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Preface to the Second Edition

In the first edition, we paid attention not only to tsunami waves, but to related
phenomena, namely, seaquakes, as well, which to a significant extent reflected the
interests of the authors at the time. The second edition is more “tsunami-oriented”:
the chapter dedicated to seaquakes and the information on killer waves have been
dropped.

A new chapter on the fundamental properties of coseismic bottom deformations
at the tsunami source has been added in the second edition. The theoretical material
expounded in the first edition has been supplemented with information on the
hydrodynamic formulation of the problem both in the case of an incompressible
ocean and when the compressibility of seawater is taken into account. The concrete
problems concerning wave generation by dynamic deformations, dealt with within
the framework of the theory of an incompressible liquid, are supplemented with two
static problems: on calculation of the initial elevation at a tsunami source and on
residual hydrodynamic fields that accompany tsunami generation by an earthquake
in a rotating ocean. The chapter on hydroacoustic and nonlinear effects is supple-
mented with an analysis of new information on the manifestations of tsunamigenic
earthquakes based on the data from deep-water stations. The chapter on the
Propagation of a Tsunami in the Ocean and its Interaction with the Coast has also
undergone essential revision: amendments mainly concern the section on numerical
tsunami simulation, in which much new important information is added. The
chapter on methods for tsunami registration is supplemented with a paragraph
devoted to ionospheric manifestations of tsunamis. Besides the aforementioned
amendments, numerous corrections were made in order to render the sounding
of the text more modern; new important information was added together with
references to new publications.

The tsunami problem is an outstanding example of an interdisciplinary problem.
Researchers, who are specialists in different fields, work for implementing its res-
olution: oceanologists and seismologists, geophysicists and geologists, geographers
and geomorphologists, hydroacousticians and engineers, computer scientists and
mathematicians, marine biologists, and soil scientists and even sociologists.
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Evidently, only joint efforts of the representatives of many scientific professions can
result in essential progress toward resolving the problem, which we understand to
involve lowering risks, the reduction of material damage, and, finally, most
important, the elimination or reduction to a minimum of human casualties.

Although the authors acknowledge that the tsunami problem is an interdisci-
plinary problem, we do not claim to have created a comprehensive monograph
reflecting all the achievements of modern “tsunami science”. The main scope of this
edition—in accordance with its title—consists in reflection of the principal physical
aspects of the tsunami problem. Nevertheless, the authors sincerely hope the book
turns out to be useful to researchers and experts in any other professions having any
whatever relationship to studying the tsunami phenomenon.

The authors are especially grateful to Dr. Tatiana Pinegina, who assumed the
responsibility of totally revising Sect. 7.2, Dr. Ira Didenkulova for editing Sect. 6.3,
Dr. Tatiana Ivelskaya for help in editing Sect. 1.4, Dr. Alexander Rozhnoi,
Dr. Maria Solovieva, Prof. Vyacheslav Kunitsyn, and Dr. Artem Vorontsov for help
in editing Sect. 7.4, Dr. Elena Sasorova for participating in the creation of Sect. 2.5
and Dr. Anna Bolshakova for preparing the illustrations to Sect. 2.3.

Boris W. Levin
Mikhail A. Nosov
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Preface to the First Edition

Till the very end of the twentieth century tsunami waves (or “waves in a harbour”,
translated from Japanese) were considered an extremely rare and exotic natural
phenomenon, originating in the ocean and unexpectedly falling upon the seaside as
gigantic waves. The 26th of December 2004, when tsunami waves wiped out, in a
single day, more than 250 thousand human lives, mourned in many countries,
turned out to be a tragic date for all mankind.

The authors of this book, who have studied tsunami waves for many years,
intended it to be a systematic exposition of modern ideas concerning

• the mechanisms of tsunami wave generation,
• the peculiarities of tsunami wave propagation in the open ocean and of how

waves runup beaches,
• the methods for tsunami wave registration and the operation of a tsunami

warning system,
• the mechanisms of other catastrophic processes in the ocean related to the

seismic activity of our planet.

The authors considered their main goal to be the creation of book presenting
modern knowledge of tsunami waves and of other catastrophes in the ocean to
scientific researchers and specialists in geophysics, oceanography, seismology,
hydroacoustics, geology, geomorphology, civil and seaside engineering,
post-graduate students and students of relevant professions. At present, in 2005, it
has become clear that the demand for the information and scientific results pre-
sented in the book may be significantly broader and that they may be of interest to a
large part of the population. Politicians, administrators, mass media, insurance
companies, owners of seaside resorts and hotels, the civil fleet and the navy,
oil-extracting companies, security services, space agencies, publishing houses,
public education systems, such is a short list of possible users interested today in
assimilating and spreading knowledge of the nature and manifestations of tsunami
waves.
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Waves, that regularly devastate the coasts of oceanic islands and are called
tsunami in Japan, have been known for several centuries. The European civilization
first encountered such catastrophic waves in 1755, when an exceptionally strong
earthquake took place in the Atlantic ocean near the coast of Portugal and gave rise
to a tsunami wave that immediately killed over 50 thousand people in the blooming
city of Lisbon, which was about a quarter of the city’s population. In the USSR, the
Kamchatka tsunami of 1952 (2336 victims) resulted in creation of a State tsunami
warning system. During the past 10 years (not counting the tragedy caused by the
Indonesian tsunami in 2004) tsunami waves in the Pacific ocean took the lives of
more than 10 thousand people.

According to UNESCO information, by the year 2010 residents of the coasts of
oceans and seas will represent about 70 % of the total population of our planet. One
should add persons visiting numerous seaside resorts, those who like to celebrate
the New Year on exotic oceanic islands and, also, individuals seeking maritime
adventures. All these people may happen to be within reach of one of the oceanic
catastrophes, of which tsunami waves are the most dangerous.

Today, many states of the Pacific region,—Russia, Japan, the USA, Chile
operate tsunami warning systems. The Russian system includes two tsunami
Centers, situated in Yuzhno-Sakhalinsk and Petropavlovsk-Kamchatskii that are
managed by the respective Board of the State Committee (Goskomitet) for
hydrometeorology of Russia. The tsunami centers receive on-line information from
seismic stations that carry out round-the-clock observation within the framework
of the Geophysical Service of the Russian Academy of Sciences (RAS). In former
times there were six such specialized seismic stations functioning along the
Far-East coast of the USSR. At present only 3 stations (Yuzhno-Sakhalinsk,
Petropavlovsk-Kamchatskii, SeveroKuril’sk) are in operation, and they all long
need to be modernized and re-equipped.

The International Tsunami Information Center, the Pacific Tsunami Warning
Center, the Alaska Tsunami Warning Center function successfully within the
framework of the USA National Oceanic and Atmospheric Administration with
participation of the UNESCO Intergovernmental Oceanic Commission
(IOC/UNESCO). In Japan the duties of tsunami warning are performed by several
hundred seismic and sea level stations united in a common information system
managed by national agencies (JMA, JAMSTEC).

All national Tsunami warning services exchange on-line information via
Internet, electronic mail and the specialized Tsunami Board Bulletin. Scientific
studies of tsunami waves are coordinated by the International Tsunami Commission
within the International Union for Geodesy and Geophysics (IUGG). During the
period between 1977 and 1979 this commission was led by Academician S.
L. Soloviev, who founded the Soviet Tsunami School. Another Russian scientist,
Dr. V. K. Gusyakov (Novosibirsk) occupied this position from 1995 up to 2003. In
2003, Professor K. Satake (Japan) was elected Chairman of the Commission. The
Tsunami Commission and the International Group of the UNESCO
Intergovernmental Oceanographic Commission (IOC/UNESCO) organize regular
international scientific and practical conferences, devoted to the problem of tsunami
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waves, in-situ inspections of coasts that were victims of tsunami waves, they
publish reviews, information bulletins, national reports, general-education litera-
ture, and support the creation of databases.

In 1996, The European Geophysical Society (EGS) established the Sergei
Soloviev medal to mark the recognition of S. L. Soloviev’s scientific achievements.
This medal is presented to scientists who have made essential contributions to the
investigation of natural catastrophes.

The Russian school of tsunami researchers organized and led for many years by
Academician S. L. Soloviev, is still considered a leading team in this scientific
sector. A large contribution to the development of tsunami studies has been made
by RAS Corresponding members S. S. Lappo and L. N. Rykunov; the Doctors of
Sciences, who grew up in the Russian Tsunami School, A. V. Nekrasov, A.
A. Dorfman (Leningrad), B. W. Levin, M. A. Nosov, A. B. Rabinovich, E.
A. Kulikov, L. I. Lobkovsky (Moscow), E. N. Pelinovsky, V. E. Friedman, T.
K. Talipova (Nizhny Novgorod), V. K. Gusyakov, L. B. Chubarov, An.
G. Marchuk (Novosibirsk), P. D. Kovalev, V. V. Ivanov (Yuzhno-Sakhalinsk), and
their pupils have done much for successful development of the science of tsunami
waves. Specialized tsunami laboratories and several scientific groups work in the
M. V. Lomonosov Moscow State University (MSU) and in various RAS institutes:
the Institute of Oceanology (Moscow), the Institute of Applied Physics (Nizhny
Novgorod), the Institute of Computational Mathematics and Mathematical
Geophysics of the RAS Siberian Branch (RAS SB) (Novosibirsk), the Institute of
Maritime Geology and Geophysics of the RAS Far-East Branch (RAS FEB)
(Yuzhno-Sakhalinsk), the Institute of Vulcanology and Seismology of RAS FEB
(Petropavlovsk-Kamchatskii).

Many Russian specialists in tsunami waves, including the authors and the editor
of this book, have acquired significant teaching experience not only in the uni-
versities of Russia (MSU, MSGU, NSU, NNSU, NSTU, SakhSU), but also in
Universities of the USA, France, Guadeloupe, Australia, Columbia. Recently,
owing to the development of new computer technologies and software, original
models have appeared of rare phenomena in the ocean, that were hitherto beyond
the reach of scientific analysis. The experience of elaborating original ideas accu-
mulated by Russian scientists in the research of seaquakes, killer waves, temper-
ature anomalies above underwater earthquakes, the formation of cavitation zones,
plumes and surges of water require detailed exposition and physical analysis. The
experience of collaboration with foreign colleagues, regular participation in inter-
national meetings, as well as experience in organizing international conferences in
Russia (the Tsunami conferences of 1996, 2000, 2002) have revealed an increased
demand in tsunami wave specialists and in systematyzation of the knowledge
accumulated in this field.

At present, no proof is needed of the fact that the influence of tsunami waves on
the coasts of continents and islands is of a global nature. This catastrophic phe-
nomenon cares nothing about the borders of states and of the nationalities of
individuals, who happen to be in the zone within reach of the catastrophe. In the
nearest future the politicians of civilized countries will be compelled to start
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resolving the issue of creating a global tsunami warning system, something similar
to the World meteorological organization. This task will require scientists from all
countries to make enormous efforts for systematization of the knowledge on tsu-
nami waves, for the preparation of national experts, specialists and teachers in the
problem of tsunami waves, for developing new methods and means of monitoring,
for publishing series of textbooks, scientific and general-education literature.

The authors hope that this book will contribute to the formation of a general
collection of knowledge on tsunami waves. The necessity of such a book has
ultimately become evident.

Many of our colleagues have taken part in completing the book and preparing it
for publication. Section 6.1 was in part prepared by the Director of the SakhUGMS
Tsunami Center T. N. Ivek’skaia (Yuzhno-Sakhalinsk), section 6.2 was written by
T. K. Pinegina (Petropavlovsk-Kamchatskii), a well-known specialist in palaeot-
sunami. The illustrations, used in the book and based on computer graphics, were
prepared by the leading scientific researcher of the RAS Institute of Oceanology
E.V. Sasorova (Moscow). The image of the word “tsunami” in the form of Japanese
hieroglyphs was prepared for the book by Dr. H. Matsumoto (Japan, Tokyo).
Certain material, put at our disposal by E. A. Kulikov (Moscow), V. K. Gusyakov
(Novosibirsk), V.V. Titov (Seattle, USA) and other colleagues of ours has been
included in the book. The authors express their sincere gratitude to all of them.

We are grateful to our teachers S. L. Soloviev and L. N. Rykunov for the good
school, and we revere their memory. We are grateful to our pupils and colleagues,
whose friendly participation and help promoted the appearance of this book.We
wish to express particular gratitude to the referee of this issue Prof. E. N.
Pelinovsky. The support of the Russian Foundation for Basic Research and of the
Russian Academy of Sciences was an enormous stimulus for the preparation and
publication of this issue.

B.W. Levin
M.A. Nosov
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Chapter 1
General Information on Tsunami Waves,
Seaquakes, and Other Catastrophic
Phenomena in the Ocean

Abstract Fundamental information on the physics and geography of tsunami waves
is presented. Examples are given of known historical events, illustrating the char-
acter of tsunami manifestation on coasts. Quantitative characteristics are introduced
that describe tsunami strength: magnitude and intensity. Physical principles of the
operation of tsunami warning systems are described. Information is provided on
tsunami catalogs and electronic databases. The seaquake phenomenon is defined
and a synthesized description is given. Information is presented on the main hydroa-
coustic effects, related to underwater earthquakes: the T-phase, low-frequency elastic
oscillations, and cavitation.

Keywords Tsunami · Seaquake · Surface gravitational waves · Long waves ·
Run-up · Sudden inundation · Impact of waves ·Erosion ·Damage · Fires ·Environ-
ment pollution · Epidemics ·Human casualties · Local tsunami ·Regional tsunami ·
Teletsunami · Tsunami catalog ·Historical tsunami database · Tsunami magnitude ·
Tsunami intensity · Tsunami warning ·Hydroacoustic signals · T-phase ·Cavitation

Catastrophic oceanic waves, termed “tsunami” back in the 1960s of the past
twentieth century, were considered a mysterious and inexplicable phenomenon of
the life of the ocean. The sudden onslaught on the coast by a rabid giant wave would
take the lives of tens of thousands people and leave memories engraved for a long
time on the minds of those who remained alive. Scientists of many countries have
united their efforts to understand the secret of this awe-inspiring phenomenon and
to bring nearer a resolution of the problem of tsunami waves. At present, scientists
have at their disposal information about 2,528 events in oceans and seas that have
given rise to tsunami waves (Global Historical Tsunami Database at NGDC, as of
June 2015).

The Pacific is considered the most tsunami-dangerous region, in which 1,589
tsunami source events are known. 470 tsunami source events are known to have taken
place in the Mediterranean Sea. There exists information on tsunamis sources in the
Atlantic Ocean (181) and in the Caribbean Sea (107), in the Black and Caspian Seas
(23). Europe was exposed to the action of the catastrophic tsunami of 1755, during
which the city of Lisbon was destroyed. This event was reflected in an old engraving
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Fig. 1.1 The 1755 Lisbon earthquake and tsunami. Old engraving by unknown author

(Fig. 1.1). At present, researchers are paying particular attention to the Indian Ocean,
although in the past, also, its coasts were repeatedly attacked by tsunami waves (152
tsunami source events).

The seaquake phenomenon caused by seismic oscillations of the seafloor is only
known to specialists and to experienced seafarers. Even the edition of the Grand
Soviet Encyclopedia had no place for this term, although the amount of registered
natural events of this type already exceeded 250. Investigation of the entire complex
of earthquake-related phenomena in the ocean sheds light on the interaction mech-
anisms of various media in the communicating and interpenetrative lithosphere–
hydrosphere–atmosphere system.

1.1 Tsunami: Definition of Concepts

The word tsunami originates from a combination of two Japanese hieroglyphs
(Fig. 1.2), translated together as a “wave in the harbour”. This term has already
been conventionally adopted in the scientific literature, although in mass media one
may still encounter terms that prevailed some time ago, such as “high-tide wave”,
“seismic sea wave”, “seaquake”. Sometimes, the antique European terms “zeebeben”
and “maremoto” are used.

Fig. 1.2 Japanese
hieroglyphs, pronounced as
“tsu-nami” and literally
translated as a “wave in
the harbour”
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Usually, tsunamiwaves are understood tobe surfacegravitationalwaves exhibiting
periods within the range T ∼ 102–104 s. Tsunamis pertain to long waves, therefore
not only the subsurface layer, but the entire thickness of water becomes involved in
the motion. Here, the term “surface” signifies that the presence of a free surface is
a necessary condition for these kinds of waves to exist.

Tsunami waves differ from other natural calamities in that they are capable of
retaining their destructive force while propagating many thousands of kilometers.
Thus, for example, the Hawaiian Islands are repeatedly subjected to the effect of
tsunami waves generated by distant sources—earthquakes occurring around the
perimeter of the Pacific Ocean inside the so-called Ring of Fire. The catastrophic
manifestations of the 1960 Chilean Tsunami on the Pacific ocean coast (at a distance
of about 17,000km!) across from Japan (138 deaths and $50 million damage—
according to data from USGS, Historic Earthquakes) and on the Far East coast of
Russia (0 deaths and Soviet Rubles 30 million damage—according to data from
Sakhalin Hydrometeorological Service, Russia) are well known to specialists. An
impressive example of the long-range destructive action of a tsunami is related to
the wave caused by the 1946 Aleutian Islands earthquake. After having covered a
distance of about 16,000km the wave damaged the hut of the British expedition on
Winter Island off the west coast of Graham Land (Fuchs 1982; Gusiakov 2014). The
Atlantic ocean has its own example of a transoceanic tsunami: the 1755 Lisbon earth-
quake was accompanied by waves of amplitudes exceeding 3m on the Caribbean sea
islands (the distance from the source was more than 5000km) (Okal 2011; Zahibo
et al. 2011).

The formation of tsunamis is primarily considered to be related to seismicmotions
of the seafloor, slides, and collapses (underwater, also), underwater volcanic erup-
tions. Waves exhibiting similar characteristics may be due to sharp changes in
the atmospheric pressure (meteotsunami) anddue to powerful underwater explosions.
Recently, the issue has been actively discussed of tsunami originating as a result of
falling meteorites. One must bear in mind the possibility of combinations of vari-
ous causes. Thus, for example, underwater slides, provocated by earthquakes, may
provide an additional contribution to the energy of the tsunami waves, formed by dis-
placements of the seafloor. We stress that the main cause for the destructive tsunami
consists in sharp vertical displacements of parts of the seafloor due to strong under-
water earthquakes. Considering all the causes together, it may be asserted that any
coast of a large water reservoir is potentially dangerous from the point of view of
tsunamis.

Modern ideas of the sources of tsunami waves are not unambiguous. Usually,
the source of tsunamiwaves is characterized by its horizontal dimensionL ∼ 100km,
which significantly exceeds the typical depth of the World Ocean, H ∼ 4km. A
certain quite rapid transient process results in gravitational waves originating at
the source with a wavelength λ ∼ L. From the point of view of hydrodynamics these
waves are long (λ � H). The propagation velocity of long waves in a reservoir of
depth H is determined by the formula c = √

gH, where g is the free-fall acceleration
of gravity. In the case of a depthH ∼ 4km the tsunami wave propagates with a veloc-
ity of the order of magnitude of 200m/s, or about 720km/h, which is comparable to
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the velocity of amodern jet aircraft. From the tsunamiwavelength and its propagation
velocity one can readily estimate the tsunami wave period T = λ/c ≈ 500 s (actu-
ally, it varies within the limits of 102–104 s). The tsunami wave amplitude in the open
ocean, even in the case of catastrophic events, is usually limited to tens of centimeters
and rarely exceeds 1m. The small amplitude together with the large period renders
the tsunami wave in open ocean practically imperceptible for an observer on board
a ship. Nevertheless, the displacement amplitude of the water surface at the tsunami
source may amount to 10m and more. But in this case, it is also essentially inferior
to the depth of the ocean.

Dependence of the tsunami wave propagation velocity on the depth renders these
waves sensitive to the shape of the seafloor. Effects peculiar to tsunamis include
the capture of wave energy both by underwater ridges and by the shelf, focusing
and defocusing exhibited when waves propagate above underwater elevations and
depressions. Irregularities of the seafloor lead to the scattering of tsunami waves.

In fact, the propagation velocity of gravitational waves depends not only on
the depth, but also on the wavelength. The formula presented above for the veloc-
ity of long waves is the limit case (for λ � H) of the more general expression
c = √

g tanh(kH)/k, where k = 2π/λ. Wave dispersion results in transformation
of the initial perturbation into a wave packet, with the most rapid long waves lead-
ing. Note that this effect is manifested in the case of tsunami wave propagation over
quite extended routes. Dispersion, resonance properties of the coastal relief, phenom-
ena such as reverberation (i.e., when the wave perturbation reaches a certain coastal
site via different routes), the peculiarities of wave formation at the source—all these,
as a rule result in a tsunami being manifested not as a solitary wave but as a series of
waves with a period amounting to tens of minutes. In this case, the first wave is often
not the strongest. The absence of knowledge of precisely this property of tsunami
waves often leads to human casualties, which could have been avoided.

The tsunamiwave amplitude increasing as it approaches the coast—which to great
extent is what determines the danger of these waves, is also related to the relief of
the seafloor. A decrease in the water depth leads to a decrease in the wave propa-
gation velocity and, consequently, to compression of the wave packet in space and
an increase in its amplitude. In the case of catastrophic tsunamis the run-up height
reaches several tens of meters, while the wave is capable of inland (horizontal) inun-
dation of several kilometers from the coastline. A scheme of the tsunami onshore
run-up, explaining the main parameters of this process, is shown in Fig. 1.3. Note
that the maximal wave height can be achieved at the shoreline, at the inundation
boundary, or at any point between them.

The danger carried by tsunami waves is primarily related to the following three
factors: the sudden inundation of part of the land, the impact of waves on buildings,
and erosion. Strong flows of water, reaching velocities of tens of meters per second,
are capable of breaking up houses and of displacing them, washing out substructures
of buildings, destroying bridges, and buildings in ports. The flows of water often
carry pieces broken off buildings and other structures, trees, small, and large vessels,
which leaves people picked up by the fast moving water no chance of survival. The
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Fig. 1.3 Scheme of tsunami onshore run-up. Adapted from [UNESCO-IOC. Tsunami Glossary
(2006)]

damage caused by tsunamis may also be due to fires, pollution of the environment,
and epidemics resulting from devastation of the coastal infrastructure.

Depending on the scale of the area in which the destructive force of tsunamis
is manifested, one conventionally distinguishes local, regional, and remote (telet-
sunami) events. The latter are sometimes termed transoceanic tsunamis. Local
tsunamis include events, the destructive effect of which is concentrated within dis-
tances not exceeding 100km from the source. If destruction occurs at distances up to
1000km from the source, then such an event is classified as regional, when above
1000km it is a teletsunami. Most catastrophic events pertain precisely to local or
regional tsunamis. The occurrence of transoceanic tsunamis is much less frequent,
but they are, naturally, much more dangerous. After having caused a significant
destruction in the immediate vicinity of the source, these waves are capable of trav-
eling many thousands of kilometers from the source and continue carrying with them
death and devastation. In the past millennium at least 15 such events took place in
the World Ocean (Gusiakov 2014).

1.2 Manifestations of Tsunami Waves on Coasts

There exist numerous descriptions of the effect of tsunamis on a coast, which are
due to eyewitnesses or scientists investigating the consequences of these events.

Detailed information about tsunami manifestations can be found in tsunami cat-
alogs (e.g. Soloviev and Go 1974, 1975; Soloviev et al. 1986, 1992, 1997, 2000)
and databases Historical Tsunami Database for the World Ocean (HTDB/WLD) and
NOAA/WDS Global Historical Tsunami Database at NGDC (GHTD/NGDC).
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We present brief descriptions of some of the outstanding events.
The 1868 tsunami near the city of Arica (Chile) was caused by an underwater

earthquake of magnitudeM = 8.8. In the evening, after it became dark, an enormous
“wall” of phosphorescent foamy water mixed up with sand arrived from the ocean
with a thunderous noise. The height of the waves amounted to 15–18m. Upon hitting
the coast with an enourmous force, the wave then carried the large US warship
“Watree” from the harbor two miles inland and gently put it down at the rocky foot
of the Andes. This event permitted Gabriel Garcia Marquez to depict the fantastic
scene of an encounter with a three-mast sailboat among trees in the remote jungles
(selva) of South America.

The tsunami reduced the site, where the city of Arica with about 5000 inhabitants
had been, to a smooth sandy valley without any signs of buildings. Only individual
structures remained here and there on the mountain slopes.

The catastrophic 1908 Messina tsunami, was caused by an earthquake of mag-
nitude 7, the source of which was located under the bottom of the Messina Strait
(in between continental Italy and Sicily). The tsunami started nearly immediately
after the shaking stopped with a withdrawal of the seawater. Part of the seafloor,
adjacent to the coast, happened to be drained, in some places the seafloor opened
up for nearly 200m. Then, all of a sudden, waves started to advance, the first three
being the strongest. The tsunami was preceded by a strong noise, similar to the noise
of a tempest or of waves hitting rocks with force. The maximum run-up height on
the coast of Sicily amounted to 11.7m, on the Calabrian coast to 10.6m. Noticeable
waves reached the coasts of Libya and Egypt. Of the mareographs that were not
damaged, the one closest to the tsunami source was located on the Malta island. It
recorded a tsunami of amplitude 0.9m.

The number of tsunami waves observed varied from place to place from 3 to
9, and the period of the waves from 5 to 15min. The waves washed out the struc-
tures destroyed by the earthquake and destroyed many buildings that had survived.
Of the buildings and structures only the foundations, sliced off at land level, remained.

Many vessels, having been damaged, either sank or were stranded inland.
The tsunami stirred up seafloor sediments; bubbles of gas came up from the seafloor
to the surface of the strait; sea animals and fish, including deep-water inhabitants,
unknown to fishermen, were thrown up onto the beach. Sailors on vessels moored
several miles from the coast felt a strong seaquake, but could not understand why all
the lights had gone out in the towns along the coast.

After the tsunami all of the strait was full of broken and overturned boats, other
vessels, floating debris, bodies of human beings and of animals washed off the coasts
of Messina and Calabria.

The 1952 tsunami that occurred near the eastern coasts of Kamchatka and off
the Island of Paramushir is considered one of the most destructive tsunamis of
the twentieth century. We present the description of this event given in the arti-
cle by Soloviev (1968). On the night between November 4 and 5 the inhabitants
of Severo-Kurilsk were woken up by an earthquake: stoves were destroyed, chim-
neys and household utensils fell down. Forty minutes after the earthquake stopped
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a rumble was heard from the ocean, and a water bore moving with a high velocity
fell upon the city. In several minutes the water retreated, carrying away what it had
destroyed, and the ocean bottom opened up for several hundred meters. In 15–20min
a wall of water 10m high once again advanced upon the city. It practically washed
away everything in its way, at the most leaving only concrete foundations of various
structures. Old pillboxes were wrenched out of the ground and thrown around, in
the harbor thewalls of a bucketwere turned upside down, and launches that happened
to be there were stranded hundreds of meters inland.

Several minutes later, after this strongest wave, a third relatively weak wave ran
up the devastated coast, leaving much debris after it.

The events of 1952 were totally unexpected for most of the population. Thus,
for example, some of the vessels moored near the Island of Paramushir transmitted
messages that the island was sinking into the ocean waters.

A.E. Abaev, captain of a detachment of hydrographic vessels sent to Severo-
Kurilsk immediately after the catastrophe, witnessed the strait between the islands
of Shumshu and Paramushir to be completely crammed with floating wreckage
of wooden houses, logs, and barrels. The bodies of human beings were seen on
the wreckage—it was practically impossible to survive in the ice-cold water.

Another witness of this tsunami, A. Shabanov, who lived in Severo-Kurilsk and
at the time was 14-years old, told one of the authors of this book that soon after
the earthquake the water receded from the coast and left the ocean bottom open.
When Shabanov’s mother saw this sudden ebb tide she ran with her two sons toward
the hills, which saved their lives. Their family was the only family in which no one
was killed. On their way they had difficulty in crossing a deep ditch across which
the Japanese in former times had thrown several narrowwooden footbridges. By 1952
most of the footbridges had been used as firewood, since it was not clear to the people
arriving from the continent what they were for.

The wave, which in some parts of the coastline reached a height of 10–15m
(Hmax = 18.6m), totally destroyed many buildings and port structures of Severo-
Kurilsk (Island of Paramushir) and carried them out to sea, taking the lives of 2336
people. The source of the tsunami wave generated by an underwater earthequake of
magnitude Mw = 9.0 extended over 800km and was about 100km wide.

The fantastic event that gave rise to a tsunami wave of record height took place
on July 9 of 1958 in Lituya Bay (Alaska) (Soloviev and Go 1975). The bay exhibits
a T-like shape. Its length amounts to 11km, its width in the main external part—
up to 3km, and its maximum depth is about 200m. The internal part of the bay is
part of the Fairweather canyon. Here the bay resembles a fjord, and its steep walls
rise up to heights between 650 and 1800m. During the earthquake a gigantic slide
of snow-and-ice together with local rock of volume about 0.3km3 took place. The
water ousted by the falling mass splashed out onto the opposite coast and reached
a height of 524meters! The displacement of water was so rapid that all the trees in
the flooded wood were wrenched up and the bark and leaves of the trees were rubbed
off. Besides this enormous splash, a wave formed that crossed the whole bay right
up to the ocean, devastating the bay’s shores. Three fishing-launches were caught by
the wave in the bay; one of them sank together with two crewmen. The two other
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crews were lucky to escape. The fishermen spoke of a wave about 30m high. Signs
of the run-up and of trees broken by the wave remained on the slope for decades after
the catastrophe.Note that the expedition led in 1786 byG.-F. La Perouse encountered
a similar phenomenon in the French Harbor (presently known as Lituya Bay). An
enormous wave carried the two-mast vessel of the expedition through the narrow
strait and smashed it against the underwater rocks. Of all the 21 crewmen no one was
left alive.

The Chilean tsunami of May 22, 1960was caused by the strongest earthquake of
the twentieth century (M = 9.4), the source of which was located in the southern part
of central Chile. The maximum elevation of water amounted to 25m in Chile, 10.5m
on the Hawaiian islands, 9m in the Oceania, 6.5m in Japan and the USSR, and 3.5m
in the USA. About 1000 persons lost their lives in Chile, 60 on the Hawaiian islands,
200 in Japan. It took approximately 15h for the waves to cover 10,000km and to
reach the Hawaiian islands and nearly a day and a night to reach Japan and the far-
east coast of the USSR. Naturally, the earthquake was felt neither on the Hawaiian
islands, nor in Japan, nor in the USSR, so the wave turned out to be unexpected.

The 1994 tsunami, caused by an earthquake ofmagnitudeM = 8.3near the Island
Shikotan, resulted in the destruction of numerous coastal structures. Part of the island
subsided by 60cm, which was recorded by the mareograph in the village of Mal-
okurilsk. In the city ofYuzhno-Kurilsk, located at a distance of 120km fromShikotan,
the tsunami wave tore down a single-storeyed block of flats from its foundation and
carried it 300m inland. The wave’s maximum run-up amounted to 10.4m. It was
pure luck that this tsunami resulted in no human casualties.

The 1998 tsunami that occurred in the region of Papua New Guinea gave rise
to particular interest among specialists. A relatively small earthquake of magnitude
Mw = 7,1 resulted in an unexpectedly large wave of height amounting to 15m.
The tsunami attacked the coast with three waves about 18min after the earthquake.
The area influenced was limited to part of the coastline 30km long, where several
fishing villages were destroyed and about 3000 people lost their lives. The formation
of such a gigantic wave was mainly due to the colossal underwater slide caused by
the earthquake, rather than to the earthquake itself.

