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Preface

This book is about temperature calculation and heat transfer. It is intended for

researchers, students and teachers in the field of fire safety engineering as well as

consultants and others interested in analysing and understanding fire and tempera-

ture developments. It gives a consistent scientific background to engineering

calculation methods applicable to analyses for both materials’ reaction to fire and

fire resistance of structures. Several new formulas and diagrams facilitating calcu-

lations are presented.

The book is particularly devoted to problems involving severe thermal condi-

tions as are of interest in fire dynamics and FSE. However, definitions, nomencla-

ture and theories used are aligned with those of general textbooks on temperature

calculation and heat transfer such as [1, 2].

In particular great effort has been put on defining boundary conditions in a

correct and suitable way for calculations. A large portion of the book is devoted to

boundary conditions and measurements of thermal exposure by radiation and

convection. Thus, the concept and theory of adiabatic surface temperature and

measurements of temperature with plate thermometers are thoroughly explained.

Initially a number of zero- and one-dimensional cases assuming constant mate-

rial properties are dealt with where exact closed form analytical solutions are

possible. These can, however, generally only be used for estimates in FSE problems

as they require assumptions of constant material properties and boundary condi-

tions. In most cases numerical calculations are therefore needed for considering

material properties changing with temperature and non-linear boundary conditions

due to emission of radiant heat. Thus, several recursion formulas are given in the

book which are suited for spreadsheet calculation codes (such as MS Excel). For

more advanced calculations, introductions and guidance are given to finite element

analyses.

The phenomena of heat transfer by radiation and convection are introduced

based on what can be found in general textbooks. Several of the formulas are,

however, adapted to FSE problems, and unique charts and tables are presented

which considerably facilitates calculations.
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A renewed method for modelling compartment fires is presented which has led

to simple and accurate prediction tools for both pre- and post-flashover fires.

The final three chapters deal with temperature calculations in steel, concrete and

timber structures exposed to standard time-temperature fire curves. Handy temper-

ature calculation tools are presented, and several examples are shown on how the

finite element code TASEF can be used to calculate temperature in various config-

urations.

Luleå, Sweden Ulf Wickstr€om
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Nomenclature1

a Heat of vaporization [J/kg]

A Area [m2]

Bi Biot number[�]

c Specific heat (capacity) [W s/(kg K)] or [J/(kg K)]

C Heat capacity per unit area [W s/(m2 K)]

d Thickness [m]

D Diameter [m]

f Forcing function

F View factor [�]

Gr Grashof number [�]

h Heat transfer coefficient [W/(m2 K)]

k Conductivity [W/(m K)]

l Latent heat [W s/m3]

L Length [m]

Nu Nusselt number [�]

O Opening factor [m1/2]

P Perimeter of surface [m]

Pr Prandtl number [�]

q Heat [W s or J]

R One-dimensional thermal resistance [(K m2)/W]

Re Reynolds number [�]

T Temperature [K] or [�C]
V Volume [m3]

x Length [m]

α Thermal diffusivity [m2/s]

α Absorption coefficient [�]

Γ Compartment fire time factor [�]

1 Definitions of symbols are given throughout the text. Some selected symbols are listed below.
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δ Boundary layer thickness [m]

ε Emissivity [�]

η Reduction coefficient [�]

κ Absorption coefficient [m�1]

ν Kinetic viscosity [m2/s]

ρ Density [kg/m3]

σ Stefan-Boltzmann constant (5.67 ∙ 10�8) [W/(m2 K4)]

τ Time constant [s]

χ Combustion efficiency [�]

Superscripts

0 Per unit length
00 Per unit area
000 Per unit volume
̇ Per unit volume, time derivative

¯ Vector, matrix

Subscripts

0 Surface (x¼ 0)

1 Ambient

AST Adiabatic surface temperature

B Burning

CC Cone calorimeter

Con, c Convection

cr Critical

d Duration

emi Emitted

hfm Heat flux meter

f Film

f Fire

gas Gas

i Initial

ig Ignition

in Insulation

inc Incident (radiation)

L Air, gas convection

o Opening

p Constant pressure

p Plume

PT Plate thermometer

r Radiation

xii Nomenclature



rad Net radiation

RC Room/corner test

s Surface

sh Shield

st Steel

TC Thermocouple

tot Total, radiation + convection

ult Ultimate

w Wall, surrounding boundary

Abbreviations

AST Adiabatic surface temperature

ASTM ASTM International, earlier American Society for Testing and
Materials

CEN, EN European Committee for Standardization developing EN standards

EUROCODE EN Eurocodes is a series of 10 European Standards for the design

of buildings

FSE Fire safety engineering

ISO International Organization for Standardization

PT Plate thermometer

TASEF Computer code for Temperature Analysis of Structures Exposed to

Fire

Nomenclature xiii



Chapter 1

Introduction

Temperature is the dominating factor in determining the rate and extent of chemical

reactions including breakdown of organic compounds and deteriorations of strength

and stiffness of structural materials such as steel and concrete. Phase change

phenomena including ignition as well as severe loss of strength of materials are

often related to specific elevated temperature levels. Temperatures of fire gases are

also of crucial importance as they initiate gas movements thereby spread of smoke

and toxic fire gases. Fire temperatures vary typically over several hundred degrees.

Therefore a number of thermal phenomena need special attention such as phase

changes of materials and heat transfer by radiation when calculating temperature of

fire-exposed materials.

In this chapter some of the basic concepts of heat transfer are briefly introduced.

More detailed presentations are given in following chapters. A summary of the

principles of electric circuit analogy which is used throughout this book is also

given as well as some general comments on material properties.

1.1 Basic Concepts of Temperature, Heat and Heat Flux

Temperature is an intensive or bulk property, i.e. a physical property that does not

depend on size or the amount of material in a system. It is scale invariant. By

contrast, heat is an extensive property which is directly proportional to the amount

of material in a system. Density is another example of an intensive quantity as it

does not depend on the quantity, while mass and volume are extensive quantities.

In the presentation below the thermal material properties c, specific heat capac-
ity or just specific heat, and ρ, density, are assumed constant.

© Springer International Publishing Switzerland 2016

U. Wickström, Temperature Calculation in Fire Safety Engineering,
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1.1.1 Heat and Temperature

The heat q of a body is proportional to the mass and the temperature rise T.

q ¼ c � m � T ð1:1Þ

and with the volume V and the material density ρ

m ¼ ρ � V ð1:2Þ

the heat of a body may be written as

q ¼ c � ρ � V � T ð1:3Þ

In a more general way where c and ρ may vary with temperature and location,

the heat of a body may be written as an integral over temperature range and volume

as

q ¼
Z
T

Z
V

c � ρ � dV
� �

dT ð1:4Þ

1.1.2 Heat Transfer Modes

Heat is transferred in three modes, conduction, convection and radiation. The
concept of thermal conduction can be seen as a molecular process by which energy

is transferred from particles of high energy/temperature to particles of low energy/

temperature. High temperatures are associated with higher molecular energies, and

when neighbouring molecules collide a transfer of energy from the more to the less

energetic molecules occurs. This process takes place in fluids as well although the

main mode of heat transfer then is generally due to motion of matter,

i.e. convection.

By the definition of temperature, heat is transferred from places with higher

temperatures to places with lower temperature, i.e. the temperature difference is the

driving force of the heat transfer. In one dimension the heat flux _q
00
across a plane

wall with the thickness L and a conductivity k may be written as

_q
00 ¼ k

L
� T1 � T2ð Þ ð1:5Þ

Notice that the superscript (00) denotes per unit area and the accent character (_)
per unit time. Under steady-state conditions the temperature distribution will be

linear as shown in Fig. 1.1.
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In differential form Eq. 1.5 may be written as

_q
00
x ¼ � k � dT

dx
ð1:6Þ

This is the Fourier’s law of heat conduction which implies that the heat flux is

proportional to the heat conductivity of the material and the thermal gradient.

1.1.3 The Three Kinds of Boundary Conditions

In addition to the differential equation valid for the interior, boundary conditions

must be specified when calculating temperatures in solids. A thorough understand-

ing of how to express BCs is particularly important in FSE.

In principle there are three kinds of BCs denoted first, second and third [2]. The

first kind is prescribed temperature, the second kind is prescribed heat flux and the

third kind is heat flux dependent on the difference between prescribed surrounding

gas or fluid temperatures and the current boundary or surface temperature. The

latter type of BC is by far the most common in FSE. It may include heat transfer by

convection as well as radiation. More on boundary conditions relevant in FSE, see

Chap. 4 and for more details on radiation and convection, see Chaps. 5 and 6,

respectively.

Fig. 1.1 Steady-state

temperature distribution and

heat flux across a plane wall

according to Eqs. 1.5 and

1.6
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The first kind of BC (sometimes called the Dirichlet boundary condition) as

shown in Fig. 1.2 means a temperature Ts is prescribed at the boundary (x ¼ x0), i.e.

T x0ð Þ ¼ Ts ð1:7Þ

In fire engineering it may, for example, be assumed when a surface of a light

insulating material is exposed to fire. The surface temperature may then be approx-

imated to adjust momentarily to the boundary gas and radiation temperatures which

facilitates the computations.

The second kind of BC (sometimes called the Neumann boundary condition) as

shown in Fig. 1.3 means a heat flux _q
00
s is prescribed at the boundary, i.e.

_q
00
s ¼ �k � ∂T

∂x

����
x¼x0

ð1:8Þ

Thus the heat flux to the boundary is equal the heat being conducted away from

the surface into the solid according to the Fourier’s law, or in the case of lumped

heat, it is approximated as the heat stored, see Chap. 3. A special case of the second

Fig. 1.2 The first kind of

BC means a temperature Ts
is prescribed at the

boundary

Fig. 1.3 The second kind

of BC means a heat flux _q
00
s

is prescribed at the

boundary

4 1 Introduction
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kind of BC is an adiabatic surface or a perfectly insulated surface, or a surface

along a line of symmetry where the heat flux by definition of symmetry is zero, see

Fig. 1.4.

In FSE the second kind of BC is rarely applicable. The concept of “heat flux”

meant as heat flux to a surface kept at ambient is, however, often used as a general

measure of thermal exposure. This is in reality a third kind of BC but unfortunately

it is difficult to apply as a boundary condition for temperature calculations, see Sect.

9.2.1.

The third kind of BC (sometimes called the Robin boundary condition) means

the heat flux to the boundary surface depends on the difference between prescribed

surrounding gas or fluid temperatures and the current boundary or surface temper-

ature, see Fig. 1.5. It is sometimes also called natural boundary conditions or

Newton’s law of cooling. In the simplest form the heat transfer is proportional to

the difference between the surrounding gas temperature and the surface tempera-

ture. The proportionality constant h is denoted the heat transfer coefficient.

_q
00 ¼ �k � ∂T

∂x

����
x¼x0

¼ h Tg � Ts

� � ð1:9Þ

Equation 1.9 is a reasonable approximation when heat transfer by convection

only is considered. Therefore we write the heat flux by convection _q
00
con as

x

= 0

Fig. 1.4 An adiabatic

surface, i.e. a perfectly

insulating surface, or a

surface along a line of

symmetry is a special case

of a second kind of BC

Fig. 1.5 The third kind of

BC means the heat flux to

the boundary depends on

the difference between

prescribed surrounding gas

or fluid temperatures and

current surface temperature

1.1 Basic Concepts of Temperature, Heat and Heat Flux 5
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_q
00
con ¼ h Tg � Ts

� � ð1:10Þ

However, in fire protection engineering problems temperature is usually high

and radiation is the dominant mode of heat transfer. The net heat flux entering a

solid surface, here denoted _q
00
rad, is the difference between the absorbed _q

00
abs and

emitted _q
00
emi heat flux, i.e.

_q
00
rad ¼ _q

00
abs � _q

00
emi ð1:11Þ

These two terms are in principle independent. The absorbed flux is a portion of

the incident heat flux (sometimes called irradiance) _q
00
inc to a surface. Thus

_q
00
abs ¼ αs � _q 00

inc ð1:12Þ

where αs is the surface absorptivity coefficient. The emitted heat depends on the

fourth power of the absolute surface temperature T4s (in Kelvin) according to the

Stefan–Boltzmann law:

OBSERVE that in all formula concerning radiation the temperature must be
given in Kelvin [K], absolute temperature.

_q
00
emi ¼ εs � σ � T4

s ð1:13Þ

where εs is the surface emissivity, and the physical constant σ¼ 5.67 � 10�8 W/(m2

K4) is named the Stefan–Boltzmann constant.
The surface properties εs and αs have values between 0 and 1 and are according

to Kirchhoff’s identity equal, i.e.

αs ¼ εs ð1:14Þ

(The Kirchhoff’s identity does not apply when the source emitting radiation to a

surface and the target surface have very different temperatures. Then Eqs. 1.12 and

1.13 must be used with α and ε depending on the wavelength spectrums of the

incident radiation and the emitted radiation, respectively. This condition is rarely

considered in FSE as the absorptivity/emissivity of most building materials changes

only marginally with the temperature, the radiation is considered to be gray). Thus

by inserting Eqs. 1.12 and 1.13 into Eq. 1.11, the net radiation heat flux to a surface
can be written as
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_q
00
rad ¼ εs � _q

00
inc � σ � T4

s

� �
ð1:15Þ

Alternatively, the neat radiation heat flux may also be expressed in terms of as

_q
00
rad ¼ εs � σ T4

r � T4
s

� � ð1:16Þ

where Tr is the incident black body radiation temperature or just the black body
radiation temperature defined by the identity

_q
00
inc � σ � T4

r ð1:17Þ

The heat flux by radiation and convection can be superimposed to form the total

heat flux which in this book is denoted _q
00
tot. Then BC the third kind becomes

_q
00
tot ¼ _q

00
rad þ _q

00
con ð1:18Þ

and thus

_q
00
tot ¼ εs � _q

00
inc � σ � T4

s

� �
þ h Tg � Ts

� � ð1:19Þ

or alternatively

_q
00
tot ¼ εs � σ � T4

r � T4
s

� �þ h Tg � Ts

� � ð1:20Þ

Equation 1.20 is a mixed boundary condition as it contains independent heat

transfer by radiation and convection. In standards on fire resistance of structures

such as Eurocode 1, EN 1991-1-2, the radiation and gas fire temperatures are

assumed equal, Tf, and then Eq. 1.20 becomes

_q
00
tot ¼ εs � σ � T4

f � T4
s

� �
þ h Tf � Ts

� � ð1:21Þ

Notice that, as the heat emitted from a surface εs � σ � T4
s

� �
depends on the forth

power of the surface temperature, the problems become mathematically non-linear

which prohibits exact analytical solutions of the heat equation. To avoid this, the

introductory Chaps. 2 and 3 are limited to cases where the heat transfer coefficient

h can be assumed constant.

More on boundary conditions are given in Chap. 4, and methods for calculating

heat transfer by radiation and convection are given in Chaps. 5 and 6.
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1.1.4 Transient or Unsteady-State Heat Conduction

Heat is transferred by conduction, convection or radiation at heat flow rates denoted

_q: . Then the changes of heat content dq of a body over a time interval dt becomes

dq ¼ _q � dt ð1:22Þ

By differentiating Eq. 1.3

_q ¼ c � ρ � V � dT
dt

ð1:23Þ

Figure 1.6 shows a one-dimensional increment dx. The heat entering from the left

side is _q
00
x and the heat leaving on the right side _q

00
xþdx. Hence

_q
00 ¼ �k � dT

dx
þ k � dT

dx
;þ d

dx
k � dT

dx

� �	 

� dx ¼ d

dx
k � dT

dx

� �
� dx ð1:24Þ

The difference is the change of heat being stored per unit time, i.e.

_q
00 ¼ c � ρ � dT

dt
� dx ð1:25Þ

Now by combining Eqs. 1.24 and 1.25, the heat conduction equation or the heat
diffusion equation in one dimension is obtained as

dx x

Fig. 1.6 One-dimensional

increment
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d

dx
k � dT

dx

� �
¼ c � ρ � dT

dt
ð1:26Þ

or if k is constant, the heat conduction equation may be written as

d2T

dx2
¼ 1

α
� dT
dt

ð1:27Þ

where α is the thermal diffusivity, a parameter group defined as

α ¼ k

c � ρ ð1:28Þ

with the dimension m2/s in SI units.

In three dimensions x, y and z the general heat conduction equation is

∂
∂x

k � dT

dx

� �
þ ∂
∂y

k � dT

dy

� �
þ ∂

∂z
k � dT

dz

� �
¼ c � ρ � dT

dt
ð1:29Þ

The heat capacity c and the density ρ appear always as a product in heat diffusion
equations, sometimes denoted specific volumetric heat capacity (J/(m3 K) in SI

units). Alternatively Eq. 1.26 may be written as

d

dx
k � dT

dx

� �
¼ de

dt
ð1:30Þ

where e is the heat content per unit volume named the specific volumetric enthalpy.
By definition it is the heat needed to rise the temperature of a unit volume from one

level (e.g. 0 �C) to a higher temperature. Then

e ¼
Z T

0

c � ρ � dT ð1:31Þ

For materials with c � ρ constant and independent of temperature the volumetric

specific enthalpy becomes

e ¼ c � ρ � T ð1:32Þ

The concept of specific volumetric enthalpy is advantageous to use when

considering physical and chemical transformations. Then numerical temperature

calculations may be facilitated as will be presented in more detail in Chap. 7.

In the simplest cases of transient heat transfer problems, the temperature in a

body is assumed uniform. Then as only a single uniform temperature is calculated

with no variation depending on position, this type of problems is zero-dimensional.
More on lumped heat calculations can be found in Sects. 3.1, 7.1 and 13.3.
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1.2 Electric Circuit Analogy in One Dimension

There are analogies between parameters of heat transfer systems and electric

circuits. These will be used throughout this book to illustrate, develop and explain

various temperature and heat transfer calculation formulas. An overview of

corresponding parameters, nomenclature and icons of resistance and capacitance

is given in Table 1.1. Notice that the resistance R for thermal problems refers to a

unit area while the analogue electric resistance includes the area in Re. In summary,

temperature is analogue to electric potential or voltage, heat flow to electric current,

thermal resistance to electric resistance and heat capacity to electric capacity.

From the discipline of electric circuits the rules of combining resistances can be

applied. Thus two resistances in series between A and C as shown in Fig. 1.7 can be

summarized as

Table 1.1 Analogies between thermal parameters in one dimension and electric parameters and

units

Temperature and heat Electric circuit analogy

Parameter and nomenclature SI units Parameter and nomenclature SI units

Heat, q [J or Ws] Electric charge, Q [J]

Temperature, T [K or �C] Electric potential, U [V]

Heat flow, _q: [W] Electric current, I [A]

_q ¼ A � ΔTR I ¼ ΔU
Re

(Ohm’s law)

R
T1 T2

Re

U1 U2

Thermal resistance Resistor

ΔT ¼ T1 � T2ð Þ ΔU ¼ U1 � U2ð Þ
Heat flux, _q

00
[W/m2] Electric current per unit area, I/A [A/m2]

_q
00 ¼ ΔT

R

1D thermal resistance, R [m2 K/W] Electric resistance, Re [Ω]
Surface resistance Rh ¼ 1

h
[m2 K/W]

Solid resistance Rk ¼ d
k

[m2 K/W]

1D heat capacitance, C
C ¼ c � ρ � d
q

00 ¼ C � T
T

C

T=0
Lumped-heat-capacity

[J/(m2 K)]

[J/(m2 K)]

[J/m2]

Electric capacitance, Ce

Q ¼ Ce � U
U

Ce

Earth U=0
Electric capacitor

[J/V]

[J]
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RAC ¼ RAB þ RBC ¼ 1

KAB
þ 1

KBC
ð1:33Þ

K denotes the reciprocal of the thermal resistance which could be a heat transfer

coefficient, h, or conductivity over a thickness, k/d.
In the case of parallel resistances as shown in Fig. 1.8, the resultant resistance

between A and B becomes

RAB ¼ 1
1
R1
þ 1

R2

¼ 1

K1 þ K2

ð1:34Þ

Thus as an example according to Fig. 1.8, the heat flux between A and B may be

written as

_q
00 ¼ K1 þ K2ð Þ � TA � TBð Þ ¼ 1

1
R1
þ 1

R2

� TA � TBð Þ ð1:35Þ

where TA and TB are the temperatures at point A and B, respectively. K1 and K2 may,

for example, be heat transfer coefficients due to radiation and convection.

1.3 Material Properties at Elevated Temperature

The flow of heat by conduction in a body is proportional to the thermal conductivity

of the material and the temperature gradient according to Fourier’s law as given by

Eq. 1.6. Under steady-state conditions the conductivity denoted k is the sole

material property while under transient conditions the density ρ and the specific

Fig. 1.7 Rules for combining resistances in series according to Eq. 1.33. (a) Resistances in series.
(b) Resultant resistance

Fig. 1.8 Rules for combining parallel resistances according to Eq. 1.34. (a) Parallel resistances.
(b) Resultant resistance
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heat capacity c are needed in addition. In general the thermal conductivity of a solid

is bigger than that of a liquid, which is larger than that of a gas. Materials with a low

density have in general low heat conductivity while materials with high densities

and in particular metals have high thermal conductivities. Insulating materials have

low densities and are by definition pure conductors of heat. Table 1.2 shows in the

order of density the thermal properties of a number of materials. With the exception

of metals, air and water we can derive from this table the very approximate relations

between the density ρ and the conductivity k as

k � 0:04 � e0:0017�ρ ð1:36Þ

The specific heat c of a material or substance is the amount of heat needed to

change the temperature of a unit mass of the substance by 1�. It is an intensive

parameter with the unit of energy per unit mass and degree, in SI units [J/(kg K)] or

[Ws/(kg K)]. (This is unlike the extensive variable heat capacity (denoted C), which
depends on the quantity of material and is expressed in [J/K]). As a general rule the

specific heat decreases with density, i.e. it is high for low density materials and low for

high density materials. Cementitious materials have a specific heat capacity c slightly
under 1000 J/(kg K) while the corresponding values for wood are considerably higher.

For metals c is significantly lower and varies inversely with the density. Notice in

Table 1.2 that c of water is relatively high, more than four times higher than c for

concrete. Therefore the moisture content of a material has great influence on the

temperature development. The major influence of the water is, however, when it

vaporizes at temperatures exceeding 100 �C.

Table 1.2 Thermal properties of some materials at room temperature

Material

Density ρ
[kg/m3]

Specific heat

capacity

c [J/(kg K)]

Conductivity

k [W/(m K)]

Thermal

diffusivity

k/(ρ�c) [m2/s]

Thermal

inertia k�ρ�c
[(W2 s)/

(m4 K2)]

Air 1.23 1010 0.024 19.3 � 10�6 0.030 � 103
Polyurethane

foam

20 1400 0.03 1.07 � 10�6 0.840 � 103

Fibre insulat-

ing board

100 2000 0.04 2.00 � 10�6 7.92 � 103

Wood, pine 500 2800 0.14 0.100 � 10�6 0.196 � 106
Wood, oak 700 2800 0.17 0.87 � 10�6 0.336 � 106
Water 1000 4181 0.604 0.144 � 10�6 2.53 � 106
Gypsum

plaster

1400 840 0.5 0.425 � 10�6 0.593 � 106

Concrete 2300 900 1.7 0.82 � 10�6 3.53 � 106
Aluminium 2700 900 200 82.3 � 10�6 486 � 106
Steel (mild) 7850 460 46 12.7 � 10�6 166 � 106
Copper 8930 390 390 112 � 10�6 1362 � 106
Values of this table are only indicative and not necessarily recommended for use in real FSE

applications
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The product k�ρ�c, denoted thermal inertia, see Sect. 8.2.2, has a great impact on

ignition and flame spread propensities of materials. When the density ρ increases so
does normally the conductivity k as well, and consequently the thermal inertia is

greatly dependent on the density. It varies over a wide range and therefore the

density is a very significant indicator of the fire properties materials.

Notice that the thermal inertia, k�ρ�c, of wood is in the order of 300 times as high

as the corresponding value of an efficient insulating material such as polyurethane

foam. This difference will give these materials a considerable difference in their

ignition properties as will be discussed in Chap. 8.

The data given in Table 1.2 refer to room temperature. At elevated temperatures

which are relevant in fires and fire-exposed structures the material properties may

vary significantly. In addition the parameter values listed cannot be assumed to

fully reflect the properties of all materials within any generic class. Specific data for

particular products may be provided by the manufacturers.

1.3.1 Structural Materials

The temperature of structures exposed to fully developed fires with gas tempera-

tures reaching 800–1200 �C will gradually increase and eventually the structures

may lose their load-bearing capacity as well as their ability to keep fires within

confined spaces. In building codes fire resistance requirements are usually

expressed in terms of the time a structural element can resist a nominal or standard

fire as defined, e.g. in the international standard ISO 834 or the corresponding

European standard EN 1363-1. In the USA and Canada the corresponding standard

curve for determining fire resistance of building components is given in ASTM

E-119. The standard time–temperature curves as defined by the ISO/EN and ASTM

standards are shown in Fig. 1.9. More on standard fires can be found in Chap. 12.

Below some general remarks are given for the most common structural mate-

rials. Methods for calculating temperature steel, concrete and timber structures

exposed to fire are outlined in Chaps. 13, 14 and 15, respectively.

Steel starts to lose both strength and stiffness at about 400 �C and above 600 �C
more than half of its original strength is lost, see, e.g. Eurocode 3 [3] or the SFPE

Handbook on Fire Protection Engineering [4, 5]. Therefore structural steel elements

must in most cases be fire protected by sprayed on compounds, boards, mineral

wool or intumescent paint to keep sufficient load-bearing capacity over time when

exposed to fire. An example of a steel structure failure due to fire was the collapse of

two World Trade Center towers on September 11, 2001. The towers were hit by big

passenger airplanes. A tremendous impact was inflicted on them, but they did not

collapse immediately. The jet fuel started, however, intense fires and when the steel

of some decisive members had reached critical temperatures a progressive collapse

was initiated. For calculation methods on steel structures see Chap. 13.
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Concrete also looses strength and stiffness at high temperature, see,

e.g. Eurocode 2 [6] or [4]. Concrete has, however, a relatively low thermal

conductivity and a high density and high specific heat capacity as well, i.e. a low

thermal diffusivity. Although the temperature therefore rises slowly in concrete

structures, it is important to assure that the steel reinforcement bars are not too near

fire-exposed surfaces to avoid that their temperature reaches critical levels. See

calculation methods in Chap. 14. An often more severe problem is the tendency of

concrete to spall explosively when exposed to high temperature. In particularly high

strength concrete qualities are prone to spall which is of great concern, for example,

when designing linings of road and railway tunnels where fire temperatures may be

extremely high and where a collapse may have devastating consequences in terms

of life safety and protection of economic values.

Wood loses both strength and stiffness at elevated temperature. In addition it

burns and chars gradually at a rate of about 0.5 mm/min when exposed to fire. The

char layer then developed, however, protects the wood behind from being directly

heated by the fire and thereby from quickly losing its load-bearing capacity. Timber

structures therefore resist fire rather well and are in most cases left unprotected, see,

e.g. Eurocode 5 [7]. In many cases structural timber members such as wall studs are

protected from direct exposure by fire boards and can then resist fire for very long

periods of time. For calculation methods see Chap. 15.

Fig. 1.9 The standard time–temperature curves according to EN 1363-1 or ISO 834 and ASTM

E-119
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1.3.2 Polymers and Composite Materials

There are two main types of plastics materials, thermoplastics and thermosettings.

They decompose differently when exposed to heat. Thermoplastics can soften with

reverse changes of the material, while thermosetting materials are infusible and

cannot undergo any simple phase changes. They do not have a fluid state.

Many thermoplastics and thermosetting materials form chars when decomposed

by heat. This char is in general a good insulator and can protect the underlying

virgin material from heat and slow down the decomposition process.

Polymers or plastics possess different hazards in fires depending on their phys-

ical constitution and chemical composition. In general, foamed plastics with low

density and thin plastic objects ignite more easily and burn more vigorously than

more dense and thick plastics. The fire properties of an object do not only depend on

its chemical composition but also on the shapes and configurations. Thus a thin

layer of a material ignites more easily when underlaid by a low density insulating

material than by a more dense material. Below some characteristic are given of

some commercially important polymers.

The thermal stability of polyolefins such as polyethylene and polypropylene

depends on branching of the molecule chains, with linear polymers most stable

and polymers with branching less stable. Polyvinyl chloride (PVC) has in general

good fire properties as the chloride works as a flame retardant agent. However, the

hydrochloride HCl, which is generated while burning, is irritating and toxic and can

impede the evacuation from a fire. In addition, it forms hydrochloride acid when in

contact with water and can therefore cause severe corrosion problems even long

after a fire incident. Polyurethanes (PU) contain nitrogen and forms very toxic

products such as hydrogen cyanide and isocyanides when burning. PVC and PU do

also generate very dense smoke which can hamper escape possibilities.

Composite materials consisting of a polymer and reinforcing fibres (typically,

glass, carbon or aramide fibres), also called “Fibre reinforced plastics (FRP)”, have

become increasingly used in many areas of construction, such as airplanes, heli-

copters and high-speed crafts, due to the high strength/weight ratio. These materials

are also chemically very resistant and do not corrode or rust. They are, however,

combustible and as they are often meant to replace non-combustible materials such

as steel or other metals they could introduce new fire hazards.

1.3.3 Measurements of Material Properties

Material properties may be obtained from small scale laboratory test or derived from

large scale fire test experiences. Small scale tests are in general the most accurate and

cheap tests, but they are usually made for inert materials in room temperature.

Therefore such data are relatively easy to find. In FSE, however, material data are

needed at elevated temperature when these change, and in addition materials may

undergo physical (e.g. vaporization of water) as well as chemical transformations
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(e.g. phase changes and pyrolysis). Then the small scale methods are generally

unsuitable to consider these kinds of non-linear effects. In practice therefore thermal

properties are often determined by “curve-fitting”, i.e. measured temperatures are

compared with calculated, and then input parameters are altered until measured and

calculated data match as well as possible. In this way large scale non-linear effects

may be considered. However, this kind of approach has the disadvantage that the

results are valid only for the type of exposure being used to determine the data.

There are a number of techniques to measure thermal properties in small scale,

each of them suitable for a limited range of materials, depending on thermal

properties and temperature level, see, e.g. [8]. However, only a few of the measur-

ing techniques can be used at high temperature levels relevant for fire conditions.

They can be divided into steady-state and transient techniques.

The steady-state techniques perform the measurements when the material is in

complete equilibrium. Disadvantages of these techniques are that it generally takes a

long time to reach the required equilibrium and that at low temperature the measure-

ments are influenced bymoisture migration. For moist materials such as concrete, it is

therefore often preferable to determine the apparent conductivity or thermal diffu-

sivity with transient techniques. These techniques perform the measurements during

a process of small temperature changes and can be made relatively quickly.

The guarded hot-plate is the most common steady-state method for building

materials with a relatively low thermal conductivity. It is quite reliable at moderate

temperatures up to about 400 �C.
As transient thermal processes dominate in FSE, the thermal diffusivity, a

measure of the speed at which temperature is propagating into a material, is the

most interesting parameter. It is naturally best measured with transient methods.

One of the most interesting techniques is the transient plane source method (TPS).

In this method a membrane, the TPS sensor, is located between two specimens

halves and acts as heater as well as a temperature detector, see Fig. 1.10. By using

this technique, thermal diffusivity, heat conductivity and volumetric specific heat

can be obtained simultaneously for a variety of materials such as metals, concrete,

mineral wool and even liquids and films [9].

Fig. 1.10 The TPS sensor placed between two pieces of a concrete specimen to measure thermal

properties
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Chapter 2

Steady-State Conduction

In one dimension in the x-direction the rate of heat transfer or heat flux is expressed

according to Fourier’s law as outlined in Sect. 1.1.

_q
00
x ¼ �k � dT

dx
ð2:1Þ

where k is the thermal conductivity. For simplicity the mathematical presentation of

the heat transfer phenomena is here in general made for one-dimensional cases

only. Corresponding presentations in two and three dimensions can be found in

several textbooks such as [1, 2].

Under steady-state conditions the heat flux is independent of x, i.e. the derivative

of _q
00
x is zero and we get

d

dx
k � dT

dx

� �
¼ 0 ð2:2Þ

The corresponding equation for cylinders with temperature gradients in the

radial direction only is

1

r

d

dr
k � r dT

dr

� �
¼ 0 ð2:3Þ

where r is the radius. Solutions for steady-state cases are found in Sect. 2.2.
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2.1 Plane Walls

Consider a plane wall having surface temperatures T1 and T2. Figure 2.1 shows the

temperature distribution under steady-state conditions which means the heat flux is

constant across the plate. Figure 2.1a shows the temperature distribution when the

heat conductivity is constant, i.e. the second derivative of the temperature is zero

according to Eq. 2.2 and thus the temperature distribution becomes linear. Figure 2.1b

shows the temperature distributions in structure with two layers of materials with

different conductivities. The material to the left has the lower conductivity.

Figure 2.1c indicates the temperature distribution when the conductivity is increasing

with temperature. The temperature gradient is higher where the temperatures are

lower and thereby the conductivity. This is particular the case for insulating materials

where the conductivity increases considerably at elevated temperatures.

The rate of heat conducted per unit area _q
00
through a wall, see Fig. 2.2, is

proportional to the thermal conductivity of the wall material times the temperature

difference ΔT between the wall surfaces divided by the wall thickness L, and
according to Fourier’s law (c.f. Eq. 2.1)

_q
00 ¼ k � ΔT

L
¼ k � T1 � T2ð Þ

L
ð2:4Þ

In an electric circuit analogy, this case can be illustrated according to Fig. 2.2. The

heat flow through the wall over an area A may then be written as

_q
00 ¼ T1 � T2ð Þ=Rk ð2:5Þ

a b c

T1

T1
T1

T1

T1
T1

Fig. 2.1 Steady-state temperature distribution in a plane wall. (a) Constant conductivity, (b) two
materials with a low and high conductivity and (c) conductivity increasing with temperature
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where the thermal resistance of the solid then can be identified as

Rk ¼ L

k
ð2:6Þ

The electric analogy may also be used for more complex problems involving

both series and parallel thermal resistance. A typical problem is a wall consisting of

several layers, see Fig. 2.3.

The total thermal resistance Rtot between the inside and outside surfaces may

then be written as:

Rtot ¼ R1 þ R2 þ R3 ¼ L1
k1

þ L2
k2

þ L3
k3

ð2:7Þ

and the heat flux _q
00
through the assembly from the inside to the outside may be

written as:

_q
00 ¼ ΔT

Rtot
¼ T0 � Ti

Rtot
ð2:8Þ

The temperatureT1�2 at the interface between material 1 and 2 may be written as

T1�2 ¼ Ti � R1 Ti � Toð Þ
Rtot

¼ R2 þ R3ð Þ � Ti þ R1 � To

Rtot
ð2:9Þ

Fig. 2.2 One-dimensional

steady-state thermal

conduction. Linear

temperature distribution

across a wall and an electric

analogy of one-dimensional

heat flux. The thermal

resistance R¼ L/k
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In a general way the total thermal resistance of an assembly thermally modelled

as shown in Fig. 2.4 may be obtained as the sum of the components

Rtot ¼
Xn

j¼1
Rj ð2:10Þ

and the heat flux _q
00
through can be calculated as

_q
00 ¼ T0 � Tn

Rtot
ð2:11Þ

and the temperature at an interface i as shown in Fig. 2.4 may be calculated as

Ti ¼ T0 þ
X i

j¼1
Rj

Rtot
Tn � T0ð Þ ¼

Tn �
X i

j¼1
Rj þ T0 �

Xn

j¼iþ1
Rj

Rtot
ð2:12Þ

Example 2.1 A wall consists of 20 mm wood panel, 100 mm fibre insulation and

12 mm gypsum board with conductivities equal to 0.14, 0.04 and 0.5 W/(m2 K),

respectively. The wood outer surface has a constant temperature of 75 �C and the

inner gypsum board surface a temperature of 15 �C. Calculate the temperatures at

the insulation interface surfaces (T1 and T2).

Fig. 2.3 Electric circuit analogy of one-dimensional heat transfer across a wall consisting of three

layers

Fig. 2.4 Electric circuit analogy of one-dimensional heat transfer across a wall consisting of

several layers
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Solution Rtot¼ 0.020/0.14 + 0.1/0.04 + 0.012/0.5¼ 0.143 + 2.5 + 0.024¼ 2.67W/K.

Then T1 ¼ 75þ 0:143
2:67 � 15� 75ð Þ ¼ 71:8 �C and T2 ¼ 75þ 0:143þ2:5

2:67 � 15� 75ð Þ ¼
15:6 �C.

The presentation so far includes heat transfer in solids only with boundary

conditions of the first kind, i.e. prescribed surface temperatures. In most cases in

fire protection engineering, however, the boundary condition between a surround-

ing fluid/environment and a solid surface is specified as a boundary condition of the

third kind. In the simplest form the boundary condition is then described by the

Newton’s law of cooling. It may be seen as a heat transfer condition for convection

and it states that the heat transfer to a surface is directly proportional to the difference

between the surrounding gas temperature Tg and the surface temperature Ts:

_q
00 ¼ h � Tg � Ts

� � ð2:13Þ

where the constant of proportionality factor h is the heat transfer coefficient. The

surface thermal resistance Rh between the gas phase and the solid phase can then be

written as

Rh ¼ 1

h
ð2:14Þ

Thus for the case illustrated in Fig. 2.5, the total resistance between the gas phase on

the left side and the surface on the right side of the wall may be written as

Rtot ¼ 1

h
þ L

k

� �
¼ Rh þ Rk ð2:15Þ

Fig. 2.5 An electric circuit

analogy of one-dimensional

heat transfer to a surface

and through a wall with

surface and solid thermal

resistances
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and the surface temperature T1 may be written as a function of the gas temperature

Tg and the temperature T2 as

T1 ¼ Rh � T2 þ Rk � Tg

Rh þ Rk
ð2:16Þ

Example 2.2 Calculate the surface temperature T1 of a 12 mm wooden board if the

gas temperature on the exposed side Tg¼ 100 �C and the temperature on the

non-exposed side is T2¼ 20 �C. Assume the conductivity of the wood k¼ 0.2 W/

(m K) and heat transfer coefficient h¼ 5 W/(m2 K).

Solution Equation 2.15 yields R ¼ Rh þ Rk ¼ 1
5
þ 0:012

0:2

� �
m2Kð Þ=W ¼ 0:2þ 0:06

m2Kð Þ=W and Eq. 2.16 yields T1 ¼ 0:2�20þ0:06�100
0:26

�C ¼ 38 �C.

2.2 Cylinders

Cylinders often experience temperature gradients in the radial direction only, and

may therefore be treated as one dimensional. The solid thermal resistance between

the inner radius ri and an arbitrary radius r in a cylinder (see Fig. 2.6) assuming

constant heat conductivity may then be written as

Rk ¼
ln r=ri

� �
2πk

ð2:17Þ

Fig. 2.6 Thermal resistances between the media with a temperature Ti inside a cylindrical pipe

and the outside gas with a temperature To
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where k is the thermal conductivity. The surface thermal resistance may be written as

Rh ¼ 1

2πrh
ð2:18Þ

Hence the thermal resistance between the inner and outer gases or liquids of a pipe

is obtained by summarizing the surface and solid resistances as indicated in Fig. 2.6,

i.e. the total thermal resistance over a unit length is

Rtot ¼ Rhi þ Rk þ Rho ¼ 1

2π
� 1

rhi
þ
ln ro=ri

� �
k

þ 1

roho

0
@

1
A ð2:19Þ

A uniform heat flux over a unit length of a pipe may then be calculated as

_q
0
l ¼

Ti � To

Rtot
¼ 2π Ti � Toð Þ

1
ri�hi þ

ln ro=rið Þ
k þ 1

ro�ho

ð2:20Þ

The temperatures Tis at the inner surface can be obtained as

Tis ¼ RhiTo þ Rk þ Rhoð Þ Ti

Rtot
ð2:21Þ

and Tos at the outer surface as

Tos ¼ Rhi þ Rkð Þ To þ Rho Ti

Rtot
ð2:22Þ

Example 2.3 Consider an insulated steel pipe with an outer coating as shown in

Fig. 2.7 exposed to fire with a constant temperature of 800 �C. The temperature of

Fig. 2.7 Insulated steel

pipe with an outer coating
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the inside medium/fluid is 100 �C. The inner and outer radii of the steel pipe are

30 and 28 mm, respectively. The insulation is 50 mm thick and has a conductivity of

0.5 W/(m K). The inner heat transfer coefficient is 100 W/(m2 K) and the outer

50 W/(m2 K). Calculate the temperature of the steel pipe which is assumed to be

constant along the radius.

Solution Calculating for a unit length. Equation 2.19 yields Rtot¼ 0.057 + 0.312

+ 0.040¼ 0.409 (m K)/W. Thus the inner (steel) temperature

Ti ¼ 0:057�800þ 0:312þ0:04ð Þ�100
0:409 ¼ 198 �C.
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Chapter 3

Unsteady-State Conduction

When a body is exposed to unsteady or transient thermal conditions, its temperature

changes gradually, and if the exposure conditions remain constant it will eventually

come to a new steady state or equilibrium. The rate of this process depends on the

mass and thermal properties of the exposed body, and on the heat transfer condi-

tions. As a general rule the lighter a body is (i.e. the less mass) and the larger its

surface is, the quicker it adjusts to a new temperature level, and vice versa. The

temperature development is governed by the heat conduction equation (Eq. 1.29)

with the assigned boundary conditions. It can be solved analytically in some cases,

see textbooks such as [1, 2], but usually numerical methods are needed. This is

particular the case in fire protection engineering problems where temperature

generally varies over a wide range, often several hundred degrees.

There are, however, some cases where analytical methods can be used. Two cases

are of interest for both practical uses and basic understandings of the influence of

material properties on their fire behaviour. On one hand, it is cases where bodies can

be assumed to have uniform temperature such as in thin solids or in metals with a

high conductivity. Then the approximation of lumped-heat-capacity can be applied.

On the other hand, it is the case when a body can be assumed semi-infinitely thick for
the time span considered. Then in particular the surface temperature can be estimated

by analytical methods if the material properties are assumed constant. These two

elementary cases will be considered in detail in the following two Sects. 3.1 and 3.2.

3.1 Lumped-Heat-Capacity

It is often assumed when calculating temperature in steel sections, protected as well

as unprotected, that the temperature is uniform in the exposed body, see Sects. 13.3

and 13.4, respectively. It may also be applied when estimating temperature and time

to ignition of thin materials such as curtain fabrics. A special case is the analysis of

the temperature development of thermocouples and the definition of time constants
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of these types of measuring devices, see Sect. 9.1. Numerical methods for calcu-

lating temperature when assuming lumped-heat-capacity are described in Sect. 7.1.

In this section a general presentation will be given assuming constant heat transfer

coefficients, material properties and exposure levels. As only one temperature inde-

pendent of position is calculated, this type of problems are zero-dimensional.
The received heat over a time interval dt is equal to the heat stored. The latter is

proportional to the temperature rise of the body dT, see Fig. 3.1. Thus

_q � dt ¼ V � ρ � c � dT ð3:1Þ

Hence the temperature rise rate dT/dt (the time derivative of the body temperature)

vs. incident heat flow _q: or the incident heat flux _q
00
can be obtained as

dT

dt
¼ 1

V � ρ � c _q ¼ A

V � ρ � c _q
00 ð3:2Þ

where A is exposed area, V volume, ρ density and c specific heat capacity. For thin
plates exposed from one side V/A may be replaced by its thickness d

d ¼ V

A
ð3:3Þ

The heat flux _q
00
to the body can be obtained in various ways depending on the

boundary condition. It may be of the second or third kind, see Sect. 1.1.3. The first

kind is trivial as a uniform temperature is assumed.

3.1.1 Prescribed Heat Flux: BC of the Second Kind

Given a prescribed heat flux _q
00
(second kind of BC, see Sect. 1.1.3), the temperature

rise T � Ti as function of time may be obtained by integrating over time as

T � Ti ¼ A

V � c � ρð Þ
ð t

0

_q
00 � dt ð3:4Þ

Received heat Stored heat=

Fig. 3.1 The dynamic heat

balance of a body over a

time period is expressed as

the heat received is equal to

the heat stored according to

Eq. 3.1
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where Ti is the initial temperature. If _q
00
remains constant over time

T ¼ Ti þ A � _q 00 � t
V � c � ρð Þ ð3:5Þ

Prescribed heat flux can rarely be assumed in fire protection engineering as the heat

flux from the gas phase to a solid surface depends on the surface temperature which

changes over time. Instead it is the third kind of BC that generally applies.

3.1.2 Prescribed Gas Temperature: BC of the Third
Kind—And the Concept of Time Constant

More realistic and commonly assumed in FSE problems is that the heat transfer to a

surface is proportional to the difference between the surrounding gas or fire

temperature Tf and the body temperature as indicated in Fig. 3.2 (third kind of

BC, see Sect. 1.1.3). The body having uniform temperature (lumped-heat-capacity)

is here assumed to be of steel and its temperature is denoted Tst.
In case of uninsulated or unprotected bodies such as bare steel sections the

surface thermal resistance is the only thermal resistance between the fire gases and

the steel. Thus the heat flux can be written as

_q
00 ¼ h � Tf � Tst

� � ¼ Tf � Tst

� �
Rh

ð3:6Þ

Fig. 3.2 Electric circuit

analogy of an uninsulated

steel section assumed to

have uniform temperature

(lumped-heat-capacity)
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where h is the heat transfer coefficient and Rh the corresponding surface resistance

which can be identified as

Rh ¼ 1

h
ð3:7Þ

For an insulated or protected steel section, the heat resistance is the sum of the

surface thermal resistance Rh and the solid resistance of the insulation Rin. (Notice

that insulated and protected are used synonymously in this book). The total thermal

resistance between the fire gases and the steel section is then

Rhþin ¼ Rh þ Rin ð3:8Þ

where

Rin ¼ din
kin

ð3:9Þ

and where din and kin are the insulation thickness and conductivity, respectively.

Electric circuit analogies are shown in Fig. 3.3. In Fig. 3.3a the surface resistance is

included while in Fig. 3.3b it is not. That assumption is made in many cases as the

surface resistance is much smaller than the solid resistance, i.e. Rh � Rin, and may

therefore be ignored (as suggested in, e.g. Eurocode 3 [3]).

Fig. 3.3 Electric circuit analogy of an insulated steel section treated as a lumped-heat-capacity.

(a) Including heat transfer resistance. (b) Neglecting heat transfer resistance
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For a unit area (A ¼ 1) Eq. 3.2 may be written as

_q
00 ¼ dst � ρst � cst �

dTst

dt
¼ Cst � dTst

dt
ð3:10Þ

where dst is the thickness and C is the heat capacitance per unit exposed area (see

Table 1.1), i.e.

Cst ¼ dst � ρst � cst ð3:11Þ

Now by combining Eq. 3.2 with Eq. 3.6

dT

dt
¼ Tf � Tst

� �
Cst � Rhþin

ð3:12Þ

where alternatively Eq. 3.12 can be written as

dT

dt
¼ 1

τ
Tf � Tst

� � ð3:13Þ

and where τ may be identified as the time constant:

τ ¼ Cst � Rhþin ð3:14Þ

Then if the surrounding temperature Tf is constant and the time constant τ including
the material and heat transfer parameters remains constant, Eq. 3.12 has an analyt-

ical solution

Tst � Ti

Tf � Ti
¼ 1� e�

t
τ ð3:15Þ

where Ti is the initial temperature at time t ¼ 0. The relation is shown in Fig. 3.4.

Notice that Eq. 3.15 may only be applied when constant material properties and

surface resistances are assumed. That is, however, not so common in FSE and

therefore must in most cases numerical solutions be used. More on numerical

solutions will be shown in Sect. 7.1 and more on steel sections in Chap. 13.

3.1.2.1 Gas Temperature Varying with Time

Equation 3.15 may be applied only to a sudden change of the exposure temperature

to a new constant value. When the exposure temperature varies with time, super-

position techniques may be applied as outlined in Sect. 7.2. As an example the

temperature of a steel section when assuming a constant time constant τ can be

obtained by superposition as
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Tst ¼ 1

τ
e�t=τ

ð t

0

Tf ξð Þeξ=τdξþ e�t=τ � Ti ð3:16Þ

The integral of Eq. 3.16 can be solved analytically in some cases depending on the

analytical expression of the gas temperature Tf as a function of time. For instance,

when the fire temperature rises linearly with time as

ΔTf ¼ a � t ð3:17Þ

the steel temperature rise becomes

ΔTst ¼ a � t 1� τ

t
1� e�

t
τ

� �h i
ð3:18Þ

or in dimensionless format

ΔTst

a � τ ¼
t

τ
1� τ

t
1� e�

t
τ

� �h i
ð3:19Þ

Figure 3.5 shows that the steel temperature rise asymptotically approaches a

temperature ΔTf � a � τ� �
.

