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Preface

This book is about temperature calculation and heat transfer. It is intended for
researchers, students and teachers in the field of fire safety engineering as well as
consultants and others interested in analysing and understanding fire and tempera-
ture developments. It gives a consistent scientific background to engineering
calculation methods applicable to analyses for both materials’ reaction to fire and
fire resistance of structures. Several new formulas and diagrams facilitating calcu-
lations are presented.

The book is particularly devoted to problems involving severe thermal condi-
tions as are of interest in fire dynamics and FSE. However, definitions, nomencla-
ture and theories used are aligned with those of general textbooks on temperature
calculation and heat transfer such as [1, 2].

In particular great effort has been put on defining boundary conditions in a
correct and suitable way for calculations. A large portion of the book is devoted to
boundary conditions and measurements of thermal exposure by radiation and
convection. Thus, the concept and theory of adiabatic surface temperature and
measurements of temperature with plate thermometers are thoroughly explained.

Initially a number of zero- and one-dimensional cases assuming constant mate-
rial properties are dealt with where exact closed form analytical solutions are
possible. These can, however, generally only be used for estimates in FSE problems
as they require assumptions of constant material properties and boundary condi-
tions. In most cases numerical calculations are therefore needed for considering
material properties changing with temperature and non-linear boundary conditions
due to emission of radiant heat. Thus, several recursion formulas are given in the
book which are suited for spreadsheet calculation codes (such as MS Excel). For
more advanced calculations, introductions and guidance are given to finite element
analyses.

The phenomena of heat transfer by radiation and convection are introduced
based on what can be found in general textbooks. Several of the formulas are,
however, adapted to FSE problems, and unique charts and tables are presented
which considerably facilitates calculations.



vi Preface

A renewed method for modelling compartment fires is presented which has led
to simple and accurate prediction tools for both pre- and post-flashover fires.

The final three chapters deal with temperature calculations in steel, concrete and
timber structures exposed to standard time-temperature fire curves. Handy temper-
ature calculation tools are presented, and several examples are shown on how the
finite element code TASEF can be used to calculate temperature in various config-
urations.

Lulea, Sweden Ulf Wickstrom
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Heat of vaporization [J/kg]

Area [mz]

Biot number[—]

Specific heat (capacity) [W s/(kg K)] or [J/(kg K)]
Heat capacity per unit area [W s/(m” K)]
Thickness [m]

Diameter [m]

Forcing function

View factor [—]

Grashof number [—]

Heat transfer coefficient [W/(m? K)]
Conductivity [W/(m K)]

Latent heat [W s/m> 1

Length [m]

Nusselt number [—]

Opening factor [m"?]

Perimeter of surface [m]

Prandtl number [—]

Heat [W s or J]

One-dimensional thermal resistance [(K m?)/W]
Reynolds number [—]

Temperature [K] or [°C]

Volume [m?]

Length [m]

Thermal diffusivity [mz/s]

Absorption coefficient [—]
Compartment fire time factor [—]

! Definitions of symbols are given throughout the text. Some selected symbols are listed below.

Xi



Xii Nomenclature

1 Boundary layer thickness [m]
€ Emissivity [—]
n Reduction coefficient [—]
K Absorption coefficient (m~']
v Kinetic viscosity [mz/s]
p Density [kg/m’]
o Stefan-Boltzmann constant (5.67 - 10~%) [W/(m? K*%)]
T Time constant [s]
X Combustion efficiency [—]
Superscripts
" Per unit length
" Per unit area
""" Per unit volume
Per unit volume, time derivative
~ Vector, matrix
Subscripts
0 Surface (x =0)
%) Ambient
AST Adiabatic surface temperature
B Burning
cc Cone calorimeter
Con, ¢ Convection
cr Critical
d Duration
emi Emitted
hfm Heat flux meter
f Film
f Fire
gas Gas
i Initial
ig Ignition
in Insulation
inc Incident (radiation)
L Air, gas convection
o Opening
p Constant pressure
p Plume
PT Plate thermometer

r Radiation
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rad Net radiation

RC Room/corner test

s Surface

sh Shield

st Steel

TC Thermocouple

tot Total, radiation + convection

ult Ultimate

w Wall, surrounding boundary

Abbreviations

AST Adiabatic surface temperature

ASTM ASTM International, earlier American Society for Testing and
Materials

CEN, EN European Committee for Standardization developing EN standards

EUROCODE EN Eurocodes is a series of 10 European Standards for the design
of buildings

FSE Fire safety engineering

ISO International Organization for Standardization

PT Plate thermometer

TASEF Computer code for Temperature Analysis of Structures Exposed to

Fire



Chapter 1
Introduction

Temperature is the dominating factor in determining the rate and extent of chemical
reactions including breakdown of organic compounds and deteriorations of strength
and stiffness of structural materials such as steel and concrete. Phase change
phenomena including ignition as well as severe loss of strength of materials are
often related to specific elevated temperature levels. Temperatures of fire gases are
also of crucial importance as they initiate gas movements thereby spread of smoke
and toxic fire gases. Fire temperatures vary typically over several hundred degrees.
Therefore a number of thermal phenomena need special attention such as phase
changes of materials and heat transfer by radiation when calculating temperature of
fire-exposed materials.

In this chapter some of the basic concepts of heat transfer are briefly introduced.
More detailed presentations are given in following chapters. A summary of the
principles of electric circuit analogy which is used throughout this book is also
given as well as some general comments on material properties.

1.1 Basic Concepts of Temperature, Heat and Heat Flux

Temperature is an intensive or bulk property, i.e. a physical property that does not
depend on size or the amount of material in a system. It is scale invariant. By
contrast, heat is an extensive property which is directly proportional to the amount
of material in a system. Density is another example of an intensive quantity as it
does not depend on the quantity, while mass and volume are extensive quantities.

In the presentation below the thermal material properties ¢, specific heat capac-
ity or just specific heat, and p, density, are assumed constant.

© Springer International Publishing Switzerland 2016 1
U. Wickstrom, Temperature Calculation in Fire Safety Engineering,
DOI 10.1007/978-3-319-30172-3_1



2 1 Introduction
1.1.1 Heat and Temperature

The heat g of a body is proportional to the mass and the temperature rise 7.
g=c-m-T (1.1)
and with the volume V and the material density p
m=p-V (1.2)
the heat of a body may be written as
g=c-p-V-T (1.3)

In a more general way where ¢ and p may vary with temperature and location,
the heat of a body may be written as an integral over temperature range and volume

/;(/‘/c~p~dV>dT (1.4)

1.1.2 Heat Transfer Modes

Heat is transferred in three modes, conduction, convection and radiation. The
concept of thermal conduction can be seen as a molecular process by which energy
is transferred from particles of high energy/temperature to particles of low energy/
temperature. High temperatures are associated with higher molecular energies, and
when neighbouring molecules collide a transfer of energy from the more to the less
energetic molecules occurs. This process takes place in fluids as well although the
main mode of heat transfer then is generally due to motion of matter,
i.e. convection.

By the definition of temperature, heat is transferred from places with higher
temperatures to places with lower temperature, i.e. the temperature difference is the
driving force of the heat transfer. In one dimension the heat flux ¢ across a plane
wall with the thickness L and a conductivity k may be written as

o

g =- (T —T») (1.5)

o~

Notice that the superscript () denotes per unit area and the accent character ()
per unit time. Under steady-state conditions the temperature distribution will be
linear as shown in Fig. 1.1.
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Fig. 1.1 Steady-state
temperature distribution and
heat flux across a plane wall k
according to Egs. 1.5 and
1.6
Ty
s 17 TZ
q
=
< L >
> X
In differential form Eq. 1.5 may be written as
" dT
. =—k- — 1.6
qx d X ( )

This is the Fourier’s law of heat conduction which implies that the heat flux is
proportional to the heat conductivity of the material and the thermal gradient.

1.1.3 The Three Kinds of Boundary Conditions

In addition to the differential equation valid for the interior, boundary conditions
must be specified when calculating temperatures in solids. A thorough understand-
ing of how to express BCs is particularly important in FSE.

In principle there are three kinds of BCs denoted first, second and third [2]. The
first kind is prescribed temperature, the second kind is prescribed heat flux and the
third kind is heat flux dependent on the difference between prescribed surrounding
gas or fluid temperatures and the current boundary or surface temperature. The
latter type of BC is by far the most common in FSE. It may include heat transfer by
convection as well as radiation. More on boundary conditions relevant in FSE, see
Chap. 4 and for more details on radiation and convection, see Chaps. 5 and 6,
respectively.


http://dx.doi.org/10.1007/978-3-319-30172-3_4
http://dx.doi.org/10.1007/978-3-319-30172-3_5
http://dx.doi.org/10.1007/978-3-319-30172-3_6
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Fig. 1.2 The first kind of
BC means a temperature 7
is prescribed at the
boundary

()

Fig. 1.3 The second kind 124

of BC means a heat flux q: \
is prescribed at the daT
boundary 3

The first kind of BC (sometimes called the Dirichlet boundary condition) as
shown in Fig. 1.2 means a temperature T is prescribed at the boundary (x = x), i.e.

T(xo) = Ts (1.7)

In fire engineering it may, for example, be assumed when a surface of a light
insulating material is exposed to fire. The surface temperature may then be approx-
imated to adjust momentarily to the boundary gas and radiation temperatures which
facilitates the computations.

The second kind of BC (sometimes called the Neumann boundary condition) as
shown in Fig. 1.3 means a heat flux c]Z is prescribed at the boundary, i.e.

Gy =—k-=- (1.8)

Thus the heat flux to the boundary is equal the heat being conducted away from
the surface into the solid according to the Fourier’s law, or in the case of lumped
heat, it is approximated as the heat stored, see Chap. 3. A special case of the second


http://dx.doi.org/10.1007/978-3-319-30172-3_3
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Fig. 1.4 An adiabatic
surface, i.e. a perfectly
insulating surface, or a

. 45 =0 -~ p—mssaz
surface along a line of
symmetry is a special case T(x)

of a second kind of BC

— x

Fig. 1.5 The third kind of
BC means the heat flux to
the boundary depends on
the difference between
prescribed surrounding gas
or fluid temperatures and
current surface temperature

kind of BC is an adiabatic surface or a perfectly insulated surface, or a surface
along a line of symmetry where the heat flux by definition of symmetry is zero, see
Fig. 1.4.

In FSE the second kind of BC is rarely applicable. The concept of “heat flux”
meant as heat flux to a surface kept at ambient is, however, often used as a general
measure of thermal exposure. This is in reality a third kind of BC but unfortunately
it is difficult to apply as a boundary condition for temperature calculations, see Sect.
9.2.1.

The third kind of BC (sometimes called the Robin boundary condition) means
the heat flux to the boundary surface depends on the difference between prescribed
surrounding gas or fluid temperatures and the current boundary or surface temper-
ature, see Fig. 1.5. It is sometimes also called natural boundary conditions or
Newton’s law of cooling. In the simplest form the heat transfer is proportional to
the difference between the surrounding gas temperature and the surface tempera-
ture. The proportionality constant 4 is denoted the heat transfer coefficient.

N aT
G =— B =h(T, —Ty) (1.9)

X0

Equation 1.9 is a reasonable approximation when heat transfer by convection
only is considered. Therefore we write the heat flux by convection ¢, as


http://dx.doi.org/10.1007/978-3-319-30172-3_9
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However, in fire protection engineering problems temperature is usually high
and radiation is the dominant mode of heat transfer. The net heat flux entering a

solid surface, here denoted ¢, is the difference between the absorbed ¢, and
emitted ¢, . heat flux, i.e.

o "

rad:qahs_qemi (111)

These two terms are in principle independent. The absorbed flux is a portion of
the incident heat flux (sometimes called irradiance) c];/m, to a surface. Thus

"

qabs = - qinc (112)

where a; is the surface absorptivity coefficient. The emitted heat depends on the
fourth power of the absolute surface temperature Y‘S‘ (in Kelvin) according to the
Stefan—Boltzmann law:

OBSERVE that in all formula concerning radiation the temperature must be
given in Kelvin [K], absolute temperature.

Goi = & -0 - T (1.13)

where ¢, is the surface emissivity, and the physical constant ¢ =5.67 - 10~ W/(m?
K*) is named the Stefan—Boltzmann constant.

The surface properties e and a, have values between 0 and 1 and are according
to Kirchhoff’s identity equal, i.e.

oy = & (1.14)

(The Kirchhoff’s identity does not apply when the source emitting radiation to a
surface and the target surface have very different temperatures. Then Eqs. 1.12 and
1.13 must be used with o and e depending on the wavelength spectrums of the
incident radiation and the emitted radiation, respectively. This condition is rarely
considered in FSE as the absorptivity/emissivity of most building materials changes
only marginally with the temperature, the radiation is considered to be gray). Thus
by inserting Eqs. 1.12 and 1.13 into Eq. 1.11, the net radiation heat flux to a surface
can be written as
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s = (e =0 T3) (1.15)
Alternatively, the neat radiation heat flux may also be expressed in terms of as
Grug = &5 0(TH=TY) (1.16)

where T, is the incident black body radiation temperature or just the black body
radiation temperature defined by the identity

Ghe=0T (1.17)

The heat flux by radiation and convection can be superimposed to form the total
heat flux which in this book is denoted ¢ ’,’0,. Then BC the third kind becomes

Giot = 4 raa + G con (1.18)
and thus
G = (4= T?) +h(T,~T.) (1.19)
or alternatively
(o=t 0 (T} =T} +h(Ty —Ty) (1.20)

Equation 1.20 is a mixed boundary condition as it contains independent heat
transfer by radiation and convection. In standards on fire resistance of structures
such as Eurocode 1, EN 1991-1-2, the radiation and gas fire temperatures are
assumed equal, Ty, and then Eq. 1.20 becomes

l

Qi =t-0- (T} =T8) + (1 -1, (1.21)

Notice that, as the heat emitted from a surface (e, - o - T) depends on the forth
power of the surface temperature, the problems become mathematically non-linear
which prohibits exact analytical solutions of the heat equation. To avoid this, the
introductory Chaps. 2 and 3 are limited to cases where the heat transfer coefficient
h can be assumed constant.

More on boundary conditions are given in Chap. 4, and methods for calculating
heat transfer by radiation and convection are given in Chaps. 5 and 6.


http://dx.doi.org/10.1007/978-3-319-30172-3_2
http://dx.doi.org/10.1007/978-3-319-30172-3_3
http://dx.doi.org/10.1007/978-3-319-30172-3_4
http://dx.doi.org/10.1007/978-3-319-30172-3_5
http://dx.doi.org/10.1007/978-3-319-30172-3_6
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1.1.4 Transient or Unsteady-State Heat Conduction

Heat is transferred by conduction, convection or radiation at heat flow rates denoted
g-. Then the changes of heat content dg of a body over a time interval df becomes

dg =g -dt (1.22)

By differentiating Eq. 1.3

q':C-p-V-E (1.23)

Figure 1.6 shows a one-dimensional increment dx. The heat entering from the left
side is ¢, and the heat leaving on the right side ¢ +ay Hence

0 dar dar d dar d dT

The difference is the change of heat being stored per unit time, i.e.

, dT
;" =c-p-—-d 1.25
g =copdx (1.25)

Now by combining Eqs. 1.24 and 1.25, the heat conduction equation or the heat
diffusion equation in one dimension is obtained as

Fig. 1.6 One-dimensional
increment

q x —> _>q”x+dx
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d ar dr

or if k is constant, the heat conduction equation may be written as

d*T 1 dT
=—. = 1.27
dx*  a dt (127)
where a is the thermal diffusivity, a parameter group defined as
k
a= (1.28)
c-p

with the dimension m?/s in SI units.
In three dimensions x, y and z the general heat conduction equation is

0 ar 0 ar 0 ar T

The heat capacity ¢ and the density p appear always as a product in heat diffusion
equations, sometimes denoted specific volumetric heat capacity (J/(m®> K) in SI
units). Alternatively Eq. 1.26 may be written as

d dr de

where e is the heat content per unit volume named the specific volumetric enthalpy.
By definition it is the heat needed to rise the temperature of a unit volume from one
level (e.g. 0 °C) to a higher temperature. Then

T
e:/ c-p-dT (1.31)
0

For materials with ¢ - p constant and independent of temperature the volumetric
specific enthalpy becomes

e=c-p-T (1.32)

The concept of specific volumetric enthalpy is advantageous to use when
considering physical and chemical transformations. Then numerical temperature
calculations may be facilitated as will be presented in more detail in Chap. 7.

In the simplest cases of transient heat transfer problems, the temperature in a
body is assumed uniform. Then as only a single uniform temperature is calculated
with no variation depending on position, this type of problems is zero-dimensional.
More on lumped heat calculations can be found in Sects. 3.1, 7.1 and 13.3.


http://dx.doi.org/10.1007/978-3-319-30172-3_7
http://dx.doi.org/10.1007/978-3-319-30172-3_3
http://dx.doi.org/10.1007/978-3-319-30172-3_7
http://dx.doi.org/10.1007/978-3-319-30172-3_13
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1.2 Electric Circuit Analogy in One Dimension

There are analogies between parameters of heat transfer systems and electric
circuits. These will be used throughout this book to illustrate, develop and explain
various temperature and heat transfer calculation formulas. An overview of
corresponding parameters, nomenclature and icons of resistance and capacitance
is given in Table 1.1. Notice that the resistance R for thermal problems refers to a
unit area while the analogue electric resistance includes the area in R,. In summary,
temperature is analogue to electric potential or voltage, heat flow to electric current,
thermal resistance to electric resistance and heat capacity to electric capacity.

From the discipline of electric circuits the rules of combining resistances can be
applied. Thus two resistances in series between A and C as shown in Fig. 1.7 can be
summarized as

Table 1.1 Analogies between thermal parameters in one dimension and electric parameters and

units

Temperature and heat Electric circuit analogy

Parameter and nomenclature SI units Parameter and nomenclature SI units
Heat, ¢ [J or Ws] Electric charge, Q [J]
Temperature, T’ [K or °C] Electric potential, U [V]
Heat flow, ¢ [W] Electric current, / [A]
q :A~% ]:%(Ohm’slaw)

T, T, v, u,

o{ & |

Thermal resistance Resistor

AT = (T, —T») AU = (U, — U,)

Heat flux, ¢ [W/m?] Electric current per unit area, I/A [A/m?]
Q=%

1D thermal resistance, R [m? K/W] Electric resistance, R, [Q]
Surface resistance R, = [m” K/W]

Solid resistance Ry = ¢ [m® K/W]

1D heat capacitance, C [J/(m2 K)] Electric capacitance, C, [J/V]
C=c-p-d D/m*K)]  |Q=C.-U (7]
¢ =C-T [I/m?]

o

T

1. s

;l,; Earth U=0

T=0 Electric capacitor
Lumped-heat-capacity
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a b
Ao Rye/K, ]—ﬁ—l Reslfky |— ¢ A;'

Fig. 1.7 Rules for combining resistances in series according to Eq. 1.33. (a) Resistances in series.
(b) Resultant resistance

.

Fig. 1.8 Rules for combining parallel resistances according to Eq. 1.34. (a) Parallel resistances.
(b) Resultant resistance

1 1
Rac = Rap + Rpe = —— + —— 1.33
4 A P Kas ' Kac ( )

K denotes the reciprocal of the thermal resistance which could be a heat transfer
coefficient, 4, or conductivity over a thickness, k/d.

In the case of parallel resistances as shown in Fig. 1.8, the resultant resistance
between A and B becomes

I 1
1 1
TR K1 +K;

Rug = (1.34)

Thus as an example according to Fig. 1.8, the heat flux between A and B may be
written as

g’ = (K1 +K>) - (Ta—Tg) =+ (Ta — Tp) (1.35)
R1+R_2

where T4 and T are the temperatures at point A and B, respectively. K| and K, may,
for example, be heat transfer coefficients due to radiation and convection.

1.3 Material Properties at Elevated Temperature

The flow of heat by conduction in a body is proportional to the thermal conductivity
of the material and the temperature gradient according to Fourier’s law as given by
Eq. 1.6. Under steady-state conditions the conductivity denoted k is the sole
material property while under transient conditions the density p and the specific
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Table 1.2 Thermal properties of some materials at room temperature

1

Introduction

Thermal
Specific heat Thermal inertia k-p-c

Density p | capacity Conductivity | diffusivity [(W?s)/
Material [kg/m’] | c J/(kg K)] kIW/mK)] | k(p-c) [m*/s] | (m* K?)]
Air 123 [1010 0.024 19.3-107 0.030-10°
Polyurethane 20 1400 0.03 1.07-107¢ 0.840 - 10°
foam
Fibre insulat- | 100 2000 0.04 2.00-107° 7.92-10°
ing board
Wood, pine 500 2800 0.14 0.100-107° 0.196 - 10°
Wood, oak 700 2800 0.17 0.87-107° 0.336-10°
Water 1000 4181 0.604 0.144-107° 2.53-10°
Gypsum 1400 840 0.5 0.425-107° 0.593-10°
plaster
Concrete 2300 900 1.7 0.82-107° 3.53-10°
Aluminium | 2700 900 200 82.3.107° 486 -10°
Steel (mild) | 7850 460 46 12.7-107 166 - 10°
Copper 8930 390 390 112-107° 1362 -10°

Values of this table are only

indicative and not necessarily recommended for use in real FSE

applications

heat capacity ¢ are needed in addition. In general the thermal conductivity of a solid
is bigger than that of a liquid, which is larger than that of a gas. Materials with a low
density have in general low heat conductivity while materials with high densities
and in particular metals have high thermal conductivities. Insulating materials have
low densities and are by definition pure conductors of heat. Table 1.2 shows in the
order of density the thermal properties of a number of materials. With the exception
of metals, air and water we can derive from this table the very approximate relations
between the density p and the conductivity & as

k = 0.04 - 00177 (1.36)

The specific heat ¢ of a material or substance is the amount of heat needed to
change the temperature of a unit mass of the substance by 1°. It is an intensive
parameter with the unit of energy per unit mass and degree, in SI units [J/(kg K)] or
[Ws/(kg K)]. (This is unlike the extensive variable heat capacity (denoted C), which
depends on the quantity of material and is expressed in [J/K]). As a general rule the
specific heat decreases with density, i.e. it is high for low density materials and low for
high density materials. Cementitious materials have a specific heat capacity c slightly
under 1000 J/(kg K) while the corresponding values for wood are considerably higher.
For metals c is significantly lower and varies inversely with the density. Notice in
Table 1.2 that ¢ of water is relatively high, more than four times higher than ¢ for
concrete. Therefore the moisture content of a material has great influence on the
temperature development. The major influence of the water is, however, when it
vaporizes at temperatures exceeding 100 °C.
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The product k-p-c, denoted thermal inertia, see Sect. 8.2.2, has a great impact on
ignition and flame spread propensities of materials. When the density p increases so
does normally the conductivity £ as well, and consequently the thermal inertia is
greatly dependent on the density. It varies over a wide range and therefore the
density is a very significant indicator of the fire properties materials.

Notice that the thermal inertia, k-p-c, of wood is in the order of 300 times as high
as the corresponding value of an efficient insulating material such as polyurethane
foam. This difference will give these materials a considerable difference in their
ignition properties as will be discussed in Chap. 8.

The data given in Table 1.2 refer to room temperature. At elevated temperatures
which are relevant in fires and fire-exposed structures the material properties may
vary significantly. In addition the parameter values listed cannot be assumed to
fully reflect the properties of all materials within any generic class. Specific data for
particular products may be provided by the manufacturers.

1.3.1 Structural Materials

The temperature of structures exposed to fully developed fires with gas tempera-
tures reaching 800-1200 °C will gradually increase and eventually the structures
may lose their load-bearing capacity as well as their ability to keep fires within
confined spaces. In building codes fire resistance requirements are usually
expressed in terms of the time a structural element can resist a nominal or standard
fire as defined, e.g. in the international standard ISO 834 or the corresponding
European standard EN 1363-1. In the USA and Canada the corresponding standard
curve for determining fire resistance of building components is given in ASTM
E-119. The standard time—temperature curves as defined by the ISO/EN and ASTM
standards are shown in Fig. 1.9. More on standard fires can be found in Chap. 12.

Below some general remarks are given for the most common structural mate-
rials. Methods for calculating temperature steel, concrete and timber structures
exposed to fire are outlined in Chaps. 13, 14 and 15, respectively.

Steel starts to lose both strength and stiffness at about 400 °C and above 600 °C
more than half of its original strength is lost, see, e.g. Eurocode 3 [3] or the SFPE
Handbook on Fire Protection Engineering [4, 5]. Therefore structural steel elements
must in most cases be fire protected by sprayed on compounds, boards, mineral
wool or intumescent paint to keep sufficient load-bearing capacity over time when
exposed to fire. An example of a steel structure failure due to fire was the collapse of
two World Trade Center towers on September 11, 2001. The towers were hit by big
passenger airplanes. A tremendous impact was inflicted on them, but they did not
collapse immediately. The jet fuel started, however, intense fires and when the steel
of some decisive members had reached critical temperatures a progressive collapse
was initiated. For calculation methods on steel structures see Chap. 13.


http://dx.doi.org/10.1007/978-3-319-30172-3_8
http://dx.doi.org/10.1007/978-3-319-30172-3_8
http://dx.doi.org/10.1007/978-3-319-30172-3_12
http://dx.doi.org/10.1007/978-3-319-30172-3_13
http://dx.doi.org/10.1007/978-3-319-30172-3_14
http://dx.doi.org/10.1007/978-3-319-30172-3_15
http://dx.doi.org/10.1007/978-3-319-30172-3_13
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Fig. 1.9 The standard time—temperature curves according to EN 1363-1 or ISO 834 and ASTM
E-119

Concrete also looses strength and stiffness at high temperature, see,
e.g. Eurocode 2 [6] or [4]. Concrete has, however, a relatively low thermal
conductivity and a high density and high specific heat capacity as well, i.e. a low
thermal diffusivity. Although the temperature therefore rises slowly in concrete
structures, it is important to assure that the steel reinforcement bars are not too near
fire-exposed surfaces to avoid that their temperature reaches critical levels. See
calculation methods in Chap. 14. An often more severe problem is the tendency of
concrete to spall explosively when exposed to high temperature. In particularly high
strength concrete qualities are prone to spall which is of great concern, for example,
when designing linings of road and railway tunnels where fire temperatures may be
extremely high and where a collapse may have devastating consequences in terms
of life safety and protection of economic values.

Wood loses both strength and stiffness at elevated temperature. In addition it
burns and chars gradually at a rate of about 0.5 mm/min when exposed to fire. The
char layer then developed, however, protects the wood behind from being directly
heated by the fire and thereby from quickly losing its load-bearing capacity. Timber
structures therefore resist fire rather well and are in most cases left unprotected, see,
e.g. Eurocode 5 [7]. In many cases structural timber members such as wall studs are
protected from direct exposure by fire boards and can then resist fire for very long
periods of time. For calculation methods see Chap. 15.


http://dx.doi.org/10.1007/978-3-319-30172-3_14
http://dx.doi.org/10.1007/978-3-319-30172-3_15

1.3 Material Properties at Elevated Temperature 15
1.3.2 Polymers and Composite Materials

There are two main types of plastics materials, thermoplastics and thermosettings.
They decompose differently when exposed to heat. Thermoplastics can soften with
reverse changes of the material, while thermosetting materials are infusible and
cannot undergo any simple phase changes. They do not have a fluid state.

Many thermoplastics and thermosetting materials form chars when decomposed
by heat. This char is in general a good insulator and can protect the underlying
virgin material from heat and slow down the decomposition process.

Polymers or plastics possess different hazards in fires depending on their phys-
ical constitution and chemical composition. In general, foamed plastics with low
density and thin plastic objects ignite more easily and burn more vigorously than
more dense and thick plastics. The fire properties of an object do not only depend on
its chemical composition but also on the shapes and configurations. Thus a thin
layer of a material ignites more easily when underlaid by a low density insulating
material than by a more dense material. Below some characteristic are given of
some commercially important polymers.

The thermal stability of polyolefins such as polyethylene and polypropylene
depends on branching of the molecule chains, with linear polymers most stable
and polymers with branching less stable. Polyvinyl chloride (PVC) has in general
good fire properties as the chloride works as a flame retardant agent. However, the
hydrochloride HCI, which is generated while burning, is irritating and toxic and can
impede the evacuation from a fire. In addition, it forms hydrochloride acid when in
contact with water and can therefore cause severe corrosion problems even long
after a fire incident. Polyurethanes (PU) contain nitrogen and forms very toxic
products such as hydrogen cyanide and isocyanides when burning. PVC and PU do
also generate very dense smoke which can hamper escape possibilities.

Composite materials consisting of a polymer and reinforcing fibres (typically,
glass, carbon or aramide fibres), also called “Fibre reinforced plastics (FRP)”, have
become increasingly used in many areas of construction, such as airplanes, heli-
copters and high-speed crafts, due to the high strength/weight ratio. These materials
are also chemically very resistant and do not corrode or rust. They are, however,
combustible and as they are often meant to replace non-combustible materials such
as steel or other metals they could introduce new fire hazards.

1.3.3 Measurements of Material Properties

Material properties may be obtained from small scale laboratory test or derived from
large scale fire test experiences. Small scale tests are in general the most accurate and
cheap tests, but they are usually made for inert materials in room temperature.
Therefore such data are relatively easy to find. In FSE, however, material data are
needed at elevated temperature when these change, and in addition materials may
undergo physical (e.g. vaporization of water) as well as chemical transformations
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(e.g. phase changes and pyrolysis). Then the small scale methods are generally
unsuitable to consider these kinds of non-linear effects. In practice therefore thermal
properties are often determined by “curve-fitting”, i.e. measured temperatures are
compared with calculated, and then input parameters are altered until measured and
calculated data match as well as possible. In this way large scale non-linear effects
may be considered. However, this kind of approach has the disadvantage that the
results are valid only for the type of exposure being used to determine the data.

There are a number of techniques to measure thermal properties in small scale,
each of them suitable for a limited range of materials, depending on thermal
properties and temperature level, see, e.g. [8]. However, only a few of the measur-
ing techniques can be used at high temperature levels relevant for fire conditions.
They can be divided into steady-state and transient techniques.

The steady-state techniques perform the measurements when the material is in
complete equilibrium. Disadvantages of these techniques are that it generally takes a
long time to reach the required equilibrium and that at low temperature the measure-
ments are influenced by moisture migration. For moist materials such as concrete, it is
therefore often preferable to determine the apparent conductivity or thermal diffu-
sivity with transient techniques. These techniques perform the measurements during
a process of small temperature changes and can be made relatively quickly.

The guarded hot-plate is the most common steady-state method for building
materials with a relatively low thermal conductivity. It is quite reliable at moderate
temperatures up to about 400 °C.

As transient thermal processes dominate in FSE, the thermal diffusivity, a
measure of the speed at which temperature is propagating into a material, is the
most interesting parameter. It is naturally best measured with transient methods.
One of the most interesting techniques is the transient plane source method (TPS).
In this method a membrane, the TPS sensor, is located between two specimens
halves and acts as heater as well as a temperature detector, see Fig. 1.10. By using
this technique, thermal diffusivity, heat conductivity and volumetric specific heat
can be obtained simultaneously for a variety of materials such as metals, concrete,
mineral wool and even liquids and films [9].

Fig. 1.10 The TPS sensor placed between two pieces of a concrete specimen to measure thermal
properties



Chapter 2
Steady-State Conduction

In one dimension in the x-direction the rate of heat transfer or heat flux is expressed
according to Fourier’s law as outlined in Sect. 1.1.

0 dT
where £ is the thermal conductivity. For simplicity the mathematical presentation of
the heat transfer phenomena is here in general made for one-dimensional cases
only. Corresponding presentations in two and three dimensions can be found in
several textbooks such as [1, 2].
Under steady-state conditions the heat flux is independent of x, i.e. the derivative

R
of ¢, is zero and we get

% (k : Z—D =0 (2.2)

The corresponding equation for cylinders with temperature gradients in the

radial direction only is
1d dT
Sk ) = 2.
rdr( rdr) 0 (23)

where r is the radius. Solutions for steady-state cases are found in Sect. 2.2.
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2.1 Plane Walls

Consider a plane wall having surface temperatures 7 and T». Figure 2.1 shows the
temperature distribution under steady-state conditions which means the heat flux is
constant across the plate. Figure 2.1a shows the temperature distribution when the
heat conductivity is constant, i.e. the second derivative of the temperature is zero
according to Eq. 2.2 and thus the temperature distribution becomes linear. Figure 2.1b
shows the temperature distributions in structure with two layers of materials with
different conductivities. The material to the left has the lower conductivity.
Figure 2.1c indicates the temperature distribution when the conductivity is increasing
with temperature. The temperature gradient is higher where the temperatures are
lower and thereby the conductivity. This is particular the case for insulating materials
where the conductivity increases considerably at elevated temperatures.

The rate of heat conducted per unit area ¢  through a wall, see Fig. 2.2, is
proportional to the thermal conductivity of the wall material times the temperature
difference AT between the wall surfaces divided by the wall thickness L, and
according to Fourier’s law (c.f.Eq. 2.1)

q”:k.g:k.u

5 - (2.4)

In an electric circuit analogy, this case can be illustrated according to Fig. 2.2. The
heat flow through the wall over an area A may then be written as

¢" = (T, —T2)/Rs (2.5)
a —— — — b -
T, 7'1
T1
T1
T, N,
1

Fig. 2.1 Steady-state temperature distribution in a plane wall. (a) Constant conductivity, (b) two
materials with a low and high conductivity and (c¢) conductivity increasing with temperature
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Fig. 2.2 One-dimensional
steady-state thermal
conduction. Linear
temperature distribution

across a wall and an electric TI
analogy of one-dimensional
heat flux. The thermal
resistance R = L/k
TZ
TI TZ
— R, —&
where the thermal resistance of the solid then can be identified as
L
R =-— 2.6
k= (2.6)

The electric analogy may also be used for more complex problems involving
both series and parallel thermal resistance. A typical problem is a wall consisting of
several layers, see Fig. 2.3.

The total thermal resistance R,,, between the inside and outside surfaces may
then be written as:

L L L
Ro= R +Ry+Ry =" +24+2 (2.7)
ki ky k3

and the heat flux ¢ through the assembly from the inside to the outside may be
written as:

" AT Ty —T;
R it (2.8)
R[()t Ri‘()t

The temperature 7|, at the interface between material 1 and 2 may be written as

R (T;-T, Ry+R3)-Ti+Ry T,
T\, =T, — 1 ( ) _ (Ry + R3) + Ry (2.9)
R[()t Rt()t
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T; Tiz Trs T,
o R, —e— R, —e— R, -

Fig. 2.3 Electric circuit analogy of one-dimensional heat transfer across a wall consisting of three
layers

To T Ty T, ¥
o & |o{ & |-o{ & |-o-{ & le

Fig. 2.4 Electric circuit analogy of one-dimensional heat transfer across a wall consisting of
several layers

In a general way the total thermal resistance of an assembly thermally modelled
as shown in Fig. 2.4 may be obtained as the sum of the components

Rior = Zjn:l R; (2.10)

and the heat flux ¢" through can be calculated as

4 T()_Tn
q9 =5

2.11
Rior ( )

and the temperature at an interface i as shown in Fig. 2.4 may be calculated as

i i n
R, T, R +Tg- . R;
Ti _ TO + j=1 (Tn _ TO) _ Zj—l Z]-HA
Rtot RZOI

(2.12)

Example 2.1 A wall consists of 20 mm wood panel, 100 mm fibre insulation and
12 mm gypsum board with conductivities equal to 0.14, 0.04 and 0.5 W/(m* K),
respectively. The wood outer surface has a constant temperature of 75 °C and the
inner gypsum board surface a temperature of 15 °C. Calculate the temperatures at
the insulation interface surfaces (T and T5).
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Solution R,,;=0.020/0.14+0.1/0.04+0.012/0.5=0.143 +2.5+0.024 =2.67W/K.
ThenT; = 75+ %4 . (15 -75) =71.8°Cand T, = 75 + 2183423 (15 — 75) =
15.6°C.

The presentation so far includes heat transfer in solids only with boundary
conditions of the first kind, i.e. prescribed surface temperatures. In most cases in
fire protection engineering, however, the boundary condition between a surround-
ing fluid/environment and a solid surface is specified as a boundary condition of the
third kind. In the simplest form the boundary condition is then described by the
Newton’s law of cooling. It may be seen as a heat transfer condition for convection
and it states that the heat transfer to a surface is directly proportional to the difference
between the surrounding gas temperature T, and the surface temperature T:

"

G =h-(Ty—T,) (2.13)

where the constant of proportionality factor 4 is the heat transfer coefficient. The
surface thermal resistance R, between the gas phase and the solid phase can then be
written as

Ry=- (2.14)

Thus for the case illustrated in Fig. 2.5, the total resistance between the gas phase on
the left side and the surface on the right side of the wall may be written as

1 L
Royu=|-4+=)=Ri+ R (2.15)
h k
Fig. 2.5 An electric circuit Wi ok
analogy of one-dimensional T
heat transfer to a surface g
and through a wall with
surface and solid thermal T
resistances 1
TZ
TQ‘ Tl TZ
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and the surface temperature 7; may be written as a function of the gas temperature
T, and the temperature T, as

Rh 'T2 +Rk'Tg

T, =
Ry, + Ry

(2.16)

Example 2.2 Calculate the surface temperature 7; of a 12 mm wooden board if the
gas temperature on the exposed side T, =100 °C and the temperature on the
non-exposed side is 7, =20 °C. Assume the conductivity of the wood k=0.2 W/
(m K)) and heat transfer coefficient 7 =5 W/(m2 K).

Solution Equation 2.15 yields R = R;, + Ry = (3 +222)(m?K)/W = 0.2 + 0.06
(m*K)/W and Eq. 2.16 yields T = 2220:006100°C — 38°C,

2.2 Cylinders

Cylinders often experience temperature gradients in the radial direction only, and
may therefore be treated as one dimensional. The solid thermal resistance between
the inner radius 7; and an arbitrary radius r in a cylinder (see Fig. 2.6) assuming
constant heat conductivity may then be written as

Ry = % (2.17)

1

L —

S :
B In("/r,) S T
k 2mhk :
\ b r
1 \ .0
Rho - 2rurphg E !
T T. T. T

i si 50 0
I R N T

Fig. 2.6 Thermal resistances between the media with a temperature 7; inside a cylindrical pipe
and the outside gas with a temperature 7,
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where k is the thermal conductivity. The surface thermal resistance may be written as

1
" 2xrh

Ry (2.18)

Hence the thermal resistance between the inner and outer gases or liquids of a pipe
is obtained by summarizing the surface and solid resistances as indicated in Fig. 2.6,
i.e. the total thermal resistance over a unit length is

R, =Ry + R, +R ! ! ln(m/”) ! 2.19
tot — h1+ k+ hn—g' r_h,'+T+roh0 ( )

A uniform heat flux over a unit length of a pipe may then be calculated as

L T,' — To 272’ (T, — To)
q[ = R = l ln(w/ ) : (220)
tot ri
mnt T ton
The temperatures T, at the inner surface can be obtained as
RiTo+ (R +Rpo) T
R + (Rk + Rio) (2.21)
tot
and T, at the outer surface as
Riyi+Ri) To+ Rpo T
T, — (Rpi + Ri) Ty + R, (2.22)

Rt()t

Example 2.3 Consider an insulated steel pipe with an outer coating as shown in
Fig. 2.7 exposed to fire with a constant temperature of 800 °C. The temperature of

Fig. 2.7 Insulated steel
pipe with an outer coating
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the inside medium/fluid is 100 °C. The inner and outer radii of the steel pipe are
30 and 28 mm, respectively. The insulation is 50 mm thick and has a conductivity of
0.5 W/(m K). The inner heat transfer coefficient is 100 W/(m? K) and the outer
50 W/(m? K). Calculate the temperature of the steel pipe which is assumed to be
constant along the radius.

Solution Calculating for a unit length. Equation 2.19 yields R,,,=0.057+0.312

+0.040 =0.409 (m K)/W. Thus the inner (steel) temperature

0.057-8004(0.312+0.04)-100
T, = HOITH0)I0. _ j9g°C,




Chapter 3
Unsteady-State Conduction

When a body is exposed to unsteady or transient thermal conditions, its temperature
changes gradually, and if the exposure conditions remain constant it will eventually
come to a new steady state or equilibrium. The rate of this process depends on the
mass and thermal properties of the exposed body, and on the heat transfer condi-
tions. As a general rule the lighter a body is (i.e. the less mass) and the larger its
surface is, the quicker it adjusts to a new temperature level, and vice versa. The
temperature development is governed by the heat conduction equation (Eq. 1.29)
with the assigned boundary conditions. It can be solved analytically in some cases,
see textbooks such as [1, 2], but usually numerical methods are needed. This is
particular the case in fire protection engineering problems where temperature
generally varies over a wide range, often several hundred degrees.

There are, however, some cases where analytical methods can be used. Two cases
are of interest for both practical uses and basic understandings of the influence of
material properties on their fire behaviour. On one hand, it is cases where bodies can
be assumed to have uniform temperature such as in thin solids or in metals with a
high conductivity. Then the approximation of lumped-heat-capacity can be applied.
On the other hand, it is the case when a body can be assumed semi-infinitely thick for
the time span considered. Then in particular the surface temperature can be estimated
by analytical methods if the material properties are assumed constant. These two
elementary cases will be considered in detail in the following two Sects. 3.1 and 3.2.

3.1 Lumped-Heat-Capacity

It is often assumed when calculating temperature in steel sections, protected as well
as unprotected, that the temperature is uniform in the exposed body, see Sects. 13.3
and 13.4, respectively. It may also be applied when estimating temperature and time
to ignition of thin materials such as curtain fabrics. A special case is the analysis of
the temperature development of thermocouples and the definition of time constants
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Fig. 3.1 The dynamic heat -
balance of a body over a
time period is expressed as

the heat received is equal to

the heat stored according to V-p-c-dT

Eq. 3.1

Receivedheat‘ = ‘ Stored heat

of these types of measuring devices, see Sect. 9.1. Numerical methods for calcu-
lating temperature when assuming lumped-heat-capacity are described in Sect. 7.1.
In this section a general presentation will be given assuming constant heat transfer
coefficients, material properties and exposure levels. As only one temperature inde-
pendent of position is calculated, this type of problems are zero-dimensional.
The received heat over a time interval dt is equal to the heat stored. The latter is
proportional to the temperature rise of the body dT, see Fig. 3.1. Thus

G- -dt=V-p-c-dT (3.1)

Hence the temperature rise rate dT/dt (the time derivative of the body temperature)
vs. incident heat flow ¢ or the incident heat flux ¢~ can be obtained as

ar 1 A

- = = 3.2
dt V~p-cq V~p~cq (32)

where A is exposed area, V volume, p density and ¢ specific heat capacity. For thin
plates exposed from one side V/A may be replaced by its thickness d

d=-~ (3.3)

The heat flux ¢" to the body can be obtained in various ways depending on the

boundary condition. It may be of the second or third kind, see Sect. 1.1.3. The first
kind is trivial as a uniform temperature is assumed.

3.1.1 Prescribed Heat Flux: BC of the Second Kind

Given a prescribed heat flux ¢ " (second kind of BC, see Sect. 1.1.3), the temperature
rise T — T; as function of time may be obtained by integrating over time as

A I "
T-T,=———| g -dt 3.4
V'(C'P)Joq 34
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where T} is the initial temperature. If ¢ remains constant over time
(3.3)

Prescribed heat flux can rarely be assumed in fire protection engineering as the heat
flux from the gas phase to a solid surface depends on the surface temperature which
changes over time. Instead it is the third kind of BC that generally applies.

3.1.2 Prescribed Gas Temperature: BC of the Third
Kind—And the Concept of Time Constant

More realistic and commonly assumed in FSE problems is that the heat transfer to a
surface is proportional to the difference between the surrounding gas or fire
temperature Ty and the body temperature as indicated in Fig. 3.2 (third kind of
BC, see Sect. 1.1.3). The body having uniform temperature (lumped-heat-capacity)
is here assumed to be of steel and its temperature is denoted Ty;,.

In case of uninsulated or unprotected bodies such as bare steel sections the
surface thermal resistance is the only thermal resistance between the fire gases and
the steel. Thus the heat flux can be written as

" Tr—T,
i =) =T 30

Fig. 3.2 Electric circuit T]
analogy of an uninsulated I
steel section assumed to I
have uniform temperature I

|

|

|

|

|

(lumped-heat-capacity)
Ty
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where / is the heat transfer coefficient and R, the corresponding surface resistance
which can be identified as

Ry = (3.7)

1
h
For an insulated or protected steel section, the heat resistance is the sum of the
surface thermal resistance R; and the solid resistance of the insulation R;,. (Notice
that insulated and protected are used synonymously in this book). The total thermal
resistance between the fire gases and the steel section is then

Rh+in = Rh + Rin (38)
where
din
Ry, =— 3.9
T (39)

and where d;, and k;, are the insulation thickness and conductivity, respectively.
Electric circuit analogies are shown in Fig. 3.3. In Fig. 3.3a the surface resistance is
included while in Fig. 3.3b it is not. That assumption is made in many cases as the
surface resistance is much smaller than the solid resistance, i.e. R;, < R;,, and may
therefore be ignored (as suggested in, e.g. Eurocode 3 [3]).