The catastrophic tsunami of December 26, 2004 that occurred in the Indian
ocean was caused by an exceptionally strong earthquake of magnitude Mw = 9.1
(USGS), the epicenter of which was near the northern extremity of Island Sumatra.
Comparable magnitudes were exhibited during the past 100years only by several
seismic events (Kamchatka 1952; Aleutian Islands 1957; Chile 1960; Alaska 1964).
The manifestation of the tsunami was of a global character. Besides the castas-
trophic consequences in the vicinity of the source (the coast of Sumatra), where
the run-up amounted to 35m, waves were registered all over the World Ocean.
Tsunami waves of significant amplitudes were registered in remote parts both
of the Pacific coast (Manzanillo, Mexico—0.5m, New Zealand—0.5m, Chile—
0.5m,Severo-Kurilsk,Russia—0.3m,BritishColumbia,Canada—0.2m,SanDiego,
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California—0.2m) and of the Atlantic coast (Halifax—0.4m, Atlantic City—0.2m,
the Bermuda islands—0.1m, San Juan, Puerto Rico—0.05m). The worst hit were
countries of the basin of the Indian Ocean: Indonesia, Thailand, India, Sri Lanka,
Kenya, Somalia, South Africa, the Maldive Islands. The total number of victims
exceeded 227,000 people, the damage was enormous and it still has to be estimated.
The number of casualties makes this catastrophe the largest of all known catastrophes
in the history of tsunamis.

Central Kuril Islands Tsunamis. An extremely strong earthquake of magni-
tude Mw = 8.3 took place on November 15, 2006, in the Central-Kuril segment of
the Kuril-Kamchatka seismofocal zone. The epicenter of the earthquake was located
in the Pacific Ocean at about 85km from the northern extremity of Simushur Island.
Before this event, the Central-Kuril segment was considered a “seismic gap” zone,
an earthquake of such strength was registered here for the first time in the history of
seismic observations. Nearly two months later, on January 13, 2007, another earth-
quake of practically the same strength, Mw = 8.1, occurred in the same region. Both
seismic events were accompanied by tsunami waves, noted over the entire area of
the Pacific Ocean: Shikotan Isl., Malokurilsk—1.55(0.72)m, Kunashir Isl., Yuzhno-
Kurilsk—0.55(0.11)m, Alaska, Shemya—0.93(0.69)m, Crescent City, California—
1.77(0.51)m, Hawaii, Kahului—1.61(0.24)m, Peru, Callao—0.73(0.3)m, Chile,
Talcahuano—0.96(0.23)m (the wave heights indicated in brackets correspond to
the event of January 13, 2007). However, owing to the absence of mareographic
stations and inhabitants on the Central Kuril Islands, no information about the wave
heights in the immediate vicinity of the sources was available. During the period
from July 1 to August 14, 2007, two seafaring expeditions were organized with one
of their main tasks consisting in the investigation of the coasts of the islands so
as to determine the tsunami run-up heights (Levin et al. 2008). The participants of
the expedition were the first people to visit the islands after the tsunamis and to
estimate the scale of the natural disaster. The time for the expedition depended on
the complicated weather conditions in the area. Landing on the coasts of the islands
earlier (beforeApril–May)was practically impossible to realize. The highest tsunami
run-ups (up to 20m) were revealed on Matua Island. The tsunami strongly altered
the morphology of the coast in the Ainu Bay (South-West of Matua Island) by wash-
ing away a section of the sea terrace 20–30 m wide. The maximum run-up height
in Dushnaya Bay (North-East part of Simushir Island) amounted to 19m; here
the tsunami left numerous scours. Besides erosion on the coasts investigated, accu-
mulation was also observed everywhere. Tsunami deposits consisted of marine sand,
pebbles, boulders, floating debris shifted toward the land. The vegetation on steep
slopes was partly destroyed, and the soil washed away. If waves of such strength
were to hit a densely populated coast, casualties could certainly not be avoided. The
only reason the tsunamis of November 15, 2006 and of January 13, 2007 did not
become an awful tragedy was the total absence of population on the Central Kuril
Islands. These two events can rightfully be considered the strongest tsunamis that
were not accompanied by human casualties.

The 2011 Tohoku-Oki tsunami. On March 11, 2011, at 14.46 (local time—JST)
an earthquake occurred in the Pacific Ocean east of the island Honshu, which turned
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out to be unprecedented in strength for the region of Japan. This catastrophic event
is conventionally called the 2011 Tohoku-Oki earthquake or the Great East Japan
earthquake. Data of the U.S. Geological Survey (USGS) show the epicenter of the
seismic event (38.322˚N, 142.369˚E) to have been located 129Km east of the city
of Sendai, the depth of its hypocenter was 32km, its moment magnitude MW = 9.0.

The Japan Meteorological Agency (JMA) issued a tsunami warning only 3min
after the earthquake onset. The first strong wave reached the nearest coast in about
30 min. The consequences of the tsunami turned out to be terrible. The hazard of
the catastrophe was clearly underestimated. At many points of the Honshu island
coast closest to the tsunami source the run-up height exceeded 20 m. Currents of sea
water ran several kilometers up the land literally obliterating entire settlements from
the Earth. The record characteristics of the tsunami run-up onto the shore are kept
in the Iwate Prefecture (Tohoku Region): the maximum run-up height was 55.88m
and the maximum inundation distance was 7900 m (according to HTDB/WLD and
GHTD/NGDC data). The number of victims amounted to 18,482 persons, the mater-

Table 1.1 Twenty-first-century tsunamis

No Date Earthquake
magnitude
(MW )

Maximum
water height (m)

Number of
victims

Location of
event

1 23/06/2001 8.4 8.8 26 Peru

2 24/12/2004 9.1 50.9 227899 Indonesia,
Sumatra

3 17/07/2006 7.7 20.9 802 Indonesia,
South Of
Java

4 15/11/2006 8.3 Russia,

5 13/01/2007 8.1 21.9 0 Central Kuril
Islands

6 01/04/2007 8.1 12.1 52 Solomon
Islands

7 21/04/2007 6.2 7.6 10 Chile

8 15/08/2007 8.0 10.05 3 Peru

9 29/09/2009 8.1 22.35 192 Samoa

10 27/02/2010 8.8 29 156 Chile

11 25/10/2010 7.8 16.9 431 Indonesia,
Sumatra

12 11/03/2011 9.0 55.88 18482 Japan

13 28/10/2012 7.7 12.98 1 Canada,
British
Columbia

14 06/02/2013 7.9 11 10 Solomon
Islands

15 01/04/2014 8.2 4.4 0 Chile
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ial damage was nearly a quarter of a trillion USA dollars (220085 $Mill). An impor-
tant feature of this event consisted in that both the loss of life and thematerial damage
were mainly due to the tsunami waves, and not to the seismic event itself.

The natural catastrophe was accompanied by serious ecological consequences
related to the disaster at the nuclear power-station Fukushima-1. The earthquake and
tsunami damaged the external electric power systemand the reserve diesel generators,
which resulted in failure of both the regular and emergency core cooling systems.
The subsequent overheating led to a series of explosions and, ultimately, to a release
of radioactive material.

Once again the 2011 Tohoku-Oki tsunami revealed that even such a highly tech-
nological country, possessing the most rich historical experience of practical investi-
gations of tsunami waves, regretfully happens to be vulnerable to natural calamities.

Table1.1 presents several examples of twenty-first-century tsunamis (according
to GHTD/NGDC data).

1.3 Tsunami Magnitude and Intensity

Estimation of the degree of tsunami danger for one or another coast (long-term
tsunami forecast) is primarily based on the statistical analysis of events that occurred
in the past. Tsunamis evidently vary in strength within wide limits: fromweak waves
that can be registered only with the aid of instruments, up to terrible catastrophic
events devastating the coast along hundreds of kilometers. How can one estimate
the strength of a tsunami? The point is that without the introduction of some quanti-
tative characteristic of this strength it is not only impossible to perform any statistical
analysis, but even to speak of estimating the degree of danger. The determination of
such a quantitative characteristic is quite a nontrivial problem, the ultimate resolution
of which has not yet been achieved. Similar difficulties are encountered by seismol-
ogists determining the strength of an earthquake. On the one hand, an earthquake
is characterized by objective physical parameters showing the energy emitted by
the source, or the released seismic moment. These parameters are measured quan-
titatively, and the scale of earthquake magnitudes is made to correspond to them.
On the other hand, there exists a descriptive scale of earthquake intensities, which
is related to the so-called macroseismic data based on the results of in situ studies.
Clearly, in practice, it is precisely the intensity scale that is important, but contrary
to the magnitude scale it is not rigorous from a physical standpoint.

Going back to tsunamis, we note that this phenomenon is also characterized,
on the one hand, by objective and quantitatively measurable parameters (energy,
amplitude, period, etc.), and on the other hand by subjective descriptions, reflecting
the scale and degree of the destructions caused by the wave or the character of
its manifestations on the coast. Like in the case of earthquakes, for estimation of
the tsunami danger precisely these subjective descriptions are more important than
abstract physical parameters. The inhabitants of coastal regions are not interested in
the energy of the approaching wave in joules, they are interested in whether the wave
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is dangerous to their lives, what damage may be done, and how it can be avoided.
And, until further modeling is realized of the entire process starting from the actual
formation of a wave up to its run-up onto the shore, such a situation will remain
intact.

The first attempt at classification of tsunamis was made by Sieberg, who intro-
duced a six-point scale of tsunami intensities by analogy with the scale of earthquake
intensities (Sieberg 1927). This scale was not related to the measurement of physi-
cal parameters (wave heights, run-up lengths, etc.), it was based on the description
of effects revealing the degree of destruction. Subsequently, the Sieberg scale was
somewhat modified (Ambraseys 1962).

The Sieberg–Ambraseys tsunami intensity scale

1. Very light. Waves can only be registered by special tide gauges (mareographs).
2. Light. Waves noticed by those living along the shore. On very flat shores waves

are generally noticed.
3. Rather strong.Waves generally noticed. Flooding of gently sloping coasts. Light

sailing vessels carried away on shore. Slight damage to light structures situated
near the coasts. In estuaries, reversal of the river flow some distance upstream.

4. Strong. Significant flooding of the shore. Buildings, embankments, dikes, and
cultivated ground near coast damaged. Small and average vessels carried either
inland or out to sea. Coasts littered with debris.

5. Very strong. General significant flooding of the shore. Quay-walls and solid
structures near the sea damaged. Light structures destroyed. Severe scouring of
cultivated land. Littering of the coast with floating items, fish, and sea animals
thrown up on the shore. With the exception of big ships all other types of vessels
carried inland or out to sea. Bores formed in estuaries of rivers. Harbor works
damaged. People drowned. Wave accompanied by strong roar.

6. Disastrous. Partial or complete destruction of manmade structures for some dis-
tance from the shore. Strong flooding of coasts. Big ships severely damaged.
Trees uprooted or broken. Many casualties.

Numerous attempts were made in Japan to introduce a quantitative characteristic
of the tsunami strength. Imamura introduced, and Iida further improved, the concept
of tsunamimagnitude (Imamura 1942, 1949; Iida 1956, 1970). A proposal wasmade
to estimate the magnitude by the formula

m = log2 Hmax,

where Hmax—is the maximum wave height in meters, observed on the shore or
measured by a mareograph. In practice, the Imamura–Iida scale is a six-point scale
(from −1 up to 4).

In attempts at improving the Imamura–Iida scale S.L. Soloviev introduced the fol-
lowing tsunami intensity:

I = 1

2
+ log2 H,
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where H is the average tsunami height in meters on the coast closest to the source. At
present such a definition of the tsunami intensity iswidespread, and the corresponding
scale is conventionally termed the “Soloviev–Imamura tsunami intensity scale.”

Note that the Imamura–Iida definition of magnitude is, generally speaking, unam-
biguous. It only requires knowledge of the maximum wave amplitude. The Solviev–
Imamura definition of intensity is not mathematically rigorous and, consequently,
provides for much “freedom” in calculating the average height of tsunami waves.
At any rate, both scales are not very sensitive to small errors in the determination
of wave heights, since it is the logarithms of these quantities that count. It is also
important to note that in the case of numerous historical events and, more so, of pre-
historic events (paleotsunamis) the only available information comprises estimates
of wave heights at a single point or at several points along the coast. Thus, both scales
are quite convenient and will still be applied in practice for a long time. Anyhow,
as a base characteristic to be measured in calculating the magnitude or intensity
one may consider the flooded area, instead of the wave height. This characteristic
may turn out to be a successful and promising alternative to the wave heights on
the coast. A clear advantage of the flooded area consists not only in that it can be
conveniently measured by remote means (from satellites, airplanes, etc.), but also in
that this characteristic automatically reflects the scale of the catastrophe that took
place.

Abe and Hatori proposed to modify the magnitude scale so as to take into account
the weakening of waves, as the distance from the source increases (Abe 1979, 1981,
1985, 1989; Hatori 1986),

Mt = a log h + b log� + D,

where h is the maximum wave amplitude on the coast measured from the foot up to
the crest in meters, � is the distance from the earthquake epicenter to the point of
measurement in kilometers, a, b, and D are constants. Such a definition resembles
the definition of magnitude in seismology.

An essentially different approach to the definition of tsunami magnitude was put
forward in Murty and Loomis (1980). Here, the calculation of magnitude is based
on estimation of the tsunami’s potential energy E (in ergs),

ML = 2 (logE − 19).

The definition of magnitude based on the wave energy is, naturally, the most
adequate defintion from a physical point of view. However, it is not always possible
to calculate the wave energy. At any rate, at the present-day stage calculations can be
basedon the potential energyof the initial elevationof thewater’s surface, considering
it to be identical to the residual displacements of the seafloor. These displacements
are calculated from the earthquake parameters by the Okada formulas (Okada 1985).

Itmust be noted that the Imamura–Iidamagnitude or the Soloviev–Imamura inten-
sity gives an idea of the wave height on the coast and, consequently, permits to judge
the scale of destructions. But although the Murty-Loomis tsunami magnitude ML is
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a physically correct quantity, it cannot be unambiguously related to themanifestation
of a tsunami on the coast.

Recently, a newdetailed 12-point descriptive tsunami intensity scalewas proposed
in Papadopoulos and Imamura (2001). Its elaboration was based on the more than
100-years-long experience, accumulated by seismologists in drawing up earthquake
intensity scales. This scale is not related to anyquantitative physical parameters (wave
amplitudes, energy and so on), it is organized in accordance with the following three
features:

(a) its influence upon people,
(b) its impact on natural and artificial objects, including boats of different sizes,
(c) the damage caused to buildings.

Therefore, a tsunami of large amplitude that hits a weakly inhabitated coast may
be assigned a low intensity in accordance with the Papadopoulos–Imamura scale.
Contrarily, a tsunami of moderate amplitude that hits a densely populated coast may
be characterized by quite a high intensity.

It is useful to present the Papadopoulos–Imamura intensity scale here completely.
A consistent and systematic description of tsunami manifestations on the coast pro-
vides a full picture of the phenomenon.

The Papadopoulos–Imamura tsunami intensity scale

I. Not felt1

(a) Not felt even in most favorable circumstances;
(b) No effect;
(c) No damage;

II. Scarcely felt

(a) Felt by some people in light boats. Not observed on the shore;
(b) No effect;
(c) No damage;

III. Weak

(a) Felt by most people in light boats. Observed by some people on the shore;
(b) No effect;
(c) No damage;

IV. Largely observed

(a) Felt by all people in light boats and some on large vessels. Observed by
most people on shore;

(b) Some light boats are slightly carried onto the shore;
(c) No damage;

1Registered only by special instruments.
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V. Strong

(a) Felt by all people on large vessels. Observed by all people on shore. Some
people are frightened and run-up elevations;

(b) Many light vessels are carried inland over significant distances, some of
them collide with each other or are overturned. The wave leaves layers of
sand in places with favorable conditions. Limited flooding of cultivated
land along the coast;

(c) Limited flooding of coastal structures, buildings and territories (gardens,
etc.) near residential houses;

VI. Slightly damaging

(a) Many people are frightened and run-up elevations;
(b) Most light vessels are carried inland over significant distances, undergo

strong collisions with each other, or are overturned;
(c) Some wooden structures are destroyed and flooded. Most brick buildings

have survived;

VII. Damaging

(a) Most people are frightened and try to run away onto elevations;
(b) Most light vessels are damaged. Some large vessels undergo significant

vibrations. Objects of varying dimensions and stability (strength) are over-
turned and shifted from their positions. The wave leaves layers of sand
and accumulates pebbles. Some floating structures are washed away to
sea;

(c) Many wooden structures are damaged, some are totally wiped away or
carried out to sea by the wave. Destructions of first degree and flooding
of some brick buildings;

VIII. Heavily damaging

(a) All people run-up elevations, some are carried out to sea by the wave;
(b) Most light vessels are damaged, many are carried away by the wave.

Some large vessels are carried upshore and undergo collisions with each
other. Large objects are washed away. Erosion and littering of the coast.
Widespread flooding. Insignificant damage in antitsunami plantations of
trees. Many floating structures are carried away by the wave, some are
partially damaged;

(c) Most wooden structures are carried away by thewave or completely wiped
off the earth’s surface. Destructions of second degree in some brick build-
ings. Most concrete buildings are not damaged, some have undergone
destruction of first degree and flooding;

IX. Destructive

(a) Many people are carried away by the wave;
(b) Most light vessels are destroyed and carried away by the wave.Many large

vessels are carried inland over large distances, some are destroyed. Broad
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erosion and littering of the coast. Local subsidence of the ground. Partial
destruction of antitsunami plantations of trees. Most floating structures
are carried away, many are partially damaged;

(c) Destructions of third degree inmany brick buildings. Some concrete build-
ings have undergone destructions of second degree;

X. Very destructive

(a) General panic. Most people are carried away by the wave;
(b) Most large vessels are carried inland over large distances, many are

destroyed or have undergone collisions with buildings. Small rocks (peb-
bles, stones) have been carried onshore from the seafloor. Vehicles are
overturned and displaced. Petroleum spilt, fires. Widespread subsidence
of ground;

(c) Destructions of fourth degree in many brick houses, some concrete build-
ings have undergone destructions of third degree.Artificial dams (embank-
ments) destroyed and harbor wavebreakers damaged.

XI. Devastating

(b) Vital communications destroyed. Widespread fires. Reversed flows of
water wash away to sea vehicles and other objects. Large rocks of dif-
ferend kinds are carried onshore from the seafloor;

(c) Destructions of fifth degree in many brick buildings. Some concrete build-
ings suffer damage of fourth degree, many of third degree.

XII. Completely devastating

(c) Practically all brick buildings are wiped out. Most concrete buildings have
suffered destructions of degrees not lower than third.

1.4 Tsunami Warning Service: Principles and Methods

The extremely long and sad experience of Japan’s population with many thousands
of lives lost to tsunamis and earthquakes is expressed in the short inscription on
the stone stellae often found near the coastline. The hieroglyphs on the stellae say
the following:

Don’t forget about earthquakes. If you feel an earthquake, don’t forget about
tsunamis. If you see a tsunami, run up a high slope.

The following legend is told by the inhabitants of the city of Wakayama, situated
not far fromKyoto, the former capital of Japan and amost beautiful city. Themayor of
Wakayama once felt an earthquake. He understood he had no time to warn the people
on the shore of the tsunami danger, so he ran up the slope to the rice fields where
the rice had been harvested, and set the granaries on fire. People, seeing the burning
supplies of rice, hurried up to put the fire out and, thus, they happily evaded the lethal
strike of the tsunami wave against the coast. The grateful inhabitants of the city
erected a monument to the wise ruler.
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The first tsunami warning in the far field, based on the interpretation of seismic
data, seems to be related to the Kamchatka earthquake of February 3, 1923 (Okal
2011).When Thomas Jaggar, Director of the Hawaiian VolcanoObservatory, entered
the laboratory in the morning, he found that the seismometer intended for monitoring
volcanic tremors had registered a strong and distant earthquake. It was not possible
to determine the epicenter position from the data provided by a sole seismometer.
But by the difference between the onsets of P and Swaves one could estimate the dis-
tance from the epicenter. Estimates revealed an earthquake of great strength to have
occurred somewhere in the Pacific Ocean basin. Several months earlier (November
11, 1922) the Hawaiian Islands had already been assaulted by tsunami waves with
run-up heights of about 2 m, and the source of which was off the Chilean coast. From
an analysis of this event, Thomas Jaggar knew the tsunami propagation velocity in
the ocean. From the known distance to the epicenter, he calculated the arrival time of
the tsunami caused by the Kamchatka earthquake of February 3, 1923, at the Hawai-
ian Islands and informed the local authorities in Hilo of his forecast. Regretfully, this
forecast was simply considered the fantasy of “a gentleman scientist.” In the mean-
time the tsunami waves reached the Hawaiian Islands and caused damage of 1.5
million dollars as well as the death of a person. 10years later, during the earthquake
of March 2, 1933 (Sanriku), the story repeated itself. This time the local authorities
treated the forecast with greater respect and evacuated the population from dangerous
areas. The tsunami was destructive, but nobody died.

By the 1960s of the twentieth century many countries of the Pacific region had
organized national tsunami warning systems. The tsunami service organizations
include a whole network of seismic and hydrometeorogical stations, special sys-
tems for operative alert transmission, administrative organs for adopting resolutions,
and regional organizations for implementing evacuation plans of the population.

In past years the work of a tsunami warning service (TWS) was based on routine
and/or urgent dispatches from operators on duty at seismic stations with round-the-
clock tsunami services. If a nearby strong earthquake (of magnitude MS ≥ 7) is
registered, the operator had, within 10min, to determine the distance to its epicen-
ter, the earthquake’s magnitude, and the approximate region of its location. The
operator had then to transmit the signal “TSUNAMI warning” to the administrative
organ, to the tsunami headquarters, and to the meteostation. The oceanolog on duty
at the meteostation applied additional information to decide whether to announce
the warning or not. The all-clear signal was announced by the tsunami headquarters
upon agreement with specialists.

In modern TWS this technology is automized. However, the main physical prin-
ciples of operative tsunami forecasting remain the same. The possibility itself of
warning is based on the propagation velocity of seismic waves being many times
larger than the velocity of a tsunami wave. A warning is issued if a submarine earth-
quake is registered of magnitudeMS exceeding a threshold, the value of which varies
depending on the region where the earthquake took place.

Itmust be stressed that estimation of a tsunami intensity based on seismic informa-
tion is characterized by quite a low precision (see Sect. 2.1). Therefore, a significant
number of the tsunami warnings issued happen to be false. A false warning has

http://dx.doi.org/10.1007/978-3-319-24037-4_2
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at least two negative consequences. First, it results in economic damage (actions
undertaken for evacuation, interruption in the operation of enterprises) and, second,
it leads to a rise in concerns of the population over the tsunami warning service
(TWS) trustworthiness.

An important success achieved in the operative tsunami prognosis consists in
the possibility of rapid (real-time) calculation, with a precision and reliability suffi-
cient for practical purposes, of the arrival time of a wave at a given (protected) point
of the coast. Such a calculation can be performed applying simple ray theory. To
this end it is only necessary to know the location of the tsunami source and the dis-
tribution of depths in the basin considered. We recall that the tsunami propagation
velocity depends on the ocean depth, c = √

gH. Data on the bathymetry of theWorld
Ocean are free for a grid with step of 30 arc-seconds, and for many regions even with
a significantly improved spatial resolution.

The situation concerning calculation of a tsunami run-up height at a given point of
the coast is much worse. The calculation precision and speed required for practical
purposes in resolving this problem has not been achieved yet. On the one hand,
this is due to the enormous volume of calculations to be performed in estimating
the evolution of a wave starting from its rise at the source up to its running up
the shore. On the other hand, in the real-time mode it is impossible to calculate
what happened at the tsunami source with necessary precision. The time required for
the reliable determination of seafloor deformations, due to an earthquake, essentially
exceeds the minutes or even hours available for operative forecasting. And in these
cases, when underwater landslides participate in the tsunami generation, operative
resolution of the problem turns out to be practically impossible.

An original way of resolving this problemwas developed and implemented within
the Japanese tsunami forecast system (Tatehata 1998; Handbook for Tsunami Fore-
cast 2001). The method is based on tsunami sources exhibiting the property of recur-
rence. Therefore the problem, requiring long-time calculations, has been resolved
beforehand. The results of calculations are presented in a special database. When
a real underwater earthquake takes place, then in accordance with its magnitude
and epicenter location necessary data are extracted from the database and used for
calculating the possible run-up heights applying the interpolation method.

An operative forecast technique making use of preliminary tsunami calculations
based on “unit sources” was developed in PMEL/NOAA (e.g. Titov et al. 2003; Gica
2008). At present this technique termed SIFT (Short-term Inundation Forecasting for
Tsunamis) is used for guarding theUS coast. In the case of a potentially tsunamigenic
earthquake a composition approximating the tsunami source is made up of the “unit
sources.” From the series of numerical calculations carried out in advance for the
chosen “unit sources” a linear combination is formed, which is the tsunami forecast
for the given segment of the coast. This technique reminds one of the aforementioned
Japanese forecast system, although there also exists an essential difference. A most
important progressive feature of the SIFT system consists in its inherent possibility
of correcting a forecast, while the tsunami wave is registered first by the nearest
to and then the more distant from the source ocean-bottom sealevel stations DART
(Deep-ocean Assessment and Reporting of Tsunamis).
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Here, it must be noted that the very idea of in-advance registration of tsunami
waves far from the coast by bottom pressure sensors was put forward back in the
1960–1970s of the past century by Soloviev (1968), Jaque and Soloviev (1971). But
only at the beginning of the twenty-first century did technological developments
provide for broad practical implementation of this idea in such systems as DART
(Bernard and Meinig 2011), GITEWS (Münch et al. 2011), NEPTUNE (Thomson
et al. 2011), EMSO (Favali and Beranzoli 2009), DONET (Kaneda 2010;Matsumoto
and Kaneda 2013). It may be said without any doubt whatsoever that the main
progress achieved during the past decade in the tsunami warning system is related
precisely to development of the networks of ocean-bottom sealevel stations. Indeed,
real data on the actual origination of a tsunami and on its parameters permits with
quite a high degree of reliability, inaccessible to seismic methods, to estimate the
tsunami threat and to make a justified decision concerning the issue or cancellation
of a warning.

Ocean-bottom sealevel stations have certainly proven to be the basis of a reliable
and convenient method for the registration of tsunami waves in the open ocean. But
this is not the only possible method. A tsunami wave can also be measured using
satellite altimeters (radioaltimeters). Thus, for example, the catastrophic tsunami
that occurred in December 2004, in the Indian Ocean was detected by a radioal-
timeter established on the satellite JASON-1 [e.g., Kulikov et al. (2005)]. One more
promising method for revealing tsunamis consists in the analysis of ionospheric per-
turbations generated by displacement of the water surface. Thus, a description of the
ionospheric manifestations of the 2011 Tohoku tsunami can be found in Refs. (e.g.
Makela et al. 2011; Kunitsyn et al. 2011).

The activities of national Tsunami Warning Systems during the catastrophic
tsunami of December 26, 2004 in the Indian ocean clearly revealed the regional
approach to creating services, when the “zone of responsibility” is only restricted to
the coastal segment under control, to be irrational and insecure. The events in the
Indian Ocean have actually made it necessary to alter the attitude toward both the
investigation of tsunami waves and the measures taken for reducing the risk of the
impact of this catastrophic phenomenon upon coastal communities and objects of the
coastal infrastructure. The International Tsunami Information Center (ITIC, NOAA
USA) took the initiative of proposing the most rapid creation of a World Tsunami
WarningSystem.Within the framework of this initiative regular international tsunami
exercises are being carried out since 2006. Such exercises are extremely important
for supporting the high level of readiness of the personnel of tsunami warning ser-
vices. Catastrophic tsunamis are characterized by a high degree of danger, but they
occur rarely. In this connection it is reasonable to perfect the necessary procedures
within the framework of specially organized exercises, instead of real events.
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1.5 Tsunami Catalogs and Databases

It would be difficult to overestimate the importance of historical data on tsunami
manifestations. As a rule, the estimation of tsunami risks, to which one or another
coast happens to be exposed, is mainly based on data concerning historical events. In
preparing operative tsunami forecasts use is alsomadeof historical data,which permit
to establish the threshold earthquake magnitude value that separates tsunamigenic
and non-tsunamigenic seismic events in the region of interest. Moreover, historical
data are of utmost importance for understanding the physical nature of tsunamis and
of related phenomena.

Although mankind has been familiar with the phenomenon of tsunamis as least
since antiquity (Marinatos 1939; Ambraseys 1962; Gusiakov 2009), data on histor-
ical events for a long time remained scattered among different sources and were
never accumulated in a dedicated catalog. The first historical tsunami catalog was,
apparently, created by N.H. Heck, who collected and systematized data on tsunami
waves found in seismic catalogs (Gusiakov 2009). The first version of the catalogwas
published in French (Heck 1934). The English-language version, probably inspired
by the April 1, 1946 Aleutian tsunami, was published 13years later as an article in a
periodical (Heck 1947). This first catalog contained data on 270 events that occurred
in the World Ocean during the period of 479 B.C.–1946 A.D.

At the time, Heck’s catalog was the only global tsunami catalog. In spite of it
being short and incomplete it remained the only source of information for a long
time. Later, numerous catalogs were created in Russia, Japan, the USA, and other
countries. At present the list of catalogs numbers over 100 items (http://tsun.sscc.ru/
tsulab/tsu_catalogs.htm).

Catalogs are divided into two classes: descriptive and parametric (Gusiakov
2009). Descriptive catalogs (e.g. Heck 1934, 1947; Imamura 1949; Takahasi 1951;
Agostinho 1953; Iida 1956; Berninghausen 1962, 1964, 1966, 1968, 1969; deLange
and Healy 1986; Zayakin and Luchinina 1987; Murty and Rafiq 1991; Lander et al.
2002) contain original descriptions of tsunami manifestations along coasts (includ-
ing data on destructions) collected from most diverse sources. Such descriptions can
be quite informative, and in a number of cases they even represent a certain substitu-
tion for photo/video materials or mareographic data. Descriptive catalogs, however,
have an annoying disadvantage: the quantitative information on a phenomenon is
spread over the entire text, so it is not easy to identify and submit it to processing.
This disadvantage, naturally, does not belittle the role of descriptive catalogs, which
always were and still remain a most important source of data on tsunamis and related
the phenomena.

Catalogs of the second type, parametric catalogs (e.g. Soloviev 1978; Iida 1984;
Papadopoulos and Chalkis 1984; Hamzan et al. 2000; Papadopoulos 2001), are usu-
ally organized in the form of tables, which include all the main parameters of an
event, such as, for example, its date, the coordinates of its earthquake epicenter,
its depth, its magnitude, and, also, various quantitative tsunami parameters (mea-
sured run-ups, intensities, etc.). The main problem of parametric catalogs consists in

http://tsun.sscc.ru/tsulab/tsu{_}catalogs.htm
http://tsun.sscc.ru/tsulab/tsu{_}catalogs.htm


1.5 Tsunami Catalogs and Databases 21

reducing the descriptive information involved to a minimum, which compels the user
to rely totally on the interpretation of initial data (including descriptions) provided
by the author of the catalog.