Another example where the integral of Eq. 3.16 can be solved analytically is

shown in Sect. 13.3.2 dealing with fire insulated steel sections exposed to paramet-

ric fires according to Eurocode EN 1991-1-2. The fire temperature curve is then
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Fig. 3.4 The relative temperature rise Tst � Tið Þ= Tf � Ti
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of a body with uniform temperature

vs. dimensionless time t/τ according to Eq. 3.15
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expressed as a sum of exponential terms which allows the steel temperature to be

calculated analytically according to Eq. 3.16. See also the Sect. 9.1 on the response

of thermocouples.

3.1.3 Conditions for Assuming Lumped-Heat-Capacity

The assumption of lumped-heat-capacity or uniform body temperature is an

approximation which may be applied when the internal thermal resistance by

conduction is low in comparison to the heat transfer resistance in the case of a

non-insulated body, i.e. the Biot number defined as

Bi ¼ L=k

1=h
¼ hL

k
ð3:20Þ

is less than 0.1, see, e.g. [2]. Here L is a characteristic length of the body studied as

shown in Table 3.1, and k is the conductivity. Figure 3.6 shows the effect of various
Biot numbers of plane body under steady-state conditions.
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Fig. 3.5 Dimensionless temperature rise of a body exposed to linearly rising temperature

vs. dimensionless time according to Eq. 3.19
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In fire protection engineering lumped-heat-capacity is often assumed for steel

sections. This is in particular appropriate when considering temperature across the

thickness of a web or flange. The temperatures on the two sides of a metal sheet are

then by and large equal. Temperatures along the plane of a web or flange may,

however, vary considerably depending on the boundary conditions, see Chap. 13.

The criterion given by Eq. 3.20 is based on steady-state conditions but applies for

steel of thicknesses in the order of 10 mm except for the first few minutes which are

usually not of interest in FSE.

Example 3.1 A 2-mm-thick steel plate with an initial temperature Ti ¼ 20 �C is

suddenly exposed on both sides to a gas temperature of 500 �C. Assume a constant

heat transfer coefficient h¼ 20 W/(m2 K) and the steel properties c¼ 460 Ws/

(kg K) and ρ¼ 7850 kg/m3.

(a) Calculate the thermal time constant of the steel plate.

(b) Calculate the temperature of the steel plate after 5 min.

Table 3.1 Examples of

characteristic lengths L
Configuration Characteristic length, L

Plate exposed on one side Thickness

Plate exposed on two sides Thickness/2

Long cylinder Diameter/4

Sphere Diameter/6

Fig. 3.6 The state

temperature distribution for

a plane wall with a

conductivity k and a heat

transfer coefficient h

32 3 Unsteady-State Conduction

http://dx.doi.org/10.1007/978-3-319-30172-3_13


Solution (a)

τ ¼ dcρ

h
¼ 0:5 � 0:002 � 460 � 7850

20
¼ 181 s

(b) At time t¼ 300 s the dimensionless time t= τ ¼ 300=181 ¼ 1:66 and from

Eq. 3.15 or Fig. 3.4 the steel temperature is calculated as Tst ¼ 20þ
500� 20ð Þ � 1� e�1:66

� � ¼ 20þ 480 � 0:81 ¼ 409 �C.

Example 3.2 A 5-mm-thick steel bulkhead is suddenly exposed to a fire with a

constant temperature of Tf ¼ 1000 �C. It is insulated on the fire-exposed side and

uninsulated on the non-fire-exposed side. The insulation thickness d¼ 100 mm and

its conductivity k¼ 0.07 W/(m K). The heat transfer coefficient on the non-fire-

exposed side h¼ 5 W/(m2 K). Assume the surface heat resistance on the fire-

exposed side is negligible and the steel properties c¼ 460 Ws/(kg K) and

ρ¼ 7850 kg/m3, and the ambient temperature and the initial temperature

T1 ¼ Ti ¼ 20 �C.

(a) What is the ultimate steel temperature Tultst ?

(b) What is the time constant τ of the bulkhead?
(c) What is the steel temperature after 60 min?

Solution (a) The heat balance equation of the steel bulkhead can be written as
k
d Tf � Tst

� �þ h T1 � Tstð Þ ¼ d � c � ρ dTst

dt . The ultimate steel tem-

perature is obtained when dTst

dt ¼ 0 and then

Tult
st ¼ k

dTfþhT1
k
dþh

¼ 0:07
0:1 �1000þ5�20

0:07
0:1þ5

¼ 800
5:7 ¼ 140 �C.

(b) The heat balance equation can be reorganized and written as k
d � Tf þ h � T1

� �
� k

d þ h
� �

Tst ¼ d � c � ρ d�Tst

dt and dTst

dt ¼
k
d�Tfþh�T1f g

d�c�ρ �
k
dþhf g
d�c�ρ Tst ¼ Tult

st �Tst
d�c�ρ
k
d
þh

. Now

the time constant can be identified (compare with Eq. 3.13) as

τ ¼ d�c�ρ
k
dþh

¼ 0:005�460�7850
5:7 ¼ 3170 s.

(c) At time t¼ 3600 s the dimensionless time t= τ ¼ 3600=3170 ¼ 1:14 and from

Eq. 3.15 or Fig. 3.4 Tst ¼ Ti þ Tult
st � Ti

� � � 1� e�
t
τ

� � ¼ 20þ 120 � 0:68 ¼
101 �C.

3.2 Semi-infinite Solids

Cases and scenarios in FSE are often short in time. Therefore only the surface and

the top layer of a solid will be involved in fire phenomena such as ignition and flame

spread. In such cases a solid may be assumed semi-infinite as its surface will not
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thermally be influenced by the limited depth of the exposed surface layer. Even

concrete elements exposed to fires of an hour’s duration any temperature rise

beyond 200 mm from the surface is insignificant, and when estimating temperature

of reinforcement bars near the exposed surface may even slender structures be

considered as semi-infinite.

Whether a body can be treated as semi-infinite depends on time of consideration

and thickness of the exposed body or more precise the exposed layer in case of

composites. The longer a body is analysed, the thicker it must be to be treated as

semi-infinite. As a general rule the change of temperature at one point influences

the temperature only within a distance δ proportional to the square root of the

thermal diffusivity α ¼ k= c � ρð Þ according to Eq. 1.28 multiplied by the time t:

δ < 3
ffiffiffiffi
αt

p ð3:21Þ

The coefficient “3” here is an arbitrary value depending on accuracy, see

Sect. 3.2.1.1 on thermal penetration depth.

Consider a semi-infinite body initially at a constant temperature Ti. Three kinds
of boundary conditions can be identified (c.f. Sect. 1.1.3 and Fig. 3.7):

(a) The surface temperature changes suddenly to a new constant value. The

internal temperature distribution (Eq. 3.22) and the surface flux (Eq. 3.23)

can then be calculated (first kind of BC).

(b) The surface receives suddenly a constant heat flux. The surface temperature

can then be calculated according to Eq. 3.29 (second kind of BC).

(c) The surface is suddenly exposed to a constant gas temperature and the heat

flux to the surface is proportional to the temperature difference between the

gas temperature and the surface temperature. The surface temperature can then

be calculated according to Eq. 3.35. For internal temperatures closed form

solutions can be found in textbooks such as [1, 2] (third kind of BC).

For more details on the three types of boundary conditions see Sect. 1.1.3.

Fig. 3.7 Semi-infinite bodies with the three kinds of BC. See Sects. 3.2.1–3.2.3, respectively.

(a) First kind. (b) Second kind. (c) Third kind
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3.2.1 Constant Surface Temperature: First Kind of BC

The surface temperature of a semi-infinite body is suddenly changed from its initial

temperature Ti to Ts. Then temperature profiles as indicated in Fig. 3.8 develop.

According to Sect. 1.1.3 this is a first kind of boundary condition. The longer times

t the further into the body the temperature rise goes. Mathematically the tempera-

ture distribution may be written as

T x; tð Þ � Ti

Ts � Ti
¼ 1� erf

x

2
ffiffiffiffi
αt

p
	 


� erfc
x

2
ffiffiffiffi
αt

p
	 


ð3:22Þ

where x is the distance to the surface and α the thermal diffusivity, see Eq. 1.28. The
function erf is called the Gauss error function and erfc is its complimentary

function. The error function is tabulated in Table 3.2 and both erf and erfc are

shown in Fig. 3.9 as functions of the dimensionless parameter group x= 2√αt
� �

.

The heat flux at the boundary _q
00
0 becomes

_q
00
0 ¼ �k

dT

dx

	 

¼ 1ffiffiffi

π
p Ts � Tið Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � ρ � c

t

r
ð3:23Þ

This equation shows that the heat flux at a given time and temperature rise is

proportional to the square root of the parameter group k � ρ � cð Þ. This is often

referred to as the thermal inertia of the material. (In some literature the thermal

inertia is defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � ρ � cp

). The thermal inertia of a material has a great influence

on its ignition and flame spread properties which will be discussed further in

Sect. 3.2.3 on third kind of BC.

3.2.1.1 Temperature Penetration Depth

The rate at which a temperature change diffuses into a body when exposed to

heating conditions depends for a semi-infinite body on the thermal diffusivity α as

defined in Eq. 1.28. Therefore it takes a relatively long time for a temperature rise at

the surface to penetrate into a material with a low conductivity k and/or a high

t

Fig. 3.8 Semi-infinite solid

with an initial temperature

Ti where the surface
temperature changes

suddenly to Ts
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volumetric heat capacity (c � ρ). Thus any temperature change diffuses, e.g. much

faster in a concrete than in a steel.

For the idealized case of a semi-infinite body at a uniform initial temperature Ti
where the surface temperature momentarily is changed to a constant level of Ts, the
temperature rise (T� Ti) inside the body at a depth x at a time t may be written as a

function of the normalized group

η ¼ x= 2√ α � tð Þ� � ð3:24Þ

where the thermal diffusivity α ¼ k= c � ρð Þ according to Eq. 1.28 is assumed

constant. The relative temperature rise may then be written as:

T � Tið Þ
Ts � Tið Þ ¼ erfc ηð Þ ¼ 1� erf ηð Þ ð3:25Þ

Table 3.2 The Gauss error function, erf

x
2
ffiffiffiffi
αt

p erf x
2
ffiffiffiffi
αt

p
� �

x
2
ffiffiffiffi
αt

p erf x
2
ffiffiffiffi
αt

p
� �

x
2
ffiffiffiffi
αt

p erf x
2
ffiffiffiffi
αt

p
� �

x
2
ffiffiffiffi
αt

p erf x
2
ffiffiffiffi
αt

p
� �

0.00 0.00000 0.50 0.52050 1.00 0.84270 1.50 0.96611

0.02 0.02256 0.52 0.53790 1.02 0.85084 1.52 0.96841

0.04 0.04511 0.54 0.55494 1.04 0.85865 1.54 0.97059

0.06 0.06762 0.56 0.57162 1.06 0.86614 1.56 0.97263

0.08 0.09008 0.58 0.58792 1.08 0.87333 1.58 0.97455

0.10 0.11246 0.60 0.60386 1.10 0.88021 1.60 0.97635

0.12 0.13476 0.62 0.61941 1.12 0.88679 1.62 0.97804

0.14 0.15695 0.64 0.63459 1.14 0.89308 1.64 0.97962

0.16 0.17901 0.66 0.64938 1.16 0.89910 1.66 0.98110

0.18 0.20094 0.68 0.66378 1.18 0.90484 1.68 0.98249

0.20 0.22270 0.70 0.67780 1.20 0.91031 1.70 0.98379

0.22 0.24430 0.72 0.69143 1.22 0.91553 1.72 0.98500

0.24 0.26570 0.74 0.70468 1.24 0.92051 1.74 0.98613

0.26 0.28690 0.76 0.71754 1.26 0.92524 1.76 0.98719

0.28 0.30788 0.78 0.73001 1.28 0.92973 1.78 0.98817

0.30 0.32863 0.80 0.74210 1.30 0.93401 1.80 0.98909

0.32 0.34913 0.82 0.75381 1.32 0.93807 1.82 0.98994

0.34 0.36936 0.84 0.76514 1.34 0.94191 1.84 0.99074

0.36 0.38933 0.86 0.77610 1.36 0.94556 1.86 0.99147

0.38 0.40901 0.88 0.78669 1.38 0.94902 1.88 0.99216

0.40 0.42839 0.90 0.79691 1.40 0.95229 1.90 0.99279

0.42 0.44747 0.92 0.80677 1.42 0.95538 1.92 0.99338

0.44 0.46623 0.94 0.81627 1.44 0.95830 1.94 0.99392

0.46 0.48466 0.96 0.82542 1.46 0.96105 1.96 0.99443

0.48 0.50275 0.98 0.83423 1.48 0.96365 1.98 0.99489
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For the Gauss error function see Fig. 3.9 and Table 3.3. Note that for values of

η � 1:4 the relative temperature rise is less than 5%, and for η � 1:8 it is less than
1%. This can be interpreted as the temperature penetration depth δ which can be

derived from Eq. 3.24 by solving for x. Thus the 5% penetration depth is

δ0:05 ¼ 2:8
ffiffiffiffiffiffiffiffi
α � tp ð3:26Þ

and the corresponding 1% is

δ0:01 ¼ 3:6
ffiffiffiffiffiffiffiffi
α � tp ð3:27Þ

Hence a sudden temperature rise at the surface will penetrate in 30 min about

0.14 m into a concrete structure and about four times longer (0.54 m) into or along a

steel structure. Constant material properties are then assumed according to

Table 1.2.

Example 3.3 The surface temperature of a thick concrete wall with an initial

temperature of 0 �C rises suddenly to 1000 �C.

(a) What is the 1% thermal penetration depth δ0.01 after 15 min?

(b) What is the temperature T at that point after 60 min?

Assume constant concrete properties according to Table 1.2, i.e. c¼ 900Ws/(kg K),

ρ¼ 2300 kg/m3 and k¼ 1.5 W/(m K).
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Fig. 3.9 The Gauss error-function erf
�
x= 2√αt
� �

and the Gauss complimentary error-function

erfc x= 2√αt
� �� �

3.2 Semi-infinite Solids 37

http://dx.doi.org/10.1007/978-3-319-30172-3_1
http://dx.doi.org/10.1007/978-3-319-30172-3_1


Table 3.3 Tabulated values of the relative surface temperature change of a semi-infinitely thick

body Ts � Tið Þ= Tg � Ti

� �
vs. dimensionless time t/τ according to Eq. 3.35

t/τ
Ts � Tið Þ
Tg � Ti

� �
t/τ

Ts � Tið Þ
Tg � Ti

� �
t/τ

Ts � Tið Þ
Tg � Ti

� �
0.00 0.000 2.00 0.664 4.00 0.745

0.05 0.210 2.05 0.667 4.05 0.746

0.10 0.276 2.10 0.670 4.10 0.747

0.15 0.322 2.15 0.673 4.15 0.749

0.20 0.356 2.20 0.676 4.20 0.750

0.25 0.384 2.25 0.678 4.25 0.751

0.30 0.408 2.30 0.681 4.30 0.752

0.35 0.428 2.35 0.684 4.35 0.753

0.40 0.446 2.40 0.686 4.40 0.755

0.45 0.462 2.45 0.689 4.45 0.756

0.50 0.477 2.50 0.691 4.50 0.757

0.55 0.490 2.55 0.694 4.55 0.758

0.60 0.502 2.60 0.696 4.60 0.759

0.65 0.513 2.65 0.698 4.65 0.760

0.70 0.523 2.70 0.700 4.70 0.761

0.75 0.533 2.75 0.703 4.75 0.763

0.80 0.542 2.80 0.705 4.80 0.764

0.85 0.550 2.85 0.707 4.85 0.765

0.90 0.558 2.90 0.709 4.90 0.766

0.95 0.565 2.95 0.711 4.95 0.767

1.00 0.572 3.00 0.713 5.00 0.768

1.05 0.579 3.05 0.715 5.05 0.769

1.10 0.585 3.10 0.716 5.10 0.770

1.15 0.591 3.15 0.718 5.15 0.771

1.20 0.597 3.20 0.720 5.20 0.772

1.25 0.603 3.25 0.722 5.25 0.773

1.30 0.608 3.30 0.724 5.30 0.773

1.35 0.613 3.35 0.725 5.35 0.774

1.40 0.618 3.40 0.727 5.40 0.775

1.45 0.622 3.45 0.728 5.45 0.776

1.50 0.627 3.50 0.730 5.50 0.777

1.55 0.631 3.55 0.732 5.55 0.778

1.60 0.635 3.60 0.733 5.60 0.779

1.65 0.639 3.65 0.735 5.65 0.780

1.70 0.643 3.70 0.736 5.70 0.780

1.75 0.647 3.75 0.738 5.75 0.781

1.80 0.650 3.80 0.739 5.80 0.782

1.85 0.654 3.85 0.741 5.85 0.783

1.90 0.657 3.90 0.742 5.90 0.784

1.95 0.661 3.95 0.743 5.95 0.785
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Solution (a) After 15 min according to Eq. 3.27 the penetration depth

δ0:01 ¼ 3:6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:5= 900 � 2300ð Þ � 15 � 60p ¼ 0:092 m.

(b) According to Eq. 3.24 η ¼ 0:092

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:5= 900�2300ð Þ�60�60

p ¼ 0:90 and Eq. 3.25 and

Fig. 3.9 yields T¼ 200 �C.

3.2.2 Constant Heat Flux: Second Kind of BC

Under some conditions the heat transfer q
00
s to a surface may be assumed constant.

According to Sect. 1.1.3 this is a second kind of BC. That may happen, e.g. when

the incident radiation to a surface is very high in comparison to the losses by

emitted radiation and convection which then can be neglected. Then at a point at a

distance x from the surface the temperature is

T x; tð Þ � Ti ¼ _q
00
s

2
ffiffi
t

p
ffiffiffi
π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � ρ � cp � e � x2

4a�t
� �

� x

k
1� erf

x

2
ffiffiffiffiffiffiffiffi
α � tp

	 

 �
ð3:28Þ

where the thermal diffusivity α ¼ k= c � ρð Þ. At x ¼ 0 the surface temperature Ts
vs. time becomes

Ts � Ti ¼ 2 _q
00
s

ffiffi
t

p
ffiffiffi
π

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � ρ � cp ð3:29Þ

Thus the time to reach a given temperature rise assuming constant heat flux

(for example, time to ignition) at the surface becomes

tig ¼ π � k � ρ � c
4 _q 00

s

� �2 Tig � Ti

� �2 ð3:30Þ

where tig and Tig are the time to ignition and the ignition temperature, respectively.

3.2.3 Constant Gas Temperature: Third Kind of BC

When a surface is exposed to a fluid at a temperature Tg, the heat flux to the surface is

_q
00
s ¼ �k

dT

dx

	 

¼ h Tg � Ts

� � ð3:31Þ
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where h is the heat transfer coefficient and Ts is the surface temperature. This is a

third kind of BC according to Sect. 1.1.3. In the case Tg and h are constant the
temperature distribution may after some time develop as indicated in Fig. 3.10.

Then the relative temperature change at a distance x from the surface can be

calculated as

T x; tð Þ � Ti

Tg � Ti
¼ 1� erf Xð Þ � e

h�x
k þ t

τð Þ 1� erf X þ
ffiffiffi
t

τ

r	 

 �
ð3:32Þ

where the temperature T(x, t) is a function of time and depth and Ti is the initial

temperature. The non-dimensional length

X ¼ x

2
ffiffiffiffiffiffiffiffi
α � tp ð3:33Þ

and the time constant for the semi-infinite case is here defined as

τ ¼ k � ρ � c
h2

ð3:34Þ

The temperature at the surface is of interest in many fire protection engineering

problems such as predictions of time to ignition. The relative temperature change

may be obtained from Eq. 3.32 for x ¼ 0 as

Ts � Ti

Tg � Ti
¼ 1� e

t
τ 1� erf

ffiffiffi
t

τ

r	 

 �
ð3:35Þ

or when expressed with the complementary error function as

Ts � Ti

Tg � Ti
¼ 1� e

t
τ � erfc

ffiffiffi
t

τ

r	 

ð3:36Þ

The relative surface temperature rise may also be obtained from the diagram of

Fig. 3.11 or from Table 3.3.

x

Fig. 3.10 Temperature

distribution in a semi-

infinite body exposed to a

third kind of boundary

condition
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Equation 3.33 indicates that the relative surface temperature rise vs. time

depends, for a given heat transfer coefficient h, on the material parameter group

the thermal inertia. The thermal inertia is very important in FSE as it governs how

fast a surface reaches among other things ignition temperatures. It varies consider-

ably for many common materials as shown in Table 1.2. Materials of low density ρ
have in general also low conductivity k which enhances the differences between

materials of various densities. The specific heat capacity varies only relatively little

between common materials. More on the influence of thermal inertia on ignition is

discussed in Sect. 8.2.

Example 3.4 A 300-mm-thick concrete slab has reinforcement bars at a depth of

30 mm from the bottom surface. The slab is suddenly exposed from below to a fire

having a constant temperature of Tf ¼ 900 �C. Assume the initial temperature of

the slab Ti¼ 20 �C and the thermal conductivity of the concrete, k¼ 1.0 W/(m K),

density, ρ¼ 2300 kg/m3, and the specific heat capacity, c¼ 800 J/(kg K).

(a) What is the surface temperature T0 of the slab after 10 min of fire exposure?

Assume the total heat transfer coefficient due to radiation and convection is

constant, h¼ 75 W/m2 K.

(b) How long does it take until the reinforcement reaches a temperature of 500 �C.
Assume in this case that the surface instantly gets the fire temperature, i.e. the

heat transfer resistance can be negligible.

(c) Estimate how long it takes until the temperature 300 mm from the bottom of

the slab, i.e. at the top surface of the slab, has risen by approximately 10 �C
(assuming that the slab is infinitely thick)?

Solution (a) Assume the slab is semi-infinite and apply Eq. 3.35
t
τ ¼ h2 t

kρc ¼ 752 10�60
1�2300�800 ¼ 1:83 and insert into Eq. 3.35 (or use

Fig. 3.11 or Table 3.3) to get T0�Ti

Tf�Ti
¼ 0:65. Thus

T0 ¼ 20þ 900� 20ð Þ � 0:65 ¼ 593 �C.

(b) Apply Eq. 3.22, 500�20
900�20

¼ 0:545 ¼ 1� erf x
2
ffiffiffi
αt

p
� �

thus x
2
ffiffiffi
αt

p
� �

¼ 0:43 from

both erf and erfc are shown in Fig. 3.9 as functions of the dimensionless

parameter group x= 2√αt
� �

.

Table 3.2 or Fig. 3.9. Then with x¼ 0.03 m and α ¼ 1:0
2300�800 ¼ 0:543 � 10�6 m2=s

the time can be calculated as t ¼ 0:032

0:543�10�6�22�0:432 ¼ 2241s � 37 min. Apply

Eq. 3.27, δ0:01 ¼ 0:3 ¼ 3:6
ffiffiffiffi
αt

p ) t ¼ 0:32

3:62�0:543�10�6 ¼ 12:8 � 103 s ¼ 3:5 h.

Example 3.5 The surface temperature of a thick concrete wall with an initial

temperature Ti ¼ 20 �C rises suddenly to Ts ¼ 1000 �C. Assume constant concrete

properties according to Table 1.2, i.e. c¼ 900 Ws/(kg K), ρ¼ 2300 kg/m3 and

k¼ 1.5 W/(m K).
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(a) Plot a diagram of the temperature distribution at 30, 60 and 120 min.

(b) What are the temperature penetration depths at 30, 60 and 120 min?

Guidance: Assume 1% accuracy, i.e. δ0:01 ¼ 3:6
ffiffiffiffiffiffiffiffi
α � tp

.
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Fig. 3.11 The relative surface temperature change of a semi-infinitely thick body Ts � Tið Þ=
Tg � Ti

� �
vs. dimensionless time t/τ according to Eq. 3.35. (a) Dimensionless time t=τ 	 30. (b)

Dimensionless time t=τ 	 3
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(c) After how long time will the temperature of a reinforcement bar at a depth of

30 mm from the exposed surface start to rise?

Guidance: Assume 1% accuracy.
(d) How thick must the wall be to be considered infinitely thick when calculating

the temperature at 30 mm from the exposed surface at 30, 60 and 120 min?

Guidance: Assume 1% accuracy and that the temperature change goes to the
rear surface and back to the reinforcement bar.

Solution The temperature diffusion α¼ 1.5/(300 � 2300)¼ 0.821 � 10�6 m2/s.

(a) See Fig. 3.12.

(b) Equation 3.27 yields the penetration depth δ0:01 ¼ 138 mm, 196 mm

and 277 mm, respectively, for 30, 60 and 120 min.

(c) Equation 3.27 yields t ¼ 0:03
3:6

� �2
= 0:821 � 10�6
� � ¼ 84:5 s.

(d) The distance x+ (x� 0.03) must be longer than the penetration depths (see

arrows in Fig. 3.13). Thus the wall thickness x � 0:5 � δ0:01 þ 0:03 which

yields the thicknesses 99, 128 and 168 mm, respectively, for 30, 60 and 120 min.
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Fig. 3.12 Temperature distributions at various times. Example 3.5

Fig. 3.13 Estimation

whether a wall can be

considered infinitely thick

when calculating the

temperature of a

reinforcement bar
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Example 3.6 A very thick concrete wall is penetrated by a steel beam. It is

suddenly exposed to high temperature on one side. Estimate roughly how long it

takes before the temperature rise is felt on the unexposed side.

(a) On the concrete surface away from the beam.

(b) On the steel beam surface.

Material properties according to Table 1.2.

Solution The thermal diffusivity of concrete is 0.82 � 10�6 m2/s and for mild steel

12.7 � 10�6. Then Eq. 3.26 yields t ¼ 1
α � δ0:05

2:8

� �2
, i.e. t ¼ 1

0:82�10�6
� 0:02

2:8

� �2 ¼ 62 s for

the concrete surface and only 4 s for the steel surface.

Example 3.7 The surface of a thick pine wood panel with an initial temperature

Ti ¼ 20 �C is suddenly exposed to hot gases with a temperature of Tg ¼ 600 �C.
Assume a constant heat transfer coefficient h¼ 50 W/(m2 K). What is the surface

temperature Ts and the heat flux _q
00
s at time t¼ 0, 30 and 120 s. Assume thermal

properties of pine according to Table 1.2.

Solution According to Eq. 3.34 τ ¼ k � ρ � cð Þ=h2 ¼ 0:196 � 106=502 ¼ 78:4 s.

Then t=τ ¼ 0=78:4, 30=78:4 and 120=78:4, respectively, and the function
�
1 �

exp t=τð Þ � erfc ffiffi
t
τ

p� �
is according to Table 3.3 equal to 0, 55 and 0.73, respectively,

and the surface temperature can be obtained from Eq. 3.35 as Ts 0ð Þ ¼
20 þ 600 � 20ð Þ � 0 ¼ 20 �C, Ts 30ð Þ ¼ 20 þ 600 � 20ð Þ � 0:44 ¼
275 �C and Ts 120ð Þ ¼ 20 þ 600 � 20ð Þ � 0:63 ¼ 385 �C. The corresponding

heat fluxes become according to Eq. 3.31 _q
00
s 0ð Þ ¼ 50 � 600 � 20ð Þ ¼

29 � 103 W=m2, _q
00
s 30ð Þ ¼ 50 � 600 � 275ð Þ ¼ 16:3 � 103 W=m2 and _q

00
s 120ð Þ

¼ 50 � 600 � 385ð Þ ¼ 10:8 � 103 W=m2. Notice that the heat flux is high in the

beginning and then reduced by almost two thirds after 120 s.
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Chapter 4

Boundary Conditions in Fire Protection
Engineering

A summary of the three kinds of boundary conditions as outlined in Sect. 1.1.3 is

shown in Table 4.1. The third kind of BC sometimes called natural BC is by far the

most important and common boundary condition in fire protection engineering,

while the first and second kinds of BCs can rarely be specified. The third kind of BC

may be divided into three subgroups, (a), (b) and (c). The subgroup (b) and (c) are

particularly suitable for fire engineering applications. Subgroup (a) is applied when

the heat transfer coefficient may be assumed constant as assumed in Chaps. 2 and 3.

Tg is then the surrounding gas temperature. In fire protection engineering it is,

however, generally not accurate enough to assume a constant heat transfer coeffi-

cient as in particular heat transfer by radiation is highly non-linear, i.e. the heat

transfer coefficient varies with the surface temperature. Therefore the subgroups

(3b) and (3c) are the most commonly applied. They consist of a radiation term and a

convection term with the corresponding emissivity ε and convection heat transfer

coefficient h, respectively. The subgroup (3b) presupposes a uniform temperature

Tf, i.e. the radiation temperature and the gas temperature are equal. This is assumed,

for example, when applying time–temperature design curves according to standards

such as ISO 834 or EN 1363-1 for evaluating the fire resistance of structures, see

Chap. 12. The subgroup (3c) is a more general version of (3b) as it allows for

different gas Tg and radiation Tr temperatures, so-called mixed boundary condi-

tions. Alternatively σ � T4
r may be replaced by an equivalent specified incident

radiation _q
00
inc according to the identity _q

00
inc�σ � T4

r (Eq. 1.17). As shown in Sect. 4.4

all boundary conditions of subgroup 3 may be written as type 3a. That means

momentarily a single effective temperature named the adiabatic surface tempera-
ture (AST) with a value between the radiation and gas temperatures as well as a

corresponding total heat transfer coefficient can always be defined, see Sect. 4.4.

All the specified boundary conditions given in Table 4.1 may vary with time. In

most calculations the emissivity and the convection heat transfer coefficient are,

however, assumed constant while the radiation and gas temperatures may vary

according to standard, measured or calculated values, see Chaps. 10–12.
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4.1 Radiation and Incident Radiation Temperature

The black body radiation temperature Tr was introduced in Sect. 1.1.3 by the

identity

_q
00
inc � σ � T4

r ð4:1Þ

or reversely

Tr �
ffiffiffiffiffiffiffiffi
_q
00
inc

σ

4

r
ð4:2Þ

A more adequate term would be incident black body radiation temperature as

_q
00
inc depends on direction. By definition Tr is the temperature of a surface in

equilibrium with the incident radiation, i.e. the absorbed heat by radiation is

equal to the emitted heat.

Figure 4.1 shows the relation between the incident radiation _q
00
inc and the

radiation temperature Tr as defined by Eq. 4.1. Tr may be given in Kelvin as in

Eq. 4.1 (lower curve) and in �C (upper curve). The temperature shift between the

two temperature scales is 273.15 K, i.e. [temperature in Kelvin]¼ [temperature in
�C+273.15]. In Table 4.2 the relations between _q

00
rad and Tr are given at selected

levels. Thus, for example, an incident radiant flux of 20 kW/m2 corresponds to a

black body radiation temperature of 771 K¼ 498 �C, and a radiation temperature of

1000 �C¼ 1273 K corresponds to an incident radiant flux of 148.9 kW/m2.

The net heat flux by radiation to a surface is according to Eq. 1.16

Table 4.1 Summary of the three kinds of boundary conditions. The third kind is divided into three

subgroups relevant in FSE

No Kind of boundary condition Formula

1 Prescribed surface temperature Tx¼x0 ¼ Ts

2 Prescribed surface heat flux �k∂T∂x
��
x¼0

¼ _q
00
s

(3a) Natural boundary condition (prescribed

convection)
�k∂T∂x

��
x¼0

¼ h Tg � Ts

� �
(3b) Natural boundary condition (prescribed

convection and radiation, equal radiation

and gas temperatures)

�k∂T∂x
��
x¼0

¼ εσ T4
f � T4

s

� �
þ hc Tf � Ts

� �

(3c) Natural boundary condition (prescribed

convection and radiation conditions, differ-

ent radiation and gas temperatures)

�k∂T∂x
��
x¼0

¼ ε � σ T4
r � T4

s

� �þ hc Tg � Ts

� �
or

�k∂T∂x
��
x¼0

¼ ε _q
00
inc � σT4

s

� �þ hc Tg � Ts

� �
or

�k∂T∂x
��
x¼0

¼ hAST, tot TAST � Tsð Þ
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_q
00
rad ¼ ε � σ T4

r � T4
s

� � ð4:3Þ

Alternatively it can be “linearized” and written as

_q
00
rad ¼ hr Tr � Tsð Þ ð4:4Þ

where the radiation heat transfer coefficient hr is obtained by developing the

parentheses of Eq. 1.16 according to the conjugate rule:

hr ¼ ε � σ T2
r þ T2

s

� � � Tr þ Tsð Þ ð4:5Þ

As shown in Fig. 4.2 the radiation heat transfer coefficient hr varies significantly
depending on the radiation and surface temperatures. At room temperature it is less

than 5 W/(m2 K) while it is between 150 and 400 W/(m2 K) or even more at

temperature levels relevant in fire scenarios.

In many cases Tr and Ts are close and may be assumed equal. Then hr can be

approximated as

hr � 4 ε � σ � T3
r ð4:6Þ

and the radiation heat transfer coefficient becomes then depending on the incident

radiation
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Fig. 4.1 Incident radiation heat flux _q
00
inc vs. incident radiation temperature Tr. The upper curve

refers to temperature in �C and the lower to Kelvin as in Eq. 4.1
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Table 4.2 Incident radiation

heat flux _q
00
inc and

corresponding radiation

temperatures, absolute Tr
[K] according to Eqs. 4.1

and 4.2, and T [�C]

(a) Selected incident radiation _q
00
inc levels

qinc [kW/m2]

Tr T

qinc [kW/m2]

Tr T

[K] [�C] [K] [�C]
1 364 91 40 916 643

2 433 160 45 944 671

3 480 206 50 969 696

4 515 242 55 992 719

5 545 272 60 1014 741

6 570 297 65 1035 762

7 593 320 70 1054 781

8 613 340 80 1090 817

9 631 358 90 1122 849

10 648 375 100 1152 879

12.5 685 412 110 1180 907

15 717 444 120 1206 933

17.5 745 472 145 1265 991

20 771 498 170 1316 1043

25 815 542 195 1362 1089

30 853 580 220 1403 1130

35 886 613 250 1449 1176

(b) Selected radiation temperature (Tr� 273) �C levels

T [�C]
Tr qinc

T [�C]
Tr qinc

[K] [kW/m2] [K] [kW/m2]

100 373 1.10 550 823 26.01

120 393 1.35 700 973 50.82

140 413 1.65 750 1023 62.10

160 433 1.99 800 1073 75.16

180 453 2.39 850 1123 90.18

200 473 2.84 900 1173 107.34

225 498 3.49 950 1223 126.85

250 523 4.24 1000 1273 148.90

300 573 6.11 1050 1323 173.71

325 598 7.25 1100 1373 201.50

350 623 8.54 1150 1423 232.49

375 648 10.00 1200 1473 266.93

400 673 11.63 1250 1523 305.06

425 698 13.46 1300 1573 347.13

450 723 15.49 1350 1623 393.42

475 748 17.75 1400 1673 444.19

500 773 20.24 1450 1723 499.72
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various surface temperatures Ts assuming ε ¼ 1. (a)Tr � 1000 �C. (b) Enlargement,Tr � 300 �C
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hr � 4 ε
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ � _q 3

inc
4

q
ð4:7Þ

by combining Eqs. 4.1 and 4.6. Observe that Eqs. 4.6 and 4.7 apply only when the

radiation and surface temperatures are approximately equal but they may be used as

rough estimates.

Example 4.1 Calculate the radiation heat transfer coefficient hr, (a) in the heating

phase of a fire when the radiation temperature Tr ¼ 1000 �C and the surface

temperature Ts ¼ 600 �C and (b) in the cooling phase when Tr ¼ 200 �C and

Ts ¼ 500 �C. Assume the surface emissivity ε ¼ 0:9.

Solution Equation 4.5 yields:

(a) hr ¼ 0:9 � 5:67 � 10�8 12732 þ 8732
� � � 1273þ 873ð Þ ¼ 261W= m2 Kð Þ.

(b) hr ¼ 0:9 � 5:67 � 10�8 4732 þ 7732
� � � 473þ 873ð Þ ¼ 52 W= m2 Kð Þ.

4.2 Non-linear Convection

The heat transfer by convection depends on the difference between the gas tem-

perature Tg and the surface temperature Ts. In the simplest form it is just propor-

tional to the difference as when assuming Newton’s law of cooling. More generally

the convection heat transfer may be calculated as

_q
00
con ¼ β Tg � Ts

� �γ ð4:8Þ

where the power γ is equal to one for forced convection and greater than one for

natural or free convection. See Chap. 6 for details on how heat transfer by

convection can be obtained for various configurations and flow conditions.

Throughout this document the convection heat flux is written in the linear form

as

_q
00
con ¼ hc Tg � Ts

� � ð4:9Þ

where the convection heat transfer coefficient can be identified by comparison with

Eq. 4.8 as

hc ¼ β Tg � Ts

� � γ�1ð Þ ð4:10Þ

More on the physical phenomena of convection heat transfer and how it can be

estimated is given in Chap. 6.
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4.3 Mixed Boundary Conditions

The total heat flux to a surface is the sum of the radiation and the convection

contributions and may according to Eqs. 4.3 and 4.9 be written as

_q
00
tot ¼ ε _q

00
inc � σ � T4

s

� �
þ hc Tg � Ts

� � ð4:11Þ

or by expressing the incident radiant flux by the radiation temperature as defined by

Eq. 4.1

_q
00
tot ¼ ε � σ T4

r � T4
s

� �þ hc Tg � Ts

� � ð4:12Þ

This equation contains two boundary temperatures, the radiation temperature

and the gas or convection temperature. It may then be called mixed boundary
conditions.

An electric circuit analogy of a mixed boundary condition with two temperatures

and two corresponding heat transfer resistances is shown in Fig. 4.3.

If the radiation heat transfer coefficient hr as defined by Eqs. 4.5 or 4.6 is used we
can get

_q
00
tot ¼ hr Tr � Tsð Þ þ hc Tg � Ts

� � ð4:13Þ

or in terms of thermal resistances

_q
00
tot ¼ Tr � Tsð Þ=Rr þ Tg � Ts

� �
=Rc

� 	 ð4:14Þ

where the radiation heat transfer resistance (cf. Eqs. 2.14 and 4.5)

Rr ¼ 1

hr
¼ 1

ε � σ T2
r þ T2

s

� � � Tr þ Tsð Þ ð4:15Þ

and the corresponding convection heat transfer resistance

Rc ¼ 1

hc
ð4:16Þ

In most fire resistance cases and calculation standards such as EN 1991-1-2

(Eurocode 1) dealing with exposure to post-flashover room fires, the radiation

temperature and the gas temperature are assumed equal to a fire temperature

Tf ¼ Tr ¼ Tg. Then the total heat transfer becomes
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_q
00
tot ¼ ε � σ T4

f � T4
s

� �
þ hc Tf � Ts

� � ð4:17Þ

This equation may also be written as

_q
00
tot ¼ htot Tf � Ts

� � ¼ Tf � Tsð Þ
Rtot

ð4:18Þ

where

htot ¼ hr þ hc ¼ ε � σ T2
f þ T2

s

� �
� Tf þ Tsð Þ þ hc ð4:19Þ

and

Rtot ¼ 1

htot
ð4:20Þ

Example 4.2 A surface in air at ambient temperature of T1 ¼ 25 �C is exposed to

radiation from a thick flame at a temperature of 800 �C. Assume the surface

emissivity ε¼ 1 and the convection heat transfer coefficient hc¼ 50 W/m2 K?

(a) What is the radiation heat transfer coefficient hr if the surface temperature Ts is
600 �C.

(b) Use the calculated hr to calculate the total heat transfer _q
00
tot to the surface.

Solution
(a) Equation 4.5 yields hr¼ 211 W/m2.

(b) Equation 4.13 yields

_q
00
tot ¼ 211 � 800� 600ð Þ þ 50 � 25� 600ð Þ½ � W=m2 ¼ 13, 500 W=m2.

Fig. 4.3 Electric circuit

analogy of mixed boundary

conditions according to

Eq. 4.14
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4.4 Adiabatic Surface Temperature

Thermal exposure of a surface depends according to Eqs. 4.11 and 4.12 on two

independent parameters Tr (or _q }
inc ) and Tg and can then in principle not be

expressed by one single parameter. The radiation and gas temperatures are in

general not equal. The radiation temperature may be either higher or lower than

the adjacent gas temperature. Equations 4.11 or 4.12 can always be applied.

Alternatively, however, the heat transfer may be written with one parameter only,

given the relation between the emissivity and the convective heat transfer coeffi-

cient hc/ε is known. Then an artificial effective temperature denoted AST TAST can
replace Tr and Tg. A very important advantage of introducing AST is that it can be

measured also under harsh fire conditions with the robust so-called Plate Ther-

mometers as described in Sect. 9.3, and it can be obtained from numerical calcu-

lations with fire modelling codes such as FDS (Fire Dynamic Simulator) [10].

The AST depends on position as well as on direction. For example, at a point

outside a fire as illustrated in Fig. 4.4 the highest incident radiation is in the

direction A from the fire while from other directions it is less. Therefore in this

case T A
AST > T B

AST . In general at any point in space six different incident fluxes can

be identified and thereby six different ASTs, but only one gas temperature Tg.
However, in most cases it is obvious that only one direction is of interest, namely

perpendicular to an exposed surface.

By definition TAST is the temperature of a surface which cannot absorb any heat,

i.e.

ε _q
00
inc � σ � T4

AST

� �
þ hc Tg � TAST

� � ¼ 0 ð4:21Þ

and with the relation between _q
00
inc and Tr according to Eq. 4.1

ε � σ T4
r � T4

AST

� �þ hc Tg � TAST

� � ¼ 0 ð4:22Þ

TAST is a weighted average value of the radiation temperature Tr and the gas

temperatures Tg depending on the surface emissivity ε and the convection heat

transfer coefficient hc. Thus it is a function of Tr, Tg and the parameter ratio hc/ε, but
independent of the surface temperature Ts of the exposed body. From Eq. 4.22 it is

evident that TAST has a value between Tr and Tg as being illustrated by Fig. 4.5. The
larger values of hc/ε, the closer TAST will be to Tg, and vice versa the smaller values

of hc/ε the closer the value of TAST will be to Tr. In other words, when the heat

transfer by convection is dominating TAST is near the gas temperature and when the

radiation is dominating it is closer to the radiation temperature.

The AST may be derived from Eq. 4.22 as
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TAST ¼ hr Tr þ hc Tg

hr þ hc
ð4:23Þ

The equation is, however, implicit as hr depends on TAST.

By combining the general heat transfer equations 4.12 and 4.22 the total heat

transfer to a surface may alternatively be calculated as

_q
00
tot ¼ ε � σ T4

AST � T4
s

� �þ hc TAST � Tsð Þ ð4:24Þ

Instead of two temperatures, Tr and Tg, the fire temperature level is now in

Eq. 4.24 expressed only by one temperature TAST. This may have computational

advantages but most important TAST can be measured even at very harsh thermal

conditions with so-called Plate Thermometers, see Sect. 9.3.

Figure 4.6 illustrates how the two exposure boundary temperatures Tr and Tg are
combined into one effective exposure boundary temperature, namely the AST TAST.
This alteration does not introduce any further approximations of the heat transfer

conditions.

Fig. 4.4 The incident

radiation and thereby the

radiation temperature

depends on direction while

the gas temperature does not

Fig. 4.5 The adiabatic surface temperature TAST is always between the radiation temperature Tr

and the gas temperature Tg. The higher value of the parameter ratio hc/ε, the closer TAST will be to

Tg, and vice versa

54 4 Boundary Conditions in Fire Protection Engineering

http://dx.doi.org/10.1007/978-3-319-30172-3_9


4.4.1 Calculation of Adiabatic Surface Temperature
and Incident Radiation

When the incident radiation flux _q
00
inc (or the equivalent Tr) and the corresponding ε

and hc are known, the AST TAST can be obtained by solving the fourth degree

equation according to either Eq. 4.21 or Eq. 4.22. Below two iteration schemes and

one exact method are mentioned.

In many cases when the radiation is dominating TAST can be obtained by the

iteration procedure

Tiþ1
AST ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T4
r þ

hc
ε � σ Tg � T i

AST

� �4

r
ð4:25Þ

where the suffix i and i + 1 denotes the iteration number. By starting the iteration

with T1
AST ¼ Tr the result converges generally within a few iteration steps. Other-

wise especially when the convection is dominating a Newton–Raphson iteration

scheme may be needed.

An exact solution has been presented by Malendowski (personal communica-

tion). Then after elementary algebraic operations, Eq. 4.21 can be written as:

ε � σ � T4
AST þ hcTAST þ �ε � _q 00

inc � hcTg

� �
¼ 0 ð4:26Þ

which is the fourth order polynomial equation with TAST as the variable. It may be

written in the form:

a � T4
AST þ b � TAST þ c ¼ 0 ð4:27Þ

where the coefficients of the polynomial can be identified as: a ¼ ε � σ, b ¼ hc and

c ¼ ��ε � _q 00
inc þ hcTg

�
. Eq. 4.27 has generally four roots but the only physical can

in the actual case be written as:

Fig. 4.6 The heat exposure

of a surface expressed in

terms of (a) the radiation
temperature Tr and the gas

temperature Tg or
alternatively in terms of (b)
the adiabatic surface

temperature TAST
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TAST ¼ 1

2
� �M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b

aM
�M2

r !
ð4:28Þ

where

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
β

α
þ α

γ

s
ð4:29Þ

and where

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27a2b4 � 256a3c3

p
þ 9a � b23

q
β ¼ 4

ffiffiffi
2

3

3

r
�c γ ¼ ffiffiffiffiffi

183
p �a ð4:30Þ

Thus by inserting the parameters of Eq. 4.30 into Eq. 4.29 and then into Eq. 4.28

the solution may be expressed in an exact closed form.

Examples of AST vs. incident radiation temperature for various gas temperature

levels and relations between surface emissivity and convection heat transfer coef-

ficient are shown in the graphs of Fig. 4.7a–d.

When TAST is obtained, e.g. by measurements with PTs, the incident radiation

_q
00
inc can be derived from Eq. 4.21 as

_q
00
inc ¼ σ � T4

AST �
hc
ε

Tg � TAST

� � ð4:31Þ

The accuracy of Eq. 4.31 depends very much on the accuracy of the parameter

ratio hc/ε. However, in most cases at elevated temperature the second term on the

right-hand side is small and therefore the accuracy can be relatively high in

comparison to alternative instruments available in practice. See also Sect. 9.3.2

how the so-called plate thermometer can be used for indirectly measuring incident

radiant heat flux by measuring TAST and then applying Eq. 4.31.

4.4.2 An Electric Circuit Analogy of the AST Boundary
Condition

The radiation term of Eq. 4.24 may be developed in a similar way as shown by

Eq. 4.5. Then the adiabatic radiation heat transfer coefficient hASTr may be intro-

duced, and the heat flux can be written as

_q
00
tot ¼ hASTr

�
TAST � Ts

�þ hASTc

�
TAST � Ts

� ð4:32Þ
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or in terms of heat transfer resistance according to Eq. 4.20, the radiation and

convection heat transfer resistances over an area A are the inverses of the heat

transfer coefficients, hASTr and hASTc ,

Fig. 4.7 The adiabatic surface temperature TAST (in
�C) vs. the radiation temperature Tr (in

�C) for
various ratio between the convection heat transfer coefficient and the emissivity as defined by

Eq. 4.22. Diagrams for gas temperatures Tg ¼ 20, 50, 100 and 500 �C, respectively
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Fig. 4.7 (continued)
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_q
00
tot ¼

1

RAST
r

� TAST � Tsð Þ þ 1

RAST
c

� TAST � Tsð Þ ð4:33Þ

The electric circuit analogy is shown in Fig. 4.8. A total adiabatic heat transfer

coefficient hASTtot and a corresponding total adiabatic heat transfer resistance RAST
tot

can also be defined. Then the total heat transfer to a surface may be written as

_q
00
tot ¼ hASTtot TAST � Tsð Þ ¼ TAST � Tsð Þ=RAST

tot ð4:34Þ

where the total adiabatic heat transfer coefficient becomes

hASTtot ¼ hASTr þ hASTc ð4:35Þ

The adiabatic radiation heat transfer coefficient then becomes

hASTr ¼ ε � σ T2
AST þ T2

s

� � � TAST þ Tsð Þ ð4:36Þ

and the total adiabatic heat transfer resistance becomes

RAST
tot ¼ 1

hASTr þ hASTc

ð4:37Þ

The convection heat transfer coefficient remains the same as it is here assumed

independent of the exposure temperature, i.e.

hASTc ¼ hc ð4:38Þ

A corresponding electric circuit analogy of a mixed boundary condition is shown

in Fig. 4.9.

Fig. 4.8 An electric circuit

analogy of mixed boundary

conditions at a surface of a

solid according to Eq. 4.33

Fig. 4.9 An electric circuit

analogy of mixed boundary

conditions at a surface of a

solid according to Eq. 4.34
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Thus it is shown that the general fire boundary condition according to Eq. 4.12

can be expressed as a third kind of boundary condition, see Table 4.1.