-————

Insulation | Ty @ Steel Insulation | T, Steel

din dgy | L din I, dge |

S o S C

=0 T=0

Fig. 3.3 Electric circuit analogy of an insulated steel section treated as a lumped-heat-capacity.
(a) Including heat transfer resistance. (b) Neglecting heat transfer resistance
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For a unit area (A = 1) Eq. 3.2 may be written as

fi”:dst'psr'cst'i‘zcsr'i (3.10)

dt

where d, is the thickness and C is the heat capacitance per unit exposed area (see
Table 1.1), i.e.

Cy = dst *Pst * Cst (31 l)

Now by combining Eq. 3.2 with Eq. 3.6

ar _ (T —Ts) (3.12)
dt  Cg - Rpyin
where alternatively Eq. 3.12 can be written as
%:%(Tf_m (3.13)
and where 7 may be identified as the time constant:
7 =Cyg Rptin (3.14)

Then if the surrounding temperature Tis constant and the time constant 7 including
the material and heat transfer parameters remains constant, Eq. 3.12 has an analyt-
ical solution

Tst - Ti
T, —T;

=1—¢ ¢ (3.15)

where T; is the initial temperature at time ¢ = 0. The relation is shown in Fig. 3.4.
Notice that Eq. 3.15 may only be applied when constant material properties and
surface resistances are assumed. That is, however, not so common in FSE and
therefore must in most cases numerical solutions be used. More on numerical
solutions will be shown in Sect. 7.1 and more on steel sections in Chap. 13.

3.1.2.1 Gas Temperature Varying with Time

Equation 3.15 may be applied only to a sudden change of the exposure temperature
to a new constant value. When the exposure temperature varies with time, super-
position techniques may be applied as outlined in Sect. 7.2. As an example the
temperature of a steel section when assuming a constant time constant 7 can be
obtained by superposition as


http://dx.doi.org/10.1007/978-3-319-30172-3_1
http://dx.doi.org/10.1007/978-3-319-30172-3_7
http://dx.doi.org/10.1007/978-3-319-30172-3_13
http://dx.doi.org/10.1007/978-3-319-30172-3_7
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Fig. 3.4 The relative temperature rise (T, — T;)/(T; — T;) of a body with uniform temperature
vs. dimensionless time /7 according to Eq. 3.15

1 t
T“:—e”ﬁJT}@kHW§+e”ﬁ~ﬂ (3.16)
0

T

The integral of Eq. 3.16 can be solved analytically in some cases depending on the
analytical expression of the gas temperature T as a function of time. For instance,
when the fire temperature rises linearly with time as

ATp=a-t (3.17)
the steel temperature rise becomes
T _t
Myzawa;@ferﬂ (3.18)
or in dimensionless format
AT, ¢t L
sz{—zﬁ—e?ﬂ (3.19)
a-t T t

Figure 3.5 shows that the steel temperature rise asymptotically approaches a
temperature (ATf —a- T).

Another example where the integral of Eq. 3.16 can be solved analytically is
shown in Sect. 13.3.2 dealing with fire insulated steel sections exposed to paramet-
ric fires according to Eurocode EN 1991-1-2. The fire temperature curve is then


http://dx.doi.org/10.1007/978-3-319-30172-3_13
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3.0

2.5

2.0 L4

1.5 7
= ATst

1.0 - =ATf

----- ATtrend

Dimensionless temperature rise AT/(o-1)
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Dimensionless time t/t

Fig. 3.5 Dimensionless temperature rise of a body exposed to linearly rising temperature
vs. dimensionless time according to Eq. 3.19

expressed as a sum of exponential terms which allows the steel temperature to be
calculated analytically according to Eq. 3.16. See also the Sect. 9.1 on the response
of thermocouples.

3.1.3 Conditions for Assuming Lumped-Heat-Capacity

The assumption of lumped-heat-capacity or uniform body temperature is an

approximation which may be applied when the internal thermal resistance by

conduction is low in comparison to the heat transfer resistance in the case of a
non-insulated body, i.e. the Biot number defined as

L/k hL

Bi=———=— 3.20

"TUn Tk (320)

is less than 0.1, see, e.g. [2]. Here L is a characteristic length of the body studied as

shown in Table 3.1, and & is the conductivity. Figure 3.6 shows the effect of various
Biot numbers of plane body under steady-state conditions.


http://dx.doi.org/10.1007/978-3-319-30172-3_9
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Table 3.1 Examples of
characteristic lengths L

Fig. 3.6 The state
temperature distribution for
a plane wall with a
conductivity k and a heat
transfer coefficient &

3 Unsteady-State Conduction

Configuration Characteristic length, L
Plate exposed on one side Thickness

Plate exposed on two sides Thickness/2

Long cylinder Diameter/4

Sphere Diameter/6

In fire protection engineering lumped-heat-capacity is often assumed for steel
sections. This is in particular appropriate when considering temperature across the
thickness of a web or flange. The temperatures on the two sides of a metal sheet are
then by and large equal. Temperatures along the plane of a web or flange may,
however, vary considerably depending on the boundary conditions, see Chap. 13.
The criterion given by Eq. 3.20 is based on steady-state conditions but applies for
steel of thicknesses in the order of 10 mm except for the first few minutes which are
usually not of interest in FSE.

Example 3.1 A 2-mm-thick steel plate with an initial temperature 7; = 20 °C is
suddenly exposed on both sides to a gas temperature of 500 °C. Assume a constant
heat transfer coefficient 7 =20 W/(m2 K) and the steel properties ¢ =460 Ws/

(kg K) and p = 7850 kg/m">.

(a) Calculate the thermal time constant of the steel plate.
(b) Calculate the temperature of the steel plate after 5 min.


http://dx.doi.org/10.1007/978-3-319-30172-3_13
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Soluti
olution (a) _ dep _ 0.5-0.002 - 460 - 7850

— 181
7 20 8l's

(b) At time t=300 s the dimensionless time ¢/ 7z =300/181 = 1.66 and from
Eq. 3.15 or Fig. 3.4 the steel temperature is calculated as T = 20+
(500 — 20) - (1 — e*1'66) =20+480-0.81 =409 °C.

Example 3.2 A 5-mm-thick steel bulkhead is suddenly exposed to a fire with a
constant temperature of 7y = 1000 °C. It is insulated on the fire-exposed side and
uninsulated on the non-fire-exposed side. The insulation thickness d = 100 mm and
its conductivity £k =0.07 W/(m K). The heat transfer coefficient on the non-fire-
exposed side h=35 W/(m2 K). Assume the surface heat resistance on the fire-
exposed side is negligible and the steel properties ¢ =460 Ws/(kg K) and
p=7850 kg/m’, and the ambient temperature and the initial temperature
T = T;=20°C.

(a) What is the ultimate steel temperature Ti’t” ?
(b) What is the time constant 7 of the bulkhead?
(c) What is the steel temperature after 60 min?

Solution (a) The heat balance equation of the steel bulkhead can be written as

s (Tf — Ts,) +h(Tow —Ty)=d-c- pd;;'. The ultimate steel tem-

perature is  obtained  when d;;’ =0 and then
k 0.07
ult ET/""hToc _ W41000+5420 _ 800 __ °
Ty = Eyn 00715 57 140 °C.

(b) The heat balance equation can be reorganized and written as {S Tr+h- TOO}

kT, k ult
fk g dTy ary _ {ETTS} . {&+n} _ TY-T,
{d+h}TS, =d-c-p3* and = Top Top Ty = =4 Now

Ein
the time constant can be identified (compare with Eq. 3.13) as

d-cp _ 0.005-460.7850 __
T = = =3170s.

(c) Attime t=3600 s the dimensionless time 7/ 7 = 3600/3170 = 1.14 and from
Eq. 3.15 or Fig. 34 T, =T; + (Tiff” -T;)-(1- e*f) =20+4120-0.68 =
101 °C.

T =

3.2 Semi-infinite Solids

Cases and scenarios in FSE are often short in time. Therefore only the surface and
the top layer of a solid will be involved in fire phenomena such as ignition and flame
spread. In such cases a solid may be assumed semi-infinite as its surface will not
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thermally be influenced by the limited depth of the exposed surface layer. Even
concrete elements exposed to fires of an hour’s duration any temperature rise
beyond 200 mm from the surface is insignificant, and when estimating temperature
of reinforcement bars near the exposed surface may even slender structures be
considered as semi-infinite.

Whether a body can be treated as semi-infinite depends on time of consideration
and thickness of the exposed body or more precise the exposed layer in case of
composites. The longer a body is analysed, the thicker it must be to be treated as
semi-infinite. As a general rule the change of temperature at one point influences
the temperature only within a distance § proportional to the square root of the
thermal diffusivity @ = k/(c - p) according to Eq. 1.28 multiplied by the time #:

§<3Vat (3.21)

The coefficient “3” here is an arbitrary value depending on accuracy, see
Sect. 3.2.1.1 on thermal penetration depth.

Consider a semi-infinite body initially at a constant temperature T;. Three kinds
of boundary conditions can be identified (c.f. Sect. 1.1.3 and Fig. 3.7):

(a) The surface temperature changes suddenly to a new constant value. The
internal temperature distribution (Eq. 3.22) and the surface flux (Eq. 3.23)
can then be calculated (first kind of BC).

(b) The surface receives suddenly a constant heat flux. The surface temperature
can then be calculated according to Eq. 3.29 (second kind of BC).

(c) The surface is suddenly exposed to a constant gas temperature and the heat
flux to the surface is proportional to the temperature difference between the
gas temperature and the surface temperature. The surface temperature can then
be calculated according to Eq. 3.35. For internal temperatures closed form
solutions can be found in textbooks such as [1, 2] (third kind of BC).

For more details on the three types of boundary conditions see Sect. 1.1.3.

I

|

|

|

X g X Tf? I
A (e

|

1

|

|

I

Fig. 3.7 Semi-infinite bodies with the three kinds of BC. See Sects. 3.2.1-3.2.3, respectively.
(a) First kind. (b) Second kind. (¢) Third kind
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Fig. 3.8 Semi-infinite solid T
with an initial temperature
T; where the surface T,

temperature changes
suddenly to T

T;

3.2.1 Constant Surface Temperature: First Kind of BC

The surface temperature of a semi-infinite body is suddenly changed from its initial
temperature 7; to T,. Then temperature profiles as indicated in Fig. 3.8 develop.
According to Sect. 1.1.3 this is a first kind of boundary condition. The longer times
t the further into the body the temperature rise goes. Mathematically the tempera-
ture distribution may be written as

) () o

where x is the distance to the surface and a the thermal diffusivity, see Eq. 1.28. The
function erf is called the Gauss error function and erfc is its complimentary
function. The error function is tabulated in Table 3.2 and both erf and erfc are
shown in Fig. 3.9 as functions of the dimensionless parameter group x/ (2\/at).

The heat flux at the boundary ¢, becomes

o dT 1 kpC
= k(=) =— (T, — T\ /—= 2
o k(dx) VA (3:23)

This equation shows that the heat flux at a given time and temperature rise is
proportional to the square root of the parameter group (k- p-c). This is often
referred to as the thermal inertia of the material. (In some literature the thermal
inertia is defined as/k - p - ¢). The thermal inertia of a material has a great influence
on its ignition and flame spread properties which will be discussed further in
Sect. 3.2.3 on third kind of BC.

3.2.1.1 Temperature Penetration Depth

The rate at which a temperature change diffuses into a body when exposed to
heating conditions depends for a semi-infinite body on the thermal diffusivity a as
defined in Eq. 1.28. Therefore it takes a relatively long time for a temperature rise at
the surface to penetrate into a material with a low conductivity £ and/or a high


http://dx.doi.org/10.1007/978-3-319-30172-3_1
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Table 3.2 The Gauss error function, erf

v m) e oG v 9w wm (s
0.00 0.00000 0.50 0.52050 1.00 0.84270 1.50 0.96611
0.02 0.02256 0.52 0.53790 1.02 0.85084 1.52 0.96841
0.04 0.04511 0.54 0.55494 1.04 0.85865 1.54 0.97059
0.06 0.06762 0.56 0.57162 1.06 0.86614 1.56 0.97263
0.08 0.09008 0.58 0.58792 1.08 0.87333 1.58 0.97455
0.10 0.11246 0.60 0.60386 1.10 0.88021 1.60 0.97635
0.12 0.13476 0.62 0.61941 1.12 0.88679 1.62 0.97804
0.14 0.15695 0.64 0.63459 1.14 0.89308 1.64 0.97962
0.16 0.17901 0.66 0.64938 1.16 0.89910 1.66 0.98110
0.18 0.20094 0.68 0.66378 1.18 0.90484 1.68 0.98249
0.20 0.22270 0.70 0.67780 1.20 0.91031 1.70 0.98379
0.22 0.24430 0.72 0.69143 1.22 0.91553 1.72 0.98500
0.24 0.26570 0.74 0.70468 1.24 0.92051 1.74 0.98613
0.26 0.28690 0.76 0.71754 1.26 0.92524 1.76 0.98719
0.28 0.30788 0.78 0.73001 1.28 0.92973 1.78 0.98817
0.30 0.32863 0.80 0.74210 1.30 0.93401 1.80 0.98909
0.32 0.34913 0.82 0.75381 1.32 0.93807 1.82 0.98994
0.34 0.36936 0.84 0.76514 1.34 0.94191 1.84 0.99074
0.36 0.38933 0.86 0.77610 1.36 0.94556 1.86 0.99147
0.38 0.40901 0.88 0.78669 1.38 0.94902 1.88 0.99216
0.40 0.42839 0.90 0.79691 1.40 0.95229 1.90 0.99279
0.42 0.44747 0.92 0.80677 1.42 0.95538 1.92 0.99338
0.44 0.46623 0.94 0.81627 1.44 0.95830 1.94 0.99392
0.46 0.48466 0.96 0.82542 1.46 0.96105 1.96 0.99443
0.48 0.50275 0.98 0.83423 1.48 0.96365 1.98 0.99489

volumetric heat capacity (c - p). Thus any temperature change diffuses, e.g. much
faster in a concrete than in a steel.

For the idealized case of a semi-infinite body at a uniform initial temperature T;
where the surface temperature momentarily is changed to a constant level of T, the
temperature rise (I — T;) inside the body at a depth x at a time ¢ may be written as a
function of the normalized group

n=x/[2V(a-t)] (3.24)

where the thermal diffusivity a =k/(c-p) according to Eq. 1.28 is assumed
constant. The relative temperature rise may then be written as:

(T-T))

oty e =1—efln) (3.25)
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Fig. 3.9 The Gauss error-function erf (x/ (2\/0:1‘) and the Gauss complimentary error-function

erfe(x/ (2\/at))

For the Gauss error function see Fig. 3.9 and Table 3.3. Note that for values of
n > 1.4 the relative temperature rise is less than 5 %, and forn > 1.8 it is less than
1 %. This can be interpreted as the temperature penetration depth & which can be
derived from Eq. 3.24 by solving for x. Thus the 5 % penetration depth is

8005 = 2.8V -t (326)
and the corresponding 1 % is
0001 = 3.6V/a -t (327)

Hence a sudden temperature rise at the surface will penetrate in 30 min about
0.14 m into a concrete structure and about four times longer (0.54 m) into or along a
steel structure. Constant material properties are then assumed according to
Table 1.2.

Example 3.3 The surface temperature of a thick concrete wall with an initial
temperature of 0 °C rises suddenly to 1000 °C.

(a) What is the 1 % thermal penetration depth 8y ¢; after 15 min?
(b) What is the temperature T at that point after 60 min?

Assume constant concrete properties according to Table 1.2, i.e. ¢ =900 Ws/(kg K),
p=2300 kg/m® and k = 1.5 W/(m K).


http://dx.doi.org/10.1007/978-3-319-30172-3_1
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Table 3.3 Tabulated values of the relative surface temperature change of a semi-infinitely thick
body (Ts — T;)/(T, — T;) vs. dimensionless time t/7 according to Eq. 3.35

(T, T)) (T, —T;) (Is — Ti)
t/t (T, —T)) t/t (T, —T) t/t (T, —T))
0.00 0.000 2.00 0.664 4.00 0.745
0.05 0.210 2.05 0.667 4.05 0.746
0.10 0.276 2.10 0.670 4.10 0.747
0.15 0.322 2.15 0.673 4.15 0.749
0.20 0.356 2.20 0.676 4.20 0.750
0.25 0.384 2.25 0.678 4.25 0.751
0.30 0.408 2.30 0.681 4.30 0.752
0.35 0.428 2.35 0.684 4.35 0.753
0.40 0.446 2.40 0.686 4.40 0.755
0.45 0.462 2.45 0.689 4.45 0.756
0.50 0.477 2.50 0.691 4.50 0.757
0.55 0.490 2.55 0.694 4.55 0.758
0.60 0.502 2.60 0.696 4.60 0.759
0.65 0.513 2.65 0.698 4.65 0.760
0.70 0.523 2.70 0.700 4.70 0.761
0.75 0.533 275 0.703 4.5 0.763
0.80 0.542 2.80 0.705 4.80 0.764
0.85 0.550 2.85 0.707 4.85 0.765
0.90 0.558 2.90 0.709 4.90 0.766
0.95 0.565 2.95 0.711 4.95 0.767
1.00 0.572 3.00 0.713 5.00 0.768
1.05 0.579 3.05 0.715 5.05 0.769
1.10 0.585 3.10 0.716 5.10 0.770
115 0.591 3.15 0.718 5.15 0.771
1.20 0.597 3.20 0.720 5.20 0.772
1.25 0.603 3.25 0.722 5.25 0.773
1.30 0.608 3.30 0.724 5.30 0.773
1.35 0.613 3.35 0.725 5.35 0.774
1.40 0.618 3.40 0.727 5.40 0.775
1.45 0.622 3.45 0.728 5.45 0.776
1.50 0.627 3.50 0.730 5.50 0.777
1.55 0.631 3.55 0.732 5.55 0.778
1.60 0.635 3.60 0.733 5.60 0.779
1.65 0.639 3.65 0.735 5.65 0.780
1.70 0.643 3.70 0.736 5.70 0.780
1.75 0.647 375 0.738 5.75 0.781
1.80 0.650 3.80 0.739 5.80 0.782
1.85 0.654 3.85 0.741 5.85 0.783
1.90 0.657 3.90 0.742 5.90 0.784
1.95 0.661 3.95 0.743 5.95 0.785
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Solution (a) After 15 min according to Eq. 3.27 the penetration depth
80.01 = 3.64/1.5/(900 - 2300) - 15 - 60 = 0.092 m.
(b) According to Eq. 3.24 n = 0.092 =0.90 and Eq. 3.25 and

24/1.5/(900-2300)-60-60
Fig. 3.9 yields T =200 °C.

3.2.2 Constant Heat Flux: Second Kind of BC

Under some conditions the heat transfer ¢, to a surface may be assumed constant.
According to Sect. 1.1.3 this is a second kind of BC. That may happen, e.g. when
the incident radiation to a surface is very high in comparison to the losses by
emitted radiation and convection which then can be neglected. Then at a point at a
distance x from the surface the temperature is

T(xJ)—T,-:q'Z\/]_[\z/l%-Aﬁ-') ;( —er \/_ﬂ (3.28)

where the thermal diffusivity a = k/(c - p). At x =0 the surface temperature T
vs. time becomes

24,V
Vi -VEpc

Thus the time to reach a given temperature rise assuming constant heat flux
(for example, time to ignition) at the surface becomes

T, —T; = (3.29)

- k-p

tig = . C( -1’ (3.30)

where #;, and T}, are the time to ignition and the ignition temperature, respectively.

3.2.3 Constant Gas Temperature: Third Kind of BC

When a surface is exposed to a fluid at a temperature T, the heat flux to the surface is

i\ =-k(%) =nr. - 1) (331)
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Fig. 3.10 Temperature T
distribution in a semi- T
infinite body exposed to a g

third kind of boundary T\

condition s

T(x,t)

where / is the heat transfer coefficient and T is the surface temperature. This is a
third kind of BC according to Sect. 1.1.3. In the case T, and & are constant the
temperature distribution may after some time develop as indicated in Fig. 3.10.

Then the relative temperature change at a distance x from the surface can be
calculated as

L}: ’E_TiT" =1—erf(X) — el %) {1 —erf (X + \@)} (3.32)

where the temperature T(x, ¢) is a function of time and depth and 7; is the initial
temperature. The non-dimensional length

X
X = 3.33
2ot ( )
and the time constant for the semi-infinite case is here defined as
k-p-c

The temperature at the surface is of interest in many fire protection engineering
problems such as predictions of time to ignition. The relative temperature change
may be obtained from Eq. 3.32 for x = 0 as

Tsz,'_ L _or E
R A [1 ef(\/;ﬂ (3.35)

or when expressed with the complementary error function as

T, —T; :
ﬁ =1l—e- erfc(\/%> (3.36)

The relative surface temperature rise may also be obtained from the diagram of
Fig. 3.11 or from Table 3.3.
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Equation 3.33 indicates that the relative surface temperature rise vs. time
depends, for a given heat transfer coefficient 4, on the material parameter group
the thermal inertia. The thermal inertia is very important in FSE as it governs how
fast a surface reaches among other things ignition temperatures. It varies consider-
ably for many common materials as shown in Table 1.2. Materials of low density p
have in general also low conductivity k¥ which enhances the differences between
materials of various densities. The specific heat capacity varies only relatively little
between common materials. More on the influence of thermal inertia on ignition is
discussed in Sect. 8.2.

Example 3.4 A 300-mm-thick concrete slab has reinforcement bars at a depth of
30 mm from the bottom surface. The slab is suddenly exposed from below to a fire
having a constant temperature of 7y = 900 °C. Assume the initial temperature of
the slab T; =20 °C and the thermal conductivity of the concrete, k= 1.0 W/(m K),
density, p =2300 kg/m>, and the specific heat capacity, ¢ =800 J/(kg K).

(a) What is the surface temperature T of the slab after 10 min of fire exposure?
Assume the total heat transfer coefficient due to radiation and convection is
constant, 7 =75 W/m? K.

(b) How long does it take until the reinforcement reaches a temperature of 500 °C.
Assume in this case that the surface instantly gets the fire temperature, i.e. the
heat transfer resistance can be negligible.

(c) Estimate how long it takes until the temperature 300 mm from the bottom of
the slab, i.e. at the top surface of the slab, has risen by approximately 10 °C
(assuming that the slab is infinitely thick)?

Solution (a) Assume the slab is semi-infinite and apply Eq. 3.35
L= 1P =75 e = 183 and insert into Eq. 3.35 (or use
Fig. 3.11 or Table 3.3) to get % =0.65. Thus
To =20+ (900 — 20) - 0.65 = 593 °C.

(b) Apply Eq. 3.22, 3803 = 0.545 = 1 - erf (527) thus (537) = 043 from

both erf and erfc are shown in Fig. 3.9 as functions of the dimensionless

parameter group x/ (2\/(xt).

Table 3.2 or Fig. 3.9. Then with x =0.03 m and @ = 338 = 0.543 - 107 m? /s

Eq.3.27, 8001 = 0.3 = 3.6Vt = t =508 =128-10°s =3.5h.

the time can be calculated as ¢

Example 3.5 The surface temperature of a thick concrete wall with an initial
temperature T; = 20 °C rises suddenly to Ty = 1000 °C. Assume constant concrete
properties according to Table 1.2, i.e. ¢ =900 Ws/(kg K), p=2300 kg/m’ and
k=1.5 W/(m K).


http://dx.doi.org/10.1007/978-3-319-30172-3_1
http://dx.doi.org/10.1007/978-3-319-30172-3_8
http://dx.doi.org/10.1007/978-3-319-30172-3_1
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Fig. 3.11 The relative surface temperature change of a semi-infinitely thick body (Ty —T7;)/
(Tg — Ti) vs. dimensionless time t/t according to Eq. 3.35. (a) Dimensionless time ¢/ < 30. (b)
Dimensionless time ¢/7 < 3

(a) Plot a diagram of the temperature distribution at 30, 60 and 120 min.
(b) What are the temperature penetration depths at 30, 60 and 120 min?
Guidance: Assume 1 % accuracy, i.e. o1 = 3.6/a - t.
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(c) After how long time will the temperature of a reinforcement bar at a depth of
30 mm from the exposed surface start to rise?

Guidance: Assume 1 % accuracy.

(d) How thick must the wall be to be considered infinitely thick when calculating
the temperature at 30 mm from the exposed surface at 30, 60 and 120 min?
Guidance: Assume 1 % accuracy and that the temperature change goes to the
rear surface and back to the reinforcement bar.

Solution The temperature diffusion a = 1.5/(300 - 2300) = 0.821 - 10~° m%/s.

(a) See Fig. 3.12.

(b) Equation 3.27 yields the penetration depth Jpo; = 138 mm, 196 mm
and 277 mm, respectively, for 30, 60 and 120 min.

(c) Equation 3.27 yields ¢t = (%)2/(0.821 . 10’6) = 845s.
(d) The distance x+ (x —0.03) must be longer than the penetration depths (see

arrows in Fig. 3.13). Thus the wall thickness x > 0.5- 8901 + 0.03 which
yields the thicknesses 99, 128 and 168 mm, respectively, for 30, 60 and 120 min.
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Fig. 3.12 Temperature distributions at various times. Example 3.5
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Example 3.6 A very thick concrete wall is penetrated by a steel beam. It is
suddenly exposed to high temperature on one side. Estimate roughly how long it
takes before the temperature rise is felt on the unexposed side.

(a) On the concrete surface away from the beam.
(b) On the steel beam surface.

Material properties according to Table 1.2.

Solution The thermal diffusivity of concrete is 0.82 - 10~® m?/s and for mild steel

_ . 2. 2
12.7-107°. Then Eq. 3.26 yields r = 1 - (%), i.e. 1 = ggrig - (3%)" = 62 for

the concrete surface and only 4 s for the steel surface.

Example 3.7 The surface of a thick pine wood panel with an initial temperature
T; = 20 °Cis suddenly exposed to hot gases with a temperature of 7, = 600 °C.
Assume a constant heat transfer coefficient # =50 W/(m? K). What is the surface
temperature T and the heat flux q;’ at time t=0, 30 and 120 s. Assume thermal
properties of pine according to Table 1.2.

Solution According to Eq. 3.34 7= (k-p-c)/h* = 0.196 - 10°/50° = 78.4s.
Then t/z = 0/78.4, 30/78.4 and 120/78.4, respectively, and the function (1 —
exp(t/7) - erfe (/%) is according to Table 3.3 equal to 0, 55 and 0.73, respectively,

and the surface temperature can be obtained from Eq. 3.35 as T7,(0) =
20 + (600 — 20) - 0 = 20°C, T5(30) =20 + (600 — 20) - 0.44 =
275 °C and T,(120) =20 + (600 — 20) - 0.63 = 385 °C. The corresponding
heat fluxes become according to Eq. 3.31 ¢.(0) =350 - (600 — 20) =
29 - 10° W/m?,4.(30) = 50 - (600 — 275) = 16.3 - 10> W/m?and ¢, (120)
=50 - (600 — 385) = 10.8 - 10° W/m?. Notice that the heat flux is high in the
beginning and then reduced by almost two thirds after 120 s.


http://dx.doi.org/10.1007/978-3-319-30172-3_1
http://dx.doi.org/10.1007/978-3-319-30172-3_1

Chapter 4
Boundary Conditions in Fire Protection
Engineering

A summary of the three kinds of boundary conditions as outlined in Sect. 1.1.3 is
shown in Table 4.1. The third kind of BC sometimes called natural BC is by far the
most important and common boundary condition in fire protection engineering,
while the first and second kinds of BCs can rarely be specified. The third kind of BC
may be divided into three subgroups, (a), (b) and (c). The subgroup (b) and (c) are
particularly suitable for fire engineering applications. Subgroup (a) is applied when
the heat transfer coefficient may be assumed constant as assumed in Chaps. 2 and 3.
T, is then the surrounding gas temperature. In fire protection engineering it is,
however, generally not accurate enough to assume a constant heat transfer coeffi-
cient as in particular heat transfer by radiation is highly non-linear, i.e. the heat
transfer coefficient varies with the surface temperature. Therefore the subgroups
(3b) and (3c) are the most commonly applied. They consist of a radiation term and a
convection term with the corresponding emissivity € and convection heat transfer
coefficient &, respectively. The subgroup (3b) presupposes a uniform temperature
T}, i.e. the radiation temperature and the gas temperature are equal. This is assumed,
for example, when applying time—temperature design curves according to standards
such as ISO 834 or EN 1363-1 for evaluating the fire resistance of structures, see
Chap. 12. The subgroup (3c) is a more general version of (3b) as it allows for
different gas T, and radiation T, temperatures, so-called mixed boundary condi-
tions. Alternatively o-T* may be replaced by an equivalent specified incident
radiation ¢ ;. according to the identity ¢ ; =o - T* (Eq. 1.17). As shown in Sect. 4.4
all boundary conditions of subgroup 3 may be written as type 3a. That means
momentarily a single effective temperature named the adiabatic surface tempera-
ture (AST) with a value between the radiation and gas temperatures as well as a
corresponding total heat transfer coefficient can always be defined, see Sect. 4.4.
All the specified boundary conditions given in Table 4.1 may vary with time. In
most calculations the emissivity and the convection heat transfer coefficient are,
however, assumed constant while the radiation and gas temperatures may vary
according to standard, measured or calculated values, see Chaps. 10—12.
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Table 4.1 Summary of the three kinds of boundary conditions. The third kind is divided into three
subgroups relevant in FSE

No | Kind of boundary condition Formula
1 Prescribed surface temperature Ty, =T
2 Prescribed surface heat flux —K| =4
Ox lx=0 s
(3a) | Natural boundary condition (prescribed —k% 0= h(Tg _ Ts)
convection) =
(3b) | Natural Iboundary c.()n.clltlon (prescrl.be.d _ k% L, =¢0 (T}‘ _ T;t) + he (Tf _ Ts)
convection and radiation, equal radiation
and gas temperatures)
(3c) | Natural boundary condition (prescribed —k% o =E (;(T‘r‘ — T?) + h, (T . — Ts)
convection and radiation conditions, differ- | . =
ent radiation and gas temperatures
gas (emperatures) K|y = eld e — oT!) + he(T, ~ 1)
or
—k&L| _y = hast.o(Tast — T)

4.1 Radiation and Incident Radiation Temperature

The black body radiation temperature T, was introduced in Sect. 1.1.3 by the
identity

=0T (4.1)

\/ Line (4.2)
O

A more adequate term would be incident black body radiation temperature as

or reversely

T,

;. depends on direction. By definition 7, is the temperature of a surface in
equilibrium with the incident radiation, i.e. the absorbed heat by radiation is
equal to the emitted heat.

Figure 4.1 shows the relation between the incident radiation (j;’m, and the
radiation temperature 7, as defined by Eq. 4.1. T, may be given in Kelvin as in
Eq. 4.1 (lower curve) and in °C (upper curve). The temperature shift between the
two temperature scales is 273.15 K, i.e. [temperature in Kelvin] = [temperature in
°C+273.15]. In Table 4.2 the relations between ¢, and T, are given at selected
levels. Thus, for example, an incident radiant flux of 20 kW/m? corresponds to a
black body radiation temperature of 771 K =498 °C, and a radiation temperature of
1000 °C = 1273 K corresponds to an incident radiant flux of 148.9 kW/m?>.

The net heat flux by radiation to a surface is according to Eq. 1.16


http://dx.doi.org/10.1007/978-3-319-30172-3_1
http://dx.doi.org/10.1007/978-3-319-30172-3_1
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Fig. 4.1 Incident radiation heat flux c];/m vs. incident radiation temperature 7T,. The upper curve
refers to temperature in °C and the lower to Kelvin as in Eq. 4.1

Grug =€ 0(TH =T (4.3)
Alternatively it can be “linearized” and written as
Grag = he(T, = T) (4.4)

where the radiation heat transfer coefficient h, is obtained by developing the
parentheses of Eq. 1.16 according to the conjugate rule:

hy=e- O-(T% + T?) ’ (Tr' + TS) (4-5)

As shown in Fig. 4.2 the radiation heat transfer coefficient 4, varies significantly
depending on the radiation and surface temperatures. At room temperature it is less
than 5 W/(m? K) while it is between 150 and 400 W/(m> K) or even more at
temperature levels relevant in fire scenarios.

In many cases T, and T are close and may be assumed equal. Then 4, can be
approximated as

hy~de-6-T (4.6)

and the radiation heat transfer coefficient becomes then depending on the incident
radiation


http://dx.doi.org/10.1007/978-3-319-30172-3_1
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Table 4.2 Incident radiation
heat flux ¢ ;. and
corresponding radiation
temperatures, absolute 7,

[K] according to Egs. 4.1
and 4.2, and T [°C]

4 Boundary Conditions in Fire Protection Engineering

(a) Selected incident radiation ¢ ;. levels

T, T T, T
Gine (kW/m*] | [K] | [°C] | gy (kW/m*] |[K] |[°C]
1 364 91 40 916 643
2 433 160 45 944 671
3 480 206 50 969 696
4 515 242 55 992 719
5 545 272 60 1014 741
6 570 297 65 1035 762
7 593 320 70 1054 781
8 613 340 80 1090 817
9 631 358 90 1122 849
10 648 375 100 1152 879
12.5 685 412 110 1180 907
15 717 444 120 1206 933
17.5 745 472 145 1265 991
20 771 498 170 1316 1043
25 815 542 195 1362 1089
30 853 580 220 1403 1130
35 886 613 250 1449 1176
(b) Selected radiation temperature (7, — 273) °C levels

T, Ginc T: Ginc

T[Cl |[K] | [kW/m’] |T[°C] |[K] [kW/m’]
100 373 1.10 550 823 26.01
120 393 1.35 700 973 50.82
140 413 1.65 750 1023 62.10
160 433 1.99 800 1073 75.16
180 453 2.39 850 1123 90.18
200 473 2.84 900 1173 107.34
225 498 3.49 950 1223 126.85
250 523 4.24 1000 1273 148.90
300 573 6.11 1050 1323 173.71
325 598 7.25 1100 1373 201.50
350 623 8.54 1150 1423 232.49
375 648 10.00 1200 1473 266.93
400 673 11.63 1250 1523 305.06
425 698 13.46 1300 1573 347.13
450 723 15.49 1350 1623 393.42
475 748 17.75 1400 1673 444.19
500 773 20.24 1450 1723 499.72
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various surface temperatures 7 assuming e = 1. (a) T, < 1000 °C. (b) Enlargement, T, < 300 °C



50 4 Boundary Conditions in Fire Protection Engineering

h~deifo-q3, (4.7)

by combining Eqgs. 4.1 and 4.6. Observe that Eqs. 4.6 and 4.7 apply only when the
radiation and surface temperatures are approximately equal but they may be used as
rough estimates.

Example 4.1 Calculate the radiation heat transfer coefficient 4,, (a) in the heating
phase of a fire when the radiation temperature 7, = 1000 °C and the surface
temperature 7y = 600 °C and (b) in the cooling phase when T, = 200 °C and
T, = 500 °C. Assume the surface emissivity € = 0.9.

Solution Equation 4.5 yields:

(@) h,=0.9-5.67-10%(1273% + 873%) - (1273 + 873) = 261 W/(m? K).
(b) h,=0.9-567-10"%(473% +773%) - (473 + 873) = 52 W/(m* K).

4.2 Non-linear Convection

The heat transfer by convection depends on the difference between the gas tem-
perature T, and the surface temperature 7. In the simplest form it is just propor-
tional to the difference as when assuming Newton’s law of cooling. More generally
the convection heat transfer may be calculated as

fizan = ﬂ(Tg - Ts)y (4.8)

where the power y is equal to one for forced convection and greater than one for
natural or free convection. See Chap. 6 for details on how heat transfer by
convection can be obtained for various configurations and flow conditions.

Throughout this document the convection heat flux is written in the linear form
as

qlc’vn = h“ (Tg - TS) (49)

where the convection heat transfer coefficient can be identified by comparison with
Eq. 4.8 as

he = (T, —T)"" (4.10)

More on the physical phenomena of convection heat transfer and how it can be
estimated is given in Chap. 6.


http://dx.doi.org/10.1007/978-3-319-30172-3_6
http://dx.doi.org/10.1007/978-3-319-30172-3_6
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4.3 Mixed Boundary Conditions

The total heat flux to a surface is the sum of the radiation and the convection
contributions and may according to Egs. 4.3 and 4.9 be written as

Qi = (@ =0 TE) +he(Ty = T0) (4.11)

or by expressing the incident radiant flux by the radiation temperature as defined by
Eq. 4.1

"

Ge=¢0(T} =T} +h (T, — Ty) (4.12)

This equation contains two boundary temperatures, the radiation temperature
and the gas or convection temperature. It may then be called mixed boundary
conditions.

An electric circuit analogy of a mixed boundary condition with two temperatures
and two corresponding heat transfer resistances is shown in Fig. 4.3.

If the radiation heat transfer coefficient 4, as defined by Eqs. 4.5 or 4.6 is used we
can get

G =M (Tr = T,) + he(Ty — T) (4.13)
or in terms of thermal resistances
G = [(T; = Ts) /Ry + (Ty = T) /R] (4.14)
where the radiation heat transfer resistance (cf. Egs. 2.14 and 4.5)

1 1
R =- = 4.15
he e-o(T; +T7) - (T, +T,) (4.15)

and the corresponding convection heat transfer resistance
R, =~ (4.16)

In most fire resistance cases and calculation standards such as EN 1991-1-2
(Eurocode 1) dealing with exposure to post-flashover room fires, the radiation
temperature and the gas temperature are assumed equal to a fire temperature
Ty =T, =T,. Then the total heat transfer becomes


http://dx.doi.org/10.1007/978-3-319-30172-3_2
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Fig. 4.3 Electric circuit T

analogy of mixed boundary 8 “

conditions according to T
Eq. 4.14 5

Solid
T
Qi =e-o(T} = TH) + he(T; ~ 7)) (4.17)
This equation may also be written as
o Tf - TS
9 10t = htot(Tf - Ts) = ( R —) (418)
tot
where
b = hy e = &0 (T3 +T2) - (Tt +T) + he (4.19)
and
R = ! (4.20)
tot — l’lmt .

Example 4.2 A surface in air at ambient temperature of 7, = 25 °C is exposed to
radiation from a thick flame at a temperature of 800 °C. Assume the surface
emissivity e =1 and the convection heat transfer coefficient 4. =50 W/m? K?

(a) What is the radiation heat transfer coefficient 4, if the surface temperature T is
600 °C.

(b) Use the calculated A, to calculate the total heat transfer c};’m to the surface.

Solution

(a) Equation 4.5 yields h, =211 W/m>.

(b) Equation 4.13 yields
4o = [211- (800 — 600) + 50 - (25 — 600)] W/m? = 13,500 W/m?.
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Thermal exposure of a surface depends according to Egs. 4.11 and 4.12 on two
independent parameters 7, (or qm() and T, and can then in principle not be
expressed by one single parameter. The radiation and gas temperatures are in
general not equal. The radiation temperature may be either higher or lower than
the adjacent gas temperature. Equations 4.11 or 4.12 can always be applied.
Alternatively, however, the heat transfer may be written with one parameter only,
given the relation between the emissivity and the convective heat transfer coeffi-
cient h./e is known. Then an artificial effective temperature denoted AST T 457 can
replace T, and T,. A very important advantage of introducing AST is that it can be
measured also under harsh fire conditions with the robust so-called Plate Ther-
mometers as described in Sect. 9.3, and it can be obtained from numerical calcu-
lations with fire modelling codes such as FDS (Fire Dynamic Simulator) [10].

The AST depends on position as well as on direction. For example, at a point
outside a fire as illustrated in Fig. 4.4 the highest incident radiation is in the
direction A from the fire while from other directions it is less. Therefore in this
case T4g; > T5,. In general at any point in space six different incident fluxes can
be identified and thereby six different ASTs, but only one gas temperature T,.
However, in most cases it is obvious that only one direction is of interest, namely
perpendicular to an exposed surface.

By definition T 457 is the temperature of a surface which cannot absorb any heat,
ie.

€(q ;'/nc — 0 Tj;ST) + he (Tg - TAST) =0 (421)

and with the relation between ¢ ;. and T, according to Eq. 4.1
e-o(T} —Tigy) + he(Ty — Tasr) =0 (4.22)

Tast i1s a weighted average value of the radiation temperature 7, and the gas
temperatures T, depending on the surface emissivity & and the convection heat
transfer coefficient /.. Thus it is a function of T;, T, and the parameter ratio /./e, but
independent of the surface temperature T of the exposed body. From Eq. 4.22 it is
evident that T4sr has a value between T} and T, as being illustrated by Fig. 4.5. The
larger values of h./e, the closer T4sy will be to T, and vice versa the smaller values
of h./e the closer the value of T, will be to T,. In other words, when the heat
transfer by convection is dominating T 457 is near the gas temperature and when the
radiation is dominating it is closer to the radiation temperature.

The AST may be derived from Eq. 4.22 as


http://dx.doi.org/10.1007/978-3-319-30172-3_9
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Fig. 4.4 The incident T

radiation and thereby the 2 B
radiation temperature -" mee ] AST
depends on direction while 4

\ A
the gas temperature does not \ T AsT

T, Tast T,

Temperature

Fig. 4.5 The adiabatic surface temperature T gy is always between the radiation temperature T,
and the gas temperature T,. The higher value of the parameter ratio h./e, the closer Txgt Will be to
T, and vice versa

h Ty +he T,

4.23
hr _|_ hc ( )

Tast =

The equation is, however, implicit as 4, depends on T4 g7.
By combining the general heat transfer equations 4.12 and 4.22 the total heat
transfer to a surface may alternatively be calculated as

"

G =€ 0(Thsy — T3) + he(Tast — Ty) (4.24)

Instead of two temperatures, 7, and T,, the fire temperature level is now in
Eq. 4.24 expressed only by one temperature T,s7. This may have computational
advantages but most important 7T4¢7 can be measured even at very harsh thermal
conditions with so-called Plate Thermometers, see Sect. 9.3.

Figure 4.6 illustrates how the two exposure boundary temperatures 7). and T, are
combined into one effective exposure boundary temperature, namely the AST T4g7.
This alteration does not introduce any further approximations of the heat transfer
conditions.


http://dx.doi.org/10.1007/978-3-319-30172-3_9
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Fig. 4.6 The heat exposure a b

of a surface expressed in h h
terms of (a) the radiation c ¢
temperature 7, and the gas Tg Tpsr
temperature T, or

alternatively in terms of (b)

the adiabatic surface :> ::>

temperature Tast L. Tasr

4.4.1 Calculation of Adiabatic Surface Temperature
and Incident Radiation

When the incident radiation flux ¢ ;. (or the equivalent T,) and the corresponding &
and &, are known, the AST T,sr can be obtained by solving the fourth degree
equation according to either Eq. 4.21 or Eq. 4.22. Below two iteration schemes and
one exact method are mentioned.

In many cases when the radiation is dominating 7457 can be obtained by the
iteration procedure

; h .
Tir = {/Tﬁ T _CU (Ty = Thsr) (4.25)
where the suffix i and i+ 1 denotes the iteration number. By starting the iteration
with T}¢; = T, the result converges generally within a few iteration steps. Other-
wise especially when the convection is dominating a Newton—Raphson iteration
scheme may be needed.

An exact solution has been presented by Malendowski (personal communica-
tion). Then after elementary algebraic operations, Eq. 4.21 can be written as:

-0 They + hTast + (78 G — thg) =0 (4.26)

which is the fourth order polynomial equation with 747 as the variable. It may be
written in the form:

a- Tf;sr +b -Tysr+c=0 (4.27)

where the coefficients of the polynomial can be identified as: @ = ¢ - 0, b = h, and
¢ =—(e G+ hT,). Eq. 4.27 has generally four roots but the only physical can
in the actual case be written as:
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1 2b
Tast == | —M == M 4.28
AST =5 < + M ) ( )
where
Y (4.29)
a y
and where

2
o= \/\3 V2T — 256070 + 9a- P f = 4&/3%‘ y=vVi8a  (4.30)

Thus by inserting the parameters of Eq. 4.30 into Eq. 4.29 and then into Eq. 4.28
the solution may be expressed in an exact closed form.

Examples of AST vs. incident radiation temperature for various gas temperature
levels and relations between surface emissivity and convection heat transfer coef-
ficient are shown in the graphs of Fig. 4.7a—d.

When T g7 is obtained, e.g. by measurements with PTs, the incident radiation

c]:-/m, can be derived from Eq. 4.21 as
o 4 hC
Gine =0 Tpsr — - (Ty — Tasr) (4.31)

The accuracy of Eq. 4.31 depends very much on the accuracy of the parameter
ratio h./e. However, in most cases at elevated temperature the second term on the
right-hand side is small and therefore the accuracy can be relatively high in
comparison to alternative instruments available in practice. See also Sect. 9.3.2
how the so-called plate thermometer can be used for indirectly measuring incident
radiant heat flux by measuring T,sr and then applying Eq. 4.31.