Some catalogs are composed of both descriptive and parametric sections. Such
catalogs, besides tables including all basic quantitative parameters of a phenom-
enon, also contain a descriptive historical part (e.g., Soloviev and Go 1974, 1975;
Everingham 1977, 1987; Watanabe 1989; Soloviev et al. 1992, 2000; Lander et al.
1993; Lander 1996; Fernandez et al. 2000; Papadopoulos 2000; Lockridge et al. 2002;
O’Loughlin and Lander 2003; Fokaefs and Papadopoulos 1986; Papadopoulos et al.
2007; Stephenson et al. 2007).

“Paper” catalogs served as the main sources of information on tsunamis up to the
1970s of the twentieth century. Searching for data, their systematization, and verifica-
tion were quite laborious. Therefore, with the development of computer technology
electronic databases started to be created, which were, doubtless, more convenient
for storing and processing large arrays of information.

The first steps toward the creation of a computerized tsunami databasewere under-
taken at the International Tsunami Information Center (ITIC) in Honolulu, Hawaii
(USA) in the middle of the 1970s (Pararas-Caraynnis 1991; Gusiakov 2009). In the
middle of the 1980s at the National Geophysical Data Center (NGDC/NOAA) in
Boulder, Colorado (USA) the creation was initiated of a tsunami database, which
integrated data from all the available catalogs and studies of tsunamis. For many
years the NGDC/NOAA World-Wide Tsunami Database (Lockridge and Dunbar
1995) remained the only digital resource of information on tsunamis. At present the
NGDC/NOAA World-Wide Tsunami Database is the most cited source of informa-
tion on tsunamis.

At the beginning of the 1990s, within the framework of the project GITEC (Gen-
esis and Impact of Tsunamis on the European Coast), initiated by the University of
Bologna, Italy (GITEC 1992), the comprehensive historical tsunami database for the
Mediterranean and other European surrounding seas was created, which integrated
the data from numerous historical catalogs published for this region (Tinti et al. 2001,
2004). This database, termed the European Tsunami Catalog (ETC), underwent fur-
ther development within the framework of the project TRANSFER (Tsunami Risk
ANd Strategies For the European Region) (TRANSFER 2005). At present this infor-
mational resource is known as the Euro-Mediterranean Tsunami Catalogue (EMTC)
(Maramai et al. 2014).

In the middle of the 1990s, at the Novosibirsk Tsunami Laboratory (NTL) of
the Institute of Computational Mathematics and Mathematical Geophysics of the
Siberian Division of the Russian Academy of Sciences (ICM&MG SD RAS), the
Expert Tsunami Database (ETDB) was created (Gusiakov et al. 1997; Gusiakov
2009). The main idea of this project was to integrate, within the framework of a
unique system, not only historical data on tsunamis, but also means for analyzing
these data as well as means for numerical simulation. Particular attention is paid
to developing the geographical mapping subsystem that significantly simplifies data
retrieval and visualization. Initially, the region embraced by ETDBwas limited to the
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Pacific ocean. The development of ETDB resulted in the well-known to specialists
informational resource for tsunamis—Historical Tsunami Database for the World
Ocean (HTDB/WLD).

Thus, at present, there exist two principal worldwide informational resources that
contain information about tsunami waves. The first resource—Historical Tsunami
Database for the World Ocean (HTDB/WLD)—contains information about approx-
imately 2400 tsunamis that occurred in the World Ocean since 1628 B.C. The
address of the accessible Internet version of the database is http://tsun.sscc.ru/On_
line_Cat.htm. The second resource—NOAA/WDSGlobal Historical Tsunami Data-
base at NGDC (GHTD/NGDC)—contains information about 2500 tsunamis that
occurred since 2000 B.C. The database GHTD/NGDC can be accessed at the address
http://www.ngdc.noaa.gov/hazard/tsu_db.shtml. Both historical tsunami databases
are constantly replenished, both owing to newly occurring tsunamis and to events of
previous years for which new information is revealed.

Both historical databases contain information about the event date, the suspected
tsunami source (in the case of an earthquake: its magnitude, the coordinates of its
epicenter, its depth), the tsunami intensity, tsunami magnitude, the wave height, the
tsunami cause, damage, validity, number of run-ups (and the very results of measure-
ments), and other parameters. Moreover, various auxiliary information can be found
on the bathymetry, seismicity, tectonics, volcanism, on settlements in coastal regions,
and also on the network of mareographic observations. The databases provide users
with convenientmeans for data selection (by dates, earthquakemagnitudes, the inten-
sity or height of waves, the level of damage, etc.) and visualization of geographic
information (the Interactive Map).

On the whole, the contents of the informational resources HTDB/WLD and
GHTD/NGDC are quite close to each other. No essential differences exist in time or
spatial coverage. However, in the case of many historical events there do exist differ-
ences in their types of origin, the number of available run-up observations, resulting
fatalities, and their degree of validity (Gusiakov 2009).

As an example of graphic representation of materials from the HTDB/WLD data-
base, Fig. 1.4 shows the distribution of all tsunami sources in theWorldOcean, known
by 2014. The main tsunamigenic regions are clearly seen in the map. In most cases
they are related to known seismically active regions.

An idea about the tsunami recurrence frequency can be obtained from Fig. 1.5,
which shows how the number of tsunamis varied (within 10-year periods) between
1800 and 2014. All events are divided into two categories: significant tsunamis of
intensity I ≥ 1 are shown in red (Soloviev–Imamura scale), all known tsunamis are
shown in blue. The recurrence rate of significant tsunamis is seen to be conserved at
an approximately constant level (about two events per year). Here, the total number
of tsunamis tends to increase, which is related to the progress in registering weak
waves and to the exchange of information, and also to the development of the coastal
zone. Similar comments can be made with respect to Fig. 1.6, in which the tsunami
intensity is shown versus time.

http://tsun.sscc.ru/On{_}line{_}Cat.htm
http://tsun.sscc.ru/On{_}line{_}Cat.htm
http://www.ngdc.noaa.gov/hazard/tsu{_}db.shtml
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Fig. 1.4 Distribution of tsunami sources in the World Ocean within the period from 2000 B.C.
up to 2014. The sizes of the circles correspond to earthquake magnitudes and their colors to the
tsunami intensities

Fig. 1.5 Recurrence of tsunamis (number of events per decade) in the World Ocean between 1800
and 2014. The blue color shows all the known tsunamis, the red color indicates tsunamis of intensity
I ≥ 1 according to the Soloviev–Imamura scale

It must be underlined here that it would be wrong to draw a conclusion from
Figs. 1.5 and 1.6 concerning enhancement of the tsunami recurrence rate in the past
centuries. The tsunami recurrence rate can only vary significantly within geological
time periods.
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Fig. 1.6 Tsunamis of the World Ocean in the ‘intensity–time’ plane

To conclude this section we point out certain problems peculiar, generally speak-
ing, to any informational tsunami sources. The issue involves the inaccuracy and
fragmentarity of data (Gusiakov 2009). In most cases this concerns bygone events,
the lack of information which often does not permit to make a reliable conclusion on
the nature of the phenomenon described and, evenmore so, to achieve its quantitative
estimation. For example, errors may arise when a totally different natural phenom-
enon, characterized by similar manifestations (e.g., a storm surge, high tide, river
flood, rogue waves), is perceived as a tsunami. Errors may also be due to inaccurate
interpretation of available descriptions, when attempts are made to extract from such
descriptions quantitative or factual information on an event (e.g., its date and time,
location, intensity, type of source). The use of different metric systems and of differ-
ent calendars also serves as a source of errors in dating or in determining quantitative
characteristics of events.

1.6 Seaquakes: General Ideas

Strong ocean bottom earthquakes result in the appearance near the coasts of gigantic
devastating tsunami waves, while in the region of the earthquake epicenter unusual
hydrodynamic phenomena are observed, which are known to seafarers by the term
seaquakes. In certain cases the terms tide race, wave crowd are also used.
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The transverse dimension of the perturbated region of the sea surface during
a seaquake usually exceeds 10–100km, while the duration of a strong seaquake
may amount to 10min. During a seaquake sets of very steep standing waves form
on the surface of the aquatorium, there arise individual vertical columns of water,
solitary water formations arise, and strong acoustic effects are noted. Spray sultans
may be observed, as well as cavitational layers of water separating from each other
and flying apart. A ship that happens to be in the zone of influence of a seaquake
turns out to be surrounded by giant standing waves filling up the entire visible space.
Terrible thunderous rumbling andhowling are enhancedby sharp blows to the bottom,
the most strong shaking of the vessel and the destruction of deck structures that had
in the past endured more than a few storms.

From the point of view of the influence upon a human being and the danger for
seafaring, a seaquake can compete with tsunamis and killer waves. Seaquakes lead
to the destruction of structures on board ships, demoralization of the crew, the rise
of critical and emergency situations on vessels, and the mass death of fish and other
inhabitants of the ocean.

From general arguments it is clear that a seaquake results from the influence
of seismic oscillations of the ocean bottom on the water column, as this process
undergoes development in the epicentral zone and terminates when the action of
the earthquake finishes. The effects of a seaquake, as a natural phenomenon, and
their influence on ship constructions were studied by the renown geophysicists B.
Gutenberg and A. Zieberg (Richter 1963). Below, we present the intensity scale for
seaquakes developed by A. Zieberg and modified in Levin and Soloviev (1985).

I A vibration, a light crackling of the deck.
II A clear crackle, like a light scratching.
III A strong jolt, as if running aground in shallow water, or on rocky bottom, or

onto reef. Loud crack, vibration of objects.
IV The vessel cracks and is shaken, unstable subjects fall.
V People cannot stand up, large objects turn over, and fall out of supports, vessel

loses speed, constructions creak painfully.
VI The vessel may be thrown out of the water, masts and deck constructions are

broken, emergency situation.

In the opinion ofC.F. Richter, one of the founding fathers of seismology, “although
the problem of seaquakes contains no unresolvable riddles, to the best of our knowl-
edge, it was neglected for so long, that at present it represents a promising field of
studies for new individuals with new ideas.”

Modern catalogs, articles, and scientific publications contain over 250descriptions
of seaquakes in various regions of the World Ocean. Among the recent events one
must note the strong damage of eight fishing boats in the region of the South Kuril
islands after the Shikotan earthquake of 1994 and the destruction of the huge tanker
“Exxon” in the Gulf of Alaska resulting from a seaquake in 1988. Below, follows
a scenario of the development of a “generalized” seaquake based on materials of
individual descriptions due to witnesses (Levin 1996).
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Synthesized description of a seaquake
On a totally breezeless day the smooth mirror-like sea surface became all of

a sudden covered with bumps. These aquatic bumps that looked like waves did not
move away in any direction, but they did not remain motionless either. They grew
rapidly up to a height of about 8m and then shrank down forming deep craters in
the place of the recent bumps.

The oscillations were rapid, we were dazzled by these unusual boiling waves filling
up all the visible sea space. The aquatic surface seethed and jumped up and down,
as if it were in a red-hot kettle with salt brine. The boat was thrown up and down,
and it rocked ominously on these jumping waves. They were as steep as the most
ferocious storm waves, but no longer than 20m. The keel rocking was so strong that
the propeller was several times seen to be completely dry in air, and the wheel of
the ship compass fell off its pivot.

All the passengers and crew poured out on deck. The bright sunshine and total
calm only enhanced the tension of this terrifying spectacle of a sea gone crazy.

Less than a minute passed but no willpower was left to resist this monstrous
galloping, which once in a while weakened, then strengthened again. Hands clinging
to the ship’s sides felt how unreliable this plaintively creaking vessel was in front of
the mysterious and incomprehensible sea catastrophe.

The aquatic bumps started to become smaller, while the frequency of their blinking
increased. At the same time from somewhere out of the depth a low thunderous rumble
arose that supressed all willpower and reason. People started thrashing around
the ship full of panicky fear. Many passengers, and even sailors, could not bear such
torture and, having evidently lost their minds, started to jump overboard. Against
the background of these blinking waves there started to appear very high jets of water
that collapsing created a strange rustling sound.

All of a sudden the ship was shaken by a most strong blow. Several persons were
thrown overboard. The blows to the bottom of the ship came one after another. The
ship seemed to batter the rocky seafloor, although the depth of the water exceeded
100m. The impression was that enormous barrels full of water were jumping up and
down in the hold and that the sheathing was on the brink of breaking. The shrouds
trembled, the handrails of the ladder broke down, the windows of the deck cabin
crumbled, the deck superstructures started to move and fall to pieces.

The vessel prepared for its unavoidable death.
Suddenly the din stopped. The sea continued to vibrate, gradually calming down.

The vessel that had suffered in 2 mimutes more than from the most monstrous storm
was rocking quietly on the breezeless sunlit surface of the sea. If the seaquake had
continued for half a minute more, then it would have surely led to the appearance
of still another “Flying Dutchman”, abandoned by its crew, or to the mysterious
disappearance in the ocean of one more vessel together with its crew.

Most regions of the World Ocean are known to be characterized by a clearly pro-
nounced stable temperature stratification—the cold lower column several kilometers
thick is separated from the atmosphere by a relatively thin (measured by hundreds
of meters) warm ‘film’, comprising a thermocline and a mixed layer. The possibility
of cold deep-water masses being transferred up to the surface layer of the ocean
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by nonlinear flows in the seaquake zone was first mentioned in Levin et al. (1993)
in relation to the identification of a tsunami source from outer space. Later it was
pointed out that a seaquake can cause the development of such powerful turbulence
as to result in the warm film destruction and in the formation on the surface of the
ocean of a cold ‘spot’ with an area exceeding 1000km2; it was noted that such a
‘spot’ is capable of exerting significant influence on the structure of the temperature
field of near-the-water layer of the atmosphere and to lead to weather anomalies
(Levin et al. 1998; Nosov 1998a, b).

1.7 Hydroacoustic Signals in the Case of Underwater
Earthquakes

The capability of underwater earthquakes to excite hydroacoustic signals has been
known long ago (Ewing et al. 1950; Soloviev et al. 1968; Kadykov 1986). Hydroa-
coustic waves propagating in the ocean from the epicentral zone of an earthquake
are called the T-phase or T-waves. Investigation of this phenomenon traditionally
pertains to the scientific activity of seismologists. The term T-phase originated from
seismological classification, as this wave is registered as the third phase (tertiae) after
the appearance of phases P (primae) and S (secondae). A classical definition of the
T-phase to be found, for example, in Okal et al. (2003) sounds as follows: “T-phases
are seismic waves recorded by seismometers, which have travelled the major part of
the source-to-receiver path as acoustic waves channelled in the ocean water column
by the SOFAR low velocity waveguide.” The SOFAR waveguide that was discov-
ered independently in the 1940s byMaurice Ewing (USA) and Leonid Brekhovskikh
(USSR) represents a practically perfect natural waveguide that is conductive to the
propagation of hydroacoustic waves over thousands of kilometers from their source.
The property of a T-phase to cover large distances from the source provides for the
possibility of registering this phenomenon by many, including distant, seismic sta-
tions and precisely for this reason the T-phase has been known already for more than
half a century.

The conditions for an acoustic signal to propagate along the SOFAR channel are
such that the wavelength must not exceed the waveguide thickness. Hence follows
the restriction on the T-phase frequency; inmost cases the frequencymust be superior
to 2Hz.

At the beginning the T-phase phenomenon even gave rise to certain hopes of
resolving the problem of operative tsunami forecasting (Ewing et al. 1950). These
hopes, however, were not to be fulfilled. The relationship between tsunamis and the
T-phase turned out to be no less complex and ambiguous than the relationship of
tsunamis and seismic waves. Moreover, a peculiar “anticorrelation” was revealed
between tsunamis and the T-phase (Okal et al. 2003). Slow earthquakes, charac-
terized by a lack of high-frequency seismic wave emission and, consequently, a T-
phase deficit, were found to be capable of exciting gravitational tsunami waves quite
effectively. We recall that slow earthquakes are also conventionally called “tsunami
earthquakes.”
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The spectrum of bottom seismic motions covers quite a broad range from 0.001
up to 100Hz. Therefore, in the case of underwater earthquakes, besides high-
frequency hydroacoustic waves (the T-phase), low-frequency hydroacoustic waves
for which the entire water column serves as a waveguide may also originate. Such
low-frequency waves were observed relatively not long ago during analysis of the
tsunamigenic 2003 Tokachi-Oki earthquake (Nosov et al. 2005; Nosov and Kolesov
2007; Li et al. 2009; Ohmachi and Inoue 2010; Bolshakova et al. 2011). Since the
water layer limited from below by the elastic rough bottom and from above by the
excited free surface was not a perfect natural waveguide (unlike the SOFAR chan-
nel), low-frequency elastic oscillations were not capable of propagating through long
distances and they were only observed in the vicinity of the source that generated
them. Moreover, owing to the existence of a cutoff frequency elastic oscillations of
the water layer produced in the deep-water region could not penetrate shallow water,
and, consequently, they could not contribute directly to the tsunami run-up height.
But the contribution of hydroacoustic effects to the tsunami wave height on a coast
can be indirect—due to nonlinear effects (Novikova and Ostrovsky 1982; Nosov and
Kolesov 2005; Nosov et al. 2008). These effects are dealt with in detail in Chap.4.

Registration of the T-phase is possible not only with the aid of seismographs,
but also using hydrophones. The latter method, for instance, is actively used in the
American system SOSUS (SOund SUrveillance System) (Fox and Hammond 1994),
operating from the middle of the 1950s and initially intended for searching for sub-
marines. The system represents a set of hydrophones connected to the coastal services
by a cable line. Registration of a T-phase signal by the SOSUS system permits to suc-
cessfully determine the coordinates of epicenters of underwater earthquakes, which
serves as a successful alternative to traditional seismological methods (http://www.
pmel.noaa.gov/vents). Similar hydroacoustic systems were also created some time
ago in the USSR) (From the history 1998).

In Russia, several recent years saw the revival of research aimed at making use of
hydroacoustic signals from underwater earthquakes for tsunami warning (Sasorova
et al. 2002). If a tsunami is excited by a nearby earthquake, the modern tsunami
warning system has very little chance of providing a timely alert signal, as the time
provided by Nature for reacting (the time interval between the arrival of the seis-
mic signal and the first tsunami wave) amounts to less than 5min. At present, the
only promising way of withstanding local tsunamis consists in making use in good
time of available information on the preparatory stages of a developing underwater
earthquake.

Analysis of the records of oceanic hydroacoustic noises, obtained by the Russian
multipurpose antenna AGAM within the framework of the international program
ATOC (Acoustic Thermometry of the Ocean’s Climate) between 1998 and 1999
revealed promising results. The set of hydrophones established on the Pacific shelf
of Kamchatka registered hydroacoustic signals of seismic origin in the 3–70HZ
frequency range, which appearedmuch earlier than the first blow from the earthquake
(from hours down to several minutes) (Lappo et al. 2003). The signals were generated
bymicroearthquakes in the preparation area of a strong earthquake andwere evidence
of the development of the event’s critical stage.

http://dx.doi.org/10.1007/978-3-319-24037-4_4
http://www.pmel.noaa.gov/vents
http://www.pmel.noaa.gov/vents
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It must be noted that signals of a similar type caused by microdestructions of
rock (acoustic emission and so on) and propagating in ground and rock dampen
very rapidly and are practically imperceptible by land stations already at a distance
of several kilometers from the source. The amplitude of an acoustic signal drops
exponentially with the distance, and the exponent is proportional to the signal’s
frequency. The damping factor in water for a signal of frequency 100HZ amounts to
0.0006dB/km, inmagmatic rock it is approximately 0.01dB/km, in sedimentary rock
and sand of the order of 0.1 and 0.5dB/km, respectively. A signal of frequency 30HZ
dies out completely in sand at a distance of 2km from the source, in consolidated
sedimentary rock at a distance of 10km. In water such a signal is reliably registered
at distances of up to 1000km.

Hence follows the important conclusion that hydroacoustic monitoring of the
preparation process of an oceanic earthquakemay lead to success in resolving the dif-
ficult problem of revealing in good time a nearby earthquake at its preparation stage
and of issuing a timely and effective warning of the possible rise of a local tsunami.

During strong underwater earthquakes the ocean bottom in the epicentral area is
deformed, and the deformation not only has a horizontal component, but a vertical
one as well. If the motion is directed vertically upward, then a wave of compression
forms in the water and propagates toward the surface; if the motion is downward,
then a decompression wave forms. When reflected from a free surface of water, an
elastic wave changes its polarity; therefore, independently of the sign of the defor-
mation there may always be realized a wave of decompression which tends to “tear
apart” the liquid. The amplitude of pressure variations related to elastic waves can
be calculated by the formula

pd = ρcU,

where ρ is thewater density, c is the velocity of sound in thewater,U is the velocity of
motion of the ocean bottom. If the bottommoveswith a velocity of 1m/s, the pressure
amplitude will amount to pd = 1.5MPa.

Besides variations of pressure due to elastic waves, in the water layer there exists
a hydrostatic pressure, the increase of which with the depth is approximately linear,

pst = patm + ρgz.

The total pressure pd + pst at large depths is always positive, but in the layer
near the surface (for U = 1m/s down to z ≈ 140m) a situation may arise when
the dynamic pressure exceeds the hydrostatic pressure in absolute value, hence
the total pressure turns out to be negative.

The limit strength of water under tension is known to be about 0.25MPa. There-
fore, in the subsurface layer where the total pressure pd + pst exceeds in absolute
value the limit strength of water, violation of the water continuity is possible and it
is called cavitation. The influence of the described mechanism taking place above
the epicenter of an underwater earthquake results in the formation of a zone of cavi-
tating (partly foaming) water. This zone has a reflection coefficient (albedo) differing
from the reflection coefficient of all the remaining surface of the aquatorium. In this
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case the perturbated zone of the water surface can be registered by remote methods
(from satellites, airplanes, etc.). Note that cavitation effects in the subsurface layer
are observed in the case of underwater explosions.
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Chapter 2
Source of a Tsunami of Seismotectonic Origin

Abstract Modern ideas are presented concerning the source of an earthquake and
the seismotectonic source of a tsunami. The main physical processes taking place
at a tsunami source are described. Estimation is performed of the role of secondary
effects: of displacements of the bottom, occurring in its own plane, of the Coriolis
force, of density stratification of the water. The Okada formulae are presented and the
technique is exposed for calculating coseismic ocean bottom deformations caused
by an underwater earthquake. The dependence of the properties of coseismic ocean
bottomdeformation at the tsunami source upon the earthquakemagnitude anddepth is
analyzed applying theOkada formulae in the case of a rectangular fault. Formulae are
presented that relate themaximumvalues of the oceanbottomdeformation amplitude,
the displaced volume, and the initial elevation energy to the moment magnitude of
the earthquake. From the slip distribution, adopted from the SRCMOD database,
the vector fields of coseismic ocean bottom deformations were calculated applying
the Okada formulae for the sources of 75 underwater earthquakes that occurred
during the period between 1923 and 2013. It was shown that horizontal deformation
components of an inclined bottom, as a rule, provide an additional and noticeable
contribution to the displaced water volume and to the potential energy of the initial
elevation (the tsunami energy). The relationships were analyzed between the ocean
bottom deformation amplitude, the displaced volume and the tsunami energy, and
the moment magnitude of the earthquake; the respective regression dependences
were plotted. The part of the earthquake energy transferred to the tsunami waves was
shown to increase with its moment magnitude, but even in the case of catastrophic
earthquakes it does not exceed 0.1%. From HTDB/WLD and GHTD/NGDC data
the peculiarities were investigated of the space–time distribution of tsunamis.

Keywords Tsunami source · Tsunami generation · Bottom earthquake · Moment
magnitude · Rectangular fault · Finite fault model · Slip distribution · Coseismic
deformation · Initial elevation · Water displacement · Tsunami energy · Tsunami
intensity

According to historical data on tsunamis in the World Ocean (HTDB/WLD, GHTD/
NGDC) most of the events (more than 70%) are due to strong underwater earth-
quakes. In this connection, ideas of the seismotectonic origin of tsunamis are on the
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whole certainly of supreme importance for the issue of tsunamis. In this chapter we
shall mainly deal with problems of solid-state (-earth) physics, in particular, with
problems relevant to the physics of earthquake sources. At the same time, in the
first section of this chapter certain hydrodynamic estimates will, nevertheless, be
presented, that are necessary for a tsunami-oriented analysis of underwater earth-
quakes.

2.1 The Main Parameters and Secondary Effects

According to modern ideas, an earthquake is the abrupt release of strain accumulated
in the Earth’s crust, resulting from the relatively slow motion of lithosphere plates
(Kanamori and Brodsky 2004). The source of an earthquake can be represented as
a displacement that occurs owing to a fault along one or several planes. In the case
of large shallow events the rupture speed amounts to 75–95% of the velocity of
S-waves. An earthquake is characterized by the seismic moment

M0 = μDS[N · m], (2.1)

where μ is the shear modulus of the medium, D is the displacement amplitude
between the opposite edges of the fault, S is the area of the fault surface. The earth-
quake’s moment magnitude is related to the seismic moment by the following rela-
tionship:

Mw = log10 M0

1.5
− 6.07. (2.2)

Some seismic events (for example, Sanriku, 1896, the Aleutian earthquake, 1946)
caused tsunamis of intensities higher than could be expected from the available seis-
mic data. Kanamori (1972) termed such earthquakes “tsunami earthquakes” and pre-
sumed them to occur, when the process at the earthquake source underwent unusually
slowdevelopment. This case is characterized by a low emission efficiency of the high-
frequency component of seismic waves, which is not so important for the process of
tsunami generation.

Figure2.1 presents the relationships between the tsunami intensity (Soloviev–
Imamura scale) and the earthquake magnitudes MS (a) and Mw (b) for the World
Ocean constructed by means of the Historical Tsunami Database for the World
Ocean (HTDB/WLD) (see Sect. 1.5). The large spread between the data signifies
that the relationship between tsunamis and earthquakes is complex and ambiguous.
Comparison of the plots presented in Fig. 2.1 permits to conclude that the tsunami
intensity dependence upon the magnitude MS is characterized by a noticeably larger
spread than the dependence on the magnitude Mw. The advantage of a moment mag-
nitude scale is quite evident in the case of strong seismic events, which is apparently
due to the known saturation problem peculiar to the scale of magnitudes MS . How-
ever, the data spread remains quite significant, also, when the moment magnitude is

http://dx.doi.org/10.1007/978-3-319-24037-4_1
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Fig. 2.1 Dependence of the tsunami intensity, according to the Soloviev–Imamura scale, upon the
earthquake magnitudes MS (a) and Mw (b) for the World Ocean
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used: if the value of Mw is fixed, the difference in tsunami intensities may differ by
several units. For example, if Mw = 8, the tsunami intensity varies within 6 units
(from −2 up to +4). This means that the average heights of tsunami runups may
differ by a factor of 64 (26)! Hence it becomes evident that a tsunami prognosis
based only on seismic data is extremely unreliable. It is also important, here, to note
that in the case of strong seismic events the moment magnitude often turns out to be
primarily underestimated.

According to Gusiakov (2011) such a significant uncertainty in the tsunami inten-
sity for a fixed earthquake magnitude is due to the following four reasons: (1) the
difference in water depths within a source area; (2) the difference in earthquake
source mechanisms; (3) the difference in earthquake focus depths; (4) the difference
in tectonic settings of the source area (marginal seas, subduction zones, deep-water
oceanic plate, etc.).

It is seen that success in the investigation of tsunami generation is related not only
to resolution of the hydrodynamic part of the problem, but also to progress in resolv-
ing such a difficult problem as description of the earthquake source. It must be noted,
that the large spread is also due to the tsunami intensity not being a rigorously defined
physical quantity, like, for example, energy. At any rate, a certain positive correla-
tion within the dependences under consideration can be identified: earthquakes of
higher magnitudes are generally accompanied by tsunamis of higher intensities. The
dependences presented is a good illustration of the magnitude criterion applied in
the tsunami warning system. It is seen that the formation of practically all significant
tsunamis (I > 2) was due to earthquakes of magnitudes Mw > 7. Moreover, from
Fig. 2.1b one can conclude that earthquakes with magnitudes Mw � 9 are always
accompanied by catastrophic tsunamis of intensities I � 4.

Figure2.2 presents distributions of the number of events (tsunamis) over the earth-
quake source depth and magnitudes MS (a) and Mw (b). The distributions are based
on data from the Historical Tsunami Database for the World Ocean (HTDB/WLD).
The HTDB/WLD database contains information on a total of over 2400 tsunamis.
The magnitudes MS and the depths of earthquake sources are known simultaneously
for approximately 800 events, while the values of the magnitude Mw and the source
depth are known for about 500 events. Most known tsunamis are seen from the figure
to originate from strong and shallow earthquakes. The maxima of the distributions
lie within the range of magnitudes (MS or Mw) between 7 and 8 and within the range
of source depths from 30 up to 50km. The rapid decrease in the distributions with the
increase of depths and decrease in magnitudes reveals that weak and deep seismic
events are rarely accompanied by tsunami waves. The distributions decreasing as
the magnitude increases is related to very strong underwater earthquakes occurring
extremely rarely, although such seismic events, naturally, always give rise to tsunami
waves.

Until the end of the twentieth century, studies of the process of tsunami generation
by an earthquake were impeded by the absence of any direct measurements in the
source zone. Indeed, all the information on processes proceeding at a tsunami source
has been obtained by remote measurements done with mareographs (coastal and
deep-water devices), seismographs or hydroacoustic systems. Evidence provided
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Fig. 2.2 Distributions of the number of events (tsunamis) over the earthquake source depth and
magnitudes MS (a) and Mw (b), based on data from the Historical Tsunami Database for the World
Ocean (HTDB/WLD)
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by witnesses of underwater earthquakes is quite scarce, and it, naturally, concerns
phenomena that took place at the ocean surface. At the beginning of the present
century the situation with measurements at a tsunami source changed drastically
owing to a sharp rise in the number of deep-water observatories, especially close to
Japan. This resulted in the first measurements in history being performed with the
aid of sea-bottom stations JAMSTEC (Japan Agency for Marine-Earth Science and
Technology) directly at the source of the tsunami Tokachi-Oki of 2003 (Watanabe
et al. 2004, Nosov et al. 2005, Mikada et al. 2006). After 7.5 years no less interesting
measurements were implemented in 2011 using sea-bottom stations at the source of
the catastrophic tsunamigenic earthquake Tokhoku (e.g., Ito et al. 2011).

In simulating a tsunami of seismic origin a convenient method is usually applied
that permits not to deal with the description of the generation process in a straightfor-
ward manner. The “roundabout maneuver” consists of the following. An earthquake
is considered to suddenly cause residual deformations of the ocean bottom (actually
the duration of the process at the source may amount to 100s and more). The resid-
ual deformations of the bottom are deduced from the parameters of the earthquake
source. Then, the assumption is made that the displacement of the bottom is simul-
taneously accompanied by formation at the surface of the ocean of a perturbation,
the shape of which is fully similar to the residual deformations of the bottom. The
perturbation of the water surface (the initial elevation), thus obtained, is then applied
as the initial condition in resolving the problem of tsunami propagation.

It is interesting that the possibility to transfer sea-floor perturbations up to the sur-
face is based on the actual structure of the equations for shallow water requiring
the sole condition that the sea-floor deformation process be rapid. If, contrariwise,
one applies, for instance, potential theory, then, even if the process is instantaneous,
the perturbation of the liquid’s surface and the residual deformation will differ from
each other.

In general, it is evidently not correct, from a physical point of view, to transfer sea-
floor deformations up to the surface. Such an approach turns out to be imperfect, since
within its framework at least the following eight factors are neglected: (1) dynamics
of the bottom deformation, (2) water compressibility, (3) nonlinear effects, (4) the
contribution of horizontal deformations of the sloping (uneven) sea-floor, (5) the
smoothing effect of a water layer, (6) stratification, (7) rotation of the Earth, (8)
horizontal momentum transfer to the water layer.