4.4.3 Boundary Condition Expressed as “Heat Flux”

The thermal exposure conditions are often in FSE literature specified as “heat flux”

by radiation and convection although boundary conditions of the second kind can

rarely be specified in FSE problems. It is, however, implicitly understood that the

“heat flux” _q
00
flux is to a surface being kept at ambient temperature T1 and having an

emissivity equal unity. Then the heat flux _q
00
tot by radiation and convection to a real

surface at a temperature Ts and an assumed convective heat transfer coefficient h to
be the same as when defining the heat flux becomes:

_q
00
tot ¼ _q

00
flux � σ T4

s � T4
1

� �� h Ts � T1ð Þ ð4:39Þ

This is now a boundary condition of the third kind as the heat flux to the surface

depends on the receiving surface temperature Ts. By comparing the heat fluxes as

expressed by Eqs. 4.39 and 4.31, it can be shown that for given values of the heat

transfer parameters ε and h there is an unambiguous relation between the two

artificial boundary parameters _q
00
flux and TAST, i.e.

q
00
flux ¼ ε � σ T4

AST � T4
1

� �þ h TAST � T1ð Þ ð4:40Þ

Notice that relation between _q
00
flux andT1 is unambiguous and independent on the

surface temperature Ts.
For an ambient temperature T1 ¼ 20 �C and three combinations of ε and h, the

relations between AST TAST and the “heat flux” _q
00
flux are shown in Fig. 4.10. As an

example for ε¼ 1.0 and h¼ 10 W/(m2 K), a “heat flux” _q
00
flux ¼ 10 kW=m2

corresponds to an AST TAST � 330 �C. However, if instead the convection heat

transfer coefficient h¼ 20 W/(m2 K) then the corresponding AST is reduced to

TAST � 280 �C. Thus the assumed values of ε and h have a significant influence on
the relation between TAST and _q

00
flux.

4.4.4 Calculation of Time Constants for Bodies Exposed
to Mixed Boundary Conditions

The concept of adiabatic heat transfer resistance as defined in Eq. 4.37 may be used

to calculate the temporal response characteristics (time constants) of bodies

exposed to radiation and simultaneously to convection. The time constant for
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bodies exposed to uniform temperatures is described in, e.g. Sect. 3.1. As a general

rule the time constant of bodies exposed to radiation decreases significantly when

the temperature level increases as in many FSE scenarios.

Example 4.3 The maximum incident radiation from the sun at the earth’s surface
perpendicular to the sun’s rays is approximately 1 kW/m2. What is the equilibrium

temperature of perfectly insulated surface perpendicular to the rays when

(a) The convection is negligible.

(b) The air temperature is 20 �C, the convection heat transfer coefficient is 10 W/

(m2 K) and the surface equal unity.

Assume a surface emissivity independent of the wavelength.

Solution

(a) Equation 4.1, Table 4.2 or Fig. 4.1 yields the equilibrium temperature 364 K or

91 �C.
(b) Equation 4.22 or Fig. 4.7a yields Tr ¼ 91 �C and h/ε¼ 10 W/(m2 K) and the

equilibrium temperature (AST) 55 �C.

Example 4.4 A surface with a temperature of Ts ¼ 200 �C is exposed to an

incident radiation of _q
00
inc ¼ 50kW=m2 and a gas temperature of Tg ¼150 �C.
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Fig. 4.10 Relation between adiabatic surface temperature TAST and heat flux _q
00
flux to a surface at

ambient temperature (20 �C) for various combinations of surface emissivities ε and convection

heat transfer coefficients h

4.4 Adiabatic Surface Temperature 61

http://dx.doi.org/10.1007/978-3-319-30172-3_3


The surface emissivity is 0.9 and the convection heat transfer coefficient 10 W/(m2

K). Calculate

(a) The radiation temperature.

(b) The radiation heat transfer coefficient.

(c) The AST TAST.
(d) The heat transfer to the surface using Eqs. 4.11 and 4.12, respectively.

(e) The heat transfer to the surface applying TASTusing Eq. 4.31.

(f) The adiabatic radiation heat transfer coefficient and adiabatic heat transfer

resistance.

(g) The heat transfer to the surface using Eq. 4.34.

Solution

(a) Equation 4.1 yields Tr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50�103
5:67�10�8

4

q
¼ 969 K ¼ 696 �C.

(b) Equation 4.5 yields hr ¼ εσ T2
r þ T2

s

� �
Tr þ Tsð Þ ¼ 0:9 � 5:67 � 10�8 � 9692þ�

4732� � 969þ 473½ � ¼ 85:5 W= m2 Kð Þ.
(c) Equation 4.21 or Eq. 4.22 yields by iteration TAST ¼ 940 K ¼ 667 �Cð Þ.
(d) Equation 4.11 yields _q

00
tot ¼ ε _q

00
inc � σT4

s

� �þ hc Tg � Ts

� � ¼ 0:9 � 50 � 103��
5:67 � 10�8 � 4734Þþ 10 � 150� 200ð Þ ¼ 42, 440� 500 ¼ 41, 940 W=m2, or

alternatively Eq. 4.12 yields _q
00
tot ¼ εσ T4

r � T4
s

� �þ hc Tg � Ts

� � ¼ 0:9 � 5:67 �
10�8 � 9694 � 4734

� �þ 10 � 150� 200ð Þ ¼ 42, 440� 500 ¼ 41, 900 W=m2.

(e) Equation 4.31 yields _q
00
tot ¼ εσ T4

AST � T4
s

� �þ hc TAST � Tsð Þ ¼
0:9 � 5:67 � 10�8 � 9404 � 4734

� �þ 10 � 940� 473ð Þ ¼ 41, 900 W=m2.

(f) Equation 4.36 yields hASTr ¼ 0:47 � 0:9 � 4 � 5:67 � 10�8 � 9403 ¼ 80 W=

m2 Kð Þ. Then hASTtot ¼ 80 þ 10 ¼ 90 W= m2 Kð Þ. RAST
tot ¼ 1=hASTtot ¼

0:011 m2 Kð Þ =W.

(g) Equation 4.34 yields _q
00
tot ¼ 90 � 940� 473ð Þ ¼ 42, 000W=m2.

Example 4.5 A wall consists of a wooden panel with a thickness of dwood ¼ 25

mmand a conductivity kwood ¼ 0:1 W= m � Kð Þ and a mineral wool insulation with a

thickness dins ¼ 100 mm and a conductivity kins ¼ 0:02 W= m � Kð Þ as shown in

Fig. 4.11. The surface temperaturesT1 ¼ 100 �CandT3 ¼ 20 �C. Calculate the heat
flux _q

00
through the assembly and the temperature T2.

Solution

The heat flow through the assembly

_q
00 ¼ T1 � T3

R1 þ R2ð Þ ¼
80

0:012
0:1

� �þ 0:05
0:02

� �� 	 ¼ 80

0:12þ 2:5½ � ¼ 30:5W=m2
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T2 ¼ T1 � R1

R1 þ R2

T1 � T3ð Þ ¼ 100� 0:12

0:12þ 2:5ð Þ 100� 20ð Þ
¼ 100� 3:66 ¼ 96:3 �C

Notice that the thermal resistance of the wood panel is much small than that of

the insulation and therefore the interface temperature becomes close to that of the

wood panel.

Example 4.6 A 30-mm-thick steel sheet is exposed to a gas temperature

Tg ¼500 �C on one side and 20 �C on the other. Calculate the heat flux through

the sheet and its surface temperatures. Assume a heat transfer coefficient

h¼ 100 W/(m2 K) on the hot side (1) and 20 W/(m2 K) on the other (side 2). The

steel conductivity k¼ 50 W/(m K).

Solution

The thermal resistance over a unit area is the sum of the heat transfer resistance and

conductive resistance. Thus the heat flux through the panel _q
00 ¼ T1 � T2

Rh1 þ Rst þ Rh2
¼

500� 20
1

100

� �þ 0:030
50

� �þ 1
20

� �� 	 ¼ 480

0:01þ 0:0006þ 0:05ð Þ ¼ 7921 W=m2 and,

e.g. according to Eq. 2.12 T1 ¼ 500 � 0:0006þ0:05ð Þ þ 20 � 0:01
0:01þ0:0006þ0:05ð Þ ¼ 465 �C and

T2 ¼ 500 � 0:05þ20 � 0:0006þ0:01ð Þ
0:01þ0:0006þ0:05ð Þ ¼ 416 �C. Notice that the temperature

change over the steel sheet is relatively small as thermal heat transfer resistances

dominates.

Example 4.7 Calculate the surface temperatures T1 at a steel sheet surface, see

Fig. 4.12, when the heat flux through the steel sheet is _q
00 ¼ 5 kW=m2. The panel is

25 mm thick and the temperature on the other side T2 ¼ 20 �C. Assume the

conductivity of steel k¼ 50 W/(m K).

Fig. 4.11 Properties of

insulated wooden wall,

Example 4.7
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Solution

T1 ¼ T2 þ 0:025
50

� 5000� � ¼ 20þ 2:5 ¼ 22:5 �C.

Example 4.8 Calculate the surface temperatures T1 and T2 of the wood panel when
surrounded by temperature Tg1 ¼ 100 �C and Tg2 ¼ 20 �C on the left and the right

side, respectively. Consider heat transfer by convection assuming the heat transfer

coefficients h1 ¼ 20 W= m2 Kð Þ on the hot side and h2 ¼ 5 W= m2 Kð Þ on the cool

side. The wood panel is assumed to be 25 mm thick and have a thermal conductivity

kwood¼ 0.1 W/(m K).

Solution Calculate the total thermal resistance over a unit area Rtot ¼
Rh þ Rk þ Rh ¼ 1=20 þ 0:025=0:1 þ 1=5 ¼ 0:50 K=W. According to Eq. 2.9

T1 ¼ 100� 0:025=0:1þ1=5ð Þþ20�1=20
�

0:5 ¼ 92 and T2 ¼ 100�0:025=0:1þ20� 1=20þ:025=0:1ð Þ
0:5 . Alterna-

tively the heat flux _q
00 ¼ 100�20

0:5 ¼ 160W=m2 at the boundaries two heat balance

equations can be established: (100� T1)/0.05¼ 160 and (T2� 20)/0.2¼ 160

yielding T1¼ 92 �C and T2¼ 52 �C.

Example 4.9 Calculate the net heat transfer by radiation _q
00
rad to a surface at a

temperature Ts and an emissivity of 0.9 when exposed to an incident radiation heat

flux of 20 kW/m2. (a) Assume Ts ¼ 20 �C, (b) assume Ts ¼ 500 �C and (c) what is

the exposure black body radiation temperature Tr?

Solution

According to Eq. 1.15:

(a) _q
00
rad ¼ 0:9 20, 000� σ 20þ 273ð Þ4

h i
¼ 17, 610 � 17:6 kW=m2

(b) _q
00
rad ¼ 0:9 20, 000� σ 500þ 273ð Þ4

h i
¼ �220 � �0:220kW=m2

(c) According to Eq. 4.1 Tr ¼ _q
00
inc

σ

h i1=4
¼ 771 K ¼ 498 �C

Fig. 4.12 Properties of

wood panel in one

dimension, Example 4.8
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Chapter 5

Heat Transfer by Radiation

Heat transfer by thermal radiation is transfer of heat by electromagnetic waves. It is

different from conduction and convection as it requires no matter or medium to be

present. The radiative energy will pass perfectly through vacuum as well as clear

air. While the conduction and convection depend on temperature differences to

approximately the first power, the heat transfer by radiation depends on the differ-

ences of the individual body surface temperatures to the fourth power. Therefore

the radiation mode of heat transfer dominates over convection at high temperature

levels as in fires. Numerical applications of radiation heat transfer in FSE are

outlined in Sect. 4.1.

The description below is mainly taken from [11]. The surfaces are generally

assumed to be grey, which means they absorb and emit radiation that is a fraction of

black body radiation in all directions and over all wavelengths. Hence the hemi-

spherical absorptivity/emissivity of a surface is assumed to be independent of the

nature of the incident radiation and of the spectral properties of, e.g. a fire.

The upper limit of the heat flux leaving a black body surface by radiation is

according to the Stefan–Boltzmann law

_q
00
bb,emi ¼ σ � T4

s ð5:1Þ

where σ is the Stefan–Boltzmann constant (σ ¼ 5:670 � 10�8 W= m2 Kð Þ½ �) and Ts is
the absolute surface temperature [K]. Figure 4.1 can be used to calculate the emitted

heat by radiation from a black surface vs. temperature in Kelvin, K, according to

Eq. 5.1 or vs. temperature in degree Celsius, �C.
The heat flux _q

00
emi leaving a real surface is, however, less than that of a black

body at the same temperature:

_q
00
emi ¼ εs � σ � T4

s ð5:2Þ

where εs is the emissivity of the surface.
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The incident radiation _q
00
inc to a surface may originate from various sources.

When it includes radiation irrespective of sources it is sometimes called irradiance.

Only a fraction of the incident radiation _q
00
abs will be absorbed by a surface, i.e.

_q
00
abs ¼ αs � _q 00

inc ð5:3Þ

where α is the absorptivity of the surface. The rest of the incident radiation is

reflected _q
00
ref or transmitted through the surface. The latter term is small for most

materials and is neglected in the presentation below. Hence the reflected radiation

heat flux becomes

_q
00
ref ¼ 1� αsð Þ � _q 00

inc ð5:4Þ

The net rate of heat flux to a surface by radiation then becomes:

_q
00
rad ¼ _q

00
abs � _q

00
emi ð5:5Þ

or after inserting Eqs. 5.2 and 5.3 and given the Kirchhoff’s identityαs ¼ εs, the heat
flux to a surface by radiation becomes (Fig. 5.1)

_q
00
rad ¼ εs _q

00
inc � σT4

s

� �
ð5:6Þ

The incident radiation or the irradiation on a surface is emitted by other surfaces

and/or by surrounding masses of gas and in case of fire by flames and smoke layers.

The emissivity and absorptivity of gas masses and flames increase with depth and

becomes therefore more important in large scale fires than in, e.g. small scale

experiments, see Sect. 5.3. In real fires surfaces are exposed to radiation from a

large number of sources, surfaces, flames, gas masses, etc., of different tempera-

tures and emissivities and the incident radiation is in general very complicated to

model. If absorption from any gases is neglected, and if the target surface is small

and therefore the contributions of reflections and re-radiation are neglected, the

incident radiation to the surface can be approximated as the sum of the contribu-

tions _q
00
inc, i from a number of external sources:

_q
00
inc ¼

X
i
_q
00
inc, i ð5:7Þ

When the source number i is a surface with a uniform temperature Ti the
contribution is

_q
00
inc, i ¼ εi � Fi � σ � T4

i ð5:8Þ

66 5 Heat Transfer by Radiation



where εi is the emissivity of the ith source. Fi is the corresponding view factor as

defined in more detail in Sect. 5.2. Like the emissivity it always has values between

0 and 1.

The incident radiation may also be written as a function of the black body
incident radiation temperature, the black body radiation temperature or just the

radiation temperature defined by the identity _q
00
inc� σ � T4

r (Eq. 1.17).

Thus Tr is a weighted average of the surrounding surface temperatures which can

be obtained by combining Eqs. 5.7 and 5.8 as

Tr�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i
εi � Fi � T4

i

� �
=σ

h i
4

r
ð5:9Þ

Tr can also be defined as the temperature a surface will get which is in radiation

equilibrium with the incident flux, i.e. no heat is transferred neither by convection

nor by conduction from that surface. Compare with the concept of adiabatic surface
temperature, as described in Sect. 4.4, which is the surface temperature when the

net radiation _q
00
rad is in equilibrium with the convection heat flux _q

00
con.

The net radiation heat flux is obtained by subtracting the emitted radiation

according to Eq. 5.2 from the absorbed:

_q
00
rad ¼ εs

X
i

_q
00
inc, i

� �
� σ � T4

s

h i
ð5:10Þ

where εs is the emissivity/absorptivity of the target surface.

The surfaces emissivities of some materials are given in Table 5.1. In general the

emissivity of all real/technical materials is in the range of 0.75–0.95 except shiny

steel where the emissivity can be considerably lower. It depends on the temperature

of heat source and decreases in general with the heat source grey body temperature.

Typically values of the absorptivity of plywood drop from 0.86 to 0.76 when the

source temperature increases from 674 to 1300 K [12]. The corresponding value for

radiation emitted from the sun (5777 K) is as low as 0.40. Eurocode 2 [6] and

Eurocode 3 [3] recommend 0.7 for concrete and steel, respectively. The choice of

emissivity is primarily of importance when calculating temperature of fire-exposed

bare steel structures. For lightweight insulating materials the surface temperature

adapts quickly to the exposure conditions and therefore the heat transfer conditions,

expressed by the heat transfer coefficient, are negligible for the temperature

development.

Fig. 5.1 The heat transfer

by radiation to a surface

depends on incident

radiation and the absolute

temperature and emissivity

of the surface
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5.1 Radiation Between Two Parallel Planes and Radiation
Shields

When two infinite parallel plates as shown in Fig. 5.2a are considered, the radiation

view factor is unity as all the heat emitted or reflected at one surface will incident on

the other. Some of that heat will be absorbed and some will be reflected back to the

opposite surface. The net heat flux from surface one to two may be calculated as

_q
00
rad, 1�2 ¼ εresσ T4

1 � T4
2

� � ð5:11Þ

where the resultant emissivity is defined as

εres ¼ 1
1
ε1
þ 1

ε2
� 1

ð5:12Þ

Radiation exposure can be considerably reduced by a radiation shield. Figure 5.2b

shows an example where a shield is mounted between two surfaces. The shield has

no thermal resistance, i.e. its both sides have the same temperature. The radiation

heat flux rate between surface 1 to the shield must equal the flux rate between the

shield and the surface 2, i.e. _q
00
rad ¼ _q

00
1�sh ¼ _q

00
sh�2 or _q

00
rad ¼ εres, 1�shσ T4

1 � T4
sh

� � ¼
εres, sh�2σ T4

sh � T4
2

� �
. Thus the shield temperature to the fourth power can be

derived as

T4
sh ¼

εres,1�shT
4
1 þ εres, sh�2T

4
2

εres, 1�sh þ εres, sh�2ð Þ : ð5:13Þ

and if all the four surface emissivities defined in Fig. 5.2b are equal to εs then

Table 5.1 Surface emissivity

of some common materials
Material Emissivity, ε
Concrete 0.8a

Steel 0.7a

Min.wool 0.9

Paint 0.9

Red bricks 0.9

Wood 0.9

Sand 0.9

Rocks 0.9

Water 0.96

The values are uncertain and should be taken as

indicative
aFrom Eurocode
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T4
sh ¼

T4
1 þ T4

2

2
ð5:14Þ

and radiation heat flux between the surfaces 1 and 2 becomes

_q
00
rad ¼

εs
2� εsð Þ σ T4

1 � T4
2

� �
=2 ð5:15Þ

Equation 5.14 implies that in the case of equal emissivities, the temperature of,

e.g. a fire radiation shield is closer to the higher (fire) temperature than to the lower

(ambient) temperature. Under the same conditions Eq. 5.15 shows the heat flux by

radiation is reduced by 50%. A reduction of the common emissivity will reduce

heat transfer correspondingly although it will not change the temperature of the

shield as according to Eq. 5.14 the temperature of the shield is independent of the

emissivity.

Equation 5.15 may be extended to problems involving multiple radiation shields

with all surface emissivities being equal to εs. Then with N shields the heat flux

_q
00
rad,N becomes

_q
00
rad,N ¼ 1

N þ 1ð Þ _q
00
rad, 0 ¼

1

N þ 1ð Þ �
1

2
εs
� 1

σ T4
1 � T4

2

� � ð5:16Þ

where _q
00
rad, 0 is the radiation heat flux with no shields (N¼ 0) according to Eqs. 5.11

and 5.12 with equal emissivities.

The corresponding formula for the flux between infinitely long concentric

cylinders as indicated in Fig. 5.3 is

a b

T1
ε1

T2
ε2

T1

ε1

T2
ε2

Tsh

εsh-2εsh-1

Tsh

Fig. 5.2 Radiation heat

transfer between two large

parallel plates, without (a)
and with (b) a radiation
shield
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_q
00
rad, 1�2 ¼

σ T4
1 � T4

2

� �
1
ε1
þ r1

r2
� 1

ε2
� 1

� � ð5:17Þ

where r1 and r2 are the inner radii and ε1 and ε2 the corresponding surface

emissivities. Notice that if r1 � r2 or more generally for a small object in a large

cavity the heat flux from the inner object becomes independent of the outer surface

emissivity, i.e.

_q
00
rad, 1�2 ¼ ε1 � σ T4

1 � T4
2

� � ð5:18Þ

Example 5.1 The inside surfaces of the boards of an uninsulated wooden stud wall

as shown in Fig. 5.4 have the temperatures 300 and 100 �C, respectively. Calculate
the heat flux by radiation and convection between the board surfaces. The distance

between the boards is 100 mm and between the studs 600 mm. The emissivity of the

board surfaces is 0.9. Assume one-dimensional heat flux.

Solution Equations 5.11 and 5.12 yield _q
00
rad ¼ 1

1
0:9þ 1

0:9�1
� 5:67 � 10�8�

300þ 273ð Þ4 � 100þ 273ð Þ4
h i

¼ 4104 W=m2. For the convection heat transfer,

see Example 6.7. Thus _q
00
c ¼ 644 W=m2 and the total heat flux

_q
00
tot ¼ 4104þ 644ð Þ W=m2 ¼ 4748 W=m2. Notice in this case heat flux by

convection is less than 5% of the total.

T1

ε1

T2
ε2

r2

r1

Fig. 5.3 The heat flux from

the inner cylinder (1) can be

calculated according to

Eq. 5.17

Fig. 5.4 Uninsulated wooden stud wall
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Example 5.2 The radiation from a large flame at a temperature Tf ¼ 1000 K is

reduced by a metal radiation shield having no thermal conduction resistance

(Fig. 5.5). The ambient gas temperature T1 ¼ 300 K. Calculate the temperature

Tsh of the shield and the relative reduction of the radiation level _q
00
by the shield.

Assume

(a) εs ¼ 1 and h¼ 0.

(b) εs ¼ 0:5 and h¼ 0.

(c) εs ¼ 1 and h¼ 6 W/m2 K.

Solution

(a) All “surfaces” have an emissivity equal to unity. Thus according to Eq. 5.14

Tsh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10004 þ 2934

4
p

Þ=2 ¼ 842 K
�

and

_q
00 ¼ 5:67 � 10�8 � 8424 ¼ 28:5 W=m2, i.e. a reduction by 50%.

(b) Tsh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10004 þ 2934

4
p

Þ=2 ¼ 842 K
�

and _q
00 ¼ 0:5 � 28:5 ¼ 14:3 W=m2,

i.e. a reduction by 25%.

(c) An iteration formula can be derived Tiþ1
sh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10004 þ 2934

4
p

Þ�
�h

6=5:67 �
10�8 � T i

sh � 293
� ��=2 yields Tsh ¼ 818 K and _q

00 ¼ 5:67 � 10�8 � 8184 ¼
25:4 W=m2, i.e. a reduction by 45%.

Example 5.3 Gas flows through a long tube of r1 ¼ 40 mm diameter with an outer

surface emissivity ε1 ¼ 0:3. The tube is concentric with an outer insulation tube

Fig. 5.5 Radiation shield
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with an inner diameter r2 ¼ 100 mm and an inner surface emissivity ε2 ¼ 0:8. In
case of fire the inner surface of the outer tube is expected to reach a temperature

T2 ¼ 1200 K. Calculate the heat transfer by radiation per metre length _q
0
rad to the

inner tube when it has a temperature T1 ¼ 500 K.

Solution According to Eq. 5.17 the heat flux to the inner surface is

_q
00
rad ¼

5:67�10�8 12004�5004ð Þ
1
0:3þ 40

100
� 1

0:8�1ð Þ ¼ 33, 212 W=m2 and the heat transfer by radiation per

unit length becomes _q
0
rad ¼ 0:040 � π � 33, 212 ¼ 4173 W=m.

5.2 View Factors

When calculating the rate of heat transfer by radiation between surfaces, a method

is needed whereby the amount of heat being radiated in any direction can be

calculated. Therefore the concept view factor is introduced. The terms configura-
tion factor, shape factor and angle factor are also used. The physical meaning of the

view factor between two surfaces is the fraction of radiation leaving one surface

that arrives at the other directly. The symbolFA1�A2
is used to denote the view factor

from a surface A1 to a surface A2. The symbolFdA1�A2
denotes the view factor from

an incremental surface dA1 to a finite surface A2. View factors defined in this way

are functions of size, geometry, position and orientation of the two surfaces. View

factors are between zero and unity, and the sum of the view factors of a surface

is one.

Thus by definition the radiation leaving a surface A1 arriving at a surface A2 is

_q inc, 1�2 ¼ F1�2A1 _q
00
emi, 1 ð5:19Þ

and similarly the radiation leaving a surface A2 arriving at a surface A1 is

_q inc, 2�1 ¼ F2�1A2 _q
00
emi, 2 ð5:20Þ

A reciprocity relation can be derived which reads

A1F1�2 ¼ A2F2�1 ð5:21Þ

and

F2�1 ¼ A1

A2

F1�2 ð5:22Þ

In a more general way for any two surfaces i and j
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AiFi�j ¼ AjFj�i ð5:23Þ

Another useful relation between view factors may be obtained by considering the

system shown in Fig. 5.6. The view factor from the surface A3 to the combined

surface A1,2 is then

F3�1,2 ¼ F3�1 þ F3�2 ð5:24Þ

That is the total view factor is the sum of its parts. Eq. 5.24 could also be written as

A3F3�1,2 ¼ A3F3�1 þ A3F3�2 ð5:25Þ

and then the reciprocity relations below can be applied:

A3F3�1,2 ¼ A1,2F1,2�3

A3F3�1 ¼ A1F1�3

A3F3�2 ¼ A2F2�3 ð5:26Þ

Equation 5.25 can now be written as

A1,2F1,2�3 ¼ A1F1�3 þ A2F2�3 ð5:27Þ

A3

A1 A2

F3-1,2 = F3-1+ F3-2
A3F3-1,2 = A3F3-1 + A3F3-2
A1,2F1,2-3 = A1F1-3 + A2F2-3

Fig. 5.6 Relations between view factors
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That means the total radiation arriving at the surface A3 is the sum of the radiations

from the surface A1 and the surface A2.

The fact that the total view factor is the sum of its parts implies that the view factor

F1�3 for the surfaces in Fig. 5.7 can be calculated from tabulated view factors as

F1�3 ¼ F1�2,3 � F1�2 ð5:28Þ

Below some elementary examples are given. A lot more information can be found

in textbooks such as [1, 2, 11].

5.2.1 View Factors Between Differential Elements

The view factor between two differential elements as shown in Fig. 5.8 can be

obtained as

A2 A3

A1

Fig. 5.7 Calculation of

view factors by subtraction

according to Eq. 5.28

N
or
m
al

N
or
m
al

ф1

ф2

A1

A2

r

Fig. 5.8 Differential area elements used in deriving view factors according to Eq. 5.29
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dFd1�d2 ¼ cosφ1 cosφ2

πr2
dA2 ð5:29Þ

and correspondingly

dFd2�d1 ¼ cosφ1 cosφ2

πr2
dA1 ð5:30Þ

The reciprocity relation as given by Eq. 5.21 can be used to derive the equation

dFd1�d2dA1 ¼ dFd2�d1dA2 ¼ cosφ1 cosφ2

πr2
dA1dA2 ð5:31Þ

Now the energy exchange between two black differential elements can be written as

d2 _q d1�d2 ¼ σ T4
1 � T4

2

� �
dFd1�d2dA1 ¼ σ T4

1 � T4
2

� �
dFd2�d1dA2 ð5:32Þ

Then by inserting Eq. 5.29 or Eq. 5.30 the heat exchange between two differential

elements becomes

d2 _q d1�d2 ¼ σ T4
1 � T4

2

� � cosφ1 cosφ2

πr2
dA2dA1 ð5:33Þ

Fig. 5.9 The view factor of a plane element dA1 to a plane parallel rectangle vs. the relative

distances X¼ a/c and Y¼ b/c as defined in row 1 of Table 5.2. The normal to the element passes

through the corner of the rectangle
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The view factors between the entire surfaces A1 and A2 of Fig. 5.8 can be obtained

by integration as

F1�2 ¼ 1

A1

ð
A1

ð
A2

cosφ1 cosφ2

πr2
dA1 dA2 ð5:34Þ

and correspondingly

F2�1 ¼ 1

A2

ð
A1

ð
A2

cosφ1 cosφ2

πr2
dA1 dA2 ð5:35Þ

5.2.2 View Factors Between a Differential Element
and a Finite Area

The heat radiated from a differential (very small) area dA1 which reaches a surface

A2 is by the definition of the view factor

Fig. 5.10 The view factor of a plane element dA1 to a plane rectangle perpendicular to the element

vs. the relative distances X¼ a/c and Y¼ b/c as defined in row 2 of Table 5.2. The normal to the

element passes through the corner of the rectangle
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_q inc,d1�2 ¼ dA1Fd1�2 _q
00
emi, 1 ¼ dA1Fd1�2 � ε2 � σ � T4

1 ð5:36Þ

where ε2 is the emissivity of the emitting surface. (Any reflected radiation is here

neglected). Examples of such configurations can be seen in Table 5.2. Similarly the

heat radiated by A2 and reaching dA1 is

_q inc, 2�d1 ¼ A2F2�d1 q
00
emi, 2 ¼ A2F2�d1 � ε2 � σ � T4

2 ð5:37Þ

The reciprocity relation according to Eq. 5.21 then yields

_q inc, 2�d1 ¼ dA1Fd1�2 q
00
emi, 2 ð5:38Þ

and the incident radiation flux to the differential area surface becomes

_q
00
inc, 2�d1 ¼ Fd1�2 � q00

emi, 2 ¼ Fd1�2 � ε2 � σ � T4
2 ð5:39Þ

This is the most commonly applied formula version in FSE as it can be used to

estimate the incident radiant flux at point where it is expected to be most severe.

When several finite surfaces from 2 to n are radiating on an infinite area dA1, the

total incident radiation can be written as

_q
00
inc, 2�nð Þ�d1 ¼ σ

Xn

i¼2
Fd1�i � εi � T4

i ð5:40Þ

In principle when calculating the total incident radiation to a surface the incident

radiation from all angles must be included. Observe that the sum of the view factors

is unity. Usually, however, only the contributions from the hot areas such as flame

surfaces need be considered as the contributions from, for example, surface at

ambient temperature are negligible.

When several surfaces are involved the view factor may be obtained by adding

up the contributions from the individual surfaces according to Eq. 5.27. In the case

shown in Fig. 5.11 the view factor FdA1�A2�5
between the differential area dA1 and

the entire finite area A2�5 may be calculated as

Fd1� 2�5ð Þ ¼ Fd1�2 þ Fd1�3 þ Fd1�4 þ Fd1�5 ð5:41Þ

View factors of various configurations can be found in textbooks such as [1, 2] and

particularly in [11].

Table 5.2 shows how to calculate view factors for some elementary cases useful

in FSE.

Corresponding diagrams of the view factors defined in rows 1–3 of Table 5.2 are

shown Fig. 5.12.

Example 5.4 An un-insulated steel door leaf becomes uniformly heated to a

temperature of 500 �C during a fire. Calculate the maximum incident radiation
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_q
00
inc,max to a parallel surface 1 m from the door leaf with dimensions 0.9 m by 2.1 m

and an emissivity of 0.9.

Solution The highest incident radiation will be perpendicular to the centre of the

door leaf. Then Eq. 5.39 applies. When calculating the view factor the door is

divided into four equal areas and the view factor is obtained as the sum of the four

contributions. Then according to the first case in Table 5.2, X ¼ 2:1=2
1

¼ 1:05 and

Y ¼ 0:9=2
1

¼ 0:45 and the total view factor becomes FdA1�A2
¼

dA1

A5
A4

A2
A3

Fig. 5.11 The view factor

can be obtained by

summing up the

contributions of several

areas as given by Eq. 5.41
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Fig. 5.12 The view factor of plane element dA1 to a circular disk in a plane parallel to the element

vs. the relative distance h/r through the centre of the disk as defined in row 3 of Table 5.2
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4 � 1
2π

1:05ffiffiffiffiffiffiffiffiffiffiffiffi
1þ1:052

p tan�1 0:45ffiffiffiffiffiffiffiffiffiffiffiffi
1þ1:052

p þ
�

0:45ffiffiffiffiffiffiffiffiffiffiffiffi
1þ0:452

p tan�1 1:05ffiffiffiffiffiffiffiffiffiffiffiffi
1þ0:452

p Þ ¼ 4 � 0:085 ¼ 0:34. The

view factor for one-quarter of the door leaf (0.085) can alternatively be obtained

from Fig. 5.9. The maximum incident radiation _q
00
inc,max ¼ 0:34 � 0:9 � 5:67 � 10�8

�7734 ¼ 6200 W=m2 (corresponding to a black body radiation temperature of

574 K¼ 301 �C).

5.2.3 View Factors Between Two Finite Areas

In analogy with view factors between a differential element and a finite area

(Eq. 5.36) may the heat flow (with units [W]) from one finite area to another be

calculated as

_q inc, 1�2 ¼ A1F1�2 q
00
emi, 1 ¼ A1F1�2 ε1 � σ � T4

1 ð5:42Þ

The net exchange from A1 to A2 assuming black isothermal surfaces (ε¼ 1) is

_q 2$1 ¼ A1F1�2 σ T4
1 � T4

2

� � ð5:43Þ

Table 5.3 shows two examples on how to calculate view factors between finite

surfaces, two parallel circular disks with centres along the same normal and two

infinitely long plates of unequal widths having a common edge at an angle of 90 �C
to each other.

Example 5.5 Two small surfaces 1 and 2 are oriented perpendicularly to each

other as shown in Fig. 5.13 and have surfaces 0.1 and 0.2 m2, respectively, and

Table 5.3 Examples of formulas for calculating the view factors between finite areas

r1

r2 A2

A1

h

Finite, coaxial disks

R1 ¼ r1
h R2 ¼ r2

h

X ¼ 1þ 1þR2
2

R2
1

F1�2 ¼ 1
2

X �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � 4 R2

R1

� �2
r" #

A1

A2

w

h

Two infinitely long plates of unequal widths h and

w having a common edge at an angle of 90 �C to each

other

H ¼ h
w

F1�2 ¼ 1
2
1þ H �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ H2

ph i
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temperatures 850 and 400 K, respectively. How much heat is transferred between

the two surfaces?

Solution The distance between the surfaces becomes 5 m and thus cosφ1 ¼ 0:6

and cosφ2 ¼ 0:8. Then Eq. 5.33 yields _q d1�d2 ¼ 5:67 � 10�8

8504 � 4004
� �

0:6�0:8
π 52

� 0:1 � 0:2 ¼ 3:44 W.

Example 5.6 In the Cone Calorimeter the radiant panel has the shape of a

truncated circular cone as shown in Fig. 5.14. Assuming the panel has a uniform

temperature of 700 �C and an emissivity equal unity, and neglecting the radiation

from outside the cone, calculate

(a) The maximum incident radiation to a body below the panel.

(b) The mean incident radiation to body below the panel. Assume the body is

circular with a diameter of 100 mm.

Guidance: Surfaces may be numbered as Fig. 5.14b, i.e. specimen surface is

1, cone heater 2 and the opening 3.

Solution Equation 5.28 yields the view factor from the cone to the specimen to be

(a) Fd1�2 ¼ Fd1�2,3 � Fd1�3 ¼ 902

402þ902
� 402

1052þ402
¼ 0:84� 0:13 ¼ 0:71 and the

incident flux becomes qinc, d1 ¼ 0:71 � 5:67 � 10�8 � 700þ 273ð Þ4 ¼
36 , 000 W=m2.

(b) F1�2 ¼ F1�2,3 � F1�3

F1�2,3 : From Table 5.3 with R1 ¼ 50
40

and R2 ¼ 90
40

yielding X ¼ 4:88 and

F2,3�1 ¼ 0:79

1

2

4 m

3 m

Fig. 5.13 Two small

surfaces in the same plane

oriented perpendicularly

80a b

65

45
180

1

2
3

Fig. 5.14 Sketch of cone calorimeter for calculation of view factors to the specimen. The surfaces

are identified by the numbers in circles. (a) Measures in mm. (b) Numbering of surfaces
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F1�3: R1 ¼ 50
105

and R2 ¼ 40
105

yielding X ¼ 6:05 and F1�3 ¼ 0:11. Thus F1�2

¼ 0:79� 0:11 ¼ 0:68 and Eq. 5.42 qinc, 1 ¼ 0:68 � 5:67 � 10�8 � 700þ 273ð Þ4
¼ 34, 600 W=m2. Comment: The mean incident flux is only by 4% less than

the maximum.

5.3 Radiation from Flames and Smoke

It is flames, smoke particles and combustion products that absorb and emit heat

radiation in fires. It is generally assumed continuous over all wavelengths when

calculating temperature although some gas species only absorb and emits at certain

wavelength intervals. In general simple gas molecules such as oxygen O2 and

nitrogen N2 do not absorb or emit heat radiation while molecules such as carbon

monoxide CO2 and water H2O do depending on wavelength. Therefore the heat

absorbed or emitted by clean air is negligible.

Overall the absorption αfl and the emission εfl of a flame or smoke layer depend

on the absorption or emission coefficient K and the mean beam length Le.
According to the Kirchhoff’s law the absorptivity and the emissivity are equal.

Then the Beer’s law is a useful tool in approximate radiation analyses [1, 2]. Thus

αfl ¼ εfl ¼ 1� e�K�Le ð5:44Þ

For gas species K depends on wavelength, but as the bulk of the radiation from

flames and smoke layers emanates from soot particles, it is treated as independent of

wavelength, i.e. K is treated as an effective absorption/emission coefficient.

The emitted heat from a flame may accordingly be written as

_q
00
emi, fl ¼ 1� e�K�Le� �

σ � T4
fl ð5:45Þ

where Tfl is the flame temperature (assumed uniform). A few empirical and not very

reliable data for the effective absorption/emission coefficient, K, are available in the
literature. Some values are shown in Table 5.4.

The mean beam length giving reasonable approximations may be obtained from

Le ¼ 3:6
V

A
ð5:46Þ

where V is the total volume of the gas and A the total surface area. For a volume

between two infinite planes at a distance L a mean beam length Le can be obtained as

Le ¼ 1:8 L ð5:47Þ
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Observe that a flame or a smoke layer absorbs radiant heat depending on the

absorptivity according to Eq. 5.44. This is illustrated by Example 5.9.

Example 5.7 What is the emitted radiation heat flux _q
00
from an oil fire where

K¼ 0.4 m�1.

Assume a beam length L¼ 1 m and a flame temperature of

Tfl ¼ 1073 K ¼ 800 �Cð Þ.
Solution

_q } ¼ 1� e�K�L� � � σ � T4

fl ¼ 25, 000W=m2

Example 5.8 The surface temperature Ts of a stove is 500
�C and has an emissivity

of εs¼ 1.0. Near the stove is a wooden wall with a surface emissivity of εw¼ 0.8.

The air temperature in the space between the stove and the wall Tg ¼ 40 �C and the

convection heat transfer coefficient is hc ¼ 10 W= m2Kð Þ. Assume the surfaces of

the stove and the wall being parallel and infinitely large.

(a) What is the net heat transfer by radiation to the wall surface at the ignition

temperature assumed to be Tig¼ 300?

(b) What is the maximum temperature the wall can obtain at equilibrium, when

the surface does not absorb any more heat and is assumed to be a perfect

insulator (i.e. the adiabatic surface temperature).

Solution

(a) Equations 5.11 and 5.12 yield _q
00
rad ¼ εr � σ Ts þ 273ð Þ4 � Tw þ 273ð Þ4

h i
and

εr ¼ 1
1
εs
þ 1

εw
�1¼ 1

1
1
þ 1
0:8

�1¼0:8

, and _q
00
rad ¼ 0:8 � 5:67 � 10�8 � 7734 � 5734

� � ¼
11:3 � 103 W=m2.

(b) The surface heat balance: εrσ Ts þ 273ð Þ4 � Tw þ 273ð Þ4
h i

þ h Tg � Tw

� � ¼
0:8 � 5:67 � 10�8 � 7734 � Tw þ 273ð Þ4

h i
þ 10 � 40� Twð Þ ¼ 0.

Table 5.4 The effective absorption/emission coefficient K for various fuels, from [13]

Fuel K (m�1) Reference

Diesel oil 0.43 Sato and Kunimoto

Polymethylmethacrylate 0.5 Yuen and Tien

Polystyrene 1.2 Yuen and Tien

Wood cribs 0.8 Hägglund and Persson

Wood cribs 0.51 Beyris et al.

Assorted furniture 1.1 Fang
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An iteration scheme yields: Tiþ1
w ¼ 273þ 773� 10 � 40� T i

w

� �
=

	
0:8 � 5:67 � 10�8
� ��1=4 �C

. Assuming T0
w ¼ 300 �C yields T1

w ¼ 467 �C and subse-

quently T2
w ¼ 443 �C and T3

w ¼ 446 �C which is an acceptable solution.

Example 5.9 A specimen as shown in Fig. 5.15 is suddenly exposed to a propane

flame which is assumed to have a thickness of δfl ¼ 0:2 m at the point being

analysed. Assume the effective flame absorption coefficient K ¼ 0:5 m�1, the

flame temperature Tfl¼ 800 �C, the ambient and initial temperatures

T1¼Ti¼ 20 �C, the convective heat transfer coefficient hc¼ 10 W/m2, the surface

emissivity εs¼ 0.9 and the ignition temperature of the specimen Tig¼ 350 �C

(a) Calculate the incident radiant heat flux q
00
inc to the specimen surface.

(b) Calculate the total heat flux by radiation and convection to specimen surface at

the start of the test and at ignition, i.e. when the specimen surface temperature

Ts¼ 20 �C and Ts¼ 350 �C, respectively.
(c) Comment on the magnitude of the contributions to the heat transfer by

radiation and convection, respectively.

(d) Calculate the adiabatic surface temperature TAST at the specimen surface.

(e) Repeat item (b), i.e. calculate the total heat flux to specimen at the start of the

test and at ignition using TAST.

Solution
(a) Incident heat flux from the flame, see Fig. 5.15, can be written as:

_q
00
inc ¼ _q

00
inc, fl þ _q

00
inc,1 ¼ εfl � σ � T4

fl þ 1� εfl
� �

σ � T4
1. The emissivity of a

flame or smoke layer, εfl, may be calculated according to Eq. 5.45 as: εfl ¼ 1

�e�0:5�1:8�0:2 � 0:18:The incident heat flux from the flame and the surrounding

will be: _q
00
inc ¼ 5:67 � 10�8 0:18 800þ 273ð Þ4 þ 1� 0:18ð Þ � 20þð

h
273Þ4� ¼

13, 871 W=m2 � 13:9 kW=m2.

Fig. 5.15 One-dimensional

model of the heat exchange

by radiation at a surface

exposed to a flame of

limited thickness

5.3 Radiation from Flames and Smoke 85



(b) The total heat flux to the specimen is the sum of the heat flux by radiation and

convection: _q
00
tot ¼ εs _q

00
inc � σT4

s

� �þ hc Tfl � Ts

� �
. At the initial temperature:

q
00
tot, 20 ¼ 0:9 13, 871� 5:67 10�8 20þ 273ð Þ4

� �
þ 10 800� 20ð Þ ¼ 12, 108

þ7800 ¼ 19, 908 � 19:9 � 103 W=m2 and at ignition temperature q
00
tot, 350 ¼

0:9 13, 871� 5:67 10�8 350þ 273ð Þ4
� �

þ 10 800� 350ð Þ ¼ 4796þ 4500

¼ 9:3 � 103 W=m2.

(c) When the surface of the specimen is at the initial temperature the contributions

by radiation and convection is in the same order of magnitude in the studied

case. When the surface is at ignition temperature, the surface is heated by

convection and cooled by radiation.

(d) By definition q
00
inc ¼ σT4

r and thus based on the q
00
inc calculated above

Tr ¼ 703 K ¼ 430 �C. TAST can be obtained by solving the fourth degree

equation 4.22. Thus TAST ¼ 745 K ¼ 472 �C.
(e) Equation 4.31 yields at the initial temperature _q

00
tot, 20 ¼ 0:9 σ 7034 � 2934

� �
þ10 703� 293ð Þ ¼ 15, 343þ 4520ð Þ ¼ 19:9 � 103 W=m2, and at the ignition

temperature

_q
00
tot, 350 ¼ 0:9 � σ 7454 � 6234

� �þ 10 � 745� 623ð Þ ¼ 9:3 � 103 W=m2. Note

that these alternatively calculated heat flux values are equal to those calculated

under item (b).

Example 5.10 A 6 m high, 4 m wide and 0.5 m thick flame is covering a well-

insulated façade with a surface emissivity εs ¼ 0:9. In the centre-line of the flame

2 m outside the façade surface is a small square section steel column. Assume the

flame temperature equal Tfl ¼ 800 �C, the flame absorption/emission coefficient

κ¼ 0.3 m�1 and the convective heat transfer coefficient h¼ 35 W/(m2 K), see

Fig. 5.16.

Calculate under state conditions

(a) The temperature of the façade surface behind the flame.

(b) The emitted radiant flux from the flame surface towards the column.

(c) The maximum incident radiation to the four sides of the column.

Solution

(a) The emissivity according to Eqs. 5.44 and 5.47 εfl ¼ 1� e�1:8*2*0:3
� � ¼ 0:66.

Then the incident radiation to the façade surface becomes 0:66 � 5:67 � 10�8

800þ 273ð Þ4 ¼ 49:6 � 103 W=m2 (corresponding to a radiation temperature

of about Tr ¼ 700 �C) and the adiabatic surface temperature TAST can then be

obtained from (Eq. 4.21) as 0:9 � 49:6 � 103 � 5:67 � 10�8 � T4
AST

	 
þ
35 � 800þ 273� TASTð Þ ¼ 0 which yields TAST ¼ 988 K ¼ 715 �C after

two iterations according to Eq. 4.25.
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(b) Contributions from the flame plus the façade surface _q
00
emi ¼ 0:66 � 5:67 � 10�8

800þ 273ð Þ4 þ 1� 0:66ð Þ � 5:67 � 10�8 � 9884 ¼ 68:0 � 103 W=m2.

(c) Column side facing the façade, 1: Divide into four equal contributions

according to Table 5.2 first row or the diagram in Fig. 5.9 with X¼ 2/2¼ 1

and Y¼ 3/2¼ 1.5 yields Fd1-2¼ 0.09 and the total view factor

F¼ 4�0.09¼ 0.36 and thus incident flux 0:36 � 68:0 � 103 ¼ 24:5 � 103 W=m2.

Sides of the column, 2 and 3: The sides will only be exposed to half the

flame. Figure 5.10 with X¼ 2/2¼ 1 and Y¼ 3/2¼ 1.5 yields Fd1-2¼ 0.065 and

F¼ 2�0.065¼ 0.15 and thus incident flux 0:15 � 68:0 � 103 ¼ 10:2 � 103 W=m2.

Column side facing away from the façade, 4: This side does not face the

façade and will only get an incident radiation corresponding to the ambient

temperature, i.e. 5:67 � 10�8 20þ 273ð Þ4 ¼ 0:42 � 103 W=m2.

Fig. 5.16 Façade flame

radiating on an external

column surrounded by air at

ambient temperature
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Chapter 6

Heat Transfer by Convection

In previous chapters heat transfer by convection or just convection was treated only

to the extent that it provides a linear boundary condition of the 3rd kind for

conduction problems when the heat transfer coefficient is assumed constant. In

this chapter the physical phenomenon of convection is described in more detail.

Heat is transferred by convection from a fluid to a surface of a solid when they

have different temperatures. Here it is shown how the convection can be calculated

and in particular how the convection heat transfer coefficient, denoted h or some-

times for clarity hc, can be estimated in various situations relevant for FSE

problems.

When the gas or liquid flow is induced by a fan, etc. it is called forced
convection, and when it is induced by temperature differences between a surface

and the adjacent gases it is called natural convection or free convection. In the latter
case the surface heats or cools the fluid which then due to buoyancy moves upwards

or downwards. Both natural and forced convection can be laminar or turbulent
depending on fluid properties and velocity, and on size and shape of exposed

surfaces. Various modes occur in fires and are relevant in FSE.

The heat transfer by convection depends in any case on the temperature differ-

ence between the fluid and the surface. Usually in FSE it is assumed directly

proportional to the difference of the two temperatures according to the Newton’s

law of cooling, see Sect. 4.2. This is linear boundary condition which facilitates

calculations without jeopardizing accuracy as heat transfer by radiation at elevated

temperatures dominates over the transfer by convection.

Section 6.1 gives expressions on how air and water conductivity and viscosity

vary with temperature. Viscosity is the measure of a fluid’s resistance to flow and

has a decisive influences convective heat transfer properties.

In Sects. 6.2 and 6.3 general formulas are presented for various fluids, config-

urations and flow conditions followed by some useful approximate formulas and

diagrams applicable specifically to air which considerably facilitates calculations of

FSE problems.
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6.1 Heat Transfer Properties of Air and Water

The properties of several fluids are tabulated in textbooks such as [1] for various

temperature levels. Special attention is given to air as it usually in flow calculations

is assumed to have the same properties as smoke and fire gases.