4.4.2 An Electric Circuit Analogy of the AST Boundary
Condition

The radiation term of Eq. 4.24 may be developed in a similar way as shown by
Eq. 4.5. Then the adiabatic radiation heat transfer coefficient /257 may be intro-
duced, and the heat flux can be written as

Gy = WS (Tasr — T3) + W57 (Tasr — T) (4.32)


http://dx.doi.org/10.1007/978-3-319-30172-3_9
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or in terms of heat transfer resistance according to Eq. 4.20, the radiation and
convection heat transfer resistances over an area A are the inverses of the heat
AST AST
hP and W27,

transfer coefficients,

alZDO T
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Fig. 4.7 The adiabatic surface temperature T 457 (in °C) vs. the radiation temperature T, (in °C) for

various ratio between the convection heat transfer coefficient and the emissivity as defined by
Eq. 4.22. Diagrams for gas temperatures T, = 20, 50, 100 and 500 °C, respectively
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Fig. 4.8 An electric circuit

analogy of mixed boundary m

conditions at a surface of a

solid according to Eq. 4.33 Tast Ts
Solid
R AST
r

Fig. 4.9 An electric circuit
analogy of mixed boundary
conditions at a surface of a

Tasr T.

solid according to Eq. 4.34

o 1 1
9= RAST (Tast — Ts) +W (Tast — Ty) (4.33)

C

The electric circuit analogy is shown in Fig. 4.8. A total adiabatic heat transfer

coefficient hA3T and a corresponding total adiabatic heat transfer resistance RAST

can also be defined. Then the total heat transfer to a surface may be written as
Gror = Moy (Tasr = Ts) = (Tast — T5) /R (4.34)
where the total adiabatic heat transfer coefficient becomes
ST = ST ST (4.35)
The adiabatic radiation heat transfer coefficient then becomes
ST = e 0(Ther +T7) - (Tast + Ty) (4.36)

and the total adiabatic heat transfer resistance becomes

1
AST _
Ry = ST 4 ST (4.37)

The convection heat transfer coefficient remains the same as it is here assumed
independent of the exposure temperature, i.e.

ST = b, (4.38)

A corresponding electric circuit analogy of a mixed boundary condition is shown
in Fig. 4.9.
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Thus it is shown that the general fire boundary condition according to Eq. 4.12
can be expressed as a third kind of boundary condition, see Table 4.1.

4.4.3 Boundary Condition Expressed as “Heat Flux”

The thermal exposure conditions are often in FSE literature specified as “heat flux”
by radiation and convection although boundary conditions of the second kind can
rarely be specified in FSE problems. It is, however, implicitly understood that the
“heat flux” ¢ ;ux is to a surface being kept at ambient temperature T, and having an
emissivity equal unity. Then the heat flux ¢ :m by radiation and convection to a real
surface at a temperature T and an assumed convective heat transfer coefficient 4 to
be the same as when defining the heat flux becomes:

"

q:ot = qflux - O-(Tg - Tio) - h(Ts - Toc) (439)

This is now a boundary condition of the third kind as the heat flux to the surface
depends on the receiving surface temperature T,. By comparing the heat fluxes as
expressed by Eqgs. 4.39 and 4.31, it can be shown that for given values of the heat
transfer parameters € and / there is an unambiguous relation between the two

artificial boundary parameters ¢, and Tgr, i.e.
r_ 4 4
diux = € 0(Thsy — Too) + h(Tast — T) (4.40)

Notice that relation between g ;,, and T, is unambiguous and independent on the
surface temperature T.

For an ambient temperature T, = 20 °C and three combinations of € and /, the
relations between AST T 457 and the “heat flux” ¢, are shown in Fig. 4.10. As an
example for e=1.0 and h=10 W/(m* K), a “heat flux” q;’]ux = 10 kW /m?
corresponds to an AST Tusr ~ 330 °C. However, if instead the convection heat
transfer coefficient #=20 W/(m? K) then the corresponding AST is reduced to
Tast ~ 280 °C. Thus the assumed values of € and / have a significant influence on
the relation between Tys7 and ¢, .

4.4.4 Calculation of Time Constants for Bodies Exposed
to Mixed Boundary Conditions

The concept of adiabatic heat transfer resistance as defined in Eq. 4.37 may be used
to calculate the temporal response characteristics (time constants) of bodies
exposed to radiation and simultaneously to convection. The time constant for
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Fig. 4.10 Relation between adiabatic surface temperature 7457 and heat flux ‘i;m to a surface at

ambient temperature (20 °C) for various combinations of surface emissivities € and convection
heat transfer coefficients /

bodies exposed to uniform temperatures is described in, e.g. Sect. 3.1. As a general
rule the time constant of bodies exposed to radiation decreases significantly when
the temperature level increases as in many FSE scenarios.

Example 4.3 The maximum incident radiation from the sun at the earth’s surface
perpendicular to the sun’s rays is approximately 1 kW/m?. What is the equilibrium
temperature of perfectly insulated surface perpendicular to the rays when

(a) The convection is negligible.
(b) The air temperature is 20 °C, the convection heat transfer coefficient is 10 W/
(m? K) and the surface equal unity.

Assume a surface emissivity independent of the wavelength.
Solution

(a) Equation 4.1, Table 4.2 or Fig. 4.1 yields the equilibrium temperature 364 K or
91 °C.

(b) Equation 4.22 or Fig. 4.7a yields T, = 91 °C and h/e =10 W/(m? K) and the
equilibrium temperature (AST) 55 °C.

Example 4.4 A surface with a temperature of T, =200 °C is exposed to an
incident radiation of ¢;, = 50kW/m? and a gas temperature of T, =150 °C.


http://dx.doi.org/10.1007/978-3-319-30172-3_3
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The surface emissivity is 0.9 and the convection heat transfer coefficient 10 W/(m>
K). Calculate

(a) The radiation temperature.

(b) The radiation heat transfer coefficient.

(c) The AST Tys7.

(d) The heat transfer to the surface using Eqgs. 4.11 and 4.12, respectively.

(e) The heat transfer to the surface applying Tss7using Eq. 4.31.

(f) The adiabatic radiation heat transfer coefficient and adiabatic heat transfer
resistance.

(g) The heat transfer to the surface using Eq. 4.34.

Solution

(a) Equation 4.1 yields T, = /2210 = 969 K = 696 °C.

(b) Equation 4.5 yields &, = eo(T? + TZ)(T, + T,) = 0.9-5.67 - 10~% - [969*+
473%] - [969 + 473] = 85.5 W/(m? K).

(c) Equation 4.21 or Eq. 4.22 yields by iteration Txsr = 940 K(= 667 °C).

(d) Equation 4.11 yields g, = &(q . — oT?) +he(Ty — T) = 0.9+ (50 - 10°—
5.67-107% - 473%)+ 10 - (150 — 200) = 42,440 — 500 = 41,940 W/m>, or
alternatively Eq. 4.12 yields ¢, = eo(T} —T3) + h. (T, — T,) = 0.9-5.67 -
107 - (969* — 473*) 4+ 10 - (150 — 200) = 42,440 — 500 = 41,900 W/m>.

(¢) Equation 431  vyields Gl =eo(Thq —T*) + he(Tasr — T,) =
0.9-5.67-107% - (940* — 473%) + 10 - (940 — 473) = 41,900 W/m>.

(f) Equation 4.36 yields h™" =047-09-4-567-107°-940° = 80 W/
(m?>K). Then A%T =80 + 10 = 90W/(m?>K). RST =1/pk" =
0.011 (m*>K) /W.

(g) Equation 4.34 yields ¢,, = 90- (940 — 473) = 42,000W /m?.

Example 4.5 A wall consists of a wooden panel with a thickness of d,,,q = 25

mm and a conductivity kypos = 0.1 W/(m - K) and a mineral wool insulation with a
thickness dj;; = 100 mm and a conductivity k;,; = 0.02 W/(m - K) as shown in
Fig. 4.11. The surface temperatures 7| = 100 °Cand T3 = 20 °C. Calculate the heat

flux ¢" through the assembly and the temperature T».
Solution

The heat flow through the assembly

» T, —T
7S Nt 80 = 80 =30.5W/m?

(Ri +Ry)  [(%42) + (395)]  [0.12 4-2.5]
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Fig. 4.11 Properties of T,=100°C T, T;=20°C
insulated wooden wall, [ | |
Example 4.7 dy0y=0.012  d,, =0.05m
K 00a=0-1 k. ;,=0.02 W/(m-K)
>
q]]
Wood Mineral wool
Ry 0.12
T, =T, — T, —T3) =100 — —— (100 — 20
2 ! R1+R2( 1= T3) (0.12+2.5)( )

=100 —3.66 = 96.3°C

Notice that the thermal resistance of the wood panel is much small than that of
the insulation and therefore the interface temperature becomes close to that of the
wood panel.

Example 4.6 A 30-mm-thick steel sheet is exposed to a gas temperature
T; =500 °C on one side and 20 °C on the other. Calculate the heat flux through
the sheet and its surface temperatures. Assume a heat transfer coefficient
h=100 W/(m” K) on the hot side (1) and 20 W/(m” K) on the other (side 2). The
steel conductivity £ =50 W/(m K).

Solution
The thermal resistance over a unit area is the sum of the heat transfer resistance and

" T - T
conductive resistance. Thus the heat flux through the panel¢ = S e L
Ryt + Ry + Rip
500 — 20 480

(L) 5 (°50) 1 (2)] ~ (0.01 100006 0.05) " W/m? and,

100 50 20
500 - (0.0006+0.05) +20-0.01
(0.0l+0.0006+0.05)

=465 °C and

e.g. according to Eq. 2.12 T, =

~ 500 - 0.05+20 - (0.0006+0.01)

(0.01+0.0006+-0.05)
change over the steel sheet is relatively small as thermal heat transfer resistances
dominates.

2 =416 °C. Notice that the temperature

Example 4.7 Calculate the surface temperatures T at a steel sheet surface, see
Fig. 4.12, when the heat flux through the steel sheet is ¢ = 5 kW /m?2. The panel is
25 mm thick and the temperature on the other side 7, = 20 °C. Assume the
conductivity of steel k=50 W/(m K).


http://dx.doi.org/10.1007/978-3-319-30172-3_2
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Fig. 4.12 Properties of { T,
wood panel in one I
dimension, Example 4.8

7,;=100 °C d, g =0.025 m T,,=20°C
hgi=20 W/(mK) | Kooy =0.2 W/m-K) | h,;=5 W/(m?K)
.
o I -
q
Wood

Solution
Ty =T, + (%% 5000) =20+ 2.5 =22.5°C.

Example 4.8 Calculate the surface temperatures T, and T, of the wood panel when
surrounded by temperature Tg; = 100 °C and T4, = 20 °C on the left and the right
side, respectively. Consider heat transfer by convection assuming the heat transfer
coefficients 4; = 20 W/(m? K) on the hot side and 7, = 5 W/(m? K) on the cool
side. The wood panel is assumed to be 25 mm thick and have a thermal conductivity
kywooa =0.1 W/(m K).

Solution Calculate the total thermal resistance over a unit area R, =
Ry +Ry+R,=1/20 + 0.025/0.1 + 1/5 = 0.50 K/W. According to Eq. 2.9

100-(0.025/0.1+1/5)+20-1/20 ! :
| = (0.025/ ;5/ )+20-1/ ) —92 and T, = 100 0.025/0,1+?5(1/20+‘025/0.1)‘ Alterna-
tively the heat flux § = % = 160W/m? at the boundaries two heat balance

equations can be established: (100 —7,)/0.05=160 and (7> —20)/0.2=160
yielding 7; =92 °C and T, =52 °C.

Example 4.9 Calculate the net heat transfer by radiation ¢, to a surface at a

temperature 7 and an emissivity of 0.9 when exposed to an incident radiation heat
flux of 20 kW/m?. (a) Assume Ty = 20 °C, (b) assume T, = 500 °C and (c) what is
the exposure black body radiation temperature 7,?

Solution

According to Eq. 1.15:
@ ¢, =09 [20, 000 — (20 + 273)4} = 17,610 ~ 17.6 kW /m?

(b) ),y =09 20,000 — 6(500 +273)*| = 220 &~ ~0.220kW /m?

o 1/4
(¢) According to Eq. 4.1 T, = [‘H — 771 K = 498 °C


http://dx.doi.org/10.1007/978-3-319-30172-3_2
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Chapter 5
Heat Transfer by Radiation

Heat transfer by thermal radiation is transfer of heat by electromagnetic waves. It is
different from conduction and convection as it requires no matter or medium to be
present. The radiative energy will pass perfectly through vacuum as well as clear
air. While the conduction and convection depend on temperature differences to
approximately the first power, the heat transfer by radiation depends on the differ-
ences of the individual body surface temperatures to the fourth power. Therefore
the radiation mode of heat transfer dominates over convection at high temperature
levels as in fires. Numerical applications of radiation heat transfer in FSE are
outlined in Sect. 4.1.

The description below is mainly taken from [11]. The surfaces are generally
assumed to be grey, which means they absorb and emit radiation that is a fraction of
black body radiation in all directions and over all wavelengths. Hence the hemi-
spherical absorptivity/emissivity of a surface is assumed to be independent of the
nature of the incident radiation and of the spectral properties of, e.g. a fire.

The upper limit of the heat flux leaving a black body surface by radiation is
according to the Stefan—Boltzmann law

o

bb,emi = UT? (51>

where ¢ is the Stefan—Boltzmann constant (¢ = 5.670 - 1078 [W/(m? K)]) and T is
the absolute surface temperature [K]. Figure 4.1 can be used to calculate the emitted
heat by radiation from a black surface vs. temperature in Kelvin, K, according to
Eq. 5.1 or vs. temperature in degree Celsius, °C.

The heat flux ¢, leaving a real surface is, however, less than that of a black
body at the same temperature:

g, =¢e-o-T (5.2)

where ¢, is the emissivity of the surface.

© Springer International Publishing Switzerland 2016 65
U. Wickstrom, Temperature Calculation in Fire Safety Engineering,
DOI 10.1007/978-3-319-30172-3_5


http://dx.doi.org/10.1007/978-3-319-30172-3_4
http://dx.doi.org/10.1007/978-3-319-30172-3_4

66 5 Heat Transfer by Radiation

. . . . . .. .
The incident radiation ¢, to a surface may originate from various sources.
When it includes radiation irrespective of sources it is sometimes called irradiance.
. . . . . oM . .
Only a fraction of the incident radiation ¢ ,,, will be absorbed by a surface, i.e.

"

qabs =0 q;/n( (53)

where «a is the absorptivity of the surface. The rest of the incident radiation is
reflected ¢, or OF transmitted through the surface. The latter term is small for most

materials and is neglected in the presentation below. Hence the reflected radiation
heat flux becomes

q:?f = (1 - aS) : q;’/m' (54)

The net rate of heat flux to a surface by radiation then becomes:

N "

rad = 4 abs — qemi (55)

or after inserting Eqs. 5.2 and 5.3 and given the Kirchhoff’s identity a; = &g, the heat
flux to a surface by radiation becomes (Fig. 5.1)

] Ir/ad = & (q ;’/m' - GTf) (56)

The incident radiation or the irradiation on a surface is emitted by other surfaces
and/or by surrounding masses of gas and in case of fire by flames and smoke layers.
The emissivity and absorptivity of gas masses and flames increase with depth and
becomes therefore more important in large scale fires than in, e.g. small scale
experiments, see Sect. 5.3. In real fires surfaces are exposed to radiation from a
large number of sources, surfaces, flames, gas masses, etc., of different tempera-
tures and emissivities and the incident radiation is in general very complicated to
model. If absorption from any gases is neglected, and if the target surface is small
and therefore the contributions of reflections and re-radiation are neglected, the
incident radiation to the surface can be approximated as the sum of the contribu-
tions c};’nc,i from a number of external sources:

C} inc — qu inc,i (57)

When the source number i is a surface with a uniform temperature 7T; the
contribution is

q.:m',i:gi'Fi'G'T? (58)
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Fig. 5.1 The heat transfer e A
by radiation to a surface gy S
depends on incident

radiation and the absolute
temperature and emissivity 3

4
Qine -".____ qr‘ef qemi

of the surface q.md

where ¢€; is the emissivity of the ith source. F; is the corresponding view factor as
defined in more detail in Sect. 5.2. Like the emissivity it always has values between
0 and 1.

The incident radiation may also be written as a function of the black body
incident radiation temperature, the black body radiation temperature or just the
radiation temperature defined by the identity ¢ ;/ME o-T! (Eq. 1.17).

Thus 7, is a weighted average of the surrounding surface temperatures which can
be obtained by combining Eqgs. 5.7 and 5.8 as

r=i/[(Se o) o] (5.9)

T, can also be defined as the temperature a surface will get which is in radiation
equilibrium with the incident flux, i.e. no heat is transferred neither by convection
nor by conduction from that surface. Compare with the concept of adiabatic surface
temperature, as described in Sect. 4.4, which is the surface temperature when the
net radiation ¢, is in equilibrium with the convection heat flux ¢, .

The net radiation heat flux is obtained by subtracting the emitted radiation
according to Eq. 5.2 from the absorbed:

Qras =&Y (dei) = T!] (5.10)

where ¢, is the emissivity/absorptivity of the target surface.

The surfaces emissivities of some materials are given in Table 5.1. In general the
emissivity of all real/technical materials is in the range of 0.75-0.95 except shiny
steel where the emissivity can be considerably lower. It depends on the temperature
of heat source and decreases in general with the heat source grey body temperature.
Typically values of the absorptivity of plywood drop from 0.86 to 0.76 when the
source temperature increases from 674 to 1300 K [12]. The corresponding value for
radiation emitted from the sun (5777 K) is as low as 0.40. Eurocode 2 [6] and
Eurocode 3 [3] recommend 0.7 for concrete and steel, respectively. The choice of
emissivity is primarily of importance when calculating temperature of fire-exposed
bare steel structures. For lightweight insulating materials the surface temperature
adapts quickly to the exposure conditions and therefore the heat transfer conditions,
expressed by the heat transfer coefficient, are negligible for the temperature
development.
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Table 5.1 Surface emissivity Material Emissivity, €
of some common materials 2
Concrete 0.8
Steel 0.7
Min.wool 0.9
Paint 0.9
Red bricks 0.9
Wood 0.9
Sand 0.9
Rocks 0.9
Water 0.96
The values are uncertain and should be taken as
indicative

“From Eurocode

5.1 Radiation Between Two Parallel Planes and Radiation
Shields

When two infinite parallel plates as shown in Fig. 5.2a are considered, the radiation
view factor is unity as all the heat emitted or reflected at one surface will incident on
the other. Some of that heat will be absorbed and some will be reflected back to the
opposite surface. The net heat flux from surface one to two may be calculated as

"

qmd,172 = 8"6’36(7“11 - TAZl) (51 1)

where the resultant emissivity is defined as

(5.12)

Radiation exposure can be considerably reduced by a radiation shield. Figure 5.2b
shows an example where a shield is mounted between two surfaces. The shield has
no thermal resistance, i.e. its both sides have the same temperature. The radiation
heat flux rate between surface 1 to the shield must equal the flux rate between the
shield and the surface 2,i.e.§ g = _y = G2 OTq rag = res1—sn0 (TT — T%) =
Eres,sh—20(Ty, — T3). Thus the shield temperature to the fourth power can be
derived as

4 4
T4 o eres,lfsth + Sres,sh72T2 513
sh — . ( . )
(Sres, 1—sh + 8res,sh72)

and if all the four surface emissivities defined in Fig. 5.2b are equal to & then
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Fig. 5.2 Radiation heat a b
transfer between two large
parallel plates, without (a)
and with (b) a radiation
shield
T T,
& €
I T,
& &
T | Ton
Esh1 Esh-2
T + T4
| 2
Tsh - T (5 . 14)

and radiation heat flux between the surfaces 1 and 2 becomes

o Eg
4 rad :ma(rf—rz‘)/z (5.15)

Equation 5.14 implies that in the case of equal emissivities, the temperature of,
e.g. a fire radiation shield is closer to the higher (fire) temperature than to the lower
(ambient) temperature. Under the same conditions Eq. 5.15 shows the heat flux by
radiation is reduced by 50 %. A reduction of the common emissivity will reduce
heat transfer correspondingly although it will not change the temperature of the
shield as according to Eq. 5.14 the temperature of the shield is independent of the
emissivity.

Equation 5.15 may be extended to problems involving multiple radiation shields
with all surface emissivities being equal to &;. Then with N shields the heat flux

oM
q 144,y DECOMES

" 1 " l 1
T po = ——o(Tt =T} 5.16
QJad,N (N+ 1)qmd,0 (N T 1) 8;_ 16( 1 2) ( )

where ¢ Zad,o is the radiation heat flux with no shields (N =0) according to Eqs. 5.11
and 5.12 with equal emissivities.

The corresponding formula for the flux between infinitely long concentric
cylinders as indicated in Fig. 5.3 is
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Fig. 5.3 The heat flux from
the inner cylinder (1) can be
calculated according to

Eq. 5.17

100°C

300°C

Fig. 5.4 Uninsulated wooden stud wall

o N [ T?—Tg)
9 rad,1-2 = T 10N
+o-(2-1)

L) €2

(5.17)

LY.

where r; and r, are the inner radii and &; and &, the corresponding surface
emissivities. Notice that if r; < r, or more generally for a small object in a large
cavity the heat flux from the inner object becomes independent of the outer surface
emissivity, i.e.

Grag1 2 =1 0(T] = T3) (5.18)

Example 5.1 The inside surfaces of the boards of an uninsulated wooden stud wall
as shown in Fig. 5.4 have the temperatures 300 and 100 °C, respectively. Calculate
the heat flux by radiation and convection between the board surfaces. The distance
between the boards is 100 mm and between the studs 600 mm. The emissivity of the
board surfaces is 0.9. Assume one-dimensional heat flux.

Solution Equations 5.11 and 5.12 yield Grad = |+.7 -5.67-107%.

(300 +273)* — (100 + 273)4} = 4104 W /m?. For the convection heat transfer,

see Example 6.7. Thus qz = 644 W /m? and the total heat flux

G, = (4104 +644) W/m?> = 4748 W/m?. Notice in this case heat flux by
convection is less than 5 % of the total.


http://dx.doi.org/10.1007/978-3-319-30172-3_6
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Fig. 5.5 Radiation shield £ h
sh''sh

T, Ty T

5 [="=]

Example 5.2 The radiation from a large flame at a temperature Ty = 1000 K is
reduced by a metal radiation shield having no thermal conduction resistance
(Fig. 5.5). The ambient gas temperature T, = 300 K. Calculate the temperature

T, of the shield and the relative reduction of the radiation level ¢" by the shield.
Assume

(a) & =1and h=0.
(b) & =0.5and h=0.
(c) & =1and h=6 W/m> K.

Solution

(a) All “surfaces” have an emissivity equal to unity. Thus according to Eq. 5.14
Ty = ({‘/ 1000* +293%)/2 = 842K and
¢" =5.67-107%.842* =128.5 W/m?, i.e. a reduction by 50 %.

(b) Ty = (\“/10004 +293%)/2 =842K and ¢  =05-285 = 143 W/m?,
i.e. a reduction by 25 %.

(¢) An iteration formula can be derived T'/' = [(\4/ 1000* +293*)— 6/5.67 -

1078 (T}, —293)]/2 yields Ty, = 818K and ¢' =5.67-107%-818* —
25.4 W/m?, i.e. a reduction by 45 %.

Example 5.3 Gas flows through a long tube of r; = 40 mm diameter with an outer
surface emissivity & = 0.3. The tube is concentric with an outer insulation tube
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with an inner diameter , = 100 mm and an inner surface emissivity &, = 0.8. In
case of fire the inner surface of the outer tube is expected to reach a temperature
T, = 1200 K. Calculate the heat transfer by radiation per metre length q’m 4 to the
inner tube when it has a temperature 7; = 500 K.

Solution According to Eq. 5.17 the heat flux to the inner surface is
v 5.67-107%(1200~500*)
Trad =l )

unit length becomes ¢, = 0.040 - 7 - 33,212 = 4173 W/m.

= 33,212 W/m? and the heat transfer by radiation per

5.2 View Factors

When calculating the rate of heat transfer by radiation between surfaces, a method
is needed whereby the amount of heat being radiated in any direction can be
calculated. Therefore the concept view factor is introduced. The terms configura-
tion factor, shape factor and angle factor are also used. The physical meaning of the
view factor between two surfaces is the fraction of radiation leaving one surface
that arrives at the other directly. The symbol F4, 4, is used to denote the view factor
from a surface A, to a surface A,. The symbol F 4, 4, denotes the view factor from
an incremental surface dA; to a finite surface A,. View factors defined in this way
are functions of size, geometry, position and orientation of the two surfaces. View
factors are between zero and unity, and the sum of the view factors of a surface
is one.

Thus by definition the radiation leaving a surface A, arriving at a surface A, is

qinc,172 :Fl—ZAlqemi,l (519)
and similarly the radiation leaving a surface A, arriving at a surface A, is
ql‘nc,271 =F>_1A2q emi,2 (5-20)

A reciprocity relation can be derived which reads

AF1_r = AsFs_, (5.21)
and
A
Foq= A—‘Fl,2 (5.22)
2

In a more general way for any two surfaces i and j
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Fs12=F34t Fs,
AsFs = AsFs + Asfs,
Asof1237AF 3+ AFos

Fig. 5.6 Relations between view factors

AiFi—j :Aij,,‘ (523)
Another useful relation between view factors may be obtained by considering the
system shown in Fig. 5.6. The view factor from the surface A; to the combined
surface A; ; is then

Fs 12=Fs_ 1 +F;3, (5.24)
That is the total view factor is the sum of its parts. Eq. 5.24 could also be written as
AsF3 10 = AsF31 + A3F3 (5.25)

and then the reciprocity relations below can be applied:

A3F3_ 10 =A12F123
AsF3 1 = A1F 3
AsF3_p = AyFy_5 (526)

Equation 5.25 can now be written as

A oF 123 = AF 13+ A3 (5.27)
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That means the total radiation arriving at the surface As is the sum of the radiations
from the surface A; and the surface A,.

The fact that the total view factor is the sum of its parts implies that the view factor
F_5 for the surfaces in Fig. 5.7 can be calculated from tabulated view factors as

Fi3=Fi3—Fi (5.28)

Below some elementary examples are given. A lot more information can be found
in textbooks such as [1, 2, 11].

5.2.1 View Factors Between Differential Elements

The view factor between two differential elements as shown in Fig. 5.8 can be
obtained as

Fig. 5.7 Calculation of
view factors by subtraction
according to Eq. 5.28

Normal

&,

e

Fig. 5.8 Differential area elements used in deriving view factors according to Eq. 5.29
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COs ¢ CoS
dF g o = %(Mz (5.29)
and correspondingly
dFp g1 = wdAl (5.30)

ar?

The reciprocity relation as given by Eq. 5.21 can be used to derive the equation

COS @, COS @,

dFg1-pdAy = dF pp-n1dA; = 5

dAdA, (5.31)
r

Now the energy exchange between two black differential elements can be written as

d*G g1_gp = o(T1 — T3)dF q1_ndA, = o(T} — T3)dF o 1dA> (5.32)
Then by inserting Eq. 5.29 or Eq. 5.30 the heat exchange between two differential
elements becomes

COS @ COS @,

d*G g1_gp = o(T1 = T3) dA,dA, (5.33)

7r?

Fd 1-2

—afc=eo
afc=1.5
—afc=1.0
—afc=0.7
—a/fc=0.5
—afc=0.3

e ——afc=0.2

) —afe=0.1
=dA,

0.00 T

0.1 1
b/fc

Fig. 5.9 The view factor of a plane element dA; to a plane parallel rectangle vs. the relative
distances X = a/c and Y =b/c as defined in row 1 of Table 5.2. The normal to the element passes
through the corner of the rectangle
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—afc=eo

afc=1.5
—a/fc=1.0
0100 1 —a/fe=0.7 —
—afe=0.5
——afc=0.3
—afc=0.2
—afc=0.1

Fd 1-2

0.010 +

0.001 T d

0.1 1
bfc

Fig.5.10 The view factor of a plane element dA to a plane rectangle perpendicular to the element
vs. the relative distances X = a/c and Y =b/c as defined in row 2 of Table 5.2. The normal to the
element passes through the corner of the rectangle

The view factors between the entire surfaces A; and A, of Fig. 5.8 can be obtained
by integration as

1 COS @ COS @,
Fi,=— ————=dA,dA 5.34
2T, JA,JAZ r? L (5-34)
and correspondingly
1
Fz_lz_J J wdAldAz (5.35)
2JA,JA, nr

5.2.2 View Factors Between a Differential Element
and a Finite Area

The heat radiated from a differential (very small) area dA; which reaches a surface
A, is by the definition of the view factor
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Ginc.ti—2 = AAIF a1 3G oy = dAIF a1 2 - &2 -0 - T} (5.36)

where ¢, is the emissivity of the emitting surface. (Any reflected radiation is here
neglected). Examples of such configurations can be seen in Table 5.2. Similarly the
heat radiated by A, and reaching dA; is

G inc.o—a1 = A2Fa_a1 q;m,‘,z =AFy g1-8-0- Té (5.37)
The reciprocity relation according to Eq. 5.21 then yields
q inc.2-a1 = dAF 12 qgmi,z (5.38)

and the incident radiation flux to the differential area surface becomes

"

9 inc,o—ar = Far—2 - qgmi,2 =Fp2- &0 Tg (5.39)

This is the most commonly applied formula version in FSE as it can be used to
estimate the incident radiant flux at point where it is expected to be most severe.
When several finite surfaces from 2 to n are radiating on an infinite area dA;, the
total incident radiation can be written as

NG n 4
9 inc,(2—n)—d1 = Uzizz Far-i-&-T; (5.40)

In principle when calculating the total incident radiation to a surface the incident
radiation from all angles must be included. Observe that the sum of the view factors
is unity. Usually, however, only the contributions from the hot areas such as flame
surfaces need be considered as the contributions from, for example, surface at
ambient temperature are negligible.

When several surfaces are involved the view factor may be obtained by adding
up the contributions from the individual surfaces according to Eq. 5.27. In the case
shown in Fig. 5.11 the view factor Fy4,_4, , between the differential area dA; and
the entire finite area A,_s may be calculated as

Fo—o-5y= Fana+Fa3+Fa—a+Fas (5.41)

View factors of various configurations can be found in textbooks such as [1, 2] and
particularly in [11].

Table 5.2 shows how to calculate view factors for some elementary cases useful
in FSE.

Corresponding diagrams of the view factors defined in rows 1-3 of Table 5.2 are
shown Fig. 5.12.

Example 5.4 An un-insulated steel door leaf becomes uniformly heated to a
temperature of 500 °C during a fire. Calculate the maximum incident radiation
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Fig. 5.11 The view factor
can be obtained by
summing up the
contributions of several
areas as given by Eq. 5.41

1.0

0.9 1

0.8 1

0.7 1

0.6 1

0.5

0.4 1

View factor Fyq.o

0.3

0.2 1

0.1 1

0.0

0 0.5 1 1.5 2 25 3
Relative distance h/r

Fig. 5.12 The view factor of plane element dA, to a circular disk in a plane parallel to the element
vs. the relative distance h/r through the centre of the disk as defined in row 3 of Table 5.2

q Zm"max to a parallel surface 1 m from the door leaf with dimensions 0.9 m by 2.1 m
and an emissivity of 0.9.

Solution The highest incident radiation will be perpendicular to the centre of the
door leaf. Then Eq. 5.39 applies. When calculating the view factor the door is

divided into four equal areas and the view factor is obtained as the sum of the four

contributions. Then according to the first case in Table 5.2, X = 21—1/2 = 1.05 and

Y = % =045 and the total view factor becomes Faa—a, =
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4ok (A g 1045y 045 g1 105 ) 4.0.085 = 0.34. The
2 <\/1+1A052 V111058 /11045 \/1+0A452)

view factor for one-quarter of the door leaf (0.085) can alternatively be obtained
from Fig. 5.9. The maximum incident radiation ¢, ., = 0.34-0.9-5.67-107®

773* = 6200 W/m? (corresponding to a black body radiation temperature of
574 K=301 °C).

5.2.3 View Factors Between Two Finite Areas

In analogy with view factors between a differential element and a finite area
(Eq. 5.36) may the heat flow (with units [W]) from one finite area to another be
calculated as

Ginc.1—2 = A1F12 qﬁm,.,I =AFi2¢e -0 T? (5.42)
The net exchange from A to A, assuming black isothermal surfaces (e =1) is
Gooy =AF1 2 0(T} = T3) (5.43)

Table 5.3 shows two examples on how to calculate view factors between finite
surfaces, two parallel circular disks with centres along the same normal and two
infinitely long plates of unequal widths having a common edge at an angle of 90 °C
to each other.

Example 5.5 Two small surfaces 1 and 2 are oriented perpendicularly to each
other as shown in Fig. 5.13 and have surfaces 0.1 and 0.2 m?, respectively, and

Table 5.3 Examples of formulas for calculating the view factors between finite areas

Finite, coaxial disks

‘ X:1+1+R§

i R}
h
- Fi,=1

2
2 R
X —/x? - 4(1??) }
Two infinitely long plates of unequal widths 4 and
w having a common edge at an angle of 90 °C to each
h 1A, other
H="1

A Fia=4[1+H- V1]
w
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Fig. 5.13 Two small
f: in th 1
surfaces in the same plane (pzx |
oriented perpendicularly
x‘h

1 4m

3m

: NN
o R

Fig. 5.14 Sketch of cone calorimeter for calculation of view factors to the specimen. The surfaces
are identified by the numbers in circles. (a) Measures in mm. (b) Numbering of surfaces

temperatures 850 and 400 K, respectively. How much heat is transferred between
the two surfaces?

Solution The distance between the surfaces becomes 5 m and thus cos¢; = 0.6
and cosp, =0.8. Then Eq. 533 yields Garp =5.67-1078
(850" —400*)2608.0.1.0.2 =344 W.

Example 5.6 In the Cone Calorimeter the radiant panel has the shape of a
truncated circular cone as shown in Fig. 5.14. Assuming the panel has a uniform
temperature of 700 °C and an emissivity equal unity, and neglecting the radiation
from outside the cone, calculate

(a) The maximum incident radiation to a body below the panel.
(b) The mean incident radiation to body below the panel. Assume the body is
circular with a diameter of 100 mm.

Guidance: Surfaces may be numbered as Fig. 5.14b, i.e. specimen surface is
1, cone heater 2 and the opening 3.

Solution Equation 5.28 yields the view factor from the cone to the specimen to be

@ Faa=Fa 23— Fa3=3%— ﬁoj‘mz =0.84 —0.13=0.71 and the
incident flux becomes . g = 0.71-5.67-107% - (700 +273)* =
36,000 W/m?.

(b) Fio=Fi23—Fi_3
Fy_53: From Table 5.3 with R; = % and R, = % yielding X = 4.88 and
Fr3-1= 0.79
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F1,3Z R1 = % and R2 = % yielding X =6.05 and F1,3 = 0.11. Thus F1,2
=0.79 — 0.11 = 0.68 and Eq. 5.42 ¢;,.. ; = 0.68 - 5.67 - 10~* - (700 + 273)*

= 34,600 W/m?. Comment: The mean incident flux is only by 4 % less than
the maximum.

5.3 Radiation from Flames and Smoke

It is flames, smoke particles and combustion products that absorb and emit heat
radiation in fires. It is generally assumed continuous over all wavelengths when
calculating temperature although some gas species only absorb and emits at certain
wavelength intervals. In general simple gas molecules such as oxygen O, and
nitrogen N, do not absorb or emit heat radiation while molecules such as carbon
monoxide CO, and water H,O do depending on wavelength. Therefore the heat
absorbed or emitted by clean air is negligible.

Overall the absorption ay and the emission &4 of a flame or smoke layer depend
on the absorption or emission coefficient K and the mean beam length L,.
According to the Kirchhoff’s law the absorptivity and the emissivity are equal.
Then the Beer’s law is a useful tool in approximate radiation analyses [1, 2]. Thus

ap = & = 1— EiK'L” (544)

For gas species K depends on wavelength, but as the bulk of the radiation from
flames and smoke layers emanates from soot particles, it is treated as independent of
wavelength, i.e. K is treated as an effective absorption/emission coefficient.

The emitted heat from a flame may accordingly be written as

Goip= (1= ) o-T (5.45)

where T% is the flame temperature (assumed uniform). A few empirical and not very
reliable data for the effective absorption/emission coefficient, K, are available in the
literature. Some values are shown in Table 5.4.

The mean beam length giving reasonable approximations may be obtained from

1%
L =36— 5.46
1 (5.46)

where V is the total volume of the gas and A the total surface area. For a volume
between two infinite planes at a distance L a mean beam length L, can be obtained as

L.=18L (5.47)
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Table 5.4 The effective absorption/emission coefficient K for various fuels, from [13]

Fuel K(m™") Reference

Diesel oil 0.43 Sato and Kunimoto
Polymethylmethacrylate 0.5 Yuen and Tien
Polystyrene 1.2 Yuen and Tien

Wood cribs 0.8 Higglund and Persson
Wood cribs 0.51 Beyris et al.

Assorted furniture 1.1 Fang

Observe that a flame or a smoke layer absorbs radiant heat depending on the
absorptivity according to Eq. 5.44. This is illustrated by Example 5.9.

Example 5.7 What is the emitted radiation heat flux ¢ from an oil fire where
K=04m"

Assume a beam length L=1 m and a flame temperature of
Ty = 1073 K (= 800 °C).

Solution 4
G'=(1-e*") 0-T;=25000W/m’

Example 5.8 The surface temperature T; of a stove is 500 °C and has an emissivity
of g, =1.0. Near the stove is a wooden wall with a surface emissivity of &, = 0.8.
The air temperature in the space between the stove and the wall T, = 40 °C and the
convection heat transfer coefficient is 4. = 10 W/(m?K). Assume the surfaces of
the stove and the wall being parallel and infinitely large.

(a) What is the net heat transfer by radiation to the wall surface at the ignition
temperature assumed to be Tj, = 300?

(b) What is the maximum temperature the wall can obtain at equilibrium, when
the surface does not absorb any more heat and is assumed to be a perfect
insulator (i.e. the adiabatic surface temperature).

Solution
(a) Equations 5.11 and 5.12 yield ¢, = &, - 6[(Ts +273) — (T\ + 273)4} and
& =1 and g =08-5.67-107% (773* —573%) =

1 1
—t =
es | ew 1, 1

s Ew 1708 1=0.8

11.3-10° W/m?,
(b) The surface heat balance: ¢,6 [(TS +273)* — (T, + 273)4} +h(Ty —Ty) =

0.8-5.67-10°% . {7734 — (T + 273)4} +10-(40—T,) = 0.
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Fig. 5.15 One-dimensional
model of the heat exchange
by radiation at a surface
exposed to a flame of
limited thickness

Chf:u-.,rf =& 0 Tﬁ
qg;‘tc.m = (1 - Eﬂ)g ’ Tﬁg

1" ama ]
emi = €0 f's

An iteration scheme yields: T\ =273+ [773 - 10- (40— T},)/

(0.85.67-10%)]" . Assuming T =300 °C yields T!, = 467 °C and subse-
quently Tﬁ, =443 °C and Ti = 446 °C which is an acceptable solution.

Example 5.9 A specimen as shown in Fig. 5.15 is suddenly exposed to a propane
flame which is assumed to have a thickness of §7 = 0.2 m at the point being
analysed. Assume the effective flame absorption coefficient K = 0.5m™', the
flame temperature Tg=800 °C, the ambient and initial temperatures
T, =T; =20 °C, the convective heat transfer coefficient h, = 10 W/m?, the surface
emissivity ;= 0.9 and the ignition temperature of the specimen Tj, =350 °C

(a) Calculate the incident radiant heat flux ¢; . to the specimen surface.

(b) Calculate the total heat flux by radiation and convection to specimen surface at
the start of the test and at ignition, i.e. when the specimen surface temperature
Ts=20 °C and T =350 °C, respectively.

(c) Comment on the magnitude of the contributions to the heat transfer by
radiation and convection, respectively.

(d) Calculate the adiabatic surface temperature T agt at the specimen surface.

(e) Repeat item (b), i.e. calculate the total heat flux to specimen at the start of the
test and at ignition using Tagr.

Solution
(a) Incident heat flux from the flame, see Fig. 5.15, can be written as:

Qe = 4;;16,12 + c];/nc,oo =¢g7-0- T}‘, + (1 —¢g)o-Th. The emissivity of a
flame or smoke layer, €4, may be calculated according to Eq. 5.45 as: g7 = 1
~05180.2 ~ 0.18. The incident heat flux from the flame and the surrounding
will be: ¢;,. =5.67 - 1078 [0.18 (800 +273)* + (1 — 0.18) - (20+ 273)"] =
13,871 W/m? ~ 13.9 kW/m>.

—e
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(b) The total heat flux to the specimen is the sum of the heat flux by radiation and
convection: G, = &;(§ ;. — 6T?) + h.(Ty — T,). At the initial temperature:

q’,’o,,zo =09 <13,871 —5.67107% (20 + 273)4) +10 (800 —20) = 12,108
+7800 = 19,908 ~ 19.9 - 10* W/m? and at ignition temperature q;'o,’350 =

0.9 (13, 871 — 5.67 10~ (350 + 273)4) 10 (800 — 350) = 4796 + 4500

=9.3.10° W/m.

(c) When the surface of the specimen is at the initial temperature the contributions
by radiation and convection is in the same order of magnitude in the studied
case. When the surface is at ignition temperature, the surface is heated by
convection and cooled by radiation.

(d) By definition ¢, = oT? and thus based on the g, calculated above
T, =703 K =430 °C. Tsg7 can be obtained by solving the fourth degree
equation 4.22. Thus Tssr = 745 K = 472 °C.

(e) Equation 4.31 yields at the initial temperature ¢, 5, = 0.9 ¢(703* — 293*)
+10 (703 — 293) = (15,343 +4520) = 19.9 - 10> W/m?, and at the ignition
temperature
G ror350 = 0.9 - 0745 — 623*) + 10 - (745 — 623) = 9.3 - 10 W/m?. Note
that these alternatively calculated heat flux values are equal to those calculated
under item (b).

Example 5.10 A 6 m high, 4 m wide and 0.5 m thick flame is covering a well-
insulated facade with a surface emissivity 5 = 0.9. In the centre-line of the flame
2 m outside the fagade surface is a small square section steel column. Assume the
flame temperature equal T = 800 °C, the flame absorption/emission coefficient
k=0.3 m ! and the convective heat transfer coefficient h =35 W/(m2 K), see
Fig. 5.16.

Calculate under state conditions

(a) The temperature of the fagade surface behind the flame.
(b) The emitted radiant flux from the flame surface towards the column.
(c) The maximum incident radiation to the four sides of the column.

Solution

(a) The emissivity according to Egs. 5.44 and 5.47 &5 = (1 — e~ '¥"%'03) = 0.66.
Then the incident radiation to the facade surface becomes 0.66 - 5.67 - 10~%
(800 + 273)4 = 49.6-10° W/m? (corresponding to a radiation temperature
of about T, = 700 °C) and the adiabatic surface temperature 7457 can then be
obtained from (Eq. 4.21) as 0.9-[49.6-103 — 5.67-107% The |+

35- (800 + 273 — Tasr) = 0 which yields Tssy = 988 K = 715 °C after
two iterations according to Eq. 4.25.


http://dx.doi.org/10.1007/978-3-319-30172-3_4
http://dx.doi.org/10.1007/978-3-319-30172-3_4
http://dx.doi.org/10.1007/978-3-319-30172-3_4
http://dx.doi.org/10.1007/978-3-319-30172-3_4
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Fig. 5.16 Facade flame
radiating on an external
column surrounded by air at
ambient temperature

(b)

(©)

Contributions from the flame plus the fagade surface ¢, = 0.66 - 5.67 - 10~%
(800 +273)* 4 (1 — 0.66) - 5.67 - 107% . 988* = 68.0 - 10° W/m?.
Column side facing the facade, I: Divide into four equal contributions
according to Table 5.2 first row or the diagram in Fig. 5.9 with X=2/2=1
and Y=3/2=15 yields F4,,=0.09 and the total view factor
F =4-0.09 =0.36 and thus incident flux 0.36 - 68.0 - 10° = 24.5 - 10° W/m?.
Sides of the column, 2 and 3: The sides will only be exposed to half the
flame. Figure 5.10 with X =2/2 =1and Y =3/2 = 1.5 yields F4;., = 0.065 and
F =2-0.065 =0.15 and thus incident flux 0.15 - 68.0 - 10°> = 10.2 - 10> W/m?.
Column side facing away from the facade, 4: This side does not face the
facade and will only get an incident radiation corresponding to the ambient

temperature, i.e. 5.67 - 107%(20 + 273)* = 0.42 - 10 W/m?.



Chapter 6
Heat Transfer by Convection

In previous chapters heat transfer by convection or just convection was treated only
to the extent that it provides a linear boundary condition of the 3rd kind for
conduction problems when the heat transfer coefficient is assumed constant. In
this chapter the physical phenomenon of convection is described in more detail.

Heat is transferred by convection from a fluid to a surface of a solid when they
have different temperatures. Here it is shown how the convection can be calculated
and in particular how the convection heat transfer coefficient, denoted h or some-
times for clarity A., can be estimated in various situations relevant for FSE
problems.

When the gas or liquid flow is induced by a fan, etc. it is called forced
convection, and when it is induced by temperature differences between a surface
and the adjacent gases it is called natural convection or free convection. In the latter
case the surface heats or cools the fluid which then due to buoyancy moves upwards
or downwards. Both natural and forced convection can be laminar or turbulent
depending on fluid properties and velocity, and on size and shape of exposed
surfaces. Various modes occur in fires and are relevant in FSE.

The heat transfer by convection depends in any case on the temperature differ-
ence between the fluid and the surface. Usually in FSE it is assumed directly
proportional to the difference of the two temperatures according to the Newton’s
law of cooling, see Sect. 4.2. This is linear boundary condition which facilitates
calculations without jeopardizing accuracy as heat transfer by radiation at elevated
temperatures dominates over the transfer by convection.

Section 6.1 gives expressions on how air and water conductivity and viscosity
vary with temperature. Viscosity is the measure of a fluid’s resistance to flow and
has a decisive influences convective heat transfer properties.

In Sects. 6.2 and 6.3 general formulas are presented for various fluids, config-
urations and flow conditions followed by some useful approximate formulas and
diagrams applicable specifically to air which considerably facilitates calculations of
FSE problems.