The significance of some of the factors mentioned above is quite evident. Thus,
for example, in the case of deformation of the seafloor, lasting for a long time, i.e.,
when a long wave has time to propagate over a noticeable distance, as compared
with the horizontal dimension of the source, elevation of the surface will at no
particular moment of time coincide with the residual displacements of the seafloor.
But this effect could still be taken into account within the framework of the long-
wave theory. If, on the other hand, the duration of the deformation is small, then
the motion of the water layer must be described within the framework of the theory
of a compressible liquid. Here, the theory of long waves turns out to be totally
inapplicable. In the case of high-speed displacement of the seafloor an additional
contribution to the tsunami wave can also be given by nonlinear effects.
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Note the paradoxical effectmanifestedwhen tsunami generation is considered as a
process proceeding in an incompressible liquid. For definiteness we shall assume an
earthquake resulting in area S (

√
S � H) of the seafloor being displaced verti-

cally with a constant velocity by a quantity η0 during a time interval τ . According
to the theory of an incompressible liquid, practically all the water layer immedi-
ately above the moving part of the seafloor acquires a vertical velocity η0 τ−1, and,
consequently, the kinetic energy

Wk = ρSHη20

2τ 2
. (2.3)

The displacement results in a perturbation forming on the water surface (we shall
consider it identical to the deformation of the seafloor), which contains the potential
energy

Wp = ρSgη20

2
. (2.4)

The paradox consists in that the kinetic energy involved in the process has a fixed
value, but immediately after its completion the kinetic energy disappears without
leaving a trace. The paradox is readily resolved, naturally, if the condition Wp � Wk

is applied.But in reality the kinetic energymaynot only be comparable to the potential
energy, but even significantly exceed it. Indeed, from formulae (2.3) and (2.4) we
have

Wk

Wp
= τ 20

τ 2
,

where τ0 = (H/g)1/2 is the propagation time of a long gravitational wave over
a distance equal to the depth of the ocean, (τ0 ≈ 20 s for H = 4000m). In many
cases τ < τ0, and, consequently, Wk > Wp. An accurate resolution of the said
paradox is possible within the framework of the theory of compressible liquids.

For an adequate mathematical description of the processes occurring when waves
are generated it is necessary to have a clear idea of the characteristic values of
the main parameters defining the problem. The range of tsunami wave periods has
already been indicated above. The depth of the ocean in area of a tsunami source
may vary from several kilometers to zero (when the area of the seafloor deformation
extends onto the land). The horizontal size of the tsunami source usually amounts
to tens and even hundreds of kilometers. The empirical dependence, that relates
the mean radius RT S [km] of the tsunami source and the earthquake magnitude M,
is known (Dotsenko and Soloviev 1990a):

lg RT S = (0.50 ± 0.07)M − (2.1 ± 0.6). (2.5)
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Note that real tsunami sources, naturally, do not exhibit a circular, but instead
a more complex, as a rule, elongated shape. At any rate, the boundary of a tsunami
source is a concept that is essentially conventional. The source of a tsunami of
seismic origin can be defined as the area, within which an earthquake has resulted
in noticeable residual deformations of the seafloor. From records of waves made
by the method of inverse isochrones it is possible to reconstruct the tsunami source
region. It is interesting that a source reconstructed in this manner usually exhibits
a reasonable correspondence to the area of aftershock manifestations. It must also be
stressed that, as a rule, residual deformations are bipolar, i.e., elevation of the seafloor
takes place in one part of the source and it is subsided in another part. Figure2.3,
taken from Satake and Imamura (1995), presents the example of the reconstruction
of the 1968 Tokachi–Oki tsunami source.

Figure2.4 shows the areas of the fault surface at the earthquake source (solid
line) and of the tsunami source (dotted line) as functions of the earthquake seismic
moment (magnitude). The area of the tsunami source was calculated as the area of
a circle with a radius determined by formula (2.5). The area of the tsunami source
can be seen to be several times larger than the area of the fault at the earthquake
source, which is quite reasonable from a physical point of view. It is interesting to
note that the said dependencies are practically parallel.

Another essential parameter characterizing tsunami generation by an earthquake is
the displacement amplitude ξ0 [m] of the oceanic surface at the source. This quantity
approximately follows the vertical residual deformations of the ocean bottom. The
corresponding regression estimate exhibits the following form:

lg ξ0 = (0.8 ± 0, 1)M − (5.6 ± 1.0). (2.6)

Formulae (2.5) and (2.6) were derived in Dotsenko and Soloviev (1990a) for
magnitudes within the range of 6.7 < M < 8.5 by analysis of the wave field at
the source, reconstructed frommeasurements at the coast. The estimates for intervals
correspond to a 80%probability.Note that formula (2.6) seems to yield overestimated
values of residual displacements in the case of large magnitudes. The catastrophic
tsunamigenic earthquake, that occurred on December 26, 2004, and the magnitude
of which was Mw = 9.1, exhibited maximal vertical displacements of 7.8m for the
uplift area and of 5.9m for the subsidence area (see Fig. 2.15b). Formula (2.6) yields
a value ∼48m.

The duration of processes at the tsunami source also represents an important
parameter of the problem. Here, one must distinguish among several characteristic
quantities. Earlier, we already introduced the timescale τ0 = (H/g)1/2 peculiar to
problems involving surface gravitational waves. Besides, there also exists the propa-
gation time of a long gravitational wave over a distance, equal to the horizontal exten-
sion of the source, TT S = RT S(g H)−1/2. Note that the order of the tsunami wave
period depends precisely on the quantity TT S . In a similar manner one can also intro-
duce the propagation time of a hydroacoustic wave along the source, TS = RT S/c,
where c is the speed of sound in water. The maximum period of normal elastic oscil-
lations of a water layer, T0 = 4H/c, is also related to hydroacoustic waves. And,
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Fig. 2.3 Tsunami source restored applying the method of inverse isochrones (b), and residual
deformations of the seafloor (c) for the 1968 Tokachi-Oki earthquake. The figures are the numbers
of mareographs, the locations of which are shown in the map (a). The solid and dotted curves cor-
respond to the positive and negative leading wave, respectively. Adapted from Satake and Imamura
(1995)

ultimately, there exists a time, that characterizes the duration of a process occurring
at an earthquake source, TE Q . Note that deformation of the seafloor (especially in
the case of strong earthquakes) does not proceed simultaneously over the entire area
of the tsunami source, but propagates horizontally following the fault that forms
at the earthquake source. Therefore, the duration of the seafloor deformation at a
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Fig. 2.4 The area of the fault at the source of the earthquake (solid line) versus the seismic moment
(magnitude). Adapted fromKanamori and Brodsky (2004). The dotted line represents an estimation
of the area of the tsunami source in accordance with formula (2.3)

certain pointmay turn out to be significantly shorter than the quantity TE Q . In theHar-
ward sesmic catalogue (http://www.seismology.harvard.edu/) a temporal character-
istic termed “half duration” is presented, which corresponds to half the duration of
the process at an earthquake source.We shall denote this quantity by Thd [s]. Analysis
of all the earthquakes of magnitude Mw > 7, presented in the Harward catalogue
for the period between January 1976 and March 2005, (370 events) permitted us to
obtain the following regression relationship:

lg Thd = (0.42 ± 0.02)Mw − (1.99 ± 0.14). (2.7)

Such a range of amplitudes was chosen, because significant tsunamis are excited
by earthquakes with Mw > 7.

Figure2.5 demonstrates the relation between the above temporal scales and
the earthquake magnitude. In constructing the dependences we have applied for-
mulae (2.5) and (2.7) and, besides, for definiteness, we have assumed the ocean
depth to vary between 102 and 104m.

http://www.seismology.harvard.edu/
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Fig. 2.5 Timescales of a tsunami source as functions of the earthquake magnitude. TT S is
the tsunami period, Thd is the duration of the process at the earthquake source (the “half duration”),
TS is the propagation time of the hydroacoustic wave along the tsunami source, T0 is the maximal
period of normal elastic oscillations of the water layer, τ0 is the timescale for gravitational waves.
The ranges correspond to the interval of oceanic depths, 102–104 m

From Fig. 2.5 it can be seen that, as a rule, the duration of processes at the earth-
quake source, Thd, is significantly inferior to the period of the tsunami wave, TT S ,
that lies within the range 102–104 s. Therefore, the generation of waves is generally
a relatively rapid process. The quantity τ0 (within the considered range of mag-
nitudes) is always smaller than the period of the tsunami wave, TT S , however, in
a number of cases this difference may turn out to be not so significant. In this con-
nection, a tsunami can be considered a long wave, but with certain restrictions: in
the case of small-size sources phase dispersion is certain to be manifested. Let us,
now, turn to the quantity TS , which always lies between the quantities TT S and Thd.
This reflects the fact that the speed of hydroacoustic waves is always superior to
the speed of long waves, but inferior to the speed, with which the fault opens up at
the earthquake source. We further turn to elastic oscillations of the water layer. It is
readily noted that the quantities T0 and Thd have very close values, so that effective
excitation of elastic oscillations of the water layer is possible at the tsunami source.
From the figure it is also seen that the maximal period T0 of elastic eigen oscillations
of the water layer is always smaller that the tsunami period TT S , i.e., elastic oscil-
lations and tsunami waves exist in ranges that do not intersect. This, however, does
not mean that elastic oscillations cannot at all contribute to the energy of tsunami
waves. Such a contribution can be realized by means of nonlinear effects.

In setting boundary conditions on hard surfaces in hydrodynamic problems one
conventionally distinguishes between the normal and tangential components of
the flow velocity of the liquid. In the problem of tsunami generation such a hard
surface is represented by the ocean bottom, which in the case of an earthquake can
undergo motion both in its own plane, and in a perpendicular direction. We will
term such displacements tangential and normal. Actually, the surface of the ocean
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bottom has a complex structure, therefore the normal is conventionally constructed
in a certain plane—the result of averaging either over the entire area of the tsunami
source, or over a part of it. We shall consider the differences between this plane and
the actual surface of the bottom to be irregularities.

We shall show that, for the excitation of motions in a water layer, normal dis-
placements of the ocean bottom are essentially more effective, than tangential ones.
Let each point of the bottom surface at the tsunami source of area S undergo dis-
placement over a distance η0 during a time τ : once in the tangential direction and
then in the normal direction. The normal to the bottom surface is at an angle α to
the vertical direction. The slope of the surface of the oceanic bottom rarely exceeds
0.1, therefore the angle α can be considered small.

During tangential shifts the ocean bottom exerts a force on the water layer, equal
to ρ(u∗)2S, where u∗ is the friction velocity, ρ is the density of water. The energy
transferred to thewater layer by theoceanbottomundergoingmotion canbe estimated
as the work performed by this force along the path η0:

Wt = ρ(u∗)2 Sη0. (2.8)

If one passes to the reference frame related to the moving ocean bottom, then one
obtains the traditional problem of a logarithmic boundary layer, in which the quantity
η0/τ plays the part of the velocity of the average flow far from the boundary. The
friction velocity is known to be essentially smaller than the velocity of the average
flow, therefore it is possible to write

Wt � ρS
η30

τ 2
. (2.9)

We shall estimate the energy transferred to an incompressible layer of water
by a normal displacement as the potential energy of the initial elevation above
the water surface. We shall assume the horizontal dimensions of the source to essen-
tially exceed the ocean depth S1/2 � H and the displacement to be quite rapid,
τ � S1/2(gH)−1/2. In this case the entire volume of water dislodged by the slip,
η0S, will be distributed over an area S cosα of the ocean surface . Thus, the amplitude
of the initial elevation will amount to η0/ cosα. Taking into account the smallness
of the angle α we obtain the following estimate for the potential energy of the initial
elevation:

Wn = ρgS
η20

2
. (2.10)

Let us find the ratio between the energies transferred to the water layer by the nor-
mal and tangential displacements,

Wn

Wt
� gτ 2

η0
. (2.11)
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If one assumes η0 = ξ0, τ = Thd, and applies formulae (2.6) and (2.7), then one
can readily show that gτ 2

/
η0 ≈ 800 � 1. Hence it follows that tangential motions

of the ocean bottom can be neglected in the problem of tsunami generation.
Thus, movements of the seafloor in a direction perpendicular to the sea bottom

surface and accompanied by displacements of water happen to be the main effect
leading to tsunami generation.

The real ocean is always stratified, and, moreover, owing to rotation of the Earth
eachmoving particle of thewater is under the influence of a Coriolis force. Therefore,
tsunami generation is, generally speaking, accompanied by the formation of internal
waves and vortical motions.

Let us estimate the effect due to rotation of the Earth, when a tsunami is generated
byvertical displacements of the oceanbottom.We shall apply the linearized equations
of shallow water written with account of the Coriolis force for a horizontally infinite
ocean of depth H .

∂u

∂t
= −g

∂ξ

∂x
+ f v, (2.12)

∂v

∂t
= −g

∂ξ

∂y
− f u, (2.13)

H

(
∂u

∂x
+ ∂v

∂y

)
+ ∂ξ

∂t
− ∂η

∂t
= 0, (2.14)

where u, v are the components of the horizontal flow velocity, f = 2ω sin ϕ is
the Coriolis parameter, η represents small vertical deformations of the ocean bottom
(deviations from the initial position), ξ is the displacement of the free surface from
the equilibrium position. We differentiate Eq. (2.12) with respect to the coordinate
y and Eq. (2.13) with respect to the coordinate x , and, then, we subtract one from
the other. With account of the continuity equation (2.14) we ultimately obtain an
evolution equation for the vertical curl component of the velocity

∂

∂t
(rotzv) = f

H

(
∂ξ

∂t
− ∂η

∂t

)
. (2.15)

We shall assume no motion to exist in the water layer at the time moment t = 0
and the surfaces of the water and ocean bottom to be in an unperturbed state (v = 0,
η = 0, ξ = 0).We shall further assume deformation of the ocean bottom, arbitrary in
space and time, but quite rapid (τ � R(g H)−1/2), to take placewithin a circular area
of radius R, which will result in the formation of certain residual displacements. For
simplicitywe shall consider the residual displacements to differ from zero only inside
the circular area of radius R, where they assume the fixed value η0. The ocean bottom
displacement results in formation of a wave perturbation of the surface, which after
a sufficiently long period of time (T � R(g H)−1/2)will leave the area of the source
and the water surface will return to its initial unperturbed state.
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The said assumptions make it possible to integrate Eq. (2.15) over time in the time
interval from 0 up to T .

(rotzv)|t=T = − f

H
η0. (2.16)

Expression (2.16) permits to conclude that influence of the Earth’s rotation man-
ifested at the tsunami source area, considering residual displacements of the ocean
bottom to form at the site, must result in formation of a certain vortical structure.

Let us estimate the energy of the vortical structure formed by the circular residual
deformation. To this end we integrate expression (2.16) over the area of a circle of
radius r � R, the center of which coincides with the center of the source. Applying
the known Stokes formula, we pass in the left-hand part of the obtained expression
to circulation of the velocity. With account of the radial symmetry of the problem
we obtain, for the velocity of vortical motion at a distance r from the center,

V (r) = − f η0

2H

{
r, r � R,

R2/r, r > R.
(2.17)

Knowledge of the velocity distribution readily permits to calculate the kinetic
energy of the vortex. However, if the kinetic energy is calculated by integration of
the quantity ρV 2Hπr over the radius from 0 up to infinity, then the integral diverges.
This result, which at first sight seems paradoxical, is explained as follows. The point
is that in deriving formula (2.17) we neglected the residual displacement of the free
surface, which is actually peculiar to a vortical structure. Resolving the problem
(2.12)–(2.14) carefully yields a velocity decrease, that is more rapid than 1/r , which
provides for convergence of the integral (Nosov and Nurislamova 2012; Nosov et al.
2014).

However, application of formula (2.17) makes it possible to calculate the kinetic
energy of the central region of the vortical structure easily. To this end it is sufficient
to perform integration from 0 up to R. We shall treat the obtained value as the energy
of the vortex resulting from bottom deformation in a rotating ocean:

Wk = πρ f 2η20R4

16 H
. (2.18)

Let us, now, compare the energy of the vortex with the energy of the tsunami
wave, which we estimate as the potential energy of the initial elevation, similar in
shape to the residual deformation of the ocean bottom (a circular area of radius R
and height η0),

Wp = πρgR2η20

2
. (2.19)
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Comparison of formulae (2.18) and (2.19) reveals the ratio of the energy of the vor-
tex, formed at the tsunami source and due to rotation of the Earth, and the energy of
the tsunami wave itself to be given by the following expression:

Wk

Wp
= f 2 R2

8 g H
∼ 10−2 − 10−4. (2.20)

The part of the energy due to vortical motion is seen to increase quadratically with
the horizontal dimension of the source and to decrease as the ocean depth increases.
But, in any case, the contribution of this energy does not exceed 1% of the energy of
the tsunami wave. Note that such an estimate is correct for medium or high latitudes;
for equatorial regions, where the Coriolis parameter is small, it will be significantly
overestimated.

Let us, now, estimate the energy contribution of internal waves that are due to
ocean bottom displacements. We shall consider the model of an ocean consisting of
two layers: the upper layer of thickness h1 with a free surface, and the lower layer
of thickness h2. The density of the upper layer is ρ1 and of the lower layer ρ2 (ρ2 >

ρ1). In this case it is convenient to base estimations on the one-dimensional (along
the horizontal coordinate) model, constructed within the framework of the linear
theory of long waves. We shall consider a segment of the ocean bottom of length L
to undergo a vertical displacement η0 during a time interval τ � L (g(h1 + h2))

−1/2.
Such a displacement represents an impulse not only for surface waves, but also for
internal waves, since the propagation velocity of the latter is significantly smaller.
The displacement results in the formation of initial elevations both on the water
surface and on the boundary surface separating the two layers; we shall consider these
elevations to be similar in shape to the deformation of the ocean bottom. In principle,
it should be possible already at this stage of reasoning to compare the energies of
internal, Wint , and of surface, Wsur , tsunami waves by comparison of the potential
energies of the initial elevations. This ratio is evidently given by the formula

Wint

Wsur
≈ ρ2 − ρ1

ρ2
∼ 10−3. (2.21)

But such a value is actually strongly overestimated. The point is that the evolution
of initial elevations gives rise to two sets of waves, each of which consists of per-
turbations on the water surface and on the jump of density. One of the sets of waves
propagates rapidly with the velocity of surface waves, the other one is essentially
slower and propagates with the velocity of internal waves. As the initial elevation
evolves, the water particles on the free water surface in the vicinity of the source are
shifted downward. The maximum of this displacement, equal to η0, corresponds to
the free surface. At the ocean bottom, owing to there being no flow, the displacement
equals zero. Assuming the displacement to depend linearly on the vertical coordinate,
we obtain the displacement at the level of the density jump, �η = η0h2

/
(h1 + h2).

The evolution of the elevation on the free surface is seen to result in the initial eleva-
tion at the density jump being reduced by the quantity �η, while its height becomes
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equal to ηint = η0h1
/
(h1 + h2). Naturally, the potential energy, that is proportional

to the square height of the initial elevation, also, decreases, here. A more correct
estimation yields the following relationship between the energies of the internal and
surface tsunami waves:

Wint

Wsur
≈ ρ2 − ρ1

ρ2

(
h1

h1 + h2

)2

∼ 10−5. (2.22)

Estimations reveal that stratification of the ocean and rotation of the Earth can-
not significantly influence the process of tsunami generation by an earthquake. But
a small part of the earthquake’s energy is transferred both to baroclinic motions and
to vortical fields.

A complete physical formulation of the problem of tsunami generation by an
earthquake should, generally speaking, consider a layer of viscous compressible
stratified liquid on an elastic semispace in the gravitational field with account of
the Earth’s rotation. The above reasoning makes it possible to essentially simplify
formulation of the problem. As a first approximation, we shall consider the process
of tsunami generation by an earthquake to be a phenomenon occurring in a homo-
geneous (nonstratified) perfect incompressible liquid in the gravitational field in
an inertial (without rotation) reference frame. Deformations of an absolutely rigid
ocean bottom of finite duration and small amplitude (A � H) serve as the source of
waves. Owing to tsunami waves being subject to dispersion, it is expedient to resolve
the problem within the framework of potential theory.

In conclusionwe shall brieflydwell upononemorepossiblemechanismof tsunami
formation in the case of underwater earthquakes. Experience of the investigation of
catastrophic and strong seismic events shows that numerous seismic cracks of lengths
exceeding tens of kilometers and widths amounting to 5–15m arise at the epicentral
zone. Dilatant changes of the state of rock in the same area develop, enhancement of
the specific volume of the medium takes place, as well as revelation of microcracks
and growth of its permeability. In the case of underwater earthquakes such processes
should clearly take place in the rock of the ocean bottom. Rapid opening of the cracks
at the ocean bottom should lead to an impetuous drainage of water.

Evidence provided by witnesses of the 1999 Izmit earthquake revealed that
one of the shallow regions of the Sea of Marmara was dried up by the exclusive
drainage of water through cracks in the seafloor; large areas of the seafloor were
completely uncovered. In scientific literature, such phenomena are conventionally
termed the Moses effect, in memory of the biblical Exodus through the Red Sea.
Naturally, the dried areas of the seafloor remain for a short time until the water fills
up the entire volume formed by the created set of cracks.

The impetuous drainage ofwater into cracks results in a local lowering of the ocean
level. Such an initial perturbation is also capable of generating tsunami waves. The
first results of mathematical simulation of the formation mechanism of a tsunami,
caused by a fault opening up in the bottom, are presented in Levin and Nosov (2008).
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2.2 Okada Formulae

For simulating tsunamiwaves of seismotectonic origin it is necessary to have realistic
data concerning the residual (coseismic or static) deformations of the ocean bottom,
resulting from an underwater earthquake. Residual deformations can be calculated
on the basis of seismic data, making use of the analytical solution for the station-
ary problem of elasticity theory. The tensions and displacements caused by sources
within the elastic semispace have been studied bymany authors (e.g., Chinnery 1961,
Maruyama 1964, Press 1965, Savage and Hastie 1966, Gusiakov 1978, Matsu’ura
and Tanimoto 1980). In calculations of residual deformations of the ocean bottom
at a tsunami source references are usually made to the work of Okada (1985), who
brought together, systematized, and checked the calculation formulae carefully. Now
these formulae are often termed Okada formulae. It must be stressed that the Okada
formulae only permit to calculate static deformations. To reconstruct the dynamics
of bottom deformations it is necessary to resolve another, more general, problem.

In this section, formulae are presented for surface displacements due to inclined
shear and tensile faults in an isotropic homogeneous elastic half-space. The expres-
sions have been carefully checked to be free from any singularities and misprints.

The Yoshimitsu Okada formulae are quite cumbersome and contain numerous
variables. Therefore, in this section, in order to avoid errors, instead of our traditional
notation, we shall accurately follow Okada (1985) and apply the original notation
adopted therein.

We take the Cartesian reference system as it is shown in Fig. 2.6. The elastic
medium occupies the region of z � 0. The 0x axis is taken to be parallel to the strike
direction of a finite rectangular fault of length L and width W . Burgers vector

Fig. 2.6 Geometry of
the source model (length L ,
width W , Burgers vector U,
dip angle δ, rake angle θ ,
angle between Burgers
vector U and the fault
plane γ )
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U = (U1, U2, U3) shows the movement of the hanging wall side block relative to
the footwall side block. Elementary dislocations U1, U2, and U3 are defined so as to
correspond to strike-slip, dip-slip, and tensile components of arbitrary dislocations.
The tensile component U3 is normal to the fault plane.

A dislocation is determined by four angles: the strike angle ϕ (clockwise from
North), the dip angle δ, the rake (slip) angle θ , and the angle γ betweenBurgers vector
U and the fault plane. Elementary dislocations U1, U2, and U3 are linked to Burgers
vector in the following way: U1 = |U| cos γ cos θ, U2 = |U| cos γ sin θ, U3 =
|U| sin γ .

The final results condensed into compact forms using Chinnery’s notation ‖ to
represent the substitution

f (ξ, η)‖ = f (x, p) − f (x, p − W ) − f (x − L , p) + f (x − L , p − W ). (2.23)

For strike-slip

ux = −U1

2π

[
ξq

R(R + η)
+ arctan

(
ξη

q R

)
+ I1 sin δ

] ∥
∥
∥∥,

uy = −U1

2π

[
ỹq

R(R + η)
+ q cos δ

R + η
+ I2 sin δ

] ∥∥∥∥,

uz = −U1

2π

[
d̃q

R(R + η)
+ q sin δ

R + η
+ I4 sin δ

] ∥∥∥∥.

(2.24)

For dip-slip

ux = −U2

2π

[ q

R
− I3 sin δ cos δ

] ∥∥∥∥,

uy = −U2

2π

[
ỹq

R(R + ξ)
+ cos δ arctan

(
ξη

q R

)
− I1 sin δ cos δ

] ∥∥∥∥,

uz = −U2

2π

[
d̃q

R(R + ξ)
+ sin δ arctan

(
ξη

q R

)
− I5 sin δ cos δ

] ∥
∥∥∥.

(2.25)

For tensile fault

ux = U3

2π

[
q2

R(R + η)
− I3 sin

2 δ

] ∥
∥∥∥,

uy = U3

2π

[
−d̃q

R(R + ξ)
− sin δ

{
ξq

R(R + η)
− arctan

(
ξη

q R

)}
− I1 sin

2 δ

] ∥∥
∥∥,

uz = U3

2π

[
ỹq

R(R + ξ)
+ cos δ

{
ξq

R(R + η)
− arctan

(
ξη

q R

)}
− I5 sin

2 δ

] ∥
∥∥
∥,

(2.26)
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where

I1 = − μ

λ + μ

[
ξ

(R + d̃) cos δ

]
− I5 tan δ,

I2 = − μ

λ + μ
ln(R + η) − I3,

I3 = μ

λ + μ

[
ỹ

(R + d̃) cos δ
− ln(R + η)

]
+ I4 tan δ,

I4 = μ

λ + μ

1

cos δ

[
ln(R + d̃) − sin δln(R + η)

]
,

I5 = μ

λ + μ

2

cos δ
arctan

(
η(X + q cos δ) + X (R + X) sin δ

ξ(R + X) cos δ

)
,

(2.27)

and if cos δ = 0,

I1 = − μ

2(λ + μ)

ξq

(R + d̃)2
,

I3 = μ

2(λ + μ)

[
η

R + d̃
+ ỹq

(R + d̃)2
− ln(R + η)

]
,

I4 = − μ

λ + μ

q

R + d̃
,

I5 = − μ

λ + μ

ξ sin δ

R + d̃
,

(2.28)

p = y cos δ + d sin δ,

q = y sin δ − d cos δ,

ỹ = η cos δ + q sin δ,

d̃ = η sin δ − q cos δ,

R2 = ξ2 + η2 + q2,

X2 = ξ2 + q2.

(2.29)

Under special conditions some terms in formulas (2.24)–(2.28) become singular.
To avoid all singularities, the following rules should be obeyed:

i. when q = 0, set arctan (ξη/q R) = 0 in Eqs. (2.24)–(2.26);
ii. when ξ = 0, set I5 = 0 in Eq. (2.27);
iii. when R + η = 0, set all the terms which contain R + η in their denominators to

zero in Eqs. (2.24)–(2.28), and replace ln(R + η) by −ln(R − η) in Eqs. (2.27)
and (2.28).

To assist the development of a computer program based on expressions (2.23)–
(2.29), several numerical results, permitting to check it, are listed in Table2.1.
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Table 2.1 Checklist for numerical calculations

ux uy uz

Case 1: x = 2; y = 3; d = 4; δ = 70◦; L = 3; W = 2

Strike −8.689E − 3 −4.298E − 3 −2.747E − 3

Dip −4.682E − 3 −3.527E − 2 −3.564E − 2

Tensile −2.660E − 4 +1.056E − 2 +3.214E − 3

Case 2: x = 0; y = 0; d = 4; δ = 90◦; L = 3; W = 2

Strike 0 +5.253E − 3 0

Dip 0 0 0

Tensile +1.223E − 2 0 −1.606E − 2

Case 3: x = 0; y = 0; d = 4; δ = −90◦; L = 3; W = 2

Strike 0 −1.303E − 3 0

Dip 0 0 0

Tensile +3.507E − 3 0 −7.740E − 3

A medium is assumed to be λ = μ in the all cases, and the results are presented in
units of Ui .

When applying Okada formulae in geophysics one should bear in mind that
the effect of the Earth’s curvature is negligible for shallow events at distances of
less than 20◦, but that vertical stratification or lateral inhomogeneity can sometimes
considerably influence the deformation field. An analysis of the influence exerted on
the deformation field by the factors indicated can be found, for example, in Nostro
et al. (1999).

The Lame constants λ and μ enter into expressions (2.27), (2.28) in the form
of a combination, which for practical calculations is conveniently expressed via the
respective velocities of longitudinal and transverse seismic waves, cp and cs ,

κ ≡ μ

λ + μ
= c2s

c2p − c2s
. (2.30)

The following analysis was performed in order to reveal the range of variability of
the quantity κ in actual natural conditions. All underwater earthquakes with moment
magnitudes Mw ≥ 6 (about 3600 events during the period of 1976–2012) were
selected from the Global CMT Catalog (http://www.globalcmt.org/) (Ekström et al.
2012). The quantity κ , we are interested in, was determined for each seismic event
from its coordinates and depth in accordance with the global model CRUST2.0
(http://igppweb.ucsd.edu/~gabi/crust2.html) (Bassin et al. 2000). It turned out to
be that in the case of real underwater earthquakes the quantity κ varies within the
range from 0.42 up to 0.52. Variations of the quantity κ within the range indicated
weakly affect the result—the residual deformation of the ocean bottom (up to several
percent). Therefore, in calculations of residual deformations at tsunami sources the
assumption is often made that λ = μ, i.e., κ = 0.5, which, as we see, can be
considered quite justified.

http://www.globalcmt.org/
http://igppweb.ucsd.edu/~gabi/crust2.html


2.3 Rectangular Fault: Relationship Between the Parameters … 55

2.3 Rectangular Fault: Relationship Between
the Parameters of a Tsunami Source
and the Earthquake Moment Magnitude and Depth

Many researchers (e.g., Iida 1963, Hatori 1970, Yamashita and Sato 1974,
Alekseev and Gusyakov 1976, Ward 1980, Kajiura 1981, Dotsenko and Soloviev
1990a, Pelinovsky 1996, Okal 1988, Okal 2003, Bolshakova and Nosov 2011,
Poplavskii et al. 2012, Nosov et al. 2014) have been interested in the simple general
regularities relating the parameters of a tsunami source and characteristics of the
seismic fault area. Usually, in accordance with the approach widely spread in seis-
mology (e.g., Kanamori and Anderson 1975, Kanamori 1977, Sato 1979, Wells and
Coppersmith 1994, Okada 1995, Kanamori and Brodsky 2004), attempts were made
to relate the parameters of a tsunami source, such as its area (or average radius),
the displacement amplitude of the water surface and the initial elevation energy to
the earthquake magnitude. In Sect. 2.1, we already presented two such dependences,
(2.5) and (2.6), derived from empirical data (Dotsenko and Soloviev 1990b). As
another typical example we may note the relation between the tsunami energy (the
initial elevation energy) and the magnitude obtained theoretically in Kajiura (1981),

log10 ET S[J ] = 2.0 Mw − 2.46. (2.31)

Making use of the normal mode theory (Okal 2003) analytically obtained an
expression relating the tsunami energy within a distant zone to the seismic moment
M0 (dyn × cm):

ET S[ergs] = 7.4 × 10−17M4/3
0 . (2.32)

Passing in formula (2.32) to SI units and expressing the seismic moment via the
moment magnitude by means of formula (2.2), formula (2.32) is readily rewritten in
terms of the momentary magnitude:

log10 ET S[J ] = 2.0Mw − 1.66. (2.33)

It is remarkable that in spite of the difference between the approaches applied for
obtaining expressions (2.31) and (2.33) they demonstrate an impressive similarity.
However, Kajiura’s formula (2.31) yields energy values that are underestimated by a
factor of approximately 6.3 in comparison to Okal’s formula (2.33). What concerns
the accuracy of theoretical estimates of the tsunami energy, as noted by Okal himself
(2003), there regretfully exist no experimental methods permitting to measure the
energy of large transoceanic tsunamis. It may be that the only more or less reliable
method for estimating the energy of a tsunami consists in calculating the potential
energy of initial elevation.