For air the conductivity kair can be approximated as [14]

kair ¼ 291 � 10�6 T0:79 W= mKð Þ½ � ð6:1Þ

and the kinematic viscosity νair as

νair ¼ 1:10 � 10�9 T1:68 m2=s
� � ð6:2Þ

respectively, where T is temperature in Kelvin. See also Figs. 6.1 and 6.2 for

graphical presentations. The simple approximations are used in this book for

obtaining close form expressions for among other things convection heat transfer

coefficients.

The Prandtl number does not vary much with temperature and may in most cases

be assumed constant, Prair ¼ 0:7.
The thermal conductivity water kw can be approximated as

kw ¼ �0:575þ 6:40 � 10�3 � T � 8:2 � 10�6 � T2 W= mKð Þ½ � ð6:3Þ
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Fig. 6.1 Thermal conductivity kair of air vs. absolute temperature. See also Eq. 6.1
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where T is the water temperature in Kelvin. Table 6.1 shows also other properties of

water at various temperatures relevant for thermal calculations.

Latent heat of vaporization of water relevant when calculating temperature in

moist solids aw ¼ 2260kJ=kg.

6.2 Forced Convection

The heat transfer coefficient or the thermal resistance between a gas or fluid and a

solid surface is controlled within the so-called boundary layer. The thermal resis-

tance of this layer and thereby the amount of heat being transferred depends on the

thickness of the layer and the conductivity of the fluid. The thickness of the

boundary layer in turn depends on the velocity of the fluid.

6.2.1 On Flat Plates

Figure 6.3 shows an edge where a boundary layer is developed in a forced flow over

a flat surface. Outside the boundary layer the flow is undisturbed and has a uniform

velocity u1. It then decreases gradually closer to the surface and very near the

surface it vanishes. As indicated in Fig. 6.3 the boundary layer thickness δ grows

with the distance from the leading edge.

0

20

40

60

80

100

120

140

160

180

200

300 400 500 600 700 800 900 1000 1100 1200 1300

Ki
ne

m
a�

c 
vi

sc
os

ity
 [m

m
2 /s

] 

Temperature [K]

Fig. 6.2 Kinematic viscosity νair of air vs. absolute temperature. See also Eq. 6.2
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The heat transfer resistance Rh can now be calculated as heat resistance between

the fluid and the solid surface in a similar way as for thermal conduction in solids:

Rh ¼ δ

kf
ð6:4Þ

where kf is the thermal conductivity of the fluid and δ the boundary layer thickness.
The subscript f indicates that the parameter values shall be at the film temperature

which is the average of the surface Ts and the free stream fluidT1 temperatures, i.e.

Tf ¼ Ts þ T1ð Þ
2

ð6:5Þ

The heat transfer coefficient can be obtained as the inverse of the heat transfer

resistance according to Eq. 2.14. Thus

Table 6.1 Properties of water

Temperature

(oC)

Conductivity

(W/(m K)

Density

(kg/m3)

Specific heat

(kJ/(kg K))

Kinematic

viscosity (m2/s)

Prandtl’s

no. (�)

5 0.57 1000 4.20 1.79 � 10�6 13.67

15 0.59 999 4.19 1.30 � 10�6 9.47

25 0.60 997 4.18 1.00 � 10�6 7.01

35 0.62 994 4.18 0.80 � 10�6 5.43

45 0.63 990 4.18 0.66 � 10�6 4.34

55 0.64 986 4.18 0.55 � 10�6 3.56

65 0.65 980 4.19 0.47 � 10�6 2.99

75 0.66 975 4.19 0.41 � 10�6 2.56

85 0.67 968 4.20 0.37 � 10�6 2.23

95 0.67 962 4.21 0.33 � 10�6 1.96

From the Engineering ToolBox, www.EngineeringToolBox.com, except the conductivity which is

according to Eq. 6.3.

Fig. 6.3 Boundary layer

with a thickness δ
developing after an edge of

a flat surface
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hf ¼ kf
δ

ð6:6Þ

The heat transfer coefficient is often expressed by the Nusselt number Nu, a
non-dimensional relation between the boundary layer thickness δ and a character-

istic length x of the exposed surface. With δ obtained from Eq. 6.6

Nuf ¼ x

δ
¼ h � x

kf
ð6:7Þ

In the case of a plane surface as shown in Fig. 6.3, the characteristic length x is
the distance from the edge. Near the edge, small values of x, the flow is laminar and

further away it is turbulent. The Nusselt number at a distance x has been derived

analytically as (see, e.g. [1]):

Nuxf ¼ 0:332 Pr
1=3
f � Ref x

1=2 ð6:8Þ

where Prf is the Prandtl number which relates the kinematic viscosity ν and thermal
diffusivity α of the fluid. Refx is the Reynolds number which indicates whether the

flow conditions are laminar or turbulent. It is a non-dimensional grouping of

parameters defined as

Refx ¼ u1 � x
νf

¼ ρf � u1 � x
μf

ð6:9Þ

where μ is the dynamic viscosity of the fluid. The kinematic viscosity ν is the

dynamic viscosity divided by the density, i.e.:

ν ¼ μ

ρ
ð6:10Þ

By integration along the surface the mean Nusselt numberNuf can be obtained as

Nuf ¼ 2 � Nuxf ¼ 0:664 � Pr1=3f � Ref x
1=2 ð6:11Þ

For constant fluid properties the heat transfer coefficient at a distance x can now

be calculated by combining Eqs. 6.7 and 6.8:

hf x ¼ Nuxf � kf
x

¼ 0:332 � kf � Pr
1
3

f � νf�1=2 � u11=2 � x�1=2 ð6:12Þ

The mean heat transfer coefficient from the edge x ¼ 0 to x is twice this value:
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hf x ¼ 2 hf x ¼ 0:664 kf � Pr
1
3

f � νf�1=2u1�1=2x�1=2 ð6:13Þ

An important observation is that the heat transfer coefficient decreases with

dimensions. Smaller dimensions mean larger convective heat transfer coefficients.

6.2.1.1 Heat Transfer in Air

To facilitate analyses of FSE problems material properties of air is now assumed by

inserting Eqs. 6.1 and 6.2 into Eq. 6.12 and assuming Pr¼ 0.7. The heat transfer

coefficient can then be obtained as a function of film temperature, air velocity and

distance from the edge as:

hf x ¼ 2:59 � T�0:045
f � u11=2 � x�1=2 W= m2K

� �� � ð6:14Þ

Note that the influence of the film temperature level is rather weak. The mean

heat transfer coefficient will be twice that value:

hf x ¼ 2 � hf x ¼ 5:17 � T�0:045
f � u11=2 � x�1=2 W= m2K

� �� � ð6:15Þ

Example 6.1 A 200-mm-wide steel plate having a uniform temperature of 500 K is

exposed to an air stream with a temperature of 1200 K and a velocity of 2.0 m/s.

Calculate the mean heat flux by convection _q ”
con to the steel surface.

Solution Insert the parameters in Eq. 6.15. The film temperature Tf ¼ 850 K and

then hf x ¼ 5:17 � 850�0:045 � 21
2 � 0:2�1

2 W= m2 Kð Þ ¼ 12:0W= m2 Kð Þ, and the mean

heat flux _q
00
con ¼ 12:0 � 1200� 500ð Þ ¼ 8370 W=m2.

Example 6.2 A heat flux meter measures the heat flux to its cooled sensor surface,

see Sect. 9.2. Assuming the sensor surface has a diameter of 10 mm, calculate the

heat transfer coefficient by convection h. The sensor surface temperature is esti-

mated to be uniform and equal to 30 �C. Estimate the heat flux by convection _q
00
con to

the sensor surface if the gas temperature is 400 �C and the gas velocity is 2 m/s.

Solution Apply Eq. 6.15 h ¼ 5:17 � 400þ30
2

þ 273
� ��0:045 � 21=2 � 0:01�1=2 ¼

55W=m2, and the heat flux to the sensor surface by convection becomes _q
00
con ¼

55 � 400� 30ð Þ ¼ 20300W=m2 ¼ 20:3kW=m2.
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6.2.2 Across Cylinders

In the case of flow across a cylinder an empirical expression for the Nusselt number

has been derived, see, e.g. [1, 2]:

Nuf ¼ h � d
kf

¼ C � Redf
� �n � Pr13f ð6:16Þ

For a cylinder with a diameter d and the Reynolds number becomes

Redf ¼ u1 � d
νf

¼ u1 � d
1:13 � 10�9 � T1:67

f

� 1

1:13 � 10�9
� Γ ð6:17Þ

where the parameter group named Γ identified as

Γ ¼ u1 � d
T1:67
f

ð6:18Þ

is introduced to simplify calculations.

The convection heat transfer coefficient can be derived from Eq. 6.16 as

h ¼ kf
d
� C � u1 � d

νf

� �n

� Pr13f ð6:19Þ

The constants C and n are given in Table 6.2.

6.2.2.1 Heat Transfer in Air

For air or fire gases the conductivity kf and the viscosity νf as functions of

temperature can be obtained from Eqs. 6.1 and 6.2, respectively, and inserted into

Eq. 6.19 to become

h ¼ 291 � 10�6 � T0:79
f

d
� C � u1 � d

1:10 � 10�9 � T1:68
f

 !n

� 0:71
3 ð6:20Þ

which can be reduced to

h ¼ A � C � T
0:79�1:68n
f � u1 n

d1�n
ð6:21Þ

where the constants A, C and n can be found in Table 6.2 for various ranges of the

values of Redf or Γ.
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Example 6.3 Calculate the convective heat transfer coefficient of a 1 mm shielded

thermocouple. Model the thermocouple as a cylinder and assume an air velocity of

u1 ¼ 1:0 m=s flowing across the cylinder. Assume gas temperature levels of

(a) Tg ¼ 300 K (room temperature initially)

(b) Tg ¼ 1000 K (ultimate temperature)

Solution

(a) The film temperature Tf¼ (300 + 1000)/2¼ 650 K. Then according to Eq. 6.18

Γ ¼ 1 � 0:001= 6501:67
� � ¼ 20 � 10�9 and from Table 6.2 C¼ 0.911,

n¼ 0.385 and A¼ 341. Then h ¼ 0:341 � 0:911 � T
0:79�1:68�0:385
f u1 0:385

d1�0:385 ¼
131 W= m2Kð Þ.

(b) Equation 6.18 yields Γ ¼ 1:0 � 0:001= 10005=3
� � ¼ 9:77 � 10�9. A, C and n

can now be obtained from row two of Table 6.2 and inserted into Eq. 6.21 to

get h ¼ 0:341 � 0:911 � T
0:92�1:67�0:385
f u1 0:385

d1�0:385 ¼ 0:311 � T
0:277
f u1 0:385

d0:615
¼ 147W= m2Kð Þ

Comment: The heat transfer coefficient due to convection changes only slightly

with temperature. However, it would change considerably if the heat transfer due to

radiation would be included as well.

6.2.3 In Circular Pipes and Tubes

The heat transfer between the fluid and the walls of a circular tube depends on the

fluid conductivity k and kinematic viscosity ν, the fluid velocity u and the flow

conditions, laminar or turbulent governed by the Reynolds number

ReD ¼ u � D
ν

¼ ρ � u � D
μ

ð6:22Þ

All parameters refer to bulk temperatures. For details see textbooks such as

[1, 2].

Table 6.2 Constants to be used with Eqs. 6.16 and 6.21 for calculating the Nusselt number and

heat transfer coefficients to cylinders exposed to forced convection flow

Redf Γ (Eq. 6.18) C n A [SI units]

0.4–4 (0.45–4.5) � 10�9 0.989 0.330 0.110

4–40 (4.5–45) � 10�9 0.911 0.385 0.341

40–4000 (45–4500) � 10�9 0.683 0.466 1.81

4000–40,000 (4.5–45) � 10�6 0.193 0.618 41.4

40,000–400,000 (45–450) � 10�6 0.0266 0.805 1950
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For turbulent flow (ReD > 2300
�
the Nusselt number can be calculated as

Nud ¼ 0:023 � Re0:8d � Prn ð6:23Þ

where n ¼ 0:4 for heating and n ¼ 0:3 for cooling of the fluid.

For laminar flow ( ReD < 2300
�

the Nud approaches a constant value for

sufficiently long tubes, i.e.

Nud ¼ 3:66 ð6:24Þ

Then the heat transfer coefficient between the fluid and the walls can be

calculated as

h ¼ Nud � kf
D
: ð6:25Þ

where kf is the conductivity of the fluid at the film temperature.

Example 6.4 Air with a bulk temperature Tair ¼ 200 �C is flowing with a velocity

of 2 m/s in a tube/duct with an inner diameter D¼ 400 mm. Estimate the heat flux to

the duct surfaces which have a temperature of 800 �C?

Solution The film temperature Tf ¼ 0:5 200þ 800ð Þ ¼ 500 �C ¼ 773 K. Then

Eq. 6.1 yields kair ¼ 0:0567W= mKð Þ and Eq. 6.2 νair ¼ 78:3 � 10�6 m2=s and

according to Eq. 6.22 Re¼ 10,200 which indicates turbulent flow. Then from

Eq. 6.23 Nud ¼ 32:2 (the fluid is heated and n¼ 0.4) and according to Eq. 6.25

h ¼ Nud � k
D ¼ 32:2 � 0:0567

0:4 ¼ 4:48W= m2Kð Þ. Thus the heat flux to the tube wall

_q
00
w ¼ 4:48 � 800� 200ð Þ ¼ 2690 W=m2.

Example 6.5 Water with a bulk temperature of Tw ¼ 20 �C is flowing with a

velocity u¼ 0.1 m/s in a tube with an inner diameter D¼ 50 mm. Estimate the heat

flux to the tube surfaces which have a constant temperature Tw ¼ 70 �C?

Solution The film temperatureTw ¼ 20þ70
2

¼ 45 �C ¼ 318 K. Then from Table 6.1

the conductivity kw ¼ 0:63 W= mKð Þ, the viscosity νw ¼ 0:66 � 10�6 m2=s and

Prw ¼ 4:34. According to Eq. 6.22 Re¼ 7576 which indicates turbulent flow. Then

from Eq. 6.23 Nud ¼ 52:2 (the fluid is heated and n¼ 0.4) and according to

Eq. 6.25 h ¼ Nud � k
D ¼ 52:2 � 0:63

0:4 ¼ 658 W= m2Kð Þ.

6.3 Natural or Free Convection

6.3.1 On Vertical and Horizontal Plates

Natural or free convection occurs as a result of density changes due to heating or

cooling of fluids at solid surfaces. When a wall is hotter than adjacent air an
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upwards flow is established as shown in Fig. 6.4, and vice versa if the wall is cooler.

The velocity just at the wall surface is zero. It increases then to a maximum and

thereafter it decreases to zero again at the end of the boundary layer where the free

stream velocity is assumed to be negligible. At the outset the boundary layer is

laminar but changes to turbulent at some distance from the edge depending on fluid

properties and the difference between wall surface and fluid temperatures. In

practice in FSE, natural and forced convection commonly occur simultaneously

and analyses must focus on the one which is predominant.

In general it is very difficult to make accurate estimates of natural convection

heat transfer coefficients. The formula given below for some elementary cases are

based on empirical evidence obtained under controlled conditions. Such conditions

rarely occur in real life but they serve as guidance for estimates. Any accurate

analytical solutions are not available for calculating heat transfer by natural

convection.

As for forced convection the Nusselt number yields the heat transfer coefficient.

It depends in the case of free convection on the Prandtl and Grashof numbers. The

latter is defined as

Grxf ¼
g � βf � Ts � Tg

� � � L3
υ2f

ð6:26Þ

where g (¼9.81 m/s2) is the constant of gravity, L a characteristic length, ν the

kinematic viscosity of the fluid and βf is the inverse of the film temperature as

defined in Eq. 6.5:

Fig. 6.4 Free convection

boundary layer at a vertical

hot surface
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βf ¼
1

Tf
ð6:27Þ

The subscript f indicates that values of the parameters are taken at the film

temperature.

Based on empirical data for both laminar and turbulent convection the average

values of the Nusselt number and the corresponding heat transfer coefficient can be

written as:

Nuf ¼ hf � L
kf

¼ C � Grf � Prf
� �m ð6:28Þ

This formula correlates well for several simple geometrical configurations. Here

L is a characteristic length appropriate for the configuration. For horizontal rectan-

gular plates the characteristic length may be estimated as

L ¼ A

P
ð6:29Þ

where A is the area and P the perimeter of the surface. The other constants of

Eq. 6.28 can be found in Table 6.3. As a rule of thumb, the exponent m ¼ 1=4 for

laminar and m ¼ 1=3 for turbulent flow.

6.3.1.1 Explicit Expressions for Heat Transfer from Air

Equation 6.28 and Table 6.3 can be used to derive convection heat transfer

coefficients. By inserting the approximations of kf (Eq. 6.1) and υf (Eq. 6.2) of air
as functions of temperature, explicit expressions can be derived for heat transfer

coefficients as functions of the air Tair and the surface Ts temperature. Tf is the film
temperature defined as the mean of the ambient air temperature and the surface

temperature (Eq. 6.5).

Observe temperatures must be in Kelvin in all formulas.
Thus at vertical plates and large cylinders under turbulent conditions (m ¼ 1=3)

in air the mean heat transfer coefficient can be calculated as

hf ¼ Nuf � kf
L
¼ 76:0 � T�0:66

f � Ts � Tairj j1=3 ð6:30Þ

The heat flux to a vertical surface may now be written in the form given in

Eq. 4.8 as

_q
00
con ¼ 76:0 T�0:66

f Tair � Tsð Þ0:33 ð6:31Þ
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_q
00
con is positive when Tair � Tsð Þ is positive and vice versa. Notice that in this case

the heat transfer coefficient is independent of the dimension L and inversely

proportional to approximately the square root of the temperature level. The varia-

tion of hf with the surface temperature for various gas temperatures are shown in

Fig. 6.5. When the surface and gas temperatures are equal the air flow and thereby

Table 6.3 Constants to be used with Eq. 6.28 for calculating heat transfer coefficients and heat

transfer to surfaces exposed to natural convection

Configurations GrLfPrf.
Characteristic

length C m

Vertical plates and large cylinders

– Laminar 104–109 L 0.59 1/4

– Turbulent 109–1012 L 0.13 1/3

Horizontal plates

– Laminar (heated surface up or cooled

down)

2 � 104–
8 � 106

L¼A/P 0.54 1/4

– Turbulent (heated surface up or cooled

down)

8 � 106–011 L¼A/P 0.14 1/3

– Laminar (heated surface down or

cooled up)

105–1011 L¼A/P 0.27 1/4
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Fig. 6.5 Heat transfer coefficient due to natural convection vs. surface temperature for various

surrounding air temperatures at vertical plates and large cylinders under turbulent conditions
according to Eq. 6.30
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the heat transfer vanishes and it increases gradually when the fluid and surface

temperatures diverges. As the formula are symmetric concerning Tair and Ts the

diagram also be interpreted as hf vs. gas temperature for various surface temper-

atures. Observe that for the gas temperature equal to 20 �C that convection heat

transfer coefficient peaks at about 11.5 W/(m2 K). Then it decreases slowly. In the

interval from room temperature to 200 �C which is of interest for evaluation of fire

separating walls the convection heat transfer coefficient increases from zero to

about 11 W/(m2 K).

Observe that Eqs. 6.30 and 6.31 apply only for turbulent conditions according to

Table 6.3. This requirement is generally met in fire safety problems such as cooling

of the unexposed side of a fire separating wall element.

The convective heat transfer coefficient to horizontal surfaces depends on the

size of the surface. By inserting the value of the kinematic viscosity at the film

temperature according to Eq. 6.2 the Rayleigh number becomes

Prf � GrLf
� � ¼ 5:68 � 1018 L3 � T�4:36

f ΔT ð6:32Þ

If the Rayleigh number is between 2 � 104 and 8 � 106 according to Table 6.3, the

Nusselt number can be obtained according to Eq. 6.28 with the air conductivity

according to Eq. 6.1 and Pr¼ 0.7. The heat transfer coefficient can then be

calculated as

hf ¼ 7:67 L�1=4 � T�0:33
f � ΔT1=4 ð6:33Þ

Of special interest are the heat transfer coefficients to specimen surfaces of the

cone calorimeter (ISO 5660) and to plate thermometers when mounted horizon-

tally. Both have a surface 0.1 m by 0.1 m and thus a characteristic length

L¼ 0.025 m according to Eq. 6.29. Then the convection heat transfer coefficient

can be calculated as

hf ¼ 19:3 T�0:33
f � ΔT1=4 ð6:34Þ

Figure 6.6 shows convective heat transfer coefficients to horizontal surfaces with

a characteristic length of 0.025 m for various gas temperatures as functions of the

surface temperature.

Example 6.6 A PT is exposed to an incident radiation _q
00
inc ¼ 50 kW=m2. Assum-

ing that it does not lose any heat by conduction estimate its steady-state tempera-

ture, i.e. adiabatic surface temperature, when the PT is mounted

(a) horizontally

(b) vertically
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The exposed surface area of the PT is 0.1 m by 0.1 m. Assume the emissivity of

the PT surface is 0.9 and the ambient temperature is 20 �C.
Hint: The net heat absorbed by radiation must be balanced by the heat lost by

convection.

Solution _q
00
inc ¼ 50 kW=m2 yields a radiation temperature Tr ¼ 969 K ¼ 696 �C.

(a) Assuming a first surface temperature estimate T1
AST ¼ Ts ¼ Tr yields

according to Eq. 6.34 or Fig. 6.6 h¼ 11.7 W/(m K). Then the AST can be

calculated with the iteration procedure according to Eq. 4.25 with T1
AST ¼ Tr.

Thus T2
AST ¼ 923K and T3

AST ¼ 926K ¼ 653 �C. Finish iteration. Compare

with Fig. 4.7a for h=ε ¼ 13 W= m2Kð Þ.
(b) Assuming a first surface temperature estimate T1

AST ¼ Ts ¼ Tr yields

according to Eq. 6.30 or Fig. 6.5 h¼ 9.2 W/(m K). Then T2
AST ¼ 934 K and

T3
AST ¼ 936 K ¼ 663 �C. Finish iteration. Compare with Fig. 4.7a for

h=ε ¼ 10W= m2Kð Þ.

Fig. 6.6 Heat transfer coefficient vs. surface temperature due to natural convection at a horizontal
plate for L¼ 0.025 m and 2 � 104<GrLf Prf<8 � 106. Particularly applicable to cone calorimeter

(ISO 5660) and PTs with exposed areas of 0.1 m by 0.1 m

102 6 Heat Transfer by Convection

http://dx.doi.org/10.1007/978-3-319-30172-3_4
http://dx.doi.org/10.1007/978-3-319-30172-3_4
http://dx.doi.org/10.1007/978-3-319-30172-3_4


6.3.2 In Enclosed Spaces

Heat is transferred between surfaces of enclosures. Two elementary cases of free

convection may be identified characterized by horizontal and vertical layers,

respectively.

The heat flux may in both cases be calculated as [1, 15]

_q
00
c ¼ Nuδ

kf
δ

T1 � T2ð Þ ð6:35Þ

where kf is the thermal conductivity of the fluid. For horizontal layers where the

upper surface is warmer there will be no buoyancy driven convection or flow and

the heat will be transferred by conduction only, i.e. Nuδ¼ 1. However, if the upper

surface is cooler than the lower convection will occur and the Nusselt number will

be greater than one. Equation 6.35 may also be written as

_q
00
c ¼

ke
δ

T1 � T2ð Þ ð6:36Þ

where the ke may be identified as the effective or apparent thermal conductivity of
the air enhanced by convection. It is defined by the relation

ke
kf

¼ Nuδ ð6:37Þ

The Nusselt numbers can be obtained from Table 6.3 for various ranges of the

Grashof number according to Eq. 6.38

Grδ ¼ g � β T1 � T2ð Þ δ3
υ2

ð6:38Þ

When the lower surface is warmer than the upper, convection and heat transfer

by convection will occur when Gr> 104. Inserting the values of υ for air and β as

functions of the mean of T1 and T2 according to Eqs. 6.2 and 6.27, respectively,

yields:

Gr airδ ¼ 8:11 � 1018 T1 � T2ð Þ δ3
Tδ

13=3
ð6:39Þ

where Tδ is the mean of the surface temperatures, i.e.

Tδ ¼ T1 þ T2ð Þ
2

ð6:40Þ
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The characteristic length L in Table 6.3 denotes the vertical height of a vertical
enclosure, see Fig. 6.7b. Note that the influence of convection heat transfer is

negligible when enclosure is small, Grδ < 2000. The air conductivity vs. the

mean temperature according to Eq. 6.1 is used when deriving the expressions in

the right column of Table 6.4. These values are then used in Eq. 6.35 to calculate the

heat flux by convection across enclosed spaces.

Example 6.7 Calculate the apparent conductivity and heat transfer by convection

between two parallel vertical surfaces as in Fig. 5.4 when the surfaces have

temperatures T1 ¼ 300 �C ¼ 573 K and T2 ¼ 100 �C ¼ 373 K and the distance

δ ¼ 0:1 m. The height L¼ 0.6 m.

Solution Equation 6.40 yields Tδ ¼ 573þ373ð Þ
2

¼ 473 K and Eq. 6.39 yields for air

Gr airδ ¼ 8:11�1018 573�373ð Þ�0:13
47313=3

¼ 4:17 � 106. Then according to the 7th row of

Nuδ ¼ 0:065 � 4:17 � 106� �1
3 � 0:6

0:1

� ��1
9 ¼ 8:53, and by inserting Eq. 6.1 into Eq. 6.37

the effective conductivity is obtained as from Eq. 6.37

ke ¼ 8:53 � 291 � 10�6 � 4730:79 W
m K

¼ 0:322 W= m Kð Þ. The heat transfer may then

be obtained from Eq. 6.36 as _q
00
c ¼ 0:322

0:1 573� 373ð Þ W=m2 ¼ 644 W=m2. Alter-

natively the explicit expression in the 4th column of the 7th row may be used.

Example 6.8 The same as Example 6.8 but in a horizontal configuration with a hot

lower surface with a temperature T1 ¼ 300 �C ¼ 573 K and a cooler upper surface

with a temperature T2 ¼ 100 �C ¼ 373 K, and a distance between the parallel

surface δ ¼ 0:1 m, see Fig. 6.8.

Solution Equation 6.40 yields Tδ ¼ 573þ373ð Þ
2

¼ 473 K and Eq. 6.39 yields for air

Gr airδ ¼ 8:11�1018 573�373ð Þ�0:13
47313=3

¼ 4:22 � 106. Then according to the 4th row of

Nuδ ¼ 0:068 � 4:22 � 106� �1=
3 ¼ 10:44, and the effective conductivity of the enclosed

air is obtained from Eq. 6.37 as ke ¼ 10:44 � 291 � 10�6 � 4730:79 ¼ 0:394 W= m Kð Þ.

Fig. 6.7 Enclosed space

with a hot left surface and a

cool right surface. Upper

and lower surfaces are here

assumed adiabatic. (a) Flow
pattern (b) Nomenclature
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The heat transfer may then be obtained from Eq. 6.36 as _q
00
c ¼

0:116
0:1 573� 373ð Þ W=m2 ¼ 232 W=m2. Alternatively the 4th column may be used.

Table 6.4 Nusselt number Nuδ for calculating convection heat transfer in air in enclosed spaces

according to Eq. 6.35 [15]

No Orientation Range Nuδ ke=δ ¼ Nuair
δ

k air
f

δ

1 Horizontal layers

(hotter upper layer)

(Stable layers) 1 291�10�6 Tδ
0:79

δ

2 Horizontal layers

(cooler upper layer)
Grδ < 104 1 291�10�6 Tδ

0:79

δ

3 < 400 � 103 0:195 Gr
1=4
δ

1:42 T1�T2ð Þ0:25
Tδ

0:09 �δ0:25

4 Grδ > 400 � 103 0:068 Gr
1=3
δ

39:2 T1�T2ð Þ0:33
Tδ

0:65

5 Vertical layers Grδ < 20 � 103 1 291�10�6 Tδ
0:79

δ

6 20 � 103 < Grδ < 200 � 103
0:18 Gr

1=4 L
δð Þ

�1=9

δ

2:80 T1�T2ð Þ0:25
Tδ

0:09�L0:11�δ0:14

7 200 � 103 < Grδ < 11 � 106
0:065 Gr

1=3 L
δð Þ

�1=9

δ

37:5 T1�T2ð Þ0:33�δ0:11
Tδ

0:65 �L0:11

The last column shows explicitly the thermal resistance ke/δ

Fig. 6.8 Nomenclature for calculating heat transfer by convection across an enclosed space with

two horizontal parallel surfaces of different temperatures where T1 > T2
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Chapter 7

Numerical Methods

The analytical methods outlined in Chaps. 2 and 3 presume that the material

properties and heat transfer coefficients are constant. That is, however, not possible

in most cases in fire protection engineering as the temperature then varies within a

wide range and therefore both material properties and boundary conditions vary

considerably. Phase changes or latent heat due to water vaporization or chemical

reactions of materials (see Sect. 14.1 on concrete) must in many cases be considered

to achieve adequate results. Furthermore in particular radiation heat transfer coef-

ficients vary considerably with temperature. As shown in Sect. 4.1 it increases with

the third power of the temperature level. In addition geometries being considered

are not as simple as assumed above. Often they are in two or three dimensions, and

then analytical methods can seldom be used for practical temperature analyses.

Therefore numerical methods involving computer codes are frequently used in fire

protection engineering. In some cases in particular for 0-dimension problems

(lumped-heat-capacity) relatively simple so-called spreadsheet codes such as

Excel may be used. For problems with more complex geometries and boundary

conditions computer codes based on finite difference or finite elements methods are

needed. Several computer codes based on these methods are commercially avail-

able, see Sect. 7.3.2. The superposition technique as presented in Sect. 7.2 may be

seen as a combination of a numerical and an analytical method.

7.1 Lumped-Heat-Capacity

The basic theory of heat transfer to bodies with uniform temperature is given in

Sect. 3.1. According to Eq. 3.2

© Springer International Publishing Switzerland 2016
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dT

dt
¼ A

V � ρ � c _q
00 ð7:1Þ

where A is exposed area, V volume, ρ density and c specific heat capacity of the

exposed body. By integrating over time the body temperature becomes

T ¼ Ti þ A

V � c � ρ
ð t

0

_q
00
dt ð7:2Þ

where Ti is the initial temperature. In case _q
00
is given as function of time (2nd kind

of BC) or proportional to the difference between the surrounding and the body

(surface) temperatures (3rd kind of BC), the temperature T can sometimes be solved

analytically. In most other cases numerical methods must be used even when

lumped heat is assumed.

In general both space and time are discretized except for lumped-heat-capacity

problems with only one unknown temperature where only time is discretized.

The time derivative of Eq. 7.1 is approximated by the differential, i.e. dT
dt � ΔT

Δt .

Given the time is divided into increments as indicated in Fig. 7.1

Δtjþ1 ¼ tjþ1 � tj ð7:3Þ

and temperature increments are defined as

ΔTjþ1 ¼ Tjþ1 � Tj ð7:4Þ

Assuming the time increment constant Eq. 7.1 can be written as a finite differ-

ence equation as

Tjþ1 � Tj ¼ ΔTjþ1 � A

V c � ρð Þ _q
00 j
tot Δt ð7:5Þ

where _q
00 j
tot is the heat flux to the surface at the time increment j.

In the simplest case the heat flux is proportional to the difference between the

insulation surface temperature and uniform body temperature as shown in Fig. 3.3b.

Then Eq. 7.5 can be written as

Tjþ1 ¼ Tj þ A

V cρð Þ �
kin
din

Ts � Tj
� �

Δt ð7:6Þ

where kin and din are the conductivity and thickness of the insulation. When solved

according to this forward difference scheme, all the parameters may be updated at

each time step depending on the temperature of time increment j.
When a body is exposed to a third kind of boundary condition, i.e. a function of

incident radiation (or radiation temperature) and gas temperature and the current
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surface temperature, the total heat flux _q
00
tot is defined according to Eq. 4.11 and the

body temperature may be calculated as

Tjþ1 ¼ Tj þ A

V cρð Þ ε _q
00 j
inc � σ Tj 4

� �
þ hc

�
T j
g � Tj

h ��
Δt ð7:7Þ

or when the heat flux is defined according to Eq. 4.12 as

Tjþ1 ¼ Tj þ A

V cρð Þ ε σ Tj 4
r � Tj 4

� �þ hc
�
T j
g � Tj

h ��
Δt ð7:8Þ

The recursion formulas of Eq. 7.7 through Eq. 7.10 are forward difference or

explicit schemes. That means all parameters on the right-hand side of the equation

are known at time increment j and the new temperature at time j + 1 can be

calculated explicitly. Such integration schemes are numerically stable only if

each time increment is chosen less than a critical time increment, the critical time

increment Δtcr defined as

Δtcr ¼ V � c � ρ � din
kin � A ð7:9Þ

for Eq. 7.6, and

Δtcr ¼ V � c � ρ
htot � A ð7:10Þ

for Eq. 7.7 and Eq. 7.10. htot is the total adiabatic heat transfer coefficient as defined
by Eq. 4.19. The critical time corresponds to the time constant as defined in Sect.

3.1. It can vary over time as the including parameter changes with temperature. In

reality much shorter time increments in the order of 10% and the critical time

increment are in general recommended to achieve accurate temperatures.

Example 7.1 An unprotected steel section with a section factor V
A ¼ 100m�1 is

suddenly exposed to a constant fire temperature Tf ¼ Tr ¼ Tg ¼ 1000 �C. Calcu-
late the steel temperature as a function of time if the initial temperature is

Ti ¼ 20 �C. Assume a steel surface emissivity of 0.9 and a convection heat transfer

coefficient of 25 W/(m2 K). ρst ¼ 7850kg=m3 and cst ¼ 560Ws= kg Kð Þ.

20 1 3 j j+1j-1 nn-1

Time, t

Time increment numbers

0

Fig. 7.1 Time axis indicating time increment numbering
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Solution This problem is ideally solved by applying Eq. 7.8 in a spreadsheet

application. The first three increments are shown below. Assume Δt ¼ 10s. Then
A=Vð Þ�Δt
c�ρ ¼ 100�10

560�7850 ¼ 0:227 � 10�3 m2=W and Eq. 7.8 yields T1 ¼ 20þ 0:227 � 10�3

0:8 � 5:67 � 10�8 1273 4 � 2984
� �þ 25 1000� 20ð Þ� � ¼ 52:5 �C, T2 ¼ 79:6K and

T3 ¼ 112K. The maximum htot can be obtained from Eq. 4.19 or Fig. 4.2a as

470 W/(m2 K) and from Eq. 7.10 the minimum incrementΔtcr ¼ 560�7850
100�470 ¼ 93s. At

preceding lower steel temperature levels htot is much greater and thereby Δtcr is
much smaller, and therefore Δt ¼ 10s will yield accurate steel temperatures.

Example 7.2 A steel plate with a thickness of dst ¼ 10mm and an initial temper-

ature of (¼293 K) is placed in the sample holder of a cone calorimeter, see Fig. 7.2.

The incident radiation of the cone is set to 50 kW/m2. The plate is well insulated on

all surfaces except the upper exposed surface. Assume a steel surface emissivity of

0.9 and a convection heat transfer coefficient hc ¼ 12W= m2 � Kð Þ. ρst ¼ 7850kg=

m3 and cst ¼ 560Ws= kg Kð Þ. Derive a time integration scheme and show the first

three time increments.

Solution Apply Eq. 7.7 where A
Vρc ¼ 1

dρc ¼ 1
0:01�7850�560 ¼ 1

44000
Ws=m2K and

_q
00 j
tot ¼ 0:9 50000� σT4, j

� �þ 12 � 20� Tð Þ. Thus a forward difference incremen-

tal scheme becomes Tjþ1 ¼ Tj þ Δt
44000

0:9 50000� σT4, j
� �þ 12 � 293� Tj

� �� 	 ¼
0:9�50000þ12�293ð ÞΔt

44000
þ 1� 12 Δt

44000

� �
Tj� Δt

44000
� 5:67 � 10�8T4, j

�
. Assume a time incre-

ment Δt ¼ 60s. Then the incremental scheme can be reduced to:

Tjþ1 ¼ 66:2þ 0:984 � Tj � 77:3 � 10�12 � T4, j.

First step, j¼ 1: T2 ¼ 66:2þ 0:984 � 293� 77:3 � 10�12 � 2934 ¼
66:2þ 288� 0:57 ¼ 354 K ¼ 80:6 �C.

Second step, j¼ 2: T3 ¼ 66:2þ 0:984 � 354� 77:3 � 10�12 � 3544 ¼ 66:2þ 349�
1:2 ¼ 413 K ¼ 141 �C.

Third step, j¼ 3: T4 ¼ 66:2þ 0:984 � 413� 77:3 � 10�12 � 4134 ¼
66:2þ 406� 2:25 ¼ 470 K ¼ 197 �C.

Comment: Figure 7.3 shows a comparison between measured and calculated tem-

perature steel specimen as in the example. In the calculations Eq. 7.8 was applied

with a heat transfer coefficient hc increased to 18 W/(m2 K) to consider the heat

losses from the steel specimen by conduction and a gas temperature Tg as measured

with a thin thermocouple. The accurate prediction indicates how well Eq. 7.8

models the heat transfer to a specimen surface in the cone calorimeter.
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7.2 Superposition and the Duhamel’s Superposition
Integral

A technique based on superposition is presented below. In its infinitesimal form it

may be called Duhamel’s superposition integral. It is a technique which has many

various types of applications when analysing bodies with constant material prop-
erties and with zero initial temperature conditions which are exposed to boundary

conditions varying with time. Zero initial temperature conditions can be obtained

for bodies with constant initial temperatures by calculating temperature rise as

shown below.

The technique is here exemplified for the case of a surface of a semi-infinite solid

at uniform temperature Ti. See also [1, 2]. When it is suddenly receiving a constant
external heat flux f at the time t¼ 0, the surface temperature rise θs ¼ Ts � Ti may

then be written as

Fig. 7.2 Heat transfer to a

10-mm-thick steel plate in

the cone calorimeter
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Fig. 7.3 Comparison of measured and calculated temperature of 10-mm-thick steel specimen

exposed to an incident radiation of 50 kW/m2 in a cone calorimeter
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θs ¼ f � A tð Þ ð7:11Þ

where A(t) is the response function (sometimes called the fundamental solution).
It is here the surface temperature response as a function of time for a unit heat flux

( f ¼ _q
00
tot ¼ 1 ). For semi-infinite solids the response function of the surface

temperature is according to Eq. 3.29

A tð Þ ¼ 2√t

√π√ kρcð Þ ð7:12Þ

The surface temperature according to Eq. 7.11 applies only if the heat flux

remains constant with time. When the heat flux to the surface, generally called

the forcing function, varies with time, i.e. f tð Þ ¼ _q
00
tot tð Þ, the surface temperature

may be calculated by superposition. Thus according to the Duhamel integral of

superposition the solution R(t) (the surface temperature rise in this case) as a

function of time can be written as

R tð Þ ¼ f 0ð Þ � A tð Þ þ
ð t

ξ¼0

f
0
t� ξð Þ � A ξð Þ dξ ð7:13Þ

where f0 denotes the time derivative of the forcing function. By integration by parts

and noting that A tð Þ ¼ 0, an alternative formulation can be obtained where the

response function is derived instead of the forcing function.

R tð Þ ¼
ð t

ξ¼0

f t� ξð Þ � A0
ξð Þ dξ ð7:14Þ

where A0 is the time derivative of the response function. (ξ is a dummy variable

defined only within the integral.)

Equation 3.16 in Sect. 3.1.2.1 giving the temperature of a thermocouple

modelled as lumped heat was derived from Eq. 7.14. In that case the response

function can be derived analytically and depending on the forcing function, the

integral can in some cases be solved analytically. In other cases numerical integra-

tion techniques must be used to calculate the thermocouple temperature at a given

time t.
Then the time is divided into increments and the surface temperature rise Ti, i.e.

θ ¼ Ts � Ti, may be calculated numerically by a time step superposition scheme.

To illustrate how solutions can be superimposed to obtain the surface temperature

of a time-dependent flux, the following case is studied. The heat flux is assumed to

vary as shown in Fig. 7.4. Thus
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f tð Þ ¼ q1 0 < t < t1
f tð Þ ¼ q2 t1 < t < t2
f tð Þ ¼ q3 t > t2

ð7:15Þ

Then the surface temperature rise can be calculated as

θs ¼ q1 tð Þ � A tð Þ þ q2 � q1ð Þ � A t� t1ð Þ þ q3 � q2ð Þ � A t� t2ð Þ ð7:16Þ

In a general form the surface temperature rise may be written as

θs ¼ f 0ð Þ � A tð Þ þ
Xn

i¼1
Δf tið Þ � A t� tið Þ ð7:17Þ

where

Δf tið Þ ¼ f tiþ1ð Þ � f tið Þ ð7:18Þ

A very powerful superposition technique is shown below which allows the forcing

function to depend on the response for the actual exposure. That is, for instance, the

case when a surface is exposed to radiation and the emitted radiation depends on the

surface temperature. Then a new surface temperature rise can then be calculated at

time increment j + 1 as:

θjþ1 ¼
X j

i¼0
f i � f i�1ð Þ � Aj�i

� � ð7:19Þ

or alternatively as

θjþ1 ¼
X j

i¼0
f j�i � Aiþ1 � Aið Þ
h i

ð7:20Þ

where Δt is the time increment and θ0 ¼ f0 ¼ 0. The values of the time-dependent

parameters at a given number of time increments i are defined as θi ¼ θ i � Δtð Þ,
f i ¼ f i � Δtð Þ and Ai ¼ A i � Δtð Þ.

Fig. 7.4 A stepwise

changing forcing function
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In the case of a surface exposed to radiation and convective heat transfer, the

forcing function, i.e. the heat flux to the surface, can be calculated according to

Eq. 3.14. Then at time increment j calculated as

f j � Δtð Þ ¼ _q
00
tot j � Δtð Þ

¼ ε _q
00
inc j � Δtð Þ � σT4

s j � Δtð Þ� �þ h Tg j � Δtð Þ � Ts j � Δtð Þ� � ð7:21Þ

where _q
00
inc and Tg are input boundary conditions and Ts the surface temperature

approximated by its calculated value at time increment j.

Example 7.3

A concrete wall surface is assumed to receive piecewise constant heat fluxes

(boundary condition of second kind) according to Eq. 7.15 and as indicated in

Fig. 7.4 with the following input values:

t1 ¼ 10min, t2 ¼ 20min and q1 ¼ 20kW= m2Kð Þ, q2 ¼ 35kW= m2Kð Þ and

q3 ¼ 15kW= m2Kð Þ
The initial wall temperature is 20 �C. Assume thermal properties of concrete

according to Table 1.2.

Express the surface temperature rise as a function of time for the three time

intervals by superposition according to Eq. 7.16.

Solution According to Table 1.2 k � ρ � cð Þ ¼ 3:53 � 106 W2s
� �

= m4K2
� �

. Then

Eq. 7.16 yields with the response function according to Eq. 3.29 new surface

temperature rises as:

Time

interval [s] Surface temperature rise, θs [�C]
0 < t < 600 20000 � 2

ffi
t

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

ffiffiffiffiffiffiffiffiffiffiffiffi
3:53�106

pp
600 < t < 1200 20 � 103 � 2

ffi
t

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

ffiffiffiffiffiffiffiffiffiffiffiffi
3:53�106

pp þ 35� 20ð Þ � 103 � 2
ffiffiffiffiffiffiffiffiffi
t�600

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

ffiffiffiffiffiffiffiffiffiffiffiffi
3:53�106

pp
t > 1200 20 � 103 � 2

ffi
t

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

ffiffiffiffiffiffiffiffiffiffiffiffi
3:53�106

pp þ 35� 20ð Þ � 103 � 2
ffiffiffiffiffiffiffiffiffi
t�600

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

ffiffiffiffiffiffiffiffiffiffiffiffi
3:53�106

pp þ 15� 35ð Þ � 103 � 2
ffiffiffiffiffiffiffiffiffiffiffi
t�1200

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

ffiffiffiffiffiffiffiffiffiffiffiffi
3:53�106

pp

7.3 The Finite Element Method for Temperature Analyses

When calculating temperature in fire-exposed structures, non-linearities must in

most cases be considered. The boundary conditions are non-linear varying signif-

icantly with temperature as shown above (see Chap. 4), and also the thermal

properties of most materials vary significantly within the wide temperature span

that must be considered in FSE problems. Therefore numerical methods must

usually be employed. The most general and powerful codes are based on the

so-called finite element method (FEM). Below the basic equations are derived for
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a simple one-dimensional case as an illustration. Similar types of equation may be

derived for two and three dimensions.

7.3.1 One-Dimensional Theory

Figure 7.5 shows a wall which has been divided into a number of one-dimensional

elements. The temperature between the nodes is assumed to vary linearly along the

length.

In any element, interior or at the surface, with the length L, see Fig. 7.6, the

conductivity k and a cross-section area A, the heat flow to the element nodes can be

calculated as

_q 1 ¼
k

L
� T1 � T2ð Þ ð7:22Þ

and

_q 2 ¼ �k

L
� T1 � T2ð Þ ð7:23Þ

or in matrix format as

_q
e ¼ _k

e � _T e ð7:24Þ

where _q
e
is the element node heat flow vector, _k

e
the element thermal conduction

matrix and _T
e
the element node temperature vector. Given the one-dimension

assumption, the cross-section area is constant and assumed equal unity. Then the

element thermal conduction matrix may then be identified as

k
e ¼ k e

11 k e
12

k e
21 k e

22

� �
¼ k

L

þ1 �1

�1 þ1

� �
ð7:25Þ

and the element nodal temperature and heat flow vectors as

m-1 m+1m

i-1 i i+1

1

1 n

Fig. 7.5 A wall divided into one-dimensional elements numbered with m:s and with the nodes

numbered with i:s
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_T
e ¼ T1

T2


 �
ð7:26Þ

and

_q
e ¼ q1

q2


 �
ð7:27Þ

In a similar way an element heat capacity matrix can be defined by lumping the

heat capacity of the element in the nodes. Thus an element heat capacity matrix may

be obtained as

ce ¼ L � c � ρ
2

1 0

0 1

� �
ð7:28Þ

When several elements are combined, global heat conductivity matrix K can be

assembled. In the very simple case of three one-dimensional elements, the global

thermal conduction matrix becomes

K ¼
k111
k121
0
0

k112
k122 þ k211
� �

k221
0

0

k212
k222 þ k311
� �

k321

0

0

k312
k322

2
664

3
775 ð7:29Þ

where the super fixes 1–3 denote the contributions from the corresponding element

numbers. The global heat capacity matrix C may be assembled in a similar way as

the global conductivity matrix. Notice that both the heat conductivity and the heat

capacity matrices are symmetric and dominated by their diagonal elements, and that

the global heat capacity matrix assembled from element matrices according to

Eq. 7.28 will have non-zero elements only in the diagonal. This will have a decisive

influence on how global algebraic heat balance equation can be solved as shown

below.

T1
q1

T2
q2

L, A

k, r

Fig. 7.6 A one-dimensional element with local element node numbers 1 and 2 and with a length

L and a section area A. The element is given a thermal conductivity k, a specific heat capacity c and
a density ρ
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In global form the heat balance equation may now be written in matrix form as

C _T þ K T ¼ Q ð7:30Þ

where the vector _T contains the time derivatives of the node temperatures. Each row

in this equation system represents the heat balance of a node. For each equation or

each node either the temperature or the heat flow given in the corresponding rows in

the vectorsT andQ, respectively, are known. In principle three cases are possible for
each equation/row (c.f. the three kinds of boundary conditions as presented in

Chap. 4):

1. The node temperature Ti is prescribed.
2. The node heat flow Qi is prescribed.

3. The node heat flow Qi can be calculated as a function of a given gas temperature

and radiation temperature, and the surface temperature.

In the first case the corresponding equation vanishes as the unknown quantity is

prescribed a priori. The most common case for internal nodes is the second case,

i.e. the external flow is zero. A typical boundary condition when calculating

temperature in fire-exposed structures is of the third case corresponding to a

boundary of the 3rd kind. Then according to Table 4.1 of Chap. 4 the nodal heat

flow is

_Q i ¼ εσ T4
r � T4

s, i

� �þ h Tg � Ts, i

� � ð7:31Þ

(given the cross-section area equal unity). Notice that this is non-linear as the

emitted radiation depends on the temperature raised to the fourth power. This is

of importance when choosing the equation-solving methodology.