© Springer International Publishing Switzerland 2016 89
U. Wickstrom, Temperature Calculation in Fire Safety Engineering,
DOI 10.1007/978-3-319-30172-3_6
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6.1 Heat Transfer Properties of Air and Water

The properties of several fluids are tabulated in textbooks such as [1] for various
temperature levels. Special attention is given to air as it usually in flow calculations
is assumed to have the same properties as smoke and fire gases.

For air the conductivity k,;- can be approximated as [14]

kair =291 -107° T [W/(mK)] (6.1)
and the kinematic viscosity v, as
Vair = 1.10-107° T"%® [m? /5] (6.2)

respectively, where T is temperature in Kelvin. See also Figs. 6.1 and 6.2 for
graphical presentations. The simple approximations are used in this book for
obtaining close form expressions for among other things convection heat transfer
coefficients.

The Prandtl number does not vary much with temperature and may in most cases
be assumed constant, Pr,;, = 0.7.

The thermal conductivity water k,, can be approximated as

k, = —0.5754+6.40-107%-T —82-107%. T?[W/(mK)] (6.3)
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Fig. 6.1 Thermal conductivity k,;, of air vs. absolute temperature. See also Eq. 6.1
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Fig. 6.2 Kinematic viscosity v, of air vs. absolute temperature. See also Eq. 6.2

where T is the water temperature in Kelvin. Table 6.1 shows also other properties of
water at various temperatures relevant for thermal calculations.

Latent heat of vaporization of water relevant when calculating temperature in
moist solids a,, = 2260kJ/kg.

6.2 Forced Convection

The heat transfer coefficient or the thermal resistance between a gas or fluid and a
solid surface is controlled within the so-called boundary layer. The thermal resis-
tance of this layer and thereby the amount of heat being transferred depends on the
thickness of the layer and the conductivity of the fluid. The thickness of the
boundary layer in turn depends on the velocity of the fluid.

6.2.1 On Flat Plates

Figure 6.3 shows an edge where a boundary layer is developed in a forced flow over
a flat surface. Outside the boundary layer the flow is undisturbed and has a uniform
velocity u... It then decreases gradually closer to the surface and very near the
surface it vanishes. As indicated in Fig. 6.3 the boundary layer thickness & grows
with the distance from the leading edge.
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Table 6.1 Properties of water

Temperature | Conductivity Density Specific heat Kinematic Prandtl’s
(°C) (W/(m K) (kg/m’) &J/(kg K)) viscosity (m%/s) | no. (=)
5 0.57 1000 4.20 1.79-10°° 13.67
15 0.59 999 4.19 1.30-10°° 9.47
25 0.60 997 4.18 1.00-107°° 7.01
35 0.62 994 4.18 0.80-107° 543
45 0.63 990 4.18 0.66-107° 4.34
55 0.64 986 4.18 0.55-107° 3.56
65 0.65 980 4.19 0.47-107° 2.99
75 0.66 975 4.19 041-10°° 2.56
85 0.67 968 4.20 0.37-107° 223
95 0.67 962 4.21 0.33-107° 1.96

From the Engineering ToolBox, www.EngineeringToolBox.com, except the conductivity which is
according to Eq. 6.3.

Fig. 6.3 Boundary layer
with a thickness &
developing after an edge of
a flat surface

X
Laminar flow Turbulent flow

The heat transfer resistance R, can now be calculated as heat resistance between
the fluid and the solid surface in a similar way as for thermal conduction in solids:

o
Ry = E (6.4)

where k¢is the thermal conductivity of the fluid and ¢ the boundary layer thickness.
The subscript f indicates that the parameter values shall be at the film temperature
which is the average of the surface T and the free stream fluid 7', temperatures, i.e.

Ty = w (6.5)

The heat transfer coefficient can be obtained as the inverse of the heat transfer
resistance according to Eq. 2.14. Thus


http://dx.doi.org/10.1007/978-3-319-30172-3_2
http://www.engineeringtoolbox.com/
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h=" (6.6)

The heat transfer coefficient is often expressed by the Nusselt number Nu, a
non-dimensional relation between the boundary layer thickness § and a character-
istic length x of the exposed surface. With 6 obtained from Eq. 6.6

X h-x

In the case of a plane surface as shown in Fig. 6.3, the characteristic length x is
the distance from the edge. Near the edge, small values of x, the flow is laminar and
further away it is turbulent. The Nusselt number at a distance x has been derived
analytically as (see, e.g. [1]):

Nuy = 0332 Pry/* - Rep” (6.8)

where Pris the Prandtl number which relates the kinematic viscosity v and thermal
diffusivity a of the fluid. Rey, is the Reynolds number which indicates whether the
flow conditions are laminar or turbulent. It is a non-dimensional grouping of
parameters defined as

Usg X PrUoo " X

by Hy

R€fx = (69)

where p is the dynamic viscosity of the fluid. The kinematic viscosity v is the
dynamic viscosity divided by the density, i.e.:

u
v="-— 6.10
p (6.10)

By integration along the surface the mean Nusselt number Nuy can be obtained as

Nuy =2 Nuy = 0.664 - Pr}/” ‘Rep,” (6.11)

For constant fluid properties the heat transfer coefficient at a distance x can now
be calculated by combining Eqs. 6.7 and 6.8:

_ Nuy -k
o X

Iy = 0332 k- Priy 2w (6.12)

The mean heat transfer coefficient from the edge x = 0 to x is twice this value:
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e = 2 Iy = 0.664 ky - Pr - v~ 2u 12512 (6.13)

An important observation is that the heat transfer coefficient decreases with
dimensions. Smaller dimensions mean larger convective heat transfer coefficients.

6.2.1.1 Heat Transfer in Air

To facilitate analyses of FSE problems material properties of air is now assumed by
inserting Eqgs. 6.1 and 6.2 into Eq. 6.12 and assuming Pr=0.7. The heat transfer
coefficient can then be obtained as a function of film temperature, air velocity and
distance from the edge as:

hfx =259 . Tf—0.045 . uool/z . x—l/2 [W/(mZK)] (614)

Note that the influence of the film temperature level is rather weak. The mean
heat transfer coefficient will be twice that value:

e =2 hye =517 T 02 712 [W/ (mPK) | (6.15)

Example 6.1 A 200-mm-wide steel plate having a uniform temperature of 500 K is
exposed to an air stream with a temperature of 1200 K and a velocity of 2.0 m/s.
Calculate the mean heat flux by convection ¢ to the steel surface.

Solution Insert the parameters in Eq. 6.15. The film temperature 7y = 850 K and
then iy, = 5.17 - 8507094 2:.0.272 W/(m? K) = 12.0W/(m? K), and the mean
heat flux ¢, = 12.0 - (1200 — 500) = 8370 W/m>.

Example 6.2 A heat flux meter measures the heat flux to its cooled sensor surface,
see Sect. 9.2. Assuming the sensor surface has a diameter of 10 mm, calculate the
heat transfer coefficient by convection 4. The sensor surface temperature is esti-
mated to be uniform and equal to 30 °C. Estimate the heat flux by convection g gon to
the sensor surface if the gas temperature is 400 °C and the gas velocity is 2 m/s.

Solution Apply Eq. 6.15 h=5.17 (%0304 273 2120001712 =
55W/m?, and the heat flux to the sensor surface by convection becomes q'gon =
55 - (400 — 30) = 20300 W/m? = 20.3kW /m>.

) —0.045


http://dx.doi.org/10.1007/978-3-319-30172-3_9
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6.2.2 Across Cylinders

In the case of flow across a cylinder an empirical expression for the Nusselt number
has been derived, see, e.g. [1, 2]:

h-d no 4

For a cylinder with a diameter d and the Reynolds number becomes

Uso - d Uso - d 1
Reyr = = = -r 6.17
Ty 113107 TH7 7 1.13-10°° (6.17)
where the parameter group named I” identified as
Uso - d
r= 7T;'67 (6.18)

is introduced to simplify calculations.
The convection heat transfer coefficient can be derived from Eq. 6.16 as

kf Moo~d " 1
h=-"L.C. - Pr3 6.19
d ( vy ) g (6.19)

The constants C and n are given in Table 6.2.

6.2.2.1 Heat Transfer in Air

For air or fire gases the conductivity k; and the viscosity vy as functions of
temperature can be obtained from Eqgs. 6.1 and 6.2, respectively, and inserted into
Eq. 6.19 to become

291-107°. 797 U - d "
f 00 1
h=——.C- -0.75 6.20
d 1.10-107" - T} (6.20)
which can be reduced to
TO.7971.68n U n
h:A~C-f—_ (6.21)
dl n

where the constants A, C and 7 can be found in Table 6.2 for various ranges of the
values of Regor I'.
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Table 6.2 Constants to be used with Egs. 6.16 and 6.21 for calculating the Nusselt number and
heat transfer coefficients to cylinders exposed to forced convection flow

Regr I' (Eq. 6.18) C n A [SI units]
044 (0.45-4.5)-107° 0.989 0.330 0.110

4-40 (4.5-45)-107° 0911 0.385 0.341
40-4000 (45-4500)-10~° 0.683 0.466 1.81
4000-40,000 (4.5-45)-107 0.193 0.618 414
40,000-400,000 (45-450)-107° 0.0266 0.805 1950

Example 6.3 Calculate the convective heat transfer coefficient of a 1 mm shielded
thermocouple. Model the thermocouple as a cylinder and assume an air velocity of
U~ = 1.0 m/s flowing across the cylinder. Assume gas temperature levels of

(a) T, = 300K (room temperature initially)
(b) T, =1000K (ultimate temperature)

Solution

(a) The film temperature Tr= (300 + 1000)/2 = 650 K. Then according to Eq. 6.18
I'=1-0.001/(650"%") = 20-10"° and from Table 6.2 C=0911,

.79—1.68-0.385 0.385
Uoo

T
131 W/(m?K).
(b) Equation 6.18 yields I' = 1.0-0.001/(1000%3) = 9.77-107°. A, C and n

can now be obtained from row two of Table 6.2 and inserted into Eq. 6.21 to
0.92—-1.67 OYSSSM 0.385 7"0.277'4OC 0.38:

S5

Comment: The heat transfer coefficient due to convection changes only slightly
with temperature. However, it would change considerably if the heat transfer due to
radiation would be included as well.

6.2.3 In Circular Pipes and Tubes

The heat transfer between the fluid and the walls of a circular tube depends on the
fluid conductivity k and kinematic viscosity v, the fluid velocity u# and the flow
conditions, laminar or turbulent governed by the Reynolds number

Rep = —— =22~ 6.22
e =— (6.22)

All parameters refer to bulk temperatures. For details see textbooks such as
[1, 2].
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For turbulent flow (Rep > 2300) the Nusselt number can be calculated as
Nuy = 0.023 - ReS® - Pr" (6.23)

where n = 0.4 for heating and n = 0.3 for cooling of the fluid.
For laminar flow (Rep < 2300) the Nu, approaches a constant value for
sufficiently long tubes, i.e.

Nug = 3.66 (6.24)

Then the heat transfer coefficient between the fluid and the walls can be
calculated as

k
h=Nug - Bf‘ (6.25)

where k; is the conductivity of the fluid at the film temperature.

Example 6.4 Air with a bulk temperature T,;, = 200°C is flowing with a velocity
of 2 m/s in a tube/duct with an inner diameter D =400 mm. Estimate the heat flux to
the duct surfaces which have a temperature of 800 °C?

Solution The film temperature 7y = 0.5(200 + 800) = 500 °C = 773 K. Then
Eq. 6.1 yields k,, = 0.0567W/(mK) and Eq. 6.2 v, = 78.3-107°m?/s and
according to Eq. 6.22 Re=10,200 which indicates turbulent flow. Then from
Eq. 6.23 Nud = 32.2 (the fluid is heated and n=0.4) and according to Eq. 6.25
h=Nug - =322 288 = 448W/(m*K). Thus the heat flux to the tube wall

g, = 4.48 (800 — 200) = 2690 W /m?.
Example 6.5 Water with a bulk temperature of T,, =20 °C is flowing with a

velocity = 0.1 m/s in a tube with an inner diameter D = 50 mm. Estimate the heat
flux to the tube surfaces which have a constant temperature 7,, = 70 °C?

Solution The film temperature T, = 20”0 =45°C = 318 K. Then from Table 6.1

the conductivity k,, = 0.63 W/ (mK), the viscosity v, = 0.66-107°m?/s and
Pr,, = 4.34. According to Eq. 6.22 Re = 7576 which indicates turbulent flow. Then
from Eq. 6.23 Nud =52.2 (the fluid is heated and n»=0.4) and according to
Eq. 6.25 h = Nuy - ;=522 - 063 = 658 W/(m*K).

6.3 Natural or Free Convection

6.3.1 On Vertical and Horizontal Plates

Natural or free convection occurs as a result of density changes due to heating or
cooling of fluids at solid surfaces. When a wall is hotter than adjacent air an
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Fig. 6.4 Free convection
boundary layer at a vertical
hot surface

Turbulent
flow

Laminar
flow

upwards flow is established as shown in Fig. 6.4, and vice versa if the wall is cooler.
The velocity just at the wall surface is zero. It increases then to a maximum and
thereafter it decreases to zero again at the end of the boundary layer where the free
stream velocity is assumed to be negligible. At the outset the boundary layer is
laminar but changes to turbulent at some distance from the edge depending on fluid
properties and the difference between wall surface and fluid temperatures. In
practice in FSE, natural and forced convection commonly occur simultaneously
and analyses must focus on the one which is predominant.

In general it is very difficult to make accurate estimates of natural convection
heat transfer coefficients. The formula given below for some elementary cases are
based on empirical evidence obtained under controlled conditions. Such conditions
rarely occur in real life but they serve as guidance for estimates. Any accurate
analytical solutions are not available for calculating heat transfer by natural
convection.

As for forced convection the Nusselt number yields the heat transfer coefficient.
It depends in the case of free convection on the Prandtl and Grashof numbers. The
latter is defined as

B (T, —T,) - L*
Gry =1 i (sz ) (6.26)

vr

where g (=9.81 m/s?) is the constant of gravity, L a characteristic length, v the
kinematic viscosity of the fluid and ff is the inverse of the film temperature as
defined in Eq. 6.5:
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= (6.27)

The subscript f indicates that values of the parameters are taken at the film
temperature.

Based on empirical data for both laminar and turbulent convection the average
values of the Nusselt number and the corresponding heat transfer coefficient can be
written as:

Nuy = e C- (Grf . Pr_f)m (6.28)

This formula correlates well for several simple geometrical configurations. Here
L is a characteristic length appropriate for the configuration. For horizontal rectan-
gular plates the characteristic length may be estimated as

L=5 (6.29)

where A is the area and P the perimeter of the surface. The other constants of
Eq. 6.28 can be found in Table 6.3. As a rule of thumb, the exponent m = ¥ for
laminar and m = 1/3 for turbulent flow.

6.3.1.1 Explicit Expressions for Heat Transfer from Air

Equation 6.28 and Table 6.3 can be used to derive convection heat transfer
coefficients. By inserting the approximations of ks (Eq. 6.1) and v (Eq. 6.2) of air
as functions of temperature, explicit expressions can be derived for heat transfer
coefficients as functions of the air T, and the surface T, temperature. Tyis the film
temperature defined as the mean of the ambient air temperature and the surface
temperature (Eq. 6.5).

Observe temperatures must be in Kelvin in all formulas.

Thus at vertical plates and large cylinders under turbulent conditions (m = 1/3)
in air the mean heat transfer coefficient can be calculated as

—  — ky
hy = Nuy - Zf =76.0-T;"% - |T, — Ty |'” (6.30)

The heat flux to a vertical surface may now be written in the form given in
Eq. 4.8 as

Geon = 76.0 T2 (T — T()* (6.31)


http://dx.doi.org/10.1007/978-3-319-30172-3_4
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Table 6.3 Constants to be used with Eq. 6.28 for calculating heat transfer coefficients and heat
transfer to surfaces exposed to natural convection

Characteristic
Configurations GriPry. length C m
Vertical plates and large cylinders
— Laminar 10*-10° L 0.59 1/4
— Turbulent 10°-10"2  |L 0.13 | 1/3
Horizontal plates
— Laminar (heated surface up or cooled 2.10% L=A/P 0.54 1/4
down) 8-10°
— Turbulent (heated surface up or cooled |8-10°-0'" |L=A/P 0.14 |1/3
down)
— Laminar (heated surface down or 10°-10"! L=A/P 0.27 1/4
cooled up)
10.0
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Fig. 6.5 Heat transfer coefficient due to natural convection vs. surface temperature for various
surrounding air temperatures at vertical plates and large cylinders under turbulent conditions
according to Eq. 6.30

qgon is positive when (T,;, — T) is positive and vice versa. Notice that in this case
the heat transfer coefficient is independent of the dimension L and inversely
proportional to approximately the square root of the temperature level. The varia-
tion of /i, with the surface temperature for various gas temperatures are shown in
Fig. 6.5. When the surface and gas temperatures are equal the air flow and thereby
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the heat transfer vanishes and it increases gradually when the fluid and surface
temperatures diverges. As the formula are symmetric concerning 7,;, and T, the
diagram also be interpreted as E vs. gas temperature for various surface temper-
atures. Observe that for the gas temperature equal to 20 °C that convection heat
transfer coefficient peaks at about 11.5 W/(m? K). Then it decreases slowly. In the
interval from room temperature to 200 °C which is of interest for evaluation of fire
separating walls the convection heat transfer coefficient increases from zero to
about 11 W/(m” K).

Observe that Egs. 6.30 and 6.31 apply only for turbulent conditions according to
Table 6.3. This requirement is generally met in fire safety problems such as cooling
of the unexposed side of a fire separating wall element.

The convective heat transfer coefficient to horizontal surfaces depends on the
size of the surface. By inserting the value of the kinematic viscosity at the film
temperature according to Eq. 6.2 the Rayleigh number becomes

(Pry-Gris) = 5.68 - 10" L* - T3 AT (6.32)

If the Rayleigh number is between 2 - 10* and 8 - 10° according to Table 6.3, the
Nusselt number can be obtained according to Eq. 6.28 with the air conductivity
according to Eq. 6.1 and Pr=0.7. The heat transfer coefficient can then be
calculated as

b =7.67L7"* T 0% . AT (6.33)

Of special interest are the heat transfer coefficients to specimen surfaces of the
cone calorimeter (ISO 5660) and to plate thermometers when mounted horizon-
tally. Both have a surface 0.1 m by 0.1 m and thus a characteristic length
L =0.025 m according to Eq. 6.29. Then the convection heat transfer coefficient
can be calculated as

hy =19.3 T, 03 . AT'/4 (6.34)

Figure 6.6 shows convective heat transfer coefficients to horizontal surfaces with
a characteristic length of 0.025 m for various gas temperatures as functions of the
surface temperature.

Example 6.6 A PT is exposed to an incident radiation ¢ ;’m, = 50 kW/m?. Assum-
ing that it does not lose any heat by conduction estimate its steady-state tempera-
ture, i.e. adiabatic surface temperature, when the PT is mounted

(a) horizontally
(b) vertically
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.6 Heat transfer coefficient vs. surface temperature due to natural convection at a horizontal

for L=0.025 m and 2-10* < GripPr<s8- 10°. Particularly applicable to cone calorimeter

(ISO 5660) and PTs with exposed areas of 0.1 m by 0.1 m

The exposed surface area of the PT is 0.1 m by 0.1 m. Assume the emissivity of
the PT surface is 0.9 and the ambient temperature is 20 °C.

Hint: The net heat absorbed by radiation must be balanced by the heat lost by
convection.

Solution ¢ ;/m = 50 kW/m? yields a radiation temperature T, = 969 K = 696 °C.

(a)

(b)

Assuming a first surface temperature estimate T}\ST =T,=T, yields
according to Eq. 6.34 or Fig. 6.6 h=11.7 W/(m K). Then the AST can be
calculated with the iteration procedure according to Eq. 4.25 with T, = T,.
Thus T3¢ = 923K and T3¢, = 926K = 653°C. Finish iteration. Compare
with Fig. 4.7a for h/e =13 W/(m?K).

Assuming a first surface temperature estimate T}‘ST =T,=T, yields
according to Eq. 6.30 or Fig. 6.5 1=9.2 W/(m K). Then Tf\ST =934 K and
T3¢ = 936 K = 663 °C. Finish iteration. Compare with Fig. 4.7a for
h/e = 10W/(m>K).


http://dx.doi.org/10.1007/978-3-319-30172-3_4
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6.3.2 In Enclosed Spaces

Heat is transferred between surfaces of enclosures. Two elementary cases of free
convection may be identified characterized by horizontal and vertical layers,
respectively.

The heat flux may in both cases be calculated as [1, 15]

o k
q.= Nuﬁgf (T) —T>) (6.35)

where k; is the thermal conductivity of the fluid. For horizontal layers where the
upper surface is warmer there will be no buoyancy driven convection or flow and
the heat will be transferred by conduction only, i.e. Nus = 1. However, if the upper
surface is cooler than the lower convection will occur and the Nusselt number will
be greater than one. Equation 6.35 may also be written as

lZ

N k(_’
qc:_

5 (T1 = T2) (6.36)
where the k, may be identified as the effective or apparent thermal conductivity of
the air enhanced by convection. It is defined by the relation

ke
¢ — Nug (6.37)
kg

The Nusselt numbers can be obtained from Table 6.3 for various ranges of the
Grashof number according to Eq. 6.38

g BTy —Ty) &

Gr,g =
02

(6.38)

When the lower surface is warmer than the upper, convection and heat transfer
by convection will occur when Gr > 10*. Inserting the values of v for air and f as
functions of the mean of T and T, according to Egs. 6.2 and 6.27, respectively,
yields:

8.11-10" (T — Ty) &°

Griir = RETE (6.39)
where T is the mean of the surface temperatures, i.e.
T, +T
Ts = (T +7T3) (6.40)

2
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Fig. 6.7 Enclosed space A p— D
with a hot left surface and a /) \ S
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The characteristic length L in Table 6.3 denotes the vertical height of a vertical
enclosure, see Fig. 6.7b. Note that the influence of convection heat transfer is
negligible when enclosure is small, Grs < 2000. The air conductivity vs. the
mean temperature according to Eq. 6.1 is used when deriving the expressions in
the right column of Table 6.4. These values are then used in Eq. 6.35 to calculate the
heat flux by convection across enclosed spaces.

Example 6.7 Calculate the apparent conductivity and heat transfer by convection
between two parallel vertical surfaces as in Fig. 5.4 when the surfaces have
temperatures 7 = 300 °C =573 K and T, = 100 °C =373 K and the distance
6 = 0.1 m. The height L =0.6 m.

Solution Equation 6.40 yields T = "3 — 473 K and Eq. 6.39 yields for air

Grg"":8'”‘10185;?37373)‘0‘13:4.17-106. Then according to the 7th row of

Nus = 0.065 - (4.17 - 106)% (59 5 _ 853, and by inserting Eq. 6.1 into Eq. 6.37
the  effective  conductivity is  obtained as from Eq. 6.37
ke =8.53-291-107° - 4737 W — 0.322 W/(m K). The heat transfer may then
be obtained from Eq. 6.36 as ¢, = 2322 (573 — 373) W/m? = 644 W/m?. Alter-
natively the explicit expression in the 4th column of the 7th row may be used.

Example 6.8 The same as Example 6.8 but in a horizontal configuration with a hot
lower surface with a temperature 71 = 300 °C = 573 K and a cooler upper surface
with a temperature 7, = 100 °C =373 K, and a distance between the parallel
surface 6 = 0.1 m, see Fig. 6.8.

Solution Equation 6.40 yields Ts = 873 — 473 K and Eq. 6.39 yields for air

Grgi":8'11'101845213373373)'0'13:4.22~106. Then according to the 4th row of

1
Nus = 0.068 - (4.22 - 10°) h_ 10.44, and the effective conductivity of the enclosed
air is obtained from Eq. 6.37 as k, = 10.44 - 291 - 107° - 473%7 = 0.394 W/(m K).
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Table 6.4 Nusselt number Nug for calculating convection heat transfer in air in enclosed spaces
according to Eq. 6.35 [15]

No | Orientation Range Nu; ke/& = Nug” %
1 Horizontal layers (Stable layers) 1 291-10°° 757
(hotter upper layer) °

2 | Horizontal layers Grs < 10* 1 291»10*66 7507
— | (cooler er layer

3 ( upp! yer) < 400 - 10° 0.195 GVZA 1.42]"(52};;2210 25
1 0P 05

4 Grs > 400 - 10° 0.068 Gr;" 39.2 (;IO_GY;Z)OJ}

05

5 Vertical layers Grs <20-10° 1 291-10*8" 7507

6 20-10° < Grs < 200 - 10° h |28 @)
] 0‘18 Gr6 K T&O'OQ-LOH-g}'M

7 200 -10° < Grs < 11-10° N e A I

0.065 Gl‘5 3 T5005.L01T

The last column shows explicitly the thermal resistance &./6

A T
6 .

- 4 L >
Y T

Fig. 6.8 Nomenclature for calculating heat transfer by convection across an enclosed space with
two horizontal parallel surfaces of different temperatures where 7| > T»

The heat transfer may then be obtained from Eq. 636 as qg =

046 (573 — 373) W/m? = 232 W/m?. Alternatively the 4th column may be used.



Chapter 7
Numerical Methods

The analytical methods outlined in Chaps. 2 and 3 presume that the material
properties and heat transfer coefficients are constant. That is, however, not possible
in most cases in fire protection engineering as the temperature then varies within a
wide range and therefore both material properties and boundary conditions vary
considerably. Phase changes or latent heat due to water vaporization or chemical
reactions of materials (see Sect. 14.1 on concrete) must in many cases be considered
to achieve adequate results. Furthermore in particular radiation heat transfer coef-
ficients vary considerably with temperature. As shown in Sect. 4.1 it increases with
the third power of the temperature level. In addition geometries being considered
are not as simple as assumed above. Often they are in two or three dimensions, and
then analytical methods can seldom be used for practical temperature analyses.
Therefore numerical methods involving computer codes are frequently used in fire
protection engineering. In some cases in particular for O-dimension problems
(lumped-heat-capacity) relatively simple so-called spreadsheet codes such as
Excel may be used. For problems with more complex geometries and boundary
conditions computer codes based on finite difference or finite elements methods are
needed. Several computer codes based on these methods are commercially avail-
able, see Sect. 7.3.2. The superposition technique as presented in Sect. 7.2 may be
seen as a combination of a numerical and an analytical method.

7.1 Lumped-Heat-Capacity

The basic theory of heat transfer to bodies with uniform temperature is given in
Sect. 3.1. According to Eq. 3.2
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dT A "
= = ] 7.1
dt V-p-cq (7.1)

where A is exposed area, V volume, p density and ¢ specific heat capacity of the
exposed body. By integrating over time the body temperature becomes

T—T+A
=Ti+y;

t

J g dt (7.2)
c-plo
where T; is the initial temperature. In case ¢ is given as function of time (2nd kind
of BC) or proportional to the difference between the surrounding and the body
(surface) temperatures (3rd kind of BC), the temperature T can sometimes be solved
analytically. In most other cases numerical methods must be used even when
lumped heat is assumed.

In general both space and time are discretized except for lumped-heat-capacity
problems with only one unknown temperature where only time is discretized.

The time derivative of Eq. 7.1 is approximated by the differential, i.e. & ~ 4T
Given the time is divided into increments as indicated in Fig. 7.1
AT = ¢t (7.3)
and temperature increments are defined as
AT = (7.4)

Assuming the time increment constant Eq. 7.1 can be written as a finite differ-
ence equation as

wnj

T T = AT &
Ve

At (7.3)

where c}”fm is the heat flux to the surface at the time increment j.

In the simplest case the heat flux is proportional to the difference between the
insulation surface temperature and uniform body temperature as shown in Fig. 3.3b.
Then Eq. 7.5 can be written as

Ak .
L T
Vi) dn (T, —T) At (7.6)

b

T+ — i T

where k;, and d;, are the conductivity and thickness of the insulation. When solved
according to this forward difference scheme, all the parameters may be updated at
each time step depending on the temperature of time increment j.

When a body is exposed to a third kind of boundary condition, i.e. a function of
incident radiation (or radiation temperature) and gas temperature and the current
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Fig. 7.1 Time axis indicating time increment numbering

surface temperature, the total heat flux ¢ ;/m is defined according to Eq. 4.11 and the
body temperature may be calculated as

. . A i . . .
P =T s e (d"e o T*) +he(T)~T7)] Ar (7.7)

or when the heat flux is defined according to Eq. 4.12 as

T+l — i T

V?Cp) [s (114 = 1T%) 4 h (T} — TJ')} At (7.8)

The recursion formulas of Eq. 7.7 through Eq. 7.10 are forward difference or
explicit schemes. That means all parameters on the right-hand side of the equation
are known at time increment j and the new temperature at time j+ 1 can be
calculated explicitly. Such integration schemes are numerically stable only if
each time increment is chosen less than a critical time increment, the critical time
increment At defined as

V-c- P din
Aty =——— 7.9
A (7.9)
for Eq. 7.6, and
Vec-p
At, = —— 7.10
‘ hrut .\ ( )

for Eq. 7.7 and Eq. 7.10. h,,, is the total adiabatic heat transfer coefficient as defined
by Eq. 4.19. The critical time corresponds to the time constant as defined in Sect.
3.1. It can vary over time as the including parameter changes with temperature. In
reality much shorter time increments in the order of 10 % and the critical time
increment are in general recommended to achieve accurate temperatures.

Example 7.1 An unprotected steel section with a section factor %: 100m~" is
suddenly exposed to a constant fire temperature 7y = T, = T, = 1000°C. Calcu-
late the steel temperature as a function of time if the initial temperature is
T; = 20°C. Assume a steel surface emissivity of 0.9 and a convection heat transfer
coefficient of 25 W/(m* K). p,, = 7850kg/m’ and ¢, = 560 Ws/(kg K).


http://dx.doi.org/10.1007/978-3-319-30172-3_4
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Solution This problem is ideally solved by applying Eq. 7.8 in a spreadsheet
application. The first three increments are shown below. Assume At = 10s. Then

AP — 10040- = 0227 - 10~ m? /W and Eq. 7.8 yields T' = 20 + 0227 - 10~

[0.8-5.67-107(1273 % — 298%) + 25(1000 — 20)| = 52.5°C, T*> =79.6K and
73 = 112K. The maximum #,, can be obtained from Eq. 4.19 or Fig. 4.2a as
470 W/(m? K) and from Eq. 7.10 the minimum increment At = 5&%?% = 03s. At
preceding lower steel temperature levels /4, is much greater and thereby Az, is

much smaller, and therefore At = 10s will yield accurate steel temperatures.

Example 7.2 A steel plate with a thickness of d;; = 10mm and an initial temper-
ature of (=293 K) is placed in the sample holder of a cone calorimeter, see Fig. 7.2.
The incident radiation of the cone is set to 50 kW/m?. The plate is well insulated on
all surfaces except the upper exposed surface. Assume a steel surface emissivity of
0.9 and a convection heat transfer coefficient 4. = 12W/(m? - K). p,, = 7850kg/
m? and ¢, = 560Ws/(kg K). Derive a time integration scheme and show the first
three time increments.

Solution Apply Eq. 7.7 where 0= == Gorsoses = aaoo0 WS/m’K  and

q'”fm = 0.9 (50000 — 6T*/) 4+ 12 - (20 — T). Thus a forward difference incremen-

tal scheme becomes 7/! =T/ 4+ ;AL {0.9(50000 — 6T*/) +12- (293 — TV) } =

0.9-50000+12-293)A ; 8 . .
%4— (1 — ﬁooAO’)T/— 44%60 -5.67-10 8T4’f). Assume a time incre-

ment At = 60s. Then the incremental scheme can be reduced to:
T =66240.984 -7 —77.3-10712. 7%/,

First step, j=1: T? = 662 +0.984-293 —77.3-10712.293% =
66.2 + 288 — 0.57 = 354 K = 80.6°C.

Second step, j=2: T° = 66.2 + 0.984 - 354 — 77.3 - 10712 . 354* = 66.2 + 349—
1.2 =413K = 141°C.

Third  step, j=3: T4 = 66.2+0.984-413 —77.3-10712 . 413% =
66.2 + 406 — 2.25 = 470 K = 197°C.

Comment: Figure 7.3 shows a comparison between measured and calculated tem-
perature steel specimen as in the example. In the calculations Eq. 7.8 was applied
with a heat transfer coefficient /. increased to 18 W/(m2 K) to consider the heat
losses from the steel specimen by conduction and a gas temperature T, as measured
with a thin thermocouple. The accurate prediction indicates how well Eq. 7.8
models the heat transfer to a specimen surface in the cone calorimeter.
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Fig. 7.2 Heat transfer to a
10-mm-thick steel plate in
the cone calorimeter
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Fig. 7.3 Comparison of measured and calculated temperature of 10-mm-thick steel specimen
exposed to an incident radiation of 50 kW/m2 in a cone calorimeter

7.2 Superposition and the Duhamel’s Superposition
Integral

A technique based on superposition is presented below. In its infinitesimal form it
may be called Duhamel’s superposition integral. It is a technique which has many
various types of applications when analysing bodies with constant material prop-
erties and with zero initial temperature conditions which are exposed to boundary
conditions varying with time. Zero initial temperature conditions can be obtained
for bodies with constant initial temperatures by calculating temperature rise as
shown below.

The technique is here exemplified for the case of a surface of a semi-infinite solid
at uniform temperature T;. See also [1, 2]. When it is suddenly receiving a constant
external heat flux f at the time ¢ = 0, the surface temperature rise 6, = Ty — T; may
then be written as
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0, =f-A(r) (7.11)

where A(t) is the response function (sometimes called the fundamental solution).
It is here the surface temperature response as a function of time for a unit heat flux
(f = (}:w = 1). For semi-infinite solids the response function of the surface
temperature is according to Eq. 3.29

2\t
0= (7.12)

The surface temperature according to Eq. 7.11 applies only if the heat flux
remains constant with time. When the heat flux to the surface, generally called
the forcing function, varies with time, i.e. f(t) = c}:m(t), the surface temperature
may be calculated by superposition. Thus according to the Duhamel integral of
superposition the solution R(#) (the surface temperature rise in this case) as a
function of time can be written as

t

R@=¢®%Mﬂ+J(ﬂhf%A@d5 (7.13)

£=0

where /' denotes the time derivative of the forcing function. By integration by parts
and noting that A(¢z) = 0, an alternative formulation can be obtained where the
response function is derived instead of the forcing function.

R@)zj’fo—a-A@wﬁ (7.14)

£=0

where A’ is the time derivative of the response function. (¢ is a dummy variable
defined only within the integral.)

Equation 3.16 in Sect. 3.1.2.1 giving the temperature of a thermocouple
modelled as lumped heat was derived from Eq. 7.14. In that case the response
function can be derived analytically and depending on the forcing function, the
integral can in some cases be solved analytically. In other cases numerical integra-
tion techniques must be used to calculate the thermocouple temperature at a given
time ¢.

Then the time is divided into increments and the surface temperature rise T}, i.e.
0 = T, — T;, may be calculated numerically by a time step superposition scheme.
To illustrate how solutions can be superimposed to obtain the surface temperature
of a time-dependent flux, the following case is studied. The heat flux is assumed to
vary as shown in Fig. 7.4. Thus


http://dx.doi.org/10.1007/978-3-319-30172-3_3
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http://dx.doi.org/10.1007/978-3-319-30172-3_3

7.2 Superposition and the Duhamel’s Superposition Integral 113

Fig. 7.4 A stepwise h
changing forcing function T
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Then the surface temperature rise can be calculated as
O =qi(t) A1) + (¢ —q1) At —11) + (43 — ¢2) - At — 1) (7.16)
In a general form the surface temperature rise may be written as
0, =£(0)-A()+ > " Af(t)- At —1;) (7.17)
where
Af(t:) = f(tin1) — f (1) (7.18)

A very powerful superposition technique is shown below which allows the forcing
function to depend on the response for the actual exposure. That is, for instance, the
case when a surface is exposed to radiation and the emitted radiation depends on the
surface temperature. Then a new surface temperature rise can then be calculated at
time increment j + / as:

Ojr1 = ZLO [(fz —fiz1) 'Ajfi] (7.19)

or alternatively as

Ojr1 = Z;:o {fj—i (Aip1 — Ai):| (7.20)
where At is the time increment and 8y = fy = 0. The values of the time-dependent
parameters at a given number of time increments i are defined as 6; = 0(i - Ar),
fi=f(i-At)and A; = A(i - Ap).
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In the case of a surface exposed to radiation and convective heat transfer, the
forcing function, i.e. the heat flux to the surface, can be calculated according to
Eq. 3.14. Then at time increment j calculated as

FU - A = Gl - A1 (7.21)

"

= |G- A1) — T - An)] + h(T,(j - Ar) — T,(j - Ar))

where q;’m and T, are input boundary conditions and T the surface temperature
approximated by its calculated value at time increment j.

Example 7.3
A concrete wall surface is assumed to receive piecewise constant heat fluxes
(boundary condition of second kind) according to Eq. 7.15 and as indicated in
Fig. 7.4 with the following input values:

t; = 10min, #, =20min and ¢, = 20kW/(m’K), ¢, = 35kW/(m’K) and
g5 = 15kW/(m°K)

The initial wall temperature is 20 °C. Assume thermal properties of concrete
according to Table 1.2.

Express the surface temperature rise as a function of time for the three time
intervals by superposition according to Eq. 7.16.

Solution According to Table 1.2 (k-p-c) =3.53-10°(W?s)/(m*K?). Then
Eq. 7.16 yields with the response function according to Eq. 3.29 new surface
temperature rises as:

Time
interval [s] Surface temperature rise, 6, [°C]

0 <t < 600 20000 - ——24
T\ 3.95
\/ 71/3.53-10°

600 < 1 < 1200 20 - ]03 . 21 + (35 _ 20) ) 103 L 2V/1=600

7/3.53:10° \V 7v/3.53:10°
1> 1200 20-10° - 24 1 (35-20)-10°  — 2L 4 (15 35). 10} - /L0

7v/3.53-10° V 7/3.53-10° V 7v/3.53-10°

7.3 The Finite Element Method for Temperature Analyses

When calculating temperature in fire-exposed structures, non-linearities must in
most cases be considered. The boundary conditions are non-linear varying signif-
icantly with temperature as shown above (see Chap. 4), and also the thermal
properties of most materials vary significantly within the wide temperature span
that must be considered in FSE problems. Therefore numerical methods must
usually be employed. The most general and powerful codes are based on the
so-called finite element method (FEM). Below the basic equations are derived for


http://dx.doi.org/10.1007/978-3-319-30172-3_3
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Fig. 7.5 A wall divided into one-dimensional elements numbered with m:s and with the nodes
numbered with i:s

a simple one-dimensional case as an illustration. Similar types of equation may be
derived for two and three dimensions.

7.3.1 One-Dimensional Theory

Figure 7.5 shows a wall which has been divided into a number of one-dimensional
elements. The temperature between the nodes is assumed to vary linearly along the
length.

In any element, interior or at the surface, with the length L, see Fig. 7.6, the
conductivity k and a cross-section area A, the heat flow to the element nodes can be
calculated as

q1= % (T —T>) (7.22)
and
) k
q>= - (T1 —T2) (7.23)
or in matrix format as
i‘ =k T (7.24)

. —~e
where Zf is the element node heat flow vector, £ the element thermal conduction

—~e
matrix and T the element node temperature vector. Given the one-dimension
assumption, the cross-section area is constant and assumed equal unity. Then the
element thermal conduction matrix may then be identified as

= 0k k{+1 -1
¢ _ 11 12| %
SR 72

and the element nodal temperature and heat flow vectors as



116 7 Numerical Methods

LA

Fig. 7.6 A one-dimensional element with local element node numbers 1 and 2 and with a length
L and a section area A. The element is given a thermal conductivity £, a specific heat capacity ¢ and
a density p

e . T1
T = {Tz } (7.26)
and

i = {‘q’; } (7.27)

In a similar way an element heat capacity matrix can be defined by lumping the
heat capacity of the element in the nodes. Thus an element heat capacity matrix may
be obtained as

o Ly [1 0} (7.28)

2 0 1

When several elements are combined, global heat conductivity matrix K can be
assembled. In the very simple case of three one-dimensional elements, the global
thermal conduction matrix becomes

ki1 ( . k}z 5 ) k(z) 8

z k ky, +k 12

K= 21 22 11 7.29
0T @tk & 72
0 0 k3 k>,

where the super fixes 1-3 denote the contributions from the corresponding element
numbers. The global heat capacity matrix C may be assembled in a similar way as
the global conductivity matrix. Notice that both the heat conductivity and the heat
capacity matrices are symmetric and dominated by their diagonal elements, and that
the global heat capacity matrix assembled from element matrices according to
Eq. 7.28 will have non-zero elements only in the diagonal. This will have a decisive
influence on how global algebraic heat balance equation can be solved as shown
below.
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In global form the heat balance equation may now be written in matrix form as
CT+KT =0 (7.30)

where the vector T contains the time derivatives of the node temperatures. Each row
in this equation system represents the heat balance of a node. For each equation or
each node either the temperature or the heat flow given in the corresponding rows in
the vectors T and Q, respectively, are known. In principle three cases are possible for
each equation/row (c.f. the three kinds of boundary conditions as presented in
Chap. 4):

1. The node temperature 7; is prescribed.

2. The node heat flow Q; is prescribed.

3. The node heat flow Q; can be calculated as a function of a given gas temperature
and radiation temperature, and the surface temperature.

In the first case the corresponding equation vanishes as the unknown quantity is
prescribed a priori. The most common case for internal nodes is the second case,
i.e. the external flow is zero. A typical boundary condition when calculating
temperature in fire-exposed structures is of the third case corresponding to a
boundary of the 3rd kind. Then according to Table 4.1 of Chap. 4 the nodal heat
flow is

0= eo(T! ~T4,) + h(T, ~T,.) (7.31)

(given the cross-section area equal unity). Notice that this is non-linear as the
emitted radiation depends on the temperature raised to the fourth power. This is
of importance when choosing the equation-solving methodology.
The differential global matrix equation Eq. 7.30 is solved numerically by
approximating the time derivative of the node temperatures as
. AT T - T’]
T ~ AT A (7.32)

where T’ is the node temperature vector at time step j and At is here a chosen time

increment. Now the heat balance equation in matrix format Eq. 7.30 can be written
as

SN £ -

Cl——— | + KT = 7.33

= 0 (733)

In this differential equation the temperature vector is known at time increment j.

The new temperature vector at time j+ / is obtained explicitly based on the
conditions at time step j for calculating the thermal conduction as
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7' =71 A [Qf - ﬁ’} (7.34)

As the heat capacity matrix is here assumed diagonal (c.f. Eq. 7.28), the new
node temperatures at time step j+ / can be obtained directly row by row and no
system equation needs to be solved. Alternatively an implicit method may be
derived where the conduction is based on the temperatures at time step j+ /.
Then the new node temperatures may be calculated as

— ~1
T = (g + 1?) <§’+ ﬁf)m (7.35)

Combinations of the two solution methods are also possible but as soon as the
conduction depends on the node temperature at time step j + / the solution scheme
requires the solution of a global equation system containing as many unknowns as
there are unknown node temperatures. Most finite element computer codes use this
type of implicit solution schemes. They are generally numerically more stable than
the explicit techniques and therefore longer time increments may be used.

The explicit solution according to Eq. 7.34 may, on the other hand, be very
simple when the heat capacity matrix C is diagonal, i.e. it contains only non-zero
elements in the diagonal as shown for a one-dimensional element in Eq. 7.28. The
solution of the equation system becomes then trivial as each nodal temperature can
be obtained directly/explicitly, one at a time. It involves only a multiplication of a
matrix with a vector which requires much less computational efforts than solving an
equation system. This solution scheme is, however, numerically stable only when
the time increment At is less than a critical value proportional to the specific heat
capacity times the density over the heat conductivity of the material times the
square of a characteristic element length dimension Ax. This requirement applies to
all the equations of the entire system, all nodes i except those with prescribed
temperatures. If violated in any of the equations, i.e. at any point of the finite
element model, the incremental solution equation will become unstable (cf. Sect. 7.1
and Eq. 7.10 on lumped-heat-capacity). Hence in the one-dimensional case treated
here the critical time increment At.. may be estimated as

p-c

~ min|—— 2
At ~ mln{ % Ax } (7.36)

1

This means that short time increments are needed for materials with a low
density and a high conductivity, and when small element sizes are used. At
boundary nodes with heat transfer conditions of the 3rd kind the critical time
increment will be influenced by the heat transfer coefficient & as well. Then at
any node i
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. p-C )
Aty ~min|—2"C  Ax
i [k+h/Ax L

(7.37)

The heat transfer coefficient 4 is here the sum of the heat transfer coefficient by
convection and radiation, denoted by #,,, in Sect. 4.3.

In practice, when calculating temperature in fire-exposed structures, short time
increments must be used independent of solution technique as the duration of
analyses are short and boundary condition chances fast. Therefore numerical
stability is only a problem when modelling sections of very thin metals sheets
with high heat conductivity. Then very short time increments are required. The
problem may, however, be avoided by prescribing that nodes close to each other
shall have the same temperature. This technique has been applied in the code
TASEF [14]. In that code a technique is also developed where the critical time
increment is estimated and thereby acceptable time increments can be calculated
automatically at each time step depending on thermal material properties and
boundary conditions varying with temperature. At boundaries of the 3rd kind
short time critical time increments can be avoided by assuming the surface tem-
perature equal to the surrounding temperature (boundary of the 2nd kind). This
approximation may be applied when the thermal inertia of a material is relatively
low and the surface temperature is expected to follow close to the exposure
temperature (adiabatic temperature).