56 2 Source of a Tsunami of Seismotectonic Origin

The interest in general relationships such as (2.5), (2.6), (2.31)–(2.33) is readily
explained. They can turn out to be useful not only for operative estimation of an
earthquake tsunamigenicity, but also from the point of view of understanding the
physical nature of phenomena taking place in the water layer above the underwater
earthquake source. On the basis of such relationships, for example, it is possible,
from the given earthquake magnitude and depth, to rapidly estimate the maximum
possible amplitude ofwaves at the source, aswell as their length, to determine the part
of the earthquake energy transferred to the tsunami wave or to some other dynamic
process.

In this section we shall apply the Okada formulae to derive the main regularities
relating the parameters of a tsunami source to the respective earthquake magnitude
and depth.

In the simplest case the source of a tsunamigenic earthquake can be represented by
a rectangular fault with a uniform slip distribution. The Okada formulae presented in
the preceding Sect. 2.2 are applicable precisely in the case of such a seismic source.
In spite of the Okada formulae being analytical expressions, applying them to reveal
general regularities represents a nontrivial problem. The point, here, consists not
only in the expressions being cumbersome, but, mainly, in the large number of input
parameters. Indeed, the calculation of bottom deformations at the tsunami source
with the aid of the Okada formulae requires the following set of input parameters
(see Fig. 2.6): the depth d of the fault area, the width W and length L of the fault
area, the length of the Burgers vector, |U |, the dip angle δ, the angle between the
strike direction and the slip direction, θ , the angle between the Burgers vector and
the fault plane, γ , and, also, the Lame coefficients λ and μ, that characterize the
elasticity properties of a medium. If calculations are performed for a real event,
the above nine parameters must be supplemented with three more quantities: the
longitude and latitude of the earthquake epicenter, and, also, the strike angle φ. To
analyze the general properties of oceanic bottom deformations in a 9-dimensional
(11-dimensional) space of input parameters is not only an extremely complicated
task, but is also devoid of any practical expediency—it is easier to deal with concrete
seismic events, for which all the aforementioned parameters have definite values.

Let us reduce the number of input parameters making use of physically reason-
able assumptions and known constraints (Bolshakova and Nosov 2011). We shall,
first, assume the Burgers vector to lie in the plane of the fault area: U = (U1, U2, 0)
(see Fig. 2.7). Second, we shall consider the Lame coefficients to be equal to each
other, λ = μ (the expediency of this assumption is shown in Sect. 2.2). As additional
constraints we shall invoke the definition of the seismic moment (2.1), the relation-
ship between the seismic moment and the moment magnitude (2.2), and, also, the
empirical formulae given by Kanamori and Anderson for parameters of the fault area
(Kanamori and Anderson 1975):

L/W = 2, U/L = 5 × 10−5. (2.34)
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Fig. 2.7 Geometry of the
source model of an
earthquake. L is the length of
the fault plane, W is the
width of the fault plane, U is
the Burgers vector, δ is the
dip angle, θ is the rake angle,
h is the depth of the upper
edge of the fault plane

Formulae (2.1), (2.2) and (2.34) permit to express the dimensions of the fault
area and the slip value (the length of the Burgers vector) via the earthquake moment
magnitude

log10 L[km] = 0.5 Mw − AL , (2.35)

log10 W [km] = 0.5 Mw − AW , (2.36)

log10 U [m] = 0.5 Mw − AU . (2.37)

The shear modulus entering into formula (2.1) for the seismic moment varies
within the range of 3 − 8 × 1010 Pa. As a consequence the coefficients involved
in formulae (2.35)–(2.37) also undergo insignificant variations: AL = 1.92 − 2.07,
AW = 2.22−2.37, AU = 3.22−3.37. The lower boundaries of the ranges indicated
correspond to the minimal value of the shear modulusμ = 3×1010 Pa that is typical
for crustal faults. In all further calculations we shall make use of precisely these
minimal values (AL = 1.92, AW = 2.22, AU = 3.22)—in this case formulae
(2.35)–(2.37) are equivalent to the known expressions presented, for example, in the
Handbook for Tsunami Forecast (2001).

Taking into account the adopted assumptions and constraints (2.35)–(2.37), we
arrive at a reduced set of input parameters for the Okada formulae, which only
includes four quantities: the moment magnitude Mw, the angles Dip (δ), and Rake
(θ), as well as the depth d of the earthquake source. In the case of strong shallow
earthquakes, which are precisely the most interesting ones as tsunami sources, the
source depth and the width W of the fault area are often comparable quantities. If the
source depth is set equal to the depth of the lower edge of the fault area and the Dip
angle and/or moment magnitude, upon which the width of the fault area depends,
are varied, then in a number of cases the fault may emerge at the surface. To prevent
the fault from emerging at the surface, it is convenient to consider the source depth
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to be equal to the depth of the upper edge of the fault area, h = d − W sin δ (see
Fig. 2.7). We shall choose precisely this characteristic as a measure of the depth of
an earthquake source.

The small number of input parameters permits to apply the Monte Carlo method
quite efficiently to reveal general properties of bottom deformations. For example,
one of the parameters can be fixed, while variations of the remaining ones are random
and statistically uniform within given ranges. Such an analysis was performed by
Yoshimitsu Okada in Okada (1995) for a point double-couple source. But these
results cannot be applied in analyzing the properties of oceanic bottom deformations
in the case of tsunamigenic earthquakes, which, as a rule, are strong and shallow. The
source of a tsunamigenic earthquake can evidently not be represented by a point. It
is always quite an extended region, the dimensions of which amount to tens and even
hundreds of kilometers and in certain cases (for example, Sumatra 2004) exceed a
thousand kilometers.

To obtain the relationships between the earthquake parameters and the tsunami
characteristics it is additionally necessary to adopt a number of assumptions concern-
ing the mechanism of wave generation. As it was shown in Sect. 2.1, the main effect
resulting in the generation of tsunami waves in the case of earthquakes consists in
the displacement of water by the residual (coseismic) bottom deformation. Consider
a water layer limited by a free surface from above and by the bottom surface of
arbitrary form from below. Consider the origin of the reference frame to be situated
on the unperturbed water surface. Let the 0z axis be directed vertically upward, and
the 0x and 0y axes to the East and North, respectively. Consider the position of the
bottom before the earthquake to be determined by the formula

z = −H(x, y). (2.38)

After the earthquake the bottom occupies a new position:

z = −H(x, y) + η(x, y), (2.39)

where η(x, y) is the residual displacement of the bottom surface. To determine the
relationship between the vector field of bottom deformations, D ≡ (Dx , Dy, Dz),
and function η(x, y) consider a certain point situated on the unperturbed bottom
surface, P0 = (x0, y0, z0). The coordinates of this point satisfy Eq. (2.38). As a
result of coseismic deformation after the earthquake the pointmoves to a newposition
P1 = (x0 + Dx , y0 + Dy, z0 + Dz), continuing to remain on the bottom surface.
Now, the coordinates of this point satisfy Eq. (2.39) which assumes the following
form:

z0 + Dz = −H(x0 + Dx , y0 + Dy) + η(x0 + Dx , y0 + Dy). (2.40)

In the practice of numerical tsunami simulation functions, H(x, y) and η(x, y),
involved in Eq. (2.40), are represented discretely on a certain grid with a spatial
increment Δ. This means that the structure of these functions in between the nearest
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nodes of the grid remain beyond consideration. It is reasonable to assume that in
between nodes functions H(x, y) and η(x, y) are sufficiently smooth, for example,
linear, otherwise the choice of the grid increment would have to be acknowledged to
be erroneous. The grid increment is usually Δ ∼ 103m. The coseismic deformation
amplitude is significantly inferior to this value: |D| << Δ. Consequently, function
H(x, y) in Eq. (2.40) can be expanded into a Taylor series at the point (x0, y0),
retaining only linear terms in the expansion. For function η(x, y) it is reasonable
to adopt an even more simple assumption: η(x0 + Dx , y0 + Dy) ≈ η(x0, y0). As a
result, taking into account Eq. (2.38), we obtain a relationship between the residual
displacement of the bottom surface and the vector field of bottom deformations as
well as the distribution of depths (Nosov et al. 2014)

η = ∂ H

∂ x
Dx + ∂ H

∂ y
Dy + Dz . (2.41)

A similar formula was previously obtained in Tanioka and Satake (1996) on the
basis of arguments of a intuitive physical character.

From formula (2.41) it is seen that calculation of the residual displacement of the
bottom surface, generally speaking, not only requires information concerning the
vector field D, but also information on the distribution of depths, which is, naturally,
individual for each tsunami source. In this connection analysis of the contribution of
horizontal components (the first two terms in formula (2.41)) cannot be performed in
the general case, i.e., without being related to real tsunami sources. This problemwill
be dealt with in the next Sect. 2.4. Here, in order to obtain general relationships we
shall restrict ourselves to applying the model of an ocean of fixed depth H = const .
In this case, only the vertical component of the bottomdeformation vector contributes
to the generation of tsunami waves: η = Dz .

Function η(x, y), describing displacement of the bottom surface, may exhibit
quite a complex structure even in the idealized case of a uniform distribution of
the slip along a rectangular fault area (see Fig. 2.8). In the case of real events, with
account of bathymetry (H �= const) and of slip inhomogeneities along the fault
surface, the structure of function η(x, y), may, evidently, be even more complex.

Which tsunami source parameters, determined by deformation of the bottom,
η(x, y), should be considered? Generally speaking, quite a significant number of
parameters, such as, for example, a set of amplitudes of Fourier harmonics, may be
required for a complete description of function η(x, y). We must, naturally, not take
the path of calculating Fourier harmonics, butwill take advantage of a limited number
of parameters, each of which has a clear physical meaning and is unambiguously
determined by function η(x, y). Of all the multitude of such parameters we have
found it reasonable to consider the following set of quantities:

1. the double amplitude of vertical bottom deformation:

A = Max [η(x, y)] − Min [η(x, y)] , (2.42)
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Fig. 2.8 Examples of calculations of the coseismic bottom deformation by the Okada formulae
(Okada 1985). The parameters of the rectangular source with uniform distribution of the slip are
indicated in figure

2. the absolute value of the displaced water volume:

V =
∣∣
∣∣

∫∫
η(x, y) d x d y

∣∣
∣∣ , (2.43)

3. the potential energy of the initial elevation:

E = ρ g

2

∫∫
η2(x, y) d x d y, (2.44)

where g is the gravity acceleration, ρ is the density of water (in calculations we
assumed g = 9.8m / s2, ρ = 1000kg/m3). In determining energy E we apply the
traditional approximation, according to which a bottom deformation immediately
gives rise to a perturbation of equivalent shape at thewater surface: ξ = η. The search
for extreme values in formula (2.42) and integration in formulae (2.43) and (2.44)
was performed over the entire region, where noticeable bottom deformations were
observed. In practice this region was defined as follows: −2L − 2h < x < 3L + 2h,
−2W −2h < y < 3W +2h. Integration was carried out numerically by the methods
of rectangles. The number of rectangular cells in the region amounted to 100× 100.
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Let us note a “subtle point” related to calculation of integral (2.43). From the
Okada formulae it follows that at large distances from the source the amplitude
of the oceanic bottom deformation decreases inversely proportional to the square
epicentral distance: η ∼ r−2 (Okada 1995). Consequently, the integral in formula
(2.43), if calculatedwithin infinite limits, will diverge. In this connection, the value of
the displaced volume, generally speaking, depends on the chosen integration region.
However, only significant bottom deformations, occurring in the nearby zone, influ-
ence tsunami generation. Calculation of the energy integral (2.44) gives rise to no
problems. The drop of the integrand function with distance in formula (2.44) is sig-
nificantly more rapid (η2 ∼ r−4), therefore the integral is sure to converge, even in
the case of integration within infinite limits.

The amplitude of bottom deformation, A, to a significant extent determines the
tsunami runup amplitude—the importance of this characteristic cannot give rise
to any doubt. As to the displaced volume V and initial elevation energy E , the
significance of these characteristics is confirmed by the fact that in the problem of
tsunami propagation in an open ocean both quantities are integrals of motion. Indeed,
certain “losses” of displaced volumemayoccur, but only during the runupprocess and
in the case of sufficiently strong tsunamis, when thewaves cover significant distances
of land and flood local depressions. Noticeable dissipation of tsunami energy also
takes place only in the runup zone (or in shallow water), especially if the propagation
of waves is accompanied by their collapse (Li and Raichlen 2002; Bernatskiy and
Nosov 2012).

To reveal the dependence of quantities A, V , and E upon the earthquake moment
magnitude Mw and depth use was made of theMonte Carlo method. In the first series
of calculation variations of theDip andRake angles, aswell as of themagnitude, were
statistically uniform within the following ranges: 0 � δ � π/2, −π/2 � θ � π/2,
6.5 � Mw � 9.5. The depth of the upper edge of the fault area, h, was made to
assume fixed values: 0, 10, 30, 100 and 300km. For each depth value 5000 numerical
experiments were performed. The results of calculations, namely the dependencies
of quantities A, V and E upon the moment magnitude Mw, are shown in Figs. 2.9,
2.10 and 2.11, respectively.

A common property of the dependences presented consists in that all the parame-
ters investigated tend to exhibit a rapid exponential rise as the earthquake magnitude
increases. The dependences are characterized by a significant spread in the data,
related to the influence of the orientation of the fault area (the Dip angle) and the slip
direction (the Rake angle) on the parameters investigated. The “clouds” of points are
characterized by clearly defined upper limits that are determined by the following
simple formulae (Bolshakova and Nosov 2011):

log10 Amax[m] = 0.5 Mw − 3.22, (2.45)

log10 Vmax[m3] = 1.5 Mw − 1.8, (2.46)

log10 Emax[J ] = 2.0 Mw − 1.7. (2.47)
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Fig. 2.9 Double amplitude of coseismic bottom deformation at tsunami source versus moment
magnitude. The calculation is performed for fixed depth values of the upper edge of the fault area,
h = 0, 10, 30, 100, and 300km. Variations of the Dip and Rake angles and, also, of the magnitude
were random and statistically uniform within the ranges: 0 � δ � π/2, −π/2 � θ � π/2,
6.5 � Mw � 9.5. The color of the points varies depending on the depth h in accordance with
the legend shown in the figure. The black line, marking the upper edge of the “cloud” of points is
constructed in accordance with formula (2.45)

The dependences (2.45)–(2.47) are shown by solid lines in the figures. Note that
the slip value serves as an upper limit for the amplitude of bottom deformations: the
numerical coefficients in formulae (2.37) and (2.45) coincide.

In the case of amplitude A and energy E the dependence upon the earthquake
source depth is quite clear.As the depth increases, both quantities decrease noticeably,
and the drop is more rapid at smaller magnitudes.

Unlike the amplitude and energy, the displaced volume does not depend on the
depth of the earthquake source. This feature can be explained by the drop in the
deformation amplitude in the case of a pointlike source (i.e., for each element of
the fault area) being inversely proportional to the square distance η ∼ r−2 Okada
(1995). Within the area dx dy the elementary volume dV = η dx dy is displaced. If
one passes to spherical coordinateswith the origin at the chosen pointlike source, then
dx dy ∼ r2 dϕ dψ . The quantity dV is seen to be independent of the distance from
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Fig. 2.10 Displacedwater volume (its absolute value) at tsunami source versusmomentmagnitude.
The calculation is performed for fixed depth values of the upper edge of the fault area, h = 0, 10, 30,
100, and 300km. Variations of the Dip and Rake angles and, also, of the magnitude were random
and statistically uniform within the ranges: 0 � δ � π/2, −π/2 � θ � π/2, 6.5 � Mw � 9.5.
The color of the points varies depending on the depth h in accordance with the legend shown in the
figure. The black line, marking the upper edge of the “cloud” of points is constructed in accordance
with formula (2.46)

the source, r . Consequently, the whole displaced volume should also be independent
of the source depth.

By combining formulae (2.45) and (2.46) it is possible to obtain an estimate for
the average radius of the tsunami source, (Rts ≡ √

Vmax/Amax):

log10 Rts[km] = 0.5 Mw − 2.29. (2.48)

The obtained estimate is in good agreement with the empirical formula (2.5).
From formulae (2.45)–(2.48) it follows that in the case of a magnitude Mw = 7

the tsunami source parameters have an upper limit defined by the following values:
Amax = 1.9m, Vmax = 5.0 × 108m3, Emax = 2.0 × 1012 J, Rts = 16km, while, if
Mw = 9: Amax = 19m, Vmax = 5.0×1011 m3, Emax = 2.0×1016 J, Rts = 162km.
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Fig. 2.11 Potential energy of the initial surface elevation at tsunami source versus moment mag-
nitude. The calculation is performed for fixed depth values of the upper edge of the fault area,
h = 0, 10, 30, 100, and 300km. Variations of the Dip and Rake angles and, also, of the magni-
tude were random and statistically uniform within the ranges: 0 � δ � π/2, −π/2 � θ � π/2,
6.5 � Mw � 9.5. The color of the points varies depending on the depth h in accordance with
the legend shown in the figure. The black line, marking the upper edge of the “cloud” of points is
constructed in accordance with formula (2.47)

Comparison of the tsunami energy determined by formula (2.47) with the known
estimate of an earthquake energy (Kanamori 1977)

log10 EE Q[J ] = 1.5 Mw + 4.8, (2.49)

gives an estimate of the part of an earthquake energy contributing to the formation
of tsunami waves,

log10 Emax/EE Q = 0.5 Mw − 6.5. (2.50)

In accordance with formula (2.50) one can conclude that usually quite a small
part of the energy of an earthquake is passed on to tsunami waves: between 0.1%
(Mw = 7) and 1% (Mw = 9). Hence follows an importantworld-outlook conclusion.
From the point of view of energy, tsunami waves, that carry an enormous destructive
potential, only represent a weak “echo” of a catastrophic earthquake.
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Fig. 2.12 Double amplitude of coseismic bottom deformation at tsunami source versus depth of
earthquake. The calculation was performed for fixed values of the moment magnitude Mw = 7, 8,
and 9. Variations of the Dip and Rake angles and, also, of the quantity log10 h were random and
statistically uniform within the ranges: 0 � δ � π/2, −π/2 � θ � π/2, 0 < log10 h[m] < 5.8.
The color of the points varies depending on the magnitude Mw in accordance with the legend shown
in the figure

The aim of the second series ofMonte Carlo calculations was to reveal the charac-
ter of the dependence of the amplitude A and energy E on the earthquake depth. Three
fixed values were chosen for the magnitude: Mw = 7, 8, 9. The angles Dip and Rake,
as well as the quantity log10 h, underwent variations that were statistically uniform
within the following ranges: 0 � δ � π/2,−π/2 � θ � π/2, 0 < log10 h[m] < 5.8
(1m < h < 700km). For each value of the magnitude 5000 numerical experiments
were performed. The results of calculations are shown in Figs. 2.12 and 2.13.

From Figs. 2.12 and 2.13 it is seen that in spite of a significant spread in the data
a general tendency can be clearly traced: the amplitude and energy are independent
of the earthquake source depth up to certain critical values of the quantity h. In the
case of large depths both quantities undergo a decrease that is inversely proportional
to the square source depth: A ∼ h−2, E ∼ h−2. The first regularity follows directly
from the law, according to which the deformation amplitude decreases with distance:
η ∼ r−2 (Okada 1995). To obtain the second regularity it is necessary to take into
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Fig. 2.13 Potential energy of the initial surface elevation at tsunami source versus earthquake
depth. The calculation was performed for fixed values of the moment magnitude Mw = 7, 8 and 9.
Variations of the Dip and Rake angles and, also, of the quantity log10 h were random and statistically
uniform within the ranges: 0 � δ � π/2, −π/2 � θ � π/2, 0 < log10 h[m] < 5.8. The color
of the points varies depending on the magnitude Mw in accordance with the legend shown in the
figure

account that the area encompassing noticeable deformations increaseswith the source
depth: S ∼ h2. Therefore, the energy, that is proportional to the product of the square
deformation times area, decreases according to the indicated law: E ∼ η2S ∼ h−2.

From Figs. 2.12 and 2.13 it is possible for eachmagnitude to determine the critical
source depth hc, beyond which the amplitude and energy start to decrease sharply
with the depth. Let us describe the scheme for determining critical values of hc. At
small depths a horizontal straight line is constructed along the upper edge of the
“cloud” of points, at large depths a straight line corresponding to the h−2 law is
constructed. The intersection point of the straight lines determines the sought value
of hc The critical depth hc increases with the moment magnitude. It is remarkable
that the values of hc, determined from the dependences for the amplitude and for
the energy, are practically equivalent. The critical depths have the following values:
hMw7

c ≈ 15km, hMw8
c ≈ 47km, hMw9

c ≈ 140km. The weakening influence of the
earthquake source depth starts to manifest itself precisely at these critical values.
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To conclude this section we wish to warn against direct application of the theo-
retical regularities obtained herein in practice, for example, in tsunami warning sys-
tems. Real tsunamigenic earthquakes are significantly more complex objects than the
model rectangular seismic source dealt with here. The properties of realistic tsunami
sources, the coseismic bottom deformations at which are reconstructed with account
of the slip structure at the earthquake source,will be analyzed in the following section.

2.4 Properties of Coseismic Deformations of the Oceanic
Bottom According to Data on the Slip Structure
at Tsunamigenic Earthquake Sources

Publications dedicated to reconstruction of the structure of an earthquake source from
the seismic wave field first appeared in the 70s–80s of the twentieth century (Alewine
and Jordan 1973, Jovanovich 1975, Pavlov and Gusev 1980, Ward and Barrientos
1986). The significant progress achieved in recent years has provided the possibility
of obtaining unique information, namely realistic estimates of slip distributions at
earthquake sources (Bassin et al. 2000, Ji et al. 2002, Lay et al. 2011, Shao et al.
2011, Yagi and Fukahata 2011). At present, not only “teleseismic data” are applied
in reconstruction of coseismic slip distributions. Here, methods for the inversion of
“geodetic data” (e.g., Ozawa et al. 2011, Pollitz et al. 2011), of “strong motion data”
(e.g., Kurahashi and Irikura 2011, Suzuki et al. 2011), of “tsunami data” (e.g., Satake
1987, Fujii et al. 2011), and, also, for the “joint inversion of multiple data sets” (e.g.,
Koketsu et al. 2011, Wei et al. 2012) have proved to be quite opportune.

For reasons of brevity we shall further simply call coseismic slip distributions
“slip distributions” or FFM (Finite Fault Model) distributions.

In the case of underwater earthquakes data on slip distributions are particularly
valuable: they permit to reconstruct coseismic ocean bottom deformations at the
tsunami source, which, in turn, provides the possibility of describing tsunami wave
generation. That such a method of reconstructing bottom deformations is adequate
is confirmed by the decent agreement between calculated and measured (using the
deep-water stations DART, JAMSTEC, and others) waveforms (Laverov et al. 2009,
Lay et al. 2011, Nosov et al. 2011). It is precisely for this reason that FFM data
are widely used by different scientific groups in simulating concrete tsunamis (e.g.,
Newman et al. 2011, Poisson et al. 2011, Kim et al. 2013, Nosov et al. 2014).

The slip structure at an earthquake source is represented as follows. The fault
surface at the source is approximated by one or several plane rectangular fault seg-
ments. Each such segment is characterized by its dimensions as well as position and
orientation in space (its geographical coordinates, depth, Dip and Strike angles). The
segment is divided into a finite number of subfaults of the same size (usually several
hundred rectangular subfaults). Set for each subfault are its coordinates (longitude,
latitude), depth and Burgers vector, that characterizes the slip extent and direction
(as a rule, the length of the Burgers vector and the Rake angle are given). Further-
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more, the activation time of each subfault and its rise time are determined—thus is
description performed of the fault rupture dynamics.

As an example, Fig. 2.14a presents the slip distribution (the spatial picture) for
the tsunamigenic earthquake that took place on November 15, 2006, on the Central
Kuril Islands. The source of the data is the site of the US Geological Survey (Ji
2006). In this particular case, the fault surface is represented by a single segment of
dimensions 400km (along the strike) by 137.5km. The segment is divided into 220
subfaults (20km by 12.5Km each). The maximum slip was 8.9m.

Figure2.14bdemonstrates the example of a slip distribution,when the fault surface
is represented by six fault segments. In this case the data used were obtained in Rhie
et al. (2007) the 2004 Sumatra–Andaman earthquake. The total number of subfaults
amounted to 201 (66 + 55 + 20 + 20 + 20 + 20). The dimensions of the subfaults
were approximately 30 × 30km (the size of a subfault varied insignificantly from
one segment to another). The maximum slip related to the southern fault segment
amounted to 35.32m.

The vector field of coseismic deformation D can be calculated by the slip distrib-
ution, for example, applying the Okada formulae (see Sect. 2.2). The contribution of
each subfault to the deformation is calculated independently. The resulting deforma-
tion is obtained by summing up the contributions from all the elements (subfaults).

In Fig. 2.15, examples are presented of the calculation of coseismic ocean bottom
deformations based on the slip distribution data shown in Fig. 2.14. The black dotted
line shows the projection of fault segments onto the surface of the oceanic bottom.
The vertical deformation component Dz is shown by isolines (uplifts by red lines,
subsidences by blue lines). The green arrows indicate the horizontal deformation
component Dxy ≡ (Dx , Dy). The maximum uplift and subsidence values, as well as
the horizontal deformation amplitude, are indicated in the lower parts of the figures.

Attempts to study the general properties of bottom deformations at tsunami
sources, reconstructed from slip distribution data, were first made in Bolshakova
and Nosov (2011), Nosov et al. (2014). These works were based on a relatively small
set of data presented on the sites of the California Institute of Technology (Caltech),
the University of California, Santa Barbara (UCSB), and the US Geological Survey
(USGS). Recently, access became open to the database SRCMOD (Finite-Source
Rupture Model Database, http://equake-rc.info/SRCMOD/), which integrates prac-
tically all presently available information on FFM. In this section we shall analyze
the general properties of residual bottom deformations at underwater earthquake
sources on the basis of a largest possible sample from the database SRCMOD: 200
source models (slip distributions), constructed by different scientific groups for 75
earthquakes during the period between 1923 and 2013 (Bolshakova et al. 2015). In
the statistical analysis presented below we shall consider each such source model as
an independent realization.

The vector field of oceanic bottom deformations was calculated from slip distri-
butions for each one of the 200 models using the Okada formulae. Then, with the
use of formula (2.41) the functions describing displacement of the bottom surface
were reconstructed. In calculations, the GEBCO-08 bathymetry with a resolution of
30 ang. sec. was used.

http://equake-rc.info/SRCMOD/
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Fig. 2.14 Slip distributions at the 2006 earthquake source on the Central Kuril Islands (a) and at
the 2004 Sumatra–Andaman earthquake source (b), based on the data of Ji (2006) and Rhie et al.
(2007), respectively. The colors show the amplitudes of dislocations and the white arrows represent
the motion of the hanging wall relative to the footwall. The color scale and the maximum slip
(dislocation) are presented in the figures

We shall consider the following as the parameters of a tsunami source: the double
amplitude of the vertical bottom deformation, A, the displaced water volume V and
the initial elevation potential energy E . The quantities indicated are determined by
formulae (2.42)–(2.44) in Sect. 2.3. Calculation of the maximum and minimum val-
ues, as well as integration in formulae (2.42)–(2.44) was performed over the entire
region, where bottom deformations had noticeable values. For coastal sources the
land region was not taken into account in calculations. We note that in calculat-
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(a)

Fig. 2.15 Bottom topography and vector fields of coseismic ocean bottom deformation for the 2006
earthquake on the Central Kuril Islands (a) and the 2004 Sumatra–Andaman earthquake (b). The
isobaths are drawn with an interval of 1km. The vertical bottom deformation is shown by isolines
(uplifts in red, subsidences in blue) drawn in steps of 0.1m (a) and 0.5m (b). The green arrows
stand for the horizontal bottom deformation. The dashed rectangles represent projections of the
fault segments onto the surface of the ocean bottom. The maximum uplift and subsidence values,
as well as the horizontal deformation amplitudes, are shown in the lower parts of the figures

ing energy we conventionally assume the initial elevation ξ to be equivalent to the
coseismic displacement of the bottom surface, η: ξ = η. Strictly speaking, owing
to a “smoothing effect” functions ξ and η may differ from each other (e.g., Kajiura
1963, Nosov and Kolesov 2009, 2011). Neglecting the “smoothing effect” leads to
a certain overestimation of the energy. This effect will be dealt with in detail in
Sect. 3.5.

http://dx.doi.org/10.1007/978-3-319-24037-4_3
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(b)

Fig. 2.15 (continued)

Figure2.16 presents the bottom deformation amplitude versus the moment mag-
nitude of earthquake. The dependence is characterized by quite a significant spread
in the data: the correlation coefficient amounts to 0.8. The spread in the data is due
to the bottom deformation being sensitive not only to the magnitude, but, also, to the
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Fig. 2.16 Amplitude of bottom deformation versus earthquake moment magnitude: points—
calculation based on data on slip distribution, dotted line—regression dependence, gray band—95%
confidence interval, solid line—theoretical maximum calculated by formula (2.45)

fault area orientation, to the slip direction and distribution, to the earthquake depth.
The double amplitude is seen from the figure to vary between several centimeters
(7cm) and several tens of meters (48.5m) and on the average to rapidly increase
exponentially with the magnitude. The regression dependence, constructed by the
least-squares method exhibits the following form:

log10 A[m] = (0.86 ± 0.09) Mw − (6.61 ± 0.73), (2.51)

The interval estimates correspond to 95% probability. The regression dependence
(2.51) is shown in Fig. 2.16 by the black dotted line. The gray bandwithin gray dotted
lines corresponds to the confidence interval. The solid black line in Fig. 2.16 is the
theoretical dependence for the maximum possible deformation amplitude that was
obtained in the previous section for the model of a uniform slip along a rectangular
fault area (see formula (2.45) from Sect. 2.3). It can be seen that for a significant part
of real events, and especially in the case of events with large magnitudes, the bottom
deformation amplitude can exceed the theoretically maximum value. This fact is not
a paradox. It is due to slip concentration within a narrow region of the fault area.
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Fig. 2.17 Absolute value of water volume displaced by residual bottom deformation versus earth-
quake moment magnitude: points—calculation based on data on slip distribution, dotted line—
regression dependence, gray band—95% confidence interval, solid line—theoretical maximum
calculated by formula (2.46)

The uniform slip distribution along the whole fault area, the seismic moment (and
the moment magnitude) being conserved, would evidently lead to a decrease in the
bottom deformation amplitude.