The differential global matrix equation Eq. 7.30 is solved numerically by

approximating the time derivative of the node temperatures as

_T � ΔT
Δt

¼ T
jþ1 � T

j

Δt
ð7:32Þ

where T
j
is the node temperature vector at time step j and Δt is here a chosen time

increment. Now the heat balance equation in matrix format Eq. 7.30 can be written

as

C
T
jþ1 � Tj

Δt

" #
þ KT ¼ Q ð7:33Þ

In this differential equation the temperature vector is known at time increment j.
The new temperature vector at time j + 1 is obtained explicitly based on the

conditions at time step j for calculating the thermal conduction as
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T
jþ1 ¼ Tjþ Δt C�1

Q
j � KT

j
h i

ð7:34Þ

As the heat capacity matrix is here assumed diagonal (c.f. Eq. 7.28), the new

node temperatures at time step j + 1 can be obtained directly row by row and no

system equation needs to be solved. Alternatively an implicit method may be

derived where the conduction is based on the temperatures at time step j + 1.
Then the new node temperatures may be calculated as

T
jþ1 ¼ C

Δt
þ K

� ��1

Q
jþ CT

j
� �

Δt ð7:35Þ

Combinations of the two solution methods are also possible but as soon as the

conduction depends on the node temperature at time step j + 1 the solution scheme

requires the solution of a global equation system containing as many unknowns as

there are unknown node temperatures. Most finite element computer codes use this

type of implicit solution schemes. They are generally numerically more stable than

the explicit techniques and therefore longer time increments may be used.

The explicit solution according to Eq. 7.34 may, on the other hand, be very

simple when the heat capacity matrix C is diagonal, i.e. it contains only non-zero

elements in the diagonal as shown for a one-dimensional element in Eq. 7.28. The

solution of the equation system becomes then trivial as each nodal temperature can

be obtained directly/explicitly, one at a time. It involves only a multiplication of a

matrix with a vector which requires much less computational efforts than solving an

equation system. This solution scheme is, however, numerically stable only when

the time increment Δt is less than a critical value proportional to the specific heat

capacity times the density over the heat conductivity of the material times the

square of a characteristic element length dimension Δx. This requirement applies to

all the equations of the entire system, all nodes i except those with prescribed

temperatures. If violated in any of the equations, i.e. at any point of the finite

element model, the incremental solution equation will become unstable (cf. Sect. 7.1

and Eq. 7.10 on lumped-heat-capacity). Hence in the one-dimensional case treated

here the critical time increment Δtcr may be estimated as

Δtcr � min
ρ � c
2k

Δx2
h i

i
ð7:36Þ

This means that short time increments are needed for materials with a low

density and a high conductivity, and when small element sizes are used. At

boundary nodes with heat transfer conditions of the 3rd kind the critical time

increment will be influenced by the heat transfer coefficient h as well. Then at

any node i
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Δtcr � min
ρ � c

k þ h=Δx
Δx2

� �
i

ð7:37Þ

The heat transfer coefficient h is here the sum of the heat transfer coefficient by

convection and radiation, denoted by htot in Sect. 4.3.

In practice, when calculating temperature in fire-exposed structures, short time

increments must be used independent of solution technique as the duration of

analyses are short and boundary condition chances fast. Therefore numerical

stability is only a problem when modelling sections of very thin metals sheets

with high heat conductivity. Then very short time increments are required. The

problem may, however, be avoided by prescribing that nodes close to each other

shall have the same temperature. This technique has been applied in the code

TASEF [14]. In that code a technique is also developed where the critical time

increment is estimated and thereby acceptable time increments can be calculated

automatically at each time step depending on thermal material properties and

boundary conditions varying with temperature. At boundaries of the 3rd kind

short time critical time increments can be avoided by assuming the surface tem-

perature equal to the surrounding temperature (boundary of the 2nd kind). This

approximation may be applied when the thermal inertia of a material is relatively

low and the surface temperature is expected to follow close to the exposure

temperature (adiabatic temperature).

As a general rule finite element calculations shall not be accepted until it is

shown that the solution gradually converge when time increments and element sizes

are reduced. This rule applies to both computer codes using explicit and implicit

solution techniques. A guidance standard on requirements for calculation methods

that provide time-dependent temperature field information resulting from fire

exposures required for engineered structural fire design has been published by

SFPE [18].

7.3.2 Computer Codes for Temperature Calculations

Several computer codes are commercially available for calculating temperature in

fire-exposed structures. They are in general based on the finite element method.

Some are specifically developed and optimized for calculating temperature in fire-

exposed structures while others are more general purpose codes.

TASEF [14, 19] and SAFIR [20] are examples of programs which have been

developed for fire safety problems. They have different pros and cons. They all

allow for temperature-dependent material properties and boundary conditions.

TASEF employs a forward difference solving technique which makes it particularly

suitable for problems where latent heat due to, e.g. vaporization of water must be

considered. It yields also in most cases very short computing times, in particular for

problems with a large number of nodes. TASEF and SAFIR have also provisions for
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modelling heat transfer by convection and radiation in internal voids. TASEF does

also allow for boundary conditions where the exposure radiation and gas temper-

ature are different, boundary condition of the 3rd kind according to Table 4.1.

There are many very advanced general purpose finite element computer codes

commercially available such as ABAQUS, ANSYS, ADINA, Heating 7 and

Comsol. The main advantage of using this type of codes is that they have several

types of elements for various geometries and dimensions, and that they come with

advanced graphical user interfaces and pre- and post-processors.

7.3.3 On Accuracy of Finite Element Computer Codes

There are at least three steps that must be considered when estimating the accuracy

of computer codes for numerical temperature calculations:

1. Accuracy of material properties

2. Verification of the calculation model

3. Validity of the calculation model

The first point is crucial. Errors in material property input will be transmitted

into output uncertainties and errors. Methods for measuring material properties at

high temperature are briefly discussed in Sect. 1.3.3.

Secondly, the numerical verification of the computer code itself is important.

Verification is the process of determining the degree of accuracy of the solution of

the governing equations. Verification does not imply that the governing equations

are appropriate for the given fire scenario, only that the equations are being solved

correctly.

The third point is of course important as well. Validation is the process of

determining the degree to which a mathematical model and a calculation method

adequately describe the physical phenomena of interest. Temperature calculation

codes are in general developed for solving the Fourier heat transfer equation.

Effects of varying material thermal properties can be considered in the numerical

integration while, for example, the thermal effects of spalling or water migration

cannot generally be predicted. Other important aspects are the possibilities of

satisfactory describing boundary conditions. For FSE problems generally involving

high temperatures, the calculation of heat transfer by radiation at external bound-

aries and in internal voids is of special concern.

The codes mentioned above yield results with acceptable accuracy for simple

well-defined boundary conditions and material properties. Differences when mixed

boundary conditions and latent heat are introduced. A scheme to follow including a

number of reference cases of various levels of complexity has been published in an

SFPE standard [21]. Precisely calculated reference temperatures of 16 cases of

bodies have been listed. They represent a variety of problems that are relevant in

FSE involving a range of complexities.
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Some reference cases are linear problems which can be solved analytically. Then

when increasing the number of elements the results should converge to one correct

value. Codes yielding results that converge smoothly when increasing the number

of elements are generally more reliable for the type of problems considered. Most of

the reference cases are relevant for FSE including effects of conductivity varying

with temperature, latent heat, radiant heat transfer boundary conditions and com-

binations of materials, concrete, steel and mineral wool. Then as no exact analytical

solutions are available, the cases were modelled in the finite element codes Abaqus

and TASEF. The difference between the solutions obtained with these codes were

within one-tenth of a degree Celsius, and as these codes employ different calcula-

tions the published solutions of the reference cases were deemed very accurate.

7.3.4 On Specific Volumetric Enthalpy

As shown in Eq. 7.30 the heat conduction equation can be expressed in terms of

specific volumetric enthalpy e. This is advantageous when calculating temperature

with numerical methods in cases with materials where latent heat needs to be

considered. The specific volumetric enthalpy or here often just the enthalpy is the

heat content of a material due to temperatures above zero per unit volume (Ws/m3),

i.e.

e Tð Þ ¼
ð T

0

ρ � c dT þ
X

i
li ð7:38Þ

where ρ is density and c specific heat capacity. These are in general temperature

dependent. The second term
X

i
li Ws=m3ð Þ represents latent heats required for

various chemical and physical phase changes at various temperature levels. The

first term is the sensitive heat. The most common form of latent heat to be

considered in FSE is the vaporization of moisture (free water) when the temperature

rise passes the boiling point (100 �C).
For a dry inert material with a density ρdry and a specific heat cdry not varying

with temperature the enthalpy is proportional to the temperature and the sensitive
heat becomes

e ¼ cdryρdryT ð7:30Þ

If a material contains free water, the enthalpy versus temperature is influenced in

two ways. Firstly heat proportional to the temperature rise (sensitive heat) is needed

to increase the temperature of the water, and then in addition heat (latent heat) is

needed for vaporizing water at temperatures in an interval above 100 �C. Both these
components must be added to the enthalpy of the dry material when calculating the

enthalpy as function of temperature. Thus in general terms the enthalpy consists of
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three components, the sensitive heat of the dry material, the sensitive heat of the

water and the latent heat due to vaporization of water. The first term is present over

the entire temperature range, the second added only as long as water is present, and

the third only in the temperature interval when the water vaporizes.

Moisture content u is usually expressed as the percentage water by mass of the

dry material. Thus u is defined as

u ¼ 100 � ρori � ρdry
ρdry

ð7:40Þ

where ρori is the original density of the moist material. If the moisture is assumed to

evaporate between a lower temperature Tl and an upper Tu temperature, the latent

heat due to water vaporization lw is added to the enthalpy at the upper temperature

level. The latent heat of water is then calculated as

lw ¼ u

100
ρdry aw ð7:41Þ

where the heat of vaporization of water aw ¼ 2:26MJ=kg. As an example the

enthalpy as a function temperature of a material with constant dry properties can

then be obtained as shown in Table 7.1 and Fig. 7.7. The enthalpy is then calculated

at four temperature levels and in-between the enthalpy varies linearly. Notice that

as an average only half of the water is assumed to be heated between the lower

temperature Tl (100
�C) and the upper temperature Tu for the vaporization process.

As an example the enthalpy of a concrete with a dry density of 2400 kg/m3, a

specific heat of 800 J/(kg K) and a moisture content u¼ 3% by mass is shown in

Fig. 7.7a. For comparison the enthalpy for a dry concrete (u¼ 0%) is given as well.

The moisture is assumed to evaporate linearly with temperature between 100 and

120 �C. Notice that at temperatures above Tu, the enthalpy rises linearly with

temperature at the same rate as for a dry material.

Most computer programs require input of the specific heat and the density or the

product of the two. This parameter is obtained by deriving the temperature–

enthalpy curve. For the case above the specific volumetric heat c�ρ then becomes

as shown in Fig. 7.7b.

The volumetric specific heat (c�ρ) as a function of temperature then increases

suddenly in the range where the water is assumed to evaporate. This may cause

numerical problems in particular for cases where the temperature range is narrow

and the moisture content is high.

Gypsum is often used to seal penetrations through fire barriers and to protect

steel structures. To raise the temperature of gypsum heat is needed to heat the dry

material and to heat and evaporate the free water. In addition heat is needed for

dehydration and vaporization of the crystalline bound water which occurs in two

steps. An example of calculated specific volumetric enthalpy of gypsum containing

5% free water and 21% crystalline bound water is shown in Fig. 7.8 based on work
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by Thomas [22] (the figure is taken from a master thesis of Emil Ringh (2014),

Luleå TU).

Notice how the latent heats for the dehydration and vaporization processes

surpass by far the sensitive heat needed to heat the inert material by comparing

the slope of the curve below 100 �C thereafter until all the water has evaporated at

temperatures above 220 �C. This ability of gypsum to absorb has a significant

effect, for instance, on gypsum boards for fire insulation of steel structures. How-

ever, this is only for gypsum board qualities able to resist fire exposures. To take

advantage of the effects in calculations, computer codes where the specific volu-

metric enthalpy can be input directly are the most suitable as it may be difficult to

convert the curve into density and specific heat which corresponds to the derivative

or slope of the curve.

Reliable values of the conductivity of gypsum are hard to find in the literature as

the temperature development in gypsum depends very much on the highly

non-linear enthalpy curve due to latent heats. With great reservation on the accu-

racy the values in Table 7.2 are recommended to be used in combination with the

temperature–enthalpy curve shown in Fig. 7.8 for indicative calculations.

Table 7.1 Calculation of specific volumetric enthalpy, e, for a material with constant dry

properties with a moisture content of u % by mass of the dry material

Temperature, T Specific volumetric enthalpy, e

0 e0 ¼ 0

Tl eTl
¼ ρdry cdry þ u

100
cw

� �
Tl

Tu eTu
¼ eTl

þ ρdry cdry þ 0:5 u
100

cw
� �

Tu � Tlð Þ þ u
100

ρdry aw

T > Tu eT>Tu
¼ eTu

þ cdryρdry T � Tuð Þ

Fig. 7.7 Example of specific volumetric enthalpy vs. temperature of dry and moist concrete (3%

by mass). The moisture is assumed to evaporate linearly between 100 and 120 �C. (a) Specific
volumetric enthalpy, e. (b) Specific volumetric heat capacity, c�ρ
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Fig. 7.8 Example of calculated specific volumetric enthalpy of gypsum containing 5% free water

and 21% crystalline bound water

Table 7.2 Thermal conductivity and specific volumetric enthalpy of gypsum as given in Fig. 7.8

Temperature

[�C]
Thermal conductivity

[W/(m K)]

Temperature

[�C]
Specific volumetric enthalpy

[MJ/m3]

20 0.19 0 0

100 0.15 100 73.5

500 0.17 110 571

1000 0.35 200 625

2000 0.35 220 784

2000 2123
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Chapter 8

Thermal Ignition Theory

The various aspects of the subject ignition of unwanted fires has been thoroughly

investigated by Babrauskas and presented in the comprehensive Ignition
Handbook [23]. This book is concentrating on the calculation of the development

of surface temperature. Despite many limitations, it is often assumed that a solid

ignites due to external heating when its exposed surface reaches a particular

ignition temperature.
In Sect. 8.1 some data of ignition temperature of various substances are given

and then in Sect. 8.2 handy formulas are presented on how to calculate time to

ignition of surfaces exposed to constant incident radiation heat flux. These formula

yields very similar results in comparison to accurate and elaborate numerical

calculations.

8.1 Ignition Temperatures of Common Solids

Combustible solids may ignite due to piloted ignition, or auto-ignition (also called

spontaneous ignition). The piloted ignition temperature of an externally heated

substance is the surface temperature at which it will ignite in a normal atmosphere

with an external source of ignition, such as a small flame or spark, present. Most

common materials then ignite in the range of 250–450 �C. The auto-ignition

temperature is the corresponding temperature at which a substance will spontane-

ously ignite without a flame or spark present. It is considerably higher, normally

exceeding 500 �C.
Some limited amount of relevant material data are given in Table 8.1 for some

liquids and in Table 8.2 for some plastics.

Note that the times to ignition as estimated by the thermal theories outlined

below are generally very crude and based on the assumption of homogeneous

materials with constant material properties not varying with temperature or time.

The formulas are, however, very useful for the intuitive understanding of which
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material and geometrical properties govern the ignition process and the ignitability

characteristics.

The time to ignition of thick homogenous materials is proportional to the thermal

inertia (k�ρ�c), i.e. the product of specific heat capacity, density and conductivity,

see Sect. 3.2. The conductivity increases generally at the same time as the density of

a material increases (see Eq. 1.36). Therefore the thermal inertia of materials varies

over a large range and consequently the ignition properties. Insulating materials

have low conductivities k (by definition) and low densities ρ and will therefore

ignite easily if combustible. The specific heat capacity depends on the chemical

composition of the material, but the values of common materials found in the

literature do not vary much. An exception is wood which according to values

found in the literature has a relatively high effective specific heat capacity. (This

may be a way of considering the effects of its water content.)

Table 1.2 shows how the thermal inertia increases considerably with density for

various combustible and non-combustible materials. Notice for instance that the

thermal inertia of an efficient insulating material such as polyurethane foam is less

than a hundredth of the corresponding value of solid wood. Then as an example a

low density wood fibre board may have a density of 100 kg/m3 and a conductivity of

0.04 W/(m K), while a high density wood (oak) have a density of 700 kg/m3 and a

conductivity of 0.17 W/(m K). As such boards can be assumed to have about the

same specific heat capacity, it can be calculated that the thermal inertia of the high

density fibre board is more than 40 times higher of that of the low density board.

The low density fibre board can therefore ideally be estimated to ignite 40 times

faster than the high density fibre board when exposed to the same constant heating

conditions, see Eq. 8.9.

Table 8.1 Critical temperatures of some liquids

Liquid Formula Flash point [K] Boiling point [K] Auto-ignition [K]

Propane C3H5 169 231 723

Gasoline Mixture ~228 ~306 ~644

Methanol CH3OH 285 337 658

Ethanol C2H5OH 286 351 636

Kerosene ~C14H30 ~322 ~505 ~533

From Quintiere [24]

Table 8.2 Ignition

temperatures of some plastics

grouped by category
Category of solid

Ignition temperature [�C]
Piloted Auto

Thermoplastics 369� 73 457� 63

Thermosetting plastics 441� 100 514� 92

Elastomers 318� 42 353� 56

Halogenated plastics 382� 79 469� 79

From Babrauskas [23]
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8.2 Calculation of Time to Ignitions

In common thermal ignition theory a material (solid or liquid) is assumed to ignite

when the surface reaches the ignition temperature. It may be at the piloted or at the

auto-ignition temperature. The time it takes the surface to reach such a critical

temperature when heated depends on the dimensions and the thermal properties of

the material. Below the special cases of thin and semi-infinite solids will be outlined

in Sects. 8.2.1 and 8.2.2, respectively, as developed by Wickstr€om [25].

In both cases the heat transfer by radiation and convection to an exposed surface

is calculated according to Eq. 4.12 as

_q
00
tot ¼ ε _q

00
inc � σT4

s

� �
þ hc Tg � Ts

� � ð8:1Þ

where ε is the surface emissivity and absorptivity coefficient, σ the Stefan–

Boltzmann constant, h the convection heat transfer coefficient, and Tg the ambient

gas temperature. By calculating the surface temperature vs. time the time to ignition

can be obtained. Eq. 8.1 is, however, a non-linear boundary condition since the

emitted radiation term depends on the surface temperature to the fourth power.

Therefore a direct closed form solution cannot in general be derived for the surface

temperature Ts. Therefore the time to ignition must be calculated numerically.

However, for the ideal case, as, for example, in the Cone calorimeter, see

Fig. 8.1, when the following conditions are present

• Constant incident radiation _q
00
inc

• Constant surrounding gas temperature Tg
• Uniform initial temperature Ti
• Constant material and heat transfer properties

The time to reach the ignition temperature tig may be calculated approximately

with a simple explicit formula as introduced below. Similar conditions can be

assumed when analysing, for example, heating by radiation by flames or hot objects

onto surfaces surrounded by gases with moderate temperature.

The formulas derived are semi-empirical, i.e. they have been proven correct by

comparing with accurate numerical solutions. As a first step the third kind of BC

(see Sect. 1.1.3) according to Eq. 8.1 is replaced by a second kind of BC, a constant

effective heat flux _q
00
tot,eff assumed to be

_q
00
tot,eff ¼ ε _q

00
inc � η _q

00
inc,cr ð8:2Þ

where _q
00
inc,cr is critical incident radiation heat flux, i.e. the incident radiation

required to balance the heat losses at the surface by emitted radiation and convec-

tion at the ignition temperature.
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_ε q
00
inc,cr � εσT4

ig � hc Tig � Tg

� � ¼ 0 ð8:3Þ

which yields

_q
00
inc,cr ¼ σT4

ig þ hc=ε � Tig � Tg

� � ð8:4Þ

η in Eq. 8.2 is a semi-empirical reduction coefficient which was determined by

comparisons of times to ignition obtained with accurate numerical methods. The

constant heat flux according to Eq. 8.2 can now be calculated for thin solids with

Eq. 3.30 with η¼ 0.3 and for semi-infinite solids with Eq. 3.5 with η¼ 0.8. Then the

time to ignition tig can be calculated by closed form simple equations according to

Eq. 8.7 and Eq. 8.9 for thin and semi-infinite solids, respectively.

8.2.1 Thin Solids

For thin solids the temperature may be assumed uniform throughout the depth of the

body. Then the thickness and the volumetric specific heat capacity are decisive for

the time to ignition and when assuming a constant total heat flux _q
00
tot (see also Sect.

3.1) the temperature rise can be calculated as:

Ts � Ti ¼ _q
00
tot � t

ρ � c � d ð8:5Þ

where Ts is the exposed body temperature, Ti the initial temperature, t time, ρ
density, c specific heat capacity and d thickness. Density times thickness (ρ.d) is
weight per unit area. That means that time to ignition tig of a thermally thin material

receiving a constant total heat flux _q
00
tot is directly proportional to the density and the

thickness of the material, i.e. the weight of the solid per unit area, and the

temperature rise to reach the ignition temperature Tig, i.e.

Fig. 8.1 Surface with heat

transfer parameters ε and hc
exposed to constant uniform

incident radiation and

constant surrounding gas

temperature
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tig ¼ ρcd

_q 00
tot

Tig � Ti

� � ð8:6Þ

However, the heat flux _q
00
tot can rarely be assumed constant or determined a priori as

a second kind of boundary condition. Even if exposed to a constant thermal

exposure, _q
00
tot decreases when the surface temperature rises according to Eq. 8.1.

As a matter of fact, it is a third kind of boundary condition, see Sect. 1.1.3.

Nevertheless by inserting the effective heat flux according to Eq. 8.2 with η¼ 0.3

into Eq. 8.6, the time to reach the ignition temperature of thin solids exposed to

radiation may be approximated as

tig � ρ � c � d
ε � _q 00

inc � 0:3 � _q 00
inc,cr

Tig � Ti

� � ð8:7Þ

Calculated ignition times according to Eq. 8.7 yields very good approximations of

the accurate predictions obtained by the numerical solutions where the real bound-

ary heat flux _q
00
tot, according to Eq. 8.1, is assumed and where the time to ignition is

the time when the body surface reaches the ignition temperature.

Example 8.1 Calculate the time to ignition for a thin curtain with an area density

of ρ � d ¼ 300g=m2 and an ignition temperature Tig ¼ 350 �C when exposed to an

incident radiation _q
00
inc ¼ 20kW=m2 from both sides. Assume a specific heat

capacity of curtain c¼ 850 W s/(kg K), a surrounding temperature and an initial

temperature Ti equal to 20 �C, a convective heat transfer coefficient of 5 W/(m2 K)

and an emissivity ε ¼ 0:9.

Solution Equation 8.7 yields tig ¼ 850�0:3� 350�20ð Þ
2� 0:9�20000�0:3�10375ð Þ ¼ 2:8 s.

8.2.2 Semi-infinite Solids

A similar expression as given by Eq. 8.5 for thin solids can be derived for semi-

infinite solids or thermally thick solids, i.e. the thickness is larger than the thermal

penetration depth, see Sect. 3.2.1. Then for a constant heat flux to the surface _q
00
s

(2nd kind of BC) and constant thermal properties, the time to reach a given

temperature Tig is (see also Eq. 3.30)

tig ¼ π � k � ρ � c
4 _q 00

s

� �2 Tig � Ti

� �2 ð8:8Þ

where Ti is the initial temperature. The product of the heat conductivity k, the
specific heat capacity c and the density ρ is the thermal inertia k � ρ � cð Þ of the

material as defined in Sect. 3.2. As for thin solids the heat flux to the surface cannot
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be specified as a second kind of boundary condition. However, for the particular

case of a constant incident radiation flux _q
00
inc and a constant ambient gas temper-

ature Tg and a uniform initial temperature Ti, the time to ignition can be approxi-

mated as shown below for semi-infinite solids.

By inserting the effective average value of the heat flux according to Eq. 8.2 with

η¼ 0.8 into Eq. 8.9 and rearranging, the time to reach the ignition temperature of

surfaces of solids exposed to radiation may then be approximated as

tig ¼ π k � ρ � cð Þ
4 ε2

Tig � Ti

� �
_q
00
inc � 0:8 � _q 00

inc,cr

� �
" #2

ð8:9Þ

and after inserting _q
00
inc, cr from Eq. 8.4 a closed form explicit expression for the time

to ignition is obtained as

tig ¼ π k � ρ � cð Þ
4 ε2

Tig � Ti

_q
00
inc � 0:8 σ � T4

ig þ hc Tig � Tg

� �h i
2
4

3
5
2

ð8:10Þ

Equations 8.9 and 8.10 match very well the times to ignition as calculated by

accurate numerical procedures for a wide range of the parameters incident radiation

_q
00
inc, ignition temperature Tig and thermal inertia k � ρ � cð Þ [24].
According to the above equations the inverse of the square root of the ignition

time is linearly dependent on the incident radiation, i.e.

1ffiffiffiffiffi
tig

p ¼ 2 ε

√ π k � ρ � cð Þ½ � Tig � Ti

� � _q
00
inc � 0:8 _q

00
inc,cr

h i
ð8:11Þ

Thus according to Eq. 8.11 linear relations are obtained as shown in Fig. 8.2 for

various thermal inertia and in Fig. 8.3 for various ignition temperatures. Values

typical for the Cone Calorimeter test scenario has been assumed for both the

diagrams in Figs. 8.2 and 8.3, i.e. initial temperature Ti ¼ 20 �C, the surface

emissivity ε ¼ 0:9, the convection heat transfer coefficient hc ¼ 12 W= m2Kð Þ.
The lowest thermal inertia 1000 (W2 s)/(m4 K2) may be representative of low

density polymeric insulation material which heats up very quickly while an inertia

of 100000 (W2 s)/(m4 K2) may represent soft wood and 300000 (W2 s)/(m4 K2) hard

wood such as oak. These values are only indicative and are not recommended to be

used in real application. Notice that the graphs cross the abscissa at 80% of the

critical incident flux, i.e. at 0.8 _q
00
inc,cr , independently of the thermal inertia of the

material.

The theory indicates how significant the thermal inertia is for the time to

ignition. As an example Fig. 8.2 indicates the time to ignition for softwood exposed

to 30 kW/m2 is 1=0:252 ¼ 16s and 1=0:152 ¼ 44s for hardwood when exposed to

30 kW/m2. The very short ignition times for low density insulation materials even at
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moderate incident radiation levels indicates the hazardous fire properties of these

type of materials.

In Fig. 8.3 the inverse of the square root of the ignition time vs. incident

radiation is shown for various ignition temperatures assuming a thermal inertia of

100000 (W2 s)/(m4 K2) corresponding to soft wood. The ignition temperature of

500 �C is only relevant for auto-ignition circumstances while the other temperature

levels may be relevant for piloted ignitions for most materials of interest. Notice

that the ignition temperature has a great influence on time to ignition and on the

critical incident radiant heat flux. As an example softwood exposed to an incident

radiation of 20 kW/m2 would ignite after 51 s when the ignition temperature is

assumed to be 200 �C and after only 13 s if assumed to be 300 �C.

Example 8.2 Calculate the time to ignition of a surface of thick wood

(k � ρ � c¼ 196000 (W2 s)/(m4 K)) solid suddenly exposed to an incident radiation

heat flux _q
00
inc ¼ 30kW=m2. The wood surface emissivity ε¼ 0.8, the convection

heat transfer coefficient h¼ 12 W/(m2 K), the other thermal properties according to

Table 1.2.

(a) The solid is initially at 20 �C and surrounded by air at the same temperature.

(b) The solid is initially at 100 �C and surrounded by air at the same temperature.
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Fig. 8.2 The inverse of the square root of time to ignition vs. incident radiation heat flux

according to Eq. 8.11 assuming an ignition temperature Tig ¼ 300 �C for various thermal inertia

k � ρ � c given in (W2 s)/(m4 K2). Ti ¼ 20 �C, ε ¼ 0:9 and hcon ¼ 12W= m2Kð Þ
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Solution According to Eq. 8.4 _q
00
inc,cr ¼ 5:67 � 10�8 � 6234 þ 12=0:8 � 350� 20ð Þ

¼ 13492W=m2. Equation 8.9 yields tig ¼ π�196000
4�0:82

350�20
30000�0:8�13492ð Þ

h i2
¼ 71s. (Com-

ment: Applying the accurate boundary condition according to Eq. 8.1 yields by

accurate numerical calculations tig ¼ 69s).

According to Eq. 8.4 _q
00
inc,cr ¼ 5:67 � 10�8 � 6234 þ 12=0:8 � 350� 100ð Þ ¼

12292W=m2. Equation 8.9 yields tig ¼ π�196000
4�0:82

350�100
30000�0:8�12402ð Þ

h i2
¼ 37s.

Comment: Thus this material would ignite in about half the time if preheated from

20 to 100 �C.

Fig. 8.3 The inverse of the square root of time to ignition vs. incident radiation heat flux

according to Eq. 8.11 assuming a thermal inertia of 100000 (W2 s)/(m4 K2) for various ignition

temperatures. Ti ¼ 20 �C, ε ¼ 0:9 and hcon ¼ 12W= m2Kð Þ
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Chapter 9

Measurements of Temperature
and Heat Flux

In FSE temperature is nearly always measured with thermocouples as described in

Sect. 9.1. Heat flux measured in different ways is most commonly measured as the

sum of the net heat flux by radiation and convection to a cooled surface. The

principles are briefly outlined in Sect. 9.2. Alternative methods incident radiation

heat flux as well AST using so-called plate thermometers has also been developed

as a practical alternative to heat flux meters as outlined in Sect. 9.3.

9.1 Thermocouples

Thermocouples (sometimes abbreviated T/C) have a junction between a pair of

wires of two different metals or alloys. A voltage is then generated proportional to

the temperature difference between the so-called hot junction and the cold junction,

a reference point with known temperature. The hot junction of thermocouples can

either be imbedded in solid materials or mounted in free space. Thermocouples are

in general relatively inexpensive and easy to handle, and can be used for measuring

temperatures over a wide range. They are therefore very common in fire testing and

research. Different alloys are used for different temperature ranges.

9.1.1 Type of Thermocouples

There are a number of standardized types and combinations metals for thermocou-

ples. The most common have been designated letters by ISA (Instrument Society of

America) and ANSI (American National Standards Institute). Information on the

various types of thermocouples and their letter designation is given in the interna-

tional standard IEC 584.
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In fire testing and research thermocouples of type K are by far the most common.

The positive lead is then made of a nickel alloy with 10% chrome and the negative

of a nickel alloy with 2% aluminium, 2% mangan and 1% silicon. The relation

between the output voltage and temperature is almost linear with a sensitivity of

approximately 41 μV/K. The melting point is about 1400 �C and the mechanical

properties and the resistance against corrosion are satisfactory also at high temper-

ature levels. At temperatures above 800 �C, however, oxidation may occur leading

to substantial measuring errors. The thermocouples may also age when used for

longer times at temperatures above 500 �C and should therefore in such cases be

calibrated about every 20 h of use [26]. According to the international standards for

fire resistance furnace tests ISO 834 and EN 1363-1 thermocouples may not be used

for more than 50 tests.

For temperature measurements up to 1480 �C thermocouples of type S, plati-

num—platinum/rhodium, are sometimes used in fire resistance furnaces. They are,

however, expensive and only suitable for short term measurements as they degrade

at high temperatures.

There are industrially manufactured thermocouples in many metal combina-

tions. The connections of the thermocouples leads are, however, often made by the

user by soldering, electric or gas welding or pressing depending on the intended use.

Soldering and welding is mainly used for thin thermocouples. Pressing is used with

so-called quick tips. The latter method yields rather big hot junctions which makes

the thermocouples relatively slow when recording dynamic processes as in fires and

less sensitivity to heat transfer by convection, see next Section. Thus their temper-

ature recordings must often be corrected due to the effects of radiation when

measuring gas temperature accurately.

Ready-made shielded thermocouples are also being used in fire testing and

research. They have a stainless steel or similar casing protecting the thermocouple

from mechanical stresses and corrosive gases. These are in general more robust but

considerably more costly.

9.1.2 Measurement of Temperature in Gases

The temperature recording you get from a thermocouple is always the temperature

of the hot junction of the thermocouple leads. When placed in a gas it adjusts more

or less quickly to surrounding temperatures depending on its thermal response

characteristics to convection and radiation. Briefly it can be said that the smaller

dimensions of a thermocouple the quicker it responses to thermal changes and the

more sensitive it is to convection and thereby gas temperature, and vice versa.

Thus it is important to realize that thermocouples in gases are influenced by the

gas temperature Tg as well as by the incident radiation or the black body radiation

temperature Tr (see Chap. 4). It adjusts to a temperature which is a weighted

average of the two temperatures which may be very different. The weights are

134 9 Measurements of Temperature and Heat Flux

http://dx.doi.org/10.1007/978-3-319-30172-3_4


the heat transfer coefficients hr and hc for radiation and convection, respectively.

Thus the ultimate or equilibrium thermocouple temperature TTC becomes

TTC ¼ hr � Tr þ hc � Tg

hr þ hc
ð9:1Þ

where

hr ¼ ε σ T2
r þ T2

TC

� �
Tr þ TTCð Þ ð9:2Þ

Notice that Eq. 9.1 is implicit as hr depends on TTC, and that it is similar to the

expression for the AST in Eq. 4.23. When radiation and thermocouple temperatures

are approximately equal, i.e. Tr � TTC (as for thermocouples in thick flames) the

radiation heat transfer coefficient may be approximated as

hr � 4ε � σ � T3
TC ð9:3Þ

As indicated in Chap. 6, convection heat transfer coefficients decrease with the size

of a body. Hence smaller thermocouples will have greater convection heat transfer

coefficients hc and will therefore adjust closer to the gas temperature while larger

thermocouples will deviate more from the gas temperature and adjust closer to the

radiation temperature as indicated by Eq. 9.1.

The difference between the true gas temperature and the thermocouple temper-

ature at equilibrium can be written as

ΔT ¼ TTC � Tg ¼ hr
hc

Tr � TTCð Þ ð9:4Þ

which implies that the difference between the measured temperature TTC and the

true gas temperature Tg increases with the ratio between the heat transfer coeffi-

cients and the difference between the radiation temperature and the thermocouple

temperature.

A special case is the plate thermometer as described in Sect. 9.3 which has a

large exposed area. The convection heat transfer coefficient hc is therefore rela-

tively small, and hence the equilibrium temperature of a PT is closer to the incident

radiation temperature than the corresponding temperature of ordinary thermocou-

ples. In addition the PT is dependent on direction of incident radiation while a

thermocouple is not.

The time response characteristics are also important to consider when measuring

gas temperatures. A general rule is thermocouples response faster the thinner they

are, the less mass they have. As the temperature in a thermocouple can be assumed

uniform and it can be calculated assuming lumped-heat-capacity (Sect. 3.1). Thus

the temperature TTC of a thermocouple suddenly exposed to a constant fire temper-

ature Tf may be calculated according to Eq. 9.5 as
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TTC � Ti

Tf � Ti
¼ 1� e�

t
τ ð9:5Þ

where Ti is the initial thermocouple temperature and τ is the time constant of the
thermocouple which then can be calculated as

τ ¼ VTC � ρTC � cTC
ATC � htot ð9:6Þ

where the parameters ρTC and cTC are the density and the specific heat capacity of

the thermocouple junction including the mass of soldering, etc. and VTC/ATC is the

effective volume-to-area ratio. When assuming constant conditions the value time

constant is the time elapsed when the temperature rise has reached 63% of its final

value. In reality the time constant varies considerably as hr increases significantly
with temperature.

For a total heat transfer (by convection and radiation) coefficient htot, the time

constant τ for a sphere can be identified as

τ ¼ 1

6
D � ρs � cs=htot ð9:7Þ

Assuming the thermocouple hot junction as a cylinder with a diameter

D disregarding the end surface yields

τ ¼ D

4
ρs � cs=htot ð9:8Þ

When exposure temperature Tf varies with time the thermocouple temperature can

be obtained to Eq. 3.16.

Example 9.1 What is the time constant τ of a thermocouple T/C exposed to

uniform temperature at a level of Tf ¼ 500 �C? Assume that the T/C is spherical

with a diameter of 3 mm of steel with a convective heat transfer coefficient

hc¼ 50 W/m2 K. The density and specific heat capacity of the T/C may be assumed

to be 7850 kg/m3 and 460 Ws/kg K, respectively, and its emissivity ε¼ 0.9.

Guidance: Assume the heat transfer to the T/C is _q
00 ¼ εσ T

4
f � T

4
TC

� �
þ hc

Tf � TTC

� �
and that TTC ¼ Tf when calculating the radiation heat transfer

coefficient hr.

Solution Equation 9.3 (or Fig. 4.2a) yields hr ¼ 4 � 0:9 � 5:67 � 10�8 � 500þ 273ð Þ3
¼ 105W= m2Kð Þ and then htot ¼ 105þ 50 ¼ 155 W= m2Kð Þ. According to Eq. 9.7
τ ¼ 1

6
� 0:003 � 7850 � 460=155 ¼ 11:6s.

Example 9.2 Calculate the time constant of the 1 mm thick thermocouple in

Example 6.3.

136 9 Measurements of Temperature and Heat Flux

http://dx.doi.org/10.1007/978-3-319-30172-3_3
http://dx.doi.org/10.1007/978-3-319-30172-3_4
http://dx.doi.org/10.1007/978-3-319-30172-3_6


(a) Initially at room temperature (300 K)

(b) At its equilibrium temperature (1000 K)

when suddenly exposed to gas and radiation temperatures of 1000 K. Assume the

T/C is made of stainless steel, i.e. εTC ¼ 0:7, ρTC ¼ 7900kg=m3 and

cTC ¼ 460W= kgKð Þ.
Solution

(a) According to Example 6.3 hc ¼ 131W= m2Kð Þ. The radiation heat transfer

coefficient is obtained from Eq. 4.5 as hr ¼ 0:7 � 5:67 � 10�8 10002 þ 3002
� �

1000þ 300ð Þ ¼ 56W= m2Kð Þ. Then htot ¼ 131þ 56 ¼ 187 W= m2Kð Þ and

τTC ¼ 0:001=4 � 7900 � 460=187 ¼ 4:8s.
(b) According to Example 6.3 the convection hc¼ 147 W/(m2 K). According to

Eq. 4.6 as hr ¼ 4εσT3
r ¼ 159W= m2Kð Þ and htot ¼ 147þ 159 ¼

306W= m2Kð Þ. Now the time constant of the thermocouple can be estimated

according to Eq. 9.8 as τTC ¼ 0:001=4 � 7850 � 460=306 ¼ 3:0s.

9.1.3 Corrections of Time Delay

All thermocouples respond to the thermal exposure with a time delay depending on

the thermocouple characteristics and thermal environment as described above.

When the response of a thermocouple can be expressed as in Eq. 9.5,

i.e. assuming lumped-heat-capacity, the value of Tf at a given time may be obtained

numerically by solving the so-called inverse problem. The time constant τ must

either be known explicitly or implicitly, for example, as functions of the exposure

temperature Tf and the response temperature TTC as shown by Eq. 9.7. The time

derivative of the thermocouple temperature may then at any arbitrary time t be
derived from Eq. 9.5 as

dTTC

dt
¼ Tf � TTC

τ
ð9:9Þ

Given a series of thermocouple recordings true exposure level Tf can be derived

from Eq. 9.9. The time derivative of the thermocouple temperature is then approx-

imated by the corresponding differential between two consecutive thermocouple

recordings and the following expression can be derived:

Tjþ1
f ¼ 1þ τ

Δt

� �
Tjþ1
TC � τ

Δt
T j
TC ð9:10Þ
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where Δt is a time increment of the measurement and j is the measurement number.

The accuracy and the numerical stability of such a calculation depends on the

relation between τ and Δt.
As an example Fig. 9.1 shows the actual furnace temperature rise in a furnace

controlled ideally precisely according to the ASTM E-119 standard fire curve with

temperature monitoring thermocouples according to the standard time constants in

the range of 5–7.2 min. Notice that the real or effective furnace temperature is much

higher than indicated by the slowly responding ASTM type of shielded thermo-

couples. The diagram also shows for comparison the corresponding curve for a

standard PT according to ISO 834. This curve does not deviate as much from the

ideal standard ASTM time–temperature curve as the time constant of a PT is much

shorter than the time constant of an ASTM thermocouple.

This implies that when predicting temperature in specimens being exposed to a

standard ASTM E-119 furnace test it is important to assume a much higher

exposure temperature for the first 10 min than what has been recorded in the test

by the standard thermocouples. In calculations for deriving the T/C and PT

response curves in Fig. 9.1 properties according to Table 9.1 were applied. These

values are reasonable but uncertain depending on among other thing furnace

characteristics and therefore the curves of Fig. 9.1 should just be taken as indicative

implying that the influence of the time delay is significant for an ASTM-E119 test

and must be considered in particular when predicting temperature in structures

exposed to short test durations.

Fig. 9.1 The ASTM-E119 fire curve and temperatures the thermocouple according to ASTM

E-119 and the PT according to ISO 834 must follow to obtain the specified furnace temperature

due to time delay
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9.2 Heat Flux Meters

In several fire test methods incident radiation levels are specified. Therefore, it is

important that radiation heat flux can be measured with sufficient accuracy. It is

usually measured with so-called total heat flux meters of the Gardon or Schmidt-

Boelter types. Such meters register the combined heat flux by radiation and

convection to a water cooled surface. Thus the measurement will contain contribu-

tions by convection which depends on a number of factors such as the design of the

heat flux meter, the orientation of the meter, the cooling water temperature, the

local temperature and gas/air flow conditions. In unfavourable conditions the

uncertainty due to convection can amount to 25% of the total heat flux, see ISO

14934. As a general rule the error is lesser when the meter is surrounded by a gas at

a temperature close to the cooling water temperature while the errors may be very

large when the meter is exposed to hot fire gases or flames. Under such conditions

Gardon or Schmidt-Boelter type meters are both impractical and inaccurate. Then

devices such as the PT as described in Sect. 9.3 are more useful.

The principal designs of a Gardon and a Schmidt-Boelter heat flux meters are

shown in Fig. 9.2. In the Gardon gauge the temperature difference between

the middle of the circular disc and its water cooled periphery is proportional

to the received heat flux by radiation and convection. In the Schmidt-Boelter

gauge the temperature difference between the exposed surface and a point at a

depth below is measured with a so-called thermopile including several hot and cold

junctions. This type of HFM therefore yields a higher output voltage than a Gardon

gauge for the same flux.

9.2.1 Calibration and Use of Heat Flux Meters

Heat flux meters such as the Gardon gauge and Schmidt-Boelter gauge are cali-

brated according to ISO 14934 in a spherical furnace with a uniform temperature.

The gauge is then exposed to an incident radiation proportional to the fourth power

of the furnace temperature T4fur . The heat transfer by convection is negligible in the

calibration configuration (see Fig. 9.3) and therefore the heat transfer to the water

cooled sensing surface is:

Table 9.1 Parameters used for analysing the time delay of the ASTM-E119 thermocouple and the

ISO 834 PT in combination with Eq. 4.12

Effective thickness,

d [mm]

Convection heat transfer coefficient,

hc [W/(m2 K)]

Emissivity,

ε [-]

ASTM-E119

thermocouple

6 50 0.8

ISO 834 plate

thermometer

0.7 25 0.8
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_q
00
hf g ¼ εhfm σ φ T4

fur � T4
hfm

� �
ð9:11Þ

where Thfm is the surface temperature of the sensing body. At high furnace temper-

ature or heat flux levels the second term of the above equation is relatively very

small and can be neglected. Otherwise Thfm is assumed equal to the cooling water

temperature. The coefficient φ is a test configuration parameter depending on the

geometric configuration when a HFM is mounted in the test furnace.

The calibration procedure of a HFM means that the electric voltage output is

determined at several heat flux levels obtained by various furnace temperature

levels. Then a normally linear relation can be established between the heat flux

_q
00
hfm and the output voltage.

When in use and exposed to radiation and convection the general expression of

the heat flux _q
00
hfm to the sensing body of a HFM is:

6

Constantan foil

Copper body

Thermocouple leads

Incident heat radiation
a b

Cooling water channels
Cooling water channels

Thermocouple leads

Thermopile

Copper body

Incident heat radiation

Fig. 9.2 Principal cross sections of total heat flux meters. (a) Gardon gauge (b) Schmidt-Boelter

gauge

Fig. 9.3 A 3-D drawing of a heat flux meter and a spherical calibration furnace with a heat flux

meter mounted in the bottom opening. (a) Heat flux meter (b) Calibration furnace
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_q
00
hfm ¼ εhfm _q

00
inc � σ T4

hfm

� �
þ hhfm Tg � Thfm

� � ð9:12Þ

where Tg is the gas temperature near the HFM. The incident heat flux _q
00
inc can be

obtained, given the gas temperature Tg and the emissivity εhfm and the convection

heat transfer coefficient hhfm are known, as

_q
00
inc ¼

1

εhfm
_q
00
hfm � hhfm Tg � Thfm

� �h i
þ σ T4

hfm ð9:13Þ

Often it is assumed that εhfm � 1 and the term σ T4hfm is negligible, and when

Tg � Thfm, the convection term vanishes as when placed in air at ambient temper-

ature. Then the incident radiation heat flux can be approximated as

_q
00
inc ¼ _q

00
hfm ð9:14Þ

When then using the measured data for calculating the heat transfer to a target

surface with a temperature Ts based on HFM measurements the general expression

according to Eq. 4.11 applies, and the total heat flux _q
00
tot to a surface can be derived

by inserting Eq. 9.13 into Eq. 4.11:

_q
00
tot ¼

εs
εhfm

_q
00
hfm þ εhfmσT

4
hfm � hhfm Tg � Thfm

� �h i

�εsσT
4
s þ hc Tg � Ts

� � ð9:15Þ

Thus the total heat transfer depends on the emissivity and the convection heat

transfer coefficient of both the HFM and the target surface. These parameters are

often not very well known which introduces great uncertainties especially when the

HFM is placed in hot gases or flames with temperatures deviating from the cooling

water temperature. Then the uncertainty due to the convection becomes significant

as the heat transfer by convection to a HFM with its small surface is difficult to

estimate accurately. However, usually the emissivities of the HFM and the target

surface are assumed equal, and when the gas and cooling water temperature are

assumed equal as well, then the heat transfer to an adjacent target surface becomes

independent of the gas temperature Tg and the expression of the total heat flux

becomes:

_q
00
tot ¼ _q

00
hfm þ ε � σ T4

hfm � ε � σ � T4
s � h Ts � Thfm

� � ð9:16Þ

There are several uncertainties in this expression. A more complete analysis of the

use of heat flux meters are given by Lattimer [27].

Example 9.3 A water cooled heat flux meter is used to measure the total incident

heat flux from a fire against a wall painted black. The measured heat flux is

30 kW/m2 and the water cooled gauge is measured to be 350 K. Both the wall
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emissivity and the heat flux gauge have a surface emissivity ε¼ 0.95, and the heat

transfer coefficient is 10 W/m2 K.

(a) Determine the total heat flux _q
00
tot into the wall when its surface temperature is

600 K, and 800 K.

(b) Given the gas temperature Tg is 300 and 1000 K, respectively, what is the

incident radiant heat _q
00
inc?

(c) What is the AST, i.e. the temperature of the surface when the net heat flux into

the wall vanishes, for the two gas temperature levels?

(d) Use the ASTs calculated in (c) to calculate the net heat fluxes to the surfaces

when the surface temperature is 600 K and 800 K, respectively. Compare with

the results obtained in (a).

Solutions

(a) Equation 9.16 yields: _q
00
tot ¼ 30000� 10 � Ts � 350ð Þ � 0:95 � 5:67 � 10�8�

T4
s � 3504

� �
. Then for Ts ¼ 600 the total heat flux _q

00
tot ¼ 21:3 � 103 W/m2,

and for Ts ¼ 800 K the total heat flux _q
00
tot ¼ 4:2 � 103 W/m2.

(b) For Tg ¼ 300K, then according to Eq. 9.13 _q
00
inc ¼ 1

0:95 � 30000�½
10 � 300� 350ð Þ� þ 5:67 � 10�8 � 3504 ¼ 30500þ 851 ¼ 32:96 � 103W=m2.

For Tg ¼ 1000K then _q
00
inc ¼ 1

0:95 30000�½
10 1000� 350ð Þ� þ 5:67 � 10�8 � 3504 ¼ 24740þ 851 ¼ 25:59 � 103W=m2.

Comment: Notice that the incident radiation may be considerably different

for the same heat flux meter recordings. The heat transfer coefficient is taken

from Lattimer’s [28]. It may be considerably higher in reality which would

enhance the differences.

(c) ForTg ¼ 300K, then according to Eq. 4.21 ε � _q
00
inc � σT4

AST

� �þ hc Tg � TAST

� �
¼ 0:95 � �32:96 � 103 � 5:67 � 10�8

� � T4
AST

�� þ 10 � 300� TASTð Þ ¼ 0. Thus

by iteration TAST ¼ 833K. For Tg ¼ 1000K, then 0:95 � �25:59 � 103�
5:67 � 10�8

� � T4
AST

�� þ 10 � 1000� TASTð Þ ¼ 0. Thus TAST ¼ 833K.

