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Preface

Structural geology has been taught, largely unchanged, for the last 50 years or more. The lecture
part of most courses introduces students to concepts such as stress and strain, as well as more
descriptive material like fault and fold terminology. The lab part of the course usually focuses on
practical problem solving, mostly traditional methods for describing quantitatively the geometry
of structures. While the lecture may introduce advanced concepts such as tensors, the lab
commonly trains the student to use a combination of graphical methods, such as orthographic
or spherical projection, and a variety of plane trigonometry solutions to various problems. This
leads to a disconnect between lecture concepts that require a very precise understanding of
coordinate systems (e.g., tensors) and lab methods that appear to have no common spatial or
mathematical foundation. Students have no chance to understand that, for example, seemingly
unconnected constructions such as down-plunge projections and Mohr circles share a common
mathematical heritage: They are both graphical representations of coordinate transformations.
In fact, it is literally impossible to understand the concept of tensors without understanding
coordinate transformations. And yet, we try to teach students about tensors without teaching
them about the most basic operations that they need to know to understand them.

The basic math behind all of these seemingly diverse topics consists of linear algebra and
vector operations. Many geology students learn something about vectors in their first two
semesters of college math, but are seldom given the opportunity to apply those concepts in
their chosen major. Fewer students have learned linear algebra, as that topic is often reserved
for the third or fourth semester math. Nonetheless, these basic concepts needed for an intro-
ductory structural geology course can easily be mastered without a formal course; we assume
no prior knowledge of either. On one level, then, this book teaches a consistent approach to a
subset of structural geology problems using linear algebra and vector operations. This subset
of structural geology problems coincides with those that are usually treated in the lab portion
of a structural geology course.

The linear algebra approach is ideally suited to computation. Thirty years after the wide-
spread deployment of personal computers, most labs in structural geology teach students
increasingly arcane graphical methods to solve problems. Students are taught the operations
needed to solve orientation problems on a stereonet, but that does not teach them the
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mathematics of rotation. Thus, a stereonet, either digital or analog version, is nothing more
than a graphical black box. When the time comes for the student to solve a more involved
problem - say, the rotation of principal stresses into a fault plane coordinate system - how will
they know how to proceed? Thus, on another level, one can look at this book as a structural
geology lab manual for the twenty-first century, one that teaches students how to solve prob-
lems by computation rather than by graphical manipulation.

The concept of a twenty-first century lab manual is important because this book is not a
general structural geology text. We make no attempt to provide an understanding of deforma-
tion, rather we focus on how to describe and analyze structures quantitatively. Nonetheless, the
background and approach is common to that of modern continuum mechanics treatments. As
such, the book would make a fine accompaniment to recent structural texts such as Pollard &
Fletcher (2005) or Fossen (2010).

Chapter 1 provides an overview of problem solving in structural geology and presents some
classical orientation problems commonly found in the lab portion of a structural geology course.
Throughout the chapter (and the book) we make only a brief attempt to explain why a student
might want to carry out a particular calculation; instead we focus on how to solve it. Chapters 2
and 3 focus on the critically important topic of coordinate systems and coordinate transforma-
tions. These topics are essential to the understanding of vectors and tensors. Chapter 4 presents
areview (for some students, at least) of basic matrix operations and indicial notation, shorthand
that makes it easy to see the essence of an operation without getting bogged down in the details.
Then, in Chapter 5, we address head on the topic of what, exactly, is a tensor as well as essential
operations for analyzing tensors. With this background, we venture on to stress in Chapter 6 and
deformation in Chapters 7 to 11. In the final chapter, we address a topic that all people solving
problems quantitatively should know how to do: error analysis. All chapters are accompanied by
well-known examples from structural geology, as well as exercises that will help students grasp
these operations. Allmendinger was the principal author of chapters 1-9, Cardozo of chapters
11-12, and Fisher of chapter 10. All authors contributed algorithms, which were implemented in
MaT1AB® by Cardozo. Any bug reports should be sent to him.

Many of the exercises involve computation, which is the ideal way to learn the linear algebra
approach. Some of the exercises in the earlier chapters can be solved using a spreadsheet program,
but, as the exercises get more complicated and the programs more complex, we clearly need a
more functional approach. Throughout the book, we provide code snippets that follow the syntax
of MatLAB® functions. MatLAB is a popular scientific computing platform that is specifically oriented
towards linear algebra operations. MatiaB is an interpreted language (i.e., no compilation needed)
that is easy to program, and from which results are easily obtained in numerical and graphical
form. Teaching the basic syntax of Matrag is beyond the scope of this book, but the basic concepts
should be familiar to anyone who is conversant with any programming language. The first author
programs in FORTRAN and the second in Objective C, however, neither has trouble reading the
MaTiaB code. Additionally, the code snippets are richly commented to help even the novice reader
capture the basic approach. Many of these code snippets come directly from programs by the first
two authors, which are widely used by structural geologists. Thus, on a third level, this book can be
viewed as a sort of “Numerical Recipes” (Press et al., 1986) for structural geology.

Many colleagues and students have helped us to learn these methods and have influenced
our own teaching of these topics. Foremost among them is Win Means, whose own little book,
Stress and Strain (Means, 1976), unfortunately now out-of-print, was the first introduction that
many of our generation had to this approach. Win was kind enough to read an earlier copy of
this manuscript. Allmendinger was first introduced to these methods through a class that used
Nye’s excellent and concise treatment (Nye, 1985). Classes, and many discussions, with Ray
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Fletcher, Arvid Johnson, and David Pollard about structural geology were fundamental to
forming his worldview. We thank generations of our students and colleagues who have learned
these topics from us and have, through painful experience, exposed the errors in our problem
sets and computer code. Allmendinger would especially like to thank Ben Brooks, Trent
Cladouhos, Ernesto Cristallini, Stuart Hardy, Phoebe Judge, Jack Loveless, Randy Marrett, and
Alan Zehnder for sharing many programming adventures. He is particularly grateful to the US
National Science Foundation for supporting his research over the years, much of which led to
the methods described here. Cardozo would like to thank Alvar Braathen, Haakon Fossen, and
Jan Tveranger for their interest in the description and modeling of structures, and Sigurd
Aanonsen for introducing inverse problems. Our families have suffered, mostly silently, with
our long hours spent programming, not to mention in preparation of this manuscript.






CHAPTER

ONE

Problem solving in structural geology

1.1 OBJECTIVES OF STRUCTURAL ANALYSIS

In structural analysis, a fundamental objective is to describe as accurately as possible the
geological structures in which we are interested. Commonly, we want to quantify three types
of observations.

Orientations are the angles that describe how a line or plane is positioned in space. We
commonly use either strike and true dip or true dip and dip direction to define planes, and trend
and plunge for the orientations of lines (Fig. 1.1). The trend of the true dip is always at 90° to the
strike, but the true dip is not the only angle that we can measure between the plane and the
horizontal. An apparent dip is any angle between the plane and the horizontal that is not
measured perpendicular to strike. For example, the angle labeled “plunge” in Figure 1.1 is
also an apparent dip because line A lies in the gray plane. Strike, dip direction, and trend are
all horizontal azimuths, usually measured with respect to the geographic north pole of the
Earth. Dip and plunge are vertical angles measured downwards from the horizontal. Where a
line lies in an inclined plane, we also use a measure known as the rake or the pitch, which is the
angle between the strike direction and the line. There are few things more fundamental to
structural geology than the accurate description of these quantities.

Whereas orientations are described using angles only, magnitudes describe how big, or
small, the quantity of interest is. Magnitudes are, essentially, dimensions and thus have units
of length, area, or volume. Some examples of magnitudes include the amplitude of a fold, the
thickness of a bed, the length of a stretched cobble in a deformed conglomerate, the area of
rupture during an earthquake, or the width of a vein. With magnitudes, size matters, whereas
with orientations it does not.

The third type of observation compares both orientation and magnitude of something at
two different times. The difference between an initial and a final state is known as deformation.
Determining deformation involves measuring the feature in the final state and making
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vertical plane upward pole or

normal vector
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Figure 1.1 Three-dimensional perspective diagram showing the definition of typical
structural geology terms. Strike and dip give the orientation of the gray plane with
respect to geographic north (N) and the horizontal. Trend and plunge describe the
orientation of line A. Because line A lies within the gray plane, we can specify the rake,
the angle that the line makes with respect to the strike of the plane. The pole or normal
vector is perpendicular to the plane. Note that because dip and plunge are measured from
the horizontal, there is an implicit sign convention that down is positive and up negative.

inferences about its size, position, and orientation in the initial state. Deformation is commonly
broken down into translation, rotation, and strain (or distortion) and each can be analyzed
separately (Fig. 1.2), although when strains are large the sequence in which those effects are
analyzed is important.

To determine orientations, magnitudes, or deformations, we need to make measurements.
All measurements have some degree of uncertainty: is the length of that deformed cobble
10.0 or 10.3 cm? Is the strike of bedding on the limb of a fold 047° or 052°? In structural
geology, the measurements that we make of natural, inherently irregular objects usually have a
high degree of uncertainty. Typically, uncertainties, or errors, are estimated by making multiple
measurements and averaging the result. However, we often want to calculate a quantity based
on measurements of different quantities. Error propagation allows us to attach meaningful
uncertainties to calculated quantities; this important operation is the subject of Chapter 12.

A complete structural analysis, of course, involves much more than just orientations,
magnitudes, and deformations. These quantities tell us the “what” but not the “why.” They
may tell us that the rocks surrounding pyrite grains and curved pressure shadows suffered a
rotation of 37° and a stretch of 2, but they tell us nothing about why the deformation occurred
nor, for example, why the rocks surrounding the pyrite changed shape continuously whereas
the pyrite itself did not deform at all. Nor does the fact that a thrust belt was shortened
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horizontally by 50% tell us anything about why the thrust belt formed in the first place. This
complete understanding of structures is beyond the scope of this book, but the reader should
never lose sight of the fact that accurate description based on measurements and their errors is
just one aspect of a modern structural analysis.

1.2 ORTHOGRAPHIC PROJECTION AND PLANE TRIGONOMETRY

The methods we use to describe structures serve another purpose besides just providing an
answer to a problem: They help us visualize complex, three-dimensional forms, thereby giving
us a better intuitive understanding. Thus, many structural methods are graphical in nature, or
are simple plane trigonometry solutions that have been derived from graphical constructions.
Maps and cross sections constitute some of our most basic ways of graphically representing
structural data and interpretations. Simpler graphical constructions using folding lines, front,
side, and top views, etc. help us to visualize structures in three dimensions (Fig. 1.3). Until the
1980s, most structural geologists did not have knowledge of, or access to, the computing power
needed to analyze complicated structural problems in any way except via graphical methods.
Graphical methods, including spherical projection, were necessary to reduce complex
three-dimensional geometries to two-dimensional sheets of paper.

Beginning structural geology students typically learn two types of graphical constructions:
orthographic and spherical projections. In orthographic projection, one views the simple three-
dimensional geometries as if they formed the sides of a box. Because one can only measure true
angles with a protractor when looking perpendicularly down on the surface in which they occur,
the sides of the box have to be unfolded before one can measure the angles of interest.

Consider the problem depicted in Figure 1.3: The gray plane has a strike, a true dip, 6,
measured in a direction perpendicular to the strike, and an apparent dip, «, in a different
direction. If one knows two out of the three quantities - the strike, true dip, and apparent dip -
one can determine the third quantity. In orthographic projection, the true dip direction and the
apparent dip direction are used as folding lines; they are literally like the creases on an unfolded
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Figure 1.3 (a) Block diagram and (b) orthographic projection illustrating a graphical
approach to the apparent dip problem. The dashed lines corresponding to the true
and apparent dip directions are folding lines along which sides 1 and 2 have been
folded up to lie in the same plane as the top of the block. h is the height of the block,
which is the same everywhere along the strike line. §, &, and 8 are the true dip, apparent
dip, and angle between the strike and apparent dip directions, respectively.

cardboard box. By folding up the sides so that the top and the two sides all lie in the same plane,
one can simply measure with a protractor whichever angle is needed.

The orthographic projection also provides the geometry necessary for deriving a simple
trigonometric relationship that allows us to solve for the angle of interest by introducing a new
angle from the top of the block (Fig. 1.3b): the angle between the strike and the apparent dip
direction, . Edge b of the top of the block is equal to

h

b:tané

The edge between the top and side 2, a is

L b h
~ sinB  tanédsinB
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And, from side 2 we get

h
a—=
tan x

Thus, using plane trigonometry, we can write the equation for the apparent dip:

tan d sin f = tan «

(1.1

where § is the true dip, B the angle between the strike and the apparent dip direction, and « the
apparent dip. Plane trigonometry works very well for simple problems but is more cumber-
some, or more likely impossible, for more complex problems.

A different approach, which has the flexibility to handle more difficult computations, is
spherical trigonometry. To visualize this situation, imagine that the plane in which we are
interested intersects the lower half of a sphere (Fig. 1.4) rather than a box. In general, with
power comes complexity, and spherical trigonometry is no exception. To calculate the apparent

great a line pierces the
circle hemisphere in a
point

Figure 1.4 (a) Perspective view of a
plane intersecting the lower half of a
sphere. The angular relations are the
same as those shown in Figure 1.3.
The intersection of a sphere with any
plane that goes through its center is a
great circle. (b) Same geometry as in (a)
but viewed from directly overhead as
if one were looking down into the bowl
of the lower hemisphere. View (b) was
constructed using a stereographic
projection. y is the angle between true
and apparent dip directions and other
symbols are as in Figure 1.3.
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dip, one must realize that, for the right spherical triangle shown (Fig. 1.4b), we know two angles
(y, which is the difference between the true and apparent dip directions, and the angle 90
because it is a true dip) and the included side (90 — the true dip 6). Thus, we can calculate the
other side of the triangle (90 — the apparent dip «) from the following equation:

cosy = tan(90 — 6) x cot(90 — x) (1.2)

A problem with both trigonometric methods is that one must guard against a multitude of
special cases such as taking the tangent of 90°, the sign changes associated with sine and cosine
functions, etc. On a more basic level, they give one little insight into the physical nature of what
it is we are trying to determine. For most people, they are merely formulas associated with a
complex geometric construction. And, the mathematical solution to this problem bears no
obvious relation to other, more complicated problems we might wish to solve in structural

geology.

1.3 SOLVING PROBLEMS BY COMPUTATION

One of the primary purposes of this book is to show you how to solve problems in structural
geology by computation. There are many reasons for this emphasis: As a practicing geologist,
you will use computer programs written by other people most of your professional life, so you
should know how those programs work. Furthermore, computation is an important skill for
any modern research scientist and allows you to solve problems that others cannot. Most
importantly, the language of computation is linear algebra, and linear algebra is fundamental
to developing a complete understanding of structures and continuum mechanics.

There are lots of different choices of computer platform and language that one could make.
Perhaps simplest would be the humble spreadsheet program. In fact, many of the calculations
that we ask you to do early in the book can easily be done in a spreadsheet program without
even using its programming language (Visual Basic in the case of the popular program Excel).
However, when you get to more complicated programs, spreadsheets are inadequate. Most
commercial software these days is written in C, C++, or a variety of other platforms. In those
programs, implementing the interface - that is, the windows, menus, drawing, dialog boxes,
and so on - commonly takes up 95% or more of the lines of code. In this book, however, we want
you to focus on the scientific algorithms rather than the interface.

Thus, we have chosen to illustrate this approach using the commercial software package,
MAaTLAB®. Many universities now teach computer science and scientific computing using MATLAB,
and many research geologists use MatLap as their computing platform of choice. Because
MaTLAB is an interpreted language, it removes much of the fussiness of traditional compiled
languages such as FORTRAN, Pascal, and C among a myriad of others. MatLaB also allows you to
getresults conveniently without worrying about the interface. You will be introduced to MatLAB
in the next section, so we wanted to say a few general words about programming and syntax
here.

First, programming languages, including spreadsheets and Matias, do trigonometric
calculations in radians, not degrees. The relationship between radians and degrees is

180°

1 radian = =57.2957795131°

(1.3)

T
o T _ -
1° = 180 0.017453 2925 radians
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The four points of the compass - N, E, S, and W - can be defined in radians quite easily:

North 0° = 0 radians = 360° = 2r radians

East =90°= gradians

South = 180° = = radians (1.4)

West =270° = %radians

Second, any good computer code should have explanatory comments that tell the reader
what the program is doing and why. Comments are for humans and are totally ignored by the
computer. In all computer languages, a special character precedes comments; in MaTLAB, that
character is %, the percent character. We have tried to use comments liberally in this book to
help you understand what is going on in the functions we provide.

In all computer programs, the things to be calculated are held in variables. Variables can
hold a single number, but they can also hold more complicated groups of numbers called
arrays. The best way to think about arrays is that they represent a list of related data (in one
dimension) or a table of related data in two dimensions. Mathematically, arrays are matrices.
When one has their data in an array, repetitive calculations can be made very easily via
what are known as loops. Let’s say we need to add together 25 random numbers. We could
write

X1l + X2 + X3 + X4 + X5 + X6 + X7 + o + X22 + xX23 + x24 + x25
Alternatively, one can do this calculation using an array and a loop:

x = randn(1l,25); %$x is an array of 25 random numbers
Sum = 0; %$Initialize a variable to hold the sum of the array elements
for i1=1:25 %$Start of the loop. i1 starts at 1 and ends at 25
Sum = Sum + x(1i); %Add the current value x(i) to Sum
end %End of the loop

We will see later on in the book that the arrays and loops are what make the marriage of
computing and linear algebra so seamless. Though the above example is trivial, arrays and
loops will really help when we get to something like a tensor transformation that involves nine
equations with nine terms each!

In computer programs, we can also select at run-time which operations or block of code
are executed. We do this through the if control statement. Suppose we want to add the
even but subtract the odd elements of array x. We can do this by modifying the loop above as
follows:

for i=1:25 %Start of the loop. i starts at 1 and ends at 25
if rem(i,2) == 0 %Start if statement. If remainder i/2=zero (i.e., even)
Sum = Sum + x(i); %Add even element to Sum
else %Else if odd element
Sum = Sum - x(i); %Subtract odd element from Sum
end %End of if statement
end %End of the loop

Finally (for now), many multi-step calculations are repeatedly used in a variety of contexts. Just
as the tangent is used in both Equations 1.1 and 1.2, you can imagine more complicated
calculations being used multiple times with different values. All programming languages
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have a variety of built-in functions, including trigonometric functions. The above code snippets
use two such built-in functions: randn, which assigns random numbers to the array x, and rem,
which determines the remainder of a division by an integer. Programming makes it easy to write
your code in modular snippets that can be reused. You will see multiple examples in this book
where one chunk of code, called a function in MatLas and a function or subroutine in other
languages, calls another chunk of code. Table 1.1 lists all of the MaTiaB functions written
especially for this book and shows which functions call, or are called by, other functions. All
the functions follow the MatrLas help syntax. To get information about one of the functions, for
example function stCoordLine, just type in MaTLAB: help StCoordLine

1.4 SPHERICAL PROJECTIONS

The image in Figure 1.4b is known as a spherical projection, which is an elegant way of
representing angular relationships on a sphere on a two-dimensional piece of paper. It should
not be surprising that spherical projections are closely related to map projections, with the
exception that in structural geology we use the lower hemisphere, as shown in Figure 1.4,
whereas map projections use the upper hemisphere. Spherical projections are one of the
most published types of plots in structural geology. They are used to carry out angular
calculations such as rotations, apparent dip problems, and so on, as well as to present orienta-
tion data in papers and reports. Visualizing “stereonets,” as they are commonly called, is one of
the most important tasks a structural geology student can learn.

1.4.1 Data formats in spherical coordinates

Before diving in to stereonets, however, we need to examine briefly how orientations are
generally specified in spherical coordinates (Fig. 1.5). In North America, planes are com-
monly recorded using their strike and dip. But, the strike can correspond to either of two

Plane 1 Format Plane 2
N15E,45W Quadrant N15E,30E
015,45 W Azimuth 015,30 E
195, 45 Right-hand Rule 015, 30
285, 45 Dip direction & Dip 105, 30

Figure 1.5 Common data formats for two planes that share the same strike but dip in
opposite directions. Plane 1 is dark gray and plane 2 light gray. We do not recommend
the quadrant format!



Chapter Function

Description

Called by Calls Function(s)

1

NN

StCoordLine

ZeroTwoPi

SphToCart

CartToSph

CalcMVv
Angles
Pole

DownPlunge
Rotate

GreatCircle

SmallCircle

GeogrToView
Stereonet
MultMatrix
Transpose

CalcCofac

Determinant

Coordinates of a line in an equal angle or equal

area stereonet of unit radius

Constrains azimuth to lie between 0 and 2 radians

Converts from spherical to Cartesian

coordinates

Converts from Cartesian to spherical

coordinates

Calculates the mean vector for a given series of

lines

Calculates the angles between two lines, between

two planes, etc.

Returns the pole to a plane or the plane that

correspond to a pole

Constructs the down plunge projection of a bed
Rotates a line by performing a coordinate

transformation

Computes the great circle path of a plane in an
equal angle or equal area stereonet of unit

radius

Computes the paths of a small circle defined by its
axis and cone angle, for an equal angle or equal

area stereonet of unit radius

Transforms a line from NED to view direction

Plots an equal angle or equal area stereonet of unit

radius in any view direction

Multiplies two conformable matrices
Calculates the transpose of a matrix
Calculates all of the cofactor elements for a

3 x 3 matrix

Calculates the determinant and cofactors for a

3 x 3 matrix

GreatCircle, SmallCircle, ZeroTwoPi
Bingham, PTAxes

StCoordLine, CartToSph, Pole,
SmallCircle, GeogrToView,
Bingham, InfStrain

CalcMV, Angles, Pole, Rotate,
GeogrToView, Bingham, Cauchy,
DirCosAxes, PTAxes

CalcMV, Angles, Pole, Rotate,
GeogrToView, Bingham,
PrincipalStress, ShearOnPlane,
InfStrain, PTAxes,FinStrain

ZeroTwoPi

SphToCart CartToSph
SphToCart, CartToSph, Pole

Angles, GreatCircle, Stereonet ZeroTwoPi, SphToCart,

CartToSph
GreatCircle, SmallCircle SphToCart, CartToSph

Stereonet, Bingham, PTAxes StCoordLine, Pole, Rotate

Stereonet ZeroTwoPi, StCoordLine,
Rotate
Stereonet ZeroTwoPi, SphToCart,

CartToSph
Pole, GeogrToView,
SmallCircle, GreatCircle

Bingham, PTAxes

Determinant

Invert CalcCofac

(cont.)
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Description Called by

Calls Function(s)

10

10

10

10

11

11

11
11

11

Invert
Bingham
Cauchy

DirCosAxes

TransformStress
PrincipalStress

ShearOnPlane

InfStrain
PTAxes
GridStrain
FinStrain
PureShear
SimpleShear
GeneralShear
Fibers
FaultBendFold
SuppeEquation

SimilarFold
FixedAxisFPF

ParallelFPF

Calculates the inverse of a 3 x 3 matrix

Calculates and plots a cylindrical best fit to a pole
distribution

Computes the tractions on an arbitrarily ShearOnPlane
oriented plane

Calculates the direction cosines of a
right-handed, Cartesian coordinate
system of any orientation

Transforms a stress tensor from old to new
coordinates

Calculates the principal stresses and their
orientations

Calculates the direction and magnitudes
of the normal and shear tractions on an
arbitrarily oriented plane

Computes infinitesimal strain from an input
displacement gradient tensor

Computes the P and T axes from the
orientation of fault planes and their slip vectors

Computes the infinitesimal strain of a network of
stations with displacements in x and y

Computes finite strain from an input
displacement gradient tensor

Computes displacement paths and progressive
finite strain history for pure shear

Computes displacement paths and progressive
finite strain history for simple shear

Computes displacement paths and progressive
finite strain history for general shear

Determines the incremental and finite strain
history of a fiber in a pressure shadow

Plots the evolution of a simple step, Mode I fault-
bend fold

Equation 11.8 for fault-bend folding

Cauchy, PrincipalStress
TransformStress

ShearOnPlane

GridStrain

FaultBendFold,
FaultBendFold Growth
Plots the evolution of a similar fold
Plots the evolution of a simple step, fixed axis
fault-propagation fold

Determinant

ZeroTwoPi, SphToCart, CartToSph,
Stereonet, StCoordLine,
GreatCircle

DirCosAxes, SphToCart

SphToCart

DirCosAxes
DirCosAxes, CartToSph

PrincipalStress, Cauchy,
CartToSph

CartToSph, ZeroTwoPi
SphToCart, CartToSph, Stereonet,
GreatCircle, StCoordLine

InfStrain

CartToSph

SuppeEquation

(cont.)
SuppeEquationTwo
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Calls Function(s)

11

11

11
11

11

11

11

12

12

12

12

12

12

SuppeEquation
Two
Trishear

VelTrishear
FaultBendFold
Growth
FixedAxisFPF
Growth
ParallelFPF
Growth
TrishearGrowth
BalCrossErr
BedRealizations

CorrSpher

BackTrishear

InvTrishear

RMLMethod

Description Called by

Plots the evolution of a simple step, parallel
fault-propagation fold

Equation 11.20 for parallel fault-propagation ParallelFPF, Parallel
folding FPFGrowth

Plots the evolution of a 2D trishear fault-
propagation fold

Symmetric, linear v, trishear velocity field Trishear, BackTrishear

Plots the evolution of a simple step, Mode I fault-
bend fold and adds growth strata

Plots the evolution of a simple step, fixed axis
fault-propagation fold and adds growth strata

Plots the evolution of a simple step, parallel fault-
propagation fold and adds growth strata

Plots the evolution of a trishear fault-propagation
fold and adds growth strata

Computes shortening error in area balanced cross
sections

Generates realizations of a bed using a spherical RMLMethod
variogram and the Cholesky method

Calculates correlation matrix for a spherical BedRealizations
variogram

Retrodeforms bed for the given trishear InvTrishear
parameters and returns sum of square of
residuals

Inverse trishear modeling using a constrained, RMLMethod

gradient-based optimization method
Runs a Monte Carlo type, trishear inversion
analysis for a folded bed

VelTrishear

SuppeEquation

SuppeEquationTwo

VelTrishear

CorrSpher

VelTrishear

BackTrishear

BedRealizations,
InvTrishear

Table 1.1 List of MaTLAB functions in the book
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directions 180° apart, and dip direction must be fixed by specifying a geographic quadrant.
Some geologists use the quadrant format such as “N 37 W 43 SW” or “E 15 N 22 S” for
recording the strike and dip (Fig. 1.5). Though a charming anachronism, students should
always be encouraged to eschew this terminology and instead use “azimuth” notation by
citing an angle between zero and 360°, which is much less prone to error as well as being
easier to program. The same bearings as above, but in azimuth format, are “323°” and
“075°”; note that we always use three digits for horizontal azimuths to distinguish them
from vertical angles.

Two methods of recording the orientation of a plane avoid the ambiguity that arises from
dip direction. First, one can record the strike azimuth such that the dip direction is always
clockwise from it, a convention known as the right-hand rule. This tends to be the convention
of choice in North America because it is easy to determine using a standard Brunton
compass. A second method is to record the dip and dip direction, which is more common
in Europe where the Freiberg compass makes this measurement directly. Of course, the pole
also uniquely defines the plane, but it cannot be measured directly with either type of
compass.

Lines are generally recorded in one of two ways. Those associated with planes are commonly
recorded by their orientation with respect to the strike of the plane, that is, their pitch or rake
(Fig. 1.1). Although this way is commonly the most convenient in the field, it can lead to
considerable uncertainty if one is not careful because of the ambiguity in strike, mentioned
above, and the fact that pitch can be either of two complementary angles. We follow the
convention that the rake is always measured from the given strike azimuth. For example, the
southeast-plunging line in the northerly striking, east-dipping plane shown in Figure 1.5 would
have arake of greater than 90° because the strike of the plane using the right-hand rule is 015°.
The second method - recording the trend and plunge directly - is completely unambiguous as
long as the lower hemisphere is always treated as positive. Vectors that point into the upper
hemisphere (e.g., paleomagnetic poles) can simply be given a negative plunge.

As for the conventions used in this book, unless explicitly stated otherwise, planes will be
given as strike and dip using the right-hand rule and lines will be given as trend and plunge,
with a negative plunge indicating a vector pointing upward.

1.4.2 Using stereonets

In the most common type of stereonet, the outermost circle, or primitive, corresponds to the
horizontal plane; it is the top edge of the bowl in Figure 1.4a. Compass azimuths, or horizontal
bearings, are measured along the primitive. To plot a vertical angle such as a dip or a trend, one
counts the degrees inward from the primitive (horizontal) towards the center of the net
(vertical) along one of the two straight lines in the net. On a stereonet plot, lines are represented
as points and planes trace out great circles (Fig. 1.4).

By measuring angles downwards from the horizontal, structural geologists implicitly employ
a coordinate system in which down is positive. This is why structural geologists use a lower
hemisphere projection. The lower hemisphere stereonet is particularly well suited to standard
measurements made in the field with compass and clinometer. However, there is no reason why
the lower hemisphere must be used, or why the primitive must represent the horizontal.
Mineralogists, by convention, plot on the upper hemisphere, and the primitive can represent
any planar surface. For example, it is often instructive to plot structure data on a cross section
where the primitive represents the vertical plane of the section. The user or reader can then
immediately see whether the features being plotted lie in the plane (i.e., plot along the primitive)
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or are oblique to the plane of the section. The operation that makes this possible in modern
computer stereonet programs is the coordinate transformation, which we will see in Chapter 3.

Figure 1.6 illustrates the stereonet solution to the problem first introduced above in
Figure 1.3. Let’s say we know the strike and true dip of the plane (056°, 35° SE). One first rotates
the stereonet until its great circles parallel the strike of the desired plane (Fig. 1.5a). Note that the
geographic directions, N, E, S, W, do not rotate with the net because they are fixed to the
construction. Then, the true dip 6 is measured inwards 35° from the primitive along the straight
line perpendicular to the great circles of the net. Finally, we draw the great circle that contains

(a) N

great circle
of plane
S
(b) N
small
circles

circles
of net

W E
great circle primitive
of plane circle

Figure 1.6 Same angular relations as in
Figures 1.3 and 1.4 but now with the
background of a typical equal area
stereonet. To plot the plane of interest,
we rotate the net (a) so that the great
circles on the net are parallel to the
strike of the plane of interest. In (b) we
return the net so that its great circles
are aligned with geographic north.
Note the similarity of great circles with
lines of longitude and small circles with
lines of latitude. Symbols are as in
Figures 1.3 and 1.4.
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N

(a) strike =
rotation

axis

pole in
tilted
beds \

35°

N

pole in
horizontal

Figure 1.7 Rotating planes and lines on a
stereonet. (a) Because the rotation axis is
horizontal and parallel to the strike of
bedding, we rotate the net so that its pole is
parallel to the strike. The cone shows how a
line oblique to the rotation axis sweeps out
a conical trace as it rotates; small circles are
conical sections on a sphere. (b) Same
diagram, with the net restored so that its
pole is parallel to the geographic poles.

pole in

horizontal

both the strike and the true dip; because the true dip is 35° and the index great circles on the net
in Figure 1.6 are spaced 10° apart, the great circle that represents our plane falls midway between
the 30° and 40° index great circle. By restoring the net so that its great circles coincide with
geographic north, we can now determine the apparent dip « along the EW straight line: 21°. You
can verify that this is the correct answer by substituting the appropriate values into Equation 1.1.

Many structural geology lab manuals do an excellent job of describing step-by-step proce-
dures for carrying out a great many operations using stereonets (e.g., Marshak and Mitra, 1988;
Ragan, 2009) and we will not repeat those instructions here. There is, however, one operation
that illustrates particularly well the power and limitations of stereonets for carrying out
structural calculations: rotation of data. A line rotated about a rotation axis sweeps out a cone
shape if the angle between the line and axis (the apical angle) is less than 90° (Fig. 1.7a inset)
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and sweeps out a plane if the angle is exactly 90°. The intersection of a sphere and a cone
with its apex at the center of the sphere is a small circle and, as mentioned before, the
intersection of a plane and the sphere is a great circle. This is, in fact, how computer stereonet
programs draw the small circles and great circles that form the net. They take a point on the
primitive at, say, 40° apical angle to the north-south axis and rotate it by equal increments
through 180° until it arrives at the other side of the net, thus “drawing” the small circle at 40° to
the pole. We will explore in more detail how to do this in Chapter 3, once we have developed an
efficient way to do rotations.

The important concept for now is that points rotated on a stereonet follow small circle
traces. Figure 1.7 shows bedding striking 056° and dipping 35° SE (same as before) but now we
have added a line with a trend and plunge of 020, 45, which might, for example, represent a
paleomagnetic pole measured in the rocks. For many reasons, we might want to see what the
orientation of the paleomagnetic pole would have been when the rocks were horizontal, some-
thing practitioners call a fold test. To rotate bedding and everything else back to horizontal we
define a horizontal rotation axis whose azimuth is parallel to the strike of bedding. Because the
beds dip 35°, a 35° rotation about the strike will return the beds to horizontal. On a paper
stereonet, we rotate the net with respect to the overlay until the great circles parallel the strike
of the plane (Fig. 1.7a).

Here, however, we need to introduce an important formalism about the sign of the rotation
and confront the ambiguity of the strike. By convention, positive rotations are clockwise when
looking in the direction of the given azimuth of the rotation axis, and negative when counter-
clockwise. The ambiguity arises because one can cite the strike as either 056° or 236° (that is,
180° away). Which do we use for the azimuth of our rotation axis? If you imagine looking in the
direction 056° (Fig. 1.7), you can see that a clockwise rotation would produce a steeper dip, not a
shallower dip (i.e., zero). So, we can specify -35° rotation about 056°, or +35° about 236°. On the
stereonet, every point on the great circle that defines the plane moves 35° along the small circle
until it reaches the primitive (and the bedding is horizontal). The paleomagnetic pole also
moves 35° along the small circle that it occupies until it reaches the orientation that it would
have had prior to the tilting of the rocks (assuming, of course that the magnetism happened
before the folding!).

On a paper stereonet, one can only do rotations about horizontal axes because the small
circles are concentric about the poles of the net. We use the small circles to determine graphi-
cally how any point will rotate. This was fine in the above problem because strike lines are by
definition horizontal, but it creates headaches when rotation axes are not horizontal (or
vertical). To get some feeling for the contortions required for rotations about inclined axes on
paper stereonets, look at the description in any basic structure lab manual for how to determine
bedding dip from three drill holes! In Chapter 3, we will develop the equations for how to do
rotations about any axis.

1.4.3 How spherical projection works

As most practicing structural geologists now use a computer program to make spherical
projections, we should ask the question, how does the computer know where to plot our
precious data? Where on the x—y grid of a computer screen does the computer decide to plot
the point that corresponds to a line we have measured in the field? How do spherical projec-
tions actually work? Recall that the purpose of a projection is to take data on a sphere and
project them onto a two-dimensional piece of paper. There are two types of projections
commonly in use in structural geology: the equal angle and equal area projections.
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(a) Equal angle (b) Equal area
up up

line of

sight
»ﬂ/ plot the

point here

horizontal horizontal-— R
) o R
2 40 40
P
point on
the bowl 1 :
S R >k x—=
= R2 S J2 —

Figure 1.8 The angular relations involved in calculating the two spherical projections
commonly used in structural geology: (a) equal angle (stereographic or Wulff)
projection, and (b) equal area (Schmidt) projection. The primitives of both projections
representa vertical plane and thus these plots are perpendicular to a typical stereonet. R
is the desired radius of the projection. The angle ¢ is the vertical angle we wish to plot
(e.g.,a plunge oradip). Circles are at 10° increments; along the horizontal, their spacing
is the same as it would be on a horizontal lower hemisphere projection.

The equal angle projection - also called a stereographic projection or Wulff net - is the
simplest (Fig. 1.8a). We imagine that the viewer is at the top of the upper hemisphere looking
straight down into the bowl of the lower hemisphere. We see where a line with a plunge of ¢
pierces the bowl and draw a straight line between the eye of the viewer and the point on the
bowl. The point is plotted where that line of sight intersects the horizontal plane. The distance,
x, from the center of the net of radius R is given by

x:Rtan(45—§> (1.5)
As you can see from Figure 1.8, this method of projection preserves angles perfectly and thus,
on the horizontal, degrees are equally spaced. The preservation of angles has a downside: areas
are distorted. Thus, for example, a ten by ten degree spherical cap plots as a smaller circle near
the center of the net but is distorted to a larger circle near the edges (Fig. 1.9a). Distortion of
areas was a significant problem when geologists tried to assess the density of points plotted on
the projection, as was necessary back in the days of paper stereonets.

To address the area issue, the equal area, or Schmidt, net was introduced to structural
geology (Fig. 1.8b). This construction produces point distributions that have the same density
on the sphere as on the projection. A line with a plunge of ¢ plots a distance x from the center of
anet of radius R, where xis given by

x:R\/§Sm<45—g) (1.6)

The square root of 2 is a scaling factor to ensure that the original sphere and the projection have
the same radius (Fig. 1.8b). The tradeoff, of course, is that angles are no longer preserved and
conic sections, including great circles and small circles, are no longer true circles but fourth
order quadrics (Fig. 1.9b). Because of the importance of analyzing concentrations of points,
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(a) Equal angle

Figure 1.9 (a) The equal angle or Wulff net; (b) the equal area or Schmidt net. In both
projections, spherical caps (small circles) of 10° radius have been plotted on various
parts of the net to show the effect of the projection on the size and shape of the circle.
Because both are lower hemisphere projections, a small circle that crosses the primitive
plots on the opposite side of the net.

equal area nets have long been the stereonet of choice of the structural geologist. In reality, all
modern stereonet programs contour on the sphere rather than on the projection so assessing
densities is the same on both. Fortunately, the procedure to plot lines and planes is identical on
both types of projection.

The MaTtLag function stCoordLine below calculates Equations 1.5 and 1.6. It is followed by a
commonly used helper function zeroTwoPi whose sole purpose is to make sure that azimuths
are always between 0 and 360° (zero and 2z in radians).

function [xp,yp] = StCoordLine (trd,plg, sttype)
%$StCoordLine computes the coordinates of a line
%$in an equal angle or equal area stereonet of unit radius

USE: [xp,yp] = StCoordLine (trd,plg,sttype)

trd = trend of line

plg = plunge of line

sttype = An integer indicating the type of stereonet. 0 for equal angle
and 1 for equal area

xp and yp are the coordinates of the line in the stereonet plot

NOTE: trend and plunge should be entered in radians

o o O° o° o o° o o° o° o° o° oP°

StCoordLine uses function ZeroTwoPi

oe

Take care of negative plunges
if plg < 0.0
trd = ZeroTwoPi (trd+pi) ;
plg = -plg;
end
% Some constants
pisS4 = pi/4.0;
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s2 = sqrt(2.0);
plgs2 = plg/2.0;

Equal angle stereonet: From Equation 1.5 above
Also see Pollard and Fletcher (2005), eq.2.72
if sttype == 0

o°  oP

Xp = tan(piS4 - plgS2)*sin(trd) ;

yp = tan(piS4 - plgS2) *cos(trd) ;

Equal area stereonet: From Equation 1.6 above
Also see Pollard and Fletcher (2005), eg.2.90
elseif sttype ==

o°  oP

Xp = s2*sin(piS4 - plgS2) *sin(trd) ;
yp = s2*sin(piS4 - plgS2) *cos(trd) ;
end
end

function b = ZeroTwoPi (a)
$ZeroTwoPi constrains azimuth to lie between 0 and 2*pi radians

b = ZeroTwoPi (a) returns azimuth b (from 0 to 2*pi)
for input azimuth a (which may not be between 0 to 2*pi)

o° o° o° o° oP°

NOTE: Azimuths a and b are input/output in radians

b=a;
twopi = 2.0*pi;
if b < 0.0
b = b + twopi;
elseif b >= twopi
b = b - twopi;
end
end

1.5 MAP PROJECTIONS

At first glance, the stereonet looks like our typical image of a globe and it has great circles and
small circles that look, and in fact are, identical to lines of longitude and latitude. The tradeoffs
we have just seen for stereonets - do we want to preserve areas or angles - are exactly those
confronted when we want to make a flat map of a spherical body like the Earth. A full discussion
of map projections and their subtleties is well beyond the scope of this book and there are
excellent free sources of information available (Snyder, 1987). Nonetheless, given the importance
of maps to geologists, and given their similarities to stereonets, they merit a brief mention here.

1.5.1 Map datum and projection

To make amap of the Earth, or some part of it, several considerations must be taken into account.
Of prime importance is the fact that the Earth is not a sphere but an ellipsoid; its radius is 21 km
smaller at the poles than at the Equator. Nor is the Earth a perfect ellipsoid but an irregular one
thatis best defined by the gravitational equipotential surface at sea level known as the geoid. The
geoid is the reference level for elevations, not the ideal ellipsoid, but map coordinates are defined
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(a) Cylindrical (b) Conical

- 4

~___

(c) Planar

Figure 1.10 The three types of developable surfaces and their use in map projections.
Within each category, there exist many different types of projections based on different
mathematical formulae.

relative to an ideal ellipsoid. Because geoid anomalies deviate by no more than 100 m from an
ideal ellipsoid, the difference is very small. As measurements of the shape of the Earth have
improved over time, we have developed ellipsoids that more accurately represent the shape of
the Earth. An ellipsoid model for part of the Earth, or the entire Earth, has to be matched with a
datum, which is how you define horizontal position (latitude and longitude) and vertical eleva-
tion on the ellipsoid model. In the United States, we commonly use the 1980 Geodetic Reference
System ellipsoid (GRS80), North American Datum of 1983 (NADS83) for the horizontal datum, and
the National Geodetic Vertical Datum of 1929. These are being supplanted by the World Geodetic
System 1984 standard (WGS84) with an ellipsoid slightly different than the GRS80 ellipsoid: The
polar radius in the WGS84 system is 0.1 mm larger than that in GRS80!

The second major consideration is how to map the Earth to a flat surface. A developable
surface is one that can be flattened without distortion; there are three that form the basis for
most map projections (Fig. 1.10): a cylinder, a cone, or a plane (the first two, of course, must be
sliced before they can be laid flat). Spherical projections, like the ones described in the last
section, are projections onto a planar surface, sometimes also called azimuthal projections. For
that reason, they can only show, at most, one hemisphere or the other. In addition to these types
of developable surfaces, map projections may be calculated to preserve shape and have the
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Equal Equi- True
Projection Type Conformal area distant  direction  Scale
Globe Sphere yes yes yes yes World
Mercator Cylindrical yes partly Regional and smaller
Miller Cylindrical World
Orthographic Azimuthal partly Hemisphere
Stereographic Azimuthal vyes partly Hemisphere to local
Lambert
azimuthal equal Azimuthal yes Hemisphere to
area regional
Albers equal area  Conic yes Sub-hemisphere to
conic regional
Lambert conformal Conic yes partly Regional to local
conic
Equidistant conic ~ Conic partly Regional

Table 1.2 Common map projections

same scale in every direction locally (conformal), preserve area (equal area), show the correct
distance between a point at the center and any other point (equidistant), or show true directions
locally. Planar maps cannot be both conformal and equal area, nor can they be equal area and
equidistant. We see this in the case of our two structural projections: In the equal angle
Wulff net (Fig. 1.9a), circles are true circles everywhere (conformal) but they get larger with
distance from the center of the projection, even though they are the same area on the sphere
(not equal area). In the Schmidt net (Fig. 1.9b), areas are the same everywhere (equal area), but
true circles result only at the exact center of the net and are distorted everywhere else (not
conformable).

Except for globes, which are inconvenient to carry around and are suitable only for con-
tinental or oceanic scale, all map projections represent a tradeoff on these characteristics.
Therefore the choice of map projection depends on the needs of the mapmaker and user (see
USGS Eastern Region, 2000). Table 1.2 summarizes some common projection types, their
attributes, and their appropriate scale of usage.

1.5.2 The UTM projection

One type of projection merits special notice, particularly because this book focuses on rectan-
gular Cartesian coordinate systems. The Universal Transverse Mercator (UTM) projection yields
amap with rectangular coordinates in distance (meters). Except close to the poles, the Earth is
divided into 60 zones, each 6° of longitude wide. Zone 1 lies between 180° and 174° W longi-
tude, and the zones increase eastward. The x — y coordinate system in each zone is defined by
the central meridian - the longitude halfway between the edges of the zone - and the Equator.
For example, zone 31 is located between 0° and 6° E; its central meridian is 3° E longitude
(Fig. 1.11). For the Northern Hemisphere, the central meridian is assigned a value of 500 000 m
in the x, or eastings, direction, and a point along the Equator is given a value of zero meters in
the y, or northings direction. In our zone 31 example, above, a point lying 2500 km north of the
Equator at 3° E would have an easting of 500 000 m and a northing of 2 500 000 m. For points in
the Southern Hemisphere, the easting value is the same - i.e., 500000 m along the central
meridian of the zone - but the Equator is assigned a northing value of 10 000 000 m (Fig. 1.11b).
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Figure 1.11 Relationship between geographic coordinates and UTM coordinates. The
gray area shows UTM zone 31, located between 0 and 6° E longitude. (a) In the Northern
Hemisphere, the origin defined by the central meridian (in this case, 3°E) and the
Equator is assigned a value of (500000 m, 0 m). (b) In the Southern Hemisphere, the
central meridian still has a value of 500 000 m, but the Equator is assigned a y-value of
10000000 m, a false northing. In both hemispheres east and north are both positive
directions. A zone narrows both northward and southward away from the Equator. The
coordinates are reset for each zone so that, for example, 9° E longitude, the central
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If our point along the central meridian in zone 31 were 2500 km south of the Equator, it would
have UTM coordinates 500 000 m east and 7 500 000 m north.

A couple of things might strike you as odd in this scheme: First, why isn’t the origin of the
coordinate system defined by the western edge of the zone? Why use the central meridian and
assign it a seemingly arbitrary value of 500 000 m? The reason is that the distance between the
lines of longitude that define a zone is not constant but is greatest at the Equator (668 km) and
diminishes towards the poles; at 6° N a zone is about 3.5 km narrower than it is at the Equator.
By using the central meridian and assigning it a large positive value, we ensure that the x, or
easting, value within the zone is always positive. If you were located 250 km east of the central
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meridian at the Equator, you would still be in the zone, but if you were 250 km east of the same
central meridian at, say, 60° N, you would actually be in the next zone to the east!

Second, why is the Equator assigned a value of 10000000 m for points in the Southern
Hemisphere? This assignment enables us to assign positive y values (sometimes called false
northings) to all points in the Southern Hemisphere because the distance from pole to the
Equator is about 10 000 km. In both hemispheres, north and east are always positive. Because
points in both Northern and Southern Hemispheres can have the same northing values, it is
necessary to specify the hemisphere when converting between UTM and another coordinate
system. Depending on the program used, one identifies the hemisphere in different ways. For
example, a point in the Southern Hemisphere in Chile could be recorded as zone -19 or as zone
19S. Using the letters “S” or “N” to identify hemispheres has its pitfalls, however, because an
older more complicated version of the UTM system uses letters to define latitudinal ranges.
Thus, “19S” could mean Chile or it could mean a point between 32° and 40°N latitude, in the
Atlantic Ocean offshore to the eastern United States!

Northings values are always less than 10 000 000 m because the UTM system is only applied
to 84° N latitude and 80° S latitude. In the polar regions, the Universal Polar Stereographic (UPS)
coordinate system is used, instead. The UTM zones are very regular around the globe except for
the region of eastern Norway and the island of Spitsbergen, where they have been broadened to
accommodate the local geography (Snyder, 1987).

The UTM coordinate system will be very useful when we want to calculate strains over a wide
area. We will see the application, in particular, to determining strain rates in a geodetic GPS data
set in Chapter 8. The equations for converting between longitude-latitude and UTM are rela-
tively straightforward but tedious (Snyder, 1987). Fortunately, MatLAB has built-in functions to
do the conversion for us. If you have the MartLag Mapping Toolbox, you can use functions
mfwdtran and minvtran to convert from lat-long to UTM and vice versa. Alternatively, you
can check the Marras Central File Exchange, a website where MatLas users share code. The
Geodetic Toolbox by Michael R. Craymer, which can be downloaded from this site, has func-
tions to do the conversions.



CHAPTER

TWO

Coordinate systems, scalars, and vectors

2.1 COORDINATE SYSTEMS

Virtually everything we do in structural geology explicitly or implicitly involves a coordinate
system. When we plot data on a map each point has a latitude, longitude, and elevation. Strike
and dip of bedding are given in azimuth or quadrant with respect to north, south, east, and west
and with respect to the horizontal surface of the Earth. In the western United States, samples
may be located with respect to township and range. We may not realize it, but more informal
coordinate systems are used as well, particularly in the field. The location of an observation or a
sample may be described as “1.2 km from the northwest corner fence post and 3.5 km from the
peak with an elevation of 3150 m at an elevation of 1687 m.”

A key aspect, but one that is commonly taken for granted, of all of these ways of reporting a
location is that they are interchangeable. The sample that comes from near the fence post and
the peak could just as easily be described by its latitude, longitude, and elevation or by its
township, range, and elevation. Just because we change the way of reporting our coordinates
(i.e., change our coordinate system), it does not mean that the physical location of the point in
space has changed. This seems so simple as to be trivial, but we will see in Chapter 5 that this
ability to change coordinate systems without changing the fundamental nature of what we are
studying is essential to the concept of tensors.

2.1.1 Spherical versus Cartesian coordinate systems

As described in Chapter 1, because the Earth is nearly spherical, it is most convenient for
structural geologists to record their observations in terms of spherical coordinates. Although a
spherical coordinate system is the easiest to use for collecting data in the field, it is not the
simplest for accomplishing a variety of calculations that we need to perform. One gets an inkling
of this from the fact that, in continuum mechanics texts, spherical coordinates are usually

23
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presented and applied towards the back of the book or in an appendix - not exactly front page
material. Far simpler, both conceptually and computationally, are rectangular Cartesian coordi-
nates that are composed of three mutually perpendicular axes. Normally, one thinks of plotting a
point by its distance from the three axes of the Cartesian coordinate system. As we will see below,
afeature can equally well be plotted by the angles that a vector, connecting it to the origin, makes
with the axes. If the portion of the Earth we are studying is sufficiently small so that our
horizontal reference surface is essentially perpendicular to the radius of the Earth, then we can
solve many different problems in structural geology, simply and easily, by expressing them in
terms of Cartesian, rather than spherical, coordinates. Before we can do this, however, there is an
additional aspect of coordinate systems that we must examine.

2.1.2 Right-handed and left-handed coordinate systems

The way that the axes of coordinate systems are labeled is not arbitrary. In the case of the Earth,
it matters whether we consider a point that is below sea level to be positive or negative. “That’s
crazy,” you say, everybody knows that elevations above sea level are positive! If that were the
case, then why do structural geologists commonly measure positive angles downward from the
horizontal? Why is it that mineralogists use an upper hemisphere stereographic projection
whereas structural geologists use the lower hemisphere? The point is that it does not matter
which is chosen so long as one is clear and consistent. Some simple conventions in the labeling
of coordinate axes insure that consistency.

Coordinate systems can be of two types. Right-handed coordinates are those in which, if you
hold your hand with the thumb pointed from the origin in the positive direction of the first axis,
your fingers will curl from the positive direction of the second axis towards the positive
direction of the third axis (Fig. 2.1a). A left-handed coordinate system would function the
same except that the left hand is used. To make the coordinate system left handed, simply
reverse the positions of the X, and X3 axes as in Figure 2.1b. All this may seem academic and not
very useful, but we will see in Chapter 3 that there are certain types of operations known as
transformations which can change the sense of a coordinate system from right to left handed or
vice versa. By convention, the preferred coordinate system is a right-handed one and that is the
one we will use.

A +X3 \ +Xo

+X2 +X3

Figure 2.1 (a) Right- and (b) left-handed
rectangular Cartesian coordinate
systems.

+X4 +X4

(a) Right handed (b) Left handed
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+X3 = Up
+X1 = North
+X2 = North
Figure 2.2 Cartesian coordinates
commonly used in (a) structural geology
+X, = East and (b) geophysics and topography.

+X3 = Down +X1 = East

(a) (b)

2.1.3 Cartesian coordinate systems in geology

Now we can return to the topic at the end of Section 2.1.1, that is, what Cartesian coordinate
systems are appropriate to geology? Sticking with the right-handed convention, there are two
obvious choices, the primary difference being whether one regards up or down as positive
(Fig. 2.2).

In general, the north-east-down (NED) convention is more common in structural geology
where positive angles are measured downwards from the horizontal. In geophysics, as well as
in geographic maps, the east-north-up convention is more customary; after all, elevation above
sealevel is commonly treated as positive. Note that these are not the only possible right-handed
coordinate systems. For example, west-south-up is also a perfectly good right-handed system,
although this and all the other possible combinations are seldom used. In the rest of this book,
unless otherwise stated, we will use the north-east-down convention. We will see how to convert
between spherical and Cartesian coordinates in Section 2.3.7.

2.2 SCALARS

Scalars are the simplest physical component we will deal with. They are nothing more than the
value - or magnitude - of some property at any particular point in space. Scalars are independ-
ent of coordinate system and furthermore they have the same value regardless of the coordi-
nate system. As we will see in the following sections, this is not true for vector components.
Common examples of scalar quantities are temperature, mass, density, volume, or energy.
There is no direction associated with these properties, they simply exist in space and would
have the same numerical value, regardless of whether one uses spherical or Cartesian coordi-
nates or even Farmer Joe’s northwest corner fence post.

2.3 VECTORS

Vectors form the basis for virtually all structural calculations so it is important to develop a
very clear, intuitive feel for them. Vectors are physical quantities that have a magnitude and a
direction; they can be defined only with respect to a given coordinate system, which is why we
developed the idea of coordinate systems early in this chapter. Displacement, velocity, temper-
ature gradient, and force are all common examples of vectors. For example, it does not make
any sense to think about your velocity unless you know in what direction you are going.
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Likewise, displacement is meaningless unless you know where the displaced object was and
where it ended up.

2.3.1 Vectors vs. axes

All geological orientations have a direction in space with respect to a given coordinate system
so all are vectors. However, for many calculations, it makes no difference on which end of the
line you put the arrow. Thus, we make an informal distinction between vectors, which are
lines with a direction (i.e., an arrow at one end of the line) and axes, which are lines with no
directional significance. For example, think about the lineation that is made by the inter-
section between cleavage and bedding. That line, or axis, certainly has a specific orientation
in space and is described with respect to a coordinate system, but there is no difference
between one end of the line and the other. The hinge - or axis - of a cylindrical fold is another
example of a line that has no directional significance. In both of these examples, we could
be very systematic as to how we collected or calculated the data such that the arrow of the
vector always pointed in a consistent direction, but it is seldom worth the trouble. Some
common geological examples of vectors that cannot be treated as axes are the slip on a fault
(i.e., displacement of piercing points), paleocurrent indicators (flute cast, etc.), and paleo-
magnetic poles.

When structural geologists use a lower hemisphere stereographic projection exclusively, we
are automatically treating all lines as axes. To plot lines on the lower hemisphere, we arbitrarily
assume that all lines point downwards. Generally, this is not an issue, but consider the problem
of a series of complex rotations involving paleocurrent directions. At some point during this
process, the current direction may point into the air (i.e., the upper hemisphere). If we force that
line to point into the lower hemisphere, we have just reversed the direction in which the current
flowed! Commonly, poles to bedding are treated as axes as, for example, when we make a
n-diagram. This, however, is not strictly correct. There are really two bedding poles, the vector
that points in the direction that strata become younger, and the vector that points towards
older rocks.

Despite this difference between vectors and axes, there are few problems treating an axis as
a vector for the purposes of the calculations that we will describe below, with a few exceptions
(see Section 2.4.1). The potential problems are far greater treating vectors as axes than axes as
vectors.

2.3.2 Basic vector notation

Clearly, with two different types of quantities around (scalars and vectors), we need a short-
hand way to distinguish between them in equations. We will write scalars, and scalar compo-
nents of vectors, in italics. Vectors in these notes are shown in lower case with bold face print
(which is sometimes known as symbolic or Gibbs notation):

V=v=[v; v W] (2.1)

The above notation is common in linear algebra books but can be confusing because it seems to
equate a vector with three scalars. Here is what it really means: Vectors in three-dimensional
space can be described by three scalar components, indicated above as v;,V,, and v3. In a
Cartesian coordinate system, they give the magnitude of the vector in the direction of, or
projected onto each of the three axes (Fig. 2.3). We will continue to use that notation; when
the reader encounters it, they should interpret the equal sign as “has scalar components in the
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(a) (b)

Figure 2.3 Components of a vector in Cartesian coordinates (a) in two dimensions and
(b) in three dimensions.

current coordinate system of ...” Because it is tedious to write out the three components all the
time a shorthand notation, known as indicial notation, is commonly used:

vi, where i=1, 2, 3 (2.2)

The power of this sort of notation will be explained more fully in Chapter 4.

2.3.3 Magnitude of a vector

The magnitude of a vector is, graphically, just the length of the arrow. It is a scalar quantity and is,
therefore, generally marked in regular weight, italicized type. If there is any ambiguity, then vertical
bars will be used to definitively indicate the magnitude. In two dimensions (Fig. 2.3a), itis quite easy
to see that the magnitude of vector v can be calculated from the Pythagorean Theorem (the square
of the hypotenuse is equal to the sum of the squares of the other two sides). This is easily
generalized to three dimensions (Fig. 2.3b), yielding the equation for the magnitude of a vector:

v=lvl= (v +13 +13)"" (2.3)

2.3.4 Unit vector and direction cosines

A unit vector is just a vector with a magnitude of one and is indicated by a hat: v. Any vector can
be converted into a unit vector parallel to itself by dividing the vector (and its components) by
its own magnitude:

N v
vV=—=

(2.4)
vl

Vi W vg]
vl v v

If you carefully inspect Figure 2.3, you will see that the cosine of the angle that a vector makes
with a particular axis is just equal to the component of the vector along that axis divided by the
magnitude of the vector. Thus we get
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% V;

cos o = —~ cosf = 22

V] V]

Substituting Equation 2.5 into Equation 2.4 we see that a unit vector can be expressed in terms

of the cosines of the angles that it makes with the axes. These scalars are known as direction
cosines:

‘/v
Cosy:ﬁ (2.5)

V=[cosx cosB cosy] (2.6)

2.3.5 Direction cosines and structural geology

The concept of a unit vector is particularly important in structural geology where we so often
deal with orientations, but not sizes, of planes and lines. Any orientation can be expressed as a
unit vector, whose components are the direction cosines. For example, in a north-east-down
coordinate system, a line that has a 30° plunge due east (090°, 30°) would have the following
components (Fig. 2.4):

cos & = c0s 90° = 0.0 (x angle with respect to north)

cosf = cos30° = \/§/2 (B = angle with respect to east)
cosy = cos(90° — 30°) = 0.5 (y = angle with respect to down)

or simply

[cosa cosB cosy]=[0.0 +3/2 0.5]
For the third direction cosine, recall that the angle is measured with respect to the vertical,
whereas plunge is given with respect to the horizontal. We will use direction cosines extensively

to describe the orientation of lines in Cartesian coordinates, and then see how to convert from
spherical to Cartesian coordinates in the sections that follow.

/N

cosa=0
cos ﬁ N
Figure 2.4 Orientation of a line (unit ﬁ = 30° E
vector) lying in a vertical, east-west
p!aneiln gray.and its representation by cos y A
direction cosines. Og[b
S
y = 600 ]
v .
\4
vD
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X3 A

Figure 2.5 Three mutually perpendicular or
“orthonormal” base vectors.

X4

2.3.6 Base or reference vectors

Occasionally, it is convenient to represent the axes of a Cartesian coordinate system by three
mutually perpendicular unit vectors known as base vectors (Fig. 2.5). Any vector can be
expressed in terms of the base vectors for the coordinate systems by multiplying the compo-
nents of the vector by the corresponding base vector:

V= vli+v2j+v3f< 2.7)

This equation is a more accurate way of describing the vector than Equation 2.1 because it
clearly says that vector v is the sum of three unit vectors, each scaled by their respective scalar
components.

2.3.7 Geologic features as vectors

Virtually all structural features can be reduced to two simple geometric objects: lines and
planes. We commonly express more complex features, such as a deformed surface, as a series
of measurements of lines or planes. For example, a fold is represented as a group of planar
measurements (strikes and dips). The practice of dividing things into structural domains is an
example of breaking something complex down into a series of simpler objects.

It takes no great challenge to see that lines can be treated as vectors. Likewise, because there
is only one line that is perpendicular to a plane, poles to planes can also be treated as vectors.
The question now is: How do we convert from orientations measured in spherical coordinates
to Cartesian coordinates?

The relations between spherical and Cartesian coordinates are shown in Figure 2.6. Notice
that the three angles «,f8, and y are measured along great circles between the point (which
represents the vector) and the positive direction of the axis of the Cartesian coordinate system.
Clearly, the angle y is just equal to 90° minus the plunge of the line. Therefore (Fig. 2.7),

cosy = cos(90 — plunge) = sin(plunge) (2.8a)

The relations between the trend and plunge and the other two angles are slightly more difficult
to calculate. Recall that we are dealing just with orientations and therefore the vector of
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Figure 2.6 Lower hemisphere
stereo-graphic projection showing
the relation between spherical
coordinates and the north (N), east (E),
down (D) Cartesian coordinates.

cosa (-) cosa (-)
cos 8 (-) cos B (+)

cosy (+) cosy (+)

Figure 2.7 Perspective diagram

showing the relations between the

trend and plunge angles and the

direction cosines of the vector in

the Cartesian coordinate system. Dark

gray plane is the vertical plane in which

the plunge is measured. cos ¥

interest, v, is a unit vector. Therefore, from simple trigonometry the horizontal line that
corresponds to the trend azimuth is equal to the cosine of the plunge. From here, it is just a
matter of solving for the horizontal triangles in Figure 2.7:

cos & = cos(trend) cos(plunge) (2.8b)
cos B = cos(90 — trend) cos(plunge) = sin(trend) cos(plunge) (2.8¢)
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Poles to planes

Axis Direction cosines Lines (using right-hand rule)
North Ccos & cos(trend) cos(plunge) sin(strike) sin(dip)
East cos sin(trend) cos(plunge) — cos(strike) sin(dip)
Down cosy sin(plunge) cos(dip)

Table 2.1 Conversion from spherical to Cartesian coordinates

SE Quadrant SW Quadrant
NE Quadrant NW Quadrant
| | | |

0 30 60 90 120 150 180 210 240 270 300 330 360

Figure 2.8 Graph of the cosine (vertical axis) for angles ranging from 0° to 360°
(horizontal axis). For every positive (or negative) cosine, there are two possible
azimuth values.

These relations, along with those for poles to planes, are summarized in Table 2.1.

Figures 2.6 and 2.8 show how the signs of the direction cosines vary with the quadrant.
Although it is not easy to see an orientation expressed in direction cosines and immediately
have an intuitive feel how it is oriented in space, one can quickly tell what quadrant the line dips
in by the signs of the components of the vector. For example, the vector, [-0.4619, -0.7112,
0.5299], represents a line that plunges into the southwest quadrant (237°, 32°) because both
cos « and cos B are negative.

Understanding how the signs work is very important for another reason. Because it is
difficult to get an intuitive feel for orientations in direction cosine form, after we do our
calculations we will want to convert from Cartesian back to spherical coordinates. This can
be tricky because, for each direction cosine, there will be two possible angles (due to the
azimuthal range of 0-360°, Fig. 2.8). For example, if cos & = —0.5736, then o = 125° or
o = 235°. In order to tell which of the two is correct, one must look at the value of cos B; if it
isnegative then ox = 235°, if positive then & = 125°. When you use a calculator or a computer to
calculate the inverse cosine, it will only give you one of the two possible angles (generally the
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smaller of the two). You must determine what the other one is by knowing the cyclicity of the
cosine functions (Fig. 2.8).
The MatLAB® function SphToCart, below, carries out the conversions shown in Table 2.1.

function [cn,ce,cd] = SphToCart (trd,plg, k)
$SphToCart converts from spherical to cartesian coordinates

[cn,ce,cd] = SphToCart (trd,plg,k) returns the north (cn),
east (ce), and down (cd) direction cosines of a line.

k is an integer to tell whether the trend and plunge of a line
0) or strike and dip of a plane in right hand rule

(k = 1) are being sent in the trd and plg slots. In this

last case, the direction cosines of the pole to the plane

are returned

o0 o° o° o° A° o° o° o° o° o° o°
~
1}

NOTE: Angles should be entered in radians

%$If line (see Table 2.1)
if k == 0
cd = sin(plg);
ce = cos(plg) * sin(trd);

cn cos (plg) * cos(trd);

$Else pole to plane (see Table 2.1)
elseif k == 1
cd = cos(plg);
ce = -sin(plg) * cos(trd);
cn = sin(plg) * sin(trd);
end
end

Of course, once we have calculated an answer in Cartesian coordinates, we commonly want
the answer converted back to more familiar spherical coordinates. The following function
CartToSph accomplishes this task. Because any cosine value can correspond to two possible
angles between 0 and 360°, this routine uses code that checks the sign of the direction cosines
to determine which angle is correct.

function [trd,plg] = CartToSph(cn,ce,cd)

$CartToSph Converts from cartesian to spherical coordinates

[trd,plg] = CartToSph(cn,ce,cd) returns the trend (trd)
and plunge (plg) of a line for input north (cn), east (ce),
and down (cd) direction cosines

NOTE: Trend and plunge are returned in radians

o o o° o° o° o° o° o°

CartToSph uses function ZeroTwoPi

$Plunge (see Table2.1)
plg = asin(cd);
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%$Trend
%$If north direction cosine is zero, trend is east or west
%$Choose which one by the sign of the east direction cosine
if cn == 0.0

if ce < 0.0

trd 3.0/2.0*%*pi; % trend is west

else
trd = pi/2.0; % trend is east
end
%$Else use Table 2.1
else
trd = atan(ce/cn) ;
if cn < 0.0
$Add pi
trd = trd+pi;
end
%$Make sure trd is between 0 and 2*pi
trd = ZeroTwoPi (trd) ;
end
end

2.3.8 Simple vector operations
To multiply a scalar times a vector, just multiply each component of the vector times the scalar:

XV=[XxvVi XVo Xv3] (2.9)

The most obvious application of scalar multiplication in structural geology is when you want to

reverse the direction of the vector. For example, to change the vector from upper to lower hemi-

sphere (or vice versa) just multiply the vector (i.e., its components) by -1. The resulting vector will

be parallel to the original and will have the same length, but will point in the opposite direction.
To add two vectors together, you sum their components:

u+v=v4+u=[u+v, U+Wwn Uuz+v] (2.10)

Graphically, vector addition obeys the parallelogram law (Fig. 2.9a) whereby the resulting
vector can be constructed by placing the two vectors to be added end-to-end.

Notice that the order in which you add the two vectors makes no difference. Vector sub-
traction is the same as adding the negative of one vector to the positive of the other (Fig. 2.9b).
We will see an application of vector addition in Section 2.4.1.

(b)

Figure 2.9 (a) Vector addition and (b) vector subtraction using the parallelogram rule.
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2.3.9 Dot product and cross product

Vector algebra is remarkably simple, in part by virtue of the ease with which one can visualize
various operations. There are two operations that are unique to vectors and that are of great
importance in structural geology. If one understands these two, one has mastered the concept
of vectors. They are the dot product and the cross product.

