckling problem can be caused by in-plane com-
pression load, and also can be caused by thermal load. Therefore, there should be a
full understanding about thermal buckling behavior of rectangular thin plate.
According to domestic and foreign researches about present situation, a lot of
research work about the thermal buckling of rectangular thin plate has been made,
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which laid a solid foundation for the thermal buckling analysis of engineering
structure. But for reinforced concrete structure, due to the particularity of the
concrete material itself, the above conclusions cannot be applied very well. Due to
obvious brittleness of concrete material, the thermal buckling analysis of the con-
crete material should be based on the classical theory of small deformation. In
addition, the constitutive relation of concrete compression suggested by the
American Hognestad [44], German Rusch [45] and specifications are the quadratic
function. So in this book, based on the theory of small deflection, the quadratic
double parameters model is adopted considering the nonlinear effect of concrete
material, the balance equation and stability equation of rectangular thin plate under
the thermal load are derived, and the buckling behavior of the concrete rectangular
thin plates when temperature changes uniformly is researched. Thus the
closed-form solution of the critical buckling temperature changes of concrete
rectangular thin plate in a uniform temperature changes is obtained, and the effect of
material constant, length-width ratio, bedding coefficient and relative thickness of
the thin plate on the critical buckling temperature changes is discussed.

1.3.3 Thermal Vibration of Concrete Rectangular
Thin Plate

In recent years, many studies have been made on vibration of the nonlinear plate
with different geometric features extensively. The content involved the influence of
the geometric non-linearity, material non-linearity, anisotropy, shear deformation,
moment of inertia, deformation of static load on the thin plate. At present, due to the
rapid development of science and technology and its wide use in engineering, a lot
of researches about vibration behavior of heating thin plate have been made. For
example, Li and Zhou analyzed vibration of heating ring plate, and did few
researches on concrete material in studies [46−48]. He et al. analyzed dynamic
response of concrete plate under the action of the explosion load, but assumed
concrete as ideal rigid-plastic material. These studies laid a solid foundation for the
vibration of the thin plate analysis. But due to the particularity of concrete material,
the current research results cannot be applied well. Therefore, based on the theory
of small deflection, using the quadratic double parameters model, the dynamic
equation of thermal elastic problem about concrete rectangular thin plate is derived
in this book. Using the Galerkin method and Progression method, the natural
frequency and the deflection function of forced vibration of concrete rectangular
thin plate under the thermal environment is derived. For convenience of engineering
design, concrete rectangular thin plate natural frequency in transverse temperature
and uniform temperature change, and the deflection function under the action of
uniformly distributed load are given, and the influence of material elastic constants,
length-width ratio, relative thickness and temperature of thin plate on natural fre-
quency and deflection function of concrete thin plate is discussed.
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Chapter 2
Thermal Bending of Concrete Rectangular
Thin Plate with Four Supported Edges

Abstract The deflection equation and the internal force analytical solution of the
rectangular thin plate supported on four sides (four edges simply supported, four
edges clamped, three edges clamped and one edge simply supported, one edge
clamped and three edges simply supported, two adjacent edges clamped and two
adjacent edges simply supported, two opposite edges clamped and two opposite
edges simply supported) under temperature difference is systematically introduced in
this chapter. In order to facilitate the engineering application, the tables for deflection
and internal force coefficient calculation based on concrete material are made.

x

y

b

a

2.1 Introduction

The rectangular thin plate with four supported edges can be classified into six types:
rectangular thin plate with four simply supported edges; rectangular thin plate with
four clamped edges; rectangular thin plate with three clamped edges and one simply
supported edge; rectangular thin plate with three simply supported edges and one
clamped edge; rectangular thin plate with two adjacent simply supported edges and
two adjacent clamped edges, rectangular thin plate with two opposite simply sup-
ported edges and two clamped opposite edges.

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2018
X. Cheng, Thermal Elastic Mechanics Problems of Concrete Rectangular
Thin Plate, Springer Tracts in Civil Engineering,
DOI 10.1007/978-981-10-4472-4_2
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For the calculation of the temperature effect of the rectangular thin plate, the
existing literature gives the analytical solution for the rectangular thin plate with
four simply supported edges and the rectangular thin plate with four clamped edges
for the isotropic materials. For example, to the rectangular thin plate with four
simply supported edges under temperature disparity, the literature [4] gave the
calculation formulas of deflection with any temperature change, namely

wðx; yÞ ¼ 1
ð1� lÞp2D

X1
m¼1

X1
n¼1

amn
m2

a2 þ n2
b2

� � sin
mpx
a

sin
npy
b

ð2:1Þ

where amn ¼ 4
ab

R a
0

R b
0 MTðx; yÞ sin mpx

a sin npy
b dydx, D ¼ Eh3

12 1�l2ð Þ.
The literature [3] gave the calculation formulas of deflection with temperature

change along the thickness change, namely

wðx; yÞ ¼ 16M�

ð1� lÞp4D
X1
m¼1

X1
n¼1

sin mpx
a sin npy

b

mn m2

a2 þ n2
b2

� � m; n ¼ 1; 3; 5. . .ð Þ ð2:2Þ

where, M� ¼ Ea
R h

2

�h
2
ðDTÞzdz.

The literature [49] also gave the approximate calculation formulas of bending
moment with temperature change along the thickness change, namely

MxTðMyTÞ ¼ kxtðkytÞMT ð2:3Þ

in above equation, MT stands for the distribution moment of rectangular thin plate
with four clamped edges caused by lateral temperature disparity; DT stands for the
lateral temperature disparity; a stands for the thermal expansion coefficient of
material; E stands for elastic modulus of material; l stands for Poisson’s ratio of
materials; h stands for the thickness of the thin plate; kxtðkytÞ stands for the coef-
ficient of bending moment; MxT stands for the distribution moment in the x direc-
tion caused by lateral temperature disparity; MyT stands for the distribution moment
in the y direction caused by lateral temperature disparity.

It is easy to see that (2.2) is the special form of (2.1), and (2.3) is an approxi-
mation of (2.2). Therefore, here only (2.1) will be described. By calculating, (2.1)
only satisfies the edge condition of w = 0, but does not satisfy the edge condition of
moment being equal to zero, and it requires further research whether there are other
deflection functions.

Although there are solutions of rectangular thin plate with four clamped edges
under the action of the temperature and widely used in engineering [18], such as:

Mx ¼ My ¼ MT ¼ aDTEh2

12ð1� lÞ ð2:4Þ
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(2.4) is obtained by the deflection function satisfying the boundary conditions of
w = 0. But for statically indeterminate structure under the action of temperature, the
lower temperature side is in tension, the higher temperature side is in compression.
And it is continuously everywhere on the upper and lower surface. Due to the
existence of elastic modulus, whether the deflection function w = 0 is appropriate in
the existing literature needs further verification, as well as the deflection function
should be taken as w = w (x, y).

Though Liu et al. showed the calculating table of rectangular thin plate with
three clamped edges and one simply supported edge (see Table 2.1) in their work
[13], transversal moments on the clamped edges were greater than the solution
obtained by w ¼ 0. For the calculation of temperature effects about other rectan-
gular thin plate with four supported edges, current literatures have not been
reported.

Therefore, this chapter is based on the small deflection plate theory. Firstly,
through assuming deflection function that meets equilibrium differential equation
and some of boundary condition, using the Levy method, the analytical solution of
deflection and internal force of isotropic rectangular thin plate with four simply
supported edges is derived. Then according to the conclusion of rectangular thin
plate with four simply supported edges and boundary conditions of other

Table 2.1 Bending calculation coefficient with three edges clamped and one edge free under
temperature disparity

o

y

xl

T
yM

T
xM

T
yM 0
2 T

xM 0
2

T
yM 0
1

T
xM 0
1

x

yl

l ¼ 1
6

MT
x ¼ kTx aDTEh

2gre1
MT

y ¼ kTy aDTEh
2gre1

gre1 is reduction factor of
considering concrete creep

lx/ly kTx1 kTy1 kTx2 kTy2 kx ky

0.50 0.1045 0.0987 0.0972 0.1000 0.0973 0.0998

0.75 0.1139 0.0999 0.0982 0.1021 0.0926 0.1003

1.00 0.1233 0.1008 0.0981 0.1094 0.0885 0.0961

1.25 0.1288 0.1011 0.0993 0.1175 0.0869 0.0917

1.50 0.1344 0.1016 0.1008 0.1286 0.0853 0.0873

1.75 0.1329 0.1013 0.1014 0.1344 0.0877 0.0829

2.00 0.1324 0.1008 0.1019 0.1402 0.0901 0.0784
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rectangular thin plate with four supported edges, by applying the virtual displace-
ment principle and superposition principle, the deflection equation and analytical
solution of internal force of the other rectangular thin plate with four supported
edges under the action of lateral temperature disparity is derived, which provides a
theoretical basis for later engineering calculation.

2.2 The Basic Equation for the Thermal Elastic Problem
of Rectangular Thin Plate

2.2.1 Calculation Assumption

(1) Straight-line which is perpendicular to the mid-plane before deformation is still
perpendicular to the deformed mid-plane, and the length has no change;

(2) The stress rz, sxz and syz are far less than the other three stresses (rx, ry and sxy),
so the strain caused by these stress can be neglected;

(3) Each point in mid-plane has not displacement which is parallel to mid-plane,
namely u z¼0 ¼ 0j , m z¼0 ¼ 0j .

2.2.2 Basic Equation of Thermal Elasticity

The existing literature [3–5] showed that the geometry equation for the thermal
elastic problem of rectangular thin plate is

ex ¼ @u
@x ¼ � @2w

@x2 z

ey ¼ @v
@y ¼ � @2w

@y2 z

cxy ¼ @v
@x þ @u

@y ¼ �2 @2w
@x@y z

8>><
>>: ð2:5Þ

where u, v stand for the displacements in x, y directions, respectively; w stands for
the deflection of any point on the surface of the thin plate; ex, ey and cxy stand for the
strains of any point on the surface of the thin plate, respectively.

Because of neglecting strain caused by the stress rz, physical equation can be
written as

ex ¼ 1
E rx � lry
� �þ aT

ey ¼ 1
E ry � lrx
� �þ aT

cxy ¼ 2 1þ lð Þ
E sxy

8<
: ð2:6Þ
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where T ¼ Tðx; y; zÞ stands for temperature disparity of any point in the thin plate.
Stresses can be written as

rx ¼ � Ez
1�l2

@2w
@x2 þ l @2w

@y2

� �
� EaT

1�l

ry ¼ � Ez
1�l2

@2w
@y2 þ l @2w

@x2

� �
� EaT

1�l

sxy ¼ syx ¼ � Ez
1þ l

@2w
@x@y

8>>>><
>>>>:

ð2:7Þ

As shown in Fig. 2.1, Mx and My stand for moments of unit width on the cross
section, respectively; Mxy stands for torment of unit width on the cross section,
hence

Mx ¼
Rh2
�h

2

zrxdz ¼� D @2w
@x2 þ l @2w

@y2

� �
� 1

1�l

Rh2
�h

2

EðTÞTaðTÞzdz

My ¼
Rh2
�h

2

zrydz ¼� D @2w
@y2 þ l @2w

@x2

� �
� 1

1�l

Rh2
�h

2

EðTÞTaðTÞzdz

Mxy ¼
Rh2
�h

2

zsxydz ¼� D 1� lð Þ @2w
@x@y

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð2:8Þ

The thickness of the plate compared with the size of the other two directions is
very small, for the purpose of engineering application, assuming that the temper-
ature changes along the thickness direction only, namely, we only consider the
situation of lateral temperature change. That is to say, in this paper, the analytical
solution of lateral deflection and internal forces that is studied is for the specific
condition of lateral temperature change; in addition, due to the thin plate, before the
plate structure is normally used, the heat release W of concrete condensation
sclerosis tends to zero as the change of pouring time. So the original parabolic
nonlinear temperature distribution rule becomes the linear situation, namely [17]

2
h

2
h

dx
dy

dz
z

yM
yxMyQ

yσ

yxτ

yzτ xzτ

xyτ

xσ

xyM xM
xQ

x

zy

Fig. 2.1 Element forces and
stresses sketch map
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T ¼ T2 þ T1
2

� ðT2 � T1Þ
h

z ð2:9Þ

where T1 and T2 stand for the temperature on two surfaces of the thin plate,
respectively.

According to the existing literature [15], the relationship between concrete
elastic modulus under any temperature normal temperature can be determined by
using the following equations:

EðTÞ ¼ E T � 60 �C
EðTÞ ¼ 0:88E� 0:94E 60 �C\T � 100 �C
EðTÞ ¼ 0:95E� 1:08E 100 �C\T � 300 �C

EðTÞ ¼ 1þ 18 T
1000

� �5:1h i�1
E T [ 300 �C

8>>><
>>>:

ð2:10:1Þ

Under the action of temperature, the linear expansion coefficient aðTÞ is deter-
mined by using the following equation:

aðTÞ ¼ 28
T

1000

� �
� 10�6 ð2:10:2Þ

As can be seen, the temperature only slightly affects the elastic modulus of
concrete and the linear expansion coefficient under normal temperature. Thus, the
approximate values are as follows:

EðTÞ ¼ E; aðTÞ ¼ a ð2:11Þ

By substituting (2.9) and (2.11) into (2.8) obtains the following:

Mx ¼ �D @2w
@x2 þ l @2w

@y2

� �
�MT

My ¼ �D @2w
@y2 þ l @2w

@x2

� �
�MT

Mxy ¼ �D 1� lð Þ @2w
@x@y

8>>><
>>>:

ð2:12Þ

where MT ¼ EaDTh2
12ð1�lÞ; DT stands for the lateral temperature disparity [16, 50].

As it is known that the equilibrium differential equations of elastic surface about
thin plate with same thickness is:

@2Mx

@x2
þ 2

@2Mxy

@x@y
þ @2My

@y2
þ q ¼ 0
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As there is no external load, only temperature, (2.12) is substituted into the
above mentioned equation, there is:

@2

@x2
þ @2

@y2

� �2

w ¼ 0: ð2:13Þ

2.3 Thermal Bending of Rectangular Thin Plate with Four
Edges Simply Supported

2.3.1 Boundary Conditions

In Fig. 2.2, the boundary conditions to clamped edges are:

w x¼0
x¼a

���� ¼ 0; Mx x¼0
x¼a

���� ¼ 0

w y¼�b
2

y¼b
2

������ ¼ 0; My y¼�b
2

y¼b
2

������ ¼ 0

To simply supported edges, due to w = 0 on whole edge, according to (2.12), the
above formulas are (Fig. 2.2):

w x¼0
x¼a

���� ¼ 0;
@2w
@x2

x¼0
x¼a

���� ¼ �MT

D
ð2:14Þ

w y¼�b
2

y¼b
2

������ ¼ 0;
@2w
@y2 y¼b

2

y¼�b
2

������ ¼ �MT

D
ð2:15Þ

2.3.2 The Analytical Solution of the Thermal Elastic
Problem

According to (2.13), ordering

w ¼
X1
m¼1

XmYm �MT

2D
ðx� aÞx

where Xm is only a function about x; Ym is a function about y only.
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According to the edge conditions (2.14), ordering Xm ¼ sin mpx
a , so the deflection

function w can be written as

w ¼
X1
m¼1

Ym sin
mpx
a

�MT

2D
ðx� aÞx ð2:16Þ

By substituting (2.16) into the differential (2.13), hence:

Y ð4Þ
m � 2 m2p2

a2 Y 00
m þ m4p4

a4 Ym ¼ 0

Solution of this equation can be written as follows [51]:

Ym ¼ Am sinh
mpy
a

þBm cosh
mpy
a

þCm
mpy
a

sinh
mpy
a

þDm
mpy
a

cosh
mpy
a

Due to the temperature and the plate are symmetrical about the x-axis, so Ym
must be an even function, thereby Am ¼ Dm ¼ 0, by substituting them into (2.16),
hence

w ¼
X1
m¼1

Bm cosh
mpy
a

þCm
mpy
a

sinh
mpy
a

� �
sin

mpy
a

�MT

2D
ðx� aÞx ð2:17Þ

Ordering mpb
2a ¼ am, by substituting (2.17) into the boundary condition (2.15),

hence

X1
m¼1

Bm cosham þCmam sinhamð Þ sinmpx
a

¼ MT

2D
ðx� aÞx ð2:18Þ

X1
m¼1

m2p2

a2
Bm þ 2Cmð Þ½ cosham þCmam sinham� sinmpxa ¼ �MT

D
ð2:19Þ

x

y

2

b

a

2

b

Fig. 2.2 Four edges simply
supported
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The right side of (2.18) is expanded into a single triangular series, namely

MT

2D
ðx� aÞx ¼

X1
m¼1

2
a

Za

0

MT

2D
ðx� aÞx sin

mpx
a

dx

2
4

3
5 sin

mpx
a

¼
X1
m¼1

2a2MT

Dm3p3
cosmp� 1ð Þ sinmpx

a

Then (2.18) becomes

Bm cosham þCmam sinham ¼ 2a2M
T

Dm3p3
cosmp � 1ð Þ ð2:20Þ

Similarly, the right side of (2.19) is expanded into a single triangular series, namely

�MT

D
¼ 2MT

pD

X1
m¼1

cosmp� 1
m

sin
mpx
a

Then the (2.19) becomes

Bm þ 2Cmð Þ cosham þCmam sinham ¼ 2a2MT

Dm3p3
cosmp� 1ð Þ ð2:21Þ

By (2.20) and (2.21), there is

Bm ¼ 2a2MT

Dp3m3 cos ham
cosmp� 1ð Þ

Cm ¼ 0

(

By substituting Bm and Cm into (2.17), hence

w ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3 cosham

cosh
2amy
b

sin
mpx
a

�MT

2D
ðx� aÞx ð2:22Þ

Since (2.22) is made from satisfying the equilibrium differential Eqs. (2.13) and all
boundary condition (2.14) and (2.15), so (2.22) is the deflection function of rectangular
thin plate with simply supported edges under transverse temperature disparity.
Substituting (2.22) into (2.12), internal force calculation formula is obtained.

Because

@2w
@x2 ¼ 4MT

Dp

P1
m¼1;3;...

1
m cosham

cosh 2amy
b sin mpx

a � MT

D

@2w
@y2 ¼ � 2MT

Dp

P1
m¼1;3;...

1
m cosham

cosh 2amy
b sin mpx

a

@2w
@x@y ¼ � 4MT

Dp

P1
m¼1;3;...

1
m cosham

sinh 2amy
b cos mpxa

8>>>>>>><
>>>>>>>:
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Therefore, there is

MT
x
¼ 4MT

p l� 1ð Þ P1
m¼1;3;...

1
m cosham

cosh mpy
a sin mpx

a

MT
y
¼ 4MT

p 1� lð Þ P1
m¼1;3;...

1
m cosham

cosh mpy
a sin mpx

a þ l� 1ð ÞMT

MT
xy
¼ 4MT

p 1� lð Þ P1
m¼1;3;...

1
m cosham

sinh mpy
a cos mpxa

8>>>>>>><
>>>>>>>:

ð2:23Þ

(2.23) is internal force analytical solution of rectangular thin plate with simply
supported edges under transverse temperature disparity.

2.3.3 Results Analysis

MATLAB software is used to test the accuracy of Eqs. (2.22) and (2.23). The
results show that for deflection function w, when taking m = n = 5, the result has
converged to the exact solution; for the bending moment of unit width, when taking
m = n = 7, the result has converged to the exact solution; for the bidirectional plate
in engineering with any length-width ratio, its internal force solutions are equal to
the results with existing literature (Because the existing literature has not given
deflection calculation coefficient, it did not make deflection comparison). Because
the existing literature has not given the deflection calculation coefficient, so for the
convenience and engineering application, supplementing deflection calculation
coefficient, thermal bending calculation results of concrete rectangular thin plate
with four simply supported sides are made (see Table A.1).

2.3.4 Engineering Design

For a concrete rectangular thin plate with four edges simply supported under
temperature variation which is perpendicular to surface, according to (2.10.1) and
(2.10.2), E and a are obtained. And then MT is given, namely MT ¼ EaDTh2

12ð1�lÞ.

According to Table A.1, kx, ky and f can be obtained by lx
ly
. Then MT

x , which is

MT
x ¼ kxMT , is gotten as well as w1, and MT

y ¼ kyMT . After the bending moment is
gotten, the steel bars due to temperature can be designed according to the knowl-
edge of the reinforced concrete. Namely [44−45]

asx ¼ MT
x

1000a1fch20

asy ¼ MT
y

1000a1fch20

8<
: ð2:24:1Þ
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csx ¼ 0:5 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2asx

p� �
csy ¼ 0:5 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2asy
p� �


ð2:24:2Þ

Asx1 ¼ MT
x

fycsh0

Asy1 ¼ MT
y

fycsh0

8<
: ð2:24:3Þ

where, MT
x is the bending moment design value in x direction, and MT

y is the
bending moment design value in y direction, and Asx1 is the steel section area per
meter width in x direction, and Asy1 is the steel section area per meter width in
y direction, and fy is the tensile strength design value of the steel, and asx and asy are
the coefficient of section resistance moment in x and y directions, and a1 is the
equivalent rectangular stress diagram coefficient of concrete compressive zone, and
cs is the internal force arm coefficient of section, and h0 is the effective height of the
section, h0 ¼ h� c (c is the thickness of the concrete protective layer), and fc is the
compressive strength design value of the concrete.

If the deflection is w2 and the area of steel bar is Asx2ðAsy2Þ per unit width in xðyÞ
direction caused by other factors except for the temperature are known, there are

Asx ¼ Asx1 þAsx2

Asy ¼ Asy1 þAsy2

w ¼ w1 þw2

8<
: ð2:25Þ

Pay attention to that, the formulas of this chapter are based on thin plate structure
that is homogeneous elastic body, which does not accord with the concrete.
Especially, the creep and cracks of concrete reduce component stiffness, and result
in thermal stress relaxation. Therefore, according to Table A.1, calculating bending
moment should multiply the reduction factor of 0.65, and bearing capacity calcu-
lation should multiply the partial coefficient.

2.3.5 Numerical Example

Example: Taking the liquid storage structure with top plate as an example, the
numerical analysis is carried out by a reasonable calculation. The length lx and
width ly of the plate are both 6 m. The thickness h of the plate is 180 mm. The
temperature difference DT between the upper and lower surface of plate is 60 °C.
The live load p is 1 kN/m2. The bulk density of concrete is 26 kN/m3. The value of
concrete strength is 30 MPa. The value of steel strength is 360 MPa.

Solution: In view of the fact that the stiffness of wallboard is far greater than the
stiffness of top plate in general, the top plate can be regarded as the four edges
simply supported. According to the literature [45], the linear expansion coefficient a
of concrete is 1 � 10−5 °C. The Poisson’s ratio l of concrete is 1/6. The protective
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layer thickness of concrete is 10 mm. The elastic modulus E of concrete is
3�107 kN/m2. The design value of compressive strength fc for concrete is
14.3 N/mm2. The partial coefficients of the dead load and live load are taken as 1.2
and 1.4, respectively.

Dead load: g = 0.18 � 26 = 4.68 kN/m2

Live load: p = 1 kN/m2

Design load: q = 1.4p + 1.2g = 7.02 kN/m2.

According to the initial assumption that the diameter of the steel is 10 mm, the
distance from the center of the steel in x direction to the down surface of concrete
plate, cx = c + 10/2, is 15 mm and the distance from the center of the steel in
y direction to the down surface of concrete plate, cy = c + 10 + 10/2, is 25 mm.
The distance from the center of the steel in x direction to the top surface of concrete
plate, h0x = h − cx, is 165 mm and the distance from the center of the steel in
y direction to the top surface of concrete plate, h0y = h − cy, is 155 mm.

1. Temperature Action

Taking E = 3 � 107 kN/m2, a = 1 � 10−5 °C, DT = 60 °C, h = 180 mm and
l = 1/6 into the (2.1), D ¼ Eh3

12 1�l2ð Þ, and (2.4), the following results can be gotten.

D ¼ Eh3

12 1� l2ð Þ ¼
3� 107 � 0:183

12 1� 1
62

� � ¼ 14996:57 kN 	m

MT ¼ aDTEh2

12ð1� lÞ ¼
1� 10�5 � 60� 3� 107 � 0:182

12 1� 1
6

� � ¼ 58:32 kN

From the Table A.1 in the Appendix A, there are

f ¼ 0:0737; kx ¼ 0:4167; ky ¼ 0:4167

w1 ¼ f
l2xM

T

D
¼ 0:0737� 6� 58:32

14996:57
¼ 0:0103m

MT
x ¼ kxM

T ¼ 0:4167� 58:42 ¼ 24:30 kN 	m

MT
y ¼ kyM

T ¼ 0:4167� 58:42 ¼ 24:30 kN 	m

According to the literature [45], a1 = 1, assuming that h0 = h0x, and taking MT
x ,

fc, h0 and a1 into (2.24.1), there is

asx ¼ MT
x

1000a1fch20
¼ 24:3� 106

1000� 1� 14:3� 1652
¼ 0:0624
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Assuming that h0 = h0y, taking MT
y , fc, h0, and a1 into (2.24.1), there is

asy ¼
MT

y

1000a1fch20
¼ 24:3� 106

1000� 1� 14:3� 1552
¼ 0:071

Taking asx and asy into (2.24.2), there is

csx ¼ 0:5 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2asx

p� � ¼ 0:5 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2� 0:0624

p� � ¼ 0:9678
csy ¼ 0:5 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2asy
p� � ¼ 0:5 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2� 0:071
p� � ¼ 0:9631

(

Taking csx and csy into (2.24.3), there is

Asx1 ¼ MT
x

fycsh0
¼ 24:3� 106

360� 0:9678� 165
¼ 422:7mm2

Asy1 ¼
MT

y

fycsh0
¼ 24:3� 106

360� 0:9631� 155
¼ 452:2mm2

8>>><
>>>:

2. Load Action

From the literature [13, 52], w2 ¼ f ql4

D , Mx ¼ kxql2 and My ¼ kyql2 can be obtained.
The value l is the minimum [lx, ly].

According to the literature [13, 52], there are

f ¼ 0:00406; kx ¼ 0:0368 and ky ¼ 0:0368

Taking f, q, l and D into w2 ¼ f ql4

D , there is

w2 ¼ f
ql4

D
¼ 0:00406� 7:02� 64

14996:57
¼ 0:0025

Taking kx, ky into Mx ¼ kxql2 and My ¼ kyql2 respectively, there are

Mx ¼ kxql
2 ¼ 0:0368� 7:02� 62 ¼ 9:80 kN 	m

My ¼ kyql
2 ¼ 0:0368� 7:02� 62 ¼ 9:80 kN 	m

Assuming that Mx ¼ MT
x and h0 = h0x, and taking Mx, fc, h0 and a1 into (2.24.1),

there is

asx ¼ Mx

1000a1fch20
¼ 9:8� 106

1000� 1� 14:3� 1652
¼ 0:0252
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Assuming that My ¼ MT
y and h0 = h0y, and taking My, fc, h0 and a1 into (2.24.1),

there is

asy ¼ My

1000a1fch20
¼ 9:8� 106

1000� 1� 14:3� 1552
¼ 0:0285

Taking asx and asy into (2.24.2), there is

csx ¼ 0:5 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2asx

p� � ¼ 0:5 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2� 0:0252

p� � ¼ 0:9872
csy ¼ 0:5 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2asy
p� � ¼ 0:5 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2� 0:0285
p� � ¼ 0:9855

(

Assuming that Mx ¼ MT
x , cs ¼ csx and h0 = h0x, and taking Mx, fy and cs into

(2.24.3), there is

Asx2 ¼ Mx

fycsh0
¼ 9:8� 106

360� 0:9872� 165
¼ 167:1mm2

Assuming that My ¼ MT
y , cs ¼ csy and h0 = h0y, and taking My, fy and cs into

(2.24.3), there is

Asy2 ¼ My

fycsh0
¼ 9:8� 106

360� 0:9855� 155
¼ 178:2mm2

In summary, the analysis results can be obtained under the action of temperature
and load. That is

w ¼ w1 þw2 ¼ 0:0103þ 0:0025 ¼ 0:0128m

Asx ¼ Asx1 þAsx2 ¼ 422:7þ 167:1 ¼ 589:8mm2

Asy ¼ Asy1 þAsy2 ¼ 452:2þ 178:2 ¼ 630:4mm2

From the above results, the total deflection at the midspan point of the plate is
12.8 mm. The reinforcement area per meter at the center point of the thin plate in
the x direction is 589.8 mm2 and the reinforcement area per meter at the center
point of the thin plate in the y direction is 630.4 mm2.

2.4 Thermal Bending of Rectangular Thin Plate with Four
Edges Clamped

2.4.1 Boundary Conditions

In Fig. 2.3, the boundary conditions to the clamped edges are:
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w x¼0
x¼a

���� ¼ 0;
@w
@x

x¼0
x¼a

���� ¼ 0 ð2:26Þ

w y¼0
y¼b

���� ¼ 0;
@w
@x

y¼0
y¼b

���� ¼ 0 ð2:27Þ

2.4.2 Analytical Solution of Thermal Elastic Problem

To satisfy the balance differential Eq. (2.13) and the boundary conditions (2.26)
and (2.27), it is apparently that w = 0, but on the boundary according to the (2.12),
it is known that

Mxjy¼0;b¼ My

��
x¼0;a¼ �MT

Rectangular thin plate with four clamped edges under the action of lateral
variable temperature disparity is regarded as a superposition of the rectangular thin
plate with four simply supported edges under the action of bending moment
M�

T (M
�
T ¼ �MT ) on four edges and rectangular thin plate with four edges simply

supported under the action of temperature disparity DT .

1. Bending Deformation Energy of Thin Plate

As shown in Fig. 2.1, ignoring the work done by shearing force, � 1
2Mx

@2w
@x2 dxdy is

the work done by bending moment Mxdy; � 1
2My

@2w
@y2 dxdy is work done by the

bending moment Mydx; 12Mxy
@2w
@x@y dxdy is work done by torque Mxydx; also, because

the work done by the torque and the work done by the bending moment are not
coupled, deformation energy of differential body is

x
o

y

b

a

Fig. 2.3 Four edges clamped
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dV ¼ � 1
2

Mx
@2w
@x2

þMy
@2w
@y2

� 2Mxy
@2w
@x@y

� �
dxdy

Substituting (2.12) into above equation, and letting MT = 0 in (2.12), there is

dV ¼ 1
2
D

@2w
@x2

þ @2w
@y2

� �2

�2ð1� lÞ @2w
@x2

@2w
@y2

� @2w
@x@y

� �2
" #( )

To the whole plate, deformation energy in bending plate is

dV ¼ 1
2
D
ZZ

@2w
@x2

þ @2w
@y2

� �2

�2ð1� lÞ @2w
@x2

@2w
@y2

� @2w
@x@y

� �2
" #( )

In above equation, the second item of integrand function is transformed using
Green’s theorem, there is

ZZ
@2w
@x2

@2w
@y2

� @2w
@x@y

� �2
" #

dxdy ¼
ZZ @ @w

@x
@2w
@y2

� �
@x

�
@ @w

@x
@2w
@x@y

� �
@y

2
4

3
5dxdy

¼
Z

@w
@x

@2w
@x@y

dxþ @w
@x

@2w
@y2

dy
� � ð2:28Þ

The line integral of (2.28) is along the whole edge of rectangular thin plate.
Because the thin plate is with four edges simply supported, x is constant on the
boundary, dx = 0 and @2w

@y2 ¼ 0; on the boundary, y is constant, dy ¼ 0 and @w
@x ¼ 0,

so (2.28) is simplified to

V ¼ 1
2
D
ZZ

@2w
@x2

þ @2w
@y2

� �2

dxdy ð2:29Þ

2. The Analytic Solution Under Uniform Bending Moment M�
T on Four Edges

According to the edge condition of rectangular thin plate with four simply sup-
ported edges and equilibrium differential equation for the elastic curved surface of
identical thickness plate, deflection function may be supposed as

w ¼
X1

i¼1;3;...

X1
j¼1;3;...

Aij sin
ipx
a

sin
jpx
b

ð2:30Þ
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By substituting (2.30) into (2.29), deformation energy of plate is

V ¼ p4abD
8

X1
i¼1;3;...

X1
j¼1;3;...

A2
ij

i2

a2
þ j2

b2

� �2

ð2:31Þ

The slope of every point along x = 0, x = a and y = 0 on bending plane of
plate is

@w
@x

x¼0
x¼a

���� ¼ p
a

X1
i¼1;3;...

X1
j¼1;3;...

iAij sin
jpy
b

@w
@y

y¼0
y¼b

���� ¼ 
 p
b

X1
i¼1;3;...

X1
j¼1;3;...

jAij sin
ipx
a

8>>>><
>>>>:

When Aij increases to Aij þ dAij, slope increment of every point along x = 0,
x = a and y = 0 on bending plane of plate is

d
@w
@x

x¼0
x¼a

���� ¼ 
 p
a
i sin

jpy
b

dAij

d
@w
@y

y¼0
y¼b

���� ¼ 
 p
b
j sin

ipx
a

dAij

8>><
>>:

The work done by bending moment along edges of plate is

2
Za

0

M�
T
p
b
n sin

ipx
a

dxdAij þ 2
Zb

0

M�
T
p
a
i sin

jpy
b
dydAij

Because

Ra
0
M�

T sin ipx
a dx ¼ a

2Ei

Rb
0
M�

T sin jpy
b dy ¼ b

2Fj

8>>><
>>>:

where Ei ¼ 4M�
T

ip ; Fj ¼ 4M�
T

jp .

The work done of moment is

j
p a
b

EidAij þ i
p b
a

FjdAij
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According to (2.31), the increment of deformation energy is

dV ¼ p4abD
4

i2

a2
þ j2

b2

� �2

AijdAij

According to the virtual displacement principle, hence

Aij ¼ 4
p4Dab

i2

a2
þ j2

b2

� ��2

j
p a
b

Ei þ i
p b
a

Fj

� �
¼ 16M�

T

p4D
1
ij

i2

a2
þ j2

b2

� ��1

By substituting the above formula into (2.30), hence

wðx; yÞ ¼ 16M�
T

p4D

X1
i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ j2

b2

� ��1

sin
ipx
a

sin
jpy
b

ð2:32Þ

Substitute (2.32) into (2.12) (where MT = 0), there is

Mx ¼ 16M�
T

p2
P1

i¼1;3;...

P1
j¼1;3;...

i2b2 þ lj2a2

ij i2b2 þ j2a2ð Þ sin
ipx
a sin jpy

b

My ¼ 16M�
T

p2
P1

i¼1;3;...

P1
j¼1;3;...

j2a2 þ li2b2

ij i2b2 þ j2a2ð Þ sin
ipx
a sin jpy

b

Mxy ¼ 16 l�1ð ÞabM�
T

p2
P1

i¼1;3;...

P1
j¼1;3;...

1
i2b2 þ j2a2 cos

ipx
a cos jpyb

8>>>>>>><
>>>>>>>:

ð2:33Þ

3. The Analytical Solution of Rectangular Thin Plate with Four Simply Supported
Edges Under Temperature Disparity DT

For easy superposition, in (2.22) and (2.23), x axis can be moved to the y ¼ � b
2, so

there is

w ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3 cosham

cosh
2amy
b

� am

� �
sin

mpx
a

�MT

2D
ðx� aÞx

ð2:34Þ

Mx ¼ 4MT

p l� 1ð Þ P1
m¼1;3;...

1
m cosham

cosh mpy
a � am

� �
sin mpx

a

My ¼ 4MT

p 1� lð Þ P1
m¼1;3;...

1
m cosham

cosh mpy
a � am

� �
sin mpx

a þ l� 1ð ÞMT

Mxy ¼ 4MT

p 1� lð Þ P1
m¼1;3;...

1
m cosham

cosh mpy
a � am

� �
cos mpxa

8>>>>>>><
>>>>>>>:

ð2:35Þ
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4. The Analytical Solution of Rectangular Thin Plate with Four Simply Supported
Edges Under Thermal Load

By superposing (2.32) and (2.34), hence

w ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3 cosham

cosh
mpy
a

� am
� �

sin
mpx
a

�MT

2D
x� að Þx

� 16MT

p4D

X1
i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ j2

b2

� ��1

sin
ipx
a

sin
jpy
b

ð2:36Þ

(2.36) is the deflection formula of rectangular thin plate with four clamped edges
under lateral temperature disparity.

Superpose (2.33) and (2.35), hence

MT
x
¼ 4MT

p l� 1ð Þ P1
m¼1;3;...

1
m cosham

cosh mpy
a � am

� �
sin mpx

a

� 16MT

p2
P1

i¼1;3;...

P1
j¼1;3;...

1
ij

i2
a2 þ l j2

b2

� �
sin ipx

a sin jpy
b

MT
y
¼ 4MT

p 1� lð Þ P1
m¼1;3;...

1
m cosham

cosh mpy
a � am

� �
sin mpx

a

þ l� 1ð ÞMT � 16MT

p2
P1

i¼1;3;...

P1
j¼1;3;...

1
ij l i2

a2 þ j2

b2

� �
sin ipx

a sin jpy
b

MT
xy
¼ 4MT

p 1� lð Þ P1
m¼1;3;...

1
m cosham

cosh mpy
a � am

� �
cos mpxa

þ 1� lð Þ 16MT

p2ab

P1
i¼1;3;...

P1
j¼1;3;...

i2
a2 þ j2

b2

� ��1
cos ipxa cos jpyb

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð2:37Þ

(2.37) is internal force solution of rectangular thin plate with four clamped edges
under lateral temperature disparity.

2.4.3 Result Analysis

To test that formulas (2.36) and (2.37) are correct, the software MATLAB is used to
program the formulas. The results show that: for deflection function w, when taking
m = n = 69, the result has converged to exact solution; for the bending moment Mx

of unit width, when taking m = n = 7999, result has converged to exact solution;
for the bending moment My of unit width, when taking m = n = 10999, the result
basically has converged to the exact solution; for clamped concrete rectangular
plate with arbitrary length-width ratio, the internal force can be seen in Table 2, and
it is identical to the existing literature.