As a general rule finite element calculations shall not be accepted until it is
shown that the solution gradually converge when time increments and element sizes
are reduced. This rule applies to both computer codes using explicit and implicit
solution techniques. A guidance standard on requirements for calculation methods
that provide time-dependent temperature field information resulting from fire
exposures required for engineered structural fire design has been published by
SFPE [18].

7.3.2 Computer Codes for Temperature Calculations

Several computer codes are commercially available for calculating temperature in
fire-exposed structures. They are in general based on the finite element method.
Some are specifically developed and optimized for calculating temperature in fire-
exposed structures while others are more general purpose codes.

TASEF [14, 19] and SAFIR [20] are examples of programs which have been
developed for fire safety problems. They have different pros and cons. They all
allow for temperature-dependent material properties and boundary conditions.
TASEF employs a forward difference solving technique which makes it particularly
suitable for problems where latent heat due to, e.g. vaporization of water must be
considered. It yields also in most cases very short computing times, in particular for
problems with a large number of nodes. TASEF and SAFIR have also provisions for
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modelling heat transfer by convection and radiation in internal voids. TASEF does
also allow for boundary conditions where the exposure radiation and gas temper-
ature are different, boundary condition of the 3rd kind according to Table 4.1.

There are many very advanced general purpose finite element computer codes
commercially available such as ABAQUS, ANSYS, ADINA, Heating 7 and
Comsol. The main advantage of using this type of codes is that they have several
types of elements for various geometries and dimensions, and that they come with
advanced graphical user interfaces and pre- and post-processors.

7.3.3 On Accuracy of Finite Element Computer Codes

There are at least three steps that must be considered when estimating the accuracy
of computer codes for numerical temperature calculations:

1. Accuracy of material properties
2. Verification of the calculation model
3. Validity of the calculation model

The first point is crucial. Errors in material property input will be transmitted
into output uncertainties and errors. Methods for measuring material properties at
high temperature are briefly discussed in Sect. 1.3.3.

Secondly, the numerical verification of the computer code itself is important.
Verification is the process of determining the degree of accuracy of the solution of
the governing equations. Verification does not imply that the governing equations
are appropriate for the given fire scenario, only that the equations are being solved
correctly.

The third point is of course important as well. Validation is the process of
determining the degree to which a mathematical model and a calculation method
adequately describe the physical phenomena of interest. Temperature calculation
codes are in general developed for solving the Fourier heat transfer equation.
Effects of varying material thermal properties can be considered in the numerical
integration while, for example, the thermal effects of spalling or water migration
cannot generally be predicted. Other important aspects are the possibilities of
satisfactory describing boundary conditions. For FSE problems generally involving
high temperatures, the calculation of heat transfer by radiation at external bound-
aries and in internal voids is of special concern.

The codes mentioned above yield results with acceptable accuracy for simple
well-defined boundary conditions and material properties. Differences when mixed
boundary conditions and latent heat are introduced. A scheme to follow including a
number of reference cases of various levels of complexity has been published in an
SFPE standard [21]. Precisely calculated reference temperatures of 16 cases of
bodies have been listed. They represent a variety of problems that are relevant in
FSE involving a range of complexities.
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Some reference cases are linear problems which can be solved analytically. Then
when increasing the number of elements the results should converge to one correct
value. Codes yielding results that converge smoothly when increasing the number
of elements are generally more reliable for the type of problems considered. Most of
the reference cases are relevant for FSE including effects of conductivity varying
with temperature, latent heat, radiant heat transfer boundary conditions and com-
binations of materials, concrete, steel and mineral wool. Then as no exact analytical
solutions are available, the cases were modelled in the finite element codes Abaqus
and TASEF. The difference between the solutions obtained with these codes were
within one-tenth of a degree Celsius, and as these codes employ different calcula-
tions the published solutions of the reference cases were deemed very accurate.

7.3.4 On Specific Volumetric Enthalpy

As shown in Eq. 7.30 the heat conduction equation can be expressed in terms of
specific volumetric enthalpy e. This is advantageous when calculating temperature
with numerical methods in cases with materials where latent heat needs to be
considered. The specific volumetric enthalpy or here often just the enthalpy is the
heat content of a material due to temperatures above zero per unit volume (Ws/m®),
ie.

e(T) = JT/J~CdT+Zil[ (7.38)
0

where p is density and c specific heat capacity. These are in general temperature
dependent. The second term Zil,- (Ws/m®) represents latent heats required for

various chemical and physical phase changes at various temperature levels. The
first term is the sensitive heat. The most common form of latent heat to be
considered in FSE is the vaporization of moisture (free water) when the temperature
rise passes the boiling point (100 °C).

For a dry inert material with a density p,,, and a specific heat ¢, not varying
with temperature the enthalpy is proportional to the temperature and the sensitive
heat becomes

e = CaryParyT (7.30)

If a material contains free water, the enthalpy versus temperature is influenced in
two ways. Firstly heat proportional to the temperature rise (sensitive heat) is needed
to increase the temperature of the water, and then in addition heat (latent heat) is
needed for vaporizing water at temperatures in an interval above 100 °C. Both these
components must be added to the enthalpy of the dry material when calculating the
enthalpy as function of temperature. Thus in general terms the enthalpy consists of
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three components, the sensitive heat of the dry material, the sensitive heat of the
water and the latent heat due to vaporization of water. The first term is present over
the entire temperature range, the second added only as long as water is present, and
the third only in the temperature interval when the water vaporizes.

Moisture content u is usually expressed as the percentage water by mass of the
dry material. Thus u is defined as

Pori = P, dry
P dry

u=100- (7.40)

where p,,; is the original density of the moist material. If the moisture is assumed to
evaporate between a lower temperature 7; and an upper T, temperature, the latent
heat due to water vaporization /,, is added to the enthalpy at the upper temperature
level. The latent heat of water is then calculated as

u
S =— 0D, 41
lw 100 pd/y Ay (7 )

where the heat of vaporization of water a, = 2.26MJ/kg. As an example the
enthalpy as a function temperature of a material with constant dry properties can
then be obtained as shown in Table 7.1 and Fig. 7.7. The enthalpy is then calculated
at four temperature levels and in-between the enthalpy varies linearly. Notice that
as an average only half of the water is assumed to be heated between the lower
temperature 7, (100 °C) and the upper temperature T, for the vaporization process.

As an example the enthalpy of a concrete with a dry density of 2400 kg/m°, a
specific heat of 800 J/(kg K) and a moisture content # =3 % by mass is shown in
Fig. 7.7a. For comparison the enthalpy for a dry concrete (u =0 %) is given as well.
The moisture is assumed to evaporate linearly with temperature between 100 and
120 °C. Notice that at temperatures above T,, the enthalpy rises linearly with
temperature at the same rate as for a dry material.

Most computer programs require input of the specific heat and the density or the
product of the two. This parameter is obtained by deriving the temperature—
enthalpy curve. For the case above the specific volumetric heat c-p then becomes
as shown in Fig. 7.7b.

The volumetric specific heat (c-p) as a function of temperature then increases
suddenly in the range where the water is assumed to evaporate. This may cause
numerical problems in particular for cases where the temperature range is narrow
and the moisture content is high.

Gypsum is often used to seal penetrations through fire barriers and to protect
steel structures. To raise the temperature of gypsum heat is needed to heat the dry
material and to heat and evaporate the free water. In addition heat is needed for
dehydration and vaporization of the crystalline bound water which occurs in two
steps. An example of calculated specific volumetric enthalpy of gypsum containing
5 % free water and 21 % crystalline bound water is shown in Fig. 7.8 based on work
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Table 7.1 Calculation of specific volumetric enthalpy, e, for a material with constant dry
properties with a moisture content of u % by mass of the dry material

Temperature, T Specific volumetric enthalpy, e
0 e =0
T €T = Pary [cary + 185 cw] T
T, er, = er, + Pary [Cary + 0.5 755 cw] (Tu —T)) + 1% Pary @
T>T, ers7, = er, T CdryPary (T-T.,)
b

12.00

10.00 =

8.00

Enthalpy, (MJ/m?)

4.00

200 i ———

Voumetric specific heat, c-p [MJ/m? K]
3

0.00

| 1 i
0 100 200 300 400 0 100 200 300 0

Temperature [*C] Temperature [°C]

Fig. 7.7 Example of specific volumetric enthalpy vs. temperature of dry and moist concrete (3 %
by mass). The moisture is assumed to evaporate linearly between 100 and 120 °C. (a) Specific
volumetric enthalpy, e. (b) Specific volumetric heat capacity, c-p

by Thomas [22] (the figure is taken from a master thesis of Emil Ringh (2014),
Lulea TU).

Notice how the latent heats for the dehydration and vaporization processes
surpass by far the sensitive heat needed to heat the inert material by comparing
the slope of the curve below 100 °C thereafter until all the water has evaporated at
temperatures above 220 °C. This ability of gypsum to absorb has a significant
effect, for instance, on gypsum boards for fire insulation of steel structures. How-
ever, this is only for gypsum board qualities able to resist fire exposures. To take
advantage of the effects in calculations, computer codes where the specific volu-
metric enthalpy can be input directly are the most suitable as it may be difficult to
convert the curve into density and specific heat which corresponds to the derivative
or slope of the curve.

Reliable values of the conductivity of gypsum are hard to find in the literature as
the temperature development in gypsum depends very much on the highly
non-linear enthalpy curve due to latent heats. With great reservation on the accu-
racy the values in Table 7.2 are recommended to be used in combination with the
temperature—enthalpy curve shown in Fig. 7.8 for indicative calculations.
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Fig. 7.8 Example of calculated specific volumetric enthalpy of gypsum containing 5 % free water
and 21 % crystalline bound water

Table 7.2 Thermal conductivity and specific volumetric enthalpy of gypsum as given in Fig. 7.8

Temperature | Thermal conductivity Temperature Specific volumetric enthalpy
[°C] [W/(m K)] [°C] [MJ/m’]
20 0.19 0 0
100 0.15 100 73.5
500 0.17 110 571
1000 0.35 200 625
2000 0.35 220 784
2000 2123




Chapter 8
Thermal Ignition Theory

The various aspects of the subject ignition of unwanted fires has been thoroughly
investigated by Babrauskas and presented in the comprehensive Ignition
Handbook [23]. This book is concentrating on the calculation of the development
of surface temperature. Despite many limitations, it is often assumed that a solid
ignites due to external heating when its exposed surface reaches a particular
ignition temperature.

In Sect. 8.1 some data of ignition temperature of various substances are given
and then in Sect. 8.2 handy formulas are presented on how to calculate time to
ignition of surfaces exposed to constant incident radiation heat flux. These formula
yields very similar results in comparison to accurate and elaborate numerical
calculations.

8.1 Ignition Temperatures of Common Solids

Combustible solids may ignite due to piloted ignition, or auto-ignition (also called
spontaneous ignition). The piloted ignition temperature of an externally heated
substance is the surface temperature at which it will ignite in a normal atmosphere
with an external source of ignition, such as a small flame or spark, present. Most
common materials then ignite in the range of 250450 °C. The auto-ignition
temperature is the corresponding temperature at which a substance will spontane-
ously ignite without a flame or spark present. It is considerably higher, normally
exceeding 500 °C.

Some limited amount of relevant material data are given in Table 8.1 for some
liquids and in Table 8.2 for some plastics.

Note that the times to ignition as estimated by the thermal theories outlined
below are generally very crude and based on the assumption of homogeneous
materials with constant material properties not varying with temperature or time.
The formulas are, however, very useful for the intuitive understanding of which

© Springer International Publishing Switzerland 2016 125
U. Wickstrom, Temperature Calculation in Fire Safety Engineering,
DOI 10.1007/978-3-319-30172-3_8


https://en.wikipedia.org/wiki/Spontaneous_combustion#Spontaneous%20combustion

126 8 Thermal Ignition Theory

Table 8.1 Critical temperatures of some liquids

Liquid Formula Flash point [K] Boiling point [K] Auto-ignition [K]
Propane C5H; 169 231 723

Gasoline Mixture ~228 ~306 ~644

Methanol CH;0H 285 337 658

Ethanol C,HsOH 286 351 636

Kerosene ~C4Hzo ~322 ~505 ~533

From Quintiere [24]

Table 8.2 Ignition . Ignition temperature [°C]
temperaures of some plastics Category of solid Piloted Auto
grouped by category -
Thermoplastics 369+73 457 £ 63
Thermosetting plastics 441 £ 100 514+£92
Elastomers 318 £42 353 £56
Halogenated plastics 382479 469 £79

From Babrauskas [23]

material and geometrical properties govern the ignition process and the ignitability
characteristics.

The time to ignition of thick homogenous materials is proportional to the thermal
inertia (k-p-c), i.e. the product of specific heat capacity, density and conductivity,
see Sect. 3.2. The conductivity increases generally at the same time as the density of
a material increases (see Eq. 1.36). Therefore the thermal inertia of materials varies
over a large range and consequently the ignition properties. Insulating materials
have low conductivities k (by definition) and low densities p and will therefore
ignite easily if combustible. The specific heat capacity depends on the chemical
composition of the material, but the values of common materials found in the
literature do not vary much. An exception is wood which according to values
found in the literature has a relatively high effective specific heat capacity. (This
may be a way of considering the effects of its water content.)

Table 1.2 shows how the thermal inertia increases considerably with density for
various combustible and non-combustible materials. Notice for instance that the
thermal inertia of an efficient insulating material such as polyurethane foam is less
than a hundredth of the corresponding value of solid wood. Then as an example a
low density wood fibre board may have a density of 100 kg/m® and a conductivity of
0.04 W/(m K), while a high density wood (oak) have a density of 700 kg/m3 and a
conductivity of 0.17 W/(m K). As such boards can be assumed to have about the
same specific heat capacity, it can be calculated that the thermal inertia of the high
density fibre board is more than 40 times higher of that of the low density board.
The low density fibre board can therefore ideally be estimated to ignite 40 times
faster than the high density fibre board when exposed to the same constant heating
conditions, see Eq. 8.9.
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8.2 Calculation of Time to Ignitions

In common thermal ignition theory a material (solid or liquid) is assumed to ignite
when the surface reaches the ignition temperature. It may be at the piloted or at the
auto-ignition temperature. The time it takes the surface to reach such a critical
temperature when heated depends on the dimensions and the thermal properties of
the material. Below the special cases of thin and semi-infinite solids will be outlined
in Sects. 8.2.1 and 8.2.2, respectively, as developed by Wickstrom [25].

In both cases the heat transfer by radiation and convection to an exposed surface
is calculated according to Eq. 4.12 as

q:at = S(Q ;'Im: - 6T?> + I’l(; (Tﬁ’ - TA) (81)

where & is the surface emissivity and absorptivity coefficient, o the Stefan—
Boltzmann constant, / the convection heat transfer coefficient, and T, the ambient
gas temperature. By calculating the surface temperature vs. time the time to ignition
can be obtained. Eq. 8.1 is, however, a non-linear boundary condition since the
emitted radiation term depends on the surface temperature to the fourth power.
Therefore a direct closed form solution cannot in general be derived for the surface
temperature 7. Therefore the time to ignition must be calculated numerically.

However, for the ideal case, as, for example, in the Cone calorimeter, see
Fig. 8.1, when the following conditions are present

+ Constant incident radiation ¢ ;.

+ Constant surrounding gas temperature T,

e Uniform initial temperature 7T;

¢ Constant material and heat transfer properties

The time to reach the ignition temperature #;, may be calculated approximately
with a simple explicit formula as introduced below. Similar conditions can be
assumed when analysing, for example, heating by radiation by flames or hot objects
onto surfaces surrounded by gases with moderate temperature.

The formulas derived are semi-empirical, i.e. they have been proven correct by
comparing with accurate numerical solutions. As a first step the third kind of BC
(see Sect. 1.1.3) according to Eq. 8.1 is replaced by a second kind of BC, a constant
effective heat flux q’,’m,eﬂ assumed to be

D iot,eff = €9 inc — "9 inc,cr (82)
where c};’m, o 18 critical incident radiation heat flux, i.e. the incident radiation

required to balance the heat losses at the surface by emitted radiation and convec-
tion at the ignition temperature.
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Fig. 8.1 Surface with heat 5
transfer parameters ¢ and /.. q inc
exposed to constant uniform \ §
incident radiation and
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"

& Qipe.cr — €6T g — he(Tig — Ty) =0 (8.3)
which yields
qinc,cr = GT?g + hC/g : (Tik' - Tg) (84>

n in Eq. 8.2 is a semi-empirical reduction coefficient which was determined by
comparisons of times to ignition obtained with accurate numerical methods. The
constant heat flux according to Eq. 8.2 can now be calculated for thin solids with
Eq. 3.30 with n = 0.3 and for semi-infinite solids with Eq. 3.5 with n =0.8. Then the
time to ignition #;, can be calculated by closed form simple equations according to
Eq. 8.7 and Eq. 8.9 for thin and semi-infinite solids, respectively.

8.2.1 Thin Solids

For thin solids the temperature may be assumed uniform throughout the depth of the
body. Then the thickness and the volumetric specific heat capacity are decisive for
the time to ignition and when assuming a constant total heat flux ¢ ;’m (see also Sect.
3.1) the temperature rise can be calculated as:

N
_ 9ot

T, —T;
) p-c-d

(8.5)

where T is the exposed body temperature, T; the initial temperature, ¢ time, p
density, ¢ specific heat capacity and d thickness. Density times thickness (p.d) is
weight per unit area. That means that time to ignition #;, of a thermally thin material
receiving a constant total heat flux ¢ ;’m is directly proportional to the density and the
thickness of the material, i.e. the weight of the solid per unit area, and the
temperature rise to reach the ignition temperature T}, i.e.
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d
t,'g = /# (T,'g — Tl> (86)

tot

However, the heat flux ¢ ,, can rarely be assumed constant or determined a priori as
a second kind of boundary condition. Even if exposed to a constant thermal
exposure, q';’m decreases when the surface temperature rises according to Eq. 8.1.
As a matter of fact, it is a third kind of boundary condition, see Sect. 1.1.3.
Nevertheless by inserting the effective heat flux according to Eq. 8.2 with 1=0.3
into Eq. 8.6, the time to reach the ignition temperature of thin solids exposed to
radiation may be approximated as

p-c-d
lig = T i Ti, —T; (87)
i € ipe — 0.3- qinc,(‘r ( N 1)

Calculated ignition times according to Eq. 8.7 yields very good approximations of
the accurate predictions obtained by the numerical solutions where the real bound-
ary heat flux ¢ :0,, according to Eq. 8.1, is assumed and where the time to ignition is
the time when the body surface reaches the ignition temperature.

Example 8.1 Calculate the time to ignition for a thin curtain with an area density
of p -d = 300g/m? and an ignition temperature T;, = 350°C when exposed to an
incident radiation q;'m =20kW/m? from both sides. Assume a specific heat
capacity of curtain ¢ =850 W s/(kg K), a surrounding temperature and an initial
temperature T; equal to 20 °C, a convective heat transfer coefficient of 5 W/(m? K)
and an emissivity € = 0.9.

850.0.3-(350—20)
5= 2.8 s.

Solution Equation 8.7 yields #;; = 3.10.9.30000-03 10575

8.2.2 Semi-infinite Solids

A similar expression as given by Eq. 8.5 for thin solids can be derived for semi-
infinite solids or thermally thick solids, i.e. the thickness is larger than the thermal
penetration depth, see Sect. 3.2.1. Then for a constant heat flux to the surface 6};/
(2nd kind of BC) and constant thermal properties, the time to reach a given
temperature T, is (see also Eq. 3.30)

T-k-p-c 2
tio=——5(Tie — T; 8.8

where T; is the initial temperature. The product of the heat conductivity k, the
specific heat capacity ¢ and the density p is the thermal inertia (k- p - c) of the
material as defined in Sect. 3.2. As for thin solids the heat flux to the surface cannot
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be specified as a second kind of boundary condition. However, for the particular
case of a constant incident radiation flux ¢ . and a constant ambient gas temper-
ature T, and a uniform initial temperature T;, the time to ignition can be approxi-
mated as shown below for semi-infinite solids.

By inserting the effective average value of the heat flux according to Eq. 8.2 with
n=0.8 into Eq. 8.9 and rearranging, the time to reach the ignition temperature of
surfaces of solids exposed to radiation may then be approximated as

tig - 2 .1 .1
4e (q ine — 0.8 9 inc,cr

gl inn) e
) |

and after inserting g fnw from Eq. 8.4 a closed form explicit expression for the time
to ignition is obtained as

' _a(k-p-c) Ty — T,
’g - "
4 G —08 [0- T+ he(Tjs — Tg)}

inc

(8.10)

Equations 8.9 and 8.10 match very well the times to ignition as calculated by
accurate numerical procedures for a wide range of the parameters incident radiation
G - ignition temperature T}, and thermal inertia (k - p - ) [24].

According to the above equations the inverse of the square root of the ignition
time is linearly dependent on the incident radiation, i.e.

L: 2¢e
Viig \/[ﬂ (k-p-c)](Tig—Ti

) |:q ;,m,' -038 q;/m',cr (811)

Thus according to Eq. 8.11 linear relations are obtained as shown in Fig. 8.2 for
various thermal inertia and in Fig. 8.3 for various ignition temperatures. Values
typical for the Cone Calorimeter test scenario has been assumed for both the
diagrams in Figs. 8.2 and 8.3, i.e. initial temperature T; = 20°C, the surface
emissivity € = 0.9, the convection heat transfer coefficient h, = 12 W/(m?K).
The lowest thermal inertia 1000 (W2 s)/(m* K?) may be representative of low
density polymeric insulation material which heats up very quickly while an inertia
of 100000 (W2 s)/(m* K?) may represent soft wood and 300000 (W? s)/(m* K?) hard
wood such as oak. These values are only indicative and are not recommended to be
used in real application. Notice that the graphs cross the abscissa at 80 % of the
critical incident flux, i.e. at 0.8 q;’m,(,,,, independently of the thermal inertia of the
material.

The theory indicates how significant the thermal inertia is for the time to
ignition. As an example Fig. 8.2 indicates the time to ignition for softwood exposed
to 30 kW/m? is 1/0.25% = 165 and 1/0.15? = 44 for hardwood when exposed to
30 kW/m?. The very short ignition times for low density insulation materials even at
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Fig. 8.2 The inverse of the square root of time to ignition vs. incident radiation heat flux
according to Eq. 8.11 assuming an ignition temperature 7, = 300°C for various thermal inertia
k-p-c given in (W? s)/(m* K?). T; = 20°C, & = 0.9 and h,, = 12W/(m?K)

moderate incident radiation levels indicates the hazardous fire properties of these
type of materials.

In Fig. 8.3 the inverse of the square root of the ignition time vs. incident
radiation is shown for various ignition temperatures assuming a thermal inertia of
100000 (W? s)/(m* K?) corresponding to soft wood. The ignition temperature of
500 °C is only relevant for auto-ignition circumstances while the other temperature
levels may be relevant for piloted ignitions for most materials of interest. Notice
that the ignition temperature has a great influence on time to ignition and on the
critical incident radiant heat flux. As an example softwood exposed to an incident
radiation of 20 kW/m” would ignite after 51 s when the ignition temperature is
assumed to be 200 °C and after only 13 s if assumed to be 300 °C.

Example 8.2 Calculate the time to ignition of a surface of thick wood
(k- p-c=196000 (W2 s)/(m4 K)) solid suddenly exposed to an incident radiation
heat flux q;’m, = 30kW/m?2. The wood surface emissivity &= 0.8, the convection
heat transfer coefficient 4 = 12 W/(m? K), the other thermal properties according to
Table 1.2.

(a) The solid is initially at 20 °C and surrounded by air at the same temperature.
(b) The solid is initially at 100 °C and surrounded by air at the same temperature.
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Fig. 8.3 The inverse of the square root of time to ignition vs. incident radiation heat flux
according to Eq. 8.11 assuming a thermal inertia of 100000 (W2 s)/(m* K?) for various ignition
temperatures. T; = 20°C, & = 0.9 and /hi¢on = 12W/(m?K)

Solution According to Eq. 8.4 ¢, ., = 5.67-107*-623* +12/0.8 - (350 — 20)

2
— 13492 W /m?. Equation 8.9 yields 17, = =560 [0 30-20 00 " — 715, (Com-

ment: Applying the accurate boundary condition according to Eq. 8.1 yields by
accurate numerical calculations #;, = 69s).

According to Eq. 84 ¢, . =5.67-107.623"+12/0.8 - (350 — 100) =

2
12292W /m?. Equation 8.9 yields r, = 12600 [ 15ods0o100 0" — 37,

Comment: Thus this material would ignite in about half the time if preheated from
20 to 100 °C.



Chapter 9
Measurements of Temperature
and Heat Flux

In FSE temperature is nearly always measured with thermocouples as described in
Sect. 9.1. Heat flux measured in different ways is most commonly measured as the
sum of the net heat flux by radiation and convection to a cooled surface. The
principles are briefly outlined in Sect. 9.2. Alternative methods incident radiation
heat flux as well AST using so-called plate thermometers has also been developed
as a practical alternative to heat flux meters as outlined in Sect. 9.3.

9.1 Thermocouples

Thermocouples (sometimes abbreviated T/C) have a junction between a pair of
wires of two different metals or alloys. A voltage is then generated proportional to
the temperature difference between the so-called hot junction and the cold junction,
a reference point with known temperature. The hot junction of thermocouples can
either be imbedded in solid materials or mounted in free space. Thermocouples are
in general relatively inexpensive and easy to handle, and can be used for measuring
temperatures over a wide range. They are therefore very common in fire testing and
research. Different alloys are used for different temperature ranges.

9.1.1 Type of Thermocouples

There are a number of standardized types and combinations metals for thermocou-
ples. The most common have been designated letters by ISA (Instrument Society of
America) and ANSI (American National Standards Institute). Information on the
various types of thermocouples and their letter designation is given in the interna-
tional standard IEC 584.
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In fire testing and research thermocouples of type K are by far the most common.
The positive lead is then made of a nickel alloy with 10 % chrome and the negative
of a nickel alloy with 2 % aluminium, 2 % mangan and 1 % silicon. The relation
between the output voltage and temperature is almost linear with a sensitivity of
approximately 41 pV/K. The melting point is about 1400 °C and the mechanical
properties and the resistance against corrosion are satisfactory also at high temper-
ature levels. At temperatures above 800 °C, however, oxidation may occur leading
to substantial measuring errors. The thermocouples may also age when used for
longer times at temperatures above 500 °C and should therefore in such cases be
calibrated about every 20 h of use [26]. According to the international standards for
fire resistance furnace tests ISO 834 and EN 1363-1 thermocouples may not be used
for more than 50 tests.

For temperature measurements up to 1480 °C thermocouples of type S, plati-
num—~platinum/rhodium, are sometimes used in fire resistance furnaces. They are,
however, expensive and only suitable for short term measurements as they degrade
at high temperatures.

There are industrially manufactured thermocouples in many metal combina-
tions. The connections of the thermocouples leads are, however, often made by the
user by soldering, electric or gas welding or pressing depending on the intended use.
Soldering and welding is mainly used for thin thermocouples. Pressing is used with
so-called quick tips. The latter method yields rather big hot junctions which makes
the thermocouples relatively slow when recording dynamic processes as in fires and
less sensitivity to heat transfer by convection, see next Section. Thus their temper-
ature recordings must often be corrected due to the effects of radiation when
measuring gas temperature accurately.

Ready-made shielded thermocouples are also being used in fire testing and
research. They have a stainless steel or similar casing protecting the thermocouple
from mechanical stresses and corrosive gases. These are in general more robust but
considerably more costly.

9.1.2 Measurement of Temperature in Gases

The temperature recording you get from a thermocouple is always the temperature
of the hot junction of the thermocouple leads. When placed in a gas it adjusts more
or less quickly to surrounding temperatures depending on its thermal response
characteristics to convection and radiation. Briefly it can be said that the smaller
dimensions of a thermocouple the quicker it responses to thermal changes and the
more sensitive it is to convection and thereby gas temperature, and vice versa.
Thus it is important to realize that thermocouples in gases are influenced by the
gas temperature T, as well as by the incident radiation or the black body radiation
temperature 7, (see Chap. 4). It adjusts to a temperature which is a weighted
average of the two temperatures which may be very different. The weights are
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the heat transfer coefficients 4, and &, for radiation and convection, respectively.
Thus the ultimate or equilibrium thermocouple temperature 77 becomes

h-T,+h.-T
Tre=— "L ¢ "8 9.1
e hy + he G-
where
hy = eo(T; +T1c) (T + Trc) (9.2)

Notice that Eq. 9.1 is implicit as h, depends on Tr¢, and that it is similar to the
expression for the AST in Eq. 4.23. When radiation and thermocouple temperatures
are approximately equal, i.e. T, = Tr¢ (as for thermocouples in thick flames) the
radiation heat transfer coefficient may be approximated as

hy ~de-6- Tic (9.3)

As indicated in Chap. 6, convection heat transfer coefficients decrease with the size
of a body. Hence smaller thermocouples will have greater convection heat transfer
coefficients /. and will therefore adjust closer to the gas temperature while larger
thermocouples will deviate more from the gas temperature and adjust closer to the
radiation temperature as indicated by Eq. 9.1.

The difference between the true gas temperature and the thermocouple temper-
ature at equilibrium can be written as

h,
AT = TTC — Tg = /’l_ (Tr - TTC) (9'4)
¢

which implies that the difference between the measured temperature T7c and the
true gas temperature T, increases with the ratio between the heat transfer coeffi-
cients and the difference between the radiation temperature and the thermocouple
temperature.

A special case is the plate thermometer as described in Sect. 9.3 which has a
large exposed area. The convection heat transfer coefficient 4, is therefore rela-
tively small, and hence the equilibrium temperature of a PT is closer to the incident
radiation temperature than the corresponding temperature of ordinary thermocou-
ples. In addition the PT is dependent on direction of incident radiation while a
thermocouple is not.

The time response characteristics are also important to consider when measuring
gas temperatures. A general rule is thermocouples response faster the thinner they
are, the less mass they have. As the temperature in a thermocouple can be assumed
uniform and it can be calculated assuming lumped-heat-capacity (Sect. 3.1). Thus
the temperature T7¢ of a thermocouple suddenly exposed to a constant fire temper-
ature Ty may be calculated according to Eq. 9.5 as
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Tre —T; _t
—1—¢: 9.5
Tf _ T[ e ( )

where T; is the initial thermocouple temperature and t is the time constant of the
thermocouple which then can be calculated as

Vre *Prc  €rc
T=— "= - 9.6
Arc - o (5:6)

where the parameters p7c and crc are the density and the specific heat capacity of
the thermocouple junction including the mass of soldering, etc. and Vyc/Arc is the
effective volume-to-area ratio. When assuming constant conditions the value time
constant is the time elapsed when the temperature rise has reached 63 % of its final
value. In reality the time constant varies considerably as 4, increases significantly
with temperature.

For a total heat transfer (by convection and radiation) coefficient #%,,,, the time
constant 7 for a sphere can be identified as

1
7= ED Py Cs Mo (9.7)
Assuming the thermocouple hot junction as a cylinder with a diameter
D disregarding the end surface yields

D
T=4 P s/ Mior (9.8)

When exposure temperature T varies with time the thermocouple temperature can
be obtained to Eq. 3.16.

Example 9.1 What is the time constant T of a thermocouple T/C exposed to
uniform temperature at a level of Ty = 500°C? Assume that the T/C is spherical
with a diameter of 3 mm of steel with a convective heat transfer coefficient
h. =50 W/m? K. The density and specific heat capacity of the T/C may be assumed
to be 7850 kg/m> and 460 Ws/kg K, respectively, and its emissivity & =0.9.

Guidance: Assume the heat transfer to the TIC is ¢' = ec (T4f — T4Tc) + he
(T_f — TTC) and that Trc =Ty when calculating the radiation heat transfer
coefficient h,..

Solution Equation 9.3 (or Fig. 4.2a) yields h, = 4-0.9 -5.67 - 1078 - (500 + 273)3
= 105W/(m?K) and then /,,; = 105 + 50 = 155 W/(m?K). According to Eq. 9.7
7=14-0.003-7850 - 460/155 = 11.65.

Example 9.2 Calculate the time constant of the 1 mm thick thermocouple in
Example 6.3.


http://dx.doi.org/10.1007/978-3-319-30172-3_3
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(a) Initially at room temperature (300 K)
(b) At its equilibrium temperature (1000 K)

when suddenly exposed to gas and radiation temperatures of 1000 K. Assume the
T/C is made of stainless steel, ie. erc=0.7, prc=7900kg/m> and
cre = 460W/(kgK).

Solution

(a) According to Example 6.3 h. = 131 W/(m?K). The radiation heat transfer
coefficient is obtained from Eq. 4.5 as . = 0.7 -5.67 - 1078 (10002 + 3002)
(1000 + 300) = 56 W/(m?K). Then hy,; = 131 + 56 = 187 W/(m’K) and
7r¢ = 0.001/4 - 7900 - 460/187 = 4.8s.

(b) According to Example 6.3 the convection h, = 147 W/(m? K). According to
Eq. 4.6 as h, = 480T§ = 159W/(m*K) and N = 147 + 159 =
306 W/(m?K). Now the time constant of the thermocouple can be estimated
according to Eq. 9.8 as t7¢ = 0.001/4 - 7850 - 460/306 = 3.0s.

9.1.3 Corrections of Time Delay

All thermocouples respond to the thermal exposure with a time delay depending on
the thermocouple characteristics and thermal environment as described above.
When the response of a thermocouple can be expressed as in Eq. 9.5,
i.e. assuming lumped-heat-capacity, the value of Tyat a given time may be obtained
numerically by solving the so-called inverse problem. The time constant z must
either be known explicitly or implicitly, for example, as functions of the exposure
temperature Ty and the response temperature T7¢ as shown by Eq. 9.7. The time
derivative of the thermocouple temperature may then at any arbitrary time ¢ be
derived from Eq. 9.5 as

dTrc Ty —Trc

e _ ;g e 9.9
dt T (99)
Given a series of thermocouple recordings true exposure level Ty can be derived
from Eq. 9.9. The time derivative of the thermocouple temperature is then approx-
imated by the corresponding differential between two consecutive thermocouple
recordings and the following expression can be derived:

o N T
= (1 +E)TJT+C ~ LT (9.10)
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Fig. 9.1 The ASTM-E119 fire curve and temperatures the thermocouple according to ASTM
E-119 and the PT according to ISO 834 must follow to obtain the specified furnace temperature
due to time delay

where At is a time increment of the measurement and j is the measurement number.
The accuracy and the numerical stability of such a calculation depends on the
relation between 7 and At.

As an example Fig. 9.1 shows the actual furnace temperature rise in a furnace
controlled ideally precisely according to the ASTM E-119 standard fire curve with
temperature monitoring thermocouples according to the standard time constants in
the range of 5—7.2 min. Notice that the real or effective furnace temperature is much
higher than indicated by the slowly responding ASTM type of shielded thermo-
couples. The diagram also shows for comparison the corresponding curve for a
standard PT according to ISO 834. This curve does not deviate as much from the
ideal standard ASTM time—temperature curve as the time constant of a PT is much
shorter than the time constant of an ASTM thermocouple.

This implies that when predicting temperature in specimens being exposed to a
standard ASTM E-119 furnace test it is important to assume a much higher
exposure temperature for the first 10 min than what has been recorded in the test
by the standard thermocouples. In calculations for deriving the T/C and PT
response curves in Fig. 9.1 properties according to Table 9.1 were applied. These
values are reasonable but uncertain depending on among other thing furnace
characteristics and therefore the curves of Fig. 9.1 should just be taken as indicative
implying that the influence of the time delay is significant for an ASTM-E119 test
and must be considered in particular when predicting temperature in structures
exposed to short test durations.
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Table 9.1 Parameters used for analysing the time delay of the ASTM-E119 thermocouple and the
ISO 834 PT in combination with Eq. 4.12

Effective thickness, | Convection heat transfer coefficient, | Emissivity,
d [mm] he [W/(m® K)] €[]
ASTM-E119 6 50 0.8
thermocouple
ISO 834 plate 0.7 25 0.8
thermometer

9.2 Heat Flux Meters

In several fire test methods incident radiation levels are specified. Therefore, it is
important that radiation heat flux can be measured with sufficient accuracy. It is
usually measured with so-called total heat flux meters of the Gardon or Schmidt-
Boelter types. Such meters register the combined heat flux by radiation and
convection to a water cooled surface. Thus the measurement will contain contribu-
tions by convection which depends on a number of factors such as the design of the
heat flux meter, the orientation of the meter, the cooling water temperature, the
local temperature and gas/air flow conditions. In unfavourable conditions the
uncertainty due to convection can amount to 25 % of the total heat flux, see ISO
14934. As a general rule the error is lesser when the meter is surrounded by a gas at
a temperature close to the cooling water temperature while the errors may be very
large when the meter is exposed to hot fire gases or flames. Under such conditions
Gardon or Schmidt-Boelter type meters are both impractical and inaccurate. Then
devices such as the PT as described in Sect. 9.3 are more useful.

The principal designs of a Gardon and a Schmidt-Boelter heat flux meters are
shown in Fig. 9.2. In the Gardon gauge the temperature difference between
the middle of the circular disc and its water cooled periphery is proportional
to the received heat flux by radiation and convection. In the Schmidt-Boelter
gauge the temperature difference between the exposed surface and a point at a
depth below is measured with a so-called thermopile including several hot and cold
junctions. This type of HFM therefore yields a higher output voltage than a Gardon
gauge for the same flux.

9.2.1 Calibration and Use of Heat Flux Meters

Heat flux meters such as the Gardon gauge and Schmidt-Boelter gauge are cali-
brated according to ISO 14934 in a spherical furnace with a uniform temperature.
The gauge is then exposed to an incident radiation proportional to the fourth power
of the furnace temperature Y?M],. The heat transfer by convection is negligible in the
calibration configuration (see Fig. 9.3) and therefore the heat transfer to the water
cooled sensing surface is:


http://dx.doi.org/10.1007/978-3-319-30172-3_4
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Fig. 9.3 A 3-D drawing of a heat flux meter and a spherical calibration furnace with a heat flux
meter mounted in the bottom opening. (a) Heat flux meter (b) Calibration furnace
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Qg = e (0 Ty = Thy,) (9.11)

where T, is the surface temperature of the sensing body. At high furnace temper-
ature or heat flux levels the second term of the above equation is relatively very
small and can be neglected. Otherwise T, is assumed equal to the cooling water
temperature. The coefficient ¢ is a test configuration parameter depending on the
geometric configuration when a HFM is mounted in the test furnace.

The calibration procedure of a HFM means that the electric voltage output is
determined at several heat flux levels obtained by various furnace temperature
levels. Then a normally linear relation can be established between the heat flux
q%w1andthe(nnputvohag&

When in use and exposed to radiation and convection the general expression of
the heat flux q’,’,fm to the sensing body of a HFM is:
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thm = Enfm (q inc — O Tzfm) + hhfm (Tg - Thfm) (912)

where T, is the gas temperature near the HFM. The incident heat flux q;’m, can be
obtained, given the gas temperature T, and the emissivity &5, and the convection
heat transfer coefficient /5, are known, as

1

qgm‘ = |:q Il;fm - hhf”’ (T%’ - Thfm):| to T;fm (913)

ifm

Often it is assumed that s, = 1 and the term o ijm is negligible, and when
T, = Ty, the convection term vanishes as when placed in air at ambient temper-
ature. Then the incident radiation heat flux can be approximated as

qinc = thm (914)

When then using the measured data for calculating the heat transfer to a target
surface with a temperature 7, based on HFM measurements the general expression

according to Eq. 4.11 applies, and the total heat flux ¢ ;/m to a surface can be derived
by inserting Eq. 9.13 into Eq. 4.11:

" & [.n
G 10 = ;me {CI wm + EnpmOT gy — g (T — Thfm)] 9.15)
—&,0T; + he(Ty — Ts)

Thus the total heat transfer depends on the emissivity and the convection heat
transfer coefficient of both the HFM and the target surface. These parameters are
often not very well known which introduces great uncertainties especially when the
HFM is placed in hot gases or flames with temperatures deviating from the cooling
water temperature. Then the uncertainty due to the convection becomes significant
as the heat transfer by convection to a HFM with its small surface is difficult to
estimate accurately. However, usually the emissivities of the HFM and the target
surface are assumed equal, and when the gas and cooling water temperature are
assumed equal as well, then the heat transfer to an adjacent target surface becomes
independent of the gas temperature T, and the expression of the total heat flux
becomes:

Gior = Gum+€- 0T —€-0-Tg —h(Ty = Tiym) (9.16)
There are several uncertainties in this expression. A more complete analysis of the

use of heat flux meters are given by Lattimer [27].

Example 9.3 A water cooled heat flux meter is used to measure the total incident
heat flux from a fire against a wall painted black. The measured heat flux is
30 kW/m? and the water cooled gauge is measured to be 350 K. Both the wall


http://dx.doi.org/10.1007/978-3-319-30172-3_4
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emissivity and the heat flux gauge have a surface emissivity € =0.95, and the heat
transfer coefficient is 10 W/m? K.

(a) Determine the total heat flux ¢ ;’m into the wall when its surface temperature is
600 K, and 800 K.
(b) Given the gas temperature T, is 300 and 1000 K, respectively, what is the

incident radiant heat g ;’n !

(c) What is the AST, i.e. the temperature of the surface when the net heat flux into
the wall vanishes, for the two gas temperature levels?

(d) Use the ASTs calculated in (c) to calculate the net heat fluxes to the surfaces
when the surface temperature is 600 K and 800 K, respectively. Compare with
the results obtained in (a).

Solutions

(a) Equation 9.16 yields: ¢,, = 30000 — 10 - (T, — 350) — 0.95-5.67 - 105
(T# — 350%). Then for T = 600 the total heat flux ¢, =21.3-10° W/m®,
and for T, = 800 K the total heat flux ¢, = 4.2 - 10> W/m®.

(b) For T,=300K, then according to Eq. 9.13 ¢}, = g5z [30000—
10 - (300 — 350)] + 5.67 - 1078 - 350* = 30500 + 851 = 32.96 - 10° W /m?.
For T, = 1000K then e = 555 [30000—
10(1000 — 350)] + 5.67 - 1078 - 350* = 24740 + 851 = 25.59 - 10° W /m>.

Comment: Notice that the incident radiation may be considerably different
for the same heat flux meter recordings. The heat transfer coefficient is taken
from Lattimer’s [28]. It may be considerably higher in reality which would
enhance the differences.

(¢) ForT, = 300K, then according to Eq. 4.21 ¢ - (c] ;»Im, — aTiST)+ h. (Tg — TAST)
= 0.95-[32.96-10° — (5.67-107%) - T4¢;] + 10 (300 — T4s7) = 0. Thus
by iteration T,sr =833K. For T, =1000K, then 0.95-[25.59-10°—
(5.67-107%) - Tigr] + 10+ (1000 — Tysr) = 0. Thus Tasr = 833K.

(d) According to Eq. 4.31 q':m =¢- o(TiST — T?) + he(Tast — Ts). Then for
T, = 600K ¢, =0.95-(5.67-107%) - (833* — 600*) + 10 - (833 — 600) =
21.3-10*W/m?, and for T; = 800K g, = 0.95-5.67 - 107% - (833* — 800*)
+ 10 - (833 — 800) = 4.2 - 10°W/m?.

Comment: Exactly the same values were obtained when calculating the total
heat flux based on ¢ ;,fm as based on T 457 according to the theory presented. In
practice it would most certainly be more expedient to use PTs for measuring
ASTs and use those measurements for calculating heat flux and temperature of
the exposed wall.
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9.3 The Plate Thermometer

9.3.1 Introduction

The standard Plate Thermometer PT as specified in the international ISO 834 and in
the European EN 1363-1 was invented to measure and control temperature in fire
European resistance furnaces [27] with the purpose of harmonizing the thermal
exposure and assuring tests results independent of type of fuel and furnace design.

The standard PT as shown in Fig. 9.4 is made of a shielded thermocouple
attached to the centre of a 0.7-mm-thick metal plate of Inconel 600 (a trade name
of an austenitic nickel based super alloy for high temperature oxidation resistance)
which is insulated on its back side. The exposed front face is 100 mm by 100 mm.
The back side insulation pad is 10 mm thick.

A relatively large sensor surface, such as a PT, measures neither the gas
temperature nor the incident radiation or radiation temperature but a temperature
between the radiation and gas temperatures. It measures approximately the tem-
perature of a surface which cannot absorb any heat. This temperature has been
named the Adiabatic Surface Temperature, AST [29-31], see Sect. 4.4. PT can also
be used to measure incident radiant heat flux to a surface [32, 33] as will be shown
in the next section.

As shown in Chap. 4, the concept of the AST is very valuable as it can be used
for calculation of heat transfer to fire-exposed body surfaces when exposed to
convection and radiation boundary conditions, so-called mixed boundary condi-
tions, where the gas temperature and the radiation temperatures may be consider-
ably different. Figure 9.5 shows PTs being mounted in different directions around a
steel girder.

The concept of AST is not limited to fire resistance scenarios and predictions of
structural element temperatures. It can also be used at more moderate temperature
levels for instance to estimate whether a surface will reach its ignition temperature
when exposed to elevated incident radiation but moderate gas temperatures.