The dot product is also called the scalar product because this operation produces a scalar
quantity. When we calculate the dot product of two vectors the result is the magnitude of the first
vector times the magnitude of the second vector times the cosine of the angle between the two:

u-v=v-u=u|v|cos0 = u;v; + upvs + Usvs (2.11)

The physical meaning of the dot product is the length of v times the length of u as projected
onto v (that is, the length of u in the direction of v). Note that the dot product is zero whenu and
v are perpendicular (because in that case the length of u projected onto v is zero). The dot
product of a vector with itself is just equal to the length of the vector, squared:

V-v= V=V + Vi +V2 (2.12)

Equation 2.11 can be rearranged to solve for the angle between two vectors:
vy + UV + U3Vs

2.13
ul v @13

cos 6 =

This last equation is particularly useful in structural geology. As stated previously, all orienta-
tions are treated as unit vectors. Thus, when we want to find the angle between any two lines,
the product of the two magnitudes, [u| |v|, in Equations 2.11 and 2.13 is equal to one. Upon
rearranging Equation 2.13, this provides a simple and extremely useful equation for calculating
the angle between two lines:

0 = cos™!(cos a1 cos &y + cos B, cos B, + COSy; COSY») (2.14)

The result of the cross product of two vectors is another vector. For that reason, you will often
see the cross product called the vector product. The cross product is conceptually a little more
difficult than the dot product, but is equally useful in structural geology. It is best illustrated
with a diagram (Fig. 2.10), which relates to the Equations 2.15 to 2.17, below.

The cross product’s primary use is when you want to calculate the orientation of a vector
that is perpendicular to two other vectors. The resulting perpendicular vector is parallel to the
unit vector and has a magnitude equal to the product of the magnitude of each vector times the
sine of the angle between them. If u and v are both unit vectors, then the length of the resulting
vector will be equal to the sine of the angle 6. The new vector obeys a right-hand rule with
respect to the other two (Fig. 2.10):

Vxu=-uxvV=|v||ulsin@/ (2.15)

and
vxu=[(Vous —wv3up) (vzu; —viug) (Viup —Wouy)] (2.16)

which can also be written in terms of the base vectors of the coordinate system as

vxu= (VU3 — Vi) i— (3 —vlug)j'+ (it — vouy) k (2.17)

2.4 EXAMPLES OF STRUCTURE PROBLEMS USING VECTOR OPERATIONS
2.4.1 Example 1: Finding the mean of a group of vectors

A common problem in structural geology and geophysics is to determine the vector that statisti-
cally represents a group of individual vectors. For example, we may want to find the average of a
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Figure 2.10 Diagram illustrating the meaning of the cross
product, for the case of two unit vectors. The hand indicates the
4 right-hand rule convention; for v x u, the fingers curl from v
towards u and the thumb points in the direction of the resulting
vector, which is parallel to the unit vector 7. Note that
Vv x U= —(u x V). The cross product can be calculated for any
vectors, not just unit vectors.

&

group of paleomagnetic poles or the vector that best represents poles to bedding. This is a very
easy operation using vector addition; it is much more difficult to do any other way. There are two
things to be determined: (1) the orientation of a unit vector that is parallel to the average, or mean,
of all of the individual vectors; and (2) an expression of how “concentrated” the vectors are.

The solution to this problem uses vector addition and is shown graphically in Figure 2.11.
Numerically, the steps are given below; for a computer program to solve this problem, see
function calcMv at the end of this section. The solution is illustrated with a real problem:
Determine the mean vector of the following four lines, given as trend and plunge: 026, 31; 054,
22;037,39;and 012, 47.

1. Convert all of your orientation data into direction cosines.

Trend and plunge cos« cos cosy

026, 31 0.7704 0.3758 0.5150
054, 22 0.5450 0.7501 0.3746
037,39 0.6207 0.4677 0.6293
012,47 0.6671 0.1418 0.7314

2. Sum all of the individual components of the vectors, as in Equation 2.11. This will give you
the resultant vector, r. If all the individual vectors have the same orientation, then the
resultant vector will have a length that is equal to the number of vectors summed (in this
example, N = 4); otherwise, it will always be less.

> cosa = 2.6032 (Z C050(>2 =6.7767
> cosp =1.7354 (Zcosﬁ)Z =3.0116

> cosy = 2.2503 (Zcosy)z = 5.0639
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Length of the resultant vector,
r = (6.7767 + 3.0116 + 5.0639)"/% = 3.8539

3. Normalize the resultant vector by dividing each one of its components by the number of
vectors summed together. The length of the normalized vector will always be less than or
equal to 1. The closer it is to 1, the better the concentration.

Note that ¥ = 0.9635 indicates a reasonably strong preferred orientation.

resultant length  3.8539

N 7 - 0.9635

4. Determine a unit vector, m, that is parallel to the resultant vector, r. To do this, calculate the
magnitude of the resultant vector (or the normalized resultant vector) and then divide the
components by the magnitude (Egs. 2.3 and 2.4). These components will now be in direction
cosines.

. 12.6032 1.7354 2.2503

= =[0.6755 0.4503 0.5840]
3.8539 3.8539 3.8539

5. Convert this final unit vector back to spherical coordinates.
Trend and plunge of mean vector = 033.7°, 35.7°

This example points out one of the pitfalls of treating axes as vectors (Section 2.3.1).
Suppose that we have two lines that plunge very gently into opposite quadrants (Fig. 2.12).
If we deal with these lines as vectors, the sum of the two (v +u) is a very short, vertical
vector that bisects the obtuse angle between the two (Fig. 2.12). This may be exactly what
we want.

Commonly, however, the lines have no directional significance and are better thought of as
axes. If this were the case then the result of averaging the two together would look very strange,
indeed. After all, there is really very little difference in the orientation of the two lines. One
possible way around this problem is to convert one of the two vectors to an upper hemisphere
vector by multiplying it by -1 (—uin Fig. 2.12). Then the vector, v — u, is much more like what we
probably had in mind (Fig. 2.12)! We will see a more elegant solution to the problem of how to
determine the statistical average of a group of axes in Chapter 5.

The MaTLaB script CalcMv, below, takes a group of nlines, whose trends and plunges are held
in the arrays T (i), P (1), and calculates the mean vector. Additionally, the program calculates

(@) (b) A §
w
X resultant vector, r (IRl = 3.778)
y
Z rIN<1.0
‘ ©

Figure 2.11 Example showing the use of vector addition to determine the mean vector.
(a) The four original unit vectors, each of length = 1; (b) addition of the vectors using the
parallelogram law to determine the resultant vector; (c) normalized resultant vector (i.e.,
resultant vector divided by the number of unit vectors) compared to a unit vector.
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—Uu

Figure 2.12 Perspective view of a lower hemisphere stereographic projection, showing
the addition of vectors, u and v. lllustrates case in which addition of vectors can provide
a misleading answer if the lines being analyzed are axes rather than vectors.

the Fisher statistics for the mean vector, which is the standard way to report uncertainties in
paleomagnetic analyses. The variables, d99 and d95, are the cones of uncertainty at the 99 and
95% levels; that is, we are 99 and 95% certain that the mean vector lies within a cone of that
apical angle. To solve Example 1 using CaleMv just type in MATLAB:

T=[26,54,37,12] *pi/180; %Lines trend
P=[31,22,39,47]*pi/180; %$Lines plunge
[trd,plg,Rave,conc,d99,d95] = CalcMV(T,P); %Calculate Mean Vector

function [trd,plg,Rave,conc,d99,d95] = CalcMV(T,P)
%$CalcMV calculates the mean vector for a given series of lines

[trd,plg,conc,d99,d95] = CalcMV(T,P) calculates the trend (trd)
and plunge (plg) of the mean vector, its normalized length, and
Fisher statistics (concentration factor (conc), 99 (d99) and

95 (d95) % uncertainty cones); for a series of lines whose trends

o° o° o° o° o° o°

and plunges are stored in the vectors T and P

NOTE: Input/Output trends and plunges, as well as uncertainty
cones are in radians

o° o° o° o° o

CalcMV uses functions SphToCart and CartToSph

$Number of lines
nlines = max(size(T)) ;

$Initialize the 3 direction cosines which contain the sums of the
%$individual vectors (i.e. the coordinates of the resultant vector)
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CNsum = 0.0;
CEsum = 0.0;
CDsum = 0.0;

$Now add up all the individual vectors
for i=1:nlines
[cn,ce,cd] = SphToCart(T(i),P(i),0);
CNsum = CNsum + cn;
CEsum = CEsum + ce;
CDsum = CDsum + cd;
end
$R 1s the length of the resultant vector and Rave is the length of
$the resultant vector normalized by the number of lines
R = sqgrt (CNsum*CNsum + CEsum*CEsum + CDsum*CDsum) ;
Rave = R/nlines;
$If Rave is lower than 0.1, the mean vector is insignificant, return error
if Rave < 0.1
error ('Mean vector is insignificant');
$Else
else
$Divide the resultant vector by its length to get the average
sunit vector
CNsum = CNsum/R;
CEsum = CEsum/R;
CDsum = CDsum/R;
$Use the following 'if' statement if you want to convert the
$mean vector to the lower hemisphere
if CDsum < 0.0

CNsum = -CNsum;
CEsum = -CEsum;
CDsum = -CDsum;

end
%$Convert the mean vector from direction cosines to trend and plunge
[trd,plg] =CartToSph (CNsum, CEsum, CDsum) ;
%$If there are enough measurements calculate the Fisher Statistics
%$For more information on these statistics see Fisher et al. (1987)
if R < nlines
if nlines < 16
afact = 1.0-(1.0/nlines) ;
conc = (nlines/(nlines-R))*afact”2;

else
conc = (nlines-1.0)/(nlines-R);
end
end
if Rave >= 0.65 && Rave < 1.0
afact = 1.0/0.01;
bfact = 1.0/ (nlines-1.0);
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d99 = acos(1.0-((nlines-R)/R)* (afact™bfact-1.0));
afact = 1.0/0.05;
d95 = acos(1.0-((nlines-R)/R)* (afact™bfact-1.0));
end
end
end

2.4.2 Example 2: Calculating the rake of a line in a plane

Calculating the angle between any two lines is a common problem. The rake, or pitch, is an angle
measured between a line of interest and the strike of the plane that contains the line. This
example provides us with a perfectillustration of the use of the dot product (function Angles at
the end of Section 2.4.3 includes code for this operation). Suppose we have a plane with a strike
of 213° and a lineation within the plane has a trend and plunge of 278, 42; what is the rake of the
lineation? The solution is easier than in the previous example:

1. Convert the data to direction cosines. Recall that the strike is just a line with zero plunge:

Trend and plunge cos« cos cosy
213,0 -0.8387 -0.5446 0.0
278,42 0.1.34 -0.7359 0.6691

2. Then, just multiply the components together and calculate the inverse cosine as in
Equation 2.14:

0 = cos ™! ((—0.8387 x 0.1034) + (—0.5446 x —0.7359) + (0 x 0.6691))
= cos~1(0.3140) = 71.7°

Note that the rake of 71.7° in this example is with respect to the given strike azimuth of 213°. If
we had been given the other strike azimuth, 033°, then the pitch angle calculated would be the
complement of the above, that is, 108.3°. It may also seem strange that, to solve this problem,
we did not even need to know the dip or the dip direction of the plane. That would have been
redundant information because the orientation of the plane is constrained by the two lines
within it. In the next example, we will calculate the true dip of the plane.

2.4.3 Example 3: Determining a true dip from two apparent dips

Determining a line that is perpendicular to two other lines is one of the most common calcu-
lations in structural geology. For example, in analyzing a fault, the pole to the movement plane
is perpendicular to the slip vector and the pole to the fault plane. In a little more familiar
example, the pole to a plane is perpendicular to all of the lines within that plane. Thus, two
apparent dip lines in a plane must be perpendicular to the pole of the plane. The previous
example is just such a case; from the apparent dip and the strike line, both of which were given,
we can calculate the pole to the plane and therefore the dip and dip direction. To accomplish
this, we will use the cross product (function Angles at the end of this section implements this
operation):
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o o° o° o o

. Convert the data to direction cosines. This was already done for us in the previous
example.

2. Calculate the cross product from Equation 2.16. This will give us a vector that is parallel to

the pole, p, but it will not be a unit vector because the lines are not perpendicular:

p1 = (—0.7359 % 0.0) — (0.6691 * —0.5446) = 0.3644

p> = (0.6691 « —0.8387) — (0.1034 % 0.0) = —0.5612

ps = (0.1034 x —0.5446) — (—0.7359 + —0.8387) = —0.6736
p=1[03644, —0.5612, —0.6736]

Ip| = 0.9494

. Asyou can see, the magnitude of p is not equal to 1, so it must be converted to a unit vector
before we can determine the orientation using Equation 2.4. The components of the unit
pole vector are

- _ 03644 -0.5612 -0.6736
0.9494° 0.9494° 0.9494

=[0.3839, -0.5911, —-0.7094]

Before going any farther, notice that the third component of p, the down direction cosine, is
negative. Thus, the cross product we have calculated points upwards into the upper hemi-
sphere (because down is positive in our north-east-down coordinate system). To calculate
the lower hemisphere pole, multiply by -1:

—p=[-0.3839, 0.5911, 0.7094]

. Now we can calculate the orientation of the pole to the plane in spherical coordinates:

trend and plunge of pole = 123°,45.2°

The true dip of the plane is equal to 90 - 45.2 = 44.8°, and the dip direction is equal to 123 + 180 =
303°. Obviously, the dip direction is just 90° from the strike azimuth that we were given
initially.

The function angles below calculates either the angle between two lines if anso = '1' is
passed toit, or the strike and dip of a plane from two apparent dips in the plane if anso = 'a'.In
the first case, the dot product is used and in the second, the cross product. If, instead, the user
passes the strike and dip of two planes in the place of trdi, plgl and trd2, plg2, then the
function will calculate either the intersection of two planes (ans0 = 'i ') or the angle between
the two planes (ans0 ='p'). To solve Example 2 using Angles just type in MATLAB:

[ansl,ans2] =Angles (213*pi/180,0,278*pi/180,42*pi/180,'1");
Example 3 can be solved by entering:
[ansl,ans2] =Angles (213*pi/180,0,278*pi/180,42*pi/180,'a') ;
function [ansl,ans2] = Angles(trdl,plgl,trd2,plg2,ans0)
$Angles calculates the angles between two lines, between two planes,

$the line which is the intersection of two planes, or the plane
containing two apparent dips

[ansl,ans2] = Angles(trdl,plgl,trd2,plg2,ans0) operates on
two lines or planes with trend/plunge or strike/dip equal to
trdl/plgl and trd2/plg2
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ans0 is a character that tells the function what to calculate:

o o° o° o°

ans0 = 'a' -> the orientation of a plane given two apparent dips
ans0 = 'l' -> the angle between two lines

In the above two cases, the user sends the trend and plunge of two

o o° o° o° o

lines
ans0 = 'i' -> the intersection of two planes
ans0 = 'p' -> the angle between two planes

In the above two cases the user sends the strike and dip of two

o o° o° o° o°

planes following the right-hand rule

NOTE: Input/Output angles are in radians

o° o° o° o

Angles uses functions SphToCart, CartToSph and Pole

%If planes have been entered

if ans0 == 'i' || ans0 == 'p'
k = 1;
%Else if lines have been entered
elseif ans0 == 'a' || ans0 == '1'
k = 0;
end

%$Calculate the direction cosines of the lines or poles to planes
[cnl,cel,cdl] =SphToCart (trdl,plgl, k) ;
[cn2,ce2,cd2] =SphToCart (trd2,plg2,k) ;

$If angle between 2 lines or between the poles to 2 planes

if ans0 == '1' || ans0 == 'p'
% Use dot product = Sum of the products of the direction cosines
ansl = acos(cnl*cn2 + cel*ce2 + cdl*cd2);
ans2 = pi - ansl;

end

$If intersection of two planes or pole to a plane containing two
%$apparent dips
if ans0 == 'a' || ans0 == 'i'

$If the 2 planes or apparent dips are parallel, return an error

if trdl == trd2 && plgl == plg2

error ('lines or planes are parallel');
%Else use cross product
else

cn

cel*cd2 - cdl*ce2;
ce = cdl*cn2 - cnl*cd2;
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cd = cnl*ce2 - cel*cn2;
%$Make sure the vector points down into the lower hemisphere
if cd < 0.0

cn = -cn;
ce = -ce;
cd = -cd;

end

%$Convert vector to unit vector by dividing it by its length
r = sgrt (cn*cn+ce*ce+cd*cd) ;

% Calculate line of intersection or pole to plane

[trd,plg] =CartToSph(cn/r,ce/r,cd/r) ;

$If intersection of two planes

if ans0 == 'i'
ansl = trd;
ans2 = plg;

$Else if plane containing two dips, calculate plane from its pole
elseif ans0 == 'a'
[ansl,ans2]= Pole(trd,plg,0);
end
end
end
end

Function angles calls function Pole, which calculates a plane, given its pole (k = 0) or a pole
given the corresponding plane (k = 1).

function [trdl,plgl] = Pole(trd,plg, k)

$Pole returns the pole to a plane or the plane which correspond to a pole
k is an integer that tells the program what to calculate.

If k = 0, [trdl,plgl] = Pole(trd,plg,k) returns the strike
(trdl) and dip (plgl) of a plane, given the trend (trd)
and plunge (plg) of its pole.

If k = 1, [trdl,plgl] = Pole(trd,plg,k) returns the trend
(trdl) and plunge (plgl) of a pole, given the strike (trd)
and dip (plg) of its plane.

NOTE: Input/Output angles are in radians. Input/Output strike
and dip are in right-hand rule

o o o° o° A° o o A o o° A° o° o° o° o°

Pole uses functions ZeroTwoPi, SphToCart and CartToSph

¥Some constants
east = pi/2.0;

$Calculate plane given its pole
if k ==
if plg >= 0.0
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plgl = east - plg;
dipaz = trd - pi;
else
plgl = east + plg;
dipaz = trd;
end
%$Calculate trdl and make sure it is between 0 and 2*pi
trdl = ZeroTwoPi (dipaz - east) ;

%$Else calculate pole given its plane

elseif k ==
[cn,ce,cd] = SphToCart (trd,plg, k) ;
[trdl,plgl] = CartToSph(cn,ce,cd) ;
end
end

2.5 EXERCISES

The following are a series of simple problems to be completed using vector algebra, exclusively,
although you should report your results in spherical coordinates. The easiest way to do them is
using the MarLas functions provided above, although we recommend that you first solve the
problems by hand. All can equally well be solved via a spreadsheet program.

1.

A plane with a strike of 127° contains a line with a trend and plunge of 005°, 31°. What is the
rake (pitch) of the line? What is the dip of the plane? Solve this problem first by hand and
then by using the function angles.

. Two planes have the following orientations, given using the right-hand-rule format (RHR):

237, 25 and 056, 49. Calculate the orientation of the line of intersection between the two
planes. Report your results in spherical coordinates. Solve this problem first by hand and
then by using the function angles.

A quarry has two vertical walls, one trending 002 and the other trending 135. The apparent
dips of bedding on the faces are 40 N and 30 SErespectively. Calculate the strike and true dip
of the bedding. Solve this problem first by hand and then by using the function angles.

. Two limbs of a chevron fold (A and B) have orientations (strike and dip) as follows: Limb A =

120, 40SW and limb B = 070, 60SE. Determine: (1) the trend and plunge of the hinge line of
the fold; (2) the pitch of the hinge line in limb A; and (3) the pitch of the hinge line in limb
B. Solve this problem using the function Angles.

Calculate the mean vector for the following group of lines. Report the magnitude and
orientation (in spherical coordinates) of the mean vector. Solve this problem using either a
spreadsheet or the function calcmv.

113.0,73.0 081.0,77.0
076.0, 78.0 080.0, 58.0
175.0,71.0 058.0, 62.0
229.0, 62.0 040.0, 57.0
075.0, 62.0 042.0, 71.0
111.0,77.0 229.0,23.0
078.0, 85.0 110.0,72.0
316.0, 53.0 278.0,61.0
025.0, 78.0 264.0, 78.0

021.0, 57.0



CHAPTER

THREE

Transformations of coordinate axes and vectors

3.1 WHAT ARE TRANSFORMATIONS AND WHY ARE THEY IMPORTANT?

The word “transformation” looks imposing and mathematical but it is, in fact, quite a simple
thing that we do commonly without thinking about it. Whenever we change coordinate systems,
we do a coordinate transformation. Suppose we submit some samples of fossils and their
locations in latitude, longitude, and elevation to a paleontologist for identification. The pale-
ontologist writes back with the instructions that the locations in eastings and northings (i.e.,
UTM coordinates), not latitude and longitude, are required. Thus, a coordinate transformation
is needed. This doesn’t make us very happy because the change requires a long calculation that
would be tedious to do by hand! In this chapter, we are interested only in transformations that
can be precisely described mathematically, but one should realize that coordinate transforma-
tions are a very common thing. Basically, coordinate transformations are just another way of
looking at the same thing.! In the above example, the specific numbers used to describe the
location in the two coordinate systems are different but the physical location where the
samples were collected has not changed. The change in numbers simply represents a change
in the coordinate system not a change in the position or fundamental magnitude of the thing
being described.

The concept of a transformation is very important and one with incredible power for a wide
variety of structural applications. It is commonly necessary to look at a problem from two
different points of view. For example, when studying continental drift (Fig. 3.1a), at least two
different coordinate systems are commonly required, one in present-day geographic space and
one attached to the continent at some time in the past when it was in a different place and
orientation on the globe. Or, take the case of analysis of a fault (Fig. 3.1b). To understand what is

! Later in the book, we will use the word “transformation” in a different context to refer to changes
brought about by deformation that takes place between an initial and a final state.

44
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(b)

slickensid

Dy

Figure 3.1 Examples of coordinate transformations in geology. (a) Continental drift; the
continent has a coordinate system marked on it that corresponds to some time in the
past. (b) A fault plane with two different coordinate systems.

going on from the perspective of the fault we need one coordinate system attached to the fault
(e.g., with one axis perpendicular to the fault plane and another parallel to the slickensides on
the fault). However, we also want to relate this to our more familiar geographic coordinate
system; a transformation allows us to do that.

There is, however, an even more elemental reason for the importance of transformations. As
intimated above, real, physical properties do not change when they are transformed from one
coordinate system to another. As we will see in Chapter 5, this statement will be turned around
to form the definition of an entire class of entities known as tensors. For right now, though, it is
sufficient to be aware that the same thing can be described from many different viewpoints.
Because the nature of something does not change when it is transformed, if we know its
coordinates in one system we should be able to calculate its coordinates in any other system.
This logic assumes that we know how the two coordinate systems are related to each other and
that is our starting point.

3.2 TRANSFORMATION OF AXES

Before we can talk about transforming objects, we must consider the transformation that
describes a change from one coordinate system to another. We will address only the change
from one rectangular Cartesian coordinate system to another, which means the transformation
is from one set of mutually perpendicular axes to another. As we will see in Section 3.2.3, this
orthogonality makes our life very much easier.

3.2.1 Two-dimensional change in axes

The simplest type of transformation that you can think of is a two-dimensional shift or trans-
lation of axes without any rotation. Basically, we just establish the origin at a different place; it
is simple to write equations that relate one set of axes to another. In the case of Figure 3.2,
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Figure 3.2 Translation of axes. The new axes
are primed.

as ar
(a) (b)

Figure 3.3 Rotation of axes in two dimensions. New axes are primed. (a) Shows the four
angles, 64, 64>, 05, and 60,,, that define the coordinate transformation. (b) Same
transformation, but expressed in terms of base vectors and their direction cosines,
a, diz, a1, and daz;.

X;=X;—3and X, =X, — 2 (new in terms of old)

and
X;=X;+3and X, =X,+2  (old in terms of new)

We will come back to this example when we get to deformation (Chapter 7). Although this
provides a useful starting point, it really doesn’t provide any new information and therefore is
not of great interest in our study of vectors. You can probably visualize that a vector will make
the same angles with the axes in both the new and the old coordinates and, furthermore, the
components of the vector will have the same magnitude in both coordinate systems. We have
not really learned anything, yet.

More interesting is the case of rotation of a coordinate system. From Figure 3.3a you can see
that, in two dimensions, there are four angles that define the transformation. Rather than give
all of these a different letter, they are distinguished by double subscripts. As you can see by
close inspection of the figure, the choice of subscripts is not arbitrary. The convention is that
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the first subscript refers to the new (i.e., primed) axis, whereas the second subscript refers
to the old (unprimed) axis. Thus, 6,; indicates the angle between the new, X, axis and the old,
X, axis.

Although there are, clearly, four angles, one can intuitively see that they are not all inde-
pendent of each other. In fact, in two dimensions, we need only specify one of the four and the
rest can be calculated from the first one. For example, 611 = 90° — 015, 051 = 90° + 055, etc. If
we represent the axes by their base vectors, then you can see that the projection of the new axis
onto the old axis is equal to the cosine of the angle between the two axes (Fig. 3.3b). For that
reason, the relations between the two coordinate systems are commonly given in terms of the
direction cosines between them: a;; = cos 611, dj» = cos 01, d»; = cos 0»1, and a», = cos O»».
By a simple application of the Pythagorean Theorem (see Fig. 2.4) and recalling that the length
of a unit vector is 1 (i.e., ﬁ'\ = 1 in Fig. 3.3b), you can see that

ai, + a2, =1and a3, + a3, =1 (3.1)

Furthermore, recall that the dot product of two perpendicular vectors is equal to zero (because
the cosine of 90° is zero). Therefore, the dot product of the base vectors in the new system
(Fig. 3.3) gives us a third constraint:

a0y, + appazy, =0 (3.2)

We have three equations, 3.1 and 3.2, and four unknowns, so only one of the direction cosines is
independent. If you understand this two-dimensional case, extension to three dimensions is
obvious.

3.2.2 Three-dimensional change in axes: The transformation matrix

The relations in three dimensions logically follow from those in two dimensions. There are
three old axes and three new ones; hence, there will be nine angles that completely define the
coordinate transformation (Fig. 3.4a). As before, we use double subscripts to identify the angles

X3
X's
Old axes
I
023 X2 X4 Xo X3
(7] X’
1| ann  app a3
022 %
Xy > X2 a1 an  axn
9 (0]
21 Z X'z | a3 axn  asn
X4
X4

(@) (b)

Figure 3.4 (a) A general, three-dimensional coordinate transformation. The new axes
are primed; the old axes are in black. Only three of the nine possible angles are shown.
(b) Graphic device for remembering how the subscripts of the direction cosines relate to
the new and the old axes.
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and their direction cosines, with the first subscript referring to the new axis and the second to
the old axis (Fig. 3.4b). As before, not all nine of these angles are independent. Just visually, you
can see that, given 6;, and 6,3, the third angle, 0,1, is fixed. Intuitively, you may be able to see
that, to completely constrain the transformation, only one other angle between any of the other
two new axes and any of the old axes is needed.

The array of direction cosines in Figure 3.4b is known as the transformation matrix. It is
commonly written:

an iz di3
aj= | axn a» a3 (3.3)
az dzp; dsz

The way we have written Equation 3.3 uses some notation that we have not seen much of up to
this point. We will see much more of matrices and indicial notation in the next chapter.

3.2.3 The orthogonality relations

Earlier, we began developing some general equations, 3.1 and 3.2, that described how the angles
(or really their direction cosines) relate to one another. The development in three dimensions is
an extension of the previous derivation. In three dimensions, the length of any vector is the
square root of the sum of the squares of its three components (Eq. 2.3). If that vector is a unit
vector, then the sum of the squares of the direction cosines will be equal to one. We showed in
Section 3.2.1 that the components of the transformation matrix are nothing more than the
direction cosines of the base vectors of the new coordinate system in the old coordinate system.
Therefore, we can write the following three equations, which give the lengths (squared) of the
three base vectors of the new coordinate system:

aj, +ai, + ajs = 1
a3, +az, +az; =1 3.4)

2 2 2
as +axpt+ap=1

Likewise, as stated above, the dot product of two perpendicular vectors is zero. Because each of
the three base vectors of the new coordinate system is perpendicular to the others, we can write
three additional equations:

a21a31 + Az2a32 + dx3a33 =0
az ay + asaip + azzdi;z =0 (3.5)
an a1 + iz + apzdxz =0

Equations 3.4 and 3.5 collectively form what are known as the orthogonality relations. Now, in
three dimensions, we have six equations and nine unknowns (i.e., the nine direction cosines).
This proves quantitatively what we already knew intuitively: There are only three independent
direction cosines in the transformation matrix.

3.3 TRANSFORMATION OF VECTORS

Now that we have put the transformation of axes to rest, we’ll look at something more practical:
the transformation of vectors. As before, we’ll start in two dimensions, where it is easier to get a
feeling for the geometry. The two-dimensional transformation equations are derived by pro-
jecting the old components of the vector, v; and v,, onto the new axes, X and X,. In Figure 3.5b,
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(a) (b)

Figure 3.5 Transformation of vector v in two dimensions. (a) The components of the
vector in the old coordinate system are v; and v;; in the new coordinate system, the
coordinates are v; and vj. (b) Shows the geometry for deriving the v{ component of
transformation equation (3.5) from triangles OAB and BCD.

you can see that v| will be equal to the sum of line segments OA and BC, which can be calculated
from the trigonometry of triangles OAB and BCD (Fig. 3.5b). We get

V| =V cos 011 + V> cos 01

or, in terms of the direction cosines of the transformation matrix (and including without proof
the equation for v5),
Vé =Vidi1 + Vadai2 (3.6)
Vo, = Vid21 + Vo dyp
Note that the above equations give the new components of the vector in terms of the old. By
projecting the new components, v; and v, onto the old axes, X; and X, you can make the
same geometric arguments and derive the reverse transformation, which is the old in terms of
the new:
A%t :véall +véa21 (3.7)
Vo = Vidyp + Vo dp)
There are some subtle, but important, changes between Equations 3.6 and 3.7. First, in the latter
the primed components are on the right-hand side. Less obvious, but no less important, the
positions of a;, and a,; have been switched or transposed. One of the nice things about vector
algebra is that it is extremely symmetrical and logical!

Figure 3.6 shows a three-dimensional vector transformation. As before, notice that only the
coordinates change, not the fundamental length or orientation of the vector, itself. Thus in
Figure 3.6, v| # v, v» # V5, and v3 # V5 but the vector is just as long and points the same way in
both coordinate systems.

The geometry in three dimensions is really the same as in two, only harder to visualize.
Think about decomposing the vector into its three components parallel to the old axes, and
then transforming those components along with the old axes into the new coordinate system.
Thought of this way, the transformation of any vector is analogous to transforming the base
vectors of the axes themselves, except that the components are not unit vectors. Three equa-
tions describe the three-dimensional vector transformation:
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Figure 3.6 Vector v in two different coordinate systems. Note that the length and
orientation of v on the page has not changed; only the axes have changed.

Vi =anvi + aipV: + aizvs
Vo = o1 V1 + Ao Vo + A23V3 (3.8)
V5 = a1 Vi + azp Ve + asVs

and the reverse transformation (old in terms of new):

V) = (111Vi + 6121Vé + [131V§

Vo = A1pV) + GV + az vy (3.9)
J J J

V3 = a13V] + A3V, + d33V3

Note that we have reversed the order of a and v in these equations from the earlier
Equations 3.6 and 3.7, but that is perfectly okay because all terms are scalars. If you examine
carefully Equations 3.8 and 3.9, it looks as though we have “flipped” the transformation matrix
so that the rows are now columns and vice versa. Mathematically, “flipping” a matrix is known
as taking the transpose, as we will see in a later chapter.

You can transform the coordinates of a point in space using the same equations that you
would for vectors (3.8 and 3.9). That’s because any point can be thought of as being connected
to the origin of the coordinate system by a vector known as a position vector. The components of
the vector are the same as the coordinates of the point. We will use this concept below in
Section 3.4.1.

3.4 EXAMPLES OF TRANSFORMATIONS IN STRUCTURAL GEOLOGY

Generally, we give little thought to the fact that some of our most commonplace structural
problems involve transformations of the type described in the previous section. That is because
we are taught to do them with laborious manual methods, like orthographic projections, or on a
stereonet. In this section, we will see how to solve two such problems using the methods
developed in this chapter.
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Figure 3.7 Graphical construction for drawing a down-plunge projection in a region
with topography. The fold in this example plunges 20° east. The projection of six control
points from the map onto the projection is shown. Modified from Ragan (2009, p. 461).

3.4.1 Down-plunge projection

To get the best sense of the “true” geometry of a cylindrical fold, geologists usually construct a
profile view of the fold, a cross section of the fold perpendicular to the fold axis. When folds are
cylindrical, all the points along all of their surfaces can be projected parallel to the fold axis onto
this profile plane. This task is complicated by two facts: First, the surface of the Earth is irregular
with hills and valleys and, second, folds commonly plunge oblique to the ground surface. The
graphical method taught in virtually all structural geology lab manuals employs orthographic
projection (Fig. 3.7). One chooses a horizontal folding line that is perpendicular to the fold axis
and another thatis horizontal and in the same plane as the fold axis. Then by swinging arcs with a
compass and carefully drawing parallel straight lines you can construct the profile.

The construction is made more tedious by the fact that a separate folding line is needed for
each elevation of the control points used. There is ample opportunity for error in the con-
struction of the parallel lines as well as interpolation between widely separated control points.

There is, however, a different way of making a down-plunge projection that applies the
methods we have seen earlier in this chapter. Specifically, we determine the geographic coor-
dinates for a series of points along each bedding surface; that is, we digitize the bedding
surfaces. Then we transform those points into the fold coordinate system (Fig. 3.8). All of this
can be done on a computer much more rapidly than is possible by hand. Because we are dealing
with geographic coordinates, our old, right-handed coordinate system will be X; = east,
X, = north, and X3 = up (or elevation); our new, right-handed system will be as shown in
Figure 3.8, with X} coinciding with the fold axis.

Now, we need to determine the transformation matrix in terms of the orientation (trend and
plunge) of the fold axis. The angular relations are given in Figure 3.9. Some of the angles are
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Figure 3.8 The down-plunge projection, showing the relation between its graphical
construction and the right-hand coordinate system we will use below. The true profile
plane is the plane that contains the X and X}, axes. The X}, axis corresponds to a folding

line in the orthographic projection technique shown in Figure 3.7.
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Figure 3.9 (a) Equal area lower hemisphere projection showing the angular relations
between the two sets of axes in the down-plunge projection problem. ENU is the old
coordinate system and the axes defined by the fold axis (X3) are the new coordinate
system. Several of the angles that define the coordinate transformation (6;;, 0,,, etc.)
are shown. (b) The same coordinate transformation viewed in a vertical plane that
contains the trend and plunge of the fold axis.
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obvious, as in the case of all of the new axes with respect to the old X3 axis. For example, from
Figure 3.9b it is clear that the angle between the new X} and the old X3 axes is equal to the fold
axis plunge plus 90°. The angle between the X} and X3 axes is equal to the fold axis plunge, itself,
and the angle between Xj, and X3 is just 90°. Thus, in terms of the direction cosines we can write

a3 = cos(plunge)
a3 =€0s(90) =0
as3 = cos(90 + plunge) = — sin(plunge)

Notice that, because all of these are with respect to one old axis, they are not all independent. If
we can determine one more angle, we could use the orthogonality relations to calculate the rest.
In fact, it will be easier to determine all of the angles directly in this example. The angles that X,
makes with the other two old axes are in a horizontal plane (Fig. 3.8) and therefore are just a
function of the trend of the fold axis. Angle (X,X;) = 360° — trend, and (X,X;) = trend — 270°.
This will give us two more direction cosines:

a,; = cos(360 — trend) = cos(trend)
ay = cos(trend — 270) = — sin(trend)

The final direction cosines can be determined if we recall that they are nothing more than the
direction cosines of the fold axis and its perpendicular (X;) in an east-north-up coordinate
system. Thus, we can use the relations in Table 2.1 and modify them for the change in
coordinate system. The direction cosines with respect to north and east will not change because
cos(-plunge) = cos(plunge). The cosine with respect to up will be equal to the -sin (plunge). Thus,

as = sin(trend) cos(plunge)

as, = cos(trend) cos(plunge)

and the remaining direction cosines for the X} axis can be calculated by projecting its negative
into the lower hemisphere and then multiplying by -1:

ap; = —sin(trend + 180) cos(90 — plunge) = sin(trend) sin(plunge)
ay» = — cos(trend + 180) cos(90 — plunge) = cos(trend) sin(plunge)

Thus, we can combine all of the above equations and write out the transformation in shorthand
form, as in Equation 3.3:

cos(trend) — sin(trend)
sin(trend) cos(plunge) cos(trend) cos(plunge) - sin(plunge)

sin(trend) sin(plunge) cos(trend) sin(plunge) cos(plunge)
ajj = 0 (3.10)

Now, to accomplish the down-plunge projection, substitute the direction cosines from
Equation 3.10 into Equations 3.8 and coordinates in the new coordinate system can be calcu-
lated. In the actual projection, the v, component is ignored because everything will be projected
onto the X; X, plane. After that, it’s just a matter of connecting the dots! The following MaTLAB®
function bownPlunge does the transformations for the down-plunge projection of a bed but it
does not plot or connect the dots!

function dpbedseg = DownPlunge (bedseg, trd,plg)

$DownPlunge constructs the down plunge projection of a bed

[dpbedseg] = DownPlunge (bedseg, trd,plg) constructs the down plunge
projection of a bed from the X1 (East), X2 (North),

o° o° oP
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and X3 (Up) coordinates of points on the bed (bedseg) and the
trend (trd) and plunge (plg) of the fold axis

The array bedseg is a two-dimensional array of size npoints x 3
which holds npoints on the digitized bed, each point defined by
3 coordinates: X1 = East, X2 = North, X3 = Up

o o o° o° o° o° o° o°

NOTE: Trend and plunge of fold axis should be entered in radians

$Number of points in bed
nvtex = size(bedseg,1);

%$Allocate some arrays
a=zeros (3,3) ;
dpbedseg = zeros (size (bedseqg)) ;

$Calculate the transformation matrix a(i,j). The convention is that
$the first index refers to the new axis and the second to the old axis.
$The new coordinate system is with X3’ parallel to the fold axis, X1'
$perpendicular to the fold axis and in the same vertical plane, and
$X2' perpendicular to the fold axis and parallel to the horizontal. See
$equation 3.10

a(l,1) = sin(trd)*sin(plg);

a(l,2) = cos(trd)*sin(plg);

( )

a(l,3) = cos(plg);

a(2,1) = cos(trd);

a(2,2) = -sin(trd) ;

a(2,3) = 0.0;

a(3,1) = sin(trd) *cos(plg) ;
a(3,2) = cos(trd) *cos (plg) ;
a(3,3) = -sin(plg);

$The east, north, up coordinates of each point to be rotated already define
$the coordinates of vectors. Thus we don't need to convert them to
%direction cosines (and don't want to either because they are not unit vectors)
$The following nested do-loops perform the coordinate transformation on the
$bed. The details of this algorithm are described in Chapter 4
for nv = l:nvtex
for 1 = 1:3
dpbedseg (nv,i) = 0.0;
for j = 1:3
dpbedseg (nv,1) = a(i,]j)*bedseg(nv,j) + dpbedseg(nv,i);
end
end
end
end

For example, say you want to construct the down-plunge projection of the contact between
the white and gray units in Figure 3.7. Digitize the contact, and in a text editor make a file with
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the east, north, up coordinates of points on the contact, one point per line (coordinate entries
can be separated by commas or spaces). Save this file as bedseg.txt. Now type in MATLAB:

load bedseg.txt; %Load bed

dpbedseg = DownPlunge (bedseg, 90*pi/180,20*pi/180) ;% Down plunge projection
plot (dpbedseg(:,2) ,dpbedseg(:,1), 'k-'); %Plot bed

axis equal; $%$Make plot axes equal

You will get a chance to try this on a real structure in the exercises at the end of the chapter!

3.4.2 Rotation of orientation data

There are few operations more basic to structural geology than rotations. Unfolding lineations,
paleomagnetic fold tests, and converting data measured on a thin section to its original geo-
graphic orientation all require rotations. The stereonet is a convenient graphic device for
accomplishing rotations about a horizontal axis, but rotations about an inclined axis are
more difficult. That is because points (lines) being rotated trace out small circles centered on
the rotation axis. A stereonet only shows small circles centered on the horizontal. It can be
done, but it is tedious.

A rotation is nothing more than a transformation of coordinate system and vectors. When we
unfold linear elements, we are transforming from a geographic coordinate system to one pinned to
bedding (or layering). Therefore, we should be able to use the mathematics developed in this
chapter to determine the equations necessary to accomplish a general rotation about any axis in
space. As before, we need to determine the transformation matrix that will allow us to transform
the vectors representing our orientation measurements. The rotation axis is commonly specified
by its trend and plunge, and the magnitude of rotation is given as an angle that is positive if the
rotation is clockwise about the given axis (the old right-hand rule, again). The tricky part here is that
the rotation axis does not generally coincide with the axes of either the new or the old coordinate
system (unlike the previous example where the fold axis did define one of the new axes).

Ultimately we want to calculate the direction cosines for the transformation from the old axes
to their new equivalents, rotated about the given rotation axis. Here we give the derivation for just
one of the direction cosines, a,,; you can derive the rest yourself! In Figure 3.10, notice that,
during the rotation, the X, axis tracks along a small circle centered on the rotation axis. The size
of the circle, or in three dimensions the half-apical angle of the cone, is equal to the angle between
the rotation axis and X5, 8. The angle between the new axis, X/, and the rotation axis will also be 3.
Although, the points track along a small circle, the angle that we want to calculate is that between
the new and old axes, 6, which is measured along a great circle (Fig. 3.10).

The simplest way to solve this problem is to use the law of cosines for spherical triangles.
Notice that w is the angle included between the two equal sides of the S-B-60,, triangle
(Fig. 3.10). Thus the appropriate formula to use is

cosc =cosacosb +sinasinbcos C
where ¢ = 65, a= b = 8, and C = w. Substituting and rearranging, we get

ay» = €0S B, = cos B cos B + sin B sin  cos w
= cos’B + (1 — cos?B) cos w
= cos w + cos?B(1 — cos w) (3.11a)

By the same reasoning the direction cosines for X; —X/ and X3—Xj} are
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aj; = cos w + cos’a(1 — cos w) 3.11b)

az3 = cosw + cos’y(1 — cos w)

We now have three equations and three independent unknowns. Therefore the remaining
direction cosines can be calculated from the orthogonality relations or you can go through
the somewhat more involved geometric derivation. They are given below without proof:

ayp, = —cosysinw + cos & cos B(1 — cos w)
a3 = cos Bsinw + cos x cos y(1 — cos w)
ap1 = Cosysinw + cos fcos x(1 — cos w)
dr3 = —cos & sinw + cos B cos y(1 — cos w)
as; = —cosBsinw + cosy cos x(1 — cos w)
asp; = Cos & sinw + cosy cos B(1 — cos w)

(3.11¢0)

These equations give the direction cosines of the transformation matrix in terms of the
direction cosines of the rotation axis and the magnitude of the rotation. All that is needed to
accomplish a general rotation is to convert the trend and plunge of the rotation axis into
direction cosines, and then use the transformation matrix in Equations 3.11 in the vector
transformation Equations 3.8. Here is a MarLas function, Rotate, to do a rotation about an
arbitrary axis:

function [rtrd,rplg] = Rotate(raz,rdip,rot,trd,plg, anso)
$Rotate rotates a line by performing a coordinate transformation on

o

vectors. The algorithm was originally written by Randall A. Marrett

USE: [rtrd,rplg] = Rotate(raz,rdip,rot,trd,plg,ans0)

o° o° o o
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raz

rot
trd
plg
ansO0

o o° o° o°

o o° o° o° o

o°  oe

rdip

(anso0

trend of rotation axis
= plunge of rotation axis
magnitude of rotation

trend of the vector to be rotated

plunge of the vector to be rotated

= A character indicating whether the line to be rotated is an axis

= 'a') or a vector (ans0 = 'v

NOTE: All angles are in radians

%Allocate some arrays

a = zeros(3,3); %$Transformation matrix
pole = zeros(1l,3); %$Direction cosines of rotation axis
plotr = zeros(l,3); %Direction cosines of rotated vector

temp = zeros(1,3);

")

Rotate uses functions SphToCart and CartToSph

$Direction cosines of unrotated vector

%$Convert rotation axis to direction cosines.

%is X1 =
[pole (1)

o

North, X2 = East, X3 = Down

pole(2) pole(3)] = SphToCart (raz,rdip, 0)

% Calculate the transformation matrix

x = 1.0 - cos(rot);

sinRot =

%Convert
[temp (1)

%$The following nested loops perform the coordinate transformation

for i =

1

sin(rot); %Just reduces the number of calculations

cos (rot) ;

cosRot + pole(l)*pole(l) *x;
-pole(3) *sinRot + pole(l)*pole
pole(2) *sinRot + pole(1l) *pole (
pole(3) *sinRot + pole(2) *pole (
cosRot + pole(2) *pole(2) *x;
-pole(1l) *sinRot + pole(2) *pole
-pole(2) *sinRot + pole(3)*pole
pole(1l) *sinRot + pole(3) *pole (
cosRot + pole(3)*pole(3) *x;

trend and plunge of vector to be rotated
temp (2) temp(3)] = SphToCart (trd,plg,0);

:3

plotr(i) = 0.0;

for j

end
end

$Convert to lower hemisphere projection if data are axes

= 1:3

(2
3)
1)

(3
(1
2)

) *x;
*XI-

*X,'

) *x;
) *x;

*X,‘

plotr(i) = a(i,j)*temp(j) + plotr(i);

into direction cosines

Note that the convention here
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if plotr(3) < 0.0 && ansO0 == 'a'
plotr(1l) = -plotr(1l);
plotr(2) = -plotr(2);
plotr(3) = -plotr(3);

end

$Convert from direction cosines back to trend and plunge
[rtrd, rplg] =CartToSph (plotr (1) ,plotr(2),plotr(3));
end

3.4.3 Graphical aside: Plotting great and small circles as a pole rotation

The transformation matrix we derived in the previous problem provides us with a simple and
elegant way to draw great and small circles on any sort of spherical projection. The basic
problem is, how to come up with a series of equally spaced points in the projection (lines in
three dimensions) that one can connect with line segments to form the great or small circle. To
solve this problem, we consider the pole to the great circle, or the axis of the conic section that
defines the small circle, to be the rotation axis. Any vector perpendicular to the pole to the plane
will, when rotated around the pole, trace out a plane that will intersect the projection sphere as
a great circle. Likewise any vector that makes an angle of less than 90° will trace out a cone,
which intersects the projection sphere as a small circle.

Thus, to make a program to draw great or small circles, you must first calculate the direction
cosines of the pole to the plane or the center (axis) of the small circle. Then, pick a vector that
lies somewhere on the great or small circle. If you are plotting a great circle, it is most
convenient to choose the point where the circle intersects the primitive (i.e., the edge) of the
projection. One of the main reasons for using a right-hand-rule format for specifying strike
azimuths is that that vector will automatically trace out a lower hemisphere great circle when
rotated 180° clockwise about the pole (a positive rotation). For small circles, you will probably
want to choose the vector that has the minimum plunge (i.e., the vector with the same trend as
the small circle axis and a plunge equal to the plunge of the axis minus the half apical angle of
the small circle), unless the small circle intersects the edge of the stereographic projection, in
which case the intersection is where you want to start.

From there, itis just a matter of rotating the vector a fixed increment and then drawing a line
segment between the new and the old positions of the vector as projected on the net. This
procedure is repeated until the total number of rotation increments equals 180° for a great
circle or 360° for a small circle. On most computer screens, the resolution is such that 20
rotations in 9° increments (or something similar) will produce a reasonably smooth great circle.
Smaller increments are time consuming and may actually produce a rougher great circle. The
following MatLaB functions, GreatCircle and SmallCircle, use rotations to calculate the
traces of great and small circles in equal area and equal angle projections:

function path = GreatCircle(strike,dip, sttype)
$GreatCircle computes the great circle path of a plane in an equal angle

o

or equal area stereonet of unit radius

USE: path = GreatCircle(strike,dip, sttype)

o° o° o° o o

strike = strike of plane
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dip = dip of plane
sttype = type of stereonet. 0 for equal angle and 1 for equal area
path = vector with x and y coordinates of points in great circle path

o o° o° o°

NOTE: strike and dip should be entered in radians.

o° o° oP°

GreatCircle uses functions StCoordLine, Pole and Rotate

%$Compute the pole to the plane. This will be the axis of rotation to make
$the great circle
[trda,plgal = Pole(strike,dip,1);

$Now pick a line at the intersection of the great circle with the primitive
%$0of the stereonet

trd = strike;

plg = 0.0;

%$To make the great circle, rotate the line 180 degrees in increments
%0of 1 degree
rot=(0:1:180) *pi/180;
path = zeros(size(rot,2),2);
for i = 1l:size(rot,2)
%$Avoid joining ends of path
if rot(i) == pi
rot (i) = rot(i)*0.9999;
end
$Rotate line
[rtrd, rplg] = Rotate(trda,plga,rot(i),trd,plg,'a');
%$Calculate stereonet coordinates of rotated line and add to great
%$circle path
[path(i, 1) ,path(i,2)] = StCoordLine (rtrd,rplg, sttype) ;
end
end

function [pathl,path2,npl,np2] = SmallCircle(trda,plga,coneAngle, sttype)
%$SmallCircle computes the paths of a small circle defined by its axis and

%$cone angle, for an equal angle or equal area stereonet of unit radius

USE: [pathl,path2,npl,np2] = SmallCircle(trda,plga,coneAngle, sttype)

o o° o° o°

trda = trend of axis

plga = plunge of axis

coneAngle = cone angle

sttype = type of stereonet. 0 for equal angle and 1 for equal area
pathl and path2 are vectors with the x and y coordinates of the points

o o° o° o° o°

in the small circle paths
npl and np2 are the number of points in pathl and path2,
respectively

o° o° oV
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NOTE: All angles should be in radians

o° o° oP°

SmallCircle uses functions ZeroTwoPi, StCoordLine and Rotate

$Find where to start the small circle
if (plga - coneAngle) >= 0.0
trd = trda;
plg = plga - coneAngle;
else
if plga == pi/2.0
plga = plga * 0.9999;
end
angle = acos(cos (coneAngle) /cos (plga)) ;
trd = ZeroTwoPi (trda+angle) ;
plg = 0.0;
end

$To make the small circle, rotate the starting line 360 degrees in

$increments of 1 degree

rot=(0:1:360) *pi/180;

pathl = zeros(size(rot,2),2);

path2 = zeros(size(rot,2),2);

npl = 0; np2 = 0;

for i = 1l:size(rot,?2)
%$Rotate line: Notice that here the line is considered as a vector
[rtrd, rplg] = Rotate(trda,plga,rot(i),trd,plg, 'v');

Add to the right path

If plunge of rotated line is positive add to first path

if rplg >= 0.0

o
T
o

o

npl = npl + 1;
%$Calculate stereonet coordinates and add to path
[pathl (npl,1) ,pathl(npl,2)] = StCoordLine (rtrd,rplg,sttype) ;
%$If plunge of rotated line is negative add to second path
else
np2 = np2 + 1;
%Calculate stereonet coordinates and add to path
[path2 (np2,1) ,path2(np2,2)] = StCoordLine (rtrd,rplg, sttype) ;
end
end
end

Normally, stereonets are presented with the primitive equal to the horizontal (i.e., looking
straight down). However, it is often convenient to construct a stereonet in another orientation.
For example, one may want to plot data in the plane of a cross section (a view direction that is
horizontal and perpendicular to the trend of the cross section), or in the down-plunge view of a
cylindrical fold (a view direction parallel to the fold axis). The MaTLAB function GeogrTovView
below enables one to calculate a stereonet looking in any direction, by transforming any pointin
the stereonet from NED coordinates to view direction coordinates.



3.4 Examples of transformations in structural geology

function [rtrd,rplg] = GeogrToView (trd,plg, trdv,plgv)
%$GeogrToView transforms a line from NED to View Direction
%$coordinates

o\°

USE: [rtrd,rplg] = Geogr To View(trd,plg,trdv,plgv)

trd = trend of line
plg = plunge of line

o o° o° o° o

trdv = trend of view direction

plgv = plunge of view direction

rtrd and rplg are the new trend and plunge of the line in the view
direction.

o o° o° o° o°

NOTE: Input/Output angles are in radians

o°  oe

GeogrToView uses functions ZeroTwoPi, SphToCart and CartToSph

%¥Some constants

east = pi/2.0;

% Make transformation matrix between NED and View Direction
a = zeros(3,3);

[a(3,1),a(3,2),a(3,3)] = SphToCart (trdv,plgv,0);

templ = trdv + east;
temp2 = 0.0;
[a(2,1),a(2,2),a(2,3)]
templ = trdv;

SphToCart (templ, temp2,0) ;

temp2 = plgv - east;
la(1,1),a(1,2),a(1,3)]

SphToCart (templ, temp2,0) ;
% Direction cosines of line
dirCos = zeros(1l,3);
[dirCos (1) ,dirCos(2) ,dirCos(3)] = SphToCart (trd,plg,0);
% Transform line
nDirCos = zeros(1l,3);
for i=1:3
nDirCos (i) = a(i,1)*dirCos (1) + a(i,2)*dirCos(2)+ a(i,3)*dirCos(3);

end

% Compute line from new direction cosines
[rtrd, rplg] = CartToSph(nDirCos (1) ,nDirCos(2),nDirCos(3)) ;
% Take care of negative plunges
if rplg < 0.0
rtrd = ZeroTwoPi (rtrd+pi) ;
rplg = -rplg;
end
end
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Now we put all of the previous routines together in a function, Stereonet, that plots an
equal area or equal angle stereonet in any view direction you want. This code is very short and
efficient because it calls several of the previous functions in this chapter and Chapters 1 and 2.

function [] = Stereonet (trdv,plgv, intrad, sttype)
$Stereonet plots an equal angle or equal area stereonet of unit radius
%$in any view direction

USE: Stereonet (trdv,plgv,intrad, stttype)

trdv = trend of view direction

plgv = plunge of view direction

intrad = interval in radians between great or small circles

sttype = An integer indicating the type of stereonet. 0 for equal angle,

N o° o o° o o° o° o°

and 1 for equal area

NOTE: All angles should be entered in radians

Example: To plot an equal area stereonet at 10 deg intervals in a

o o° o° o° o°

default view direction type:

Stereonet (0,90*pi/180,10*pi/180,1) ;

To plot the same stereonet but with a view direction of say: 235/42,
type:

Stereonet (235*pi/180,42*pi/180,10*pi/180,1) ;

o A% o o° o° o° o° o° o°

Stereonet uses functions Pole, GeogrToView, SmallCircle and GreatCircle

o°

Some constants
east = pi/2.0;
west = 3.0*east;

% Plot stereonet reference circle

r = 1.0; % radius of stereonet

TH = (0:1:360)*pi/180; % polar angle, range 2 pi, 1 degree increment
[X,Y] = pol2cart(TH,r); % cartesian coordinates of reference circle
plot(X,Y,'k'); % plot reference circle

axis ([-1 1 -1 1]1); % size of stereonet

o

axis equal; axis off; % equal axes, no axes
hold on; % hold plot

% Number of small circles
nCircles = pi/(intrad*2.0);
% Small circles

% Start at the North

trd = 0.0;

plg = 0.0;
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If view direction is not the default (trd=0,plg=90), transform line to
view direction

if trdv ~= 0.0 || plgv ~= east

[trd,plg] = GeogrToView (trd,plg, trdv,plgv) ;

o o

end

% Plot small circles

for i = 1:nCircles
coneAngle = i*intrad;

[pathl,path2,npl,np2] = SmallCircle(trd,plg,cone Angle, sttype) ;
plot (pathl(1:npl,1),pathl(1:npl,2),'b');
if np2 > 0

plot (path2 (1:np2,1) ,path2(1:np2,2),'b');
end
end
% Great circles
for i = 0:nCircles*2
%$Western half
if i <= nCircles
% Pole of great circle
trd = west;
plg = i*intrad;
%$Eastern half
else
% Pole of great circle
trd = east;
plg = (i-nCircles)*intrad;

% If pole is vertical, shift it a little bit
if plg == east

plg = plg * 0.9999;
end
% If view direction is not the default (trd=0,plg=90), transform line to
% view direction

if trdv ~= 0.0 || plgv ~= east

[trd,plg] = GeogrToView (trd,plg, trdv,plgv) ;

end

% Compute plane from pole

[strike,dip] = Pole(trd,plg,0);

% Plot great circle

path = GreatCircle(strike,dip, sttype) ;

plot (path(:,1) ,path(:,2),'b");
end
hold off; %release plot
end
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43°15'N o .
/ Kw — Wastach Formation
Kbr — Bear River Sandstone
Kd — Draney Limestone
Kb — Bechler Formation
Kp — Peterson Limestone
Ke — Ephraim Conglomerate
Js — Stump Sandstone
Jp — Preuss Redbeds
Jtc — Twin Creek Limestone
JTRn — Nugget Sandstone
1000 m
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Geologic map from: Albee, H. F., and Cullins, 304
H. L., 1975, Geologic map of the Poker Peak . .
Quadrangle, Bonneville County, Idaho: U.S. T - X
Geological Survey Geologic Quadrangle Map )
GQ 1260

Figure 3.11 Simplified geologic map of the Big Elk anticline in southeastern Idaho, to
accompany Exercise 8.
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3.5 EXERCISES

1.

Derive the equation for component a,; of the transformation matrix for the case of a general

rotation.

Derive the transformation matrix of Equation 3.10, but this time as a vector transformation

(Eqg. 3.8) between the X; = north, X, = east, X3 = up coordinate system and the fold axis

based Xj —X; X5 coordinate system.

Derive the transformation matrix for a down-plunge projection in the right-handed coor-

dinate system, X; = south, X, = west, X3 = down.

Evaluate the problem of construction of a vertical section of a plunging cylindrical fold. Can

this problem be carried out as a transformation of coordinates and points? If so, derive the

transformation matrix; if not precisely state why not.

Construct the down-plunge projection of the contact between the gray and white units in

Figure 3.7, using the MatraB function DownPlunge.

Using the function Stereonet, plot equal area stereonets with 10° grid interval, and the

following view directions: 123/42, 032/57, 245/21, 321/49.

Plot in MatLaB the following lines and planes in equal area stereonets with 10° grid interval,

and view directions 000/90 and 214/56. Lines =212/23,014/56, 321/53. Planes = 211/24,

035/67, 238/76. Hint: Use functions StCoordLine (Chapter 1), GreatCircle,

GeogrToView, and Stereonet (this chapter).

Figure 3.11 is a geologic map of the Big Elk anticline, located in the Mesozoic thrust belt in

southeastern Idaho, United States (Albee and Cullins, 1975).

a. The trend and plunge of the fold axis is 125/26. In Chapter 5, we will return to this
example once you have learned how to calculate a best-fitting fold axis.

b. Supplementary data file “Problem 3.8” contains the digitized contacts (east, north, up) of
the top of the Jurassic Twin Creek Limestone (Jtc), the Jurassic Stump Sandstone (Js), and
the Cretaceous Peterson Limestone (Kp). Using the equations and functions (e.g.,
DownPlunge) developed in this chapter, construct a down-plunge section of the Big Elk
anticline.

¢. The Idaho-Wyoming thrust belt in which this structure occurs thrusts from west to east.
What is the vergence (i.e., asymmetry) of the Big Elk anticline and does it agree with the
general direction of thrusting? Do you note anything unusual about the sequence
between Jtc and Js? This sequence contains the Preuss redbeds, which are known to
contain evaporate minerals. Can you draw any conclusions with this additional
information?



CHAPTER

FOUR

Matrix operations and indicial notation

4.1 INTRODUCTION

Up to this point, we have successfully avoided introducing any unfamiliar mathematical con-
cepts or strange symbology. All of the equations that have been presented are, individually,
very simple, involving nothing more than addition and multiplication. There are a lot of them,
however, and it gets tedious to keep rewriting very similar - and more importantly, predictable -
equations over and over again. What we need is a shorthand way of writing things down that
makes it easier on us while at the same time preserving, or even enhancing, the logic behind
them. It should come as no surprise that such shorthand devices are readily available, and
we will concentrate on two of them in this chapter: matrix notation and the indicial notation,
including the Einstein summation convention. Although some of what follows may look
exotic, just remember that the equations represented are no more complex than what we’ve
seen before.

4.2 INDICIAL NOTATION

We have already been introduced, briefly, to indicial notation in Chapters 2 and 3. Instead of
writing out components of, say, the transformation matrix in the previous chapter:

apl iz di3

a= | ax ax a3 (4.1)
az; dzy ds3

we can write it much more quickly as

a=a; (i,j=1,2,3) 4.2)

66
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where i and j refer to the new and the old axes, respectively. The expression in parentheses
means that both indices can have values of 1, 2, or 3. Likewise, vectors can be written as

v=v; (i=1,2,3) (4.3)

Generally, the expression in parentheses is omitted unless it is needed for clarity. In our three-
dimensional Cartesian coordinate system, each index will always have a value of 1, 2, or 3; in
two dimensions, 1 or 2.

There is a confusing variety in how the suffixes may be written depending on the author, the
coordinate system, and the type of quantity being represented. All of the following may be
encountered at one time or another:

‘/1'7 ’1“1J7 ﬁJ7Rle7 etc.

In this book, we will only have to deal with single or double subscripts; other formats will be
avoided.

4.2.1 Einstein summation convention

Although the indicial notation saves us some time in writing down equations like (4.1), its real
power lies in the ability to represent in a short space, long repetitive calculations. Many things
that we do with vectors involve adding up their components in various ways. For example, take
the equation for the magnitude of a vector in Chapter 2, which is

vl = (v + v +v3)"?

Using a summation sign, 33, we can write this equation somewhat more compactly as

3 12, 1/2
lv| = <Z v12> = <Z v,-vl->
i1 i1

But, even this is more than we need to do. We can state that, because the subscript i occurs twice
on the right-hand side of the preceding equation, it is assumed that the summation occurs with
respect to that index. This convention is known as the Einstein summation convention. Thus, we
can write

vl = (vivi)'/? (4.4)

Let’s apply this to a more complex situation, the equations for the transformation of a vector,
which were derived in the last chapter:

Vi =anvi + aiVs + aizvs
Vi = au Vi + apVe + a3 V3 (4.5)
V3 =a3iVvi + Az Ve + asVa

Notice that, on the right-hand side of each of the three equations, the second subscript of a and
the single subscript of v increase systematically from 1 to 3. That suggests that we can write the
equations as summations based on those subscripts:
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! — . .
Vi =) azjVj

J

Now that j occurs twice on the right-hand side of Equations 4.6, we can use our new-found
summation convention so that:

i

V1= v

V’Z = azjVj (47)
i

Vi3 = daz;Vj

But, this is still too much work! The remaining indices 1, 2, and 3 now occur one on each side of
Equations 4.7. So, we simply represent them as another letter index, in this case i, so that we can
write the above three equations as a single one:

V;- = ajjVj (48)

Clearly, we have saved ourselves a lot of tedious effort transcribing equations, not to mention
potential errors, by reducing Equations 4.5 down to Equation 4.8. In general, in the Einstein
summation convention, whatever subscript is repeated on one side of the equation is known as
the dummy suffix; the summation within a single equation always occurs with respect to that
suffix. The free suffix occurs only once on each side of the equation. There will be as many
equations as there are values of the free suffix and each equation will have as many terms as
there are dummy suffix values. So, assuming that (i, j = 1, 2, 3), Equation 4.8 represents three
separate equations (i is the free suffix) each of which has three terms (j is the dummy suffix).
Note that in the case of Equation 4.8 we can reverse the order of the a and the v terms on the
right-hand side without changing the meaning of the expression, but we cannot change the
order of the suffixes:

Vi = ayvi = via; # a;iv; 4.9

It should be emphasized that, to be a dummy suffix, the subscript has to be repeated within the

same term on the right-hand side of the equation. In the equation (which is not a real equation!)
vi=a;+vj

Jis a free suffix, not a dummy suffix, and therefore three equations are indicated, one for each
value of j.

4.2.2 Summation convention as a compact computer program

For those with some experience with computers, it is particularly useful to think of the
summation convention as a kind of compact computer program. In the case of Equation 4.8,
we have three arrays, two with dimensions of 1 x 3 (v; and v/) and one with a dimension of 3 x 3
(aj). The summation about the dummy suffix, j, can be thought of as an inner loop and the free
suffix, i, defines an outer. Thus, in MatLAB® we would program 4.8 as:
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$vold is a 1 x 3 vector with old coordinates
%a is the 3 x 3 transformation matrix between old and new coordinates
vnew = zeros(1l,3) %$Initialize vector with new coordinates
for 1i=1:3 %i is the free suffix

for j=1:3 %j is the dummy suffix

vnew (i) = a(i,j)*vold(j) + vnew(i);

end

end

Note that the indices of the arrays in this program appear in just the same order as the
subscripts in Equation 4.8. Readers who have some programming experience should study
this example carefully because it will make it easier to understand the more complex summa-
tion equations that we will encounter in the next chapter.

4.3 MATRIX NOTATION AND OPERATIONS

The summation convention introduced in the previous section will be used for most of our
calculations because it is particularly easy to understand and because of the readiness with
which it is translated into computer code. Also, the indices relate directly to the axes of our
chosen coordinate system. However, there are some operations that are better expressed in
matrix, rather than indicial notation. More importantly, one must make a distinction between a
matrix as a mathematical concept and matrix notation. The latter, like indicial notation, is
nothing more than simple shorthand though in many ways less immediately graspable. The use
of a particular notation is commonly an either-or proposition, but in either case, we are
fundamentally dealing with matrices.

Most structural geologists are conversant with the concept of matrices. In fact, we have
already used the concept in our representation of the transformation matrix in the previous
chapter (Section 3.2.2). In its simplest form, a matrix simply represents a rectangular table of
numbers which may, or may not, represent a physical entity and may, or may not, be related to
each other. In a computer program, any array of numbers is a matrix. The transformation
matrix, a, contains nine numbers (Eq. 4.1), only three of which are independent of each other.
The numbers in this case, however, do not represent any particular physical entity; they merely
represent an arbitrary change of axes that is governed only by our whim and not by any set of
physical conditions or constraints.

There are other matrices, however, which dorepresent tangible quantities thatreally exist. A
vector can be described as a rectangular table of three numbers (in our three-dimensional
Cartesian coordinate system):

vi=[vi V2 v (4.10)
The vector that represents the displacement of an element of matter, from one point to another,
is something that is not dependent on our fancy but on something that really happened. Once

the displacement has occurred, we can represent it with different numbers by changing the
coordinate system, but we cannot change the fundamental nature of the displacement itself.

4.3.1 Notation and conventions

We use matrices to represent both the groups of numbers with, and without, physical signifi-
cance. When a single letter is used to indicate a matrix, it appears in bold face, as on the left
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sides of Equations 4.1 and 4.2. In this book, if the matrix portrays a physical entity then its
components are enclosed in square brackets, [ |, as in Equation 4.10, otherwise round brackets
or parentheses, (), are used. This is the convention followed in Nye (1985) but it is by no means
universal.

The only matrices that we will be concerned with in this book are simple, rectangular arrays
of numbers. Square matrices, for example, have the same number of columns and rows; the
first subscript of an individual component refers to its row number and the second to its
column number. Thus, element a,3 occurs in row two and column three, as in Equation 4.1. If
we want to refer to the components in more general terms, it will be with indicial notation with i
indicating row number and j the column number: a;;. In a square matrix, the elements in which
both subscripts are the same are collectively named the main or principal diagonal. If all of the
elements in a matrix except the principal diagonal are equal to zero, then the matrix is called a
diagonal matrix.

The identity matrixis a diagonal matrix in which the principal diagonal is entirely made up

of ones:
1 00
1=6;=(0 1 0 4.11)

0 0 1

The indicial representation of this matrix, 6, is given a special name, the Kronecker delta. As we
will see below, the Kronecker delta has a number of useful applications. One of the handy
properties of the Kronecker delta is to allow us to substitute one index of a vector for another:

Vi= 84V (4.12)

Matrices can also have an unequal number of rows and columns. When we talk about an m x n
matrix, the first letter (or number) tells us the number of rows and the second the number of
columns. Equation 4.10is a 1 x 3 matrix.