Engineering application is seen in Sect. 2.3.4.
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2.5 Thermal Bending of Rectangular Thin Plate with One
Edge Simply Supported and Three Edges Clamped

2.5.1 Boundary Conditions

In Fig. 2.4, the edge conditions for the clamped edge are:

w y¼0
�� ¼ 0;

@w
@y y¼0 ¼ 0

�� ð2:38Þ

w x¼0
x¼a

¼ 0

���� ;
@w
@x

x¼0
x¼a

���� ¼ 0 ð2:39Þ

To simply supported edges, due to the deflection w = 0 on the whole boundary,
by (2.12), the above equation becomes (Fig. 2.4)

w y¼b

�� ¼ 0;
@2w
@y2 y¼b

�� ¼ �MT

D
ð2:40Þ

2.5.2 Analytical Solution for Thermal Elastic Problems

On edges, w = 0, according to (2.12), (2.38), (2.39) and (2.40), hence

My y¼b

�� ¼ 0; Mx x ¼ 0
x ¼ a

������� ¼ �MT ; My y¼0 ¼ �MT
��

Now, Rectangular thin plate with three clamped edges and one simply supported
edge under temperature disparity along thickness direction is regarded as a super-
position of rectangular thin plate with four simply supported edges under the action
of the temperature difference DT and rectangular thin plate with four simply

x

y

b

a

o

Fig. 2.4 Three edges
clamped and one edge simply
supported
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supported edges under the uniform bending moment M�
T (M�

T ¼ �MT ) on three
adjacent edges.

1. The Analytic Solution Under the Uniform Bending Moment M�
T on Three

Adjacent Edges

The deformation energy of plate is equal to (2.31), namely

V ¼ p4abD
8

X1
i¼1;3;...

X1
j¼1;3;...

A2
ij

i2

a2
þ j2

b2

� �2

ð2:41Þ

The slope of every point along x ¼ 0, x ¼ a and y ¼ 0 on bending plane of plate is

@w
@y y¼0

�� ¼ 
 p
b

X1
i¼1;3;...

X1
j¼1;3;...

jAij sin
ipx
a

@w
@x

x¼0
x¼a

���� ¼ 
 p
a

X1
i¼1;3;...

X1
j¼1;3;...

iAij sin
jpy
b

8>>>><
>>>>:

When Aij increases to Aij þ dAij, slope increment of every point along x = 0,
x = a and y = 0 on bending plane of plate is

d
@w
@y y¼0

�� ¼ 
 p
b
j sin

ipx
a

dAij

d
@w
@x

x¼0
x¼a

���� ¼ 
 p
a
i sin

jpy
b

dAij

8>><
>>:

The work done by moment along edges of plate is

Za

0

M�
T
p
b
j sin

ipx
a

dxdAij þ 2
Zb

0

M�
T
p
a
i sin

jpy
b

dxdAij

Because

Ra
0
M�

T sin ipx
a dx ¼ 2aMT

ip

Rb
0
M�

T sin jpy
b dx ¼ 2bMT

jp

8>>><
>>>:

The work done by moment is

2
ja
ib

þ 2ib
ja

� �
M�

T dAij
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According to Eq. (2.41), the increment of deformation energy is

dV ¼ p4abD
4

i2

a2
þ j2

b2

� �2

AijdAij

According to the virtual displacement principle, hence

Aij ¼ 8M�
T

p4Dij
i2

a2
þ j2

b2

� ��2 2i2

a2
þ j2

b2

� �

By substituting the above formula into the (2.30), hence

wðx; yÞ ¼ 8M�
T

p4D

X1
i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ j2

b2

� ��2 2i2

a2
þ j2

b2

� �
sin

ipx
a

sin
jpy
b

ð2:42Þ

Substituting (2.42) into (2.12) (where MT = 0), the internal force calculation
formula of the thin plate with three simply supported edges and one clamped edges
under temperature disparity along thickness is obtained.

Mx ¼ 8M�
T

p2
P1

i¼1;3;...

P1
j¼1;3;...

1
ij

i2
a2 þ l j2

b2

� �
i2
a2 þ j2

b2

� ��2
2i2
a2 þ j2

b2

� �
sin ipx

a sin jpy
b

My ¼ 8M�
T

p2
P1

i¼1;3;...

P1
j¼1;3;...

1
ij l i2

a2 þ j2

b2

� �
i2
a2 þ j2

b2

� ��2
2i2
a2 þ j2

b2

� �
sin ipx

a sin jpy
b

Mxy ¼ 8 l�1ð ÞM�
T

p2ab

P1
i¼1;3;...

P1
j¼1;3;...

i2
a2 þ j2

b2

� ��2
2i2
a2 þ j2

b2

� �
cos ipxa cos jpyb

8>>>>>>><
>>>>>>>:

ð2:43Þ

2. The Analytic Solution of the Rectangular Thin Plate with Three Clamped Edges
and One Simply Supported Edge Under Heat Load

By superposing (2.34) and (2.42), hence

w ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3 cosham

cosh
2amy
b

� am

� �
sin

mpx
a

�MT

2D
ðx� aÞx

� 8MT

p4D

X1
i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ j2

b2

� ��2 2i2

a2
þ j2

b2

� �
sin

ipx
a

sin
jpy
b

ð2:44Þ

(2.44) is just the deflection formula of rectangular thin plate with three clamped
edges and one simply supported edge under temperature disparity along thickness
direction.
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Superposing (2.35) and (2.43), hence

MT
x ¼ 4MT

p l� 1ð Þ P1
m¼1;3;...

1
m cosham

cosh mpy
a � am

� �
sin mpx

a

� 8MT

p2
P1

i¼1;3;...

P1
j¼1;3;...

i2
a2 þ l j2

b2

� �
i2
a2 þ j2

b2

� ��2
2i2
a2 þ j2

b2

� �
sin ipx

a sin jpy
b

MT
y ¼ 4MT

p 1� lð Þ P1
m¼1;3;...

1
m cosham

cosh mpy
a � am

� �
sin mpx

a þ l� 1ð ÞMT

� 8MT

p2
P1

i¼1;3;...

P1
j¼1;3;...

1
ij l i2

a2 þ j2

b2

� �
i2
a2 þ j2

b2

� ��2
2i2
a2 þ j2

b2

� �
sin ipx

a sin jpy
b

MT
xy ¼ 4MT

p 1� lð Þ P1
m¼1;3;...

1
m cosham

cosh mpy
a � am

� �
cos mpxa

þ 8 1�lð ÞMT

p2ab

P1
i¼1;3;...

P1
j¼1;3;...

2i2
a2 þ j2

b2

� �
i2
a2 þ j2

b2

� ��2
cos ipxa cos jpyb

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð2:45Þ

(2.45) is the internal force calculation formula of the rectangular thin plate with
three clamped edges and one simply supported edge under temperature disparity
along thickness.

2.5.3 Result Analysis

To test the formulas (2.44) and (2.45) are correct, the software MATLAB is used to
program the formulas. The results show that: when taking m = n = 39, the result has
converged to exact solution; for the bending moment Mx of unit width, when taking
m = n = 7999, result has converged to exact solution; for the bending momentMy of
unit width, when taking m = n = 1999, the result has basically converged to the
exact solution at this time, and when takingm = n = 2001, the error is only 1/10,000.
For the convenience and engineering practical reasons, according to the length-width
ratio of the plate, the thermal bending result of the concrete rectangular thin plate
with three edges clamped and one simply supported is tabulated (see Table A.3).

Engineering application is seen in Sect. 2.3.4.

2.6 Thermal Bending of Rectangular Thin Plate
with Three Edges Simply Supported and One Edge
Clamped

2.6.1 Boundary Conditions

In Fig. 2.5, the edge conditions for the clamped edge are:
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w y¼0 ¼ 0
�� ;

@w
@y y¼0 ¼

�� 0 ð2:46Þ

To simply supported edges, due to the deflection w = 0 on the whole boundary,
by (2.12), the above equation becomes

w x¼0
x¼a

���� ¼ 0;
@2w
@x2

x¼0
x¼a

���� ¼ �MT

D
ð2:47Þ

w y¼b ¼ 0
�� ;

@2w
@y2 y¼b ¼

�� �MT

D
ð2:48Þ

2.6.2 Analytical Solution for Thermal Elastic Problems

On edges, w = 0, according to (2.12), (2.46), (2.47) and (2.48), it is known that

Mx x ¼ 0
x ¼ a

������� ¼ 0; My

��
y¼0¼ �MT ; My

��
y¼b¼ 0

Now, rectangular thin plate with one clamped edges and three simply edge under
temperature disparity along thickness is regarded as a superposition of rectangular
thin plate with four simply supported edges under the action of the temperature
difference DT and the rectangular thin plate with four simply supported edges under
the action of bending moment M�

T on edge y = 0.

o

y

x

b

a

Fig. 2.5 One edge clamped
and three edges simply
supported
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1. The Analytical Solution of the Uniform Bending Moment M�
T of One Edge

The deformation energy of plate is equal to (2.31), namely

V ¼ p4abD
8

X1
i¼1;3;...

X1
j¼1;3;...

A2
ij

i2

a2
þ j2

b2

� �2

ð2:49Þ

The slope of every point along y = 0 on bending plane of plate is

@w
@y

����
y¼0

¼ 
 p
b

X1
i¼1;3;...

X1
j¼1;3;...

jAij sin
ipx
a

When Aij increases to Aij þ dAij, slope increment of every point along y = 0 on
bending plane of plate is

d
@w
@y

����
y¼0

¼ 
 p
b
j sin

ipx
a

dAij

The work done by bending moment along edges of plate is

Za

0

M�
T
p
b
j sin

ipx
a

dxdAij

Because

Za

0

M�
T sin

ipx
a

dx ¼ 2aM�
T

ip

The work done by moment is

2
ja
ib
M�

T dAij

According to (2.49), the increment of deformation energy is

dV ¼ p4abD
4

i2

a2
þ j2

b2

� �2

AijdAij

According to the virtual displacement principle, hence

Aij ¼ 8
p4Db2

i2

a2
þ j2

b2

� ��2jM�
T

i

By substituting the above formula into the (2.30), hence
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wðx; yÞ ¼ 8M�
T

p4b2D

X1
i¼1;3;...

X1
j¼1;3;...

j
i

i2

a2
þ j2

b2

� ��2

sin
ipx
a

sin
jpy
b

ð2:50Þ

By substituting (2.50) into (2.12) (where MT ¼ 0) that is the internal force
calculation formula of the rectangular thin plate with four simply supported edges
under the bending moment M�

T on one edge.

Mx ¼ 8M�
T

p2b2
P1

i¼1;3;...

P1
j¼1;3;...

j
i

i2
a2 þ lj2

b2

� �
i2
a2 þ j2

b2

� ��2
sin ipx

a sin jpy
b

My ¼ 8M�
T

p2b2
P1

i¼1;3;...

P1
j¼1;3;...

j
i

li2

a2 þ j2

b2

� �
i2
a2 þ j2

b2

� ��2
sin ipx

a sin ipy
b

Mxy ¼ � 1� lð Þ 8M�
T

p2ab3
P1

i¼1;3;...

P1
j¼1;3;...

j2 i2
a2 þ j2

b2

� ��2
cos ipxa cos jpyb

8>>>>>>><
>>>>>>>:

ð2:51Þ

2. Analytic Solution of the Rectangular Thin Plate with One Clamped Edge and
Three Simply Supported Edges Under Thermal Load

By superposing (2.34) and Eq. (2.50), hence

w ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3 cosham

cosh
2amy
b

� am

� �
sin

mpx
a

�MT

2D
x� að Þx

� 8MT

p4Db2
X1

i¼1;3;...

X1
j¼1;3;...

j
i

i2

a2
þ j2

b2

� ��2

sin
ipx
a

sin
jpy
b

ð2:52Þ

(2.52) is just the deflection formula of rectangular thin plate with one clamped
edge and three simply supported edges under temperature disparity along thickness.

By superposing (2.35) and (2.43), hence

MT
x ¼ 4MT

p l� 1ð Þ P1
m¼1;3;...

1
m cosham

cosh mpy
a � am

� �
sin mpx

a

� 8MT

p2b2
P1

i¼1;3;...

P1
j¼1;3;...

j
i

i2
a2 þ j2

b2

� ��2
i2
a2 þ lj2

b2

� �
sin ipx

a sin jpy
b

MT
y ¼ 4MT

p 1� lð Þ P1
m¼1;3;...

1
m cosham

cosh mpy
a þ am

� �
sin mpx

a þ l� 1ð ÞMT

� 8MT

p2b2
P1

i¼1;3;...

P1
j¼1;3;...

j
i

i2
a2 þ j2

b2

� ��2
li2

a2 þ j2

b2

� �
sin ipx

a sin ipy
b

MT
xy ¼ 4MT

p 1� lð Þ P1
m¼1;3;...

1
m cosham

cosh mpy
a þ am

� �
cos mpxa

� l� 1ð Þ 8MT

p2ab

P1
i¼1;3;...

P1
j¼1;3;...

j2 i2
a2 þ j2

b2

� ��2
cos ipxa cos jpyb

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð2:53Þ
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(2.53) is the internal force calculation formula of the rectangular thin plate with
three simply supported edges and one clamped edge under temperature disparity
along thickness.

2.6.3 Results Analysis

To test (2.52) and (2.53) are correct, the software MATLAB is used to program the
formulas. The results show that: for the deflection w, when taking m = n = 39, the
result has converged to exact solution. For the bending moment MT

x of unit width,
when taking m = n = 1999, result has basically converged to exact solution, and has
an error of only 1/10000 in comparison with the result when taking m = n = 2001.
For the bending moment My

T of unit width, when taking m = n = 7001, result
has basically converged to exact solution, and has an error of only 1/10000 in
comparison with the result when taking m = n = 7003. For the convenience and
engineering practical reasons, according to the length-width ratio of the rectangular
thin plate, the thermal bending result of concrete rectangular thin plate with the one
edges clamped and three simply supported is tabulated (see Table A.4).

Engineering application is seen in Sect. 2.3.4.

2.7 Thermal Bending of Rectangular Thin Plate with Two
Adjacent Edges Simply Supported and Two Opposite
Edges Clamped

2.7.1 Boundary Conditions

In Fig. 2.6, to clamped edges, there is:

wjy¼0¼ 0;
@w
@y

����
y¼0

¼ 0 ð2:54Þ

wjx¼0¼ 0;
@w
@x

����
x¼0

¼ 0 ð2:55Þ

To simply supported edges, due to the deflection w in the whole edge is zero, by
(2.12), there is

w x¼a ¼ 0j ;
@2w
@x2

����
x¼a

¼ �MT

D
ð2:56Þ
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w y¼b

�� ¼ 0;
@2w
@y2

����
y¼b

¼ �MT

D
ð2:57Þ

2.7.2 Analytical Solution for Thermal Elastic Problems

On edges, w = 0, according to (2.12), (2.54), (2.55), (2.56) and (2.57), there is

Mxjx¼a¼ 0; My

��
y¼b¼ 0; Mxjx¼0¼ �MT My

��
y¼0¼ �MT

Now, Rectangular thin plate with two adjacent edges clamped and two adjacent
edges simply supported under temperature disparity along thickness is regarded as a
superposition of rectangular thin plate with four simply supported edges under the
action of the temperature difference DT and the rectangular thin plate with four
simply supported edges under uniform bending momentM�

T on two adjacent edges.

1. The Solution of the Uniform Bending Moment M�
T on the Two Adjacent Edges

The deformation energy of plate is equal to (2.31), namely

V ¼ p4abD
8

X1
i¼1;3;...

X1
j¼1;3;...

A2
ij

i2

a2
þ j2

b2

� �2

ð2:58Þ

The slope of every point along x = 0 and y = 0 on bending plane of plate is

@w
@y

����
y¼0

¼ 
 p
b

X1
i¼1;3;...

X1
j¼1;3;...

jAij sin
ipx
a

@w
@x

����
x¼0

¼ 
 p
a

X1
i¼1;3;...

X1
j¼1;3;...

iAij sin
jpy
b

8>>>><
>>>>:

o

y

x

b

a

Fig. 2.6 Two adjacent edges
clamped and two adjacent
edges simply supported
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When Aij increased to Aij þ dAij, slope increment of every point along x = 0 and
y = 0 on bending plane of plate is

d
@w
@y

����
y¼0

¼ 
 p
b
j sin

ipx
a

dAij

d
@w
@x

����
x¼0

¼ 
 p
a
i sin

jpy
b

dAij

8>><
>>:

The work done by bending moment along edges of plate is

Za

0

M�
T
p
b
j sin

ipx
a

dxdAij þ
Zb

0

M�
T
p
a
i sin

jpy
b

dxdAij

Because

Ra
0
M�

T sin ipx
a dx ¼ 2aMT

ip

Rb
0
M�

T sin jpy
b dx ¼ 2bMT

jp

8>>><
>>>:

The work done by bending moment is

2ab
ij

j2

b2
þ i2

a2

� �
MTdAij

According to (2.58), the increment of deformation energy is

dV ¼ p4abD
4

i2

a2
þ j2

b2

� �2

AijdAij

According to the virtual displacement principle, there is

Aij ¼ 8
p4D

i2

a2
þ j2

b2

� ��1M�
T

ij

By substituting the above formula into (2.30), hence

wðx; yÞ ¼ 8M�
T

p4D

X1
i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ j2

b2

� ��1

sin
ipx
a

sin
jpy
b

ð2:59Þ

Substituting (2.59) into (2.12) (where MT = 0), the internal force calculation
formula of the plate with four simply supported edges under the bending moment
M�

T on the two adjacent edges is obtained.
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Mx ¼ 8MT

p2
P1

i¼1;3;...

P1
j¼1;3;...

1
ij

i2
a2 þ lj2

b2

� �
i2
a2 þ j2

b2

� ��1
sin ipx

a sin jpy
b

My ¼ 8MT

p2
P1

i¼1;3;...

P1
j¼1;3;...

1
ij

li2

a2 þ j2

b2

� �
i2
a2 þ j2

b2

� ��1
sin ipx

a sin jpy
b

Mxy ¼ � 1� lð Þ 8MT

p2ab

P1
i¼1;3;...

P1
j¼1;3;...

i2
a2 þ j2

b2

� ��1
cos ipxa cos jpyb

8>>>>>>><
>>>>>>>:

ð2:60Þ

2. Analytic Solution of Rectangular Thin Plate with Two Adjacent Simply
Supported Edge and Two Adjacent Clamped Edges

By superposing (2.34) and (2.59), hence

w ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3cosham

cosh
2amy
b

� am

� �
sin

mpx
a

�MT

2D
ðx� aÞx� 8MT

p4D

X1
i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ j2

b2

� ��1

sin
ipx
a

sin
jpy
b

ð2:61Þ

(2.61) is just the deflection formula of rectangular thin plate with two adjacent
simply supported edge and two adjacent clamped edges under temperature disparity
along thickness.

By superposing (2.35) and (2.61), hence

MT
x
¼ 4MT

p l� 1ð Þ P1
m¼1;3;...

1
m cosham

cosh mpy
a � am

� �
sin mpx

a

� 8MT

p2
P1

i¼1;3;...

P1
j¼1;3;...

1
ij

i2
a2 þ lj2

b2

� �
i2
a2 þ j2

b2

� ��1
sin ipx

a sin jpy
b

MT
y
¼ 4MT

p 1� lð Þ P1
m¼1;3;...

1
m cosham

cosh mpy
a � am

� �
sin mpx

a

� l� 1ð ÞMT þ 8MT

p2
P1

i¼1;3;...

P1
j¼1;3;...

1
ij

li2

a2 þ j2

b2

� �
i2
a2 þ j2

b2

� ��1
sin ipx

a sin jpy
b

MT
xy
¼ 4MT

p 1� lð Þ P1
m¼1;3;...

1
m cosham

cosh mpy
a � am

� �
cos mpxa

� l� 1ð Þ 8MT

p2ab

P1
i¼1;3;...

P1
j¼1;3;...

i2
a2 þ j2

b2

� ��1
cos ipxa cos jpyb

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð2:62Þ

(2.62) is the internal force calculation formula of rectangular thin plate with two
adjacent simply supported edge and two adjacent clamped edges under temperature
disparity along thickness.
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2.7.3 Results Analysis

To test (2.61) and (2.62) are correct, software MATLAB is used to calculate. The
results show that: for deflection function w, when taking m = n = 69, the result has
converged to exact solution; for the bending moment of Mx

T unit width, when taking
m = n = 5999, result has converged to exact solution; for the bending moment My

T

of unit width, when taking m = n = 5001, the result has basically converge to the
exact solution at this time, and the error is only 1/10000 in comparison with the
result when taking m = n = 4999. For the convenience and engineering practical
reasons, according to the length-width ratio of the rectangular thin plate, the thermal
bending results of concrete rectangular plate with two adjacent edges clamped and
two adjacent edges simply supported is tabulated (see Table 5).

Engineering application is seen in Sect. 2.3.4.

2.8 Thermal Bending of Rectangular Thin Plate with Two
Opposite Edges Simply Supported and Two Opposite
Edges Clamped

2.8.1 Boundary Conditions

In Fig. 2.7, to simply supported edges, there is:

w x¼0
x¼a

���� ¼ 0;
@2w
@x2

x¼0
x¼a

���� ¼ �MT

D
ð2:63Þ

To clamped edges, there is

w y¼b
2

y¼�b
2

������ ¼ 0;
@w
@y y¼b

2
y¼�b

2

������ ¼ 0 ð2:64Þ

2.8.2 Analytical Solution for Thermal Elastic Problems

On edges, w = 0, according to (2.12), (2.63) and (2.64), hence

Mx x¼0
x¼a

���� ¼ 0; My y¼0
y¼b

���� ¼ �MT

2.7 Thermal Bending of Rectangular Thin Plate with Two Adjacent … 39



Now, rectangular thin plate with two opposite edges clamped and two opposite
edges simply supported under temperature disparity along thickness is regarded as a
superposition of the rectangular thin plate with four simply supported edges under
the action of the temperature difference DT and the rectangular thin plate with four
simply supported edges under the bending moment M�

T on two opposite edges.

1. The Solution of the Uniform Bending Moment M�
T on the Two Opposite Edges

The deformation energy of plate is equal to (2.31), namely

V ¼ p4abD
8

X1
i¼1;3;...

X1
j¼1;3;...

A2
ij

i2

a2
þ j2

b2

� �2

ð2:65Þ

The slope of every point along y = b and y = 0 on bending plane of plate is

@w
@y y ¼ 0

y ¼ b

������� ¼ 
 p
b

X1
i¼1;3;...

X1
j¼1;3;...

jAij sin
ipx
a

When Aij increased to Aij þ dAij, slope increment of every point along y = b and
y = 0 on bending plane of plate is

d
@w
@y y ¼ 0

y ¼ b

������� ¼ 
 p
b
j sin

ipx
a

dAij

The work done by moment along edges of plate is

2
Za

0

M�
T
p
b
j sin

ipx
a

dxdAij

x

y

b

a

Fig. 2.7 Two opposite edges
clamped and two opposite
edges simply supported
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Because

2
Za

0

M�
T sin

ipx
a

dx ¼ 4aM�
T

ip

The work done by bending moment is

4aM�
T

b
j
i
dAij

According to (2.65), the increment of deformation energy is

dV ¼ p4abD
4

i2

a2
þ j2

b2

� �2

AijdAij

According to the virtual displacement principle, hence

Aij ¼ 16M�
T

p4b2D
j
i

i2

a2
þ j2

b2

� ��2

By substituting the above formula into (2.30), hence

wðx; yÞ ¼ 16M�
T

p4b2D

X1
i¼1;3;...

X1
j¼1;3;...

j
i

i2

a2
þ j2

b2

� ��2

sin
ipx
a

sin
jpy
b

ð2:66Þ

By substituting (2.66) into (2.12) (where MT = 0) that is the internal force cal-
culation formula of the plate with four simply supported edges under the bending
moment M�

T on the two opposite edges

Mx ¼ 16M�
T

p2b2
X1

i¼1;3;...

X1
j¼1;3;...

j
i

i2

a2
þ lj2

b2

� �
i2

a2
þ j2

b2

� ��2

sin
ipx
a

sin
jpy
b

My ¼ 16M�
T

p2b2
X1

i¼1;3;...

X1
j¼1;3;...

j
i

li2

a2
þ j2

b2

� �
i2

a2
þ j2

b2

� ��2

sin
ipx
a

sin
jpy
b

Mxy ¼ � 1� lð Þ 16M
�
T

p2ab3
X1

i¼1;3;...

X1
j¼1;3;...

j2
i2

a2
þ j2

b2

� ��2

cos
ipx
a

cos
jpy
b

8>>>>>>>>>><
>>>>>>>>>>:

ð2:67Þ

2. Analytic Solution of Rectangular Thin Plate with Two Opposite Edges Simply
Supported and Two Opposite Edges Clamped

2.8 Thermal Bending of Rectangular Thin Plate with Two Opposite … 41



By superposing (2.34) and (2.66), hence

w ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3 cosham

cosh
2amy
b

� am

� �
sin

mpx
a

�MT

2D
ðx� aÞx� 16MT

p4b2D

X1
i¼1;3;...

X1
j¼1;3;...

j
i

i2

a2
þ j2

b2

� ��2

sin
ipx
a

sin
jpy
b

ð2:68Þ

(2.68) is just the deflection formula of rectangular thin plate with two opposite
edges simply supported and two opposite edges clamped under temperature dis-
parity along thickness.

By superposing (2.35) and (2.67), hence

MT
x
¼ 4MT

p l� 1ð Þ P1
m¼1;3;...

1
m cosham

cosh mpy
a � am

� �
sin mpx

a

� 16MT

p2b2
P1

i¼1;3;...

P1
j¼1;3;...

j
i

i2
a2 þ lj2

b2

� �
i2
a2 þ j2

b2

� ��2
sin ipx

a sin jpy
b

MT
y
¼ 4MT

p 1� lð Þ P1
m¼1;3;...

1
m cosham

cosh mpy
a � am

� �
sin mpx

a

� l� 1ð ÞMT � 16MT

p2b2
P1

i¼1;3;...

P1
j¼1;3;...

j
i

li2

a2 þ j2

b2

� �
i2
a2 þ j2

b2

� ��2
sin ipx

a sin jpy
b

MT
xy
¼ 4MT

p 1� lð Þ P1
m¼1;3;...

1
m cosham

cosh mpy
a � am

� �
cos mpxa

� l� 1ð Þ 16MT

p2ab

P1
i¼1;3;...

P1
j¼1;3;...

j2 i2
a2 þ j2

b2

� ��1
cos ipxa cos jpyb

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð2:69Þ

(2.69) is the internal force calculation formula of rectangular thin plate with two
opposite edges simply supported and two opposite edges clamped under temper-
ature disparity along thickness.

2.8.3 Results Analysis

To test (2.68) and (2.69) are correct, the software MATLAB is used to program the
formulas. The results show that: for the deflection fuction w, when taking m =
n = 39, the result has converged to exact solution; for the bending moment MT

x of
unit width, when taking m = n = 5999, result has converged to exact solution; for
the bending moment My

T of unit width, when taking m = n = 10,001, the result has
basically converge to the exact solution at this time, and the error is only 1/10000 in
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comparison with the result when taking m = n = 9999. For convenience and
engineering practical reasons, according to the length-width ratio of the rectangular
thin plate, the thermal bending results of concrete rectangular plate with two
opposite edges clamped and two opposite edges simply supported is tabulated (see
Table A.6).

Engineering application is seen in Sect. 2.3.4.
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Chapter 3
Thermal Bending of Concrete Rectangular
Thin Plate with Free Boundary

Abstract The deflection equation and the internal force analytical solution of the
rectangular thin plate with free boundary (three simply supported edges and one free
side, three clamped sides and one free side, two opposite edges clamped and one edge
simply supported and one edge free, two adjacent edges clamped and one edge simply
supported and one edge free, two opposite edges simply supported and one edge
clamped and one edge free, and two adjacent edges simply supported and one edge
clamped and one edge free) under temperature difference is systematically introduced
in this chapter. In order to facilitate the engineering application, the coefficient cal-
culation table for deflection and internal force based on concrete material is made.

x

y

b

a

3.1 Introduction

For concrete rectangular thin plate with free boundary under temperature disparity,
the existing literature [49, 53] lists the calculation table (Table 3.1) of concrete
rectangular thin plate with three edges clamped and one edge free, but the values of
transverse bending moment on clamped edges are greater than the solution obtained
when w = 0. As for other rectangular thin plate with free boundary under tem-
perature disparity, there is no relevant report at present in the existing literatures.
Therefore, in this chapter, based on the small deflection thin plate theory and
superposition principle, considering temperature variation which is perpendicular to
surface, the analytical solution of rectangular thin plate is deduced with three edges

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2018
X. Cheng, Thermal Elastic Mechanics Problems of Concrete Rectangular
Thin Plate, Springer Tracts in Civil Engineering,
DOI 10.1007/978-981-10-4472-4_3
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simply supported and one edge free, three edges clamped and one edge free, two
opposite edges simply supported and one edge clamped and one edge free, two
adjacent edges simply supported and one edge clamped and one edge free, two
opposite edges clamped and one edge simply supported and one edge free, and two
adjacent edges clamped and one edge simply supported and one edge free. Then
numerical examples are calculated based on the concrete material and the software
MATLAB is used to prove the validity of the solution.

In this chapter, based on the small deflection thin plate theory and superposition
principle, considering temperature variation which is perpendicular to surface, the
rectangular thin plate with one free edge under temperature disparity is regarded as
the superposition of two types of rectangular thin plate, namely, the rectangular thin
plate with three simply supported edges and one free edge under the temperature
disparity and under the bending moment on different edges. Firstly, by supposing
deflection function which has undetermined parameter at free edge, and adopting
Levy method, the analytic solution of the rectangular thin plate with three simply
supported edges and one free edge under the action of the free boundary deflection
function is obtained. Secondly, the analytic solution of the rectangular thin plate
with three simply supported edges and one free edge under temperature disparity is
obtained. Thirdly, using the solution of rectangular thin plate with four simply
supported edges under the bending moment on different edges, the solution of
rectangular thin plate with three simply supported edges and one free edge under
the bending moment on different edges is obtained. Finally, adopting the

Table 3.1 Bending moment coefficient about the rectangular thin plate with three edges clamped
and one edge free under temperature disparity

o

y

xl

T
yM

T
xM

T
yM 0

2 T
xM 0

2

T
yM 0
1

T
xM 0
1

x

yl

l ¼ 1
6
; MT

x ¼ kTx aDTEh
2

MT
y ¼ kTy aDTEh

2

M0T
x1 ¼ kx1aDTEh2

M0T
y1 ¼ ky1aDTEh2

M0T
x2 ¼ kx2aDTEh2

M0T
y2 ¼ ky2aDTEh2

lx=ly kx1 ky1 kx2 ky2 kx ky

0.50 0.1018 0.0983 0.0973 0.0975 0.0948 0.0974

0.75 0.1057 0.0980 0.0973 0.1004 0.0925 0.0913

1.00 0.1085 0.0968 0.0974 0.1050 0.0919 0.0851

1.25 0.1072 0.0957 0.0979 0.1085 0.0931 0.0768

1.50 0.1006 0.0965 0.0983 0.1091 0.0951 0.0696

1.75 0.0997 0.0943 0.0975 0.1013 0.0969 0.0633

2.00 0.0981 0.0933 0.0963 0.0957 0.0985 0.0570
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superposition principle, the analytical solution of the deflection and bending
moment of the rectangular thin plate with one free edge under the transverse
temperature variation is acquired, and the calculation coefficient table of the con-
crete rectangular thin plate with one free edge under transverse temperature dis-
parity is obtained by using MATLAB. Thus it can provide a theoretical basis for the
design and calculation of the rectangular thin plate with one free edge under the
thermal environment.

3.2 Thermal Bending of the Concrete Rectangular Thin
Plate with Three Edges Simply Supported and One
Edge Free

3.2.1 Boundary Conditions

As is shown in Fig. 3.1, the boundary conditions are:

w x¼0
x¼a

���� ¼ 0; Mx x¼0
x¼a

���� ¼ 0 ð3:1Þ

w y¼0

�� ¼ 0; My y¼0

�� ¼ 0 ð3:2Þ

My y¼0

�� ¼ 0; Mxy y¼b

�� ¼ 0; FQy y¼b

�� ¼ 0 ð3:3Þ

3.2.2 Analytic Solution for the Rectangular Thin Plate
with Three Edges Simply Supported and One Edge
Free Under the Deflection w1 y¼b

��
As is shown in Fig. 3.1, let

w1 y¼b

�� ¼
X

m¼1;3;...

am sin
mpx
a

ð3:4Þ

According to (2.12), the other boundary conditions are:

w1 x¼0
x¼a

���� ¼ 0;
@2w1

@x2
x¼0
x¼a

���� ¼ 0 ð3:5Þ

w1 y¼0

�� ¼ 0;
@2w1

@y2 y¼0

�� ¼ 0 ð3:6Þ
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@2w1

@y2
þ l

@2w1

@x2 y¼b ¼
�� 0 ð3:7Þ

According to (2.13), let

w1 ¼ �
X1
m¼1

XmYm ð3:8Þ

According to the boundary conditions (3.5), ordering Xm ¼ sin mpx
a , so the

deflection function w1 can be written as

w1 ¼ �
X1
m¼1

Ym sin
mpx
a

ð3:9Þ

Substituting (3.9) into differential equation (2.13), it is obtained as follows

Y ð4Þ
m � 2

m2p2

a2
Y 00
m þ m4p4

a4
Ym ¼ 0

The solution of this equation can be written as follows

Ym ¼ Am sinh
mpy
a

þBm cosh
mpy
a

þCm
mpy
a

sinh
mpy
a

þDm
mpy
a

cosh
mpy
a

ð3:10Þ

That is

w1 ¼
X1
m¼1

Am sinh
mpy
a

þBm cosh
mpy
a

þCm
mpy
a

sinh
mpy
a

þDm
mpy
a

cosh
mpy
a

� �
sin

mpx
a

ð3:11Þ

x

y

b

a

Fig. 3.1 Three supported
edges and one free edge
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Substituting it into (3.5), the boundary conditions are satisfied naturally, then
substituting it into (3.6) yields

Bm ¼ Cm ¼ 0

Substituting it into (3.4) and (3.7) and letting mpb
a ¼ bm there is

Am sinh bm þDm bm cosh bm ¼ am
Am 1� lð Þ sinh bm þDm 1� lð Þ bm cosh bm þ 2 sinh bm½ � ¼ 0

�
ð3:12Þ

Thus

Dm ¼ l� 1ð Þ am
2 sinh bm

Am ¼ am
2 sinh bm

2þ 1� lð Þbm coth bm½ �

8><
>:

Therefore, the deflection expression of the rectangular thin plate of three simply
supported edges and one free edge under the deflection of free edge is

w1 ¼ �
X1

m¼1;3;...

am 1� lð Þ
2 sinh bm

2
1� l

þ bm cothbm

� �
sinh

mpy
a

� mpy
a

cosh
mpy
a

� 	
sin

mpx
a

ð3:13Þ

Letting MT be zero and substituting it into (2.12), there is

Mx1 ¼ � D
2a2

1� lð Þ2 p2
X1

m¼1;3;...

amm2

sinh bm

bm coth bm þ 2
1þ l
1� l

� �
sinh

mpy
a

�
mpy
a

cosh
mpy
a

2
664

3
775 sin

mpx
a

My1 ¼ � D
2a2

1� lð Þ2 p2
X1

m¼1;3;...

amm2

sinh bm

mpy
a

cosh
mpy
a

�

bm coth bm sinh
mpy
a

0
B@

1
CA sin

mpx
a

8>>>>>>>>>><
>>>>>>>>>>:

ð3:14Þ

3.2.3 Analytical Solution of the Rectangular Thin Plate
With Three Edges Supported and One Edge Free
Under the Action of DT

For simply supported edges, given that the deflection w2 is equal to zero along the
whole boundary, so according to (2.12), (3.1), (3.2) and (3.3) are turned into
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w x¼0
x¼a

���� ¼ 0;
@2w
@x2

x¼0
x¼a

���� ¼ �MT

D
ð3:15Þ

wy¼0 ¼ 0;
@2w
@y2 y¼0 ¼

�� �MT

D
ð3:16Þ

@2w
@y2 þ l @2w

@x2

���
y¼b

¼ 0

@3w
@y3 þ 2� lð Þ @3w

@x2@y

���
y¼b

¼ 0

8><
>: ð3:17Þ

Assuming that the distribution share force on the free edge is FQy, (3.17) is
merged into

FQy y¼b ¼
�� � D

@3w
@y3

þ 2� lð Þ @3w
@x2@y

� 	����
y¼b

¼ 0 ð3:18Þ

According to (2.23), there are

w2 ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3cosham

cosh
2amy
b

� am

� �
sin

mpx
a

� 	
�MT

2D
ðx� aÞx

ð3:19Þ

Mx2 ¼ 4MT

p
l� 1ð Þ

X1
m¼1;3;...

1
mcosham

cosh
mpy
a

� am
� �

sin
mpx
a

� 	

My2 ¼ 4MT

p
1� lð Þ

X1
m¼1;3;...

1
mcosham

cosh
mpy
a

� am
� �

sin
mpx
a

� 	
þ l� 1ð ÞMT

8>>>><
>>>>:

ð3:20Þ

Substituting (3.13) into (3.18) yields

F
1
Qy

���
y¼b

¼ �Dp3 1� lð Þ2
2a3

X1
m¼1;3;...

amm3

sinh2 bm

3þ l
1� l

sinh 2bm
2

þ bm

� 	
sin

mpx
a

� 


Substituting (3.19) into (3.18) yields

F
2
Qy

���
y¼b

¼ � 4 3� 2lð ÞMT

pb

X1
m¼1;3;...

am
m cosh am

sinh
2amy
b

� am

� �
sin

mpx
a

� 	
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On the free edge, according to (3.18), hence

F
1
Qy

���
y¼b

þF
2
Qy

���
y¼b

¼ 0

That is

am ¼ � 8a3 3� 2lð ÞMT sinh2 bm
bDp4 1� lð Þ2

am
m4cosh am

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þ bm

Substituting it into (3.13) and (3.14), it is obtained as follows

w1 ¼ 2a2 3� 2lð ÞMT

Dp3 1� lð Þ
X1

m¼1;3;...

sinh bm
m3cosh am

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þbm

2
1� l

þ

bm coth bm

0
B@

1
CA sinh

mpy
a

�

mpy
a

cosh
mpy
a

2
666664

3
777775 sin

mpx
a

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð3:21Þ

Mx1 ¼ 2 3� 2lð ÞMT

p

X1
m¼1;3;...

sinh bm
mcosh am

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þ bm

�
bm coth bm þ 2

1þ l
1� l

� �

� sinh
mpy
a

� mpy
a

cosh
mpy
a

2
6664

3
7775 sin

mpx
a

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

My1 ¼ 2 3� 2lð ÞMT

p

X1
m¼1;3;...

sinh bm
mcosh am

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þ bm

� mpy
a

cosh
mpy
a

� bm coth bm sinh
mpy
a

� �
sin

mpx
a

2
66664

3
77775

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð3:22Þ

Superimposing (3.19) and (3.21), it is obtained as follows

w ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3 cosh am

cosh
2amy
b

� am

� �
sin

mpx
a

� 	
�MT

2D
ðx� aÞx

þ 2a2 3� 2lð ÞMT

Dp3 1� lð Þ

�
X1

m¼1;3;...

sinh bm
m3 cosh am

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þ bm

�
2

1� l
þ bm coth bm

� �
sinh

mpy
a

� mpy
a

cosh
mpy
a

2
664

3
775 sin

mpx
a

8>><
>>:

9>>=
>>;

ð3:23Þ
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Superimposing (3.20) and (3.22), there are

Mx ¼ 4MT

p
l� 1ð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

sin
mpx
a

þ 2 3� 2lð ÞMT

p

X1
m¼1;3;...

sinh bm
mcosham

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þ bm

bm coth bm þ

2
1þ l
1� l

0
B@

1
CA sinh

mpy
a

�

mpy
a

cosh
mpy
a

2
6666664

3
7777775
sin

mpx
a

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð3:24Þ

My ¼ 4MT

p
1� lð Þ

X1
m¼1;3;...