(d) According to Eq. 4.31 _q
00
tot ¼ ε � σ T4

AST � T4
s

� �þ hc TAST � Tsð Þ. Then for

Ts ¼ 600K _q
00
tot ¼ 0:95 � 5:67 � 10�8

� � � 8334 � 6004
� �þ 10 � 833� 600ð Þ ¼

21:3 � 103W=m2, and for Ts ¼ 800K _q
00
tot ¼ 0:95 � 5:67 � 10�8 � 8334 � 8004

� �
þ 10 � 833� 800ð Þ ¼ 4:2 � 103W=m2.

Comment: Exactly the same values were obtained when calculating the total

heat flux based on _q
00
hfm as based on TAST according to the theory presented. In

practice it would most certainly be more expedient to use PTs for measuring

ASTs and use those measurements for calculating heat flux and temperature of

the exposed wall.
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9.3 The Plate Thermometer

9.3.1 Introduction

The standard Plate Thermometer PT as specified in the international ISO 834 and in

the European EN 1363-1 was invented to measure and control temperature in fire

European resistance furnaces [27] with the purpose of harmonizing the thermal

exposure and assuring tests results independent of type of fuel and furnace design.

The standard PT as shown in Fig. 9.4 is made of a shielded thermocouple

attached to the centre of a 0.7-mm-thick metal plate of Inconel 600 (a trade name

of an austenitic nickel based super alloy for high temperature oxidation resistance)

which is insulated on its back side. The exposed front face is 100 mm by 100 mm.

The back side insulation pad is 10 mm thick.

A relatively large sensor surface, such as a PT, measures neither the gas

temperature nor the incident radiation or radiation temperature but a temperature

between the radiation and gas temperatures. It measures approximately the tem-

perature of a surface which cannot absorb any heat. This temperature has been

named the Adiabatic Surface Temperature, AST [29–31], see Sect. 4.4. PT can also

be used to measure incident radiant heat flux to a surface [32, 33] as will be shown

in the next section.

As shown in Chap. 4, the concept of the AST is very valuable as it can be used

for calculation of heat transfer to fire-exposed body surfaces when exposed to

convection and radiation boundary conditions, so-called mixed boundary condi-

tions, where the gas temperature and the radiation temperatures may be consider-

ably different. Figure 9.5 shows PTs being mounted in different directions around a

steel girder.

The concept of AST is not limited to fire resistance scenarios and predictions of

structural element temperatures. It can also be used at more moderate temperature

levels for instance to estimate whether a surface will reach its ignition temperature

when exposed to elevated incident radiation but moderate gas temperatures.

9.3.2 Theory for Measuring Incident Heat Flux
and Adiabatic Surface Temperature with Plate
Thermometers

A simplified heat balance equation of the exposed surface plate of a PT may be

written in one dimension as [33] (see also Fig. 9.6)

εPT _q
00
inc � εPTσT

4
PT þ hPT Tg � TPT

� �þ KPT Tg � TPT

� � ¼ CPT
dTPT

dt
ð9:17Þ
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Fig. 9.4 The standard PT according to ISO 834 and EN 1363-1

Fig. 9.5 PTs being

mounted for measuring

ASTs in different directions

at the surfaces around a

steel girder [29]

3

21

44 4

Fig. 9.6 Indication of the

heat transfer to a PT. The

numbers relate to the terms

on the left-hand side of
Eq. 9.17
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The first term on the left-hand side of Eq. 9.12 is the radiant heat absorbed by the

Inconel plate, the second the heat emitted; the third the heat transferred by convec-

tion and the fourth term expresses the heat lost by conduction through the insulation

pad plus along the Inconel plate. The latter is assumed to be proportional to the

difference between the plate temperature TPT and the gas temperature Tg with the

proportionality constant denoted KPT.

The term on the right-hand side of the equation is the rate of heat stored

calculated assuming lumped-heat-capacity (see Sect. 3.1). CPT is assumed to be

the heat capacity of the Inconel plate plus a third of the heat capacity of the

insulation pad. (The third is taken from experiences of insulated steel structures,

see Sect. 13.3.1).

A thorough two-dimensional thermal finite element analysis of the standard ISO

834 PT is presented in [32]. It was then found that with the thermal conduction

coefficient KPT ¼ 8:0W= m2Kð Þ and the heat capacity CPT ¼ 4200J= m2Kð Þ there
was a good agreement between PT temperatures calculated with FE analyses and

the temperatures obtained using Eq. 9.20. The convection heat transfer coefficient

of the PT hPT depends on the actual scenario. In the case of natural convection only,
it may be assumed to be in the order of 10 W/(m2 K), see Sect. 6.3.1.1.

The incident radiation _q
00
inc can be derived from Eq. 9.18 as

_q
00
inc ¼ σT4

PT �
1

εPT
hPT þ KPTð Þ � Tg � TPT

� �� CPT
dTPT

dt

� 	
ð9:18Þ

The derivative of the transient term can be approximated by the differential, i.e.
dTPT

dt
� ΔTPT

Δt . Then _q
00
inc can be obtained by a stepwise procedure where

ΔTPT

Δt ¼ T
jþ1

PT
�T

j

PT

tjþ1�tj
¼ T

jþ1

PT
�T

j

PT

Δt .

Under steady state or relatively slow processes the transient term can be

neglected. In addition at high incident radiation levels the first term is dominant

and the dependence on conduction and convection is relatively small and may in

approximative analyses even be neglected. In Fig. 9.7 the incident radiation flux

_q
00
inc is shown as a function of the temperature TPT of a PT mounted vertically in air

at ambient temperature, Tg ¼ 20 �C. The emissivity is assumed εPT ¼ 0:9 and the

natural convection heat transfer coefficient is calculated accurately as a function of

temperature according to Eq. 6.30. The incident radiation flux _q
00
inc is shown with the

assumption of the heat loss by conduction parameter being neglected KPT ¼ 0 and

KPT ¼ 4W= m2Kð Þ, respectively. The latter is representative for a so-called insPT

as shown in Fig. 9.9 with a 20 mm insulation pad. As can be observed the influence

of the uncertain parameter KPT is relatively small in comparison to the uncertainties

related to measurements with conventional heat flux meters, see Sect. 9.2.

KPT and CPT may often be neglected, in particular when insulated plate ther-

mometers insPTs as shown in Fig. 9.10 are used. Then the incident heat flux can be

calculated as
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_q
00
inc ¼ σT4

PT �
hPT
εPT

Tg � TPT

� � ð9:19Þ

The lower curve of the diagram of Fig. 9.7 shows the relation between TPT and _q
00
inc

when neglecting both KPT and CPT.

TAST can be derived from PT recordings considering KPT and CPT by heat

balance equation

εPTσ T4
AST � T4

PT

� �þ hPT TAST � TPTð Þ þ KPT Tg � TPT

� � ¼ CPT
dTPT

dt
ð9:20Þ

Given a series of TPT measurements the derivative of the transient term can be

approximated by the differential dTPT

dt
� ΔTPT

Δt , and the inverse problem of calculating

TAST can be done by a step-by-step procedure. At each time step j the fourth grade

equation below derived from Eq. 9.20 must then be solved
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Fig. 9.7 Incident radiation _q
00
inc based on steady-state PT measurements in ambient air assuming

the heat loss parameter by conduction negligible KPT ¼ 0 and KPT ¼ 4W= m2Kð Þ, respectively.
The heat loss by natural convection is calculated according to Eq. 6.30
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εPTσ Tjþ1
AST

� �4

þ hPTT
jþ1
AST � CPT

Tjþ1
PT � T j

PT

Δt
� εPTσ Tjþ1

PT

� �4

� hPTT
jþ1
PT

þ KPT Tjþ1
g � Tjþ1

PT

� �
¼ 0 ð9:21Þ

where all parameters are known except the adiabatic surface temperature Tjþ1
AST . If

both KPT and CPT are neglected TAST can be obtained at each time as from the fourth

degree equation derived from Eq. 9.20

εPTσT
4
AST þ hPTTAST � εPTσT

4
PT þ hPTTPT

� � ¼ 0 ð9:22Þ

Solution techniques of this type of incomplete fourth degree equations are shown in

Sect. 4.4.1.1.

The standard PT has successfully been used in an ad hoc test series for measuring

ASTs which has then been used to predict temperature in a steel section. Figure 9.8

shows a beam near the ceiling being exposed to an intense pre-flashover fire with

very uneven and complex temperature distribution.

Temperatures were then compared with measured temperatures. An example is

shown in Fig. 9.9. Notice the high similarity between the measured and calculated

steel temperatures. Temperatures measured with ordinary thermocouples were

generally very different from those measured with PTs at similar positions. There-

fore predictions of steel temperatures based on thermocouple recordings as input

would not yield such good agreements between calculations and measurements.

Alternative measuring techniques using, for example, heat flux meters would not

have been possible as these types of instruments cannot cope with high temperature

environments.

9.3.3 Alternative Plate Thermometer Designs

To achieve high accuracies it follows from an analysis of Eq. 9.20 that a PT for

measuring AST shall have:

1. Similar surface emissivities

2. Similar form and size as the target specimen to have the same convection heat

transfer coefficient

3. Well-insulated metal surfaces

4. Short response times

The first two items concern the heat transfers by radiation and convection, and

the relation between the two. As described in Sect. 4.4 the AST depends on the

radiation and convection heat transfer properties. Therefore the emissivity and the

convection heat transfer coefficient should ideally be the same for the thermometer
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Fig. 9.8 PTs placed around

a steel beam for measuring

AST for calculation of heat

transfer and steel

temperatures. See mounting

in Fig. 9.5 [29]

Fig. 9.9 Example of measured ( full line) and calculated (dashed line) steel temperatures based on

PT measurements as shown in Fig. 9.8
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as for the target body of interest as far as it is practically possible. Thus for

measuring the AST for calculating the heat transfer to, for example, a wall a

standard PT might be a sensible compromise.

The third item, the PT should be well insulated or ideally perfectly insulated is of

course not possible in practice. The reason for having a thin metal surface is to be

able to measure the surface temperature accurately by fixing a thermocouple to the

metal.

The fourth item is important for transient problems where the thermal exposure

shall be followed as function of time.

The standard ISO 834 PT was designed for fire resistance furnace tests when

being exposed to very high temperatures. It is therefore, on one hand, made very

robust but not so well insulated as the temperature on the two sides of the PT does

not differ very much in a furnace. However, when surrounded by air at ambient

temperature and exposed to intense radiation at one side it must be better insulated

for not losing heat from the exposed surface.

Figure 9.10 shows an example of two very well insulated PTs (so-called insPTs)

designed to be used in ambient air. They measure thermal exposure and incident

radiation in the vertical and horizontal directions, respectively. The plates which the

thermocouples are fixed to are made of thin steel sheets (0.4 mm) to get quicker

response times. To minimize the heat losses by conduction from the front to the

back the insulation pads are thick and the sides of the steel plates have been partly

cut out to avoid heat being conducted along the metal. On the back side this PT has

a thicker more robust steel sheet for mounting purposes.

Figure 9.11 shows a comparison of incident heat flux measured with a Schmidt-

Boelter heat flux meter and an insulated plate thermometer as shown in Fig. 9.10

applying Eq. 9.18 [34]. Note that the difference between the two methods of

measuring incident heat flux is very small with the exception that the HFM

responds much faster than the PT and therefore the measurement spikes which

usually are not of interest to record.

Another alternative small PT has been developed for monitoring the thermal

exposure in the ignition phase of a fire. This may be mounted flush at the surface of,

for example, a combustible board as shown in Fig. 9.12. This so-called copper disc

plate thermometer cdPT consists of a thin copper disc (Ø 12 mm and thickness

0.2 mm) backed with ceramic insulation mounted in an about 15 mm drilled hole.

To assure similar heat transfer properties the best way to design a PT may be to

construct a 3-D dummy with a thin metal surface and filled with insulation.

Figure 9.13 shows a pool fire and a steel cylinder simulating a piece of ammunition.

Several thermocouples were fixed at various points of the dummy. It was placed in

pool fire to record the thermal exposure of specimens placed in the flames.
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Fig. 9.10 Two well-

insulated plate

thermometers (insPT) for

measuring thermal

exposures of horizontal and

vertical surfaces,

respectively, in air at

ambient temperature

Fig. 9.11 Comparison of measurements at various distances of incident radiation with heat flux

meters of Schmidt-Boelter type and with insPTs as shown in Fig. 9.10 applying Eq. 9.18

Fig. 9.12 Example of

mounting of a copper disc

plate thermometer (cdPT)

flush at the surface of a

board. Two thermocouple

leads are welded to the

copper disc. The back side

of the disc is filled with

insulation. A thin

thermocouple (TC) is

mounted nearby to measure

gas temperature
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Fig. 9.13 A steel cylinder dummy filled with insulation with thermocouples mounted on the

surface were placed in a pool fire to register thermal exposure. (From a master thesis of Peter

M€ollerstr€om and Bj€orn Evers (2013), Luleå TU). (a) Pool fire (b) Steel cylinder dummy
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Chapter 10

Post-Flashover Compartment Fires:
One-Zone Models

FSE and design of structures and structural elements are in most cases made with a

procedure including tests and classification systems. Fire resistance or endurance

tests are specified in standards such as ISO 834, EN 1363-1 or ASTM E-119. In

these standards time–temperature curves are specified representing fully developed

compartment fires to be simulated in fire resistance furnaces for prescribed

durations.

Alternatively design fires defined by their time–temperature curves may be

obtained by making heat and mass balance analyses of fully developed compart-

ment fires. Examples of that are given in the Eurocode 1 [36] where so-called

parametric fire curves are defined. A number of significant simplifications and

assumptions are then made to limit the number of input parameters and facilitate the

calculations. Thus

1. The combustion rate is ventilation controlled, i.e. the heat release is proportional

to the ventilation rate.

2. The fire compartment is ventilated by natural convection at a constant rate

independent of temperature.

3. The gas temperature is uniform in the fire compartment.

4. The heat fluxes by radiation and convection to all surfaces of the compartment

are equal and uniform.

5. The energy of the fuel is released entirely inside the compartment.

6. The fire duration is proportional to the amount of heat of combustion originally

in the combustibles in the compartment, i.e. the fuel load.

All these assumptions are reasonable for a fully developed fire under ideal

circumstances. Themajor parameters controlling the heat balance of fully developed

compartment fires are then considered although they are violated more or less in real

fires. Anyhow, by making certain parameter choices a set of time–temperature

curves are obtained which in general yields design fires which are hotter and longer

than could be anticipated in real fires or by more accurate numerical predictions.
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The theory and assumptions outlined below follows the work of Thelandersson

and Magnusson [36] and others but has been modified and reformulated according

to later work by Wickstr€om [37] made up for the basis for the parametric fire curves

in Eurocode 1 [35]. See more on parametric fire curves in Sect. 12.2.

Below the fundamentals of the one-zone model theory are presented. The heat

balance equation is then formulated in such a way that sometimes simple analytical

solutions can be derived and in other cases general temperature calculation codes

can be used to analyse compartments surrounded by boundaries of several layers

and materials with properties varying with temperature as, for example, concrete

containing water evaporating at 100 �C and having a thermal conductivity that

decreases by 50% during fire exposure.

10.1 Heat and Mass Balance Theory

The overall heat balance equation of a fully developed compartment fire as shown

in Fig. 10.1 may be written as

_q c ¼ _q l þ _q w þ _q r ð10:1Þ

where _q c is the heat release rate by combustion, _q l the heat loss rate by the flow of

hot gases out of the compartment openings, _q w the losses to the fire compartment

boundaries and _q r the heat radiation out through the openings. Other components of

the heat balance equation are in general insignificant and not included in the

approximate and simple analyses considered here.

When the temperature of the compartment rises, air and combustion products

flow in and out of the compartment driven by buoyancy, i.e. the pressure difference

Δp developed between the inside and outside of the compartment due to the gas

temperature/density difference as indicated in Fig. 10.1. The mass of gases gener-

ated by the fuel when pyrolyzing is relatively small and therefore neglected. Hence

the mass flow rate in _m i and out _m o of the compartment must be equal, denoted _m a.

Then by applying the Bernoulli theorem the flow rate of gases can be derived as

approximately proportional to the opening area times the square root of its height

for vertical openings.

_m a ¼ α1Ao

ffiffiffiffiffi
ho

p
ð10:2Þ

where α1 is a flow rate coefficient. Ao and ho are the area and height of the openings
of the compartment. The coefficient α1 varies only slightly with the fire temperature

over a wide range of temperatures relevant for fires and is therefore assumed

constant [38]. In the presentation here only one vertical opening is assumed. For

details on how multiple openings and horizontal openings can be considered

see [35].
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As indicated in Fig. 10.1 hot fire gases are going out in the upper part of the

opening and cool air is entering in the lower part. The level at which the direction of

the flows are changing is called the neutral layer. As the outgoing flow of fire gases

is hotter and less dense than the incoming air at ambient temperature, the neutral

layer is below the middle of the opening, at about a third of the opening height.

With the symbols shown in Fig. 10.1 that is hn � ho=3.
The combustion rate _q c inside the fire compartment is limited by the amount of

air/oxygen available. Thus the fire is ventilation controlled and the combustion rate

inside the compartment is proportional to the air flow, i.e.

_q c ¼ χ α2 _m a ¼ χ α1α2Ao

ffiffiffiffiffi
ho

p
ð10:3Þ

where the combustion efficiency χ is a reduction coefficient between zero and unity

considering the burning efficiency, i.e. the fraction of the oxygen entering the

compartment that is consumed by the combustion process inside the compartment.

The combustion yield α2 is the amount of energy released per unit mass of air in the

combustion process. It is almost constant for combustible organic materials signif-

icant in fires with a value of about 13.2 � 106 W s/kg (per kg of oxygen). Then α2 can
be calculated assuming an oxygen content of 23% in ambient air to be 3.01 � 106
W s/kg (per kg of air). (The fact that a constant amount of energy is released per unit

weight of oxygen is also accounted for when measuring heat release rates by the

so-called oxygen depletion technique, for example, in the cone calorimeter

according to ISO 5660).

The first term on the right-hand side of Eq. 10.1 is the loss by flow of hot gas

going out and being replaced by cooler gas. Hence _q l is proportional to the mass

flow in and out of the compartment times the temperature rise of the fire, i.e.

Fig. 10.1 One-zone model of a fully developed compartment fire with a uniform temperature Tf
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_q l ¼ cp α1Ao

ffiffiffiffiffi
ho

p
Tf � T1
� � ð10:4Þ

where cp is the specific heat capacity of the combustion gases at constant pressure

(usually assumed equal to that of air) and Tf is the fire temperature. T1 is the

ambient temperature which is assumed equal to the initial temperature Ti. The
specific heat capacity of air cp does not vary more than a few percentage over the

temperature range considered and may be taken from textbooks such as [1, 2] at a

temperature level of 800 �C to be 1.15 � 103 W s/(kg K).

For convenience of writing the fire temperature rise θf is introduced, i.e.

θf ¼ Tf � Ti

� � ð10:5Þ

and the convection loss then becomes

_q l ¼ cp α1 Ao

ffiffiffiffiffi
ho

p
θf ð10:6Þ

The second term on the right-hand side of Eq. 10.1, i.e. heat loss to the fire

compartment boundaries _q w is assumed to be evenly distributed over the entire

surrounding boundary area.

_q w ¼ At _q
00
w ð10:7Þ

where At is the total enclosure area and _q
00
the mean heat flux rate to the surrounding

surfaces of the fire compartment. This term constitutes the inertia of the dynamic

heat balance system as it changes with time depending on the temperature of the

surrounding boundaries. It is significant in the beginning of a fire, and then it

decreases when the temperature of the surrounding structure increases and gets

closer to the fire temperature. For surrounding structures assumed to be thick it

vanishes when thermal equilibrium is reached after long fire durations.

The third term on the right-hand side of Eq. 10.1, i.e. the heat loss by radiation

directly out through the openings _q r, may be calculated as

_q r ¼ εf Ao σ T4
f � T4

1
� �

ð10:8Þ

where εf is the emissivity of the fire compartment at the opening here assumed to be

one and therefore omitted below. This term is relatively small in the beginning of a

fire when the fire temperature is moderate. It increases, however, by the forth power

of the temperature and becomes considerable at later stages of fires when the

temperature is high.

Now by inserting Eqs. 10.3, 10.4, 10.7 and 10.8 into Eq. 10.1 and after

rearranging, the heat flux to the boundary surfaces becomes
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_q
00
w ¼ cp α1O

χα2
cp

� θf

� �
þ Ao

At
σ T4

1 � T4
f

� �
ð10:9Þ

where O is named the opening factor defined as

O ¼ Ao

ffiffiffiffiffi
ho

p
At

ð10:10Þ

The temperature of a ventilation controlled fire increases with time as the

compartment boundary structures, ceiling, floor and walls heat up. If the compart-

ment boundaries are assumed infinitely thick then when the compartment bound-

aries after a long time have been fully heated and steady-state thermal conditions

can be assumed the heat losses to the boundary structure vanish. Notice in Eq. 10.9

that if the losses to the surrounding structure _q w and the radiation out the window _q r

are negligible, the fire temperature depends only on the ratio between χα2 and cp,
i.e. ratio between product of the combustion efficiency and combustion yield, and

the specific heat of the fire gases. It is, however, independent of the opening factor

and the thermal properties of the surrounding structure. The parameter is here

named the ultimate fire temperature θult:

θult ¼ χα2
cp

ð10:11Þ

The values of all the parameters introduced above vary only slightly with

temperature and are therefore here assumed to remain constant. Commonly

assumed values are summarized in Table 10.1.

In Eq. 10.9 the parameter groups (cpα1O), (χα2/cp) and (Ao/At) are constants, and

T1ð Þ is a known boundary temperature. Therefore this equation is analogous to a

boundary condition of the third kind as outlined in Sect. 3.2.3. If the radiation

directly out through the openings is neglected (second term on the right-hand side

of Eq. 10.9) even analytical solutions can sometimes be obtained as shown in

Sect. 10.2.

Alternatively Eq. 10.9 may be written as

_q
00
w ¼ hf ,c Tult � Tf

� �þ hf , r T1 � Tf

� � ð10:12Þ

or as

_q
00
w ¼ hf ,c θult � θf

� �þ hf , rθf ð10:13Þ

Here hf,c is named fire compartment convection heat transfer coefficient, iden-
tified as
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hf ,c ¼ cp α1O ð10:14Þ

and fire compartment radiation heat transfer coefficient hf,r is identified as

hf , r ¼ Ao

At
σ T2

1 þ T2
f

� �
� T1 þ Tf

� � ð10:15Þ

The corresponding fire compartment thermal resistances are defined as

Rf ,c ¼ 1

hf ,c
¼ 1

cp α1O
ð10:16Þ

and

Rf , r ¼ 1

hf , r
¼ 1

Ao

At
σ T2

1 þ T2
f

� �
� T1 þ Tf

� � ð10:17Þ

The ultimate fire temperature θult will generally not appear in reality. It is intro-

duced to facilitate the development and explanation of the compartment fire

models.

The heat transfer to the surrounding structure expressed in terms of the fire

temperature may be written as

_q
00
w ¼ hi,c Tf � Ts

� �þ hi, r Tf � Ts

� � ð10:18Þ

where hi,c is the convection heat transfer coefficient and hi,r the radiation heat

transfer coefficient between the fire gases and the compartment boundary. The latter

is defined as

hi, r ¼ εsσ T2
f þ T2

s

� �
� Tf þ Ts

� � ð10:19Þ

where εs is the emissivity of the fire compartment inner surface. Then the combi-

nation of Eqs. 10.12 and 10.18 can be illustrated by an electric circuit analogy as

shown in Fig. 10.2 where the resistances Rf,c and Rf,r are defined in Eqs. 10.16 and

Table 10.1 Values of physical parameters and parameter groups

Name Notation Value Units

Flow rate coefficient α1 0.5 kg/(s m5/2)

Combustion yield coefficient α2 3.01 � 106 W s/kg

Specific heat capacity of air cp 1150 W s/(kg K)

Combustion efficiency χ –

Ultimate fire temperature increase θult ¼ χα2
cp

1325 (χ¼ 0.506) K

Fire convective heat transfer coefficient hf ,c ¼ cp α1O 575�O W/(m2 K)
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10.17, and Ri,c and Ri,r are the inverses of the corresponding heat transfer coeffi-

cients as defined by Eqs. 10.18 and 10.19.

The two temperatures Tult and T1 may be reduced to one resultant temperature

Tmax which is a weighted mean value of the two. Compare with adiabatic surface

temperature of Sect. 4.4. Then the electric circuit of Fig. 10.2 can be reduced that of

Fig. 10.3. The analogy between heat transfer and electric circuit parameters is

described in Sect. 1.2 where also rules for combining resistances in series and

parallel are given.

Tmax is the maximum temperature a compartment fire can reach when the losses

to the boundaries vanish. It can be calculated by putting _q
00
w ¼ 0 in Eq. 10.12 and

solving for θf.
As there is no thermal heat capacity involved, the heat flux may now be written

in two ways as

Fig. 10.2 Electric circuit analogy model of a fire compartment boundary

Fig. 10.3 Electric circuit

analogy model of a fire

compartment boundary with

two heat transfer resistances

in series
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_q
00
w ¼ Tmax � Tf

� �
Rf , tot

¼ Tmax � Ti, sð Þ
Rf , tot þ Ri, tot

ð10:20Þ

Observe that the radiation heat transfer coefficient must be calculated at the

absolute temperatures Tmax and Tf. Thus

Rf , tot ¼ 1

cp α1Oþ Ao

At
σ T2

max þ T2
f

� �
� Tmax þ Tf

� � ð10:21Þ

and then

Ri, tot ¼ 1

hi,c þ hi, r
¼ 1

hi,c þ εsσ T2
f þ T2

i, s

� �
� Tf þ Ti, s

� � ð10:22Þ

According to Eq. 10.20 the two thermal boundary resistances in series as shown in

Fig. 10.3 can then be summarized into one as shown in Fig. 10.4.

Equation 10.20 is a third kind of boundary condition (see Sect. 1.1.3) with the

heat transfer coefficient equal to the reciprocal of the heat transfer resistance. With

this boundary condition combined with a thermal model of the boundary structure

may its temperature be calculated including its surface temperature.

The fire temperature Tf can thereafter be obtained as the weighted mean tem-

perature of Tmax and Ts as

Tf ¼ θf þ Ti ¼ Ts Rf , tot þ Tmax Ri, tot

Rf , tot þ Ri, tot
ð10:23Þ

If the thermal resistances Rf,tot and Ri,tot may be assumed constant, analytical

solutions for Ts can be derived for surrounding structures being semi-infinitely thick

or having its heat capacity lumped in a core as is shown below.

The highest fire temperature that can be reached in a fire compartment occurs

when surrounding structures are fully heated and do not absorb any more heat, i.e.

_q
00
w vanishes. Then the fire temperature and the surface temperature becomes equal

to Tmax. If in turn the radiation directly out through the openings can be neglected as
well, the maximum fire temperature becomes Tult.

An observation is that according to this theory an instant fire temperature rise

occurs when the fire begins. Then the fire temperature immediately T0f rises to

Fig. 10.4 Electric circuit

analogy model of a fire

compartment boundary with

two heat transfer resistances

in series

160 10 Post-Flashover Compartment Fires: One-Zone Models

http://dx.doi.org/10.1007/978-3-319-30172-3_1


T0
f ¼

Ri, tot

Rf ,c þ Ri, tot
Tmax ð10:24Þ

This immediate temperature rise is of course physically unlikely for the very

initial phase as a heat release yielding flashover cannot start suddenly in reality but

after some time has elapsed the approximate predictions as given by the above

theory applies.

10.2 Solution of the Fire Compartment Temperature

The boundary condition as defined above includes the two heat transfer resistances

in a series, one artificial and one physical as indicated by Fig. 10.4. To solve for the

surface temperature and then calculate the fire temperature according to Eq. 10.23,

a thermal model of the compartment boundary structure is needed. The surface

temperatures may then be calculated with various methods depending on whether

the model parameters may vary with temperature. When either heat transfer

coefficients or material properties vary with temperature, the problem becomes

non-linear and then numerical tools such as finite element programs need to be

used. Boundary structures of several layers of different materials etc. may then also

be considered. Spreadsheet calculations using programs such as MS-Excel are very

useful when analysing fire compartments with boundaries where lumped heat can

be assumed.

Numerically exact analytical expressions can be derived for two types of bound-

ary constructions being considered in the next sections, namely, structures assumed

either semi-infinitely thick or having a core where the thermal mass is concentrated

(lumped heat). Then the elementary procedures presented in Sects. 3.2 and 3.1,

respectively, may be applied.

In Table 10.1 a summary of values of physical parameters and parameter groups

are given. These are used throughout the presentation below.

10.2.1 Semi-infinitely Thick Compartment Boundaries

Fire compartment boundaries are in most cases assumed thermally thick. The heat

transferred to the surfaces are then stored in the surrounding structures, and the

effects of heat lost on the outside of the structure is neglected.

As indicated by Fig. 10.4 may the boundary condition be expressed by two

thermal boundary resistances in series which can be added up and a complete

thermal model becomes as indicated by Fig. 10.5.

This is a semi-infinite body with a third kind of boundary condition. To compute

the surface temperature generally numerical temperature calculation methods are
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needed such as finite element methods. The fire temperature is then calculated as

the weighted mean temperature of Tmax and Ts according to Eq. 10.23.

However, if the following assumptions are made, the problem becomes linear

and analytical solutions can be derived:

1. The heat radiated directly out the openings, _q r, is neglected or is directly

proportional to the difference between the fire temperature Tf and the ambient

temperature T1, i.e. hf,tot and its reciprocal Rf,tot are constant.

2. The heat transfer by radiation and convection to the surrounding boundaries is

assumed proportional to the difference between the fire Tf and boundary surface

temperatures Ts, i.e. hi,tot and its reciprocal Ri,tot are constant.

The surface temperature rise can be calculated according to Eq. 3.35 in Sect.

3.2.3. Thus

θs ¼ θmax � 1� e
t
τf � erfc

ffiffiffiffi
t

τf

s !" #
ð10:25Þ

where the parameter τf may be identified as a fire compartment time constant for
infinitely thick walls in analogy with Eq. 3.34.

τf ¼ k � ρ � c
1

Rf , totþRi, tot

� �2 ¼ k � ρ � c � Rf , tot þ Ri, tot

� �2 ð10:26Þ

as the reciprocal of the heat transfer resistance by definition is equal to the heat

transfer coefficient. Rf,tot depends on Rf,c and Rf,r. The former is always constant

according to Eq. 10.16, and by assuming constant fire temperature Tf ¼ T_
f in

Eq. 10.17, a constant Rf,r could be calculated as well. Too high assumed T_
f -values

will yield overestimated the heat losses by radiation out the openings and therefore

underestimated fire temperatures, and vice versa. θmax is the temperature rise which

is obtained when the wall are fully heated and no heat is transferred to boundary

surfaces. Given constant values of Rf,c and Rf,r, θmax is constant and can be

calculated as

θmax ¼ θult Rf , r

Rf , r þ Ri,c
¼ θult

1þ Rf ,c
Ri, r

:
ð10:27Þ

Fig. 10.5 Electric circuit analogy model of a fire compartment with infinitely thick walls
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By inserting the opening factor from Eq. 10.10 and assuming parameter values

according to Table 10.1 a

Rf ,c

Rf , r
¼

σ � T2
1 þ T_

f 2
� �

� T1 þ T_
f

� �
575

ffiffiffiffiffi
ho

p ð10:28Þ

where T
_

is the assumed temperature level. Then by inserting Eq. 10.28 into

Eq. 10.27

θmax ¼ θult

1þ σ� T2
1þT_

f
2

� �
� T1þT_

f

� �
575

ffiffiffiffi
ho

p
: ð10:29Þ

Notice that θmax increases with the square root of the opening height ho but is

independent of Ao and At.

The fire temperature rise vs. time may be obtained as the weighted average of

θmax and θs in analogy with Eq. 10.23 as

θf ¼ θs Rf , tot þ θmax Ri, tot

Rf , tot þ Ri, tot
: ð10:30Þ

Now by inserting Eq. 10.25 into Eq. 10.26, the fire temperature development

becomes

θf ¼ θult

1þ Ri, tot
Rf , tot

1� e
t
τf � erfc

ffiffiffiffi
t

τf

s !" #
þ Ri, tot

Rf , tot

( )
: ð10:31Þ

Constant values of Ri,tot and Rf,tot may be obtained from Eqs. 10.21 and 10.22,

respectively, for a given fire temperature Tf ¼ T_
f . Then by inserting the ratio

Ri, tot
Rf , tot

into Eq. 10.31, a very handy closed form solution of the fire temperature develop-

ment vs. time is obtained.

An interesting observation is that the standard design time–temperature curvesmay

be derived by prescribing a maximum temperature rise θult ¼ χα2=cp ¼ 1325 �C and

a fire compartment time constant τf ¼ 1200s. This time constant may be calculated

based on quite reasonably assumed input parameters for surrounding boundary prop-

erties grouped into the thermal inertia k � ρ � cð Þ, the opening factor (O) and the heat

transfer resistance between the fire gases and the surrounding boundaries (Ri,tot). Then

Eq. 10.25 yields the fire temperature rise as

10.2 Solution of the Fire Compartment Temperature 163



θf ¼ 1325 1� e
t

1200ð Þ � erfc
ffiffiffiffiffiffiffiffiffiffi
t

1200

r	 

: ð10:32Þ

which is very close to the EN 1363-1 and ISO 834 standard curves as well as the

heating phase of the parametric fire curve according to EN 1991-1-2 for the

compartment factor Γ¼ 1, see Sect. 12.2, as shown in Fig. 10.6.

Example 10.1 Calculate the fully developed fire temperature rise after

60 min in a compartment surrounded by concrete. Assume an ultimate temperature

θult ¼ 1325 �C and an opening factor of O¼ 0.04 m½, material properties

according to Table 1.2 and other physical parameters according to Table 10.1.

(a) Neglecting the effects of heat transfer resistance between the fire gases and the

surrounding boundaries and the radiation directly out the window.

(b) Neglecting the effects of radiation directly out the window but not the effects

of heat transfer resistance between the fire gases and the surrounding bound-

aries. Assume a total heat transfer coefficient htot, i ¼ 200W= m2Kð Þ.
(c) Considering both the effects of heat transfer resistance between the fire gases

and the surrounding boundaries and the radiation directly out the window. The

ratio between the opening area and the total surrounding area Ao=At ¼ 0:06.

Assume a hf , r ¼ 70W= m2Kð Þ.
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Fig. 10.6 Comparison between fire temperature rises according to the analytical expression

(Eq. 10.32), the standard ISO 834 curve and the parametric fire curve for Γ¼ 1 according to EN

1991-1-2
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Solution

(a) ðRi, tot ¼ 0 and Rf , r ¼ 0Þ. Equation 10.16 yields Rf ,c ¼ Rf , tot ¼ 1
575�0:04 ¼

0:0435 m2Kð Þ=W and Eq. 10.26 yields τf ¼ 3530000

575�0:04ð Þ2 ¼ 6673s. Thus t=τf

¼ 3600
6673

¼ 0:54 and Eq. 10.25 (and Table 3.3) yields θf ¼ θs ¼
0:49 � 1325 ¼ 649 �C.

(b) (Rf , r ¼ 0). Ri, tot ¼ 1
200

¼ 0:005 m2Kð Þ=W Eq. 10.26 yields τf ¼ 3530000 �
0:0435þ 0:005ð Þ2 ¼ 8303s and t=τf ¼ 3600

8303
¼ 0:433 and Eq. 10.25 yields the

surface temperature θs ¼ 1325 � 0:46 ¼ 610 �C. Then the fire temperature

can be obtained from Eq. 10.30 as θf ¼ 610�0:0435 þ 1325�0:005
0:0435þ0:005 ¼ 42:55

0:0578 ¼ 683 �C.

(c) According to Eq. 10.15 hf , r ¼ Ao

Atot
σ T2

1 þ T2
f

� �
� T1 þ Tf

� � � 0:03 � 70 ¼
2:1 W= m2Kð Þ and according to Table 10.1 hf ,c ¼ 1

Rf ,c
¼ 23W= m2Kð Þ and thus

Rf , tot ¼ 1
2:1þ23

¼ 0:040 m2Kð Þ=W. Then Eq. 10.27 yields θmax ¼ 23�1325
23þ2:1 ¼

1214 �C and Eq. 10.26 yields τf ¼ k � ρ � c � Rf , tot þ Ri, tot

� �2 ¼ 3530000�
0:040þ 0:005½ �2 ¼ 7148 s and t=τf ¼ 3600

6227
¼ 0:504 and Eq. 10.25 yields

the surface temperature θs ¼ 0:48 � 1214 ¼ 583 �C. Then the fire temperature

can be obtained from Eq. 10.30 as θf ¼ θs Rf , totþ θmax Ri, tot
Rf , totþ Ri, tot

¼
583�0:040 þ 1214�0:005

0:040þ0:005 ¼ 652 �C.

Comment: Notice that the various fire temperatures are obtained depending on the

levels of completeness of the calculation model.

10.2.2 Insulated and Uninsulated Boundaries
with a Metal Core

Analytical solutions of the fire temperatures may also be obtained when the fire

compartment is assumed surrounded by structures consisting a metal core where the

all the heat capacity is concentrated. Then the heat capacity per unit area Ccore is

lumped into the core as indicated in Fig. 10.7. The heat capacity of any insulating

material is either neglected or assumed included in the heat capacity of the core.

Figure 10.8 shows an electric circuit analogy model of how the fire, the core and

the inner and outer surface temperatures can be calculated. As all inertia is lumped

into the core, the heat flux is constant on either side of the core due to the

requirement of heat flux continuity. Hence the temperature differences between

various positions are proportional to the corresponding thermal resistances. The

three graphs of the figure indicate the temperature rises initially, after some finite

time and after a very long time, respectively. Notice that according to the theory the

fire and the inner fire exposed surface temperatures increase instantaneously at t¼ 0

according to Eq. 10.29.
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The parameters of Fig. 10.8 are summarized in Table 10.2. The maximum

compartment fire temperature considering radiation out through openings θmax
can be obtained from Eq. 10.12 or Eq. 10.23, the fire compartment heat transfer

resistance Rf,tot from Eq. 10.21 and the heat transfer resistance between fire and

Fig. 10.7 A fire compartment surrounded by a structure with its heat capacity Ccore assumed

concentrated/lumped to a metal core. Thermal resistances of insulation materials Ri and Ro are

assumed on the fire inside and outside, respectively

Fig. 10.8 Electric circuit analogy of fire compartment model with a thin surrounding structure

assuming lumped heat capacities. Relative temperatures at various points initially (t¼ 0), after

some time (0� t�1) and after a very long time (t¼1) are indicated
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surrounding surfaces Ri,tot from Eq. 10.22. The insulation resistances at the inside

and outsider of the core Ri,ins and Ro,ins can be calculated as

Ri, ins ¼ di, ins
ki, ins

ð10:33Þ

and

Ro, ins ¼ do, ins
ko, ins

ð10:34Þ

where di,ins and do,ins are the thicknesses of the inside and outside insulations,

respectively, and ki,ins and ko,ins are the corresponding conductivities. The outside

heat transfer resistance can be calculated as

Ro, tot ¼ 1

ho,c þ εo, sσ T2
o, s þ T2

1
� � � To, s þ T1ð Þ ð10:35Þ

where ho,c is the convection heat transfer coefficient at the outside surface and εo,s
the emissivity of the outside surface. The conduction resistance of the metal core is

neglected. Ccore is the heat capacity per unit area of the core, i.e.

Ccore ¼ dcoreccoreρcore: ð10:36Þ

where dcore, ccore and ρcore are the thickness, specific heat and density of the core,

respectively

The dynamic heat balance of the core can now be written as

Table 10.2 Summary of the parameters of Fig. 10.8

Notation Parameter Definition

θmax Maximum temperature—no losses to surfaces Eq. 10.12, Eq. 10.23 or

Eq. 10.29

Rf,tot Fire heat transfer resistance Eq. 10.21

Ri,tot Transfer resistance, fire—inside surface Eq. 10.22

Ri,ins Resistance inside insulation Eq. 10.33

Ro,ins Resistance outside insulation Eq. 10.34

Ro,tot Transfer resistance, outside surface—

surroundings

Eq. 10.35

Ccore Heat capacity of the core Eq. 10.36
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Ccore
dθcore
dt

¼ Rf , tot þ Ri, tot þ Ri, ins

� �
θmax � θcoreð Þ � Ro, ins þ Ro, totð Þ

� �θcore � θ1
� ð10:37Þ

and the core temperature can be numerically solved by the forward difference

recursion formula

θiþ1
core ¼ θ i

core

þ Δt

Ccore
Rf ,totþRi,totþRi,ins

� �
θmax�θcoreð Þ� Ro,insþRo,totð Þ � �θcore�θ1

�� �
ð10:38Þ

where Δt is a chosen time increment. This recursion formula can be coded in

spreadsheet programs such as MS-Excel. The temperature-dependent parameter

may be updated along with the calculations.

If all the parameters are assumed constant, then the temperature development

can be calculated analytically. Thus, the core temperature rise may be obtained as a

function of time as (see Sect. 3.1.2)

θcore ¼ θmax
Ro, tot þ Ro, ins

Rf , tot þ Ri, tot þ Ri, ins þ Ro, tot þ Ro, ins

	 

1� e�t=τf
� �

ð10:39Þ

where the fire compartment time constant τf is

τf ¼ Ccore

1
Rf , totþRi, totþRi, ins

þ 1
Ro, totþRo, ins

ð10:40Þ

When the core temperature has been calculated, the fire temperature may be

calculated. As the heat capacity of the insulation is assumed to be negligible, the

compartment fire temperature rise can be calculated as a weighted average between

θmax and θcore (see Fig. 10.8). Thus

θf ¼ Ri, tot þ Ri, insð Þ θmax þ Rf , tot θcore
Rf , tot þ Ro, tot þ Ro, ins

ð10:41Þ

and after inserting θcore according to Eq. 10.39 and rearranging

θf

¼ θmax

1þRi,totþRi,ins

Rf ,tot

Ro,totþRo,ins

Rf ,totþRi,totþRi,insþRo,totþRo,ins
1�e�t=τf
� �

þRi,totþRi,ins

Rf ,tot

	 


ð10:42Þ

Notice that this expression is similar to the corresponding Eq. 10.31 for semi-

infinite boundaries.
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In a corresponding way according to the law of proportion may the fire exposed

surface temperature be calculated as

θs, i ¼
Ri, ins θmax þ Rf , tot þ Ri, tot

� �
θcore

Rf ,c þ Ri, tot þ Ri, ins
ð10:43Þ

and non-exposed surface temperature as

θs,o ¼ Ro, tot θcore
Ro, tot þ Ro, ins

ð10:44Þ

The maximum fire temperature that can be reached asymptotically after long fire

durations depends on the insulation of the compartment and the heat transfer

resistances. It can be calculated as

θmax
f ¼ Ri, tot þ Ri, ins þ Ro, tot þ Ro, ins

Rf , tot þ Ri, tot þ Ri, ins þ Ro, tot þ Ro, ins
θmax ð10:45Þ

The fire development is generally very fast for thin structures and the maximum is

reached quickly.

Example 10.2 Estimate the maximum post-flashover fire temperature Tmaxf of an

uninsulated steel container. It has a steel thickness dcore ¼ 3 mm, an opening

height and area ho ¼ 2:5 m and Ao ¼ 5 m2, and a total area At ¼ 125 m2.

Assume θult ¼ 1325 �C, the internal and external heat transfer coefficients due to

radiation and convection hi, tot ¼ 1=Ri, tot ¼ 100 W= m2Kð Þ and ho, tot ¼ 1=Ro, tot ¼
25 W= m2Kð Þ. Estimate the fire temperature development vs. time.

Solution
Assume a maximum fire temperature Tmax

f ¼ 900 �C ¼ 1173K for the estimate of

Rf,tot. Then Eq. 10.29 yields θmax ¼ 1325

1þσ� 2932þ11732ð Þ� 293þ1173ð Þ
575
ffiffiffiffi
2:5

p
¼ 1169 �C. Then Eq. 10.21

and Table 10.1 yieldRf , tot ¼ 1

575�5
ffiffiffiffi
2:5

p
125

þ 5
125

σ 1169þ273ð Þ2þ9732½ � � 1169þ273þ973ð Þ ¼ 2 m2K=W.

Then Eq. 10.36 yields θmax
f ¼ 1=100þ0þ1=25þ0

0:022þ1=100þ1=25 1169 ¼ 809 �C. A new estimate Tmax
f

¼ 850 �C ¼ 1123Kyields θmax ¼ 1184 �C,Rf , tot ¼ 0:0178 and θmax
f ¼ 0:731184

¼ 873 �C.

Comment: Thus the temperature rise in an uninsulated container as described will

never exceed about 870 �C (θmaxf ). For a well-insulated container with the same

geometry the fire temperature rise may reach about 1180 �C (θmax).
The temperature development can be estimated by applying Eq. 10.42. The time

constant τf ¼ 0:003�460�7850
1= 0:0178þ0:01ð Þþ25

¼ 177 s and then if Rf,tot is assumed constant

as calculated above θf ¼ 1184
1þ 0:01

0:0178

0:04
0:0178þ0:01þ0:04 1� e�t=177

� �þ 0:01
0:0178

h i
¼

447 � 1� e�t=177
� �þ 426 �C.
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Comment: This solution shows that the time constant is very short, less than 3 min,

and that very beginning of the fire (t ¼ 0) the calculated fire temperature rise is

significant, θf ¼ 426 �C, and that after a long time t ! 1ð Þθf ! 873 �C as stated

above (θmaxf ).

Example 10.3 A fire compartment is surrounded by a 3-mm-thick steel sheet

structure with a 12-mm-thick gypsum board mounted on both sides of the core.

The opening is factor O¼ 0.08 m½. The heat transfer coefficient at the fire exposed

and the unexposed sides are assumed to be constant, i.e. hi, tot ¼ 200W= m2Kð Þ and
ho, tot ¼ 40W= m2Kð Þ, respectively. Neglect the radiation directly out the opening,

i.e. Rf , tot ¼ Rf ,c.

(a) Calculate the ultimate fire temperature rise θult assuming a combustion effi-

ciency of 50%.

(b) Calculate the maximum fire θmaxf and core θmaxcore temperature rises.

(c) Calculate the fire temperature θf and the inner fire exposed surface temperature

θs,i at time t¼ 0 according to the model.

(d) Calculate the core θcore and fire θf temperature rises after 300 s of flashover.

(e) Plot as a function of time of the temperature rises, ultimate θult, fire θf, inner
surface θs,i, core θcore, outer surface θs,o.

Use parameter values as given in Tables 1.2 and 10.1.

Solution

(a) Equation 10.11 yields θult ¼ 1309 �C.
(b) The thermal resistances over a unit area Ri, tot þ Ri, insð Þ ¼ 1=200þ 0:012=0:5

¼ 0:029 m2Kð Þ=Wand Ro, tot þ Ro, insð Þ ¼ 1
40
þ 0:012=0:5 ¼ 0:049 m2Kð Þ=W.

Rf ,c ¼ Rf , tot ¼ 1:74 � 10�3

0:08 ¼ 0:022 m2 Kð Þ=W. Then Eq. 10.45 yields θmax
f ¼

0:029þ0:049
0:022þ0:029þ0:049 � 1309 ¼ 1021�C and Eq. 10.39 yields

θmax
core ¼ 0:049

0:022þ0:049þ0:029 � 1309 ¼ 641 �C.
(c) Equation 10.24 yields θ0f ¼ 0:029

0:022þ0:029 � 1309 ¼ 744 �C, and

θs, i ¼ 0:012=0:5
0:022þ0:029 � 1309 ¼ 616 �C.

(d) Equation 10.40 yields τf ¼ 0:003�560�7850
1

0:022þ0:029þ 1
0:049¼330

s and temperature rise after 300 s

can be obtained from Eq. 10.39 as θcore ¼ 1309 � 0:049
0:022þ0:049þ0:029 � 1� e�

300
326

� �
¼ 1309 � 0:490 � 0:601 ¼ 385 �C and from Eq. 10.41

θf ¼ 0:029�1309þ0:022�385
0:022þ0:029 ¼ 910 �C.

(e) See the plot of Fig. 10.9

Comment: Notice in Fig. 10.9 that according to the theory temperatures, the fire

temperature θf and the inner exposed surface temperature θs,i starts at temperature

levels between the initial and the ultimate temperatures depending on the thermal

resistances.
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10.2.3 Temperature-Dependent Material and Heat Transfer
Properties: Numerical Solutions

In most cases fire compartments have openings through which heat can radiate out

to the environment at ambient temperature. Exceptions are furnaces and tunnels,

and therefore tunnel fires may become very hot. The heat losses by radiation out

through opening _q r according to Eq. 10.8 is small at low temperatures but increases

rapidly at elevated temperatures and must therefore be considered particularly when

analysing hot fires. As it is highly non-linear as it depends on the fire temperature to

the fourth degree. This is also the case for the radiation to the fire compartment

surfaces, and in addition the surrounding structure may consist of several layers of

materials with properties varying with temperature. Then numerical solutions are

required.