4.3.2 Elementary matrix operations

Multiplication by a single number

Any matrix can be multiplied by a single number simply by multiplying each one of its
individual components by that number:

zPyy zPp zPi3
7P = ZP21 ZPZZ ZP23 4.13)
zP3;  zP3; zPs33

The multiplication of a vector by a scalar is an example of this sort of operation (Chapter 2).

Matrix addition

If two matrices have the same number of rows and columns, they can be added together by
adding each component to its equivalent in the other matrix:

((Pu + Q) (P24 Qi2) (Pi3+ Ql3))
P+Q=

(Po1 4+ Q1) (P2 + Q22) (P23 + Qo3) (4.14)

(P31 4+ Q31) (P32 + Q32) (P33 + Q33)

This is the type of operation we do when we add two vectors together (Eq. 2.10).
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Matrix multiplication

Two matrices can be multiplied together only if the number of columns in the first matrix
matches the number of rows in the second. If two matrices have this property, they are said to
be conformable. The resulting matrix has the same number of rows as the first matrix and the
same number of columns as the second:

AmxnBmx k) = Cimx k) (4.15)

With respect to the above equation, it is as if the n that the two matrices have in common is
“canceled out.” Notice that this operation is not reversible, that is, AB is conformable but BA is
not because the number of columns of B (k) is not necessarily equal to the number of rows of A
(m). The best way to describe how to carry out matrix multiplication is to write it in terms of the
summation convention:

Cij = Ay By (4.16)

In this equation, k is the dummy suffix and i and j are the free suffixes. Thus, if the three
suffixes each have values between 1 and 3, Equation 4.16 represents nine equations, each with
three terms. The expansion for two of the terms is shown below:

Cop = Ap1Bio + AppBop + Ap3 B3
(31 = A31B11 + A32B21 + A3z B3y

In matrix notation, the dot product of two vectors can be calculated by representing the first
vector as a1l x 3 row matrix and the second vector as a 3 x 1 column matrix. This operation will
yield a single number that is the sum of the products of the components of the two matrices:

Vi
u-v=uv=[u U ul|wv|=[wmv+hwm+usv 4.17)
V3

The summation notation representation of Equation 4.17 is
uv = v; Uj (4.18)

You can see that the result of Equation 4.17 is identical to Equation 2.11. Be very careful with
this, however, because while u - v = v - u, it is clearly not the case with matrix notation. You can
see that uv # vu, because the left side of this equation yields a single number (i.e., 1 x 1 matrix)
whereas the right side of the equation yields a 3 x 3 matrix!

Vi viup viup vVius
vu= | WV [ up Uy us ] = [ V2U; VolUp VoU3 (4 19)
V3 Vsup ViU V3Us

In summation notation, we would write Equation 4.19 as
vu =V; Llj (420)

Notice that the difference between Equations 4.18 and 4.20 is immediately obvious when
written using indicial notation. The matrix multiplication of the two vectors, vu, as in
Equations 4.19 and 4.20 is a special type of feature known as a tensor or dyad product, which
we will see in the next chapter.
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Transpose of a matrix

There are times, when dealing with square matrices, when it is necessary to interchange the
columns and rows. This operation is called the transpose of a matrix and is denoted by a small
superscript T.! For example, the transpose of the transformation matrix would be

. an  dz; 4z
a = dyjp dpp d32 (421)
a3 dx3 433

If a square matrix is equal to its transpose, that is
C=CorC;=Cj (4.22)

then the matrix is said to be symmetric. But, suppose we have the condition that C;; = —Cj;. This
can only be true if the principal diagonal of the matrix is all zeros (i.e., C;; = —Cy; only if
Ci1 = 0, etc.). Matrices of this form are known as antisymmetric or skew matrices. The concept
of symmetric and antisymmetric matrices will be very important in our discussion of strain
later on in this book. An orthogonal matrix is one that, when multiplied by its transpose, is
equal to the identity matrix. We will show below that the transformation matrix, a, has this
property:

aal =1 (4.23)

Although we gave a formula for the dot product in Equations 4.17 and 4.18, it is hardly the most
logical way to write the expression because it is more natural to think of the two vectors as both
row or both column vectors. The transpose gives us a way around this because the transpose of
arow vector is a column vector. Thus, we can rewrite Equations 4.17 and 4.19 as

u-v=uv’ (4.24)
veou=viu (4.25)

The ® represents the dyad product of two vectors.

The matrix operations described in this chapter are one of MatLAB’s specialties and thus can
commonly be carried out with a single-line command. For people who understand linear
algebra, this makes things very easy, but there is a great temptation to use the one-line
commands as a black box. Thus, below we show the long way of carrying out these operations,
as well as providing you with the one-line MatLaB equivalents. Those who wish to accomplish
these operations in a different programming language will find the translations
straightforward.

function ¢ = MultMatrix(a,b)
$MultMatrix multiplies two conformable matrices

USE: ¢ = MultMatrix(a,b)

Matrix a premultiplies matrix b to produce matrix c, as in the equation

o° o° o° o° o

c = ab

Nye (1985) denotes the transpose of a matrix by a small subscript t: C,.
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o°

oe

NOTE: This function is only for illustration purposes. To multiply

o°

matrices MATLAB use the * operator (e.g. c = a*b)
aRow = size( ) ; %Number of rows in a
aCol = size( ) ; %$Number of columns in a
bRow = size(b,1); %Number of rows in b
bCol = size(b,2); %Number of columns in b
$If the multiplication is conformable
if aCol == bRow
$Initialize c
c = zeros (aRow,bCol) ;
for i = 1:aRow % note the use of the nested loops
for j = 1:bCol
for k = 1:aCol
c(i,j) = a(i,k)*b(k,j) + c(i,3);

o°

to do the matrix multiplication

end
end

end
%$Else report an error
else

error ('Error: Matrices are not conformable') ;
end
end

function ¢ = Transpose (a)
$Transpose calculates the transpose of a matrix

)
)

o\°

USE: ¢ = Transpose(a)

o\°

o\°

The original matrix is a; the transpose of a is returned in c

o°

oe

NOTE: This function is only for illustration purposes. To get the

o°

transpose of a matrix in MATLAB use the ' operator (e.g. c = a')

%$Number of rows and columns in a

n = size(a,l);

m = size(a,?2);

%$Initialize c. Note the switch of number of rows and columns here

c = zeros(m,n);
for i = 1:n
for j = 1:m
c(j,1) = a(i,j); %Note the switch of indices, 1 & j here
end
end
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/(/_j_\
M12 M13

M, M
@ = cof(M*)=cof, M=~ " = ~(MM,, - M, M,,)
32 33
M32 M33
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Figure 4.1 How to construct the cofactor of element M, of matrix M.

4.3.3 The determinant and inverse of a matrix

Determinant of a matrix

There is a single scalar function of square matrices, known as the determinant; it is represented
by vertical lines on either side of the matrix or by the letters “det” preceding the matrix. For a
simple 2 x 2 matrix, the determinant is easy to calculate:

2

C C
detC=|C|= ‘ Ci Ciz =C11Cn — C2Cy (4.26)

For larger matrices, calculating the determinant is considerably more difficult. In general,
one finds the cofactors - that is, the determinants of subsets of the matrix - and multiplies
them times their corresponding elements. For example, the cofactor, M>;, of a 3 x 3 matrix, M, is
determined by taking the negative determinant of the sub-matrix that does not include either
the row or column of the cofactor, itself. If i + j is even, then you take the positive determinant
of the sub-matrix. That is probably pretty obscure, but perhaps diagramming it out will help
(Fig. 4.1):

The cofactor is negative because i + j = 2 + 1 = 3 is an odd number. Thus, we can define the
determinant of the entire matrix by

My, M, M3
M| = | My M, M3
Mz, Mz, Ms3

= Mj;cofyy (M) — MlZCOflz(M) + M13C0f13(M) 4.27)

Expanding the right side of this equation, we get

detM = |M| = M1 (Map M33 — Mp3 Ms3,)
+ Mip(Mo3Mzy — My M33) (4.28)
+ Mi3(Moy M3p — My Mz1)

or,

detM = |M| = My My, M33 + Mo Moz M3y + Mi3 My M3
— My3 My M3y — My Moz M3p — Myp Moy Mss

The cofactor method can be used to calculate the determinants of square matrices with orders
higher than 3, but we will seldom need to do so in this book. Below, we show how to calculate the
cofactors and determinant for a 3 x 3 matrix.
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function cofac = CalcCofac(a)
%CalcCofac calculates all of the cofactor elements for a 3 x 3 matrix

o°  o°

USE: cofac = CalcCofac(a)

o o°

a is the matrix and cofac are the cofactor elements

g$Number of rows and columns in a
n = size(a,1l);
m = size(a,2);

$If matrix is 3 x 3
if n == 3 & m ==
%$Initialize cofactor
cofac = zeros(3,3);
$Calculate cofactor. When i+j is odd, the cofactor is negative
cofac(1,1) a(2,2)*a(3,3) - a(2,3)*a(3,2);

cofac(1,2) = -(a(2,1)*a(3,3) - a(2,3)*a(3,1));
cofac(1,3) = a(2,1)*a(3,2) - a(2,2)*a(3,1);
cofac(2,1) = -(a(1,2)*a(3,3) - a(1,3)*a(3,2));
cofac(2,2) = a(l,1)*a(3,3) - a(1,3)*a(3,1);
cofac(2,3) = -(a(1,1)*a(3,2) - a(l,2)*a(3,1));

cofac(3,1) = a(1,2)*a(2,3) - a(l,3)*a(2,2);
cofac(3,2) = -(a(1,1)*a(2,3) - a(1,3)*a(2,1));
cofac(3,3) = a(l,1)*a(2,2) - a(l,2)*a(2,1);
else
error ('Matrix is not 3 x 3');
end
end

function [detA,cofac] = Determinant (a)
%$Determinant calculates the determinant and cofactors for a 3 x 3 matrix

o o°

USE: [detA,cofac] = Determinant (a)

% a 1s the matrix, detA is the determinant, and cofac are the

% cofactor elements

% Determinant uses function CalcCofac

% NOTE: This function is only for illustration purposes. To get the

% determinant of a square matrix of any size use the MATLAB function det
% (e.g. detA = det(a))

$Number of rows and columns in a
n = size(a,l);
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m = size(a,2);

$If matrix is 3 x 3
if n == 3 & m == 3
%$Calculate the array of cofactors for a. Note that this is not the most
%$efficient way of doing this because you will calculate six more
$cofactors than you need. The time loss, however, is negligible
cofac = CalcCofac(a);
%$Calculate the determinant of a as in equation 4.27, remembering that
$the cofactor 1,2 from CalcCofac will already be negative
detA = 0.0;
for i = 1:3
detA = a(l,i)*cofac(1l,i) + deth;
end
else
error ('Matrix is not 3 x 3');
end
end

Inverse of a matrix
We have already seen that multiplication of conformable matrices is possible, but suppose we
have the equation

y = Mx (4.29)
Can we solve this equation for x by dividing through by M? The answer, of course, is “no,”
dividing by a matrix has no meaning. We can, however, get around this limitation by defining

the inverse of a matrix, denoted by the matrix symbol raised to the minus one power: M~!. A
matrix, when multiplied by its inverse, is equal to the identity matrix, I (Eq 4.11):

MM !'=M'M=1=¢; (4.30)

It can be shown that, if a square matrix has a non-zero determinant, then the matrix has an
inverse. Matrices of this type are called non-singular. We can then solve for x in Equation 4.29 as
follows:

x=Mly (4.31)

The definition of the inverse of a matrix is simple but the actual calculation is not. The equation
that one can use to find the inverse of matrix, M, is given below (see Nye, 1985, pp. 155-156, or
Malvern, 1969, pp. 41-43, for the derivation):

cof1 (M) cofy (M) cof3; (M)
Mo Ecof}\g(M)g Ecofr(M)g Ecofgg(M)g (4.32)
M| M| M|

(COfIB(M)) (C0f23(M)) <C0f33(M)>

M| M| M|

You can see that, even for a 3 x 3 matrix, inverting it is not simple! Nonetheless, matrix
inversion is the foundation of some very powerful algorithms in geophysics and structural
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geology that go under the general heading of “inverse methods.” We will see an example of
matrix inversion when we solve the problem of extracting strain rate from Global Positioning
System (GPS) velocity vectors later on. For large matrices, numerical methods are commonly
used. Below, we show how to calculate the inverse of a 3 x 3 matrix.

function aInv = Invert(a)
$Invert calculates the inverse of a 3 x 3 matrix

USE: aInv = Invert(a)
a 1s the matrix, and aInv is the inverse matrix
Invert uses function Determinant

NOTE: This function is only for illustration purposes. To get the
inverse of a square matrix of any size use the MATLAB function inv

o0 o® o° o° o° o° o° o° o° o°

(e.g. aInv = inv(a))

%$Calculate the cofactors and determinant of a
[detA,cofac] = Determinant (a) ;

%$Calculate the inverse matrix following equation 4.32

aInv = zeros(3,3); %Initialize alnv

for i = 1:3
for j = 1:3

aInv(i,j) = cofac(j,i)/dethr; %Note the switch of 1 & j in cofac
end

end

end

4.4 TRANSFORMATIONS OF COORDINATES AND VECTORS REVISITED

The transformation of a vector from one coordinate system to another is just one example of a
whole general class of matrix algebra operations known as linear transformations. Anytime we
have the same number of equations and unknowns they can be written as a set of simultaneous
linear equations, and matrix concepts provide a simple way of solving these equations. Many
textbooks, for example, describe solutions of linear equations using Cramer’s Rule and there
are other approaches for larger matrices. Most of these methods are beyond the scope of this
book.

The reverse transformation (old in terms of new)

In Chapter 3, we introduced the concept of the transformation matrix, a, and the set of six
equations that govern the relations between the direction cosines, which are known as the
orthogonality relations (Egs. 3.3 and 3.4). Now that we have indicial notation and some matrix
concepts more fully in mind, we can reexamine these relations in a new light. Using the
summation convention, we can rewrite Equations 3.4 as
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ajiay =1, if i and j are equal
Likewise, Equations 3.5 can be rewritten as
agay = 0, if i and j are not equal

Recall that the identity matrix (Eq. 4.11) has these same properties. If its two indices are
equal, then they have a value of 1 (i.e., the principal diagonal is equal to 1), otherwise it has a
value of 0 (i.e., the “off-diagonal” elements are equal to 0). Thus, we can write the orthogonality
relations as a single equation in indicial notation:

agay = 6y (4.33)
or in matrix notation:
aal =1 (4.34)

Thus, the transformation matrix is an orthogonal matrix, as described above.
The transformation of a vector (Egs. 3.8 and 4.5) in matrix notation can be written simply as

v =av or Vv,=a;v; (4.35)

Clearly, from the discussion of inverse matrices, if we want to solve for v (i.e., we want the
reverse transformation of old in terms of new), we should be able to pre-multiply v’ by the
inverse of a (compare Egs. 4.29 and 4.31):

ly/ (4.36)

v=a
However, if you compare Equation 4.23 with Equation 4.30, you will see that, for an orthogonal
matrix, its transpose is equal to its inverse; that is, aT = a~!. Therefore, we can also write
Equation 4.36 as

v=av or v,= a;v (4.37)

If you expand Equation 4.37, you will see that it is identical to Equations (3.9). This is a more
elegant way of deriving the reverse transformation than we were able to do in Chapter 3.

Change of “handedness” of axes

Imagine looking at the image of a right-handed coordinate system in the mirror. What
you would see is a left-handed coordinate system (Fig. 4.2). This is nothing more than a certain
type of coordinate transformation. One particularly common place to encounter this type
of transformation is in considering the symmetry of mineral crystals. It would be nice if there
were some way to determine whether or not a particular transformation would produce a
change in the handedness of axes of our coordinate system. As it turns out, there is (Nye,
1985, pp. 35-38). It is possible to show that the determinant of the transformation matrix, a
(and of all orthogonal matrices), can only be equal to +1 or -1. A close inspection of Figure 4.2
shows that the only axis to change is X»; in the mirror, it points in the opposite direction from
the original axis whereas all of the others point essentially in the same direction (accounting for
the perspective of the diagram). Thus the transformation matrix for the situation shown in
Figure 4.2 is
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Figure 4.2 The reflection of a right-handed coordinate system in the mirror produces a
left-handed coordinate system.

1 00
aj={(0 -1 0 (4.38)
0 0 1

The determinant of this matrix, calculated from Equation 4.32, is

deta = [a] = a11(A22a33 — A23032) + A12(A23G31 — A21033) + A13(A21A32 — A22431)
= an (axazz — axzaz)+040
=ajazpazz —0

= (WD) = -1

Thus, you can show that, if the determinant of the transformation matrix, |a|, equals — 1,
then the transformation will produce a change in the hand of the axes. It is just as easy
to show that a transformation that does not change the hand of the axes has a determinant
of +1.

4.5 EXERCISES

1. Matrices A and B are given below. Calculate the following sums and products: (a) A + B, (b)
B + A, (c) AB, and (d) BA.

2 6 3 14
A= (4 9> and B= <7 10>
2. What are the determinants of matrices A and B in Exercise 1?
3. InEquations 4.27 and 4.28, we determined the determinant of matrix M by expansion of the

first row of the matrix. Show that expansion of the second row produces the same determi-
nant for the matrix.
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4. Solve for matrix x in the following equation:

y = Mx
=05 ell]
7] 13 6]lx

5. Expand the following equation:

oui _ o

an -V
6. Expand the following equation:

1
&j = (€5 + ej)

7. Expand the terms e;; and e3; in the following equation:

1[0u;  Ouj  Ouydug

G2 ox T ox T ox oxg




CHAPTER

FIVE

Tensors

5.1 WHAT ARE TENSORS?

Few things are more imposing to structural geologists than the concept of tensors. In most
continuum mechanics textbooks you will find the formal definition of a tensor as a physical
quantity that “transforms like a tensor” or that tensors transform in such a way that a “valid
tensor equation in one coordinate system will be valid in any other coordinate system.” These are
rigorous definitions that are important to understand fully (we will come back to them in
Section 5.3), but to someone meeting this concept for the first time they are not terribly illumi-
nating! Yes, we know, or at least have been told at one point or another, that stress and strain are
“tensors,” but what does that statement really mean? Vectors we can handle, but tensors?

In fact, we have already used tensors extensively in this book. All vectors are a type of tensor
quantity known as a first order or first rank tensor. Any physical quantity that is independent of
a particular coordinate system - as we have already seen for vectors (Chapters 3 and 4) - is a
tensor. We have already discussed two types of mathematical and physical entities and now we
can add a third:

1. Scalar (zero order tensor): A quantity represented by a single number that is independent of
the coordinate system (i.e., it has the same value, regardless of the coordinate system we
choose). Some examples of scalars are:

e temperature
@ mass
o density.

2. Vector (first order tensor): A physical entity with a magnitude and direction represented by

three numbers! whose values depend on the particular coordinate system. Although the

! In all of the following discussion, we assume a Cartesian coordinate system unless explicitly stated
otherwise.

81
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Tensor
rank Name Quantities related
0 Scalar Nothing
Two other scalars
1 Vector Scalar and a vector
2 2nd order tensor (commonly just Two vectors
“tensor”)
Scalar and a tensor
3 3rd order tensor Vector and a 2nd order
tensor
4 4th order tensor Two 2nd order tensors

Table 5.1 Tensor rank and the types of related entities

magnitude of the numbers changes with coordinate system, the magnitude and direction of
the vector is the same in all coordinate systems. A vector can relate a scalar and another
vector. For example, in the equation f = ma, force and acceleration are vectors and mass is a
scalar. Some other familiar examples of vectors are:

e velocity

e displacement

e temperature gradient.

3. Second order tensor: A physical quantity represented by nine numbers. The physical entity
is independent of coordinate system. A second order tensor relates two vectors to each other
or another second order tensor to a scalar. Some examples of second order tensors are:

e thermal conductivity
e stress
e strain.

We can continue this hierarchy of tensors virtually indefinitely. The order of a tensor simply
equals the number of subscripts that it has. Vectors have one subscript so they are first order
tensors, second order tensors have two subscripts, and so on. For convenience sake, when there
is no ambiguity we will refer to second order tensors simply as “tensors” and first order tensors
as “vectors” but you should be aware that both are members of a general class of physical
quantities, independent of coordinate system, that we call tensors. In this chapter, we will deal
with “generic” tensors and save the discussion of the most important tensors for structural
geology - stress and strain - to the following chapters.

5.2 TENSOR NOTATION AND THE SUMMATION CONVENTION

Because second order tensors in three dimensions are represented by arrays of nine numbers,
we treat them mathematically as 3 x 3 matrices. However, as was emphasized in Chapter 4,
matrices may represent physical quantities like vectors and tensors or they may be totally
artificial constructs such as the transformation matrix. In other words, all tensors are matrices
but not all matrices are tensors.

5.2.1 Basic characteristics of a tensor

Like any 3 x 3 matrix, tensors are represented by bold face letters or by indicial notation with
two subscripts, each of which can have values of 1, 2, or 3. When writing out the components of
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a tensor, we distinguish them from an arbitrary matrix by using square brackets rather than
parentheses, just as we did with vectors:

T T, T3
T=Tj=|Tn T Tx (5.1)
T3 T3 Ts3

The nine components of the tensor —in this case a generic tensor, T — give the values of the tensor
with reference to the three axes of the specific coordinate system. If we change the axes, then the
nine components will change their values but, just like a vector, the fundamental nature of the
tensor itself will not change. The exact nature of the relation between component and axis
depends on the specific tensor. In the following chapters, we’ll see two examples of this.

Like any matrix, tensors can be symmetric, asymmetric, or antisymmetric depending on the
relations of the components to each other. If the tensor has nine independent components then
itis asymmetric. If Tjj = Tj;, then there are only six independent components and the tensor is
symmetric. Finally, antisymmetric (or skew-symmetric) tensors are those in which Tj; = — Tj;, in
which case there are only three independent components. Any general asymmetric tensor can
be decomposed into a symmetric tensor plus an antisymmetric tensor as follows:

T — T

Ty + Tji

T,‘j = Sij + Aij where S[j = 5

You can easily prove to yourself that S;; is symmetric and A;; is antisymmetric.
For all symmetric tensors, there is one set of coordinate axes where all the components,
except for those along the principal diagonal, are zero. That is,

Ty O 0 o 0 O
T=Tj=|0 T, 0 |(=|0 T, O (5.3)
0 0 T3 0 0 Ty

The values along the principal diagonal, T;, T,, and T3, are then known as the principal axes of
the tensor. Note that, on the right side of Equation 5.3, we have purposefully not put T; in the
T11 space, etc. This was done to emphasize a very important point: A component with two
subscripts refers to the axes of the coordinate system; a single subscript refers just to the
magnitude of the component, not its position or orientation. These three single subscripts define
the major, intermediate, and minor magnitude axes of a three-dimensional surface known as
the magnitude ellipsoid (Fig. 5.1). In the case of Equation 5.3, the largest component is specified

Figure 5.1 The magnitude ellipsoid
and principal axes of a generic tensor,
T. Note that the magnitude axes, T;,
T,, and T3, are parallel to X3, X;, and
X3z, respectively. Thus, T; = T»,, etc.
Their orientations shown here
correspond to those in Equation 5.3.
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as being parallel to the X, axis of the coordinate system. Most structural geology students
are already familiar with the “stress ellipsoid” and the “strain ellipsoid.” The general
equation for the magnitude ellipsoid (using our generic tensor, T, and assuming that principal
axes of the tensor are parallel to the axes of the coordinate system with the same index, unlike
in Eq. 5.3) is
A . (5.4)
TP Ty T§

We will see more about determining the principal axes of the tensor in Section 5.4.

5.2.2 Tensors relating two vectors

As stated above (Table 5.1), a tensor commonly relates two vectors; more formally, we can state
that a tensor is a “linear vector operator” because the components of the tensor are the
coefficients of a set of linear equations that relate two vectors. Suppose we have two vectors,
u and v, that are related by tensor, T. In matrix or indicial notation, we write

u=Tv or u=Tyv (5.5)

With the summation convention, we can easily expand Equation 5.5, realizing that j is the
dummy suffix and i is the free suffix:

uy = Tnvi + Tiove + Tiz vz
Uy = Toy vy + Too Vo + Toz s (5.6)
uz = T vi + T3p Ve + T33V3

If you compare Equation 5.5 with Equation 4.8, you'll see that they have a very similar form and
their expansion using the summation convention is also the same. That’s because both sets of
equations represent matrix multiplication involving a 3 x 3 and a 3 x 1 matrix. The similarity
ends there, however. In Equation 4.8, the transformation matrix, a, is not a tensor; it is simply a
linear operator describing the relationship between the same vector in two different coordinate
systems. In Equation 5.5, T is a tensor and u and v are different vectors. You would program
Equation 5.5 as follows:

o

$ v (1 x 3 vector) and T (3 x 3 tensor) are previously declared
u = zeros(1l,3); % initialize u (1 x 3 vector)
for i = 1:3 % 1 is the free suffix
for j = 1:3 %j is the dummy suffix
u(i) = T(i,3)*v(3) + u(i);
end
end

The three iterations of the outer loop will produce three separate equations and the three
iterations of the inner loop mean that each equation will have three terms (i.e., as in
Equation 5.6). Again, note how similar the equation written using the summation convention
is to a computer program.

In the previous chapter, we saw a somewhat different way of producing a tensor as a type of
product of two vectors. This operation is a natural extension of the dot (or scalar) product and
the cross (or vector) product. If we premultiply a column vector times a row vector, the
operation is known as the dyad (or tensor) product and the result is a 3 x 3 matrix which is
known as a dyad. The dyad product of two vectors, u and v, is
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uvy upve u1vs
T=uev=|uwv uww uvw (5.7a)
vy uzvp Uvs

Using indicial notation, we would write
Tij = U;jVj (57]3)

Coding Equation 5.7 for a computer is simpler because there is no summation involved; both i
and j are free suffixes. Thus, we can write:

o°

u (1 x 3 vector) and v(l x 3 vector) are previously declared
T = zeros(3,3); %$Initialize T (3 x 3 tensor)
for i = 1:3 %1 is a free suffix
for j = 1:3 %j is also a free suffix
T(i,j) = u(i)*v(j); %there is no summation here
end
end

5.3 TENSOR TRANSFORMATIONS

Like vectors, second order tensors are physical quantities independent of a coordinate system.
Therefore, if we know what the components of the tensor are in one coordinate system, we
should be able to determine what they are in any other coordinate system, just as we did for
vectors (Chapter 3). All we need to know is the transformation matrix, a. The equations for
transforming a tensor are somewhat more complicated, however, because a tensor is a more
complicated entity than a vector.

5.3.1 Derivation of the tensor transformation equations
To proceed, one must first realize that the tensor that relates two vectors in the new coordinate

system is just the transformed version of the same tensor in the old coordinate system (as
before, the primed quantities are in the new coordinate system):

u = TiJ'VJ' (583)

and

u = Tjv! (5.8b)

Therefore, we can derive an equation that relates T to T’ by combining the transformation
equations for u to w’ and for v to v':
Uy = aguy (5.9a)

and
V= aj,v} (5.9b)

Do not be confused by the fact that we are using some unfamiliar letters for subscripts. You can
choose whatever letters you want as long as you don’t confuse the free and dummy suffixes. All
of these equations obey the summation convention rules. Note that we can just as easily write
Equation 5.8a as

Uy = TleI (510)
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Now, if we substitute Equation 5.9b into Equation 5.10, and then take that result and substitute
it into Equation 5.9a, we can write

u; = aixaji Trvj (5.11)

But, we also know from Equation 5.8b that u; = Tlg vJ’-, so the tensor transformation, given as the
new components in terms of the old, is

T'j = aga;;Ty; (summation notation) (5.12)
T =aTTa (matrix notation)

By a similar series of steps, you can derive the reverse transformation, that is, the old compo-
nents in terms of the new:

Tj = axia;;T'x; (summation notation) (5.13)
T =aTal (matrix notation) '

These transformations are the key to understanding tensors. The definition of a tensor is a
physical quantity, independent of a specific coordinate system, which generally describes the
relation between two linked vectors (or a scalar and another tensor). The test of a tensor is if it
transforms from one coordinate system to another according to the above equations, 5.12 and
5.13, then it is a tensor. The whole point about tensors is that the nine coefficients simply
correspond to a particular reference frame and change systematically by the above rules upon
change of coordinate system. We can transform them to any other reference frame without
changing the fundamental nature of the physical property that the tensor represents. Therein
lies their power because it is often advantageous, or necessary, to change our view of things (i.e.,
our coordinate system) to understand them more clearly.

5.3.2 Tensor transformation as a computer program

Expanding Equations 5.12 and 5.13 is a tedious task, because there are two dummy suffixes, k
and I, and two free suffixes, i and j. Equation 5.12 alone represents nine individual equations
each with nine terms! For guidance on how to expand the equations by hand, see page 12 of Nye
(1985). As before, for those with some computer programming experience it is easier to think
about expanding them as a series of nested do-loops. The program fragment below carries out
the summation in Equation 5.12:

$T _old (3 x 3) tensor and a (3 x 3 trans. matrix) are previously declared
T new = zeros(3,3); %initialize T new (3 x 3 tensor)
for i = 1:3 %Outer loops are controlled by the free suffixes i & j
for j = 1:3
for k = 1:3 %$Inner loops are around the dummy suffixes k & L
for L = 1:3
T new(i,j) = a(i,k)*a(j,L)*T _old(k,L)+T _new(i,j);
end
end
end
end
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Notice that the dummy suffixes are always in the inner loops (the order in which you loop about
k and L does not matter) and the free suffixes are in the outer loops. As you can see from the
above, there will be nine sums for each T new and there will be nine T _new’s.

5.3.3 A special two-dimensional transformation

In this age of computers, carrying out tensor transformations numerically according to
Equations 5.12 and 5.13 is quite straightforward. This was not always the case, as easily
accessible computers have only come into being in the last 30 years. Furthermore, complex
equations are commonly easier to visualize graphically; it’s not easy to look at Equations 5.12
and 5.13 and immediately have an intuitive grasp of their significance! For simple two-
dimensional transformations in which one of the three axes is the same before and after the
transformation (i.e., a rotation of the coordinate system about one of its axes, Fig. 5.2), there is
just such a graphical construction.

Consider the case where the axes of the old coordinate system are parallel to the principal
axes of the symmetric tensor, T. Then, we wish to change the coordinate system to a different
orientation by rotating about the intermediate axis (Fig. 5.2). The transformation matrix of this
problem is

cos 6 cos90 cos(90 — 0) cos@ 0 sinf
a= c0s 90 cos0 c0s 90 = 0 1 0 (5.14)
cos(90 + 8) cos90 cos @ —sinf 0 cos@

The initial form of the tensor, T, in the old coordinate system is

T, 0 0
T=T;=|0 T, 0 (5.15)
0 0 T

Now, we can use the tensor transformation equation to calculate what the tensor is in the new
coordinate system. Substituting Equations 5.14 and 5.15 into Equation 5.12 and carrying out
the summation, we get

X3A

Figure 5.2 Coordinate transformation
by a rotation about one of the axes of
X’q the coordinate system.

X2=X2
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Tij(i#j)

Figure 5.3 Mobhr circle construction

for a two-dimensional tensor trans- T Tij(i=j)
formation. !
(Tl c0s?0 + Ty sin29> 0 (—T;sin@cos O + T3sin 6 cos )
T = 0 1 =0 (5.16)
(—Tysin@cos O + T3 sinfcosB) 0O <T1 sin®0 + T; cos? 9)

The components of T in 5.16 can be put in a more useful form by using several trigonometric
identities for double angles:

sin20 = 2sin O cos 0 sinzezﬂ cos%:%ﬂ (5.17)
Substituting these equations into Equation 5.16 and rearranging, we get the following values

for the components of the tensor in the new coordinate system:

T = (Tl i T3) + (Tl _ T3> cos 260

2 2
Ty = (Tl ; T3) _ (Tl > T3> c0s 26 (5.18)

Th3=T3 = —<Tl g T3> sin 20

Most structural geologists will recognize Equations 5.18 and the plot representing them
(Fig. 5.3) as the Mohr circle. This construction, devised by the German engineer Otto Mohr in
the late 1800s, is most commonly associated with the analysis of the stress tensor (i.e., Mohr
circle for stress) but can be equally well applied to any symmetric second order tensor. Thus, we
also have Mohr circle for infinitesimal strain, Mohr circle for finite strain in the deformed state,
etc. These will be presented in following chapters.

5.4 PRINCIPAL AXES AND ROTATION AXIS OF A TENSOR
5.4.1 Magnitude ellipsoid and representation quadric

We stated above that a tensor is a linear vector operator, but it would be helpful if there were
some way to visualize graphically how a tensor relates two vectors. The Mohr circle construc-
tion of the previous section is one such approach, but because it is plotted in “tensor space”,
rather than physical space, visualization is more difficult. We know that tensors can be
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represented by their magnitude ellipsoid and vectors by lines with arrows at one end; that’s the
type of thing that we need to get a physical understanding.

There is a surface that helps one visualize the angular relations between the two vectors
related by a tensor, and it also helps to visualize how one calculates the orientation and
magnitude of the principal axes. That surface is known as the representation quadric. This
surface and its derivation are explained in more detail in Nye (1985, pp. 16-19 and 26-30), and
we will only briefly touch on it here. Unlike the magnitude ellipsoid (Eq. 5.4), the representation
quadric may have the geometric form of either an ellipsoid or hyperboloid defined by the
following equation:

TU‘XI'XJ‘ =1 (519)

You can show that Equation 5.19 is a tensor by seeing whether it transforms according to
Equation 5.12. Equation 5.19 can be written in terms of its principal axes, as follows:

Tix{ + Tox3 + T3x5 = 1 (5.20)

Note that, in the case of Equation 5.20 the principal axes are in the numerator, not in the
denominator as they are in 5.4. Thus, when plotted on the same diagram the long axes of the
magnitude ellipsoid and the quadric will be at right angles to each other (Fig. 5.4).

The relation between the representation quadric and the magnitude ellipsoid, as well as
their major properties, are illustrated in Figure 5.4. This diagram is a principal section
through the quadric and ellipsoid (i.e., a plane that contains the two principal axes of the
tensor) for the relation u; = Tj;Vv; (Eq. 5.5); it shows the angular relation between u and v in
two dimensions. As v is rotated about the origin with a constant, unit length, the vector u
traces out the surface of the magnitude ellipsoid of the tensor, T. The angle between the two
vectors varies as a complex function of their position with respect to the principal axes of T.
Vector u will always be perpendicular to the tangent to the representation quadric where the
latter is intersected by v. This attribute is known as the radius-normal property of the
representation quadric.

magnitude ellipsoid

AN Ty

A d
0.5
unit circle oy

tangent to quadric where
intersected by v

representation quadric

\

Figure 5.4 Geometric relations between the representation quadric and the magnitude
ellipsoid of tensor T, and the two vectors that T relates, u and v.
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5.4.2 Finding the magnitude and orientation of the principal axes

It is clear from the preceding discussion and Figure 5.4 that u and v are parallel only along the
principal axes and nowhere else. At these positions, u has the same magnitude (and orientation
of course) as the principal axis itself. If u and v are parallel, then they (i.e., their lengths) will be
proportional to each other; one of the vectors, multiplied by a scalar, should be equal to the
other. At a principal axis, the vector v will be parallel and equal to a unit vector, X, and u will
simply be equal to a scalar, X, times x (Fig. 5.4):

v=X and u=/x (5.21)

Substituting the relations in 5.21 into Equation 5.5, we can write
X =Tx (5.22a)

or using indicial notation,
/lXi = TiJ‘Xj (522b)

In Equations 5.21 and 5.22, 4 is the unknown scalar constant - known as the eigenvalue - and x
is an eigenvector of Tj;. Equation 5.22 can be solved by rearranging and using the substitution
property of the Kronecker delta discussed in the previous chapter (Eq. 4.12):

Xj = 6U‘Xj = Tinj = )(SUXI = (TU — X&U)Xj =0 (523)

To solve for /, take the determinant of this final equation (which is known as the secular or
characteristic equation),

(Tll — }) TlZ Tl3
Ty —idy|=| Tu  (Tw—2) T3 |=0 (5.24)
T31 T3z (T33 - 2)

Expanding, we get a cubic polynomial in 4:

B - =0 (5.25)

The three roots of 1 are the three eigenvalues; they will be the magnitudes of the three principal
axes of the tensor. Note that all three roots will be real only if the tensor is symmetric; otherwise
one or more will be imaginary. Once you know the three values of Z, you can then substitute
each one in turn back into Equation 5.22 or 5.23 to solve for the three eigenvectors (I, II, and III)
which give you the orientations of the principal axes.

In general, Equation 5.25 is solved numerically by computer using an algorithm known as
the Jacobi Transformation or some more esoteric routine. Such routines can be found in Press
et al. (1986). For a description of how to do this manually, see Nye (1985, Chapter IX). Thus, we
can find the principal axes of any tensor in any general coordinate system by finding its
eigenvectors and eigenvalues.

5.4.3 Invariants of a tensor

The three values of 1 are scalars that correspond to the magnitudes of the principal axes of the
tensor, which, of course, is independent of the coordinate system. Therefore, I, II, and III, the
three coefficients of Equation 5.25, must also have the same values, regardless of the coordi-
nate system we choose. Thus, they are known as the invariants of the tensor and their values, for
any coordinate system, are given in Equations 5.26. If one happens to know the principal axes of
the tensor, then they are particularly easy to calculate:
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I=Ti+Tn+T3=T1 +T,+T;

(T Ty — I?)
2

1= = (ML+TT+T3T) (5.26)

Il =detT = |Tj| = T1 T» T

We'll see that invariants of tensors have a number of uses, described in the following chapters.

5.4.4 Rotation axis of an antisymmetric tensor

An antisymmetric tensor (e.g., Aj in Equation 5.2) is sometimes also known as an axial vector.
To get the Cartesian coordinates, r;, of that vector:
_ —birAjx

r=—"1 (5.27)

by is a “permutation symbol” which is equal to +1 if the suffixes are cyclic, —1 if the suffixes are
acyclic, and 0 if any two suffixes are repeated. The three components of vector r, which give the
orientation of the rotation axis, are

_ —(Az3 — A3) _ —(-A13+A431) _ —(A2 — Aa)
R e e R

5 5 (5.28)

The amount of rotation in radians is just the length of the vector, r:

x| =\/r?+1:+713 (5.29)

5.5 EXAMPLE OF EIGENVALUES AND EIGENVECTORS IN STRUCTURAL GEOLOGY

The concepts discussed in this chapter form the basis for understanding the mechanics of
structural geology. However, we defer their application to the next chapters where stress and
strain are treated explicitly. Nonetheless, there is a very important type of problem, the solution
to which relies heavily on the concept of eigenvalues and eigenvectors. This problem is: “how do
we find the best-fit axes to a group of axial data that have no directional significance?” A more
specific example is “how do we find the best-fit fold axis to a group of bedding poles?” As stated
much earlier (Chapter 2), we cannot use the mean vector for this problem because the axes have
no directional significance; we will commonly be plotting everything in the lower hemisphere.

5.5.1 Types of axial distributions

Before proceeding to the numerical solution to this problem, a digression into the types of line
distributions in spherical space is needed. In general, lines can have three types of orientations
(Fig. 5.5), which correspond to the three fundamental types of Euclidean geometric objects:
lines (one-dimensional or 1D), planes (2D), and volumes (3D). A group of lines that are all
parallel or sub-parallel to each other has a linear (1D) preferred orientation; if they were
perfectly parallel to each other they would combine to form a single line, but more commonly
there is some limited scatter (e.g., Fig. 5.5b). In this latter case, the ends of the lines define a
surface whose shape fabric is approximately that of an elongate ellipsoid (a prolate or cigar-
shaped ellipsoid). This type of distribution is commonly called a bipolar distribution. A girdle
distribution (Fig. 5.5¢) results when all of the lines are close to being coplanar. When this
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(b) (c)

Figure 5.5 Three types of preferred orientations of linear elements displayed as points
in an equal area projection. (@) Random, (b) bipolar, and (c) girdle.

happens, the ends of the lines trace out a surface of a flattened ellipsoid (an oblate or pancake-
shaped ellipsoid). If the lines were all perfectly coplanar, then the oblate ellipsoid would be
reduced to a two-dimensional circle. When all of the lines have a random distribution (Fig. 5.5a)
their ends define a sphere.

5.5.2 Determination of “best-fit” axes

You can see that the problem we started out with is really a problem of finding the three mutually
perpendicular axes of the ellipsoids referred to in the previous section. If we calculate three axes
of nearly equal length, they define a sphere and point to a random distribution (Fig. 5.5a). Two
short axes and one very long axis define a prolate ellipsoid and indicate a bipolar distribution
(Fig. 5.5b). Likewise, two axes of equal length and one much shorter axis will define an oblate
ellipsoid and a girdle distribution (Fig. 5.5¢). In this last case, if we are trying to calculate the best-
fit fold axis to a cylindrically folded surface, it is the shortest axis in which we are interested.

Suppose we are trying to calculate a fold axis, f (the derivation below follows that of
Charlesworth et al., 1976). If the fold is perfectly cylindrical, then all of the bedding poles,
Py, should be perpendicular to f. As is commonly the case, to find the “best fit” to data with
scatter, we want to find a model fit that reduces, by as much as possible, the sum of the squares
of the deviations from this perfect case. If 8} is the angle between the i’th bedding pole, p;, and
the fold axis, then the cosine of that angle (which should be close to zero) can be used to
represent the deviation. The cosine of 0y is given by the dot product of f and pj;. Treating both f
and py; as row vectors (unlike in Equation 4.17), we write the dot product as

cos 0 = pyf" (5.30)

Thus, we can express the sum of the squares of the deviations as
n n 2
5= cos?0y =" (pyf") (5.31)
i=1 i=1
Because the dot product possesses commutability, we can write
pf' = o (5.32)

and Equation 5.31 can be rewritten as

n
S=> fplpf" =fTf" (5.33)
i=1
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where T is a matrix composed of the sums and products of the direction cosines
(pi=[cosx cosB cosy]) of the individual lines:

n

n
T=> pipy = (npr)y
i=1

i=1

> cos?xy >-Cos & Cos By Y- COS XX COS Yy
= | Yo cos B cos oy Zcoszﬁm >-Cos B cos y; (5.34)
> COS Y[ Cos Xy D COS Y Cos By > coszym

Matrix T is commonly known as the orientation matrix and it is used extensively in statistical
treatment of orientation data that have Watson or Bingham distributions (see Fisher et al., 1987).
You can think of the orientation matrix as describing the ellipsoidal surface, depicted in the
previous section, referred to an arbitrary coordinate system. To find the principal axes of ellipsoid,
we need to calculate the eigenvalues and eigenvectors of matrix T. In the case of the problem we
started out with, S in Equations 5.31 to 5.33 will correspond to the smallest eigenvalue. If the
fold were perfectly cylindrical, S would be equal to zero (because all of the 8};’s would be 90°).

The calculation of the specific eigenvalues and eigenvectors is best left to any of a number of
publicly available “canned” software packages. To get a better feeling about how these routines
work in general, we highly recommend that you read Chapter 11 of Press et al. (1986). MATLAB®
has a built-in function, eig, to solve the eigenvalue problem and thus it is particularly well
suited to this problem. If, instead, you write your own code in a different language, you’ll want
to use two subroutines from Numerical Recipes (Press et al., 1986) that calculate and sort the
eigenvalues and eigenvectors (Jacobi and Eigsrt, respectively).

The following MATLAB function, Bingham, can be used to calculate the three mutually
orthogonal axes of the orientation matrix and the uncertainty “cones” for the Bingham statis-
tics. The statistical part is given here for information only because its complete description is
beyond the scope of this book. For more information on the statistics, we suggest that you see
Fisher et al. (1987), particularly Sections 6.3 to 6.6.

function [eigVec,confCone,bestFit] = Bingham (T,P)

$Bingham calculates and plots a cylindrical best fit to a pole distribution
$to find fold axes from poles to bedding or the orientation of a plane from
$two apparent dips. The statistical routine is based on algorithms in
$Fisher et al. (1987)

USE: [eigVec,confCone,bestFit] = Bingham (T,P)
T and P = Vectors of lines trends and plunges respectively

eigVec = 3 x 3 matrix with eigenvalues (column 1), and trends (column 2)
and plunges (column 3) of the eigenvectors. Maximum eigenvalue and
corresponding eigenvector are in row 1, intermediate in row 2,

and minimum in row 3.

confCone = 2 x 2 matrix with the maximum (column 1) and minimum
(column 2) radius of the 95% elliptical confidence cone around the
eigenvector corresponding to the largest (row 1), and lowest (row 2)
eigenvalue

o o° o° o° o° o° o A° o° o° A° o° o° o° o°
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% besFit = 1 x 2 vector containing the strike and dip (right hand rule)
of the best fit great circle to the distribution of lines

o°  oP

o°

NOTE: Input/Output trends and plunges, as well as confidence

o°

cones are in radians. Bingham plots the input lines, eigenvectors and

o°

best fit great circle in an equal area stereonet.

o°

o°

Bingham uses functions ZeroTwoPi, SphToCart, CartToSph, Stereonet,

o°

StCoordLine and GreatCircle

%¥Some constants
east = pi/2.0;
twopi = pi*2.0;

$Number of lines

nlines = max(size(T));

%$Initialize the orientation matrix
a=zeros (3,3) ;

$Fill the orientation matrix with the sums of the squares (for the
$principal diagonal) and the products of the direction cosines of each
%$line. cn, ce and cd are the north, east and down direction cosines

for i = 1:nlines
[cn,ce,cd] = SphToCart(T(i),P(1i),0);
a(l,1) = a(1,1) + cn*cn;
a(l,2) = a(l1,2) + cn*ce;
a(1,3) = a(1,3) + cn*cd;
a(2,2) = a(2,2) + ce*ce;
a(2,3) = a(2,3) + ce*cd;
a(3,3) = a(3,3) + cd*cd;
end

$The orientation matrix is symmetric so the off-diagonal components can be

$equated

a(2,1) = a(1,2);
a(3,1) = al(1,3);
a(3,2) = a(2,3);

%Calculate the eigenvalues and eigenvectors of the orientation matrix using
$MATLAB function eig. D is a diagonal matrix of eigenvalues and V is a
$full matrix whose columns are the corresponding eigenvectors

[V,D] = eig(a);

$Normalize the eigenvalues by the number of lines and convert the
$corresponding eigenvectors to the lower hemisphere
for i = 1:3

D(i,i) = D(i,i)/nlines;

if v(3,1) < 0.0
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(1, = -V(1,1);
v(2,i) = -v(2,1);
V(3,1) = -v(3,1);

end

$Initialize eigVec
eigVec = zeros(3,3);
$Fill eigVec

eigVec(1,1) D(3,3); %$Maximum eigenvalue

eigvVec(2,1) D(2,2); %Intermediate eigenvalue

eigVec(3,1) = D(1,1); %Minimum eigenvalue

$Trend and plunge of largest eigenvalue: column 3 of V
[eigVec(1,2) ,eigVec(1,3)] = CartToSph(V(1,3),V(2,3),V(3,3));
$Trend and plunge of intermediate eigenvalue: column 2 of V
[eigVec (2,2) ,eigVec(2,3)] = CartToSph(V(1l,2),V(2,2),V(3,2));
$Trend and plunge of minimum eigenvalue: column 1 of V
[eigVec(3,2) ,eigVec(3,3)] = CartToSph(Vv(1,1),V(2,1),V(3,1));

$Initialize confCone

confCone = zeros(2,2);

%$If there are more than 25 lines, calculate confidence cones at the 95%
$confidence level. The algorithm is explained in Fisher et al. (1987)
if nlines >= 25

ell = 0.0;
e22 = 0.0;
el2 = 0.0;
dll = 0.0;
d22 = 0.0;
dl2 = 0.0;
enll = 1.0/ (nlines* (eigVec(3,1) - eigVec(1,1))"2);
en22 = 1.0/ (nlines* (eigVec(2,1) - eigVec(l,l))AZ);
enl2 = 1.0/ (nlines* (eigVec(3,1) - eigVec(1l,1))*(eigVec(2,1)...
- eigVec(1,1)));
dnll = enll;
dn22 = 1.0/ (nlines* (eigVec(3,1) - eigVec(2,1))%2);
dnl2 = 1.0/ (nlines* (eigVec(3,1) - eigVec(2,1))*(eigVec(3,1)...
- eigVec(1,1)));
vec = zeros(3,3);
for 1 = 1:3
vec(i,1l) = sin(eigVec(i,3) + east)* cos(twopi - eigVec(i,2));
vec(i,2) = sin(eigVec(i,3) + east)* sin(twopi - eigVec(i,2));
vec(i,3) = cos(eigVec(i,3) + east);
end
for 1 = 1l:nlines
cl = sin(P(1i)+east)* cos (twopi-T(i));
c2 = sin(P(1i)+east)* sin(twopi-T(i));
c3 = cos(P(1i)+east) ;

ulx = vec(3,1)* cl1 + vec(3,2)* c2 + vec(3,3)* c3;
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u2x = vec(2,1)* cl + vec(2,2)* c2 + vec(2,3)* c3;
u3x = vec(l,1)* cl + vec(1l,2)* c2 + vec(l,3)* c3;
ell = ulx*ulx * u3x*u3dx + ell;
e22 = u2x*u2x * u3x*ul3dx + e22;
el2 = ulx *u2x * ul3x*uldx + el2;
dll = ell;
d22 = ulx*ulx * u2x*u2x + d22;
dl2 = u2x * u3dx * ulx*ulx + dl2;
end
e22 = en22* e22;
ell = enll* ell;
el2 = enl2* el2;
d22 = dn22* d22;
dll = dnll* dii;
dl2 = dnl2* di2;
= -2.0*log(.05) /nlines;
initialize £

Q

o°

f = zeros(2,2);
if abs(ell*e22-el2*el2) >= 0.000001

£(1,1) = (1/(ell*e22-el2*el2)) * e22;
£(2,2) = (1/(ell*e22-el2%el2)) * ell;
£(1,2) = -(1/(ell*e22-el2%el2)) * el2;
£(2,1) = £(1,2);

$Calculate the eigenvalues and eigenvectors of the matrix f using

$MATLAB function eig. The next lines follow steps 1-4 outlined on

$pp. 34-35 of Fisher et al. (1987)
DD = eig(f);
if DD(1) > 0.0 && DD(2) > 0.0
if 4/DD(1) <= 1.0 && d/DD(2) <= 1.0
confCone (1,2) = asin(sqrt(d/DD(2)));
confCone (1,1) = asin(sqrt(d/DD(1))) ;
end
end
end
Repeat the process for the eigenvector corresponding to the

o°  oe

eigenvalue
if abs(dl1*d22-d12*d12) >= 0.000001
£(1,1) = (1/(d11*d22-d12*d12)) * d22;
£(2,2) = (1/(d11*d22-d12*d12)) =* dil1;
£(1,2) = -(1/(d11*d22-d12+%d12)) * d12;
£(2,1) = £(1,2);
DD = eig(f);

if DD(1) > 0.0 && DD(2) > 0.0
if 4/DD(1) <= 1.0 && d/DD(2) <= 1.0
confCone (2,2) = asin(sqrt(d/DD(2)));
confCone (2,1) = asin(sqrt(d/DD(1)));
end
end

smallest
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end

end

%$Calculate the best fit great circle to the distribution of points
bestFit=zeros (1,2) ;

bestFit (1) = ZeroTwoPi (eigVec(3,2) + east);

bestFit (2) = east - eigVec(3,3);

%$Plot stereonet
Stereonet (0,90*pi/180,10*pi/180,1) ;

%$Plot lines
hold on;
for 1 = 1l:nlines

[xp,yp] = StCoordLine(T(i),P(1i),1);
plot (xp,yp, 'k.");

end

$Plot eigenvectors
for i = 1:3

[xp,yp] = StCoordLine (eigVec(i,2),eigVec(i,3),1);
plot (xp,yp, 'rs') ;

end

$Plot best fit great circle
[path] = GreatCircle (bestFit (1) ,6bestFit(2),1);
plot (path(:,1),path(:,2),'r");

%release plot
hold off;
end

5.6 EXERCISES

1.

Decompose the following tensor, T, into symmetric and antisymmetric components. Then
calculate the axial vector magnitude, orientation, and sense of rotation:

8 -1 -1
T,=|1 6 0
-5 0 2

Expand Equation 5.12 for the terms 77, and T7. The two equations should each have nine terms
in them. It may help to follow by hand the example of the computer code given in Section 5.3.2.
Derive the transformation matrix given in Equation 5.14.

Use your expansion in Exercise 2 to derive the equations for the Mohr circle given in
Equation 5.16, using the transformation matrix in Equation 5.14 and the initial form of the
tensor in 5.15.

Is the orientation matrix a tensor? Explain your answer.

Use the function Bingham to calculate the “best-fit” great circle and the fold axis for the
bedding poles in the Big Elk anticline (Fig. 3.11 and Exercise 8 in Chapter 3).



CHAPTER

SIX

Stress

6.1 STRESS “VECTORS” AND STRESS TENSORS

There is much confusion amongst structural geology students regarding the concept of stress.
This confusion remains even after one has got it straight that stress and strain are not
interchangeable. The purpose of this chapter and the next is to examine these two fundamental
concepts in light of the tools we have developed in the preceding five chapters. With this
background we are now in a position to be much more precise about exactly what we mean
by “stress” and “strain.”

Most structural geologists learn fairly early on that stress is defined as a force, f, divided by
the area of the plane, A, on which it acts:

f
o=— 6.1
Y (6.1)
This definition is a perfectly good one and conveys the meaning that stress is a measure of force
“intensity.” But, if you examine this equation carefully, you will see that force, f, is a vector and
area, A, is a scalar. By this definition, “stress,” o, should also be a vector, just like force. Later on,
in the same introductory course on structural geology, students learn that stress at a point can
be represented by nine numbers and is, in fact, a tensor:
011 012 013
ojj = | 021 022 023 (6.2)
031 032 033

No wonder students are confused! These two types of stress are certainly related to each other,
as we will see in the next section, but they are not, by any means, identical. In this book, the word
“stress” by itself will refer to the stress tensor as in Equation 6.2. The quantity given by
Equation 6.1 will be referred to as the stress vector or more correctly (following general usage
in continuum mechanics and engineering literature) a traction.

98
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X
G

a P2
012
Figure 6.1 Tractions on the sides of a

—>

o1l D1 two-dimensional triangular element.
Traction p acts on the inclined plane

oL area = A with area A; the other tractions act on
areaimj_' ﬂ \y /y the two planes perpendicular to the
axes of the coordinate system, X
a ﬁ and X;.

=>

area=A,

022

6.2 CAUCHY’S LAW
6.2.1 Stresses in two dimensions

We’'ll begin exploring the relation between stress and traction in two dimensions, where things
are easier to visualize, and then expand the analysis to three dimensions. Suppose we have a
triangular element as shown in Figure 6.1. Two sides of the element are perpendicular to our
coordinate system and the third side, or “plane,” is inclined to the two axes at some arbitrary
angle; in this case the pole to the plane makes an angle of & with respect to the X; axis and 8
with respect to the X, axis. The stress vector, or traction, on the inclined plane with area A is p,
which can be resolved into two vectors, p; parallel to the X; axis and p, parallel to the X, axis.
The tractions on the sides of the triangle, which are perpendicular (and, of course, parallel) to
the coordinate system, are labeled with the Greek letter sigma and two subscripts.

The first subscript tells you that the plane is perpendicular to that axis. For example, 017 and
012 both act on the plane thatis perpendicular to the X; axis. The second subscript identifies the
axis that is parallel to the vector of interest. Thus, o1, and o, are both parallel to X,. Tractions
that act perpendicular to a plane are called normal tractions (or normal stress vectors); in the
case of planes perpendicular to the coordinate axes, such tractions will always have two
identical subscripts (e.g., 011 and o2). Shear tractions (or shear stress vectors) parallel the
plane and have unequal subscripts (e.g., o012 and o71).

To derive the relations between the traction on the inclined plane and those acting on the
planes perpendicular to the coordinate system, we need to do a balance of forces, not stresses.
Therefore, we need to take into account the areas of the sides of the triangle. The relations
between the areas are determined by the angles « and . In particular, from similar triangles
(Fig. 6.1) and some simple trigonometry you can see that A; and A, can be written as functions
of A and the direction cosines of the pole to the inclined plane:

Aj =Acosx and A, =Acosp (6.3)
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Figure 6.2 Tractions on a tetrahedral
element with three faces perpendicular Xo
to the three axes of the coordinate
system and the fourth face (on the back
side) inclined to all three. Note the
naming convention for the subscripts:
the first subscript shows to which axis
the plane is perpendicular and the
second subscript shows to which axis
the vector is parallel.

Now, we can write the force balance equation for the forces (i.e., tractions times area) parallel
to Xi:
P1A =o011A1 + 0214 = 011ACOS X + 0’21ACOSﬁ

Dividing through by the area of the inclined plane, A, we get
p1 =0’11COSO(+0’21COSB=0'111’11 + op1 N2 (6.4a)

where n; is the direction cosine that the pole to the plane makes with the X; axis and n, the
direction cosine with the X, axis. Likewise, summing forces parallel to the X, axis we can write

p2=0'12COSO(+0'22COSB=0'12n1 + opp N (6.4b)

If the triangular element has no torques on it, then o1, must equal o,;. You can get an intuitive
feel for why this must be so by imagining what would happen if the two tractions were not
equal.! For example, in Figure 6.1, if 51, were larger than o, the triangle would spin clockwise in
the plane of the page. The only way that this will not happen is if o1, = 0»; and they both point
either towards or away from the line of intersection of their mutual planes. This relationship is
sometimes known as the theorem of conjugate shear stresses.

6.2.2 Stresses in three dimensions

The extension of these concepts to three dimensions is quite straightforward. Figure 6.2 shows
the basic configuration, which follows all of the same basic conventions that we established in
Figure 6.1. As before, we can balance the forces to see how the various tractions relate to one
another; therefore we need to determine the areas on which those tractions act. There are
several simple ways to determine this, with one of the most straightforward being to consider
the volume of the tetrahedron:

V= (—) (area of the base)(height)

! For a more formal proof of this see Nye (1985), pp. 82-87.



6.2 Cauchy’s Law 101

We can write the expression for the volume when each of the four sides is considered to be the
base of the tetrahedron as follows (assuming in this case that the pole to the inclined plane is a
unit vector):

V:%A — ~ A1 (0A) =

and, from simple trigonometry:

= = = .5
cosx cosf cosy (6.5)
where «, 8, and y are the angles that the pole to the plane makes with the X;, X,, and X3 axes,
respectively.
Now, we can sum the forces parallel to the X; axis:

P1A = 01141 + 02142 + 03143 = 011ACOS X + 021 ACOS B + 031AcoSy
Dividing through by the area of the inclined plane, A, we get
P1 = 011 COS X + 021 COS B + 031 COSY = 01111 + 021 M2 + 03113 (6.6a)
The expressions for the tractions parallel to the other axes are

P2 = 012M + 02212 + 03213 (6.6b)
p3 = o13M + 02312 + 03313 (6.6¢)

where n; = cos «, n, = cos B, and n3 = cos y. The structure of these equations should look
familiar to you. We can write them using our shorthand matrix notation as
p=noc=o0'n (6.7)
or using the summation convention
pi = ojjh; (67b)

With this exercise, we have just shown that the group of nine tractions, oy, are in fact a tensor.
The stress tensor relates two vectors, the traction on an arbitrary plane and the unit vector that
describes the orientation of the pole to that plane. It is, as we described in Section 5.2.1, a linear
vector operator, the coefficients in a set of three linear equations that describe the relations
between these two vectors.

For the same reasons that we mentioned in the two-dimensional case, shear tractions on the
adjoining faces of the block that parallel the coordinate axes must be equivalent. Thus,

o2 =021, o13=o031, and o3 = o3

Although there are nine different coefficients to the stress tensor, only six of them are inde-
pendent. Stress, therefore, is a symmetric tensor in which the values above the principal
diagonal of the matrix (Eq. 6.2) are the same as the values below. We know from
Equation 4.20 that the transpose of a symmetric matrix is equal to itself so we can just as easily
write Equations 6.7 as

p=on or p;=ojn; (6.8)

Equation 6.8 is known as Cauchy’s Law. Understanding it is the key to grasping why stress is a
tensor; itis also the key to solving a large number of continuum mechanics problems in geology.

The MaTLAB® function Cauchy, below, calculates the tractions on a plane of any orientation in
any coordinate system. Thus, the axes do not have to be in a north-east-down coordinate
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system. Function DirCosaxes, which can be found immediately following cauchy, calculates
the direction cosines of the axes with respect to the NED coordinate system. Notice that to
completely define the orientation of the orthogonal X;, X,, and X3 axes, it is just necessary to
give the trend and plunge of one axis (e.g., X;), and the trend of a second axis (e.g., X3).

function [T,pT] = Cauchy(stress,tX1l,pXl,tX3,strike,dip)

$Given the stress tensor in a X1,X2,X3 coordinate system of any
$orientation, Cauchy computes the X1,X2,X3 tractions on an arbitrarily
$oriented plane

USE: [T,pT] = Cauchy(stress,tXl,pX1l,tX3,strike,dip)

stress = Symmetric 3 x 3 stress tensor
tX1 = trend of X1

pX1l = plunge of X1

tX3 = trend of X3

strike = strike of plane

N o° o° o° o° oP°

dip = dip of plane
T = 1 x 3 vector with tractions in X1, X2 and X3

o o° o° o° o°

pT = 1 x 3 vector with direction cosines of pole to plane transformed
to X1,X2,X3 coordinates

NOTE = Plane orientation follows the right hand rule
Input/Output angles are in radians

o o° o° o° o° oP°

Cauchy uses functions DirCosAxes and SphToCart

$Compute direction cosines of X1,X2,X3
dC = DirCosAxes (tX1l,pX1,tX3);

%Calculate direction cosines of pole to plane
p = zeros(1l,3);
[p(1),p(2),p(3)] = SphToCart (strike,dip,1);

$Transform pole to plane to stress coordinates X1,X2,X3
$The transformation matrix is just the direction cosines of X1,X2,X3
pT = zeros(1,3);
for i = 1:3

for j = 1:3

pT(i) = dC(i,J)*p(3) + pT(i);

end

end

$Convert transformed pole to unit vector
r = sqrt (pT (1) *pT (1) +pT(2) *pT(2) +pT(3) *pT(3));
for i = 1:3
pT(i) = pT(i)/r;
end
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%Calculate the tractions in stress coordinates X1,X2,X3
T = zeros(1,3); %$Initialize T
%$Compute tractions using Cauchy's law (Eg. 6.7b)
for i = 1:3

for j = 1:3

T(i) = stress(i,j)*pT(j) + T(i);

end
end
end

function dC = DirCosAxes (tX1l,pX1l,tX3)

%$DirCosAxes calculates the direction cosines of a right handed, orthogonal
%$X1,X2,X3 cartesian coordinate system of any orientation with respect to
%$North-East-Down

% USE: dC = DirCosAxes (tX1l,pX1l, tX3)

% tX1l = trend of X1

% pX1l = plunge of X1

% tX3 = trend of X3

% dC = 3 x 3 matrix containing the direction cosines of X1 (row 1),
% X2 (row 2), and X3 (row 3)

% Note: Input angles should be in radians

o\°

DirCosAxes uses function SphToCart

%$Some constants
east = pi/2.0;
west = 1.5*pi;

$Initialize matrix of direction cosines
dc = zeros(3,3);

%$Direction cosines of X1
[dC(1,1),dC(1,2),dC(1,3)] = SphToCart (tX1,pX1,0);

%$Calculate plunge of axis 3
$If axis 1 is horizontal
if pX1 == 0.0
if abs(tX1-tX3) == east || abs(tX1-tX3) == west
pX3 = 0.0;
else
pX3 = east;
end
%$Else
else

$From Equation2.14 and with theta equal to 90 degrees
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pX3 = atan(-(dC(1,1)*cos (tX3)+dC(1,2)*sin(tX3))/dC(1,3));
end

$Direction cosines of X3
[dC(3,1),dC(3,2),dC(3,3)] = SphToCart (tX3,pX3,0);

$Compute direction cosines of X2 by the cross product of X3 and X1
dc(2,1) = dC(3,2)*dC(1,3) - dC(3,3)*dC(1,2);
dac(2,2) dc(3,3)*dC(1,1) - dC(3,1)*dC(1,3);
dc(2,3) = dC(3,1)*dC(1,2) - dC(3,2)*dC(1,1);

°

% Convert X2 to a unit vector

r = sqgrt(dC(2,1)*dcCc(2,1)+dC(2,2)*dC(2,2)+dC(2,3)*dC(2,3));
for i = 1:3
dc(2,1i) = dc(2,1)/r;
end
end

6.3 BASIC CHARACTERISTICS OF STRESS

Because stress is not a characteristic of a material itself (e.g., thermal conductivity), but is
imposed on a material (like an electric field) it is called a field tensor. It is one of the simplest
tensors we will deal with in structural geology, and for that reason is a much better place,
mathematically, to start than with the various tensors related to deformation.

6.3.1 Principal axes of stress

Like any symmetric, second order tensor, the stress tensor can be expressed in terms of its
principal axes, where only the principal diagonal of the corresponding matrix has non-zero
values (e.g., Eq. 5.2). The principal stresses are merely the tractions that comprise the stress
tensor when the coordinate system has a unique orientation. Conventionally, the principal
stresses are written with just a single subscript:

oo 0 O
oj=10 o2 O (6.9)
0 0 o3

Again, let us remind you that, although the principal stresses are written in Equation 6.9 so that
they are parallel to an axis of the same number, there is no reason why it has to be that way.
Equally important, although they bear superficial similarity, o1, o2, and o3 are most definitively
not the scalar components of a single vector. Single subscripts indicate magnitude only (tech-
nically, the three eigenvalues of the stress tensor) and not orientation in our given coordinate
system. By convention, the largest principal stress is ¢; and the smallest is ¢3. In geology, a
common convention is that compression is positive, reflecting the fact that virtually all stresses
inside the Earth are compressions except at very shallow levels in the crust. Engineering follows
the opposite convention where tensions are positive.

If we know the sixindependent components of stress in any arbitrary coordinate system, we
can find a coordinate system in which the axes are parallel to the principal stresses. In
Section 5.4.2, we already saw how to solve this problem for our generic tensor, T, but it is
worth going over it again for the case of stress. If a plane is perpendicular to a principal stress,
there will be no shear stress on the plane because all of the off-diagonal components of the
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Figure 6.3 lllustration of stresses on a
p plane perpendicular to a principal stress.
When the plane is perpendicular to a

principal stress the traction on the plane,
p, is parallel to the pole to the plane, n,
the traction has the same magnitude and

orientation as the principal stress
(p = 01),and there are no shear tractions
parallel to the plane.

=>

A\

stress matrix are zero. Remember, we argued above that the tractions with unequal subscripts,
i # j, in the stress tensor are shear tractions and those with equal subscripts, i = j, are normal
tractions. In Equation 6.9, all the components with i # j are zero. Therefore, we want to find a
plane, and the traction on that plane, where there is no shear stress. The only case where this is
true is when the traction is parallel to the pole of the plane (Fig. 6.3).