1
m cosh am

cosh
mpy
a

� am
� �

sin
mpx
a

þ l� 1ð ÞMT þ 2 3� 2lð ÞMT

p

�
X1

m¼1;3;...

sinhbm
m cosh am

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þ bm

mpy
a

cosh
mpy
a

� bm coth bm sinh
mpy
a

� �
sin

mpx
a

ð3:25Þ

3.2.4 Results Analysis

To test the accuracy of (3.23), (3.24) and (3.25), the software MATLAB is used to
program the formulas, and the results show that: the deflection w has converged to
exact solution when taking m = n = 9; for the bending momentMx of unit width, the
result has converged to exact solution when taking m = n = 17; for the bending
moment My of unit width, the result has converged to exact solution when taking
m = n = 1999, and the error is only 1/10,000 compared with the result when taking
m = n = 1999, for the convenience and engineering application, according to the
length-breadth ratio of the thin plate, the calculated result of the rectangular thin
plate with three simply supported edges and one free edge is tabulated (Table A.7).

The engineering application is the same with Sect. 2.3.4.

3.3 Thermal Bending of the Concrete Rectangular Thin
Plate with Three Edges Clamped and One Edge Free

3.3.1 Boundary Conditions

As is shown in Fig. 3.2, for clamped edges, the boundary conditions are (Fig. 3.2):
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w x¼0
x¼a

���� ¼ 0;
@w
@x

x¼0
x¼a

���� ¼ 0 ð3:26Þ

w y¼0
�� ¼ 0;

@w
@y y¼0

�� ¼ 0 ð3:27Þ

For the free edge, the bending moment My, torque Myx, and transverse shear
force FQy are equal to zero. Assuming that the deflection is expressed by the Sine
series on the boundary of y = b, so

My y¼b

�� ¼ 0

Myx y¼b

�� ¼ 0

FQy y¼b

�� ¼ 0

8><
>: ð3:28Þ

wjy¼b¼
X

m¼1;3;...

am sin
mpx
a

ð3:29Þ

Through (2.12), the first part of (3.28) becomes

@2w
@y2

þ l
@2w
@x2

����
y¼b

¼ �MT

D
ð3:30Þ

The distributed shear force on the free boundary is FQy. Thus, the second and
third parts of (3.28) are merged into

FQy

��
y¼b¼ �D

@3w
@y3

þ 2� lð Þ @3w
@x2@y

� 	����
y¼b

¼ 0 ð3:31Þ

x

y

b

a

Fig. 3.2 Three clamped
edges and one free edge
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3.3.2 Analytical Solution for the Thermal Elastic Problem

The deflection function that completely satisfies the boundary condition (3.26),
(3.27), (3.29), and (3.30) is difficult to be obtained. Thus, the superposition prin-
ciple is adopted to solve this problem.

Giving that w = 0 on the clamped boundary condition, according to the (2.12)
(3.26) and (3.27), there is

Mx x ¼ 0
x ¼ a

������� ¼ �MT ; My y¼0 ¼
�� �MT

Thus, the rectangular thin plate with three edges clamped and one edge free
under temperature variation that is perpendicular to the surface can be considered as
the superposition of two kinds of rectangular thin plate: one with three simply
supported edges and one free edge under temperature difference DT and another
with three simply supported edges and one free edge under the bending moment
M�

T on the three adjacent edges.

1. Analytic Solution of Rectangular Thin Plate with Three Edges Simply
Supported and One Edge Free Under the Action of DT

According to (3.23), (3.24) and (3.25), analytical solution of rectangular thin
plate with three edges simply supported and one edge free under the action of DT is

w1 ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3 cosham

cosh
2amy
b

� am

� �
sin

mpx
a

� 	
�MT

2D
ðx� aÞxþ 2a2 3� 2lð ÞMT

Dp3 1� lð Þ

�
X1

m¼1;3;...

sinh bm
m3 cosh am

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þ bm

� 2
1� l

þ bm coth bm

� �
sinh

mpy
a

� mpy
a

cosh cosh
mpy
a

� 	
sin

mpx
a

8<
:

9=
;

ð3:32Þ

Mx ¼ 4MT

p
l� 1ð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

sin
mpx
a

þ 2 3� 2lð ÞMT

p

X1
m¼1;3;...

sinh bm
m cosh am

sinh 2amy
b � am

� �
3þl
1�l

sinh 2bm
2 þ bm

bm coth bm

þ 2
1þ l
1� l

0
B@

1
CA sinh

mpy
a

� mpy
a

cosh
mpy
a

2
64

3
75 sin

mpx
a

8><
>:

9>=
>;

My ¼ 4MT

p
1� lð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

sin
mpx
a

þ l� 1ð ÞMT þ 2 3� 2lð ÞMT

p
�

X1
m¼1;3;...

sinhbm
m cosh am

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þ bm

mpy
a

cosh
mpy
a

� bm coth bm sinh
mpy
a

� �
sin

mpx
a

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð3:33Þ
2. Solution of the Rectangular Thin Plate with Three Edges Simply Supported and

One Edge Free with the Bending Moment M�
T on the Three Adjacent Edges
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Using the boundary condition (3.29), the rectangular thin plate with three simply
supported edges and another free edge under the action of bending moment M�

T on
the three adjacent edges can be considered as the superposition of two kinds of
rectangular thin plate: one with four simply supported edges under the bending
moment M�

T on the three adjacent edges, and another with three simply supported
edges and one free edge under the deflection w y¼b

�� on the free boundary.
According to (2.42) and (2.43), expressions of deflection and bending moment

of the rectangular thin plate with four simply supported edges under the bending
moment M�

T on three adjacent edges are as follows:

w2ðx; yÞ ¼ 8M�
T

p4D

X1
i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ j2

b2

� ��2 2i2

a2
þ j2

b2

� �
sin

ipx
a

sin
jpy
b

ð3:34Þ

Mx2 ¼ 8M�
T

p2
X1

i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ l

j2

b2

� �
i2

a2
þ j2

b2

� ��2 2i2

a2
þ j2

b2

� �
sin

ipx
a

sin
jpy
b

( )

My2 ¼ 8M�
T

p2
X1

i¼1;3;...

X1
j¼1;3;...

1
ij

l
i2

a2
þ j2

b2

� �
i2

a2
þ j2

b2

� ��2 2i2

a2
þ j2

b2

� �
sin

ipx
a

sin
jpy
b

( )
8>>>>><
>>>>>:

ð3:35Þ

Substituting it into (3.34) and (3.31) yields

F
3
Qy

���
y¼b

¼ � 8M�
T

pb

X1
i¼1;3;...

X1
j¼1;3;...

1
i

i2

a2
þ j2

b2

� ��2 2i2

a2
þ j2

b2

� �
j2

b2
þð2� lÞ i

2

a2

� 	
sin

ipx
a

( )

Letting am ¼ am on the free boundary by employing (3.31), it is obtained as
follows:

F
1
Qy

���
y¼b

þF
3
Qy

���
y¼b

¼ 0

That is

am ¼ � 16M�
T a

3 sinh2 bm
p4Db 1� lð Þ2

P1
k¼1;3;...

1
m4

m2

a2 þ k2
b2

� ��2
2m2

a2 þ k2
b2

� �
k2
b2 þð2� lÞ m2

a2

h i
3þ l
1�l

sinh 2bm
2 þ bm

3.3 Thermal Bending of the Concrete Rectangular Thin Plate … 55



Substituting it into (3.13) and (3.14), there is

w3 ¼ � 8MTa3

p4Db 1� lð Þ
X1

m¼1;3;...

sinh bm
P1

k¼1;3;...
1
m4

m2

a2 þ k2
b2

� ��2
2m2

a2 þ k2
b2

� �
k2
b2 þð2� lÞ m2

a2

h i� 

3þl
1�l

sinh 2bm
2 þ bm

� 2
1� l

þ bm coth bm

� �
sinh

mpy
a

� mpy
a

cosh
mpy
a

� 	
sin

mpx
a

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð3:36Þ

Mx3 ¼ � 8MTa
p2b

X1
m¼1;3;...

sinh bm
P1

k¼1;3;...
1
m2

m2

a2 þ k2
b2

� ��2
2m2

a2 þ k2
b2

� �
k2
b2 þ ð2� lÞ m2

a2

h i
3þl
1�l

sinh 2bm
2 þ bm

� bm coth bm þ 2
1þ l
1� l

� �
� sinh

mpy
a

� mpy
a

cosh
mpy
a

� 	
sin

mpx
a

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð3:37Þ

My3 ¼ � 8MTa
p2b

X1
m¼1;3;...

sinh bm
P1

k¼1;3;...
1
m2

m2

a2 þ k2
b2

� ��2
2m2

a2 þ k2
b2

� �
k2
b2 þð2� lÞ m2

a2

h i
3þ l
1�l

sinh 2bm
2 þ bm

� mpy
a

cosh
mpy
a

� bm coth bm sinh
mpy
a

� �
sin

mpx
a

8>>>><
>>>>:

9>>>>=
>>>>;

ð3:38Þ

Superimposing (3.32), (3.34) and (3.36), there is

w ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3cosham

cosh
2amy
b

� am

� �
sin

mpx
a

�MT

2D
ðx� aÞx

þ 2a2 3� 2lð ÞMT

Dp3 1� lð Þ
X1

m¼1;3;...

sinh bm
m3 cosh am

sinh 2amy
b � am

� �
3þl
1�l

sinh 2bm
2 þ bm

�

2
1� l

þ bm coth bm

0
B@

1
CA sinh

mpy
a

� mpy
a

cosh
mpy
a

2
6666664

3
7777775
sin

mpx
a

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

� 8MT

p4D

X1
i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ j2

b2

� ��2 2i2

a2
þ j2

b2

� �
sin

ipx
a

sin
jpy
b

� 8MTa3

p4Db 1� lð Þ
X1

m¼1;3;...

sinh bm
P1

k¼1;3;...
1
m4

m2

a2 þ k2
b2

� ��2
2m2

a2 þ k2
b2

� �
k2
b2 þð2� lÞ m2

a2

h i
3þ l
1�l

sinh 2bm
2 þ bm

� 2
1� l

þ bm coth bm

� �
sinh

mpy
a

� mpy
a

cosh
mpy
a

� 	
sin

mpx
a

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
ð3:39Þ
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By superimposing (3.33), (3.35) and (3.37), there is

Mx ¼ 4MT

p
l� 1ð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

sin
mpx
a

þ 2 3� 2lð ÞMT

p

X1
m¼1;3;...

sinh bm
m cosham

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þ bm

bm coth bm

þ 2
1þl
1� l

0
B@

1
CA

� sinh
mpy
a

� mpy
a

cosh
mpy
a

2
66666666664

3
77777777775
sin

mpx
a

� 8MT

p2
X1

i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ l

j2

b2

� �
i2

a2
þ j2

b2

� ��2 2i2

a2
þ j2

b2

� �
sin

ipx
a

sin
jpy
b

� 8MTa
p2b

X1
m¼1;3;...

sinh bm
P1

k¼1;3;...
1
m2

m2

a2 þ k2
b2

� ��2
2m2

a2 þ k2
b2

� �
k2
b2 þð2� lÞ m2

a2

h i
3þ l
1�l

sinh 2bm
2 þbm

� bm coth bm þ 2
1þl
1� l

� �
� sinh

mpy
a

� mpy
a

cosh
mpy
a

� 	
sin

mpx
a

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð3:40Þ

Superimposing (3.33), (3.35) and (3.38), there is

My ¼ 4MT

p
1� lð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

sin
mpx
a

þ l� 1ð ÞMT

þ 2 3� 2lð ÞMT

p

X1
m¼1;3;...

sinhbm
m cosham

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þbm

mpy
a

cosh
mpy
a

� bm coth bm sinh
mpy
a

0
B@

1
CA sin

mpx
a

� 8MT

p2
X1

i¼1;3;...

X1
j¼1;3;...

1
ij

l
i2

a2
þ j2

b2

� �
i2

a2
þ j2

b2

� ��2 2i2

a2
þ j2

b2

� �
sin

ipx
a

sin
jpy
b

� 8MTa
p2b

X1
m¼1;3;...

sinh bm
P1

k¼1;3;...
1
m2

m2

a2 þ k2
b2

� ��2
2m2

a2 þ k2
b2

� �
k2
b2 þð2� lÞ m2

a2

h i
3þl
1�l

sinh 2bm
2 þ bm

� mpy
a

cosh
mpy
a

� bm coth bm sinh
mpy
a

� �
sin

mpx
a

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
ð3:41Þ
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3.3.3 Results Analysis

To test the accuracy of (3.39), (3.40) and (3.41), the MATLAB software is used to
program the formulas, and the results show that: the deflection w has converged to
exact solution when taking m = n = 9; for the bending moment Mx of the unit
width, the result has converged to exact solution when taking m = n = 17; for the
bending moment My of the unit width, the result has converged to exact solution
when taking m = n = 1999, and the error is only 1/10,000 compared with the result
when taking m = n = 2001. For the convenience and engineering utility, according
to the length-breadth ratio of the thin plate, the calculated results of the rectangular
thin plate with three clamped edges and one free edge are made into the form
(Table A.8).

3.3.4 Numerical Example

Example Taking the concrete rectangular thin plate with three edges clamped and
one edge simply supported as an example, the calculation process is carried out.
The length and width of the plate, lx and ly, are both 3.5 m. The thickness of the
plate, h, is 100 mm. The temperature difference between the upper and lower
surface of the plate, DT, is 30 °C. The live load p is 2.0 kN/m2. The bulk density of
concrete is 25 kN/m3. The concrete strength is 30 MPa. The steel strength is
360 MPa.

Solution According to the literature [45], the linear expansion coefficient of con-
crete, a, is 1 � 10−5 °C. The Poisson’s ratio of concrete, l, is 1/6. The protective
layer thickness of concrete is 10 mm. The elastic modulus of concrete is
E = 3�107 kN/m2. The design value of compressive strength for concrete, fc, is
14.3 N/mm2. The partial coefficients of the dead load and live load are taken as 1.2
and 1.4 respectively.

Dead load: g ¼ 0:10� 25 ¼ 2:5 kN=m2

Live load: p ¼ 2kN=m2

Design load: q ¼ 1:4pþ 1:2g ¼ 5:8 kN=m2

According to the initial assumption that the diameter of the steel is 10 mm, the
distance from the center of the steel in x direction to the down surface of concrete
plate, cx = c + 10/2, is 15 mm and the distance from the center of the steel in
y direction to the down surface of concrete plate, cy = c + 10 + 10/2, is 25 mm.
The distance from the center of the steel in x direction to the top surface of the
concrete plate, h0x = h − cx, is 165 mm and the distance from the center of the steel
in y direction to the top surface of the concrete plate, h0y = h − cy, is 155 mm.
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1. Temperature Action

Taking E = 3�107 kN/m2, a = 1�10−5 °C, DT = 30 °C, h = 100 mm and l = 1/6
into (2.1), D ¼ Eh3

12 1�l2ð Þ, the following results can be gotten.

D ¼ Eh3

12 1� l2ð Þ ¼
3� 107 � 0:103

12 1� 1
62

� � ¼ 2571:43kN �m

MT ¼ aDTEh2

12ð1� lÞ ¼
1� 10�5 � 30� 3� 107 � 0:102

12 1� 1
6

� � ¼ 9:0kN

From the Table A.8 in the Appendix A, there are

f ¼ 0:0777; kx ¼ 0:1893; ky ¼ 0:7676

w1 ¼ f
l2xM

T

D
¼ 0:0777� 3:52 � 9

2571:43
¼ 0:00333m

MT
x ¼ kxM

T ¼ 0:1893� 9 ¼ 1:704 kN �m

MT
y ¼ kyM

T ¼ 0:7676� 9 ¼ 6:908 kN �m

According to the literature [45], a1 = 1, assuming that h0 = h0x, and taking MT
x ,

fc, h0 and a1 into (2.24.1), there is

asx ¼ MT
x

1000a1fch20
¼ 1:704� 106

1000� 1� 14:3� 1652
¼ 0:00438

Assuming that h0 = h0y, taking MT
y , fc, h0, and a1 into (2.24.1), there is

asy ¼
MT

y

1000a1fch20
¼ 6:908� 106

1000� 1� 14:3� 1552
¼ 0:0201

Taking asx and asy into (2.24.2), there is

csx ¼ 0:5 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2asx

p� �
¼ 0:5 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2� 0:00438

p� �
¼ 0:9956

csy ¼ 0:5 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2asy

p� � ¼ 0:5 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2� 0:0201

p� �
¼ 0:9898

8><
>:
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Taking csx and csy into (2.24.3), there is

Asx1 ¼ MT
x

fycsh0
¼ 1:704 � 106

360 � 0:9956 � 165
¼ 28:8mm2

Asy1 ¼
MT

y

fycsh0
¼ 6:908� 106

360 � 0:9898 � 155
¼ 125:1mm2

8>>><
>>>:

2. Load Action

From the literature [13,52], w2 ¼ f ql4

D , Mx ¼ kxql2 and My ¼ kyql2 can be obtained.
The value of l is the minimum [lx, ly].

According to the literature [13,52], there are

f ¼ 0:00189; kx ¼ 0:0304 and ky ¼ 0:0133

Taking f, q, l and D into w2 ¼ f ql4

D , there is

w2 ¼ f
ql4

D
¼ 0:00189� 5:8� 3:54

2571:43
¼ 0:00064

Taking kx, ky into Mx ¼ kxql2 and My ¼ kyql2 respectively, there are

Mx ¼ kxql
2 ¼ 0:0304� 5:8� 3:52 ¼ 2:16 kN �m

My ¼ kyql
2 ¼ 0:0133� 5:8� 3:52 ¼ 0:945 kN �m

Assuming that Mx ¼ MT
x and h0 = h0x, taking Mx, fc, h0 and a1 into (2.24.1),

there is

asx ¼ Mx

1000a1fch20
¼ 2:16� 106

1000� 1� 14:3� 1652
¼ 0:0055

Assuming that My ¼ MT
y and h0 = h0y, taking My, fc, h0 and a1 into (2.24.1),

there is

asy ¼ My

1000a1fch20
¼ 0:945� 106

1000� 1� 14:3� 1652
¼ 0:0028
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Taking asx and asy into (2.24.2), there is

csx ¼ 0:5 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2asx

p� �
¼ 0:5 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2� 0:0055

p� �
¼ 0:997

csy ¼ 0:5 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2asy

p� � ¼ 0:5 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2� 0:0028

p� �
¼ 0:999

8><
>:

Assuming that Mx ¼ MT
x , cs ¼ csx and h0 = h0x, and taking Mx, fy and cs into

(2.24.3), there is

Asx2 ¼ Mx

fycsh0
¼ 2:16� 106

360� 0:997� 165
¼ 36:5mm2

Assuming that My ¼ MT
y , cs ¼ csy and h0 = h0y, and taking My, fy and cs into

(2.24.3), there is

Asy2 ¼ Mx

fycsh0
¼ 0:945� 106

360� 0:999� 155
¼ 17:0mm2

In summary, the analysis results can be obtained under the action of temperature
and load. That is

w ¼ w1 þw2 ¼ 0:00333þ 0:00064 ¼ 0:004m

Asx ¼ Asx1 þAsx2 ¼ 28:8þ 36:5 ¼ 65:3mm2

Asy ¼ Asy1 þAsy2 ¼ 125:1þ 17:0 ¼ 142:1mm2

From the above results, the total deflection at the midspan point of the thin plate
is 4 mm. The steel bar area per meter at the midspan point of the plate in the
x direction is 65.3 mm2 and the steel bar area per meter at the midspan point of the
plate in the y direction is 142.1 mm2.

3.4 Thermal Bending of Concrete Rectangular Thin Plate
with Two Opposite Edges Clamped and One Edge
Simply Supported and One Edge Free

3.4.1 Boundary Conditions

In Fig. 3.3, the boundary condition for the clamped edge is as follows:
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w x¼0
x¼a

���� ¼ 0;
@w
@x

x¼0
x¼a

���� ¼ 0 ð3:42Þ

w y¼0 ¼
�� 0;

@w
@y y¼0

�� ¼ 0 ð3:43Þ

Giving that the deflection w is equal to zero on the whole boundary condition for
the simply supported edge, according to (2.12), the above mentioned equations are
as follows:

wjy¼0¼ 0;
@2w
@y2

����
y¼0

¼ �MT

D
ð3:44Þ

For the free edge, the bending moment My, torque Myz, and transverse shear
force FQy are equal to zero. Assuming that the deflection is expressed by the sine
series on the boundary of y ¼ b, My, Myz, and FQy are as follows:

My y¼b

�� ¼ 0

Myx y¼b

�� ¼ 0

FQy y¼b

�� ¼ 0

8><
>: ð3:45Þ

wjy¼b¼
X

m¼1;3;...

am sin
mpx
a

ð3:46Þ

With the use of (2.12), the first formula of (3.44) turns into the following:

@2w
@y2

þ l
@2w
@x2

����
y¼b

¼ �MT

D
ð3:47Þ

x

y

b

a

Fig. 3.3 Two opposite edges
clamped, one edge simply
supported, and one edge free
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The distributed shear force on the free boundary is FQy. Thus, the second and
third formulas of (3.45) are merged into the following:

FQy

��
y¼b¼ �D

@3w
@y3

þ 2� lð Þ @3w
@x2@y

� 	����
y¼b

¼ 0 ð3:48Þ

3.4.2 Analytical Solution for the Thermal Elastic Problem

Searching for the deflection function, it is very difficult to be completely satisfied
with the boundary conditions of (3.42), (3.43), (3.44), (3.46), (3.47), and (3.48).
Thus, the superposition principle is adopted to solve this problem.

Given that w ¼ 0 on the clamped boundary condition, according to (2.12) and
(3.42), the following is obtained:

Mx x ¼ 0
x ¼ a

������� ¼ �MT ¼ M�
T

Thus, the rectangular thin plate with two opposite clamped edges, one edge
simply supported and one edge free under temperature variation that is perpen-
dicular to the surface can be viewed as the superposition of two types of rectangular
thin plate, namely, three edges simply supported and one edge free under tem-
perature difference DT , and under the bending moment M�

T on the two opposite
edges. The other edge have no bending moment.

1. Analytic Solution of Rectangular Thin Plate with Three Edges Simply
Supported and One Edge Free Under the Action of DT

According to (3.23), (3.24) and (3.25), analytic solution of rectangular thin plate
with three edges simply supported and one edge free under the action of DT is

w1 ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3 cosham

cosh
2amy
b

� am

� �
sin

mpx
a

� 	

�MT

2D
ðx� aÞxþ 2a2 3� 2lð ÞMT

Dp3 1� lð Þ

�
X1

m¼1;3;...

sinhbm
m3 cosh am

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þ bm

�
2

1� l
þ bm coth bm

� �
sinh

mpy
a

� mpy
a

cosh
mpy
a

2
664

3
775 sin

mpx
a

8>><
>>:

9>>=
>>;

ð3:49Þ
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Mx ¼ 4MT

p
l� 1ð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

sin
mpx
a

þ 2 3� 2lð ÞMT

p

X1
m¼1;3;...

sinhbm
mcosh am

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þ bm

bm coth bm

þ 2
1þ l
1� l

0
B@

1
CA sinh

mpy
a

� mpy
a

cosh
mpy
a

2
666664

3
777775 sin

mpx
a

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

My ¼ 4MT

p
1� lð Þ

X1
m¼1;3;...

1
m cosh am

cosh
mpy
a

� am
� �

sin
mpx
a

þ l� 1ð ÞMT þ 2 3� 2lð ÞMT

p

�
X1

m¼1;3;...

sinh bm
m cosham

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þ bm

mpy
a

cosh
mpy
a

� bm coth bm sinh
mpy
a

� �
sin

mpx
a

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

ð3:50Þ

2. Solution of the Rectangular Thin Plate with Three Edges Simply Supported and
One Edge Free with the Bending Moment M�

T on the Two Opposite Edges

Based on the boundary condition of (3.46), the rectangular thin plate with three
edges simply supported and one edge free under the action of bending moment M�

T
on the two opposite edges can be viewed as the superposition of two types of
rectangular thin plate. Namely, the rectangular thin plate with four edges simply
supported under the bending moment M�

T on the two opposite edges and that with
three edges simply supported and one edge free under the deflection wjy¼b on the
free boundary.

According to (2.66) and (2.67), the expressions of deflection and bending
moment of the rectangular thin plate with four edges simply supported under the
bending moment M�

T on two opposite edges are as follows:

w2ðx; yÞ ¼ 16M�
T

p4b2D

X1
i¼1;3;...

X1
j¼1;3;...

j
i

i2

a2
þ j2

b2

� ��2

sin
ipx
a

sin
jpy
b

ð3:51Þ

Mx2 ¼ 16M�
T

p2b2
X1

i¼1;3;...

X1
j¼1;3;...

j
i

i2

a2
þ lj2

b2

� �
i2

a2
þ j2

b2

� ��2

sin
ipx
a

sin
jpy
b

My2 ¼ 16M�
T

p2b2
X1

i¼1;3;...

X1
j¼1;3;...

j
i

li2

a2
þ j2

b2

� �
i2

a2
þ j2

b2

� ��2

sin
ipx
a

sin
jpy
b

8>>>>><
>>>>>:

ð3:52Þ

Substituting (3.51) into (3.48) obtains the following:

F
3
Qy

���
y¼b

¼ � 16M�
T

pa2b

X1
i¼1;3;...

X1
j¼1;3;...

i
i2

a2
þ j2

b2

� ��2 j2

b2
þð2� lÞ i

2

a2

� 	
sin

ipx
a

( )
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Letting am ¼ am on the free boundary by employing (3.48), the following is
obtained:

F
1
Qy

���
y¼b

þF
3
Qy

���
y¼b

¼ 0

That is

am ¼ � 32M�
T a sinh2bm

p4Db 1� lð Þ2

P1
k¼1;3;...

1
m2

m2

a2 þ k2
b2

� ��2
k2
b2 þð2� lÞ m2

a2

h i
3þ l
1�l

sinh 2bm
2 þ bm

Substituting the above mentioned equation into (3.13) and (3.14) obtains the
following:

w3 ¼ 16MTa
p4Db 1� lð Þ

X1
m¼1;3;...

sinh bm
P1

k¼1;3;...
1
m2

m2

a2 þ k2
b2

� ��2
k2
b2 þð2� lÞ m2

a2

h i� 

3þ l
1�l

sinh 2bm
2 þ bm

� 2
1� l

þ bm coth bm

� �
sinh

mpy
a

� mpy
a

cosh
mpy
a

� 	
sin

mpx
a

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð3:53Þ

Mx3 ¼ 16MT

p2ab

X1
m¼1;3;...

sinh bm
P1

k¼1;3;...
m2

a2 þ k2
b2

� ��2
k2
b2 þð2� lÞ m2

a2

h i
3þl
1�l

sinh 2bm
2 þ bm

�
bm coth bm þ 2

1þ l
1� l

� �
� sinh

mpy
a

�
mpy
a

cosh
mpy
a

2
664

3
775 sin

mpx
a

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

ð3:54Þ

My3 ¼ 16MT

p2ab

X1
m¼1;3;...

sinh bm
P1

k¼1;3;...
m2

a2 þ k2
b2

� ��2
k2
b2 þð2� lÞ m2

a2

h i
3þ l
1�l

sinh 2bm
2 þ bm

� mpy
a

cosh
mpy
a

� bm coth bm sinh
mpy
a

� �
sin

mpx
a

8>>>><
>>>>:

9>>>>=
>>>>;

ð3:55Þ
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Superimposing (3.49), (3.51) and (3.53) obtains the following:

w ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3cosham

cosh
2amy
b

� am

� �
sin

mpx
a

�MT

2D
ðx� aÞx

þ 2a2 3� 2lð ÞMT

Dp3 1� lð Þ
X1

m¼1;3;...

sinh bm
m3cosham

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þ bm

� 2
1� l

þbm coth bm

� �
sinh

mpy
a

� mpy
a

cosh
mpy
a

� 	
sin

mpx
a

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

� 16MT

p4Da2
X1

i¼1;3;...

X1
j¼1;3;...

i
j

i2

a2
þ j2

b2

� ��2

sin
ipx
a

sin
jpy
b

þ 16MTa
p4Db 1� lð Þ

X1
m¼1;3;...

sinh bm
P1

k¼1;3;...

1
m2

m2

a2 þ k2
b2

� ��2
k2
b2 þð2� lÞ m2

a2

h i
3þ l
1�l

sinh 2bm
2 þ bm

� 2
1� l

þ bm coth bm

� �
sinh

mpy
a

� mpy
a

cosh
mpy
a

� 	
sin

mpx
a

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð3:56Þ

Superimposing (3.50), (3.52), and (3.54) obtains the following:

Mx ¼ 4MT

p
l� 1ð Þ

X1
m¼1;3;...

1
mcosham

cosh
mpy
a

� am
� �

sin
mpx
a

þ 2 3� 2lð ÞMT

p

X1
m¼1;3;...

sinh bm
mcosham

sinh 2amy
b � am

� �
3þl
1�l

sinh 2bm
2 þ bm

bm coth bm þ 2
1þ l
1� l

� �

� sinh
mpy
a

� mpy
a

cosh
mpy
a

2
664

3
775 sin

mpx
a

� 16MT

p2a2
X1

i¼1;3;...

X1
j¼1;3;...

i
j

i2

a2
þ l

j2

b2

� �
i2

a2
þ j2

b2

� ��2

sin
ipx
a

sin
jpy
b

þ 16MT

p2ab

X1
m¼1;3;...

sinh bm
P1

k¼1;3;...

m2

a2 þ k2
b2

� ��2
k2
b2 þð2� lÞ m2

a2

h i
3þ l
1�l

sinh 2bm
2 þbm

� bm coth bm þ 2
1þ l
1� l

� �
� sinh

mpy
a

� mpy
a

cosh
mpy
a

� 	
sin

mpx
a

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
ð3:57Þ
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Superimposing (3.50), (3.52), and (3.55) obtains the following:

My ¼ 4MT

p
1� lð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

sin
mpx
a

þ l� 1ð ÞMT

þ 2 3� 2lð ÞMT

p

X1
m¼1;3;...

sinh bm
m cosham

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þ bm

mpy
a

cosh
mpy
a

�

bm coth bm sinh
mpy
a

0
B@

1
CA sin

mpx
a

þ 16MT

p2a2
X1

i¼1;3;...

X1
j¼1;3;...

i
j

l
i2

a2
þ j2

b2

� �
i2

a2
þ j2

b2

� ��2

sin
ipx
a

sin
jpy
b

� 16MT

p2ab

X1
m¼1;3;...

sinh bm
P1

k¼1;3;...

m2

a2 þ k2
b2

� ��2
k2
b2 þð2� lÞ m2

a2

h i
3þ l
1�l

sinh 2bm
2 þ bm

� mpy
a

cosh
mpy
a

� bm coth bm sinh
mpy
a

� �
sin

mpx
a

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð3:58Þ

3.4.3 Results Analysis

To test the accuracy of (3.56), (3.57), and (3.58), the MATLAB software is used to
program the formulas, and the results show that when m = n = 17 is taken,
deflection w has converged to the exact solution. When m = n = 259 is taken for
the bending moment Mx of unit width, the result has converged to the exact
solution. When m = n = 175 is taken for the bending moment My of unit width, the
result basically has converged to the exact solution, and the error is only 1/100,000
in comparison with the result when m = n = 177 is taken. For the convenience and
engineering application, the calculated results are made into the form according to
the length-width ratio of the plate (Table A.9).

The engineering application is the same with Sect. 2.3.4.
According to Table A.9, the relationship of lx/ly with kx, ky and f is shown in

Fig. 3.4.
Figure 3.4 shows that both kx and f decrease with lx/ly, but ky increases with lx/ly,

and f decreases slowly. When lx/ly changes from 0.5 to 2.0, kx changes from greater
than zero to less than zero, whereas ky changes from less than zero to greater than
zero.
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3.5 Thermal Bending of Concrete Rectangular Thin Plate
with Two Adjacent Edges Clamped and One Edge
Simply Supported and One Edge Free

3.5.1 Boundary Conditions

As is shown in Fig. 3.5, for clamped edge, the boundary conditions are:

wjx¼0¼ 0;
@w
@x

����
x¼0

¼ 0 ð3:59Þ

wjy¼0¼ 0;
@w
@y

����
y¼0

¼ 0 ð3:60Þ

For the simple supported edge, because the deflection w is equal to zero on the
whole boundary condition, according to (2.12), there are

wjx¼a¼ 0;
@2w
@x2

����
x¼a

¼ �MT

D
ð3:61Þ

For free edge, the bending moment My, torque Myx and transverse shear force
FQy are all equal to zero. Assuming that the deflection is expressed by the sine
series on the boundary of y ¼ b, therefore, My, Myx and FQy are
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0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1
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ky

f

kx/ky/f

lx/ly

Fig. 3.4 Relationship of lx/ly with kx, ky and f
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My

��
y¼b¼ 0

Myx

��
y¼b¼ 0

FQy

��
y¼b¼ 0

8>><
>>: ð3:62Þ

wjy¼b¼
X

m¼1;3;...

am sin
mpx
a

ð3:63Þ

By (2.12), the first equation of (3.62) turns into

@2w
@y2

þ l
@2w
@x2

����
y¼b

¼ �MT

D
ð3:64Þ

The distributed shear force on the free boundary is FQy, so the second and the
third equation of (3.62) are merged into

FQy

��
y¼b¼ �D

@3w
@y3

þ 2� lð Þ @3w
@x2@y

� 	����
y¼b

¼ 0 ð3:65Þ

3.5.2 Analytical Solution for the Thermal Elastic Problem

As can be seen, it is very difficult to look for the deflection function which is
completely satisfied with the boundary conditions (3.59), (3.60), (3.61), (3.63),
(3.64), and (3.65), so the superposition principle is adopted to solve this problem.

x

y

b

a

Fig. 3.5 Two adjacent edges
clamped and one edge simply
supported and one edge free
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Due to w = 0 on the clamped boundary condition, according to the (2.12), (3.59)
and (3.60), there is

Mxjx¼0¼ �MT ¼ M�
T ; My

��
y¼0¼ �MT ¼ M�

T

So the rectangular thin plate with two adjacent clamped edges and one simply
supported edge and one free edge under temperature variation which is perpendic-
ular to surface can be seen as the superposition of two kinds of rectangular thin plate,
that are three simple supported edges and one free edge under temperature difference
DT and three simple supported edges and one free edge under the bending moment
M�

T on the two adjacent edges and the other edges have not bending moment.

1. Analytic Solution of Rectangular Thin Plate with Three Edges Simply
Supported and One Edge Free Under the Action of DT

According to (3.23), (3.24) and (3.25), analytic solution of Rectangular Thin
Plate with three edges simply supported and one edge free under the action of DT

w1 ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3 cosh am

cosh
2amy
b

� am

� �
sin

mpx
a

� 	

�MT

2D
ðx� aÞxþ 2a2 3� 2lð ÞMT

Dp3 1� lð Þ

�
X1

m¼1;3;...

sinh bm
m3 cosh am

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þ bm

�
2

1� l
þ bm coth bm

� �
sinh

mpy
a

� mpy
a

cosh
mpy
a

2
664

3
775 sin

mpx
a

8>><
>>:

9>>=
>>;

ð3:66Þ

Mx ¼ 4MT

p
l� 1ð Þ

X1
m¼1;3;...

1
m cosh am

cosh
mpy
a

� am
� �

sin
mpx
a

2 3� 2lð ÞMT

p

X1
m¼1;3;...

sinh bm
m cosh am

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þbm

bm coth bm

þ 2
1þ l
1� l

0
B@

1
CA sinh

mpy
a

� mpy
a

cosh
mpy
a

2
6666664

3
7777775
sin

mpx
a

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

My ¼ 4MT

p
1� lð Þ

X1
m¼1;3;...

1
m cosh am

cosh
mpy
a

� am
� �

sin
mpx
a

þ l� 1ð ÞMT þ 2 3� 2lð ÞMT

p

�
X1

m¼1;3;...

sinh bm
m cosh am

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þ bm

mpy
a

cosh
mpy
a

� bm coth bm sinh
mpy
a

� �
sin

mpx
a

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

ð3:67Þ
2. Analytical Solution of the Rectangular Thin Plate with Three Edges Simply

Supported and One Edge Free with the Bending Moment M�
T on the Two

Adjacent Edges
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By boundary condition (3.64), the rectangular thin plate with three simply
supported edges and one free edge under the action of bending moment M�

T on
the two adjacent edges can be seen as the superposition of two kinds of rectangular
thin plate, which are the rectangular thin plate with four simple supported edges
under the action of bending moment M�

T on the two adjacent edges and that of three
simply supported edges and one free edge with the deflection wjy¼b on the free
boundary.