The relationship between the absolute value of the entire displaced volume and the
moment magnitude is presented in Fig. 2.17. The displaced volume varies between
0.08 and 121km3 and on the average exhibits a rapid exponential rise as the moment
magnitude increases. As compared to the bottom deformation amplitude the dis-
placed volume is noticeably better correlated with the moment magnitude: the corre-
lation coefficient amounts to 0.95. The respective regression dependence, constructed
by the least-squares method, has the following form:

log10 V [m3] = (1.48 ± 0.09) Mw − (2.45 ± 0.89), (2.52)

The dependence (2.52) is shown in Fig. 2.17 by the black dotted line. The gray
band within gray dotted lines corresponds to a 95% confidence interval.

The solid black line in Fig. 2.17 represents the theoretical dependence for themax-
imumpossible value of the displaced volume, thatwas obtainedwithin the framework
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Fig. 2.18 Potential energy of water surface elevation equivalent in shape to residual bottom defor-
mation (the tsunami energy) versus the earthquake moment magnitude: points—calculation based
on data on slip distribution, dotted line—regression dependence, gray band—95% confidence
interval, solid line—theoretical maximum calculated by formula (2.47)

of the uniform slip distribution model (see formula (2.46) from Sect. 2.3). The dis-
placed volume, calculated for real events, is seen to never exceed the theoretical
maximum value, and, on the average, it usually turns out to be several times smaller
than this value.

The dependence of the initial elevation potential energy E upon the moment mag-
nitude is presented in Fig. 2.18. In the case of real events the energy estimate varies
within the range from 4.62 × 109 up to 1.01 × 1016 J. On the average, the energy
increases exponentially with the moment magnitude. The dependence is character-
ized by quite a high correlation coefficient—0.94. The regression dependence has
the following form:

log10 E[J ] = (2.26 ± 0.13) Mw − (4.93 ± 0.92). (2.53)

Dependence (2.53) is shown in the figure by the black dotted line. The gray band
within dotted lines corresponds to a 95% confidence interval. It is seen that, like
in the case of the displaced volume, the potential energy calculated for real sources
never exceeds the maximum theoretical value (see formula (2.47) from Sect. 2.3).
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Applying the regression dependence for the energy of the initial elevation, (2.53),
and the Kanamori formula (2.49) for the energy of an earthquake, we obtain the
improved (as compared to formula (2.50) from Sect. 2.3) estimate of the part of the
earthquake energy that is transmitted to tsunami waves,

log10 E/EE Q = 0.75Mw − 9.73. (2.54)

From formula (2.54) it follows that the part of energy transmitted to the tsunami
increases with the magnitude from 0.003% (when Mw = 7) up to 0.1% (if Mw = 9).
On thewhole, from the analysis of realistic oceanic bottom deformations at a tsunami
source it follows that the part of energy transmitted to tsunami waves turns out
to be noticeably smaller than what follows from their theoretical estimates (2.50),
presented in Sect. 2.3.

To conclude this section we shall deal with revelation of the role of horizon-
tal deformation components of an uneven (inclined) oceanic bottom in the case of
tsunami wave generation. We note that analysis of the double amplitude A is of no
particular interest in this case. This is so because the quantity A is actually deter-
mined by the values of function η at only two points, at which function η assumes
its maximum and minimum values. The components of function η, that are due to
the horizontal and vertical components of the bottom deformation, are characterized
by nearly a total absence of correlation and by significant variability. Contrary to the
versatile “point” quantity A, integral characteristics, such as the displaced volume V
and the initial elevation energy E , evidently exhibit greater stability, which permits,
on their basis, to introduce quantitative characteristics describing the contribution
to tsunami waves of horizontal deformation components in the case of an uneven
bottom.

The structure of formula (2.41) itself immediately permits to unambiguously
determine the contribution of horizontal deformations of an inclined bottom to the
total displaced volume:

Vxy =
∫∫ (

∂ H

∂ x
Dx + ∂ H

∂ y
Dy

)
dxdy. (2.55)

We determine the contribution of horizontal deformations to the initial elevation
potential energy as follows:

Exy = E − Ez, (2.56)

Ez = ρ g

2

∫∫
(Dz)

2dxdy, (2.57)

where E is the potential energy calculated with account of all the bottom deformation
components by formula (2.44).

Figure2.19 illustrates the contribution of horizontal deformations of an inclined
bottom, Vxy , to the total displaced volume V . Both quantities can be either positive
or negative. For clarity we present linear equivalents of the volumes retaining their
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Fig. 2.19 Volume of water displaced by horizontal deformation components of inclined bottom,
Vxy , versus total displaced volume V . The axes represent linear equivalents of the displaced volumes
with their signs retained

signs: Sign(V ) |V |1/3 and Sign(Vxy)
∣∣Vxy

∣∣1/3. From the figure it is seen that in most
cases (163 out of 200) the signs of quantities Vxy and V coincide. This impressive
result signifies that, as a rule, horizontal bottom deformations provide an additional
contribution to the displaced volume. This result was first obtained in Nosov et al.
(2014). In absolute value, the contribution of horizontal bottom deformation compo-
nents to the displaced volume Vxy/V varies between 0.1 and 88%, while its mean
value amount to 15%. Hence follows an important, from a practical point of view,
conclusion: neglecting the horizontal bottom deformation components in simulating
a tsunami in most cases leads to noticeable, while sometimes to significant, under-
estimation of the wave.

Figure2.20 presents the part of potential energy of the water surface elevation,
that is due to the contribution of horizontal deformation components of an inclined
bottom, Exy/E , versus the total potential energy E . The value of Exy/E can be
either positive or negative (−0.08 < Exy/E < 0.41). In most cases (173 out of 200)
the contribution of horizontal deformation is positive. In other words, horizontal
components of the bottom deformation, as a rule, give an additional contribution to
the tsunami energy. It is remarkable that not only for the displaced volume, but for
the tsunami energy, also, this contribution is not negligible.
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Fig. 2.20 Relative contribution of horizontal bottom deformation components to tsunami energy
versus total energy value

The fact that in most cases horizontal deformations of an inclined bottom provide
an additional contribution both to the volume of water displaced at the source and
to the tsunami energy points to the existence of a certain correlation between the
ocean bottom relief and coseismic deformations. To explain the existence of such
a correlation it suffices to recall that most tsunamigenic earthquakes are related to
subduction zones (e.g., Satake and Tanioka 1999, Gusiakov 2014), which are char-
acterized by certain inherent shapes of the oceanic bottom, such as, for example,
deep-water trenches. And, although each seismic event is individual, the occurrence
of earthquakes in subduction zones is on the whole consistent with certain “scenar-
ios”, a manifestation of which consists precisely in the observed correlation between
vertical and horizontal coseismic shifts of underwater slopes.

2.5 Distribution of Tsunami Sources in Space and Time

The problem of studying the origination periodicity of tsunami sources in space and
time continues to be one of the hitherto unresolved fundamental scientific problems,
and it is also very important from the point of view of applications (Mogi 1979,
Kasahara 1981, Riguzzi et al. 2010, Levin and Sasorova 2012). Sources of tsunami-
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genic earthquakes cannot arise at any point whatever of the World Ocean. Thus, for
example, practically no tsunami sources have ever existed within regions between
latitudes 70 and 90 North as well as between latitudes 40 and 90 South. In other
words, from the point of view of the origination of seismotectonic tsunamis high
latitudes are sort of forbidden zones. Still another natural event must be noted: at
low latitudes, where the occurrence of tsunami sources is quite customary, there also
exists a clearly identifiable forbidden zone between latitudes 20 and 30 North. No
tsunamis were observed to arise within this band during the past 100 years. Why? Of
course, we cannot provide an answer to this question in the present section, and we
will only present a number of observed facts, that in the future may facilitate com-
prehension of the physics of the Earth’s seismicity and, in particular, explanation
of the existing space–time regularities characteristic of the distribution of tsunami
sources.

Analysis of the space–time distributions of tsunamigenic earthquake sources was
performed taking advantage of the material provided by two known tsunami data-
bases, NOAA/WDS Global Historical Tsunami Database at NGDC (http://www.
ngdc.noaa.gov/hazard/tsu_db.shtml) and Historical Tsunami Database for theWorld
Ocean (http://tsun.sscc.ru/tsunami-database/index.php).

The aforementioned databases were used to form an operational catalogue for the
period from 1900 up to 2012 containing events involving tsunamigenic earthquakes
(EQ) of magnitude M ≥ 7.5, intensity I ≥ 1.0, and validity V = 4 (i.e., only
authentically registered events). After the elimination of duplicates, a cross-check
and correction of both databases 99 events were ultimately singled out and identified
as tsunamis of tectonic origin.

The statistical peculiarities of tsunamigenic events revealed with account of geo-
graphical and magnitude parameters of the distributions permit to answer the fol-
lowing question: what fraction of strong EQ happens to be tsunamigenic EQ when
a change occurs in the threshold value of the magnitude.

In Table2.2 the numbers of events over all the Earth and, separately, the individual
hemispheres are presented for the following variations in the magnitude threshold:
M ≥ 7.5; M ≥ 8.0; M ≥ 8.5. On the average, tsunamigenic earthquakes are seen to
compose 16% (of the entire number of strong EQ, equal to 615), and in the case of
events with M ≥ 7.5 and events with M ≥ 8.0 the relative amount of events in the
Southern hemisphere is greater than in the Northern hemisphere for both bands of
magnitudes. This means that the relative number of tsunamigenic earthquakes does
not increase with the magnitude.

However, all catastrophic events (with M ≥ 8.5) are tsunamigenic. The sources of
these events are situated in the region of the Pacific Ocean (4 in South America, 3 in
the northern part of the subequatorial region, 1 in the Kamchatka region, 1 in Japan).
We note that the above features of the distribution of tsunamigenic earthquakes were
dealt with in a series of publications (Levin 2006, Levin and Sasorova 2010, Levin
and Sasorova 2014).

http://www.ngdc.noaa.gov/hazard/tsu{_}db.shtml
http://www.ngdc.noaa.gov/hazard/tsu{_}db.shtml
http://tsun.sscc.ru/tsunami-database/index.php
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Table 2.2 Comparison of the number of strong earthquakes (EQ) with the number of tsunamigenic
earthquakes (TEQ) of the same magnitude

The whole Earth Northern
hemisphere

Southern
hemisphere

Events with M ≥ 7.5

Total number of EQ 615 390 225

Number of TEQ, with I ≥ 1 99 (16%) 51 (13%) 48 (21%)

Events with M ≥ 8.0

Total number of EQ 292 192 100

Number of TEQ, with I ≥ 1 47 (16%) 28 (15%) 19 (19%)

Events with M ≥ 8.5

Total number of EQ 9 5 4

Number of TEQ, with I ≥ 1 9 (100%) 5 (100%) 4 (100%)

Construction of the spatial distributions of tectonic tsunami sources was based on
division of the Earth’s surface into 18 latitudinal bands, the size of each latitudinal
bandbeing10◦. Separationwas also performedof events that occurred in theNorthern
and Southern hemispheres of the Earth. In analyzing time distributions the entire
interval of observation was divided into 5-year intervals, and the total number of
events as well as the total energy released was considered for each 5-year interval.

Since most seismic events occur near the boundaries of lithospheric plates, use
was made in the work of the event density and of the energy density (the number
of earthquakes and the energy released normalized to the boundary length of the
lithospheric plates in each latitudinal band). Such normalization yields the “power”
of the given segment of a plate boundary: the mean number of earthquakes or the
mean energy value per each 100kilometers of plate boundary. Utilization of these
characteristics, that have a clear physical meaning, permits to compare the seismic
activities of latitudinal bands and of different parts of the terrestrial globe (Levin and
Sasorova 2012).

Figure2.21 shows the latitudinal distribution of the number of tsunami sources of
tectonic origin. In this distribution one can clearly identify two maxima at latitudes
40◦–50◦N and 0◦–10◦S, a local minimum in the region of 20◦–30◦N and practically
zero values at the polar caps and at high latitudes.

Figure2.21b presents the latitudinal density distribution of the sources of tsunami-
genic EQ. The main features of the distribution in Fig. 2.21b are similar to those of
the distribution in Fig. 2.21a. However, the maximum in the Northern hemisphere is
more sharply outlines, while in the Southern hemisphere the maximum in the region
of 0◦–10◦S disintegrates into two maxima: at 0◦–10◦S and 30◦–40◦S. The second
maximum is pronounced more weakly.
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Fig. 2.21 Latitudinal distribution of number of tsunamigenic earthquake sources (a), latitudinal
density distribution of tsunamigenic earthquakes (b)

Further, we shall consider latitudinal distributions of the energy released from
tsunamigenic EQ (Fig. 2.22a) and of the energy density (Fig. 2.22b). Here, distribu-
tions are revealedwith three clearly identified local maxima: at 40◦–30◦N, 10◦–00◦N
and 30◦–40◦S; in between them there are local minima with practically zero values
of energy (and of energy density) at the polar caps and at high latitudes. Of all the
energy released from tsunamigenic EQ 22% is released within the 40◦–30◦N band
of latitudes, 30% within the 10◦–00◦N band, and 14% is released at latitudes of
30◦–40◦S. All together 66% of the energy is released at latitudes corresponding to
local maxima (three latitudinal bands out of 18).

We shall now present the distribution of events over time. Figure2.23 shows
the source density distributions for tsunamigenic earthquakes over 5-year intervals
for the entire Earth (a), for the Northern (b) and Southern (c) hemispheres of the
Earth. The scale of the vertical axis remains constant for all three fragments. The
periodicity in the increase and decrease of the event density in time is clearly seen.
Moreover, an asymmetry is apparent in the increase and decrease of tsunami activity
in theNorthern andSouthern hemispheres. Enhancement of tsunamigenic earthquake
activity is displayed alternately in the Northern hemisphere and, then, in the Southern
hemisphere (and vice versa).
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Fig. 2.22 Latitudinal distribution of energy released in tsunamigenic earthquakes (a), latitudinal
density distribution of this energy (b)

Themost powerful tsunamigenic EQ (from the point of view of the energy release)
were observed at the beginning of the twenty-first century. They occurred both in
the Northern and Southern hemispheres of the Earth, but within different 5-year
intervals. The weakest (in energy) peaks of tsunami activity were at the beginning
of the 20 century and at its middle (1950–1965).

Above we dealt separately with latitudinal (spatial) and time distributions of the
sources of tectonic tsunamigenic events and with the energy released by these events.
However, the most complete picture is provided by two-dimensional (space–time)
distributions of events. Such a technique for representing the distributions of seismic
activity was first applied in Levin and Sasorova (2010).

The two-dimensional density distribution of tsunamigenic EQ (Fig. 2.24) reveals
the existence of regions (polar caps and high latitudes) within which not a single
tsunamigenic event occurred during a period more than a hundred years long. The
region of high latitudes, where no tsunami sourceswith I ≥ 1were observed, ismuch
more extended in the Southern hemisphere, it starts at 40◦S and continues up to the
Southern Pole, while in theNorthern hemisphere such a region only starts from 70◦N.
The region with practically zero activity is also found within the latitudinal band of
30◦–20◦N.
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Fig. 2.23 Density distributions of tsunamigenic earthquake sources over 5-year intervals for the
entire Earth (a), for the Northern hemisphere (b), for the Southern hemisphere (c)

Periodicity in the origination of tsunamigenic earthquakes is quite pronounced in
Fig. 2.24, and this periodicity differs in different latitudinal bands. In the Northern
hemisphere powerful peaks of activity were observed, when within a relatively short
time interval several significant events took place. Such was the middle of the twen-
tieth century from year 1955 up to 1975, then after a 20-year pause there were events
during the period from 1990 up to 2010. Two less powerful clusters were also noted
during the period of 1915–1920 and the 1980–1985 time intervals.



2.5 Distribution of Tsunami Sources in Space and Time 83

Fig. 2.24 Two-dimensional density distribution of tsunamigenic earthquakes. The vertical axis
shows time, and the horizontal axis shows latitudinal bands. The density of tsunamigenic earth-
quakes is shown in accordance with the color scale

In the subequatorial region peaks of tsunami activity are noted with 25-year inter-
vals (during the first half of the twentieth century), then with 30–40-year intervals
(in the middle of the century) and again with an interval of 25 years by the end of the
twentieth century. In the Southern hemisphere bursts of tsunami activity, practically
identical in power, are noted with a periodicity of 50 years in the first half of the
twentieth century, and, then, with a 25-year periodicity between 1960 and present
time.

The analysis presented of the distribution of tsunami sources permits to identify
the cyclic character of enhancement and attenuation of tsunami activity. Cyclicity is
revealed not only in the grouping of events in time, but also in their spatial (latitudinal)
grouping. On the one hand, regions are singled out on the surface of the terrestrial
globe that exhibit minimal (or zero) tsunami activity—these are regions of high
latitudes and Polar Regions. On the other hand, zones are revealed of alternating
activity of the process,when adjacent latitudinal zonesmanifest activity enhancement
during different periods of time. High activity in one zone is accompanied by activity
attenuation in the adjacent region, and vice versa. Thus, high activity in a certain zone,
corresponding to a given time period, is exchanged for a period of relaxation in the
neighboring zone.
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Chapter 3
Hydrodynamic Processes at the Source
of a Tsunami of Seismotectonic Origin:
Incompressible Ocean

Abstract The process of tsunami generation by dynamic bottom deformations is
treated as a hydrodynamical problem of an incompressible liquid. Two basic approx-
imations are presented, which are used in describing gravitational waves on water—
the theory of long waves and the potential theory. Within the framework of linear
potential theory of an incompressible liquid in a basin of fixed depth, the general ana-
lytical solution is constructed for the two-dimensional (2D) and three-dimensional
(3D) problems of tsunami generation by bottom deformations of small amplitudes.
The solution of the 3D problem is constructed in both Cartesian and cylindrical coor-
dinates. For a series of model bottom deformation laws (piston, membrane and run-
ning displacements, bottom oscillations and alternating-sign displacement) physical
regularities are revealed that relate the amplitude, energy, and direction of tsunami
wave emission to peculiarities of the bottom deformation at the source. In some
cases, the theoretical regularities, obtained within potential theory, are compared
with dependences following from the linear theory of long waves and, also, with
the results of laboratory experiments. The practical problem of calculating the initial
elevation on a water surface at a tsunami source is considered within the framework
of the assumption of instantaneity of bottom deformation. Exact analytic solutions
of this problem are presented for flat horizontal and inclined bottoms. Within the
framework of the linear theory of long waves on account of the Earth’s rotation,
investigation is performed of horizontal motions of the water layer accompanying
tsunami generation by an earthquake in a homogeneous and stratified ocean. The
displacement of water by coseismic bottom deformations is shown to serve as the
cause of formation not only of tsunami waves, but also of long-lived “traces” of
the tsunamigenic earthquake in the ocean—of potential and eddy residual hydrody-
namical fields. The field of residual horizontal displacements of water particles is
calculated and analyzed for the 2011 Tohoku-Oki earthquake.

Keywords Hydrodynamic description · Gravity waves · Long-wave theory ·
Potential theory · Fluid velocity potential · Coseismic deformation · Tsunami
source · Tsunami generation · Initial elevation · Ocean bottom displacement ·
Laplace transformation · Fourier transformation · Analytical solution · Phase
dispersion · Directional diagrams · Residual hydrodynamic fields · Coriolis force ·
Geostrophic vortex · Rossby radius of deformation
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The model of an incompressible homogeneous liquid is conventionally applied in
describing tsunami waves. Remaining within the framework of conventional ideas,
we have devoted this chapter to various types of hydrodynamical problems related to
the generation of movements in a layer of liquid in the case of dynamic deformations
of the basin bottom.

The general formulation of the problem is expounded in Sect. 3.1, and, also, the
equations are derived of long-wave theory and of potential wave theory. In the sub-
sequent three sections (3.2–3.4), exact analytic solutions are constructed for a series
of linear problems relevant to tsunami generation by an earthquake. A method for
calculating the initial elevation at the tsunami source is presented and theoretically
substantiated in Sect. 3.5. Peculiarities of horizontal movements of a water layer
accompanying tsunami generation are analyzed in Sect. 3.6. In this section the for-
mation is mainly dealt with residual hydrodynamic fields, an effect that is often
wrongly disregarded by tsunami researchers. It is shown that in situ revelation and
analysis of horizontal movements may turn out to be useful, together with data on
the ocean level, for estimating the tsunamigenicity of underwater earthquakes.

The analytic solutions of model problems presented in this chapter can be used
not only in analyzing fundamental regularities of tsunami formation by earthquakes,
but also for testing numerical models.

3.1 Hydrodynamic Description of Tsunami Waves:
The Two Principal Approximations

In this section we shall expound the general hydrodynamic approach to describing
waves excited in a layer of water by dynamic deformations of the ocean bottom. We
shall separately present two key approaches applied in describing the dynamics of
tsunami waves: the long-wave theory and the potential theory. Both nonlinear and
linear versions of the mentioned theories will be presented.

3.1.1 General Formulation of the Hydrodynamic Problem

We shall consider a layer of ideal (nonviscous) homogeneous incompressible liquid
(ρ = const) of variable depth on a rotating Earth. The layer of liquid is limited from
above by its free surface and from below by the mobile impermeable bottom. Let the
origin of the rectangular reference frame (see Fig. 3.1) be on the unperturbed water
surface.We shall direct the 0z-axis vertically upward and the 0x and 0y axes eastward
andnorthward, respectively.Thebottomsurfacewill be assumed tobefixedbefore the
moment of time t = 0 and its position to be described by the equation zb = −H(x, y).
When t > 0—during the earthquake—the surface of the bottom undergoes motion,
and then its position is determined by the equation zb = −H(x, y) + η(x, y, t),
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Fig. 3.1 Mathematical
formulation of the 3D
problem

where η(x, y, t) represents dynamic deformation of the bottom.We shall characterize
movements of the water layer caused by dynamic deformation of the bottom by the
following quantities: displacement of the free surface of water from its equilibrium
position, ξ(x, y, t), the scalar pressure field p(x, y, z, t), and the vector flow velocity
field v(x, y, z, t) ≡ (u, v, w), where u, v, and w are velocity components along the
0x, 0y, and 0z axes, respectively. To describe movements of the water layer we shall
take advantage of the Euler equation, written with account of the force of gravity,
and of the Coriolis force, and of the continuity equation (e.g., Lamb 1932; Murty
1977; Marchuk et al. 1983; Landau and Lifshits 1987; Pelinovsky 1996)

∂v
∂t

+ (v,∇) v = −∇p

ρ
+ g + 2 [v × ω] , (3.1)

div ( v) = 0, (3.2)

where g is the acceleration vector of gravity, ω is the angular velocity vector of the
Earth’s rotation.

Equations (3.1) and (3.2) are supplemented with the classical boundary conditions
on the free water surface and on the ocean bottom. On the water surface (the “water-
atmosphere” partition surface) pressure continuity (a dynamic condition) is assumed,

p = patm(x, y, t) for z = ξ(x, y, t), (3.3)

where patm(x, y, t) is a function describing the space–time distribution of
atmospheric pressure along the free water surface. Besides the dynamic condition,
the free surface is also subjected to the kinematic boundary condition

∂ξ

∂t
+ u

∂ξ

∂x
+ v

∂ξ

∂y
− w = 0, (3.4)
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the physical meaning of which consists in that particles of the liquid, that belong to
the surface, cannot move freely within the liquid layer.

The condition is set that no-normal flow takes place across the ocean bottom:
the velocity component normal to the bottom surface must be equal to the motion
velocity of the bottom in the same direction (no-normal flow boundary condition):

(v, n) = (vb, n) for z = −H(x, y) + η(x, y, t), (3.5)

where vb is the velocity vector of the bottom, n is the normal to the bottom surface.
In tsunami simulation, which in principle can be performed by straightforward

numerical integration of equations (3.1)–(3.5), it is possible to use, as the initial
conditions, zero free surface displacement, ξ0 = 0, the zero velocity field v0 = 0,
and the hydrostatic pressure distribution determined from the equation ∇p0 = ρg.
The source of waves consists in dynamic deformation of the bottom, η(x, y, t), and/or
variations in the atmospheric pressure patm(x, y, t).

Although straightforward numerical simulation based on the equations of hydro-
dynamics has the doubtless advantage of providing a completeness of description,
its application always involves cumbersome calculations. Moreover, it is regretfully
impossible to obtain an analytic solution of the set of equations (3.1)–(3.5). Here,
it must be pointed out that an analytic solution, even if obtained for a particular
case and under certain assumptions, can provide more information on the physical
essence of a process than hundreds of numerical experiments. In this connection, it
is opportune to analyze tsunami wave dynamics within the framework of different
approximations, one of which is the hydrostatics approximation that underlies the
long-wave theory.

3.1.2 The Long-Wave Theory

The long-wave theory, sometimes called the shallow-water theory, is based on the
assumption that the depth of the ocean is significantly smaller than the wavelength:
H/λ � 1. Treating the ocean depth as a vertical space scale, and the tsunami wave-
length as the horizontal scale, we obtain from the continuity equation (3.2) written
in terms of individual components,

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (3.6)

a simple expression that relates the amplitudes of the vertical (Uz) and horizontal
(Uxy) velocities,

Uz ∼ H

λ
Uxy. (3.7)
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From relationship (3.7) it follows that, if the condition H/λ � 1 is fulfilled, then
the horizontal velocities are significantly superior to the vertical ones: Uxy � Uz. A
similar conclusion can be made, also, with respect to the dominance of horizontal
over vertical accelerations. Consequently, the insignificant vertical accelerations in
the vertical component of the Euler equation may be neglected.

We further write out components of the Coriolis force applying the so-called con-
ventional approximation. In accordance with this approximation the vertical com-
ponent of the Coriolis force is considered negligible as compared to the force of
gravity, while in the x-component of the Coriolis force it is the term proportional to
the vertical flow velocity that is neglected:

2 [v × ω] = 2

⎛

⎝
v |ω| sin ϕ − w |ω| cosϕ

−u |ω| sin ϕ

u |ω| cosϕ

⎞

⎠ ≈
⎛

⎝
2v |ω| sin ϕ

−2u |ω| sin ϕ

0

⎞

⎠ ≡
⎛

⎝
f v
−fu
0

⎞

⎠,

(3.8)

where f = 2 |ω| sin ϕ is the Coriolis parameter, ϕ is the latitude.
Thus, upon discarding the vertical accelerations and the vertical component of

the Coriolis force in the Euler equation, we arrive at the equation of hydrostatics,

∂p

∂z
= −ρg. (3.9)

Integrating Eq. (3.9) over the vertical coordinate from a certain point z within the
layer of water up to the free surface, we obtain the following for calculating the
pressure:

p(x, y, z, t) = patm + ρg(ξ(x, y, t) − z). (3.10)

We shall now turn to the horizontal components of the Euler equation (3.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂p

∂x
+ f v, (3.11)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= − 1

ρ

∂p

∂y
− fu. (3.12)

Substituting formula (3.10) into Eqs. (3.11) and (3.12), we obtain

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g

∂ξ

∂x
− 1

ρ

∂patm

∂x
+ f v, (3.13)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −g

∂ξ

∂y
− 1

ρ

∂patm

∂y
− fu. (3.14)

From Eqs. (3.13) and (3.14) follows a most important feature of long waves:
the horizontal velocity components are independent of the vertical coordinate. With
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account of this property we integrate the continuity Eq. (3.6) over the vertical coor-
dinate from the bottom, z = −H + η up to the surface z = ξ . As a result, we
obtain

∂ξ

∂t
− ∂η

∂t
+ div ((H + ξ − η)v) = 0, (3.15)

where the operator div operates in the horizontal plane, and the velocity vector has
only two components: v ≡ (u, v).

Equations (3.13)–(3.15) represent a set of equations of the nonlinear long-wave
(shallow-water) theory, which is often applied in tsunami wave simulation. The exci-
tation of waves can be described by specifying the function η(x, y, t) that describes
displacement of the bottom surface. Another version of wave excitation consists in
specifying the function patm(x, y, t) that describes atmospheric pressure variations.
However, Eqs. (3.13)–(3.15) aremost often resolved under the assumption thatη = 0,
patm = const with initial conditions representing a certain initial elevation of the free
surface, ξ0(x, y), in the case of a zero velocity field v0 = 0.

If the deformation amplitude of the ocean bottom is small, (|η| /H � 1), then
the free surface displacement can also be considered a small quantity: |ξ | /H � 1.
The significance of the nonlinear term is estimated as follows: |(v,∇) v| / |∂v/∂t| ∼
UxyT/λ ∼ UzT/H ∼ |ξ | /H � 1. Neglecting small quantities in equations (3.13)–
(3.15), we arrive at the linear equations of the long-wave theory,

∂u

∂t
= −g

∂ξ

∂x
− 1

ρ

∂patm

∂x
+ f v, (3.16)

∂v

∂t
= −g

∂ξ

∂y
− 1

ρ

∂patm

∂y
− fu. (3.17)

∂ξ

∂t
− ∂η

∂t
+ div (Hv) = 0. (3.18)

The linear equations (3.16)–(3.18) can be successfully used for describing tsunami
dynamics at large depths. These equations can also be applied in the case of shallow
water, but only if the wave amplitudes are insignificant.

If the Coriolis force is neglected in the set of equations (3.16)–(3.18), then they
can be reduced to a single equation, namely, to an inhomogeneous wave equation.
Setting f = 0 in equations (3.16) and (3.17) we rewrite them in a vector form,

∂v
∂t

= −g∇ξ − ∇patm

ρ
, (3.19)

where the operator ∇ operates in the horizontal plane. Owing to the only vortex-
generating factor (the Coriolis force) in the case under consideration having been
discarded it is possible, without loss of generality, to express the velocity field via
the flow velocity potential,
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v ≡ (u, v) = ∇F. (3.20)

Substituting representation (3.20) into Eq. (3.19), we obtain

ξ = −1

g

∂F

∂t
− patm

ρg
(3.21)

Substitution of expressions (3.20) and (3.21) into Eq. (3.18) gives the sought
inhomogeneous wave equation

∂2F

∂t2
− div (gH∇F) = − 1

ρ

∂patm

∂t
− g

∂η

∂t
. (3.22)

The form of wave equation (3.22) permits to conclude that long waves propagate
with a velocity c = √

gH—the square of precisely this quantity is found at the proper
place in the wave equation. The right-hand part of equation (3.22) describes two sorts
of tsunami sources: bottom movements and atmospheric pressure variations. The
source of waves is seen to differ from zero only when either bottom displacements
take place or changes occur in the atmospheric pressure. The flow velocity field and
the free surface displacement are calculated from the known potential making use of
formulae (3.20) and (3.21), respectively.

In certain cases it is convenient to take advantage of the wave equation written,
instead of the flow velocity potential, in terms of the free surface displacement. The
equation in such a form can be obtained as follows. We differentiate equation (3.18)
with respect to time, then substitute into it the acceleration ∂v/∂t, expressed by
formula (3.19). As a result of elementary transformations, we obtain the following:

∂2ξ

∂t2
− div (gH∇ξ) = ∂2η

∂t2
+ div

(
H

ρ
∇patm

)
. (3.23)

The boundary conditions along the coastline for equations of the linear long-
wave theory usually represent the condition of total reflection (no-normal flow):
(v, n) = 0, where n is the normal to the coastline. In terms of the potential (free
surface displacement) this condition has the form ∂F/∂n = 0 (∂ξ/∂n = 0). Initial
conditions must be imposed both on the function itself and on its time derivative at
t = 0 : F = F0, ∂F/∂t = G0 (ξ = ξ0, ∂ξ/∂t = q0). Actually, these conditions
signify setting the initial free surface displacement and the initial flow velocity field.