Assuming that the principal stress has some unknown magnitude, A, we can express the
parallelism of the traction and the pole as

p® =1n (6.10)

Substituting Equation 6.10 into Cauchy’s Equation 6.8 we get
M =on or kni:o,-jnj (6.11)

Using the substitution property of the Kronecker delta (Eq. 4.12), we know that n; = 6;;n; so that
Equation 6.11 can be rearranged as

(05 =16y)n; =0 6.12)

To solve for 2, take the determinant of the part in parentheses, above, and set it equal to zero,
which will give us our familiar cubic in A as in Equation 5.25. Again, this equation is generally
solved numerically. The three eigenvalues, A, are the three magnitudes of the principal stresses
and the corresponding eigenvectors give the orientations of the principal axes of stress. Below
are two MatiaB functions that deal with these problems. Function TransformStress trans-
forms the stress tensor from one Cartesian system to another of other orientation. Function
PrincipalStress calculates the principal stresses and their orientations for a given stress
tensor in a Cartesian coordinate system of any orientation. PrincipalStress, below, relies on
the MatLaB function eig to do the eigenvalue problem. If you are coding this from scratch in a
normal programming language, you will need to call subroutines such as Jacobi and Eigsrt
from Numerical Recipes (Press et al., 1986).

function nstress = TransformStress (stress, tX1l,pX1l, tX3,ntX1l,npXl,ntX3)
$TransformStress transforms a stress tensor from old X1,X2,X3 to new X1'
,X2',X3' coordinates

o o



106 Stress

% USE: nstress = TransformStress(stress,tXl,pX1l,tX3,ntX1l,npX1l,ntXx3)

o°

o°

stress = 3 x 3 stress tensor
tX1 = trend of X1

pX1l = plunge of X1

tX3 = trend of X3

ntXl = trend of X1'

npX1l = plunge of X1'

ntX3 = trend of X3!

nstress = 3 x 3 stress tensor in new coordinate system

o o® o° o° o° o° o° o°
|

o°

NOTE: All input angles should be in radians

o°

o°

TransformStress uses function DirCosAxes

$Direction cosines of axes of old coordinate system
odC = DirCosAxes (tX1l,pX1l,tX3);

$Direction cosines of axes of new coordinate system
ndC = DirCosAxes (ntX1l,npXl,ntX3);

$Transformation matrix between old and new coordinate system
a = zeros(3,3);
for i = 1:3
for j = 1:3
%$Use dot product
a(i,j) = ndC(i,1)*odC(j,1) + ndC(i,2)*odC(j,2) + ndC(i,3)*odC(]j,3);
end
end

$Transform stress tensor from old to new coordinate system (Eg. 5.12)
nstress = zeros(3,3);
for i = 1:3
for j = 1:3
for k = 1:3
for L = 1:3

nstress(i,j) = a(i,k)*a(j,L)*stress(k,L)+nstress(i,]j);
end
end
end
end
end
function [pstress,dCp] = PrincipalStress(stress,tXl,pXl,tX3)

$Given the stress tensor in a X1,X2,X3 coordinate system of any
$orientation, PrincipalStress calculates the principal stresses and their
$orientations (trend and plunge)

o
5



6.3 Basic characteristics of stress 107

o°

USE: [pstress,dCp] = PrincipalStress(stress,tXl,pX1l, tX3)

oe

o°

stress = Symmetric 3 x 3 stress tensor
tX1 = trend of X1
pX1l = plunge of X1

o\°

o\°

% tX3 = trend of X3

% pstress = 3 x 3 matrix containing the magnitude (column 1), trend

% (column 2), and plunge (column 3) of the maximum (row 1),

% intermediate (row 2), and minimum (row 3) principal stresses

o\°

dCp = 3 x 3 matrix with direction cosines of the principal stress

o\°

directions: Max. (row 1), Int. (row 2), and Min. (row 3)

o\°

oe

NOTE: Input/Output angles are in radians

o\°

o\°

PrincipalStress uses functions DirCosAxes and CartToSph

%$Compute direction cosines of X1,X2,X3
dC = DirCosAxes (tX1l,pX1,tX3);

$Initialize pstress
pstress = zeros(3,3);

%Calculate the eigenvalues and eigenvectors of the stress tensor. Use
$MATLAB function eig. D is a diagonal matrix of eigenvalues

%$(i.e. principal stress magnitudes), and V is a full matrix whose columns
%$are the corresponding eigenvectors (i.e. principal stress directions)
[V,D] = eig(stress);

$Fill principal stress magnitudes

pstress(1l,1) = D(3,3); %$Maximum principal stress
pstress(2,1) = D(2,2); %$Intermediate principal stress
pstress(3,1) = D(1,1); $%$Minimum principal stress

%$The direction cosines of the principal stress tensor are given with
$respect to X1,X2,X3 stress coordinate system, so they need to be
$transformed to the North-East-Down coordinate system (e.g. Eg. 3.9)
tV = zeros(3,3);
for i = 1:3
for j = 1:3
for k = 1:3
tv(j,i) = dc(k,j)*v(k,1i) + tV(j,1i);
end
end
end

$Initialize dCp
dCp = zeros(3,3);

$Trend and plunge of maximum principal stress direction
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dcp(1,:) = [tVv(1,3),tV(2,3),tV(3,3)];
[pstress(1,2) ,pstress(1,3)] = CartToSph(tV(1l,3),tV(2,3),tV(3,3));

$Trend and plunge of intermediate principal stress direction
dcp(2,:) = [tV(1,2),tV(2,2),tV(3,2)];
[pstress(2,2) ,pstress(2,3)] = CartToSph(tV(1l,2),tV(2,2),tV(3,2));

$Trend and plunge of minimum principal stress direction

dCp(3,:) = [tVv(1,1),tv(2,1),tVv(3,1)];

[pstress(3,2) ,pstress(3,3)] = CartToSph(tVv(1l,1),tV(2,1),tVv(3,1));
end

6.3.2 Mohr circle for stress

Mohr circle for stress, like any other Mohr circle, is a graphical calculator which allows us to
determine the normal and shear stress on any plane that is parallel to one of the principal
stresses and can make any angle with respect to the other two principal stresses. As described
in Section 5.3.3, the Mohr circle is derived by making a rotation about one of the principal axes
of a tensor. In Figure 6.4, the old axes are parallel to the principal axes of the tensor, o, and the
rotation is around the o, axis. By choosing our new coordinate system so that itis parallel to the
pole to the plane, the components of the tensor in its new configuration, a/ij, will automatically
give us the normal (¢ ;) and shear (¢ ;) stresses on the plane. Thus the old form of the stress
tensor and the transformation matrix (a) are, respectively,

o1 0 O cos® 0 sind
gjj = 0 o) 0 and ajj = 0 1 0

0 0 o3 —sin® 0 cos@

Using the identities cos(90 — 8) = sin 8 and cos(90 + 0) = — sin 0, the new form of the tensor,
ob,is
(anOSZQ + o38in? 9) 0 ((03 —o1)sin@ cos )
ok = 0 o2 0 (6.13)
—((o1 — o3)sin@cosB) 0 (alsin29+03C0829>

Rearranging using the double angle formulas, we get the familiar equations for the Mohr circle:

. ;”3)+(”l ;”3)cos 20 (6.14a)
o= -7 sin20 (6.14b)

The graphical representation of the Mohr circle is shown in Figure 6.5. Note that, in some
introductory structural geology textbooks, you will see the angle 26 in the Mohr circle diagram
measured clockwise from o3. Those authors have taken as a convention that the angle 0 is
measured between o; and the plane itself; in our derivation, above, 0 is the angle between the
pole to the plane and o, (Fig. 6.4a). There is nothing particularly wrong with measuring 6 from
the plane rather than the pole because the two angles are complementary. Constructing the
Mohr circle this way, however, tends to obscure its origin as a tensor transformation.

A useful property of all Mohr circle constructions is the concept of the pole to the Mohr
circle (point P in Fig. 6.5a), which can help one to relate the Mohr circle diagram to the physical
orientation of the vectors it represents (Ragan, 2009). Lines drawn from the pole to the Mohr
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o
(a) %1~ 03 plane i 3

X3 A

n= pole’*

Figure 6.4 Coordinate systems and stress vectors for the Mohr circle for stress. (@) The
“old” coordinate system, which is parallel to the principal axes of the stress tensor. Note
that the X; axis, which is parallel to o5, is contained within the plane of interest. X;, X3,
o1, 03, and the pole to the plane of interest are all coplanar. (b) The “new” coordinate
system has now been transformed into the coordinate frame of the plane of interest.
Note that X, has not changed (i.e., X; = X’3) but X; and X3, which are in the plane
perpendicular to X3, have been transformed to X’; and X's.

circle to the stress of interest on the circle are parallel to the physical orientation of that vector
in space. For example, the long dashed lines in Figure 6.5a are parallel to the principal stress
vectors in the gray block of material in Figure 6.5b.

Clearly, we can carry out the tensor transformation by rotating about any of the three principal
stresses. Thus, there are three Mohr circles for any given state of stress. The above example is for
the state of stress on planes that contain the o, axis. The other two circles will be for planes that
contain the o, axis and planes that contain the o3 axis. The three transformations together give us
a set of three nested circles (Fig. 6.6). Defined this way, all possible stresses in the body must plot
in the region between the smallest and largest circles (the shaded region in Fig. 6.6). We are not
limited to finding only those tractions that plot on one of the circles but, indeed, can find the
stress on a plane of any orientation with respect to the coordinate and principal stress axes.
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line // to pole
to plane & 61

(@) Mohr cird (b) Physical space
a) Mohr circle

Figure 6.5 (a) Mohr circle for stress, where 6 is the angle between the pole to the plane
and the maximum principal stress, o;. Geological convention of compression positive is
followed. Point P is the pole to the Mohr circle for stress. (b) The physical setting for the
state of stress shown in part (a). X; and X3 represent the old coordinate system parallel
to the principal stresses, whereas X’; and X'3 are the new coordinate system parallel to
the pole to the plane and the plane itself, respectively. Note how the physical
orientations of the stress vectors in (b) are parallel to the lines drawn between the
stresses and point P on the Mohr circle in ().

T = 0y arc concentric about arc concentric about
the 0,03 circle Ve the 0,0, circle
R (o

arc concentric about
the 0,03 circle
(01-02)/2

(02— 03)/2

On

(01 +03)/2

Figure 6.6 The three-dimensional Mohr circle for stress. All possible states of stress
must plot within the shaded region; those that include a principal plane of stress plot on
one of the margins of the three circles.
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Figure 6.6 shows the construction for finding the normal and shear tractions on a plane that
makes angles of o = 59.5°, B =55°, and y = 50° with the Xj (o1 ), Xz (02), and X3 (03) axes,
respectively. The tractions on that plane can be read off the diagram at the point of intersection
of the three arcs (point p, Fig. 6.6). For those interested in the mathematical background for these
relations, see Malvern (1969, pp. 94-101) or Jaeger and Cook (1979, pp. 27-30). Where you
measure the double angles from is most conveniently remembered by recalling which axis they
relate to. Thus, 2y is measured from o3 on the Mohr circle, 2 from o,, and 2« from o (Fig. 6.6).

6.3.3 Special states of stress

There are several special types of stress that can be precisely defined with our understanding of
the stress tensor. They are particularly easy to recognize when the coordinate axes are parallel
to the principal axes of the tensor. They are listed below and several are illustrated with Mohr
circles in Figure 6.7.

Uniaxial stresshas only one non-zero principal stress. Nye (1985) gives as an example the state
of stress in a vertical rod with a weight hung on one end. Uniaxial stress (Fig. 6.7¢) has the form

op 0 O
oj=10 0 0 (6.15)
0 0O
Biaxial stress (Fig. 6.7a) has two non-zero principal stresses:
op 0 O
oj=10 o O (6.16)
0O 0 O

Triaxial stress (Fig. 6.7b) is the most general type of stress tensor. It has three non-zero principal

stresses as in Equation 6.17:
op 0 O
oj=10 o2 O (6.17)
0 0 o3

When two of the principal stresses are equal and the third is different, it is known as a
cylindrical state of stress (Fig. 6.7¢). In this case, only the direction of the different principal
stress is unique; the other two principal stresses can have any orientation in the plane that is
perpendicular to the third. Uniaxial stress, above, is a special case of cylindrical stress where
the two equal stresses are zero.

Of particular import to structural geology is a spherical state of stress. This occurs when all
three principal stresses have the same value (Fig. 6.7d). When this is the case, any direction in
the body can be a principal axis (i.e., the stress magnitude ellipsoid is a sphere) and, therefore,
there are no planes that have shear traction acting on them. When all three principal stresses are
equal, the Mohr circle plots as a single point on the horizontal axis (Fig. 6.7d). Clearly, this point
has a shear stress, o = 0, and therefore there are no shear tractions in the body. This condition
is also known as hydrostatic stress because, as long as a fluid is not moving, the pressure is
equal in all directions and it can support no shear tractions.

Finally, a pure shear stress is one in which two of the principal stresses are equal and
opposite in sign and the third is zero (Fig. 6.7e). The tensor looks like

c 0 O
oj=10 0 O (6.18)
0 0 —0
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(a) Biaxial (b) Triaxial (c) Cylindrical, uniaxial
(d) Spherical, hydrostatic e) Pure shear

Figure 6.7 Several special states of stress as shown on general, three-dimensional
Mohr circles. The solid black dot represents a single point. (@) 03 =0, o7 and o, # 0;
(b) 01, 02,and 03 # 0; (©) 03 =02 = 0, 01 # 0; (d) 01 = 02 = 03; (€) 03 = —07, 02 = 0.

6.4 THE DEVIATORIC STRESS TENSOR

The concept of hydrostatic stress allows us to introduce an even more fundamental type of
stress tensor which is very useful in structural geology. We can define the mean normal stress
as the arithmetic average of the three normal tractions (i.e., the principal diagonal) of any stress
tensor:

p:(011+022 + 033) 6.19)

3
Note that the mean stress will be the same regardless of the coordinate system because the sum
of tractions along the principal diagonal is just the first invariant of the stress tensor. From
Section 4.3.2, we know that any matrix - and all tensors are matrices - can be expressed as the

sum of two other matrices. Therefore we can write the stress tensor as

p 00 o11—p o1 o13
ojj = 0 p O+ 021 o2 — P 093 (6.20a)
0 0 p 031 032 033 — P
or, in indicial notation
ojj = PO + Sjj (6.20b)

The matrix on the left, pdy;, is the spherical or hydrostatic stress tensor and the matrix on the
right, s;;, is the deviatoric stress tensor. As you might imagine, the hydrostatic stress tensor
exerts uniform pressure all around the body of interest. This may cause the body to shrink or
expand (i.e., change volume) but, on first glance, it is difficult to see how it would change the
shape of a body. There is a way this can occur, however. If the body on which the stress is
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applied is anisotropic with respect to its material properties (e.g., it is stronger along certain
planes than along others) then even uniform hydrostatic pressure will cause it to deform.
Nonetheless, the deviatoric stress tensor is commonly responsible for the vast majority of
shape changes; it is, after all, the tensor that has all of the shear stress associated with it.

The principal axes of the deviatoric stress tensor have the same orientation as those of the
stress tensor itself and the magnitudes differ only by a factor of p:

Si=01—-p, S2=02—p, and s3=o03—p (6.21)

For arbitrary coordinate axes it is generally easier to determine the principal axes of the
deviatoric tensor than for the stress tensor itself. This is because, for the former, there is an
analytical solution to the eigenvalue problem. For the deviatoric stress tensor, the solution to
the characteristic equation has the form:

A — g — Iy = 0 (6.22)

The analytical solution (Malvern, 1969, p. 92) to this equation is

1
g\ 2
s; = 2 oS 0(,-(%) (6.23a)
where
3
11T, 2
cos 30 = — 3 , 0(2:0(1+ﬁ, and 0(3:0(1—2—n (6.23b)
2 \1I 3

and Iy and Il are the second and third invariants of the stress tensor as described in
Equation 5.26.

6.5 A PROBLEM INVOLVING STRESS

Many clever graphical and analytical methods have been developed to determine the magnitude
and orientation of maximum shear stress on an arbitrarily oriented plane. This problem is
particularly germane to any question involving faulting and fracturing of rocks in the upper
crust. For example, during the 1980s, there was substantial interest in methods for finding a
“best-fit” stress tensor for a group of fault plane-slickenside measurements. The orientation
and magnitude of maximum shear stress on a plane is of key importance.

Rather than looking for the shortest solution, ours is designed to illustrate in a clear and
organized way the principles developed in this and previous chapters. It relies on no graphical
construction, simply a couple of tensor transformations. The rotations carried out in the
graphical methods are conceptually the same as tensor transformations. There are three
coordinate systems to deal with (Fig. 6.8): (1) The geographic coordinate system, NED, is what
the data will be entered in and also the coordinate system in which we will want our final
answers. (2) The second coordinate system is defined by the principal stress axes, o10203. All
three of these axes, including their magnitude and orientation are known in advance. (3) The
third set of coordinates is determined by the fault plane itself. These are the pole to the plane, n
(the first axis), the line in the fault plane along which there is zero shear traction, b, and the line
in the plane that has the maximum shear traction, s (the third axis). Of these final three axes, we
only know, at the beginning, the orientation of the pole.

Our solution to this problem will follow these basic steps: transform everything into
principal stress coordinates; calculate the traction vector on the plane; use that vector to
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Figure 6.8 Lower hemisphere, equal
area projection showing the three
coordinate systems involved in
determining the maximum shear
traction on the plane. See text for
description of axes.

movement

plane A

determine the other two axes, s and b, of the third coordinate system; use a tensor trans-
formation from o003 to nbs to calculate the magnitudes of the stresses on the plane; and,
finally, do a vector transformation to get the orientations of s and b in geographic coordinates.
Each of these steps is elaborated below.

6.5.1 Data entry and transformation to principal stress coordinates

The original data - the orientations and magnitudes of the principal stress axes and the
orientation of the plane - are generally entered in geographic coordinates, as trend and plunge
or strike and dip. The direction cosines of the principal stress axes will form the transformation
matrix, a, for the NED (old) to 010,03 (new) transformation. To keep things straight, one only
need enter the orientation of o; and o3; calculating o, as the cross product, o3 x o1, will insure
that the second coordinate system is right-handed. The first transformation matrix is

COS Koy COSﬁ[m] COS Yo, CN[‘H] CE[U'I] CD[”I]
a; = | cosap, cosB, oSy, | =( CNy, CEqy CDy, (6.24)
COS K|y, COS By, COS Yy CNy, CE,, CDy,

The pole to the fault plane, n, is also entered in geographic coordinates. It, too, must be
transformed into principal stress coordinates but, because the pole is not parallel to either
the new or the old axes, its orientation in the new (principal stress) coordinate system is given
by a vector transformation:

n; = a;n; (6.25)

6.5.2 Calculate the traction vector on the plane

Now that we know the pole to the plane in stress coordinates, we can calculate the traction on
the plane p’ in principal stress coordinates, from Cauchy’s Law:
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o1 0 0
p; = oy, where o;=10 o2 0 (6.26)
0 0 o3

Equations 6.24 to 6.26 are solved by the function cauchy introduced in Section 6.2.

6.5.3 Determine the orientations of s’and b’

We need to know the orientations of s’ and b’ (the orientations of s and b in principal stress
coordinates) so that the second transformation matrix, from principal stress to fault plane
coordinates, can be determined. There are many different ways to do this. One of the simplestis
to rely on the relationship that the maximum shear traction s’ on a plane is also coplanar with
the traction and the pole, p’ and n'. This plane, which contains p’, n’, and s’ (see Fig. 6.8), is
perpendicular to the fault plane and in faulting analysis is called the movement plane. The pole
to the movement plane is also b’, the second axis of our third coordinate system. Because we
know the orientation of n’ and p’ already, b’ can be determined by the cross product of those
two, and then s’ can be determined from the cross product of n’ and b’:

b=n'xp and s'=n'xb (6.27)

The direction cosines of n’, b/, and s’ in principal stress coordinates define our second trans-
formation matrix, c. Note that the above cross products do not give us unit vectors, so the above
must be divided by their magnitudes in order to get the direction cosines. The second trans-
formation matrix is

nooH,
cj = ?l/l é’,lZ 1:9//3 (6.28)
51 S 8

6.5.4 Vector transformation to get the geographic orientations

At this point, if we are just interested in the orientation of maximum shear on the plane, all that
is needed is to transform p’, b/, and s’ back to geographic coordinates (we already know what
the pole, n, is). This transformation is from the new principal stress coordinate system back to
the old geographic system, so the order of the subscripts of the transformation matrix, a, is
reversed (i.e., transposed) from what it was in Equation 6.24:

Si = ajisj- bi = aJ-,-bJ’- and pi = ajl-p} (629)
These vectors in geographic coordinates will probably have magnitudes different from one.

Before we can convert them back into more familiar trends and plunges, they must be converted
to unit vectors by dividing each of their components by their magnitudes.

6.5.5 Tensor transformation to get the magnitude of shear and normal tractions

To get the normal and shear tractions on the fault plane, we need to transform the stress tensor
from the principal stress coordinate system (now, the old system) to the fault plane coordinates
(new). The standard tensor transformation,
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U'IU- = CixCj10k1 (630)

will give us exactly what we need. The pole to the plane is the first axis so the stresses on the
plane in the new coordinate system will have a first suffix of 1. The maximum shear direction in
that plane, s/, was defined as the third axis so the shear stress on the plane will have a second
subscript of 3. In summary,

e ¢}, = normal traction on the plane,
e ¢, = shear traction on the plane,
e ), = traction parallel tob = 0.

The equations for these three tractions, which result from Equation (6.30), are
0’11 = o1 + C12Ci202 + C13C1303
0’12 = C11C2101 + C12C2207 + C13C2303 =0 (6.31)
0’13 = €1163101 + €12C3207 + €13C3303

By setting the second equation in 6.31 to zero and using the orthogonality relations (Egs. 3.3
and 4.28), we can derive an important quantity called the principal stress ratio, R (Gephart,
1990):

rol2—o) _ G3cs

= 6.32
(03 —01)  Cr2C22 (6.32)

When R = 1, 0, is equal to o3; when R = 0, o5 is equal to ;. This ratio is of key importance to the
problem of deriving stress from fault slip data (the inverse equivalent of the forward problem
that we solved above). Fault reactivation is likewise critically dependent on the principal stress
ratio. Figure 6.9 illustrates, for a single example, how the orientations and magnitudes of
tractions vary with R; you can see that the rake of the potential directions of slip on a pre-
existing fault plane can vary by 90°. In essence, Equation 6.32 shows that inversion of fault slip
data for stress can yield only four independent quantities: the ratio of principal stresses R, and
three independent angles (or direction cosines) that uniquely define the orientations of those
principal stress axes. The fourth direction cosine in Equation 6.32 is dependent on the other
three by the orthogonality relations. Thus, as shown by Gephart (1990), it is impossible to
determine the magnitudes of the principal stresses from fault slip data. The importance of the
principal stress ratio was first realized by Bott (1959). Note that Angelier (1984) defines a
variation on the principal stress ratio:

02 — 03

i) (6.33)

T o1 — 03

In this case, if ® =0, then o, = 03, and if ® =1, then o, = 7. Thus, ® = 1 — R. The MarLAB
function shearonPlane below carries out all the calculations in this section.

function [TT,dCTT,R] = ShearOnPlane (stress,tXl,pXl,tX3,strike,dip)
$ShearOnPlane calculates the direction and magnitudes of the normal

°

and shear tractions on an arbitrarily oriented plane
USE: [TT,dCTT] = ShearOnPlane (stress,tX1l,pXl,tX3,strike,dip)
stress = 3 x 3 stress tensor

tX1 = trend of X1
pX1l = plunge of X1

o o o° o° o o° o
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Figure 6.9 lllustration of the importance of the stress ratio, R (Eq. 6.32), for determining
the direction and magnitude of shear on an arbitrarily oriented plane (which has the
same orientation as that in Fig. 6.8). The orientations of the principal stresses and the
plane are held constant and the values of oy = 50MPa and o3 = 10 MPa are also
constant. All that varies is the value of R (i.e., o, relative to o7 and o3). (@) Lower
hemisphere, equal area projection showing the orientations of the principal stresses
(solid squares), the plane of interest (great circle) and its pole (n), and the variation in
orientation of the shear tractions on the plane, s, as well as the traction vector, p, with
0.0 < R< 1.0. (b) Graph showing how, for the same example as (a), the magnitudes of
the traction, normal, and shear vectors vary with R.

tX3 = trend of X3

strike = strike of plane

dip = dip of plane

TT = 3 x 3 matrix with the magnitude (column 1), trend (column 2) and
plunge (column 3) of: normal traction on the plane (row 1),
minimum shear traction (row 2), and maximum shear traction (row 3)

dCTT = 3 x 3 matrix with the direction cosines of unit vectors parallel
to: normal traction on the plane (row 1), minimum shear traction
(row 2), and maximum shear traction (row 3)

R = Stress ratio

NOTE = Input stress tensor does not need to be along principal stress
directions
Plane orientation follows the right hand rule
Input/Output angles are in radians

ShearOnPlane uses functions PrincipalStress, Cauchy and CartToSph
nitialize TT and dCTT

= zeros (3,3);
TT = zeros(3,3);
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$Compute principal stresses and principal stress directions
[pstress,dCp] = PrincipalStress(stress,tXl,pX1l,tX3);

%$Update stress vector so that it is along principal stress directions

stress = zeros(3,3);
for 1 = 1:3

stress(i,i) = pstress(i,1);
end

$Compute tractions on plane in principal stress direction (Egs. 6.24-6.26)
[T,pT] = Cauchy(stress,pstress(1l,2),pstress(1l,3),pstress(3,2),strike,dip);

$Find the B axis by the cross product of T cross pT and convert to
$direction cosines (Eg. 6.27)

B = zeros(1,3);

B(1l) = T(2)*pT(3) - T(3)*pT(2);
B(2) = T(3)*pT(1) - T(1)*pT(3);
B(3) = T(1)*pT(2) - T(2)*pT(1);

$Find the shear direction by the cross product of pT cross B. This will
%give S in right handed coordinates (Eqg. 6.27)
S = zeros(1,3);

S(1) = pT(2)*B(3) - pT(3)*B(2);
S(2) = pT(3)*B(1) - pT(1)*B(3);
S(3) = pT(1)*B(2) - pT(2)*B(1);

$Convert T, B and S to unit vectors
rT = sqgrt (T(1)*T(1)+T(2)*T(2)+T(3)*T(3));
rB = sqrt (B(1)*B(1)+B(2)*B(2)+B(3)*B(3));
rS = sqgrt(S(1)*S(1)+S(2)*S(2)+S(3)*S(3));
for 1 = 1:3

i) = T(1)/rT;
B(i) = B(i)/rB;

i) = S(i)/xS;
end

$Now we can write the transformation matrix from principal stress
$coordinates to plane coordinates (Eg. 6.28)
a = zeros(3,3);

a(l,:) = [pT(1),pT(2),pT(3)];
a(2,:) = [B(1),B(2),B(3)];
a(3,:) = [8(1),8(2),8(3)1;

$Calculate stress ratio (Eq. 6.32)
R = (stress(2,2) - stress(1l,1))/(stress(3,3)-stress(1,1));

%$Calculate magnitude of normal and shear tractions (Eg. 6.31)
for i = 1:3
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TT(i,1) = stress(l,1)*a(l,1)*a(i,1) + stress (2,2)*a(l,2)*a(i,2) +...
stress(3,3)*a(l1,3)*a(i,3);
end

$To get the orientation of the tractions in north-east-down coordinates, we
$need to do a vector transformation between principal stress and
$north-east-down coordinates. The transformation matrix is just the

%$direction cosines of the principal stresses in north-east-down coordinates

% (Eq. 6.29)
for i = 1:3
for j = 1:3
dCTT(1,1i) = dCp(j,1)*pT(j) + dACTT(1,1i);
dCTT(2,i) = dCp(j,1i)*B(j) + dCTT(2,1);
dCTT(3,1) = dCp(j,1i)*S(j) + dACTT(3,1);
end
end

$Trend and plunge of traction on plane

[TT(1,2),TT(1,3)] = CartToSph(dCTT(1,1),dCTT(1,2),dCTT(1,3));
$Trend and plunge of minimum shear direction
[TT(2,2),TT(2,3)] CartToSph (dCTT(2,1) ,dCTT(2,2),dCTT(2,3)) ;
$Trend and plunge of maximum shear direction
[TT(3,2),TT(3,3)] = CartToSph(dCTT(3,1),dCTT(3,2),dCTT(3,3));
end

6.6 EXERCISES

1. Using the Mohr circle, perform a tensor transformation on the tensor shown in Equation 6.18
by a 45° rotation around the o, axis. Discuss your results.

2. Show why there is no quadratic term, 2%, in Equation 6.22.

3. Show that Equations 6.31 follow from 6.30 when the old coordinate system is parallel to the
principal stress axes.

4. Derive Equation 6.32 from Equations 6.31 and the orthogonality relations.

5. A state of stress with the following principal stress magnitudes, o; = 40 MPa, o, = 20 MPa,
o3 = 10 MPa, has a 0y axis oriented vertically, o, aligned in a horizontal E-W direction, and o3
in a horizontal N-S direction. Calculate the magnitude and orientation of the normal and
maximum shear stress acting on a plane striking 60° and dipping 55° SE. Hint: Use function
ShearOnPlane.

6. In the Oseberg field, North Sea, the principal stresses are oriented o7 = 080/00, o, = 000/90,
and o3 = 170/00. If at 2 km depth, oy = 50MPa, 0, = 40MPa, and o3 = 30 MPa, what is the
normal and shear stress on a plane oriented (strike and dip, right-hand rule) 040/65? Hint:
Use function shearonPlane.



CHAPTER

SEVEN

Introduction to deformation

7.1 INTRODUCTION

A famous structural geologist once remarked, “As a structural geologist, I don’t believe in stress.”
It is true that we never really see stress (because it is a field tensor) or can ever measure stress
directly. All we can observe is the end product of imposing stress on a material, and that is whatis
broadly known as deformation. We may observe deformation while the accompanying stress is
still present, as in the case of seismic waves generated by earthquakes or rock bursts in a quarry
or, more commonly, we may observe rocks that were distorted by stress some hundreds of
millions of years ago. Stress is instantaneous; deformation is what we see in the rocks.

In our study of deformation, we are embarking on new territory in one very important
aspect: We will be comparing the states of material at two different points in time. When we
did stress tensor transformations in the last chapter, we were simply taking two different looks
at the same state of stress at the same instant in time. Studying deformation requires that we
establish both temporal and spatial frames of reference.

Deformation, which most structural geologists choose to concentrate on, is in fact a far
more complicated topic than stress. There is a plethora of different symmetric and asymmetric
tensors, some quite messy, which describe deformation. In this chapter, we introduce some
fundamental concepts about this topic and then in Chapter 8 we’ll take a look at some
simplifying mathematical assumptions that make deformation almost as easy as stress to
deal with. In Chapter 9, we’ll see just how messy it can get with an introduction to finite strain.

In the first chapter, we wrote that deformation is the product of strain (distortion), rotation,
and translation; we are about to find out what that means. Presentations of strain in most
structural geology texts start with some simple one-dimensional measures of strain:

Ir— 1
extension: e = % (7.1a)
i

120
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stretch: S :ll—f (7.1b)
i

I 2
quadratic elongation: 1 = S? = (—f> (7.10)

where I is the final length and J; is the initial length. The presence of the J; in the denominator of
Equations 7.1 signals an implicit assumption that the initial state is the reference state. One
could equally well choose the final state as the reference condition. On a more profound level, it
is not clear from the above equations what the nature of the extension, stretch, and quadratic
elongations are because there is no explicit coordinate system. We now have the tools to rectify
that shortcoming, thereby enabling a deeper understanding of strain.

Before addressing the topic of strain, however, we need to develop a precise understanding
for some simpler concepts: coordinate transformations, deformation gradients, and displace-
ment gradients.

7.2 DEFORMATION AND DISPLACEMENT GRADIENTS

Though we commonly struggle to determine displacements in geology - the slip on a fault, the
translation of a continent across the globe - individual displacements tell us virtually nothing
about deformation itself. To determine the deformation of a region, we need to know how the
displacement of one part of the region compares with displacement of several other parts of the
region. The displacement vectors at several different points define a displacement field; defor-
mation is the gradient of the displacement field.

To get a feeling for deformation and displacement gradients, take the following real-world,
if oversimplified, example. Salt Lake City, Utah, and Carson City, Nevada, are located on
opposite sides of the Basin and Range Province in the western United States (Fig. 7.1). The
two cities are presently located about 700 km apart but, before extension occurred in the Basin
and Range Province, they (or, strictly, the spots of ground they now occupy) were only about
350 km apart. The town of Austin, Nevada, lies more-or-less on the same line of section and is,
at present, about 240 km from Carson City. We would like to find not only the distance between
Carson City and Austin prior to extension, but also to have a convenient way of calculating
where any other spot on the line was before the deformation. This problem clearly over-
simplifies the Basin and Range extensional history, but is useful for developing an intuitive
feel for deformation and displacement gradients.

You can think of there being two different coordinate systems in this problem, both of
which have their origin at Carson City, Nevada (Fig. 7.2). We will refer to the axis prior to
extension with a capital X and the present day axis with a small x. Both X and x have the
same units, but the positions of the cities along the coordinate axes have changed because of
the deformation.

The relations between the x and X axes can be described in terms of a coordinate trans-
formation. Although this sounds suspiciously like the transformation of coordinate axes that
we discussed in Chapter 3, it is quite different. The transformation of axes was just a way of
looking at the same thing from two different points of view. The coordinate transformation
here represents two different states in time, one in the present and another in the past. We could,
for example, carry out a transformation of axes to take several different looks at the present
state, but it would not help us to understand the relationship between the present and past
states because the two are different.
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Figure 7.1 Map of the western United States showing the line along which we are
interested in the one-dimensional strain. The line between Carson City and Salt Lake
City is the x axis discussed in the text.

Figure 7.2 Two one-dimensional (a) Present
coordinate systems that describe the
distances between the cities shown in
Figure 7.1 before (b) and after (a) the
Cenozoic extension in the western
United States. You can think of the two
axes as a hypothetical present-day

Carson Austin Salt Lake City
City o : fe f : —e—> X

(b) Before extension

road map (a) compared to a mid- - t® : to—> X

i paleo- paleo- paleo-Salt Lake
Tertlary one (b). In both (a) and (b) the B raan et City
tick marks occur every 100 km. City

In the case of our example, the coordinate transformation is inhomogeneous because the
change is not constant but depends on position. Salt Lake City has clearly been moved a greater
distance from Carson City than the town of Austin has; the magnitude of the change depends
on the position of the point of interest. We can write equations that express the position in one
frame of reference as a function of the position in the other reference frame. For the case above,

x =2X (7.2a)

or
X =0.5x (7.2b)
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Note that, even in this one-dimensional case, we are treating the positions of the towns as
position vectors, rather than scalars. The first equation (7.2a) gives a point’s position in
present-day coordinates as a function of its position prior to the start of the extension. Salt
Lake City started out at ~350km from Carson City and, by Equation 7.2a, it should now be
~700km away. The second equation (7.2b) yields the position of a point in the past, given its
present coordinates. This is the equation we want in order to solve the question: “How far was
Austin from Carson City before the extension began?” Substituting 240 km (i.e., the present
distance between Carson City and Austin) for x in Equation 7.2b, we calculate that “paleo-
Austin” was 120km from “paleo-Carson City” before extension (Fig. 7.2b). In more precise
terms, Equation 7.2a is a Green transformation (new in terms of old), whereas Equation 7.2b
is a Cauchy transformation (old in terms of new).

Although the change in position is not constant, the ratio or gradient of the change is
constant (in this oversimplified example). It is nothing more than the slopes in the above simple
equations, which apply not only to Salt Lake and Austin, but every other point in between. We
can write these gradients as

N & hmﬁ =2 (7.3a)
AX . 0X
A= hma—X =05 (7.3b)

These ratios are known as the deformation gradients and they are homogeneous, unlike
the coordinate transformations. We use 9 to indicate partial derivatives in the above equa-
tions because, as we'll see below, the deformation gradients can be functions of positions
along each of the three axes of the coordinate system. “Deformation gradient” is, in fact, just
a fancy name for something with which we are already familiar. Ax gives the present, or
final, length between any two points along the line (Salt Lake and Austin, for example); the
AX is the initial length between the same two points. Thus, the ratios in Equations 7.3 are
nothing more than the stretches referred to either the initial or the final conditions as in
Equation 7.1b:

_ final length,[;  AX  (Xgait rake — Xaustin) _ (670 —240)km 430

" initial length, ; ~ AX ~ (Xsait take — Xaustin) (335 — 120)km ~ 215

2 (7.4a)

o _ initial length,; AX 215km _
S~ Tmallength., ~ &x _ 430km (7.4b)

For translation alone, all points along the line move by the same amount and the coordinate
transformations would be homogeneous. In this case, Ax = AX, and the deformation gradients
would be equal to one. Likewise, the stretches, S and S, will also be one.

Another way to look at this problem is to consider the displacement vectors that connect the
initial and final positions of points along the line (Fig. 7.3). Continuing with the Basin and Range
example, we can write

Usalt Lake = XSalt Lake — XSalt Lake = 670km — 335 km = 335 km

7.5
UAustin = XAustin — XAustin =240km — 120km = 120km ( )

In both cases, the vector, u, is equal to the initial position of the city and it is also equal to half
the final position of the city. That is, the size of the displacement vector depends on its position,
SO we can write
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Carson Austin Salt Lake City
City ™ | e | | | —o—> X

T 89— T T @

Figure 7.3 Same coordinate systems : :
as in the previous figure, but now uAus‘i‘; :' Ugalt Lake :':
emphasizing the displacement vectors  (b) ! !
that connect initial and final positions

of the cities.

o—io—+———+o—> X

paleo- paleo- paleo-Salt Lake

Carson Austin City

City
u=X (7.6a)
u=05x (7.6b)

The first equation (7.6a) is known as Lagrange displacement (in terms of old) and the second
(7.6b) Euler displacement (in terms of new). Like the coordinate transformation, the displace-
ment field is inhomogeneous because all vectors are not the same length. However, the change
in displacements with position, or displacement gradient, is constant and homogeneous (i.e.,
because the slopes in Equations 7.6 are constant). Thus, we can write

Au .. Ou
Ax lmpx=1 w72
Au .. Ju

Again, the partial derivatives are to prepare us for the future three-dimensional case.

The physical meaning of Au becomes obvious when we expand it for the Basin and Range
case that we have been considering throughout this section. Au is just the difference between
two vectors; in the case of our example, it is the difference between ugy; 1 ake and Uaystin (Fig. 7.3).
To simplify the following equations, we’ll just use S as the subscript for Salt Lake and A as the
subscript for Austin. We know from Equations 7.5 that

Ug :XS_XS anduA:XA—XA

Therefore, we can write the equation for Au:
AUZUS —Up = (Xs 7XS) - (XA 7XA)

This equation can now be rearranged in terms of the initial and final lengths between Salt Lake
and Austin:

Au:(XS*XA)f(Xsfo) =Iffli

Now, we can rewrite Equations 7.7:

Au_ (us-uy) -1
CTAX T XXy (7.82)
_  Au (ug — uA) If — I,'
e=ix" &%) T (7.8b)

Thus, the displacement gradients are just the extensions referred to the initial state (e) and to
the final state (e). So far we have only determined the same simple equations that everyone
learns in their initiation to strain in a first course in structural geology. Equations 7.4 and 7.8
are not quite right because they imply that a scalar quantity - S in the case of 7.4 and e in the
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0Old coordinates

New coordinates

Coordinate transformation Green Cauchy
X = %X X| = %x
1= ox, 1= 5% 0
Displacements Lagrangian Eulerian
u = %X u; = %x
1= 0X1 1 1= 8){1 1
Table 7.1

case of 7.8 - is equivalent to the ratio of two vectors. This tells us something important: The
stretch and the extension are really scalar components of tensor quantities. The difference here
is that we have been more accurate about what the quantities of interest are and we have
developed these ideas in such a way that extension to three dimensions will be straightforward.
If we just had translation alone, the displacement field would be homogeneous because all
of the vectors, u, would be the same length and orientation. The displacement gradient would
be zero because there is no change in u anywhere:
oun  ou
X Oox
In preparation for three dimensions, we summarize what we’ve learned so far in Table 7.1.
The subscript 1 is used to indicated that the positions, vectors, and gradients are along
the X; or x; axis. We use partial derivatives because, in general, there will be three axes in
our Cartesian coordinate system and the transformations and displacements will depend on
all three.

7.3 DISPLACEMENT AND DEFORMATION GRADIENTS IN THREE DIMENSIONS

7.3.1 Displacement of a point

We have seen in the previous section that the deformation and displacement gradients in one
dimension are identical to the stretch and the extension that all students learn about in their
introductory structural geology classes. To analyze real-world deformation, however, we need
to work in three dimensions, not one. Thus, we’ll now leave our (overly) simple Basin and Range
example behind and plunge into three dimensions (Fig. 7.4).The deformation gradient matrix is

X 0x Ox
X1 gXI gXZ gXL’, X
| |9 o 9x :
X = ax, 9X, 09X X (7.9)
X3 My ox oy | L
X, 09X, 0Xs

You can see that it would be very tedious to write matrices like this out all the time. It is much
easier to use the Einstein summation convention. For the same deformation gradient with

respect to the initial state, we write

— axi .
Xi = 8—XJXJ (7.10a)
With respect to the final state, it is
x =iy (7.10b)

ax;
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X3

Figure 7.4 Displacement of a point by
vector u in three dimensions. The axes X3
x and X refer to the new and the old 1
coordinate systems, respectively. ‘

Likewise, the displacement gradient with respect to the initial state is

N 8“1
U = _aXJ-XJ (7.11a)
and with respect to the final,
7 ou;
U; 78_xjxj (7.11b)

Note that Equations 7.10 and 7.11, and Figure 7.4, describe the displacement of a point with
coordinates [X; X, X3]to a position [x; x» x3]. How does this case apply to our earlier
example where there were two vectors, the displacement of Austin and the displacement Salt
Lake (Fig. 7.3)? In Figure 7.4, there are, implicitly, two position vectors, one from the origin to
the tail of the vector, and another from the origin to the head of the vector, u. But, while
Equations 7.10 and 7.11 describe the displacement of a point, they don’t really describe strain
because we don’t yet know how different points within the material move with respect to one
another.

7.3.2 Difference between two displacement vectors

To address this shortcoming, we consider two displacement vectors, which for simplicity’s
sake are illustrated in two dimensions (Fig. 7.5). The situation shown in the blowup on the
right side of Figure 7.5 is equivalent (in 2D) to that shown in Figure 7.4, but now the position
vectors are shown explicitly. Vector PQ has coordinates [AX; AX, AXj]and the distorted
vector P’Q’ has coordinates [Ax; Ax, Axz]. What we want to find is a relationship between
the initial (or final) position of the vectors and the displacement vector, Au;, as shown in
Figure 7.6.
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A X2, X2

Q
o
Q
\ 0 AX; = X; — 'X;
AXf P X;
P

P e
XJ’ X1 !

(a) (b)

Figure 7.5 (a) Vector PQ is distorted to vector P’Q’ during deformation. (b) A blowup of
the light gray box on the left, showing the physical meaning of AX;, which is the
difference between the position vector to point P and the position vector to point Q.

A X2, X2

Figure 7.6 All of the vectors involved in describing
the distortion of vector PQ to vector P’'Q’.

> X1, X1

You can see from Figure 7.6 that Au; is the difference between the two displacement vectors
that connect PP’ (Pu;) and QQ’ (2u;). Alternatively, Au; is the difference between P'Q’ and PQ. We
can write a simple vector addition equation that reflects this last statement:

P/Q/ = AXx; = AX; + Au;

Expanding Au; we get
AU = Qu,- — Pu,-

Substituting from Equation 7.11a:

ou; ou; ou;
Aui = Qu; — Py = LQy. _ Py LQyx _Px.
Ui U; U; a)(] . a‘XJ \J 0}{]( . J)
Since AX; = 2X; — PX; we can write
8“1' ..
Aulf(,)—XjAXJ (i,j=1,2,3)

Remember that we said that the displacement gradient is nothing more than the extension, so,

ou;
a—XJ’_ = ¢j and Au; = ejAX; (7.12a)
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Because Auy; and AX; are vectors, it follows that e;; is a tensor, the Lagrangian displacement
gradient tensor (referred to the initial state). Following the same steps as above, we can write the
Eulerian displacement gradient tensor (referred to the final state):

Ui _ 5, and Au; — eyAx, (7.12b)
an

To derive the equivalent expressions for the deformation gradient tensors, we can simply
expand the equations for Ax;:

/ ’ OXi OXi IXi OXi
Ax;i =Ly —Px; =22LQx, _ Z0 Py _ 27 (Qy. Py — ZTLAX,
Xi Xi Xi a){] J 8){] . 8){] ( . J) 8){] .
As before, the deformation gradients are equivalent to the one-dimensional stretches, so
OXi
6—X; = Fij and AX; = FUAX, (7.13a)
X _ _
% = Fij and A){, = FijAXj (713]3)
Jj

Fj; is the Green deformation gradient tensor, referred to the initial state, and Fij is the Cauchy
deformation gradient tensor, referred to the final state. All of the deformation and displace-
ment gradient tensors as described here are valid for either small or large deformations. Having
four different tensors to deal with is cumbersome at best, so it would be nice if there were some
simplifying assumptions that would remove that complexity. In the next chapter, we’ll explore
just such a simplification.

7.4 GEOLOGICAL APPLICATION: GPS TRANSECTS

The Global Positioning System (GPS) has revolutionized the science of geodesy by making it
possible to detect small movements of the Earth over very large distances. This technique has
become the backbone of many studies in tectonics over the past decade and has enabled, for the
first time, structural geologists to measure deformation “in real time.” Many early GPS studies
collected data in transects perpendicular to local structure.

A simple way to look at the strain between stations is to plot the displacement vectors of the
stations against their positions along a transect. The slope in such a plot represents the differ-
ence in displacement of the two stations, Au, over the difference in position of the two stations,
AX (Fig. 7.7). From what we have just seen, this is nothing more than the displacement gradient,
and from Equations 7.8 and 7.12 this ratio is, in one dimension, our old friend the extension:

% = % =e (7.14)
To estimate this gradient, or slope, we commonly fit a straight line to the points (Fig. 7.7). Before
proceeding with the solution to the geological problem, we need to address the general problem
of fitting data to a straight line.

7.4.1 Least squares fit of data to a line

All graphics programs and spreadsheets now enable a user to fit a straight line to data,
commonly called a linear regression. Undoubtedly, many professors have seen comically
egregious misuse of this function, not only by their students, but also occasionally by their
own colleagues! This is such a fundamental operation that, as scientists, we should know how
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Au
A slope = —
Pe7 Ax

I‘ Figure 7.7 Plot of displacement versus position. The slope
3 l gives the extension, e, in the direction of the transect. Note
I the implicit sign convention of the displacements: positive
‘o displacements are those where the vector points in the

. l positive direction of the position axis. If the transect were
§ east-west, these vectors would point east; west-pointing

‘ vectors would have negative displacement values.

Displacement, u

\ 4

Position, X

this actually works. Our discussion below gives only the briefest outline of least squares fitting
and we highly recommend that you read the lucid treatment of this topic by Taylor (1997), the
classic work of Bevington and Robinson (2003), or that found in any of a number of different
statistics textbooks.

In the case shown in Figure 7.7, the equation for the straight-line fit will have the form

u=t+eX (7.15)

where u is the displacement vector, t is the intercept along the displacement axis (i.e., the
displacement at the position X = 0), the position along the transect is X and the slope of the
line, also the extension as in Equation 7.14, is e. There are n GPS stations and the letter i
designates a station i located at position X; displaced by an amount u;. Furthermore, we will
assume that there are significant uncertainties, o;, in the displacement vector, u;, but negligible
uncertainties in the position of the station, X;.

Let’s explore, for a minute, what the uncertainty, o;, actually means. Suppose that you were
able to make multiple measurements of the displacement vector, u;, at station i. The measure-
ments would, of course, not all be identical but would have some variation about the mean, or
average, value. If that variation were well behaved, it would have a normal, or Gaussian,
distribution - the familiar bell curve with a maximum centered at the mean. ¢; is known as
the standard deviation of that normal distribution and its value is given by

o= \/ﬁzfﬂ (g — w)® (7.16)

where N is the number of measurements of displacement vector u and #1is the average of all of the
measurements of the displacement vector at station i. For simplicity’s sake, we have omitted the
subscript i from Equation 7.16. There is some discussion in the literature of whether or not to
use N or (N — 1) in the denominator of Equation 7.16. Using (N — 1) makes sense because, in the
limiting case where you have only one measurement, the standard deviation is undefined (divide
by zero). However, we particularly like the attitude of Press et al. (1986), who wrote: “If the
differencebetween N and N — 1 ever matters to you, then you are probably up tono good anyway -
e.g., trying to substantiate a questionable hypothesis with marginal data.” Equation 7.16 gives the
value of one standard deviation, where you have a 68% chance that the correct answer lies at 1o or
less from the mean. At 20 or less from the mean, you are 95% confident, etc. The variance, another
common measure, is equal to the square of the standard deviation.

We return, now, to the question of how to find the best-fit straight line for multiple stations.
Without going into greater detail of normal distribution, suffice it to say that the difference
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between the observed value at a single station, u;, and the value of u given by the best-fit straight
line (Eq. 7.15) is

uj — t—exX;

and the statistic y? is the sum of the squares of the above difference divided by the uncertain-
ties, defined as
" (u— t — eX;)?
x2=27( — ) (7.17)
i=1 T
This is why linear regression is known as least squares best fit. To find the best-fit line we must
minimize x?2, which means differentiating 7.17 with respect to t and e and setting it equal to zero:

ox® LU —t—eX;
X - fzi; - 0 (7.18a)
and
ox® L X(u— t—eX;)
2oy M= g (7.18b)

i=1 i

Equations 7.18 give us two equations for our two unknowns, t and e. Following Press et al.
(1986), we define the following quantities:

n n vy, n_o.,.
5=y =Yl s=) 4

g g g

i=1 %i i-1%i i-1%i (7.19)
n X-Z n )(iui 2
Sw=>"h Sw=) 5 A=SSx-S%
=1 %i i—1 i
and with them can rewrite Equations 7.18 as
tS+ eSxy = Sy (7.20a)
and
tSx + eSxx = Sxu (7.20b)
We can now solve for t and e:
t= SxxSu — SxSxu (7.21a)
A
and
e— w (7.21b)

Because we know the input uncertainties, o;, we can propagate the errors through to get the
uncertainties on t and e. We will explore error propagation in a subsequent chapter; for now, we
simply give the errors for the two parameters:

o= ]2 (7.22a)
and

(7.22b)
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Finally, we introduce two additional parameters: The covariance of t and eis

—Sx
Ote = T (723)
and the correlation coefficient, r., which varies between -1 and 1,
— Sy
Ve = ———— 7.24
= S ( )

The correlation coefficient tells us how well u and X are correlated (r, ~ 1), anticorrelated
(re = —1), or uncorrelated (¥ ~ 0).

If you want to see how to code these from scratch, we highly recommend Chapters 14 and 15
of Press et al. (1986); for everyone interested in statistical treatment of data, the Introduction to
Chapter 14 should be required reading! MatLag® has built in functions for linear regression as
well as a Figure menu for basic fitting (Tools — Basic Fitting). Suppose you have some data in
vectors x and y. You can fit a straight line to the data just by typing:

p=polyfit (x,y,1); %p = slope and p(2) = intercept of line
(

(1)
R=corrcoef (x,y); %R(1,2) = Correlation coefficient

In addition, the MatLaB Statistics Toolbox contains two functions, regress and regstats, to
perform linear regression. regstats provides a complete statistics of the regression.
Performing linear regression of data with errors in x and y, however, is not that simple.
Fortunately, you can find functions to perform this task at the MarLag Central File Exchange
website, such as the function york_£it by Travis Wiens.

7.4.2 Strain (rate) in a GPS transect

Returning to our initial problem, how does the finding of strain in a GPS transect work in
practice? Here, we will set up a real-world example and leave it to you to solve as part of the
exercises. One of the earliest earthquakes to be captured by a modern GPS network was the
1995 M8.1 Antofagasta event (Klotz et al., 1999). This earthquake occurred on the subducting
plate boundary between the South American Plate and the oceanic Nazca Plate (Fig. 7.8).
Because we are looking at coseismic deformation, this particular problem involves the calcu-
lation of strain, but in the more general case of GPS surveys capturing interseismic deforma-
tion, the data reported are displacements averaged over time or a velocity. Thus, analysis of
interseismic GPS involves the determination of strain rate, rather than strain. The procedure
described here is identical.

The first thing to notice about the Antofagasta data (Fig. 7.8) is that, rather than a single
transect, there is a band of GPS stations. Second, the vectors are not oriented exactly east-west,
but point towards the west-southwest. However, in our UTM-19 (or 19S) coordinate system,
eastings (X;) and northings (X;) are positive. These facts lead to the first two steps in the
analysis:

1. Determine the average or mean vector that characterizes, as best possible, the overall
orientation of the vectors. To do this, you will use the mean vector calculation described
in Chapter 2 (Section 2.4.1). Once you learn more about error propagation, you could redo
this problem to calculate the uncertainties in the mean vector, but for right now, just add up
all the vectors and find the mean direction.

2. Determine the two-dimensional transformation matrix a; needed for a new coordinate
system where the X] axis is parallel to the mean vector direction.
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3. Transform the east and north coordinates of the GPS vectors, and the east and north
components of the errors into the new coordinate system using Equations 3.6 from
Chapter 3.

4. Plot the v} component of each displacement vector, and its error, against the X| component
of the station position.

5. Fit a straight line to approximately linear segments of the resulting curve using the relations
or built-in functions from the previous sections.

One-dimensional plots like those you’ve just constructed are standard practice in articles
describing GPS data and it is important to know how to read them. Once you have completed
the Antofagasta earthquake exercise, however, you will see that there are artifacts that result
from the fact that the strain varies in two dimensions because gradients in displacement exist
in two dimensions, not just along a transect. Although we can tell from such a plot if there is
shortening or extension between the two stations, we have no way of knowing how close these
values are to the principal axes of infinitesimal strain, nor do we know anything about rotation.
At the end of Chapter 8, we will see how to solve the more complete problem.

7.5 EXERCISES

In previous chapters, we have given you a lot of MatLaB code to carry out individual calculations.
In this chapter, you can begin to put those pieces together to solve a very interesting geologic
problem, the one described in the previous section.

-23°] {3 i . F I+

—25° T T T T T T T
—71° -70° -69° -68° -67°

Figure 7.8 Shaded relief map of the Chilean Coastal Cordillera near Antofagasta, Chile,
showing the station locations and coseismic GPS vectors of displacement during the
1995 Mw 8.1 earthquake. GPS data are from Klotz et al. (1999).
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1. The table below, modified from Klotz et al. (1999), lists the GPS data for locations shown in
Figure 7.8. The units of the displacements and the errors are meters.

ID Longitude Latitude U(E) Error(E) U(N) Error(N)

julo -70.546 0002 -23.526 0447 -0.527000 0.002 600 -0.082 000 0.002 800
calc -70.5319985 -24.264 0430 -0.852 000 0.002 700 -0.283 000 0.002 800
cari -70.4990037 -24.947 0407 -0.149 000 0.002 700 0.003 000 0.002 800
caco -70.4719967 -23.766 0478 -0.832 000 0.003 200 -0.306 000 0.002900
meji -70.4159964 -23.2000390 -0.167 000 0.002 600 -0.039000 0.002 800
unia -70.4199960 -23.702 0464 -0.756 000 0.002 600 -0.274 000 0.002 800
udan -70.405 0006 -23.669 0402 -0.730000 0.003 200 -0.246 000 0.001 800
antf -70.401 0045 -23.544 0436 -0.562 000 0.010000 -0.232 000 0.010000
urib -70.2800027 -23.5050416 -0.527 000 0.002 700 -0.232000 0.002 800
live -70.2529978 -23.964 0425 -0.851 000 0.002 600 -0.133 000 0.002 800
mabl -70.028 0003 -23.4480389 -0.430000 0.002 600 -0.199 000 0.002 800
baqu -69.781 0030 -23.3420390 -0.290 000 0.002 600 -0.122 000 0.002 800
minf -69.606 0045 -24.1050470 -0.382 000 0.002 800 0.022 000 0.002 800
coba -69.5890013 -24.824 0416 -0.130000 0.002 700 0.068 000 0.002 800
loba -69.416 0042 -23.448 0432 -0.219000 0.002 900 -0.070 000 0.002 800
sigo -69.297 0033 -22.926 0455 -0.078 000 0.002 700 -0.053 000 0.002 800
pael -69.041 0009 -23.5380448 -0.119000 0.002 600 -0.028 000 0.002 800
esim -68.898 0033 -24.226 0430 -0.135 000 0.002 600 0.027 000 0.002 800
cene -68.6319956 -23.5510467 -0.074 000 0.002 700 -0.027 000 0.002 800
ceto -68.546 0005 -23.177 0408 -0.049 000 0.002 600 -0.022 000 0.002 800
nrar -68.4939972 -24.2540478 -0.086 000 0.010000 0.024 000 0.010000
pbar -68.4250025 -22.7110477 -0.008 000 0.002900 -0.015000 0.002 800
peni -68.3459975 -23.6400423 -0.049 000 0.004 000 -0.003 000 0.002900
paso -68.2909993 -24.4490472 -0.043 000 0.002400 0.014 000 0.002 700
sanp -68.164 9960 -22.966 0402 -0.015 000 0.002 800 -0.016 000 0.002 800
pein -68.0559972 -23.686 0468 -0.050000 0.002 900 -0.010000 0.002 800
toco -67.9499950 -23.2850458 -0.030000 0.002 600 -0.002 000 0.002 800
ctoc -67.8549994 -22.9280390 -0.010000 0.002 600 -0.007 000 0.002 800
cmin -67.7579993 -23.8890396 -0.036 000 0.002 600 -0.006 000 0.002 800
saca -67.6030034 -23.5420476 -0.014 000 0.002 600 0.006 000 0.002 800
paja -67.0729981 -23.2250393 -0.006 000 0.002 600 -0.007 000 0.002 800

a. This region is in UTM zone 19 south. Convert all of the station locations to eastings and
northings so you can carry out the strain calculations by having both position and
displacement in meters.

b. Following the steps laid out in Section 7.4.2, calculate the coseismic strain during the
1995 Antofagasta earthquake. You may need to calculate the strain for more than one
segment of the curve if the curve is not linear.

c. Is the slope of your graph positive or negative and what does the sign indicate about the
nature of the strain?

d. Provide a plausible explanation for any points on your graph that do not seem to fit the

general trend on your plot.
You can define the station positions either by their position prior to, or after, the
displacement. How does your choice of reference frame affect your calculation?

2. The town of Wendover, on the Utah-Nevada border, is about 510 km from Carson City, along
the line between Carson City and Salt Lake City (it is actually about 50 km north of the line,
but we’ll assume that it lies along the line for the purposes of this problem). Use the relations
developed in Section 7.2 to determine where Wendover was prior to Basin and Range
extension. What assumptions have you used in this calculation?
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Figure 7.9 Simplified cross section of the Viking Graben in the North Sea, after
Fjeldskaar et al. (2004). The dark gray unit is the pre-rift basement. Syn- and post-rift
strata are shown in light gray. The section is for use with Exercise 3.

3. Figure 7.9 shows a cross section from the Viking Graben in the North Sea (modified from
Fjeldskaar et al., 2004). The section is drawn with no vertical exaggeration and the units on
the scale are in kilometers. The dark gray is the basement and the light gray is the graben and
post-graben fill. Assuming that the top of the basement was originally horizontal, determine
the Green and Cauchy deformation gradients, and the Lagrange and Euler displacement
gradients. Note that the Green deformation gradient is known in basin modeling circles as
the stretching, or 8, factor (McKenzie, 1978).

4. Derive Equations 7.21 from Equations 7.18. Show your intermediate steps.



CHAPTER

EIGHT

Infinitesimal strain

8.1 SMALLER IS SIMPLER

In the last chapter, we sought a simplifying assumption to reduce the number of different
tensors that we have to deal with. It turns out that, if we only deal with very small changes, we
can cut in half the number of tensors that we’ve introduced so far. The same simplification has a
number of other benefits as well.

Consider the simple deformation shown in Figure 8.1. If AX; = 1.0 and Ax; = 1.001, then
the displacement gradient is

ou; 0.001 ou;  0.001
X - 10 ~ 0.001000 and %~ 1.001 0.000999
Thus, when strains are small, % ~ % and the difference between the displacement gradients
1 1

in the initial and final states is not important. Small strains are called infinitesimal strains. Small
strains are important in a number of fields in earth sciences, perhaps most notably in
geophysics.

8.1.1 The components of the displacement gradient tensor

Though we saw in the previous chapter that, in one dimension, the displacement gradient
tensor, e, is equivalent to the linear extension that one learns in introductory structural
geology, we are left with the nagging suspicion that the nine components of e in three
dimensions are somewhat more complicated. The infinitesimal strain assumption allows us
some further insight, in particular, into the meanings of the six off-diagonal components
of the tensor.

135
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Figure 8.1 Simple illustration of a
small extension parallel to one of the
axes of the coordinate system.
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Figure 8.2 The special case of the
deformation of two vectors that start AX|y Au
out parallel to the axes of the
coordinate system.
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Consider the special case shown in Figure 8.2. Because PQ is perpendicular to the X, axis,
AX, = 0. Expanding Equation 7.12 in two dimensions, we get

Aup = e11AXq] + epAXo = e1AX] +0 = e;1AXy

8.1
Ay = €1 AX) + e AXy = e AX) + 0 = ep1AX) (8.1)

From the first equation, you can see that
Al

e = —
11 AKX,

Because Au; = Ax; — AXj, this equation says that e;; is equal to the final length minus the
initial length, divided by the initial length. In other words, e, is just the extension along the X;
axis.

8.1.2 Significance of the off-diagonal components, e,; and e;>
From the geometry in Figure 8.2, we can see that

Aup

tan = ————
AX) + Ay

Remembering our assumption of infinitesimal strain, we see that Au; < AX; and therefore
Aup
tan 0 ~ —=
AXp
Furthermore, for small angles, the tangent of an angle is approximately equal to the angle itself,
measured in radians, so tan 6 ~ 0. Thus,
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Figure 8.3 A special case where two originally orthogonal vectors, PQ and PM, are
rotated about the origin by a constant angle, ¢. The resulting vectors P’Q’ and P’M’ are
still perpendicular to each other but each makes an angle of ¢ with the axes of the
coordinate system, X.

- Ablz
T AX,

and, again because of infinitesimal assumption, we can write
Ablz _ 8142 i

FAx Cox &

Thus, e;; measures the counterclockwise rotation of the vector PQ from the X; axis towards the
X, axis; by the same reasoning, e;» measures the clockwise rotation of PM from the X, axis
towards the X; axis.

8.1.3 Non-equivalence of e;; and e;,

To further understand the significance of the off-diagonal components, let’s see what happens
to the displacement gradient tensor when we have just rotation but no strain (Fig. 8.3). With the
assumption of small rotation angles,

et _Aup _ ~
el = AN, =0 and ey =AY, =tan¢ ~ ¢

Likewise, e;» will be approximately equal to —¢ because it is a rotation of AX; towards X;
(counterclockwise), whereas we just saw that e,; is a clockwise rotation of AX, towards X;. So,
for the case of pure rotation with no strain, the displacement gradient tensor in two dimensions

has the fOrm:
0 -
€j = Lzﬁ Od)}

Clearly, e»; does not necessarily equal e;», and therefore the displacement gradient tensor, e;;,
is an asymmetric tensor that represents both strain and rotation.
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8.1.4 Additive decomposition of the displacement gradient tensor

Any asymmetric tensor can be expressed as the sum of a symmetric tensor and an antisym-
metric tensor, so in the case of the displacement gradient tensor:

ejj = &jj + Wy 8.2)
where
1 1
g =5 (ej+ei) and wy=5(e;—ej)

You can easily prove to yourself that this is true by substituting:

frwy= (353G =(F) e

We call g the infinitesimal strain tensor ; it is a symmetric tensor. wj; is the rotation tensor ; itis
an antisymmetric tensor. When we do finite strain, you will see precisely what assumptions this
entails. We will explore the significance of 8 and ¢ in great detail in Chapter 10.

8.2 INFINITESIMAL STRAIN IN THREE DIMENSIONS
Obviously, this discussion carries over to three dimensions. For the strain tensor, we can write

(e12 + 1) (e13+e31)

en 2 2
1 e +e e+ e
i = (03 + i) = (e21 : 12) ern (e23 : 32)
(es1 +e13) (es2 +ex3) 0
5 5 33
and for the rotation tensor
0 (e12 —ex1) (e13—e31)
2 2
1 e —e €3 —e
wy = (e — ej) = ( 212 12) 0 ( 232 32)
(e31 —e13) (€32 — ex3) 0
2 2

When it’s written out in matrix form you can clearly see that ¢; is symmetric and has six
independent components. w;; is antisymmetric and has only three independent components.
The meanings of the e;; terms are as follows:

® ¢11, €y, and e33 - extensions parallel to the axes of the reference system
e ¢, - rotation of a line parallel to the 2 axis towards the 1 axis (about the 3 axis)
e ¢;3 - rotation of a line parallel to the 3 axis towards the 1 axis (about the 2 axis; Fig. 8.4), etc.

8.2.1 Rotation axis from the antisymmetric tensor, w

An antisymmetric tensor (e.g., w j, above) is sometimes also known as an axial vector. To get the
Cartesian coordinates, r;, of that vector,
b,-jkwjk

ri = —T (83)
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€13
T
Figure 8.4 The physical significance
of e;3.
& > X1, Xq
X2, X2

where by is a permutation symbol which is equal to +1 if the suffixes are cyclic (e.g., 1-2-3), -1
if the suffixes are acyclic (e.g., 1-3-2), and O if any two suffixes are repeated. The three
components of r, which give the orientation of the rotation axis, are

—(w23 — w32) _ —(-wi3 + w31)

n=—="""2° v and rgzi( 12 21)

2 2 2 84)

The amount of rotation in radians is just the length of the vector, r:

X =r=Vr+ri+rl 8.5)

8.2.2 Homogeneous strain

If the deformation is the same throughout the region, then the displacements are not a function
of position. We can express this condition as:

e ¢;’s are all constant, and

o ¢; # [(X)).
From Equation 7.12 we have Auy; = e;;AX;, which in the limit becomes
du; = e;dX; (8.6)
Integrating both sides of Equation 8.6,
[ i = [ e (8.7)
u; = t; + e;X;

where the constant of integration is the displacement of the origin. Note the similarity of this
equation to Equation 7.15 in the previous chapter.

With Equation 8.7, there is a more elegant way to prove that rotation is antisymmetrical. We
set up the problem with the rotation axis at the origin (Fig. 8.5). Because X; is perpendicular to
u;, their dot product should equal zero: u; - X; = 0. But,

Ui = e;X;
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Figure 8.5 lllustration of the simple

case of pure rotation of a line about the U:

origin of the coordinate system with !

no strain.

Xi
X > X1’ X1
2, X2

so from a simple substitution of the last equation into the previous one,
e;XiXj =0
The only way that this equation can be correct is if

e ¢; =0wheni=j,and
® ¢; = —ejjwheni# j.

Notice that the Equation 8.7,
uj =t + e;X;

represents three linear equations. It follows that

e straight lines remain straight, and
e parallel lines remain parallel.

The equation may be further broken down into
U = t; + £5Xj + WX
Thus, in one equation we have the complete expression of deformation as a
translation + strain + rotation

Commonly in geology, we can’t measure the translation or the rotation, so we just look at the
displacement of points relative to other points within the same body. For example, we can
measure the aspect ratio of a deformed oolite, but we have no way of knowing how far it moved
or how much it rotated (obviously, this is not the case for all features, butitis for a majority). We

write this equation as
Ui = &;X;

8.3 TENSOR SHEAR STRAIN VS. ENGINEERING SHEAR STRAIN

The angular shear, y, is the change in angle of two lines that were originally perpendicular to
each other (Fig. 8.6a). The angular shear is related to the shear strain, y, by

y = tany
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Figure 8.6 (a) Definition of engineering shear strain as the change in angle of two
initially perpendicular lines. (b) The relationship between the tensor shear strain and
the engineering shear strain.