According to (2.59) and (2.60), the expressions of deflection and bending
moment of the rectangular thin plate with four edges simply supported under the
bending moment M�

T on two opposite edges are as follows:

w3ðx; yÞ ¼ 8M�
T

p4D

X1
i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ j2

b2

� ��1

sin
ipx
a

sin
jpy
b

ð3:68Þ

Mx3 ¼ 8M�
T

p2
X1

i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ lj2

b2

� �
i2

a2
þ j2

b2

� ��1

sin
ipx
a

sin
jpy
b

My3 ¼ 8M�
T

p2
X1

i¼1;3;...

X1
j¼1;3;...

1
ij

li2

a2
þ j2

b2

� �
i2

a2
þ j2

b2

� ��1

sin
ipx
a

sin
jpy
b

8>>>>><
>>>>>:

ð3:69Þ

Substituting (3.68) into (3.65), there is

F
3
Qy

���
y¼b

¼ � 8M�
T

pb

X1
i¼1;3;...

X1
j¼1;3;...

1
i

i2

a2
þ j2

b2

� ��1 j2

b2
þð2� lÞ i

2

a2

� 	
sin

ipx
a

( )

Letting am ¼ am, on the free boundary by (3.65), there is

F
1
Qy

���
y¼b

þF
3
Qy

���
y¼b

¼ 0

am ¼ � 16M�
T a

3 sinh2bm
p4Db 1� lð Þ2

P1
k¼1;3;...

1
m4

m2

a2 þ k2
b2

� ��1
k2
b2 þð2� lÞ m2

a2

h i
3þl
1�l

sinh 2bm
2 þ bm

Substituting the above equations into (3.13) and (3.14), there are

w4 ¼ � 8MTa3

p4Db 1� lð Þ
X1

m¼1;3;...

sinh bm
P1

k¼1;3;...

1
m4

m2

a2 þ k2
b2

� ��1
k2
b2 þð2� lÞ m2

a2

h i� 

3þl
1�l

sinh 2bm
2 þ bm

� 2
1� l

þ bm cothbm

� �
sinh

mpy
a

� mpy
a

cosh
mpy
a

� 	
sin

mpx
a

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð3:70Þ
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Mx4 ¼ � 8MTa
p2b

X1
m¼1;3;...

sinh bm
P1

k¼1;3;...

1
m2

m2

a2 þ k2
b2

� ��1
k2
b2 þð2� lÞ m2

a2

h i
3þ l
1�l

sinh 2bm
2 þ bm

�
bm coth bm þ 2

1þ l
1� l

� �
� sinh

mpy
a

�
mpy
a

cosh
mpy
a

2
664

3
775 sin

mpx
a

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð3:71Þ

My4 ¼ � 8MTa
p2b

X1
m¼1;3;...

sinh bm
P1

k¼1;3;...

1
m2

m2

a2 þ k2
b2

� ��1
k2
b2 þð2� lÞ m2

a2

h i
3þ l
1�l

sinh 2bm
2 þ bm

� mpy
a

cosh
mpy
a

� bm coth bm sinh
mpy
a

� �
sin

mpx
a

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð3:72Þ

Superimposing (3.66), (3.68) and (3.70), there is

w ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3cosham

cosh
2amy
b

� am

� �
sin

mpx
a

�MT

2D
ðx� aÞx

þ 2a2 3� 2lð ÞMT

Dp3 1� lð Þ
X1

m¼1;3;...

sinhbm
m3 cosham

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þ bm

�

2
1� l

þbm coth bm

0
B@

1
CA sinh

mpy
a

� mpy
a

cosh
mpy
a

2
6666664

3
7777775
sin

mpx
a

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

þ 8MT

p4D

X1
i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ j2

b2

� ��1

sin
ipx
a

sin
jpy
b

� 8MTa3

p4Db 1� lð Þ

X1
m¼1;3;...

sinh bm
P1

k¼1;3;...

1
m4

m2

a2 þ k2
b2

� ��1
k2
b2 þð2� lÞ m2

a2

h i� 

3þl
1�l

sinh 2bm
2 þbm

�

2
1� l

þ bm coth bm

0
B@

1
CA sinh

mpy
a

� mpy
a

cosh
mpy
a

2
6666664

3
7777775
sin

mpx
a

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð3:73Þ
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Superimposing (3.67), (3.69) and (3.71), there is

Mx ¼ 4MT

p
l� 1ð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

sin
mpx
a

þ 2 3� 2lð ÞMT

p

X1
m¼1;3;...

sinh bm
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sinh
2amy
b
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� �
3þl
1� l

sinh 2bm
2

þ bm
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1þ l
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0
B@

1
CA�

sinh
mpy
a

� mpy
a

cosh
mpy
a

2
66666666664

3
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sin

mpx
a

þ 8MT

p2
X1

i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ lj2

b2

� �
i2

a2
þ j2

b2

� ��1

sin
ipx
a

sin
jpy
b

� 8MTa
p2b

X1
m¼1;3;...

sinh bm
P1

k¼1;3;...

1
m2

m2

a2 þ k2
b2

� ��1
k2
b2 þð2� lÞ m2

a2

h i
3þ l
1�l

sinh 2bm
2 þbm

� bm coth bm þ 2
1þ l
1� l

� �
� sinh

mpy
a

� mpy
a

cosh
mpy
a

� 	
sin

mpx
a

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð3:74Þ

Superimposing (3.67), (3.69) and (3.72), there is

My ¼ 4MT

p
1� lð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

sin
mpx
a

þ l� 1ð ÞMT

þ 2 3� 2lð ÞMT

p

X1
m¼1;3;...

sinh bm
m cosham

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þ bm

mpy
a

cosh
mpy
a

�

bm coth bm sinh
mpy
a

0
B@

1
CA sin

mpx
a

þ 8MT

p2
X1

i¼1;3;...

X1
j¼1;3;...

1
ij

li2

a2
þ j2

b2

� �
i2

a2
þ j2

b2

� ��1

sin
ipx
a

sin
jpy
b

� 8MTa
p2b

X1
m¼1;3;...

sinh bm
P1

k¼1;3;...

1
m2

m2

a2 þ k2
b2

� ��1
k2
b2 þð2� lÞ m2

a2

h i
3þ l
1�l

sinh 2bm
2 þbm

�

mpy
a

cosh
mpy
a

� bm coth bm sinh
mpy
a

� �
sin

mpx
a

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð3:75Þ
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3.5.3 Results Analysis

To test the accuracy of (3.73), (3.74) and (3.75), using MATLAB software to
program and calculate, the results show that when taking m = n = 17, deflection
w has converged to exact solution. For the bending moment Mx of unit width, when
taking m = n = 289 the result has converged to the exact solution. For the bending
moment My of unit width, when taking m = n = 289, the result has been basically
converged to the exact solution. For the purposes of convenience and engineering
application, according to the length-width ratio of the plate the calculated results are
made into the form (Table A.10).

According to Table A.10, the relationship of lx/ly with kx, ky and f is shown in
Fig. 3.6.

Figure 3.6 shows that both kx and f decrease with lx/ly, but ky increases with lx/ly,
and f decreases slowly. When lx/ly changes from 0.5 to 2.0, kx changes from greater
than zero to less than zero, whereas ky changes from less than zero to greater than
zero. When lx/ly is almost equal to 2.0, f becomes less than zero.

The engineering application is the same with Sect. 2.3.4.
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Fig. 3.6 Relationship of lx/ly with kx, ky and f

74 3 Thermal Bending of Concrete Rectangular Thin Plate …



3.6 Thermal Bending of Concrete Rectangular Thin Plate
with Two Opposite Edges Simply Supported and One
Edge Clamped and One Edge Free

3.6.1 Boundary Conditions

Figure 3.7 shows that for clamped edges, the boundary conditions are given by

wjy¼0¼ 0;
@w
@y

����
y¼0

¼ 0 ð3:76Þ

For simply supported edges, given that the deflection w is equal to zero on the
whole boundary condition and according to (2.12), the above equations become

w x¼0
x¼a

���� ¼ 0;
@2w
@x2

x¼0
x¼a

���� ¼ �MT

D
ð3:77Þ

For free edges, the bending moment My, torque Myx, and transverse shear force
FQy are equal to zero. The deflection is assumed to be expressed by the sine series
on the boundary of y ¼ b. Therefore, My, Myx, and FQy are

My

��
y¼b¼ 0

Myx

��
y¼b¼ 0

FQy

��
y¼b¼ 0

8>><
>>: ð3:78Þ

wjy¼b¼
X

m¼1;3;...

am sin
mpx
a

ð3:79Þ

o x

b

y

a

Fig. 3.7 Two opposite edges
simply supported and one
edge clamped and one edge
free
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Through (2.12), the first part of (3.78) becomes

@2w
@y2

þ l
@2w
@x2

����
y¼b

¼ �MT

D
ð3:80Þ

The distributed shear force on the free boundary is FQy. Thus, the second and
third parts of (3.78) are merged into

FQy

��
y¼b¼ �D

@3w
@y3

þ 2� lð Þ @3w
@x2@y

� 	����
y¼b

¼ 0 ð3:81Þ

3.6.2 Analytical Solution for the Thermal Elastic Problem

The deflection function that completely satisfies the boundary condition (3.76),
(3.77), (3.80), and (3.81) is difficult to be obtained. Thus, the superposition prin-
ciple is adopted to solve this problem.

Given that w = 0 on the clamped boundary condition, according to (2.12) and
(3.76), there is

My

��
y¼0¼ �MT ¼ M�

T

Thus, the rectangular thin plate with one edge clamped, two edges simply
supported, and one edge free under temperature variation that is perpendicular to
the surface can be considered as the superposition of two kinds of rectangular thin
plate: another with three simply supported edges and one free edge under tem-
perature difference DT and another with three simply supported edges and one free
edge under the bending moment M�

T on the y ¼ 0 edge. The other edges do not
have a bending moment.

1. Analytic Solution of Rectangular Thin Plate with Three Edges Simply
Supported and One Edge Free Under the Action of DT

According to (3.23), (3.24) and (3.25), analytic solution of rectangular thin plate
with three edges simply supported and one edge free under the action of DT
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w1 ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3 cosham

cosh
2amy
b

� am

� �
sin

mpx
a

� 	

�MT

2D
ðx� aÞxþ 2a2 3� 2lð ÞMT

Dp3 1� lð Þ

�
X1

m¼1;3;...

sinh bm
m3cosham

sinh 2amy
b � am

� �
3þl
1�l

sinh 2bm
2 þ bm

�

2
1� l

þ bm coth bm

0
B@

1
CA sinh

mpy
a

� mpy
a

cosh
mpy
a

2
6666664

3
7777775
sin

mpx
a

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
ð3:82Þ

Mx ¼ 4MT

p
l� 1ð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

sin
mpx
a

þ 2 3� 2lð ÞMT

p

X1
m¼1;3;...

sinhbm
mcosham

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þ bm

bm coth bm

þ 2
1þ l
1� l

0
B@

1
CA sinh

mpy
a

� mpy
a

cosh
mpy
a

2
6666664

3
7777775
sin

mpx
a

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

My ¼ 4MT

p
1� lð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

sin
mpx
a

þ l� 1ð ÞMT þ 2 3� 2lð ÞMT

p

�
X1

m¼1;3;...

sinh bm
mcosham

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þ bm

mpy
a

cosh
mpy
a

� bm coth bm sinh
mpy
a

� �
sin

mpx
a

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

ð3:83Þ

2. Solution of the Rectangular Thin Plate with Three Edges Simply Supported and
One Edge Free with the Bending Moment M�

T on the Edge y ¼ 0

Using the boundary condition (3.79), the rectangular thin plate with three simply
supported edges and one free edge under the action of bending moment M�

T on the
edge y ¼ 0 can be considered as the superposition of two kinds of rectangular thin
plate: one with four simply supported edges with the bending moment M�

T on the
edge y ¼ 0 and another with three simply supported edges and one free edge with
the deflection w y¼b

�� on the free boundary.
According to (2.50) and (2.51), the expressions of deflection and bending

moment of the rectangular thin plate with four edges simply supported under the
bending moment M�

T on the edge y ¼ 0 are as follows:

wðx; yÞ ¼ 8M�
T

p4b2D

X1
i¼1;3;...

X1
j¼1;3;...

j
i

i2

a2
þ j2

b2

� ��2

sin
ipx
a

sin
jpy
b

ð3:84Þ
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Mx ¼ 8M�
T

p2b2
X1

i¼1;3;...

X1
j¼1;3;...

j
i

i2

a2
þ lj2

b2

� �
i2

a2
þ j2

b2

� ��2

sin
ipx
a

sin
jpy
b

My ¼ 8M�
T

p2b2
X1

i¼1;3;...

X1
j¼1;3;...

j
i

li2

a2
þ j2

b2

� �
i2

a2
þ j2

b2

� ��2

sin
ipx
a

sin
ipy
b

Mxy ¼ � 1� lð Þ 8M
�
T

p2ab3
X1

i¼1;3;...

X1
j¼1;3;...

j2
i2

a2
þ j2

b2

� ��2

cos
ipx
a

cos
jpy
b

8>>>>>>>>>><
>>>>>>>>>>:

ð3:85Þ

Substituting (3.84) with (3.81) yields

F
3
Qy

���
y¼b

¼ � 8M�
T

pb3
X1

i¼1;3;...

X1
j¼1;3;...

j2

i
i2

a2
þ j2

b2

� ��2 j2

b2
þð2� lÞ i

2

a2

� 	
sin

ipx
a

( )

Letting am ¼ am on the free boundary and using (3.81), we obtain

F
1
Qy

���
y¼b

þF
3
Qy

���
y¼b

¼ 0

That is,

am ¼ � 16M�
T a

3 sinh2bm
p4Db3 1� lð Þ2

P1
k¼1;3;...

k2
m4

m2

a2 þ k2
b2

� ��2
k2
b2 þð2� lÞ m2

a2

h i
3þl
1�l

sinh 2bm
2 þ bm

Substituting the above equation into (3.82) and (3.83) yields

w4 ¼ � 8MTa3

p4Db3 1� lð Þ
X1

m¼1;3;...

sinh bm
P1

k¼1;3;...

k2
m4

m2

a2 þ k2
b2

� ��2
k2
b2 þð2� lÞ m2

a2

h i� 

3þ l
1�l

sinh 2bm
2 þ bm

�
2

1� l
þ bm coth bm

� �
sinh

mpy
a

� mpy
a

cosh
mpy
a

2
664

3
775 sin

mpx
a

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð3:86Þ
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Mx4 ¼ � 8MTa
p2b3

X1
m¼1;3;...

sinh bm
P1

k¼1;3;...

k2
m2

m2

a2 þ k2
b2

� ��2
k2
b2 þð2� lÞ m2

a2

h i
3þl
1�l

sinh 2bm
2 þ bm

�
bm coth bm þ 2

1þ l
1� l

� �
� sinh

mpy
a

� mpy
a

cosh
mpy
a

2
664

3
775 sin

mpx
a

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð3:87Þ

My4 ¼ � 8MTa
p2b3

X1
m¼1;3;...

sinh bm
P1

k¼1;3;...

k2
m2

m2

a2 þ k2
b2

� ��2
k2
b2 þð2� lÞ m2

a2

h i
3þ l
1�l

sinh 2bm
2 þ bm

� mpy
a

cosh
mpy
a

� bm coth bm sinh
mpy
a

� �
sin

mpx
a

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð3:88Þ

Superimposing (3.82), (3.84), and (3.86) yields

w ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3cosham

cosh
2amy
b

� am

� �
sin

mpx
a

�MT

2D
ðx� aÞx

þ 2a2 3� 2lð ÞMT

Dp3 1� lð Þ
X1

m¼1;3;...

sinh bm
m3cosham

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þ bm

� 2
1� l

þ bm coth bm

� �
sinh

mpy
a

� mpy
a

cosh
mpy
a

� 	
sin

mpx
a

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

þ 8MT

p4Db2
X1

i¼1;3;...

X1
j¼1;3;...

j
i

i2

a2
þ j2

b2

� ��2

� sin
ipx
a

sin
jpy
b

� 8MTa3

p4Db3 1� lð Þ
X1

m¼1;3;...

sinh bm
P1

k¼1;3;...

k2
m4

m2

a2 þ k2
b2

� ��2
k2
b2 þð2� lÞ m2

a2

h i
3þl
1�l

sinh 2bm
2 þ bm

� 2
1� l

þ bm coth bm

� �
sinh

mpy
a

� mpy
a

cosh
mpy
a

� 	
sin

mpx
a

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð3:89Þ
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Superimposing (3.83), (3.85), and (3.87) produces

Mx ¼ 4MT

p
l� 1ð Þ

X1
m¼1;3;...

1
mcosham

cosh
mpy
a

� am
� �

sin
mpx
a

þ 2 3� 2lð ÞMT

p

X1
m¼1;3;...

sinh bm
mcosham

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þ bm

bm coth bm þ 2
1þl
1� l

� �

� sinh
mpy
a

� mpy
a

cosh
mpy
a

2
664

3
775 sin

mpx
a

þ 8MT

p2b2
X1

i¼1;3;...

X1
j¼1;3;...

j
i

i2

a2
þ j2

b2

� ��2 i2

a2
þ lj2

b2

� �
sin

ipx
a

sin
jpy
b

� 8MTa
p2b3

X1
m¼1;3;...

sinh bm
P1

k¼1;3;...

k2
m2

m2

a2 þ k2
b2

� ��2
k2
b2 þð2� lÞ m2

a2

h i
3þ l
1�l

sinh 2bm
2 þ bm

� bm coth bmþ 2
1þ l
1� l

� �
� sinh

mpy
a

� mpy
a

cosh
mpy
a

� 	
sin

mpx
a

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
ð3:90Þ

Superimposing (3.83), (3.85), and (3.88) produces

My ¼ 4MT

p
1� lð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

sin
mpx
a

þ l� 1ð ÞMT

þ 2 3� 2lð ÞMT

p

X1
m¼1;3;...

sinh bm
m cosham

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þ bm

mpy
a

cosh
mpy
a

�

bm coth bm sinh
mpy
a

0
B@

1
CA sin

mpx
a

þ 8MT

p2b2
X1

i¼1;3;...

X1
j¼1;3;...

j
i

i2

a2
þ j2

b2

� ��2

� li2

a2
þ j2

b2

� �
sin

ipx
a

sin
jpy
b

� 8MTa
p2b3

X1
m¼1;3;...

sinh bm
P1

k¼1;3;...

k2
m2

m2

a2 þ k2
b2

� ��2
k2
b2 þ ð2� lÞ m2

a2

h i
3þ l
1�l

sinh 2bm
2 þ bm

� mpy
a

cosh
mpy
a

� bm coth bm sinh
mpy
a

� �
sin

mpx
a

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð3:91Þ

3.6.3 Results Analysis

MATLAB software was used to test the accuracy of (3.89), (3.90), and (3.91). The
results show that when taking m = n = 13, the deflection w has converged to the
exact solution. For the bending momentMx of unit width, when takingm = n = 175,
the result has converged to the exact solution. For the bending moment My of unit
width, when taking m = n = 259, the result has converged to the exact solution, and
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the error only is 1/100,000 in comparison with the result when taking m = n = 261.
For the purpose of convenience and engineering application, the calculated results
are given in the form according to the length-width ratio of the plate (Table A.11).

According to Table A.11, the relationship of lx/ly with kx, ky and f is shown in
Fig. 3.8.

Figure 3.8 shows that both kx and f decrease with lx/ly, but ky increases with lx/ly,
and f decreases slowly. When lx/ly changes from 0.5 to 2.0, kx changes from greater
than zero to less than zero, whereas ky changes from less than zero to greater than
zero. When lx/ly is almost equal to 2.0, f becomes less than zero.

The engineering application is the same with Sect. 2.3.4.

3.7 Thermal Bending of the Concrete Rectangular Thin
Plate with Two Adjacent Edges Simply Supported
and One Edge Clamped and One Edge Free

3.7.1 Boundary Conditions

Figure 3.9 shows that the boundary condition for the clamped edge is

wjx¼a¼ 0;
@w
@y

����
x¼a

¼ �MT

D
ð3:92Þ
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Fig. 3.8 Relationship of lx/ly with kx, ky and f
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For the simply supported edge, given that deflection w is equal to zero on the
whole boundary condition. According to (2.12), the above equations becomes

w x¼0
y¼0

���� ¼ 0;
@2w
@x2

x¼0
y¼0

���� ¼ �MT

D
ð3:93Þ

For free edges, the bending moment My, torque Myx, and transverse shear force
FQy are equal to zero. The deflection is assumed to be expressed by the sine series
on the boundary of y ¼ b. Therefore, My, Myx, and FQy are

My

��
y¼b¼ 0

Myx

��
y¼b¼ 0

FQy

��
y¼b¼ 0

8>><
>>: ð3:94Þ

wjy¼b¼
X

m¼1;3;...

am sin
mpx
a

ð3:95Þ

Through (2.12), the first part of (3.94) becomes

@2w
@y2

þ l
@2w
@x2

����
y¼b

¼ �MT

D
ð3:96Þ

The distributed shear force on the free boundary is FOy. Thus, the second and
third parts of (3.94) are merged into

FQy

��
y¼b¼ �D

@3w
@y3

þ 2� lð Þ @3w
@x2@y

� 	����
y¼b

¼ 0 ð3:97Þ

x

a 

b 

o 

y Fig. 3.9 Two adjacent edges
simply supported and one
edge clamped and one edge
free
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3.7.2 Analytical Solution for the Thermal Elastic Problem

The deflection function that completely satisfies the boundary condition (3.92),
(3.93), (3.96), and (3.97) is difficult to be obtained. Thus, the superposition prin-
ciple is adopted to solve this problem.

Given that w = 0 on the clamped boundary condition, according to the (2.12)
and (3.92), there is

Mxjx¼a¼ �MT ¼ M�
T

Thus, the rectangular thin plate with one edge clamped, two edges simply
supported, and one edge free under temperature variation that is perpendicular to
the surface can be considered as the superposition of two kinds of rectangular thin
plate: another with three simply supported edges and one free edge under tem-
perature difference DT and one with three simply supported edges and one free
edge under the bending moment M�

T on the x ¼ a edge. The other rectangular thin
plate does not have a bending moment.

1. Analytic Solution of Rectangular Thin Plate with Three Edges Simply
Supported and One Edge Free Under the Action of DT

According to (3.23), (3.24) and (3.25), analytic solution of rectangular thin plate
with three edges simply supported and one edge free under the action of DT

w1 ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3cosham

cosh
2amy
b

� am

� �
sin

mpx
a

� 	
�MT

2D
ðx� aÞx

þ 2a2 3� 2lð ÞMT

Dp3 1� lð Þ �
X1

m¼1;3;...

sinhbm
m3 cosham

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þ bm

�

2
1� l

þ bm coth bm

0
B@

1
CA sinh

mpy
a

� mpy
a

cosh
mpy
a

2
6666664

3
7777775
sin

mpx
a

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
ð3:98Þ

Mx ¼ 4MT

p
l� 1ð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

sin
mpx
a

þ 2 3� 2lð ÞMT

p

X1
m¼1;3;...

sinhbm
m cosham

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þ bm

bm coth bm

þ 2
1þ l
1� l

0
B@

1
CA sinh

mpy
a

� mpy
a

cosh
mpy
a

2
6666664

3
7777775
sin

mpx
a

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

My ¼ 4MT

p
1� lð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

sin
mpx
a

þ l� 1ð ÞMT þ 2 3� 2lð ÞMT

p

�
X1

m¼1;3;...

sinhbm
m cosham

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þ bm

mpy
a

cosh
mpy
a

� bm coth bm sinh
mpy
a

� �
sin

mpx
a

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

ð3:99Þ
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2. Solution for Rectangular Thin Plate with Three Simply Supported Edges and
One Free Edge with Bending Moment M�

T on the Edge x ¼ a

Using the boundary condition (3.95), the rectangular thin plate with three simply
supported edges and one free edge under the action of bending moment M�

T on the
edge x ¼ a can be considered as the superposition of two kinds of rectangular thin
plate: one with four simply supported edges with the bending moment M�

T on the
edge x ¼ a and another with three simply supported edges and one free edge with
the deflection w y¼b

�� on the free boundary.

(1) Bending deformation energy of plate Fig. 2.1 shows that if shear force is
ignored, the work of bending moment Mxdy is � 1

2Mx
@2w
@x2 dxdy. The work of

bending moment Mydy is � 1
2My

@2w
@y2 dxdy. The work of torque Mxydy is

1
2Mxy

@2w
@y@x dxdy.

In addition, given that the work done by the torque does not affect the work done
by the bending moment, the deformation energy of the isolation body is

dV ¼ � 1
2

Mx
@2w
@x2

þMy
@2w
@y2

� 2Mxy
@2w
@x@y

� 	
dxdy

Substituting (2.12) into the above equation and setting MT = 0, it is obtained

dV ¼ 1
2
D

@2w
@x2

þ @2w
@y2

� �2

�2ð1� lÞ @2w
@x2

@2w
@y2

� @2w
@x@y

	�( )

For the whole plate, the bending deformation energy is

V ¼ 1
2
D
ZZ

@2w
@x2

þ @2w
@y2

� �2

�2ð1� lÞ @2w
@x2

@2w
@y2

� @2w
@x@y

� �	"
dxdy ð3:100Þ

(2) Navier solution under uniform bending moment on the x ¼ a edges. In (3.92),
with the use of the Green formula, the second equation of the integrand is

ZZ
@2w
@x2

@2w
@y2

� @2w
@x@y

� �
dxdy ¼ �

ZZ @ @w
@x

@2w
@y2

� �
@x

�
@ @w

@x
@2w
@x@y

� �
@y

2
4

3
5dxdy

¼ �
Z

@w
@x

@2w
@x@y

dx� @w
@x

@2w
@y2

dy
� �

ð3:101Þ
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Given that (3.101) is integrated along the edge of the thin plate and owing to the
rectangular thin plate with four simply supported edges, dx ¼ 0 and @2w

@y2 ¼ 0 on the

boundary of x = constant. Moreover, dy ¼ 0 and @w
@x ¼ 0 on the boundary of

y = constant. Thus, (3.100) can be simplified as

V ¼ 1
2
D
ZZ

@2w
@x2

þ @2w
@y2

� �2

dxdy ð3:102Þ

According to the boundary conditions of the four simply supported edges plate
and (2.13), the deflection function is assumed to be

w ¼
X1

i¼1;3;...

X1
j¼1;3;...

Aij sin
ipx
a

sin
jpy
b

ð3:103Þ

Substituting the above equation into (3.102), the deformation energy of the plate
is

V ¼ p4abD
8

X1
i¼1;3;...

X1
j¼1;3;...

A2
ij

i2

a2
þ j2

b2

� �2

ð3:104Þ

The slopes of the points of the curved surface of plate along x = a are

@w
@x

����
x¼a

¼ � p
a

X1
i¼1;3;...

X1
j¼1;3;...

iAij sin
jpy
b

When Aij increases Aij þ dAij, the increment of the slopes of each point on the
curved surface of the plate along the x = a is given by

d
@w
@x

����
x¼a

¼ � p
a
i sin

jpy
b

dAij

The work of the bending moment along the plate boundary is

Z b

0
M�

T
p
a
i sin

jpy
b

dx dAij

Because

Z b

0
M�

T sin
jpy
b

dx ¼ 2bM�
T

jp
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The work done by the bending moment is 2ib
ja M

�
T dAij

Using (3.104), the increment of the deformation energy is

dV ¼ p4abD
4

i2

a2
þ j2

b2

� �2

AijdAij

The principle of virtual displacement implies that

Aij ¼ 8M�
T

p4Da2
i
j

i2

a2
þ j2

b2

� ��2

Substituting the above equation into (3.101) yields

w3ðx; yÞ ¼ 8M�
T

p4Da2
X1

i¼1;3;...

X1
j¼1;3;...

i
j

i2

a2
þ j2

b2

� ��2

sin
ipx
a

sin
jpy
b

ð3:105Þ

Substituting the above equation into (2.12) and letting MT ¼ 0, the internal force
calculation formula of rectangular thin plate with four edges simply supported with
the bending moment M�

T on the x ¼ a edge is

Mx3 ¼ 8M�
T

p2a2
X1

i¼1;3;...

X1
j¼1;3;...

i
j

i2

a2
þ l

j2

b2

� �
i2

a2
þ j2

b2

� ��2

sin
ipx
a

sin
jpy
b

My3 ¼ 8M�
T

p2a2
X1

i¼1;3;...

X1
j¼1;3;...

i
j

l
i2

a2
þ j2

b2

� �
i2

a2
þ j2

b2

� ��2

sin
ipx
a

sin
jpy
b

8>>>>><
>>>>>:

ð3:106Þ

Substituting (3.105) into (3.97) yields

F
3
Qy

���
y¼b

¼ � 8M�
T

pa2b

X1
i¼1;3;...

X1
j¼1;3;...

i
i2

a2
þ j2

b2

� ��2 j2

b2
þð2� lÞ i

2

a2

� 	
sin

ipx
a

( )

ð3:107Þ

Letting am ¼ am and by using (3.97), on the free boundary, there is

F
1
Qy

���
y¼b

þF
3
Qy

���
y¼b

¼ 0 ð3:108Þ
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That is,

am ¼ � 16M�
T a sinh2bm

p4Db 1� lð Þ2

P1
k¼1;3;...

1
m2

m2

a2 þ k2
b2

� ��2
k2
b2 þð2� lÞ m2

a2

h i
3þl
1�l

sinh 2bm
2 þ bm

ð3:109Þ

Substituting the above equation into (3.13) and (3.14), there is

w4 ¼ � 8MTa
p4Db 1� lð Þ

X1
m¼1;3;...

sinh bm
P1

k¼1;3;...

1
m2

m2

a2 þ k2
b2

� ��2
k2
b2 þð2� lÞ m2

a2

h i� 

3þ l
1�l

sinh 2bm
2 þ bm

� 2
1� l

þ bm coth bm

� �
sinh

mpy
a

� mpy
a

cosh
mpy
a

� 	
sin

mp x
a

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð3:110Þ

Mx4 ¼ � 8MT

p2ab

X1
m¼1;3;...

sinh bm
P1

k¼1;3;...

m2

a2 þ k2
b2

� ��2
k2
b2 þð2� lÞ m2

a2

h i
3þl
1�l

sinh 2bm
2 þ bm

�
bm coth bm þ 2

1þ l
1� l

� �
� sinh

mpy
a

� mpy
a

cosh
mpy
a

2
664

3
775 sin

mp x
a

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð3:111Þ

My4 ¼ � 8MT

p2ab

X1
m¼1;3;...

sinh bm
P1

k¼1;3;...

m2

a2 þ k2
b2

� ��2
k2
b2 þð2� lÞ m2

a2

h i
3þl
1�l

sinh 2bm
2 þ bm

� mpy
a

cosh
mpy
a

� bm coth bm sinh
mpy
a

� �
sin

mp x
a

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð3:112Þ
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Superimposing (3.98), (3.106), and (3.110) yields

w ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3 cosham

cosh
2amy
b

� am

� �
sin

mpx
a

�MT

2D
ðx� aÞx

þ 2a2 3� 2lð ÞMT

Dp3 1� lð Þ
X1

m¼1;3;...

sinhbm
m3 cosham

sinh 2amy
b � am

� �
3þl
1�l

sinh 2bm
2 þ bm

� 2
1� l

þ bm coth bm

� �
sinh

mpy
a

� mpy
a

cosh
mpy
a

� 	
sin

mpx
a

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

þ 8MT

p4Da2
X1

i¼1;3;...

X1
j¼1;3;...

i
j

i2

a2
þ j2

b2

� ��2

sin
ipx
a

sin
jpy
b

� 8MTa
p4Db 1� lð Þ

X1
m¼1;3;...

sinh bm
P1

k¼1;3;...

1
m2

m2

a2 þ k2
b2

� ��2
k2
b2 þð2� lÞ m2

a2

h i
3þl
1�l

sinh 2bm
2 þ bm

� 2
1� l

þ bm coth bm

� �
sinh

mpy
a

� mpy
a

cosh
mpy
a

� 	
sin

mpx
a

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð3:113Þ

Superimposing (3.100), (3.106), and (3.111), there is

Mx ¼ 4MT

p
l� 1ð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

sin
mpx
a

þ 2 3� 2lð ÞMT

p

X1
m¼1;3;...

sinh bm
m cosham

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þbm

bm coth bmþ 2
1þ l
1� l

� �

� sinh
mpy
a

� mpy
a

cosh
mpy
a

2
664

3
775 sin

mpx
a

þ 8MT

p2a2
X1

i¼1;3;...

X1
j¼1;3;...

i
j

i2

a2
þ l

j2

b2

� �
i2

a2
þ j2

b2

� ��2

sin
ipx
a

sin
jpy
b

� 8MT

p2ab

X1
m¼1;3;...

sinh bm
P1

k¼1;3;...

m2

a2 þ k2
b2

� ��2
k2
b2 þð2� lÞ m2

a2

h i
3þ l
1�l

sinh 2bm
2 þbm

� bm coth bm þ 2
1þ l
1� l

� �
� sinh

mpy
a

� mpy
a

cosh
mpy
a

� 	
sin

mpx
a

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
ð3:114Þ
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Superimposing (3.99), (3.106), and (3.112), there is

My ¼ 4MT

p
1� lð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

sin
mpx
a

þ l� 1ð ÞMT

þ 2 3� 2lð ÞMT

p

X1
m¼1;3;...

sinh bm
m cosham

sinh 2amy
b � am

� �
3þ l
1�l

sinh 2bm
2 þ bm

mpy
a

cosh
mpy
a

� bm coth bm sinh
mpy
a

0
B@

1
CA sin

mpx
a

þ 8MT

p2a2
X1

i¼1;3;...

X1
j¼1;3;...

i
j

l
i2

a2
þ j2

b2

� �
i2

a2
þ j2

b2

� ��2

sin
ipx
a

sin
jpy
b

� 8MT

p2ab

X1
m¼1;3;...

sinh bm
P1

k¼1;3;...

m2

a2 þ k2
b2

� ��2
k2
b2 þð2� lÞ m2

a2

h i
3þ l
1�l

sinh 2bm
2 þ bm

� mpy
a

cosh
mpy
a

� bm coth bm sinh
mpy
a

� �
sin

mpx
a

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð3:115Þ

3.7.3 Results Analysis

MATLAB software was used to test the accuracy of (3.113), (3.114), and (3.115).
The results show that when taking m = n = 17, deflection w has converged to the
exact solution. For the bending moment Mx of unit width, when taking m = n =
259, the result converge has to the exact solution. For the bending moment My of
unit width, when taking m = n = 175, the result has converged to the exact solu-
tion, and the error only is 1/100,000 in comparison with the result when taking
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kx
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f

Fig. 3.10 The relationship of lx/ly with kx, ky and f
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m = n = 177. For the convenience and engineering application, the calculated
results are given in the form according to the length-width ratio of the plate
(Table A.12).

According to Table A.12, the relationship of lx/ly with kx, ky and f is shown in
Fig. 3.10.

Figure 3.10 shows that both kx and f decrease with lx/ly, but ky increases with lx/
ly. When lx/ly changes from 0.5 to 2.0, kx changes from greater than zero to less than
zero, ky changes from less than zero to greater than zero, and f is always greater than
zero.

The engineering application is the same with Sect. 2.3.4.
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Chapter 4
Thermal Buckling of the Concrete
Rectangular Thin Plate

Abstract Based on the small deflection theory of thin plate and the nonlinear
constitutive equation of concrete, the closed form solutions of the critical buckling
temperature variation about concrete rectangular thin plate with four edges simply
supported under thermal loading condition are derived in this chapter.

b

ao

h

x

y z

4.1 Introduction

In this chapter, firstly aiming at an arbitrary rectangular thin plate, the equilibrium
and stability equations of concrete rectangular plate subjected to thermal loading are
derived. The close-form solution of the critical buckling temperature difference for
a simply supported reinforced concrete rectangular plate under uniform temperature
change is presented. The critical buckling temperature variations of concrete rect-
angular plates with simply supported boundary conditions in engineering generally
used are calculated, and the influences of material parameters, geometric dimension
(length-breadth ratio) and relative thickness on the critical buckling temperature
variation are discussed. Then, according to the engineering application of the
concrete rectangular thin plate structure, the equilibrium and stability equations of
the concrete rectangular plate on elastic foundation under thermal loading are
derived. The close-form solutions of the critical buckling temperature difference for
a simply supported concrete rectangular plate on elastic foundation under

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2018
X. Cheng, Thermal Elastic Mechanics Problems of Concrete Rectangular
Thin Plate, Springer Tracts in Civil Engineering,
DOI 10.1007/978-981-10-4472-4_4
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temperature variation perpendicular to surface and uniform temperature change are
presented. Through numerical examples, the influences of material parameters,
length-breadth ratio, relative thickness and bending coefficient on the critical
buckling temperature variation are discussed.

4.2 Equilibrium and Buckling Equations of Rectangular
Thin Plate

4.2.1 Geometric Equation

Now considering a reinforced concrete rectangular thin plate with a size of
a� b� h, the coordinates is taken as shown in Fig. 4.1.

Based on the rigidity plate and the small deflection theories [52], there is

u ¼ �z
@w
@x

; v ¼ �z
@w
@y

where u, v and w represent the displacements along the x, y and z directions
respectively.

Hence, the geometric equation of thin plate is

ex ¼ �z
@2w
@x2

; ey ¼ �z
@2w
@y2

; cxy ¼ �2z
@2w
@x@y

ð4:1Þ

where ex,ey and cxy are the components of strain.

4.2.2 Physical Equation

Based on the small elastic-plastic theory of Iliushin [54], the stress-strain rela-
tionship of the generally used materials can be expressed as

b

ao

h

x

y z

Fig. 4.1 Geometric graphic
of rectangular thin plate
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ri ¼ WðeiÞ

The above equation can be written in a polynomial form, that is

ri ¼ E1ei þE2e
2
i þE3e

3
i þ . . .

Namely

ri ¼ E1 ei þ E2

E1
e2i þ

E3

E1
e3i þ . . .

� �
ð4:2Þ

where E1, E2, E3 …are the material constant.
This paper is based on the concrete constitutive model proposed by Hognestad,

as is shown in Fig. 4.2.
The rise segment of the model is quadratic parabola, the falling section is the

oblique line, that is

r ¼ fc 2 e
e0
� e

e0

� �2� �
e� e0

r ¼ fc 1� 0:15 e�e0
ecu�e0

� �
e0 � e� ecu

8><
>: ð4:3Þ

where fc is the ultimate compressive strength of the prism body; e0 is the strain
corresponding to the ultimate compressive strength of the prism body; ecu is the
ultimate compressive strain.