3.1.3 The Potential Theory

In a number of cases tsunami waves may be insufficiently long to be fully consistent
with the requirement thatH/λ � 1.Here, assistancewill be rendered by the potential
theory, which imposes no restrictions on the wavelength. Figuratively speaking, the
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potential theory occupies a higher position in the hierarchy of approximations than
the long-wave theory. The effect exerted by the Coriolis force cannot be taken into
account in potential theory, though.

In accordance with the Helmholtz theorem an arbitrary vector field is expressed
via the scalar (F) and vector (G) potentials: v = ∇F + ∇ × G. The potential theory
is based on the assumption that the flow velocity field can be represented by a sole
scalar quantity, namely, the flow velocity potential:

v ≡ (u, v, w) = ∇F. (3.24)

Naturally, representation (3.24) not always holds valid, but only under the condi-
tion that the flow is vortex-free. In this connection, we shall further make use of equa-
tion (3.1) in the following form, without taking into account the vortex-generating
factor—the Coriolis force:

∂v
∂t

+ (v,∇) v = −∇p

ρ
+ g. (3.25)

Substituting representation (3.24) into the continuity equation (3.2), we arrive at
the main equation of potential theory—the Laplace equation,

ΔF = 0. (3.26)

Let us now formulate boundary conditions for the Laplace equation. The boundary
condition on the free surface z = ξ is derived applying the dynamic equation (3.25)
from which follows

∇
(

∂F

∂t
+ v2

2
+ p

ρ
+ gz

)
= 0. (3.27)

The expression under the gradient symbol in formula (3.27) does, evidently, not
depend on space coordinates, but it may depend on time,

∂F

∂t
+ v2

2
+ p

ρ
+ gz = f (t), (3.28)

where f (t) is an arbitrary function. In equation (3.28), called the unsteady Bernoulli
equation, function f (t) can, without loss of generality, be set equal to zero

∂F

∂t
+ v2

2
+ p

ρ
+ gz = 0. (3.29)

Indeed, owing to the velocity field being determined by derivatives of the potential
with respect to the space coordinates, the quantity F may be supplemented with any
function of time, which will have no effect whatsoever on the velocity field.
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The boundary condition on the free water surface (for z = ξ) with account of the
pressure continuity condition (3.3) has the form:

∂F

∂t
+ (∇F)2

2
+ patm

ρ
+ gξ = 0. (3.30)

Expression (3.30)must be supplementedwith the kinematic condition (3.4),which
in terms of the potential is written as follows:

∂ξ

∂t
+ ∂F

∂x

∂ξ

∂x
+ ∂F

∂y

∂ξ

∂y
− ∂F

∂z
= 0. (3.31)

We shall also write the no-normal flow boundary condition (3.5), that is in force
on an impermeable mobile oceanic bottom, in terms of the potential:

∂F

∂n
= (vb, n) for z = −H(x, y) + η(x, y, t). (3.32)

As to the initial conditions, at t = 0 we can set the initial perturbation of the
free surface, that is defined by an arbitrary function ξ0(x, y). Moreover, we can
specify a certain velocity potential that naturally satisfies the Laplace equation and
the boundary conditions, thus determining the initial velocity field v0(x, y, z).

The problem (3.26), (3.30)–(3.32) is essentially simplified if the bottom defor-
mations, as well as the free surface displacements caused by them, and the flow
velocities are assumed to be small quantities. In this case, by discarding nonlinear
terms in formulae (3.30) and (3.31) we obtain

∂F

∂t
+ patm

ρ
+ gξ = 0, (3.33)

∂ξ

∂t
− ∂F

∂z
= 0. (3.34)

We further assume the atmospheric pressure to be constant along the free surface
(patm = const). Then, the potential is opportunely redefined (by subtraction of the
quantity patmt/ρ) and expression (3.33) is transformed into

ξ = −1

g

∂F

∂t
. (3.35)

Substituting formula (3.35) into Eq. (3.34) we obtain a linearized boundary con-
dition on the free surface,

∂2F

∂t2
+ g

∂F

∂z
= 0 for z = 0. (3.36)
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We note that, owing to the free surface displacement being small, the boundary
condition (3.36) may be adopted not for an unknown surface z = ξ , but for the fixed
surface z = 0, that is close to it.

The boundary condition on the bottom (3.32)—also owing to bottom displace-
ments being small—become related to the unperturbed bottom surface,

∂F

∂n
= (vb, n) for z = −H(x, y). (3.37)

Here, the ocean depth as well as the field of normals to the bottom surface are
assumed not to undergo changes during the process of small bottom deformations.

The Laplace equation (3.26) with boundary conditions (3.36) and (3.37), supple-
mented with the initial conditions described above, represents a Cauchy–Poisson
problem formulated within the framework of the linear potential theory of waves. A
large part of this chapter is devoted to an analysis of precisely this problem.

3.2 General Solution of the Problem of Excitation
of Gravitational Waves in a Layer of Incompressible
Liquid by Deformations of the Basin Bottom

3.2.1 Cartesian Coordinates

The goal of this section is the construction of a mathematical model describing
the motion of a layer of homogeneous incompressible liquid in the case of defor-
mation of the basin bottom, proceeding in accordance with a certain given space–
time law. The liquid is limited from above by its free surface and is in a gravita-
tional field, characterized by the acceleration of gravity, g. We shall only deal with
the case of a basin of constant depth H—such an approach will permit to obtain
an analytical solution of the problem. We shall consider the amplitude of motions
of the basin bottom, η0, a small quantity as compared to the depth, η0 � H. In
practice, this condition is actually always satisfied (the average depth of the ocean is
H ∼ 4000m, while η0 <∼ 10m even in the case of catastrophic earthquakes). The
amplitude of gravitational surface waves, A, excited by one or another motion of
the basin bottom with the amplitude η0, will clearly be of the same order of magni-
tude: A ∼ η0. The amplitude of the wave being small in comparison with its length
A � λ makes it possible to apply linear theory. The motion of the liquid will be
considered potential.

Consider a layer, infinite in the 0xy plane, of an ideal incompressible homoge-
neous liquid of constant depth H in the field of gravity. We shall put the origin of
the Cartesian reference frame, 0xyz, in the unperturbed free surface and direct the 0z-
axis vertically upward. The liquid is at rest until the time moment t = 0. To find
the wave perturbation ξ(x, y, t), formed on the surface of the liquid, and the velocity
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field, v(x, y, z, t), throughout the thickness of the layer in the case of motions of
the basin floor, occurring in accordance with the law η (x, y, t), we shall resolve
the problem with respect to the velocity potential F(x, y, z, t) (see Sect. 3.1.3 or
Landau and Lifshits 1987),

∂2F

∂x2
+ ∂2F

∂y2
+ ∂2F

∂z2
= 0, (3.38)

g
∂F

∂z
= −∂2F

∂t2
, z = 0, (3.39)

∂F

∂z
= ∂η

∂t
, z = −H. (3.40)

The physical meaning of the boundary condition (3.39) consists in the pressure on
the free surface of the liquid being constant. The boundary condition (3.40) signifies
equality of the vertical component of the flow velocity to the velocity of motion of
the basin floor. Displacement of the free surface and the flow velocity vector are
related to the potential of the flow velocity by the following known formulae:

ξ (x, y, t) = − 1

g

∂F

∂t

∣∣∣
∣
z=0

, (3.41)

v(x, y, z, t) ≡ {u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)} = ∇F(x, y, z, t). (3.42)

The Laplace equation (3.38) is resolved by the standard method of separation of
variables. We shall omit elementary calculations and write out the general solution
of the problem in the form of Laplace and Fourier expansions over the time and space
coordinates:

F(x, y, z, t) =
s+i∞∫

s−i∞
dp

+∞∫

−∞
dm

+∞∫

−∞
dn exp{pt − imx − iny}

× (A(p, m, n) cosh(kz) + B(p, m, n) sinh(kz)), (3.43)

where k2 = m2 + n2.
Substitution of the general solution (3.43) into the boundary condition on the sur-

face, (3.39), yields the relationship between the coefficients,

B(p, m, n) = −A(p, m, n)
p2

g k
. (3.44)

Applying the formulae for the direct and inverse Laplace and Fourier transfor-
mations, we obtain the integral representation for the laws, satisfied by motion of
the basin floor,
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η(x, y, t) = 1

8π3 i

s+i∞∫

s−i∞
dp

+∞∫

−∞
dm

+∞∫

−∞
dn exp{pt − imx − iny}H(p, m, n), (3.45)

where

H(p, m, n) =
∞∫

0

dt

+∞∫

−∞
dx

+∞∫

−∞
dy exp{−pt + imx + iny}η(x, y, t). (3.46)

Substituting expression (3.43), written with the aid of formula (3.44), into
the boundary condition on the basin floor, (3.40), one can calculate the coefficient
A(p, m, n). As a result, one obtains the following expression for the potential of
the flow velocity, which corresponds to motions of the basin floor, satisfying the law
η (x, y, t).

F(x, y, z, t) = − 1

8π3 i

s+i∞∫

s−i∞
dp

+∞∫

−∞
dm

+∞∫

−∞
dn

×
p exp{pt − imx − iny} cosh(kz)

(
gk − p2 tanh(kz)

)

k cosh(kH)
(
gk tanh(kH) + p2

) H(p, m, n). (3.47)

Applying formulae (3.41) and (3.42), we obtain expressions describing the behav-
ior of the free surface,

ξ(x, y, t) = 1

8π3i

s+i∞∫

s−i∞
dp

+∞∫

−∞
dm

+∞∫

−∞
dn

p2 exp{pt − imx − iny}
cosh(kH)

(
gk tanh(kH) + p2

)H(p, m, n),

(3.48)

horizontal, u(x, y, z, t), v(x, y, z, t), and vertical,w(x, y, z, t), components of the flow
velocity,

u(x, y, z, t) = ∂F

∂x
= 1

8π3

s+i∞∫

s−i∞
dp

+∞∫

−∞
dm

+∞∫

−∞
dn

× m p exp{pt − imx − iny} cosh(kz)
(
gk − p2 tanh(kz)

)

k cosh(kH)
(
gk tanh(kH) + p2

)

× H(p, m, n); (3.49)



3.2 General Solution of the Problem of Excitation of Gravitational Waves … 101

v(x, y, z, t) = ∂F

∂y
= 1

8π3

s+i∞∫

s−i∞
dp

+∞∫

−∞
dm

+∞∫

−∞
dn

× n p exp{pt − imx − iny} cosh(kz)
(
gk − p2 tanh(kz)

)

k cosh(kH)
(
gk tanh(kH) + p2

)

× H(p, m, n) (3.50)

w(x, y, z, t) = ∂F

∂z
= − 1

8π3 i

s+i∞∫

s−i∞
dp

+∞∫

−∞
dm

+∞∫

−∞
dn

×
p exp{pt − imx − iny} cosh(kz)

(
gk tanh(kz) − p2

)

cosh(kH)
(
gk tanh(kH) + p2

) H(p, m, n). (3.51)

In principle, expressions (3.48)–(3.51) provide an exhaustive solution of prob-
lem (3.38)–(3.40), but obtaining concrete results requires the calculation of sixfold
integrals, which represents quite a realistic, but extremely labor-consuming (from
the point of view of the volume of calculations) and irrational task. To be able to
perform part of the calculations analytically it is necessary to set the concrete form
of function η (x, y, t).

3.2.2 Cylindrical Coordinates

In a number of cases, when the model displacement of the basin floor exhibits appro-
priate symmetry, it may turn out to be convenient to apply a cylindrical reference
system, which we shall introduce in a standard manner with respect to the Cartesian
system, described in the preceding section. In this case the Laplace equation (3.38)
assumes the following form:

1

r

∂

∂r

(
r
∂F

∂r

)
+ 1

r2
∂2F

∂ϕ2 + ∂2F

∂z2
= 0, (3.52)

while the boundary conditions (3.39), (3.40) remain intact.
For resolving equation (3.52) we apply the traditional method of variable separa-

tion, i.e., we shall assume that

F(r, ϕ, z) = R(r)Φ(ϕ) Z(z). (3.53)
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Substitution of expression (3.53) into equation (3.52) results in the following set of
ordinary differential equations:

r2
∂2R

∂r2
+ r

∂R

∂r
+
(

r2 − n2
)

R = 0, (3.54)

∂2Φ

∂ ϕ2 + n2Φ = 0, (3.55)

∂2Z

∂ z2
− k2Z = 0. (3.56)

The Bessel equation (3.54) is written with account of the substitution of variable
r∗ = rk (the asterisk “*” is dropped). The solutions of equations (3.54)–(3.56) are
well known and can be written as follows:

R(rk) = C1 Jn(kr) + C2Yn(kr),

Φ(ϕ) = C3 cos(nϕ) + C4 sin(nϕ),

Z(z) = C5 cosh(kz) + C6 sinh(kz),

where Jn and Yn are Bessel functions of the first and second kinds and of the nth
order, Ci are arbitrary constants.

Functions Φ(ϕ) must satisfy the periodicity condition,

Φ(ϕ) = Φ(ϕ + 2π),

from which it follows that parameter n is an integer, n = 0, ±1, ±2, . . . The con-
dition, that function R(rk) be limited at r = 0, requires the coefficient of the Bessel
function of the second kind to be equal to zero: C2 = 0.

Thus, it is expedient to seek for the general solution of the problem in the form of
a Fourier expansion and of Laplace and Fourier–Bessel transformations (Nikiforov
and Uvarov 1984),

F(r, ϕ, z, t) =
∞∫

0

dk

s+i ∞∫

s−i ∞
dp

× exp{pt}J0(kr)
C0
3

2

(
C0
5(p, k) cosh(kz) + C0

6(p, k) sinh(kz)
)

+
∞∫

0

dk

s+i ∞∫

s−i ∞
dp exp{pt}

∞∑

n=1

Jn(kr)
(
Cn
3 cos(nϕ) + Cn

4 sin(nϕ)
)

× (
Cn
5(p, k) cosh(kz) + Cn

6(p, k) sinh(kz)
)
. (3.57)
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Substitution of equation (3.57) into the boundary condition on the surface, (3.39),
yields the relationship between the coefficients,

Cn
6(p, k) = −Cn

5(p, k)
p2

g k
. (3.58)

We shall now write the integral representation for the function describing the
space–time law of motion of the basin floor, η(r, ϕ, t) = ηr(r) ηϕ(ϕ) ηt(t)

η(r, ϕ, t) =
∞∫

0

dk

s+i ∞∫

s−i ∞
dp exp{pt}J0(kr) k

A0

2
H0(p, k) +

∞∫

0

dk

s+i ∞∫

s−i ∞
dp

× exp{pt}
∞∑

n=1

Jn(kr) k (An cos(nϕ) + Bn sin(nϕ)) Hn(p, k), (3.59)

where

An = 1

π

π∫

−π

ηϕ(ϕ) cos(nϕ) dϕ,

Bn = 1

π

π∫

−π

ηϕ(ϕ) sin(nϕ) dϕ,

Hn(p, k) = 1

2π i

∞∫

0

dt

∞∫

0

drηr(r) ηt(t) exp{−pt}r Jn(kr).

Substitution of formulae (3.57) and (3.59) into the boundary condition on the basin
floor, (3.40), reveals that equality of the left-hand and right-hand parts is possible,
only when the following three conditions are fulfilled:

Cn
3 = An, Cn

4 = Bn,

Cn
5(p, k) = − pHn(p, k)

k

(
sinh(kH) + p2

gk
cosh(kH)

) .

It is now possible to write out the resultant expression for the potential, which is
the solution of equation (3.52) with the boundary conditions (3.39) and (3.40)
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F(r, ϕ, z, t) = −
∞∫

0

dk

s+i ∞∫

s−i ∞
dp exp{pt}

p

(
cosh(kz) − p2

gk
sinh(kz)

)

(
sinh(kH) + p2

gk
cosh(kH)

)

×
(

J0(kr)
A0

2
H0(p, k) +

∞∑

n=1

Jn(kr)
(

An cos(nϕ)

+ Bn sin(nϕ)
)

Hn(p, k)

)

. (3.60)

Making use of expression (3.60), it is not difficult to obtain formulae for calcu-

lation of the displacement of the surface and of the velocity components vr = ∂F

∂r
,

vϕ = 1

r

∂ F

∂ϕ
, vz = ∂F

∂z
, the explicit expressions for which will not be written out

here, because they are too cumbersome.
Belowwe shall turn to the case, when the source ofwaves exhibits axial symmetry.

The solution of the problem, here, will be of the following form:

F(r, z, t) = −
∞∫

0

dk

s+i ∞∫

s−i ∞
dp exp{pt}J0(kr)

p

(
cosh(kz) − p2

gk
sinh(kz)

)

(
sinh(kH) + p2

gk
cosh(kH)

) X(p, k),

(3.61)

where

X(p, k) = 1

2π i

∞∫

0

dt

∞∫

0

dr exp{−pt}J0(kr) r η(r, t).

3.3 Plane Problems of Tsunami Excitation by Deformations
of the Basin Bottom

In this section two-dimensional models (in the vertical plane) are dealt with. Solution
of the plane problem permits to demonstrate clearly many important peculiarities of
the physical processes taking place during tsunami generation. A significant part of
the results, obtained within the framework of the two-dimensional model, remains
valid in the three-dimensional case, also. The 2D⇒3D transition for problems of
the type considered actually permits to investigate only two new points: the direction
of wave radiation and changes in their characteristics, as the distance from the source
increases.
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3.3.1 Construction of the General Solution

We shall consider (Fig. 3.2) a layer of ideal incompressible homogeneous liquid,
infinite along the 0x-axis, of constant depth H, and in the field of gravity. We shall
put the origin of the Cartesian reference system, 0xz, on the unperturbed free surface,
the 0z will be directed vertically upward. To find the perturbation of the free surface,
ξ (x, t), and the field of flow velocities v(x, z, t), arising in the layer of liquid, when
the basin floor undergoes motion in accordance with the law η (x, t), we shall resolve
the problem with respect to the potential of the flow velocity, F (x, z, t):

∂2F

∂x2
+ ∂2F

∂z2
= 0, (3.62)

g
∂F

∂z
= −∂2F

∂t2
, z = 0, (3.63)

∂F

∂z
= ∂η

∂t
, z = −H. (3.64)

Without dwelling on the details of resolving the problem (3.62)–(3.64), which were
exposed above for the three-dimensional case,we shall present the resultant formulae.

F(x, z, t) = − 1

4π2 i

s+i∞∫

s−i∞
dp

+∞∫

−∞
dk

× p exp{pt − ikx} cosh(kz)
(
gk − p2 tanh(kz)

)

k cosh(kH)
(
gk tanh(kH) + p2

) H(p, k), (3.65)

ξ(x, t) = 1

4π2 i

s+i∞∫

s−i∞
dp

+∞∫

−∞
dk

p2 exp{pt − ikx}
cosh(kH)

(
gk tanh(kH) + p2

) H(p, k), (3.66)

Fig. 3.2 Mathematical
formulation of the 2D
problem
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u(x, z, t) = ∂F

∂x
= 1

4π2

s+i∞∫

s−i∞
dp

+∞∫

−∞
dk

× p exp{pt − ikx} cosh(kz)
(
gk − p2 tanh(kz)

)

cosh(kH)
(
gk tanh(kH) + p2

) H(p, k), (3.67)

w(x, z, t) = ∂F

∂z
= − 1

4π2 i

s+i∞∫

s−i∞
dp

+∞∫

−∞
dk

× p exp{pt − ikx} cosh(kz)
(
gk tanh(kz) − p2

)

cosh(kH)
(
gk tanh(kH) + p2

) H(p, k), (3.68)

where

H(p, k) =
∞∫

0

dt

+∞∫

−∞
dx exp{−pt + ikx}η(x, t).

In the case of arbitrary motion of the basin floor the solution of the problem
involves a cumbersome procedure—the calculation of a fourfold integral. Therefore,
for physical interpretation of the obtained integral representations it is expedient to
select several concrete versions of function η (x, t). This will permit to calculate
a large part of the integrals analytically.

Consider the following three types of deformation of the basin floor:

1. A linear (in time) displacement

ηL(x, t) = η0 (θ(x + a) − θ(x − a)) θ(t) t τ−1, (3.69)

2. Running displacement

ηR(x, t) = η0 (θ(x) − θ(x − b)) (1 − θ(x − vt)), (3.70)

3. Harmonic oscillations of the basin floor

ηosc(x, t) = η0 (θ(x + a) − θ(x − a)) sin(ωt). (3.71)

where η0 is the amplitude of the basin floor displacement, θ is the Heaviside function,
2a and b are the horizontal dimensions of the source. In all cases we consider the rec-
tangular distribution of deformations of the basin floor. The scheme of motions of
the basin floor in the case of a running displacement is shown in Fig.3.3.

For the tsunami problem the linear displacement itself has no physical
significance—it is useful only as a mathematical model. But from the function
ηL(x, t) it is possible to “construct” the two principal model laws of deformation
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Fig. 3.3 Model of running
displacement of basin floor

of the basin floor at the tsunami source: a motion of the basin floor involving residual
displacement,

η1(x, t) = ηL(x, t) − ηL(x, t − τ) (3.72)

and a motion of the basin floor without residual displacement,

η2(x, t) = 2ηL(x, t) − 4ηL(x, t − 0.5τ) + 2ηL(x, t − τ). (3.73)

Complying with the terminology proposed in (Dotsenko and Soloviev 1990a, b),
we call the two indicated types of motion “piston” and “membrane” displacements.

The problem considered is linear, therefore, the solutions for the piston and mem-
brane displacements can be expressed through the solution for the linear displace-
ment, making use of the superposition principle:

F1(x, z, t) = FL(x, z, t) θ(t) − FL(x, z, t − τ) θ(t − τ), (3.74)

F2(x, z, t) = 2FL(x, z, t) θ(t) − 4FL(x, z, t − 0.5τ) θ(t − 0.5τ)

+ 2FL(x, z, t − τ) θ(t − τ), (3.75)

where FL(x, z, t) is the solution of the problem (3.62)–(3.64) in the case of η(x, t) =
ηL(x, t). The perturbation of the free surface and of the velocity component cor-
responding to the piston or membrane displacements, is obviously, calculated by
formulae, similar to (3.74) and (3.75). Only a formal substitution of FL for ξL , uL or
wL is required.

Calculation of the intermediate integrals, performed applying residue theory,
results in the following expressions for the linear displacement:

FL(x, z, t) = − 1

2πτ

+∞∫

−∞
dk

× exp{−ikx} cosh(kz) (1− (1+ tanh(kH) tanh(kz)) cos(t p0))

k sinh(kH)
X(k).

(3.76)
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ξL(x, t) = 1

2π τ

+∞∫

−∞
dk

exp(−ikx) sin(t p0)

p0 cosh(kH)
X(k), (3.77)

uL(x, z, t) = i

2πτ

+∞∫

−∞
dk

× exp{−ikx} (cosh(kz)− [cosh(kz)+ tanh(kH) sinh(kz)] cos(t p0))

sinh(kH)
X(k),

(3.78)

wL(x, z, t) = − 1

2πτ

+∞∫

−∞
dk

× exp{−ikx} (sinh(kz)− [sinh(kz) + tanh(kH) cosh(kz)] cos(t p0))

sinh(kH)
X(k),

(3.79)

where p0 = (gk tanh(kH))1/2, X(k) = η02 sin(ka)
/

k.
In the case of a running displacement of the basin floor the solution is given by

the following formulae:

FR(x, z, t) = − η0

4π

+∞∫

−∞
dk

exp{−ikx}
k cosh(kH)

×
(
gk cosh(kz) + p20 sinh(kz)

)

p0

×
⎛

⎜
⎝exp {−ip0t}

exp
{

ib
(

k + p0
v

)}
− 1

k + p0
v

− exp{ip0t}
exp

{
ib
(

k − p0
v

)}
− 1

k − p0
v

⎞

⎟
⎠, (3.80)

ξR(x, t) = η0

4π i

+∞∫

−∞
dk

exp{−ikx}
cosh(kH)

×
⎛

⎜
⎝exp{−ip0t}

exp
{

ib
(

k + p0
v

)}
− 1

k + p0
v

+ exp{ip0t}
exp

{
ib
(

k − p0
v

)}
− 1

k − p0
v

⎞

⎟
⎠, (3.81)
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uR(x, z, t) = η0i

4π

+∞∫

−∞
dk

exp{−ikx}
cosh(kH)

× (gk cosh(kz) + p20 sinh(kz))

p0

×
⎛

⎜
⎝exp {−ip0t}

exp
{

ib
(

k + p0
v

)}
− 1

k + p0
v

− exp {ip0t}
exp

{
ib
(

k − p0
v

)}
− 1

k − p0
v

⎞

⎟
⎠, (3.82)

wR(x, z, t) = − η0

4π

+∞∫

−∞
dk

exp{−ikx}
cosh(kH)

×
(
gk sinh(kz) + p20 cosh(kz)

)

p0

×
⎛

⎜
⎝exp {−ip0t}

exp
{

ib
(

k + p0
v

)}
− 1

k + p0
v

− exp{ip0t}
exp

{
ib
(

k − p0
v

)}
− 1

k − p0
v

⎞

⎟
⎠ . (3.83)

We stress that expressions (3.80)–(3.83) are valid only, if the condition t � b/v is
fulfilled. At any rate, this fact gives rise to no essential complications in calculations
for time periods inferior to b/v, since, from a physical point of view, the solution
of the problem involving a running displacement at t = t0 < b/v is equivalent to
the solution of a similar problem for b = vt0.

3.3.2 Piston and Membrane Displacements

As it was already shown above, tsunami waves are generated bymotions of the ocean
bottom occurring along the normal to its surface (normal displacements). Motions
of the ocean bottom in its own plane (tangential displacements) are not effective,
from the standpoint of tsunami generation. The term “vertical displacement” is often
encountered in the literature. In the case of small slope angles of the ocean bottom
the difference between vertical and normal displacements is, naturally, insignificant.

The goal of this section consists in the revelation of relationships between themain
parameters of a tsunami wave and the characteristics of the source generating it—
the deformation area of the ocean bottom. The wave parameters of interest to us
comprise its amplitude, its length, and the energy of thewave perturbation. The source
is characterized by the amplitude and duration of the ocean bottom deformation, as
well as its horizontal extension.
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The mechanisms of wave generation by ocean bottom displacements, both of
impulse and finite duration, have been investigated analytically (Kajiura 1970;Murty
1977; Dotsenko and Soloviev 1990a, b; Dotsenko et al. 1993; Dotsenko and Soloviev
1995), and numerically (Marchuk et al. 1983). There also exists a small number of
publications devoted to laboratory simulation of the generation process (Takahasi
1934, 1963; Hammack 1973; Nosov and Shelkovnikov 1997). A review of experi-
mental works can be found in (Levin 1978).

We shall first deal with elementary results that can be obtained within the frame-
work of linear theory of long waves. The one-dimensional wave equation, describing
displacements of the free surface, ξ , in the case of deformationsη of the ocean bottom,
exhibits the following form:

∂2ξ

∂t2
− gH

∂2ξ

∂x2
= ∂2η

∂t2
. (3.84)

Let deformations of the ocean bottom be given by the formula

η(x, t) = (
θ(x + a) − θ(x − a)

)
η(t), (3.85)

where η(t) represents an arbitrary law of motion of the ocean bottom. Note that
the piston and membrane displacements, (3.72) and (3.73), respectively, are spe-
cial cases of formula (3.85). Deformations of the ocean bottom of the form (3.85)
result in the formation of two identical waves, traveling in opposite directions. In
the one-dimensional case a long linear wave does not undergo transformation during
propagation, so it suffices to know its characteristics at any single point, for instance,
close to the right boundary of the generation area (x = a + ε, ε > 0, ε � a).
The solution of equation (3.84) is readily found analytically. Thus, for example, at
x = a + ε the wave perturbation is described by the following simple formula:

ξ(t) = 1

2

(
η(t) − η(t − 2a(gH)−1/2)

)
. (3.86)

In Fig. 3.4 examples are presented of the shapes of wave perturbations formed
by piston and membrane displacements (solid lines). Calculations are performed in
accordancewith formula (3.86).A piston-like displacement always forms a solewave
of trapezoidal shape, the polarity of which coincides with the polarity of the seabed
displacement. In the case of a membrane-like displacement a bipolar wave arises
that comprises a crest and a trough. We shall present the formulae relating the main
parameters of waves and the characteristics of a displacement,

• wave amplitude in the case of piston-like displacement

A1
max = η0

{
1/2, τ ∗ � 2,

1/τ ∗, τ ∗ > 2,
(3.87)
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Fig. 3.4 Waves formed by piston (upper row) andmembrane (lower row) displacements of duration
τ ∗ = 3 close to the right boundary of the generation area (x = a) and at a significant distance from
it (x = 10a). The horizontal extension of the source 2a = 10. The solid line represents the linear
theory of long waves, the dotted one the linear potential theory

• crest and trough amplitude in the case of membrane-like displacement

A2
max = A2

min = η0

{
1/2, τ ∗ � 4,

2/τ ∗, τ ∗ > 4,
(3.88)

• wave energy in the case of piston-like displacement

W1 = 2agρη20

⎧
⎪⎪⎨

⎪⎪⎩

1

2
− τ ∗

12
, τ ∗ � 2,

1

τ ∗ − 2

3

(
1

τ ∗

)2

, τ ∗ > 2,
(3.89)

• wave energy in the case of membrane-like displacement

W2 = 2agρη20

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩
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6
, τ ∗ � 2,

τ ∗

6
− 2

3

((
τ ∗

2

)1/3

−
(

τ ∗

2

)−2/3
)3

, 2 < τ ∗ � 4,

(
4

τ ∗

) (
1 − 2

τ ∗

)
, τ ∗ > 4.

(3.90)
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• period of wave perturbation for piston-like and membrane-like displacements

T1 = T2 = a (2 + τ ∗)
(gH)1/2

, (3.91)

• wavelength of perturbation for piston-like and membrane-like displacements

λ1 = λ2 = a(2 + τ ∗). (3.92)

The formulae presented contain the dimensionless displacement duration τ ∗ =
τ

a
(gH)1/2. Below, we shall make use of dimensionless time, determined by a similar

formula, t∗ = t

a
(gH)1/2. The energy of the wave (per unit “channel” width) was

calculated by the Kajiura formula (Kajiura 1970),

W = ρg(gH)1/2

T∫

0

ξ2 dt, (3.93)

where T is the duration of the wave perturbation. From formulae (3.89), (3.90) it is
seen that the wave energy is conveniently normalized to the quantity W0 = 2a gρη20,
representing the potential energy of a free surface rectangular elevation of length
2a and height η0. Precisely, such an elevation should arise on the water surface
in the case of an impulse piston-like displacement of the seabed (if the process is
described within the framework of the linear theory of long waves).

Owing to the problem considered being linear, the tsunami wave amplitude is
proportional to the seabed (ocean bottom) deformation amplitude. In the case of
short motions the amplitude is independent of the duration of the displacement or
the horizontal size of the source and amounts to half the amplitude of the seabed
deformation. When the displacements are longer in time (τ ∗ � 1), the amplitude
dropsmonotonously according to the law (τ ∗)−1. The dependencies (3.87) and (3.88)
are shown in Figs. 3.5 and 3.6, respectively, by broken lines.