As we assumed before, when strains are very small, the tangent of an angle is equal to the angle
itself (in radians) so we can write

Y~y

This shear strain is known as the engineering shear strain, whereas the shear strains we derived
above - ey, e»1, €23, €32, €13, and e3; - are known as the tensor shear strains. In Figure 8.6b, you
can see that e;3 and e3; are both positive, because both of the vectors are positive, even though
the rotations implied by the two are opposite in sign. In Means (1976), you will see the
infinitesimal strain tensor written as

€1 €12 €3
_ | Y21 Y23 8.8
€1 € ex3| = |5 &2 5T (8.8)

2
€31 €32 €33 y y
31 32
22 222 ¢
> > 33

Means defines the off-diagonal components of the displacement gradient tensor such as e;» by

oy L (P 0w
2=5\0x, " ax,

In this book, we have used the following definitions:

oy 1 /0u;  ou
612:6_)(2 and 512 :E 8_&—"_6_){1

€11 Y12 Y13
By the way, you should note that | y,; €2 ¥»3 | is not a tensor!
Y31 ¥32 €33

8.4 STRAIN INVARIANTS

In Chapter 5, we showed that any tensor quantity has invariants, combinations of the compo-
nents that do not change, regardless of the coordinate system you choose. In the case of strain,
the first invariant,

&1+ &+ & =& + &0 +E33 (8.9)
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is equal to the volume strain or the dilatation. The change in volume is independent of the axes
of the coordinate system.

8.5 STRAIN QUADRIC AND STRAIN ELLIPSOID

Like any other tensor, the strain tensor has a quadric surface whose axes are given by &;%° and
€397, it is the vertically oriented ellipse (Fig. 8.7). The normal to the quadric surface at the point
where the vector X intersects it gives the orientation of the displacement of the end of the vector
to its new position. You can see (Fig. 8.7) that the elongation of the vector, &, is just the
component of u in the X direction. Therefore:

£=u-X=&;XX (8.10)

where the X’s are the direction cosines of the original unit-length line. Expanding this equation
we get
E=enXi X1 +€12X1X + 13X X3
+ 810X + €22X0X0 + 23X X3
+&31 XX + €32XX + £33X3X3

Combining terms, we get
€= €nX] + €2X5 +£33X5 + X1 X (€12 + €21) + X1 X3 (€13 + £31) + Xo X3 (€23 + €32)
You can see from Figure 8.7 that
x1=X(1+¢) X =X(1+ &) and x3 = X3(1 +€3)

Substituting these values into the equation for a sphere

XP+XF+X5=1

unit -7 T
_.circle u // tangent normal where

/ X intersects the quadric
strain : 05

ellipsoid ;

\ 834’).5

quadric

tangenf to quadric

() (b)

Figure 8.7 (a) The infinitesimal strain quadric and strain ellipse. (b) An expanded detail
for the vectors X and u in (a). The normal to the quadric surface gives the orientation of
the vector u, which indicates the displacement of the end of the vector X; it does not give
the orientation of the new position of vector x directly.
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we get

2 2 2
Xy X5 X3

=1 8.11
1+&)° (1+&)° (1+&)° (8.112)

This is the equation for the infinitesimal strain ellipse. Using the identities in Equations 7.1, we
can also write the equation for the strain ellipse in terms of the principal stretches:

2 2 2
Xy X5 X3

—+-=5+==1 8.11b
5 + sts ( )
or the principal quadratic elongations:
2 2 2
XX X
. 7»2+7»3 =1 (8.11c)

8.6 MOHR CIRCLE FOR INFINITESIMAL STRAIN

As shown in Chapter 5, any tensor transformation can, in two dimensions, be represented
by a Mohr circle construction (Fig. 8.8). For infinitesimal strain, we start with the strain

tensor, &;:
&1 0 0
Ejj = 0 & 0

0 O &3

add a transformation matrix:

cosf®@ 0O sinf
aij = 0 1 0
—sinf® 0 cos@

The tensor transformation equation is

E/U- = AjxdjiE (8.12)

Figure 8.8 The coordinate transformation
to yield the Mohr circle for infinitesimal
strain.
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maximum shear

strain at 45° to

principal axes
Figure 8.9 The Mohr circle for
infinitesimal strain, showing the
graphical calculation for a rotation
of the coordinate system by the €3
angle 6.

which gives us the new form of the strain tensor:

0 & 0 |= 0 & 0 (8.13)

[EIH 0 5/13] (E]COSZQ+63811'129) 0 ((e3—¢&1)cosBsinB)
g31 0 &3 (&1 —&3)cosOsinf) 0 (elsin29+53C0529)

Upon rearranging, we get

&= (&1 —583) + (&1 ;ES)COS 20
c c (8.14)
€13 :%:%;ﬁsinZG

Equations 8.14 give the familiar Mohr circle (Fig. 8.9). Probably the most important thing
illustrated by Figure 8.9 is that the two planes of maximum shear strain are oriented at +45°
and 45° to the principal axes, €, and &3. Turning this around, for infinitesimal strain in a shear
zone, the shortening and extension directions are always at 45° to the shear zone boundary.
This forms the basis for both fault slip and microstructure methods. For example, foliation at
the edge of a mylonite zone, P and T axes of earthquakes, and the new tips of sigmoidal gash
fractures are all oriented at 45° to the shear zone (Fig. 8.10). We will return to this in the
geological problems section.

8.7 EXAMPLE OF CALCULATIONS

Problem

Given the following displacement gradient tensor, calculate &;, w;j, and the magnitudes and
orientations of the principal axes:
10 4 -2
ej=1-4 3 0

6 0 4
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€. €1

—_

.J45°

(a) (b) ()

Figure 8.10 Three geological situations that illustrate the principle that the maximum
infinitesimal shear strain planes are oriented at 45° to the principal axes of infinitesimal
strain: (a) sigmoidal veins (“tension” gashes), (b) heterogeneous ductile shear zone in
granitoid rocks, and (c) P and T axes of earthquakes.

Figure 8.11 Mohr circle solution to the
problem described in the text.

81]+822_ 10 +4
T 2 2

Solution

The strain and rotation tensors are easy to calculate:

1 10 0 2 1 0 4 -4
EU:E(eU-+eﬁ): (2) 8 2 and wU-:E(eU—eﬁ): —44 8 8

There are several ways to calculate the orientations and magnitudes of the principal axes. For
example, we could solve the eigenvalue problem that we discussed when talking about generic
tensors. In this case, however, there is an easier way.

Note the position of the zeros in the strain matrix. They indicate that the second, X5, axis is
already parallel to one of the principal axes. Thus, we can solve this problem graphically, using
the Mohr circle construction (Fig. 8.11). All we need to do is rotate the coordinate system about
the X, axis.

From the Pythagorean theorem, the radius of the circle is /(10 — 7)% + 22 = v/13, therefore

§=7+V13 &=7-v13 ande& =3



146 Infinitesimal strain

Notice that &; + &, + &3 = £11 + €22 + £33 (Eq. 8.9). wy; is an antisymmetric tensor or an axial
vector. The amount of rotation in radians is (Egs. 8.4 and 8.5)

| =r= \/(02 + (-4 + (—4)2> = 5.6568 radians

The MatLaB® function InfStrain, below, computes the strain and rotation tensors, principal
strains, components of rotation, rotation magnitude, and rotation axis orientation from an
input displacement gradient tensor. To solve the example above, just type in MATLAB:

e = [10 4-2;-4 3 0;6 0 4]; %Displacement gradient tensor
[eps,ome,pstrains, rotc,rot] = InfStrain(e); %$Solve for strain

function [eps,ome,pstrains,rotc,rot] = InfStrain(e)
$InfStrain computes infinitesimal strain from an input displacement
$gradient tensor

)
s

% USE: [eps,ome,pstrains,rotc,rot] = InfStrain(e)

% e = 3 x 3 displacement gradient tensor

% eps = 3 x 3 strain tensor

% ome = 3 x 3 rotation tensor

% pstrains = 3 x 3 matrix with magnitude (column 1), trend (column 2) and
% plunge (column 3) of maximum (row 1), intermediate (row 2),
% and minimum (row 3) principal strains

% rotc = 1 x 3 vector with rotation components

$ rot = 1 x 3 vector with rotation magnitude and trend and plunge of

% rotation axis

% NOTE: Output trends and plunges of principal strains and rotation axes
% are in radians

% InfStrain uses function CartToSph and ZeroTwoPi

$Initialize variables
eps = zeros(3,3);

ome = zeros(3,3);
pstrains = zeros(3,3);
rotc = zeros(l,3);

rot = zeros(1,3);

$Compute strain and rotation tensors (Eg. 8.2)
for i = 1:3
for j = 1:3
eps(i,j)= 0
ome(i,j)= 0.5*(e(i,j)-e(3,1));
end
end
$Compute principal strains and orientations. Here we use the MATLAB
$function eig. D is a diagonal matrix of eigenvalues (i.e. principal
$strains), and V is a full matrix whose columns are the corresponding
$eigenvectors (i.e. principal strain directions)
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[V,D] = eig(eps);

$Maximum principal strain

pstrains(1,1) = D(3,3);

[pstrains (1,2) ,pstrains(1,3)] = CartToSph(V(1,3),V(2,3),V(3,3));
$Intermediate principal strain

pstrains(2,1) = D(2,2);

[pstrains (2,2) ,pstrains(2,3)] = CartToSph(V(1,2),V(2,2),V(3,2));
$Minimum principal strain

pstrains(3,1) = D(1,1);

[pstrains (3,2) ,pstrains(3,3)] = CartToSph(V(1,1),V(2,1),V(3,1));

%$Calculate rotation components (Eg. 8.4)
rotc(l)=(ome(2,3)-ome(3,2))*-0.5;
rotc(2)=(-ome(1,3)+ome(3,1))*-0.5;
rotc(3)=(ome(1l,2)-ome(2,1))*-0.5;

%$Compute rotation magnitude (Eg. 8.5)

rot (1) = sqgrt(rotc(l)*2+rotc(2)*2+rotc(3)72);

%$Compute trend and plunge of rotation axis

[rot (2),rot(3)] = CartToSph(rotc(l)/rot(l),rotc(2)/rot(1l),rotc(3)/rot(1l));
$If plunge is negative

if rot(3) < 0.0

rot (2) = ZeroTwoPi (rot (2)+pi) ;
rot (3) =-rot(3);
rot (1) =-rot (1) ;

end

end

8.8 GEOLOGICAL APPLICATIONS OF INFINITESIMAL STRAIN

The applications of infinitesimal strain are virtually unlimited, especially in geophysics where
the changes observed are very small relative to the distances over which they occur. For
example, even a very large earthquake may have less than 10 m of slip on a fault plane whose
dimensions span many tens to hundreds of kilometers.

8.8.1 Fault-slip and earthquake data

Analysis of strain for small faults and earthquakes is essentially the same because both
represent small deformations in large regions. Additionally, both represent essentially plane
strain deformation because there is no change in the direction perpendicular to the slip vector,
Au (Fig. 8.12). Our derivation follows Molnar (1983). Initially, we choose a coordinate system so
that X, is parallel to the strike of the fault plane and perpendicular to the slickensides on the
fault. Later on, we will show the more general case where neither the slickensides nor the fault
plane are parallel, or orthogonal, to the axes. In this specialized case, 6 is the angle between the
fault surface and the vertical axis, that is, 90 - dip of the fault.

Derivation of the displacement gradient tensor

We have already derived the displacement gradient tensor:

Ui
Au; = e;AX; where ej; =

o%;
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N
AX5
Au<<k hw
%) w=Ww|+Wwy=w3+ wy
v > X,
N AX,

Figure 8.12 Block diagram illustrating the coordinate system used in the calculation of
strain and rotation from earthquakes and/or small faults.

X3
A

Figure 8.13 View of the faulted block parallel to the X; axis edge-on to the fault plane.
Detail at left shows the angular relations of the components of the slip vector.

The components of Au are easily determined from the trigonometry of the block (Fig. 8.13):
Au; = Ausin® and Auz = Aucosd (8.15)

Likewise, the length in the AXj is simple because the fault does not cut the top or bottom of the
block (i.e., the sides of the block that are perpendicular to the X3 axis):

AX3 =W= (Wl + W2) = (Wg + W4) (8.16)
Therefore, the extension parallel to the X3 axis, e33, is

Auz Aucos 6
e33:§§:T (8.17)
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of the right side
w w
Au sinO(—S) =Au1( 3)
w

w

X3
A
average displacement '
of the left side :
NG Wi :
Ausme(—):Aul(—) : ,
w w L average displacement

Figure 8.14 lllustration of the average displacements of the sides of the block
perpendicular to X; as a function of the hanging wall length to the total length.

Figure 8.15 Relationships between /,
k, and w.

"

and the rotation towards X; of a line originally parallel to X3, the off-diagonal component e;3, is

Au; _Ausin®

€13 :Ai)(jgi W (818)

The calculation AX; is more complicated because the fault has offset the sides of the block that
are perpendicular to X;. The average displacement of those sides of the block is a function of
the ratio of initial length of the side, w for both left and right sides, to the length of the side in
the hanging wall only (in our footwall fixed reference frame). So the average displacement of the
left side of the block is w; /w and of the right side is w3 /w (Fig. 8.14).With this insight, we are
now ready to calculate the e;; component of the displacement gradient tensor:

AUy wy B Auywy W3 — W
o, _ Change inlength _\ w w A"“( > _ Auy
'~ initial length k B k B ( kw )
(w3 —wr)

From the previous equation, and the relations depicted in Figure 8.15, we can see that

w3 —wy = —I cos 6
so AXj is
AX — wk  wk w(lsin®)  wsiné
" ws—w) —Icos® —Icos@  cosb
Thus we can write for e;;:
ell:—Aulsme cos 0 :7A11C089 8.19)

wk w
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The rotation towards X3 of a line originally parallel to X;, the off-diagonal component e3;, in
terms of the slip is

_Auz;  —Aulcos’0  Aucos?d
GBITAX wk ~  wsin0 (8.20)

The concept of seismic and geometric moment

We can further simplify the equations that have been derived so far by borrowing a concept
from geophysics. Seismologists commonly use a scalar parameter known as the seismic
moment:

M, = pAAu (8.21)

where p is the shear modulus, A is the fault surface area, and Au is the average slip. For the
purposes of fault-slip data analysis, we can omit the shear modulus (which has units of stress)
from the above equation because we are only interested in the strain; we are left with the
geometric moment:

M, = AAu (8.22)
For the faulted block in Figure 8.12, the geometric moment would be
My = IhAu (8.23)
We can rearrange and simplify this equation by solving for h:
h= v = vV (8.24)

kw  (Isin 8)w

where V is the volume of the region being deformed and the other variables are as shown in

Figure 8.12. Substituting Equation 8.24 into 8.23, the geometric moment can be written
VAu

~ wsin 0

g (8.25)

Finally, the geometric moment divided by the volume gives us a quantity that shows up
repeatedly in the equations that we derived for the displacement gradient tensor:
M,  Au
V wsin6

(8.26)

Substituting Equation 8.26 into Equations 8.17, 8.18, 8.19, and 8.20, and writing the result out
in matrix format, we get our final expression for the displacement gradient tensor in two
dimensions:

Mg [ —sin 6 cos 6 sin’6
79 8.27
Gi="y —cos%0 sin @ cos 6 (8.27)

Displacement gradient tensor in terms of fault orientation

Equation 8.27 shows that the displacement gradient tensor is composed of a scalar quantity -
the geometric moment divided by the volume of the region - times a tensor that is composed of
nothing more than trigonometric functions of the fault plane orientation, 6. By exploring this
tensor a bit more, we can easily see how to extend it into three dimensions.

From the geometry in Figure 8.16, you can see that the complete orientation of the fault-slip
system can be defined by two unit vectors, one parallel to the slip direction, @, and the other the
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\ X3

Figure 8.16 Edge-on view of the fault
curtace plane, showing the geometry of the
i tault unit normal and slip vectors.

) u3
- 0+ > X4

ny u

pole, or normal, to the fault plane, n. Because these are unit vectors, they can be written in terms
of the angles that they make with the coordinate system:

u=[sinf cosf] and n=[-cosf sin0] (8.28)
The dyad product (Egs. 4.19, 4.20, 5.7) of & and n in two dimensions is

. [sin® : _ | —sinBcos 6 sin’@
on= {cose] [-cos® sinf]= { —cos’0  sinfcosH (8:29)

=

This is clearly the same matrix as in Equation 8.27, so we can now rewrite that expression for
the displacement gradient tensor as

M)\ .. . M
o = (Vg)u®n: (Vg) wn, (8.30)

where u; and n; are the direction cosines of the unit vector parallel to the displacement vector
and the unit normal vector of the upward pointing pole, respectively. Equation 8.30 is general
for any coordinate system, not just the special case that we started out with.

Summing multiple faults, additive decomposition, principal axes

Where the volume of rock has multiple faults (or earthquakes), because we are dealing with
infinitesimal strain, the individual faults and their moments can be summed and divided by the
total volume:

nfaults
> (Mguing)
(eij)total = vV (8.31)
Recall that the displacement gradient tensor, e;;, is asymmetric. We can additively decompose it
to yield the symmetric infinitesimal strain tensor and an antisymmetric rotation tensor:

Mg (uim; + ujmi) My (uin; — uni)

>V oV (8.32)

ejj = &jj + Wjj =

Because M,;/2V is a scalar, the orientations of the principal axes of ¢; are identical to the
principal axes of (u;n; + u;n;) which, for a single fault, is a function of only the fault plane
and slip system orientation. Those principal axes, which you can calculate either by an eigen-
value problem or more simply with the Mohr circle for infinitesimal strain (Fig. 8.9), lie in the
plane of the pole and the slip vector (known in faulting analysis literature as the movement
plane) at 45° to the pole and the fault plane.
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Figure 8.17 A typical earthquake focal
mechanism solution. The two nodal
planes are potential slip surfaces with
potential slip vectors shown as white
boxes. Note that the slip vector on one
plane is also the pole to the other
plane. The nodal planes define a
tension quadrant in gray bisected by
the T axis and a pressure quadrant in
white bisected by the P axis. The
movement plane is shown as a dashed
line.

-

~0O- -
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Earthquake seismologists commonly depict earthquake data as focal mechanism solutions
with P (pressure) and T (tension) axes bisecting the appropriate quadrants (Fig. 8.17). Despite
the stress terminology used to name them, we can see from the above analysis that the Pand T
axes are in fact the principal axes of infinitesimal strain (strictly speaking, the eigenvectors that
are unit vectors parallel to the principal axes). Calculating these axes requires knowing nothing
more than the pole to the plane and the slip vector (for which one needs to know both the
direction and the sense of slip).

Some further remarks about fault slip and earthquake analyses

Molnar (1983) referred to the quantity Myu;n; in Equation 8.31 as the “asymmetric moment
tensor” to distinguish it from the more familiar seismic moment tensor described by Kostrov
(1974).Kostrov’'s moment tensor is symmetric because it was derived specifically for the case of
earthquakes, where one commonly does not know which nodal plane is the true slip surface; it
is identical to the symmetric part of Molnar’s tensor (i.e., &, the symmetric part of Eq. 8.32).
Jackson and McKenzie (1988) have questioned whether or not it is ever possible to determine
the antisymmetric part of the Molnar’s tensor for either earthquakes or faults. It is a question of
frame of reference. Molnar’s analysis assumes that the reference frame is fixed to the footwall,
but usually in geology we don’t know whether the footwall and fault plane are fixed or whether
both rotate during the deformation, domino style (Fig. 8.18).

Throughout this analysis, we have kept the scalar terms M, /V separate from the orientation
terms u;n; for a very practical reason. Particularly for the field structural geologist, the scalar
terms are difficult to determine with any degree of accuracy. In any practical situation, because
of the two-dimensional nature of most outcrops, it is virtually impossible to measure the fault
surface area directly and one has little idea whether the displacement observed in the field is
anything close to the “average” displacement. Likewise, there is quite a lot of ambiguity
surrounding the choice of the volume of a region, even in the case of earthquakes. One can
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rotation of region rotation of faults

C

Figure 8.18 Ambiguity of the rotation determined from the antisymmetric part of the
displacement gradient tensor in Equation 8.32.

estimate these parameters via a variety of fractal scaling relations (e.g., Marrett and
Allmendinger, 1990), but these are also subject to order of magnitude uncertainty.

In contrast, calculation of P and T axes (i.e., infinitesimal strain axes orientations) from the
orientation terms is robust and, assuming good outcrop, relatively free from large uncertainty
(Marrett and Allmendinger, 1990). In the field, the most uncertain measurement is the deter-
mination of sense of slip. The only time a P and T axes analysis is likely to fail is when the largest
fault in the region studied has a particularly different kinematics than the rest of the faults
measured. Being able to calculate the geometric moment for that fault would allow one to
correct for this error.

Finally, in as much as this is a chapter on infinitesimal strain, the importance of
Equation 8.31 should be emphasized: Matrix addition is commutative. That means that with
small faults, we can add them together in whatever order we want. In Chapter 9, we will see that
when faults, and strains, become large we can no longer add the faults together in whatever
order; for large faults, we have to know the order of formation to calculate strain correctly.

The MatLaB function PTAxes, below, computes the P and T axes from the orientation of
several fault planes and their slip vectors. It also plots the solution in an equal area stereonet.

function [P,T] = PTAxes (fault,slip)

$PTAxes computes the P and T axes from the orientation of several fault
$planes and their slip vectors. Results are plotted in an equal area
%stereonet

USE: [P,T] = PTAxes(fault,slip)

fault = nfaults x 2 vector with strikes and dips of faults
slip = nfaults x 2 vector with trends and plunges of slip vectors

o° o° o° o° o° o°

P = nfaults x 2 vector with trends and plunges of the P axes
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T = nfaults x 2 vector with trends and plunges of the T axes

NOTE: Input/Output angles are in radians

PTAxes uses functions SphToCart, CartToSph, Stereonet, GreatCircle and
StCoordLine

o° o® o° o° o° o°

$Initialize some vectors

n = zeros(1l,3);

u = zeros(l,3);

eps = zeros(3,3);

P = zeros(size(fault,1),2);
T = zeros(size(fault,1),2);

% For all faults
for i = 1l:size(fault,1)

% Direction cosines of pole to fault and slip vector
[n(1),n(2),n(3)] = SphToCart (fault(i,1),fault(i,2),1);
[u(l),u(2),u(3)] = SphToCart(slip(i,1),slip(i,2),0);

% Compute u(i)*n(j) + u(j)*n(i) (Eg. 8.32)
for j = 1:3
for k = 1:3
eps (J,k)=(u(3)*n(k)+u(k)*n(j));

end
end
Compute orientations of principal axes of strain. Here we use the
MATLAB function eig

[V,D] = eig(eps);

)
5
o

T

o°

P orientation [P(i,1),
P(i,2)] = CartToSph(V(1,3),V(2,3),V(3,3));
% T orientation
[T(i,1),T(i,2)] = CartToSph(V(1,1),V(2,1),V(3,1));
end
% Plot stereonet
Stereonet (0,90%pi/180,10*pi/180,1) ;
hold on;
% Plot other elements
for i = 1l:size(fault,1)
% Plot fault
[path] = GreatCircle(fault(i,1),fault(i,2),1);
plot (path(:,1) ,path(:,2),'r");
% Plot Slip vector (red square)
[xp,yp] = StCoordLine (slip(i,1),slip(i,2),1);
plot (xp,yp, 'rs');
% Plot P axis (black, filled circle)
[xp,yp] = StCoordLine (P(i,1),P(i,2),1);
plot (xp,yp, 'ko', 'MarkerFaceColor', 'k') ;
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% Plot T axis (black circle)
[xp,yp] = StCoordLine (T(i,1),T(i,2),1);
plot (xp,yp, 'ko") ;

end

% Release plot

hold off;

end

8.8.2 Displacement fields and two-dimensional strain from GPS data

Because the changes in distance between GPS stations with time are extremely small (tens of
millimeters) relative to the distance between stations (tens of kilometers), the strains measured
by GPS are truly infinitesimal. The two-dimensional problem is shown in Figure 8.19.

We know how to solve this problem:

u; = t; + e;X; where % = ¢ (8.33)
j
and
BXI'
Xi = q; + F;X; where a—XJ =F;

and t; is translation of a point at the origin of the coordinate system. From either of these
equations, you can see that there are six unknowns: the two components of the translation
vector ((t, tz)), and the four components of the displacement gradient tensor or deformation
gradient tensor (e, €12, €1, ex or Fiy, F», Fo1, Fr). Each station furnishes two equations.
Therefore one needs a minimum of three non-colinear GPS stations to determine the two-
dimensional strain ellipse. In three dimensions there are twelve unknowns, and each station
furnishes three equations. Therefore one needs a minimum of four non-coplanar stations to
determine the three-dimensional strain ellipsoid.

Figure 8.19 Displacements at three stations. The triangle described by the three
stations prior to the deformation, represented by X, has a circle inscribed in it. Upon
deformation, the three stations are displaced by three non-parallel vectors of unequal
length to their new positions, x. The inscribed circle becomes the strain ellipse.
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To solve this system of linear equations using standard linear algebra methods, we need to
recast the equations into three matrices, two of which contain only known quantities and one
that contains just the unknown quantities. The equations below will do the trick in two
dimensions, as you can prove to yourself by a standard matrix multiplication:

R 1 0 X X% O 0
Lu, 01 0 0 X X, T
2y 1 02X 2X% O 0 t
2u, 01 0 0 22X %X en
=1. . . . . . (8.34)
Do : : : : €12
: Lo : : : : €1
nyy 1 01" ", 0 o0 |-62-
L"uy | 10 1 O 0 "X "X |

Similarly, we could solve for the deformation gradients rather than the displacement gradients:

T 10 % X, 0 07
Ix, 01 O 0 X1 X% g1
2x 1 02X 2% O 0 @
2| {01 0 0 X 2||p
=1. . . . . . (8.35)
o : : : Fi,
Fx
"Xy 107 ", 0 o|Lf
Lo | LO 1 O 0 "X "X |

Of course, we only need to solve one of the above two systems of equations because the
displacement and deformation gradient tensors are simply related by the identity matrix:

e=F-1 or ej = Fj — 9y

Notice that the above Equations 8.34 and 8.35 are written not for three equations but for n
equations. With more than three equations, the system is over-constrained, that is, there are
more equations than unknowns. In such a case, we can actually use the extra information to
assess the uncertainties in the assumption that strain in the region encompassed by the GPS
stations is homogeneous.

The solution to Equations 8.34 or 8.35 is a classic application of inverse theory (see Menke,
1984). These equations are in the form of Equation 4.29, which is repeated here:

To solve for x, we multiply y by the inverse of matrix M, that is, M~!:
x=Mly (8.37)

In the case of Equations 8.34 and 8.35, the large matrix with six columns and the number of
rows equal to twice the stations used (a minimum of six rows), commonly called the design
matrix, is equivalent to M in Equation 8.36. It is this matrix that we must calculate the inverse of
to solve this problem. As described in Chapter 4, determining the inverse of even a 3 x 3 matrix
is tedious; the minimum size of our design matrix is 6 x 6!
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For perfectly constrained cases of just three GPS stations, one may use a procedure known
as LU decomposition. For the over-constrained situation, the matrix is no longer square and
cannot be inverted directly but a least squares best fit may be made. We highly recommend
reading the relevant sections in Press et al. (Chapters 2 and 15, Press et al., 1986). Menke (1984)
gives the basic least squares solution to Equation 8.37 as

X— [MTM]’IMTy (8.38)

In the context of the GPS problem, M is the large matrix of 1’s, 0’s, and position vectors, X. All of
the displacement vectors are held in y, and the unknowns (t;, t, e11, €12, €1, ;) are in x. One
could imagine using Equations 8.34 and 8.38 to calculate a single best-fit displacement gradient
tensor to all of the stations in a GPS network, but the likelihood of that producing a meaningful
result is small.

There are several potential strategies for calculating a more insightful result that demon-
strates how the gradients, e, vary across a region. One can, for example, construct a network of
triangles, know as a Delaunay triangulation, from the GPS stations. In this approach, each
triangle provides the minimum number of stations necessary to calculate a deformation gradient
in that triangle, but the triangles are all of different shapes and sizes, providing a very irregular
view of the deformation (Fig. 8.20). Alternatively, one can establish a regular grid over a region
and calculate the deformation based on the n stations nearest to a grid node, where n > 3. This is
an improvement over the triangles method, but is still subject to artifacts produced by the
irregular spacing of stations in a typical GPS network. It is difficult to know, in these cases,
whether a particular pattern is due to heterogeneous strain or heterogeneous station spacing.

-23°—

—25°

=71° -70°

Figure 8.20 Delaunay triangulation of the Antofagasta, Chile, GPS network that was
described in Chapter 7.
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A third alternative exists. As before, one establishes a regular grid over the region of
interest, but at each node in the grid, one uses all of the stations in the network, weighting
the contribution of each station according to its distance from the node. This method is called a
weightedleast squares approach (Allmendinger et al., 2009; Menke, 1984; Shen et al., 1996). The
basic form of the weighted least squares solution is

-1
X= [MTWM] M Wy
where W is the diagonalized matrix of weighting values, W, given by

—d?
W =exp {W}
The parameter d is the distance of any particular station from the grid node and « is a distance
weighting constant that specifies how the effect of a particular station decays with distance. A
larger value of o produces greater smoothing, damping out local variations.

This raises an extremely important question with respect to strain: What is the proper
length scale at which to calculate strain? It may come as a surprise that there is no single
correct answer to this question, especially where strain is heterogeneous and discontinuous as
in any study of strain over large areas at the surface of the Earth (Allmendinger et al, 2009). In
part, the answer to this question, regardless of whether one is interested in infinitesimal strain
(this chapter) or finite strain (the next chapter), depends on the problem in which you are
interested. In a thrust belt (Fig. 8.21), for example, the strain at the scale of the entire belt is
entirely different than the strain within a single bed; there is no one correct strain measure.

Once we have found the displacement gradient tensor at a particular point, we may separate
it into the symmetric infinitesimal strain tensor, &;;, and the antisymmetric rotation tensor, wj;,
by Equation 8.2. The eigenvalues and eigenvectors of the infinitesimal strain tensor will give us
the principal strains and the antisymmetric part will give us the rotation axis from Equation 8.3.
This is quite a lot more than we could learn from the one-dimensional plot alone! Note that the
only part of this problem that relies on infinitesimal strain assumptions is this final additive
decomposition into symmetric and antisymmetric tensors. Everything else could equally well
be carried out for finite strain.

The MartLas function Gridstrain, below, computes the two-dimensional infinitesimal strain
of a displacement network using Delaunay triangulation (k = 0), nearest neighbor (k = 1), or the
distance weighted method (k = 2). After the computation, the function plots the grid colored by
the parameter chosen in variable plotpar. Gridstrain uses the MatLag built-in function 1scov
to solve the simple or weighted least squares problem of Equation 8.38.Inaway, GridStrainisa

e=-0.5

N
\4

e e=-0.3 ~

Figure 8.21 Cartoon cross section of a hypothetical thrust belt showing three different,
valid measures of horizontal extension. In this, the extension in hand sample is
completely different than that in a train of fold and that for the entire thrust belt. The
length scale for measuring strain depends on the problem in which one is interested.



8.8 Geological applications of infinitesimal strain 159

miniature version of our Macintosh program SSPX (Cardozo and Allmendinger, 2009). You will
get the chance to try GridStrain in the exercises section.

function [cent,eps,ome,pstrains,rotc] = GridStrain (pos,disp,k,par,plotpar)
%$GridStrain computes the infinitesimal strain of a network of stations with
$displacements in x (east) and y (north). Strain in z is assumed to be zero

USE: [cent,eps,ome,pstrains,rotc] = GridStrain(pos,disp,k,par,plotpar)

pos = nstations x 2 matrix with x (east) and y (north) positions
of stations
disp = nstations x 2 matrix with x (east) and y (north) displacements
of stations
k = Type of computation: Delaunay (k = 0), nearest neighbor (k = 1), or
distance weighted (k = 2).

o o° o° o° o° o° o° o° o°

par = Parameters for nearest neighbor or distance weighted computation.
If Delaunay (k = 0), enter a scalar corresponding to the minimum
internal angle of a triangle valid for computation.
If nearest neighbor (k = 1), input a 1 x 3 vector with grid

o o° o° o° o°

spacing, number of nearest neighbors, and maximum distance
to neighbors.
If distance weighted (k = 2), input a 1 x 2 vector with grid
spacing and distance weighting factor alpha
plotpar = Parameter to color the cells: Maximum elongation
(plotpar = 0), minimum elongation (plotpar = 1),
rotation (plotpar = 2), or dilatation (plotpar = 3)
cent = ncells x 2 matrix with x and y positions of cells centroids
eps = 3 x 3 x ncells array with strain tensors of the cells
ome = 3 x 3 x ncells array with rotation tensors of the cells
pstrains = 3 x 3 x ncells array with magnitude and orientation of

o o° o° o A° o° o° o° o° o° o°

principal strains of the cells

rotc = ncells x 3 matrix with rotation components of cells

NOTE: Input/Output angles should be in radians. Output azimuths are
given with respect to north

o o° o° o° o

pos, disp, grid spacing, max. distance to neighbors, and alpha
should be in the same units of length

o° o° oP

GridStrain uses function InfStrain

o°

If Delaunay
if k == 0
% Indexes of triangle vertices: Use MATLAB built-in function delaunay
inds = delaunay(pos(:,1),pos(:,2));
% Number of cells
ncells = size(inds, 1) ;
% number of stations per cell = 3
nstat = 3;
% centers of cells
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cent = zeros(ncells,?2);

for i = 1l:ncells

o

% Triangle vertices

vlix = pos(inds(i,1),1); v2x = pos(inds (i,2),1); v3x = pos(inds
(1,3),1);

vly = pos(inds (i,1),2); v2y = pos(inds (i,2),2); v3y = pos(inds
(1,3),2);

o

% Center of cell
cent (1,1)=(vlx + v2xX + Vv3x)/3.0;
cent (1,2)=(vly + v2y + v3y)/3.0;

% Triangle internal angles

sl = sqrt ((v3x-v2x)”"2 + (v3y-v2y)™*2);

s2 = sqgrt((vlix-v3x) 2 + (vly- v3y) 2);
s3 = sqgrt((v2x-vix)”*2 + (v2y-vly)*2);

al = acos(

a2 = acos ((v3x-v2x)* (vlx-v2x)/ (s1*s3

a3 = acos((v2x-v3x)*

invalidate triangle

inds (i, :) = zeros(1,3);
end

end

o

else
o

% Construct grid

xmin =

min(pos(:,1)); xmax = max(pos(:
ymin = min(pos(:,2)); ymax = max(pos (:
cellsx = ceil ((xmax-xmin) /par (1)) ;
cellsy = ceil ((ymax-ymin) /par (1)) ;
xgrid = xmin:par(1l) : (xmin+cellsx*par (1
ygrid = ymin:par (1) : (ymin+cellsy*par (1
[XX,YY] = meshgrid(xgrid,ygrid) ;

o

% Number of cells

ncells = cellsx * cellsy;

o

% Number of stations per cell.
if k ==
nstat =

o

par(2); %

o°

If distance weighted

elseif k ==
nstat =

end

% centers of cells

cent = zeros (ncells,2) ;

count = 1;

for i = 1:cellsy
for j = 1l:cellsx
cent (count, 1) = (XX (1

(vix-v3x)/ (s1*s2)+ (v2y- v3y)*

,J)+XX(1,3+1)) /2.

7

( )”

( )t ;

(v2x-vlx) * (v3x-v1x) / (83*82) + (v2y- vly) * (v3y-vly)/(s3*s2));
( ) * )+

(viy-v2y)/(s1*s3));
(viy-v3y)/(s1*s2)) ;

+(v3y- v2y)*

If any of the internal angles is less than specified minimum,

al < par || a2 < par || a3 < par

% Else if nearest neighbor or distance weighted

))

If nearest neighbor

Number of nearest neighbors

size(pos,1l); % All stations
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cent (count,2) = (YY(i,3)+YY(i+1,3))/2.0;
count = count + 1;
end
end
% Initialize indexes of stations for cells
inds = zeros (ncells,nstat) ;
% Initialize weight factor matrix for distance weighted method
wv = zeros (ncells,nstat*2);
% For all cells set inds and wv (if distance weighted method)
for 1 = 1l:ncells
% Initialize distances to nearest stations to-1.0
dists = ones(l,nstat)*-1.0;
% For all stations
for j = 1l:size(pos,1)
% Distance from center of cell to station
distx = cent(i,1) - pos(j,1);
disty = cent(i,2) - pos(j,2);
dist = sqgrt(distx*2+disty”2);
% If nearest neighbor
if k == 1
% If within the specified maximum distance to neighbors
if dist <= par(3)
[mind,mini] = min(dists) ;
% If number of neighbors are less than maximum

if mind ==-1.0
dists (mini) = dist;
inds (i, mini) = j;

% Else if maximum number of neighbors
else
% If current distance is lower than maximum distance
[maxd,maxi] = max(dists) ;
if dist < maxd
dists (maxi) = dist;
inds (i, maxi) = j;
end
end
end
% If distance weighted
elseif k ==
inds(i,:) = 1l:nstat; % All stations
% weight factor
weight = exp(-dist®2/(2.0*par(2)72));
wv(i,j*2-1) = weight;
wv(i,j*2) = weight;
end
end
end
end
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% Initialize arrays

y = zeros (nstat*2,1);M = zeros(nstat*2,6); e = zeros(3,3);
eps = zeros(3,3,ncells); ome = zeros (3,3,ncells);
pstrains = zeros(3,3,ncells); rotc = zeros(ncells,3);

% For each cell
for i = 1l:ncells

o°

If required minimum number of stations

if min(inds(i,:)) > 0

Fill displacements column vector y and design matrix M
Use X1 = North, X2 = East

for j = l:nstat

y(j*2-1) = disp(inds(i,3j),2);

y(j*2) = disp(inds(i,j),1);

M(j*2-1,:) = [1 0 pos(inds(i,j),2) pos (inds(i,j),1) 0 0];
M(j*2,:) = [0 1 0 0 pos(inds(i,j),2) pos (inds(i,j),1)];
end

Compute x (Egs. 8.37 and 8.38): Use MATLAB function lscov

o° oo

If Delaunay or nearest neighbor
fk==0|| k==1

x = lscov(M,vy);

-

o°

If distance weighted
elseif k == 2
x = lscov(M,y,wv(i,:));
end
% Displacement gradient tensor
for j = 1:2
e(j,1) = x(j*2+1);
e(j,2) = x(j*2+2);
end
% Compute strain
[eps(:,:,1),ome(:,:,1),pstrains(:,:,1),rotc (i,:)] = InfStrain(e);
end
end
% Variable to plot
% If maximum principal strain
if plotpar == 0
vp = pstrains(1,1,:);
cbt = 'el';
% If minimum principal strain
elseif plotpar == 1
vp = pstrains(3,1,:);
cbt = 'e3';
% If rotation: Since we are assuming plane strain, rotation = rotc(3)
elseif plotpar ==
vp = rotc(:,3)*180/pi;
cbt = 'rot (deg)';
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% If dilatation
elseif plotpar ==
vp = pstrains(1l,1,:)+pstrains(2,1,:)+pstrains (3,1,:);
cbt = 'dilat';
end
% scale variable to plot so that is between 0 and 1
minvp = min(vp); maxvp = max(vp); rangvp = maxvp-minvp;
vps = (vp-minvp)/rangvp;
% colormap
colormap (jet) ;

Plot cells
If Delaunay
f k ==
for 1 = 1l:ncells

o o

-

% If required minimum number of stations
if min(inds(i,:)) > 0
xp = [pos(inds(i,1),1) ;pos(inds (i,2),1);pos(inds(i,3),1)];
yp = [pos(inds(i,1),2);pos(inds (i,2),2);pos(inds(i,3),2)];
patch (xp,yp,vps (i), 'EdgeColor', 'k'") ;
end
end
end
% If nearest neighbor or distance weighted
if k == 1 || k == 2
count =

for = l:cellsx

1;
for i = l:cellsy
J
% If required minimum number of stations
if min(inds(count,:)) > 0
xp = [XX(1,7) XX(i,J+1) XX(i+1,j+1) XX(i+1,3)1;
yp = [YY(1i,3) YY(i,J+1) YY(i+1l,J+1) YY(i+1,3)1;
patch (xp,yp,vps (count), 'EdgeColor', 'k');
end
count = count + 1;
end
end

end

% colorbar
ytick = [0 0.2 0.4 0.6 0.8 1.0];
cb = colorbar('Ytick',ytick,'YTickLabel',{numzstr(minvp),...
num2str (minvp+rangvp/5) ,num2str (minvp +2*rangvp/5), ...
num2str (minvp+3*rangvp/5) ,num2str (minvp +4*rangvp/5),num2str (maxvp) }) ;
set (get (cb, 'title'), 'String’',cbt) ;
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% BAxes

axis equal;

xlabel ('x'); ylabel('y');
end

8.9 EXERCISES

1. In Section 8.2.2, we asserted that “straight lines remain straight” and “parallel lines remain
parallel” in any homogeneous deformation. Prove this to yourself by straining any two
initially parallel line segments according to Equation 8.7.

2. Prove that Equation 8.7, for the case of a pure rotation of a line, requires that the principal
diagonal of the displacement gradient tensor be all zero and that the off-diagonal elements
above the principal diagonal equal the negative of those below.

3. Write Equation 8.29 in terms of the direction cosines of the unit normal and unit displacement
vectors. How would your equation change if you use a north-east-down coordinate system?

4. Fifteen measurements of faults and their slickensides are given in the table below. Calculate
the P and T axes of the individual faults and then calculate an unweighted moment tensor
summation. The slickensides, of course, give the slip direction, but you will have to establish
a sign convention in order to incorporate the sense of slip into the slip vector. Use function
PTAxes Or a spreadsheet program to solve this problem.

Fault Plane Slickensides
Sense

Strike Dip Direction Trend Plunge of slip
149.5 47.2 w 164.4 154 Left lateral
127.6 60 S 134.6 11.9 Left lateral
189.4 34.6 w 349.6 13.1 Left lateral
328 42.5 E 335.3 6.6 Left lateral

22.9 50.2 E 182 23.2 Thrust
108.8 31.1 S 169.2 27.7 Normal
184.6 39.8 w 317.1 31.6 Thrust

93.7 65 S 269.6 8.8 Right lateral
297.6 64.1 N 300.2 5.4 Right lateral
272.5 34.5 N 284.4 8 Right lateral
151.6 58.1 w 154.9 5.3 Left lateral
302.7 47 N 105.3 17.7 Right lateral
349.4 33.7 E 145.2 15.3 Thrust

90.9 71.1 S 96 14.6 Right lateral
189.7 36.6 w 247.9 32.3 Thrust

5. Using the same GPS data set that you were given for Exercise 1 in Chapter 7, calculate the
Delaunay two-dimensional strain field for the coseismic displacements associated with the
1995M 8.1 Antofagasta earthquake. (a) Plot the horizontal extension magnitudes and
compare them to the answer you obtained using a one-dimensional transect in Chapter 7.
(b) Plot the vertical axis rotations and explain the pattern that you see. (c) Repeat a and b but
this time using the nearest neighbor method. (d) Repeat a and b using the distance weighted
method. It is up to you to decide the parameters of the calculation in a to d. Discuss how
these parameters, and specially o in d, affect your results. Hint: Create a text file with the
east and north coordinates and displacements of the GPS stations. Read these in vectors pos
and disp in MatrLaB, and use them in the function Gridstrain accordingly.



CHAPTER

NINE

Finite strain

9.1 INTRODUCTION

Because processes in the Earth work very slowly, the assumptions of infinitesimal strain work
very well for deformation that happens on the scale of years to centuries. Thus geophysicists,
who measure “real-time” deformation with seismometers, GPS satellites, and InSAR (interfero-
metric radar), are content to stay in the realm of infinitesimal strain. Structural geologists,
however, deal with deformation that accrues over millions of years or more. The assumptions
of infinitesimal strain are commonly not appropriate for the large magnitude strains that result
from deformation that accumulates over those long time frames. Thus, this chapter and the
next will explore finite strain. In this chapter, we will look at finite strain simply as the differ-
ence between an initial and a final state; in the next chapter, we will see how strain accrues over
time. Finite strain is considerably messier than infinitesimal strain, but we’ll learn some
interesting things along the way.

When deformations are large, we can no longer assume that the initial and final states are
nearly identical:

ou; ou;

and we have to go back to our four measures of deformation:

Old coordinates New coordinates
. . OX; 0X;
Coordinate transformation dx; = X dX; (Green) ax; = T dx; (Cauchy)
) j
. ou; ou;
Displacements du; = — dX; (Lagrange) du; = — dx; (Euler)
X OX;

165



166 Finite strain

A X2, X2
\‘\ au,-

Figure 9.1 Distortion of a vector PQ to P'Q’. X
Diagram is the same as Figure 7.6 except !
that we now use derivatives rather than
deltas. The axes X and x refer to the initial and
final states, respectively.

P

X; .-

— > X15 X4
(a)

9.2 DERIVATION OF THE LAGRANGIAN STRAIN TENSOR

To derive the basic equations of finite strain, we will return to Figure 7.6, but now with some
minor relabeling (Fig. 9.1). As has been our habit throughout the book, we will do the basic
derivations in two dimensions, which we will then generalize by use of the summation con-
vention. From the diagram, you can see that

dx; = dX; + du; 9.1)
The Lagrangian displacement gradient tensor, e;;, gives us the value of du;
ou;
dLli = a—)(;d.xj = el-jde (92)

Combining Equations 9.1 and 9.2, we get an expression for the length of P'Q’, dx;:

ou;
dx; = dX; + oot dX; = dX; + eydX; 9.3)
0%

Now, let’s look at the difference in the squared lengths of the two vectors:
|PQI? = dXidX; = dX? + dX} and |P'Q|* = dxidx; = dx} + dx3
Expanding the expression for the deformed length, |P’ Q’|2, by substituting Equation 9.3 we get
IP'Q = (dXi + e11dX; + e12dXo)” + (dXo + ex1dXi + epdXo)’
With further expansion and rearranging of terms, we get

2
IPQ'|" = [1+2e11 +en” + ex *|dX? + [1 + 2ep5 + €20° + e15°] dXF
+ [e12 + er1e12 + €21 + ex1e2]2dX1 dX;

Let’s simplify this equation by making the following substitutions:

1 1
E=en +5 (€11 +€21)  Ep=exn +s (€*22 + €%12)

1 1
Ei; =5 (12 +e1) + 5 (enerz + ez €22)

Now, we can write the difference in the lengths of the vector before and after deformation as

IP'Q)? — |PQJ* = 2[F1dX2 + ExpdX2 + EypdX, dX;]
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This equation, in general three-dimensional form using the Einstein summation convention,
can be written
IPQ|° — |PQ)? = 2dX;E;dX;

Ej; is the Lagrangian finite strain tensor and it has the general form

1 [ou; Ou; Juy duy 1
Ei;=— |2 J _
i=2 |ox, T ox Tax o] ~ 2|

ejj + eji + ek,-ekj} (9.4)

where ¢;; is the Lagrangian displacement gradient tensor that we first defined in Chapter 7. In
infinitesimal strain, we assume that the last term in the equation is small enough to neglect:
ouy duy,

X O_XJ = eyieg =0

and we are left with
1 ou;  0u;
‘SU:§(€U+eji):2 ((‘)XJ—'_GX,

By way of example, the following shows you how to expand the Lagrangian strain tensor for
i,j=1,1andfori,j=1,3:

our 1| /ow\* [ow\® [ouz\?
EH_+§|:<0_X1) +<E + A

E 10w ou\ 1 8%uy 8% uy 9us
B=2\0X; ToX,) "2 |0X,0X; | 0X.0X; | 0X,0X,

and

9.3 EULERIAN FINITE STRAIN TENSOR

If we wish to reference our analysis of the deformation to the present deformed state, then we’ll
use the Eulerian finite strain tensor. Its form is quite similar to that just presented and we do not
go through the derivation:

1 [ou; ou lj Ouy Oy

Ei=— |24y K
v 2 (9XJ' + 8xi 8xi an

(9.5)

Notice the difference in the sign of the last term in Equations 9.4 and 9.5. Basically, you can see
that, when we go from infinitesimal to finite strain, we are going from linear partial differential
equations to non-linear partial differentials.

9.4 DERIVATION OF THE GREEN DEFORMATION TENSOR

In this case, we are just interested in finding the new squared length of the vector, |P’ Q’|2, in
terms of the old length and the orientation of the vector. As before,

IPQ'|° = dxjdxi = dX; +dx; and dx; = 8X’ dXJ Fyj dX;

Substituting and expanding, we get

IPQ = (Fi1 dXi + Fi2 d%)* + (Fa1 dXi + Fap dX,)°



168 Finite strain

Expanding as before:
PQ|)" = {Fnz +F212] axy + [1:222 + FIZZ] AX3 + [Fi1 Fip + Fo1 Fap) 2dX dX;

We can write this in simplified terms (and in three dimensions) as
PQ = dxi Cy dx;

This is the same equation as Equation 22.4 in Means (1976). Cj; is the Green deformation tensor,
and it has the form
_ OXy OXy

=0,

= FuFy (9.6)

Without derivation (which is very similar to what we have just suffered through), the Cauchy
deformation tensor is
0Xy 0Xy

|PQ|?* = dx;Cjdx; where Cj = T 0% 9.7)

9.5 RELATIONS BETWEEN THE FINITE STRAIN AND DEFORMATION TENSORS

From the previous derivations, we have
PQf - |PQF = 2dX; EydX; and |P'Q'[* = dX,CydX;

Therefore,
IPQJ® = dX; dX; = dX; Cy dX; — 2dX; Ey dX;

We can simplify this further using the substitution property of the Kronecker delta:
ax; = 6 dX;

So,
dX; &y dX; = (Cy — 2Ey) dX; dX;

The dX’s cancel out and we have

Eij = (ClJ — 51]) and CU = ZEU' + 6ij (9.8)

1
2
Likewise, we can write the relationship between the two tensors referred to the final state:
_ 1 _
Ej =5 (65— Cy) 9.9
Thus, the strain tensors do not contain any more information than the deformation tensors and
vice versa. If you carefully inspect all of these equations, you will see that they are all symmetric
tensors. Thus, these tensors can all be represented by Mohr circles, they all have invariants,
principal axes, etc.

From the above two equations, it is clear that:

e [Ej and Cj; have the same principal axes, and
e E; and Cj; have the same principal axes.

This is because, if the off-diagonal elements of one tensor are zero, the off-diagonal elements of
the other have to be zero. Note, however, that E; and E-J- do not have the same principal axes. The
difference in orientation of the principal axes between the initial and final state, as we will see,
is defined as the rotation tensor, R.
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9.6 RELATIONS TO THE DEFORMATION GRADIENT, F
Recall that the deformation gradient, F, is

axi

dx=F-dX or dx;=F;dX; where Fj=_—.
e

(9.10)
We can also write

dx=dX-F' or dx=dXjF; where Fj= % (9.11)

i

The dot, -, in the above equations represents Gibbs dyadic notation, which is different than
standard matrix multiplication. Recall that the tensor, or dyad, product of two vectors results
when you multiply a row vector times a column vector. In terms of matrix multiplication, while
Equation 9.10 is equivalent to multiplying a 3 x 3 matrix times a 3 x 1 column vector,
Equation 9.11 represents multiplying a 1 x 3 row vector times a 3 x 3 matrix. In the above
case, we can expand 9.10 as

X1 Fi Fo F3]1[X x1 = F1Xi + Fi2Xo + Fi3X%3
X |=|F1 Fo FE3||[X]| or X=X +FExXo+F3X3
X3 FSI F32 F33 X3 X3 = F31X1 + F32X2 -+ F33X3

Likewise, 9.11 is expanded as

X1 % x]=[X1 X X]|F2 Fn Fp

Fi3 F3 P33

F1 Fx F31}

or
X1 =X1Fi1 + X F2 + X3F)3
X =X1F1 +XoF) + X3P
X3 = X1 F31 + XoF3 + X3F33

Clearly the two are the same.
We have just seen that

IPQ']° = (ds)? = dxdx = (dx- FT) (F - dX) = dx(FT- F) dax

So
OXy 0X
_ gT. Yk IRk
C=F"F or Cj= ox, 9%, (9.12)
And without proof,
_ T _ 0X; 0X;
_p-1_ —1 -1 _ Yy Y
C=B 7(13 ) Floor Con=5 /500

B is yet another finite strain tensor called either the left Cauchy-Green tensor or Finger’s tensor.
By substituting into Equations 9.8 and 9.9, we can also derive:

E:%(FT-F—1>

and

E= % (1 - (F*1>T' F*1>
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9.7 PRACTICAL MEASURES OF STRAIN
9.7.1 Stretch and quadratic elongation

Now, we want to relate our tensor description of finite strain to the well-known scalar measures
such as the stretch, elongation, quadratic elongation, and angular shear. Let

dS:‘?Q‘ and ds:ﬁ

where dS and ds represent the scalar magnitudes of the lines in the undeformed and deformed
states, respectively. The square of the stretch, then, is just
2 (ds)? X . dX;
(dS)2 as vas

=1

where /1 is the quadratic elongation. Expanding this equation, we get

SZ _ Xm Xm Xm C dXZ Xm C ng
das “Mas Tas “2gs Tas “Bas
dXZ Xm dXZ dX2 dXz ng
9.13
s s tas C2gs tas s ©.13)
dX3 C Xm dX?, C dXz dX3 C dX3
tas S as Tas S as Tas S8 as

For a vector parallel to the X; axis,
Xmi(l, O7 0) = XmidS dXzZO and dX3:

By substituting these values into the previous equation, 9.13, you can see that, if A is parallel to a
coordinate axis (the X; axis in this case), then

=C1=1+2E; (9.14)

Without going into the expansion, you can see that the same expression with respect to the final
state is

1 1 dx;- dx
52~ ds Vs ©1
and the stretch parallel to the x; axis is
1 1 _ _
—=—=C1=1-2E (9.16)
Sty A
9.7.2 Elongation
The elongation, e, is just the stretch minus 1. So,
_ds—dS _ (dX; . dX;\!
ds (dS UE) -1 9.17)

and for an element parallel to the X; axis:

E(1)=\/C11*1=\/1+2E1171
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Rearranging this last equation, we get

1,
E = Ey +§E(zl)

In infinitesimal strain, we ignore the final, quadratic term of this equation.

9.7.3 Volume ratio
You can calculate the volume ratio as follows:

d
ﬁ\; =555 = \/C1C2C'g = \/(1 +2E)(1 +2E)(1 4+ 2E;) =+/1I¢ (9.18)

Where S, S,, and S; are the principal stretches, and Ill¢ is the third invariant of tensor Cj;.

9.7.4 Angle between two lines

In structural geology, the shear strain is defined as the tangent of the change in angle of two
originally perpendicular lines (e.g., Fig. 8.6a). The key to solving this problem is to remember
that the dot product of two vectors is related to the angle between them:

UiVj

cosf =
[ul|v]|

This problem is easier to do in matrix notation. First, we define the deformation gradient, F, as
in Equation 9.10:

(9X1'

ox;

(ds)? = dxdx =dX- F'- F-dX=dX-C-dX where C=F'-F

dx =F-dX=dX-F' where F=F;=

dxa) - dxp  (dXq) FT)(F - dXp)
dx)||dxz)|  (dx,,CdX ) (dX o CdXy)?

cos Oy =

where 6 is the angle between the two lines in the final state. If the lines were unit vectors in the
material state, then
dXq) - C - dXp)  dXy), CydXp),

S Sz S Sz

cos O =

Expanding this last equation:
dXn), Ci1 dX2), + dXy), Crz dX2), + dX), Ci3 dXp),

+dX), Co1 dXz), + dX), Co2 dX2), + dX1), Co3 dX2),
+dX), C31 dX2), + dX), C32 dXz), + dX1), Cs3 dX(g),

0, —
coser SwSe)

The angle of the line in the initial state, 8;, is just
c0s 6; = dX(y) * dX(z) = {dX), dXe2), + dX1), dX(2), + dX(1), dXc2), |
To take a simple case, let’s look at the change in the angle of two initially perpendicular lines
that start out parallel to the X; and X, axes:
dXa) =(1, 0, 0) and dXp =(0, 1, 0)

The initial angle between them is 90°, so
cos@;=cos90 =0
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The final angle is
cos Oy = Co __ Ce ;= 2k : (9.19)
SmS@) (ChiCw)? [(1+2En)(1 + 2E)]?

The MaTLAaB® function FinStrain, below, summarizes all the finite strain concepts we have
discussed so far. Finstrain computes the Lagrangian (£rame = 0) or Eulerian (f rame = 1) strain
tensor from an input Lagrangian or Eulerian displacement gradient tensor. Besides this, the
function returns practical measures of strain such as principal elongations, dilatation, and
magnitude and orientation of maximum shear strain.

function [eps,pstrains,dilat,maxsh] = FinStrain (e, frame)
$FinStrain computes finite strain from an input displacement
$gradient tensor

[eps,pstrains,dilat,maxsh] = FinStrain (e, frame)

(0]

= 3 x 3 Lagrangian or Eulerian displacement gradient tensor
frame = Reference frame. Enter 0 for undeformed (Lagrangian) state, or
1 for deformed (Eulerian) state

eps = 3 x 3 Lagrangian or Eulerian strain tensor
pstrains = 3 x 3 matrix with magnitude (column 1), trend (column 2) and
plunge (column 3) of maximum (row 1), intermediate (row 2),

and minimum (row 3) elongations
dilat = dilatation

o o° o° o o° o° o° o° o° o° o°

maxsh = 1 x 2 vector with max. shear strain and orientation with

respect to maximum principal strain direction. Only valid in 2D

NOTE: Output angles are in radians

o° o° o° o° o° oP°

FinStrain uses function CartToSph

$Initialize variables
eps = zeros(3,3);
pstrains = zeros(3,3);
maxsh = zeros(1,2);

$Compute strain tensor (Egs. 9.4 and 9.5)

for i=1:3
for j=1:3
eps(i,j)=0.5*(e(i,j)+e(j,1));
for k=1:3
$If undeformed reference frame: Lagrangian strain tensor
if frame == 0
eps(i,]j) = eps(i,]J) + 0.5*(e(k,i)*e (k,3));
%$If deformed reference frame: Eulerian strain tensor
elseif frame ==
eps(i,j) = eps(i,j) - 0.5*(e(k,i)*e (k,3J));
end
end
end

end
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%$Compute principal elongations and orientations. Here we use the MATLAB
$function eig
[V,D] = eig(eps);

$Principal elongations
for i=1:3
ind = 4-1;

$Magnitude
$If undeformed reference frame: Lagrangian strain tensor (Eg. 9.14)
if frame ==

pstrains(i,1) = sqgrt(1.0+2.0*D(ind,ind))-1.0;

$If deformed reference frame: Eulerian strain tensor (Eg. 9.16)
elseif frame ==

pstrains(i,1l) = sqrt(1.0/(1.0-2.0*D(ind, ind)))-1.0;
end
$Orientations
[pstrains (i, 2) ,pstrains(i,3)] = CartToSph(V(1l, ind),V(2,ind),V(3,ind)) ;
end

%$dilatation (Eg. 9.18)
dilat = (1.0+pstrains(l,1))*(1.0+pstrains(2,1))*(1.0+pstrains(3,1)) - 1.0;

$Maximum shear strain: This only works if plane strain

lmax = (1.0+pstrains(1,1))”2; $Maximum quadratic elongation
Imin = (1.0+pstrains(3,1))”2; $%$Minimum quadratic elongation

$Maximum shear strain: Ragan (1967) Eg. 3.46
maxsh(1l,1) = (lmax-1lmin)/(2.0*sqgrt (lmax*1lmin)) ;
$Angle of maximum shear strain with respect to maximum principal strain
%$Ragan (1967) Eg. 3.45
%$If undeformed reference frame
if frame ==
maxsh(1,2) = pi/4.0;
%If deformed reference frame
elseif frame ==
maxsh(1,2) = atan(sgrt(lmin/lmax)) ;
end
end

9.8 THE ROTATION AND STRETCH TENSORS

With finite strain, we can no longer decompose the displacement gradient into the sum of a
symmetric strain tensor and an antisymmetric rotation tensor as we did for infinitesimal strain.
But, you can have a multiplicative (or polar) decomposition of the deformation gradient, F, into
the product of two tensors:

F-R-U=V-R (9.20)
dx=R-U)-dX=(V-R) dX (9.21a)
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b)z >

Figure 9.2 The rotation tensor, Rj, thatrelates
the eigenvectors of the principal axes of the

finite deformation tensor (or the strain tensor)
in the deformed state, ny, h,, and n3, to those X
of the equivalent deformation (or strain) CcoS R31

>
R PP LT TR 3

. A -1
tensor in the undeformed state, N;, N,, and COS R22
Ns. The components of R;; are the direction , .
cosines of the nine angles between new and R Tl
old eigenvectors. Note that neither n nor N A A
represent a coordinate system. ]\A[ 'S N2

1
n
In summation notation:
dXi = Rik Ukj dXJ = VikRkj dXJ (9.21b)

R is the orthogonal rotation tensor that defines the rotation of the principal axes. Basically, R
rotates the principal axes of C in the initial state (X) into the principal axes of C or B! in the final
state (x). U is known as the right stretch tensor and V is called the left stretch tensor; both are
symmetric tensors. As it turns out, they are rather simply related to the Green deformation tensor:

U=C = (FT- F)% and V= (C’l)%: (F . FT)% 9.22)

The rotation tensor, R, gives the difference between the initial and final orientations of the
principal axes, as shown in Figure 9.2.N; > N, > Nj are the eigenvectors of the principal axes in
the initial state and n; > n, > n3 the eigenvectors of the principal axes in the deformed or the
final state. Thus, we can write

flo( =R - No( Oor nHNyj = RUND‘j (9233)

where « is the index of the principal axis, not a summation counter like i and j. Or if we know n
and N, we can calculate R:
Ryjj = NxiNy; (9.23b)

This may look, superficially at least, like a rotation of axes or a tensor transformation but it is
not. Our reference axes, which are not shown in the above diagram, do not change. In general,
neither the initial nor the final orientations of the principal axes will be parallel to the axes of
the coordinate system. Nonetheless, the rotation tensor, R, is an orthogonal matrix like the
transformation matrix, a, that we saw earlier and it works in much the same way. The nine
components of R are the direction cosines of the angles between the axes Ny and A 4.

In infinitesimal strain, the order in which the rotation and the strain occur does not matter,
SO we can write

ejj = &jj + Wijj = Wjj + &jj
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Polar decomposition Additive decomposition
1. Initial @ @
I I I
- | @ &) A
RI Ul I+o
3. Final % %
F =VRI F =RUI F=I+o+¢

Figure 9.3 Comparison of the polar decomposition (left two columns) and additive
decomposition (right column) of the deformation gradient tensor, F. Because F is the
same for all three cases, both the initial and final for those cases must also be the same;
only the middle state, 2, differs. I is the identity matrix, which represents the initial state;
V is the left stretch tensor; U is the right stretch tensor. In the additive decomposition
case, note 10% dilation of circle in intermediate state. Figure is modified from Cladouhos
and Allmendinger (1993).

In finite strain, the order is important. As described by Malvern (1969), the same final defor-
mation can be represented by (Fig. 9.3):

1. astretch defined by U,
2. arigid body rotation, R, and
3. atranslation.

or,

1. atranslation,
2. arigid body rotation, R, and
3. astretch defined by V.

The left stretch tensor, V, defines the strain of the deformed region in the deformed state
and is most commonly preferred for geological analysis. Because U describes the strain in a
state that the geologist never sees (i.e., the initial state), it is not particularly useful (as we will
see below for the Mohr circle for finite strain in the deformed state).
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9.9 MULTIPLE DEFORMATIONS

In infinitesimal strain, we saw that the displacement gradient tensor, e, of each increment of
deformation - due to superposed deformations such as movement of several faults - could be
added together to provide a picture of the total strain:

tOtale _ Z Na — le 4 Ze + .- ,+ne (924)

This is no longer true for the case of finite strain. As before, we start with the deformation
gradient tensor, F. We start with the first deformation, indicated by the leading superscript 1:

lax = 1F - dX

If we now superimpose a second deformation (F), the deformed state for the first deformation
(F) becomes the starting state for the second deformation. That is,

24X =ldx = 'F - dX

and now
2dx =°F - *dX ="F - ('F - dX)="F - 'F - dX (9.25)

We can compare this to the infinitesimal strain formulation in Equation 9.24 by recalling the
relation between the displacement and deformation gradient tensors:

e=F-1=F;-§;
Writing the above equation in terms of e:
°F-'F=(Pe+I)('e+I) ='e+’et+’e - e +1 (9.26)

You can see that this is equivalent to the summation of the displacement gradient tensors
except for the higher order term,2e-le. Because matrix multiplication is non-commutative, in
general 2e-le £ le-2e. Therefore, for finite strains you must know the order in which the defor-
mations occur. We will make extensive use of equations like 9.26 in the next chapter. If you are
applying finite strain to the analysis of fault data (either a measured fault population or faults
in a thrust belt), you must know the order in which every single fault formed (Cladouhos and
Allmendinger, 1993). Although this is feasible for larger faults in a thrust belt, it is virtually
impossible for fault slip data.

9.10 MOHR CIRCLE FOR FINITE STRAIN

Because we most often want to use the Mohr circle to learn about the deformed state (that is, we
usually want to determine the orientation of the principal axes when we know how three
randomly orientated lines have been deformed, etc.), we’ll use one of the tensors referred to
the spatial coordinates (i.e., the present-day coordinates). The one most commonly used is the
Cauchy deformation tensor:

B C; 0 0 cos® 0 sinf
Ci={0 C» O and the transformation matrix a; = 0 1 0
0 0 GC; —sin® 0 cos@

The tensor transformation equation is
E;’j = aikajlékl 9.27)
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— 1 Figure 9.4 Mohr circle for finite strain
3 Z in the deformed state

SO

C,, 0 Cp <Clcos29 + C3sin? 9) 9 ((C3 — C1)cos Osin6)
70 C2 7({) = 0 Cs 0
G 0 Gy ((C1 — C3) cos0sin@) 0 (Cl sin 6 + C3 cos? 9)

From this we get the familiar equations for the Mohr circle (Fig. 9.4):
P 7(C1+Cs)+(61*53) (61*63)
= 2 2 2

cos26 and Cj; = sin20 (9.28)

Remember that we derived an equation for the stretch of lines in the final reference state:
1 1 dXi ~ de

S3, hay ds Uds
and, when a line is parallel to the x; axis of the coordinate system:
1 1 ~
% =t Cu
So, substituting in the above equation and using the reciprocal quadratic elongation(A’ = 1/1),
we get
A1 +23) . (W1 —2'3)

!/
_(
Y= 2

cos?20 (9.29a)

Many of you will recognize Equation 9.29a as one of the two equations for the Mohr circle for
finite strain (referred to the deformed state). The other equation is
/_Y_()"/l _7\'/3) :
y =%=-——-—"""sin20. (9.29b)
s 2
Thus, you can see that the component Cj; (where i # j) of the Cauchy deformation tensor is
equal to y/A.

There is one particularly useful property of the Mohr circle for strain that is well worth a
mention here: the concept of the pole to the Mohr circle. Mohr circle constructions can be
confusing to first time users because it is difficult to relate physical orientation to the points
on the circle. The Mohr diagram for finite strain (Fig. 9.5) contains a unique point on the Mohr
circle (P) such that all lines that connect P to points on the circle are parallel to the orientation of
longitudinal strain represented by those lines in the physical plane (Allison, 1984; Cutler and
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A line 1/ P-C, on 0 =\2i/\

Mokr circle .~ )

S
\ 5_L//
& | A

_ _ ) ine // P-A on
line // P.—C; on Mohr circle -1
Mohr circle

(a) Physical plane (b) Mohr space
Figure 9.5 lllustration of the pole to the Mohr circle for the case of finite strain in the
deformed state. (a) Cross section (left) and longitudinal section (right) of deformed
crinoid stems that lie in a plane perpendicular to G,. (b) Mohr circle for finite strain.
Pis the pole to the Mohr circle; lines from the pole to the principal axes are parallel to the
principal axes’ orientation in physical space.