Due to the cracks develop rapidly in the declining segment AB after reaching
peak stress of concrete, the whole part of the internal structure is damaged
increasingly. Therefore, the rise segment OA is only considered. If ordering:

E ¼ E1 ¼ 2fc
e0

;B ¼ E2

E1
¼ 1

2e0

where E represents the initial elastic modulus of the material; B represents another
new material constant.

o

cf

0ε cuε
ε

σ

A
B

Fig. 4.2 The stress-strain
relationship proposed by
Hognestad
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If combining (4.2) and (4.3), there is

ri ¼ E ei � Be2i
� 	 ð4:4Þ

The nonlinear elastic constitutive equation of stress-strain under the condition of
thin plate is

rx ¼ E
1�l2 ex � Be2x

� 	þ l ey � Be2y
� �

� 1þ lð ÞaT
h i

ry ¼ E
1�l2 ey � Be2y

� �
þ l ex � Be2x
� 	� 1þ lð ÞaT

h i
sxy ¼ E

2 1þlð Þ cxy � Bc2xy
� �

8>>><
>>>:

ð4:5Þ

where l is the Poisson ratio; a is the linear expansion coefficient of the material; T is
the temperature of any point in the thin plate, that is T ¼ Tðx; y; zÞ.

4.2.3 Equilibrium and Buckling Equations

Due to the thickness of the thin plate is very small compared to the other two
dimensions, it can be assumed that there is only the longitudinal stress rx, ry and sxy
which is parallel to the middle plane and invariable along the thickness [9]. So the
internal force in the unit width of the plate can be obtained by integrating the stress
along the direction of thickness

Nij ¼
R h=2
�h=2 rijdz

Mij ¼
R h=2
�h=2 rijzdz

(
ð4:6Þ

Substituting (4.1) and (4.5) into (4.6) yields

Nx ¼ �DB @2w
@x2

� �2
þ l @2w

@y2

� �2� �
� U

1�l

Ny ¼ �DB @2w
@y2

� �2
þ l @2w

@x2

� �2� �
� U

1�l

Nxy ¼ �DB 1� lð Þ @2w
@x@y

� �2
Mx ¼ �D @2w

@x2 þ l @2w
@y2

� �
� u

1�l

My ¼ �D @2w
@y2 þ l @2w

@x2

� �
� u

1�l

Mxy ¼ �D 1� lð Þ @2w
@x@y

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð4:7Þ

where D ¼ Eh3
12ð1�l2Þ; U ¼ Ea

R h=2
�h=2 Tdz; u ¼ Ea

R h=2
�h=2 Tzdz:
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According to the assumption of small deflection bending problem of thin plate
[9], [55–57], the equilibrium equation is

@Nx
@x þ @Nxy

@y ¼ 0
@Ny

@y þ @Nxy

@x ¼ 0
@2Mx
@x2 þ 2 @2Mxy

@x@y þ @2My

@y2 þNx
@2w
@x2 þNy

@2w
@y2 þ 2Nxy

@2w
@x@y þ q ¼ 0

8>><
>>: ð4:8Þ

where, q is the distribution load of unit area. In (4.8), the first two equations are
independent, therefore, substituting the fourth, fifth, sixth equations of (4.7) into the
third equation of (4.8) yields

Dr4wþ 1
1� l

@2u
@x2

þ @2u
@y2

� �
� Nx

@2w
@x2

� Ny
@2w
@y2

� 2Nxy
@2w
@x@y

� q ¼ 0 ð4:9Þ

where, r4 ¼ @4

@x4 þ 2 @4

@x2@y2 þ @4

@y4.

(4.9) is the stability equilibrium equation of concrete thin plate under the thermal
load based on the small deflection theory.

The buckling equation of thin plate is derived by using the critical equilibrium
method. w0 and T0 as the deflection and temperature of the critical state are set.
Both the pre-buckling and post-buckling equilibrium equations are satisfied. In the
above equation, a very small increment is given to w and T respectively, that is

w ! w0 þ dw; T ! T0 þ dT

By substituting w ¼ w0 þ dw and T ¼ T0 þ dT into (4.9) and subtracting the
original equilibrium equation, then neglecting the high order, the buckling equation
is obtained. If marking dw and du as w* and T*, there is

Dr4w� þ 1
1� l

@2u
@x2

þ @2u
@y2

� �
� Nx0

@2w�

@x2
� Ny0

@2w�

@y2
� 2Nxy0

@2w�

@x@y
¼ 0

ð4:10Þ

where Nx0, Ny0 and Nxy0 are the pre-buckling internal force.

4.3 Thermal Buckling Temperature of Concrete
Rectangular Thin Plate

4.3.1 Calculation Parameters

According to the existing literature, the relationship between the compressive
strength of concrete when temperature is T and the compressive strength of concrete
under normal temperature can be determined by the following equations [15]:
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f Tc ¼ fc T � 60�C
f Tc ¼ 0:88fc � 0:94fc 60�C\T � 100�C
f Tc ¼ 0:95fc � 1:08fc 100�C\T � 300�C

f Tc ¼ 1þ 18 T
1000

� 	5:1h i�1
fc T [ 300�C

8>>><
>>>:

ð4:11Þ

The relationship between the peak strain eTc and the peak train under normal
temperature can be determined by the following equation:

eT0 ¼ 1þ 5
T

1000

� �1:7
" #

e0 ð4:12Þ

Under the action of temperature, the linear expansion coefficient aT can be
determined by the following equation:

aT ¼ 28
T

1000

� �
� 10�6 ð4:13Þ

Due to the high temperature, the cement slurry and aggregate in the confined
concrete generate different expansion and contraction, and generate thermal stress and
the cracks may appear. The experimental results show that the granite aggregate
concrete generates thermal cracks at 550 °C, and the limestone aggregate concrete
cracks at 700 °C. For the high strength concrete, itmay burst and crack suddenlywhen
T > 400 * 500 °C. Thus it is considered that the strength damage will occur when
the temperature reaches these values, and the buckling calculation is not necessary.

4.3.2 Buckling Critical Temperature

Presuming the initial temperature of each point of the thin plate is the same, the
boundary conditions are that the thin plate is clamped in the direction of the
in-plane and simply supported in the bending direction. The critical temperature
rising value DTcr in buckling of the concrete thin plate is evaluated.

Given that the temperature varies uniformly in the plane direction, hence
Nxy0 ¼ 0, according to the first two equations of (4.8), Nx0 and Ny0 also should be
constant, thus applying it to the boundary, there is

Nxjx¼0;a ¼ �DB @2w
@x2

� �2
� U

1�l

Ny




y¼0;b ¼ �DB @2w

@y2

� �2
� U

1�l

Mxjx¼0;a¼ �D @2w
@x2 � u

1�l ¼ 0

My




y¼0;b¼ �D @2w

@y2 � u
1�l ¼ 0

Mxy ¼ 0

8>>>>>>>><
>>>>>>>>:

ð4:14Þ
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Substituting the fourth and fifth equations into the first and the second equations
produces

Nxjx¼0;a¼ � Bu2

D 1�lð Þ2 � U
1�l

Ny




y¼0;b¼ � Bu2

D 1�lð Þ2 � U
1�l

8<
: ð4:15Þ

Hence

Nx0 ¼ Ny0 ¼ � Bu2

D 1� lð Þ2 �
U

1� l
ð4:16Þ

In addition, due to the uniform variation of the temperature in the plane direc-
tion, there is

@2u
@x2

þ @2u
@y2

¼ 0 ð4:17Þ

Substituting (4.16) and (4.17) into (4.10) produces

Dr4w� þ Bu2

D 1� lð Þ2 þ U
1� l

" #
@2w�

@x2
þ @2w�

@y2

� �
¼ 0 ð4:18Þ

When the temperature varies uniformly in the thin plate, integrating the u and U
in (4.7) yields

u ¼ 0;U ¼ EaTh ð4:19Þ

Given that the edge constraint can increase the rigidity of the structure, for the
sake of safety, only the condition that four edges are simply supported is discussed.
The constraint equations of the rectangular thin plate with four edges simply
supported are

x ¼ 0; side a : w� ¼ M�
x ¼ 0

y ¼ 0; side b : w� ¼ M�
y ¼ 0

�
ð4:20Þ

Assuming that the solution meeting the boundary conditions (4.20), the solution is

w� ¼
X1
m¼1

X1
n¼1

Amn sin
mp x
a

sin
np y
b

ð4:21Þ

where m, n represent the numbers of half wave along the directions of x and y when
the thin plate is buckling; Amn is an arbitrary constant.
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Substituting (4.19) into (4.18), there is

Dr4w� þ Eha
1� l

T � @2w�

@x2
þ @2w�

@y2

� �
¼ 0 ð4:22Þ

Substituting (4.21) into (4.22), there is

X1
m¼1

X1
n¼1

Amn D
m2

a2
þ n2

b2

� ��
p2 � EhaT�

1� l

#
sin

m p x
a

sin
n p y
b

¼ 0

In the above equations, Amn can’t be all zero, otherwise a trivial solution will be
obtained, therefore the numerical value in bracket is required to be zero. That is

D
m2

a2
þ n2

b2

� �
p2 ¼ EhaT�

1� l

Hence, the critical temperature expression can be written as

T� ¼ h2p2

12ð1þ lÞa
m2

a2
þ n2

b2

� �
ð4:23Þ

Obviously, to obtain the minimum value of T*, it is necessary to the m = n= 1,
thus the critical buckling temperature is turned into

DTcr ¼ h=að Þ2p2
12ð1þ lÞa 1þ a=bð Þ2

h i
ð4:24Þ

(4.24) is the buckling critical temperature change value of the reinforced con-
crete rectangular plate under the uniform temperature variation.

It can be seen that when the relative thickness of thin plate is constant, the
critical temperature change decreases with the increase of the length-width ratio.
When the length-width ratio is constant, the buckling critical temperature change
increases monotonically with the increase of the relative thickness, but it is inde-
pendent of the initial elastic modulus of the material.

4.3.3 Numerical Examples

If the initial working temperature or the lower temperature side of the thin plate is
normal temperature. After calculation, the critical buckling temperature of the
concrete rectangular thin plate with four edges simply supported is within 200 °C.
For simplicity, the influence of temperature on the linear expansion coefficient is
not considered.
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According to (4.24) of the critical buckling temperature change, the buckling
critical temperature of concrete rectangular thin plate with four simply supported
edges is calculated, in which a = 1�10−5/°C, l = 1/6.

In order to make the conclusion of this section can be directly applied to the
calculation of structure engineering, take the length-width ratio b/a = 1.0*3.0,
then the four cases are calculated when taking h ¼ a=30, h ¼ a=35, h ¼ a=40 and
h ¼ a=45. Specific results are shown in Table 4.1.

As can be seen in Table 4.1, when taking the thickness of the plate h ¼ a=30,
the buckling critical temperature DTcr varies in 156.6*87.1 °C. When taking the
thickness of the thin plate h ¼ a=35, the critical buckling temperature DTcr varies
between 115.1 and 63.9 °C. When taking the thickness of the plate h ¼ a=40, the
buckling critical temperature DTcr varies between 88.1 and 48.9 °C. When taking
the thickness of the plate h ¼ a=45, the buckling critical temperature DTcr varies
between 69.6 and 38.7 °C. Therefore, for the conventional reinforced concrete
rectangular thin plate with four simply supported edges, the buckling critical
temperature it can bear varies between 38.7 and 156.6 °C; The thinner the plate is,
the smaller the critical temperature is, and the larger the length-width ratio is, the
smaller the critical temperature is.

Table 4.1 Influences of b/a and h/a on the critical temperature difference DTcr=°C

b=a h=a DTcr h=a DTcr h=a DTcr h=a DTcr
1.0 1/30 156.6 1/35 115.1 1/40 88.1 1/45 69.6

1.1 1/30 143.1 1/35 105.1 1/40 80.5 1/45 63.6

1.2 1/30 132.7 1/35 96.8 1/40 76.6 1/45 59.0

1.3 1/30 124.7 1/35 91.6 1/40 70.1 1/45 55.4

1.4 1/30 118.3 1/35 86.9 1/40 66.6 1/45 52.6

1.5 1/30 113.1 1/35 83.1 1/40 63.6 1/45 50.3

1.6 1/30 108.9 1/35 80.0 1/40 61.3 1/45 48.4

1.7 1/30 105.4 1/35 77.4 1/40 59.3 1/45 46.8

1.8 1/30 102.5 1/35 75.3 1/40 57.6 1/45 45.5

1.9 1/30 100.0 1/35 73.5 1/40 56.3 1/45 44.4

2.0 1/30 97.9 1/35 71.9 1/40 55.1 1/45 43.5

2.1 1/30 96.1 1/35 70.6 1/40 54.1 1/45 42.7

2.2 1/30 94.5 1/35 69.4 1/40 53.1 1/45 42.0

2.3 1/30 93.1 1/35 68.4 1/40 52.4 1/45 41.4

2.4 1/30 91.9 1/35 67.6 1/40 51.7 1/45 40.9

2.5 1/30 90.9 1/35 66.8 1/40 51.1 1/45 40.4

2.6 1/30 89.9 1/35 66.1 1/40 50.6 1/45 39.9

2.7 1/30 89.1 1/35 65.4 1/40 50.1 1/45 39.6

2.8 1/30 88.3 1/35 64.9 1/40 49.7 1/45 39.3

2.9 1/30 87.6 1/35 64.4 1/40 49.3 1/45 38.9

3.0 1/30 87.1 1/35 63.9 1/40 48.9 1/45 38.7

4.3 Thermal Buckling of Concrete Rectangular Thin Plate 99



4.4 Thermal Buckling of Concrete Rectangular Thin Plate
on the Elastic Foundation

4.4.1 Equilibrium and Buckling Equations

As is shown in Fig. 4.1, considering a rectangular thin plate on the elastic foun-
dation, based on the classical small deflection theory of the thin plate, the equi-
librium equation is

@Nx
@x þ @Nxy

@y ¼ 0
@Ny

@y þ @Nxy

@x ¼ 0
@2Mx
@x2 þ 2 @2Mxy

@x@y þ @2My

@y2 þNx
@2w
@x2 þNy

@2w
@y2 þ 2Nxy

@2w
@x@y þ q� kw ¼ 0

8>><
>>: ð4:25Þ

where k is the foundation modulus of the elastic.
Similarly, the first two equations of (4.25) are independent, therefore, substi-

tuting the fourth, fifth, sixth equations of (4.7) into the third of Eq. (4.25) yields

Dr4wþ 1
1� l

@2u
@x2

þ @2u
@y2

� �
� Nx

@2w
@x2

� Ny
@2w
@y2

� 2Nxy
@2w
@x@y

þ kw� q ¼ 0

ð4:26Þ

(4.26) is the stability equilibrium equation of reinforced concrete thin plate on
the elastic foundation under the thermal load and transverse load based on the small
deflection theory.

4.4.2 Thermal Buckling of Thin Plate Under the Uniform
Temperature Change

Similarly, with deriving (4.18), the same equation can be derived as

Dr4w� þ Bu2

D 1� lð Þ2 þ U
1� l

" #
@2w�

@x2
þ @2w�

@y2

� �
þ kw� ¼ 0 ð4:27Þ

When the temperature varies uniformly, substituting (4.19) into (4.27) yields

Dr4w� þ Eha
1� l

T
@2w�

@x2
þ @2w�

@y2

� �
þ kw� ¼ 0 ð4:28Þ

Substituting (4.21) into (4.28) yields

X1
m¼1

X1
n¼1

Amn D
m2

a2
þ n2

b2

� �2

p4 � EhaT�

1� l
m2p2

a2
þ n2p2

b2

� �
þ k

" #
sin

m p x
a

sin
n p y
b

¼ 0

100 4 Thermal Buckling of the Concrete Rectangular Thin Plate



In the above equations, Amn can’t be all zero, otherwise a trivial solution will be
obtained, therefore the numerical value in parentheses is required to be zero. That is

D
m2

a2
þ n2

b2

� �2

p4 þ k � EhaT�

1� l
m2

a2
þ n2

b2

� �
p2 ¼ 0

Hence, the critical temperature expression can be written as

T� ¼ h2p2

12ð1þ lÞa
m2

a2
þ n2

b2

� �
þ kð1� lÞ

Ehap2
a2b2

m2b2 þ n2a2
ð4:29Þ

If ordering k ¼ b=a, H = h/a, there is

DT ¼ H2p2

12ð1þ lÞa m2 þ n2

k2

� �
þ kð1� lÞa

EHap2
k2

m2k2 þ n2
ð4:30Þ

After calculation, when taking m ¼ n ¼ 1, the minimum value was obtained.
That is [49]

DTcr ¼ H2p2

12ð1þ lÞa 1þ 1

k2

� �
þ kð1� lÞa

EHap2
1

1þ 1
k2

� � ð4:31Þ

(4.31) is the calculation formula of buckling critical temperature changed value
of the reinforced concrete rectangular plate on the elastic foundation.

Given that the ground temperature varies within 3.2 m below the surface of the
ground between −20 and 35 °C in the urban area [49], and after calculation, the
critical buckling temperature is within 200 °C, thus there is no need to consider the
influence of temperature on the material constant and linear expansion coefficient.

4.4.3 Numerical Examples

According to (4.31) of the critical buckling temperature variation, the buckling
critical temperature of concrete rectangular thin plate with four simply supported
edges is calculated. In which a ¼ 1� 10�5=�C; l ¼ 1=6; and the initial tempera-
ture is set as normal temperature. In order to make the conclusion of this section can
be directly applied to the calculation of structure engineering, taking the
length-width ratio b/a = 1.0 * 3.0, then h ¼ a=30, h ¼ a=35, h ¼ a=40 and
h ¼ a=45, the concrete strength is 25 * 45 MPa.

For different initial elastic constants E, taking the length-width ratio k ¼ 1:0; the
short side a = 3.5 m, the bedding coefficient k = 1 � 106 N/m3, the relative
thickness H = 1/35, the critical buckling temperature change is determined by
(4.31). As is shown in Fig. 4.3.
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It can be seen by Fig. 4.3 that the critical temperature change decreases with the
increase of initial elastic constant E. Namely, the higher the concrete strength of
thin plate is, the lower the critical temperature variation of the thin plate is. In
addition, the effect of temperature on initial elastic constant is also considered when
the temperature is higher.

For different the length-width ratio k, taking short side a = 3.5 m, concrete
strength is 40 MPa, bedding coefficient k = 1�106 N/m3, the relative thickness
H=1/35, the critical buckling temperature change is determined by (4.31). As is
shown in Fig. 4.4.

It can be seen Fig. 4.4 that the critical temperature change decreases with the
increase of the length-width ratio k. When k� 2:0, the buckling critical temperature
change value tends to be stable.

For different foundation modulus k, taking short edge a = 3.5 m, concrete
strength is 40 MPa, k ¼ 1:0, H = 1/35, the critical buckling temperature change is
determined by (4.31). As is shown in Fig. 4.5.
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It can be seen in Fig. 4.5 that the critical buckling temperature increases with the
increase of the bedding coefficient k. If the bedding coefficient
k � 1.0 � 107 N/m3, the critical buckling temperature is close to 400 °C. Thus for
conventional concrete strength is 25 * 45 MPa, it is only necessary to calculate
the buckling critical temperature variation of soft soil, and clay and loam in medium
dense soil. There is no need to calculate the buckling critical temperature for other
soils. By this time, if the temperature variation is too large, the concrete plate will
suddenly burst and crack, which should be paid enough attention to.

For different relative thickness H, taking the short side a = 3.5 m, k ¼ 1:0; the
concrete strength is 40 MPa, bedding coefficient k = 1 � 106 N/m3, the critical
buckling temperature variation is determined according to (4.31), as shown in
Fig. 4.6.

As can be seen in Fig. 4.6, the critical buckling temperature increases with the
increase of relative thickness. So for concrete rectangular thin plate with buckling
temperature influence, the thickness of plate should be appropriately increased.
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4.4.4 Thermal Buckling of Concrete Rectangular Thin Plate
on Elastic Foundation in the Case of the Transverse
Temperature

According to (4.10), there is

D w�
;xxxx þ 2w�

;xxyy þw�
;yyyy

� �
þ Bu2

D 1� lð Þ2 þ U
1� l

 !
w�
;xx þw�

;yy

� �
þ kw� ¼ 0

ð4:32Þ

The experimental results show that [15], temperature along the thickness
direction is a nonlinear variation, but temperature is always transmitted through
high temperature surface to low temperature. Hence, for the sake of simplicity, and
considering the engineering practice, the temperature in plate is transmitted by the
way of uniform change or linear change along the thick [50], that is

T zð Þ ¼ Tu � Tu � Td
h

z; Tu � Td

where Tu represents the top surface temperature of thin plate; Td represents the
below surface temperature of thin plate, that is ground temperature[17].

Substituting T(z) and (4.17) into u and U produces

u ¼ Ea Tu � Tdð Þh2
12

;U ¼ EaTuh ð4:33Þ

The constraint equations of the rectangular thin plate with four edges simply
supported are

x ¼ 0; a : w� ¼ M�
x ; y ¼ 0; b : w� ¼ M�

y ð4:34Þ

Assuming that the solution meeting the boundary conditions (4.34), there is

w� ¼
X1
m¼1

X1
n¼1

Amn sin
mpx
a

sin
npy
b

ð4:35Þ

where m, n represent the numbers of half wave along the directions of x and y
when the thin plate is buckling. Amn is an arbitrary constant.

Substituting (4.34), (4.35) into (4.32), there is
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X1
m¼1

X1
n¼1

Amn D
m2

a2
þ n2

b2

� �� 2

p4

� BEa2h 1þ lð Þ Tu � Tdð Þ2
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1� l

�
m2

a2
þ n2
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p2 þ k

�
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sin
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¼ 0

In the above equations, Amn can’t be all zero, otherwise a trivial solution will be
obtained, therefore the numerical value in parenthesis is required to be zero. That is

D
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a2
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b2

� �2

p4 � BEa2h 1þ lð Þ Tu � Tdð Þ2
12 1� lð Þ þ EhaTu
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" #
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p2 þ k ¼ 0

ð4:36Þ

Obviously, to obtain the minimum value of Tu, it is necessary to require the
m=n=1, thus the critical buckling temperature is turned into

DTcr ¼ � 6
Ba 1þ lð Þ � Td

� �
þ
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ð4:37Þ

In China city, ground temperature changes from - 20 °C to 35 °C within 3.2
meters under the ground surface [49], and through the calculation, the critical
buckling temperature is within 200 °C, so the influence of temperature on material
constant, the linear expansion coefficient and so on wasn’t considered [15].

According to (4.37) of the critical buckling temperature change, the buckling
critical temperature of concrete rectangular thin plate with four simply supported
edges is calculated, in which a = 1�10-5/°C, l = 1/6.

In order to make the conclusion of this section can be directly applied to the
calculation of structure engineering, take the length-width ratio b/a=1.0–3.0, then
the four cases are calculated when taking H=h/a=1/30, H=h/a=1/35, H=h/a=1/40,
H=h/a=1/45. The concrete strength is 15*45 MPa.

For different initial elastic constant E, taking the length-width ratio k=1.0, the
short side a= 3.5 m, the bedding coefficient k = 1�106 N/m3, the relative thickness
H=1/35, Td = 0°C, the critical buckling temperature change is determined by (4.37).
As is shown in Fig. 4.7.

It can be seen by Fig. 4.7 that the critical temperature change decreases with the
increase of initial elastic constant E but the change is very small.

For different the length-width ratio k, taking short side a = 3.5 m, concrete is 40
MPa, Td=0°C, bedding coefficient k = 1�106 N/m3, the relative thicknessH=1/35, the
critical buckling temperature change is determined by (4.37) . As is shown in Fig. 4.8.
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It can be seen Fig. 4.8 that the critical temperature change decreases with the
increase of the length-width ratio, but change value is nearly equal. Therefore, for
the sake of simplicity, length-width ratio can be taken as 1.

For different bedding coefficient k, it can directly be seen by (4.37) that the
critical buckling temperature increases with the increases of bedding coefficient k,
so concrete rectangular thin plate should be placed on good foundation if the
buckling will appear because of temperature, in order to improve the critical
buckling temperature values. For the sake of simplicity, the bed coefficient can be
taken as is 1�10-3N/mm3 because the total change is not much.

For different relative thickness H, taking the short side a=3.5 m, k=1.0, the con-
crete strength is 40 MPa, bedding coefficient k = 1�106 N/m3, the critical buckling
temperature variation is determined according to (4.37), as shown in Fig. 4.9.
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As can be seen in Fig. 4.9, the critical buckling temperature increases with the
increase of relative thickness. So it is necessary to increase the thickness of concrete
rectangular plate if the buckling will appear because of temperature.

For different ground temperature Td, taking the short side a=3.5 m, k=1.0, the
concrete strength is 40 MPa, bedding coefficient k = 1�106 N/m3, Td changes from
-20°C to 35°C, the critical buckling temperature variation is determined according
to (4.37), as shown in Fig. 4.10.

As can be seen in Fig. 4.10, the critical buckling temperature increases with the
increase of ground temperature Td, however, for engineering, its relative change
value is not big. Therefore, for the sake of simplicity, ground temperature can be
taken as 0 °C.
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Chapter 5
Thermal Vibration of Concrete
Rectangular Thin Plate

Abstract Based on the small deflection theory of thin plate, the calculation for-
mula of natural frequency and the deflection function under forced vibration of
rectangular thin plate with four edges simply supported under thermal loading
condition are derived in this chapter.

b

ao

h

x

y z

5.1 Introduction

According to the research status, research reports about the vibration of concrete
rectangular thin plate under the action of thermal load have yet been seen in the
existing literature. In recent years, the nonlinear vibration of the thin plate with
different geometric features has been extensively studied, and its content involves
the influence of the geometric non-linearity, material non-linearity and anisotropy,
shear deformation and moment of inertia, and deformation under static load. At
present, due to the rapid development of science and technology and its wide use in
engineering, a lot of research about vibration behavior of heating thin plate has been
made. For example, Li analyzed vibration of heating ring plate, in these studies, the
research of concrete material is less [46–48]. He et al. analyzed dynamic response
of concrete plate under the action of the explosion load, but concrete is assumed to
be the ideal rigid-plastic material. These studies laid a solid foundation for the
vibration analysis of thin plate. But due to the particularity of concrete material, the
current research results cannot be applied well. Therefore, in this book, based on the
theory of small deflection, taking the quadratic double parameters model, the
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dynamic equation of thermal elastic problem of concrete rectangular thin plate is
derived. Using the Galerkin method and Series method, the natural frequency and
the deflection function of forced vibration about concrete rectangular thin plate
under the thermal environment are deduced. For the purpose of the convenience of
engineering design, the natural frequency under transverse temperature and uniform
temperature changes and the deflection function under the action of uniformly
distributed load about the concrete rectangular thin plate are given, and the influ-
ences of material elastic constants, length-width ratio, relative thickness and tem-
perature on natural frequency and deflection function of concrete thin plate are
discussed.

In this chapter, for any rectangular thin plates, the dynamic equation of the
reinforced concrete rectangular thin plate is deduced first. And the nonlinear
dynamic equation and analytical solution of concrete rectangular thin plate with
four edges simply supported under the action of thermal load are given by using the
Galerkin principle. Based on the concrete rectangular thin plate structure on elastic
foundation, dynamic equation of concrete rectangular thin plate under the thermal
environment on elastic foundation is deduced. And the formulas of natural fre-
quency and deflection function of forced vibration about concrete rectangular thin
plate with four edges simply supported on elastic foundation under the thermal
environment are deduced using the Series method. For the convenience of engi-
neering application, natural frequency and deflection function expression under
uniformly distributed load about concrete rectangular thin plate with four edges
simply supported under the action of transverse temperature and uniformly tem-
perature change on elastic foundation are given.

5.2 Free Vibration of Rectangular Thin Plate Under
Thermal Load

5.2.1 Basic Equation About the Free Vibration
of Rectangular Thin Plate

As shown in Fig. 4.1, considering a rectangular thin plate, based on the classical
small deflection theory of the thin plate, the equilibrium equation is

@Nx
@x þ @Nxy

@y ¼ 0
@Ny

@y þ @Nxy

@x ¼ 0
@2Mx
@x2 þ 2 @2Mxy

@x@y þ @2My

@y2 þNx
@2w
@x2 þNy

@2w
@y2 þ 2Nxy

@2w
@x@y � qh @2w

@t2 ¼ 0

8>><
>>: ð5:1Þ

In (5.1), the first two equations are independent, therefore substituting the fourth,
fifth, sixth equations of (4.7) into the third of Eq. (5.1), there is
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Dr4wþ 1
1� l

@2u
@x2

þ @2u
@y2

� �
� Nx

@2w
@x2

� Ny
@2w
@y2

� 2Nxy
@2w
@x@y

� q
@2w
@t2

¼ 0

ð5:2Þ

(5.2) is a differential equation of free vibration based on the theory of small
deflection of concrete thin plate under the action of thermal load.

Substituting (4.16) and (4.17) into (5.2) yields

Dr4wþ Bu2

D 1� lð Þ2 þ U
1� l

" #
@2w
@x2

þ @2w
@y2

� �
þ qh

@2w
@t2

¼ 0 ð5:3Þ

For simplicity, considering the case of four edges simply supported, take the
displacement mode shape as

wðx; y; tÞ ¼ w�ðx; yÞ sin xtþwð Þ ð5:4Þ

where, w�ðx; yÞ ¼ f sin p x
a sin p y

b .
Substituting (5.4) into (5.3) yields

Dr4wþ Bu2

D 1� lð Þ2 þ U
1� l

" #
@2w
@x2

þ @2w
@y2

� �
� x2qhw ¼ 0 ð5:5Þ

Based on Galerkin principle, there is

ZZ
s
Dr4wþ Bu2

D 1� lð Þ2 þ U
1� l

" #
@2w
@x2

þ @2w
@y2

� �
� x2qhw

" #
dwds ¼ 0

Due to the arbitrary of df , there is

D
p2

a2
þ p2

b2

� �2

� Bu2

D 1� lð Þ2 þ U
1� l

" #
p2

a2
þ p2

b2

� �
� x2qh ¼ 0 ð5:6Þ

Through (5.6) yields

x2 ¼ 1
qh

D
p2

a2
þ p2

b2

� �2

� Bu2

D 1� lð Þ2 þ U
1� l

" #
p2

a2
þ p2

b2

� �( )
ð5:7Þ

(5.7) is the basic frequency of the free vibration of a concrete rectangular thin plate
with four edges simply supported under the thermal load.

Because the thermal load will make the mechanical properties of steel and
concrete change greatly, therefore, in order to analyze the vibration rule of concrete
thin plate under the action of temperature, temperature field distribution of thin
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plate must be determined in advance. The results of experiments show that,
although temperature vary is nonlinear along the thickness, the temperature always
transmits from higher temperature to the lower temperature [15]. Therefore, for the
sake of simplicity and considering the actual project, temperature changes inside the
plate are considered as uniformly or linear variation along the thickness [17],
namely

T zð Þ ¼ Tb � Tb � Tc
h

z; Tb � Tc ð5:8Þ

where Tb represents the higher temperature of plate surface; Tc represents the lower
temperature of plate surface.

Substituting (5.8) into expression of u and U of (4.7), yields

u ¼ Ea Tb � Tcð Þh2
12

;U ¼ EaTbh ð5:9Þ

Substituting (5.9) into (5.7), yields

x2 ¼ Ep2

12q 1� lð Þ
1
a2

þ 1
b2

� �2 p2h2

1þ l
1
a2

þ 1
b2

� �
�
a 1þ lð Þa Tb � Tcð Þ2 þ 24e0Tb
h i

2e0

8<
:

9=
;

ð5:10Þ

When the temperature changes uniformly, substituting (4.19) into (5.7), yields

x2 ¼ Eh2p4

12q 1� l2ð Þ
1
a2

þ 1
b2

� �2

� EaTp2

q 1� lð Þ
1
a2

þ 1
b2

� �
ð5:11Þ

In order to make (5.11) have a wide range of applicability in the engineering
structure, letting k ¼ b=a (length-width ratio), H = h/a (relative thickness), then
(5.11) becomes

x ¼ p
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

q 1� lð Þ
H2p2

12 1þ lð Þ 1þ 1

k2

� �
� aT

� �
1þ 1

k2

� �s
ð5:12Þ

Through (5.12), it can be seen that the natural frequency of thin plate increases
with the increase of the initial elastic modulus E, and decreases with the increase of
the length-width ratio k, and the natural frequency of the square plate is the biggest,
decreases with the increase of temperature T, and increases with the increase of the
relative thickness.

Therefore, the influence of temperature on the natural frequency of thin plate
should be fully estimated when calculating the structure, such as temperature
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change caused by sunshine (especially the temperature variation at day and night),
temperature changes formed on the two plate surfaces.

In addition, by (4.24) can be known

DT � H2p2

12ð1þ lÞa 1þ 1

k2

� �
ð5:13Þ

Otherwise, the structure will be buckling failure.

5.2.2 Numerical Examples

According to (5.13), through calculating on the general concrete rectangular thin
plates in engineering, the critical buckling temperature changes of concrete rect-
angular thin plate with the four edges simply supported are within 200 °C, so if the
initial temperature is normal temperature or temperature inside the plate is less than
300 °C. For the sake of simplicity, the influence of the temperature on calculation of
concrete parameters cannot be considered. As an example, only concrete rectangular
thin plate with four edges simply supported is calculated when temperature is 60 °C,
the calculated parameters are: a = 3.5 m, concrete strength is 30 MPa (fc =
1.43 � 107 N/m2), e0 ¼ 0:002, H = 1/30, a ¼ 1� 10�5=�C, l ¼ 1=6, q ¼
2500kg/m3. Substituting the above parameters into (5.12) yields, x = 103.40 rad/s.

5.3 Forced Vibration of Concrete Rectangular
Thin Plate Under Thermal Load

5.3.1 Basic Equation of Forced Vibration
of Rectangular Thin Plate

As shown in Fig. 4.1, considering a rectangular thin plate on the elastic foundation,
based on the classical small deflection theory of the thin plate, the dynamic equi-
librium equation is

@Nx
@x þ @Nxy

@y ¼ 0
@Ny

@y þ @Nxy

@x ¼ 0
@2Mx
@x2 þ 2 @2Mxy

@x@y þ @2My

@y2 þNx
@2w
@x2 þNy

@2w
@y2 þ 2Nxy

@2w
@x@y�

qh @2w
@t2 þFðx; y; tÞ ¼ 0

8>>>><
>>>>:

ð5:14Þ

where, F (x, y, t) is vibration load force on the surface of the concrete plate.
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In (5.14), the first two equations are independent, therefore substituting the
fourth, fifth, sixth equations of (4.7) into the third of Eq. (5.14) yields

Dr4w� Nx
@2w
@x2

� Ny
@2w
@y2

� 2Nxy
@2w
@x@y

þ qh
@2w
@t2

� Fðx; y; tÞ ¼ 0 ð5:15Þ

Substituting (4.16) and (4.17) into (5.15) yields

Dr4wþ Bu2

D 1� lð Þ2 þ U
1� l

 !
@2w
@x2

þ @2w
@y2

� �
þ qh

@2w
@t2

� Fðx; y; tÞ ¼ 0

ð5:16Þ

(5.16) is the dynamic equation of the concrete plate under the thermal environment.
If F(x, y, t) is 0, (5.16) is changed as

Dr4wþ Bu2

D 1� lð Þ2 þ U
1� l

 !
@2w
@x2

þ @2w
@y2

� �
þ qh

@2w
@t2

¼ 0 ð5:17Þ

(5.17) is the equilibrium differential equation for the free vibration of concrete
rectangular thin plate under thermal environment.

The situation of the four edges simply supported is considered, and the dis-
placement pattern is taken as

wðx; y; tÞ ¼ w�ðx; yÞ sin xtþwð Þ ð5:18Þ

where, w�ðx; yÞ ¼ P1
m¼1

P1
n¼1

Cmn sin mpx
a sin npy

b

Submitting (5.18) into (5.17), there is

P1
m¼1

P1
n¼1

Cmn D m2p2
a2 þ n2p2

b2

� �2
� Bu2

D 1�lð Þ2 þ U
1�l

h i
�

	
m2p2

a2 þ n2p2
b2

� �
�x2qh


� sin mpx
a sin npy

b ¼ 0
ð5:19Þ

Because the undetermined coefficients Cmn is not equal to zero, the quantity in
the bracket must be zero, so the natural frequency of concrete rectangular thin plate
under the thermal environment is

xmn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eh2p4

12q 1�l2ð Þ
m2

a2 þ n2
b2

� �2
� Bu2

Dqh 1�lð Þ2
h

þ U
qh 1�lð Þ

i
�

m2

a2 þ n2
b2

� �
p2

vuuut ð5:20Þ
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Setting a simply supported rectangular plate subjected to a harmonic load, that is

Fðx; y; tÞ ¼ qðx; yÞ sin htþwð Þ

where, qðx; yÞ is the load amplitude in unit area of the thin plate; h is the frequency
of the vibration load, w is the initial phase angle.

The equilibrium differential equation for the forced vibration of the rectangular
thin plate under the thermal environment is

Dr4wþ Bu2

D 1� lð Þ2 þ U
1� l

 !
@2w
@x2

þ @2w
@y2

� �
þ qh

@2w
@t2

¼ qðx; yÞ sin htþwð Þ

ð5:21Þ

Taking the displacement mode shape as

wðx; y; tÞ ¼ w0ðx; yÞ sin htþwð Þ ð5:22Þ

where,w0ðx; yÞ ¼
P1
m¼1

P1
n¼1

Amn sin mpx
a sin npy

b ;m is the wave number of the half wave of

Sine of the thin plate formed in the x direction when vibrating; n is the wave number
of the half wave of Sine of the thin plate formed in the y direction when vibrating.