In general, Eq. 10.9 is valid as a boundary condition for the one-dimensional

model. For a fire compartment with relatively thick but not infinite boundaries, a

thermal model as indicated by electric circuit analogy shown in Fig. 10.10 may then

be applied.

This model analysed as it is or it may be reduced by the rules of combining

resistances and defining combined temperatures to the circuit analogy of Fig. 10.11.

Then the boundary temperature Tmax is a weighted average value of the ambient

temperature T1 and Tult. θmax can be calculated by solving Eq. 10.12 for _q
00
w ¼ 0.
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Fig. 10.9 Calculated temperature rises of Example 10.3. Notice that the fire and inner surface

temperatures rise instantaneously according to the theory
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The thermal resistances Rf,c and Rf,r can be calculated according to Eqs. 10.16 and

10.17, and the resultant resistance Rf,tot according to Eq. 10.21.

The heat transfer resistance Ri,tot between the fire and the surrounding surfaces

can be calculated according to Eq. 10.22.

Now with the boundary condition according to Eq. 10.20 with two heat transfer

resistances in series may the temperature in the surrounding structure be calculated

including the surface temperature Ts with a general temperature calculation code.

When the surface temperature is calculated, the fire temperature can be obtained

as

Tf ¼ Rf , totTs, i þ Ri, totTmax

Rf , tot þ Ri, tot
ð10:46Þ

Notice that heat transfer resistance due to radiation depends on the temperatures

and therefore Eq. 10.46 is implicit and Rf,tot and Ri,tot must be updated at each time

step. Below four cases are shown of calculated and measured fire temperatures in a

reduced scale room with dimensions according to Fig. 10.12a. A diffusion propane

burner (300 mm by 300 mm) was placed inside the fire compartment releasing a

constant power of 1000 kW. It generated immediate flash-over with flames emerg-

ing out the door opening, see Fig. 10.12b.

The thermal model as indicated in Fig. 10.10 was analysed with TASEF for the

surrounding structures of lightweight concrete and steel sheets. The steel sheets

were either insulated on the outside, on the inside or non-insulated. Figure 10.13

shows the measured and calculated temperatures in a compartment of lightweight

concrete.

Figure 10.14 shows measured and calculated fire temperatures from the same

tests series with a compartment of 3 mm steel sheets insulated on the outside, inside

or not at all, respectively. In the calculations the changes of thermal properties of

the insulation and the steel were considered.

Fig. 10.10 Electric circuit analogy of fire compartment model with a thick surrounding structure

Fig. 10.11 Reduced electric circuit analogy of fire compartment model with a thick surrounding

structure
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Fig. 10.12 Reduced scale fire compartment experiment with propane burner. (a) Inner dimen-

sions (in mm) (b) Flames shooting out the door-way

Fig. 10.13 Measured ( full line) and calculated fire (dashed line) temperatures in fully developed

compartment fire in a concrete compartment using the finite element program Tasef
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Notice the following from the four cases of Figs. 10.13 and 10.14

– The fire temperature goes to about 1150 �C (Tmax) except the non-insulated steel
compartment where the final temperature is less than 800 �C.

– The inside insulated steel compartment goes much faster to the maximum

temperature than the outside insulated.

– The calculation model yields exceptionally good predictions particular in terms

of the qualitative development of the fire temperature.

Fig. 10.14 Measured ( full line) and calculated (dashed line) fire temperature in fully developed

compartment fire in a steel sheet compartments using the finite element program Tasef. (a)
Insulation on the outside (b) Insulation on the inside (c) No insulation
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Chapter 11

Pre-flashover Compartment Fires:
Two-Zone Models

Two-zone models are applied to pre-flashover fires, i.e. compartment fires which

have not reached ventilation controlled combustion conditions as defined in

Chap. 10. Several more or less advanced computer codes have been developed to

calculate temperature under such assumptions. The most fundamental principles of

the theory are outlined below.

In most cases the heat release rate as a function of time is input to pre-flashover

calculation models. Examples are given in Table 11.1 of the order of magnitude of

the heat release rates of various fires.

In the post-flashover model described above the heat release rate was assumed

determined by the opening alone, see Eq. 10.3. In pre-flashover models as the one

described below the heat release rate _q f is an input variable. All combustion is

assumed to occur inside the fire compartment boundaries and it is limited by the rate

at which gaseous fuel (pyrolysis gases) is being released from burning objects. As

shown in Fig. 11.1, an upper layer is then supposed to develop where the fire

temperature Tf is assumed to be uniform. Below, the lower layer gas temperature

remains at the ambient temperatureT1. Hot combustion gases enter the upper layer

by the way of entrainment into the fire plume of flames and combustion gases

developed by the burning items. The flow rate _m p at which mass is entering the

upper layer must balance the mass flows going in _mi and out _mo of the compartment.

Thus

_mp ¼ _mi ¼ _mo ð11:1Þ

The plume mass flow rate may be calculated as a function of the heat release rate

_q f and the height of between the fuel surface and the height of the upper layer

interface HD. In the pre-flashover stage of a fire, it is the plume entrainment rate

rather than the size of openings that governs the mass flow rate. This is in contrast to

post-flashover fires.
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As for the one-zone model (post-flashover fires) the heat balance equation of a

fire compartment may be written as

_q c ¼ _q l þ _q w þ _q r ð11:2Þ

where the convection term _q l is proportional to the mass flow rate _m p and the

temperature rise (Tf � T1 ). In a similar way, the heat loss to the surrounding

boundaries _q w depends on their thermal properties and the fire temperature. The

radiation loss term _q r depends on T
4
f but is less significant for pre-flashover cases as

the fire temperature level then in general is lower.

There are two equations, the mass balance and the heat balance, and two

unknowns, the temperature Tf and the distance hD, which now can be solved by a

forward time incremental scheme. The input combustion rate _q cmay vary with time

but it is ultimately limited by the availability of oxygen. If too much fuel is released,

the fire becomes ventilation controlled and a one-zone model can be assumed, see

Chap. 10. Therefore, for two-zone models, cf. Eq. 10.4

Table 11.1 Examples of the order of magnitude of heat release rates (HRR) of various fires

Item Typical heat release rate [W]

Wood-burning stove 10

Single burning furniture item 100

Flashover of small room 1000

Full flashover large room/apartment 10,000

Fire in a loaded truck 100,000

Fig. 11.1 Two-zone model of a pre-flashover room fire with a uniform temperature Tf in the upper

layer and ambient temperature T1 in the lower layer
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_q c � α1α2Ao

ffiffiffiffiffi
ho

p
ð11:3Þ

When the heat release rate is constant, the temperature rise depends on the

thermal properties of the surrounding structure and the ventilation (openings) in a

similar way as for the one-zone model.

11.1 Heat and Mass Balance Theory

The plume flow _m pmay be calculated according to Zukoskis’ plume equation [39] as

_m p ¼ α3 _q
1=

3
c z

5=
3 ð11:4Þ

where z is the effective height of the plume above the burning area. Then with an

analogue derivation as for the one-zone case the heat flux to the surrounding

structures may be written as

_q
00
w ¼ α3 _q

1=
3
�

c z
5=

3 � cp
At

_q
2=

3
c

α3 cp z
5=

3

� θf

0
@

1
Aþ εf � Ao

At
σ T4

1 � T4
f

� �
ð11:5Þ

The emissivity εf is here a reduction coefficient considering that the entire

opening is not radiating corresponding to the hot zone fire temperature. According

to Karlsson and Quintiere [40]α3 ¼ 0:0071 kg

W sm
5=3

� �
. Now with heat release _q c and

the effective height of the plume z assumed constant, the fire temperature may be

calculated in a similar way as for post-flashover one-zone models.

Thus a resultant temperature rise θmax can be defined as (see Fig. 11.2)

θmax ¼
R*
f , rθ

*
ult

R*
f ,c þ R*

f , r

¼ θ*ult

1þ R*
f ,c

R*
f , r

ð11:6Þ

where θ�ult is the ultimate gas temperature rise determined as the heat release rate _q c

over the mass flow rate _m p (Eq. 11.4) and the specific heat of air cp assuming no

losses neither through radiation out the openings nor from losses to boundary

surfaces. Observe that alternatively θmax can be obtained by solving Eq. 11.5 for

θf when _q
00
w¼0.

By comparison with Eq. 11.5, the ultimate temperature can be identified as
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θ*ult ¼
_q c

2=3

α3 � cp � z5=3
ð11:7Þ

and the fire thermal resistances can be identified from as

R*
f ,c ¼

At

α3 � _q c

1=
3 � z5=3 � cp

ð11:8Þ

and

R*
f , r ¼

At

εf � Aoσ T2
1 þ T2

f

� �
� T1 þ Tf

� � ð11:9Þ

Then the heat flux to the surface can be calculated as (see Fig. 11.2b)

_q
00
w ¼ θmax � θf

� �
R*
f , tot

¼ θmax � θsð Þ
R*
f , r þ Ri, tot

ð11:10Þ

where the resultant resistance

R*
f , tot ¼

1

1

R*
f ,c

þ 1

R*
f , r

ð11:11Þ

Observe that R�
f ;r must be calculated based on the fire temperature Tf and on the

resultant temperature Tmax ¼ θmax þ T1. In a similar way may resultant heat

transfer resistance between the fire gases and compartment boundary surface Ri,tot

be calculated according to Eq. 10.22 based on the temperatures Tf and the surface

temperature Ts.
Then the boundary condition becomes

Fig. 11.2 Electric circuit analogy model of a pre-flashover compartment fire boundary. (a) Two
boundary temperatures (b) reduced to one boundary temperature
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_q
00
w ¼ 1

R*
f , tot þ Ri, tot

θ*max � θs
� �

: ð11:12Þ

This boundary condition can be used together with thermal model of the

surrounding structure in similar way as for post-flashover compartments. Then

the surface temperature may be calculated, and thereafter the fire temperature can

be obtained by the law of proportion as

Tf ¼ Ts Rf , tot þ Tmax Ri, tot

Rf , tot þ Ri, tot
¼ θs Rf , tot þ θmax Ri, tot

Rf , tot þ Ri, tot
ð11:13Þ

In general analyses of the boundary structure require numerical methods.

However, as for post-flashover one-zone analyses analytical solutions are some-

times possible, given the heat resistances are given constant values representing a

relevant temperature level.

11.2 Solution of the Upper Layer Fire Temperature

In combination with the boundary condition as defined by Eq. 11.12 may the

temperature of a surrounding structure be calculated in a similar way as for

one-zone models. Thus based on the calculated fire-exposed surface temperature

may then the upper layer temperature be calculated. In the next two sections will the

cases of assumed semi-infinite and thin structures, respectively, be analysed. As for

one-zone models analytical solutions may under certain conditions be derived for

quick rough estimates.

11.2.1 Semi-infinitely Thick Compartment Boundaries

The surface temperature of semi-infinitely thick compartment boundaries with

boundary conditions according to Eq. 11.12 may of course be solved numerically

with, e.g. finite element methods. However, with the assumptions of

• Constant heat release rate

• Constant material properties, (k � ρ � c)
• Constant thermal heat transfer coefficients/resistances

may a closed form solution be derived as for one-zone models (see also Sect.

3.2.3), i.e.
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θs ¼ θ*ult 1� e
t

τ*
f erfc

ffiffiffiffi
t

τ*f

s !" #
ð11:14Þ

the time constant τ�f can be calculated as

τ*f ¼
k � ρ � c

1
R*
f ,cþR*

i, tot

	 
2
¼ k � ρ � c � R*

f ,c þ Ri, tot

� �2
ð11:15Þ

and then Eq. 10.23 yields the fire temperature.

The theory as outlined here gives interesting qualitative results but needs to be

further validated by comparing with well-controlled experiments. Some such com-

parisons have been done with very good results for compartments where the heat

capacity of the boundary can be lumped into a steel sheet as is shown in the next

section. Below is an example with purpose of showing how fire temperatures can be

calculated.

Example 11.1 A propane gas burner at a height of 0.5 m in the room/corner test

room was set at a constant power 450 kW. The room has a total surrounding area

At¼ 44 m2 and door opening A0¼ 2 m2. Assume effective height of the burner

plume z¼ 1 m. Assume all the surrounding structural elements being infinitely

thick light-weight concrete with a thermal inertia k � ρ � c ¼ 0:2 � 500 � 800 ¼
80 � 103W2 s= m4K2

� �
. Initial and ambient temperatures are equal to 20 �C.

(a) Calculate the maximum temperature not considering the radiation out the

door-way.

(b) Calculate the maximum temperature considering the radiation out the door-way.

(c) Derive the surface and the fire temperatures as functions of time not considering
the radiation out the door-way and calculate the surface and fire temperatures

after 15 min. Assume a constant heat transfer coefficient hi¼ 25 W/(m K).

Solution

(a) After a long time the wall losses vanish and the maximum temperature rise can

be derived from Eq. 11.7: θf ¼ θult ¼ _q c

2=
3

α3 � cp � z
5=

3

¼ 450000
2=

3

0:0071 � 1150 � 15=
3

¼ 722K. Hence the maximum temperature Tf ¼ 722þ 20 ¼ 724 �C.

(b) Then _q w ¼ α3 � _q c

1=
3 � z5=3 � cp
Atot

_q c

2=
3

α3 � cp � z5=3
� θf

 !
þ Ao

Atot
� σ � T4

1 � T4
f

� �
¼

0:0071 � 4500001=
3 � 1150

44
� 722� θf
� �þ 2

44
� 5:67 � 10�8 � 273þ20ð Þ4 � θfþ

�h
273þ 20Þ4� ¼ 0. This 4th degree equation yields a temperature rise θf ¼ 615K

and Tf ¼ 625 �C.
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(c) The fire temperature as a function may be obtained from Eq. 11.14. From

Eq. 11.8 R*
f ,c ¼

Atot

α3 � _q c

1=
3 � z5=3 � cp

¼ 44

0:0071 � 4500001=
3 � 15=3 � 1150

¼ 0:0704 mKð Þ=W and θ*ult ¼ 722K. Equation 11.15 yields

τ*f ¼ 80�103

1

0:0704þ 1
25

 !2 ¼ 975s. Thus according to Eq. 11.14

θs ¼ 722 � 1� e
t

975ð Þ � erfc ffiffiffiffiffiffi
t

975

p� �h i
. After 900 s t/τ*f ¼ 900=975 ¼ 0:92. The

value of the function between the brackets from Fig. 3.11 or Table 3.3 is 0.56.

Then θs ¼ 722 � 0:56 ¼ 404K. The fire temperature can then be obtained from

Eq. 11.13 as a mean weighted value of the surface and the ultimate temperature

as θf ¼
404�0:0704þ722�

1

25

0:0704þ
1

25

¼ 519K and the fire temperature Tf ¼ 529 �C.

11.2.2 Insulated and Uninsulated Boundaries
with a Metal Core

With the same assumptions as specified in Sect. 10.2.2 a similar expression as for

one-zone models can be obtained for the core temperature.

Referring to Fig. 10.8 and Table 10.2 for the definitions of the parameters, the

core temperature can be numerically solved by the forward difference recursion

formula (c.f. Eq. 10.38)

θiþ1
core ¼ θ i

core þ
Δt

Ccore
R*
f , tot þ Ri, tot þ Ri, ins

� �
θmax � θcoreð Þ

h
� Ro, ins þ Ro, totð Þ � θcore � θ1ð Þ

i ð11:16Þ

where θmax is defined by Eq. 11.6, R�
f ;tot Eq. 11.8 and the other parameters as in Sect.

10.2.2.

As for post-flashover fires (one-zone models) an analytical solution may be

derived if the heat transfer parameters and the material properties are assumed

constant, not changing with temperature. Thus (cf. Eq. 10.39)

θcore ¼ θ*ult
Ro, tot þ Ro, ins

R*
f ,c þ Ri, tot þ Ri, ins þ Ro, tot þ Ro, ins

" #
1� e�t=τ*f
� �

ð11:17Þ

and the fire temperature rise as (cf. Eq. 10.41)

11.2 Solution of the Upper Layer Fire Temperature 181

http://dx.doi.org/10.1007/978-3-319-30172-3_3
http://dx.doi.org/10.1007/978-3-319-30172-3_3
http://dx.doi.org/10.1007/978-3-319-30172-3_10
http://dx.doi.org/10.1007/978-3-319-30172-3_10
http://dx.doi.org/10.1007/978-3-319-30172-3_10
http://dx.doi.org/10.1007/978-3-319-30172-3_10
http://dx.doi.org/10.1007/978-3-319-30172-3_10
http://dx.doi.org/10.1007/978-3-319-30172-3_10
http://dx.doi.org/10.1007/978-3-319-30172-3_10


θf ¼ θ*ult

1þ Ri, tot þ Ri, ins

R*
f ,c

Ro, tot þ Ro, ins

R*
f ,c þ Ri, tot þ Ri, ins þ Ro, tot þ Ro, ins

1� e�t=τ*f
� �"

þRi, tot þ Ri, ins

R*
f ,c

#

ð11:18Þ

where the time constant is calculated as

τ*f ¼
Ccore

1

R*
f ,c þ Ri, tot þ Ri, ins

þ 1

Ro, tot þ Ro, ins

ð11:19Þ

Equation 11.18 yields a crude estimate of the fire temperature development as

several assumptions are made to linearize the problem. More accurate solutions can

be made by the step-by-step numerical procedure according to Eq. 11.16 whereby

the material and, in particular, heat transfer conditions can be updated at each time

step. Such a calculation procedure was implemented in an MS-Excel sheet by

Evegren and Wickstr€om [41]. It was used to predict and compare with measured

temperatures in an uninsulated and an insulated steel container with a burning pool

of heptane, see Fig. 11.3.

Fig. 11.3 Dimensions of the test enclosure and photo of the insulated test enclosure and the pool

fire experiment. From [41]
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The results are shown in Fig. 11.4. As can be seen predictions were very accurate

for both the cases.

Fig. 11.4 Measured and calculated upper layer fire temperature. From [41]
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Chapter 12

Fire Exposure of Structures According
to Standards

When exposed to fire structures deform and lose load-bearing capacity which must

be considered in design processes. It is then exposures to the more severe fires

which are of interest such as post-flashover compartment fires and large flames for

longer times. Pre-flashover fires do in general not create thermal conditions that can

jeopardize the function of structural elements in a building. For design purposes it is

therefore in general exposures relevant for post-flashover compartment fires that are

specified in various standards and guidelines in the form of time–temperature

curves. These curves are then used for controlling fire resistance test furnaces, see

Fig. 12.1.

They can also be used as fire temperatures when predicting temperature of

structures exposed to standard fire conditions. When predicting test according to

the international standard ISO 834 and the European standard EN 1363-1 the gas

temperature and the radiation temperature may be assumed equal as these standards

prescribe plate thermometers for controlling of furnace temperature. However,

when predicting tests according to the American standard ASTM E-119, deviations

due to the thick thermocouples specified for controlling the furnace temperature

should be considered, see Sect. 9.1.3.

A deterministic design and analysis process of structures exposed to fire entails

three major steps:

1. Determine the fire exposure to which the surface of the structure is subjected.

2. Determine the thermal response of the structure to the exposing fire.

3. Determine the structural response and the load-bearing capacity at elevated

temperatures.

This chapter is focusing on the second step. The first section deals with design

fires then followed by sections on the structural materials concrete, steel and wood.
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12.1 Standard Time Temperature Fire Curves

The so-called standard fire curve as defined in the European standard EN 1363-1

and the international standard ISO 834 is outside the USA and Canada the by far

most commonly used time–temperature relation used for testing and classification

of separating and load-bearing building structures. The time–temperature relation

of this EN/ISO standard fire temperature curve is then specified as

Tf ¼ 20þ 345 � log 8tþ 1ð Þ ð12:1Þ

where Tf is temperature in �C and t is time in minutes. A selection of time

temperature coordinates is given in Table 12.1.

A so-called external fire curve is given in Eurocode 1 (EN 1991-1-2) as

Tf ¼ 20þ 660 � 1� 0:687e�0:32� t � 0:313 e�3:8�t� � ð12:2Þ

This time–temperature is intended to be used for external structures outside of

external walls.

When more severe fires are anticipated, as for offshore oil installations or

tunnels, the so-called Hydrocarbon Curve is often applied:

Fig. 12.1 A glazed

partition being tested in a

vertical fire resistance

furnace. Notice the Plate

thermometers for

monitoring the furnace

temperature
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Tf ¼ 20þ 1080 � 1� 0:325 e�0:167� t � 0:675 e�2:5 �t� � ð12:3Þ

For the design of tunnels, the ministry of transport in the Netherlands has

developed the so-called RWS fire curve which is used in many countries. It is

defined by the time–temperature coordinates given in Table 12.2.

The above-mentioned fire design curves are plotted in Fig. 12.2 together with

time–temperature curve according to ASTM E-119.

In the USA and Canada fire tests and classification are generally specified

according to the standard ASTM E-119. The ASTM E-119 fire curve is specified

as time temperature coordinates as given in Table 12.3 or as approximated by the

equation

Tf ¼ T0 þ 750 1� e�0:49
ffi
t

p� �
þ 22:0

ffiffi
t

p ð12:4Þ

where fire or furnace temperature Tf and the initial temperature T0 are in �C and

time t in minutes. The curve is slightly different from the corresponding ISO and

EN curves. However, the severity of a fire test depends not only on temperature

level but also on how the temperature is measured. In ASTM E-119 the thermo-

couples specified for monitoring the furnace temperature are very thick and have

therefore a very slow response. That means the real temperature level is much

higher than measured by thermocouples. During the first 10 min of a fire resistance

test, the difference between measured temperature and the actual temperature level

may amount to several hundred degrees as indicated in Fig. 9.1. Thus, when

predicting temperature in structures to be tested according to ASTM E-119, the

most relevant fire temperature curve to apply is the upper curve of Fig. 9.1. In

addition to the problem of the time constant, it is unclear how the ASTM thermo-

couples react to different gas and radiation temperatures which makes any temper-

ature predictions uncertain.

Table 12.1 Time–temperature coordinates of the standard ISO 834 and EN 1363-1 fire curves

Time [min] 0 15 30 45 60 90 120 180 240

Temperature [�C] 20 739 842 2 945 1006 1049 1110 1153

Table 12.2 Time–temperature coordinates of the RWS fire curve

Time [min] 0 3 5 10 30 60 90 120 180

Temperature [�C] 20 890 1140 1200 1300 1350 1300 1200 1200
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12.2 Parametric Fire Curves According to Eurocode

Parametric fire curves are defined in Eurocode 1, EN1991-1-2, Appendix A. They

are based on work in Sweden [36] in the 1960s and 1970s which was later modified

and simplified by Wickstr€om, see e.g. [37].

The parametric fire curves are defined in the heating phase by the expression

Tf ¼ 20þ 1325 � 1� 0:324 � e�0:2�t* � 0:204 � e�1:7�t* � 0:472 � e�19�t*
� �

ð12:5Þ

where t* is a modified time defined as

t* ¼ Γ � t ð12:6Þ

where the parameter Γ (the gamma factor) determines the rate at which the fire

temperature goes to the ultimate temperature, (1325 + 20) �C. For Γ equal unity

Eq. 12.5 yields a time–temperature relation which approximately follows the

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

0 30 60 90 120 150 180

Te
m

pe
ra

tu
re

 [°
C]

Time [min]

RWS
EN/ISO
ASTM
HC curve
External

Fig. 12.2 Standard time–temperature relations according to ISO 834 or EN 1363-1 (Eq. 12.1), the

Hydrocarbon curve (Eq. 12.2), the External fire curve according to Eurocode 1 (Eq. 12.3) and

ASTM E-119 (defined in Table 12.3 and approximated by Eq. 12.4)

Table 12.3 Time–temperature coordinates of the ASTM E-119 fire curve

Time [min] 0 5 10 30 60 120 240 480 >480

Temperature [�C] 20 538 704 843 927 1010 1093 1260 1260
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standard EN/ISO curve for about 6 h. The standard fire curve prescribes thereafter

higher temperatures while the parametric goes asymptotically a maximum fire

temperature rise of 1345 �C.
The factor Γ depends on the opening factor (cf. Eq. 10.10) and the thermal

inertia of surrounding structures. It is defined as

Γ ¼
Ao

ffiffiffiffi
ho

p
=Atffiffiffiffiffiffiffi

k�ρ�c
p
0:04
1160

2
64

3
75
2

¼ 841 � 106 � O2

k � ρ � c : ð12:7Þ

(The parameter values in this equation must be given in SI units.) Thus a fire

compartment with an opening factor of O ¼ 0:04 m1=2 and enclosure boundaries

with a characteristic value of the square root of the thermal inertia
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � ρ � cp ¼ 1160

Ws1=2= Km2ð Þ yields Γ ¼ 1 which implies a fire development close to the EN/ISO

standard fire curve. Lower values, Γ < 1, yield fires with slower temperature

developments while Γ > 1 yields fires with faster developments.

Figure 12.3 shows examples of the heating phase of parametric fire curves with

Γ-values smaller and larger than unity. The ISO/EN standard curve is plotted for

comparison. Notice that the parametric fire curve with Γ ¼ 1 differs only a few

degrees from the ISO/EN standard curve.

The so-called hydrocarbon fire curve is a special case of a parametric curve. It

was originally defined as a parametric fire curve with Γ ¼ 50 and with an ultimate

temperature of 1100 �C, see Eq. 12.3.
Fires are assumed to continue until all the fuel (fire load) is consumed, and the

burning rate is assumed to be proportional to the amount of air being available in the

fire compartment. Thus the fire duration td is proportional to the fire load density q
00
f

(energy content per unit area) and the inverse of the opening factor. According to

Eurocode 1 it may be written as

td ¼ χ
q

00
f � At

Ao

ffiffiffiffiffi
ho

p ð12:8Þ

In modified time the fire duration is calculated as

t*d ¼ Γ � td ð12:9Þ

In Eurocode 1 the proportionality constant has been given the value χ ¼ 0:2*10�3

h �m3=2=MJ
� �

(units as in Eurocode 1 [35]).

The fire load density q
00
f is obtained by summarizing the weight of the various

fuel components available for combustion with their net calorific value. Table 12.4

shows a summary of the net calorific values as given in Eurocode 1.
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The simple heat and mass balance theory applied for calculating the compart-

ment fire temperature in the heating phase is not relevant for the cooling phase
when the fuel is more or less depleted and the assumption of uniform temperature is

no more relevant. In Eurocode 1 simple linear time temperature relations are

therefore assumed as shown below:

Fig. 12.3 The standard EN/ISO standard curve and parametric fire curves with various Γ-values.
For Γ ¼ 1 the parametric curve coincides approximately with the standard curve for the first

360 min

Table 12.4 Net calorific values of combustible materials for calculation of fire loads

Material Net calorific values [MJ/kg]

Wood 17.5

Other cellulosic materials 20

Gasoline, petroleum 45

Diesel 45

Polyvinylchloride, PVC (plastic) 20

Other plastics 30–40

Rubber tyre 30

Note: The values given in this table are not applicable for calculating energy content of fuels

Summary from Eurocode 1, EN 1991-1-2 (The net calorific value is determined by subtracting the

heat of vapourization of the water vapour from the gross calorific value)
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Tf ¼ Tf ,max � 625 t* � t*d
� �

for t*d � 0:5h
Tf ¼ Tf ,max � 250 3� t*d

� �
t* � t*d
� �

for 0:5 < t*d � 2h

Tf ¼ Tf ,max � 250 t* � t*d
� �

for t*d > 2h

ð12:10Þ

In case of fire durations td < 25min additional information need to be considered as

given in EN 1991-1-2.

Figures 12.4 and 12.5 show examples of parametric fire curves. In both cases the

fire load q
00
f ¼ 300kg=m2. Figure 12.4 shows the temperature development for

various opening factors and Fig. 12.5 for various thermal inertia
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � ρ � cp

. The

Γ-factors 4.0, 1.0 and 0.25 are calculated based on Eq. 12.7.

Notice in Fig. 12.4 how the maximum fire temperature Tf,max increases with

O while the fire duration td decreases. Thus, e.g. concrete structures with slow time

responses are in general more sensitive to fires with low opening factor while it is

the opposite for bare steel structures.

Figure 12.5 shows that fire temperature development depends on the thermal

inertia of the surrounding boundaries. The fire duration td depends, however, only
on the fire load and the opening factor but is independent of the thermal inertia.

Notice that the temperature development is much lower for a thermal inertia of

2000 W s1/2/(K m2) corresponding to concrete than for approximately the ISO

standard curve,
ffiffiffiffiffiffiffi
kρc

p ¼ 1160Ws1=2= Km2ð Þ. After 90 min the difference is. On the

other hand, the temperature becomes much higher if the thermal inertia of the

surrounding structure is lower, e.g. with a thermal inertia of 500 Ws1/2/(Km2)

representing silicate or gypsum boards.

Fig. 12.4 Parametric time–temperature fire curves for varying opening factors O with a fire load

q
00
f ¼ 200kJ=m2 and thermal inertia of surrounding boundaries

ffiffiffiffiffiffiffi
kρc

p ¼ 1160Ws1=2= Km2ð Þ.
O¼ 0.04 m½ yields approximately the ISO standard curve in the heating phase (The curves have

Γ-factors 4.0, 1.0 and 0.25, respectively)
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Example 12.1 Calculate the maximum temperature of a parametric fire in a

compartment with O ¼ Ao

ffiffiffiffiffi
ho

p
=At ¼ 0:08m½,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � ρ � cp ¼ 1160Ws1=2= Km2ð Þ

and q}f ¼ 400MJ=m2. In Eq. 12.8 assume χ ¼ 0:2*10�3 hm3=2=MJ.

Solution Equation 12.7 yields Γ ¼ 22 ¼ 4 and Eq. 12.8

td ¼ 0:2*10�3*400 =0:08 ¼ 1h. The maximum temperature can then be obtained

for a modified fire duration of 4 � 1 h¼ 4 h from Eq. 12.5 or from Fig. 12.3 to be

1150 �C.

12.3 Summary of Heat Transfer Conditions According
to Eurocodes

The temperature shall be measured with PT’s (see Sect. 9.3) in fire resistance

furnace tests according to ISO or EN standards. Therefore the standard furnace

temperature Tf can be considered as an AST and the heat transfer _q
00
tot to an exposed

surface with a temperature Ts may be calculated as (cf. Eq. 4.14)

_q
00
tot ¼ ε � σ Tf þ 273

� �4 � Ts þ 273ð Þ4
h i

þ hc Tf � Ts

� � ð12:11Þ

where temperatures here are in �C. This does not apply to predictions of tests

according to ASTM E-119 where the fire time–temperature curve needs be modi-

fied before being used as a boundary condition in temperature calculations, see

Sect. 12.1 above.

Fig. 12.5 Parametric time–temperature fire curves for varying thermal inertia of surrounding

boundaries
ffiffiffiffiffiffiffi
kρc

p
with a fire load q

00
f ¼ 200kJ=m2 and an opening factor O¼ 0.04 m½.

ffiffiffiffiffiffiffi
kρc

p

¼ 1160Ws1=2= Km2ð Þ yields approximately the ISO standard curve in the heating phase (The

curves have Γ-factors 4.0, 1.0 and 0.25, respectively)
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When calculating temperatures of structures exposed to severe fires, the influ-

ence of the choice of the emissivity ε is in general small and of the convective heat

transfer coefficient hc it is often negligible for most materials, especially light

materials, and longer fire durations. For insulation materials (low thermal inertia)

it is almost negligible. Then the surface temperature may be assumed equal to the

fire temperature (first kind of boundary condition, see Sect. 9.3). On the contrary,

for bare/non-protected steel structures particularly the emissivity ε and in some

cases also the convection heat transfer coefficient hc have a significant influence and
are decisive for the temperature development.

The emissivity ε is a property of the solid surface only, while the convective heat
transfer coefficient hc depends on the geometry and the surrounding flow condi-

tions. According to Eurocode 1 [35] the specimen surface emissivity ε ¼ 0:8
unless another value can be motivated. The convection heat transfer coefficient

hc ¼ 25W= m2Kð Þ when applying the EN 1363-1 standard curve or the external

fire curve, and hc ¼ 50W= m2Kð Þ and hc ¼ 35W= m2Kð Þ when applying the

hydrocarbon curve or any natural fire curve including parametric fire curves,

respectively.

At surfaces on the unexposed side of separating elements Eurocode 1 [35]

suggests that the heat transfer shall be calculated as (here the emissivity and view

factor of the fire are assumed to be unity)

_q
00
tot ¼ ε � σ T1 þ 273ð Þ4 � Ts þ 2734

� �h i
þ hc T1 � Tsð Þ ð12:12Þ

where T1 is the ambient surrounding temperature. Here the unexposed side surface

emissivity should be as for the exposed side, i.e. ε ¼ 0:8unless another value can be
motivated. The convection heat transfer coefficient shall then be assumed as

hc ¼ 4W= m2Kð Þ. Alternatively, the radiation component of Eq. 12.12 may be

included in the convection heat transfer term. Then the convection heat transfer

coefficient hc ¼ 9W= m2Kð Þ and the surface emissivity ε ¼ 0, i.e. a linear boundary

condition of the kind 3a according to Table 4.2.

A summary of the heat transfer parameters as specified by Eurocode 1 is given in

Table 12.5.

Table 12.5 Summary of heat transfer parameters as specified by Eurocode 1, EN 1991-1-2

Fire curve Exposed side

Convection heat transfer

coefficient hc [W/(m K)] Emissivity ε [�]

Standard ISO/EN Fire-exposed side 25 0.8a

Unexposed sideb 4 0.8a

Unexposed sideb 9 0

Hydrocarbon curve Fire-exposed side 50 0.8a

External fire curve Fire-exposed side 25 0.8a

aUnless another material property value is motivated
bAlternative
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Chapter 13

Temperature of Steel Structures

Steel is sensitive to high temperature. The critical temperature of a steel member is

the temperature at which it cannot safely support its load.

The mechanical properties such as strength and modus of elasticity deteriorate in

particular when the steel temperature exceeds 400 �C, see, e.g. Eurocode 3, EN

1993-1-2. Some building codes and structural engineering standard practice defines

different critical temperatures which must not be exceeded when exposed to a

standard fire exposure for a specified time. Steel structures must therefore usually

be protected to reach a particular fire rating. Please note that insulation and

protection of structures are in this book used synonymously. Protections can be

obtained by for instance boards, sprayed on concrete, insulation materials or

intumescent paint. Intumescent coatings or reactive coatings expand upon heating

and provide an insulating char to protect structural steelwork. Steel structures may

also be built into concrete or even wooden structures as a means of fire protection.

Eurocode 4 (EN 1994-1-2) deals with composite structures of steel and concrete

where steel sections are imbedded in concrete.

To obtain a certain rating a steel structure can be tested in fire resistance furnace

according to specific standards depending on country or region. Alternatively or as

a pretest investigation steel temperatures can be calculated compared with critical

values when exposed to design fire conditions for specified durations.

Because of the high conductivity the temperature field in a steel section is in

many fire engineering cases assumed uniform. In particular the temperature across

the thickness of a steel sheet can in almost all fire resistance cases be assumed

constant, while the temperature in the plane of steel sheets may vary considerably.

Then the zero- or one-dimensional calculation techniques may be used as presented

in Sects. 3.1 and 7.1 and further adapted to protected and unprotected steel sections
in Sects. 13.3 and 13.4, respectively. For more general two- and three-dimensional

cases numerical computer codes are needed, see Sect. 7.3.2 and Sect. 13.5 where

some examples are shown.

Generally in the following sections the gas and radiation temperatures are

assumed equal to the fire temperature, i.e. Tg ¼ Tr ¼ Tf , as is assumed in all
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standard time–temperature fire curves. If measured temperatures are used, the fire

temperature Tf may be replaced by the adiabatic surface temperature measured

with, e.g. PTs.

13.1 Thermal Properties of Steel

Metals in general have high electric conductivity, high thermal conductivity and

high density. The heat conductivity of carbon steel is in the order of 30 times higher

than the corresponding value for concrete and 100–1000 times higher than that of

insulation products. The higher purity of a metal, the better it conducts heat. Thus

contents of carbon and alloying metals such as chrome reduce the conductivity, and

consequently stainless steel is a relatively poor conductor. The specific heat capac-

ities of metals are in accordance with a general rule of physics inversely propor-

tional to the molecular weight.

Figure 13.1 shows the conductivity kst vs. temperature Tst of structural carbon
steel according to Eurocode 3 (EN 1993-1-2). It can also be obtained from

Table 13.1. For approximate calculations normally on the safe side a constant

value of 46 W/(m K) can be recommended, cf. Table 1.2.

The specific heat capacity is usually a more significant parameter than the

conductivity for the development of temperature in fire-exposed steel structures.

In many cases it is accurate enough and convenient to assume a constant specific

heat capacity. Then a value of 460 J/(kg K) is recommended which normally yields

calculated temperatures on the safe side (overvalued). However, for more accurate

calculations the variations with temperature as shown in Fig. 13.2 or given in

Table 13.2 are recommended in Eurocode 3 [3]. The peak of the specific heat

capacity at 735 �C is due to phase changes of the steel.

Table 13.3 shows tabulated values of the thermal properties of carbon steel

derived from Eurocode 3 including the specific volumetric enthalpy vs. temperature

defined as

e Tð Þ ¼
ð T

0

c � ρ dT ð13:1Þ

This temperature–enthalpy relation is input in some computer codes, e.g. Tasef,

instead of density and specific heat capacity. The diagram in Fig. 13.3 shows the

specific volumetric enthalpy vs. temperature based on the values of Table 13.3.

Thermal conductivity of stainless steel is considerably lower than that of carbon
steel. The conductivity and the specific heat capacity of stainless steel according to

Eurocode 3, EN 1993-1-2 are given in Table 13.4.
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See also Table 13.1

Table 13.1 Thermal conductivity of carbon steel vs. temperature according to Eurocode 3, EN

1993-1-2

Temperature [�C] Conductivity [W/m K]

20< Tst< 800 54� 0.0333Tst
800< Tst< 1200 27.3
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Eurocode 3, EN 1993-1-2
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Table 13.2 Specific heat capacity of carbon steel as functions of the temperature according to

Eurocode 3, EN 1993-1-2

Temperature [�C] Specific heat capacity [J/(kg K)]

20< Tst< 600 425 + 0.773 � Tst� 1.69� 10�3 �Tst2+ 2.22� 10�6 � Tst3
600< Tst< 735 666 + 13002/(738� Tst)

735< Tst< 900 545 + 17820/(Tst� 731)

900< Tst< 1200 650

Table 13.3 Summary of thermal properties of carbon steel including derived volumetric specific

enthalpy according to Eurocode 3, EN 1993-1-2

Temp kst ρst cst est est

[�C] [W/(m K)] [kg/m3] [J/(kg K)] [J/(m3 K)] [Wh/(m3 K)]

0 54 7850 425 0 0

100 51 7850 488 0.360E + 09 99,870

200 47 7850 530 0.760E + 09 211,000

300 44 7850 565 1.19E + 09 330,300

400 41 7850 606 1.65E + 09 457,800

500 37 7850 667 2.15E + 09 596,100

600 34 7850 760 2.70E + 09 751,100

700 31 7850 1008 3.37E + 09 934,300

735 30 7850 5000 4.20E + 09 1,091,000

800 27 7850 803 5.03E + 09 1,309,000

900 27 7850 650 5.58E + 09 1,464,000

1200 27 7850 650 7.12E + 09 1,890,000
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13.2 Example of Hot-Rolled Steel Section Dimensions

Dimensions of hot-rolled steel sections can be found for instance in suppliers

catalogues or on the internet web. As an example dimensions of HEB wide-flange

steel I-sections according to the European standard EN 10025-1 are given in

Table 13.5.

Table 13.4 Thermal conductivity and specific heat capacity of stainless steel vs. temperature

according to Eurocode 3, EN 1993-1-2

Temperature [�C]
Conductivity

[W/(m K)] Specific heat capacity [J/(kg K)]

20< Tst< 1200 14.6 + 0.0127 �Tst 450 + 0.280 � Tst� 0.291 � 10�3 �Tst2+ 0.134 � 10�6 � Tst3

Table 13.5 Dimensions of hot-rolled HEB steel sections according to EN 10025-1. The last

column corresponds to Ast

HEB

Height

[mm]

Width

[mm]

Web thickness

[mm]

Flange thickness

[mm]

Weight

[kg/m]

Surface area

[m2/m]

100 100 100 6 10 20.8 0.567

120 120 120 6.5 11 27.2 0.686

140 140 140 7 12 34.4 0.805

160 160 160 8 13 43.4 0.918

180 180 180 8.5 14 52.2 104

200 200 200 9 15 62.5 1.15

220 220 220 9.5 16 72.8 1.27

240 240 240 10 17 84.8 1.38

260 260 260 10 17.5 94.8 1.5

280 280 280 10.5 18 105 1.62

300 300 300 11 19 119 1.73

320 320 300 11.5 20.5 129 1.77

340 340 300 12 21.5 137 1.81

360 360 300 12.5 22.5 145 1.85

400 400 300 13.5 24 158 1.93

450 450 300 14 26 174 2.03

500 500 300 14.5 28 191 2.12

550 550 300 15 29 203 2.22

600 600 300 15.5 30 216 2.32

650 650 300 16 31 229 2.42

700 700 300 17 32 245 2.52

800 800 300 17.5 33 267 2.71

900 900 300 18.5 35 297 2.91

1000 1000 300 19 36 320 3.11
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13.3 Protected Steel Sections Assuming Lumped-Heat-
Capacity

The assumption of lumped heat or uniform steel temperature as often done in fire

protection engineering calculations (see, e.g. Eurocode 3) is in particular a reason-

able approximation when calculating temperature of protected steel sections

exposed to fire on all four sides. The assumption of uniform heat implies that the

heat conductivity is assumed infinite and the thermal mass is concentrated, lumped,

to one point, see Sects. 3.1 and 7.1.

Then in addition the fire and the exposed surface temperatures are assumed equal

which implies that the heat transfer resistance between the fire gases and the

protection surface is negligible. That means the inverse of the total heat transfer

coefficient by radiation and convection is assumed negligible in comparison with

the heat resistance of the insulation Rk, i.e. the thickness over the conductivity din/
kin of the insulation, cf. Fig. 3.3. This is an accurate approximation as the radiation

heat transfer coefficient is very high at elevated fire temperatures. It facilitates

calculations and it is on the safe side as it overestimates steel temperatures.

The heat transfer to the steel may then be calculated as

_q tot ¼ Ast
kin
din

� �
Tf � Tst

� � ð13:2Þ

where Ast is the fire-exposed area per unit length, Tf and Tst are the fire and steel

temperatures, respectively. If in addition the heat capacity of the insulation is

negligible in comparison to that of the steel, the transient heat balance of the steel

section becomes,

Ast
kin
din

� �
Tf � Tst

� � ¼ cstρstVst
∂Tst

∂t
ð13:3Þ

That is the heat entering the steel section is equal to the heat stored per unit time

proportional to the rate of temperature rise. cst and ρst are the specific heat capacity
and density, respectively, of steel and Vst the volume per unit length of the steel

section. When estimating the conductivity of the insulation the temperature of the

insulation may be assumed as the mean of the fire and the steel temperatures.

In cases of heavy insulations when the heat capacity of the insulation need be

considered a more rigorous analysis is required as shown in Sect. 13.3.1.

From Eq. 13.3 the forward difference scheme

Tiþ1
st ¼ T i

st þ
Ast

Vst

� �
Δt

ρst � csti
kin
din

� �
Tiþ1
f � T i

st

� �
ð13:4Þ

where Δt is a chosen time increment. The specific heat cst
i is taken at the temper-

ature level Tist (if assumed varying with temperature).
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The relation Ast/Vst is denoted the section factor or shape factor. It has the

dimension one over length [m�1]. The shape factor can be replaced by its recipro-

cal, the effective thickness of the steel dst identified as

dst ¼ Vst

Ast
ð13:5Þ

Instructions on how to obtain shape factors for various steel sections are given in

Table 13.6 taken from Eurocode 3 [3]. The area Ast of contour encasements such as

spray fire protection material is generally taken as the perimeter of the section times

the unit length. For board protections forming hollow encasements, the perimeter

may be assumed as the boxed value as shown in the second row of Table 13.6. Even

if there is a clearance around the member, the same boxed value may be applied.

For steel sections fire exposed on three sides the perimeter is reduced accordingly as

shown in the third and fourth rows of Table 13.6. Thus the interface between the

steel and, for example, a concrete slab is treated as an adiabatic surface and hence

the cooling effects of the steel section is ignored. Therefore this crude approxima-

tion model yields considerably higher temperature than it could be expected in

reality. To accurately incorporate the cooling effects 2D finite element calculations

are required.

Alternatively the steel section volume per unit length Vst may be obtained as the

weight per unit length mst (often tabulated in catalogues of steel providers) over the

steel density ρst, i.e.

Vst ¼ mst

ρst
ð13:6Þ

Analytical solutions can be derived only when constant conductivity of the

protection material and specific heat of the steel are assumed. If in addition the

fire temperature is assumed to suddenly rise to constant temperature, can the steel

temperature be obtained as shown in Sect. 3.1.2 as

Tst � Ti

Tf � Ti
¼ 1� e�

t
τ ð13:7Þ

where τ is identified as a time constant which for a protected steel section becomes

τ ¼ Vst

Ast

� �
ρstcst

din
kin

� �
¼ dstρstcst

din
kin

� �
ð13:8Þ

In some special cases with varying fire temperatures the steel temperatures may

be calculated analytically as shown in Sect. 13.3.2 where efficient and compact

diagrams which facilitates estimations of steel temperatures are shown.

In general, however, the time constant τ cannot be assumed constant as the

thermal properties of the insulation as well as of the steel vary with temperature and
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time, and as the fire temperature Tf generally varies with time. As an alternative to

Eq. 13.4 the steel temperature can be calculated by forward difference recursion

formula

Tiþ1
st ¼ Δt

τi
Tiþ1
f þ 1� Δt

τi

� �
T i
st ð13:9Þ

where Δt is a chosen time increment. The suffixes denote the numerical order of the

time increments. When the thermal properties vary with temperature, the time

constant τ need be updated at each time increment.

The forward difference scheme of Eq. 13.12 is numerically stable if the time

increment is less than the time constant at each time increment i, i.e.

Table 13.6 Section factor Ast/Vst for steel members insulated by fire protection material. From

Eurocode 3 [3]

Sketch Description

Section factor

(Ast/Vst)

Contour encasement of

uniform thickness

steel perimeter
steel cross�section area

b

h h

b c2c1

Hollow encasement of

uniform thicknessa
2 bþhð Þ

steel cross�section area

b

Contour encasement of

uniform thickness,

exposed to fire on three

sides

steel perimeter 2hþb
steel cross�section area

b

h

b

h

c2
c1

Hollow encasement of

uniform thickness,

exposed to fire on three

sidesa

2 hþb
steel cross�section area

The clearance dimensions c1 and c2 should not normally exceed h/4
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Δt � τi ð13:10Þ

In practice time increments Δt longer than 10% of the time constant should not

be used to assure numerical stability and accuracy. When choosing the time

increment it is also necessary to make it short enough to be able to follow the

thermal exposure changes with time.

The recursion formulas according to Eq. 13.9 are preferably solved with a

spreadsheet program such as MS-Excel. For clarification examples are shown

below on how the formula is used.

Example 13.1 A steel column with a section factor 200 m�1 is protected with a

25 mm non-combustible board with a conductivity of 0.1 W/(m K). The column is

exposed to fire and the exposed insulation surface suddenly reaches a temperature

of 1000 �C. Assume constant thermal properties and uniform steel temperature

(lumped heat). The density and specific heat of steel are assumed to be 7850 kg/m3

and 460 W s/(kg K), respectively. The initial temperatureTi ¼ 20 �C. Calculate the
steel temperature after

(a) 9 min using the analytical exact solution according to Eq. 13.7

(b) 60 min using the analytical exact solution according to Eq. 13.7

(c) 9 min using the numerical solution according to Eq. 13.9 and compare with (a)

Solution According to Eq. 13.8 the time constant τ ¼ 460�7850�0:025=0:1
200

¼ 4514s.

(a) After 9 min t
τ ¼ 9 � 60=4514 ¼ 0:12 and according to Eq. 13.7 or Fig. 3.4

1� e�
t
τ

� � ¼ 0:113 and the steel temperatureTst ¼ 20þ 1000� 20ð Þ*0:113 ¼
131 �C.

(b) After 60 min t
τ ¼ 60 � 60=4514 ¼ 0:80 and the steel temperature

Tst ¼ 20þ 1000� 20ð Þ*0:55 ¼ 560 �C.
(c) Assume a time increment Δt ¼ 3min ¼ 180s. Then according to Eq. 13.9 at

t¼ 180 s T1
st ¼ 180

4514

� � � 1000þ 1� 180
4514

� � � 20 ¼ 59 �C, at t¼ 360 s

T2
st ¼ 180

4514

� � � 1000þ 1� 180
4514

� � � 59 ¼ 96 �C and at 540 s

T2
st ¼ 180

4514

� � � 1000þ 1� 180
4514

� � � 96 ¼ 132 �C. Notice that the numerical solu-

tion (b) is only 1 �C more than the exact solution according to (a).