\J

Elliott, 1983; Ragan, 2009). This is more easily visualized with an illustration. Figure 9.5a shows
two crinoid stems - one perpendicular to the section (the ellipse) that gives the orientation and
ratios of the principal stretches and a second parallel to the cross section that gives a longi-
tudinal stretch of 1.12 in an orientation that is 25° from the orientation of maximum stretch
(point A). A Mohr circle (Fig. 9.5b) is constructed based on the ratios of the principal stretches.
Lines from the points representing the principal strains and parallel to the principal strain
orientations (major and minor axes of the elliptical crinoid section) are traced. These lines
intersect at point P, which is the pole of the Mohr circle (Fig. 9.5b). From point P, a line parallel to
the crinoid stem in the plane of the section is drawn so that it intersects the circle at point A.
This point represents the state of strain of the crinoid stem. All lines that contain P intersect the
circle at the longitudinal (A') and shear over longitudinal (y/x) strain values of those lines in the
physical plane.

As we discussed in Chapter 6, the pole to the Mohr circle can also be used to describe the
relationship between the Mohr diagram for stress and the planes on which tractions act in the
physical plane (Mandl and Shippam, 1981). In fact, there is a pole for a Mohr circle construction
of any second rank tensor, and the properties of the pole are invaluable for quickly relating
points on the Mohr circle to the orientations of those attributes in the physical plane.

9.11 COMPATIBILITY EQUATIONS

The equations, such as the infinitesimal strain tensor,

10w o
f=1 (an+aXi) 9.30)

that we have developed in our understanding of strain work very well when we know the
displacements and we want to calculate strain. Any set of displacements, u;, that you choose
will result in strain. However, the reverse is not so easy: How do we know if any particular strain
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Figure 9.6 lllustration of different types
of finite strain. (a) Initial geometry;
(b) homogeneous, continuous defor-
mation; (c) heterogeneous, continuous

/ X deformation; and (d) heterogeneous,
\ \ \ \ )/ / discontinuous deformation caused by
lack of strain compatibility which has
/ / f / / produced the gap between the upper
/ two blocks.

we specify is the plausible result of a real set of displacements? The expression for the
infinitesimal strain tensor, above, represents six partial differential equations, but there are
only three u;. So, you could easily specify &; such that there are no real values of u; that would
satisfy all six equations.

In structural geology, we are introduced qualitatively to the idea of strain compatibility: All
the pieces must fit together without any gaps or overlaps (Fig. 9.6). The deformation in
Figure 9.6d is not compatible because a gap has opened up between the two top blocks.
Mathematically, we need to find some condition such that Equation 9.30 can be integrated
and there exist a continuous, single valued set of displacements across the volume (in three
dimensions). Such conditions are known as Saint-Venant’s compatibility equations.

Note that we are only dealing with the symmetric part of the displacement gradient tensor
here because rigid body translations and rotations do not affect compatibility. Also, although
we show the equations for infinitesimal strain, compatibility also applies to finite strain. To see
how the compatibility equations are derived, see Malvern (1969, p. 185) or any other good
continuum mechanics textbook. All six equations are repeated here:

~Sy3 = a;;; + a;;f; -2 ai’;fal;ﬁ -0 (9.31a)
2 2 2

S = aafé; 3@;}* 2 St o (9.31b)

~Sp2 = a;;:; + 8;;;21 -2 ;;;‘g;ﬁ -0 (9.310)
2 - . -

R
2

N N T
2

s S ) o

If you are only dealing with horizontal, two-dimensional or plane strain note that only
Equation 9.31a does not have a term related to the X3 axis on the right-hand side. This is the
equation that you would use, then, to make the horizontal strains compatible.

When might you need to use these equations? The answer is pretty much whenever you are
combining strain data from a variety of different sources. A prominent example would be the
world strain map (Kreemer et al., 2003) which integrates deformation from GPS, earthquake
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focal mechanisms, Quaternary fault slip rates, and other sources to produce smoothed strain
maps throughout the globe. Holt et al. (Holt et al., 2000) describe how they incorporate Saint-
Venant’s equations in their calculations. We will return to the concept of strain compatibility in
Chapter 11, where we use kinematic models to approach fault related folding.

9.12 EXERCISES

1. Two brachiopods on abedding plane (Fig. 9.7) have experienced an angular shear (y) that has
distorted the bilateral symmetry typical of undeformed specimens so that the hinge line is
no longer parallel to the median line. Two others are perpendicular. (a) What is the ratio of
maximum to minimum stretch in the bedding plane? (b) What is the area change in the
bedding plane if the long axis of the lower brachiopod is a line of no finite elongation?

2. Figure 9.8 shows a bed of sandstone with a clastic dike that has propagated into the adjacent
shale. Assume that the clastic dike was originally perpendicular to bedding and the cleavage,
shown by the dashed lines, is the direction of maximum finite extension. A quartz vein has
extended during deformation and broken into four sections in the shale. What are the
magnitudes of maximum,/minimum stretch and the area change in the shale layer.

P =12° \

Figure 9.7 Four deformed brachiopods on a bedding plane.
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ll Figure 9.8 Sketch of a sand bed (stippled) with
a weak vertical cleavage interbedded with
shale that has a stronger, inclined cleavage.

1 is the angular shear of a sandstone dike,
and /; is the final length of a boudinaged
quartz vein.

Figure 9.9 Three rutile needles that are embedded
/ l within a quartz grain (e.g., the Cambrian Weaverton
Formation of the Appalachians; Mitra, 1978).

3. Figure 9.9 shows three rutile needles embedded within a quartz grain that has experienced
intragranular strain (see Mitra, 1978). Measure the longitudinal strain of the three grains to
determine the principal stretches and the orientation of the maximum stretching direction.
Hint: Assume that the pole to the Mohr circle has an orientation and elongation defined by
the needle on the right, with a stretch that lies between the other two needles (e.g., Lisle and
Ragan, 1988).
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4. Inforward structural modeling, it is common to place markers such as regular grids, circles,
etc. to track the evolution of deformation in a model. As we saw in Section 8.8.2, a minimum
of four stations or displacement points are necessary to compute the strain in three dimen-
sions. Write a computer program or Marras function to compute three-dimensional, finite
strain from the initial and final coordinates of the nodes of a regular tetrahedron.

5. Modify function Gridstrain such that it computes the two-dimensional finite strain of a
network of displacement points or stations. Notice that in this case the reference frame is
important. Do all your calculations in the deformed reference frame. Hint: Use function
FinStrain instead of InfStrain in GridStrain, and modify Gridstrain accordingly.



CHAPTER

TEN

Progressive strain histories and kinematics

10.1 FINITE VERSUS INCREMENTAL STRAIN

The limitation of finite strain methods is that they do not consider the kinematics, or the
displacement paths of particles during deformation. As shown in Chapter 9, superposition of
large deformations is not commutative; the sequence of events matters, and the finite strain
can arise by an infinite number of paths. Moreover, when approaching the structure and
tectonic history of a region, it is routine to ask questions that require knowledge of the kine-
matics such as: What is the sense and direction of shear in a fault zone? What is the strain
history near plate boundaries? Or, what is the appropriate kinematic fold model for a specific
structure? Kinematic analysis can in some cases provide critical tests against the predictions of
geodynamic models for processes such as folding and mountain-building. In this chapter, we
evaluate different types of progressive deformation. We provide examples of how a strain
history can be quantified using geologic observations.

10.1.1 Progressive strain histories in two dimensions: Pure shear

Let’s start with a simple example of a square that is deformed into a rectangle (Fig. 10.1). The
intermediate principal stretch S, = 1, and the deformation can be completely described in two
dimensions. If we ignore the translation component of deformation, the deformed position
vector (x) can be written in terms of the initial position vector (X) by the equations

8)(1'
Xj = a_XJXJ
or X1 = S]X]
X = X, (10.1)
X3 = S3X3

183
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21 S§1=25

Figure 10.1 Pure shear deformation of

a square after a maximum stretch of Ly

2.5, with the maximum incremental J—m
and finite stretch orientation parallelto X5 ¢
the X; axis. The displacement path of %' ,%
points around the outside of the box is

subdivided into 10 increments of -1

strain. Large white and gray circles are
initial and final positions, respectively. ol
The eigenvectors of the displacement

field are parallel to the principal axes
of finite strain. -3

. .. . )

where §; and S; are the maximum and minimum principal stretches. The matrix, a—X’, was
\j

introduced in Equation 7.9 as the deformation gradient tensor, F. In this case, it forms a 3 x 3

matrix, PF, such that

X1 51 0 0 Xl
(=101 0]||X (10.2)
X3 0 0 S][X
or
x=PF-X (10.3)

In Figure 10.1, the finite strain has been decomposed into 10 infinitesimal strain increments,
defined by incremental deformation gradient tensors that can be indexed so that the final
position vector of an increment is the initial position vector for the next increment:

lxi — lFl_J_l)(j

25, = 1x;

2% = 2F2X;

3Xi =% (10.4)
3x; = 3F3X;

;= ME,X,

The incremental deformation gradient tensors define the maximum stretch direction and
magnitude for each increment of strain, and in this case, the maximum and minimum stretch-
ing directions are parallel to the X; and X3 axes of the coordinate reference frame. The principal
stretches used for all the strain increments in Figure 10.1 are Sll/ 19 and Sg/ 10, respectively.
Variation in the orientation and magnitude of incremental stretches through time defines a
cumulative incremental strain history.
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The deformation gradient tensor at the end of the strain history, »F, results from the
superposition of each of the incremental deformations so that

Xi = "Fy .. Fy"Fy' Fy' X (10.5)

After one increment of strain, the incremental and finite deformation gradient tensors are the
same. But for any later point in the strain history, the deformation gradient tensor for the finite
strain is equal to the product of all the preceding incremental deformation gradient tensors.
The displacement field in Figure 10.1 is symmetric and consists of hyperbolic paths. As is
clear from Equation 5.22 and inspection of Figure 10.1, the X; and X3 axes are flow apophyses
(Ramberg, 1975) defined by the eigenvectors of the deformation gradient tensor, or the vectors
that change length but not orientation in response to the linear transformation ”*F. The amount
of length change is indicated by the principal stretches, or the eigenvalues. The eigenvectors for
the maximum and minimum stretches define stable and unstable equilibriums with respect to
the orientation of passive line markers. Much like a ball at rest is stable at the bottom of a trough
but unstable at the top of a hill, stability is defined in terms of the response of an equilibrium to
perturbations. In the example here, the eigenvector parallel to the maximum stretch (or the X;
axis) defines a stable orientation, and a slight perturbation will result in rotation towards the
equilibrium orientation. The other eigenvector defines an unstable equilibrium orientation; any
perturbation leads to rotation away from this orientation and towards the stable equilibrium.
For the determination of finite strain, we can evaluate the orientation of lines in the
deformed reference frame using the Cauchy deformation tensor for pure shear, Cj;. As shown
in Chapter 9:
X1

o CuXiX
= 2

=-=41 = Ckl(x’ o
2 kX
x? 2 x|
where o’ and &, are the direction cosines that define the orientation of a vector after defor-
mation. This equation can be rewritten in terms of &', or the orientation of the line in the
deformed reference frame relative to the direction of maximum stretch:

2 = 2jcos?0' + iysin 6’

or

X = = X3)cos?0" + X
Solving for /' = 1, we derive the orientation of the lines of no finite elongation:

2g _ (1=43)

cos @), i) (10.6)
There are two roots for ), that satisfy this equation and correspond to two orientations sym-
metrical about the X; axis. The limit of this function is 1 as 23 approaches infinity, which
corresponds to a €', value of 0°. If there is no area change, the limit is % as 2} and /4 approach
1, which corresponds to a 9/,, value of +45°, or the orientation of the lines of no infinitesimal
elongation. Any line oriented so that &' is less than &, has extended. Lines oriented so that 8’ is
greater than ), have shortened. Combining this result with the orientation of the lines of no
infinitesimal elongation leaves us with the three zones of Ramsay (1967; Figure 10.2a) that
indicate whether a line of a specific orientation (8’) is shortening (infinitesimal) and has
shortened (finite) (i.e., zone 3 at 8'>45°), is lengthening (infinitesimal) but has shortened
(finite) (zone 2, @, <0'<45°), and is lengthening (infinitesimal) and has lengthened (finite)
(zone 1,0'<@’).
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Figure 10.2 (a) Zones that describe the infinitesimal and finite longitudinal strain of
passive line markers during pure shear (after Ramsay, 1967). (b) Progressive finite strain
history for pure shear, which shows variations in the orientation relative to X; (f©) and
magnitude (S;) of maximum finite stretch as strain accumulates.

The principal axes for the Cauchy deformation tensor are [1/5,> 0 0],[0 1 0], and
[0 0 1 /532 } and the eigenvectors parallel to these axes do not change as the strain accumu-
lates. In these circumstances, the principal axes of incremental and finite strain are parallel
(finite stretch orientation with respect to X;, f©, is constant throughout the deformation,
Fig. 10.2b). When the finite strain axes do not rotate relative to the incremental strain axes,
strain is irrotational, and deformation can be defined as pure shear. Variations in the orienta-
tion and magnitude of finite strain characterize the progressive finite strain history, which in the
case of pure shear is not very interesting (Fig. 10.2b). The MartLAB® function PureShear, below,
computes and plots the displacement paths (Fig. 10.1) and progressive finite strain history
(Fig. 10.2b) for pure shear. To reproduce Figures 10.1 and 10.2(b), type in MATLAB:

pts = [-1 -1;-1 -0.5;-1 0;-1 0.5;-1 1;-0.5 1;0 1;0.5 1;1 1;1 0.5;1 0;...
1-0.5;1-1;0.5-1;0 -1;-0.5 -1]; %Initial points coordinates
[paths,psf] = PureShear(pts,2.5,10);

function [paths,pfs] = PureShear (pts,stl,ninc)
$PureShear computes and plots displacement paths and progressive finite
$strain history for pure shear with maximum stretching parallel to the

o

X1 axis
USE: [paths,pfs] = PureShear (pts,stl,ninc)

pts: npoints x 2 matrix with X1 and X3 locations of points
stl = Maximum principal stretch

ninc = number of strain increments

paths = displacement paths of points

pfs = progressive finite strain history. column 1 = orientation of

o o o o® o° o o o o° o

maximum stretch with respect to X1 in degrees, column 2 = maximum



10.1 Finite versus incremental strain 187

stretch magnitude

NOTE: Intermediate principal stretch is 1.0 (Plane strain)

o o° o° o°

Output orientations are in radians

$Compute minimum principal stretch and incremental stretches
stlinc=st1”(1.0/ninc) ;

st3=1.0/stl;

st3inc=st3”*(1.0/ninc) ;

%$Initialize displacement paths

npts = size(pts,1l); %Number of points

paths = zeros(npts,2,ninc+l) ;

paths(:,:,1) = pts; %Initial points of paths are input points

%$Calculate incremental deformation gradient tensor
F = [(stlinc) 0.0; 0.0 (st3inc)];

%Create a figure and hold
figure;
hold on;

$Compute displacement paths
for i=1:npts %for all points
for j=2:ninc+1l %for all strain increments
$Equation 10.2-10.5
for k=1:2
for L=1:2
paths(i,k,j) = F(k,L)*paths(i,L,j-1) + paths(i,k,j);
end
end
end
$Plot displacement path of point. Use MATLAB function squeeze to reduce
$the 3D matrix to one vector in X1 and another in X3
xx = squeeze (paths(i,1,:));
yy = squeeze (paths(i,2,:));
plot (xx,vyy, 'k.-"');
end

%Release plot and set axes
hold off;

axis equal;

xlabel ('X1'); ylabel ('X3"');
grid on;

$Initalize progressive finite strain history
pfs = zeros(ninc+1,2);
pfs(1,:) = [0 1.0]; %$Initial state

%$Calculate progressive finite strain history
for i=1:ninc
$First determine the finite deformation gradient tensor
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finF = F*i;
$Determine Green's deformation tensor
G = finF*finF';
%$Stretch magnitude and orientation: Maximum eigenvalue and their
$corresponding eigenvectors of Green's tensor. Use MATLAB function eig
[V,D] = eig(G);
pfs(i+l,1) = atan(v(2,2)/V(1,2));
pfs(i+1,2) = sqgrt(D(2,2));
end

$Plot progressive finite strain history
figure;

plot (pfs(:,1)*180/pi,pfs(:,2),'k.-");
xlabel ('Theta finite deg');

ylabel ('Maximum finite stretch');
axis([-90 90 1 max(pfs(:,2))+0.51);
grid on;

end

10.1.2 Progressive strain histories in two dimensions: Simple shear

Pure shear may be an appropriate description of two-dimensional deformation in some cases,
but deformation is commonly localized in shear zones where the displacement field is best
described by straight line displacements parallel to the shear zone boundaries, which we assume
to be the Xj axis in Figure 10.3. The new coordinates in terms of old coordinates are given by:

X=X +yX;
X2 =X2 (10.7)
X3 :X3

The deformation gradient tensor is given by *°F:

1 0 y
SFj=10 1 0, (10.8)
0 01

where y is the engineering shear strain introduced earlier. It should be no surprise that the
matrix is asymmetric given the displacement field depicted in Figure 10.3. The figure shows a
progressive strain history consisting of 10 increments of infinitesimal strain, with an engineer-
ing shear strain of y/10 for each incremental deformation gradient tensor. The deformation
gradient tensor for the finite strain is obtained by superposition of incremental deformation
gradient tensors as in Equation 10.5.

There are two eigenvectors, one parallel to the intermediate stretch and one parallel to the X;
axis. As expected, the X; axis is an orientation that experiences no rotation or longitudinal strain
due to the deformation gradient tensor, F. In this example, the equilibrium defined by the X;
axis orientation is stable for passive line markers rotated or perturbed in a counterclockwise
sense and unstable for markers rotated clockwise, much like a ball at rest on a ledge. As we will
see in the next section, when we combine this deformation field with pure shear, the dual behavior
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Figure 10.3 Simple shear deformation
Xa 0 of a square after a y of 2.5, with the
3 shear direction parallel to the X; axis.
caaaasaasas® The displacement path of points
-1 d around the outside of the box is
subdivided into 10 increments of
o strain. Large white and gray circles are
“ initial and final positions, respectively.
_3 L

of this orientation occurs when the acute angle between the stable and unstable eigenvectors of
the deformation gradient tensor for a general deformation approaches 0. Because the eigenvec-
tors are parallel to lines of no finite elongation, the eigenvalues are equal to 1.

For the finite strain, we forward model the deformation using the undeformed coordinates,
so we use the Green deformation tensor, Cj;.

For simple shear:

1+y> 0 y
Cj= 0 1 0 (10.9)
0% 01
. . x| o
Solving for the eigenvalues (1), or W parallel to the principal stretches:
S Y H2+yVyr+4
1=
2
do=1 (10.10)

1 Y2 +2-yy2+4
=
2

The orientations of the eigenvectors, or the orientations of the maximum and minimum
principal finite strain, are

73/*@’2*4 0 1} [0 1 0] {73’_@’2*4 01

Note that these are not unit vectors, and we have simplified the expression for the eigenvectors
by setting the component in the X3 direction equal to 1. The orientation of the maximum
principal stretch relative to the X; axis is

0, = tan~ (10.11)



190 Progressive strain histories and kinematics

For very small magnitudes of shear strain (as y approaches 0), the eigenvectors are parallel to the
principal axes of the incremental strain ellipse with orientations[1 0 1]and[-1 0 1](.e,
0, and ©3 approach 45° and —45°). For large strain magnitudes, the eigenvector for the maximum
stretch approaches [1 0 0]. There is no infinitesimal or finite longitudinal strain parallel to
the shear plane and, since there are two lines of no finite elongation symmetric about the
maximum stretch direction, the other orientation of these lines (9',,) is 20, (Fig. 10.4a). We define
this progressive finite strain history as rotationalbecause the principal axes of finite strainrotate
relative to the principal axes of infinitesimal or incremental strain (' © is not constant throughout
the deformation, Fig. 10.4b). This displacement field, with displacement paths parallel to the
shear direction and rotational strain histories, is characteristic of simple shear.

The asymmetric deformation gradient tensor for simple shear can be decomposed into a
symmetric second rank tensor that reflects the pure strain component of the deformation and a
rigid body rotation (Malvern, 1969):

SF=R-U (10.12)
where Uis theright stretch tensor (e.g., Chapter 9.8) that defines the pure strain component and
R is the rotation tensor. We first calculate U:

U= ./SF - (ssl:‘T) (10.13)

The eigenvalues and eigenvectors of U depict the magnitude and orientation of the principal
finite stretches, and the rotation tensor can be calculated by removing the pure strain from the
finite deformation gradient tensor:

R=%F-U"!

The internal rotation (w;) within the rotation matrix R is equal to 8/2 for small strains.

\4
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Figure 10.4 (a) Zones that describe the infinitesimal and finite longitudinal strain of
passive line markers during simple shear (after Ramsay, 1967). (b) Progressive finite
strain history for simple shear, which shows variations in the orientation (f©) and
magnitude (5;) of maximum finite stretch as strain accumulates.
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The function simpleshear, below, computes and plots the displacement paths (Fig. 10.3)
and progressive finite strain history (Fig. 10.4b) for simple shear. To reproduce Figures 10.3

and 10.4b, type in MATLAB:

pts=[-1-1;-1-0.5;-1 0;-1 0.5;-1 1;-0.5 1;0 1;0.5 1;1 1;1 0.5;1 0;...
1-0.5;1-1;0.5-1;0 -1;-0.5 -1]; %Initial points coordinates

[paths,psf] = SimpleShear (pts,2.5,10);

function [paths,pfs] = SimpleShear (pts,gamma,ninc)

%$SimpleShear computes and plots 2D displacement paths and progressive finite

%$strain history for simple shear parallel to the X1 axis

o°  o°

USE: [paths,pfs] = SimpleShear (pts,gamma,ninc)

= orientation of

% pts: npoints x 2 matrix with X1 and X3 locations of points

% gamma = Engineering shear strain

% ninc = number of strain increments

% paths = displacement paths of points

% pfs = progressive finite strain history. column 1

% maximum stretch with respect to X1 in degrees, column 2 =
% stretch magnitude

% NOTE: Intermediate principal stretch is 1.0 (Plane strain)

% Output orientations are in radians

$Incremental engineering shear strain
gammainc = gamma/ninc;

$Initialize displacement paths
npts = size(pts,l); %$Number of points
paths = zeros(npts,2,ninc+1);

paths(:,:,1) = pts; %Initial points of paths are input points

%$Calculate incremental deformation gradient tensor
F = [1.0 gammainc; 0.0 1.0];

%$Create a figure and hold
figure;
hold on;

%$Compute displacement paths
for i=1:npts %for all points
for j=2:ninc+1l %$for all strain increments
$Equation 10.2-10.5
for k=1:2
for L=1:2
paths(i,k,j) = F(k,L)*paths(i,L,j-1)
end
end
end

+ paths (i, k,j);

maximum
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%$Plot displacement path of point. Use MATLAB function squeeze to reduce
%$the 3D matrix to one vector in X1 and another in X3
xx = squeeze (paths(i,1,:));

yy = squeeze (paths(i,2,:));
plot (xx,vy, 'k.-");
end

%Release plot and set axes
hold off;

axis equal;

xlabel ('X1'); ylabel('X3');
grid on;

$Initalize progressive finite strain history

pfs = zeros(ninc+1,2);

$Initial state: Maximum extension is at 45 deg from shear zone
pfs(1,:) = [pi/4.0 1.0];

%$Calculate progressive finite strain history
for i=1 :ninc
$First determine the finite deformation gradient tensor
finF = F*i;
$Determine Green's deformation tensor
G = finF*finF';
%$Stretch magnitude and orientation: Maximum eigenvalue and their
$corresponding eigenvectors of Green's tensor. Use MATLAB function eig

[V,D] = eig(G);
pfs(i+l,1) = atan(V(2,2)/V(1,2));
pfs(i+1,2) = sqrt(D(2,2));

end

$Plot progressive finite strain history
figure;

plot (pfs(:,1)*180/pi,pfs(:,2),'k.-");
xlabel ('Theta finite deg') ;

ylabel ('Maximum finite stretch');
axis([-90 90 1 max(pfs(:,2))+0.5]);
grid on;

end

10.1.3 General shear: Combinations of pure shear and simple shear

Pure shear and simple shear are useful end members for evaluating the kinematics in two
dimensions, but a more complete treatment of strain requires consideration of sub-simple
shear (DePaor, 1983), which is a general shear where deformation lies within the spectrum of
behavior between simple shear and pure shear. To characterize the displacement paths during
a sub-simple shear, we first need to define the pure shear reference frame (the orientation of the
principal stretches) in terms of the kinematic frame for simple shear (the shear plane and shear
direction). At this point, we restrict the discussion to the two dimensions that contain the
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maximum and minimum stretches, and we consider two cases: (1) sub-simple shear where the
principal shortening direction for coaxial deformation is oriented perpendicular to the shear
plane and the principal extension direction is parallel to the shear direction; and (2) sub-simple
shear where the principal axis of extension lies perpendicular to the shear plane and the
principal shortening direction lies parallel to the shear direction.

We showed in Chapter 9 that the sequence in which we apply strain increments is important
for the kinematics. For sub-simple shear, the final position vector x is not the same for simple
shear followed by pure shear and pure shear followed by simple shear (Fossen and Tikoff,
1993). We are interested in the progressive strain history for simultaneous simple shearing and
pure shearing. The deformation gradient rate tensor for this state is given by Ramberg (1975):

. . Y . .
asf — | exp(&rt) E(EXP(EI t) — exp(&st)) (10.14)
0 exp(&st)

where &; and &3 are the rate of elongation parallel to the X; and X3 directions, respectively, and
y is the engineering shear strain rate. Note that the components of this matrix and the
contributions of pure and simple shear are given in terms of strain rates and not strains. We
can express this matrix in a form that is independent of time for a deformation that occurs at a
steady rate. If the maximum extension direction is parallel to the X, axis and area is constant,

then S = exp(&t), S35 = exp(ést) and y = yt. Consequently, él = % , In(S)) = €t, and the
1 1
expression for %F can be simplified (Merle, 1986):
S y(Sl - 53)
PF=|"" "2In§ (10.15)
0 S3

With superposition of infinitesimal strain increments, this deformation gradient tensor is used
in Figure 10.5 to construct displacement paths associated with progressive deformations for
the case of sub-simple shear where the maximum shortening direction for pure shear is
perpendicular to the shear plane (Fig. 10.5).

Figure 10.5 Sub-simple shear, or
simultaneous pure and simple shear,
with pure shear shortening perpendicular
to the shear zone boundaries and pure
shear extension parallel to the shear
zone boundaries. No area change, with
a maximum stretch of 2.5 for the pure
shearing component, and a y of 1.0 for
the simple shear component.
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Now we are in a position where we can evaluate the displacement field in response to
variations in the ratio of pure shear to simple shear (Fig. 10.6). As in the case of pure shear,
there are two eigenvectors for the deformation gradient tensor. These are parallel to apophyses
that define stable and unstable equilibrium marker orientations. The stable orientation is

parallel to the Xj axis [1 0], whereas the unstable orientation [% 1
1

varies as a function

(a) (b)
3 |

Wy =0.1352

Wi =0.3393

X3O

ql

2!

31

Wk=0.7767 Wk=0.9585

Figure 10.6 Sub-simple shear with pure shear shortening perpendicular to the shear
zone boundaries, no area change, and variations in the relative proportion of simple
shear (y) and pure shear (51). @) S} = 2.5, y =0.25; (b) $; =2.0, y=0.5;(c) §; = 1.5,
y =1.0;and (d) S; = 1.25, y = 1.5. The displacement path of points around the outside
of the box is subdivided into 10 increments of strain. Large white and gray circles are

initial and final positions, respectively. Eigenvectors are shown by the dashed arrows.
W, is the kinematic vorticity number.
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of the ratio of simple shear to pure shear. In two dimensions, a simple dimensionless measure of
the ratio of pure to simple shearing is the cosine of the acute angle between the eigenvectors of the
deformation gradient tensor (Bobyarchick, 1986), or the kinematic vorticity number, Wy, (Truesdell,
1953) (Fig. 10.6). Sub-simple shear is characterized by a kinematic vorticity number that lies
between 0 and 1. For sub-simple shear with shortening perpendicular to the shear zone bounda-
ries, the eigenvectors bracket the orientations where passive line markers rotate with the sense of
shear and the orientations where line markers rotate opposite to the sense of shear.

The Green deformation tensor for a general shear with shortening across the shear zone is

206 _ ¢.\? _
Slz+Y(51 8$)° y(&5-$%)

c_ 4Ins; 2In S, (10.16
Y(S51—83) X :
2Ins, 3

The eigenvectors for the Green deformation tensor are parallel to the maximum finite stretch,
and approach the shear plane as strain accumulates, but the initial orientation of the maximum
stretch varies from 0° to 45° as W varies from 0 to 1 (Fig. 10.7). In practice, a lineation that
reflects the direction of maximum stretch will rotate into parallelism with the shear direction
with increasing finite strain magnitude.

In the case where the direction of maximum stretching for pure shear is perpendicular to the
shear plane, the maximum stretch associated with the pure shear component of deformation,
S1, is parallel to the X3 axis, and S is parallel to the X; axis, so the gradient tensor for
simultaneous pure and simple shearing is

‘ g Y(S-51)
PF=|23 "2InS (10.17)
0 S

Figure 10.8 shows deformation of boxes in response to simultaneous pure shear and simple
shear. In this case, the unstable orientation for passive line markers lies parallel to the shear
plane and the stable orientation is oblique to the shear plane. Passive line markers reorient
during deformation into parallelism with the stable eigenvector. The finite strain ellipse ini-
tially has an orientation between 45° and 90° as the kinematic vorticity number varies from 0 to
1; but in contrast to the case with pure shear stretching parallel to the shear zone boundaries,

3
S a
© 25
[
2 b d
c
= 2
c ¢ Figure 10.7 Progressive finite strain histories
g for sub-simple shear and the examples in
'5 15 Figure 10.6.
=
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/@ (deg)
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Figure 10.8 Sub-simple shear with pure shear shortening parallel to the shear zone
boundaries, no area change, and variations in the relative proportion of simple shear (y)
and pure shear (57). @) Sy = 2.5,y =0.25;(b) S; =2.0,y =0.5;(c) S; = 1.5,y = 1.0;and
(d) S; = 1.25, y = 1.5. The displacement path of points around the outside of the box is
subdivided into 10 increments of strain. Large white and gray circles are initial and final
positions, respectively. Eigenvectors are shown by the dashed arrows. Wy is the
kinematic vorticity number.

the maximum finite stretch direction at large strains varies significantly for different kinematic
vorticity numbers (Fig. 10.9).

The function Generalshear, below, computes displacement paths, kinematic vorticity num-
ber, and progressive finite strain history for general shear with a pure shear stretch, no area
change, and a simple shear strain. Maximum finite stretch can be parallel (kk = 0) or perpendic-
ular (kk = 1) to the shear zone. For example, to reproduce Figures 10.6b and 10.7b, type in MATLAB:
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2.5

Figure 10.9 Progressive finite strain histories
for sub-simple shear and the examples in
Figure 10.8.

Maximum finite Stretch
N
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pts=[-1-1;-1-0.5;-1 0;-1 0.5;-1 1;-0.5 1;0 1;0.5 1;1 1;1 0.5;1 0;...
1-0.5;1-1;0.5-1;0 -1;-0.5 -1]; %Initial points coordinates
[paths,wk,psf] = GeneralShear (pts,2.0,0.5,0,10);

And to recreate Figures 10.8b and 10.9b:

[paths,wk,psf] = GeneralShear (pts,2.0,0.5,1,10);

function [paths,wk,pfs] = GeneralShear (pts,stl,gamma,kk,ninc)
%$GeneralShear computes displacement paths, kinematic vorticity numbers
%and progressive finite strain history, for a general shear with a pure
%$shear stretch, no area change, and a single shear strain

USE: [paths,wk,pfs] = GeneralShear (pts,stl,gamma,kk,ninc)

pts: npoints x 2 matrix with X1 and X3 locations of points

stl: Pure shear stretch parallel to shear zone

gamma = Engineering shear strain

kk = An integer that indicates whether the maximum finite stretch is
parallel (kk = 0), or perpendicular (kk = 1) to the shear direction

ninc = number of strain increments

paths = displacement paths of points

o o° A% o° o° o° o° o° o° o° o°

wk = Kinematic vorticity number

pfs = progressive finite strain history. column 1 = orientation of
maximum stretch with respect to X1 in degrees, column 2 = maximum
stretch magnitude

o o° o° o° o°

NOTE: Intermediate principal stretch is 1.0 (Plane strain)

o\°

Output orientations are in radians

$Compute minimum principal stretch and incremental stretches
stlinec=st1”(1.0/ninc) ;

st3=1.0/stl;

st3inc=st3”*(1.0/ninc) ;
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$Incremental engineering shear strain
gammainc = gamma/ninc;

$Initialize displacement paths

npts = size(pts,1l); %Number of points

paths = zeros (npts,2,ninc+1) ;

paths(:,:,1) = pts; %$Initial points of paths are input points

%Calculate incremental deformation gradient tensor
$If max. finite stretch parallel to shear direction (Eg. 10.15)
if kk == 0

F = [stlinc (gammainc* (stlinc-st3inc))/(2.0*log (stlinc)) ;0.0 st3inc];
$If max. finite stretch perpendicular to shear direction (Eg. 10.17)
elseif kk == 1

F = [st3inc (gammainc* (st3inc-stlinc))/(2.0*log (st3inc)) ;0.0 stlinc];
end

$Create a figure and hold
figure;
hold on;

$Compute displacement paths
for i=1:npts %$for all points
for j=2:ninc+1l %for all strain increments
$Equations 10.2-10.5
for k=1:2
for L=1:2
paths(i,k,j) = F(k,L)*paths(i,L,j-1) + paths(i,k,3);
end
end
end
$Plot displacement path of point. Use MATLAB function squeeze to reduce
%$the 3D matrix to one vector in X1 and another in X3
xxX = squeeze (paths(i,1,:));
yy = squeeze (paths(i,2,:));
plot (xx,vy, 'k.-");
end

%Release plot and set axes
hold off;

axis equal;

xlabel ('X1'); ylabel('X3');
grid on;

$Determine the eigenvectors of the flow (apophyses)
[V,D] = eigs(F);
$If max. finite stretch parallel to shear direction
if kk == 0

theta2=atan(V(2,2)/v(1,2));
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%$If max. finite stretch perpendicular to shear direction
elseif kk ==
theta2=atan(V(2,1)/v(1,1));
end
wk = cos(theta2) ;

$Initalize progressive finite strain history. We are not including the
%$initial state
pfs = zeros(ninc) ;

%$Calculate progressive finite strain history
for i=1:ninc
$First determine the finite deformation gradient tensor
finF = F*i;
$Determine Green's deformation tensor
G = finF*finF';
%$Stretch magnitude and orientation: Maximum eigenvalue and their
$corresponding eigenvectors of Green's tensor. Use MATLAB function eig
[V,D] = eig(G);
pfs(i,1) = atan(Vv(2,2)/V(1,2));
pfs(i,2) = sgrt(D(2,2));
end

%$Plot progressive finite strain history
figure;

plot (pfs(:,1)*180/pi,pfs(:,2),'k.-");
xlabel ('Theta finite deg') ;

ylabel ('Maximum finite stretch');
axis([-90 90 1 max(pfs(:,2))+0.5]);
grid on;

end

10.2 DETERMINATION OF A STRAIN HISTORY

Finite strain can be quantified from a range of deformed objects using measurements of
angular shear, longitudinal strain, or some combination of the two, but quantitative recon-
structions of kinematics require some assessment of the incremental and progressive finite
strain histories, a more difficult objective. One approach is to substitute space for time; this is
our aim whenever we assume that a larger finite strain magnitude, a tighter fold, or a fault with
more slip represents a later stage in some characteristic structural evolution.

Some deformation fabrics such as fibrous pressure shadows and porphyroblasts with
inclusion trails allow for the quantitative depiction of the strain history (Elliott, 1972).
Measurement of the distribution of strain histories places a constraint on the structural
evolution of regions or individual structures and can provide a test of the space-for-time
assumption. In the following section, we describe a method whereby syntectonic fiber growths
can be used to quantify the displacement path, which can then be used to calculate the
cumulative incremental and progressive finite strain histories.
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10.2.1 Syntectonic fibers: Indicators of external and internal rotation

For an increment of strain, the external rotation rate, or external vorticity (w,), is determined by
the spin, or angular velocity of the stretching axes relative to the material (wg,), and the internal
velocity (w;).

W, = Wgp + Wi (10.18)

To illustrate the relative contributions of spin and internal rotation to the external rotation,
consider Figure 10.10. Structural geologists trained in the northeastern United States will
recognize this photo as a fossilized Lycopsid trunk from the Llewellyn Formation of Bear
Valley, Pennsylvania (Nickelsen, 1979). The trunk is oriented vertically on a 36°-dipping fold
limb within the Appalachian Valley and Ridge fold belt.

A simple explanation for the vertical orientation of the trunk before and after deformation
is that the bedding was a passive line marker during irrotational strain, and the stump hap-
pened to be originally oriented parallel to the stable eigenvector for pure shear; both the wg,
and w; were zero. This seems unlikely given that the cleavage, although steeper than bedding, is
not close to vertical (Fig. 10.10). Moreover, there are slickenlines on bedding planes and
numerous shear zones in finer-grained layers at this locality, probably due to flexural shear
and flexural slip folding. So, the more likely explanation is that the external rotation (w,) of the
long axis of the tree trunk is negligible because the rigid rotation of beds through the stretching
axes during tilting was equal and opposite in sign to the angular shear associated with flexime.
In either case, a tree that was vertical when sediments were deposited 300 million years ago is
still vertical after ~50% shortening of the Appalachian fold and thrust belt!

The separation of an external rotation into the components of rigid and internal rotation
requires an assessment of the incremental strain history. That is, we need a record of how the
magnitude and orientation of stretch varies through time relative to both an external reference
frame, such as geographic coordinates, and an internal reference frame, such as shear zone
boundaries or bedding layers with contrasting strength. We do this here using syntectonic
fibers that grow in pressure shadows around rigid objects and record the displacement of the
matrix relative to the rigid host.

Syntectonic fiber growth can be syntaxial or antitaxial, depending on the composition of the
fibers and the rigid object (Durney and Ramsay, 1973). In the case of syntaxial fibers, the fibers
nucleate on the margins of arigid host of the same composition and grow outward towards the
matrix (e.g., the crinoid method of Durney and Ramsay, 1973) so the most recent increment of
strain is at the tip of the pressure shadow. For antitaxial fibers, the fibers nucleate on grains in
the deforming matrix and grow towards a host of different composition (e.g., the pyrite method
of Durney and Ramsay, 1973) so the most recent strain increment is at the interface between the
pyrite and the pressure shadow. Since the curvature of fibers is a measure of the external
rotation, coaxial strain histories are represented by straight fibers and non-coaxial strain
histories are depicted by curved fibers. An analysis of the incremental strain history relative
to the external and internal reference frames allows us to determine if fiber curvature reflects
rotation of the rock body through a fixed irrotational stretching direction or simple shear (i.e.,
internal rotation).

In the following sections, we outline two techniques for quantifying a non-coaxial strain
history by assuming that a rotational strain history recorded by curved fibers can be
approximated by a series of small irrotational strain increments separated by rigid body
rotations.
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Figure 10.10 (a) Photograph of a Lycopsid trunk described by Nickelsen (1979) in the
Pennsylvanian Llewellyn Formation in the Valley and Ridge Province of northeastern
Pennsylvania. (b) Stereonet showing the poles and great circles for bedding (circle),
cleavage (square), and the long axis of the tree stump (modified after Nickelsen, 1979).

10.2.2 Cleavage-parallel displacements and passively deformed fibers

We start with a pyrite pressure shadow with antitaxial fibers as viewed in a thin section cut
parallel to cleavage from the metamorphic hinterland of the Taiwan arc-continent collision
(Fig. 10.11a). There is no evidence for shortening in the direction perpendicular to the long axis
of fibers, because all fibers in the pressure shadow are parallel to each other and the pressure
shadow brackets the rigid pyrite sphere such that adjacent fibers do not converge or diverge as
they are displaced with the matrix away from the pyrite. There is, however, evidence for



202 Progressive strain histories and kinematics

(b)

(%1, %x)
~

1 1
/( X1 .Xz)

3F-1 _/

Figure 10.11 (a) Photomicrograph of a pyrite pressure shadow viewed downward on
the cleavage plane from a Cretaceous phyllite near the eastward-facing mountain front
of the Central Range of Taiwan. (b) Sketch showing parameters used in strain history
calculations. ly is projection of initial position vector X on line parallel to fiber segment
(x=X). © is angle between maximum stretch and X; axis. F~' from increment 3 is used to
unstrain 3x to 3X, leaving two increments remaining (right).

deformation of early-formed fibers at the outer edge of the pressure shadow, with recrystalli-
zation and thickening of fibers. The thin section contains the maximum stretch (the long axis of
fibers) and the intermediate stretch (perpendicular to the long axis of fiber segments), which is
approximately equal to 1. We subdivide the fiber into a number of increments so that the curved
displacement path is characterized by a series of short, straight, line segments (Fig. 10.11b).
Since the fiber growth is antitaxial (Ramsay and Huber, 1983), the last increment of fiber growth
is recorded by the portion of the fiber closest to the pyrite. The center of the pyrite serves as the
origin of a Cartesian coordinate system, and an arbitrary external reference frame (e.g., hori-
zontal or a structural lineation) is chosen as the X; axis.

In this example, we assume that fibers deform passively based on the evidence for defor-
mation of early-formed fibers. Such a problem is well suited for an inverse approach where we
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quantify the last increment of strain and use that deformation gradient tensor to undeform all
the remaining fiber segments. The deformation gradient tensor for the last increment, "F, or

”(%) can be written in a coordinate system that parallels the principal maximum and inter-

mediate stretches:
p"xl = "Slanl

Py — P, (10.19)

or

prp _ ["31 (1)} (10.20)

where the superscript nis indexed to the increment number and the superscript p refers to a
reference frame parallel to the principal axes. All displacements occur parallel to the maximum
stretch direction, so the orientation of extension for the last increment, "0, equals (Fig. 10.11b)

n n
ne _ a1 X = "Xo
O =tan (”xl — "X1> (10.21)

To determine the stretch for the nth increment, we first calculate the projection of the initial
position vector onto a line parallel to the stretch direction so that (Fig. 10.11b)

Iy = X|cos @ (10.22)

The angle 0 is the arccosine of the dot product of the unit vectors parallel to X and x — X:

(=)

The maximum incremental stretch for increment n is

b+ [x=X]

n
Sy T

(10.24)
We can now evaluate F in the arbitrary reference frame that we have established parallel to the
X, axis using a tensor transformation (Eq. 5.12):

"Fij = RaRj""Fyy

or
F=R-"F-R"

Since the fiber deforms in response to each increment of deformation, we can use the defor-
mation gradient tensor for the last increment to restore all the points along the fiber to
positions prior to that strain.

The inverse of the tensor "F has the property of displacing the deformed position of the last
increment back to its initial position:

ny — ngp-l.ng (10.25)

All other points along the fiber can be similarly restored.

Now we are left with n — 1 increments, and the initial position vector for increment n— 1,
"-1(X1,X>), is the same as (X}, X>) (Fig. 10.11b). In other words, all fiber segments on a single
fiber originate from the same point on the pyrite surface. The other points along the
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displacement path are restored to new positions prior to the strain associated with " 'F. Using
Equations 10.19 through 10.25, "1F~! is determined in the same manner as for the increment n,
and thenis used torestore all the points to positions prior to the increment n — 1. This process is
repeated until the firstincrement of strainis restored and there is only one point remaining at the
surface of the pyrite grain (Fig. 10.11b). At this stage, we have n ©-values that represent the
maximum stretch directions for each increment and we have n !S-values for the incremental
stretches, so we can plot a cumulative incremental strain history (Fig. 10.12a). This diagram
shows variations in the orientation of incremental stretching as strain accumulates (Fig. 10.12a).
If the strainrate is constant and the strain increments are very small, we can treat the vertical axis
as equivalent to time. A vertical path on this diagram is an irrotational deformation, whereas a
horizontal path is a rigid body rotation.

The progressive finite strain history is obtained by determining the orientation and magni-
tude of stretch after each strain increment. First, we multiply each deformation gradient tensor
in sequence so that

finite 1 F= lF
finite 21: _ 2F . 11:;

finite 3p _ 3. 2F.1F (10.26)

fimtenF:nF.” . 3F_2F_1F
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Figure 10.12 (a) Cumulative incremental strain history showing cumulative elongations
vs. orientation of incremental extension and (b) progressive finite strain history showing
magnitude vs. orientation of maximum finite stretch for the example in Figure 10.11.
The cumulative incremental strain history consists of pure shear (coaxial) strain
increments separated by rigid body rotations. The progressive finite strain history is
the same as the cumulative incremental strain history for the first increment but,
subsequently, it shows the response of the finite strain ellipse to variations in the
orientation and magnitude of the incremental strain.
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The finite deformation gradient tensors from the second increment to the nth increment are
not symmetric because the curved fiber is approximated by a series of irrotational strain
increments separated by rigid body rotations. We evaluate the finite strain by determining
the eigenvectors and eigenvalues associated with the Green deformation tensor:

C=F-FT

By calculating a new Green deformation tensor after each increment of strain, we can depict
progressive variations in the orientation of maximum finite stretch (i.e., the orientation of the
eigenvector of C that defines the maximum stretch) and the magnitude of finite stretch (i.e.,
square root of the eigenvalues of C). These values are used to construct a progressive finite
strain history (Fig. 10.12b).

10.2.3 Geological applications of strain histories in cleavage
planes: An example from Taiwan

So what do we do with these histories? The X; axis for both plots was chosen parallel to
horizontal. The cumulative incremental strain history begins with three increments of elonga-
tion at 80-85° to horizontal, or downdip stretch on cleavage planes (Fig. 10.12a). The progres-
sive finite strain history depicts a maximum stretch of about 2.3 after this early history with
little external rotation (Fig. 10.12b). Then, there was a series of four increments with 85-90° of
counterclockwise external rotation with little elongation, followed by two large elongations
parallel to strike, and finally a small, late oblique elongation. The magnitude of the maximum
finite stretch was 3.7.

There is a lot of information here, but what does it mean? One would like to see more
examples to evaluate the spatial heterogeneity of strain histories, but, nevertheless, there are
some features of this sample that are interesting in light of the regional distribution of
structural fabrics in Taiwan (Fig. 10.13). In the collisional mountain belt of Taiwan, there is a
downdip stretching lineation in the foreland, and along-strike stretching lineation in the hinter-
land. This spatial variation in finite strain could be explained by partitioning of oblique
convergence into downdip stretching in the foreland (the pro-wedge that faces the incoming
flux of material from the Asian passive margin), and strike slip shearing in the hinterland (the
retro-wedge that faces the colliding volcanic arc (Fig. 10.13)). One intriguing possibility is that
the strain history of the sample, early downdip extension followed by late along-strike exten-
sion, reflects the change from downdip shearing to along-strike shearing when the rock is
advected through this fixed displacement field within the mountain belt.

10.2.4 Cleavage-perpendicular sections and passive fibers

For an example of a non-coaxial strain history in a cleavage-perpendicular section, we turn to a
pyrite pressure shadow from a 25°-dipping fold limb within the Marcellus Shale of central
Pennsylvania (Fig. 10.14a). We select an external reference frame for the X; axis (cleavage or
bedding) and then center the origin on the pyrite host. The assumption is that this section
contains the maximum shortening and maximum extension direction (the X; —X3 plane). In this
example, we assume that the antitaxial syntectonic fibers have deformed passively, and each
increment of strain affects the length and orientation of the fiber segments that grew during
prior increments. As in the cleavage-parallel example, we work to progressively “undeform” the
pressure shadow, beginning with the last increment. For the last increment (the fiber segment
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Figure 10.13 Map depicting orientation of tectonic lineations along the Central Cross-
Island Highway of Taiwan. Inset shows transect location. PSP is Philippine Sea plate.
Lower diagram shows an interpretation for the advective flow paths through a double-
sided mountain belt, given accretion in the foreland and erosion off the surface (after
Willett et al., 1993).

adjacent to the pyrite surface for antitaxial fibers), the initial points "(Xj, X3) relate to the
position after deformation "(x;, x3) by the equation

0?(1'
Ny _ [ 222 |y,
X’*(axj) %

nXZnF,nX

or in matrix form:

The undeformed ("X) and deformed ("’x) coordinates in our arbitrary reference frame X; — X3
can be rewritten in terms of the coordinates in a reference frame that is parallel to the
maximum stretch (P"X) and (”"x) through a vector coordinate transformation (Chapter 3):

ani — naianj

10.27
p"x,- = "al-j”xj ( )

or
X ="a-"X
iy _ ng.ng
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Figure 10.14 (a) Photomicrograph of pressure shadow from a cleavage-perpendicular
section of Marcellus Formation in central Pennsylvania. Curved antitaxial calcite fibers
developed on near-spherical pyrite framboids. Dashed line shows the orientation of core
(vertical). (b) Points used in Equation 10.30. Note that S; for third increment in diagram
is not parallel to x—X as it was in the cleavage-parallel case. All displacements are parallel
to pure shear displacement paths from Figure 10.1, but S; direction is not parallel to the
X; axis.

where the superscript p refers to a reference frame parallel to the maximum and minimum
principal stretches P(X; — X3). a allows a change of coordinates from our arbitrary reference
frame to a reference frame parallel to the principal stretches, and the "© contained within a is
the difference in orientation between the two reference frames. Now we have four equations
and five unknowns, "Xj, "Xz, "xy, "x3, and "O. In the reference frame parallel to the maximum
principal stretch:

pnx = PUE . Pnx

b X1 _n Sl 0 b X1
X3 B 0 S3 X3

or

p”xl
n —
S = Y,
pn (10.28)
X3
nS3 —
pnx,
If we make the assumption that there is no change in area (det "[F] = 1), then
anl an3 = an] an3 (1029)

At this point, we can substitute the expressions in Equation 10.27 into Equation 10.29 and solve
for the orientation of incremental extension for the last increment of strain, "© (Fig. 10.14b):

2 ("x1 nX3 — nXl nXg)

tan 2" =
(nle —nxs2 "X]Z + nX32>

(10.30)
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This equation describes the orientation of maximum extension relative to an arbitrary axis for a
pure shear displacement from X to x. Now that we have calculated "© for the nth increment, we
can determine the coordinates for the start and end of the displacement in a reference frame
parallel to the maximum stretch with Equation 10.27. We determine the principal strains using
Equation 10.28. Then P"F in the reference frame parallel to the principal stretches can be
transformed into our arbitrary reference frame:

"Fjj = Ry Ry""Fy

We are now in a position to use the deformation gradient matrix for the last increment to
“undeform” all the points along the fiber to their positions prior to the last increment of strain.
Note that

ny — ng-l.ng (10.31)

Following the procedure described in Section 10.2.2, we calculate all the incremental deforma-
tion gradient tensors from the last increment to the first. The eigenvalues and eigenvectors of
these tensors are used to characterize the cumulative incremental strain history (Fig. 10.15a).
The finite strains are determined by multiplying the deformation gradient tensors in sequence
and determining the eigenvalues and eigenvectors of the Green deformation tensor after each
increment to construct the progressive finite strain history (Fig. 10.15b).

10.2.5 Geological applications of strain histories in cleavage-perpendicular planes

In a cleavage-perpendicular section that contains the maximum and minimum stretch orienta-
tions, the external rotation recorded by fibers can be interpreted as due to simple shear (i.e.,
rotational strain, Fig. 10.16b), or spin, where the rocks have rotated through a fixed orientation
of pure shear stretching (Fig. 10.16a). The correct interpretation requires an assessment of the
strain history in the context of geographic (vertical) and internal (bedding) reference frames.
In the example here, the strain history is characterized by a gradual 25° clockwise rotation of
the incremental extension direction (Fig. 10.15). A simple shear parallel to bedding is unlikely
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Figure 10.15 (a) Cumulative incremental strain history and (b) progressive finite strain
history for the example in Figure 10.14.
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Figure 10.16 Pressure shadow geometries for (a) rotation through a fixed extension
direction and (b) simple shear parallel between bedding planes (internal rotation).

as the sense of internal rotation would be opposite to what is observed; the early fiber segments
should rotate towards bedding (Fig. 10.16b), yet the early fiber segments are bedding-
perpendicular (Figs. 10.15a and 10.16a). Both the magnitude and sense of rotation are consis-
tent with the interpretation that early fiber growth occurred during layer-parallel shortening,
but was followed by rigid rotation related to fold limb rotation through a fixed near-vertical
stretching direction.

We finish with a MatLas function, Fibers, that computes and plots the incremental and
progressive strain histories of syntectonic fibers on cleavage-parallel (kk = 0) or cleavage-
perpendicular (kk = 1) sections. The user should enter the reference plane, the center of the
pyrite, and x and y points along the fiber from an image displayed in MatrLas. Try this function
on the pressure shadows of Figures 10.11 and 10.14. Remember that, since these are antitaxial
fiber growths, you should start digitizing the fiber at the margin of the pyrite grain (last
increment of fiber growth).

function [cie,pfs] = Fibers (imageName, kk)
$Fibers determines the incremental and finite strain history of a fiber in
%a pressure shadow

USE: [cie,pfs] = Fibers (imageName, kk)

image: A character corresponding to the image filename, including
extension (eg. = 'fileName.jpg')
kk = An integer that indicates whether the fiber is on a cleavage
parallel (kk = 0), or cleavage perpendicular (kk = 1) section

cie = cumulative incremental elongation: column 1 = Incremental theta,
column 2 = cumulative incremental maximum elongation
pfs = progressive finite strain history: column 1 = Finite theta,

column 2 = maximum stretch magnitude

o o° o° o o° o° o° O o° o° o° o° o°

NOTE: Output theta angles are in radians

%$Read and display image
IMG=imread (imageName) ;
imagesc (IMG) ;
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$Prompt the user to define a reference plane. If the current reference
$plane is not satisfactory, the user can re-select the input points
a='n';
while a=='n"
clf; %Clear figure
imagesc (IMG) ; %$Display image
hold on;
disp('Select two points along the reference plane, from left to right.');
[refpx, refpy] = ginput (2);
refpx = round (refpx); %Rounds imput x points to nearest integer
refpy = round (refpy); %Rounds input y points to nearest integer
plot (refpx, refpy, '- -y', 'LineWidth',1.5) ;
a=input ('Would you like to keep the current reference plane? (y/n)
', 's');

end

$Prompt the user to select the origin and fiber points from the image
$display. The origin is defined at the center of the pyrite sphere.
$The fiber points are selected sequentially along a single fiber path.
$If the current fiber path is not satisfactory, the user can re-select the
%$input points
a='n';
while a=='n'
clf; %Clear figure
imagesc (IMG) ; %Display image

hold on;

plot (refpx, refpy, '--y', 'LineWidth',1.5)

disp ('Select the origin point, center of pyrite sphere.');

[xo, yol = ginput(l); %Select center of grain as the origin

xo=round (xo0) ; yo=round (yo); %Rounds positions to nearest integer value
plot (xo,yo,'ok', 'MarkerFaceColor', 'k', 'MarkerSize',8) $%$Plots origin

$Digitize points along fiber
disp ('Digitize points along the fiber') ;
disp ('Left mouse button picks points');
disp ('Right mouse button picks last point');
x=[]; vyv=1[00;n=0; but = 1;
while but ==
n=n+1;
[xi,yi,but] = ginput (1) ;
xi=round(xi); %Rounds point coords to nearest integer
yi=round (yi) ;
plot (xi,yi,'-or', 'LineWidth',1.5); %Plots point
x(n) = xi; y(n) = yi; %$Add point to fiber path
end
a=input ('Would you like to keep the current fiber path? (y/n) ', 's');
end
hold off;
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%$Start calculation

%$Switch y values from screen coordinates with (0,0) at the upper left
%$corner to cartesian coordinates, with (0,0) at the lower left corner
nrow=size (IMG,1); %$Number of rows in image

YyO=Nnrow-yo;

y=nrow-y;

refpy = nrow-refpy;

%$Set origin of coordinate system at center of pyrite sphere
X=X-XO;

Y=Y-YO;

%$Rotate all points into a reference frame parallel to X1
phi=atan((refpy(2)-refpy (1)) / (refpx(2) -refpx(1))) ;
Rot=[cos (phi) sin(phi) ;-sin(phi) cos(phi)];

vec=[x;y];

newvec=Rot*vec;

x=newvec (1, :);

y=newvec (2, :) ;

$Initialize some variables
cie = zeros(n-1,2);

rotmat = zeros(2,2,n-1);
finmat = zeros(2,2,n-1);
elong = zeros(1l,n-1);

C = zeros(2,2,n-1);

pfs = zeros(n-1,2);

$Incremental, inverse modeling of pressure shadow (Backwards)
for i=1:n-1
$If cleavage parallel section (Equation 10.21)
if kk ==
cie(n-i,1)=atan((y(2)-y(1))/(x(2)-x(1)));
%$If cleavage perpendicular section (Equation 10.30)
elseif kk == 1

cie(n-i,1)=(atan((2* (x(2)*y(2)-x(1) *y(1)))/
(x(2)*2-y(2)*2-x (1) "2+y (1) *2))) /2;
end
Beta=[cos(cie(n-i,1)) sin(cie(n-i,1));-sin(cie (n-i,1))...

cos (cie(n-1,1))1;
$If cleavage parallel face
if kk ==

h=[x(1);y(1)]1;

H=[x(2) ;y(2)];

v0=H-h;

vl=h/norm(h) ;
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v2=v0/norm(v0) ;
Alpha=acos (dot (v1,v2)) ;
initlength=norm(h) *cos (Alpha) ;
stlinc= (norm(v0)+initlength) /initlength;
posmat=[stlinc 0;0 1];

%$If cleavage perpendicular section

elseif kk ==

Bigxl=Beta* [x(1);y(1)];
Bigx2=Beta* [x(2) ;v (2)];
stlinc=(Bigx2 (1) /Bigxl(1));
st3inc=(Bigx2(2) /Bigxl(2)) ;

posmat=[stlinc 0;0 st3inc];

end

rotmat (:, :,n-1i) =Beta'*posmat*Beta;

elong (n-i)=stlinc-1;

for j=1:n-i
newposition = rotmat(:,:,n-1i)\I[x(j+1); v(3+1)]1;
x (j) =newposition (1) ;
v (j) =newposition(2) ;

end
end

$Plot cummulative incremental maximum elongation

figure;

cie(:,2)=cumsum(elong); %$Cummulative, incremental, maximum elongation
plot (cie(:,1)*180/pi,cie(:,2),'0");

xlabel ('Theta incremental deg') ;

ylabel ('Cumulative incremental elongation')

axis([-90 90 0 max(cie(:,2))+0.5]);

$Compute progressive finite strain (Forward)
finmat (:, :,1)=rotmat (:,:,1);
for i=2:n-1
finmat (:, :,1)=rotmat (:,:,1) *finmat (:,:,1-1);
end
%$Determine Cauchy deformation tensor
for i=1:n-1
C(:,:,1)=finmat (:,:,1) '*finmat(:,:,1);
%$Stretch magnitude and orientation: Maximum eigenvalue and their
%$corresponding eigenvectors of Cauchy's tensor. Use MATLAB function eig
[V,D]=eig(C(:,:,1));
pfs(i,2)=sqrt(D(2,2));
pfs(i,1)=atan(V(2,2)/V(1,2));
end

$Plot Progressive finite strain
figure
plot (pfs(:,1)*180/pi, pfs(:,2), 'o');
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xlabel ('Theta finite deg') ;

ylabel ('Progressive Finite Strain');
axis([-90 90 1 max(pfs(:,2))+0.5]);
end

10.3 EXERCISES

1. Given pure shear deformation, derive an expression that relates the orientation of a line
relative to the maximum stretching direction before deformation (0) to the orientation of the
line relative to the maximum stretching direction after deformation (8’) (Fig. 10.17).

2. Given simple shear deformation, derive an expression that relates the orientation of a line
relative to the shear direction before deformation (¢) to the orientation of the line relative to
the shear direction after deformation (¢') (Fig. 10.18).

3. The photois an outcrop of a siltstone-shale sequence with bedding planes depicted by white
lines (Figure 10.19). The dashed white line is parallel to the trace of quartz veins that were
originally planar. (a) Assume that deformation is characterized by simple shear parallel to
bedding in shale layers. If the veins in the undeformed state were parallel to the vein
orientation in the more competent siltstone layers, what is the orientation and magnitude
of the maximum stretch in the shale layers? (b) If the deformation was characterized by pure
shear with extension parallel to bedding, what is the orientation and magnitude of the
maximum stretch in the shale layers?

4. In the photomicrograph (Fig. 10.20), a circular, rigid siderite porphyroblast has an internal
foliation (S;) that is rotated relative to the penetrative foliation outside the porphyroblast
(Sy). Either S; has rotated relative to a porphyroblast that does not rotate (pure shear), the
porphyroblast has rotated relative to S; that does not rotate (simple shear parallel to S,), or

X3

7 Figure 10.17 Pure shear deformation

X1 where a passive marker at an angle 6
from the X; axis before deformation
makes an angle 8’ with the X; axis
after deformation.
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X3

Figure 10.18 Simple shear deformation d’

where a passive marker at an angle ¢ X1
from the X; axis before deformation
makes an angle & with the X; axis
after deformation.

Figure 10.19 Outcrop photo of pervasive quartz veins refracted at contacts between
interbedded siltstone and shale layers from the Kodiak Formation of Afognak Island,
Alaska.
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Figure 10.20 Siderite porphyroblast showing apparent rotation of an internal fabric (S;)
relative to external fabric (S;) during development of S,.

X3

M Figure 10.21 Sub-simple shear
1

deformation where a passive marker
at an angle 0 from the X; axis before
deformation makes an angle ' with
the X; axis after deformation.

both have rotated (general shear or simple shear oblique to S;). (a) If we assume passive
rotation of S; in response to pure shear (with coaxial stretching parallel to S,), what is the
magnitude of the maximum stretch? (b) If we assume simple shear parallel to S; and a
rotation of an equant inclusion by y / 2 (Ghosh and Ramberg, 1976; Jeffrey, 1922), what is the
magnitude of the maximum stretch? (c) If we assume general shear (with pure shear
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Figure 10.22 Pyrite pressure shadow with bedding shown by solid white line and
cleavage by dashed line (Fisher et al., 2002).

Figure 10.23 Sketch of en echelon veins. \
Shear zone boundaries shown by dashed Y _ i ey A

lines.

shortening perpendicular to S;, simple shear parallel to S;, and an incremental stretch
parallel to S;), what is the kinematic vorticity number W, ?

5. Given a general shear, derive an expression that relates the orientation of a line relative to
the shear plane before deformation (6) to the orientation of a line relative to the shear plane
after deformation (0') (Fig. 10.21).

6. Determine the cumulative incremental and progressive finite strain histories for the exam-
ple depicted in Figure 10.22. (a) What is the magnitude of finite strain? (b) What is the total
rotation of the maximum stretching direction? Is the external rotation likely due to rigid
rotation or internal rotation? (c) If the bedding is parallel to the stable shear plane of sub-
simple shear and the latest fiber segment is parallel to the incremental stretch, what is the
kinematic vorticity number W,? Hint: Use functions Fibers and GeneralShear.

7. For the en echelon vein set in Figure 10.23, assume that the veins are confined to the shear
zone and that they open parallel to the incremental maximum stretch direction. What is the
kinematic vorticity number W, ?



CHAPTER

ELEVEN

Velocity description of deformation

11.1 INTRODUCTION

There are almost as many types of models as there are reasons for constructing them. At one
extreme, a qualitative interpretation of the history of a region may be described as a “model.”
We have all seen titles like: “A Tectonic model for the Little Jackass Creek Quadrangle.” At the
other extreme, full-fledged mechanical models incorporate a complete set of constitutive
relationships in a computational or analytical framework. In this chapter, we present one
type of numerical model that falls between these two extremes. It is based on a limited set of
largely kinematic and geometric assumptions, while ignoring forces, rock properties, equations
of equilibrium, constitutive relationships, etc. The purpose of these kinematic models is to
simulate structural geometries and visualize the evolution of structures through time. Because
they can be executed quickly, kinematic models can be run thousands or millions of times to
test large parameter spaces. Do not fall into the trap, however, of thinking that they “explain”
the deformation!

Kinematic modeling uses ad-hoc velocity fields that satisfy known boundary conditions,
and obey reasonable assumptions such as conservation of mass throughout deformation.
Strictly speaking, the velocity fields used have no mechanical or dynamical significance. They
are just convenient models to simulate observed structures from a descriptive (i.e., in terms of
strain) rather than a genetic (i.e., in terms of stress) manner (Marrett and Peacock, 1999). A
discussion of the advantages and disadvantages of kinematic with respect to mechanical
modeling is beyond the scope of this book. The interested reader can consult Marrett and
Peacock (1999), and Pollard (2000).

Besides being an excellent topic to illustrate the application of the concepts we have learned
so far (e.g., coordinate transformations, vector operations), there are several advantages
in using velocities to describe deformation (Waltham and Hardy, 1995): (1) The method is
general and applicable to any kind of deformation, and (2) time-evolving parameters that
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are influenced by deformation - such as temperature, pressure, erosion, and sedimentation -
can be easily modeled once the deformation velocities are specified. An additional advantage
of kinematic models is often overlooked: If we can run a kinematic model forward, we can
also run it backward. This proves to be an extremely useful property to solve a type of
problems known as “inverse” problems.! In these problems, we are not so much interested
in forward modeling deformation, but rather in finding the model that best replicates
a structure as we observe it today. We will talk more about inverse problems in the next
chapter.

11.2 THE CONTINUITY EQUATION

The starting assumption of all velocity models is that mass is conserved. Matter is neither
created nor destroyed and little if any is converted into energy. This condition is specified by
the continuity equation:

6p (9V1'_
ﬁera—xi—O

This equation basically says that the change in density (p) with respect to time (t) of a volume
plus the flux of mass in and out of the volume (given by the second term of the equation, v is
velocity) must be equal to zero. The continuity equation can also be written as

dp

— v=0 11.1

T pV ( )
where Vv is the divergence of the velocity field. If there are no changes in volume, such as
compaction or thermal expansion during deformation, the density remains constant and
Equation 11.1 reduces to

_ avy 0w, 0w

VV=ox o, T oxs

=0 (11.2)
This condition is known as incompressibility. In some tectonic settings such as thrust belts, the
wavelength of individual structures is short compared to their strike parallel dimension. In this
case, we can assume plane strain. This means that there is no velocity parallel to strike (the x3
axis):

[2A%} -

o

Thus, cross-sectional area perpendicular to strike must be conserved and we can write the two-
dimensional form of the incompressibility criterion:

Vv = 8_?(1+8X2

(11.3)

(?Vl OVZ} .

How do we use this equation? In general our approach will be to assume a relationship
for one of the two velocity components (usually v;), and then use Equation 11.3 and the
boundary conditions to calculate the other component (usually v,). A few examples will make
this clearer.

! Note that this is a different use of the term “inverse” than when we talked about inverting a matrix in a
previous chapter.
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Figure 11.1 Velocity description of (a) simple shear, and (b) pure shear. Continuous
rectangle shows the initial state, and dashed rectangle the deformed state. Gray arrows
are velocity vectors.