The load is expressed as a double trigonometric series.

qðx; yÞ ¼
X1
m¼1

X1
n¼1

qmn sin
mx
a
sin

npy
b

ð5:23Þ

where

qmn ¼ 4
ab

Z a

0

Z b

0
qðx; yÞ sinmpx

a
sin

npy
b
dxdy ð5:24Þ

Substituting (5.22), (5.23), (5.24) into (5.21) there is

P1
m¼1

P1
n¼1

Amn D m2p2

a2 þ n2p2
b2

� �2
� Bu2

D 1�lð Þ2 þ U
1�l

h i
�

	
m2p2

a2 þ n2p2
b2

� �
�h2qh


� sin mpx
a sin npy

b

¼ P1
m¼1

P1
n¼1

qmn sin mpx
a sin npy

b

ð5:25Þ

Thus

Amn ¼ qmn

D m2p2
a2 þ n2p2

b2
� �2� Bu2

D 1�lð Þ2 þ U
1�l

h i
� m2p2

a2 þ n2p2
b2

� �� h2qh
on
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The general formula of the deflection (amplitude) is

w0ðx; yÞ ¼
X1
m¼1

X1
n¼1

qmn sin mpx
a sin npy

b

D m2p2

a2 þ n2p2
b2

� �2
� Bu2

D 1�lð Þ2 þ U
1�l

h i
�

m2p2
a2 þ n2p2

b2

� �
� h2qh

8<
:

9=
;

ð5:26Þ

Letting Tu represents the temperature value of the thin plate upward surface, and
Td indicates the temperature of the thin plate downward surface of the thin plate,
then (5.9) becomes

u ¼ Ea Tu � Tdð Þh2
12

;U ¼ EaTuh ð5:27Þ

Substituting (5.27) into (5.20), yields

xmn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eh2p4

12q 1�l2ð Þ
m2

a2 þ n2
b2

� �2
� BEa2 1þ lð Þ Tu�Tdð Þ2

12q 1�lð Þ
h

þ EaTu
q 1�lð Þ

i
�

m2

a2 þ n2
b2

� �
p2

vuuut ð5:28Þ

Given that Tu ¼ Td , it becomes the case when the temperature changes.
(5.28) is vibration frequency calculation formula of concrete rectangular thin

plate with four edges simply supported in the cases of transverse temperature
change and uniform temperature change. For other non-uniform temperature field,
as long as the temperature function T ¼ Tðx; y; zÞ is known, based on expressions
of U, u and (5.20), vibration frequency formula under the action of any temperature
T (x, y, t) can be obtained.

Given that the pressure qðx; yÞ on the thin plate is uniformly distributed, then by
(5.24), there is

qmn ¼ 4q
ab

Z a

0

Z b

0
sin

mpx
a

sin
npy
b

dxdy ¼ 16q
mn p2

ð5:29Þ

where, m and n are odd integer.
Substituting (5.27) and (5.29) into (5.26) yields

w0ðx; yÞ ¼
X1

m¼1;3;...

X1
n¼1;3...

16q sin mpx
a sin npy

b

mn
D m2

a2 þ n2
b2

� �2
p4 � BEa2h 1þ lð Þ Tu�Tdð Þ2

12 1�lð Þ
h

þ
EaTuh
1�l

i
m2

a2 þ n2
b2

� �
p2 � h2qh

8<
:

9=
;

ð5:30Þ

When x ¼ a
2, y ¼ b

2, the maximum deflection of the thin plate (amplitude) is
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wmax ¼
X1

m¼1;3;...

X1
n¼1;3...

16qð�1Þmþ n
2 �1

mn
D m2

a2 þ n2
b2

� �2
p4 � BEa2h 1þ lð Þ Tu�Tdð Þ2

12 1�lð Þ
h

þ
EaTuh
1�l

i
� m2

a2 þ n2
b2

� �
p2 � h2qh

8<
:

9=
;

ð5:31Þ

5.3.2 Numerical Examples

As an example, only the cases of transverse temperature variation and the uniform
temperature variation are discussed. By (5.28) there is

xmn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eh2p4

12q 1�l2ð Þ
m2

a2 þ n2
b2

� �2
� BEa2 1þ lð Þ Tu�Tdð Þ2

12q 1�lð Þ
h

þ
EaTu

q 1�lð Þ
i

m2

a2 þ n2
b2

� �
p2

vuuut ð5:32Þ

(5.32) is the vibration natural frequency of concrete rectangular plate with four
edges simply supported under transverse temperature change.

It can be seen that the greater the temperature difference is, the smaller the
natural frequency is. Therefore, only the case of uniform temperature variation is
considered, namely Tu ¼ Td , then (5.32) becomes

xmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eh2p4

12q 1� l2ð Þ
m2

a2
þ n2

b2

� �2

� EaTp2

q 1� lð Þ
m2

a2
þ n2

b2

� �s
ð5:33Þ

In order to make the conclusion apply in engineering structure calculation
directly, letting a is short side, k ¼ b=a (length-width ratio), H = h/a (relative
thickness), and then (5.33) becomes

xmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ep4

12q 1� l2ð ÞH
2 m2 þ n2

k2

� �2

� EaTp2

a2q 1� lð Þ m2 þ n2

k2

� �s
ð5:34Þ

It can be seen that the vibration frequency of the thin plate decreases with the
increase of the elastic constant E and the relative thickness H, decreases with the
increase of T.

For the length and width ratio k, for the ease of description, let the short side
a = 3.5 m. In addition, let a ¼ 1� 10�5=�C, l ¼ 1=6, q ¼ 2500kg/m3, H = 1/30,
T = 60 °C, concrete strength is 30 MPa, the first frequency of thin plate is shown as
Fig. 5.1.

From Fig. 5.1, it can be seen that the natural frequency of thin plate decreases
with the increase of length-width ratio, and the basic frequency tends to be stable
when the ratio of length and width is greater than 2.
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For the forced vibration under the action of uniformly distributed load, by (5.31)
it can be seen that when the frequency of the load h is given, the maximum
deflection of thin plate can be determined. In addition, the bigger the temperature
difference is, the greater the deflection is.

Through deriving, we know that, as for the forced vibration, when there is a big
difference between the loading frequency h and the natural frequency of the thin
plate, arbitrary temperature of deflection (amplitude) can be calculated based on
(5.26). As for common rectangular thin plate in engineering, to simplify the cal-
culation, the transverse temperature change and uniform temperature change can be
only considered, and the natural vibration frequency and forced vibration deflection
(amplitude) can be calculated based on (5.32) and (5.31).

5.4 Thermal Vibration of Concrete Rectangular Thin
Plate on Elastic Foundation

5.4.1 Dynamic Equation of Thin Plate

As shown in Fig. 4.1, considering a rectangular thin plate on the elastic foundation,
based on the classical small deflection theory of the thin plate, the dynamic equi-
librium equation is

@Nx
@x þ @Nxy

@y ¼ 0
@Ny

@y þ @Nxy

@x ¼ 0
@2Mx
@x2 þ 2 @2Mxy

@x@y þ @2My

@y2 þNx
@2w
@x2 þNy

@2w
@y2 þ 2Nxy

@2w
@x@y�

qh @2w
@t2 � kwþFðx; y; tÞ ¼ 0

8>>>><
>>>>:

ð5:35Þ

where, F (x, y, t) is the forced vibration load strength of the concrete thin plate
surface.
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Fig. 5.1 The first frequency
varies with length-width ratio
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In (5.35), the first two equations are independent, therefore substituting the
fourth, fifth, sixth equations of (4.7) into the third of Eq. (5.35) yields

Dr4w� Nx
@2w
@x2

� Ny
@2w
@y2

� 2Nxy
@2w
@x@y

þ qh
@2w
@t2

þ kw� Gcr2w� Fðx; y; tÞ ¼ 0

ð5:36Þ

Substituting (4.16) and (4.17) into (5.36) yields

Dr4wþ Bu2

D 1� lð Þ2 þ U
1� l

 !
@2w
@x2

þ @2w
@y2

� �
þ qh

@2w
@t2

þ kw� Fðx; y; tÞ ¼ 0

ð5:37Þ

(5.37) is the dynamic equation of the thin plate on the elastic foundation.

5.4.2 Vibration Problem of Concrete Rectangular Thin
Plate on Elastic Foundation Under Thermal
Environment

1. Free Vibration

If F (x, y, t) is zero, then (5.37) becomes

Dr4wþ Bu2

D 1� lð Þ2 þ U
1� l

 !
@2w
@x2

þ @2w
@y2

� �
þ qh

@2w
@t2

þ kw ¼ 0 ð5:38Þ

(5.38) is the equilibrium differential equation of the free vibration of the rectangular
thin plate on the elastic foundation.

Considering the case of four edges simply supported, taking the displacement
mode shape as

wðx; y; tÞ ¼ w�ðx; yÞ sin xtþwð Þ ð5:39Þ

where, w�ðx; yÞ ¼ P1
m¼1

P1
n¼1

Cmn sin mpx
a sin npy

b .

Substituting (5.39) into (5.38) yields

P1
m¼1

P1
n¼1

Cmn D m2p2
a2 þ n2p2

b2

� �2
� Bu2

D 1�lð Þ2 þ U
1�l

ih	
�

m2p2
a2 þ n2p2

b2

� �
� x2qhþ k

o
� sin mpx

a sin npy
b ¼ 0

ð5:40Þ
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Since the undetermined coefficient Cmn is not equal to zero, the value of the
bracket must be zero, so the natural vibration frequency of the reinforced concrete
rectangular thin plate on the elastic foundation can be gotten.

xmn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eh2p4

12q 1�l2ð Þ
m2

a2 þ n2
b2

� �2
� Bu2

Dqh 1�lð Þ2 þ U
qh 1�lð Þ

h i
�

m2

a2 þ n2
b2

� �
p2 þ k

qh

vuuut ð5:41Þ

2. Forced Vibration

Considering a harmonic load on a rectangular thin plate with four edges simply
supported, there is

Fðx; y; tÞ ¼ qðx; yÞ sin htþwð Þ

where, q(x, y) is the load amplitude on unit area of the thin plate; h is the frequency
of the vibration load; w is the initial phase angle.

The equilibrium differential equation of the forced vibration of the rectangular
thin plate on the elastic foundation under the thermal environment is

Dr4wþ Bu2

D 1� lð Þ2 þ U
1� l

 !
@2w
@x2

þ @2w
@y2

� �
þ qh

@2w
@t2

þ kw

¼ qðx; yÞ sin htþwð Þ
ð5:42Þ

Take the displacement mode shape as

wðx; y; tÞ ¼ w0ðx; yÞ sin htþwð Þ ð5:43Þ

where, w0ðx; yÞ ¼
P1
m¼1

P1
n¼1

Amn sin mpx
a sin npy

b ; m is the wave number of the half wave

of Sine of the thin plate formed in the x direction when vibrating, n is the wave
number of the half wave of Sine of the thin plate formed in the y direction when
vibrating.

The load is expressed as a double trigonometric series qðx; yÞ

qðx; yÞ ¼
X1
m¼1

X1
n¼1

qmn sin
mpx
a

sin
npy
b

ð5:44Þ

where

qmn ¼ 4
ab

Z a

0

Z b

0
qðx; yÞ sinmpx

a
sin

npy
b

dxdy ð5:45Þ
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Substituting (5.43), (5.44) and (5.45) into (5.42) yields

X1
m¼1

X1
n¼1

Amn D
m2p2

a2
þ n2p2

b2

� �2

� Bu2

D 1� lð Þ2 þ U
1� l

" #(

� m2p2

a2
þ n2p2

b2

� �
þ k�h2qh


� sin
mpx
a

sin
npy
b

¼
X1
m¼1

X1
n¼1

qmn sin
mpx
a

sin
npy
b

ð5:46Þ

That is

Amn ¼ qmn

D m2p2
a2 þ n2p2

b2
� �2� Bu2

D 1�lð Þ2 þ U
1�l

h i
� m2p2

a2 þ n2p2
b2

� �þ k � h2qh
on

The general formula of the deflection (amplitude) is

w0ðx; yÞ ¼
X1
m¼1

X1
n¼1

qmn sin mpx
a sin npy

b

D m2p2
a2 þ n2p2

b2

� �2
� Bu2

D 1�lð Þ2 þ U
1�l

h i
�

m2p2
a2 þ n2p2

b2

� �
þ k � h2qh

8<
:

9=
;

ð5:47Þ

5.4.3 Forced Vibration of Concrete Rectangular Thin Plate
on Elastic Foundation Under the Action
of Geothermal

Let Tu represents the temperature value of the thin plate upward surface, and Td
indicates the temperature of the downward surface of the thin plate [50], then (5.9)
becomes

u ¼ Ea Tu � Tdð Þh2
12

; U ¼ EaTuh ð5:48Þ

Substituting (5.48) into (5.41) yields

xmn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eh2p4

12q 1�l2ð Þ
m2

a2 þ n2
b2

� �2
� BEa2 1þ lð Þ Tu�Tdð Þ2

12q 1�lð Þ
h

þ
EaTu

q 1�lð Þ
i

m2

a2 þ n2
b2

� �
p2 þ k

qh

vuuut ð5:49Þ

If Tu ¼ Td , it becomes the case when the temperature changes uniformly.
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(5.49) is vibration frequency calculation formula of concrete rectangular thin
plate with four edges simply supported in the cases of transverse temperature
change and uniform temperature change on elastic foundation. For other
non-uniform temperature field, as long as the temperature function T ¼ Tðx; y; zÞ is
known, based on expressions of U, u and (5.20), vibration frequency formula under
the action of arbitrariness temperature T (x, y, t) can be obtained.

For the concrete thin plate, the pressure qðx; yÞ is uniform load, through (5.24)
there is

qmn ¼ 4q
ab

Z a

0

Z b

0
sin

mpx
a

sin
npy
b

dxdy ¼ 16q
mn p2

ð5:50Þ

where m and n are odd.
Substituting (5.48) and (5.50) into (5.47) yields

w0ðx; yÞ ¼
X1

m¼1;3;...

X1
n¼1;3...

16q sin mpx
a sin npy

b

mn

D m2

a2 þ n2
b2

� �2
p4 � BEa2h 1þ lð Þ Tu�Tdð Þ2

12 1�lð Þ þ
h

EaTuh
1�l

i
m2

a2 þ n2
b2

� �
p2

þ k � h2qh

8>><
>>:

9>>=
>>;

ð5:51Þ

When x ¼ a
2, y ¼ b

2, the maximum deflection of the thin plate (amplitude) is

wmax ¼
X1

m¼1;3;...

X1
n¼1;3...

16qð�1Þmþ n
2 �1

mn
D m2

a2 þ n2
b2

� �2
p4 � BEa2h 1þ lð Þ Tu�Tdð Þ2

12 1�lð Þ
h

þ EaTuh
1�l

i
m2

a2 þ n2
b2

� �
p2 þ k � h2qh

8<
:

9=
;

ð5:52Þ

5.4.4 Numerical Examples

As an example, only the cases of transverse temperature variation and uniform
temperature variation about the rectangular thin plate on the Winkler elastic
foundation are discussed.

xmn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eh2p4

12q 1�l2ð Þ
m2

a2 þ n2
b2

� �2
� BEa2 1þ lð Þ Tu�Tdð Þ2

12q 1�lð Þ
h

þ EaTu
q 1�lð Þ

i
m2

a2 þ n2
b2

� �
p2 þ k

qh

vuuut ð5:53Þ

(5.53) is the natural frequency of free vibration under transverse temperature
variation on Winkler elastic foundation of concrete rectangular thin plate with four
edges simply supported.
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It can be seen that the greater the k is, the greater the natural frequency is. That
is, the harder the foundation is, the greater the natural frequency is. Therefore, as a
numerical example, we only consider that k is constant; the greater the temperature
difference is, the smaller the natural frequency is, thus, only we consider the
condition of uniform temperature variation, namely Tu ¼ Td , then (5.53) becomes

xmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eh2p4

12q 1� l2ð Þ
m2

a2
þ n2

b2

� �2

� EaTp2

q 1� lð Þ
m2

a2
þ n2

b2

� �
þ k

qh

s
ð5:54Þ

In order to make the conclusion apply to the engineering structure calculation
directly, let a is short side, (length width ratio), H = h/a (relative thickness), then
(5.54) becomes

xmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ep4

12q 1� l2ð ÞH
2 m2 þ n2

k2

� �2

� EaTp2

a2q 1� lð Þ m2 þ n2

k2

� �
þ k

qh

s
ð5:55Þ

It can be seen that the natural frequency of thin plate increases with the increase
of the elastic constant E and the relative thickness H, and decreases with the
increase of temperature T.

As for the length width ratio k, for the ease of description, let the short side
a = 3.5 m, k = 1�106 N/m3 (wet soft clay). In addition, let a = 1 � 10−5/°C,
l = 1/6, q ¼ 2500kg=m3, H = 1/30, T = 60 °C, concrete strength is 30 MPa, the
first frequency of thin plate is shown as Fig. 5.2.

Through Fig. 5.2 it can be seen that the natural frequency of thin plate decreases
with the increase of length-width ratio, and the basic frequency tends to be stable
when the ratio of length to width is greater than 2.

For the forced vibration of uniform distribute load, through (5.52) we can see
that the maximum deflection of the plate is determined when the load frequency h is
known, the maximum deflection of the plate can be determined. In addition, the
bigger the temperature difference, the greater the deflection.
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Fig. 5.2 The first frequency
varies with length and width
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Appendix A
Thermal Bending Calculation Coefficient
Tables

See Tables A.1, A.2, A.3, A.4, A.5, A.6, A.7, A.8, A.9, A.10, A.11 and A.12.
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Table A.1 Thermal bending calculation coefficient of four edges simply supported under
temperature disparity

1

6
µ =

T T
x xM k M= , 

T T
y yM k M=

0
1 1
T T

x xM k M= , 
0
1 1
T T

y yM k M=

0
2 2
T T

x xM k M= , 
0

2 2
T T

y yM k M=

2

( , )
T

xl Mw x y f
D

= (mid-span deflection)

Lower temperature side is in tension

o

y

yl

xl

T
yM

T
xM

T
yM 0

2 T
xM 0

2

T
yM 0
1

T
xM 0
1

x

lx=ly kx1 ky1 kx2 ky2 kx ky f

0.50 0.0000 0.8333 0.8333 0.0000 0.0915 0.7419 0.1139

0.55 0.0000 0.8333 0.8333 0.0000 0.1215 0.7118 0.1102

0.60 0.0000 0.8333 0.8333 0.0000 0.1537 0.6796 0.1063

0.65 0.0000 0.8333 0.8333 0.0000 0.1874 0.6460 0.1022

0.70 0.0000 0.8333 0.8333 0.0000 0.2216 0.6117 0.0980

0.75 0.0000 0.8333 0.8333 0.0000 0.2561 0.5772 0.0937

0.80 0.0000 0.8333 0.8333 0.0000 0.2902 0.5431 0.0895

0.85 0.0000 0.8333 0.8333 0.0000 0.3235 0.5098 0.0854

0.90 0.0000 0.8333 0.8333 0.0000 0.3559 0.4775 0.0813

0.95 0.0000 0.8333 0.8333 0.0000 0.3870 0.4464 0.0774

1.00 0.0000 0.8333 0.8333 0.0000 0.4167 0.4167 0.0737

1.10 0.0000 0.8333 0.8333 0.0000 0.4717 0.3616 0.0666

1.20 0.0000 0.8333 0.8333 0.0000 0.5209 0.3125 0.0602

1.30 0.0000 0.8333 0.8333 0.0000 0.5640 0.2693 0.0545

1.40 0.0000 0.8333 0.8333 0.0000 0.6018 0.2315 0.0494

1.50 0.0000 0.8333 0.8333 0.0000 0.6346 0.1987 0.0448

1.60 0.0000 0.8333 0.8333 0.0000 0.6629 0.1704 0.0407

1.70 0.0000 0.8333 0.8333 0.0000 0.6873 0.1460 0.0371

1.80 0.0000 0.8333 0.8333 0.0000 0.7083 0.1250 0.0339

1.90 0.0000 0.8333 0.8333 0.0000 0.7264 0.1070 0.0310

2.00 0.0000 0.8333 0.8333 0.0000 0.7419 0.0915 0.0285
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Table A.2 Thermal bending calculation coefficient of four edges clamped under temperature
disparity 1

6
µ =

T T
x xM k M= , T T

y yM k M=

0
1 1
T T

x xM k M= , 0
1 1
T T

y yM k M=

0
2 2
T T

x xM k M= , 0
2 2
T T

y yM k M=

2

( , )
T

xl Mw x y f
D

= (mid-span deflection)

Lower temperature side is in tension

o

y

yl

xl

T
yM

T
xM

T
yM 0

2 T
xM 0

2

T
yM 0
1

T
xM 0
1

x

lx=ly kx1 ky1 kx2 ky2 kx ky f

0.50 1.0000 0.8333 0.8333 1.0000 1.0000 1.0005 0.0000

0.55 1.0000 0.8333 0.8333 1.0000 1.0000 1.0006 0.0000

0.60 1.0000 0.8333 0.8333 1.0000 1.0000 1.0007 0.0000

0.65 1.0000 0.8333 0.8333 1.0000 1.0000 1.0008 0.0000

0.70 1.0000 0.8333 0.8333 1.0000 1.0000 1.0010 0.0000

0.75 1.0000 0.8333 0.8333 1.0000 1.0000 1.0010 0.0000

0.80 1.0000 0.8333 0.8333 1.0000 1.0000 1.0013 0.0000

0.85 0.0000 0.8333 0.8333 0.0000 1.0000 1.0014 0.0000

0.90 0.0000 0.8333 0.8333 0.0000 1.0000 1.0014 0.0000

0.95 0.0000 0.8333 0.8333 0.0000 1.0000 1.0016 0.0000

1.00 0.0000 0.8333 0.8333 0.0000 1.0000 1.0018 0.0000
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Table A.3 Thermal bending calculation coefficient of three edges clamped and one edge simply
supported under temperature disparity

1
6

µ =

T T
x xM k M= , T T

y yM k M=

0
1 1
T T

x xM k M= , 0
1 1
T T

y yM k M=

0
2 2
T T

x xM k M= , 0
2 2
T T

y yM k M=

0
3 3
T T

x xM k M=

2

( , )
T

xl Mw x y f
D

= (mid-span deflection)

Lower temperature side is in tension

o

y

yl

xl

T
yM

T
xM

T
yM 0

2 T
xM 0

2

T
yM 0
1
T

xM 0
1

x

T
xM 0

3

lx=ly kx1 ky1 kx2 ky2 kx3 kx ky f

0.50 1.0000 0.8333 0.8333 1.0000 0.8333 0.4319 1.0000 0.0087

0.55 1.0000 0.8333 0.8333 1.0000 0.8333 0.4189 0.9866 0.0105

0.60 1.0000 0.8333 0.8333 1.0000 0.8333 0.3956 0.9809 0.0121

0.65 1.0000 0.8333 0.8333 1.0000 0.8333 0.3708 0.9984 0.0136

0.70 1.0000 0.8333 0.8333 1.0000 0.8333 0.3458 0.9877 0.0148

0.75 1.0000 0.8333 0.8333 1.0000 0.8333 0.3219 0.9750 0.0159

0.80 1.0000 0.8333 0.8333 1.0000 0.8333 0.3996 0.9609 0.0167

0.85 1.0000 0.8333 0.8333 1.0000 0.8333 0.2796 0.9456 0.0174

0.90 1.0000 0.8333 0.8333 1.0000 0.8333 0.2620 0.9294 0.0179

0.95 1.0000 0.8333 0.8333 1.0000 0.8333 0.2471 0.9125 0.0182

1.00 1.0000 0.8333 0.8333 1.0000 0.8333 0.2348 0.8951 0.0184

1.10 1.0000 0.8333 0.8333 1.0000 0.8333 0.2177 0.8603 0.0185

1.20 1.0000 0.8333 0.8333 1.0000 0.8333 0.2095 0.8258 0.0182

1.30 1.0000 0.8333 0.8333 1.0000 0.8333 0.2084 0.7930 0.0177

1.40 1.0000 0.8333 0.8333 1.0000 0.8333 0.2127 0.7621 0.0170

1.50 1.0000 0.8333 0.8333 1.0000 0.8333 0.2211 0.7335 0.0162

1.60 1.0000 0.8333 0.8333 1.0000 0.8333 0.2322 0.7075 0.0153

1.70 1.0000 0.8333 0.8333 1.0000 0.8333 0.2450 0.6839 0.0145

1.80 1.0000 0.8333 0.8333 1.0000 0.8333 0.2589 0.6626 0.0136

1.90 1.0000 0.8333 0.8333 1.0000 0.8333 0.2731 0.6435 0.0128

2.00 1.0000 0.8333 0.8333 1.0000 0.8333 0.2874 0.6264 0.0121

128 Appendix A: Thermal Bending Calculation Coefficient Tables



Table A.4 Thermal bending calculation coefficient of one edge clamped and three edges simply
supported under temperature disparity

1

6
µ =

T T
x xM k M= , T T

y yM k M=

0
1 1
T T

y yM k M=

0
2 2
T T

x xM k M= , 0
2 2
T T

y yM k M=

0
3 3
T T

x xM k M=

2

( , )
T

xl Mw x y f
D

= (mid-span deflection)

Lower temperature side is in tension

o

y

yl

xl

T
yM

T
xM

T
yM 0

2 T
xM 0

2

T
yM 0
1

x

T
xM 0

3

lx=ly kx1 kx2 ky2 kx3 kx ky f

0.50 0.8333 0.8333 1.0000 0.8333 0.1720 0.7253 0.1052

0.55 0.8333 0.8333 1.0000 0.8333 0.2196 0.6988 0.0997

0.60 0.8333 0.8333 1.0000 0.8333 0.2683 0.6277 0.0942

0.65 0.8333 0.8333 1.0000 0.8333 0.3169 0.6476 0.0886

0.70 0.8333 0.8333 1.0000 0.8333 0.3645 0.7357 0.0831

0.75 0.8333 0.8333 1.0000 0.8333 0.4105 0.6022 0.0778

0.80 0.8333 0.8333 1.0000 0.8333 0.4543 0.5823 0.0728

0.85 0.8333 0.8333 1.0000 0.8333 0.4955 0.5643 0.3072

0.90 0.8333 0.8333 1.0000 0.8333 0.5343 0.5482 0.3385

0.95 0.8333 0.8333 1.0000 0.8333 0.5702 0.5340 0.3687

1.00 0.8333 0.8333 1.0000 0.8333 0.6034 0.5216 0.3979

1.10 0.8333 0.8333 1.0000 0.8333 0.6621 0.5014 0.0481

1.20 0.8333 0.8333 1.0000 0.8333 0.7113 0.4867 0.0421

1.30 0.8333 0.8333 1.0000 0.8333 0.7518 0.4764 0.0368

1.40 0.8333 0.8333 1.0000 0.8333 0.7851 0.4695 0.0324

1.50 0.8333 0.8333 1.0000 0.8333 0.8124 0.4652 0.0286

1.60 0.8333 0.8333 1.0000 0.8333 0.8344 0.4630 0.0254

1.70 0.8333 0.8333 1.0000 0.8333 0.8523 0.4623 0.0226

1.80 0.8333 0.8333 1.0000 0.8333 0.8666 0.4625 0.0202

1.90 0.8333 0.8333 1.0000 0.8333 0.8783 0.4636 0.0182

2.00 0.8333 0.8333 1.0000 0.8333 0.8875 0.4651 0.0164

Appendix A: Thermal Bending Calculation Coefficient Tables 129



Table A.5 Thermal bending calculation coefficient of two adjacent edges clamped and two edges
simply supported under temperature disparity

1

6
µ =

T T
x xM k M= , T T

y yM k M=

0
1 1
T T

x xM k M= , 0
1 1
T T

y yM k M=

0
2 2
T T

x xM k M= , 0
2 2
T T

y yM k M=

0
3 3
T T

x xM k M=

2

( , )
T

xl Mw x y f
D

= (mid-span deflection)

Lower temperature side is in tension

o

y

yl

xl

T
yM

T
xM

T
yM 0

2 T
xM 0

2

T
yM 0
1

T
xM 0
1

x

T
xM 0

3

lx=ly kx1 ky1 kx2 ky2 kx3 kx ky f

0.50 1.0000 0.8333 0.8333 1.0000 0.8333 0.5457 0.8710 0.0569

0.55 1.0000 0.8333 0.8333 1.0000 0.8333 0.5607 0.8560 0.0551

0.60 1.0000 0.8333 0.8333 1.0000 0.8333 0.5769 0.8398 0.0531

0.65 1.0000 0.8333 0.8333 1.0000 0.8333 0.5936 0.8231 0.0511

0.70 1.0000 0.8333 0.8333 1.0000 0.8333 0.6108 0.8059 0.0490

0.75 1.0000 0.8333 0.8333 1.0000 0.8333 0.6280 0.7887 0.0469

0.80 1.0000 0.8333 0.8333 1.0000 0.8333 0.6451 0.7716 0.0448

0.85 1.0000 0.8333 0.8333 1.0000 0.8333 0.6617 0.7550 0.0427

0.90 1.0000 0.8333 0.8333 1.0000 0.8333 0.6779 0.7388 0.0407

0.95 1.0000 0.8333 0.8333 1.0000 0.8333 0.6934 0.7233 0.0387

1.00 1.0000 0.8333 0.8333 1.0000 0.8333 0.7083 0.7084 0.0368

1.10 1.0000 0.8333 0.8333 1.0000 0.8333 0.7358 0.6809 0.0333

1.20 1.0000 0.8333 0.8333 1.0000 0.8333 0.7604 0.6563 0.0301

1.30 1.0000 0.8333 0.8333 1.0000 0.8333 0.7820 0.6347 0.0272

1.40 1.0000 0.8333 0.8333 1.0000 0.8333 0.8009 0.6158 0.0247

1.50 1.0000 0.8333 0.8333 1.0000 0.8333 0.8173 0.5994 0.0224

1.60 1.0000 0.8333 0.8333 1.0000 0.8333 0.8315 0.5852 0.0204

1.70 1.0000 0.8333 0.8333 1.0000 0.8333 0.8436 0.5731 0.0186

1.80 1.0000 0.8333 0.8333 1.0000 0.8333 0.8541 0.5626 0.0169

1.90 1.0000 0.8333 0.8333 1.0000 0.8333 0.8631 0.5536 0.0155

2.00 1.0000 0.8333 0.8333 1.0000 0.8333 0.8709 0.5458 0.0142
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Table A.6 Thermal bending calculation coefficient of two opposite edges clamped and two edges
simply supported under temperature disparity

1

6
µ =

T T
x xM k M= , T T

y yM k M=

0
1 1
T T

y yM k M=

0
2 2
T T

x xM k M= , 0
2 2
T T

y yM k M=

2

( , )
T

xl Mw x y f
D

= (mid-span deflection)

Lower temperature side is in tension

o

y

yl

xl

T
yM

T
xM

T
yM 0

2 T
xM 0

2

T
yM 0
1

x

lx=ly ky1 kx2 ky2 kx ky f

0.50 0.8333 0.8333 1.0000 0.2528 0.7088 0.0965

0.55 0.8333 0.8333 1.0000 0.3176 0.6857 0.0893

0.60 0.8333 0.8333 1.0000 0.3828 0.6658 0.0821

0.65 0.8333 0.8333 1.0000 0.4464 0.6494 0.0750

0.70 0.8333 0.8333 1.0000 0.5073 0.6365 0.0683

0.75 0.8333 0.8333 1.0000 0.5648 0.6273 0.0620

0.80 0.8333 0.8333 1.0000 0.6183 0.6214 0.0561

0.85 0.8333 0.8333 1.0000 0.6675 0.6188 0.0506

0.90 0.8333 0.8333 1.0000 0.7127 0.6190 0.0456

0.95 0.8333 0.8333 1.0000 0.7535 0.6216 0.0410

1.00 0.8333 0.8333 1.0000 0.7902 0.6266 0.0368

1.10 0.8333 0.8333 1.0000 0.8525 0.6414 0.0297

1.20 0.8333 0.8333 1.0000 0.9017 0.6610 0.0239

1.30 0.8333 0.8333 1.0000 0.9395 0.6837 0.0192

1.40 0.8333 0.8333 1.0000 0.9684 0.7075 0.0155

1.50 0.8333 0.8333 1.0000 0.9901 0.7318 0.0125

1.60 0.8333 0.8333 1.0000 1.0000 0.7556 0.0101

1.70 0.8333 0.8333 1.0000 1.0000 0.7786 0.0081

1.80 0.8333 0.8333 1.0000 1.0000 0.8002 0.0066

1.90 0.8333 0.8333 1.0000 1.0000 0.8203 0.0053

2.00 0.8333 0.8333 1.0000 1.0000 1.0000 0.0044
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Table A.7 Thermal bending calculation coefficient of three edges simply supported and one edge
free under temperature disparity

1

6
µ =

T T
x xM k M= , T T

y yM k M=

0
1 1
T T

y yM k M= , 0
2 2
T T

x xM k M=

2

( , )
T

xl Mw x y f
D

= (mid-span deflection)

Lower temperature side is in tension

o

y

xl

x

yl

T
yM

T
xM

lx=ly ky1 kx2 kx ky f

0.50 0.8333 0.8333 0.0950 −0.7857 −0.0300

0.55 0.8333 0.8333 0.1230 −0.7955 −0.0330

0.60 0.8333 0.8333 0.1513 −0.7979 −0.0368

0.65 0.8333 0.8333 0.0973 −0.7962 −0.0412

0.70 0.8333 0.8333 0.1935 −0.7903 −0.0461

0.75 0.8333 0.8333 0.0979 −0.7804 −0.0514

0.80 0.8333 0.8333 0.0983 −0.7665 −0.0568

0.85 0.8333 0.8333 0.0975 −0.7487 −0.0623

0.90 0.8333 0.8333 0.0963 −0.7248 −0.0676

0.95 0.8333 0.8333 0.2020 −0.7037 −0.0728

1.00 0.8333 0.8333 0.1893 −0.6769 −0.0777

1.10 0.8333 0.8333 0.1543 −0.6173 −0.0864

1.20 0.8333 0.8333 0.1103 −0.5513 −0.0935

1.30 0.8333 0.8333 0.0623 −0.4815 −0.0988

1.40 0.8333 0.8333 0.0132 −0.4099 −0.1025

1.50 0.8333 0.8333 −0.0340 −0.3378 −0.1048

1.60 0.8333 0.8333 −0.0774 −0.2662 −0.1058

1.70 0.8333 0.8333 −0.1161 −0.1963 −0.1057

1.80 0.8333 0.8333 −0.1500 −0.1282 −0.1046

1.90 0.8333 0.8333 −0.1787 −0.0625 −0.1029

2.00 0.8333 0.8333 −0.1878 0.0006 −0.1006
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Table A.8 Thermal bending calculation coefficient of three edges clamped and one edge free

1

6
µ =

T T
x xM k M= , T T

y yM k M=

0
1 1
T T

x xM k M= , 0
1 1
T T

y yM k M=

0
2 2
T T

x xM k M= , 0
2 2
T T

y yM k M=

2

( , )
T

xl Mw x y f
D

= (mid-span deflection)

Lower temperature side is in tension

o

y

yl

xl

T
yM

T
xM

T
yM 0

2 T
xM 0

2

T
yM 0
1

T
xM 0
1

x

lx=ly kx1 ky1 kx2 ky2 kx ky f

0.50 1.0000 0.8333 0.8333 1.0000 0.2301 0.9699 0.0133

0.55 1.0000 0.8333 0.8333 1.0000 0.2350 0.9579 0.0191

0.60 1.0000 0.8333 0.8333 1.0000 0.2408 0.9398 0.0256

0.65 1.0000 0.8333 0.8333 1.0000 0.2437 0.9198 0.0326

0.70 1.0000 0.8333 0.8333 1.0000 0.2435 0.8985 0.0398

0.75 1.0000 0.8333 0.8333 1.0000 0.2403 0.8765 0.0470

0.80 1.0000 0.8333 0.8333 1.0000 0.2343 0.8542 0.0541

0.85 1.0000 0.8333 0.8333 1.0000 0.2260 0.8319 0.0608

0.90 1.0000 0.8333 0.8333 1.0000 0.2155 0.8099 0.0670

0.95 1.0000 0.8333 0.8333 1.0000 0.2031 0.7884 0.0726

1.00 1.0000 0.8333 0.8333 1.0000 0.1893 0.7676 0.0777

1.10 1.0000 0.8333 0.8333 1.0000 0.1584 0.7288 0.0858

1.20 1.0000 0.8333 0.8333 1.0000 0.1248 0.6935 0.0913

1.30 1.0000 0.8333 0.8333 1.0000 0.0905 0.6622 0.0943

1.40 1.0000 0.8333 0.8333 1.0000 0.0564 0.6345 0.0951

1.50 1.0000 0.8333 0.8333 1.0000 0.0234 0.6103 0.0941

1.60 1.0000 0.8333 0.8333 1.0000 −0.0077 0.5893 0.0915

1.70 1.0000 0.8333 0.8333 1.0000 −0.0368 0.5712 0.0878

1.80 1.0000 0.8333 0.8333 1.0000 −0.0638 0.5556 0.0832

1.90 1.0000 0.8333 0.8333 1.0000 −0.0885 0.5421 0.0779

2.00 1.0000 0.8333 0.8333 1.0000 −0.1113 0.5308 0.0722
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Table A.9 Thermal bending calculation coefficient of two opposite edges clamped and one edge
simply supported and one edge free under temperature disparity

1

6
µ =

T T
x xM k M= , T T

y yM k M=

0
1 1
T T

x xM k M= ,  0
1 1
T T

y yM k M=

2

( , ) x Tl M
w x y f

D
= (mid-span deflection)

Lower temperature side is in tension

o

y

yl

xl

T
yM

T
xM

T
yM 0
1

T
xM 0
1

x

lx=ly kx1 ky1 kx ky f

0.50 1.0000 0.8333 1.1670 −0.1714 0.2123

0.55 1.0000 0.8333 1.0194 −0.1120 0.1977

0.60 1.0000 0.8333 0.8720 −0.0543 0.1830

0.65 1.0000 0.8333 0.7274 0.0001 0.1686

0.70 1.0000 0.8333 0.5870 0.0513 0.1547

0.75 1.0000 0.8333 0.4551 0.0961 0.1415

0.80 1.0000 0.8333 0.3299 0.1368 0.1290

0.85 1.0000 0.8333 0.2131 0.1724 0.1174

0.90 1.0000 0.8333 0.1050 0.2031 0.1066

0.95 1.0000 0.8333 0.0055 0.2293 0.0966

1.00 1.0000 0.8333 −0.0853 0.2512 0.0875

1.10 1.0000 0.8333 −0.2433 0.2838 0.0716

1.20 1.0000 0.8333 −0.3732 0.3040 0.0586

1.30 1.0000 0.8333 −0.4781 0.3148 0.0480

1.40 1.0000 0.8333 −0.5629 0.3185 0.0393

1.50 1.0000 0.8333 −0.6310 0.3170 0.0323

1.60 1.0000 0.8333 −0.6853 0.3119 0.0266

1.70 1.0000 0.8333 −0.7288 0.3204 0.0219

1.80 1.0000 0.8333 −0.7635 0.2951 0.0181

1.90 1.0000 0.8333 −0.7911 0.2849 0.0150

2.00 1.0000 0.8333 −0.8129 0.2739 0.0125
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Table A.10 Thermal bending calculation coefficient of the concrete rectangular thin plate with
two adjacent edges clamped and one edge simply supported and one edge free under temperature
disparity