Example 13.2 The same column as in Example 13.2 is exposed to a standard fire

time–temperature curve according to ISO 834. Calculate the steel temperature after

9 min.

Solution Apply the recursion formula according to Eq. 13.9. Choose a time

increment Δt ¼ 180s (�10% of τ). The temperature at 3, 6 and 9 min is according

to Eq. 12.1, 7.7, 10.17 and 12.5, respectively. Then according to Eq. 13.9 at t¼ 180 s

T1
st ¼ 180

4514

� � � 228þ 1� 180
4514

� � � 20 ¼ 28:3 �C, at t¼ 360 s T2
st ¼ 180

4514

� � � 312þ
1� 180

4514

� � � 28:3 ¼ 36:6 �C and at 540 s T2
st ¼ 180

4514

� � � 365þ 1� 180
4514

� � � 36:6 ¼
49:7 �C.
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13.3.1 Protection with Heavy Materials

The heat capacity of fire protections has normally an insignificant influence on the

steel temperature rise rate. However, it will considerably reduce the steel temper-

ature rise of sections protected with relatively heavy protections materials. The

protection will then add to the heat capacity of the system and it will cause a delay

in the temperature rise of the steel section. A simple approximate approach is then

to lump a third of the heat capacity of the insulation to the steel section heat capacity

and to add a term considering the time delay [42–44]. Eq. 13.4 may then be

modified the more general formulation as

Tjþ1
st ¼ T j

st þ Δt
Tjþ1
f � T j

st

� �
τ 1þ μ

3

� � þ e
μ
η � 1

� �
Tjþ1
f � T j

f

� �
ð13:11Þ

where τ is as specified in Eq. 13.7 and μ is the ratio between the heat capacity of the
insulation and the steel,

μ ¼ Ast � din � ρin � cin
Vst � ρst � cst

ð13:12Þ

ρin and cin are the density and specific heat capacity of the protection material,

respectively. The latter term of Eq. 13.11 represents a time delay due to the heat

capacity of the protection. (Tjþ1
f � T j

f ) is the fire temperature rise between two time

increments. Notice that when the heat capacity of the protection is much smaller

than that of the steel, μ vanishes and Eq. 13.11 becomes identical to Eq. 13.4.

The value of the parameter η in the last term of Eq. 13.11 was obtained by

comparisons with accurate finite element calculations. For steel sections exposed to

the ISO/EN standard time–temperature curve accurate approximations are obtained

by choosing η¼ 5, see Example 13.3 and Fig. 13.4.

For fire temperatures assumed to instantaneously rise to a given temperature,

η¼ 10 yields very similar steel temperatures in comparison to accurately calculated

temperatures. This value has been adopted by Eurocode 3, EN 1993-1-2 [3]. It

yields higher steel temperatures than choosing the more accurate value η¼ 5.

Example 13.3 A steel section with a section factor of 200 m�1 and an initial

temperature of 20 �C is exposed to a standard fire curve according to ISO 834. It is

protected with 20-mm-thick high density material assumed to have the same

properties as concrete. Assume material properties as given in Table 1.2. Calculate

the steel temperature development.

Solution According to Eq. 13.7 τ ¼ ρst�cst
Ast=Vstð Þ

din
kin

� �
¼ 7850�460�0:02

200�1:7 ¼ 212s and Eq. 9.12

μ ¼ Ast�din�ρin�cin
Vst�ρst�cst ¼ 200�0:02�2300�900

7850�460 ¼ 2:29. Then the recursion formula Eq. 13.11 may

be applied. Steel temperatures obtained by an MS-Excel application are given in
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Fig. 13.4. For comparison accurately finite element calculated temperatures are also

shown. Notice how well the temperature calculated according to Eq. 13.11 matches

the accurate solution except for the 5 min when the temperature goes down even

below zero. In addition the temperatures are shown which are calculated without

considering the delay expressed by the parameter μ larger than zero in the third term
on the right-hand side of Eq. 13.11.

13.3.2 Protected Steel Sections Exposed to Parametric
Fire Curves

As described in Sect. 12.2 the concept of parametric fires has been introduced in

Eurocode 1 [35] as a convenient way of expressing a set of post-flashover design

fires.

When using parametric design fires the temperature of protected steel sections

can of course be obtained by numerical calculations according to Eq. 13.9. Then

non-linear phenomena such as temperature-dependent material properties may be

considered. However, if the thermal properties are assumed constant and the fire

Fig. 13.4 Example of steel temperature of a steel section protected by a heavy protection material

exposed to the ISO 834 standard time–temperature fire curve. Temperature calculated with the

delay and with no delay according to the third term according to Eq. 13.11. For comparison the

steel temperature as calculated accurately with the finite element code TASEF
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temperature is expressed by exponential terms as in Eq. 12.5, then the steel

temperature rise vs. time can be obtained by integration as a closed form analytic

expression [45].

Equation 12.5 may be written in the form

Tf ¼ 20þ
X3A

i¼0
Bie

�βi t
*

� �
ð13:13Þ

where the constants Bi and βi are given in Table 13.7. Notice that Eq. 13.13 is

identical to Eq. 12.5 but written in a different format to reach to a compact solution

for the steel temperature as given in Eq. 13.14.

Then the steel temperature can be derived exactly by analytical integration as a

function of the modified time t* and the modified time constant τ* of the steel

section as

Tst ¼ 20þ
X3

i¼0

Bi

1þ βiτ*
eβi t

* � e�
t*

τ*

� �� 	
ð13:14Þ

where

τ* ¼ Γ � τ ð13:15Þ

The protected steel section time constant τ is given in Eq. 13.8. The relation

between the temperature rise vs. modified time as expressed in Eq. 13.14 is also

given in the diagram shown in Fig. 13.5a, b for various modified time constants τ*.
The two diagrams are the same but with different time and temperature scales.

Notice that Eq. 13.14 and Fig. 13.5 may be used for the ISO 834 standard fire

exposures assuming Г¼ 1 as the parametric fire curve in the heating phase then is

very close to the standard curve, see Fig. 12.3.

The use of parametric fire curves on insulated steel sections is demonstrated

below.

Example 13.4 Consider a steel section with a shape factor¼ 200 m�1 with a

25-mm-thick protection board having a constant thermal conductivity of 0.1 W/

(m K). The steel density and specific heat capacity are 7850 kg/m3 and 460 J/(kg K),

respectively. The section time constant may then be obtained from Eq. 13.15 as

τ¼ 4514 s¼ 75 min¼ 1.25 h. Then if the section is exposed to ISO 834 standard

fire (Γ¼ 1) for 60 min, a temperature of 462 �C may be obtained from Eq. 13.14 or

from Fig. 13.5. If the same section is exposed to a more slowly growing fire with a

Γ¼ 0.5, then τ*¼Γ � τ¼ 37.5 min and the temperature after 60 min may be found

for a modified time of t*¼Γ � t ¼30 min to be 405 �C. On the other hand, if the

section is exposed to a fast growing fire with Γ¼ 3.0, then τ*¼ 3.0 · 75¼ 225 min

and t*¼ 3.0 · 60¼ 180 min, and the steel temperature can be obtained from

Eq. 13.13 or from Fig. 13.5 as 552 �C. Notice that the maximum steel temperature

for a given fire exposure time increases considerably with an increasing Г-factor. It
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must, however, also be kept in mind that the fire duration for a given fuel load is

proportional to the inverse of the opening factor included in the Γ-factor.
The diagrams of Figure 13.6a, b show the temperature development of a

steel structure with the same dimensions and protection as described above.

The two cases are assuming the same fire qf ¼ 200kJ=m2 and thermal inertia

of the surrounding structure
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � ρ � cp ¼ 1160Ws1=2= Km2ð Þ. According

to Eq. 12.8 fire duration can be calculated to be td¼ 60 min and 120 min

(χ ¼ 0:2*10�3 hm3=2=MJ
� ��

, with Γ¼ 1 and 0.25, respectively. Notice that

the steel temperature reaches its maximum when it is equal to the cooling

phase fire temperature. According to the diagram of Figure 13.6a the steel

temperature is 450 �C at td¼ 60 min and reaches its maximum 570 �C after

105 min. The corresponding temperatures according to diagram in

Figure 13.6b are 585 �C after 120 min and the maximum steel temperature

is 670 �C after 180 min. Thus the steel section reaches a higher temperature

for the lower opening factor, given the fire load and the thermal properties

of the surrounding compartment boundaries remains the same.

For more detailed information on how to apply parametric fire curves according

to standard, see Eurocode 1 [35].

13.4 Unprotected Steel Sections

The temperature of unprotected, uninsulated or bare steel sections depends on the

fire temperature and very much on the heat transfer conditions between fire gases

and steel surfaces. It is a boundary condition of the 3rd kind, see Sect. 1.1.3, where

the only thermal resistance between the fire and the steel is due to the heat transfer

conditions which therefore becomes decisive for the steel temperature develop-

ment. The boundary condition is highly non-linear as it varies very much with

temperature due to radiation. The same type of compact formula and diagrams as

for insulated steel sections can therefore not be developed.

The total heat flux by radiation and convection _q
00
tot is given in Eq. 4.17 or

Eqs. 4.18 and 4.19. Steel temperatures can then be obtained from differential heat

balance equations in a similar way as for protected steel sections (cf. Eqs. 13.2 and

13.3).

According to Eq. 4.17 and the procedures as outlined in Sect. 7.1 the heat flux by

radiation and convection can be written as

Table 13.7 Constants in the

analytical expression of the

parametric fire curve

Term number, i 0 1 2 3

Bi (
�C) 1325 �430 �270 �625

βi (h
�1) 0 �0.2 �1.7 �19
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Fig. 13.5 Temperature of various protected steel sections exposed to parametric fires in the

heating phase vs. modified time t*. The thermal properties of the steel sections are embedded in

the modified time constants τ*, see Eq. 13.15. The bottom diagram is a magnification of the top

208 13 Temperature of Steel Structures



_q
00
tot ¼ εst � σ T4

f � T4
s

� �
þ hc Tf � Ts

� � ð13:16Þ

when the radiation and convection temperatures are assumed equal, i.e.

Tr ¼ Tg ¼ Tf . This heat flux shall balance with the heat stored in the steel section,

i.e.

Ast � _q 00
tot ¼ cst � ρst � Vst

∂Tst

∂t
ð13:17Þ

and the steel temperature can then be obtained by the numerical time integration

scheme

Tjþ1 ¼ Tj þ Ast

cst � ρst � Vst
εst � σ Tj 4

f � Tj 4
� �

þ hc T j
f � Tj

� �h i
� t ð13:18Þ

where Δt is the time increment and the superscript j the time increment number. The

heat capacity of the steel may be updated at each time step to consider changes

dependent on temperature.

Figure 13.7 shows steel temperature developments of steel sections with various

section factors assuming constant values of cst, ρst, εst and hc.
Equation 13.20 is a forward difference scheme which is numerically stable and

accurate only for limited values of the time increment. The stability criterion for the

explicit numerical scheme may be expressed as

Δti � τi ¼ Vstρstcst
Asthtot


 �i

ð13:19Þ

where htot is the total heat transfer coefficient
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Fig. 13.6 Fire and steel temperatures calculated numerically according to Eq. 13.4 based on

parametric fire curves with qf ¼ 200kJ=m2,
ffiffiffiffiffiffiffi
kρc

p ¼ 1160Ws1=2= Km2ð Þ and O¼ 0.04 m½

(diagram a) and O¼ 0.02 m½ (diagram b), respectively. See Example 13.4. (a) O¼ 0.04 m½,

Γ¼ 1 and td¼ 60 min (b) O¼ 0.02 m½, Γ¼ 0.25 and td¼ 120 min
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htot ¼ hr þ hc ¼ εst � σ T2
f þ T2

st

� �
Tf þ Tst

� �þ hc ð13:20Þ

As the total heat transfer coefficient htot will increase substantially with the

temperature level, c.f. Eq. 13.20, the time constant and critical time step will

decrease accordingly.

In practice it is recommended to keep the time increments less than 10% of the

current time constant, i.e.

Δti � 0:1
Vstρstcst
Asthtot


 �i

ð13:21Þ

Principles for calculating the section factors according to Eurocode 3 [3] for

various types of configurations of unprotected steel members can be found in

Table 13.8.

As well as for protected steel sections the volume Vst may be calculated as the

weight per unit length mst over the steel density ρst, see Eq. 13.6. The weight per

unit length mst of steel sections is often tabulated in catalogues of steel supplier.

Fig. 13.7 Temperatures of uninsulated steel sections with various section factors exposed to the

standard ISO 834 time–temperature curve calculated according to Eq. 13.18 with

cst ¼ 460J= kgKð Þ, ρst ¼ 7850kg=m3, εst ¼ 0:7 and hc ¼ 25W= m2Kð Þ
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Table 13.8 Section factor Ast/Vst for unprotected steel members

Open section exposed to fire on

all sides:

cross-section area
perimeter

=Ast

Vst

(note shadow effects

Sect. 13.4.1)

Tube exposed to fire all around:

Ast/Vst¼ 1/t

t

Open section exposed to fire on

three sides:
Ast
Vst

¼ surface exposed to fire
cross�section area

(note shadow effects

Sect. 13.4.1)

Hollow section (or welded box section of uniform thickness)

exposed to fire on all sides:

If t « b: Ast/Vst� 1/t

b

h

t

I-section flange exposed to fire

on three sides:

Ast=Vst ¼ bþ 2tfð Þ= b�tfð Þ
If t « b: Ast/Vst� 1/tf

btf

Welded box section exposed to fire on all sides:
Ast
Vst

¼ 2 b þ hð Þ
cross�section area

If t « b: Ast/Vst� 1/t

b

h

Angle exposed to fire on all

sides:

Ast/Vst¼ 2/t

t

(note shadow effects

Sect. 13.4.1)

I-section with box reinforcement, exposed to fire on all sides:
Ast

Vst
¼ 2 bþhð Þ

cross�section area

 b

h

Flat bar exposed to fire on all

sides:

Ast=Vst ¼ 2 bþ tð Þ= b�tð Þ
If t « b: Ast/Vst� 2/t

b
t

Flat bar exposed to fire on three sides:

Ast=Vst ¼ bþ 2tð Þ= b�tð Þ
If t « b: Ast/Vst� 1/t

b
t

From Eurocode 3 [3]
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13.4.1 Shadow Effects

When an open section such as an I-section is exposed to fire, the heat transfer by

radiation will be partly shadowed as indicated by Fig. 13.8a, see Eurocode 3 [3] and

[46]. The surfaces between the two flanges are then not exposed to incident

radiation from the surrounding fire from the full half-sphere but only from a limited

angle, i.e. the incident radiation to these surfaces is reduced. Shadow effects are not

applicable to closed sections such as tubes as shown in Fig. 13.8b.

As a matter of fact a section will only receive as much heat by radiation from the

fire as if it had the same periphery as a “boxed” section, see Fig. 13.9a, b. Therefore

the area per unit length Ast may be replaced by the so-called boxed area Ab in the

Eq. 13.18. This will reduce the influence by convection heat transfer but as the

radiation heat transfer mode dominates at elevated temperature this approximation

may be accepted although it is non-conservative. The boxed area Ab is typically for

an I-section 30% less than the corresponding area Ast. This means that steel

temperature will be reduced when considering shadow effects and more open

steel sections can be accepted without thermal protection. Shadow effects are

particularly important for unprotected steel sections but the concept can be applied

to other types of structures as well.

The surface area of an I-beam attached to a concrete slab or wall may be reduced

in a similar way as indicated in Fig. 13.10. According to Table 13.8 the surface area

Ast can be calculated as shown in Fig. 13.10a while the reduced area Ab considering

shadow effects is calculated as shown by the dashed line in Fig. 13.10b.

Example 13.5 Calculate the section factor without and with considering of shadow

effects of an unprotected HE300B steel section attached to a concrete structure as

shown in Fig. 13.10.

Solution Dimensions of an HE300B section can be found in Table 13.5. Thus Ast

¼ 2H þ 3W � 2tw ¼ 2 � 300þ 3 � 300� 2 � 11 ¼ 1478mm and Ab ¼ 2H þW ¼
2 � 300þ 300 ¼ 900mm. The section weight mst¼ 119 kg per unit length

according to Table 13.5. Thus according to Eq. 13.6 Vst ¼ mst=ρst ¼ 119=7850

¼ 0:0151m2 and the section factors becomes Ast=Vst ¼ 98m�1 when not consid-

ering shadow effects and Ab=Vst ¼ 60m�1 when considering shadow effects, i.e. a

reduction of about 40%.

Fig. 13.8 Shadow effects

are applicable to open

sections where surfaces are

partly shadowed against

incident radiation. (a) Open
section (b) Closed section
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Comment: Still such a section would get a temperature of 500 �C already after

15 min according to Fig. 13.7. The results are, however, conservative as the heat

transferred from the steel to the concrete is not considered in this type of calcula-

tions. Temperatures calculated with the finite element code TASEF including

shadow effects as well as effects of cooling to the concrete structure are shown in

Sect. 13.5.3.

13.5 Examples of Steel Temperatures Calculated Using
a Finite Element Code

The steel section temperature analyses above assume uniform steel temperatures or

lumped heat. This is often a very crude approximation. It leads indeed in general to

solutions on the safe side, i.e. the temperatures are overestimated, but often to over-

design and thereby to unnecessary costs. Unsafe conditions may, however, occur in

sections where parts such as webs are considerably thinner than the flanges.

For more precise analyses numerical calculations are needed employing,

e.g. finite element computer codes. Some examples are shown in the sections

below.

Fig. 13.9 Illustration of the shadow effect of I-section exposed to fire from four sides. (a) Area
without considering shadow effects, Ast (b) The boxed area considering shadow effects, Ab

Fig. 13.10 Periphery considering and not considering shadow effects for steel profiles attached to

concrete structures. (a) Periphery according to Table 13.8, Ast (b) Periphery considering shadow

effects, Ab
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13.5.1 Unprotected Square Steel Tube Section Attached
to a Concrete Slab or Wall

An unprotected square steel tube (100 mm by 100 mm and 10 mm thick) is carrying

a concrete slab or attached to a concrete wall as shown in Fig. 13.11. It is exposed to

standard fire conditions according ISO 834, see Fig. 13.11. Heat transfer conditions

are assumed according to Eurocode 1 [35], i.e. ε¼ 0.8 and h¼ 25 W/(m2 K). The

thermal properties of steel and concrete are as given in Eurocode 2 and 3, respec-

tively. Heat transfer inside the void of the tube is assumed to be transferred by

radiation with an internal surface emissivity of 0.8 and by convection with a heat

transfer coefficient of 1 W/(m2 K).

The temperature calculation was carried with the finite element computer code

TASEF [19]. The finite element discretization model including element node

numbers is shown in Fig. 13.12a. Calculated steel temperatures vs. time are

shown in Fig. 13.12b, the bottom flange (node 1) and two of the top flange (nodes

5 and 35). Notice that the temperature of the bottom flange is considerably higher

than that of the top flange. The difference decreases, however, in the end of the

exposure as the radiation heat transfer between the flanges becomes more efficient

at higher temperature levels and the concrete slab is heated. The heat transfer in the

void levels out the temperature as heat is transferred between surfaces, it cools the

exposed flange and heats the flange attached to the concrete. Figure 13.12c shows a

temperature contour after 15 min.

13.5.2 Encased I-Section Connected to a Concrete Structure

An HE300B steel section attached to a concrete structure, wall or slab, is protected

by gypsum boards as shown in Fig. 13.13. It is exposed from below to standard fire

conditions according the Hydrocarbon curve, see Eq. 12.3. Heat transfer conditions

are assumed according to Eurocode 1, i.e. ε¼ 0.8 and h¼ 50 W/(m2 K). The

thermal properties of steel and concrete are as given in Eurocode 2 and 3, respec-

tively. The gypsum boards are 30 mm and have thermal properties according to

Table 7.2.

A finite element discretization model was generated as shown in Figure 13.14a.

Heat transfer inside the void between the steel web and the protection by radiation

and convection was considered in the analysis.

Fig. 13.11 A bare square
steel tube section carrying a

concrete slab or attached to

a concrete wall
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The calculated temperature histories in the steel flanges are shown in Fig-

ure 13.14b. The vaporization of the water in the gypsum consumes a lot of heat

as indicated by the enthalpy curve shown in Fig. 7.8. Therefore the uneven

development of the temperature of the gypsum (curve #2). Notice also that the

temperature difference between the minimum and maximum steel temperatures are

in the order of 200 �C due to the cooling of the top flange by the concrete slab.

13.5.3 Unprotected I-Section Connected to a Concrete
Structure

A bare HE300B steel section attached to a concrete structure as shown in Fig. 13.10

is exposed to standard fire conditions according ISO 834. Accurately calculated

temperatures with the finite element code TASEF are shown in Fig. 13.15. Notice

Fig. 13.12 Unprotected hollow section analysed by the finite element method. B/W plots from

TASEF. (a) Finite element mesh of a symmetric half (b) Steel node temperatures vs. time (c)
Temperature contours after 15 min

Fig. 13.13 An encased I-section steel (HE 300B) beam carrying a concrete slab. Slab thickness

160 mm, protection thickness 30 mm, steel height and width 300 mm, flange thickness 19 mm and

web thickness 11 mm
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that when assuming lumped heat or uniform temperature a temperature of 500 �C is

calculated after 15 min. In the finite element analysis this temperature is only

reached by the bottom flange while the top flange attached to the concrete only

reaches a temperature of 200 �C.
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Fig. 13.14 I-beam protected with gypsum boards analysed by the finite element method. B/W

plots from TASEF. (a) Finite element mesh of a symmetric half (b) Temperatures from above of

gypsum surface, middle of gypsum, steel bottom and upper flanges
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Fig. 13.15 Steel temperature development of the bottom and top flanges of assembly exposed to a

standard ISO 834 time–temperature curve. Shadow effects and effects of cooling of the steel to the

concrete are considered. (a) Points where calculated steel temperatures are shown in b) (b) Finite
element calculated temperatures of flanges. B/W plot from TASEF
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Chapter 14

Temperatures of Concrete Structures

Reinforced concrete structures are sensitive to fire exposure of mainly two reasons.

They may be subject to explosive spalling, and they may lose their load-bearing

capacity due to high temperatures. Spalling is particularly hazardous as it may

occur more or less abruptly and unanticipated. It usually starts within 30 min of

severe fire exposure. It may depend on several mechanisms or combinations thereof

such as pore pressure, stresses due to temperature gradients, differences of thermal

dilatation and chemical degradations at elevated temperatures. Reinforcement bars

of steel lose their strength at temperature levels above 400 �C. Prestressed steel may

even loose strength below that level. Concrete loose as well both strength and

stiffness at elevated temperature.

As the spalling phenomenon is very complex and cannot be predicted with

simple mathematical temperature models, it will not be further discussed here.

For more detailed information regarding the fire spalling phenomenon see [47]. The

procedures presented below presume that no spalling occur that could significantly

influence the temperature development.

In Eurocode 2 [6] temperatures in fire-exposed structures may be obtained from

tabulated values or by more or less advanced calculations. In the sections below

thermal material properties as given in Eurocode 2 are reproduced and thereafter

some simple approximate calculation methods are given in the following sections.

For more general situations finite element calculations are needed.

14.1 Thermal Properties of Concrete

The conductivity of concrete decreases with rising temperature. It depends on

concrete quality and type of ballast. For design purposes curves as shown in

Fig. 14.1 may be used according to Eurocode 2 [6]. For more accurate calculations

with alternative concrete qualities more precise material data may be obtained by

measuring the thermal properties of the product in question, see Sect. 1.3.1.
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The specific heat of dry concrete does not vary much with temperature. How-

ever, concrete structures always contain water which evaporates at temperatures

above 100 �C constituting a heat sink (latent heat) as the vaporization process

consumes a lot of heat. Thus the specific heat capacity for normal weight concrete

according to Eurocode 2 has a peak at temperatures 100 and 200 �C as shown in

Fig. 14.2.

The peak due to the latent heat involves a numerical challenge when calculating

temperatures. Especially if the temperature range at which the vaporization of the

moisture occurs becomes narrow, the peak becomes increasingly high. Then it can

be advantageous to introduce the specific volumetric enthalpy as an input parameter

as defined in Sect. 7.3.4. This formulation in combination with a forward difference
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time integration scheme is used in the computer code TASEF [14]. Table 14.1 and

Fig. 14.2 show calculated values of the specific volumetric enthalpy vs. temperature

starting at 0 �C based on specific heat and density values given in Eurocode 2 [6] for

normal concrete. Notice that no consideration is given to the latent heat of the water

before it vaporizes under 100 �C. This is generally an acceptable approximation for

normal weight concrete but not for many other materials which may contain much

higher percentages of moisture.
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Fig. 14.3 Volumetric enthalpy of concrete for moisture contents 0, 1.5 and 3.0% vs. temperature

based on density and specific heat capacity according to Eurocode 2 [6] (see Table 14.1)

Table 14.1 Thermal properties of normal weight concrete according to Eurocode 2 [6] including

the range of the conductivity between the upper and lower limits and the calculated volumetric

enthalpy

Moist. cont. 0% Moist. cont. 1.5% Moist. cont. 3%

T k ρ c e c e c e

[�C] [W/(m K)] [kg/m3

]

[(Ws)/

(kg K)]

[(Wh)/

m3]

[(Ws)/

(kg K)]

[(Wh)/

m3]

[(Ws)/

(kg K)]

[(Wh)/

m3]

0 1.36–2.00 2300 900 0 900 0 900 0

20 1.33–1.95 2300 900 11,500 900 11,500 900 11,500

100 1.23–1.77 2300 900 57,500 900 57,500 900 57,500

115 1.21–1.73 2300 915 66,197 1470 71,587 2020 76,858

200 1.11–1.55 2254 1000 117,154 1000 137,313 1000 157,220

400 0.91–1.19 2185 1100 244,613 1100 264,772 1100 284,678

1200 0.55–0.60 2024 1100 739,368 1100 759,527 1100 779,434

See also diagram in Fig. 14.3
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The Eurocode on concrete (EN 1992-1-2) states that the emissivity related to

concrete surfaces should be taken as 0.7. The Eurocode 1 on actions (EN 1991-1-2)

gives the convective heat transfer coefficient when simulating fully developed fires

to be assumed equal to 25 W/(m2 K). (In general the assumed values of the surface

emissivity and convective heat transfer coefficient have only marginal influence on

calculated temperatures inside concrete structures.)

14.2 Penetration Depth in Semi-infinite Structures

Concrete is a material with relatively high density and low conductivity. It therefore

takes a long time for heat to penetrate into the structure and raise its temperature, or

in other words it takes time before a temperature change at one point is noticeable at

another point. Thus in many cases a concrete structure may be assumed semi-

infinite. In Sect. 3.2.1.1 it is shown that temperature change at the surface will only

be noticeable at a depth δ less than

δ ¼ 2:8
ffiffiffiffiffiffiffiffi
α � tp ð14:1Þ

where α is the thermal diffusivity and t is time. The value 2.8 represents a

temperature rise of 1%. As an example, the temperature rise can be estimated to

penetrate only about 0.15 m into a concrete structure after 1 h (assuming a

conductivity of a 1.7 W/(m K), a density of 2300 kg/m3 and a specific heat capacity

of 900 J/(kg K)).

Penetration depth can actually be applied to any material where the properties

may be assumed constant. A temperature change at one point of, for example, a

steel member will not be noticeable beyond a distance corresponding to the

penetration depth. In 1 h the penetration depth in steel exceeds 0.60 m, which is

four times as deep as in concrete.

14.3 Explicit Formula and Diagrams

In general numerical procedures such as finite element methods are needed to

calculate temperature in concrete structures. A 1-D configuration of a concrete is

shown in Fig. 14.4.

Wickstr€om [48, 49] has, however, shown that in 1-D cases may the temperature

inside concrete structures exposed to standard fire conditions according to ISO

834 and heat transfer condition according to Eurocode 1 (Eq. 12.11) be obtained

from explicit formula and diagrams. The diagrams as shown in Figs. 14.5 and 14.6

were then obtained by comparisons with numerous finite element calculations.

They yield concrete temperatures which coincide with the temperatures obtained

with the accurate numerical methods within a few per cent in the interesting area of
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Fig. 14.4 Definitions of

temperature rises of a 1-D

thick concrete wall exposed

to fire on one side
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Fig. 14.5 The surface ratio
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Fig. 14.6 The in depth ratio ηx vs. time divided by depth squared t/x2 for normal weight concrete

with thermal properties according to Eurocode 2 [7] exposed to standard ISO 834 fire conditions.

Calculations are made assuming lower limit of the conductivity as shown in Fig. 14.1
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300 to 600 �C. These diagrams are therefore very handy to use when a quick

estimate is needed.

The diagrams apply to normal weight concrete with thermal properties

according to Eurocode 2 [6] as shown in Table 14.1 assuming the lower conduc-

tivity curve according to Fig. 14.1 and a moisture content of 1.5%.

In [48] it is shown that the same type of diagrams can be used more generally

considering both various parametric fires and various material properties.

The diagram given in Fig. 14.5 shows the ratio ηs between the concrete temper-

ature rise of the surface and the standard fire temperature according to ISO 834 vs.

time. This surface ratio is defined as

ηs ¼
θs
θf

ð14:2Þ

where θs and θf are the temperature rise of the surface and the fire, respectively.

Figure 14.6 shows in turn the ratio between the internal temperature rise θx at a
depth x and the surface temperature rise θs. This depth ratio is defined as

ηx ¼
θx
θs

ð14:3Þ

The depth ratio ηx is in principle a function of the Fourier number, i.e. the

thermal diffusivity k/(cρ) of the concrete times the fire duration t over the depth

x squared. In the finite element calculations for developing the diagrams thermal

properties of concrete with a water content of 1.5% are assumed according to

Eurocode 2. Calculation depths between 25 and 100 mm were used when develop-

ing the diagram. The linear relation in the logarithmic-linear diagram as shown in

Fig. 14.6 was then constructed. It yields approximate temperatures slightly higher

than was obtained with the accurate finite element calculations.

The internal concrete temperature may now be written as

Tx ¼ ηsηxTf ð14:4Þ

The graphs in Figs. 14.5 and 14.6 can be approximated by simple expressions.

Thus Eq. 14.5

ηs ¼ 1� 0:060 t�0:90 ð14:5Þ

and

ηx ¼ 0:172ln
t

x2

� �
� 0:74 ð14:6Þ

respectively, where t is time in hours and x distance in metres from the surface.
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Then in summary for standard fire exposure according to ISO 834 and normal

weight concrete according to Eurocode 2 [7] (see Sect. 14.1) a very simple closed

form solution may be obtained. Thus the surface temperature rise is

θs ¼ 1� 0:060 t�0:90
� � � 345 � log 480tþ 1ð Þ½ � �C½ � ð14:7Þ

The internal temperatures at arbitrary times and depths are obtained by inserting

Eqs. 14.5 and 14.6 into Eq. 14.4 of a structure initially at 20 �C then becomes:

Tx, t ¼ 1� 0:060 t�0:90
� � � 0:172ln

t

x2

� �
� 0:74

h i
� 345 � log 480tþ 1ð Þ½ �

þ 20 �C½ � ð14:8Þ

A diagram based on Eqs. 14.7 and 14.8 is shown in Fig. 14.7 including the standard

ISO 834 fire curve. The graphs are limited between 200 and 700 �C. Outside that

range Eq. 14.8 is not valid.

As an illustration the temperature in a slab of normal-weight concrete is calcu-

lated at a depth of 4 cm when exposed to an ISO 834 standard fire for 1 h. At first ηs
is obtained from Fig. 14.5 to be 0.97 at t¼ 1 h. Then for t/x2¼ 2.0/(0.04)2¼ 1250 h/

m2 and Eq. 14.5 or Fig. 14.6 yields approximatively ηx¼ 0.49. As the standard fire

temperature rise after 1 h is 1029 �C, the concrete surface temperature rise is

obtained from Eq. 14.8 as 0.97 � 1029¼ 998 �C and Eq. 14.8 yields the temperature

rise at a depth of 4 cm to be Tx¼ 0.97 � 0.49 � 1029 + 20 �C¼ 509 �C. Alternatively a
direct reading of Fig. 14.7 yields a Tx¼ 500 �C which coincides very well with an

accurate finite element calculation.

Fig. 14.7 Temperature in concrete based on Eq. 14.8 in the range of 200 to 700 �C at various

depths when exposed to the standard ISO 834 fire curve. The temperatures of the exposure curve

and the surface are given as well
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Also the temperature rise near 2-D corners exposed to ISO 834 standard fires

may be calculated using the approximations above [48]. Thus the temperature at a

point at distances x and y, respectively, from the exposed surfaces (see Fig. 14.8)

may be calculated as

θx,y ¼
�
ηs � ηx þ ηy � 2 � ηxηy

�þ ηxηy
� � θf

� ð14:9Þ

where ηs is the surface ratio according to Eq. 14.5 or Fig. 14.5, and ηx and ηy are the
depth ratios in the x and y directions, respectively, according to Eq. 14.6 or

Fig. 14.6.

Example 14.1 Calculate the temperature in a rectangular concrete beam after 2.0 h

fire exposure at a point 60 and 50 mm from the exposed surfaces.

Solution According to Eq. 14.5 or Fig. 14.5 ηs ¼ 0:97, t/x2¼ 2.0/0.062¼ 556 h/m2

and then according to Eq. 14.6 or Fig. 14.6ηx ¼ 0:35, and t/y2¼ 2.0/0.052¼ 800 h/m2

which yieldsηy ¼ 0:41. At 2.0 h the temperature rise according to ISO 834 is 1029 �C,
and the temperature rise becomes according to Eq. 14.9 θx,y ¼
0:97 � 0:35þ 0:41� 2 � 0:35 � 0:41ð Þ þ 0:35 � 0:41½ � � 1029 �C ¼ 620 �C.

14.4 Fire Protected Concrete Structures

In some application it may be advantageous to insulate concrete structure surfaces

to prevent them from fast temperature rises. It is mainly considered for tunnels to

avoid spalling to give additional protection to the embedded reinforcement bars as

shown in Fig. 14.9a. Behind the protection the concrete temperature will then not

rise as quickly as when directly exposed to fire.

There are in principle three types of passive fire protections used for protection

of tunnels, namely spraying with cementitious mortar, lining with non-combustible

Fig. 14.8 Definitions of

temperature rises at a 2-D

concrete corner exposed to

fire from two sides
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boards and lining with concrete containing polypropylene fibres. For more infor-

mation on fire dynamics in tunnels see [50] and on concrete in tunnels see [51]. A

simple way of estimating how much thermal protection an insulation provides in

terms of concrete thickness based on finite element calculations [19] has been

suggested by Wickstr€om and Hadziselimovic [52].

They showed that the same effect is approximately obtained when the thermal

resistance of the insulation is the same as that for the concrete layer. Thus the

equivalent concrete layer thickness can be calculated as

dc ¼ kc � din
kin

ð14:10Þ

where d is thickness and k conductivity, and the indices in and c stand for insulation
and concrete, respectively.

As an example a 10 mm board of vermiculite with a thermal conductivity of

0.2 W/(m K) corresponds to a concrete protection layer of 50 mm assuming the

concrete has a conductivity of 1.0 W/m K for the temperature interval considered.

This could mean considerable savings in both weight and space for a concrete

structure.

Fig. 14.9 The protection of a concrete structure layer with a thickness din gives an equivalent

thermal protection as a concrete layer with a thickness dc¼ kcdi/ki. (a) Concrete slab fire protected
from below (b) Concrete layer providing equivalent thermal protection
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Chapter 15

Temperature of Timber Structures

Modelling the thermal behaviour of wood is complicated as phenomenas such as

moisture vaporization and migration, and the formation of char have decisive

influences on the temperature development within timber structures. Nevertheless

it has been shown that general finite element codes can be used to predict temper-

ature in, for example, fire-exposed cross sections of glued laminated beams [53],

provided, of course, that apparent thermal material properties and appropriate

boundary conditions are used. Other specialized numerical codes for timber struc-

tures have been developed, e.g. by Fung [54] and Gammon [55]. A comprehensive

collection of papers on timber in fire is listed in [56].

15.1 Thermal Properties of Wood

Both density and moisture content affect the thermal properties of wood. In the

literature a wide range of values are given. In the SFPE Handbook of Fire Protec-

tion Engineering [4], the following equation is given for the conductivity in

W/(m K) as

k ¼ ρ � 194:1þ 4:064 � uð Þ � 10�6 þ 18:64 � 10�3 ð15:1Þ

and for the specific heat capacity of dry wood in Ws/(kg K) as

c ¼ 103:1þ 3:867 T ð15:2Þ

where ρ is the density based on volume at current moisture content and oven-dry

weight (kg/m3), u the moisture content (per cent by weight) andT is the temperature

(K). These values are mainly developed for temperatures below 100 �C. For higher
temperatures the latent heat for the vaporization of free water must be considered as
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for concrete, see Sect. 14.1. At equilibrium in “normal” conditions (20 �C and a

relative air moisture content of 65%) wood contains about 12% by weight of water.

According to Eurocode 5 (EN 1965-1-5) Annex B the conductivity is

recommended to be as shown in Fig. 15.1 and Table 15.1, and the specific heat

capacity as shown in Fig. 15.2. These material properties are limited structures

exposed to standard fire exposure according to ISO 834 or EN 1363-1, see [56].

Figure 15.3 shows the specific volumetric enthalpy based on Table 15.2 for

wood with a density of 450 kg/m3 and a moisture content of 12%.

The thermal properties of wood are in general very uncertain and it is very hard

to find reliable data in the literature. For approximate calculations it is here

recommended to use a constant conductivity of 0.13 W/(m K) independent of

moisture content and a specific heat of 2000 W/(kg K) for dry wood with additions

for the sensitive and latent heat of water as described for concrete in Sect. 14.1.

15.2 Charring Depth According to Eurocode 5

Simple estimations of load-bearing capacities of timber members are according to

Eurocode5 [7]made in twosteps.First a residualcross section is calculatedby removing

the char layers entering from fire-exposed surfaces. Then the mechanical properties of

the residual cross section are calculated based on the remaining virgin wood. This

procedure is calledReducedCross-SectionMethodorEffectiveCross-SectionMethod.
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Fig. 15.1 Temperature

vs. conductivity for wood

and the char layer according

to Eurocode 5. See also

Table 15.1

Table 15.1 Temperature vs. conductivity for wood and the char layer according to Eurocode 5

Temperature [�C] 20 200 350 500 800 1200

Conductivity [W/(m K)] 0.12 0.15 0.07 0.09 0.35 1.5

See also Fig. 15.1
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Fig. 15.2 Temperature vs. specific heat capacity for wood and charcoal according to Eurocode

5. The peak at 100 �C corresponds to the heat of vaporization of 12% by weight of water

Fig. 15.3 Example of specific volumetric enthalpy in MWs/m3 for wood with a density 450 kg/m3

and a moisture content by weight of 12%

15.2 Charring Depth According to Eurocode 5 229



Empirical rules are used to estimate the penetration of the charring layer and the

loss of strength of timber structures. The following section is a considerably

abbreviated extract. It is just given as an illustration and should not be used without

consulting the relevant standard.

The temperature at which charring begins is by the standard definition 300 �C
when exposed to the ISO/EN standard exposure. One-dimensional charring as

indicated in Fig. 15.4 is assumed to occur at constant rate when exposed to

ISO/EN standard fires. Then the charring depth can be calculated as

dchar, 0 ¼ β0t ð15:3Þ

where dchar,0 is the design charring depth for one-dimensional charring, β0 the basic
design charring rate for one-dimensional charring and t the relevant time of fire

exposure.

When including the effects of corner roundings, fissures or gaps between

adjacent elements, a notional charring depth is assumed as shown in Fig. 15.5:

dchar,n ¼ βnt ð15:4Þ

where dchar,n is the notional design charring depth.

Table 15.2 Specific heat capacity and ratio of density to dry density of softwood according to

Eurocode 5

Temperature [�C] Specific heat capacity [J/(kg K)] Density ratio

20 1530 1 + u/100

99 1770 1 + u/100

99 13,600 1 + u/100

120 13,500 1.00

120 2120 1.00

200 2000 1.00

250 1620 0.93

300 710 0.76

350 850 0.52

400 1000 0.38

600 1400 0.28

800 1650 0.26

1200 1650 0

Fig. 15.4 One-dimensional

charring (fire exposure on

one side) [7]
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For initially unprotected surfaces of timber design charring rates β0 and βn are
given in Table 15.3.

More details on how to estimate charring depths are given in Eurocode 5 [7].

Timber members may be protected by fire claddings or other protection mate-

rials to delay the start of charring. Rules on how to calculate the start of charring of

protected timber are given in Eurocode 5 [7].

Fig. 15.5 Charring depth

dchar,0 for one-dimensional

charring and notional

charring depth dchar,n [7]

Table 15.3 Design charring rates β0 and βn of timber, LVL, wood panelling and wood-based

panels [7]

β0 [mm/min]

βn
[mm/min]

(a) Softwood and beech

Glued laminated timber with a characteristic density of� 290 kg/m3 0.65 0.7

Solid timber with a characteristic density of� 290 kg/m3 0.65 0.8

(b) Hardwood

Solid or glued laminated hardwood with a characteristic density

of� 290 kg/m3
0.65 0.7

Solid or glued laminated hardwood with a characteristic density

of� 450 kg/m3
0.50 0.55

(c) LVL (Laminated Veneer Lumber)

With a characteristic density of� 480 kg/m3 0.65 0.7

(d) Panels

Wood panelling 0.9a –

Plywood 1.0a –

Wood-based panels other than plywood 0.9a –
aThe values apply to a characteristic density of 450 kg/m3 and a panel thickness of 20 mm or more
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When determining the cross-sectional mechanical properties, an effective cross

section should be calculated by reducing the initial cross section by the effective

charring depth def (see Fig. 15.6). Then

def ¼ dchar,n þ k0d0 ð15:5Þ

where d0 ¼ 7mm is the zero-strength layer. dchar,n is determined according to

Eq. 15.4. For unprotected surfaces, k0 should be determined according to

Table 15.4.

It is then only the effective part that shall be accounted for when calculating the

mechanical properties of a cross section. When using the Reduced

Cross-Section Method it is assumed that the effective cross section has ambient

material properties. All losses in strength and stiffness are compensated by the zero-

strength layer.

Example 15.1 A glued laminated beam (300 mm by 500 mm high) of pine

(softwood) is exposed on three sides to a standard EN/ISO curve. Calculate the

effective cross section after a fire exposure of 60 min.

Fig. 15.6 Definition of residual cross section and effective cross section [7]

Table 15.4 Determination of

k0 in Eq. 15.5 for unprotected

surfaces with t in minutes.

From Eurocode 5

Time k0

t< 20 min t/20

t� 20 min 1.0
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Solution The effective charring depth def can be calculated according to Eq. 15.5

and dchar,n from Eq. 15.4. Thus def ¼ 0:7 � 60þ 1:0 � 7mm ¼ 49mm and the

remaining effective cross section becomes (500-49) mm by (300-2 � 49) mm equal

to 451 mm by 202 mm.

End-user-friendly information for designers including examples can be found

in [58].
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Review Questions

Chapter 1

1. What is the difference between heat and temperature?

2. Which are the three modes of heat transfer?

3. What is the “driving force” of heat transfer?

4. Write Fourier’s law of heat conduction.

5. Which are the three types of boundary condition, 1, 2 and 3?

6. Which of the three types of boundary conditions is the most common in FSE?

7. What is an adiabatic surface?

8. How is heat transferred from the gas phase to a solid surface?

9. Write the equation for a convection boundary condition.

10. What is absorbed radiation?

11. Write the expression for the emitted radiation from a surface according to the

Stefan–Boltzmann law.

12. What is net radiation heat flux?

13. What is incident black body radiation temperature or just the black body

temperature Tr?

14. What is a mixed boundary condition?

15. How is the fire boundary condition normally written in standards on fire

resistance of structures?

16. Write the heat conduction equation in 1-D.

17. Explain the parameters in the heat conduction equation.

18. What is thermal diffusivity?

19. What is specific volumetric enthalpy?

20. What is thermal inertia and why does it vary so much for various materials?

21. What happens to steel properties at elevated temperatures?

22. Which is the main problem with concrete structures exposed to severe fire

conditions?

23. Why can wooden structures resist fires relatively well?
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Chapter 2

24. Draw the temperature distribution of a wall under steady-state conditions.

Assume constant thermal parameters, 3rd kind of boundary condition on one

side and 1st kind on the other side.

25. What is the total thermal resistance of a wall with a thickness L, a conductivity
k and heat transfer coefficients h at the bounding surfaces?

Chapter 3

26. What is the meaning of lumped-heat-capacity or uniform temperature?

27. Write and explain the heat balance equation where lumped-heat-capacity is

assumed.

28. Under what conditions can an analytical solution be derived for the uniform

temperature of a body exposed to elevated gas temperature?

29. Give two examples when uniform temperatures can be assumed in fire safety

engineering.

30. What is meant by a semi-infinite body?

31. Show in the diagram how the temperature profile develops in a semi-infinite

body experiencing a sudden temperature rise at the surface.

32. What is penetration depth?

33. Which is the material parameter group governing the temperature development

of semi-infinitely thick bodies with a prescribed surface temperature?

34. Which is the material parameter group governing the surface temperature

development of semi-infinitely thick bodies with a prescribed heat flux at the

surface?

35. Which is the parameter group governing the surface temperature development

of semi-infinitely thick bodies exposed to a prescribed gas temperature and heat

transfer coefficient?

Chapter 4

36. Why is radiation so important in fire safety engineering?

37. What is the radiation heat transfer coefficient and how can it be calculated?

38. What is adiabatic surface temperature and how is it defined?

39. Which parameters are needed to calculate the adiabatic surface temperature?
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Chapter 5

40. What is the resultant emissivity between two parallel plates?

41. What is a view factor?

42. What is an absorption or emission coefficient?

43. Which parameters determine the emissivity of a flame?

Chapter 6

44. What governs heat transfer by convection?

45. Which are the two principal ways of inducing air flow?

46. Which are the two principal types of flow patterns?

47. Which air properties govern the magnitude of the convection heat transfer

coefficient?

48. What is effective or apparent thermal conductivity in enclosed species?

Chapter 7

49. Write the heat balance equation in numerical form of a body exposed to

incident radiation and a gas temperature assuming lumped heat?

50. Write the transient heat balance equation in the matrix form. Describe the

components.

51. How can the equation be solved?What are the advantages and disadvantages of

explicit and implicit methods?

52. What is specific volumetric enthalpy?

53. Specific volumetric enthalpy of a wet material has three components at

temperatures above vaporization. Which?

Chapter 8

54. According to thermal ignition theory there are formulas to calculate time to

reach critical temperatures for thin and thick solids, respectively. Which

parameters are governing in the two cases?

55. What is the critical incident radiation heat flux?
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Chapter 9

56. Describe the function of a thermocouple.

57. When measuring gas temperature with thermocouples there are two main error

sources, which?

58. How should a thermocouple be designed to measure gas temperatures

accurately?

59. What does a heat flux meter of Gardon gauge or Schmidt-Boelter gauge

measure?

60. Why is the PT larger than a thermocouple?

61. A plate thermometer measures approximatively the adiabatic surface temper-

ature of a relatively large surface. Why not exactly?

62. How can incident thermal radiation be calculated based on plate thermometer

measurements?

63. How can adiabatic surface temperatures be calculated based on plate thermom-

eter measurements?

Chapter 10

64. Which are the four main components of the heat balance equation of a fully

developed compartment fire?

65. Which is the driving force of the gas flow in a one-zone model?

66. What is the difference between ultimate fire temperature and maximum

temperature?

Chapter 11

67. What is the difference between a one-zone and a two-zone model? When are

they applicable?

68. Which is the driving force of the gas flow in a two-zone model?

Chapter 12

69. Which three major steps consist of a fire design or analysis process of?

70. What is the meaning of the gamma factor?

71. How is the gamma factor influenced by the opening factor and the thermal

inertia of the compartment boundaries?

72. What determines the duration of a parametric fire?
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Chapter 13

73. What characterizes the thermal properties of steel?

74. What is “lumped-heat-capacity”?

75. What is “section factor” or “shape factor” of a steel section?

76. What is meant by heavily protected steel structures?

77. What is “shadow effect”?

Chapter 14

78. What characterizes the thermal properties of concrete in comparison with steel

and insulation materials?

79. What is the surface temperature of a thick concrete wall after 1 h fire exposure

according to the ISO 834 standard curve. Use the diagram in Fig. 14.5.

80. What is the temperature 3 cm into a thick concrete structure after one hour fire

exposure according to the ISO 834 standard curve? Use the diagrams in

Figs. 14.5 and 14.6

81. Calculate the same temperatures as in the two questions above but use Eq. 14.7

and Eq. 14.8, respectively?

82. How can the insulation of a concrete structure be considered in terms of

equivalent concrete thickness?

Chapter 15

83. What needs to be considered particularly when calculating temperature in

timber structures?

84. How is the thermal conductivity of wood in comparison to steel and concrete?

85. How are simple estimations made of load-bearing capacities of timber

members according to for example Eurocode 5?
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