9.3.2 Theory for Measuring Incident Heat Flux
and Adiabatic Surface Temperature with Plate
Thermometers

A simplified heat balance equation of the exposed surface plate of a PT may be
written in one dimension as [33] (see also Fig. 9.6)

dTpr
dt

eprq ;’m — eproTpy + hpr (Ty = Ter) + Kpr(Ty — Ter) = Cpr (9.17)


http://dx.doi.org/10.1007/978-3-319-30172-3_4
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Fig. 9.4 The standard PT according to ISO 834 and EN 1363-1

Fig. 9.5 PTs being
mounted for measuring
ASTs in different directions
at the surfaces around a
steel girder [29]

Fig. 9.6 Indication of the
heat transfer to a PT. The
numbers relate to the terms
on the left-hand side of
Eq.9.17
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The first term on the left-hand side of Eq. 9.12 is the radiant heat absorbed by the
Inconel plate, the second the heat emitted; the third the heat transferred by convec-
tion and the fourth term expresses the heat lost by conduction through the insulation
pad plus along the Inconel plate. The latter is assumed to be proportional to the
difference between the plate temperature Tpy and the gas temperature T, with the
proportionality constant denoted Kpr.

The term on the right-hand side of the equation is the rate of heat stored
calculated assuming lumped-heat-capacity (see Sect. 3.1). Cpr is assumed to be
the heat capacity of the Inconel plate plus a third of the heat capacity of the
insulation pad. (The third is taken from experiences of insulated steel structures,
see Sect. 13.3.1).

A thorough two-dimensional thermal finite element analysis of the standard ISO
834 PT is presented in [32]. It was then found that with the thermal conduction
coefficient Kpr = 8.0W/(m?K) and the heat capacity Cpy = 4200J/(m?K) there
was a good agreement between PT temperatures calculated with FE analyses and
the temperatures obtained using Eq. 9.20. The convection heat transfer coefficient
of the PT hpr depends on the actual scenario. In the case of natural convection only,
it may be assumed to be in the order of 10 W/(m? K), see Sect. 6.3.1.1.

The incident radiation ¢ . can be derived from Eq. 9.18 as

dTpr
dt

N 1
Gine = 0Tpr — - (hpr + Kpr) - (Tg — Tpr) — Cpr (9.18)

The derivative of the transient term can be approximated by the differential, i.e.

dTpT ~ ATPT - 3 1
St~ 5 Then ¢y, can be obtained by a stepwise procedure where

1 1
ATpr __ Tor —Tor _ Tor =Ty

At Al —g At
Under steady state or relatively slow processes the transient term can be

neglected. In addition at high incident radiation levels the first term is dominant
and the dependence on conduction and convection is relatively small and may in
approximative analyses even be neglected. In Fig. 9.7 the incident radiation flux

d. is shown as a function of the temperature Tp7 of a PT mounted vertically in air
at ambient temperature, T, = 20°C. The emissivity is assumed epy = 0.9 and the
natural convection heat transfer coefficient is calculated accurately as a function of
temperature according to Eq. 6.30. The incident radiation flux ¢ ;. is shown with the
assumption of the heat loss by conduction parameter being neglected Kpy = 0 and
Kpr = 4W/(m?K), respectively. The latter is representative for a so-called insPT
as shown in Fig. 9.9 with a 20 mm insulation pad. As can be observed the influence
of the uncertain parameter Kpr is relatively small in comparison to the uncertainties
related to measurements with conventional heat flux meters, see Sect. 9.2.

Kpr and Cpr may often be neglected, in particular when insulated plate ther-
mometers insPTs as shown in Fig. 9.10 are used. Then the incident heat flux can be
calculated as


http://dx.doi.org/10.1007/978-3-319-30172-3_3
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Fig. 9.7 Incident radiation c};’m, based on steady-state PT measurements in ambient air assuming
the heat loss parameter by conduction negligible Kpr = 0 and Kpr = 4W/(m’K), respectively.
The heat loss by natural convection is calculated according to Eq. 6.30

her her g,

q:m: = O-T;T T, — TPT) (9 19)

epr

The lower curve of the diagram of Fig. 9.7 shows the relation between 7p7 and ¢ ;’m,
when neglecting both Kp7 and Cpr.

Tasr can be derived from PT recordings considering Kpy and Cpr by heat
balance equation

dTpr

epro(Thsy — Tpr) + her(Tasr — Tpr) + Kpr (Tg — Tpr) = Cpr (9.20)
Given a series of Tpy measurements the derivative of the transient term can be
approximated by the differential dT”T ~ Asz, and the inverse problem of calculating
T st can be done by a step-by- step procedure. At each time step j the fourth grade
equation below derived from Eq. 9.20 must then be solved
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T
Tor —Thr
A?
K (Tf'+1 —Tf“)zo (9.21)
PT g PT .

. 4 . . 4 .
y+1 y+1 y+1 Jj+1
8PT6(TAST> + hPTTAST - CPT — EpTO (TPT ) - hPTTpT

where all parameters are known except the adiabatic surface temperature nglT If
both K7 and Cpr are neglected T 457 can be obtained at each time as from the fourth
degree equation derived from Eq. 9.20

‘("PTGT/‘:ST + hPTTAST — [&’PTGT?)T + hpTTPT] =0 (922)

Solution techniques of this type of incomplete fourth degree equations are shown in
Sect. 4.4.1.1.

The standard PT has successfully been used in an ad hoc test series for measuring
ASTs which has then been used to predict temperature in a steel section. Figure 9.8
shows a beam near the ceiling being exposed to an intense pre-flashover fire with
very uneven and complex temperature distribution.

Temperatures were then compared with measured temperatures. An example is
shown in Fig. 9.9. Notice the high similarity between the measured and calculated
steel temperatures. Temperatures measured with ordinary thermocouples were
generally very different from those measured with PTs at similar positions. There-
fore predictions of steel temperatures based on thermocouple recordings as input
would not yield such good agreements between calculations and measurements.
Alternative measuring techniques using, for example, heat flux meters would not
have been possible as these types of instruments cannot cope with high temperature
environments.

9.3.3 Alternative Plate Thermometer Designs

To achieve high accuracies it follows from an analysis of Eq. 9.20 that a PT for
measuring AST shall have:

1. Similar surface emissivities

2. Similar form and size as the target specimen to have the same convection heat
transfer coefficient

. Well-insulated metal surfaces

4. Short response times

(O8]

The first two items concern the heat transfers by radiation and convection, and
the relation between the two. As described in Sect. 4.4 the AST depends on the
radiation and convection heat transfer properties. Therefore the emissivity and the
convection heat transfer coefficient should ideally be the same for the thermometer
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Fig. 9.8 PTs placed around
a steel beam for measuring
AST for calculation of heat
transfer and steel
temperatures. See mounting
in Fig. 9.5 [29]
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Fig. 9.9 Example of measured ( full line) and calculated (dashed line) steel temperatures based on

PT measurements as shown in Fig. 9.8
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as for the target body of interest as far as it is practically possible. Thus for
measuring the AST for calculating the heat transfer to, for example, a wall a
standard PT might be a sensible compromise.

The third item, the PT should be well insulated or ideally perfectly insulated is of
course not possible in practice. The reason for having a thin metal surface is to be
able to measure the surface temperature accurately by fixing a thermocouple to the
metal.

The fourth item is important for transient problems where the thermal exposure
shall be followed as function of time.

The standard ISO 834 PT was designed for fire resistance furnace tests when
being exposed to very high temperatures. It is therefore, on one hand, made very
robust but not so well insulated as the temperature on the two sides of the PT does
not differ very much in a furnace. However, when surrounded by air at ambient
temperature and exposed to intense radiation at one side it must be better insulated
for not losing heat from the exposed surface.

Figure 9.10 shows an example of two very well insulated PTs (so-called insPTs)
designed to be used in ambient air. They measure thermal exposure and incident
radiation in the vertical and horizontal directions, respectively. The plates which the
thermocouples are fixed to are made of thin steel sheets (0.4 mm) to get quicker
response times. To minimize the heat losses by conduction from the front to the
back the insulation pads are thick and the sides of the steel plates have been partly
cut out to avoid heat being conducted along the metal. On the back side this PT has
a thicker more robust steel sheet for mounting purposes.

Figure 9.11 shows a comparison of incident heat flux measured with a Schmidt-
Boelter heat flux meter and an insulated plate thermometer as shown in Fig. 9.10
applying Eq. 9.18 [34]. Note that the difference between the two methods of
measuring incident heat flux is very small with the exception that the HFM
responds much faster than the PT and therefore the measurement spikes which
usually are not of interest to record.

Another alternative small PT has been developed for monitoring the thermal
exposure in the ignition phase of a fire. This may be mounted flush at the surface of,
for example, a combustible board as shown in Fig. 9.12. This so-called copper disc
plate thermometer cdPT consists of a thin copper disc (@ 12 mm and thickness
0.2 mm) backed with ceramic insulation mounted in an about 15 mm drilled hole.

To assure similar heat transfer properties the best way to design a PT may be to
construct a 3-D dummy with a thin metal surface and filled with insulation.
Figure 9.13 shows a pool fire and a steel cylinder simulating a piece of ammunition.
Several thermocouples were fixed at various points of the dummy. It was placed in
pool fire to record the thermal exposure of specimens placed in the flames.
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Fig. 9.10 Two well-
insulated plate
thermometers (insPT) for
measuring thermal
exposures of horizontal and
vertical surfaces,
respectively, in air at
ambient temperature

807 ]
...... HFM 5m E§
| esseer HFM 10m 2
70 -3
seeees HEM 30m %1
——PT5m .
601 ——pT10m s B
= PT 30m

TTTeettteeReRer””

Radiant heat flux (kW/m?)

e e

Time (min)

Fig. 9.11 Comparison of measurements at various distances of incident radiation with heat flux
meters of Schmidt-Boelter type and with insPTs as shown in Fig. 9.10 applying Eq. 9.18

Fig. 9.12 Example of TC Copper disc PT
mounting of a copper disc

plate thermometer (cdPT)
flush at the surface of a
board. Two thermocouple
leads are welded to the
copper disc. The back side
of the disc is filled with Insulation
insulation. A thin

thermocouple (TC) is

mounted nearby to measure
gas temperature cdPT leeds
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Fig. 9.13 A steel cylinder dummy filled with insulation with thermocouples mounted on the
surface were placed in a pool fire to register thermal exposure. (From a master thesis of Peter
Mollerstrom and Bjorn Evers (2013), Lulea TU). (a) Pool fire (b) Steel cylinder dummy



Chapter 10
Post-Flashover Compartment Fires:
One-Zone Models

FSE and design of structures and structural elements are in most cases made with a
procedure including tests and classification systems. Fire resistance or endurance
tests are specified in standards such as ISO 834, EN 1363-1 or ASTM E-119. In
these standards time—temperature curves are specified representing fully developed
compartment fires to be simulated in fire resistance furnaces for prescribed
durations.

Alternatively design fires defined by their time—temperature curves may be
obtained by making heat and mass balance analyses of fully developed compart-
ment fires. Examples of that are given in the Eurocode 1 [36] where so-called
parametric fire curves are defined. A number of significant simplifications and
assumptions are then made to limit the number of input parameters and facilitate the
calculations. Thus

1. The combustion rate is ventilation controlled, i.e. the heat release is proportional
to the ventilation rate.

2. The fire compartment is ventilated by natural convection at a constant rate

independent of temperature.

. The gas temperature is uniform in the fire compartment.

4. The heat fluxes by radiation and convection to all surfaces of the compartment
are equal and uniform.

5. The energy of the fuel is released entirely inside the compartment.

6. The fire duration is proportional to the amount of heat of combustion originally
in the combustibles in the compartment, i.e. the fuel load.

W

All these assumptions are reasonable for a fully developed fire under ideal
circumstances. The major parameters controlling the heat balance of fully developed
compartment fires are then considered although they are violated more or less in real
fires. Anyhow, by making certain parameter choices a set of time—temperature
curves are obtained which in general yields design fires which are hotter and longer
than could be anticipated in real fires or by more accurate numerical predictions.
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The theory and assumptions outlined below follows the work of Thelandersson
and Magnusson [36] and others but has been modified and reformulated according
to later work by Wickstrom [37] made up for the basis for the parametric fire curves
in Eurocode 1 [35]. See more on parametric fire curves in Sect. 12.2.

Below the fundamentals of the one-zone model theory are presented. The heat
balance equation is then formulated in such a way that sometimes simple analytical
solutions can be derived and in other cases general temperature calculation codes
can be used to analyse compartments surrounded by boundaries of several layers
and materials with properties varying with temperature as, for example, concrete
containing water evaporating at 100 °C and having a thermal conductivity that
decreases by 50 % during fire exposure.

10.1 Heat and Mass Balance Theory

The overall heat balance equation of a fully developed compartment fire as shown
in Fig. 10.1 may be written as

where ¢ . is the heat release rate by combustion, ¢, the heat loss rate by the flow of
hot gases out of the compartment openings, ¢ ,, the losses to the fire compartment
boundaries and ¢, the heat radiation out through the openings. Other components of
the heat balance equation are in general insignificant and not included in the
approximate and simple analyses considered here.

When the temperature of the compartment rises, air and combustion products
flow in and out of the compartment driven by buoyancyi, i.e. the pressure difference
Ap developed between the inside and outside of the compartment due to the gas
temperature/density difference as indicated in Fig. 10.1. The mass of gases gener-
ated by the fuel when pyrolyzing is relatively small and therefore neglected. Hence
the mass flow rate in #2; and out 1, of the compartment must be equal, denoted #1,.
Then by applying the Bernoulli theorem the flow rate of gases can be derived as
approximately proportional to the opening area times the square root of its height
for vertical openings.

ma :ale\/hvo (102)

where a is a flow rate coefficient. A, and h,, are the area and height of the openings
of the compartment. The coefficient a; varies only slightly with the fire temperature
over a wide range of temperatures relevant for fires and is therefore assumed
constant [38]. In the presentation here only one vertical opening is assumed. For
details on how multiple openings and horizontal openings can be considered
see [35].


http://dx.doi.org/10.1007/978-3-319-30172-3_12
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Ap

Fig. 10.1 One-zone model of a fully developed compartment fire with a uniform temperature T

As indicated in Fig. 10.1 hot fire gases are going out in the upper part of the
opening and cool air is entering in the lower part. The level at which the direction of
the flows are changing is called the neutral layer. As the outgoing flow of fire gases
is hotter and less dense than the incoming air at ambient temperature, the neutral
layer is below the middle of the opening, at about a third of the opening height.
With the symbols shown in Fig. 10.1 that is &, = h, /3.

The combustion rate ¢ .. inside the fire compartment is limited by the amount of
air/oxygen available. Thus the fire is ventilation controlled and the combustion rate
inside the compartment is proportional to the air flow, i.e.

G, =y m,=yamA\ h, (10.3)

where the combustion efficiency y is a reduction coefficient between zero and unity
considering the burning efficiency, i.e. the fraction of the oxygen entering the
compartment that is consumed by the combustion process inside the compartment.
The combustion yield a, is the amount of energy released per unit mass of air in the
combustion process. It is almost constant for combustible organic materials signif-
icant in fires with a value of about 13.2 - 10° W s/kg (per kg of oxygen). Then a, can
be calculated assuming an oxygen content of 23 % in ambient air to be 3.01 - 10°
W s/kg (per kg of air). (The fact that a constant amount of energy is released per unit
weight of oxygen is also accounted for when measuring heat release rates by the
so-called oxygen depletion technique, for example, in the cone calorimeter
according to ISO 5660).

The first term on the right-hand side of Eq. 10.1 is the loss by flow of hot gas
going out and being replaced by cooler gas. Hence ¢, is proportional to the mass
flow in and out of the compartment times the temperature rise of the fire, i.e.
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q,=cp A/l (Ty — T) (10.4)

where c), is the specific heat capacity of the combustion gases at constant pressure
(usually assumed equal to that of air) and T is the fire temperature. T, is the
ambient temperature which is assumed equal to the initial temperature T;. The
specific heat capacity of air ¢, does not vary more than a few percentage over the
temperature range considered and may be taken from textbooks such as [1, 2] at a
temperature level of 800 °C to be 1.15-10* W s/(kg K).

For convenience of writing the fire temperature rise 8y is introduced, i.e.

0y = (Tf - T,-) (10.5)
and the convection loss then becomes

q,=cpa1 Ao\ hy O (10.6)

The second term on the right-hand side of Eq. 10.1, i.e. heat loss to the fire
compartment boundaries ¢,, is assumed to be evenly distributed over the entire
surrounding boundary area.

Gy =44, (10.7)

where A, is the total enclosure area and ¢ the mean heat flux rate to the surrounding
surfaces of the fire compartment. This term constitutes the inertia of the dynamic
heat balance system as it changes with time depending on the temperature of the
surrounding boundaries. It is significant in the beginning of a fire, and then it
decreases when the temperature of the surrounding structure increases and gets
closer to the fire temperature. For surrounding structures assumed to be thick it
vanishes when thermal equilibrium is reached after long fire durations.

The third term on the right-hand side of Eq. 10.1, i.e. the heat loss by radiation
directly out through the openings ¢ ,, may be calculated as

q,=er Ao (T3 -TY) (10.8)

where &¢is the emissivity of the fire compartment at the opening here assumed to be
one and therefore omitted below. This term is relatively small in the beginning of a
fire when the fire temperature is moderate. It increases, however, by the forth power
of the temperature and becomes considerable at later stages of fires when the
temperature is high.

Now by inserting Eqgs. 10.3, 10.4, 10.7 and 10.8 into Eq. 10.1 and after
rearranging, the heat flux to the boundary surfaces becomes
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" AU
i =oc, (,10(& _ef> +500(1 - 1)) (10.9)
Cp A,

where O is named the opening factor defined as

Aovh,

0=
A

(10.10)

The temperature of a ventilation controlled fire increases with time as the
compartment boundary structures, ceiling, floor and walls heat up. If the compart-
ment boundaries are assumed infinitely thick then when the compartment bound-
aries after a long time have been fully heated and steady-state thermal conditions
can be assumed the heat losses to the boundary structure vanish. Notice in Eq. 10.9
that if the losses to the surrounding structure ¢ ,, and the radiation out the window ¢ ,.
are negligible, the fire temperature depends only on the ratio between ya, and c,,
i.e. ratio between product of the combustion efficiency and combustion yield, and
the specific heat of the fire gases. It is, however, independent of the opening factor
and the thermal properties of the surrounding structure. The parameter is here
named the ultimate fire temperature 0,,;:

O =*22 (10.11)

P

The values of all the parameters introduced above vary only slightly with
temperature and are therefore here assumed to remain constant. Commonly
assumed values are summarized in Table 10.1.

In Eq. 10.9 the parameter groups (c,a;0), (ya»/c,,) and (A,/A,) are constants, and
(T ) is a known boundary temperature. Therefore this equation is analogous to a
boundary condition of the third kind as outlined in Sect. 3.2.3. If the radiation
directly out through the openings is neglected (second term on the right-hand side
of Eq. 10.9) even analytical solutions can sometimes be obtained as shown in
Sect. 10.2.

Alternatively Eq. 10.9 may be written as

G, = e Tue — Tf) + hy.r(Too — Ty) (10.12)
or as
G = hy.c( O — 07) + hy 0y (10.13)

Here hy,. is named fire compartment convection heat transfer coefficient, iden-
tified as


http://dx.doi.org/10.1007/978-3-319-30172-3_3
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Table 10.1 Values of physical parameters and parameter groups

Name Notation Value Units

Flow rate coefficient o 0.5 kg/(s m>’ 2)

Combustion yield coefficient a 3.01-10° W s/kg

Specific heat capacity of air ) 1150 W s/(kg K)

Combustion efficiency X -

Ultimate fire temperature increase O = IC—“Z 1325 (¢ =0.506) K

Fire convective heat transfer coefficient hye = cp 1O 575-0 W/(m? K)
hy.e = cp 10 (10.14)

and fire compartment radiation heat transfer coefficient h, is identified as
/’l _ AU 2 2
i = ol Te+T5) (Too +Ty) (10.15)
t

The corresponding fire compartment thermal resistances are defined as

1 1
Rfo=—= 10.16
g l’lf ¢ Cp a10 ( )
and
1 1

=— = (10.17)
b 2eo(T2 +13) - (T +Ty)

The ultimate fire temperature 8, will generally not appear in reality. It is intro-
duced to facilitate the development and explanation of the compartment fire
models.

The heat transfer to the surrounding structure expressed in terms of the fire
temperature may be written as

G =hio(Tp —Ty) +hi, (T — Ty) (10.18)
where ;. is the convection heat transfer coefficient and #;, the radiation heat

transfer coefficient between the fire gases and the compartment boundary. The latter
is defined as

hi,r = eso(T,% + Tf) (T +Ty) (10.19)

where ¢, is the emissivity of the fire compartment inner surface. Then the combi-
nation of Egs. 10.12 and 10.18 can be illustrated by an electric circuit analogy as
shown in Fig. 10.2 where the resistances Ry and Ry, are defined in Egs. 10.16 and
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structure
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Fig. 10.2 Electric circuit analogy model of a fire compartment boundary

Fig. 10.3 Electric circuit
analogy model of a fire . T Ty T, Surrounding
compartment boundary with * i Rftor } - I RLCQ_;_] it
two heat transfer resistances

in series

S
“.T_‘.{G <tges)

Ts(t=0)

10.17, and R; . and R;, are the inverses of the corresponding heat transfer coeffi-
cients as defined by Egs. 10.18 and 10.19.

The two temperatures T, and T, may be reduced to one resultant temperature
T .. Which is a weighted mean value of the two. Compare with adiabatic surface
temperature of Sect. 4.4. Then the electric circuit of Fig. 10.2 can be reduced that of
Fig. 10.3. The analogy between heat transfer and electric circuit parameters is
described in Sect. 1.2 where also rules for combining resistances in series and
parallel are given.

T x 18 the maximum temperature a compartment fire can reach when the losses
to the boundaries vanish. It can be calculated by putting q(v = 0in Eq. 10.12 and
solving for 6

As there is no thermal heat capacity involved, the heat flux may now be written
in two ways as


http://dx.doi.org/10.1007/978-3-319-30172-3_4
http://dx.doi.org/10.1007/978-3-319-30172-3_1
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Fig. 10.4 Electric circuit
analogy model of a fire -

compartment boundary with ‘,.rrm t[ R TR ] I Surrounding
two heat transfer resistances L.tot Ltot structure
in series

o Toax — T T, —T;

g = ( max f) _ ( max l,S) (1020)

Rf,rot Rf,tot + Ri,lot

Observe that the radiation heat transfer coefficient must be calculated at the
absolute temperatures T, and Ty Thus

1
Cp (X]O + %U(szx + Tj%) ’ (Tmax + Tf)

Ry 1o = (10.21)

and then

1 1

(10.22)

Ri,lot =

According to Eq. 10.20 the two thermal boundary resistances in series as shown in
Fig. 10.3 can then be summarized into one as shown in Fig. 10.4.

Equation 10.20 is a third kind of boundary condition (see Sect. 1.1.3) with the
heat transfer coefficient equal to the reciprocal of the heat transfer resistance. With
this boundary condition combined with a thermal model of the boundary structure
may its temperature be calculated including its surface temperature.

The fire temperature Ty can thereafter be obtained as the weighted mean tem-
perature of T,,,, and T as

Ts Rf,mt + Tmax Ri,mt
Rf,tot + Ri,tot

Tf = 9/' +7T;, = (1023)

If the thermal resistances Ry, and R;,,, may be assumed constant, analytical
solutions for T can be derived for surrounding structures being semi-infinitely thick
or having its heat capacity lumped in a core as is shown below.

The highest fire temperature that can be reached in a fire compartment occurs
when surrounding structures are fully heated and do not absorb any more heat, i.e.
C]:v vanishes. Then the fire temperature and the surface temperature becomes equal
to T)ux- If in turn the radiation directly out through the openings can be neglected as
well, the maximum fire temperature becomes T ;.

An observation is that according to this theory an instant fire temperature rise
occurs when the fire begins. Then the fire temperature immediately T? rises to


http://dx.doi.org/10.1007/978-3-319-30172-3_1
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R:
T = Tpu 10.24
! Rf,c + Ri,mt e ( )
This immediate temperature rise is of course physically unlikely for the very
initial phase as a heat release yielding flashover cannot start suddenly in reality but
after some time has elapsed the approximate predictions as given by the above
theory applies.

10.2 Solution of the Fire Compartment Temperature

The boundary condition as defined above includes the two heat transfer resistances
in a series, one artificial and one physical as indicated by Fig. 10.4. To solve for the
surface temperature and then calculate the fire temperature according to Eq. 10.23,
a thermal model of the compartment boundary structure is needed. The surface
temperatures may then be calculated with various methods depending on whether
the model parameters may vary with temperature. When either heat transfer
coefficients or material properties vary with temperature, the problem becomes
non-linear and then numerical tools such as finite element programs need to be
used. Boundary structures of several layers of different materials etc. may then also
be considered. Spreadsheet calculations using programs such as MS-Excel are very
useful when analysing fire compartments with boundaries where lumped heat can
be assumed.

Numerically exact analytical expressions can be derived for two types of bound-
ary constructions being considered in the next sections, namely, structures assumed
either semi-infinitely thick or having a core where the thermal mass is concentrated
(lumped heat). Then the elementary procedures presented in Sects. 3.2 and 3.1,
respectively, may be applied.

In Table 10.1 a summary of values of physical parameters and parameter groups
are given. These are used throughout the presentation below.

10.2.1 Semi-infinitely Thick Compartment Boundaries

Fire compartment boundaries are in most cases assumed thermally thick. The heat
transferred to the surfaces are then stored in the surrounding structures, and the
effects of heat lost on the outside of the structure is neglected.

As indicated by Fig. 10.4 may the boundary condition be expressed by two
thermal boundary resistances in series which can be added up and a complete
thermal model becomes as indicated by Fig. 10.5.

This is a semi-infinite body with a third kind of boundary condition. To compute
the surface temperature generally numerical temperature calculation methods are


http://dx.doi.org/10.1007/978-3-319-30172-3_3
http://dx.doi.org/10.1007/978-3-319-30172-3_3
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Boundary structure

R,f tot Rl,lot k, p,c

Fig. 10.5 Electric circuit analogy model of a fire compartment with infinitely thick walls

needed such as finite element methods. The fire temperature is then calculated as
the weighted mean temperature of 7,,,, and T according to Eq. 10.23.

However, if the following assumptions are made, the problem becomes linear
and analytical solutions can be derived:

1. The heat radiated directly out the openings, ¢,, is neglected or is directly
proportional to the difference between the fire temperature Ty and the ambient
temperature T, i.e. Az, and its reciprocal Ry, are constant.

2. The heat transfer by radiation and convection to the surrounding boundaries is
assumed proportional to the difference between the fire Tr and boundary surface
temperatures Ty, i.e. &, ., and its reciprocal R; ,,, are constant.

The surface temperature rise can be calculated according to Eq. 3.35 in Sect.

3.2.3. Thus
L t
0y = 00 - ll — e - erfc( —)] (10.25)
Tf

where the parameter 7 may be identified as a fire compartment time constant for
infinitely thick walls in analogy with Eq. 3.34.

k-p-c 2
T = % =k- p-C: (Rf,tot + Ri,rot) (1026>

1
(Rf, mz+Ri, mr)

as the reciprocal of the heat transfer resistance by definition is equal to the heat
transfer coefficient. R, depends on Ry, and Ry,. The former is always constant
according to Eq. 10.16, and by assuming constant fire temperature Ty = va in

Eq. 10.17, a constant Ry, could be calculated as well. Too high assumed TlY -values

will yield overestimated the heat losses by radiation out the openings and therefore
underestimated fire temperatures, and vice versa. 6,,,, is the temperature rise which
is obtained when the wall are fully heated and no heat is transferred to boundary
surfaces. Given constant values of Rg. and Ry, 0, is constant and can be
calculated as

6.1 Ry, 0.
emax - i = Z (1027)
R+ Rie 14 2=
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By inserting the opening factor from Eq. 10.10 and assuming parameter values
according to Table 10.1 a

R, o (TR+172) (T +T))
Re, 575 Vh,

(10.28)

V
where T is the assumed temperature level. Then by inserting Eq. 10.28 into
Eq. 10.27

gult
P (TECH; 2)~(TX+TfV) '
575 Vh,

emax =

(10.29)
1+

Notice that 6,,,, increases with the square root of the opening height A, but is
independent of A, and A,.

The fire temperature rise vs. time may be obtained as the weighted average of
0,.ax and @ in analogy with Eq. 10.23 as

- 05 Rf’wt + gmax Ri,tat

0
/ Rf,tot + Ri,tat

(10.30)

Now by inserting Eq. 10.25 into Eq. 10.26, the fire temperature development

becomes
0u L t Ri 0i
O =% 311 —er-erfe ||| + 5220 (10.31)
1+ ﬁ Tf Ry tor

Constant values of R;,,, and Ry, may be obtained from Egs. 10.21 and 10.22,

respectively, for a given fire temperature 7y = TjY . Then by inserting the ratio %

into Eq. 10.31, a very handy closed form solution of the fire temperature develop-
ment vs. time is obtained.

Aninteresting observation is that the standard design time—temperature curves may
be derived by prescribing a maximum temperature rise 6, = ya,/c, = 1325°C and
a fire compartment time constant 7 = 1200s. This time constant may be calculated
based on quite reasonably assumed input parameters for surrounding boundary prop-
erties grouped into the thermal inertia (k - p - ¢), the opening factor (O) and the heat
transfer resistance between the fire gases and the surrounding boundaries (R, ,,,). Then
Eq. 10.25 yields the fire temperature rise as
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Fig. 10.6 Comparison between fire temperature rises according to the analytical expression
(Eq. 10.32), the standard ISO 834 curve and the parametric fire curve for I"=1 according to EN

1991-1-2
0 = 1325 |1 — (@) . erfey || (10.32)
1200

which is very close to the EN 1363-1 and ISO 834 standard curves as well as the
heating phase of the parametric fire curve according to EN 1991-1-2 for the
compartment factor I' =1, see Sect. 12.2, as shown in Fig. 10.6.

Example 10.1 Calculate the fully developed fire temperature rise after
60 min in a compartment surrounded by concrete. Assume an ultimate temperature
6, = 1325°C and an opening factor of O=0.04 m”, material properties

according to Table 1.2 and other physical parameters according to Table 10.1.

(a) Neglecting the effects of heat transfer resistance between the fire gases and the
surrounding boundaries and the radiation directly out the window.

(b) Neglecting the effects of radiation directly out the window but not the effects
of heat transfer resistance between the fire gases and the surrounding bound-
aries. Assume a total heat transfer coefficient /., ; = 200 W /(m?K).

(c) Considering both the effects of heat transfer resistance between the fire gases
and the surrounding boundaries and the radiation directly out the window. The
ratio between the opening area and the total surrounding area A,/A; = 0.06.
Assume a hy,, = 70W/(m*K).


http://dx.doi.org/10.1007/978-3-319-30172-3_12
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Solution

(@ (Riw =0 and Ry, =0). Equation 10.16 yields Ry .= Ry = m =

0.0435(m?K)/W and Eq. 10.26 yields 7, = % = 6673s. Thus #/7;

=300-054 and Eq. 1025 (and Table 3.3) yields 6 =0, =

0.49 - 1325 = 649°C.

(b) (Ryr=0). Rijoy = 2—(1)0 = 0.005 (m?K)/W Eq. 10.26 yields 7; = 3530000 -
(0.0435 4 0.005)* = 8303 s and 7/7; = 3009 = 0.433 and Eq. 10.25 yields the
surface temperature 6, = 1325-0.46 = 610°C. Then the fire temperature

can be obtained from Eq. 10.30 as 6y = 610'06)‘(‘)25351&30%55‘0'005 = 6%:55758 =683 °C.

(c) According to Eq. 10.15 hy, = %6(7%0 + T%) ) (TDC + Tf) ~ 0.03-70 =
2.1 W/(m?K) and according to Table 10.1 A . = # = 23W/(m?K) and thus

Rf.i00 = 57535 = 0.040 (m?K)/W. Then Eq. 10.27 yields 6 = 35355 =

1214°C and Eq. 10.26 yields 7 =k -p-c- (Ry.o + Rior)” = 3530000-

[O.O4O+O.OOS]2 = 7148 and t/7p = % =0.504 and Eq. 10.25 yields
the surface temperature 6; = 0.48 - 1214 = 583 °C. Then the fire temperature

can be obtained from Eq. 1030 as 0; = & Rrort Onon Riyor

Rf,mr‘r Ri,mr
583-0.040 4 1214-0.005 __ o
0.0404-0.005 =652°C.

Comment: Notice that the various fire temperatures are obtained depending on the
levels of completeness of the calculation model.

10.2.2 Insulated and Uninsulated Boundaries
with a Metal Core

Analytical solutions of the fire temperatures may also be obtained when the fire
compartment is assumed surrounded by structures consisting a metal core where the
all the heat capacity is concentrated. Then the heat capacity per unit area C,,, is
lumped into the core as indicated in Fig. 10.7. The heat capacity of any insulating
material is either neglected or assumed included in the heat capacity of the core.

Figure 10.8 shows an electric circuit analogy model of how the fire, the core and
the inner and outer surface temperatures can be calculated. As all inertia is lumped
into the core, the heat flux is constant on either side of the core due to the
requirement of heat flux continuity. Hence the temperature differences between
various positions are proportional to the corresponding thermal resistances. The
three graphs of the figure indicate the temperature rises initially, after some finite
time and after a very long time, respectively. Notice that according to the theory the
fire and the inner fire exposed surface temperatures increase instantaneously at t =0
according to Eq. 10.29.
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Fig. 10.7 A fire compartment surrounded by a structure with its heat capacity C,,,. assumed
concentrated/lumped to a metal core. Thermal resistances of insulation materials R; and R, are
assumed on the fire inside and outside, respectively
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Fig. 10.8 Electric circuit analogy of fire compartment model with a thin surrounding structure
assuming lumped heat capacities. Relative temperatures at various points initially (t=0), after
some time (0 <t < oo) and after a very long time (t = co) are indicated

The parameters of Fig. 10.8 are summarized in Table 10.2. The maximum
compartment fire temperature considering radiation out through openings 8,
can be obtained from Eq. 10.12 or Eq. 10.23, the fire compartment heat transfer
resistance Ry, from Eq. 10.21 and the heat transfer resistance between fire and
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Table 10.2 Summary of the parameters of Fig. 10.8

Notation | Parameter Definition

Omax Maximum temperature—no losses to surfaces Eq. 10.12, Eq. 10.23 or
Eq. 10.29

Rpion Fire heat transfer resistance Eq. 10.21

Ritor Transfer resistance, fire—inside surface Eq. 10.22

Riins Resistance inside insulation Eq. 10.33

R, ins Resistance outside insulation Eq. 10.34

R, 00 Transfer resistance, outside surface— Eq. 10.35

surroundings
Ceore Heat capacity of the core Eq. 10.36

surrounding surfaces R;,,, from Eq. 10.22. The insulation resistances at the inside
and outsider of the core R; ;,,; and R,, ;,; can be calculated as

d; i
Riins = (10.33)
ki,ins
and
d ins
Ro,ins = k()’ - (1034)

where d;;,s and d, ;,s are the thicknesses of the inside and outside insulations,
respectively, and &, ;,; and k, ;s are the corresponding conductivities. The outside
heat transfer resistance can be calculated as

1

10.35
ho,c + SO,SO-(T(Z),S + Tio) : (To,s + Too) ( )

Ro,tot =

where A, is the convection heat transfer coefficient at the outside surface and ¢, ;
the emissivity of the outside surface. The conduction resistance of the metal core is
neglected. C,,,. is the heat capacity per unit area of the core, i.e.

Ceore = dcoreccorepcgre~ (1036)

where d;ores Ceore and peore are the thickness, specific heat and density of the core,
respectively
The dynamic heat balance of the core can now be written as
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demre

Ccore 7

= (Rf,tot + Ri,tot + Ri,ins) (emax - 000/?) - ( Ra,ins + Ro,rot)

+ (Bcore — Ox) (10.37)

and the core temperature can be numerically solved by the forward difference
recursion formula

9i+1 _ pi

core —  Ycore

+

t
[(Rf,tot +Ri,tot +Ri,ins) (Gmax - gcore) - (Ru,ins +Ro,mr) : (9001'6 - 900)}

CC()I'€
(10.38)

where At is a chosen time increment. This recursion formula can be coded in
spreadsheet programs such as MS-Excel. The temperature-dependent parameter
may be updated along with the calculations.

If all the parameters are assumed constant, then the temperature development
can be calculated analytically. Thus, the core temperature rise may be obtained as a
function of time as (see Sect. 3.1.2)

Ro tor + Ro ins Y.
Ocore = 0 ’ : (1-e) 10.39
‘ e Rf,mt + Ri,mt + Ri,ins + Ro,mt + Ra,inx ( )

where the fire compartment time constant 75 is

CCDI'E
7 = : : (10.40)

Ry, tor TR, 101 TR, ins + Ry, 10t HRo, ins

When the core temperature has been calculated, the fire temperature may be
calculated. As the heat capacity of the insulation is assumed to be negligible, the
compartment fire temperature rise can be calculated as a weighted average between
0,0 and 8., (see Fig. 10.8). Thus

(Ri, tot + Ri,ins) omax + Rf,tot gcore

O = 10.41

g Rf,tot + Ro,tot + Ro,ins ( )
and after inserting 6., according to Eq. 10.39 and rearranging
Or
_ gmax Ro,tot +Ro,ins (1 _ eft/ff) +Ri,tot +Ri,inx
1 +Rf»t0f +Ri’f’1s Rf,mr +Ri,t()t +Ri,in.\‘ +R(),t0t +R0,im‘ Rf,t()t
Rf,tot

(10.42)

Notice that this expression is similar to the corresponding Eq. 10.31 for semi-
infinite boundaries.
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In a corresponding way according to the law of proportion may the fire exposed
surface temperature be calculated as

Ri ins omax + R 0 + Ri 0 9(‘01’@
O =— (Rt + Risor) (10.43)
Rf,(: + Ri,rot + Ri,ins

and non-exposed surface temperature as

R or
65’0 _ o,tot Ycore (1044)
Ro,tot + Ro,ins

The maximum fire temperature that can be reached asymptotically after long fire
durations depends on the insulation of the compartment and the heat transfer
resistances. It can be calculated as

anax _ Ri,tot + Ri,im‘ + Ra,mt + Rﬂ,ins
! Rf,tor + Ri,mt + Ri,ins + Ro,tut + Ru,ins

O (10.45)

The fire development is generally very fast for thin structures and the maximum is
reached quickly.

Example 10.2 Estimate the maximum post-flashover fire temperature 7;** of an
uninsulated steel container. It has a steel thickness d.,, = 3 mm, an opening
height and area h, = 2.5m and A, = 5m?2, and a total area A, = 125 m>.
Assume 6,;; = 1325 °C, the internal and external heat transfer coefficients due to
radiation and convection %; sy = 1/R; ;s = 100 W/(m?K) and %, 0 = 1 /Ry 101 =
25 W/(m?K). Estimate the fire temperature development vs. time.

Solution

Assume a maximum fire temperature 7" = 900°C = 1173K for the estimate of

Ry 1o Then Eq. 10.29 yields O = — ooy mrmy = 1169 °C. Then Eq. 10.21
W=

and Table 10.1 yield Ry ;o = 1 =2 mzK/W.

575-5m+%5a[(1 169+273)°+973] -(1169+273+973) B

125

Then Eq. 10.36 yields 6] = g5 S20 1169 = 809 °C. A new estimate 77"

= 850°C = 1123K yields 60y = 1184 °C, Ry = 0.0178and 6" = 0.731184
= 873°C.

Comment: Thus the temperature rise in an uninsulated container as described will
never exceed about 870 °C (9}-””"). For a well-insulated container with the same
geometry the fire temperature rise may reach about 1180 °C (0,,,..)-

The temperature development can be estimated by applying Eq. 10.42. The time

constant 7y = g /(0'003'460'7850 = 177s and then if Ry, is assumed constant

0.0178+0.01)+25
as calculated above O = 1184 0.04 (1 —e”/m) 0'01} =

= T+, |0.0178+0.010.04 T 50178
447 - (1 — e7"/'77) 4+ 426°C.
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Comment: This solution shows that the time constant is very short, less than 3 min,
and that very beginning of the fire (+ = 0) the calculated fire temperature rise is
significant, §y = 426 °C, and that after a long time (f — co0) 6 — 873°C as stated
above (Q}””"’).

Example 10.3 A fire compartment is surrounded by a 3-mm-thick steel sheet
structure with a 12-mm-thick gypsum board mounted on both sides of the core.
The opening is factor O =0.08 m”. The heat transfer coefficient at the fire exposed
and the unexposed sides are assumed to be constant, i.e. /; ;o = 200 W /(m?K) and
ho.1or = 40W /(m? K), respectively. Neglect the radiation directly out the opening,
ie. Rf’m, = Rf,c.

(a) Calculate the ultimate fire temperature rise ,;, assuming a combustion effi-
ciency of 50 %.

(b) Calculate the maximum fire 9”'“* and core 87 temperature rises.

(c) Calculate the fire temperature 9]« and the inner fire exposed surface temperature
0;; at time t =0 according to the model.

(d) Calculate the core 6,,,, and fire 8, temperature rises after 300 s of flashover.

(e) Plot as a function of time of the temperature rises, ultimate 6, fire 0, inner

surface 6, core ,,,., outer surface 0, ,.
Use parameter values as given in Tables 1.2 and 10.1.
Solution

(a) Equation 10.11 yields 8,;, = 1309°C.

(b) The thermal resistances over a unit area (R; r + R;ins) = 1/200 + 0.012/0.5
= 0.029 (m2K)/W and (Ry,sor + Roins) = 25+ 0.012/0.5 = 0.049 (m*K)/W.
Rfc =Rf o0 =174 107 _ 022(m K)/W. Then Eq. 10.45 yields Hf’"‘” =

0.08
0.029+0.049 :
max __ 0.049 _ o
ecme 002270.04070020 * 1309 = 641°C.
(c) Equation 10.24 yields 6’0 % 1309 = 744°C, and
__0012/05 _ °
95,1‘ = 0.022+0.029 1309 = 616°C.
(d) Equation 10.40 yields 7y = % s and temperature rise after 300 s
0.0224+0.029 " 0.0497 ~~
can be obtained from Eq. 10.39 as O or = 1309 - 50095005 (l - e’%)
= 1309 -0.490 - 0.601 = 385°C and from Eq. 10.41
0.029-1309+0.022385 _
O = oozzro oo = 210°C.

(e) See the plot of Fig. 10.9

Comment: Notice in Fig. 10.9 that according to the theory temperatures, the fire
temperature 0y and the inner exposed surface temperature 0, ; starts at temperature
levels between the initial and the ultimate temperatures depending on the thermal
resistances.
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Fig. 10.9 Calculated temperature rises of Example 10.3. Notice that the fire and inner surface
temperatures rise instantaneously according to the theory

10.2.3 Temperature-Dependent Material and Heat Transfer
Properties: Numerical Solutions

In most cases fire compartments have openings through which heat can radiate out
to the environment at ambient temperature. Exceptions are furnaces and tunnels,
and therefore tunnel fires may become very hot. The heat losses by radiation out
through opening ¢ , according to Eq. 10.8 is small at low temperatures but increases
rapidly at elevated temperatures and must therefore be considered particularly when
analysing hot fires. As it is highly non-linear as it depends on the fire temperature to
the fourth degree. This is also the case for the radiation to the fire compartment
surfaces, and in addition the surrounding structure may consist of several layers of
materials with properties varying with temperature. Then numerical solutions are
required.

In general, Eq. 10.9 is valid as a boundary condition for the one-dimensional
model. For a fire compartment with relatively thick but not infinite boundaries, a
thermal model as indicated by electric circuit analogy shown in Fig. 10.10 may then
be applied.

This model analysed as it is or it may be reduced by the rules of combining
resistances and defining combined temperatures to the circuit analogy of Fig. 10.11.

Then the boundary temperature T,,,, is a weighted average value of the ambient

temperature T, and T;,. 6,,,. can be calculated by solving Eq. 10.12 for q':v, =0.
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Arbitrary boundary
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Fig. 10.10 Electric circuit analogy of fire compartment model with a thick surrounding structure
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L g | R;.or * i tot | ¢ structure m

Fig. 10.11 Reduced electric circuit analogy of fire compartment model with a thick surrounding
structure

The thermal resistances Ry and Ry, can be calculated according to Egs. 10.16 and
10.17, and the resultant resistance Ry,,, according to Eq. 10.21.

The heat transfer resistance R, ,,, between the fire and the surrounding surfaces
can be calculated according to Eq. 10.22.

Now with the boundary condition according to Eq. 10.20 with two heat transfer
resistances in series may the temperature in the surrounding structure be calculated
including the surface temperature 7 with a general temperature calculation code.

When the surface temperature is calculated, the fire temperature can be obtained
as

o Rf, mth,i + Ri,totTmax

T.
/ Rf,mt +Ri,mt

(10.46)

Notice that heat transfer resistance due to radiation depends on the temperatures
and therefore Eq. 10.46 is implicit and R,,, and R; ;,, must be updated at each time
step. Below four cases are shown of calculated and measured fire temperatures in a
reduced scale room with dimensions according to Fig. 10.12a. A diffusion propane
burner (300 mm by 300 mm) was placed inside the fire compartment releasing a
constant power of 1000 kW. It generated immediate flash-over with flames emerg-
ing out the door opening, see Fig. 10.12b.