1

6
µ = ,  

T T
x xM k M= , T T

y yM k M=

0
1 1
T T

x xM k M= , 0
1 1
T T

y yM k M=

0
2 2
T T

x xM k M= , 0
2 2
T T

y yM k M=

2

( , )
T

xl Mw x y f
D

= (mid-span deflection)

Lower temperature side is in tension

o

y

yl

xl

T
yM

T
xM

T
yM 0

2 T
xM 0

2

T
yM 0
1

T
xM 0
1

x

lx=ly kx1 ky1 kx2 ky2 kx ky f

0.50 1.0000 0.8333 0.8333 1.0000 0.6952 −0.3853 0.1754

0.55 1.0000 0.8333 0.8333 1.0000 0.6217 −0.3212 0.1672

0.60 1.0000 0.8333 0.8333 1.0000 0.5439 −0.2544 0.1585

0.65 1.0000 0.8333 0.8333 1.0000 0.4634 −0.1864 0.1494

0.70 1.0000 0.8333 0.8333 1.0000 0.3808 −0.1175 0.1403

0.75 1.0000 0.8333 0.8333 1.0000 0.2997 −0.0513 0.1310

0.80 1.0000 0.8333 0.8333 1.0000 0.2186 0.0140 0.1219

0.85 1.0000 0.8333 0.8333 1.0000 0.1390 0.0773 0.1129

0.90 1.0000 0.8333 0.8333 1.0000 0.0617 0.1379 0.1041

0.95 1.0000 0.8333 0.8333 1.0000 −0.0131 0.1956 0.0957

1.00 1.0000 0.8333 0.8333 1.0000 −0.0849 0.2503 0.0875

1.10 1.0000 0.8333 0.8333 1.0000 −0.2190 0.3500 0.0722

1.20 1.0000 0.8333 0.8333 1.0000 −0.3401 0.4375 0.0583

1.30 1.0000 0.8333 0.8333 1.0000 −0.4480 0.5132 0.0457

1.40 1.0000 0.8333 0.8333 1.0000 −0.5437 0.5786 0.0345

1.50 1.0000 0.8333 0.8333 1.0000 −0.6281 0.6345 0.0244

1.60 1.0000 0.8333 0.8333 1.0000 −0.7023 0.6823 0.0155

1.70 1.0000 0.8333 0.8333 1.0000 −0.7674 0.7231 0.0075

1.80 1.0000 0.8333 0.8333 1.0000 −0.8244 0.7579 0.0004

1.90 1.0000 0.8333 0.8333 1.0000 −0.8744 0.7876 −0.0059

2.00 1.0000 0.8333 0.8333 1.0000 −0.9182 0.8128 −0.0115
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Table A.11 Thermal bending calculation coefficient of the concrete rectangular thin plate with
two opposite edges simply supported and one edge clamped and one edge free under temperature
disparity

1

6
µ =

T
x x

TM k M= ,
T
y y

TM k M=

0
2 2
TM k M= ,  0

2 2
T

x x
T

y y
TM k M=

2

( , )
T

xl Mw x y f
D

= (mid-span deflection)

Lower temperature side is in tension

o

y

xl

T
yM

T
xM

T
yM 0

2 T
xM 0

2 x

ly

lx=ly ky2 kx2 kx ky f

0.50 1.0000 0.8333 0.0656 −0.6708 0.1262

0.55 1.0000 0.8333 0.0508 −0.6212 0.1234

0.60 1.0000 0.8333 0.0307 −0.5672 0.1201

0.65 1.0000 0.8333 0.0056 −0.5097 0.1162

0.70 1.0000 0.8333 −0.0244 −0.4488 0.1119

0.75 1.0000 0.8333 −0.0563 −0.3881 0.1072

0.80 1.0000 0.8333 −0.0919 −0.3259 0.1022

0.85 1.0000 0.8333 −0.1297 −0.2637 0.0969

0.90 1.0000 0.8333 −0.1693 −0.2023 0.0916

0.95 1.0000 0.8333 −0.2098 −0.1420 0.0861

1.00 1.0000 0.8333 −0.2510 −0.0834 0.0806

1.10 1.0000 0.8333 −0.3336 0.0278 0.0697

1.20 1.0000 0.8333 −0.4143 0.1300 0.0591

1.30 1.0000 0.8333 −0.4913 0.2222 0.0490

1.40 1.0000 0.8333 −0.5635 0.3047 0.0395

1.50 1.0000 0.8333 −0.6302 0.3780 0.0307

1.60 1.0000 0.8333 −0.6913 0.4426 0.0226

1.70 1.0000 0.8333 −0.7469 0.4995 0.0151

1.80 1.0000 0.8333 −0.7971 0.5496 0.0083

1.90 1.0000 0.8333 −0.8424 0.5934 0.0021

2.00 1.0000 0.8333 −0.8829 0.6319 −0.0035
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Table A.12 Thermal bending calculation coefficient of the concrete rectangular thin plate with
two adjacent edges simply supported and one edge clamped and one edge free under temperature
disparity

1

6
µ =

TM k M= , T
x x

T
y y

TM k M=

0
1 1
TM k M= ,  0

1 1
T

x x
T

y y
TM k M=

2

( , )
T

xl Mw x y f
D

= (mid-span deflection)

Lower temperature side is in tension

yl

o

y

xl

T
yM

T
xM

T
yM 0
1

T
xM 0
1

x

lx=ly kx1 ky1 kx ky f

0.50 1.0000 0.8333 0.5378 −0.4566 0.1631

0.55 1.0000 0.8333 0.4490 −0.4199 0.1539

0.60 1.0000 0.8333 0.3591 −0.3670 0.1447

0.65 1.0000 0.8333 0.2700 −0.3230 0.1354

0.70 1.0000 0.8333 0.1822 −0.2799 0.1263

0.75 1.0000 0.8333 0.0995 −0.2408 0.1176

0.80 1.0000 0.8333 0.0199 −0.2035 0.1093

0.85 1.0000 0.8333 0.0552 −0.1691 0.1014

0.90 1.0000 0.8333 −0.1254 −0.1370 0.0939

0.95 1.0000 0.8333 −0.1907 −0.1091 0.0870

1.00 1.0000 0.8333 −0.2510 −0.0834 0.0806

1.10 1.0000 0.8333 −0.3575 −0.0398 0.0691

1.20 1.0000 0.8333 −0.4470 −0.0054 0.0594

1.30 1.0000 0.8333 −0.5211 0.0214 0.0512

1.40 1.0000 0.8333 −0.5824 0.0419 0.0443

1.50 1.0000 0.8333 −0.6328 0..0574 0.0385

1.60 1.0000 0.8333 −0.6741 0.0689 0.0336

1.70 1.0000 0.8333 −0.7081 0.0772 0.0295

1.80 1.0000 0.8333 −0.7359 0.0830 0.0260

1.90 1.0000 0.8333 −0.7587 0.0869 0.0230

2.00 1.0000 0.8333 −0.7774 0.0891 0.0205
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Appendix B
Programs for the Rectangular Thin Plate
with Four Edges Supported

Case 1: Four edges simply supported

(1) Deflection

w ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3 cosham

cosh
2amy
b

sin
mpx
a

�MT

2D
ðx� aÞx

Let

a1 ¼
X1

m¼1;3;...

1
m3 cosham

cosh
2amy
b

sin
mpx
a

So

w ¼ � 4
p3

a1 � 1
2a2

ðx� aÞx
� �

a2MT

D
¼ f

a2MT

D

Taking x = a/2, y = b/2, c = x/a, d = 1/2/a/b, L = a/b,

a1is calculated as follows:

syms a b am c d L
num=1;sum_x1=0;m=1;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=1/2/L;
am=0.5*m*pi/L;
sum_x=1/(m^3*cosh(am))*cosh(m*pi*d-am)*sin(m*pi*c);
while abs(sum_x-sum_x1)>=1.0e-05

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2018
X. Cheng, Thermal Elastic Mechanics Problems of Concrete Rectangular
Thin Plate, Springer Tracts in Civil Engineering,
DOI 10.1007/978-981-10-4472-4
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sum_x1=sum_x;
num=num+1;
m=m+2;
am=0.5*m*pi/L;
sum_x2=1/(m^3*cosh(am))*cosh(m*pi*d-am)*sin(m*pi*c);
sum_x=sum_x1+sum_x2;

end
sum_x
num

(2) Bending moment

MT
x ¼ 4MT

p l� 1ð Þ P1
m¼1;3;...

1
m cosham

cosh mpy
a sin mpx

a

MT
y ¼ 4MT

p 1� lð Þ P1
m¼1;3;...

1
m cosham

cosh mpy
a sin mpx

a þ l� 1ð ÞMT

MT
xy ¼ 4MT

p 1� lð Þ P1
m¼1;3;...

1
m cosham

sinh mpy
a cos mpxa

8>>>>>>><
>>>>>>>:

Let

b1 ¼
X1

m¼1;3;...

1
m cosham

cosh
mpy
a

sin
mpx
a

Hence

MT
x ¼ 4MT

p l� 1ð Þb1
MT

y ¼ 4MT

p 1� lð Þb1 þ l� 1ð ÞMT

MT
xy ¼ 4MT

p 1� lð Þb1

8><
>:

That is

MT
x ¼ 4

p
l� 1ð Þb1

� �
MT ¼ kx1M

T ¼ kxM
T

MT
y ¼ 4

p
1� lð Þb1 þ l� 1ð Þ

� �
MT ¼ ky1M

T ¼ kyM
T

MT
xy ¼

4
p

1� lð Þb1
� �

MT ¼ kxy1M
T ¼ kxyM

T

8>>>>>>><
>>>>>>>:

where l ¼ 1=6; the same belowð Þ
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Taking x = a/2, y = b/2, c = x/a, d = 1/2/a/b, L = a/b, there is,

b1is calculated as follows:

syms a b am c d L
num=1;sum_x1=0;m=1;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=1/2/L;
am=0.5*m*pi/L;
sum_x=1/(m*cosh(am))*cosh(m*pi*d-am)*sin(m*pi*c);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
m=m+2;
am=0.5*m*pi/L;
sum_x2=1/(m*cosh(am))*cosh(m*pi*d-am)*sin(m*pi*c);
sum_x=sum_x1+sum_x2;

end
sum_x
num
m

Case 2: Four edges clamped

(1) Deflection

w ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3 cosham

cosh
mpy
a

� am
� �

sin
mpx
a

�MT

2D
x� að Þx

� 16MT

p4D

X1
i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ j2

b2

� ��1

sin
ipx
a

sin
jpy
b

That is

w ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3 cosham

cosh
mpy
a

� am
� �

sin
mpx
a

�MT

2D
x� að Þx

( )

� 16MT

p4D

X1
i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ j2

b2

� ��1

sin
ipx
a

sin
jpy
b
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In above equation, the first part can be obtained by Appendix B 2.1. For the
second part, there is

w2 ¼ � 16MT

p4D

X1
i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ j2

b2

� ��1

sin
ipx
a

sin
jpy
b

Let

f2 ¼ � 16
a2p4

X1
i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ j2

b2

� ��1

sin
ipx
a

sin
jpy
b

a2 ¼
X1

i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ j2

b2

� ��1

sin
ipx
a

sin
jpy
b

Hence

w2 ¼ � 16
p4a2

a2

� �
a2MT

D
¼ f2

a2MT

D

w ¼ f1 þ f2ð Þ a
2MT

D
¼ f

a2MT

D

Taking x = a/2, y = b/2, c = x/a, d = 1/2/a/b, L = a/b, there is, a2 is calculated
as follows:

a2 ¼ a2
X1

m¼1;3;...

X1
n¼1;3;...

1
mn

m2 þ L2n2
� 	�1

sinmpc sin npd ¼ a2c1

c1is calculated as follows:

syms a b am c d L
sum_x1=0;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:69

for n=1:2:69

sum_x=1/m/n/(m^2+n^2*L^2)*sin(m*pi*c)*sin(n*pi*d);
sum_x1=sum_x1+sum_x;

end

end
sum_x1
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(2) Bending moment

MT
x ¼ 4MT

p
l� 1ð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

sin
mpx
a

� 16MT

p2
X1

i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ l

j2

b2

� �
sin

ipx
a

sin
jpy
b

MT
y ¼ 4MT

p
1� lð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

sin
mpx
a

þ l� 1ð ÞMT

� 16MT

p2
X1

i¼1;3;...

X1
j¼1;3;...

1
ij

l
i2

a2
þ j2

b2

� �
sin

ipx
a

sin
jpy
b

þMT
xy ¼

4MT

p
1� lð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

cos
mpx
a

þ 1� lð Þ 16M
T

p2ab

X1
i¼1;3;...

X1
j¼1;3;...

i2

a2
þ j2

b2

� ��1

cos
ipx
a

cos
jpy
b

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:
That is

MT
x ¼ 4MT

p l� 1ð Þ P1
m¼1;3;...

1
m cosham

cosh mpy
a � am

� 	
sin mpx

a

( )

� 16MT

p2
P1

i¼1;3;...

P1
j¼1;3;...

1
ij

i2
a2 þ l j2

b2

� �
sin ipx

a sin jpy
b

MT
y ¼ 4MT

p 1� lð Þ P1
m¼1;3;...

1
m cosham

cosh mpy
a � am

� 	
sin mpx

a þ l� 1ð ÞMT

( )

� 16MT

p2
P1

i¼1;3;...

P1
j¼1;3;...

1
ij l i2

a2 þ j2

b2

� �
sin ipx

a sin jpy
b

MT
xy ¼ 4MT

p 1� lð Þ P1
m¼1;3;...

1
m cosham

cosh mpy
a � am

� 	
cos mpxa

( )

þ 1� lð Þ 16MT

p2ab

P1
i¼1;3;...

P1
j¼1;3;...

i2
a2 þ j2

b2

� ��1
cos ipxa cos jpyb

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:
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In above equation, the first part can be obtained by Case 1. For the second part,
there is

MT
x2 ¼ � 16MT

p2
P1

i¼1;3;...

P1
j¼1;3;...

1
ij

i2
a2 þ l j2

b2

� �
sin ipx

a sin jpy
b

MT
y2 ¼ � 16MT

p2
P1

i¼1;3;...

P1
j¼1;3;...

1
ij l i2

a2 þ j2

b2

� �
sin ipx

a sin jpy
b

MT
xy2 ¼ 1� lð Þ 16MT

p2ab

P1
i¼1;3;...

P1
j¼1;3;...

i2
a2 þ j2

b2

� ��1
cos ipxa cos jpyb

8>>>>>>><
>>>>>>>:

MT
x2 ¼ � 16

p2
P1

i¼1;3;...

P1
j¼1;3;...

1
ij

i2
a2 þ l j2

b2

� �
sin ipx

a sin jpy
b

" #
MT

MT
y2 ¼ � 16

p2
P1

i¼1;3;...

P1
j¼1;3;...

1
ij l i2

a2 þ j2

b2

� �
sin ipx

a sin jpy
b

" #
MT

MT
xy2 ¼ 1� lð Þ 16

p2ab

P1
i¼1;3;...

P1
j¼1;3;...

i2
a2 þ j2

b2

� ��1
cos ipxa cos jpyb

" #
MT

8>>>>>>>>><
>>>>>>>>>:

Let

b2 ¼
P1

i¼1;3;...

P1
j¼1;3;...

1
ij

i2
a2 þ l j2

b2

� �
sin ipx

a sin jpy
b

b3 ¼
P1

i¼1;3;...

P1
j¼1;3;...

1
ij l i2

a2 þ j2

b2

� �
sin ipx

a sin jpy
b

b4 ¼
P1

i¼1;3;...

P1
j¼1;3;...

i2
a2 þ j2

b2

� ��1
cos ipxa cos jpyb

8>>>>>>><
>>>>>>>:

;

Hence

MT
x2 ¼ � 16

p2 b2M
T ¼ kx2MT

MT
y2 ¼ � 16

p2 b3M
T ¼ ky2MT

MT
xy2 ¼ 1� lð Þ 16

p2ab b4M
T ¼ kxy2MT

8<
:

MT
x ¼ kx1 þ kx2ð ÞMT ¼ kxMT

MT
y ¼ ky1 þ ky2

� 	
MT ¼ kyMT

MT
xy ¼ kxy1 þ kxy2

� 	
MT ¼ kxyMT

8<
:
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Taking x = a/2, y = b/2, c = x/a, d = y/b, L = a/b, there is

b2 ¼ 1
b2
P1

i¼1;3;...

P1
j¼1;3;...

m2 þln2L2

mnL2 sinmpc sin npd ¼ 1
b2 d1

b3 ¼ 1
b2
P1

i¼1;3;...

P1
j¼1;3;...

lm2 þ n2L2

mnL2 sinmpc sin npd ¼ 1
b2 d2

b4 ¼ ab
P1

i¼1;3;...

P1
j¼1;3;...

L2
m2 þ n2L2 cosmpc cos npd ¼ abd3

8>>>>>>><
>>>>>>>:

d1is calculated as follows:

syms a b am c d L
sum_x1=0;
u=1/6;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:7999

for n=1:2:7999

sum_x=(m^2+u*n^2*L^2)/m/n/L^2*sin(m*pi*c)*sin(n*pi*d);
sum_x1=sum_x1+sum_x;

end

end
sum_x1

d2is calculated as follows:

syms a b am c d L
sum_x1=0;
u=1/6;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:10999

for n=1:2:10999

sum_x=(u*m^2+n^2*L^2)/m/n/L^2*sin(m*pi*c)*sin(n*pi*d);
sum_x1=sum_x1+sum_x;

end

end
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sum_x1

d3is calculated as follows:

syms a b am c d L
sum_x1=0;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:69

for n=1:2:69

sum_x=L^2/(m^2+n^2*L^2)*cos(m*pi*c)*cos(n*pi*d);
sum_x1=sum_x1+sum_x;

end

end
sum_x1

Case 3: One edge simply supported and three edges clamped

(1) Deflection

w ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3 cosham

cosh
2amy
b

� am

� �
sin

mpx
a

�MT

2D
ðx� aÞx

� 8MT

p4D

X1
i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ j2

b2

� ��2 2i2

a2
þ j2

b2

� �
sin

ipx
a

sin
jpy
b

That is

w ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3 cosham

cosh
2amy
b

� am

� �
sin

mpx
a

�MT

2D
ðx� aÞx

( )

� 8MT

p4D

X1
i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ j2

b2

� ��2 2i2

a2
þ j2

b2

� �
sin

ipx
a

sin
jpy
b

In above equation, the first part can be obtained by Case 1. For the second part,
there is

w3 ¼ � 8a2MT

p4D
1
a2
X1

i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ j2

b2

� ��2 2i2

a2
þ j2

b2

� �
sin

ipx
a

sin
jpy
b
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Let

f3 ¼ � 8
p4a2

X1
i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ j2

b2

� ��2 2i2

a2
þ j2

b2

� �
sin

ipx
a

sin
jpy
b

a3 ¼
X1

i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ j2

b2

� ��2 2i2

a2
þ j2

b2

� �
sin

ipx
a

sin
jpy
b

Hence

w3 ¼ � 8
p4a2

a3

� �
a2MT

D
¼ f3

a2MT

D

w ¼ f1 þ f3ð Þ a
2MT

D
¼ f

a2MT

D

Taking x = a/2, y = b/2, c = x/a, d = 1/2/a/b, L = a/b, there is, a2 is calculated
as follows:

a3 ¼ a2
X1

i¼1;3;...

X1
j¼1;3;...

1
mn

2m2 þ n2L2

m2 þ n2L2ð Þ2 sinmpc sin npd ¼ a2c2

c2is calculated as follows:

syms a b am c d L
sum_x1=0;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:39

for n=1:2:39

sum_x=1/m/n/(m^2+n^2*L^2)^2*(2*m^2+n^2*L^2)*sin(m*pi*c)*sin
(n*pi*d);
sum_x1=sum_x1+sum_x;

end

end
sum_x1
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(2) Bending moment

MT
x
¼ 4MT

p
l� 1ð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

sin
mpx
a

� 8MT

p2
X1

i¼1;3;...

X1
j¼1;3;...

i2

a2
þ l

j2

b2

� �
i2

a2
þ j2

b2

� ��2 2i2

a2
þ j2

b2

� �
sin

ipx
a

sin
jpy
b

MT
y
¼ 4MT

p
1� lð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

sin
mpx
a

þ l� 1ð ÞMT

� 8MT

p2
X1

i¼1;3;...

X1
j¼1;3;...

1
ij

l
i2

a2
þ j2

b2

� �
i2

a2
þ j2

b2

� ��2 2i2

a2
þ j2

b2

� �
sin

ipx
a

sin
jpy
b

MT
xy
¼ 4MT

p
1� lð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

cos
mpx
a

þ 8 1� lð ÞMT

p2ab

X1
i¼1;3;...

X1
j¼1;3;...

2i2

a2
þ j2

b2

� �
i2

a2
þ j2

b2

� ��2

cos
ipx
a

cos
jpy
b

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

That is

MT
x ¼ 4MT

p
l� 1ð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

sin
mpx
a

( )

� 8MT

p2
X1

i¼1;3;...

X1
j¼1;3;...

i2

a2
þ l

j2

b2

� �
i2

a2
þ j2

b2

� ��2 2i2

a2
þ j2

b2

� �
sin

ipx
a

sin
jpy
b

MT
y ¼ 4MT

p
1� lð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

sin
mpx
a

þ l� 1ð ÞMT

( )

� 8MT

p2
X1

i¼1;3;...

X1
j¼1;3;...

1
ij

l
i2

a2
þ j2

b2

� �
i2

a2
þ j2

b2

� ��2 2i2

a2
þ j2

b2

� �
sin

ipx
a

sin
jpy
b

MT
xy ¼

4MT

p
1� lð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

cos
mpx
a

( )

þ 8 1� lð ÞMT

p2ab

X1
i¼1;3;...

X1
j¼1;3;...

2i2

a2
þ j2

b2

� �
i2

a2
þ j2

b2

� ��2

cos
ipx
a

cos
jpy
b

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
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In above equation, the first part can be obtained by Case 1. For the second part,
there is

MT
x3 ¼ � 8MT

p2
X1

i¼1;3;...

X1
j¼1;3;...

i2

a2
þ l

j2

b2

� �
i2

a2
þ j2

b2

� ��2 2i2

a2
þ j2

b2

� �
sin

ipx
a

sin
jpy
b

MT
y3 ¼ � 8MT

p2
X1

i¼1;3;...

X1
j¼1;3;...

1
ij

l
i2

a2
þ j2

b2

� �
i2

a2
þ j2

b2

� ��2 2i2

a2
þ j2

b2

� �
sin

ipx
a

sin
jpy
b

MT
xy3 ¼

8 1� lð ÞMT

p2ab

X1
i¼1;3;...

X1
j¼1;3;...

2i2

a2
þ j2

b2

� �
i2

a2
þ j2

b2

� ��2

cos
ipx
a

cos
jpy
b

8>>>>>>>>>><
>>>>>>>>>>:

MT
x3 ¼ � 8

p2
X1

i¼1;3;...

X1
j¼1;3;...

i2

a2
þ l

j2

b2

� �
i2

a2
þ j2

b2

� ��2 2i2

a2
þ j2

b2

� �
sin

ipx
a

sin
jpy
b

" #
MT

MT
y3 ¼ � 8

p2
X1

i¼1;3;...

X1
j¼1;3;...

1
ij

l
i2

a2
þ j2

b2

� �
i2

a2
þ j2

b2

� ��2 2i2

a2
þ j2

b2

� �
sin

ipx
a

sin
jpy
b

" #
MT

MT
xy3 ¼

8 1� lð Þ
p2ab

X1
i¼1;3;...

X1
j¼1;3;...

2i2

a2
þ j2

b2

� �
i2

a2
þ j2

b2

� ��2

cos
ipx
a

cos
jpy
b

" #
MT

8>>>>>>>>>>><
>>>>>>>>>>>:

Let

b5 ¼
X1

i¼1;3;...

X1
j¼1;3;...

i2

a2
þ l

j2

b2

� �
i2

a2
þ j2

b2

� ��2 2i2

a2
þ j2

b2

� �
sin

ipx
a

sin
jpy
b

b6 ¼
X1

i¼1;3;...

X1
j¼1;3;...

1
ij

l
i2

a2
þ j2

b2

� �
i2

a2
þ j2

b2

� ��2 2i2

a2
þ j2

b2

� �
sin

ipx
a

sin
jpy
b

b7 ¼
X1

i¼1;3;...

X1
j¼1;3;...

2i2

a2
þ j2

b2

� �
i2

a2
þ j2

b2

� ��2

cos
ipx
a

cos
jpy
b

8>>>>>>>>>><
>>>>>>>>>>:
Hence

MT
x3 ¼ � 8

p2
b5M

T ¼ kx3M
T

MT
y3 ¼ � 8

p2
b6M

T ¼ ky3M
T

MT
xy3 ¼

8 1� lð Þ
p2ab

b7M
T ¼ kxy3M

T

8>>>>>><
>>>>>>:

Appendix B: Programs for the Rectangular Thin Plate with Four Edges Supported 149



MT
x ¼ kx1 þ kx3ð ÞMT ¼ kxM

T

MT
y ¼ ky1 þ ky3

� 	
MT ¼ kyM

T

MT
xy ¼ kxy1 þ kxy3

� 	
MT ¼ kxyM

T

8>><
>>:

Taking x = a/2, y = b/2, c = x/a, d = y/b, L = a/b, there is

b5 ¼
X1

i¼1;3;...

X1
j¼1;3;...

m2 þ ln2L2ð Þ � 2m2 þ n2L2ð Þ
m2 þ n2L2ð Þ2 sinmpc sin npd ¼ d4

b6 ¼
X1

i¼1;3;...

X1
j¼1;3;...

lm2 þ n2L2ð Þ � 2m2 þ n2L2ð Þ
m2 þ n2L2ð Þ2 sinmpc sin npd ¼ d5

b7 ¼ a2
X1

i¼1;3;...

X1
j¼1;3;...

2m2 þ n2L2

m2 þ n2L2ð Þ2 cosmpc cos npd ¼ a2d6

8>>>>>>>>>><
>>>>>>>>>>:

d4is calculated as follows:

syms a b am c d L
sum_x1=0;
u=1/6;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:7999

for n=1:2:7999

sum_x=(m^2+u*n^2*L^2)/(m^2+n^2*L^2)^2*(2*m^2+n^2*L^2)*sin
(m*pi*c)*sin(n*pi*d);
sum_x1=sum_x1+sum_x;

end

end
sum_x1

d5is calculated as follows:

syms a b am c d L
sum_x1=0;
u=1/6;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:1999

for n=1:2:1999
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sum_x=(u*m^2+n^2*L^2)/m/n(m^2+n^2*L^2)^2*(2*m^2+n^2*L^2)*sin
(m*pi*c)*sin(n*pi*d);

sum_x1=sum_x1+sum_x;
end

end
sum_x1

d6is calculated as follows:

syms a b am c d L
sum_x1=0;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:39

for n=1:2:39

sum_x=1/(m^2+n^2*L^2)^2*(2*m^2+n^2*L^2)*cos(m*pi*c)*cos(n*pi*d);

sum_x1=sum_x1+sum_x;
end

end
sum_x1

Case 4: Three edges simply supported and one edge clamped

(1) Deflection

w ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3 cosham

cosh
2amy
b

� am

� �
sin

mpx
a

�MT

2D
x� að Þx

� 8MT

p4Db2
X1

i¼1;3;...

X1
j¼1;3;...

j
i

i2

a2
þ j2

b2

� ��2

sin
ipx
a

sin
jpy
b

That is

w ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3 cosham

cosh
2amy
b

� am

� �
sin

mpx
a

�MT

2D
x� að Þx

( )

� 8MT

p4Db2
X1

i¼1;3;...

X1
j¼1;3;...

j
i

i2

a2
þ j2

b2

� ��2

sin
ipx
a

sin
jpy
b
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In above equation, the first part can be obtained by Case 1. For the second part,
there is

w4 ¼ � 8MT

p4Db2
X1

i¼1;3;...

X1
j¼1;3;...

j
i

i2

a2
þ j2

b2

� ��2

sin
ipx
a

sin
jpy
b

Let

f4 ¼ � 8
p4a2b2

X1
i¼1;3;...

X1
j¼1;3;...

n
m

m2

a2
þ n2

b2

� ��2

sin
mpx
a

sin
npy
b

a4 ¼
X1

i¼1;3;...

X1
j¼1;3;...

n
m

m2

a2
þ n2

b2

� ��2

sin
mpx
a

sin
npy
b

Hence

w4 ¼ � 8
p4a2b2

a4
a2MT

D
¼ f4

a2MT

D

w ¼ f1 þ f4ð Þ a
2MT

D
¼ f

a2MT

D

Taking x = a/2, y = b/2, c = x/a, d = 1/2/a/b, L = a/b, there is, a4 is calculated
as follows:

a4 ¼ a4
X1

i¼1;3;...

X1
j¼1;3;...

n
m

1

m2 þ n2L2ð Þ2 sinmpc sin npd ¼ a4c3

c3is calculated as follows:

syms a b am c d L
sum_x1=0;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:39

for n=1:2:39

sum_x=n/m/(m^2/L^2+n^2)^2*sin(m*pi*c)*sin(n*pi*d);
sum_x1=sum_x1+sum_x;

end
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end
sum_x1

(2) Bending moment

MT
x ¼ 4MT

p
l� 1ð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

sin
mpx
a

� 8MT

p2b2
X1

i¼1;3;...

X1
j¼1;3;...

j
i

i2

a2
þ j2

b2

� ��2
i2

a2
þ lj2

b2

� �
sin

ipx
a

sin
jpy
b

MT
y ¼ 4MT

p
1� lð Þ

X1
m¼1;3;...

1
m cosham

cosh
m p y
a

þ am
� �

sin
m p x
a

þ l� 1ð ÞMT

� 8MT

p2b2
X1

i¼1;3;...

X1
j¼1;3;...

j
i

i2

a2
þ j2

b2

� ��2
li2

a2
þ j2

b2

� �
sin

ipx
a

sin
ipy
b

MT
xy ¼

4MT

p
1� lð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

þ am
� �

cos
mpx
a

� l� 1ð Þ 8M
T

p2ab

X1
i¼1;3;...

X1
j¼1;3;...

j2
i2

a2
þ j2

b2

� ��2

cos
ipx
a

cos
jpy
b

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:
That is

MT
x ¼ 4MT

p
l� 1ð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

sin
mpx
a

( )

� 8MT

p2b2
X1

i¼1;3;...

X1
j¼1;3;...

j
i

i2

a2
þ j2

b2

� ��2 i2

a2
þ lj2

b2

� �
sin

ipx
a

sin
jpy
b

MT
y ¼ 4MT

p
1� lð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

þ am
� �

sin
mpx
a

þ l� 1ð ÞMT

( )

� 8MT

p2b2
X1

i¼1;3;...

X1
j¼1;3;...

j
i

i2

a2
þ j2

b2

� ��2
li2

a2
þ j2

b2

� �
sin

ipx
a

sin
ipy
b

MT
xy ¼

4MT

p
1� lð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

þ am
� �

cos
mpx
a

( )

� l� 1ð Þ 8M
T

p2ab

X1
i¼1;3;...

X1
j¼1;3;...

j2
i2

a2
þ j2

b2

� ��2

cos
ipx
a

cos
jpy
b

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
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In above equation, the first part can be obtained by Case 1. For the second part,
there is

MT
x4
¼ � 8MT

p2b2
X1

i¼1;3;...

X1
j¼1;3;...

j
i

i2

a2
þ j2

b2

� ��2
i2

a2
þ lj2

b2

� �
sin

ipx
a

sin
jpy
b

MT
y4 ¼ � 8MT

p2b2
X1

i¼1;3;...

X1
j¼1;3;...

j
i

i2

a2
þ j2

b2

� ��2
li2

a2
þ j2

b2

� �
sin

ipx
a

sin
ipy
b

MT
xy4 ¼ � l� 1ð Þ 8M

T

p2ab

X1
i¼1;3;...

X1
j¼1;3;...

j2
i2

a2
þ j2

b2

� ��2

cos
ipx
a

cos
jpy
b

8>>>>>>>>>><
>>>>>>>>>>:

MT
x4 ¼ � 8

p2b2
X1

i¼1;3;...

X1
j¼1;3;...

j
i

i2

a2
þ j2

b2

� ��2 i2

a2
þ lj2

b2

� �
sin

ipx
a

sin
jpy
b

" #
MT

MT
y4 ¼ � 8

p2b2
X1

i¼1;3;...

X1
j¼1;3;...

j
i

i2

a2
þ j2

b2

� ��2
li2

a2
þ j2

b2

� �
sin

ipx
a

sin
ipy
b

" #
MT

MT
xy4 ¼ � l� 1ð Þ 8M

T

p2ab

X1
i¼1;3;...

X1
j¼1;3;...

j2
i2

a2
þ j2

b2

� ��2

cos
ipx
a

cos
jpy
b

" #
MT

8>>>>>>>>>>><
>>>>>>>>>>>:
Let

b8 ¼
X1

i¼1;3;...

X1
j¼1;3;...

j
i

i2

a2
þ j2

b2

� ��2
i2

a2
þ lj2

b2

� �
sin

ipx
a

sin
jpy
b

b9 ¼
X1

i¼1;3;...

X1
j¼1;3;...

j
i

i2

a2
þ j2

b2

� ��2
li2

a2
þ j2

b2

� �
sin

ipx
a

sin
ipy
b

b10 ¼
X1

i¼1;3;...

X1
j¼1;3;...

j2
i2

a2
þ j2

b2

� ��2

cos
ipx
a

cos
jpy
b

8>>>>>>>>>><
>>>>>>>>>>:

Hence

MT
x4 ¼ � 8

p2b2
b8M

T ¼ kx4M
T

MT
y4 ¼ � 8

p2b2
b9M

T ¼ ky4M
T

MT
xy4 ¼ � l� 1ð Þ 8M

T

p2ab
b10M

T ¼ kxy4M
T

8>>>>>><
>>>>>>:
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MT
x ¼ kx1 þ kx4ð ÞMT ¼ kxM

T

MT
y ¼ ky1 þ ky4

� 	
MT ¼ kyM

T

MT
xy ¼ kxy1 þ kxy4

� 	
MT ¼ kxyM

T

8>><
>>:

Taking x = a/2, y = b/2, c = x/a, d = y/b, L = a/b, there is

b8 ¼ a2
X1

i¼1;3;...

X1
j¼1;3;...

n
m

m2 þ ln2L2

m2 þ n2L2ð Þ2 sinmpc sin npd ¼ a2d7

b9 ¼ a2
X1

i¼1;3;...

X1
j¼1;3;...

n
m

lm2 þ n2L2

m2 þ n2L2ð Þ2 sinmpc sin npd ¼ a2d8

b10 ¼ a4
X1

i¼1;3;...

X1
j¼1;3;...

n2
1

m2 þ n2L2ð Þ2 cosmpc cos npd ¼ a4d9

8>>>>>>>>>><
>>>>>>>>>>:

d7is calculated as follows:

syms a b am c d L
sum_x1=0;
u=1/6;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:1999

for n=1:2:1999

sum_x=n/m(m^2+u*n^2*L^2)/(m^2+n^2*L^2)^2*sin(m*pi*c)*sin
(n*pi*d);
sum_x1=sum_x1+sum_x;

end

end
sum_x1

d8is calculated as follows:

syms a b am c d L
sum_x1=0;
u=1/6;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:7001

Appendix B: Programs for the Rectangular Thin Plate with Four Edges Supported 155



for n=1:2:7001

sum_x=n/m(u*m^2+n^2*L^2)/(m^2+n^2*L^2)^2*sin(m*pi*c)*sin
(n*pi*d);
sum_x1=sum_x1+sum_x;

end

end
sum_x1

d9is calculated as follows:

syms a b am c d L
sum_x1=0;
u=1/6;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:7999

for n=1:2:7999

sum_x=n^2/(m^2+n^2*L^2)^2*cos(m*pi*c)*cos(n*pi*d);
sum_x1=sum_x1+sum_x;

end

end
sum_x1

Case 5: Two adjacent edges simply supported and two edges clamped

(1) Deflection

w ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3 cosham

cosh
2amy
b

� am

� �
sin

mpx
a

�MT

2D
ðx� aÞx

� 8MT

p4D

X1
i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ j2

b2

� ��1

sin
ipx
a

sin
jpy
b

That is

w ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3 cosham

cosh
2amy
b

� am

� �
sin

mpx
a

�MT

2D
ðx� aÞx

( )

� 8MT

p4D

X1
i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ j2

b2

� ��1

sin
ipx
a

sin
jpy
b
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In above equation, the first part can be obtained by Case 1. For the second part,
there is

w5 ¼ � 8a2MT

p4D
1
a2
X1

i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ j2

b2

� ��1

sin
ipx
a

sin
jpy
b

Let

f5 ¼ � 8
p4a2

X1
i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ j2

b2

� ��1

sin
ipx
a

sin
jpy
b

a5 ¼
X1

i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ j2

b2

� ��1

sin
ipx
a

sin
jpy
b

Hence

w5 ¼ � 8
p4a2

a5

� �
a2MT

D
¼ f5

a2MT

D

w ¼ f1 þ f5ð Þ a
2MT

D
¼ f

a2MT

D

Taking x = a/2, y = b/2, c = x/a, d = y/b, L = a/b, so

a5 ¼ a2
X1

i¼1;3;...

X1
j¼1;3;...

1
mn

1
m2 þ n2L2

sinmpc sin npd ¼ a2c4

c4is calculated as follows:

syms a b am c d L
sum_x1=0;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:69

for n=1:2:69

sum_x=1/m/n/(m^2+n^2*L^2)*sin(m*pi*c)*sin(n*pi*d);
sum_x1=sum_x1+sum_x;

end

end
sum_x1
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(2) Bending moment

MT
x ¼ 4MT

p
l� 1ð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

sin
mpx
a

� 8MT

p2
X1

i¼1;3;...

X1
j¼1;3;...