11.3 PURE AND SIMPLE SHEAR IN TERMS OF VELOCITIES

Simple shear is a trivial example but a good place to start on understanding the velocity
modeling approach. In simple shear (Fig. 11.1a), the velocity in the x; direction, vi, is constant,

and depends only on the x, coordinate:

Vvi=xtlany =xy

Therefore
v _
8x1 a
and from Equation 11.3
ovs _
8X2 o
Integrating to solve for v,
Vo = C

and since there is no movement in the x, direction (v, = 0, Fig. 11.1a), C = 0.
The case for pure shear deformation (Fig. 11.1b) is more interesting. The velocity in the x;
direction, vy, varies linearly with position in x;, so we can write

oy _

vi=ax; and —
(221

Using the incompressibility condition (Eq. 11.3):

v ov, _
8X1 8x2 B

8\/2
a+-—=0

+ 8X2
Integrating to solve for v,:

A% :—axz+C

(11.4)

(11.5)

(11.6)

(11.7)
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2
A /
/ v,=Rs
v, = s cosf 4 1
1 o / v, =0
\ v, = s sinf / 2
v, =S ‘ i
v,=0
1
S —>

Figure 11.2 Geometric model of simple step, fault-bend folding with the controlling
parameters together with the three velocity domains. Arrows show the velocity in each
domain.

and using the boundary condition that there is no movement in the x, direction at the base of
the block (v, = 0 at x, = 0, Fig. 11.1b), C = 0.

11.4 GEOLOGICAL APPLICATION: FAULT-RELATED FOLDING

In the upper brittle crust, folds are often associated with faults. In this section, we will use
velocity models of deformation to describe two types of fault-related folds: those formed by
movement of arock sequence above a non-planar fault (i.e., fault-bend folds), and those formed
by deformation at the tip of a propagating fault (i.e., fault-propagation folds).

11.4.1 Fault-bend folding

The basic equations for constant layer thickness fault-bend folding come from Suppe (1983).
For a step off a horizontal decollement (Fig. 11.2):

sin2y

_ sin(y — 0)
(2cos?y + 1)

Sy (11.8)

tan 0 B=180°-2y R=
where 6 is the dip of the fault, y is the axial angle of the fold, § is the dip of the forelimb, and Ris
the ratio that describes how slip diminishes across the hanging wall cutoff of the fold.

The model has three distinct regions or domains with different velocities, and in each
domain the velocity is parallel to the local fault orientation (Fig. 11.2). Fault slip rate s is
conserved between domains 1 and 2, but is consumed across domains 2 and 3 (Fig. 11.2). The

horizontal (v;) and vertical (v») velocities in the three domains are (Hardy, 1995)

Domainl: vy =s, v, =0
Domain?2: vi = scos 6, Vv, =ssinf (11.9)

Domain3: vi = Rs, v =0



11.4 Geological application: Fault-related folding 221

You can see that since v; and v, within each domain are constant, the incompressibility
criterion (area conservation, Eq. 11.3) is satisfied.

Besides incompressibility, another condition, known as strain compatibility (Chapter 9),
should be fulfilled by the model. The three velocity domains must remain in contact, without
overlaps or gaps. This condition requires that all points along a fault or a velocity boundary
f(x1) obey the following equation (Waltham and Hardy, 1995):

of of
1, _ 1y, 9 2, 2, O
Vo Vi % Vo V1 ax (11.10)
where the superscripts 1 and 2 refer to the domains to be entered and exited, respectively. For
the domains 1-2 boundary:

. of of
§sin 6 — scos Ga_xl = _Sa—xl
which, rearranging, gives
of sin

ox1 (cosf—1) (11.1D)
For 6 = 30°, tan~!(9f/0x;) or , (Fig. 11.2) = 125°. This equation predicts that the velocity
boundary between domains 1 and 2 is the bisector of the lower bend in the decollement. For the
domains 2-3 boundary:

—Rsa—f: ssin@—scos@a—f
0X1 0xy
and
sin @
R= 0———— 11.12
Cos OF/9%) ( )

This equation predicts the change of slip across the boundary between domains 2 and 3 for any
inclination of the boundary (Hardy and Poblet, 1995; Hardy, 1995). When the boundary is that
given by Suppe’s equations (Eq. 11.8) for 8 = 30°, y and ¢/, = 60° (Fig. 11.2). Using these values in
Equation 11.12 gives a slip ratio R of 0.577, which is identical to that predicted by Equation 11.8.

Fault-bend folds grow as a result of kink band migration during two stages (Suppe, 1983). In
the first stage (Fig. 11.3a), the displacement is less than the length of the ramp. The kink bands
marked by AA’ and BB’ grow longer; the anticline increases in height and the crest decreases in
width. The orientation of the boundary between domains 2 and 3 (kink A, Fig. 11.3a) is given by
Equation 11.12. In the second stage (Fig. 11.3b), the displacement is greater than the length of
the ramp; the crest of the anticline increases in width but stops growing in height. The
orientation of the boundary between domains 2 and 3 (kink A, Fig. 11.3b) is given by
Equation 11.11.

The function FaultBendFold, below, plots the evolution of a simple step, Mode 1 (Suppe,
1983) fault-bend fold. FaultBendFold uses the function SsuppeEquation to compute y from
the input 0, and from these two, R (Eq. 11.8). The remaining part of the program deals with the
identification of the velocity domains and the application of the velocities of Equation 11.9 to
the bedding points, as the structure grows. To plot the evolution of a simple step fault-bend
fold with a 25° dipping ramp, type in MaTLAB®:

yp = [50,100,150,200,250]; %Beds datums
psect = [1000,500]; %Section parameters
pramp = [400,25%pi/180,100]; %Ramp parameters
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(b)

Figure 11.3 Thetwo stages in the evolution of a fault-bend fold. (a) Fault displacement is
less than the length of the ramp. (b) Fault displacement is greater than the length of the
ramp. Numbers indicate the velocity domains.

pslip = [300,1]; %Slip parameters
frames = FaultBendFold(yp,psect,pramp,pslip); %$Make fold

You will see a movie of the structure’s evolution. To watch the movie again type:
movie (frames) ;

function frames = FaultBendFold(yp,psect,pramp,pslip)
$FaultBendFold plots the evolution of a simple step, Mode I fault bend fold

USE: frames = FaultBendFold(yp,psect,pramp,pslip)

yp = Datums or vertical coordinates of undeformed, horizontal beds
psect = A 1 x 2 vector containing the extent of the section, and the
number of points in each bed

pramp = A 1 x 3 vector containing the x coordinate of the lower bend in

o o° o° o° o° o° o°
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the decollement, the ramp angle, and the height of the ramp
pslip = A 1 x 2 vector containing the total and incremental slip
frames = An array structure containing the frames of the fold evolution
You can play the movie again just by typing movie (frames)

NOTE: Input ramp angle should be in radians

o o° o° o° o° o° o° o°

FaultBendFold uses function SuppeEquation

$Extent of section and number of points in each bed

extent = psect(l); npoint = psect(2);

%$Make undeformed beds geometry: This is a grid of points along the beds
xp=0.0:extent/npoint:extent;

[XP,YP] =meshgrid (xp,yp) ;

$Fault geometry and slip

Xramp = pramp(l); ramp = pramp(2); height = pramp (3);
slip = pslip(1l); sinc = pslip(2);

$Number of slip increments

ninc=round(slip/sinc) ;

%$Ramp angle cannot be greater than 30 degrees, and if it is 30 degrees,
$make it a little bit smaller to avoid convergence problems
if ramp > 30*pi/180
error ('ramp angle cannot be more than 30 degrees');
elseif ramp == 30*pi/180
ramp=29.9*pi/180;
end

$Minimize Eg. 11.8 to obtain gamma from the input ramp angle (theta)
options=optimset ('display', 'off');

gamma = fzero('SuppeEquation',1l.5,options,ramp) ;

%$Compute slip ratio R (Eg. 11.8)

R = sin(gamma - ramp)/sin(gamma) ;

%Make fault geometry
xf=[0 xramp xramp+height/tan(ramp) 1.5*extent];
yf=[0 0 height height];
$From the origin of each bed compute the number of points that are in the
$hanging wall. These points are the ones that will move
hwid = zeros(size(yp,2));
for i=1:size(yp,2)
if yp(i) <= height
hwid (i) =0;
for j=1l:size(xp,2)
if xp(j) <= xramp + yp(i)/tan(ramp)
hwid(i)= hwid(i)+1;
end
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end
else

hwid (i) =size (xp,2);

end
end

$Deform beds: Apply

velocity fields of Eg. 11.9

$Loop over slip increments

for i=1:ninc

$Loop over number of beds

for j=1l:size (XP,

1)

$Loop over number of hanging wall points in each bed
for k=1:hwid(j)
$If point is in domain 1

if XP (3,
XP (]
YP (]

else
$If

k) < xramp - YP(j,k)*tan(ramp/2)
,k) = XP(j,k) + sinc;
k) = YP(3,k);

point is in domain 2

if YP(j,k) < height

else

XP(j,k) = XP(j,k) + sinc*cos (ramp) ;
YP(j,k) = YP(j,k) + sinc*sin(ramp) ;

$If stage 1 of fault bend fold (Fig. 11.3a)
if i*sinc*sin(ramp) < height
$If point is in domain 2
if XP(j,k) < xramp + height/tan (ramp) +...
(YP(j,k)-height) *tan (pi/2-gamma)
XP(j,k) = XP(j,k) + sinc*cos (ramp);
YP(j,k) = YP(j,k) + sinc*sin (ramp) ;
$If point is in domain 3
else
XP(j,k)= XP(j,k) + sinc*R;

end
$If stage 2 of fault bend fold (Fig. 11.3b)
else
$If point is in domain 2
if XP(j,k) < xramp + height/tan (ramp)-...
(YP(j,k)-height) *tan (ramp/2)
XP(j,k)= XP(j,k) + sinc*cos (ramp);
YP(j,k)= YP(j,k) + sinc*sin (ramp) ;
$If point is in domain 3
else
XP(j,k) = XP(j,k) + sinc*R;

end
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end
end
end
end
$Plot increment
$Fault
plot (xf,yf, 'r-', 'LineWidth', 2) ;
hold on;
%$Beds
for j=1l:size(yp,2)
$If below ramp
if yp(j) <= height
plot (XP(j,1:1:hwid(j)),YP(j,1:1:hwid (3)),'k-"');
plot (XP(j,hwid(j)+1:1:size(xp,2)),YP(]j, hwid(j)+

l:1:size(xp,2)),'k-");
$If above ramp
else
plot (XP(j,:),YP(F,:),'k-");
end

end
$Plot settings
text (0.8*extent,1.75*max (yp),strcat ('Slip = ', num2str(i*sinc)));
axis equal;
axis ([0 extent 0 2.0*max(yp)]);
hold off;
$Get frame for movie
frames (i) = getframe;
end
end

function y = SuppeEquation (gamma,theta)
$SuppeEquation: First equation in Eg. 11.8 for fault bend folding

y = sin(2*gamma)/ (2* (cos (gamma) ) *2+1) - tan(theta) ;
end

11.4.2 Similar folding over curving fault bends

Where bends in the faults are curved rather than straight, structural geologists commonly use
inclined simple shear and the resulting similar folds to make kinematic models of folds over
ramps. Hanging-wall, rollover anticlines above listric normal faults represent the most
common application of this approach. Here, again, the velocity boundary condition of
Equation 11.10 comes to our rescue. In this case, the velocity boundary condition is not a
kink axial surface but the fault itself. As elsewhere in this chapter, we follow the development

of Waltham and Hardy (1995).

To start, we define a coordinate system with x; horizontal and x, vertical and specify «, the
angle between the vertical and the direction of inclined shear. The direction of inclined shear
fixes the orientation of the X', axis of a second coordinate system, with x'; perpendicular to it
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l—» v, ' o—§

( - >
local dip of the fault plane ,

Figure 11.4 Geometric model of a similar fold produced by inclined shear with angle «.
Two coordinate systems are used to solve this problem: one geographic (x; —xz) and
another based on the direction of shear (xj—x5). Arrows show the velocities in the
hanging wall and footwall.

(Fig. 11.4). The angle « then defines the two-dimensional coordinate transformation between
the two coordinate systems:

- cos & cos(90 + ) | _ [cosx —sin«
U7\ cos(90 — x) COS & T \sinx cosax

Note that, normally, the coordinate transformation shown in Figure 11.4 would be considered a
rotation by —«, but we are using the common convention that antithetic shear (i.e., in the
opposite sense from the main fault) is positive. Using the transformation of vectors equation,
3.6, we can write the relationship of the velocity of a point undergoing inclined shear in two
coordinate systems as

Vi =a;vi +appVs =V oS X — Vo Sin

/ . (11.13a)
Vo = dp1 V] + dpp Vo = V) SIN X + Vo COS X
and the reverse transformation:
/ J J J :
Vi =dinVvVi+aVvy =V CosSx + vy SIn X
(11.13b)

Vo = appV) + ax»nVs = —V) sinax + Vb cos &

In the inclined simple shear model, the velocity perpendicular to the shearing, v/, is assumed to
be constant and, furthermore, we have the boundary condition that where the fault is horizon-
tal outside of the zone of inclined shear, the horizontal velocity is the fault slip rate s, and the
vertical velocity is zero (Fig. 11.4). Using this condition and Equation 11.13a, we can thus write

V| = sCos &

Substituting this expression into Equation 11.13b, we get
V] = $cos?a + v, sin

, , (11.14)
Vo = —=8COSXSINKX + V, COS &

We can now use the velocity boundary condition from Equation 11.10 for the listric normal fault
shown in Figure 11.4, assuming that the footwall velocity is defined by 2v; and 2v, (Fig. 11.4).
Substituting and rearranging Equations 11.14 to solve for vj:
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s[cos o sin & + (;X—f) cos? a} + 2y — 2"1%
Vi = 1 1 (11.15)

CoS & of sin x
0x1

where

8f 8x2

o = o =tand
6 is the local dip of the fault at a position directly down the shear plane from the point of
interest (Fig. 11.4). Equation 11.15 can be simplified for the case where the footwall is treated as
stationary. The value for v, can be substituted into Equations 11.14 to solve for v, and v, at any
point. The function similarFold, below, plots the evolution of a similar fold with a fixed
footwall. To produce a rollover with a shear angle « of 30° type:

yp = [50,100,150,200,250]; %Beds datums

psect = [1000,500]; %Section parameters

pslip = [200,1]; %Slip parameters

frames = SimilarFold (yp,psect,30*pi/180,pslip); %Make fold with 30 deg shear

Upon pressing return, you will be asked to digitize the geometry of the listric fault in a figure
window. After that, you will see a movie of the fold’s evolution.

function frames = SimilarFold(yp,psect,alpha,pslip)

o

SimilarFold plots the evolution of a similar fold
USE: frames = SimilarFold (yp,psect,alpha,pslip)

yp = Datums or vertical coordinates of undeformed, horizontal beds

psect = A 1 x 2 vector containing the extent of the section, and the
number of points in each bed

alpha = Shear angle. Positive for shear antithetic to the fault and
negative for shear synthetic to the fault

pslip = A 1 x 2 vector containing the total and incremental slip

frames = An array structure containing the frames of the fold evolution
You can play the movie again just by typing movie (frames)

o° o° o° o° A° o° o A° o° o° o° o° o° o

NOTE: Use positive pslip for a normal fault

$Extent of section and number of points in each bed
extent = psect(l); npoint = psect(2);

$Make undeformed beds geometry: This is a grid of points along the beds
xp=0.0:extent/npoint:extent;
[XP,YP] =meshgrid (xp,yp) ;

%$Slip and number of slip increments
slip = pslip(1l); sinc = pslip(2);
ninc=round(slip/sinc) ;
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$Prompt the user to select the geometry of the fault. If the current fault
$trajectory is not satisfactory, the user can re-select the input points
a='n';
while a=='n"
$Plot beds
for i=1:size(yp,2)
plot (XP(i,:),YP(i,:),'k-");
hold on;
end
axis equal;
axis( [0 extent 0 2.0*max(yp)]l);
$Digitize fault
disp ('Digitize a listric fault shallowing to the right');
disp ('Left mouse button picks points');
disp ('Right mouse button picks last point');
fault = [1; n = 0; but = 1;
while but ==
n=n+1;
[xi,yi,but] = ginput (1) ;
plot (xi,yi,'-or', 'LineWidth',1.5); %Plots point

fault(n,1) = xi; fault(n,2) = yi; %Add point to fault
end
hold off;
a=input ('Would you like to keep the current fault? (y/n) ', 's');

end

$Sort fault points in x
fault = sortrows (fault,1l);
xf = fault(:,1)"';

yE = fault(:,2)"';

$Find tangent of dip of fault segments: df/dx
dfx = zeros(1l,n);
for i=1:n-1

dfx (i) = (y£(i+1)-y£(1i))/(xE(i+1)-xf(1));
end
dfx(n) = dfx(n-1);

$From the origin of each bed compute the number of points that are in the
$footwall. These points won't move
fwid = zeros(size(yp,2));
$Find y of fault below/above bed points
vii = interpl (xf,yf,xp, 'linear', 'extrap') ;
for i=1:size(yp,2)

fwid(i)=0;

for j=1l:size(xp,2)

if yp(i) < yfi(3)
fwid (i) = fwid(i) + 1;
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end
end
end

%$Coordinate transformation matrix between horizontal-vertical coordinate
%$system and coordinate system parallel and perpendicular to shear direction
all=cos (alpha) ;

al2=-sin(alpha) ;

a2l=sin(alpha) ;

a22=all;

$Transform fault and beds to coordinate system parallel and perpendicular
%$to shear direction

xfS = xf*all+yf*al2; %Fault

XPS XP*all+YP*al2; %Beds

YPS = XP*a2l+YP*a22;

%$Compute deformation
$Loop over slip increments
for i=1:ninc
$Loop over number of beds
for j=1:size(XPS,1)
%$Loop over number of bed points in hanging wall
for k=fwid(j)+1l:size (XPS,2)
$Find local tangent of fault dip: df/dx
if XPS(j,k) <= x£S(1)
1dfx = dfx(1);
elseif XPS(j,k) >= xfS(n)
1dfx = dfx(n);

else
a='n'; L =1;
while a=='n"
if XPS(j,k) >= xfS(L) && XPS(j,k) < x£S(L+1)
ldfx = dfx(L);
a = "s';
else
L =L + 1;
end
end
end

$Compute velocities perpendicular and along shear direction
$Equations 11.13 and 11.15

vxS = sinc*all;

vyS = (sinc*(all*a2l1+1dfx*all”2))/(all-1dfx*a2l);

$Move point

XPS(j,k) = XPS(j,k) + vxS;

YPS(j,k) YPS(j,k) + vyS;

end
end
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$Transform beds back to geographic coordinate system
XP=XPS*all+YPS*a2l;
YP=XPS*al2+YPS*a22;

$Plot increment

$Fault
plot (xf,yf, 'r-', 'LineWidth', 2) ;
hold on;
%Beds
for j=1l:size(yp,2)
$Footwall
plot (XP(j,1:1:fwid(j)), YP(J,1:1:fwid(3)), 'k-");

$Hanging wall
plot (XP(j,fwid(j)+1:1:size(XP,2)), ...
YP(j,fwid(j)+1:1:size(XP,2)), 'k-");
end
$Plot settings
text (0.8*extent,1l.75*max (yp) ,strcat ('Slip = ',num2str(i*sinc)));
axis equal;
axis( [0 extent 0 2.0*max(yp)]);
hold off;
$Get frame for movie
frames (i) = getframe;
end
end

11.4.3 Fault-propagation folding

Fault-propagation folds consume slip at the tip of a propagating fault. Here, we will concentrate
on two types of fault-propagation folding velocity models: kink models, which include fixed
axis and parallel models, and the trishear model.

Fixed axis kink model
The basic equations for fixed axis fault-propagation folding come from Suppe and Medwedeff
(1990). For a step off a horizontal decollement (Fig. 11.5) and assuming no excess shear, the fold

interlimb half angles (y,,y;, ¥}, y.. ¥;) are related to the dip of the fault (6) by the following
equations:

(11.16)

_ . . _1[sinyisiny
Ye = cot (cotys —2coty,) y;=sin"! {sﬁniy;e}
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Figure 11.5 Geometric model of simple step, fixed axis fault-propagation folding with
the controlling parameters together with the three velocity domains. Arrows show the
velocity in each domain. Notice that the kink axis at the top of the forelimb is fixed
(material does not flow through it).

The kink axis at the top of the forelimb is assumed to be fixed (no material flows through it),
and the forelimb is allowed to thin or thicken (Fig. 11.5). In addition, the ratio of back limb (i.e.,
ramp) length, L, to fault slip, which is equivalent to the fault propagation to fault slip ratio
(P/S) is (Suppe et al., 1992):

coty; — coty, sin(y; + 0)
1 siny;/siny, siny,
sinf  sin(y,+y; — 0)

P/S = (11.17)

This ratio is constant in the model, and is equal to 2.0 (you can convince yourself by computing
Egs. 11.16 and 11.17 with different values of 0). The fixed axis model has three velocity
domains (Fig. 11.5), and in each of these domains the velocities are (Hardy and Poblet, 1995)

Domain 1: vi =s, v =0
Domain 2: v; = scosf, Vv, =ssinf (11.18)
Domain 3: vi = Rscosy,, V, =Rssiny,

where s is the fault slip rate, y, is the dip of the front axial surface and R is the change in slip
across the boundary between domains 2 and 3 (Fig. 11.5). Notice again that since v; and v,
within each domain are constant, the incompressibility criterion (Eq. 11.3) is satisfied. Ris given
by (Hardy and Poblet, 1995)

_ sin(y; +6)

: (11.19)
sin(y; +ye)

The following function, FixedaxisFPF, plots the evolution of a simple step, fixed axis fault-
propagation fold. The structure of the program is similar to that of function FaultBendFold.
From the input ramp angle 0, Equations 11.16, 11.17, and 11.19 are solved, and then the
velocities of Equation 11.18 are applied to the bedding points as the structure grows. To
make a fixed axis fault-propagation fold with a 20° dipping ramp, type:
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yp = [50 100 150 200 250]; $%Beds datums
psect = [1000 500]; %Section parameters
pramp = [400 20*pi/180]; %Fault parameters
pslip = [100 0.5]; %Slip parameters

frames = FixedAxisFPF (yp,psect,pramp,pslip); %$Make fold
And to make one with a 40° dipping ramp type:

pramp = [400 40*pi/180]; %Fault parameters
frames = FixedAxisFPF (yp,psect,pramp,pslip); %Make fold

You will see thickening of the forelimb for the 20° dipping ramp, and thinning of the
forelimb for the 40° dipping ramp. In the case of a step up from a decollement (Fig. 11.5), the
forelimb thickens if the ramp angle 8 <29° and thins if 6 >29° (Suppe and Medwedeff, 1990).
For 6 = 29°, bed length and thickness normal to bedding are preserved, and the fixed axis
model is identical to the parallel model. Try running the program with other 0 angles. You will
find that it is not possible to produce an anticline with an overturned limb. That is a major
limitation of the fixed axis model.

function frames = FixedAxisFPF (yp,psect,pramp,pslip)
$FixedAxisFPF plots the evolution of a simple step, fixed axis
$fault propagation fold

USE: frames = FixedAxisFPF (yp,psect,pramp,pslip)
yp = Datums or vertical coordinates of undeformed, horizontal beds

psect = A 1 x 2 vector containing the extent of the section, and the
number of points in each bed

pramp A 1 x 2 vector containing the x coordinate of the lower bend in
the decollement, and the ramp angle

pslip = A 1 x 2 vector containing the total and incremental slip

frames = An array structure containing the frames of the fold evolution

You can play the movie again just by typing movie (frames)

o0 o o o° o° o o o° o° o° o° o° o°

NOTE: Input ramp angle should be in radians
% Base of layers
base = yp(1);

$Extent of section and number of points in each bed

extent = psect(1l); npoint = psect(2);

$Make undeformed beds geometry: This is a grid of points along the beds
xp=0.0:extent/npoint:extent;

[XP, YP]=meshgrid(xp,yp);

$Fault geometry and slip

xramp = pramp(l); ramp = pramp (2);
slip = pslip(1l); sinc = pslip(2);
$Number of slip increments
ninc=round (slip/sinc) ;
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%Solve model parameters
$First equation of Eg. 11.16
gaml=(pi-ramp)/2.;
%$Second equation of Eg. 11.16
gamestar = acot ((3.-2.*cos(ramp))/(2.*sin(ramp))) ;
$Third equation of Eg. 11.16
gamistar=gaml-gamestar;
$Fourth equation of Eg. 11.16
game=acot (cot (gamestar) -2.*cot (gaml)) ;
$Fifth equation of Eg. 11.16
gami = asin((sin(gamistar) *sin(game))/sin(gamestar)) ;
%$Ratio of backlimb length to total slip (P/S) (Eq. 11.17)
al=cot (gamestar) -cot (gaml) ;
a2=1./sin(ramp) - (sin(gami) /sin(game) ) /sin (game+gami-ramp) ;
a3=sin(gaml+ramp) /sin(gaml) ;
lbrat=al/a2 + a3;
%Change in slip between domains 2 and 3 (Eg. 11.19)
R=sin(gaml+ramp) /sin (gaml+game) ;
$From the origin of each bed compute the number of points that are in the
%$hanging wall. These points are the ones that will move. Notice that this
$has to be done for each slip increment, since the fault propagates
hwid = zeros (ninc,size(yp,2));
for i=1:ninc
uplift = lbrat*i*sinc*sin(ramp) ;
for j=1l:size(yp,2)
if yp(j)-base<=uplift
hwid(i,j)=0;
for k=1:size(xp,2)
if xp(k) <= xramp + (yp(j)-base)/tan (ramp)
hwid (i, j)=hwid(i,j)+1;
end
end
else
hwid (i, j)=size(xp,2);
end
end
end

%$Deform beds. Apply velocity fields of Eg. 11.18
$Loop over slip increments
for i=1:ninc
% Compute uplift
lb = lbrat*i*sinc;
uplift = lb*sin(ramp) ;
1lbh = 1lb*cos (ramp) ;
% Compute point at fault tip
xt = xramp + 1lbh;
yt = base + uplift;
$Loop over number of beds
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for j=1:size(XP,1)
$Loop over number of hanging wall points in each bed
for k=1:hwid (i, j)
$If point is in domain 1
if XP(j,k) < xramp - (YP(j,k)-base)/tan(gaml)
XP(j,k) = XP(j,k) + sinc;
else
$If point is in domain 2
if XP(j,k) < xt - (YP(j,k)-yt)/tan(gaml)
XP(j,k) = XP(j,k) + sinc*cos(ramp) ;
YP(j,k) = YP(j,k) + sinc*sin(ramp) ;
else
$If point is in domain 3
if XP(j,k) < xt + (YP(j,k)-yt)/tan(game)
XP(j,k) = XP(j,k) + sinc*R*cos(game) ;
YP(j,k) = YP(j,k) + sinc*R*sin(game) ;
end
end
end
end
end
$Plot increment
$Fault
xf=[0 xramp xramp+lbh];
yi=[base base uplift+base];
plot (xf,yf, 'r-', 'LineWidth',2);
hold on;
%$Beds
for j=1l:size(yp,2)
$If beds cut by the fault
if yp(j)-base <= uplift

plot (XP(j,1:1:hwid(i,3j)), YP(j,1l:1:hwid(i,j)),'k-");
plot (XP(j,hwid(i,j)+1l:1:size(xp,2)), YP(j, hwid(i,j)+...
l:1:size(xp,2)),'k-");
%If beds not cut by the fault
else
plot (XP(3,:), YP(3,:),'k-");

end
end
$Plot settings
text (0.8*extent,1.75*max (yp) ,strcat ('Slip = ',num2str(i*sinc)));
axis equal;
axis ([0 extent 0 2.0*max(yp)]l);
hold off;
$Get frame for movie
frames (i) = getframe;
end
end
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Figure 11.6 Geometric model of simple step, parallel fault-propagation folding with the
controlling parameters together with the four velocity domains. Arrows show the
velocity in each domain.

Parallel kink model

In the parallel model, bed length and layer thickness are preserved, and overturned limbs are
allowed. The basic equations for a simple step, parallel fault-propagation fold (Fig. 11.6) are
(Suppe and Medwedeff, 1990)

1+ 2cos’y* cosf—2
sin 2y* sinf

(11.20)
y1=90"-6/2; y=90"+y" —y; B, =180"-2y"

where 0 is the dip of the fault and y;, y, y* are axial angles as in Fig. 11.6.

The problem with the parallel model is that the backlimb length L, is only equal to the fault
length when 6 = 29°. Therefore, there is no direct way of deriving the fault propagation to fault
slip ratio P/S. This problem was solved by Hardy (1997) using geometrical relations between
fault slip and the height of the ramp (h), length of the ramp (L), and length of the forelimb (ef,
Fig. 11.6). Here we just give the solution:

1
1 sin @
{ sin(2y — 9)}

Contrary to the fixed axis model, the P/S varies with 0 in the parallel model. Figure 11.7
shows the variation of P/S for 6 angles in the range 10-50°. For 8 from 10 to 29°, the P/S
increases approximately linearly from 1.55 to 2.0, whereas above this angle the P/S increases
rapidly with 6 reaching a value of 5.25 at 6 = 50°. At 8 = 29° the P/S of the fixed axis and
parallel models is identical.

The parallel model has four velocity domains (Fig. 11.6). The velocities in these domains are
(Hardy, 1997)

P/S = (11.21)
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Figure 11.7 Variation of fault propagation to fault slip ratio (P/S) with step-up angle (6),
for simple step, fixed axis and parallel fault-propagation folds. Notice that the P/S is
constant in fixed axis folds, while it is variable in parallel fault-propagation folds and
increases with 6. Star shows the location where fixed axis and parallel models intersect
and are identical.

Domainl: vy =s, v =0

Domain?2: vy = scosf, Vv, =ssinf
Domain3: vy = Rjscosy, V., =R;ssiny
Domain4: vy = Rpscosy, V., = Ryssiny

(11.22)

where R, and R; are the slip ratios between the regions 2 and 3, and 2 and 4, respectively. R; and
R, are given by (Hardy and Poblet, 2005)

sin(y, + 6)
sin(y; +y)
(11.23)
R, — sin B,
* 7 sin(B, - 0+y)
The function ParallelFPF, below, plots the evolution of a simple step, parallel fault-
propagation fold. The program’s structure is similar to that of the program before: First the
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program computes the model parameters (Eqs. 11.20, 11.21 and 11.23), and then it applies
the velocities of Equation 11.22 to the bedding points. ParallelFPF uses function
SuppeEquationTwo to compute y* from the input 6 (Eq. 11.20). To make a parallel fault-
propagation fold with a 20° dipping ramp, type:

yp = [50 100 150 200 250]; %Beds datums

psect = [1000 500]; %Section parameters
pramp = [400 20*pi/180]; %Fault parameters
pslip = [100 0.5]; %Slip parameters

frames = ParallelFPF (yp,psect,pramp,pslip); %Make fold
And to make one with a 40° dipping ramp type:

pramp = [400 40*pi/180]; %$Fault parameters
frames = ParallelFPF (yp,psect,pramp,pslip); %$Make fold

You will see that the 20° ramp produces a fold with an overturned forelimb, while the 40°
ramp results in a fold with an upright forelimb. Overturned limbs are produced by ramp angles
0 <25° (Suppe and Medwedeff, 1990). Also, since the kink axis at the top of the forelimb is not
fixed, there is flow of material through it. At 8 <29° material rolls from the forelimb onto the
crest of the fold, whereas at 6 >29° material from the crest rolls onto the forelimb (Zapata and
Allmendinger, 1996). At 6 = 29° there is no flow of material through the kink axis (fixed axis
and parallel models are identical). This has important implications for the geometry of growth
strata as we will see in Section 11.5.

function frames = ParallelFPF (yp,psect,pramp,pslip)
%$ParallelFPF plots the evolution of a simple step, parallel
$fault propagation fold

USE: frames = ParallelFPF (yp,psect,pramp,pslip)

yp = Datums or vertical coordinates of undeformed, horizontal beds

psect = A 1 x 2 vector containing the extent of the section, and the
number of points in each bed

pramp = A 1 x 2 vector containing the x coordinate of the lower bend in
the decollement, and the ramp angle

pslip = A 1 x 2 vector containing the total and incremental slip

frames = An array structure containing the frames of the fold evolution.

You can play the movie again just by typing movie (frames)

NOTE: Input ramp angle should be in radians

o o° o o° o o° ° A% o° o° o° o° o° o° o°

ParallelFPF uses function SuppeEquationTwo
% Base of layers
base = yp(1);

$Extent of section and number of points in each bed

extent = psect(l); npoint = psect(2);

$Make undeformed beds geometry: This is a grid of points along the beds
xp=0.0:extent/npoint:extent;
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[XP, YP]=meshgrid(xp,yp);

$Fault geometry and slip

xramp = pramp(l); ramp = pramp (2) ;
slip = pslip(1l); sinc = pslip(2);
$Number of slip increments
ninc=round(slip/sinc) ;

%¥Solve model parameters

$Solve first equation in Eqg. 11.20 by minimizing SuppeEquationTwo
options=optimset ('display"', 'off');

gamstar = fzero('SuppeEquationTwo',0.5,options, ramp) ;
$Solve second equation in Eg. 11.20

gaml = pi/2. - ramp/2.;

$Solve third equation in Eg. 11.20

gam = pi/2.+gamstar-gaml;

$Solve fourth equation in Eg. 11.20

bet2 = pi- 2.*gamstar;

$Other angle for computation

kap = pi - bet2 + ramp;

$Eq. 11.21
lbrat = 1./(1.-sin(ramp)/sin(2.*gam-ramp)) ;
$Eq. 11.23

Rl=sin(gaml+ramp) /sin(gaml+gam) ;
R2=sin(bet2) /sin (bet2-ramp+gam) ;

$From the origin of each bed compute the number of points that are in the
$hanging wall. These points are the ones that will move. Notice that this
$has to be done for each slip increment, since the fault propagates
hwid = zeros(ninc,size(yp,2));
for i=1:ninc
uplift = lbrat*i*sinc*sin (ramp) ;
for j=1:size(yp,2)
if yp(j) -base<=uplift
hwid (i, j)=0;
for k=1:size(xp,2)
if xp(k) <= xramp + (yp(j)-base)/tan (ramp)
hwid (i, 3j)=hwid(i,j)+1;
end
end
else
hwid (i, j)=size (xp,2);
end
end
end

$Deform beds: Apply velocity fields of Eg. 11.22
$Loop over slip increments
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for i=1:ninc
% Compute uplift
1b = lbrat*i*sinc;
uplift = lb*sin(ramp) ;
1bh = lb*cos (ramp) ;
% Compute distance ef in Figure 11.6
ef=uplift/sin(2.*gamstar) ;
% Compute fault tip
xt=xramp+1bh;
yt=base+uplift;
% Compute location e in Figure 11.6
xe=xt+ef*cos (kap) ;
ye=yt+ef*sin (kap) ;
$Loop over number of beds
for j=1:size(XP,1)
$Loop over number of hanging wall points in each bed
for k=1:hwid (i, j)
$If point is in domain 1
if XP(j,k) < xramp - (YP(j,k)-base)/tan(gaml)
XP(j,k) = XP(j,k) + sinc;
else
$ if vy lower than y at e
if YP(j,k) < ye
$If point is in domain 2
if XP(j,k) < xt + (YP(j,k)-yt)/tan(kap)
XP (3, k)
YP(j,k)

XP(j,k) + sinc*cos(ramp) ;

YP(j,k) + sinc*sin(ramp) ;
else
$If point is in domain 4
if XP(j,k) < xt + (YP(j,k)-yt)/ tan(gam)
XP(j,k)
YP (5,k)
end

end
% if y higher than y at e
else
$If point is in domain 2
if XP(j,k) < xe- (YP(j,k)-ye)/tan(gaml)
XP(j,k) = XP(j,k) + sinc*cos(ramp) ;
YP(j,k) = YP(j,k) + sinc*sin(ramp) ;
else
$If point is in domain 3
if XP(j,k) < xe + (YP(j,k)-ye)/tan(gam)
XP (3, k) XP(j,k) + sinc*Rl*cos(gam) ;
YP(j,k) = YP(j,k) + sinc*Rl*sin(gam) ;
else

$If point is in domain 4

if XP(j,k) < xt + (YP(j,k)-yt)/tan (gam)

XP(j,k) + sinc*R2*cos (gam);
YP(j,k) + sinc*R2*sin (gam) ;
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XP(j,k) + sinc*R2*cos (gam);

<o
g
o &
Tz
o

YP(j,k) + sinc*R2*sin (gam);

end
end
end
end
end
$Plot increment
$Fault
xf=[0 xramp xramp+1lbh];
yi=[base base uplift+base];
plot (xf,yf, 'r-', 'LineWidth', 2) ;
hold on;
%$Beds
for j=1:size(yp,2)
%$If beds cut by the fault
if yp(j)-base <= uplift
plot (XP(j,1:1:hwid(i,3)), YP(j,1l:1:hwid(i,j)),'k-");
plot (XP(j,hwid(i,j)+1l:1:size(xp,2)), ...

YP(j,hwid(i,j)+1:1:size(xp,2)),'k-");
%$If beds not cut by the fault
else
plot (XP(j,:), YP(j,:),'k-");
end

end
$Plot settings
text (0.8*extent,1.75*max (yp) ,strcat ('Slip = ',num2str(i*sinc)));
axis equal;
axis ([0 extent 0 2.0*max(yp)]);
hold off;
$Get frame for movie
frames (i) = getframe;
end
end

function y = SuppeEquationTwo (gamstar, ramp)
$SuppeEquationTwo: First equation in Eg. 11.20 for parallel fault
$propagation folding

y = (1.+2.*cos (gamstar) *cos (gamstar)) /sin(2.*gamstar) +...
(cos (ramp) -2.) /sin(ramp) ;
end

Trishear model

In the kink models above, the relations between fault parameters (e.g., ramp angle) and fold
parameters (e.g., interlimb angles) are established at the start of deformation, and the fold
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Figure 11.8 Geometry of the trishear model showing the coordinate systems used in the
model.

grows in a similar fashion by increasing in size but not changing in shape. This allows the
derivation of mathematical rules to predict fold geometry from fault geometry and vice versa
(e.g., Egs. 11.16 and 11.20). Kink models, however, cannot explain some of the features com-
monly observed in fault propagation folds, such as footwall synclines and changes in strati-
graphic thickness and dip on forelimbs. These features are better explained by the trishear
kinematic model (Allmendinger, 1998; Erslev, 1991).

The velocity field for the trishear model was derived by Zehnder and Allmendinger (2000);
here we follow the same line of reasoning. In trishear, the displacement along the fault is
accommodated by deformation in a triangular shear zone radiating from the fault tip
(Fig. 11.8). The footwall is held fixed and the hanging wall moves rigidly along the fault at the
fault slip rate s. The movement of the fault tip is determined by the P/S, which in trishear,
unlike kink models, is an input parameter independent of ramp angle 9 or other parameters.
The velocity field is defined in a coordinate system attached to the fault tip and with axes
parallel and perpendicular to the fault line (x; —x; in Fig. 11.8). We seek to construct a velocity
field in the trishear zone that conserves area, is continuous, and matches the velocities at the
hanging wall and footwall boundaries of the zone. The boundary conditions are
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vi=s ww=0 on Xx =X tany; (11.24)
vi=0 w»w=0 on x =-Xxtany;

To find the velocities, we will choose a v, field consistent with Equation 11.24, and then
determine v, from Equations 11.24 and 11.3 (incompressibility). Let us assume that the trishear
zone is symmetric, ¢ = ¢» = ¢. The simplest v, field that you can think of is where v, varies
linearly from one side of the triangular shear zone to the other:

N Xo
VI == 1
! 2<x1tan<p+>

We can make this equation more general by specifying a “concentration factor” ¢, which
allows for non-linear variation in v; as a function of the power 1/c. To simplify writing the
equations, let m = tan ¢:

. 1/c
\%1 :% [sgn(xz) <M> +1

> — <X < >1 11.2
o x1>0 Xx1m<x <xym c> ( 5)

where sgn(x;) denotes the sign of x,. It can easily be seen that the above field satisfies the v;
boundary conditions in Equation 11.24. To find v», we differentiate Equation 11.25 with respect
to X, invoke incompressibility (Eq. 11.3),

8\/2 i oV

X, oxt

and integrate with respect to x, giving

B sm ‘X2| (140)/c
v2_2(1+c) (xlm) +C

The constant of integration, C, is found by using the v, boundary conditions in Equation 11.24.
The resulting v, field in the trishear zone is
(1+c)/c
(M) - 1} (11.26)

Xim

v, = Sm
2720 +0)

For ¢ = 1, the v, velocity distribution (Eq. 11.25) is linear in x,, producing a strain rate that is
nearly uniform with respect to x,. We call this field the “linear field.” Velocity vectors and vy, v»
variations across the trishear zone for this case are plotted in Figure 11.9a for ¢ = 30°. As ¢
increases, the deformation concentrates towards the center of the trishear zone, producing
non-uniform strain rates. Figure 11.9b shows the velocity vectors and v, v, variations for ¢ = 3
and ¢ = 30°. Note thatas x, — —x;j tang, v»/v; — —tany, i.e., as the footwall trishear boundary
is approached, the velocity vectors are parallel to the boundary.

Given the velocity field of Equations 11.25 and 11.26, the resultant deformation is easily
computed. We introduce three coordinate systems (Fig. 11.8): the horizontal-vertical system
(H — V), which is used for inputting and plotting the data; the £ — n system, which is attached to
the initial fault tip and is stationary; and the x; —x, system, which is attached to the fault tip and
moves at a speed (P/S)s. At the start of the deformation, the £ — n and x; —x, systems overlap,
and at a later time t they are related by

xx1=C—(P/S)st x=n (11.27)

The normal flow of a trishear program is then as follows: (1) Bedding data are entered in the
H — V coordinate system; (2) the data are transformed to the { — 77 system; (3) at each increment
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Figure 11.9 Velocity vectors and variation of velocities v; and v, along line AB for (a)
symmetric, linear v; field (c = 1.0), and (b) symmetric, non-linear v; field with ¢ = 3.0.

of deformation x;,x, (Eq. 11.27) and v;, v, (Egs. 11.25 and 11.26) are computed, and ¢, are
updated accordingly; and (4) the data are transformed back to the H — V coordinate system and
plotted. The following MatLaB function, Trishear, carries out all these steps. Trishear uses
function velTrishear to compute the velocity field. To make a contractional, trishear fault-
propagation fold with initial fault tip (x; = 300, x, = 50), ramp angle = 30°, P/S = 1.5, trishear
angle = 60°, fault slip = 100 units, and concentration factor = 1.0, type:

[50 80 110 140 170]; %Beds datums

Yp =
psect = [1000 500]; %Section parameters

tparam = [300 50 30*pi/180 1.5 60*pi/180 100 1.0]; %Trishear parameters
sinc = 1.0; %Slip parameters

frames = Trishear (yp,psect,tparam,sinc); %Make trishear fold

You will see that the geometry of the fold is not similar, and that geometry and finite strain
vary along and across the stratigraphy with proximity to the fault tip. Trishear fold geometries
are richer than those of kink models. The drawback, however, is that because trishear folds are
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not similar, there are no mathematical or geometric rules to relate fold geometry to fault
geometry. We will talk about the solution to this problem in the next chapter.

function frames = Trishear (yp,psect, tparam, sinc)
$Trishear plots the evolution of a 2D trishear fault propagation fold

USE: frames = Trishear (yp,psect, tparam, sinc)

yp = Datums or vertical coordinates of undeformed, horizontal beds

o o° o° o° o°

psect = A 1 x 2 vector containing the extent of the section, and the
number of points in each bed
tparam = A 1 x 7 vector containing: the x coordinate of the fault tip
(entry 1), the y coordinate of the fault tip (entry 2), the
ramp angle (entry 3), the P/S (entry 4), the trishear angle

o o° o o°

(entry 5), the fault slip (entry 6), and the concentration
factor (entry 7)

sinc = slip increment

frames = An array structure containing the frames of the fold evolution
You can play the movie again just by typing movie (frames)

o o° o° o° o°

NOTE: Input ramp and trishear angles should be in radians.
For reverse faults use positive slip and slip increment.
For normal faults use negative slip and slip increment

o° o° o° o° o0

Trishear uses function VelTrishear

$Extent of section and number of points in each bed

extent = psect(l); npoint = psect(2);

$Make undeformed beds geometry: This is a grid of points along the beds
xp=0.0:extent/npoint:extent;

[XP, YP]=meshgrid(xp,yp);

% Model parameters
Xt
yt = tparam(2); %y fault tip

tparam(1l); %$x fault tip

ramp = tparam(3);%Ramp angle

ps = tparam(4); %P/S

tra = tparam(5); %Trishear angle

m = tan(tra/2); %Tangent of half trishear angle
slip = tparam(6); %$Fault slip

¢ = tparam(7); %Concentration factor

$Number of slip increments

ninc=round (slip/sinc) ;

$Transformation matrix from geographic to fault coordinates
all=cos (ramp) ;

al2=cos (pi/2-ramp) ;

a2l=cos (pi/2+ramp) ;

a22=all;
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Transform to coordinates parallel and perpendicular to the fault, and

o o

with origin at initial fault tip
FX=(XP-xt) *all+ (YP-yt) *al2;
FY=(XP-xt) *a21l+ (YP-yt) *a22;

%$Run trishear model
$Loop over slip increments
for i=1:ninc
%Loop over number of beds
for j=1l:size(FX,1)
$Loop over number of points in each bed
for k=1:size(FX,2)
$Solve trishear in a coordinate system attached to current
$fault tip (Eg. 11.27)
xx=FX(j,k) - (ps*i*abs(sinc)) ;
yy=FY (3 ,k);
$Compute velocity (Egs. 11.25 and 11.26)
[vx,vyl=VelTrishear (xx,yy,sinc,m,c) ;
$Update FX, FY coordinates
FX(j,k)=FX(j,k)+vx;
FY(j,k)=FY(j,k)+vy;
end
end
$Transform back to horizontal-vertical XP, YP coordinates for plotting
XP=(FX*all+FY*a2l) +xt;
YP= (FX*al2+FY*a22) +yt;
$Make fault geometry
xtf=xt+ (ps*i*abs (sinc)) *cos (ramp) ;
ytf=yt+ (ps*i*abs (sinc)) *sin (ramp) ;
XF=[xt xtf];
YF=[yt ytfl;
$Make trishear boundaries
axlo=0:10:300;
htz=axlo*m;
ftz=-axlo*m;
XHTZ= (axlo*all+htz*a2l)
YHTZ= (axlo*al2+htz*a22) +ytf;
XFTZ=(axlo*all+ftz*a2l) +xtf;
YFTZ= (axlo*al2+ftz*a22) +ytf;
$Plot increment. Fault
plot (XF, YF,'r-','LineWidth',2);
hold on;
% Hanging wall trishear boundary
plot (XHTZ, YHTZ,'b-');
% Footwall trishear boundary
plot (XFTZ, YFTZ,'b-');

o

% Beds: Split hanging wall and footwall points

+xtf;

hw = zeros(l,size(XP,2));
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fw = zeros(l,size(XP,2));

xhb = zeros(size(XP,1),size(XP,2));
yhb = zeros(size (XP,1),size(XP,2));
xfb = zeros(size(XP,1),size(XP,2));
yvfb = zeros(size(XP,1),size(XP,2));

for j=1:size(XP,1)
hw(§)=0.0;
fw(§)=0.0;
for k=1:size (XP,2)
$If hanging wall points
if XP(j,k)<=xt+(YP(j,k)-yt)/tan(ramp),
hw(j)=hw(j)+1;
xhb (j,hw(3))=XP(3,k);
vhb (j,hw(j))=YP(j,k);
$if footwall points

else
fw(j)=£fw(j)+1;
xfb(j,fw(j))=XP(j,k) ;
yEb (3, £w(3)) =YP (3, k) ;
end
end
plot (xhb(j,1:1:hw(j)),vhb(j,1:1:hw(3j)), 'k-");
plot (xfb(j,1:1:fw(j)),yvEb(j,1:1:fw(3)), 'k-");
end
$Plot settings
text (0.8*extent,1l.75*max (yp),strcat ('Slip = ',num2str(i*sinc)));

axis equal;

axis( [0 extent 0 2.0*max(yp)]l);
hold off;

$Get frame for movie

frames (i) = getframe;
end
end
function [vx, vy] = VelTrishear (xx,yy,sinc,m,c)

$VelTrishear: Symmetric, linear vx trishear velocity field
$Equation 6 of Zehnder and Allmendinger 2000

$If behind the fault tip
if xx <0.
$If hanging wall
if yy >=0.
vx = sinc;
vy = 0.;
$If footwall
elseif yy<0.
vx=0.;
vy=0.;
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end
$If ahead the fault tip
elseif xx>=0.
$If hanging wall
if yy>=xx*m
vx=sinc;
vy=0.;
$If footwall
elseif yy<=-xx*m
vx=0.;
vy=0.;
$If inside the trishear zone
else
%$Some variables to speed up the computation
a=1l+c; b=1/c; d=a/c; ayy=abs(yy); syy = yy/ayy;

$Eq. 11.25
vx=(sinc/2.) * (syy*realpow (ayy/ (xx*m) ,b) +1) ;
$Eq. 11.26
vy=(sinc/2.) * (m/a) * (realpow (ayy/ (xx*m) ,d) -1) ;
end
end
end

11.4.4 Modeling sedimentation: Growth strata

Once the velocity fields of the fault-related fold models are specified, it is easy to model time-
dependent processes such as sedimentation during growth of the structure (syntectonic sed-
imentation). To illustrate this, we will follow a simple approach. We introduce a ratio G that
describes the relation between regional subsidence and local uplift of the anticlinal crest. When
G = 1.0 (subsidence = uplift), the anticlinal crest is always at the surface and sedimentation
takes place only on the flanks of the structure. When G > 1.0 (subsidence > uplift), sedimenta-
tion takes place on the crest as well as the flanks, but strata on the crest are thinner than those
on the flanks. The crestal uplift rate for the fault-bend fold and trishear models is just sin s
and for the simple step, fixed axis, and parallel fold models is twice that (2sin 8s; Hardy and
Poblet, 2005). In addition, we will assume that the basin always fills to the top with strata and
that the growing fold has no effect on the local sedimentation. Essentially, a background
regional sedimentation fills the basin to the top, and concepts such as base level, erosion, etc.
are not considered. These assumptions are somewhat naive, but they are sufficient to inves-
tigate the pattern of syntectonic growth strata in the different fault-related fold models.

The functions FaultBendFoldGrowth, FixedAxisFPFGrowth, ParallelFPFGrowth, and
TrishearGrowth plot the evolution of syntectonic sedimentation in the fault-bend fold, fixed
axis, parallel, and trishear models, respectively. These functions use the assumptions intro-
duced before. For the purpose of illustration, we just include here function TrishearGrowth.
To plot the evolution of syntectonic sedimentation in a trishear fold with subsidence versus
uplift rate G = 2.0, type:

yp = [50 80 110 140 170]; %Beds datums
psect = [1000 500]; %Section parameters
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tparam = [300 50 30*pi/180 1.5 60*pi/180 100 1.0]; %Trishear parameters
sinc = 1.0; %Slip parameters

G = 2.0; %Subsidence versus uplift rate

frames = TrishearGrowth (yp,psect,tparam,sinc, G); %Make trishear fold

function frames = TrishearGrowth (yp,psect, tparam,sinc, G)
$Trishear plots the evolution of a 2D trishear fault propagation fold and
%adds growth strata for a given subsidence versus uplift rate

o°

USE: frames = TrishearGrowth (yp,psect, tparam,sinc, G)

yp = Datums or vertical coordinates of undeformed, horizontal beds
psect = A 1 x 2 vector containing the extent of the section, and the

o o° o° o° o°

number of points in each bed
tparam = A 1 x 7 vector containing: the x coordinate of the fault tip
(entry 1), the y coordinate of the fault tip (entry 2), the
ramp angle (entry 3), the P/S (entry 4), the trishear angle
(entry 5), the fault slip (entry 6), and the concentration
factor (entry 7)

o o° o° o° o° oP°

sinc = slip increment

G = Subsidence versus uplift rate

frames = An array structure containing the frames of the fold evolution.
You can play the movie again just by typing movie (frames)

o o° o° o° o°

NOTE: Input ramp and trishear angles should be in radians.
For reverse faults use positive slip and slip increment.
For normal faults use negative slip and slip increment

o0 o o o

TrishearGrowth uses function VelTrishear

o°

Top of layers
top = yp(size(yp,2));

$Extent of section and number of points in each bed

extent = psect(1l); npoint = psect(2);

%$Make undeformed beds geometry: This is a grid of points along the beds
xp=0.0:extent/npoint:extent;

[XP, YP]=meshgrid(xp,yp);

% Model parameters

xt = tparam(1l); %x fault tip

vyt = tparam(2); %y fault tip

ramp = tparam(3);%Ramp angle

ps = tparam(4); %P/S

tra = tparam(5); %Trishear angle

m = tan(tra/2); %Tangent of half trishear angle
slip = tparam(6); %$Fault slip

c = tparam(7); %Concentration factor
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$Number of slip increments
ninc=round(slip/sinc) ;

$Transformation matrix from geographic to fault coordinates
all=cos (ramp) ;

al2=cos (pi/2-ramp) ;

a2l=cos (pi/2+ramp) ;

a22=all;

% Make ten growth strata

nincG=round (ninc/10) ;

% Initialize count of growth strata to 1

countG = 1;

Transform to coordinates parallel and perpendicular to the fault, and

o°  oe

with origin at initial fault tip
FX=(XP-xt) *all+ (YP-yt)*al2;
FY=(XP-xt) *a21l+ (YP-yt) *a22;

%$Run trishear model
$Loop over slip increments
for i=1:ninc
$Loop over number of beds
for j=1:size(FX, 1)
%$Loop over number of points in each bed
for k=1l:size(FX,2)
$Solve trishear in a coordinate system attached to current
$fault tip (Eg. 11.27)
xx=FX(j,k) - (ps*i*abs(sinc)) ;
yy=FY (3, k) ;
$Compute velocity (Egs. 11.25 and 11.26)
[vx,vyl=VelTrishear (xx,yy,sinc,m,c) ;
$Update FX, FY coordinates
FX(j,k)=FX(j,k)+vx;
FY(J,k)=FY (], k)+vy;
end
end
$Transform back to horizontal-vertical XP, YP coordinates for plotting
XP= (FX*all+FY*a2l) +xXt;
YP=(FX*al2+FY*a22) +yt;
$Make fault geometry
xtf=xt+ (ps*i*abs (sinc) ) *cos (ramp) ;
ytf=yt+ (ps*i*abs (sinc) ) *sin (ramp) ;
XF=[xt xtf];
YF=[yt ytfl;
$Make trishear boundaries
axlo=0:10:300;
htz=axlo*m;
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ftz=-axlo*m;

XHTZ= (axlo*all+htz*a2l) +xtf;
YHTZ= (axlo*al2+htz*a22)+ytf;
XFTZ=(axlo*all+ftz*a2l) +xtf;
YFTZ=(axlo*al2+ftz*a22)+ytf;
$Plot increment. Fault

plot (XF,YF, 'r-', 'LineWidth', 2) ;
hold on;

% Hanging wall trishear boundary
plot (XHTZ, YHTZ, 'b-');

% Footwall trishear boundary

plot (XFTZ, YFTZ,'b-');

% Beds: Split hanging wall and footwall points
hw = zeros(1l,size(XP,2));

fw = zeros(l,size(XP,2));
xhb = zeros(size (XP,1),size (XP, ;
yhb = zeros(size (XP,1),size(XP, H

7

7

( 2))
) ( 2))
xfb = zeros(size(XP,1),size(XP,2))
yfb = zeros(size(XP,1),size(XP,2))
for j=1l:size(XP,1)
hw(j)=0.0;
fw(j)=0.0;
for k=1:size (XP,2)
%$If hanging wall points
if XP(j,k)<= xt+(YP(j,k)-yt)/tan(ramp),
hw(j)=hw(j)+1;
xhb (j,hw(3))=XP(j,k);
yhb (3, hw(3))=YP(],k);
$If footwall points
else
fw(j)=fw(j)+1;
xfb (3, fw(3))=XP(J,k);
yEb (3, £fw(3))=YP(],k);
end
end
%$If Pregrowth strata
if (j <= size(yp,2))
plot (xhb(j,1:1:hw(j)),yhb(j,1:1:hw(j))
plot (xfb(j,1:1:fw(j)) ,yEfb(j,1:1:fw(j)), 'k-");
$If Growth strata
else
plot(xhb(j,1:1:hw(j)),yhb(j,1:1:hw(j)),'g
plot (xfb(j,1:1:fw(j)),yEfb(j,1:1:fw(3)),'g-");
end
end
$Plot settings
text (0.8*extent,1l.75*max (yp),strcat ('Slip = ',num2str(i*sinc)));

axis equal;
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axis ([0 extent 0 2.0*max(yp)]);
hold off;
$Get frame for movie
frames (i) = getframe;
$Add growth strata. Careful: Intersections pregrowth-growth strata are
$not calculated. Growth strata will not look right for subsidence rate
$lower than uplift rate G < 1.0
if (i == countG*nincG)
%$Make growth strata
%$Update top
top = top + nincG*sinc*sin(ramp) *G;
% Make bed geometry
xm=i*sinc:extent/npoint:extent+i*sinc;
[GXP, GYP]=meshgrid (xm, top) ;
$Transform to coordinate axes parallel and perpendicular to the
$fault, and with origin at initial fault tip location
GFX= (GXP-xt) *all+ (GYP-yt) *al2;
GFY= (GXP-xt) *a21l+ (GYP-yt) *a22;
%Add to beds
FX [FX; GFX];
FY [FY; GFY];
% update count of growth strata

countG = countG + 1;
end
end
end

Figure 11.10 shows the growth strata geometries for the fault-bend fold (Fig. 11.10a), fixed
axis (Fig. 11.10b), parallel (Fig. 11.10c), and trishear (Fig. 11.10d) models, for G = 2.0. The kink
models (Fig. 11.10a-c) require instantaneous rotation of strata as they pass through a kink axial
surface. The complexity derives from understanding how particles behave with respect to the
kink axes. Fundamentally, there are two possibilities: (1) The kink axes move with the material.
This type of kink axis is referred to as a fixed or passive kink axis (dashed line axes in
Fig. 11.10a-c). (2) The material flows through the kink axis, which is then called an active kink
axis (continuous line axes in Fig. 11.10a-c). Within the growth strata, the fixed and the active
kink axes merge at the depositional surface, forming an upward-narrowing kink band or
growth triangle (Fig. 11.10a-c). In the trishear model (Fig. 11.10d) on the other hand, changes
in dip and thickness of the growth strata are indicative of progressive rotation of the material as
the fold limb is gradually rotated into its final orientation. Understanding growth strata geo-
metries is not simple. The functions above facilitate this task.

As we said before, our model of syntectonic sedimentation is quite simplistic. More insight
can be gleaned from an approach that considers the effect of both background sedimentation
and local erosion, transport, and deposition as a result of fold growth (Hardy et al., 1996). The
velocity analysis facilitates this approach, but requires that one be very clear about reference
frames (Waltham and Hardy, 1995). In Chapter 7, we introduced the concept of Lagrangian and
Eulerian reference frames. Modeling simultaneous tectonics and sedimentation generally
requires an Eulerian reference frame so that the two can be treated as simultaneous, rather
than sequential processes (Hardy and Poblet, 1995). In an Eulerian reference frame, different
particles with different velocities may happen to be at a fixed coordinate at different times.
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Figure 11.10 Growth strata geometries for (a) fault-bend fold, (b) fixed axis, (c) parallel,
and (d) trishear models. In all cases subsidence to uplift rate G = 2.0. In (a) to (c) active
kink axes are indicated by continuous lines, and passive kink axes by dashed lines.

One’s point of view is of particles flowing through our fixed coordinate system with time due to
different processes, rather than the coordinate system being fixed to moving particles in the
Lagrangian case. We will leave this topic for now though the interested reader can find excellent
summaries in the literature (Hardy and Poblet, 1995; Hardy et al., 1996; Waltham and Hardy,
1995).

11.5 EXERCISES

1. Compare the fold geometries of rollovers produced by inclined shear with angles 0, 15, 30,
—15, and —-30°. In all cases try to use the same geometry for the listric normal fault. Hint: Use
function SimilarFold.

2. Compare the fold geometries of fixed axis and parallel fault-propagation folds for 8 = 10, 20,
30, 40, and 50°. Make the comparison in terms of dip and thickness of the forelimb, and
vergence of the fold. Hint: Use functions FixedaxisFPF and ParallelFPF.

3. Compare the geometries of trishear folds for P/S=1.0, 1.5, 2.0, and 2.5.In all cases use ramp
angle = 30°, trishear angle = 60°, fault slip = 100 units, and concentration factor = 1.0. Hint:
Use function Trishear.

4. Compare the geometries of trishear folds for trishear angles 40, 50, 60, and 70°. In all cases
use ramp angle = 30°, P/S = 1.5, fault slip = 100 units, and concentration factor = 1.0. Hint:
Use function Trishear.

5. Compare the geometries of trishear folds for concentration factor c=1.0, 1.5, 2.0, and 3.0.In
all cases use ramp angle =30°, P/S = 1.5, trishear angle = 60°, and fault slip = 100 units. Hint:
Use function Trishear.
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6.

10.

There are several velocity fields that can fulfill the incompressibility condition in a sym-
metric trishear zone. One of these fields is the “sine velocity field” corrected from Zehnder
and Allmendinger (2000):

" :s(sinf[ﬂl) Vs :%(cosﬁ—i—ﬁsmﬁ—ﬂ/z)

where 8 = (xom)/(2x; m) and m = tan . Write a MaTLaB function that implements this veloc-
ity field and use it in the function Trishear. Compare the fold geometries produced by the
linear v, field and the sine field. Hint: Use function velTrishear as the base of your new
“sine velocity” function.

Compare the growth strata geometries of fixed axis and parallel fault propagation
folds for 8 = 10, 20, 30, 40, and 50° and G = 2.0. Make the comparison in terms of the
location of fixed and active kink axes. Hint: Use functions FixedAxisFPFGrowth and
ParallelFPFGrowth.

Compare the growth strata geometries of trishear folds for P/S=1.0, 1.5, 2.0, and 2.5.In all
cases use a ramp angle = 30°, trishear angle = 60°, fault slip = 100 units, concentration
factor = 1.0 and G = 2.0. What happens when the P/S = 1.0? Hint: Use function
TrishearGrowth.

Modify the function similarFold to simulate growth strata.

Discuss a methodology to compute finite strain in velocity models of deformation. Modify
one of the fault-related fold velocity models to plot strain ellipses.



CHAPTER

TWELVE

Error analysis

12.1 INTRODUCTION

Structural geologists have a love-hate relationship with uncertainty. Ask any one of us how
much uncertainty is associated with a single strike and dip measurement and we will readily
admit that natural surfaces are highly irregular at various scales and so there are probably
“a few degrees” slop in our measurements. Because one can collect only a relatively small
number of measurements per day in the field, we certainly aren’t going to repeat a single
bedding measurement 20 or more times just to get “good statistics” at a single location!
Nonetheless, when we calculate a mean vector of a bunch of, say, paleocurrent directions
(Chapter 2) or a best-fit fold axis (Chapter 5), we routinely calculate and report the confidence
intervals, or rather more likely a computer program written by someone else calculates them
for us. If you have read this far in the book, however, you now know how to calculate them for
yourself! Two recent trends brought on by the digital age are forcing structural geologists to
reexamine their relationship with uncertainty.!

First, the availability of large digital data sets and their incorporation into routine geological
studies have exploded in the last couple of decades. We have access to digital elevation models
sampled on a 30 m grid, GoogleEarth imagery with a resolution of less than 5 m, GPS data sets
with thousands of individual stations, and nearly instant access to hundreds or thousands of
aftershocks that follow a large earthquake. These data sets allow us to analyze vastly more data
than previously; the era of collecting just 30 or 40 measurements in the field per day is long gone.
The digital data can be analyzed quantitatively and that means taking into account uncertainties.

Second, we now routinely use models to interpret the data that we collect and therefore are
forced to confront the question, “How well does our model fit the data that we are trying to

L' In this chapter and, indeed, throughout the book, we use the terms “error” and “uncertainty”
interchangeably.
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explain?” A best-fit fold axis represents the approximation of a natural curvilinear surface with
a cylindrical fold model. The mean vector representing an average paleocurrent direction
implies a model of unidirectional current flow. The concept of least squares fitting of a
model to data has been touched on at several points in this book (Chapters 5, 7, and 8) in the
context of specific geological problems. A full treatment of statistics and error analysis is
beyond the scope of this book and there are many fine texts where these topics are exhaustively
explored, both more authoritatively and more entertainingly than we could ever do (among
many others, the ones we have found to be particularly helpful include: Bevington and
Robinson, 2003; Fisher et al., 1987; Press et al., 1986; Taylor, 1997). There is one topic, however,
that deserves special mention, particularly as we go from uncertainties in data sets that we've
measured directly to models that are calculated from data with inherent uncertainties; that
topic is error propagation.

12.2 ERROR PROPAGATION

Suppose that, through repeated measurements, we had determined the uncertainties on two
parameters, a and b; we’ll call the uncertainties da and b, respectively. Now we want to
calculate ¢, the sum of a and b. What is the uncertainty on the calculated value, c? The highest
and lowest likely values of c are

Cmax = A+ b+ (6a+ db)
Cmin = A+ b— (6a+ 6b)

In general, we can say that the maximum probable error on the calculated parameter, c, is
OCmax = 0a + Ob (12.1)

We have just propagated the errors on a and b to determine the maximum error on c. We will
come back to the question of whether or not 6 cnax is the most likely error or not, below.

To go beyond this somewhat trivial example, one might develop similar equations for
progressively more complicated cases, but it turns out that all of the specific cases can be
encapsulated in one general rule:
5a+‘%‘6b+m+ %& (12.2)

0
6Qmax = '£

where g is any function of (a, b, ..., z). You can see that Equation 12.1 can be derived from
Equation 12.2 as the partial derivative of ¢ with respect to a and that with respect to b are both
equal to 1.

Although Equation 12.2 gives the maximum error in g, it is not the most probable error if
uncertainties in the measured parameters are independent and random and thus the errors
follow a Gaussian distribution (i.e., the typical “bell-shaped” curve). Under these conditions, the
calculated error is essentially the square root of the sum of the squares of the measured errors:

- oq 2 oq 2 g 2
6q_\/(6a§a) + (%a)) P (552) (12.3)
Let’s formalize this abit and look at a somewhat more complicated case where the two variables

involved may have some degree of correlation. In Equation 7.16, the standard deviation of a
series of measurements was described:
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and the variance was defined as the square of the standard deviation. The covariance of two
parameters a and b is

aabz%Z(aﬁa)(b,—fl’a) (12.4)

where ais the average of the a measurements and b is the average of the b measurements. With
this definition, we can now come up with an expression for the variance of a calculated
parameter as a function of the variances and covariances of the measured parameters:

; ac\? . ac\? . ac oc
2 _ 2 2
e (aa) Tat <8b) 7+ Zaaab”‘”’ (12.5)
If a and b are truly independent and random, the covariance, o,,, Will go to zero and

Equation 12.5 simply becomes the square of Equation 12.3. If a and b are highly correlated,
your error will still never be greater than Equation 12.2.

12.3 GEOLOGICAL APPLICATION: CROSS-SECTION BALANCING

Balanced cross sections have been a staple of the structural geologist’s toolbox for more than
half a century, thanks largely to pioneering work in the Canadian Rocky Mountains (e.g., Bally
et al., 1966; Dahlstrom, 1969, 1970; Price and Mountjoy, 1970). Many reasons exist for con-
structing these sections: They may be used to project data to depth and interpret structural
geometry for exploration or scientific purposes, or the magnitudes of shortening calculated
from balanced cross sections may become input for palinspastic restorations or geodynamic
models. Their utility, and limitations, were perhaps best described by Clint Dahlstrom (1969)
when he wrote: “If a cross section passes the geometric tests [i.e., is balanced] it could be
correct... On the other hand, a cross section that does not pass the geometric tests could not
possibly be correct.” We would now like to go the extra step and - rather than the binary
decision: might be correct or definitely not correct - ask the question: What is the uncertainty
associated with balanced cross sections?