The thermal model as indicated in Fig. 10.10 was analysed with TASEF for the
surrounding structures of lightweight concrete and steel sheets. The steel sheets
were either insulated on the outside, on the inside or non-insulated. Figure 10.13
shows the measured and calculated temperatures in a compartment of lightweight
concrete.

Figure 10.14 shows measured and calculated fire temperatures from the same
tests series with a compartment of 3 mm steel sheets insulated on the outside, inside
or not at all, respectively. In the calculations the changes of thermal properties of
the insulation and the steel were considered.
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Fig. 10.12 Reduced scale fire compartment experiment with propane burner. (a) Inner dimen-
sions (in mm) (b) Flames shooting out the door-way
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Fig. 10.13 Measured (full line) and calculated fire (dashed line) temperatures in fully developed
compartment fire in a concrete compartment using the finite element program Tasef
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Fig. 10.14 Measured (full line) and calculated (dashed line) fire temperature in fully developed
compartment fire in a steel sheet compartments using the finite element program Tasef. (a)
Insulation on the outside (b) Insulation on the inside (¢) No insulation

Notice the following from the four cases of Figs. 10.13 and 10.14

— The fire temperature goes to about 1150 °C (7,,,,) except the non-insulated steel
compartment where the final temperature is less than 800 °C.

— The inside insulated steel compartment goes much faster to the maximum
temperature than the outside insulated.

— The calculation model yields exceptionally good predictions particular in terms
of the qualitative development of the fire temperature.



Chapter 11

Pre-flashover Compartment Fires:
Two-Zone Models

Two-zone models are applied to pre-flashover fires, i.e. compartment fires which
have not reached ventilation controlled combustion conditions as defined in
Chap. 10. Several more or less advanced computer codes have been developed to
calculate temperature under such assumptions. The most fundamental principles of
the theory are outlined below.

In most cases the heat release rate as a function of time is input to pre-flashover
calculation models. Examples are given in Table 11.1 of the order of magnitude of
the heat release rates of various fires.

In the post-flashover model described above the heat release rate was assumed
determined by the opening alone, see Eq. 10.3. In pre-flashover models as the one
described below the heat release rate ¢, is an input variable. All combustion is
assumed to occur inside the fire compartment boundaries and it is limited by the rate
at which gaseous fuel (pyrolysis gases) is being released from burning objects. As
shown in Fig. 11.1, an upper layer is then supposed to develop where the fire
temperature Ty is assumed to be uniform. Below, the lower layer gas temperature
remains at the ambient temperature T,. Hot combustion gases enter the upper layer
by the way of entrainment into the fire plume of flames and combustion gases
developed by the burning items. The flow rate n,, at which mass is entering the
upper layer must balance the mass flows going in #1; and out #1,, of the compartment.
Thus

Hy = iy = i, (11.1)

The plume mass flow rate may be calculated as a function of the heat release rate
g, and the height of between the fuel surface and the height of the upper layer
interface Hp. In the pre-flashover stage of a fire, it is the plume entrainment rate
rather than the size of openings that governs the mass flow rate. This is in contrast to
post-flashover fires.
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Table 11.1 Examples of the order of magnitude of heat release rates (HRR) of various fires

Item Typical heat release rate [W]
Wood-burning stove 10
Single burning furniture item 100
Flashover of small room 1000
Full flashover large room/apartment 10,000
Fire in a loaded truck 100,000

Fig. 11.1 Two-zone model of a pre-flashover room fire with a uniform temperature 7 in the upper
layer and ambient temperature 7, in the lower layer

As for the one-zone model (post-flashover fires) the heat balance equation of a
fire compartment may be written as

where the convection term ¢, is proportional to the mass flow rate 1, and the
temperature rise (T — T ). In a similar way, the heat loss to the surrounding
boundaries ¢,, depends on their thermal properties and the fire temperature. The
radiation loss term ¢ , depends on T}‘ but is less significant for pre-flashover cases as
the fire temperature level then in general is lower.

There are two equations, the mass balance and the heat balance, and two
unknowns, the temperature Ty and the distance /,, which now can be solved by a
forward time incremental scheme. The input combustion rate ¢ . may vary with time
but it is ultimately limited by the availability of oxygen. If too much fuel is released,
the fire becomes ventilation controlled and a one-zone model can be assumed, see
Chap. 10. Therefore, for two-zone models, cf. Eq. 10.4
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c](.galaon\/ha (113)

When the heat release rate is constant, the temperature rise depends on the
thermal properties of the surrounding structure and the ventilation (openings) in a
similar way as for the one-zone model.

11.1 Heat and Mass Balance Theory

The plume flow 711, may be calculated according to Zukoskis’ plume equation [39] as

1 5
iy = as gl 2 (11.4)

where z is the effective height of the plume above the burning area. Then with an
analogue derivation as for the one-zone case the heat flux to the surrounding
structures may be written as

o3 C]l-/yzs/} - q'z./»‘ e - A
;B 2|l |+ T (1) (1)
w A 5/ A o] f

4 a3 Cp,z /3 4

The emissivity & is here a reduction coefficient considering that the entire
opening is not radiating corresponding to the hot zone fire temperature. According

to Karlsson and Quintiere [40] a3 = 0.0071 { kgs/ } . Now with heat release ¢ . and
Wsm’3

the effective height of the plume z assumed constant, the fire temperature may be
calculated in a similar way as for post-flashover one-zone models.
Thus a resultant temperature rise 0, can be defined as (see Fig. 11.2)

R: .0, 0"
max — % L. h* = ult* (116)
R, +R;, R},
5C s 1 7,
R

for
where @, is the ultimate gas temperature rise determined as the heat release rate g .
over the mass flow rate m, (Eq. 11.4) and the specific heat of air ¢, assuming no
losses neither through radiation out the openings nor from losses to boundary
surfaces. Observe that alternatively 0, can be obtained by solving Eq. 11.5 for
0y when ¢ ;,:0.

By comparison with Eq. 11.5, the ultimate temperature can be identified as
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Fig. 11.2 Electric circuit analogy model of a pre-flashover compartment fire boundary. (a) Two
boundary temperatures (b) reduced to one boundary temperature

g, =—Te (11.7)

and the fire thermal resistances can be identified from as

# A
R .= ! (11.8)

a3 .q.L_l/3 .25/3 .cp

and

A

R;, L= (11.9)
& -Aoa(Tgo + sz) (T +T7)
Then the heat flux to the surface can be calculated as (see Fig. 11.2b)
" Hmax - 0 emax - 95
Rf’ tot Rf’ r + Ri,tot
where the resultant resistance
1
R =11 (11.11)
* + *
Re. Rg,

Observe that Ry, must be calculated based on the fire temperature 7y and on the
resultant temperature 7T = Opar + To- In a similar way may resultant heat
transfer resistance between the fire gases and compartment boundary surface R;,,,
be calculated according to Eq. 10.22 based on the temperatures Ty and the surface
temperature 7.

Then the boundary condition becomes
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" 1 %

Gw=57

————— —by). 11.12
f:,toz + Ritor l ) ( )

( max

This boundary condition can be used together with thermal model of the
surrounding structure in similar way as for post-flashover compartments. Then
the surface temperature may be calculated, and thereafter the fire temperature can
be obtained by the law of proportion as

_ Ts Rf,tot + Tmax Ri,mt _ 9& Rf,rot + Hmax Ri,tot
Rf,tot + Ri,tut Rf,tot + Ri,tut

T, (11.13)

In general analyses of the boundary structure require numerical methods.
However, as for post-flashover one-zone analyses analytical solutions are some-
times possible, given the heat resistances are given constant values representing a
relevant temperature level.

11.2  Solution of the Upper Layer Fire Temperature

In combination with the boundary condition as defined by Eq. 11.12 may the
temperature of a surrounding structure be calculated in a similar way as for
one-zone models. Thus based on the calculated fire-exposed surface temperature
may then the upper layer temperature be calculated. In the next two sections will the
cases of assumed semi-infinite and thin structures, respectively, be analysed. As for
one-zone models analytical solutions may under certain conditions be derived for
quick rough estimates.

11.2.1 Semi-infinitely Thick Compartment Boundaries

The surface temperature of semi-infinitely thick compartment boundaries with
boundary conditions according to Eq. 11.12 may of course be solved numerically
with, e.g. finite element methods. However, with the assumptions of

« Constant heat release rate
¢ Constant material properties, (k- p - ¢)
« Constant thermal heat transfer coefficients/resistances

may a closed form solution be derived as for one-zone models (see also Sect.
3.2.3),ie.
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" S t
0,=6, [1 —eTrerfc <\/:*>1 (11.14)
¥

the time constant Tji‘. can be calculated as

. k-p- . 2

=Kl e (Rf’CJrR,-,,(,,) (11.15)
1
()

and then Eq. 10.23 yields the fire temperature.

The theory as outlined here gives interesting qualitative results but needs to be
further validated by comparing with well-controlled experiments. Some such com-
parisons have been done with very good results for compartments where the heat
capacity of the boundary can be lumped into a steel sheet as is shown in the next
section. Below is an example with purpose of showing how fire temperatures can be
calculated.

Example 11.1 A propane gas burner at a height of 0.5 m in the room/corner test
room was set at a constant power 450 kW. The room has a total surrounding area
A, =44 m* and door opening Ay=2 m”. Assume effective height of the burner
plume z=1 m. Assume all the surrounding structural elements being infinitely
thick light-weight concrete with a thermal inertia k-p-c=0.2-500-800 =
80 - 10° W?2s/ (m4 Kz). Initial and ambient temperatures are equal to 20 °C.

(a) Calculate the maximum temperature not considering the radiation out the
door-way.

(b) Calculate the maximum temperature considering the radiation out the door-way.

(c) Derive the surface and the fire temperatures as functions of time not considering
the radiation out the door-way and calculate the surface and fire temperatures
after 15 min. Assume a constant heat transfer coefficient #; =25 W/(m K).

Solution
(a) After a long time the wall losses vanish and the maximum temperature rise can
g/ 450000/
5 = 5/
as ~¢cp-z7/3  0.0071-1150-173
= 722K. Hence the maximum temperature Ty = 722 4 20 = 724°C.

. a3 - q(_l/s .25/3 < Cp q'cz/a A, 4 4
(b) Then ¢, = : O )+ e (TOC —Tf) -
a3 z

Al‘ot . Cp . tot

be derived from Eq. 11.7: 0y =0, =

1
0.0071 - 4500007 - 1150 2
e (122-6) + ;56710 - [(273+20)* — (6,+

273 + 20)4] = 0. This 4th degree equation yields a temperature rise fy = 615K
and Ty = 625°C.
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(c) The fire temperature as a function may be obtained from Eq. 11.14. From
* Atol 44
Eq. 118 R, . = YR = 7
ay g,z /s ¢, 0.0071-450000 /5 - 15/3 . 1150
0.0704 (mK)/W and 0,, =722K. Equation 11.15 yields
—_ 8010 9755, Thus according to Eq. 11.14

1
<0.0704 + 2%)

0, =722+ [1 =) - erfe(\/5fs) |- After 900 s vz = 900/975 = 0.92. The

value of the function between the brackets from Fig. 3.11 or Table 3.3 is 0.56.
Then 6; = 722 - 0.56 = 404 K. The fire temperature can then be obtained from
Eq. 11.13 as a mean weighted value of the surface and the ultimate temperature

<l

1
404-0.0704+722- —
as 0y = —125 = 519K and the fire temperature 7y = 529°C.

0.0704+ ——
25

11.2.2 Insulated and Uninsulated Boundaries
with a Metal Core

With the same assumptions as specified in Sect. 10.2.2 a similar expression as for
one-zone models can be obtained for the core temperature.

Referring to Fig. 10.8 and Table 10.2 for the definitions of the parameters, the
core temperature can be numerically solved by the forward difference recursion
formula (c.f. Eq. 10.38)

. . At "
Qgrle = 9(1'01'(4 + C |:<Rf, tot + Ri, tor + Ri,ins) (gmax - emre)
core

(11.16)
_(Ro,inx + Ro,tot) : (Gc‘ore - 600)}
where 0,,,. is defined by Eq. 11.6, R;
10.2.2.
As for post-flashover fires (one-zone models) an analytical solution may be
derived if the heat transfer parameters and the material properties are assumed
constant, not changing with temperature. Thus (cf. Eq. 10.39)

1or E9Q- 11.8 and the other parameters as in Sect.

Brpre = 9*1 _ Ra,tat + Ra,ins (1 _ eft/r;) (1 1. 17>
“ Rf,c + Ri,tut + Ri,ins + Ro,tut + Ru,ins

and the fire temperature rise as (cf. Eq. 10.41)
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0 — 021[ Ro,tot +Ro,ins ( —t/-r")
p = ) - * I —e ™7
1+ R’?"” + R’J"S Rf,c + Ri,tot + Ri,ins + Ro,tot + Ro,ins
Rf’c
+Ri,tot i‘ Ri,ins
Rf’c
(11.18)
where the time constant is calculated as
* CCOI‘@
T = i I (11.19)

= +
Rf,c + Ri,tat + Ri,ins Ro,tot + Ro,ins

Equation 11.18 yields a crude estimate of the fire temperature development as
several assumptions are made to linearize the problem. More accurate solutions can
be made by the step-by-step numerical procedure according to Eq. 11.16 whereby
the material and, in particular, heat transfer conditions can be updated at each time
step. Such a calculation procedure was implemented in an MS-Excel sheet by
Evegren and Wickstrom [41]. It was used to predict and compare with measured
temperatures in an uninsulated and an insulated steel container with a burning pool
of heptane, see Fig. 11.3.

<l -

; R "

Bt

2.00m

Fig. 11.3 Dimensions of the test enclosure and photo of the insulated test enclosure and the pool
fire experiment. From [41]
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Fig. 11.4 Measured and calculated upper layer fire temperature. From [41]

The results are shown in Fig. 11.4. As can be seen predictions were very accurate
for both the cases.



Chapter 12
Fire Exposure of Structures According
to Standards

When exposed to fire structures deform and lose load-bearing capacity which must
be considered in design processes. It is then exposures to the more severe fires
which are of interest such as post-flashover compartment fires and large flames for
longer times. Pre-flashover fires do in general not create thermal conditions that can
jeopardize the function of structural elements in a building. For design purposes it is
therefore in general exposures relevant for post-flashover compartment fires that are
specified in various standards and guidelines in the form of time—temperature
curves. These curves are then used for controlling fire resistance test furnaces, see
Fig. 12.1.

They can also be used as fire temperatures when predicting temperature of
structures exposed to standard fire conditions. When predicting test according to
the international standard ISO 834 and the European standard EN 1363-1 the gas
temperature and the radiation temperature may be assumed equal as these standards
prescribe plate thermometers for controlling of furnace temperature. However,
when predicting tests according to the American standard ASTM E-119, deviations
due to the thick thermocouples specified for controlling the furnace temperature
should be considered, see Sect. 9.1.3.

A deterministic design and analysis process of structures exposed to fire entails
three major steps:

1. Determine the fire exposure to which the surface of the structure is subjected.

2. Determine the thermal response of the structure to the exposing fire.

3. Determine the structural response and the load-bearing capacity at elevated
temperatures.

This chapter is focusing on the second step. The first section deals with design
fires then followed by sections on the structural materials concrete, steel and wood.
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Fig. 12.1 A glazed
partition being tested in a
vertical fire resistance
furnace. Notice the Plate
thermometers for
monitoring the furnace
temperature

12.1 Standard Time Temperature Fire Curves

The so-called standard fire curve as defined in the European standard EN 1363-1
and the international standard ISO 834 is outside the USA and Canada the by far
most commonly used time—temperature relation used for testing and classification
of separating and load-bearing building structures. The time—temperature relation
of this EN/ISO standard fire temperature curve is then specified as

Ty =20+ 345 -log (8t + 1) (12.1)

where T; is temperature in °C and ¢ is time in minutes. A selection of time
temperature coordinates is given in Table 12.1.
A so-called external fire curve is given in Eurocode 1 (EN 1991-1-2) as

Ty =20+4660 - (1 —0.687¢ " —0.313 ¢ %) (12.2)

This time—temperature is intended to be used for external structures outside of
external walls.

When more severe fires are anticipated, as for offshore oil installations or
tunnels, the so-called Hydrocarbon Curve is often applied:
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Table 12.1 Time-temperature coordinates of the standard ISO 834 and EN 1363-1 fire curves

Time [min] 0 15 30 45 60 90 120 180 240
Temperature [°C] 20 739 842 2 945 1006 1049 1110 1153

Table 12.2 Time-temperature coordinates of the RWS fire curve

Time [min] 0 3 5 10 30 60 90 120 180
Temperature [°C] |20 [890 | 1140 |1200 |[1300 |1350 |1300 |1200 |1200

Ty =20+ 1080 (1 —0.325¢ %1%/ —0.675¢7%7 ) (12.3)

For the design of tunnels, the ministry of transport in the Netherlands has
developed the so-called RWS fire curve which is used in many countries. It is
defined by the time—temperature coordinates given in Table 12.2.

The above-mentioned fire design curves are plotted in Fig. 12.2 together with
time—temperature curve according to ASTM E-119.

In the USA and Canada fire tests and classification are generally specified
according to the standard ASTM E-119. The ASTM E-119 fire curve is specified
as time temperature coordinates as given in Table 12.3 or as approximated by the
equation

Ty = Ty + 750 (1 - e—O-‘W) 12201 (12.4)

where fire or furnace temperature T; and the initial temperature T} are in °C and
time ¢ in minutes. The curve is slightly different from the corresponding ISO and
EN curves. However, the severity of a fire test depends not only on temperature
level but also on how the temperature is measured. In ASTM E-119 the thermo-
couples specified for monitoring the furnace temperature are very thick and have
therefore a very slow response. That means the real temperature level is much
higher than measured by thermocouples. During the first 10 min of a fire resistance
test, the difference between measured temperature and the actual temperature level
may amount to several hundred degrees as indicated in Fig. 9.1. Thus, when
predicting temperature in structures to be tested according to ASTM E-119, the
most relevant fire temperature curve to apply is the upper curve of Fig. 9.1. In
addition to the problem of the time constant, it is unclear how the ASTM thermo-
couples react to different gas and radiation temperatures which makes any temper-
ature predictions uncertain.
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Fig. 12.2 Standard time—temperature relations according to ISO 834 or EN 1363-1 (Eq. 12.1), the
Hydrocarbon curve (Eq. 12.2), the External fire curve according to Eurocode 1 (Eq. 12.3) and
ASTM E-119 (defined in Table 12.3 and approximated by Eq. 12.4)

Table 12.3 Time—-temperature coordinates of the ASTM E-119 fire curve

Time [min] 0 5 10 30 60 120 240 480 >480
Temperature [°C] 20 538 |704 |843 927 1010 1093 1260 1260

12.2 Parametric Fire Curves According to Eurocode

Parametric fire curves are defined in Eurocode 1, EN1991-1-2, Appendix A. They
are based on work in Sweden [36] in the 1960s and 1970s which was later modified
and simplified by Wickstrom, see e.g. [37].

The parametric fire curves are defined in the heating phase by the expression

Ty =204 1325 - (1 —0.324- 702" —0.204- ¢ — 0472 e*19"‘”) (12.5)

where r* is a modified time defined as
t =Tt (12.6)

where the parameter I” (the gamma factor) determines the rate at which the fire
temperature goes to the ultimate temperature, (1325 +20) °C. For I' equal unity
Eq. 12.5 yields a time-temperature relation which approximately follows the
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standard EN/ISO curve for about 6 h. The standard fire curve prescribes thereafter
higher temperatures while the parametric goes asymptotically a maximum fire
temperature rise of 1345 °C.

The factor I" depends on the opening factor (cf. Eq. 10.10) and the thermal
inertia of surrounding structures. It is defined as

ATg/AT] 2

o 0>
r= Y0 841106 . (12.7)
_ k .p . C

(The parameter values in this equation must be given in SI units.) Thus a fire
compartment with an opening factor of O = 0.04 m'/?> and enclosure boundaries
with a characteristic value of the square root of the thermal inertia /k - p - ¢ = 1160
Ws'!/2/(Km?) yields I" = 1 which implies a fire development close to the EN/ISO
standard fire curve. Lower values, I' < 1, yield fires with slower temperature
developments while I” > 1 yields fires with faster developments.

Figure 12.3 shows examples of the heating phase of parametric fire curves with
I'-values smaller and larger than unity. The ISO/EN standard curve is plotted for
comparison. Notice that the parametric fire curve with I" = 1 differs only a few
degrees from the ISO/EN standard curve.

The so-called hydrocarbon fire curve is a special case of a parametric curve. It
was originally defined as a parametric fire curve with I = 50 and with an ultimate
temperature of 1100 °C, see Eq. 12.3.

Fires are assumed to continue until all the fuel (fire load) is consumed, and the
burning rate is assumed to be proportional to the amount of air being available in the
fire compartment. Thus the fire duration t, is proportional to the fire load density q}/
(energy content per unit area) and the inverse of the opening factor. According to
Eurocode 1 it may be written as

_, A

t = 12.8
d X Ao\/h_g ( )

In modified time the fire duration is calculated as
=T 1 (12.9)

In Eurocode 1 the proportionality constant has been given the value y = 0.2%¥10~3
[h-m3/2/MI] (units as in Eurocode 1 [35]).
The fire load density q}f is obtained by summarizing the weight of the various

fuel components available for combustion with their net calorific value. Table 12.4
shows a summary of the net calorific values as given in Eurocode 1.
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Fig. 12.3 The standard EN/ISO standard curve and parametric fire curves with various I'-values.
For I' =1 the parametric curve coincides approximately with the standard curve for the first
360 min

Table 12.4 Net calorific values of combustible materials for calculation of fire loads

Material Net calorific values [MJ/kg]
Wood 17.5

Other cellulosic materials 20

Gasoline, petroleum 45

Diesel 45

Polyvinylchloride, PVC (plastic) 20

Other plastics 3040

Rubber tyre 30

Note: The values given in this table are not applicable for calculating energy content of fuels
Summary from Eurocode 1, EN 1991-1-2 (The net calorific value is determined by subtracting the
heat of vapourization of the water vapour from the gross calorific value)

The simple heat and mass balance theory applied for calculating the compart-
ment fire temperature in the heating phase is not relevant for the cooling phase
when the fuel is more or less depleted and the assumption of uniform temperature is
no more relevant. In Eurocode 1 simple linear time temperature relations are
therefore assumed as shown below:
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Fig. 12.4 Parametric time—temperature fire curves for varying opening factors O with a fire load
q} =200kJ/m? and thermal inertia of surrounding boundaries /pc = 1160Ws!/2/(Km?).

0=0.04 m” yields approximately the ISO standard curve in the heating phase (The curves have
I'-factors 4.0, 1.0 and 0.25, respectively)

Ty =Tpmaxr — 625(8° — 1) for £, <0.5h
Ty =Trmae —250(3 — 1) (¢ — ;) for 0.5 <7, <2h (12.10)
Ty =Ty max — 250(8° — 1) for 7;>2h

In case of fire durations z; < 25 min additional information need to be considered as
given in EN 1991-1-2.

Figures 12.4 and 12.5 show examples of parametric fire curves. In both cases the
fire load q;- = 300kg/m?. Figure 12.4 shows the temperature development for

various opening factors and Fig. 12.5 for various thermal inertia v/k - p - ¢. The
I'-factors 4.0, 1.0 and 0.25 are calculated based on Eq. 12.7.

Notice in Fig. 12.4 how the maximum fire temperature T%,,,, increases with
O while the fire duration 7; decreases. Thus, e.g. concrete structures with slow time
responses are in general more sensitive to fires with low opening factor while it is
the opposite for bare steel structures.

Figure 12.5 shows that fire temperature development depends on the thermal
inertia of the surrounding boundaries. The fire duration 7, depends, however, only
on the fire load and the opening factor but is independent of the thermal inertia.
Notice that the temperature development is much lower for a thermal inertia of
2000 W s"?/(K m?) corresponding to concrete than for approximately the ISO
standard curve, \/kpc = 1160 W s'/2/(Km?). After 90 min the difference is. On the
other hand, the temperature becomes much higher if the thermal inertia of the
surrounding structure is lower, e.g. with a thermal inertia of 500 Ws'?/(Km?)
representing silicate or gypsum boards.
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Fig. 12.5 Parametric time—temperature fire curves for varying thermal inertia of surrounding
boundaries /kpc with a fire load q} = 200kJ/ m? and an opening factor O =0.04 m”. /kpc

= 1160Ws'/2/(Km?) yields approximately the ISO standard curve in the heating phase (The
curves have I'-factors 4.0, 1.0 and 0.25, respectively)

Example 12.1 Calculate the maximum temperature of a parametric fire in a
compartment with O = A,\/h,/A, = 0.08m”, k- p-c=1160Ws!/?/(Km?)
and g, = 400MJ/m?. In Eq. 12.8 assume y = 0.2%10"* hm?/2/MJ.

Solution Equation  12.7  yields r=2=4 and Eq. 128

tq = 0.2¥1073%400 /0.08 = 1h. The maximum temperature can then be obtained
for a modified fire duration of 4-1 h=4 h from Eq. 12.5 or from Fig. 12.3 to be
1150 °C.

12.3 Summary of Heat Transfer Conditions According
to Eurocodes

The temperature shall be measured with PT’s (see Sect. 9.3) in fire resistance
furnace tests according to ISO or EN standards. Therefore the standard furnace
temperature Tcan be considered as an AST and the heat transfer ¢ ,,, to an exposed
surface with a temperature Ty may be calculated as (cf. Eq. 4.14)

Q=0 [(Ty+273)" = (1, +273)"] + (1 — T) (12.11)

where temperatures here are in °C. This does not apply to predictions of tests
according to ASTM E-119 where the fire time—temperature curve needs be modi-
fied before being used as a boundary condition in temperature calculations, see
Sect. 12.1 above.
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When calculating temperatures of structures exposed to severe fires, the influ-
ence of the choice of the emissivity ¢ is in general small and of the convective heat
transfer coefficient A, it is often negligible for most materials, especially light
materials, and longer fire durations. For insulation materials (low thermal inertia)
it is almost negligible. Then the surface temperature may be assumed equal to the
fire temperature (first kind of boundary condition, see Sect. 9.3). On the contrary,
for bare/non-protected steel structures particularly the emissivity € and in some
cases also the convection heat transfer coefficient /. have a significant influence and
are decisive for the temperature development.

The emissivity ¢ is a property of the solid surface only, while the convective heat
transfer coefficient /. depends on the geometry and the surrounding flow condi-
tions. According to Eurocode 1 [35] the specimen surface emissivity & = 0.8
unless another value can be motivated. The convection heat transfer coefficient
h. = 25W/(m?K) when applying the EN 1363-1 standard curve or the external
fire curve, and A, = 50W/(m?K) and h. =35W/(m?>K) when applying the
hydrocarbon curve or any natural fire curve including parametric fire curves,
respectively.

At surfaces on the unexposed side of separating elements Eurocode 1 [35]
suggests that the heat transfer shall be calculated as (here the emissivity and view
factor of the fire are assumed to be unity)

n

i —e. (;[(Too Va3 — (T, + 2734)} 4 h(To —T)) (12.12)

where T, is the ambient surrounding temperature. Here the unexposed side surface
emissivity should be as for the exposed side, i.e. ¢ = 0.8 unless another value can be
motivated. The convection heat transfer coefficient shall then be assumed as
h. = 4W/(m*K). Alternatively, the radiation component of Eq. 12.12 may be
included in the convection heat transfer term. Then the convection heat transfer
coefficient i, = 9W/(m?K) and the surface emissivity e = 0, i.e. a linear boundary
condition of the kind 3a according to Table 4.2.

A summary of the heat transfer parameters as specified by Eurocode 1 is given in
Table 12.5.

Table 12.5 Summary of heat transfer parameters as specified by Eurocode 1, EN 1991-1-2

Convection heat transfer
Fire curve Exposed side coefficient 4. [W/(m K)] Emissivity € [—]
Standard ISO/EN Fire-exposed side 25 0.8*
Unexposed side” 4 0.8*
Unexposed side” 9 0
Hydrocarbon curve Fire-exposed side 50 0.8*
External fire curve Fire-exposed side 25 0.8*

“Unless another material property value is motivated
PAlternative
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Chapter 13
Temperature of Steel Structures

Steel is sensitive to high temperature. The critical temperature of a steel member is
the temperature at which it cannot safely support its load.

The mechanical properties such as strength and modus of elasticity deteriorate in
particular when the steel temperature exceeds 400 °C, see, e.g. Eurocode 3, EN
1993-1-2. Some building codes and structural engineering standard practice defines
different critical temperatures which must not be exceeded when exposed to a
standard fire exposure for a specified time. Steel structures must therefore usually
be protected to reach a particular fire rating. Please note that insulation and
protection of structures are in this book used synonymously. Protections can be
obtained by for instance boards, sprayed on concrete, insulation materials or
intumescent paint. Intumescent coatings or reactive coatings expand upon heating
and provide an insulating char to protect structural steelwork. Steel structures may
also be built into concrete or even wooden structures as a means of fire protection.
Eurocode 4 (EN 1994-1-2) deals with composite structures of steel and concrete
where steel sections are imbedded in concrete.

To obtain a certain rating a steel structure can be tested in fire resistance furnace
according to specific standards depending on country or region. Alternatively or as
a pretest investigation steel temperatures can be calculated compared with critical
values when exposed to design fire conditions for specified durations.

Because of the high conductivity the temperature field in a steel section is in
many fire engineering cases assumed uniform. In particular the temperature across
the thickness of a steel sheet can in almost all fire resistance cases be assumed
constant, while the temperature in the plane of steel sheets may vary considerably.
Then the zero- or one-dimensional calculation techniques may be used as presented
in Sects. 3.1 and 7.1 and further adapted to protected and unprotected steel sections
in Sects. 13.3 and 13.4, respectively. For more general two- and three-dimensional
cases numerical computer codes are needed, see Sect. 7.3.2 and Sect. 13.5 where
some examples are shown.

Generally in the following sections the gas and radiation temperatures are
assumed equal to the fire temperature, ie. T, =T, =Ty, as is assumed in all
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standard time—temperature fire curves. If measured temperatures are used, the fire
temperature Ty may be replaced by the adiabatic surface temperature measured
with, e.g. PTs.

13.1 Thermal Properties of Steel

Metals in general have high electric conductivity, high thermal conductivity and
high density. The heat conductivity of carbon steel is in the order of 30 times higher
than the corresponding value for concrete and 100—1000 times higher than that of
insulation products. The higher purity of a metal, the better it conducts heat. Thus
contents of carbon and alloying metals such as chrome reduce the conductivity, and
consequently stainless steel is a relatively poor conductor. The specific heat capac-
ities of metals are in accordance with a general rule of physics inversely propor-
tional to the molecular weight.

Figure 13.1 shows the conductivity kg, vs. temperature T, of structural carbon
steel according to Eurocode 3 (EN 1993-1-2). It can also be obtained from
Table 13.1. For approximate calculations normally on the safe side a constant
value of 46 W/(m K) can be recommended, cf. Table 1.2.

The specific heat capacity is usually a more significant parameter than the
conductivity for the development of temperature in fire-exposed steel structures.
In many cases it is accurate enough and convenient to assume a constant specific
heat capacity. Then a value of 460 J/(kg K) is recommended which normally yields
calculated temperatures on the safe side (overvalued). However, for more accurate
calculations the variations with temperature as shown in Fig. 13.2 or given in
Table 13.2 are recommended in Eurocode 3 [3]. The peak of the specific heat
capacity at 735 °C is due to phase changes of the steel.

Table 13.3 shows tabulated values of the thermal properties of carbon steel
derived from Eurocode 3 including the specific volumetric enthalpy vs. temperature
defined as

e(T):JTc-pdT (13.1)

This temperature—enthalpy relation is input in some computer codes, e.g. Tasef,
instead of density and specific heat capacity. The diagram in Fig. 13.3 shows the
specific volumetric enthalpy vs. temperature based on the values of Table 13.3.

Thermal conductivity of stainless steel is considerably lower than that of carbon
steel. The conductivity and the specific heat capacity of stainless steel according to
Eurocode 3, EN 1993-1-2 are given in Table 13.4.
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Table 13.1 Thermal conductivity of carbon steel vs. temperature according to Eurocode 3, EN
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Table 13.2 Specific heat capacity of carbon steel as functions of the temperature according to

Eurocode 3, EN 1993-1-2

Temperature [°C]

Specific heat capacity [J/(kg K)]

20 < T, < 600

425+0.773 - Ty — 1.69 x 1073 - T, +2.22 x 107°. T,

600 < T, <735

666 + 13002/(738 — Ty

735 < T, <900

545+ 17820/(T,; — 731)

900 < Ty, < 1200

650

Table 13.3 Summary of thermal properties of carbon steel including derived volumetric specific
enthalpy according to Eurocode 3, EN 1993-1-2

Temp K Pst Cst Cst Cst
[°C] [W/(m K)] [kg/m®] [J/kg K)] [J/(m’ K)] [Wh/(m® K)]
0 54 7850 425 0 0
100 51 7850 488 0.360E + 09 99,870
200 47 7850 530 0.760E + 09 211,000
300 44 7850 565 1.19E + 09 330,300
400 41 7850 606 1.65E +09 457,800
500 37 7850 667 2.15E+09 596,100
600 34 7850 760 2.70E + 09 751,100
700 31 7850 1008 3.37E+09 934,300
735 30 7850 5000 4.20E+09 1,091,000
800 27 7850 803 5.03E+09 1,309,000
900 27 7850 650 5.58E+09 1,464,000
1200 27 7850 650 7.12E+09 1,890,000
Fig. 13.3 Volumetric 2000
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Table 13.4 Thermal conductivity and specific heat capacity of stainless steel vs. temperature
according to Eurocode 3, EN 1993-1-2

Conductivity
Temperature [°C] | [W/(m K)] Specific heat capacity [J/(kg K)]

20<T, <1200 |14.6+0.0127-T, |450+0.280-T, —0.291-107>-T,7+0.134-107°.T,]°

Table 13.5 Dimensions of hot-rolled HEB steel sections according to EN 10025-1. The last
column corresponds to Ay,

Height Width Web thickness | Flange thickness | Weight Surface area
HEB | [mm] [mm] [mm] [mm] [kg/m] [m?*/m]
100 100 100 6 10 20.8 0.567
120 120 120 6.5 11 27.2 0.686
140 140 140 7 12 34.4 0.805
160 160 160 8 13 43.4 0.918
180 180 180 8.5 14 52.2 104
200 200 200 9 15 62.5 1.15
220 220 220 9.5 16 72.8 1.27
240 240 240 10 17 84.8 1.38
260 260 260 10 17.5 94.8 1.5
280 280 280 10.5 18 105 1.62
300 300 300 11 19 119 1.73
320 320 300 11.5 20.5 129 1.77
340 340 300 12 21.5 137 1.81
360 360 300 12.5 22.5 145 1.85
400 400 300 13.5 24 158 1.93
450 450 300 14 26 174 2.03
500 500 300 14.5 28 191 2.12
550 550 300 15 29 203 222
600 600 300 15.5 30 216 2.32
650 650 300 16 31 229 242
700 700 300 17 32 245 2.52
800 800 300 17.5 33 267 2.71
900 900 300 18.5 35 297 291
1000 | 1000 300 19 36 320 3.11

13.2 Example of Hot-Rolled Steel Section Dimensions

Dimensions of hot-rolled steel sections can be found for instance in suppliers
catalogues or on the internet web. As an example dimensions of HEB wide-flange
steel I-sections according to the European standard EN 10025-1 are given in
Table 13.5.
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13.3 Protected Steel Sections Assuming Lumped-Heat-
Capacity

The assumption of lumped heat or uniform steel temperature as often done in fire
protection engineering calculations (see, e.g. Eurocode 3) is in particular a reason-
able approximation when calculating temperature of protected steel sections
exposed to fire on all four sides. The assumption of uniform heat implies that the
heat conductivity is assumed infinite and the thermal mass is concentrated, lumped,
to one point, see Sects. 3.1 and 7.1.

Then in addition the fire and the exposed surface temperatures are assumed equal
which implies that the heat transfer resistance between the fire gases and the
protection surface is negligible. That means the inverse of the total heat transfer
coefficient by radiation and convection is assumed negligible in comparison with
the heat resistance of the insulation Ry, i.e. the thickness over the conductivity d;,/
k;, of the insulation, cf. Fig. 3.3. This is an accurate approximation as the radiation
heat transfer coefficient is very high at elevated fire temperatures. It facilitates
calculations and it is on the safe side as it overestimates steel temperatures.

The heat transfer to the steel may then be calculated as

. kin
q 100 = Ast (d_> (Tf - Txt) (13.2)

where Ay is the fire-exposed area per unit length, T; and T, are the fire and steel
temperatures, respectively. If in addition the heat capacity of the insulation is
negligible in comparison to that of the steel, the transient heat balance of the steel
section becomes,

0Ty

kin
Ay (d_m> (T)‘ - Tst) = Cstpsfvstw (13.3)

That is the heat entering the steel section is equal to the heat stored per unit time
proportional to the rate of temperature rise. ¢y, and py, are the specific heat capacity
and density, respectively, of steel and V, the volume per unit length of the steel
section. When estimating the conductivity of the insulation the temperature of the
insulation may be assumed as the mean of the fire and the steel temperatures.

In cases of heavy insulations when the heat capacity of the insulation need be
considered a more rigorous analysis is required as shown in Sect. 13.3.1.

From Eq. 13.3 the forward difference scheme

X . A At k; : :
TH =T 4+ (V—SZ) P <di’) (T}“ _ Téz) (13.4)
s st K in

where At is a chosen time increment. The specific heat c,,’ is taken at the temper-
ature level T!, (if assumed varying with temperature).
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The relation Ay /Vy, is denoted the section factor or shape factor. It has the
dimension one over length [m™']. The shape factor can be replaced by its recipro-
cal, the effective thickness of the steel dy, identified as

I 7
dy = ATZ (13.5)

Instructions on how to obtain shape factors for various steel sections are given in
Table 13.6 taken from Eurocode 3 [3]. The area A, of contour encasements such as
spray fire protection material is generally taken as the perimeter of the section times
the unit length. For board protections forming hollow encasements, the perimeter
may be assumed as the boxed value as shown in the second row of Table 13.6. Even
if there is a clearance around the member, the same boxed value may be applied.
For steel sections fire exposed on three sides the perimeter is reduced accordingly as
shown in the third and fourth rows of Table 13.6. Thus the interface between the
steel and, for example, a concrete slab is treated as an adiabatic surface and hence
the cooling effects of the steel section is ignored. Therefore this crude approxima-
tion model yields considerably higher temperature than it could be expected in
reality. To accurately incorporate the cooling effects 2D finite element calculations
are required.

Alternatively the steel section volume per unit length V, may be obtained as the
weight per unit length mg, (often tabulated in catalogues of steel providers) over the
steel density py,, i.e.

Vy=— (13.6)
' Pst

Analytical solutions can be derived only when constant conductivity of the
protection material and specific heat of the steel are assumed. If in addition the
fire temperature is assumed to suddenly rise to constant temperature, can the steel
temperature be obtained as shown in Sect. 3.1.2 as

Ty —T,; :

=1—-e- 13.7
Fr e (137

where 7 is identified as a time constant which for a protected steel section becomes

st dip - din
(Y poen (% = dpen (Y 13.8
! (As,)oﬂc ! (kin) stPsCst (kf,,) ( )

In some special cases with varying fire temperatures the steel temperatures may
be calculated analytically as shown in Sect. 13.3.2 where efficient and compact
diagrams which facilitates estimations of steel temperatures are shown.

In general, however, the time constant 7 cannot be assumed constant as the
thermal properties of the insulation as well as of the steel vary with temperature and
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Table 13.6 Section factor Ag/V, for steel members insulated by fire protection material. From
Eurocode 3 [3]

Section factor
Sketch Description (Aa/V)

Contour encasement of ___ steel perimeter
. . steel cross—section area
uniform thickness

Hollow encasement of 2(b+h)
. . a steel cross—section area
uniform thickness

Contour encasement of _steel perimeter 2/i+b
. . steel cross—section area

uniform thickness,

exposed to fire on three

sides

Hollow encasement of — 2htb
A . steel cross—section area

uniform thickness,

exposed to fire on three

sides®

h
L
T8
C

The clearance dimensions c¢; and ¢, should not normally exceed //4

time, and as the fire temperature T generally varies with time. As an alternative to
Eq. 13.4 the steel temperature can be calculated by forward difference recursion
formula

At

i+1 _ =
Tsz - Ti

. At .
T + (1 ——) T! (13.9)

T

where At is a chosen time increment. The suffixes denote the numerical order of the
time increments. When the thermal properties vary with temperature, the time
constant T need be updated at each time increment.

The forward difference scheme of Eq. 13.12 is numerically stable if the time
increment is less than the time constant at each time increment i, i.e.
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At <1 (13.10)

In practice time increments Af longer than 10 % of the time constant should not
be used to assure numerical stability and accuracy. When choosing the time
increment it is also necessary to make it short enough to be able to follow the
thermal exposure changes with time.

The recursion formulas according to Eq. 13.9 are preferably solved with a
spreadsheet program such as MS-Excel. For clarification examples are shown
below on how the formula is used.

Example 13.1 A steel column with a section factor 200 m ™" is protected with a
25 mm non-combustible board with a conductivity of 0.1 W/(m K). The column is
exposed to fire and the exposed insulation surface suddenly reaches a temperature
of 1000 °C. Assume constant thermal properties and uniform steel temperature
(lumped heat). The density and specific heat of steel are assumed to be 7850 kg/m>
and 460 W s/(kg K), respectively. The initial temperature 7; = 20 °C. Calculate the
steel temperature after

(a) 9 min using the analytical exact solution according to Eq. 13.7
(b) 60 min using the analytical exact solution according to Eq. 13.7
(¢) 9 min using the numerical solution according to Eq. 13.9 and compare with (a)

460-7850-0.025/0.1 — 4514s

Solution According to Eq. 13.8 the time constant 7 = 200

(a) After 9 min £=9-60/4514 = 0.12 and according to Eq. 13.7 or Fig. 3.4

(1 —e7*) = 0.113 and the steel temperature T, = 20 4 (1000 — 20)*0.113 =
131°C.

(b) After 60 min £=60-60/4514=0.80 and the steel temperature
Ty =20+ (1000 — 20)*0.55 = 560 °C.

(c) Assume a time increment Az = 3min = 180s. Then according to Eq. 13.9 at
t=180 s  T§ = (35%) 1000+ (1 —78%)-20=59°C, at t=360 s
T2, = ($55) - 1000 + (1 —45%) - 59 = 96°C and at 540 s
T?I = (%&) - 1000 + ( - 415%) -96 = 132°C. Notice that the numerical solu-
tion (b) is only 1 °C more than the exact solution according to (a).

Example 13.2 The same column as in Example 13.2 is exposed to a standard fire
time—temperature curve according to ISO 834. Calculate the steel temperature after
9 min.

Solution Apply the recursion formula according to Eq. 13.9. Choose a time
increment At = 180s (<10 % of 7). The temperature at 3, 6 and 9 min is according
toEq. 12.1,7.7,10.17 and 12.5, respectively. Then according to Eq. 13.9 att=180s

Ty, = (2%) - 228 + (1 — 2%) .20 =28.3°C, at t=360 s T2 = ({89) 312+

(1 —89).28.3=36.6°C and at 540 s T2 = (%) .365+ (1 — %) .36.6 =

49.7°C.
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13.3.1 Protection with Heavy Materials

The heat capacity of fire protections has normally an insignificant influence on the
steel temperature rise rate. However, it will considerably reduce the steel temper-
ature rise of sections protected with relatively heavy protections materials. The
protection will then add to the heat capacity of the system and it will cause a delay
in the temperature rise of the steel section. A simple approximate approach is then
to lump a third of the heat capacity of the insulation to the steel section heat capacity
and to add a term considering the time delay [42-44]. Eq. 13.4 may then be
modified the more general formulation as

1 ' (T}H B Tﬁ")
Ty =Ty +At=——?
1(1 +’§)

where 7 is as specified in Eq. 13.7 and g is the ratio between the heat capacity of the
insulation and the steel,

+ (e =1) (" - 1) (13.11)

:Ast'din'pin * Cin (1312)
Vst Pt Cst

pin and c;, are the density and specific heat capacity of the protection material,
respectively. The latter term of Eq. 13.11 represents a time delay due to the heat
capacity of the protection. (T'}Jrl — Tff) is the fire temperature rise between two time
increments. Notice that when the heat capacity of the protection is much smaller
than that of the steel, 4 vanishes and Eq. 13.11 becomes identical to Eq. 13.4.

The value of the parameter # in the last term of Eq. 13.11 was obtained by
comparisons with accurate finite element calculations. For steel sections exposed to
the ISO/EN standard time—temperature curve accurate approximations are obtained
by choosing =15, see Example 13.3 and Fig. 13.4.

For fire temperatures assumed to instantaneously rise to a given temperature,
n =10 yields very similar steel temperatures in comparison to accurately calculated
temperatures. This value has been adopted by Eurocode 3, EN 1993-1-2 [3]. It
yields higher steel temperatures than choosing the more accurate value 7 =35.

Example 13.3 A steel section with a section factor of 200 m~' and an initial
temperature of 20 °C is exposed to a standard fire curve according to ISO 834. It is
protected with 20-mm-thick high density material assumed to have the same
properties as concrete. Assume material properties as given in Table 1.2. Calculate
the steel temperature development.