1
ij

i2
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þ lj2

b2

� �
i2

a2
þ j2

b2

� ��1

sin
ipx
a

sin
jpy
b

MT
y ¼ 4MT

p
1� lð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

sin
mpx
a

� l� 1ð ÞMT

þ 8MT

p2
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i¼1;3;...

X1
j¼1;3;...

1
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li2

a2
þ j2

b2

� �
i2
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þ j2

b2

� ��1

sin
ipx
a

sin
jpy
b

MT
xy ¼

4MT

p
1� lð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

cos
mpx
a

� l� 1ð Þ 8M
T

p2ab

X1
i¼1;3;...

X1
j¼1;3;...
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þ j2
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� ��1
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a
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b

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:
That is
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b

MT
y ¼ 4MT
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X1
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1
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cosh
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a

� am
� �

sin
mpx
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þ 8MT
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ij
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� �
i2
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b2

� ��1

sin
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a

sin
jpy
b

MT
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4MT

p
1� lð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

cos
mpx
a

( )

� l� 1ð Þ 8M
T
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8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
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In above equation, the first part can be obtained by Case 1. For the second part,
there is

MT
x5 ¼ � 8MT

p2
X1

i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ lj2

b2

� �
i2

a2
þ j2

b2

� ��1

sin
ipx
a

sin
jpy
b

MT
y5 ¼

8MT

p2
X1

i¼1;3;...

X1
j¼1;3;...

1
ij

li2

a2
þ j2

b2

� �
i2

a2
þ j2

b2

� ��1

sin
ipx
a

sin
jpy
b

MT
xy5 ¼ � l� 1ð Þ 8M

T

p2ab

X1
i¼1;3;...

X1
j¼1;3;...

i2

a2
þ j2

b2

� ��1

cos
ipx
a
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jpy
b

8>>>>>>>>>><
>>>>>>>>>>:

MT
x5 ¼ � 8

p2
X1

i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ lj2

b2

� �
i2

a2
þ j2

b2

� ��1

sin
ipx
a

sin
jpy
b

" #
MT

MT
y5 ¼

8MT

p2
X1

i¼1;3;...

X1
j¼1;3;...

1
ij

li2

a2
þ j2

b2

� �
i2

a2
þ j2

b2

� ��1

sin
ipx
a

sin
jpy
b

" #
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MT
xy5 ¼ � l� 1ð Þ 8M

T

p2ab

X1
i¼1;3;...

X1
j¼1;3;...

i2

a2
þ j2

b2

� ��1

cos
ipx
a

cos
jpy
b

" #
MT

8>>>>>>>>>>><
>>>>>>>>>>>:
Let

b11 ¼
X1

i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ lj2

b2

� �
i2

a2
þ j2

b2

� ��1

sin
ipx
a

sin
jpy
b

b12 ¼
X1

i¼1;3;...

X1
j¼1;3;...

1
ij

li2

a2
þ j2

b2

� �
i2

a2
þ j2

b2

� ��1

sin
ipx
a

sin
jpy
b

b13 ¼
X1

i¼1;3;...
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j¼1;3;...

i2

a2
þ j2

b2

� ��1
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ipx
a
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jpy
b

8>>>>>>>>>><
>>>>>>>>>>:

Hence

MT
x5 ¼ � 8

p2
b11M

T ¼ kx5M
T

MT
y5 ¼

8
p2

b12MT ¼ ky5MT

MT
xy5 ¼ � l� 1ð Þ 8

p2ab
b13M

T ¼ kxy5M
T

8>>>>>><
>>>>>>:
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MT
x ¼ kx1 þ kx5ð ÞMT ¼ kxM

T

MT
y ¼ ky1 þ ky5

� 	
MT ¼ kyM

T

MT
xy ¼ kxy1 þ kxy5

� 	
MT ¼ kxyM

T

8>><
>>:

Taking x = a/2, y = b/2, c = x/a, d = y/b, L = a/b, there is

b11 ¼
X1

i¼1;3;...

X1
j¼1;3;...

1
mn

m2 þ ln2L2

m2 þ n2L2
sinmpc sin npd ¼ d10

b12 ¼
X1

i¼1;3;...

X1
j¼1;3;...

1
mn

lm2 þ n2L2

m2 þ n2L2
sinmpc sin npd ¼ d11

b13 ¼ a2
X1

i¼1;3;...

X1
j¼1;3;...

1
m2 þ n2L2

cosmpc cos npd ¼ a2d12

8>>>>>>>>>><
>>>>>>>>>>:

d10is calculated as follows:

syms a b am c d L
sum_x1=0;
u=1/6;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:5999

for n=1:2:5999

sum_x=(m^2+u*n^2*L^2)/m/n/(m^2+n^2*L^2)*sin(m*pi*c)*sin
(n*pi*d);
sum_x1=sum_x1+sum_x;

end

end
sum_x1

d11is calculated as follows:

syms a b am c d L
sum_x1=0;
u=1/6;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:5001
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for n=1:2:5001

sum_x=(u*m^2+n^2*L^2)/m/n/(m^2+n^2*L^2)*sin(m*pi*c)*sin
(n*pi*d);
sum_x1=sum_x1+sum_x;

end

end
sum_x1

d12is calculated as follows:

syms a b am c d L
sum_x1=0;
u=1/6;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:69

for n=1:2:69

sum_x=1/(m^2+n^2*L^2)*cos(m*pi*c)*cos(n*pi*d);
sum_x1=sum_x1+sum_x;

end

end
sum_x1

Case 6: Two opposite edges simply supported and two edges clamped

(1) Deflection

w ¼ � 4a2MT

Dp3
X1

m¼1;3;...

1
m3 cosham
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� �
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b

That is

w ¼ � 4a2MT
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� �
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b
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In above equation, the first part can be obtained by Case 1. For the second part,
there is

w6 ¼ � 16MT

p4b2D
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j¼1;3;...

j
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� ��2
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f6 ¼ � 16
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i¼1;3;...
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j¼1;3;...

1
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þ j2
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� ��2
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a6 ¼
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i¼1;3;...

X1
j¼1;3;...

1
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a2
þ j2

b2

� ��2

sin
ipx
a
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b

Hence

w6 ¼ � 16
p4a2

a6
a2MT

D
¼ f6

a2MT

D

w ¼ f1 þ f6ð Þ a
2MT

D
¼ f

a2MT

D

Taking x = a/2, y = b/2, c = x/a, d = 1/2/a/b, L = a/b, so

a6 ¼ a4
X1

i¼1;3;...

X1
j¼1;3;...

n
m

1

m2 þ n2L2ð Þ2 sinmpc sin npd ¼ a4c5

c5is calculated as follows:

syms a b am c d L
sum_x1=0;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:39

for n=1:2:39

sum_x=n/m/(m^2+n^2 L^2)^2*sin(m*pi*c)*sin(n*pi*d);
sum_x1=sum_x1+sum_x;

end

end
sum_x1
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(2) Bending moment
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8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:
That is
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In above equation, the first part can be obtained by Case 1. For the second part,
there is

MT
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Taking x = a/2, y = b/2, c = x/a, d = y/b, L = a/b, there is

b14 ¼ a2
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n2 1
m2 þ n2L2 cosmpc cos npd ¼ a2d15

8>>>>>>><
>>>>>>>:

d13is calculated as follows:

syms a b am c d L
sum_x1=0;
u=1/6;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:5999

for n=1:2:5999

sum_x=n/m(m^2+u*n^2*L^2)/(m^2+n^2*L^2)^2*sin(m*pi*c)*sin
(n*pi*d);
sum_x1=sum_x1+sum_x;

end

end
sum_x1

d14is calculated as follows:

syms a b am c d L
sum_x1=0;
u=1/6;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:9999

for n=1:2:9999

sum_x=n/m(u*m^2+n^2*L^2)/(m^2+n^2*L^2)^2*sin(m*pi*c)*sin
(n*pi*d);
sum_x1=sum_x1+sum_x;

end

end
sum_x1
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d15is calculated as follows:

syms a b am c d L
sum_x1=0;
u=1/6;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
for m=1:2:69

for n=1:2:69

sum_x=n^2/(m^2+n^2*L^2)*cos(m*pi*c)*cos(n*pi*d);
sum_x1=sum_x1+sum_x;

end

end
sum_x1
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Appendix C
Programs for the Rectangular Thin Plate
with One edges Free

Case 1: Three edges simply supported and one edge free

(1) Deflection

w ¼ � 4a2MT
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m¼1;3;...

1
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8>>>>><
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9>>>>>=
>>>>>;

(where, l = 1/6, the same below)
In above equation, the first part can be obtained by Case 1. For the second part,

Taking x = a/2, y = b/2, there is

2a2ð3� 2lÞMT
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m¼1;3;...

sinh bm
m3 cosham

sinh
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sinh mpy
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a

h i
sin mpx

a

8>>>><
>>>>:

9>>>>=
>>>>;

¼ 0

Therefore, for the rectangular thin plate with three edges simply supported and
one edge free, the deflection solution in center point of the plate is the same with
that with four edges simply supported.
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(2) Bending moment

Mx ¼ 4MT
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Taking x = a/2, y = b/2, so
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>>; ¼ 0
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Therefore, for the rectangular thin plate with three edges simply supported and
one edge free, the bending moment solution in center point of the plate is the same
with that with four edges simply supported.

Case 2 Three edges clamped and one edge free

(1) Deflection

w ¼ � 4a2MT
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Taking x = a/2, y = b/2, so
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Namely

w ¼ � 4a2MT

D p3
X1

m¼1;3;...

1
m3 cosham

cosh
2amy
b

� am

� �
sin

mpx
a

�MT

2D
ðx� aÞx

� 8MT

p4D

X1
i¼1;3;...

X1
j¼1;3;...

1
ij

i2

a2
þ j2

b2

� ��2 2i2

a2
þ j2

b2

� �
sin

ipx
a

sin
jpy
b

� 8MTa3

p4Db 1� lð Þ
X1

m¼1;3;...

sinh bm
P1

k¼1;3;...
1
m4

m2

a2 þ k2
b2

� ��2
2m2

a2 þ k2
b2

� �
k2
b2 þð2� lÞ m2

a2

h i
3þ l
1�l

sinh 2bm
2 þ bm

�
2

1� l
þ bm coth bm

� �
sinh

mpy
a

�
mpy
a

cosh
mpy
a

2
664

3
775 sin mpx

a

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

That is
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In above equation, the first part can be obtained by Appendix B Case 1. For the
second part, there is
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Let
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Hence

w7 ¼ � 8b2

p4a2
a7 � 8a

p4b 1� lð Þ a8
� �

a2MT

D
¼ f7

a2MT

D

w ¼ f1 þ f7ð Þ a
2MT

D
¼ f

a2MT

D

Taking c = x/a, d = y/b, L = a/b, there is

a7 ¼ b2
X1

i¼1;3;...

X1
j¼1;3;...

L
mn

2m2 þ n2 � L2

m2 þ n2 � L2
sinmpc sin npd ¼ b2c6

a8 ¼
X1

m¼1;3;...

sinh bm
P1

k¼1;3;...
2m2 þL2�k2

m4
k2�L2 þð2�lÞm2

ðm2 þ k2�L2Þ2
3þ l
1� l

sinh 2bm
2

þ bm

�
2

L� l
þ bm coth bm

� �
sinh

mpd
L

�

mpd
L

cosh
mpd
L

2
664

3
775 sinmpc

8>>>>>>>>>><
>>>>>>>>>>:
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¼ c7

c6is calculated as follows:

syms a b am c d L
num=1;sum_x1=0;m=1;n=1;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
am=0.5*m*pi/L;
sum_x=L*(2*m^2+n^2*L^2)sin(m*pi*c)sin(n*pi*d)/m/n/(m^2+n^2*L^2);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
m=m+2;
am=0.5*m*pi/L;
sum_x2=L*(2*m^2+n^2*L^2)sin(m*pi*c)sin(n*pi*d)/m/n/(m^2+n^2*L^2);
sum_x=sum_x1+sum_x2;
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end
sum_x
num

c7is calculated as follows:

syms a b bm c d L
num=1;sum_x1=0;m=1;k=1; u=1/6;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
bm=m*pi/L;
sum_x=(2*m^2+L^2*k^2)*sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/(m^4*(m^2
+k^2*L^2)^2)/((3+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*((2/(1-1/6)+bm*coth
(bm))*sinh(m*pi*d/L)-m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
m=m+2;
bm=m*pi/L;
sum_x2=(2*m^2+L^2*k^2)*sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/(m^4*(m^2
+k^2*L^2)^2)/((3+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*((2/(1-1/6)+bm*coth
(bm))*sinh(m*pi*d/L)-m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);
sum_x=sum_x1+sum_x2;

end
sum_x
num
m
k
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(2) Bending moment
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In above equation, the first part can be obtained by Appendix B Case 1. For the

second part, Taking x = a/2, y = b/2, the second part is zero. so
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Hence
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Taking c = x/a, d = y/b, L = a/b, there is
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8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
d16is calculated as follows:

syms a b am c d L
num=1;sum_x1=0;m=1;n=1;u=1/6;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
sum_x=(m^2+u*n^2*L^2)*(2*m^2+n^2*L^2)sin(m*pi*c)sin(n*pi*d)/m/n/
(m^2+n^2*L^2)^2;
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;

Appendix C: Programs for the Rectangular Thin Plate with One edges Free 175



m=m+2;
am=0.5*m*pi/L;

sum_x2=(m^2+u*n^2*L^2)*(2*m^2+n^2*L^2)sin(m*pi*c)sin(n*pi*d)/m/n/
(m^2+n^2*L^2)^2;

sum_x=sum_x1+sum_x2;

end
sum_x
num

d17is calculated as follows:

syms a b am c d L
num=1;sum_x1=0;m=1;n=1;u=1/6;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
sum_x=(u*m^2+n^2*L^2)*(2*m^2+n^2*L^2)sin(m*pi*c)sin(n*pi*d)/m/n/
(m^2+n^2*L^2)^2;
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
m=m+2;
am=0.5*m*pi/L;

sum_x2=(u*m^2+n^2*L^2)*(2*m^2+n^2*L^2)sin(m*pi*c)sin(n*pi*d)/m/n/
(m^2+n^2*L^2)^2;

sum_x=sum_x1+sum_x2;

end
sum_x
num

d18is calculated as follows:

syms a b bm c d L
num=1;sum_x1=0;m=1;k=1; u=1/6;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
bm=m*pi/L;
sum_x=(2*m^2+L^2*k^2)*sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/(m^4*(m^2
+k^2*L^2)^2)/((3+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*((2/(1-1/6)+bm*coth
(bm))*sinh(m*pi*d/L)-m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);
while abs(sum_x-sum_x1)>=1.0e-05
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sum_x1=sum_x;
num=num+1;
m=m+2;
bm=m*pi/L;
sum_x2=(2*m^2+L^2*k^2)*sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/(m^4*(m^2
+k^2*L^2)^2)/((3+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*((2/(1-1/6)+bm*coth
(bm))*sinh(m*pi*d/L)-m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);
sum_x=sum_x1+sum_x2;

end
sum_x
num
m
k

d19is calculated as follows:

syms a b bm c d L
num=1;sum_x1=0;m=1;k=1; u=1/6;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
bm=m*pi/L;
sum_x=(2*m^2+L^2*k^2)*sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/(m^2*(m^2
+k^2*L^2)^2)/((3+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*(m*pi*d/L*cosh
(m*pi*d/L))-bm*coth(bm)*sinh(m*pi*d/L))*sin(m*pi*c);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
m=m+2;
bm=m*pi/L;
sum_x2=(2*m^2+L^2*k^2)*sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/(m^2*(m^2
+k^2*L^2)^2)/((3+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*(m*pi*d/L*cosh
(m*pi*d/L))-bm*coth(bm)*sinh(m*pi*d/L))*sin(m*pi*c);
sum_x=sum_x1+sum_x2;

end
sum_x
num
m
k
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Case 3: Two opposite edges clamped and one edge simply supported and one
edge free

(1) Deflection
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In above equation, the first part can be obtained by Appendix B Case 1. For the
second part, Taking x = a/2, y = b/2, the second part is zero.

For the last two part, there is
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Let
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Taking c = x/a, d = y/b, L = a/b, there is
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¼ abc9

c8is calculated as follows:

syms a b c d L
num=1;sum_x1=0;m=1;n=1;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
sum_x=sin(m*pi*c)*sin(n*pi*d)*m/(n*(m^2+n^2*L^2)^2);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
m=m+2;
n=n+2;
sum_x2=sin(m*pi*c)*sin(n*pi*d)*m/(n*(m^2+n^2*L^2)^2);
sum_x=sum_x1+sum_x2;

end
sum_x
num
m
n

180 Appendix C: Programs for the Rectangular Thin Plate with One edges Free



c9is calculated as follows:

syms a b bm c d L
num=1;sum_x1=0;m=1;k=1;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
bm=m*pi/L;%bm=m*pi/L;
sum_x=L*sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/(m^2*(m^2+k^2*L^2)^2)/((3
+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*((2/(1-1/6)+bm*coth(bm))*sinh(m*pi*d/L)-
m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
k=k+2;
m=m+2;
bm=m*pi/L;
sum_x2=L*sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/(m^2*(m^2+k^2*L^2)^2)/
((3+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*((2/(1-1/6)+bm*coth(bm))*sinh
(m*pi*d/L)-m*pi*d/L*cosh (m*pi*d/L))*sin(m*pi*c);
sum_x=sum_x1+sum_x2;

end
sum_x
num
m
k
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(2) Bending moment

Mx ¼ 4MT

p
l� 1ð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

sin
mpx
a

þ 2 3� 2lð ÞMT

p

X1
m¼1;3;...

sinh bm
m cosham

sinh
2amy
b

� am

� �
3þ l
1� l

sinh 2bm
2

þ bm

bm coth bm þ 2
1þ l
1� l

� �

� sinh
mpy
a

� mpy
a

cosh
mpy
a

2
664

3
775 sin

mpx
a

� 16MT

p2a2
X1

i¼1;3;...

X1
j¼1;3;...

i
j

i2

a2
þ l

j2

b2

� �
i2

a2
þ j2

b2

� ��2

sin
ipx
a

sin
jpy
b

� 16MT

p2ab

X1
m¼1;3;...

sinh bm
P1

k¼1;3;...
m2

a2 þ k2
b2

� ��2
k2
b2 þð2� lÞ m2

a2

h i
3þ l
1� l

sinh 2bm
2

þ bm

�
bm coth bm þ 2

1þ l
1� l

� �
�

sinh
mpy
a

� mpy
a

cosh
mpy
a

2
664

3
775 sin mpx

a

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

My ¼ 4MT

p
1� lð Þ

X1
m¼1;3;...

1
m cosham

cosh
mpy
a

� am
� �

sin
mpx
a

þ l� 1ð ÞMT

þ 2 3� 2lð ÞMT

p

X1
m¼1;3;...

sinh bm
m cosham

sinh
2amy
b

� am

� �
3þ l
1� l

sinh 2bm
2

þ bm

mpy
a cosh mpy

a

� bm coth bm sinh mpy
a

 !
sin

mpx
a

þ 16MT

p2a2
X1

i¼1;3;...

X1
j¼1;3;...

i
j

l
i2

a2
þ j2

b2

� �
i2

a2
þ j2

b2

� ��2

sin
ipx
a

sin
jpy
b

� 16MT

p2ab

X1
m¼1;3;...

sinh bm
P1

k¼1;3;...
m2

a2 þ k2
b2

� ��2
k2
b2 þð2� lÞ m2

a2

h i
3þ l
1� l

sinh 2bm
2

þ bm

� mpy
a cosh mpy

a � bm coth bm sinh mpy
a

� 	
sin mpx

a

8>>>><
>>>>:

9>>>>=
>>>>;

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

In above equation, the first part can be obtained by Appendix B Case 1. For the
second part, Taking x = a/2, y = b/2, the second part is zero.
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For the last two part, there is
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My8 ¼ 16MT
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8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
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Mx8 ¼ � 16MT

p2
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T

My8 ¼ 16MT
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T

8>><
>>:

Taking c=x/a, d=y/b, L= a/b, there is
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¼ abd23

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
d20is calculated as follows:

syms a b c d L
num=1;sum_x1=0;m=1;n=1;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
sum_x=sin(m*pi*c)*sin(n*pi*d)*m*(m^2+1/6*n^2*L^2)/(n*(m^2+n^2*L^2)
^2);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
m=m+2;
n=n+2;
sum_x2=sin(m*pi*c)*sin(n*pi*d)*m*(m^2+1/6*n^2*L^2)/(n*(m^2
+n^2*L^2)^2);
sum_x=sum_x1+sum_x2;

184 Appendix C: Programs for the Rectangular Thin Plate with One edges Free



end
sum_x
num
m
n

d21is calculated as follows:

syms a b c d L
num=1;sum_x1=0;m=1;n=1;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
sum_x=sin(m*pi*c)*sin(n*pi*d)*m*(1/6*m^2+n^2*L^2)/(n*(m^2+n^2*L^2)
^2);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
m=m+2;
n=n+2;
sum_x2=sin(m*pi*c)*sin(n*pi*d)*m*(1/6*m^2+n^2*L^2)/(n*(m^2
+n^2*L^2)^2);
sum_x=sum_x1+sum_x2;

end
sum_x
num
m
n

d22is calculated as follows:

syms a b bm c d L
num=1;sum_x1=0;m=1;k=1;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
bm=m*pi/L;%bm=m*pi/L;
sum_x=L*sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/(m^2+k^2*L^2)^2/((3+1/6)/
(1-1/6)*(sinh(2*bm)/2)+bm)*sin(m*pi*c)*((2*(1+1/6)/(1-1/6)+bm*coth(bm))
*sinh(m*pi*d/L)-m*pi*d/L*cosh(m*pi*d/L));
while abs(sum_x-sum_x1)>=1.0e-05
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sum_x1=sum_x;
num=num+1;
k=k+2;
m=m+2;
bm=m*pi/L;
sum_x2=L*sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/(m^2+k^2*L^2)^2/((3+1/6)/
(1-1/6)*(sinh(2*bm)/2)+bm)*sin(m*pi*c)*((2*(1+1/6)/(1-1/6)+bm*coth
(bm))*sinh(m*pi*d/L)-m*pi*d/L*cosh(m*pi*d/L));
sum_x=sum_x1+sum_x2;

end
sum_x
num
m
k

d23is calculated as follows:

syms a b bm c d L
num=1;sum_x1=0;m=1;k=1;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the waLue of the ratio of y_axis coordinate to b>');
bm=m*pi/L;%bm=m*pi/L;
sum_x=L*sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/(m^2+k^2*L^2)^2/((3+1/6)/
(1-1/6)*(sinh(2*bm)/2)+bm)*(m*pi*d/L*cosh(m*pi*d/L)-bm*coth(bm)*sinh
(m*pi*d/L))*sin(m*pi*c);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
k=k+2;
m=m+2;
bm=m*pi/L;
sum_x2=L*sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/(m^2+k^2*L^2)^2/((3+1/6)/
(1-1/6)*(sinh(2*bm)/2)+bm)*(m*pi*d/L*cosh(m*pi*d/L)-bm*coth(bm)
*sinh(m*pi*d/L))*sin(m*pi*c);

end
sum_x
num
m
k
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Case 4: Two adjacent edges clamped and one edge simply supported and one
edge free

(1) Deflection

w ¼ � 4a2MT
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þ 8MT

p4Db2
X1

i¼1;3;...

X1
j¼1;3;...

j
i

i2

a2
þ j2

b2

� ��2

� sin
ipx
a

sin
jpy
b

� 8MTa3

p4Db3 1� lð Þ
X1

m¼1;3;...

sinh bm
P1

k¼1;3;...
k2
m4

m2

a2 þ k2
b2

� ��2
k2
b2 þð2� lÞ m2

a2

h i
3þ l
1� l

sinh 2bm
2

þ bm

�
2

1� l
þ bm coth bm

� �
sinh

mpy
a

�
mpy
a

cosh
mpy
a

2
664

3
775 sin mpx

a

8>>>>>>>>>><
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9>>>>>>>>>>=
>>>>>>>>>>;

In above equation, the first part can be obtained by Appendix B Case 1. For the
second part, Taking x = a/2, y = b/2, the second part is zero.

For the last two part, there is

w9 ¼ 8MT
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Appendix C: Programs for the Rectangular Thin Plate with One edges Free 187



Let

f9 ¼ 8
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Hence
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Taking c = x/a, d = y/b, L = a/b, there is

a11 ¼ a4
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8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

¼ abc11

c10is calculated as follows:

syms a b c d L
num=1;sum_x1=0;m=1;n=1;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
sum_x=sin(m*pi*c)*sin(n*pi*d)*n/(m*(m^2+n^2*L^2)^2);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
m=m+2;
n=n+2;
sum_x2= sin(m*pi*c)*sin(n*pi*d)*n/(m*(m^2+n^2*L^2)^2);
sum_x=sum_x1+sum_x2;

end
sum_x
num
m
n
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c11is calculated as follows:

syms a b bm c d L
num=1;sum_x1=0;m=1;k=1;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
bm=m*pi/L;%bm=m*pi/L;
sum_x=k^2L*sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/(m^2*(m^2+k^2*L^2)^2)/((3
+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*((2/(1-1/6)+bm*coth(bm))*sinh(m*pi*d/L)-
m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
k=k+2;
m=m+2;
bm=m*pi/L;
sum_x2=k^2L*sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/(m^2*(m^2+k^2*L^2)
^2)/((3+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*((2/(1-1/6)+bm*coth(bm))*sinh
(m*pi*d/L)-m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);
sum_x=sum_x1+sum_x2;

end
sum_x
num
m
k
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(2) Bending moment

Mx ¼ 4MT
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In above equation, the first part can be obtained by Appendix B Case 1. For the
second part, Taking x=a/2, y=b/2, the second part is zero.
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For the last two part, there is
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Mx9 ¼ 8MT

p2
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p2b
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T
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� b26 � 8MTa

p2b
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T

8>><
>>:

Taking c = x/a, d = y/b, L = a/b, there is
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8>>><
>>>:
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>>>;

¼ d27

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
d24is calculated as follows:

syms a b am c d L
num=1;sum_x1=0;m=1;n=1;u=1/6;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
sum_x=(m^2+u*n^2*L^2)*sin(m*pi*c)sin(n*pi*d)/m/n/(m^2+n^2*L^2);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
m=m+2;
am=0.5*m*pi/L;

sum_x2=(m^2+u*n^2*L^2)*sin(m*pi*c)sin(n*pi*d)/m/n/(m^2+n^2*L^2);

sum_x=sum_x1+sum_x2;
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end
sum_x
num

d25is calculated as follows:

syms a b am c d L
num=1;sum_x1=0;m=1;n=1;u=1/6;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
sum_x=(u*m^2+n^2*L^2)*sin(m*pi*c)sin(n*pi*d)/m/n/(m^2+n^2*L^2);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
m=m+2;
am=0.5*m*pi/L;

sum_x2=(u*m^2+n^2*L^2)*sin(m*pi*c)sin(n*pi*d)/m/n/(m^2+n^2*L^2);

sum_x=sum_x1+sum_x2;

end
sum_x
num

d26is calculated as follows:

syms a b bm c d L
num=1;sum_x1=0;m=1;k=1;u=1/6;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
bm=m*pi/L;
sum_x=sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/(m^2*(m^2+k^2*L^2))/((3+1/6)/
(1-1/6)*(sinh(2*bm)/2)+bm)*((2/(11/6)+bm*coth(bm))*sinh(m*pi*d/L)
m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
m=m+2;
bm=m*pi/L;
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sum_x2=sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/(m^2*(m^2+k^2*L^2))/((3+1/6)/
(1-1/6)*(sinh(2*bm)/2)+bm)*((2/(11/6)+bm*coth(bm))*sinh(m*pi*d/L)
m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);

sum_x=sum_x1+sum_x2;

end
sum_x
num
m
k

d27is calculated as follows:

syms a b bm c d L
num=1;sum_x1=0;m=1;k=1;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the walue of the ratio of y_axis coordinate to b>');
bm=m*pi/L;%bm=m*pi/L;
sum_x=sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/m^2/(m^2+k^2*L^2)^2/((3+1/6)/
(1-1/6)*(sinh(2*bm)/2)+bm)*(m*pi*d/L*cosh(m*pi*d/L)-bm*coth(bm)*sinh
(m*pi*d/L))*sin(m*pi*c);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
k=k+2;
m=m+2;
bm=m*pi/L;
sum_x2= sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/m^2/(m^2+k^2*L^2)^2/((3
+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*(m*pi*d/L*cosh(m*pi*d/L)-bm*coth
(bm)*sinh(m*pi*d/L))*sin(m*pi*c);end
sum_x

num
m
k
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Case 5: Two opposite edges simply supported and one edge clamped and one
edge free

(1) Deflection

w ¼ � 4a2MT
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In above equation, the first part can be obtained by Appendix B Case 1. For the
second part, Taking x = a/2, y = b/2, the second part is zero.

For the last two part, there is
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Let

f10 ¼ 8
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Hence

w10 ¼ 8MT
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a2MT

D
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2MT

D
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D

Taking c = x/a, d = y/b, L = a/b, there is
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n
m

1
m2 þ n2 � L2

� �2

sinmpc sin npd ¼ a4c12

Appendix C: Programs for the Rectangular Thin Plate with One edges Free 197



a14 ¼ ab
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¼ abc13

c12is calculated as follows:

syms a b c d L
num=1;sum_x1=0;m=1;n=1;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
sum_x=sin(m*pi*c)*sin(n*pi*d)*n/(m*(m^2+n^2*L^2)^2);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
m=m+2;
n=n+2;
sum_x2=sin(m*pi*c)*sin(n*pi*d)*n/(m*(m^2+n^2*L^2)^2);
sum_x=sum_x1+sum_x2;

end
sum_x
num
m
n

c13is calculated as follows:

syms a b bm c d L
num=1;sum_x1=0;m=1;k=1;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
bm=m*pi/L;%bm=m*pi/L;
sum_x=k^2*L*sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/(m^4*(m^2+k^2*L^2)^2)/
((3+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*((2/(1-1/6)+bm*coth(bm))*sinh
(m*pi*d/L)-m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
k=k+2;
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m=m+2;
bm=m*pi/L;
sum_x2= k^2*L*sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/(m^4*(m^2+k^2*L^2)
^2)/((3+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*((2/(1-1/6)+bm*coth(bm))*sinh
(m*pi*d/L)-m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);
sum_x=sum_x1+sum_x2;

end
sum_x
num
m
k
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In above equation, the first part can be obtained by Appendix B Case 1. For the
second part, Taking x = a/2, y = b/2, the second part is zero.

For the last two part, there is
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Hence
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Taking c = x/a, d = y/b, L = a/b, there is
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d28is calculated as follows:

syms a b c d L
num=1;sum_x1=0;m=1;n=1;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
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sum_x=sin(m*pi*c)*sin(n*pi*d)*n*(m^2+1/6*n^2*L^2)/(m*(m^2+n^2*L^2)
^2);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
m=m+2;
n=n+2;
sum_x2=sin(m*pi*c)*sin(n*pi*d)*n*(m^2+1/6*n^2*L^2)/(m*(m^2
+n^2*L^2)^2);
sum_x=sum_x1+sum_x2;

end
sum_x
num
m
n

d29ay3is calculated as follows:

syms a b am c d L
num=1;sum_x1=0;m=1;n=1;u=1/6;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
sum_x=(u*m^2+n^2*L^2)*sin(m*pi*c)sin(n*pi*d)/m*n/(m^2+n^2*L^2)^2;
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
m=m+2;
am=0.5*m*pi/L;
sum_x2=(u*m^2+n^2*L^2)*sin(m*pi*c)sin(n*pi*d)/m*n/(m^2+n^2*L^2)^2;
sum_x=sum_x1+sum_x2;

end
sum_x
num

d30is calculated as follows:

syms a b bm c d L
num=1;sum_x1=0;m=1;k=1;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
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bm=m*pi/L;%bm=m*pi/L;
sum_x=k^2*L*sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/(m^2*(m^2+k^2*L^2)^2)/
((3+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*((2(1+1/6)/(1-1/6)+bm*coth(bm))*sinh
(m*pi*d/L)-m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
k=k+2;
m=m+2;
bm=m*pi/L;
sum_x2= k^2*L*sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/(m^2*(m^2+k^2*L^2)
^2)/((3+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*((2(1+1/6)/(1-1/6)+bm*coth(bm))
*sinh(m*pi*d/L)-m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);
sum_x=sum_x1+sum_x2;

end
sum_x
num
m
k

d31is calculated as follows:

syms a b bm c d L
num=1;sum_x1=0;m=1;k=1;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
bm=m*pi/L;%bm=m*pi/L;
sum_x=k^2*L*sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/(m^2*(m^2+k^2*L^2)^2)/
((3+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*(m*pi*d/L*cosh(m*pi*d/L))-bm*coth
(bm)*sinh(m*pi*d/L))*sin(m*pi*c);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
k=k+2;
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m=m+2;
bm=m*pi/L;
sum_x2= k^2*L*sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/(m^2*(m^2+k^2*L^2)
^2)/((3+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*(m*pi*d/L*cosh(m*pi*d/L))-
bm*coth(bm)*sinh(m*pi*d/L))*sin(m*pi*c);
sum_x=sum_x1+sum_x2;

end
sum_x
num
m
k

Case 6: Two adjacent edges simply supported and one edge clamped and one
edge free
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In above equation, the first part can be obtained by Appendix B Case 1. For the
second part, Taking x = a/2, y = b/2, the second part is zero.
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For the last two part, there is
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Hence
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¼ abc15

c14is calculated as follows:

syms a b c d L
num=1;sum_x1=0;m=1;n=1;
L=input('enter the value of the ratio of a to b>');
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c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
sum_x=sin(m*pi*c)*sin(n*pi*d)*n/(m*(m^2+n^2*L^2)^2);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
m=m+2;
n=n+2;
sum_x2=sin(m*pi*c)*sin(n*pi*d)*n/(m*(m^2+n^2*L^2)^2);
sum_x=sum_x1+sum_x2;

end
sum_x
num
m
n

c15is calculated as follows:

syms a b bm c d L
num=1;sum_x1=0;m=1;k=1;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
bm=m*pi/L;%bm=m*pi/L;
sum_x=L/m^2*sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/(m^2+k^2*L^2)^2/((3+1/6)/
(1-1/6)*(sinh(2*bm)/2)+bm)*((2/(1-1/6)+bm*coth(bm))*sinh(m*pi*d/L)-
m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
k=k+2;
m=m+2;
bm=m*pi/L;
sum_x2=L/m^2*sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/(m^2+k^2*L^2)^2/((3
+1/6)/(1-1/6)*(sinh(2*bm)/2)+bm)*((2/(1-1/6)+bm*coth(bm))*sinh
(m*pi*d/L)-m*pi*d/L*cosh(m*pi*d/L))*sin(m*pi*c);
sum_x=sum_x1+sum_x2;

end
sum_x
num
m
k
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(2) Bending moment
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In above equation, the first part can be obtained by Appendix B Case 1. For the
second part, Taking x = a/2, y = b/2, the second part is zero.
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For the last two part, there is
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d32is calculated as follows:

syms a b c d L
num=1;sum_x1=0;m=1;n=1;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
sum_x=sin(m*pi*c)*sin(n*pi*d)*m*(m^2+1/6*n^2*L^2)/(n*(m^2+n^2*L^2)
^2);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
m=m+2;
n=n+2;
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sum_x2=sin(m*pi*c)*sin(n*pi*d)*m*(m^2+1/6*n^2*L^2)/(n*(m^2
+n^2*L^2)^2);
sum_x=sum_x1+sum_x2;

end
sum_x
num
m
n

d33is calculated as follows:

syms a b c d L
num=1;sum_x1=0;m=1;n=1;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
sum_x=sin(m*pi*c)*sin(n*pi*d)*m*(1/6*m^2+n^2*L^2)/(n*(m^2+n^2*L^2)
^2);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
m=m+2;
n=n+2;
sum_x2=sin(m*pi*c)*sin(n*pi*d)*m*(1/6*m^2+n^2*L^2)/(n*(m^2
+n^2*L^2)^2);
sum_x=sum_x1+sum_x2;

end
sum_x
num
m
n

d34is calculated as follows:

syms a b bm c d L
num=1;sum_x1=0;m=1;k=1;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the value of the ratio of y_axis coordinate to b>');
bm=m*pi/L;%bm=m*pi/L;
sum_x=L*sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/(m^2+k^2*L^2)^2/((3+1/6)/
(1-1/6)*(sinh(2*bm)/2)+bm)*sin(m*pi*c)*((2*(1+1/6)/(1-1/6)+bm*coth(bm))
*sinh(m*pi*d/L)-m*pi*d/L*cosh(m*pi*d/L));
while abs(sum_x-sum_x1)>=1.0e-05
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sum_x1=sum_x;
num=num+1;
k=k+2;
m=m+2;
bm=m*pi/L;
sum_x2=L*sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/(m^2+k^2*L^2)^2/((3+1/6)/
(1-1/6)*(sinh(2*bm)/2)+bm)*sin(m*pi*c)*((2*(1+1/6)/(1-1/6)+bm*coth
(bm))*sinh(m*pi*d/L)-m*pi*d/L*cosh(m*pi*d/L));
sum_x=sum_x1+sum_x2;

end
sum_x
num
m
k

d35is calculated as follows:

syms a b bm c d L
num=1;sum_x1=0;m=1;k=1;
L=input('enter the value of the ratio of a to b>');
c=input('enter the value of the ratio of x_axis coordinate to a>');
d=input('enter the walue of the ratio of y_axis coordinate to b>');
bm=m*pi/L;%bm=m*pi/L;
sum_x=L*sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/(m^2+k^2*L^2)^2/((3+1/6)/
(1-1/6)*(sinh(2*bm)/2)+bm)*(m*pi*d/L*cosh(m*pi*d/L)-bm*coth(bm)*sinh
(m*pi*d/L))*sin(m*pi*c);
while abs(sum_x-sum_x1)>=1.0e-05

sum_x1=sum_x;
num=num+1;
k=k+2;
m=m+2;
bm=m*pi/L;
sum_x2=L*sinh(bm)*(k^2*L^2+(2-1/6)*m^2)/(m^2+k^2*L^2)^2/((3+1/6)/
(1-1/6)*(sinh(2*bm)/2)+bm)*(m*pi*d/L*cosh(m*pi*d/L)-bm*coth(bm)
*sinh(m*pi*d/L))*sin(m*pi*c);

end
sum_x
num
m
k
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