Cross sections are models fit to data that come from a variety of sources: outcrop measure-
ments, stratigraphic sections, and subsurface data such as seismic reflection surveys and well
data. Each of these input data sources has uncertainty associated with it. How representative
are the outcrop measurements, what are the stratigraphic thickness variations, how well do we
know subsurface velocities in order to convert from time to depth? There are other uncertain-
ties; the most important being the choice of a specific kinematic fold-fault model (Chapter 11).
Although structural geologists who construct balanced cross sections are painfully aware of
these uncertainties, despite half a century of use, there has been no formal way of incorporating
them into the final model in a meaningful way. Before investigating one promising approach to
this problem, we need a brief review.

12.3.1 Line-length and area balancing

In Chapter 11, we showed that all cross-section balancing stems, fundamentally, from the
continuity and incompressibility equations (Eqgs. 11.1 and 11.2). If we make a further
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Type of balance Dimension Assumptions Fold kinematic model

Volume 3D Density of rocks constant Non-cylindrical
during deformation, no
compaction, no addition
or subtraction of

material
Area 2D Plane strain, cross- Cylindrical folding
sectional area preserved (parallel, similar,
or trishear)
Length 1D Linear strain, no bedding Parallel

thickness changes, shear
parallel to layers so the
layers are lines of no
finite elongation

Table 12.1 Types of cross section balancing and assumptions

assumption of plane strain, the two-dimensional version of the incompressibility equation
(Eg. 11.3) is what structural geologists call area balancing (Mitra and Namson, 1989). Finally,
we can reduce the problem to one dimension by assuming a parallel fold model in which
bedding thickness does not change and the stratigraphic horizons are lines of no finite longi-
tudinal strain (Chapter 10). The relationship of these different dimensions to the kinematics of
folding and the general assumptions in each case are shown in Table 12.1.

The majority of published balanced cross sections are line-length balanced sections. Line-
length balanced cross sections are a subset of area balanced sections because they include all of
the assumptions of area and volume balancing. In line-length balancing, the additional assump-
tion is that “parallel” folding occurs via shear parallel to bedding (i.e., “flexural slip” folding);
thus, the stratigraphic layers are lines of no finite longitudinal extension. This allows us to
calculate the shortening simply by measuring the bed length in the deformed state and drawing
the same bed length as a straight line in the undeformed state. The majority of shortening in
this model occurs where faults shear across layers. In addition to a restrictive folding model,
the previous sentence highlights an additional hidden weakness of line-length balanced cross
sections: only faults that produce obvious offset at the scale of the section are included in the
shortening estimate. The implicit assumption is that faults with displacements smaller than
the scale of the cross section do not contribute to shortening, a concept that is seldom tested
(Marrett and Allmendinger, 1990, 1992).

People who construct line-length balanced sections (Fig. 12.1) will often say that the magni-
tude of shortening is a “minimum estimate.” This error arises in cases where the thrust fault is
emergent and hanging wall cutoffs have been eroded (Fig. 12.1b). The resulting saw-toothed
gap on the restored section represents the minimum eroded bed length needed to line up the
stratigraphic horizons of hanging wall and footwall. Because the structural geologist does not
know how much bed length has been eroded, s/he simply makes the gap as small as possible.

Though significant, the error resulting from eroded hanging wall cutoffs is hardly the only
error, in fact it is an error largely dependent on a single specific model. There may be many
different individual line-length models that can fill the requisite cross-sectional area. Likewise,
critical unknowns, such as the exact depth to the decollement across a deformed section,
contribute to the apparent paradox that two (or more) line-length balanced sections drawn
along the same profile line commonly have different “minimum” estimates.
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Figure 12.1 Line-length balancing using a parallel, kink fold geometry. (a) Shows the
case where the hanging wall cutoffs are preserved so that the restoration of the upper
plate, and the undeformed trajectory of the trailing thrust trace, is unambiguous.
(b) Shows the more typical case where hanging wall cutoffs are eroded. In this case, a
local pin line is needed to restore the thrust plate and the footwall trace of the trailing
thrust. The gap marked by question marks is the source of the statement that such
reconstructions are minimum estimates of shortening.

One approach to amore accurate and rigorous error estimation would be for the geologist to
construct numerous different cross sections along the same profile line and look at the
distribution of shortening estimate; essentially a hand-crafted Monte Carlo simulation. To
develop reliable statistics, it would take tens to hundreds of sections in the same exact area,
each having a slightly different starting geometry. Therein lies the fundamental reason why
virtually all line-length balanced sections are presented without error estimates: because a
single section, even one constructed using commercial software packages, can take weeks to
construct, the task of drawing hundreds in the same place is both too daunting and too tedious
to contemplate!

To quantify the uncertainties on shortening magnitudes, we will do the error analysis via
area balancing. This has numerous advantages: (1) Because line-length sections are a subset of
area balancing, a single area balance encompasses all possible line-length solutions. (2) Area
balance is independent of specific, two-dimensional fold-fault kinematic model (e.g., parallel
kink folds, similar folds, trishear folds, disharmonic folding, etc.; Chapter 11). (3) Unlike line-
length sections, area balancing also accounts for shortening due to deformation on structures
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too small to be depicted on the cross section. Finally, (4) because one can describe the areas of
both the deformed and restored sections as explicit equations, the errors can be formally
(analytically) propagated through those equations, obviating the need to draw multiple
sections.

The origin of area balancing dates to the turn of the twentieth century and the work of
Chamberlin (1910; 1919; 1923) and Buxtorf (1916). Those two pioneering authors first used the
condition that the deformed cross-sectional area should equal the initial area to calculate the
depth to the decollement; a technique known as excess area balancing (Mitra and Namson,
1989). Chamberlin first used the term “thin-shelled” to refer to the Appalachian Valley and
Ridge province and “thick-shelled” to describe the Colorado Rocky Mountains because he
concluded from area balancing that the decollement of the former was shallower, and that of
the latter deeper, in the crust. Chamberlin’s analysis was flawed but his insight significant.
Rodgers (1949) introduced slightly modified versions of these terms, “thin-skinned” and
“thick-skinned,” which are widely used today.

12.3.2 Error propagation in a simple area balance

We'll start with a simple “crustal” area balance, which can be thought of as nothing more than a
long, skinny box being deformed into a short, fat box (Fig. 12.2). The areas of the two boxes
must be equal, so we can calculate the shortening as a function of the measurable dimensions of
the boxes:

X1X2 = X1X2 and S= X1 —Xx1
Rearranging and solving for S:

X1X — x1.X

S %

= X1X2X£l — X1 (12.6)
To calculate the shortening, we only need to know the modern-day dimensions (the width and
thickness of the plateau, x;, x») and make some estimate of the initial crustal thickness (X). This
calculation is nothing more than the classic area balance-depth to decollement equation, where
the unknown is the shortening, S.

Now, let’s see how the errors propagate through Equation 12.6. To do so, we need to
calculate the three partial differential equations:

X |
T
A ) Figure 12.2 Simple area balance from
v, an initial undeformed state at the
top to a horizontally shortened and
| x; | vertically thickened deformed state
T at the bottom. The two areas, A, are
equal.
| S 5
I > A 12
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Parameter Value (km) Uncertainty (km) Error in S due to parameter (km)

x; 200 1 1
Xz 70 5 28.6
X, 35 10 114.3

Table 12.2 Simple crustal area balance with errors

08 S —-x1%X;? and 95 _ X1 -1
8)(1

o ax

We can now write the complete equation for the error in calculation of S as a function of the
errors in the measured or estimated parameters:

aS 2788 2 /08
55=\/( 5x ) +(376x2> *(97‘”‘2) .

— \/ XX 6x1] [(xlXZ*I)éxz] + [(—xlszZ*Z)éSXz]2

With Equation 12.7 in hand, we can enter some realistic values, shown in Table 12.2. Using
Equation 12.6, you can see that these values yield a shortening, S = 200 km (logically enough
since we have doubled the crustal thickness). We can now calculate the uncertainty of this
shortening value from Equation 12.7:

58 =1/(1)2 + (28.6)> + (114.3)* = 118km

So, our shortening estimate would be 200 + 118 km! This calculation tells us two very important
things: First, there is a high degree of uncertainty - in this case greater than 50% - in crustal
scale balancing. Second, almost all of the uncertainty comes from the error in estimate of initial
crustal thickness, X,. Even if we assumed that the initial crustal thickness error was only + 5 km
(instead of the 10 km used in the above calculation), the final shortening estimate would still be
+ 64 km! For a more realistic crustal scale balance, we could include some additional fluxes: (1)
material lost from the system by erosion, (2) material added to the system by magmatism, and
(3) material lost by tectonic erosion.

12.3.3 Error propagation using a more general area balance

One can calculate analytically the area of a polygon of any shape and number of vertices and
this enables us to capture the area of a polygon that envelops the deformed region of pre-
growth strata (Fig. 12.3) (Judge and Allmendinger, 2011). To start, we define a matrix to hold all
the vertices of our deformed polygon. In this matrix, the number of rows corresponds to the
number of vertices in the polygon and, within an individual row, the first column contains the x;
value and the second the x, value of a single vertex in two dimensions:

X11  X12 | first vertex
X21 X2
x(n2)y=|"" "

: : 0
Xml X | N vertex
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Figure 12.3 General area balance for the southernmost Subandean belt in northwestern
Argentina (Echavarria et al., 2003), showing the parameters that go into the equations
described in Section 12.3.3.

The area of any polygon of any shape (except one that crosses itself) can be written as (e.g.,
Harris and Stocker, 1998)
1¢& o .

A= EZ (X Xii1)2 — XioXe) fi+1>ni+1=1 (12.8)

i=1

where n is the number of vertices in the polygon and (x;;,X;») are the locations of the
vertices. The uncertainty on the deformed area (6A) is a function of the uncertainty
(6x;1,0x;2) on each specific vertex. To get things in the form of Equations 12.2 and 12.3,
we need to calculate the partial differentials of A with respect to each of the components of
each vertex. To do this, it will help to calculate Equation 12.8 for a simple four-vertex

polygon:

A= (X11X02 — X21X12 + X21X32 — X31X22 + X31X42 — X41X32 + Xg1X12 — X11X42)

N =

Gathering terms, and recalling that the first index indicates the vertex number:

A= %(Xu(xzz — Xa2) + X21(X32 — X12) + X31 (Xa2 — Xp2) + Xa1(X12 — X32)) (12.9a)
and the same equation in terms of the x, components:

A= %(XIZ(XM = Xo1) + Xo2(X11 — X31) + X32(X21 — Xa1) + Xa2(X31 — X11))- (12.9b)

Now, we can calculate the partial derivatives of each of the four vertices:

0A (X2 — Xa2) 0A (X1 —X1)
axll N 2 and 8X12 B 2 (12103)
0A (X532 — X12) 0A  (x11 —X31)
6X21 - 2 and 8X22 B 2 (1210b)
0A  (Xq2 — X22) 0A  (Xo1 — X41)
o 5 and O 5 (12.10c¢)
0A 7(X12 —X32) and 0A - (X31 —X11) (1210d)

Oxq1 2 Oxap 2
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In general, if you inspect Equations 12.8 and 12.10 carefully, you see that we can write

1¢ 0A — (Xk2 — Xm2) 0A (X1 — Xk1)
A —iz (Xll sz - Xk] Xiz) al’ld 8711 = f al’ld (?XIQ = f
wherek=i+1 and m=i-1 (12.11)

if k>n=k=k—-n
if m<l==m=m+n

The maximum error on the deformed area, 6 Amax, propagated from the errors on the input
vertices, is

0A
Oxi1

0A

5X1'1 -+ ‘a

n
6Amax = Z (
i=1

and the Gaussian error, if all the components were independent and random would be

n ([ /0A 2 /0A 2
0 AGaussian = $Z ((87_15&'1) + (8X 5X12> ) (12.12b)

6x12) (12.12a)

i=1

To calculate the error on the deformed area, you would substitute the partial differentials of the
deformed area with respect to each vertex in Equations 12.11 into Equations 12.12.

The error on the deformed area is only the start of this problem because we now have to
calculate the shortening, S, which is a function of the initial width minus the final width
(Fig. 12.3). First, the appropriate equation for the initial width, W;, is

2A

_ -1
Ty = AT+ T) (12.13)

Wi =
where A is given by Equation 12.8, because the deformed and undeformed areas must be the
same, and T; and T, are the stratigraphic thicknesses on the right and left sides of the cross
section (Fig. 12.3). The uncertainty on the initial width is

5 Wimnax = ‘aw"aM ‘aw, STy + ‘aw, 5T (12.14a)
(Wi N (W (W
i (ia) - (Wism) + (MWiom) 12.140)
where
w2 oW -2A L Wi 24
0A (h+To) oT (T1+T2)2 oT, (T1+Tz)2

and 6A comes from Equation 12.12a if maximum error, or 12.12b if Gaussian error. The
uncertainties in stratigraphic thickness would be determined from the actual stratigraphic
variations in the field.

Finally, the shortening and shortening error are given by

S=W;—W, (12.15)
(SSmaX - ‘

oS
a5V + ’ W'swf:|—6m|+|5wf\ (12.16a)

a8 2 aS
55:\/(%‘”") +( 6Wf) = (oW + (5Wp)’ (12.16b)
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In this section, we have derived just the basic equations for error propagation in a general
area balance. In the process, several important questions and assumptions have been glossed
over. Perhaps the most pressing question is: How does one define the enveloping polygon?
The approach of Judge and Allmendinger (2011) is to increase the number of vertices in the
enveloping polygon (Fig. 12.3a) until the solutions for the shortening magnitude and the error
stabilize. In their analyses, the solutions stabilize at 20 to 25 vertices, but this number will vary
depending on the complexity and length of starting cross section. Additional questions might
include: Should one use the maximum or the Gaussian error? What is the relative contribution
of depth to decollement, stratigraphic thickness, and eroded hanging wall cutoffs in the overall
shortening uncertainty? You will get a chance to explore some of these questions in the
exercises at the end of the chapter.

The following MatLAB® function, BalCrossErr, computes the magnitude and error of short-
ening, deformed area, and initial width in an area balance calculation. The user needs to input
stratigraphic thicknesses and their uncertainties on both sides of the section, as well as the pre-
growth strata polygon vertices, their uncertainties and locations (decollement, surface, subsur-
face, or eroded). Total (kk = 0), stratigraphic thickness (kk = 1), decollement (kk = 2), eroded
(kk = 3), surface (kk = 4), or subsurface (kk = 5) vertices related errors can be computed by the
program.

function [short, shortp,defa, inw] = BalCrossErr (strat, vert, kk)
%¥BalCrossErr computes the shortening error in area balanced cross sections.
$The algorithm was originally written by Phoebe A. Judge

USE: [short,shortp,defa, inw] = BalCrossErr (strat,vert, kk)

strat=1x 5 vector with east stratigraphic thickness (entry 1),
west strat. thickness (entry 2), error on east strat
thickness (entry 3), error on west strat thickness
(entry 4), and error onfinal width (entry 5)
vert = number of vertices x5 vector with x coordinates of vertices
(column 1) , y coords of vertices (column 2), errors inx
coords of vertices (column 3), errors iny coords of vertices
(column 4) , and vertices tags (column 5) . The vertices tags are
as follows: 1 = Vertex at decollement, 2 = Vertex at surface,
3 = Vertex at subsurface, 4 = Vertex at eroded hanging-wall
cutoff
kk = Aflag to indicate whether the program computes total errors
(kk = 0), errors due to stratigraphy only (kk =1), errors due to
vertices at decollement only (kk =2), errors due to vertices in

o o° o o O° O o O o o O o o° O° o° o° o° o

eroded hanging walls only (kk = 3), errors due to surface
vertices
(kk =4), or errors due to subsurface vertices (kk =5)
short = Shortening magnitude and its gaussian and maximum errors
shortp = Shortening percentage and its gaussian and maximum errors
defa = Deformed area and its gaussian and maximum errors
inw = Initial width and its gaussian and maximum errors

NOTE: The user selects the length units of the problem. Typical length

o° o° o° o° o° o° o° o°

units are kilometers
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$Stratigraphic thicknesses

El =strat (1) ; %E strat thickness

W1l = strat (2) ; %W strat thickness

dE1l = strat (3); %UncertaintyonkE strat thickness
dWl = strat (4); %UncertaintyonW strat thickness
dx2 = strat (5); %Uncertainty on the final width

$Vertices

X =vert(:,1); %xcoordinate
Y=vert(:,2); %ycoordinate

dX =vert(:,3); %Uncertaintyinx
dY =vert(:,4); %Uncertaintyiny
Loc =vert(:,5); %Vertex location

n=size(vert,1l); %$Number of vertices

$If only errors due to stratigraphy

if kk ==
dx2 =0.0; $Make uncertainty on the final width zero
dX =dX * 0.0; %$Make errors in vertices locations zero
dYy=dY *0.0;

$If only errors due to vertices

elseifkk>1

dE1l = 0.0; $Make errors in stratigraphy zero
dWl=0.0;
dx2 =0.0; $Make error infinal width zero

fori=1:n

$If only errors due to decollement vertices

if kk ==
if Loc(i) ~=1
dX (i) =0.0; $Make errors in other vertices zero
dy (i) =0.0;
end

$1f only errors due to eroded hanging walls

elseif kk ==
if Loc (i) ~=4
dX (1) =0.0; $Make errors in other vertices zero
dy (i) =0.0;
end

$If only errors due to surface vertices
elseif kk ==14

if Loc(i) ~=2
dX (1) =0.0; $Make errors in other vertices zero
dy (i) =0.0;

end

%$I1f only errors due to subsurface vertices
elseif kk ==
if Loc (i) ~=3
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dX (i) =0.0; $Make errors in other vertices zero
dy (i) =0.0;
end
end
end
end

%$Initialize output variables
short = zeros (1, 3) ; shortp = zeros(1,3) ;
defa = zeros (1,3) ; inw = zeros (1, 3) ;

%Deformed area

%¥Calculate area of deformed state

aX = [X; X(1)];

a¥=[Y; Y(1)];

XArea =0.5* (aX(1l:n) .*aY¥(2:n+1) - aX(2:n+1) .*aY(1l:n)) ;
defa(l) = (abs (sum(XArea))) ;

%$Calculate gaussian uncertainty of deformed area

aX = [X(n); aX];

a¥ = [Y(n); a¥];

dAx =0.5*(aY(3:n+2) -aY¥(1l:n));

dAy = 0.5* (aX(3:n+2) - aX(1:n)) ;

delAx = (dAx.*dX) ."2;

delAy = (dAy.*dY) ."2;

%$Sum the X and Y components

SdelAx = sum (delAx) ;

SdelAy = sum(delAy) ;

%$take the square root of the sumof individual components
defa(2) = sgrt (SdelAx+SdelAy) ;

%$Calculate maximum uncertainty of deformed area

dAxM = abs (dAx) ; dAyM = abs (dAy) ;

delAxM = dAxXM. *dX;

delAyM = dAyM. *dY;

%sum the X and Y components

SdelAxM = sum (delAxM) ;

SdelAyM = sum (delAyM) ;

$Add everything together to get the maximum uncertainty in Area
defa(3) = SdelAxM+SdelAyM;

%0Original width

%$Calculate the original width assuming constant Area

inw (1) =defa(1)/ (((E1)/2)+((W1)/2));

%$Calculate final width from the imported polygon

x21 =max (X) - min(X) ;

%$Calculate gaussian uncertainty of the original width
dda=1/(((E1)/2)+((W1)/2)); %partial of x1 wrt Area

ddEl = - (2*defa (1)) / ((E1) *2+ (2*E1*W1) + (W1) *2) ; %$partial of x1 wrt E1
ddwl = - (2*defa (1)) / ((E1) "2+ (2*E1*W1) + (W1) *2) ; %$partial of x1 wrt W1
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inw(2) = sqrt ( ( (ddA*defa (2))*2) + ((ddE1*dE1l) *2) + ( (AAW1*dW1) *2)) ;
$Calculate maximum uncertainty of the original width
inw(3) = ((abs (ddA*defa(3)) )+ (abs (ddE1*dE1l) ) + (abs (ddW1l*dwWl))) ;

%$Shortening

%$Calculate shortening

short (1) = inw (1) -x21;

%$Calculate gaussian uncertainty in shortening

short (2) = sgrt ((inw(2)) "2+ (dx2) *2) ;

%$Calculate maximumuncertainty in shortening

short (3) = (inw(3) +dx2) ;

$Calculate percent shortening

shortp (1) = (1-(x21/inw (1)) ) *100;

%Calculate gaussian uncertainty of percent shortening
ddx1l =x21/((inw(1))
ddx2 = -1/inw (1) ; %partial of Swrt x2

shortp (2) = sqrt (((ddxl*inw(2)) "2) + ( (ddx2*dx2) *2)) *100;
$Calculate maximumuncertainty in shortening

shortp (3) = (abs(ddxl*inw(3)) + (abs (ddx2*dx2)) ) *100;

end

A

2); %partial of Swrt x1

12.4 UNCERTAINTIES IN STRUCTURAL DATA AND THEIR REPRESENTATION

Generally speaking, structural data result from a process that involves three sequential steps:
data acquisition, processing, and interpretation. All these three steps generate uncertainties of
different magnitude and nature. Take, for example, seismic reflection surveys on which so
many exploration targets and balanced cross sections depend: uncertainties in acquisition are
prominent in land surveys (especially if operating over rough terrains), but offshore acquisition
generates almost no uncertainties. In processing, uncertainties are mainly due to migration
(relocation of reflectors to their true positions). During the interpretation phase of a project,
detection of seismic markers, picking horizons, and interpreting faults are all potential sources
of error. Finally, interpreted horizons and faults should be converted from time to depth,
generating potentially huge errors that can account for as much as 50% or more of the total
uncertainties (Thore et al., 2002). Migration and time-to-depth generated uncertainties can
be quantified based on their associated velocity fields, although this is not straightforward
(Thore et al., 2002). Errors due to interpretation are more difficult to estimate, and their
determination may require the analysis of several interpretations from different people
(Bond et al., 2007).

There is, however, a unifying feature about uncertainties: in order to be implemented,
uncertainties need to be described in terms of magnitude, direction, and correlation length
(ameasure of how uncertainties in one region are correlated with those in another region; Thore
et al., 2002). To illustrate these concepts, we refer to the simple, two-dimensional example of
Figure 12.4. The folded bed (black line in Figure 12.4) consists of n points. Each of these points
has uncertainties in location in x; and x, (i.e., uncertainty direction). These uncertainties follow
a normal probability distribution, with a mean p equal to the observed or measured x; and x,,
and a standard deviation ¢ (i.e., uncertainty magnitude). The uncertainties in location are
correlated along the bed up to a maximum distance or correlation length I.. A typical way to
describe the spatial dependence of uncertainties along the profile is through a spherical
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Figure 12.4 Strategy to generate realizations from a folded bed (dark line). Each point
on the bed has uncertainties in x; and x, that follow a normal probability distribution,
with a mean equal to the measured location and a standard deviation o. Uncertainties
within a distance along the bed lower than the correlation length are correlated. Gray
lines are realizations.

variogram model (Davis, 2002). For this model, the n x n matrix R that describes the correlation
of the uncertainties in location is
Ri— { 1+0.5(h -3h), h<1
=

0 h>1 (12.17)

where his I;j/l., and I; is the distance along the bed between points i and j (Figure 12.4). The
n x n covariance matrix C (a matrix whose ij element is a measure of how uncertainties in
points i and j change together) is

C =SRS (12.18)

where S is an n x n diagonal matrix with the diagonal elements equal to the standard deviation o.

Given the covariance matrix C, we can generate different realizations (i.e., synthetic data sets
that obey the observations and their uncertainties) of the bed following a procedure known as
the Cholesky or square root method (Oliver et al., 2008). Basically, we decompose the covariance
matrix C into the product of a matrix and its transpose using Cholesky factorization:?

2 Cholesky factorization is a form of triangular decomposition that can be applied to positive definite
matrices (those matrices that have all eigenvalues greater than zero; Lindfield and Penny, 1999).
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C=LLT (12.19)

We then generate a column vector z of n x 1 independent, random numbers from O to 1. Finally,
we can compute the x; and x; locations of points in the realization as (Aster et al., 2005)

X (realization) = X1 (observed) +1Lz (12.20)
X2 (realization) = X2(observed) +1Lz

The MartrLag function BedRealizations, below, generates realizations of a bed in two dimen-
sions using the Cholesky method. The function relies on two Matiag functions: chol which
performs the Cholesky factorization, and randn which generates random numbers. In addition
to the bed data and number of realizations, the user needs to input the standard deviation ¢ and
correlation length . of the uncertainties. BedRealizations calls function Corrspher (also
below) which computes the correlation matrix R for the spherical variogram model.

function rlzt = BedRealizations (xp,yp,N, sigma, corrl)
%BedRealizations generates and plots realizations of a bed using a
$spherical variogram and the Cholesky method

USE: rlzt = BedRealizations (xp,yp,N, sigma, corrl)

o° o° o°

xp = column vector with x locations of points along bed

yp = column vector withy locations of points along bed

N = number of realizations

sigma = Variance

corrl = Correlation length

rlzt =npoints x 2 xN+1 matrix with bed realizations. Thefirst
realization in this matrix is the input xp, yp bed

o o° o° o° o° o° o° o° o°

BedRealizations uses function CorrSpher

$Number of points along bed
nj =max (size(xp)) ;

$Variance matrix
Sf = zeros (nj,nj) ;
for i=1:nj
for j=1:nj
if i==3
Sf(i,j)=sigma;
end
end
end

$Calculate correlation matrix using spherical variogram model
Rf=CorrSpher (xp, yp, corrl) ;

%$Calculate covariance matrix (Cf)

Cf=Sf*Rf*Sf;

%Cholesky decomposition of covariance matrix. Here we use the MATLAB
$function chol
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[L,p] = chol (Cf, 'lower"') ;
ifp>0

error ('Cf not positive definite');
end

%$Initialize realizations
rlzt = zeros (nj,2,N+1) ;

%Start figure

figure;

holdon;

gray = [0.750.750.75] ;

%$Generate realizations
for i=1:N+1
$First realization is the bed itself
if i ==
rlzt(:,1,1i) =xp;
rlzt(:,2,1) =yp;
$0Other Realizations
else
%$Compute uncertainty in horizontal and vertical
z =randn(nj, 1) ;
lz =L*z;
%$Add to observed data to generate realization
rlzt(:,1,1) =xp+1z;
rlzt(:,2,1) =yp+1lz;
end
% Plot realization
plot (rlzt(:,1,1i),rlzt(:,2,1),"'."', '"MarkerEdgeColor',gray) ;
end

$plot bed in black
plot(rlzt(:,1,1),rlzt(:,2,1),'k.");
hold off;

axis equal;

end

function r = CorrSpher (xp, yp,1laj)
CorrSpher calculates the correlation matrix for a spherical variogram

o  oe

USE: r=CorrSpher (xp, yp,laj)

xp = vector with x locations of points along bed
yp = vector with y locations of points along bed

o o° o° o° o°

laj = correlation length

o\°

r = correlationmatrix
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$Number of points along bed
nj =max(size (xp)) ;

$Initialize correlation matrix

r = zeros (nj,nj) ;

$Compute correlation matrix
for i=1:nj
for j=1:nj
$Find distance v between points i and j along bed
v=0.0;
minind =min (i, j); $minimum index
maxind =max (i, j); $maximum index
fork =minind:1:maxind-1
v =v+sgrt ((xp(k)-xp(k+1))*2 + (yp(k)-yp (k+1))"2);

end
$Compute variogramentry

h=v/laj;

%If within correlation length
ifh<1.0

r(i,j)=1.0+0.5%(-3*h + h"3);
end
end
end
end

12.5 GEOLOGICAL APPLICATION: TRISHEAR INVERSE MODELING

In Chapter 11, we introduced the trishear kinematic model as a way to produce richer, more
complex fault-propagation fold geometries and strain fields than those of kink-based models.
However, when modeling natural fault-propagation folds, the main limitation of trishear is
that, contrary to the kink models, trishear is incremental and there are no mathematical or
geometrical rules to derive the model parameters from the observed fold geometry. There are
two solutions to this problem: One can run trishear models forward to see how well they
deform the beds to reproduce their final geometry. Implicit in this modeling is the assumption
that one knows the initial geometry of the beds. Alternatively, one can run trishear models
backward to see how well they unfold the beds to their original, approximately planar orienta-
tions (Allmendinger, 1998). In practice, this second strategy is easier because the initial state
(planar beds) is much simpler than the final state (complexly folded beds), and there are simple
statistical descriptions of the initial state. In two dimensions, for example, the goodness of fit of
a model can be evaluated by how well the model restores a bed to a straight line. A merit or
objective function f,; is used to measure the fit. By convention this function is low when the fit
is good. fypjcan be easily estimated by a simple least-squares linear regression of the restored
bed profile. The MaTLAB function BackTrishear, below, restores a folded bed in two dimensions
using an input combination of trishear parameters (a trishear model), and returns an estimate
of fopj. BackTrishear uses function regress (MatLas Statistics Toolbox) to perform the linear
regression of the restored bed profile.
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function chisqg = BackTrishear (xp, yp, tparam, sinc)
%$BackTrishear retrodeforms bed for the given trishear parameters and return
%$sum of square of residuals (chisq)

o\°

USE: chisqg = BackTrishear (xp, yp, tparam, sinc)

xp = column vector with x locations of points along bed
yp = column vector with y locations of points along bed

o o° o° o° o

tparam=2A1x 7 vector with the x and y coordinates of the fault tip
(entries 1 and 2), the ramp angle (entry 3), the P/S (entry4),
the trishear angle (entry 5), the fault slip (entry 6), andthe
concentration factor (entry 7)

sinc = slip increment

o o° o° o° o°

chisqg = sum of square of residuals (objective function)

NOTE: Input ramp and trishear angles should be in radians
For reverse faults use positive slip and slip increment
For normal faults use negative slip and slip increment
The MATLAB Statistics Toolbox is needed to run this function

o o° o° o° o° o

o\°

BackTrishear uses function VelTrishear
% Model parameters

xtf = tparam(1l) ; $x current fault tip

ytf = tparam(2) ; $y current fault tip

ramp = tparam(3) ; $Ramp angle

psr = tparam(4)*-1.0; $P/S: Multiply by -1 because we are restoring bed
tra = tparam(5) ; $Trishear angle

m=tan(tra/2); $Tangent of half trishear angle

slip = tparam(6) ; $Fault slip

c = tparam(7) ; $Concentration factor

ninc=round (slip/sinc) ; $Number of slip increments

sincr =slip/ninc*-1.0; %$Slip increment: Multiply by -1 (restoring bed)

$Transformation matrix from geographic to fault coordinates
all=cos (ramp) ;

al2=cos (pi/2-ramp) ;

a2l=cos (pi/2+ramp) ;

a22=all;

% Transform to coordinates parallel and perpendicular to the fault, and
% with origin at current fault tip
fx=(xp-xtf) *all+ (yp-ytf) *al2;

fy=(xp-xtf) *a2l+ (yp-ytf) *a22;

% Restore
for i=1:ninc
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for j=1:size(fx,1)
% Solve trishear in a coordinate systemattached to current
% fault tip. Note: First retrodeform and then move tip back
xx=fx(j) - (psr* (i-1) *abs (sincr)) ;
yy=£y (3) ;
% compute velocity
[vx,vyl=VelTrishear (xx,yy,sincr,m,c) ;
% UPDATE fx, fy coordinates
£x(3)=£fx(J) +vx;
fy (3)=fy (F) +vy;
end
end

$Fit straight line to restored bed. Use MATLAB function regress (MATLAB
$Statistics Toolbox) to compute linear regression. b (1) is the intercept
$and b (2) the slope of the line

XX = [ones (size (fx)) £x];

YY = fy;

b = regress (YY, XX) ;

%$Compute chisqg (objective function) = Sumof square of residuals between
$straight line and restored bed

chisg=sum((fy-b(1)-b(2)*fx)."2.);

end

We now have a way to assess the goodness of fit of a trishear model. But now the question is:
Within all possible trishear models, what is the model with the best fit or lowest f,;? This is in
essence an inverse (minimization) problem (Aster et al, 2005). There are several ways to solve
this problem. The easiest s to establish a grid of possible trishear models (defined by minimum
and maximum limits, and step sizes of the parameters), and to systematically test each one of
these models to find out the one with the lowest f,; (the best-fit model). This grid-search
method (Allmendinger, 1998) is robust (you are guaranteed to find the model with the lowest
fob; in the grid), but it is quite inefficient. A grid search of all parameters of a two-dimensional
trishear model (Chapter 11) may involve testing hundreds of thousands of models, and even at
the speed of today’s personal computers this can take hours.

The other strategy involves the use of optimization methods. Optimization algorithms do
not systematically explore the parameter space as the grid-search method does, but rather
traverse the space in search of the best-fit model. A good analogy is to imagine the parameter
space to be a rough terrain with valleys and hills. The grid-search method would explore the
entire terrain systematically to find the lowest point. The optimization algorithms on the other
hand would be like a ball moving down the terrain under the force of gravity. This of course is
much more efficient than the grid-search method. The problem with optimization algorithms is
that they can be caught in local minima. Depending on the energy and size of the ball, it might
get stuck in a local valley before getting to the lowest point (Cardozo and Aanonsen, 2009).
A detailed description of optimization methods is beyond the scope of this book and there are
several fine texts that introduce this topic in a more authoritative manner (e.g., Nocedal and
Wright, 1999; and Aster et al., 2005).

A depth-converted seismic section of the Santa Fe Springs anticline and the underlying Puente
Hills thrust fault in the Los Angeles Basin (Shaw and Shearer, 1999) illustrates the concept of
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Los Angeles Basin Santa Fe Springs anticline
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Figure 12.5 Depth-converted seismic section of the Santa Fe Springs anticline in the Los

Angeles Basin. Dashed lines are interpreted beds and the rectangle is the area where the
fault tip can be located. Seismic and well data from Shaw and Shearer (1999).

optimization and trishear inverse modeling. The thrust fault is well defined in the seismic data
(Fig. 12.5). The ramp angle is 29°. The location of the fault tip is not exactly known and is assumed
to be along the fault within the gray rectangle in Figure 12.5. The distance along the fault between
the lower end of the rectangle and the possible location of the fault tip is defined here as Ift. We
canrun a trishear inversion to search for the Ift, P/S, trishear angle, and fault slip thatbest fit the
structure in Figure 12.5. The MatLag function InvTrishear, below, is designed for this purpose.
The function takes the coordinates of a bed in two dimensions and a guess of the four parameters
above, and estimates the model (i.e., the combination of trishear parameters) that best restores
the bed. InvTrishear uses our previous function BackTrishear to obtain a value of f;,; for the
currently tested model. The inversion (f,,; minimization) is done through the MatLag function
fmincon (MaTLAB Optimization Toolbox), which performs a constrained (limits on the searched
parameters), gradient-based optimization.

function [xbest, fval,flag] = InvTrishear (xp, yp, tparams, sinc, maxit)
$InvTrishear performs inverse trishear modeling using a constrained,
%$gradient based optimization method

[xbest, fval,flag] = InvTrishear (xp, yp, tparams, sinc, maxit)

Xp = column vector with x locations of points along bed
yp = column vector withy locations of points along bed

o o° o° o° o° o°

tparams = A 1l x 8 vector with the x and y coordinates of the
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lowest possible location of the fault tip (entries 1 and?2),
the distance along the fault line from the lowest to the
highest possible locations of the fault tip (1ft, entry 3),

o o° o° o°

the ramp angle (entry 4), the P/S (entry 5), the trishear angle
(entry 6), the fault slip (entry 7), and the concentration
factor (entry 8)

sinc = slip increment

maxit = maximum number of iterations in the optimized search

xbest = Best-fit model

o o° o° o° o°

fval = Objective function value of best-fit model
flag = Integer that indicates if the model converged (flag > 0)

NOTE: Input ramp and trishear angles should be in radians

o o° o° o° o°

The search is for the best-fit slip, trishear angle, P/S, and 1ft
The MATLAB Optimization Toolbox is needed to run this function

o° o° oP

InvTrishear uses function BackTrishear

$Trishear parameters for BackTrishear
tparam = zeros (1,7) ;

$Known values

xtt = tparams (1) ; $Coordinates of lowest possible location of fault tip
ytt = tparams (2) ;

tparam(3) = tparams (4) ; $Ramp angle

tparam(7) = tparams (8) ; $Concentration factor

$Set initial guess (x0), minimum (1lb), and maximum (ub) parameters limits
$Entries in these vectors are: [slip trishear angle P/S 1ft]

$These entries should be in the same order of magnitude

$The values and scaling below only work for the Santa Fe Springs anticline
%$Change 1b and ub if you want to search over a larger or smaller parameter
%¥space

sf=1.0e-3; $scaling for slip and 1ft

x0= [tparams (7) *sf tparams (6) tparams (5) tparams (3) *sf/2.]; $initial guess
b= [0.40.*pi/180.1.50.0]; $lower limit

ub = [15. 80.*pi/180. 3.5 tparams (3) *sf]; $upper limit

$Optimization settings: Display off, maximum number of iterations, and type
%of algorithm. Use MATLAB function optimset (MATLAB Optimization Toolbox)
options = optimset ('Display', 'off', 'MaxIter',6 maxit, ...

'Algorithm', 'active-set');

$Compute best-fit model using constrained, gradient based optimization

$method. Use MATLAB function fmincon (MATLAB Optimization Toolbox)

[xbest, fval,flag] = fmincon (@objfun,x0, [1, [1, [1, [],1lb,ub,@confun,...
options) ;
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$Supporting functions

$Function to compute the objective function for a given combination of
$parameters x
function f = objfun (x)

tparam(6) =x (1) /sf; $Slip: Return to its non-scaled value
tparam(5) =x(2 ) ; %$Trishear angle

tparam(4) =x(3); %$P/S

1ft =x(4)/sf; $1ft: Return to its non-scaled value
tparam(2) = ytt +1ft*sin(tparam(3)); $x fault tip

tparam(l) = xtt + lft*cos (tparam(3)); %y fault tip
f = BackTrishear (xp, yp, tparam, sinc) ; $Compute objective function
end

$Function for constrained optimization method fmincon
function [c, ceq] = confun (x)
% Nonlinear inequality constraints
c=[1;
% Nonlinear equality constraints
ceqg=[];
end
end

Running InvTrishear for bed 4 of Figure 12.5, with an initial guess ao of [1.0 km, 2.5, 60°,
7.5km] (Ift, P/S, trishear angle, and fault slip), minimum limits a,,;, of [0, 1.5, 40°, 0], and
maximum limits amax of [2 km, 3.5, 80°, 15 km] produces a best-fit estimate a; of [1.45 km, 2.52,
71°, 6.7 km] (for bed 4 with about 500 points, the computation takes 20 seconds!). A forward
model of a smoothed version of the restored beds using the best-fit parameters as is shown in
Figure 12.6. This model fits well beds 4 and 7 and not so well beds 1 to 3.

One can try to refine this analysis by using different beds in the section, changing parameter
limits, etc., but here we are interested in another, perhaps more profound issue. The fold data
in Figure 12.5 have errors of various kinds, including imaging and interpretation errors
(Section 12.4). These errors introduce some uncertainty in the estimated best-fit parameters
as. How can we estimate the uncertainties of as? Figure 12.7 shows a strategy to do this.
Basically, from the observed data set we generate several synthetic data sets (i.e., realizations)
as outlined in Section 12.4. Inverse modeling (f;,; minimization) of these realizations gives a set
of simulated best-fit parameters (as, as,, ...) that are distributed around the best-fit model for
the observed data agy. From these, we can determine the probability distribution and uncer-
tainties of a;. Since the synthetic data sets are generated randomly from the observed data and
there is no conditioning between synthetics, this technique is known as a randomized max-
imum likelihood method (RML, Oliver et al, 2008). The MatLas function RMLMethod below
performs this type of analysis.

function [xbesti,fvali] = RMLMethod (xp, yp, tparams, sinc,maxit,N, sigma, corrl)
$RMLMethod runs a Monte Carlo type, trishear inversion analysis for a
%$folded bed

o  o°

USE: [xbest,fval] = RMLMethod (xp, yp, tparams, sinc,maxit,N, sigma, corrl)
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Los Angeles Basin Santa Fe Springs anticline

Best fit model = [1.45 km, 2.52, 71°, 6.71 km] Section (1:1)

Figure 12.6 Best-fit trishear model (black tick lines) for the Santa Fe Springs anticline.
The best-fit model was obtained by inversion of bed 4. The entries in the best-fit vector
correspond to location of fault tip along fault line Ift, P/S, trishear angle, and fault slip.

Realizations Inversions
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dataset1 | min parameters ay,
. . synthetic |_Jobj best-fit
Inversion Observation dgta set 2 ™ min > parameters az

best-fit actual
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Figure 12.7 Strategy to estimate the uncertainty of the best-fit parameters a;. From a
measured data set (observations) several synthetic data sets are generated
(realizations). Inverse modeling of these realizations gives a set of simulated best-fit
parameters (as; ,as, ...) from which we can determine the uncertainties of a;.
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% Xp = column vector with x locations of points along bed

% yp =column vector withy locations of points along bed

% tparams = Avector of guess trishear parameters as in function
% InvTrishear

% sinc =slip increment

% maxit = maximum number of iterations in the optimized search
% N =number of realizations

% sigma = Variance

% corrl = Correlation length

% xbest = Best-fit models for realizations

% fval =Objective function values of best-fit models

% NOTE: Input ramp and trishear angles should be in radians

o°  oe

RMLMethod uses function BedRealizations and InvTrishear

%Generate realizations

rlzt = BedRealizations (xp,yp,N, sigma, corrl) ;

%$Initialize xbesti and fvali
xbesti=zeros (N+1,4) ;
fvali=zeros (N+1,1) ;

%$Find best-fit model for each realization
count =1;
for i=1:N+1
[xbest, fval,flag] = InvIrishear (rlzt(:,1,1),rlzt(:,2,1i),tparams, ...
sinc,maxit) ;
% if the function converges to a solution

if flag >0
xbesti (count, :) =xbest;
fvali (count, :)=£fval;

%$Output realization number and fval
disp(['Realization ', num2str(i),' fval ="', num2str(fval)]);
%Increase count
count = count + 1;
end
end

%$Remove not used elements of xbesti and fvali
xbesti (count:N+1, :)=[];

fvali (count:N+1,:)=[];

end

Figures 12.8 and 12.9 show the result of applying the RML method to the Santa Fe Springs
anticline. Figure 12.8 shows bed 4 (Fig. 12.5) and its realizations (gray lines). One thousand
realizations were created using a standard deviation ¢ (uncertainty in location) of 50 m and a
correlation length I. of 100 km (I. must be large to obtain smooth fold profiles). This makes the
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bed

1000 realizations

I 0
0 2 km

Figure 12.8 Realizations of bed 4 in Santa Fe Springs anticline (Figure 12.5). Realizations
are based on a standard deviation of 50 m and a correlation length of 100 km.
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Figure 12.9 Statistics of the trishear inversions of bed 4 realizations in Figure 12.8. (a) to
(d) are histograms for uncertainties in (a) location of fault tip along fault projection Ift,
(b) P/S, (c) trishear angle, and (d) fault slip. In (a) to (d), the black thick line is a normal
distribution fit to the histogram. Dashed lines delimit the 68% confidence interval.
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realizations fall within a distance of +200m from the interpreted bed. This uncertainty is
comparable with the possible uncertainty due to time-to-depth conversion of the seismic
data, where a 10% error in a seismic velocity of 4km/s (a reasonable value for the Tertiary
sediments in the Los Angeles Basin) at 1 s two-way travel time would yield an uncertainty in
depth of 200 m.

Figure 12.9 shows the statistics of the inversions of the 1000-bed realizations of Figure 12.8.
Thanks to the fast optimization methods, the 1000 inversions took a couple of hours. The
statistics is shown as deviations of the synthetic best-fit parameters ag with respect to the
observed ones agy. Normal fits to the probability distribution of ag—agy indicate that the o errors
in Ift, P/S, trishear angle, and fault slip are 181 m, 0.04, 5.7°, and 856 m (Figure 12.9). In other
words, there is 68% chance that the true best-fit parameter values fall within intervals in Ift, P/S,
trishear angle, and fault slip of 1216-1578m, 2.48-2.56, 65-76°, and 6.06-7.8 km (regions
limited by dashed lines in Figure 12.9). Notice that the major uncertainties are in trishear
angle and fault slip. The structure can be fit with relatively high trishear angle and low fault
slip, or vice versa (Figure 12.9 ¢, d). Based on trishear inverse modeling of the section in
Figure 12.5, Allmendinger and Shaw (2000) found that the Puente Hills thrust initiated at the
same location as the 1987 M6.0 Whittier Narrows earthquake. This observation, which has
important implications for earthquake hazard assessment, is within the 68% confidence inter-
vals of our analysis. You will get the chance to try the RML method in the exercises section.

12.6 EXERCISES

1. Use Equations 12.9 through 12.16 to calculate the uncertainty on shortening in the simple
crustal area balance in Section 12.3.2. Do you get the same answer? If not why not? Discuss
your results.

2. Derive a set of equations, similar to Equations 12.15 and 12.16, that gives the uncertainty on
percentage shortening rather than just the magnitude of shortening.

3. The following table of numbers represents a 30-vertex polygon for the southernmost
Subandean belt in northwestern Argentina (Echavarria et al., 2003), the same one shown in
Figure 12.3. Calculate the uncertainty in shortening magnitude and percentage. Then, redo
your analysis to investigate the relative importance of uncertainties in eroded hanging wall
cutoffs, decollement, and stratigraphic thickness in contributing to the overall uncertainty.
Hint: Use function BalCrossErr.

T, (km) T> (km) Error in T; (km) Error in T, (km)
2.9 4.6 0.29 0.46
Stratigraphy

x; (km) X> (km) Error in x; (km) Error in x, (km) Tag*
-23.07511401 -8.58720459 0.75 0.75 1
-93.403 83988 -11.03383830 0.75 0.75 1
-87.167 32258 -4.17366927 0.8 0.8 3
-85.82407270 0.91149099 0.1 0.1 2
-85.53623344 -1.439196 30 0.8 0.8 3
-80.45107318 2.68649976 3.0 3.0 4
-77.62065378 2.97433902 3.0 3.0 4

(cont.)
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x; (km) X, (km) Error in x; (km) Error in x, (km) Tag*
—75.60577896 0.67162494 0.1 0.1 2
-78.91593045 -0.095946 42 0.8 0.8 3
-83.42541220 -4.94124063 0.8 0.8 3
-82.03418911 -6.42841014 0.8 0.8 3
-73.974689 82 -6.764 22261 0.8 0.8 3
-66.53884227 -0.671624 94 0.8 0.8 3
-65.62735128 1.631089 14 3.0 3.0 4
-63.90031572 1.87095519 3.0 3.0 4
-66.442 895 85 -1.82298198 0.8 0.8 3
-65.003699 55 -3.07028544 0.8 0.8 3
-61.45368201 -1.58311593 0.8 0.8 3
-60.350298 18 0.71959815 0.1 0.1 2
-59.294 887 56 1.10338383 3.0 3.0 4
-57.37595916 -3.74191038 0.8 0.8 3
-59.198941 14 -4.17366927 0.8 0.8 3
-56.608387 80 -5.51691915 0.8 0.8 3
-42.408 31764 -5.32502631 0.8 0.8 3
-37.27518417 0.52770531 0.8 0.8 3
-35.164 36293 0.14391963 0.8 0.8 3
-32.76570243 -4.74934779 0.8 0.8 3
-23.45889969 -5.13313347 0.8 0.8 3
-13.432498 80 -2.87839260 0.8 0.8 3
-12.80884707 -4.941 24063 0.8 0.8 3

*Tag key indicates the setting of the vertex: 1 - decollement; 2 - point on the land surface; 3 - normal
point in the subsurface; 4 - eroded (i.e., point above the erosional surface).

Enveloping polygon for deformed area

4. Supplementary data file “Problem 12.4” contains the digitized contacts of beds 3 and 4 in
Figure 12.5. It also has a fault file with the lowest and highest possible locations of the
Puente Hills thrust tip. Run an RML analysis for beds 3 and 4. In each case use 1000-bed
realizations and uncertainties, limits, and guess parameters similar to the ones used in
Section 12.5.
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axes 26

balanced cross sections 256
area balancing 257, 258, 259
depth to decollement 259
error propagation 259, 260
Gaussian error on area 262
line-length balancing 257
maximum error on area 262
minimum shortening estimate 257
shortening error 262
thick-skinned 259
thin-skinned 259

Cholesky factorization 267
continuity equation 218
coordinate systems 23-25
Cartesian 24
east-north-up 25
left-handed 24, 78
north-east-down (NED) 25, 28, 114
right-handed 24, 78
spherical 23

deformation 1, 120
elongation 120, 124, 125, 169
gradient 123, 126
quadratic elongation 120
stretch 120, 123, 125
translation 123, 125

Delaunay triangulation 157

direction cosines 28, 31, 185

displacement 165
Euler 124
field 121, 185, 188, 190, 194
gradient 121, 124,173
Lagrange 124
path 185, 193, 196, 203
vector 123

error propagation 2, 255

error in quadrature 255
maximum error 255

Eulerian frame 251
external rotation 200

fault

decollement 220, 230

inversion for stress 116

listric 225

movement plane 115, 151
principal stress ratio 116
propagation to slip (P/S) 231
Puente Hills thrust 279

stress on arbitrary plane 113-116

fibers

antitaxial 200, 201, 209
syntaxial 200

fold

best-fit axis 91

cylindrical 26, 92
down-plunge projection 51-53
fault-bend fold 220, 221

fault-propagation fold 220, 230, 231, 235, 236

footwall synclines 241

kink bands 221

orientation matrix 93

parallel folding 257

profile view 51

rollover anticline 225, 227
Santa Fe Springs anticline 273
similar fold 227

functions 8

geometric moment 150
growth strata 237, 247
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active kink axis 251

fixed or passive kink axis 251
growth triangle 251
instantaneous rotation 251
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progressive rotation 251
subsidence vs. uplift (G) 247
syntectonic sedimentation 247

incompressibility 218, 221, 231, 242
inverse problem 218, 272
grid search method 272
objective function 270
optimization 272
trishear inverse modeling 270

kinematic models 217
concentration factor 242
fault-bend folding 220
fault-propagation folding 230
fault-related folding 220
fixed axis kink model 230, 231
inclined simple shear 226
parallel kink model 235
similar folding 225
trishear model 240

kinematic vorticity number 195, 196

kinematics 183, 199

Lagrangian frame 252
linear algebra 6
lineation 26

loops 7

magnitudes 1

map projections 18-22
azimuthal 19
conformal 20
datum 19
developable surface 19
eastings 20
equidistant 20
false northings 22
geoid 18
latitude 18
longitude 18
NADS83 19
northings 20
UTM 20-22
WGS84 19

MATLAB 6

matrix
addition 70
antisymmetric (skew) 72, 83
asymmetric 83
cofactors 74
conformable 71
design 156
determinant 74, 79
diagonal 70
dyad product 71, 72
identity 70, 78
inverse 76-77, 78
Kronecker delta 70, 105
multiplication 71
orientation 93

orthogonal 72, 78

principal diagonal 70

square 70

symmetric 72, 83

transpose 49, 50, 72, 78
Mohr circle 168

3D stress 98

finite strain 177

infinitesimal strain 143

pole 108,177,178

stress 108-111

tensor transformation 88

notation
Gibbs dyadic 169
indicial 27, 66-67, 82
matrix 66, 69
summation convention 67, 68

orientations 1, 8, 31
azimuth format 12
bipolar distribution 91
dip direction 1, 12
dip, apparent 1, 39
dip, true 1, 39
girdle distribution 91
orientation matrix 93
pitch 1, 12
plunge 1
quadrant format 12
rake 1,12, 39
right-hand rule 12
strike 1
trend 1

orthographic projection 3-4, 51
folding line 3

partial derivatives 123

pressure shadow 199, 200, 201, 205, 209

radians 6

rotation 2, 55-56
axis, antisymmetric tensor 91
internal 190, 200
of axes 46-48

scalars 25, 81
seismic moment 150
seismic reflection 266
shear
angular 140, 170
antithetic 226
engineering shear strain 141, 188
rate 193
general 192, 196
inclined 225
parallel 257
pure 183, 186, 192, 196, 200
shear strain 140, 171

simple 188, 190, 192, 196, 200, 208

tensor shear strain 141



288

Index

spherical projection 8-18
spin 200, 208
statistics
Bingham 93
correlation coefficient 131
covariance 131, 256, 267
Fisher 37
least squares 92
standard deviation 129, 255
variance 129, 256
stereonet 12-15, 62
equal angle projection 16
equal area projection 17, 20
great circle 12, 58
lower hemisphere 12, 26
primitive 12
rotations 14-15
small circle 15, 58
upper hemisphere 12
strain 2
compatibility 179
dilatation 142
finite 165, 188
elongation 170
quadratic elongation 170
stretch 170, 190
volume ratio 171
history
coaxial 200
cumulative incremental 184, 205, 208
non-coaxial 200, 205
progressive finite 186, 190, 196, 204, 205, 208
infinitesimal 135, 136, 151
axes 153
ellipse 143, 190
principal strains 146
principal stretches 143, 184
tensor 138, 143, 151,178,179
invariants 141
irrotational 186, 200
plane strain 218
principal stretches 184, 185
rate 131, 193
rotational 190
volume ratio 171
volume strain 142
stress 120
biaxial 111
Cauchy’s Law 101, 114
compression 104
conjugate shear 100
cylindrical 111
deviatoric 112-113
force 98
hydrostatic 111, 112
mean stress 112
Mohr circle 108-111
3D stress 109
pole to 108
normal 99, 105
on arbitrary plane 113-116

principal axes 104, 114
principal stress ratio 116
pure shear 111

shear 99, 104

spherical 111

tension 104

tensor 101

traction 98, 114

triaxial 111

uniaxial 111

summation convention, Einstein 67, 68

dummy suffix 68
free suffix 68

tensor 45, 81

antisymmetric 138, 158
asymmetric moment 152
Cauchy deformation 168, 176, 177,
185, 186
gradient 128
characteristic (secular) equation 90
deformation gradient 125, 155, 176, 184, 185,
188, 190, 193, 195, 203, 205, 208
rate 193
displacement gradient 135, 146, 147, 150, 151,
155,157,168
dyad (tensor) product 84
eigenvalue 90, 91, 105, 185, 189, 205, 208
eigenvector 90, 91, 105, 152, 185, 186, 188, 189,
200, 205, 208
Eulerian finite strain 167
Eulerian displacement gradient 128
field tensor 104
Green deformation 168, 189, 195, 205, 208
gradient 128
infinitesimal strain 138, 146, 151, 158
invariants 90
Lagrangian displacement gradient 128,
166, 167
Lagrangian finite strain 167
linear vector operator 84
magnitude ellipsoid 89
Mohr circle 88, 108-111
principal axes 83
representation quadric 89
rotation 138, 146, 151, 168, 190
rotation axis 91
second order (rank) 82
seismic moment 152
stress tensor 101
stretch, left 174, 175
stretch, right 174, 190
symmetric 138
transformations 85-87, 113, 115

transformation

Cauchy 123

coordinate 44, 121, 165
Green 123

orthogonality relations 48, 77
position vector 50
Pythagorean Theorem 47
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rotation of axes 46-48

tensor transformations 85-87, 113, 115
transformation matrix 48, 69, 72, 78, 84, 85,

108, 143
translation of axes 45
vector transformations 48-50, 67, 115
trigonometry
plane 5
spherical 5

uncertainty 2, 129, 254, 256, 266
Cholesky or square root method 267
correlation coefficient 131
correlation length 266
covariance 131, 256, 267
Gaussian distribution 129
in best-fit parameters 275
Monte Carlo simulation 258
randomized maximum likelihood 275
realizations 267
spherical variogram 266
standard deviation 129, 255
variance 129, 256

variables 7
vector 25-40, 81

addition 33, 35
axial 138
base 29
cross product 34, 39, 114
direction cosines 28, 31
displacement 123
dot product 34, 39,47,71, 72
dyad product 71, 72, 84
Fisher statistics 37
magnitude 27
mean 34-36
resultant 35
scalar multiplication 33
transformations 48-50, 67, 77,115
unit 27, 30

velocity
divergence 218
domains 220
linear trishear field 242
pure shear 219
simple shear 219



Errata

Structural Geology Algorithms

R. W. Allmendinger, N. Cardozo, & D. Fisher

We’ve discovered first hand just how hard it is to produce an error free book. This sheet
lists the errors that we have found to date and provides correction. Please let Rick
Allmendinger (rwal@cornell.edu) know if you find any additional typos and let Nestor
Cardozo (nestor.cardozo@uis.no) know if you identify any problems with the Matlab™
scripts. Thanks!

Chapter 2
e Section 2.3.2, p. 26 — Third sentence in the section should read (changes in
red):

“Vectors in these-notes this book are shown in lower case with bold face
print (which is sometimes known as symbolic or Gibbs notation):”

e P 39, Section 2.4.2 — cosa for the second row in the table in step 1 is
incorrect:

0134 0.1034

Chapter 3

e Section 3.4.3, p. 58 — Sentence in the middle of the page should read
(changes in red):

“One of the main reasons for using a right-hand rule format for specifying
strike azimuths is that that a vector will automatically trace out a lower
hemisphere great circle when rotated 180° clockwise about the pole (a
positive rotation). “

Chapter 4

e DP. 73, first full sentence after Equation 4.22 — the second set of subscripts
of C are incorrect. The correct version follows:

“But, suppose we have the condition that C, =-C.”


mailto:rwa1@cornell.edu
mailto:rwa1@cornell.edu
mailto:nestor.cardozo@uis.no
mailto:nestor.cardozo@uis.no

e P. 74, Equation 4.27 — The minus sign in front of the second term on the
right side of the equation should be a plus sign. The correct equation is
given below:

M, M, M,;
|M|: M, M, M, |=M,cof,(M)+M,cof,(M)+Mcof;(M)
My M; M

e P 77, 3rd from last line on the page — the reference to the equations is
incorrect. It should read:

“...orthogonality relations (Eqs. 3:3-and-34 3.4 and 3.5).”

Chapter 5

e P. 88, Equation (5.16) — The T2, component of the matrix is incorrect: it
should read T> and not 1. The correct equation is below:

(7, cos®0+T,sin”6) 0 (-T,sinOcosf+T,sinOcosO)
T, = 0 T, 0
(~T,sinBcosO+T,sinOcosf) 0 (7, sin” 6+ T, cos”6)

Chapter 6
e DP. 116, sentence located between equations 6.31 and 6.32 should read
(changes in red):
“By setting the second equation in 6.31 to zero and using the orthogonality
relations (equations (3-3 3.4) and (428 3.5)), “

e P 101, Section 6.2.2, first equation on the page is missing a subscript. The
correct version is below:

V=34=34(04)=A,(08)=>4,(0¢)



Chapter 8

e P. 136, Figure 8.1 — The lengths of the lines should be preceded by the
Greek letter delta (A). The corrected figure is below:

X2, X2
A
) AX o—> U]
° Axy °
X1, X1
e P 137, section 8.1.3 — Sentence starting with “Likewise...” has some

incorrect subscripts. The correct sentence is below (changes in red):

“Likewise, e, will be approximately equal to —¢ because it is a rotation of
AX, towards X, (counterclockwise), whereas we just saw that ¢, is a
clockwise rotation of AX, towards X,.”

e P 139, first sentence of section 8.2.2 should read (changes in red):

“If the deformation is the same throughout the region, then the
displacements gradients are not a function of position.”

e P 142, Figure 8.7 — the axes of Figure 8.7a are mislabeled. The corrected
figure is below:



unit -7
_.circle

strain
ellipsoid /

\ 814),5

quadric \)\ ,"’ /

tangenf to quadric

e P 144, Equations 8.13 and 8.14 are missing a minus sign. The correct
equation is below:

e, 0 &, (g,cos’@+¢,sin*0) 0 ((e,—¢)cosBsind)
g= 0 ¢ 0 |= 0 g, 0
& 0 &5 (—(81 —83)00595in9) 0 (81 sin® @ + €, cos’ 6)

e P. 144, second sentence after equation 8.14, the second 45° is missing a
minus sign. It should read:

“Probably the most important thing illustrated by Figure 8.9 is that the
two planes of maximum shear strain are oriented at +45° and —45° to the
principal axes, €7 and ¢€3.”

o P. 145, Figure 8.11 is incorrectly labeled. The corrected version is below:



€11 + €33 _ 10+4
+ 2 2

e D. 153, function PTAxes has an error in the calculation of the slip direction.
See the appendix at the end of this document for the corrected script.

Chapter 9

e P. 166, Figure 9.1 — the “partial” sign “0” should be a normal “d”. The
corrected figure is below:

A X2, X2

PXi‘_,—"’

:X1,X1

e DP. 167, Section 9.4 — the left side of first equation in this section has an
incorrect subscript. The corrected version is below:

‘P’Q’|2 =dx,dx, = dx] +dx;



e P 170, bottom, section 9.7.2 — the last equation on this page is incorrect
(the left side should be small “e” rather than capital “E”). The corrected
version is below:

ey =+/Ci —1=[1+2E, —1

e P 171, top, section 9.7.2 — the first equation on this page is incorrect (the
right side should be small “e” rather than capital “E”). The corrected
version is below:

e P 177, first equation on the page, as well as Equation 9.28 are missing a
minus sign. The corrected versions are below:

Chu 0 C (Cicos’0+Csin’6) 0 ((C,~C)cosOsin)
C.= 0 62 0 = 0 6 0
C., 0 C., (—((_?1—63)cosesin9) 0 (Elsin20+53cosze)

[S)

Chapter 10
e P. 188, last three lines on the page should read:

“axis orientation is stable for passive line markers rotated or perturbed in

a eounterdlockwise clockwise sense and unstable for markers rotated
eloekwise counterclockwise, much like a ball at rest on a ledge”

e P. 190, last sentence on page:

“The internal rotation (w;) within the rotation matrix R is equal to 8/2 /2
for small strains”

e P 195, sentence preceding equation (10.17):
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“...s0 the deformation gradient matrix for simultaneous pure and simple
shearing is:”

e . 200, sentence preceding equation (10.18):
“...the internal weleeity vorticity (e @, ):”

e P 200, middle of page near end of second paragraph”

“

. equal and opposite in sign to the angular shear associated with
flexime flexural shear.”

e P. 212, near bottom of page:
“g¢Determine Cawehy Green deformation tensor
for i=1:n-1

C(:,:,i)=finmat(:,:,1i) '*finmat(:,:,1);

%Stretch magnitude and orientation: Maximum eigenvalue and
their

$corresponding eigenvectors of Cauwehys Green’'s tensor. Use
Matlab function eig”

e D. 213, top of page:
ylabel ( ' ProgressiveFinite Strain Maximum finite stretch');

Chapter 11

e DP. 221, Section 11.4.1 — The first sentence after Equation 11.11 is incorrect.
The corrected sentence follows (changes in red):

“For 6=30°, tan"'(df/dx,) or y, (Fig. 11.2) = 1252 105°.

e P 227, equation (11.15) — “x’s” should be in italics. The corrected equation
is below:

s[cosocsinoc+[af]cos2 0{}+ 2v2 — 2v1 a—f

X, ax,

vV, =

cosa——fsin(x
X

e P 243, immediately above code snippet at bottom of page:



“To make a contractional, trishear fault propagation fold with initial fault
tip (2 H = 300, ¥; V = 50), ramp angle = 30°, P/S = 1.5, trishear angle =
60°, fault slip = 100 units, and concentration factor = 1.0, type:”

Chapter 12

P. 263, in function BalCrossErr — the word “vertices” should be on the
same line with the rest of the sentence or should be preceded by aa “%” to
indicate that it is a comment:

“% kk = A flag to indicate wether the program computes total errors
(kk = 0), errors due to stratigraphy only (kk = 1), errors due to
vertices at decollement only (kk = 2), errors due to vertices in

eroded hanging walls only (kk = 3), errors due to surface

o0 o0 o0 o°

vertices



Appendix A — Corrected PTAxes Matlab™ Script

function [P,T] = PTAxes(fault,slip)
$PTAxes computes the P and T axes from the orientation of several fault
$planes and their slip vectors. Results are plotted in an equal area
%stereonet
%

USE: [P,T] = PTAxes(fault,slip)

fault = nfaults x 2 vector with strikes and dips of faults
slip = nfaults x 2 vector with trends and plunges of slip vectors

P

nfaults x 2 vector with trends and plunges of the P axes

T nfaults x 2 vector with trends and plunges of the T axes

Slip vector should be given such that it points in the direction
of fault slip: For example, for a thrust fault with strike and
dip (right hand rule) 000/30, and dip slip motion, the trend and
plunge of the slip vector should be 90/-30

%

%

%

%

%

%

%

% NOTE: Input/Output angles are in radians
%

%

%

%

%

% PTAxes uses functions SphToCart, CartToSph, Stereonet, GreatCircle and
% StCoordLine

%

$MATLAB script written by Nestor Cardozo for the book Structural

$Geology Algorithms by Allmendinger, Cardozo, & Fisher, 2011. If you use

$this script, please cite this as "Cardozo in Allmendinger et al. (2011)"

%Initialize some vectors

n = zeros(1,3);

u = zeros(1,3);

eps = zeros(3,3);

P = zeros(size(fault,1),2);

T = zeros(size(fault,1),2);

%For all faults
for i=l:size(fault,l)

$Assume that slip vector is pointing down
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up = 'n';
$If slip vector is pointing up
if slip(i,2) < 0.0

slip(i,2) = -slip(i,2);

up = 'y';
end
$Direction cosines of pole to fault and slip vector
[n(1l),n(2),n(3)]
[u(l),u(2),u(3)]
$Compute u(i)*n(j) + u(j)*n(i) (Eq. 8.32)

SphToCart(fault(i,1),fault(i,2),1);

SphToCart(slip(i,1),slip(i,2),0);

for j=1:3

for k=1:3

eps (3, k)=u(j)*n(k)+u(k)*n(j);

end
end
$Compute orientations of principal axes of strain. Here we use the
$MATLAB function eig
[V,D] = eig(eps);
$If slip vector is pointing down
if up == 'n'

%P orientation

[P(i,1),P(1,2)] = CartToSph(V(1,3),V(2,3),V(3,3));

%T orientation

[T(i,1),T(i,2)] CartToSph(V(1,1),V(2,1),V(3,1));
$Else if slip vector is pointing up
else

%P orientation

[P(i,1),P(1,2)] = CartToSph(V(1,1),V(2,1),V(3,1));

%T orientation

[T(i,1),T(i,2)] CartToSph(V(1,3),V(2,3),V(3,3));
end

end
$Plot stereonet
Stereonet(0,90*pi/180,10*pi/180,1);

hold on;
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$Plot other elements

for i=l:size(fault,l)
$Plot fault
[path] = GreatCircle(fault(i,l),fault(i,2),1);
plot(path(:,1),path(:,2),'c");
$Plot Slip vector (red square)
[¥xp,ypP] = StCoordLine(slip(i,1l),slip(i,2),1);
plot(xp,yp,'rs’);
$Plot P axis (black, filled circle)
[xp,yp] = StCoordLine(P(i,1),P(i,2),1);
plot(xp,yp, 'ko', 'MarkerFaceColor', 'k"');
$Plot T axis (black circle)
[xp,yp] = StCoordLine(T(i,1),T(i,2),1);
plot(xp,yp, ‘'ko");

end

$Release plot

hold off;

end

=11~
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