Solution According to Eq. 13.71 = % (%) = BB0A00.02 — 212sand Eq. 9.12

Awdinpy € _ 2000022300900 — 9 29 Then the recursion formula Eq. 13.11 may

= "Vapgen 7850-460
be applied. Steel temperatures obtained by an MS-Excel application are given in
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Fig. 13.4 Example of steel temperature of a steel section protected by a heavy protection material
exposed to the ISO 834 standard time—temperature fire curve. Temperature calculated with the
delay and with no delay according to the third term according to Eq. 13.11. For comparison the
steel temperature as calculated accurately with the finite element code TASEF

Fig. 13.4. For comparison accurately finite element calculated temperatures are also
shown. Notice how well the temperature calculated according to Eq. 13.11 matches
the accurate solution except for the 5 min when the temperature goes down even
below zero. In addition the temperatures are shown which are calculated without
considering the delay expressed by the parameter p larger than zero in the third term
on the right-hand side of Eq. 13.11.

13.3.2 Protected Steel Sections Exposed to Parametric
Fire Curves

As described in Sect. 12.2 the concept of parametric fires has been introduced in
Eurocode 1 [35] as a convenient way of expressing a set of post-flashover design
fires.

When using parametric design fires the temperature of protected steel sections
can of course be obtained by numerical calculations according to Eq. 13.9. Then
non-linear phenomena such as temperature-dependent material properties may be
considered. However, if the thermal properties are assumed constant and the fire
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temperature is expressed by exponential terms as in Eq. 12.5, then the steel
temperature rise vs. time can be obtained by integration as a closed form analytic
expression [45].

Equation 12.5 may be written in the form

T, =20+ " (Bie—/ff’*) (13.13)

where the constants B; and f; are given in Table 13.7. Notice that Eq. 13.13 is
identical to Eq. 12.5 but written in a different format to reach to a compact solution
for the steel temperature as given in Eq. 13.14.

Then the steel temperature can be derived exactly by analytical integration as a
function of the modified time ¢ and the modified time constant 7* of the steel
section as

Ty=20+5 " L +B ;ﬂ* (eﬂf’* - e_ﬂ (13.14)

where
v =I1 (13.15)

The protected steel section time constant T is given in Eq. 13.8. The relation
between the temperature rise vs. modified time as expressed in Eq. 13.14 is also
given in the diagram shown in Fig. 13.5a, b for various modified time constants z*.
The two diagrams are the same but with different time and temperature scales.
Notice that Eq. 13.14 and Fig. 13.5 may be used for the ISO 834 standard fire
exposures assuming I'= 1 as the parametric fire curve in the heating phase then is
very close to the standard curve, see Fig. 12.3.

The use of parametric fire curves on insulated steel sections is demonstrated
below.

Example 13.4 Consider a steel section with a shape factor=200 m~' with a
25-mm-thick protection board having a constant thermal conductivity of 0.1 W/
(m K). The steel density and specific heat capacity are 7850 kg/m* and 460 J/(kg K),
respectively. The section time constant may then be obtained from Eq. 13.15 as
T=4514 s =75 min=1.25 h. Then if the section is exposed to ISO 834 standard
fire (I'= 1) for 60 min, a temperature of 462 °C may be obtained from Eq. 13.14 or
from Fig. 13.5. If the same section is exposed to a more slowly growing fire with a
I'=0.5, then z* =I"- 7 =37.5 min and the temperature after 60 min may be found
for a modified time of t* =I"-t =30 min to be 405 °C. On the other hand, if the
section is exposed to a fast growing fire with I" = 3.0, then 7% =3.0-75 =225 min
and *=3.0-60=180 min, and the steel temperature can be obtained from
Eq. 13.13 or from Fig. 13.5 as 552 °C. Notice that the maximum steel temperature
for a given fire exposure time increases considerably with an increasing I -factor. It
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Table 13.7 Constants in the  Term number. i 0 1 2 3
analytlca} expression of the B, (C) 1325 ~430 570 625
parametric fire curve —

pi(h™) 0 -0.2 —-1.7 -19

must, however, also be kept in mind that the fire duration for a given fuel load is
proportional to the inverse of the opening factor included in the I"-factor.

The diagrams of Figure 13.6a, b show the temperature development of a
steel structure with the same dimensions and protection as described above.
The two cases are assuming the same fire g, = 200kJ/m? and thermal inertia

of the surrounding structure +/k-p-c = 1160Ws'/?2/(Km?). According
to Eq. 12.8 fire duration can be calculated to be ;=60 min and 120 min
(x =02%10"% [hm*?/MJ]), with I'=1 and 0.25, respectively. Notice that
the steel temperature reaches its maximum when it is equal to the cooling
phase fire temperature. According to the diagram of Figure 13.6a the steel
temperature is 450 °C at t;,=60 min and reaches its maximum 570 °C after
105 min. The corresponding temperatures according to diagram in
Figure 13.6b are 585 °C after 120 min and the maximum steel temperature
is 670 °C after 180 min. Thus the steel section reaches a higher temperature
for the lower opening factor, given the fire load and the thermal properties
of the surrounding compartment boundaries remains the same.

For more detailed information on how to apply parametric fire curves according
to standard, see Eurocode 1 [35].

13.4 Unprotected Steel Sections

The temperature of unprotected, uninsulated or bare steel sections depends on the
fire temperature and very much on the heat transfer conditions between fire gases
and steel surfaces. It is a boundary condition of the 3rd kind, see Sect. 1.1.3, where
the only thermal resistance between the fire and the steel is due to the heat transfer
conditions which therefore becomes decisive for the steel temperature develop-
ment. The boundary condition is highly non-linear as it varies very much with
temperature due to radiation. The same type of compact formula and diagrams as
for insulated steel sections can therefore not be developed.

The total heat flux by radiation and convection c];’m is given in Eq. 4.17 or
Egs. 4.18 and 4.19. Steel temperatures can then be obtained from differential heat
balance equations in a similar way as for protected steel sections (cf. Eqs. 13.2 and
13.3).

According to Eq. 4.17 and the procedures as outlined in Sect. 7.1 the heat flux by
radiation and convection can be written as
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Fig. 13.5 Temperature of various protected steel sections exposed to parametric fires in the
heating phase vs. modified time " The thermal properties of the steel sections are embedded in
the modified time constants 7, see Eq. 13.15. The bottom diagram is a magnification of the top
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Fig. 13.6 Fire and steel temperatures calculated numerically according to Eq. 13.4 based on
parametric fire curves with g, = 200kJ/m?, /kpc = 1160Ws'/?/(Km?) and 0=0.04 m”
(diagram a) and O =0.02 m” (diagram b), respectively. See Example 13.4. (a) O =0.04 m”,
I'=1 and #,= 60 min (b) O =0.02 m”, ['=0.25 and t,= 120 min

"

ém,=8sr-6(T_?—T?) + he(Ty —Ty) (13.16)

when the radiation and convection temperatures are assumed equal, i.e.
T, =T, = Ty. This heat flux shall balance with the heat stored in the steel section,
ie.

L oT,
Ast'qtmzcst'pst'vxta—;t (13.17)

and the steel temperature can then be obtained by the numerical time integration
scheme

Agt

Tf+1 _ T_i +
Cst " Pyt Vst

[ew-o(T) =) 4 () -7)] -0 (13.18)

where At is the time increment and the superscript j the time increment number. The
heat capacity of the steel may be updated at each time step to consider changes
dependent on temperature.

Figure 13.7 shows steel temperature developments of steel sections with various
section factors assuming constant values of ¢y, py, € and A..

Equation 13.20 is a forward difference scheme which is numerically stable and
accurate only for limited values of the time increment. The stability criterion for the
explicit numerical scheme may be expressed as

i i V.vtp stCst }i
Af <7 =T 13.19
o { Agthior ( )

where 4,,, is the total heat transfer coefficient
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Fig. 13.7 Temperatures of uninsulated steel sections with various section factors exposed to the
standard ISO 834 time-temperature curve calculated according to Eq. 13.18 with
cy = 4607/ (kgK), p,, = 7850kg/m?, £, = 0.7 and h, = 25W/(m>K)

Booy = hy + he = €4 - a(sz- + Tft) (T + Ta) + he (13.20)

As the total heat transfer coefficient 4, will increase substantially with the
temperature level, c.f. Eq. 13.20, the time constant and critical time step will
decrease accordingly.

In practice it is recommended to keep the time increments less than 10 % of the
current time constant, i.e.

(13.21)

Af < 0.1 {Lp S’CS’}I

AS[ hmt

Principles for calculating the section factors according to Eurocode 3 [3] for
various types of configurations of unprotected steel members can be found in
Table 13.8.

As well as for protected steel sections the volume V, may be calculated as the
weight per unit length my, over the steel density py,;, see Eq. 13.6. The weight per
unit length my, of steel sections is often tabulated in catalogues of steel supplier.
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Table 13.8 Section factor Ay/Vy, for unprotected steel members

Open section exposed to fire on
all sides:

perimeter

Ast
V,, cross-section arca

(note shadow effects
Sect. 13.4.1)

Tube exposed to fire all around:
AylVy=1/t

lt
HQk

Open section exposed to fire on
three sides:

Ay
Vi

__ surface exposed to fire
- cross—section area

(note shadow effects
Sect. 13.4.1)

Hollow section (or welded box section of uniform thickness)
exposed to fire on all sides:
If r«b: Ag/V = 1/t

l

I-section flange exposed to fire
on three sides:

Ast/VS, = (b -+ 2tf)/(b'tf)

If t«b: Ag/Vy = 1/t

7
.

Welded box section exposed to fire on all sides:
Ay _ 2(b + h)
Vg — cross—section area

If r«b: Ay/Vy = 1/t

7 \%
7
> N
=122 |
f — o — ~—b—+
! f
Angle exposed to fire on all I-section with box reinforcement, exposed to fire on all sides:
sides: Av 2(b+h)
Vg cross—section area

AulVe=2/t

N\ e
X
S AN

(note shadow effects
Sect. 13.4.1)

|
T

— h

/777777777

vz

SN

k)
N
b

Flat bar exposed to fire on all
sides:
Aa/Va=2(b+1)/(bt)

If t«b: Ag/Vy =2/t

!

—» [ p777722222772772777277777, +—
b —

Flat bar exposed to fire on three sides:
Ag/Vg = (b+2t)/(b1)
Ift«b: Ay/Va =1/t

N\
_ N
P ——

oo

From Eurocode 3 [3]
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Fig. 13.8 Shadow effects a b
are applicable to open
sections where surfaces are
partly shadowed against
incident radiation. (a) Open
section (b) Closed section

SRR

13.4.1 Shadow Effects

When an open section such as an I-section is exposed to fire, the heat transfer by
radiation will be partly shadowed as indicated by Fig. 13.8a, see Eurocode 3 [3] and
[46]. The surfaces between the two flanges are then not exposed to incident
radiation from the surrounding fire from the full half-sphere but only from a limited
angle, i.e. the incident radiation to these surfaces is reduced. Shadow effects are not
applicable to closed sections such as tubes as shown in Fig. 13.8b.

As a matter of fact a section will only receive as much heat by radiation from the
fire as if it had the same periphery as a “boxed” section, see Fig. 13.9a, b. Therefore
the area per unit length Ay, may be replaced by the so-called boxed area A, in the
Eq. 13.18. This will reduce the influence by convection heat transfer but as the
radiation heat transfer mode dominates at elevated temperature this approximation
may be accepted although it is non-conservative. The boxed area A, is typically for
an I-section 30% less than the corresponding area A,,. This means that steel
temperature will be reduced when considering shadow effects and more open
steel sections can be accepted without thermal protection. Shadow effects are
particularly important for unprotected steel sections but the concept can be applied
to other types of structures as well.

The surface area of an I-beam attached to a concrete slab or wall may be reduced
in a similar way as indicated in Fig. 13.10. According to Table 13.8 the surface area
Ay, can be calculated as shown in Fig. 13.10a while the reduced area A, considering
shadow effects is calculated as shown by the dashed line in Fig. 13.10b.

Example 13.5 Calculate the section factor without and with considering of shadow
effects of an unprotected HE300B steel section attached to a concrete structure as
shown in Fig. 13.10.

Solution Dimensions of an HE300B section can be found in Table 13.5. Thus Ay,
=2H +3W —2¢t,=2-300+3-300—-2-11 =1478mm and A, =2H + W =
2300 4 300 =900mm. The section weight my, =119 kg per unit length
according to Table 13.5. Thus according to Eq. 13.6 V= my/p, = 119/7850
= 0.0151m? and the section factors becomes Ay V=98 m~! when not consid-
ering shadow effects and A, /V, = 60 m~! when considering shadow effects, i.e. a
reduction of about 40 %.



13.5 Examples of Steel Temperatures Calculated Using a Finite Element Code 213

Fig. 13.9 Illustration of the shadow effect of I-section exposed to fire from four sides. (a) Area
without considering shadow effects, Ay, (b) The boxed area considering shadow effects, A,

Fig. 13.10 Periphery considering and not considering shadow effects for steel profiles attached to
concrete structures. (a) Periphery according to Table 13.8, Ay, (b) Periphery considering shadow
effects, A,

Comment: Still such a section would get a temperature of 500 °C already after
15 min according to Fig. 13.7. The results are, however, conservative as the heat
transferred from the steel to the concrete is not considered in this type of calcula-
tions. Temperatures calculated with the finite element code TASEF including
shadow effects as well as effects of cooling to the concrete structure are shown in
Sect. 13.5.3.

13.5 Examples of Steel Temperatures Calculated Using
a Finite Element Code

The steel section temperature analyses above assume uniform steel temperatures or
lumped heat. This is often a very crude approximation. It leads indeed in general to
solutions on the safe side, i.e. the temperatures are overestimated, but often to over-
design and thereby to unnecessary costs. Unsafe conditions may, however, occur in
sections where parts such as webs are considerably thinner than the flanges.

For more precise analyses numerical calculations are needed employing,
e.g. finite element computer codes. Some examples are shown in the sections
below.
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Fig. 13.11 A bare square | I
steel tube section carrying a | |
concrete slab or attached to |

|
a concrete wall D

13.5.1 Unprotected Square Steel Tube Section Attached
to a Concrete Slab or Wall

An unprotected square steel tube (100 mm by 100 mm and 10 mm thick) is carrying
a concrete slab or attached to a concrete wall as shown in Fig. 13.11. It is exposed to
standard fire conditions according ISO 834, see Fig. 13.11. Heat transfer conditions
are assumed according to Eurocode 1 [35], i.e. €=0.8 and h=25 W/(m2 K). The
thermal properties of steel and concrete are as given in Eurocode 2 and 3, respec-
tively. Heat transfer inside the void of the tube is assumed to be transferred by
radiation with an internal surface emissivity of 0.8 and by convection with a heat
transfer coefficient of 1 W/(m? K).

The temperature calculation was carried with the finite element computer code
TASEF [19]. The finite element discretization model including element node
numbers is shown in Fig. 13.12a. Calculated steel temperatures vs. time are
shown in Fig. 13.12b, the bottom flange (node 1) and two of the top flange (nodes
5 and 35). Notice that the temperature of the bottom flange is considerably higher
than that of the top flange. The difference decreases, however, in the end of the
exposure as the radiation heat transfer between the flanges becomes more efficient
at higher temperature levels and the concrete slab is heated. The heat transfer in the
void levels out the temperature as heat is transferred between surfaces, it cools the
exposed flange and heats the flange attached to the concrete. Figure 13.12c shows a
temperature contour after 15 min.

13.5.2 Encased I-Section Connected to a Concrete Structure

An HE300B steel section attached to a concrete structure, wall or slab, is protected
by gypsum boards as shown in Fig. 13.13. It is exposed from below to standard fire
conditions according the Hydrocarbon curve, see Eq. 12.3. Heat transfer conditions
are assumed according to Eurocode 1, i.e. e=0.8 and 7=50 W/(m? K). The
thermal properties of steel and concrete are as given in Eurocode 2 and 3, respec-
tively. The gypsum boards are 30 mm and have thermal properties according to
Table 7.2.

A finite element discretization model was generated as shown in Figure 13.14a.
Heat transfer inside the void between the steel web and the protection by radiation
and convection was considered in the analysis.
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Fig. 13.12 Unprotected hollow section analysed by the finite element method. B/W plots from
TASEF. (a) Finite element mesh of a symmetric half (b) Steel node temperatures vs. time (c)
Temperature contours after 15 min

Fig. 13.13 An encased I-section steel (HE 300B) beam carrying a concrete slab. Slab thickness
160 mm, protection thickness 30 mm, steel height and width 300 mm, flange thickness 19 mm and
web thickness 11 mm

The calculated temperature histories in the steel flanges are shown in Fig-
ure 13.14b. The vaporization of the water in the gypsum consumes a lot of heat
as indicated by the enthalpy curve shown in Fig. 7.8. Therefore the uneven
development of the temperature of the gypsum (curve #2). Notice also that the
temperature difference between the minimum and maximum steel temperatures are
in the order of 200 °C due to the cooling of the top flange by the concrete slab.

13.5.3 Unprotected I-Section Connected to a Concrete
Structure

A bare HE300B steel section attached to a concrete structure as shown in Fig. 13.10
is exposed to standard fire conditions according ISO 834. Accurately calculated
temperatures with the finite element code TASEF are shown in Fig. 13.15. Notice


http://dx.doi.org/10.1007/978-3-319-30172-3_7

216 13 Temperature of Steel Structures

a b
0.49 — Temperature Multiple Fires
1200
Nodes
1
0.392 — 1000 1
800 2
0.294 —
600 -
0.196 —
400 3
0.098 — 200
9
0 T T T T T 1
o= 0 0.333 0.667 1.000 1.333 1.667 2.000

r T T T T 1
0 005 01 015 02 025

Time (h)

Fig. 13.14 I-beam protected with gypsum boards analysed by the finite element method. B/W
plots from TASEF. (a) Finite element mesh of a symmetric half (b) Temperatures from above of
gypsum surface, middle of gypsum, steel bottom and upper flanges
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Fig. 13.15 Steel temperature development of the bottom and top flanges of assembly exposed to a
standard ISO 834 time—temperature curve. Shadow effects and effects of cooling of the steel to the
concrete are considered. (a) Points where calculated steel temperatures are shown in b) (b) Finite
element calculated temperatures of flanges. B/W plot from TASEF

that when assuming lumped heat or uniform temperature a temperature of 500 °C is
calculated after 15 min. In the finite element analysis this temperature is only
reached by the bottom flange while the top flange attached to the concrete only
reaches a temperature of 200 °C.



Chapter 14
Temperatures of Concrete Structures

Reinforced concrete structures are sensitive to fire exposure of mainly two reasons.
They may be subject to explosive spalling, and they may lose their load-bearing
capacity due to high temperatures. Spalling is particularly hazardous as it may
occur more or less abruptly and unanticipated. It usually starts within 30 min of
severe fire exposure. It may depend on several mechanisms or combinations thereof
such as pore pressure, stresses due to temperature gradients, differences of thermal
dilatation and chemical degradations at elevated temperatures. Reinforcement bars
of steel lose their strength at temperature levels above 400 °C. Prestressed steel may
even loose strength below that level. Concrete loose as well both strength and
stiffness at elevated temperature.

As the spalling phenomenon is very complex and cannot be predicted with
simple mathematical temperature models, it will not be further discussed here.
For more detailed information regarding the fire spalling phenomenon see [47]. The
procedures presented below presume that no spalling occur that could significantly
influence the temperature development.

In Eurocode 2 [6] temperatures in fire-exposed structures may be obtained from
tabulated values or by more or less advanced calculations. In the sections below
thermal material properties as given in Eurocode 2 are reproduced and thereafter
some simple approximate calculation methods are given in the following sections.
For more general situations finite element calculations are needed.

14.1 Thermal Properties of Concrete

The conductivity of concrete decreases with rising temperature. It depends on
concrete quality and type of ballast. For design purposes curves as shown in
Fig. 14.1 may be used according to Eurocode 2 [6]. For more accurate calculations
with alternative concrete qualities more precise material data may be obtained by
measuring the thermal properties of the product in question, see Sect. 1.3.1.
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Fig. 14.1 Upper and lower
limit of heat conductivity
vs. temperature of normal
weight concrete according
to Eurocode 2 [6]
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The specific heat of dry concrete does not vary much with temperature. How-
ever, concrete structures always contain water which evaporates at temperatures
above 100 °C constituting a heat sink (latent heat) as the vaporization process
consumes a lot of heat. Thus the specific heat capacity for normal weight concrete
according to Eurocode 2 has a peak at temperatures 100 and 200 °C as shown in
Fig. 14.2.

The peak due to the latent heat involves a numerical challenge when calculating
temperatures. Especially if the temperature range at which the vaporization of the
moisture occurs becomes narrow, the peak becomes increasingly high. Then it can
be advantageous to introduce the specific volumetric enthalpy as an input parameter
as defined in Sect. 7.3.4. This formulation in combination with a forward difference
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Table 14.1 Thermal properties of normal weight concrete according to Eurocode 2 [6] including
the range of the conductivity between the upper and lower limits and the calculated volumetric
enthalpy

Moist. cont. 0 % Moist. cont. 1.5% | Moist. cont. 3 %
T k p c e c e [¢ [
[°Cl | [W/(mK)] |[kg/m® |[(Ws)/ [(Wh)/ | [(Ws)/ [(Wh)/ | [(Ws)/ [(Wh)/
] keK)] |m’] keK)] |m’] keK)] |m’]

0 1.36-2.00 | 2300 900 0 900 0 900 0

20 1.33-1.95 |2300 900 11,500 | 900 11,500 | 900 11,500
100 | 1.23-1.77 | 2300 900 57,500 | 900 57,500 | 900 57,500
115 | 1.21-1.73 | 2300 915 66,197 | 1470 71,587 | 2020 76,858
200 | 1.11-1.55 |2254 1000 117,154 | 1000 137,313 | 1000 157,220
400 |0.91-1.19 |2185 1100 244,613 | 1100 264,772 | 1100 284,678
1200 |0.55-0.60 |2024 1100 739,368 | 1100 759,527 | 1100 779,434

See also diagram in Fig. 14.3
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Fig. 14.3 Volumetric enthalpy of concrete for moisture contents 0, 1.5 and 3.0 % vs. temperature
based on density and specific heat capacity according to Eurocode 2 [6] (see Table 14.1)

time integration scheme is used in the computer code TASEF [14]. Table 14.1 and
Fig. 14.2 show calculated values of the specific volumetric enthalpy vs. temperature
starting at 0 °C based on specific heat and density values given in Eurocode 2 [6] for
normal concrete. Notice that no consideration is given to the latent heat of the water
before it vaporizes under 100 °C. This is generally an acceptable approximation for
normal weight concrete but not for many other materials which may contain much
higher percentages of moisture.
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The Eurocode on concrete (EN 1992-1-2) states that the emissivity related to
concrete surfaces should be taken as 0.7. The Eurocode 1 on actions (EN 1991-1-2)
gives the convective heat transfer coefficient when simulating fully developed fires
to be assumed equal to 25 W/(m2 K). (In general the assumed values of the surface
emissivity and convective heat transfer coefficient have only marginal influence on
calculated temperatures inside concrete structures.)

14.2 Penetration Depth in Semi-infinite Structures

Concrete is a material with relatively high density and low conductivity. It therefore
takes a long time for heat to penetrate into the structure and raise its temperature, or
in other words it takes time before a temperature change at one point is noticeable at
another point. Thus in many cases a concrete structure may be assumed semi-
infinite. In Sect. 3.2.1.1 it is shown that temperature change at the surface will only
be noticeable at a depth ¢ less than

§=28Va-t (14.1)

where «a is the thermal diffusivity and ¢ is time. The value 2.8 represents a
temperature rise of 1 %. As an example, the temperature rise can be estimated to
penetrate only about 0.15 m into a concrete structure after 1 h (assuming a
conductivity of a 1.7 W/(m K), a density of 2300 kg/m> and a specific heat capacity
of 900 J/(kg K)).

Penetration depth can actually be applied to any material where the properties
may be assumed constant. A temperature change at one point of, for example, a
steel member will not be noticeable beyond a distance corresponding to the
penetration depth. In 1 h the penetration depth in steel exceeds 0.60 m, which is
four times as deep as in concrete.

14.3 Explicit Formula and Diagrams

In general numerical procedures such as finite element methods are needed to
calculate temperature in concrete structures. A 1-D configuration of a concrete is
shown in Fig. 14.4.

Wickstrom [48, 49] has, however, shown that in 1-D cases may the temperature
inside concrete structures exposed to standard fire conditions according to ISO
834 and heat transfer condition according to Eurocode 1 (Eq. 12.11) be obtained
from explicit formula and diagrams. The diagrams as shown in Figs. 14.5 and 14.6
were then obtained by comparisons with numerous finite element calculations.
They yield concrete temperatures which coincide with the temperatures obtained
with the accurate numerical methods within a few per cent in the interesting area of
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Fig. 14.4 Definitions of
temperature rises of a 1-D
thick concrete wall exposed
to fire on one side
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Fig. 14.6 The in depth ratio n vs. time divided by depth squared #x” for normal weight concrete
with thermal properties according to Eurocode 2 [7] exposed to standard ISO 834 fire conditions.
Calculations are made assuming lower limit of the conductivity as shown in Fig. 14.1
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300 to 600 °C. These diagrams are therefore very handy to use when a quick
estimate is needed.

The diagrams apply to normal weight concrete with thermal properties
according to Eurocode 2 [6] as shown in Table 14.1 assuming the lower conduc-
tivity curve according to Fig. 14.1 and a moisture content of 1.5 %.

In [48] it is shown that the same type of diagrams can be used more generally
considering both various parametric fires and various material properties.

The diagram given in Fig. 14.5 shows the ratio 7, between the concrete temper-
ature rise of the surface and the standard fire temperature according to ISO 834 vs.
time. This surface ratio is defined as

e = (14.2)

0,
Oy

where 6, and 0y are the temperature rise of the surface and the fire, respectively.
Figure 14.6 shows in turn the ratio between the internal temperature rise 6, at a
depth x and the surface temperature rise 8. This depth ratio is defined as

e = (14.3)

St

The depth ratio #, is in principle a function of the Fourier number, i.e. the
thermal diffusivity k/(cp) of the concrete times the fire duration ¢ over the depth
x squared. In the finite element calculations for developing the diagrams thermal
properties of concrete with a water content of 1.5 % are assumed according to
Eurocode 2. Calculation depths between 25 and 100 mm were used when develop-
ing the diagram. The linear relation in the logarithmic-linear diagram as shown in
Fig. 14.6 was then constructed. It yields approximate temperatures slightly higher
than was obtained with the accurate finite element calculations.

The internal concrete temperature may now be written as

T,= ’1s’lef (144)

The graphs in Figs. 14.5 and 14.6 can be approximated by simple expressions.
Thus Eq. 14.5

n, = 1—0.060 % (14.5)

and
t
7, = 0.172In (;7) —0.74 (14.6)

respectively, where ¢ is time in hours and x distance in metres from the surface.
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Then in summary for standard fire exposure according to ISO 834 and normal
weight concrete according to Eurocode 2 [7] (see Sect. 14.1) a very simple closed
form solution may be obtained. Thus the surface temperature rise is

0, = [1 —0.060 "] - [345 - log (480t + 1)][°C] (14.7)

The internal temperatures at arbitrary times and depths are obtained by inserting
Egs. 14.5 and 14.6 into Eq. 14.4 of a structure initially at 20 °C then becomes:

T, = [1—0.060 %] . [0.172111()%) —0.74} - [345 - 1og(480¢ + 1)]

+20 [°C] (14.8)

A diagram based on Eqgs. 14.7 and 14.8 is shown in Fig. 14.7 including the standard
ISO 834 fire curve. The graphs are limited between 200 and 700 °C. Outside that
range Eq. 14.8 is not valid.

As an illustration the temperature in a slab of normal-weight concrete is calcu-
lated at a depth of 4 cm when exposed to an ISO 834 standard fire for 1 h. At first 7,
is obtained from Fig. 14.5 to be 0.97 at t =1 h. Then for i = 2.0/(0.04)2 =1250h/
m?” and Eq. 14.5 or Fig. 14.6 yields approximatively 7, = 0.49. As the standard fire
temperature rise after 1 h is 1029 °C, the concrete surface temperature rise is
obtained from Eq. 14.8 as 0.97 - 1029 =998 °C and Eq. 14.8 yields the temperature
rise at a depth of 4 cm to be 7,,=0.97 - 0.49 - 1029 + 20 °C =509 °C. Alternatively a
direct reading of Fig. 14.7 yields a T, = 500 °C which coincides very well with an
accurate finite element calculation.

1200 |
1100 |
1000 |
. 900 |
| TFISO
s 800 |
| - = = %=0
@ 700 | :
] E x=10 mm
& 600 .
o [ ¥=20 mm
E’ 500 | “
| x*=30 mm
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200 | | . - ¥=60 mm

Time [h]

Fig. 14.7 Temperature in concrete based on Eq. 14.8 in the range of 200 to 700 °C at various
depths when exposed to the standard ISO 834 fire curve. The temperatures of the exposure curve
and the surface are given as well
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Fig. 14.8 Definitions of -
temperature rises at a 2-D I
concrete corner exposed to 1
fire from two sides 1

Also the temperature rise near 2-D corners exposed to ISO 834 standard fires
may be calculated using the approximations above [48]. Thus the temperature at a
point at distances x and y, respectively, from the exposed surfaces (see Fig. 14.8)
may be calculated as

ng}’ = [’75 : (771 + ny -2 n,rny) + nxny] : 6f (149)

where 7, is the surface ratio according to Eq. 14.5 or Fig. 14.5, and #, and 5, are the

depth ratios in the x and y directions, respectively, according to Eq. 14.6 or
Fig. 14.6.

Example 14.1 Calculate the temperature in a rectangular concrete beam after 2.0 h
fire exposure at a point 60 and 50 mm from the exposed surfaces.

Solution According to Eq. 14.5 or Fig. 14.5 5, = 0.97, 1/x° = 2.0/0.06* = 556 h/m?
and then according to Eq. 14.6 or Fig. 14.65, = 0.35, and 1/y* = 2.0/0.05* = 800 h/m?
which yieldsz, = 0.41. At2.0 h the temperature rise according to ISO 834 1s 1029 °C,
and the temperature rise becomes according to Eq. 14.9 O,y =
[0.97-(0.354+0.41 —2-0.35-0.41) + 0.35-0.41] - 1029°C = 620°C.

14.4 Fire Protected Concrete Structures

In some application it may be advantageous to insulate concrete structure surfaces
to prevent them from fast temperature rises. It is mainly considered for tunnels to
avoid spalling to give additional protection to the embedded reinforcement bars as
shown in Fig. 14.9a. Behind the protection the concrete temperature will then not
rise as quickly as when directly exposed to fire.

There are in principle three types of passive fire protections used for protection
of tunnels, namely spraying with cementitious mortar, lining with non-combustible
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Fig. 149 The protection of a concrete structure layer with a thickness d;, gives an equivalent
thermal protection as a concrete layer with a thickness d. = k.d,/k;. (a) Concrete slab fire protected
from below (b) Concrete layer providing equivalent thermal protection

boards and lining with concrete containing polypropylene fibres. For more infor-
mation on fire dynamics in tunnels see [50] and on concrete in tunnels see [S1]. A
simple way of estimating how much thermal protection an insulation provides in
terms of concrete thickness based on finite element calculations [19] has been
suggested by Wickstrom and Hadziselimovic [52].

They showed that the same effect is approximately obtained when the thermal
resistance of the insulation is the same as that for the concrete layer. Thus the
equivalent concrete layer thickness can be calculated as

_ kc' : din

d.
kin

(14.10)

where d is thickness and k conductivity, and the indices in and ¢ stand for insulation
and concrete, respectively.

As an example a 10 mm board of vermiculite with a thermal conductivity of
0.2 W/(m K) corresponds to a concrete protection layer of 50 mm assuming the
concrete has a conductivity of 1.0 W/m K for the temperature interval considered.
This could mean considerable savings in both weight and space for a concrete
structure.



Chapter 15
Temperature of Timber Structures

Modelling the thermal behaviour of wood is complicated as phenomenas such as
moisture vaporization and migration, and the formation of char have decisive
influences on the temperature development within timber structures. Nevertheless
it has been shown that general finite element codes can be used to predict temper-
ature in, for example, fire-exposed cross sections of glued laminated beams [53],
provided, of course, that apparent thermal material properties and appropriate
boundary conditions are used. Other specialized numerical codes for timber struc-
tures have been developed, e.g. by Fung [54] and Gammon [55]. A comprehensive
collection of papers on timber in fire is listed in [56].

15.1 Thermal Properties of Wood

Both density and moisture content affect the thermal properties of wood. In the
literature a wide range of values are given. In the SFPE Handbook of Fire Protec-
tion Engineering [4], the following equation is given for the conductivity in
W/(m K) as

k=p-(194.1+4.064-u)-107°+18.64 - 1073 (15.1)
and for the specific heat capacity of dry wood in Ws/(kg K) as
c=103.1+3867T (15.2)

where p is the density based on volume at current moisture content and oven-dry
weight (kg/m?), u the moisture content (per cent by weight) and T is the temperature
(K). These values are mainly developed for temperatures below 100 °C. For higher
temperatures the latent heat for the vaporization of free water must be considered as

© Springer International Publishing Switzerland 2016 227
U. Wickstrom, Temperature Calculation in Fire Safety Engineering,
DOI 10.1007/978-3-319-30172-3_15



228 15 Temperature of Timber Structures
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Table 15.1 Temperature vs. conductivity for wood and the char layer according to Eurocode 5
Temperature [°C] 20 200 350 500 800 1200
Conductivity [W/(m K)] 0.12 0.15 0.07 0.09 0.35 1.5

See also Fig. 15.1

for concrete, see Sect. 14.1. At equilibrium in “normal” conditions (20 °C and a
relative air moisture content of 65 %) wood contains about 12 % by weight of water.
According to Eurocode 5 (EN 1965-1-5) Annex B the conductivity is
recommended to be as shown in Fig. 15.1 and Table 15.1, and the specific heat
capacity as shown in Fig. 15.2. These material properties are limited structures
exposed to standard fire exposure according to ISO 834 or EN 1363-1, see [56].

Figure 15.3 shows the specific volumetric enthalpy based on Table 15.2 for
wood with a density of 450 kg/m’ and a moisture content of 12 %.

The thermal properties of wood are in general very uncertain and it is very hard
to find reliable data in the literature. For approximate calculations it is here
recommended to use a constant conductivity of 0.13 W/(m K) independent of
moisture content and a specific heat of 2000 W/(kg K) for dry wood with additions
for the sensitive and latent heat of water as described for concrete in Sect. 14.1.

15.2 Charring Depth According to Eurocode 5

Simple estimations of load-bearing capacities of timber members are according to
Eurocode 5 [7] made in two steps. First aresidual cross section is calculated by removing
the char layers entering from fire-exposed surfaces. Then the mechanical properties of
the residual cross section are calculated based on the remaining virgin wood. This
procedure is called Reduced Cross-Section Method or Effective Cross-Section Method.
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Fig. 15.2 Temperature vs. specific heat capacity for wood and charcoal according to Eurocode
5. The peak at 100 °C corresponds to the heat of vaporization of 12 % by weight of water
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Fig. 15.3 Example of specific volumetric enthalpy in MWs/m?> for wood with a density 450 kg/m’
and a moisture content by weight of 12 %
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Table 15.2 Specific heat capacity and ratio of density to dry density of softwood according to
Eurocode 5

Temperature [°C] Specific heat capacity [J/(kg K)] Density ratio
20 1530 1+u/100
99 1770 1+u/100
99 13,600 1+u/100

120 13,500 1.00
120 2120 1.00
200 2000 1.00
250 1620 0.93
300 710 0.76
350 850 0.52
400 1000 0.38
600 1400 0.28
800 1650 0.26
1200 1650 0

Fig. 15.4 One-dimensional
charring (fire exposure on
one side) [7]

|

|

Virgin wood |

I dchar.o Char I

Empirical rules are used to estimate the penetration of the charring layer and the
loss of strength of timber structures. The following section is a considerably
abbreviated extract. It is just given as an illustration and should not be used without
consulting the relevant standard.

The temperature at which charring begins is by the standard definition 300 °C
when exposed to the ISO/EN standard exposure. One-dimensional charring as
indicated in Fig. 15.4 is assumed to occur at constant rate when exposed to
ISO/EN standard fires. Then the charring depth can be calculated as

dchar,O = ﬂot (153)

where d_ o 1s the design charring depth for one-dimensional charring, f, the basic
design charring rate for one-dimensional charring and ¢ the relevant time of fire
exposure.

When including the effects of corner roundings, fissures or gaps between
adjacent elements, a notional charring depth is assumed as shown in Fig. 15.5:

dzrhar,n = ﬁnt (154)

where d_ ., 1s the notional design charring depth.
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Fig. 15.5 Charring depth
denar o for one-dimensional
charring and notional
charring depth dcnarn [7]

Virgin wood '

Table 15.3 Design charring rates f, and S, of timber, LVL, wood panelling and wood-based

panels [7]
P
Po [mm/min] | [mm/min]

(a) Softwood and beech

Glued laminated timber with a characteristic density of > 290 kg/m® | 0.65 0.7
Solid timber with a characteristic density of > 290 kg/m® 0.65 0.8
(b) Hardwood

Solid or glued laminated hardwood with a characteristic density 0.65 0.7
of > 290 kg/m*

Solid or glued laminated hardwood with a characteristic density 0.50 0.55
of > 450 kg/m®

(¢) LVL (Laminated Veneer Lumber)

With a characteristic density of > 480 kg/m> 0.65 0.7
(d) Panels

Wood panelling 0.9* -
Plywood 1.0* -
Wood-based panels other than plywood 0.9* -

The values apply to a characteristic density of 450 kg/m® and a panel thickness of 20 mm or more

For initially unprotected surfaces of timber design charring rates S, and 3, are

given in Table 15.3.

More details on how to estimate charring depths are given in Eurocode 5 [7].
Timber members may be protected by fire claddings or other protection mate-
rials to delay the start of charring. Rules on how to calculate the start of charring of

protected timber are given in Eurocode 5 [7].



232 15 Temperature of Timber Structures

1 Legend:
1 Initial surface of member
2 2  Border of residual cross-section
3 3  Border of effective cross-section
dchar,n
ko do
def

Fig. 15.6 Definition of residual cross section and effective cross section [7]

Table 15.4 Determination of

ko in Eq. 15.5 f d Time Lo

o in Eq. 15.5 for unprotecte <20 min 20
surfaces with ¢ in minutes. -
From Eurocode 5 1220 min 1.0

When determining the cross-sectional mechanical properties, an effective cross
section should be calculated by reducing the initial cross section by the effective
charring depth d, (see Fig. 15.6). Then

def = dchar,n + kodo (155)

where dyp = 7mm is the zero-strength layer. d.j,,, is determined according to
Eq. 15.4. For unprotected surfaces, ky, should be determined according to
Table 15.4.

It is then only the effective part that shall be accounted for when calculating the
mechanical properties of a cross section. When using the Reduced
Cross-Section Method it is assumed that the effective cross section has ambient
material properties. All losses in strength and stiffness are compensated by the zero-
strength layer.

Example 15.1 A glued laminated beam (300 mm by 500 mm high) of pine
(softwood) is exposed on three sides to a standard EN/ISO curve. Calculate the
effective cross section after a fire exposure of 60 min.
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Solution The effective charring depth d,; can be calculated according to Eq. 15.5
and d ., from Eq. 15.4. Thus def =0.7-60+ 1.0 - 7mm = 49mm and the
remaining effective cross section becomes (500-49) mm by (300-2 - 49) mm equal
to 451 mm by 202 mm.

End-user-friendly information for designers including examples can be found
in [58].
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. What is the difference between heat and temperature?

. Which are the three modes of heat transfer?

. What is the “driving force” of heat transfer?

. Write Fourier’s law of heat conduction.

. Which are the three types of boundary condition, 1, 2 and 3?

. Which of the three types of boundary conditions is the most common in FSE?

What is an adiabatic surface?

. How is heat transferred from the gas phase to a solid surface?

. Write the equation for a convection boundary condition.

. What is absorbed radiation?

. Write the expression for the emitted radiation from a surface according to the

Stefan—Boltzmann law.

. What is net radiation heat flux?
. What is incident black body radiation temperature or just the black body

temperature T,?

What is a mixed boundary condition?

How is the fire boundary condition normally written in standards on fire
resistance of structures?

Write the heat conduction equation in 1-D.

Explain the parameters in the heat conduction equation.

What is thermal diffusivity?

What is specific volumetric enthalpy?

What is thermal inertia and why does it vary so much for various materials?
What happens to steel properties at elevated temperatures?

Which is the main problem with concrete structures exposed to severe fire
conditions?

Why can wooden structures resist fires relatively well?
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Chapter 2

24. Draw the temperature distribution of a wall under steady-state conditions.

Assume constant thermal parameters, 3™ kind of boundary condition on one
side and 1* kind on the other side.

25. What is the total thermal resistance of a wall with a thickness L, a conductivity
k and heat transfer coefficients £ at the bounding surfaces?

Chapter 3

26. What is the meaning of lumped-heat-capacity or uniform temperature?

27. Write and explain the heat balance equation where lumped-heat-capacity is
assumed.

28. Under what conditions can an analytical solution be derived for the uniform
temperature of a body exposed to elevated gas temperature?

29. Give two examples when uniform temperatures can be assumed in fire safety
engineering.

30. What is meant by a semi-infinite body?

31. Show in the diagram how the temperature profile develops in a semi-infinite
body experiencing a sudden temperature rise at the surface.

32. What is penetration depth?

33. Which is the material parameter group governing the temperature development
of semi-infinitely thick bodies with a prescribed surface temperature?

34. Which is the material parameter group governing the surface temperature
development of semi-infinitely thick bodies with a prescribed heat flux at the
surface?

35. Which is the parameter group governing the surface temperature development
of semi-infinitely thick bodies exposed to a prescribed gas temperature and heat
transfer coefficient?

Chapter 4

36. Why is radiation so important in fire safety engineering?

37. What is the radiation heat transfer coefficient and how can it be calculated?
38. What is adiabatic surface temperature and how is it defined?

39. Which parameters are needed to calculate the adiabatic surface temperature?
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Chapter 5

40.
41.
42.
43.

What is the resultant emissivity between two parallel plates?
What is a view factor?

What is an absorption or emission coefficient?

Which parameters determine the emissivity of a flame?

Chapter 6

44.
45.
46.
47.

48.

What governs heat transfer by convection?

Which are the two principal ways of inducing air flow?

Which are the two principal types of flow patterns?

Which air properties govern the magnitude of the convection heat transfer
coefficient?

What is effective or apparent thermal conductivity in enclosed species?

Chapter 7

49.

50.

51.

52.
53.

Write the heat balance equation in numerical form of a body exposed to
incident radiation and a gas temperature assuming lumped heat?

Write the transient heat balance equation in the matrix form. Describe the
components.

How can the equation be solved? What are the advantages and disadvantages of
explicit and implicit methods?

What is specific volumetric enthalpy?

Specific volumetric enthalpy of a wet material has three components at
temperatures above vaporization. Which?

Chapter 8

54.

55.

According to thermal ignition theory there are formulas to calculate time to
reach critical temperatures for thin and thick solids, respectively. Which
parameters are governing in the two cases?

What is the critical incident radiation heat flux?
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Chapter 9

56. Describe the function of a thermocouple.

57. When measuring gas temperature with thermocouples there are two main error
sources, which?

58. How should a thermocouple be designed to measure gas temperatures
accurately?

59. What does a heat flux meter of Gardon gauge or Schmidt-Boelter gauge
measure?

60. Why is the PT larger than a thermocouple?

61. A plate thermometer measures approximatively the adiabatic surface temper-
ature of a relatively large surface. Why not exactly?

62. How can incident thermal radiation be calculated based on plate thermometer
measurements?

63. How can adiabatic surface temperatures be calculated based on plate thermom-
eter measurements?

Chapter 10

64. Which are the four main components of the heat balance equation of a fully
developed compartment fire?

65. Which is the driving force of the gas flow in a one-zone model?

66. What is the difference between ultimate fire temperature and maximum
temperature?

Chapter 11

67. What is the difference between a one-zone and a two-zone model? When are
they applicable?
68. Which is the driving force of the gas flow in a two-zone model?

Chapter 12

69. Which three major steps consist of a fire design or analysis process of?

70. What is the meaning of the gamma factor?

71. How is the gamma factor influenced by the opening factor and the thermal
inertia of the compartment boundaries?

72. What determines the duration of a parametric fire?
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Chapter 13

73.
74.
75.
76.
7.

What characterizes the thermal properties of steel?

What is “lumped-heat-capacity”?

What is “section factor” or “shape factor” of a steel section?
What is meant by heavily protected steel structures?

What is “shadow effect”?

Chapter 14

78.

79.

80.

81.

82.

What characterizes the thermal properties of concrete in comparison with steel
and insulation materials?

What is the surface temperature of a thick concrete wall after 1 h fire exposure
according to the ISO 834 standard curve. Use the diagram in Fig. 14.5.

What is the temperature 3 cm into a thick concrete structure after one hour fire
exposure according to the ISO 834 standard curve? Use the diagrams in
Figs. 14.5 and 14.6

Calculate the same temperatures as in the two questions above but use Eq. 14.7
and Eq. 14.8, respectively?

How can the insulation of a concrete structure be considered in terms of
equivalent concrete thickness?

Chapter 15

83.

84.
85.

What needs to be considered particularly when calculating temperature in
timber structures?

How is the thermal conductivity of wood in comparison to steel and concrete?
How are simple estimations made of load-bearing capacities of timber
members according to for example Eurocode 5?
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