From formulae (3.89) and (3.90) it follows that the energy of a tsunamiwave is pro-
portional to the square amplitude of the seabed deformation η0 and to the horizontal
dimensionof the sourcea. The respective dependences are shown inFig. 3.7 (curve 3).
In the case of a piston-like displacement the wave energy decreases monotonously
as the duration of the seabed deformation increases. In the case of a membrane-like
displacement the corresponding dependence is not monotonous: as the duration of
the displacement increases, the energy starts to increase and then drops. The maxi-
mum corresponds to τ ∗ = 4.

As to the wave periods and lengths, these quantities increase monotonously with
the displacement duration, in accordance with formulae (3.91) and (3.92). Actually,
τ ∗ � 1, therefore both the period and length of a tsunami wave mostly depend on
the horizontal dimension of the area of seabed deformation.
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Fig. 3.5 Maximum amplitude of wave, excited by piston-like displacement of seabed, versus dis-
placement duration for various distances from the generation area. Curves 1–3 correspond to values
of parameter a/H = 1, 3, 9. The broken line represents linear theory of long waves

The results expounded above follow from the linear theory of long waves, which
actually describes the process of wave generation and propagation not quite ade-
quately. Figure3.4 demonstrates waves formed by identical sources, but calculated
within the frameworks of two different linear theories: long-wave and potential. In
calculations we applied formulae (3.86) and (3.74), (3.75). Note that in the calcula-
tions presented in Fig. 3.4, use was made of quite an extended source, the length of
which amounted to ten ocean depths.

In the case of a membrane-like displacement the wave shape is essentially differ-
ent, especially at significant distances from the source. But in the case of a piston-like
displacement one can see a noticeable difference in the wave shape and amplitude.
In accordance with potential theory, the main perturbation is followed by an oscil-
lating “tail”, due to phase dispersion. A small enhancement of the wave amplitude
at large distances from the source (piston-like displacement) is also explained by
dispersion. Actually, as the distance from the source increases, the wave amplitude
first increases and only subsequently starts to decrease. The physical interpretation of
this phenomenon consists in the following: the sharp wave front includes shortwave
components traveling slower than the main wave, and, therefore, as the wave propa-
gates, the front “overtakes” it, thus causing enhancement of the amplitude. Variation
of the wave amplitude, as it travels away from the source, is shown in Fig. 3.8. Dis-
persive amplification can be seen to be capable of enhancing the wave amplitude
by 25%, but it is not always present and exists only in such cases, when the size
of the source is noticeably greater than the basin depth. The effect of dispersive
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Fig. 3.6 Maximum amplitude of first crest (a) and first trough (b) of wave, excited by membrane-
like displacement of seabed, versus displacement duration for various distances from the generation
area.Curves 1–3 correspond to values of parameter a/H = 1, 3, 9. The broken line represents linear
theory of long waves

tsunami amplification was first dealt with in (Mirchina and Pelinovsky 1987) for
volcanogenic tsunamis.

Figures3.5 and 3.6 show the dependences of wave amplitudes upon the displace-
ment duration (curves 1, 2, and 3), calculated within the framework of potential
theory. In the case of a piston-like displacement the behavior of these dependencies
does not differ very strongly from the broken line, corresponding to the long-wave
theory. Significant differences are observed only in the case of small-size sources
and at large distances from it. In the case of waves due to a membrane-like dis-
placement, also, no noticeable difference exists at the boundary of the generation
area between calculations performed by the long-wave and potential theories. But,
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(a)

(b)

Fig. 3.7 Energy ofwave, excited by piston-like (a) andmembrane-like (b) displacements of seabed,
versus displacement duration. Curves 1, 2 correspond to values of parameter a/H = 1, 3. Curve
3 corresponds to linear theory of long waves

Fig. 3.8 Maximum
amplitude of wave caused by
piston-like displacement,
τ = 1, versus distance from
the boundary of the source
for different source sizes

0.1

already at a small distance from the source the dependence of the amplitude essen-
tially changes in character and becomes monotonous. Such a character of the depen-
dence is conserved for any horizontal dimensions of the source. It is important to note
that rapid membrane-like displacements do not cause tsunami waves of significant
amplitudes.
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We shall now turn to the relationship between the wave energy and the source
parameters, presented in Fig. 3.7. It can be seen that in the case of a large-size source
or of significant displacement durations, the energy values calculated by potential and
long-wave theories comply quite well with each other. The most essential difference
is again observed in the case of short membrane-like displacements. Taking into
account that in the case of real tsunami sources τ ∗ < 1 clarifies the leading role of
seabed motions with residual displacements in the excitation of strong tsunamis. A
similar conclusion is made, for example, in Dotsenko and Soloviev (1990a, b) from
analysis of a source with axial symmetry.

In conclusion of this section, we shall turn to experimental tests of the the-
oretical relationships found between wave parameters and source characteristics.
We shall briefly describe the layout of laboratory experiments. The setup was an
open rectangular wave tank with transparent walls of organic glass of dimensions
0.15 × 0.15 × 3.3m (Fig. 3.9). As the source of waves, imitating vertical displace-
ments of the basin bottom, use was made of a pneumatic generator representing
a rectangular volume with rigid upper and lower sides, and elastic lateral sides.
Model displacements of the basin bottom were registered by a sensor, representing
a fixed inductance coil and a ferrite core, connected to themoving upper side. Several
generators of the same type of dimensions 0.3 × 0.15 and 0.7 × 0.15m were used.
The inclined plane at the end of the wave tank served as a wave damper. The depth
of the water varied between 0.04 and 0.1m.

The described system permitted to simulate not only single piston-like and
membrane-like displacements, but oscillations of the basin bottom, also. For simu-
lation of a running displacement, use was made of three identical generators, driven
sequentially (Fig. 3.10). The registration of waves on the free water surface was
performed with the aid of optical sensors—infra-red (IR) wave gauges (Nosov and
Shelkovnikov 1991). Unlike traditional contact methods of wave measurements on
a water surface, an IR wave gauge introduces no distortion in the surface at the point
of measurement, therefore, it can measure waves of small amplitude (0.1mm and
less). Measurement of waves of such small amplitudes is essential in physical simu-
lation of tsunamis in the open ocean. Observation of geometrical similarity (Basov

Fig. 3.9 Layout of laboratory setup for simulating tsunami generation by deformations of the basin
bottom. 1 Wave damper (slope), 2 pneumatic wave generator, 3 main line of pressure supply,
4 guiding cylinder, 5 sensor of basin bottom motion, 6 IR wave gauge
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Fig. 3.10 Layout of laboratory setup for simulating tsunami generation by a running displacement.
1, 2, 3 pneumatic wave generators, 4, 5 IR wave gauges

et al. 1984) requires conservation of the relationship between the wave amplitude
and the basin depth, A/H ∼ 10−3, while the depth and wave length are related as
H/λ ∼ 10−2–10−1. It is extremely difficult to establish such relationships in labo-
ratory conditions. Owing to application of the IR wave gauge we have succeeded to
perform the first investigation in the case of realistic relationships between the basin
depth, wave length, and amplitude.

Figure3.11 presents examples of waves, registered in the experiment (dotted line)
and calculated in accordance with linear potential theory (solid line). The theory is
seen to describe the wave perturbations quite adequately. Explanation of the small
discrepancy between experiment and theory consists in that the actual time depen-
dences of the basin motion differed insignificantly from the theoretical dependences,
the first time derivatives of which exhibit discontinuities. The experimental points
shown in Figs. 3.5, 3.6 and 3.7were obtained as a result of analyzing several hundreds
of experiments. The experimental data are seen to confirm the main peculiarities of
the obtained theoretical dependences.

Once again itmust be stressed that not to take into account dispersion in describing
the process of tsunami generation may result in significant errors in determining
amplitude and energy characteristics ofwaves, especially in the case of displacements
of the basin bottom not accompanied by residual deformations.

For comparison, Fig. 3.12 demonstrates the results of experiments and of theoret-
ical calculations, performed in Hammack (1973). Note that Hammack only investi-
gated waves excited by piston-like displacements. Moreover, he applied a somewhat
different, smoother time law of the basin bottom deformation. The main charac-
teristics of the dependences, obtained by Hammack and by us for the piston-like
displacement, are identical.

In his experiments Hammack applied the traditional method of wave registration
on water, making use of a parallel wire resistance gauge. For this reason he had
to excite waves of higher amplitudes. From Fig. 3.12 it is seen that the points, cor-
responding to positive (empty circles) and negative (full circles) displacements of
the basin bottom, are stratified, i.e., lie, respectively, below and above the theoretical
dependence obtained within the framework of linear theory. Note that the “stratifica-
tion” effect of experimental points is observed only in the case of large dimensions
of the generation area (for instance, b/h = 12.20 or 6.10). This is readily explained
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(a)

(b)

(c)

(d)

Fig. 3.11 Examples of time evolvents of waves generated by piston-like (a, b) and membrane-like
(c, d) displacements of the basin bottom. Solid line linear potential theory, dotted line experiment;
a = 0.3m, H = 0.1m

by the large relative dimensions of the generation area (the quantity b/h) being
achieved by the choice of a small depth of water in the wave tank, h, owing to
which the relative amplitude of the displacement became comparable to the depth.
Large relative amplitudes were accompanied by manifestation of nonlinear effects
(Kostitsyna et al. 1992). Attention must also be drawn to the fact, that in the case of
prolonged displacements the “stratification” effect became noticeably smaller, which
was evidently related to the drop in the relative wave amplitude. Figure3.13 clearly
demonstrates the manifestation of nonlinearity in the case of tsunami generation by
piston-like displacements of large amplitude.
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Fig. 3.12 Amplitude ξ0 of wave, excited by piston-like basin bottom displacement of amplitude
η0 as function of the displacement duration τ . Adapted from Hammack (1973)

3.3.3 Running and Piston-Like Displacements

The idea of the deformation of a basin bottom being a process taking place simul-
taneously throughout the entire active region is, naturally, far from reality, although
it does serve as an illustrative model of tsunami generation. Actually, deformation
of a basin bottom is a consequence of the fault at the earthquake source propagat-
ing along a certain plane. In the case of strong earthquakes the fault plane may
extend over hundreds of kilometers, exhibiting a small angle to the horizontal plane.
Therefore, a displacement of the basin bottom, as a rule, has a component that can be
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Fig. 3.13 Waves formed by a piston-like displacement of large amplitude. Calculations are per-
formed within the framework of long-wave theory: solid line linear theory, dotted line nonlinear
theory. The numbers, indicating the curves show the ratio of the basin bottom deformation amplitude
and the basin depth

represented as a perturbation propagating in the horizontal direction. In the literature,
such perturbations of the ocean bottom are conventionally termed “running displace-
ments” (Novikova and Ostrovsky 1978; Vasilieva 1981; Marchuk et al. 1983). Let
us name several other natural prototypes of the running displacement. This role may
be assumed by a nonsimultaneous (sequential) displacement of blocks of the bot-
tom (Lobkovsky and Baranov 1982), a crack propagating over the basin bottom
(Bobrovich 1988), surface seismic waves (Belokon’ et al. 1986), the motion of an
underwater landslide (Garder et al. 1993; Kulikov et al. 1998; Watts et al. 2001).
Similar effects may be observed, also, in the case of wave generation by a moving
area of low or elevated pressure (Pelinovsky et al. 2001).

The interest in running displacements arose, because when the propagation veloc-
ity of a displacement coincides (even approximately) with the velocity of longwaves,
(gH)1/2, a resonance pumping is realized of energy into the tsunami wave. Like in
the preceding section, we shall first turn to the linear theory of long waves. We shall
take advantage of the one-dimensional wave equation (3.84), describing perturba-
tion of the surface, ξ(x, t), that arises with deformation of the basin bottom, η(x, t).
Assume a deformation of the basin bottom, the shape ofwhich is set by a certain func-
tion f , to propagate in the positive direction of the 0x-axis with a constant velocity
v: η(x, t) = f (x − vt). Consider the motion to be established, therefore the solution
of equation (3.84) will also have the form of a perturbation ξ(x, t) = A0f (x − vt)
running over the surface, where A0 is a constant. Substituting the form of the solu-
tion, ξ(x, t), and function η(x, t) into the wave equation, we find the dependence of
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the constant A0 upon the velocity of long waves and upon the propagation velocity
of the perturbation,

ξ(x, t) = v2

v2 − gH
f (x − vt). (3.94)

Fromformula (3.94) it is seen that over a deformationof the basin bottom, traveling
horizontally, there always exists a similar in shape perturbation of the water surface.
Given the condition v < (gH)1/2, the perturbations of the surface and of the basin
bottomexhibit different polarities,whilewhen v > (gH)1/2, their polarities coincide.
The velocities of the perturbation and of long waves being close to each other result
in a sharp enhancement of the amplitude of the surface perturbation.

If the problem of an established running displacement is considered within
the framework of linear potential theory, then the main conclusion concerning res-
onance pumping of energy into the wave, when v ≈ (gH)1/2, does not change.
At velocities v > (gH)1/2 there will exist over the displacement a perturbation of
similar polarity. But for velocities v < (gH)1/2, besides the perturbation of opposite
polarity located over the displacement, there also exists behind it a periodic in space
and stationary in time perturbation with a wavelength determined by the velocity v.
Standing waves, similar in nature, form, when underwater obstacles are bypassed by
the flow (Sretensky 1977).

Problems of established motion are doubtless expedient for understanding the
peculiarities of physical processes taking place during wave generation by running
displacements. But in reality a tsunami forms during a certain finite time interval.
Therefore, we shall further consider models assuming deformations of the basin
bottom to be limited in time.

It must be noted that practically all prototypes of the running displacement (with
the exception of underwater landslides) exhibit velocities superior to the velocity of
sound in water, therefore, the model of an incompressible liquid, considered here,
is often not adequate for describing the process. Nevertheless, the solution of this
problem is certainly not without significance, for the following reasons. Earlier,
the running displacement as a tsunami generator was studied exclusively within
the framework of the theory of long waves (Novikova and Ostrovsky 1978), which
occupies a lower position than potential theory in the hierarchy of models. The
theory of incompressible liquids is a special case (and limit for c → ∞) of the more
general theory of compressible liquids. Consequently, the solution of the problem
for an incompressible liquid will be a convenient bench mark in the construction of
a more complex theory, and, moreover, the possibility arises of direct comparison of
solutions of one and the same problem, obtained within the frameworks of different
theories.

Making use of solutions (3.74) and (3.81), obtainedwithin the framework of linear
potential theory, we shall perform comparative analysis of dispersive tsunami waves
excited by piston-like and running displacements of the basin bottom and subject to
dispersion. We shall also compare such piston-like and running displacements that
form identical residual deformations during the same time period, which, evidently,
is expressed by the condition b = vτ , where b is the horizontal size of the source, τ
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is the duration of the process at the source, v is the propagation velocity of a running
displacement. In other words, we are attempting to compare the efficiency of wave
excitation,when the areafilled exhibits a rectangular shape and is adjacent to the basin
bottom, by two methods: from below upward and from left to right. Figure3.14
presents the profiles ofwaves calculated at timemoment t = 50(H/g)1/2 for the value
of parameter b = 10H, which is characteristic of real tsunami sources. An ordinary
piston-like displacement forms identical waves in the positive and negative directions
of the Ox-axis, while waves, excited by running displacements of the basin bottom,
manifest an explicit asymmetry: a more intense train of waves runs in the direction of
propagation of the displacement. The clearest asymmetry is revealed at propagation
velocities of displacements, v, close to the velocity of longwaves, (gH)1/2. In the case
of sufficiently large velocities v the profiles of waves, corresponding to piston-like
and running displacements, actually become identical.

As a measure of the intensity of wave generation by the two mechanisms inves-
tigated, we shall take advantage of energy (per unit “canal” width), calculated by
the formula,

W = ρ g
∫

ξ2 dx. (3.95)

(a)

(b)

(c)

(d)

Fig. 3.14 Profiles of waves formed by running (thin line) and piston-like (thick line) displacements
at time moment t = 50 for L = 10; a–d correspond to v = 0.2, 0.5, 1, and 10; τ = 50, 20, 10,
and 1
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Fig. 3.15 Energy of waves
excited by piston-like
displacement versus
displacement duration for
various linear dimensions of
the active region. Curves 1–4
correspond to L = 10, 5, 2, 1

The quantity W equals twice the potential energy of the wave. The calculation
of energy was performed for the time moment t = 50(H/g)1/2, when energy redis-
tribution between the potential and kinetic energies had been totally completed and
the value of W no longer depended on time.

The results of calculations are presented in Fig. 3.15 as dependences of the energy
of a wave excited by a piston-like displacement of the basin bottom, W1, upon
the displacement duration τ . The energy values are normalized to the quantity W0 =
ρgbη20/2, representing the specific potential energy of a rectangular elevation of
height η0 and length b of the free surface of a liquid. As the duration of a piston-
like displacement increases the wave energy undergoes a monotonous decrease.
Moreover, the energy depends essentially on the size of the generation area. Curves
1–4 in Fig. 3.15 correspond to values of parameter b/H = 10, 5, 2, 1. Note that these
results, naturally, do not contradict the data presented in Fig. 3.7.

Figure3.16 shows the dependence of the energyW2 of awave, excited by a running
displacement, upon the velocity of the displacement propagation, v. When the para-
meter b/H > 2, the dependence exhibits a maximum, determined by the value of
b/H, in the region of v ∼ (gH)1/2. The figure presents the relationship between
the fractions of energy attributed to waves running along (W+) and against (W−),
the direction of propagation of the running displacement versus the displacement
velocity. This dependence also has a maximum in the vicinity of v ∼ 1. When

(a) (b)

Fig. 3.16 Energy of waves (a), excited by a running displacement versus the propagation velocity
of the displacement. b The relationship between the fractions of energy attributed to waves running
along (W+) and against (W−) the direction of propagation of the running displacement versus
the displacement velocity for L = 10, 5, 2, and 1 (1–4, respectively)
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Fig. 3.17 Dependence of
maximum possible energy of
waves, excited by piston-like
(1) and running (2)
displacements, versus
the size of the generation
area

the parameter b/H decreases, the maximum is shifted noticeably toward smaller
velocities. When the propagation velocity of the displacement increases, the curves
in Fig. 3.16b asymptotically tend toward unity, independently of the value of b/H,
which points to a loss of orientation by the energy emission at large values of v.

Figure3.17 presents the dependence of the maximum possible energy of waves,
excited by piston-like and running displacements of the basin bottom, upon the para-
meter b/H . In the case of b/H < 2 the type of displacement is seen to be irrelevant.
When b/H > 2, a running displacement turns out to be capable of exciting waves
more effectively than a piston-like displacement and while curve 1 tends asymp-
totically toward an evident long-wave limit equal to unity, the maximum energy of
a wave excited by a running displacement actually increases linearly with the para-
meter b/H. It must be noted that in this case the linear increase of dimensionless
energy signifies a quadratic dependence of its dimensional value upon the size of
the generation area, b.

Laboratory simulation of a running displacement (Nosov and Shelkovnikov 1995)
was performed with the setup depicted in Fig. 3.10. As the wave source, use was
made of three identical basin bottom wave generators (of length l = 0.3m) located
at the center of the wave tank and driven sequentially. The motion of each of the gen-
erators simulated a vertical displacement of the basin bottom, involving residual
displacement, and was controlled by its individual sensor. The amplitude of motions
of the generators did not exceed 2mm. The duration of motion of each generator, τ ,
was chosen so as to have pulsed displacements: τ � l (gH)−1/2 (usually, ∼ 0.2 s).
The depth of the water in experiments amounted to 3, 5, 7, and 10cm.

Perturbations of the free water surface were registered with the aid of two
IR wave gauges, located at the boundaries of the generation area. Records of
the generator motions and of signals arriving from the wavegraphs were used in
determining the maximum amplitude of the wave perturbations running along and
against the direction of propagation of the displacement; the vertical displacement
of each of the generators is ηi and the propagation velocity of the displacement,
v = (l/t12 + l/t23)/2, where t12 and t23 are the time intervals between the connec-
tions of the first and second and of the second and third generators.

The results of experiments and of calculations, performed in accordance with
formula (3.81), are presented in Fig. 3.18 as dependences of the maximum amplitude
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Fig. 3.18 Experimental and calculated dependences of themaximumwave amplitude at the bound-
ary of the generation area at points x = 0 (v/v0 < 0) and x = b (v/v0 > 0) versus the propagation
velocity of the displacement. Curves 1–4 correspond to values of parameter b = 1, 2, 5, and 10

of the wave perturbation, Amax, upon the propagation velocity of the basin bottom
displacement. The dependence is presented in dimensionless coordinates: the wave
perturbation amplitude is normalized to the amplitude of the bottom displacement,
A0 = (η1 + η2 + η3)/3, averaged for each given experiment, while the velocity v is
normalized to the propagation velocity of long waves, v0 = (gH)1/2. The data on
the maximum amplitude of the wave, running against the direction of propagation of
the displacement, correspond to negative values of the dimensionless velocity. The
large spread of experimental data, due to the amplitudes of bottom displacements,
ηi, not being strictly equal to each other, did not permit to separate the experimental
dependences for different water depths, so the experimental points in Fig. 3.18 reflect
the data averaged over all the indicated water depths H.

Motions of the basin bottom in laboratory and theoretical models somewhat dif-
fered from each other. Therefore, one cannot expect perfect coincidence of theory
and experiment, which is particularly noticeable, when v/v0 < 0. This is also related
to the fact that the difference between displacement amplitudes of bottom wave gen-
erators could amount to 30%, while the maximum amplitude of the wave, running
against the direction of propagation of the displacement, is determined by the ampli-
tude of the largest of ηi. Consequently, in connection with the wave amplitude being
normalized to the quantity A0 = (η1 +η2 +η3)/3, the dimensionless amplitude will
certainly be overestimated as compared with the case of identical bottom displace-
ment amplitudes.
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Theory and experiment show that a running displacement can indeed serve as an
effective mechanism for the excitation of tsunami waves. In the case of propagation
velocities of bottomdisplacements close to the velocity of longwaves, (gH)1/2, sharp
enhancement occurs with the amplitude and energy of waves running in the direction
of the displacement propagation. It is known that a tsunami amplitude in the open
ocean cannot exceed the amplitude of a piston-like displacement of the ocean bottom.
Contrariwise, in the case of a running displacement the wave amplitude can signif-
icantly exceed the bottom displacement amplitude. In the case of identical residual
deformations of the bottom, a running displacement may turn out to be many times
more effective than a piston-like displacement. The energy transferred by a running
displacement to gravitational waves, when v = (gH)1/2, increases in proportion to
the square distance covered by the displacement.

3.3.4 The Oscillating Bottom

In the case of established harmonic oscillations of the bottom (3.71) we cannot
directly take advantage of the general solution, obtained applying the Laplace trans-
formation (3.65), since the oscillations take place at times t < 0. But in the case
considered this is not necessary. For established oscillations it is possible to obtain
a fully analytical solution, which does not require numerical calculation of integrals
(Nosov 1992). Owing to the response of a linear system existing only at the fre-
quency of inducing oscillations, we know the frequency of excited waves. Therefore,
the solution of the problem is expediently sought in the following form:

Fosc(x, z, t) = exp{iω t}
+∞∫

−∞
dk exp{−ikx}(A(ω, k) cosh(kz) + B(ω, k) sinh(kz)

)
.

(3.96)

Taking advantage of the boundary conditions on the surface (3.63) and on the bottom
(3.64), we obtain

Fosc(x, z, t) = η0ω H

2π
exp{iω t}

+∞∫

−∞
dk

×
(exp{−ik(x − a)} − exp{−ik(x + a)})

(
k cosh(kz) + ω 2 sinh(kz)

)

k2 (ω 2 cosh(k) − k sinh(k))
.

(3.97)
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Expression (3.97) contains dimensionless variables under the integral sign that
were introduced in accordance with the formulae (the sign “*” has been dropped),

(x∗, z∗, a∗) = (x, z, a) H−1; t∗ = t g1/2H−1/2;
ω∗ = ω g−1/2H1/2; k∗ = k H,

but the multiplier before the integral and the velocity potential itself are dimensional
quantities.

To calculate the integral (3.97) it suffices to know the value of an integral of
the following form:

+∞∫

−∞
dk

exp{−ikα} (k cosh(kz) + ω 2 sinh(kz)
)

k2 (ω 2 cosh(k) − k sinh(k))
, (3.98)

where the parameter α = x ± a may assume positive, negative, and zero values.
Let us continue the integrand function in (3.98) analytically from the real axis onto

the entire complex plane ({Re(k), Im(k)}). The integrand has two singular points on
the real axis, k = ±k0, and an infinite number of singular points on the imaginary
axis, k = ±i kj. The singular points are poles of the first order, and their positions
are determined from the solutions of the two following transcendental equations:

cosh(k) ω 2 − k sinh(k) = 0, (3.99)

cos(k) ω 2 + k sin(k) = 0. (3.100)

The integrand function in (3.98) has no other singular points, which is readily
demonstrated with the aid of the theorem on counting the number of zeros of an
analytical function (Sveshnikov and Tikhonov 1999).

Since the integrand function has poles on the real axis, the integral (3.98) must be
understood in the sense of its principal value (p.v.), according to Cauchy. For its cal-
culation the theorem of residues was applied. The ultimate expression, determining
the velocity potential of a liquid flow in the case of established oscillations of a part
of the bottom, has the following form:

• for |x| � a

Fosc(x, z, t)

H η0iω
= exp{iω t}

⎛

⎝ 1

ω 2 + z − 2
∞∑

j=1

Q exp{−kja} cosh(kjx)

⎞

⎠

+ P (exp{i(ω t + k0(x − a))} + exp{i(ω t − k0(x + a))}) ,

(3.101)
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• for x � a

Fosc(x, z, t)

H η0iω
= exp{iω t}

⎛

⎝2
∞∑

j=1

Q exp{−kjx} sinh(kja)

⎞

⎠

+ P (− exp{i(ω t − k0(x − a))} + exp{i(ω t − k0(x + a))})
(3.102)

• for x � −a

Fosc(x, z, t)

H η0iω
= exp{iω t}

⎛

⎝2
∞∑

j=1

Q exp{kjx} sinh(kja)

⎞

⎠

+ P (exp{i(ω t + k0(x − a))} − exp{i(ω t + k0(x + a))}),
(3.103)

where

P = k0 cosh(k0z) + ω 2 sinh(k0z)

k20
(
(ω 2 − 1) sinh(k0) − k0 cosh(k0)

) ,

Q = kj cos(kjz) + ω 2 sin(kjz)

k2j
(
(ω 2 − 1) sin(kj) − kj cos(kj)

) .

With knowledge of the velocity potential of the flow it is not difficult to obtain
expressions for the displacement of a free surface and for the velocity components,

• for |x| � a

ξosc(x, t) = η0 exp{iω t}
⎛

⎝1 − 2ω 2
∞∑

j=1

Q exp{−kja} cosh(kjx)

⎞

⎠

+ η0ω
2 P (exp{i(ω t + k0(x − a))} + exp{i(ω t − k0(x + a))}),

(3.104)

• for x � a

ξosc(x, t) = η0eiω t2ω 2
∞∑

j=1

Q exp{−kjx} sinh(kja)

+ η0ω
2 P (− exp{i(ω t − k0(x − a))} + exp{i(ω t − k0(x + a))}),

(3.105)
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• for x � −a

ξosc(x, t) = η0 exp{iω t}2ω 2
∞∑

j=1

Q exp{kjx} sinh(kja)

+ η0ω
2 P (exp{i(ω t + k0(x − a))} − exp{i(ω t + k0(x + a))}).

(3.106)

• for |x| � a

u(x, z, t) = η0 iω exp{iω t}
⎛

⎝−2
∞∑

j=1

Q kj exp{−kja} sinh(kjx)

⎞

⎠, (3.107)

w(x, z, t) = η0 iω exp{iω t}
⎛

⎝1 − 2
∞∑

j=1

∂ Q

∂ z
exp{−kja} cosh(kjx)

⎞

⎠, (3.108)

• for |x| � a

u(x, z, t) = η0iω exp{iω t}
⎛

⎝−2sign(x)
∞∑

j=1

Qkj exp{−kj |x|} sinh(kja)

⎞

⎠,

(3.109)

w(x, z, t) = η0 iω exp{iω t}
⎛

⎝2
∞∑

j=1

∂ Q

∂ z
exp{−kj |x|} sinh(kja)

⎞

⎠, (3.110)

Note that, owing to the discontinuity exhibited by the function, describing
the space distribution of oscillations of the basin bottom, expressions (3.107)–(3.110)
do not yield adequate values of the flow velocity at the points with coordinates
{x = ±a, z = −1}. To obtain the exact velocity values in the immediate vicinity of
the points indicated it is necessary to take into account quite a large number of terms
of the expansion in j.

From the structure of the obtained formulae it is seen that perturbation of a liquid
consists of forced oscillations, occurring in the immediate vicinity of the source
(and exponentially dying away with the distance from it), and a series of progressive
waves starting at points x = ±a.

From the point of view of tsunami generation precisely the amplitude of pro-
gressive waves is important. From formulae (3.105) and (3.106) it is seen that this
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Fig. 3.19 Dependence of the quantity
∣
∣ω2P

∣
∣, determining the amplitude of a gravitational wave

upon the cyclic frequency of oscillations of the basin bottom

amplitude is largely determined by the quantity
∣
∣ω2P

∣
∣, the dependence of which

upon the cyclic frequency is shown in Fig. 3.19. A most important peculiarity of
the response of the liquid to oscillations of a part of the ocean bottom consists in
the existence of a certain boundary frequency, which, when surpassed, the efficiency
of wave emission drops drastically. Thus, at high frequencies all themotion of the liq-
uid is concentrated exclusively in the vicinity of the source and represents forced
oscillations.

But the amplitude of emitted waves, A, does not depend only on the frequency of
basin bottom oscillations, but on the horizontal extension of the oscillating area of
the bottom, also. In accordance with formula (3.105), we can write

A(ω ) = η0 ω 2 2 sin(k0a) cosh(k0)

k0 [k0 + sinh(k0) cosh(k0)] , (3.111)

whereω 2 = k0 tanh(k0). The dependence of the absolute value of the amplitude upon
the dimensionless oscillation frequency of the ocean bottom (ν(H/g)1/2) is presented
in Fig. 3.20. Calculations were performed for three different values of parameter a.

Fig. 3.20 Amplitude of progressive wave excited by oscillating area of ocean bottom versus the fre-
quency of bottom oscillations for different sizes of the source, a
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Surface manifestation of the oscillations of a part of the ocean bottom with linear
dimensions, smaller than the depth of the layer of liquid, will be relatively weak.
The existence of a set of frequencies, at which the amplitude of the emitted wave
turns to zero, is related to the interference of waves forming at points x = ±a. The
automatic locking of the source is a consequence of the rectangular space distribution
of the amplitude of bottom oscillations. Actually, manifestation of the automatic
locking effect in nature is extremely improbable.

The dependence (3.111) permits to reveal parameters determining the limits of
the tsunami frequency spectrum, νmin and νmax. We shall find the limit frequencies
from the solution of equation A(ν) = η0/10. From Fig. 3.20 it is not difficult to
conclude that νmax ∼ 0.3, while the quantity νmax does not depend on the size of
the generation area, a.

We shall now determine νmin. At small oscillation frequencies of the ocean bottom
(which also corresponds to small values of k0), expression (3.111) is essentially
simplified and assumes the following form: A(ω ) = η0 a ω . Thus, the quantity νmin
can be estimated as νmin ∼ (20π a)−1. Passing to dimensional quantities, we obtain
the following formulae for the limits of the tsunami frequency spectrum:

νmax ∼ 0.3
( g

H

)1/2
, (3.112)

νmin ∼ (gH)1/2

20π a
. (3.113)

The lower frequency limit is seen to be related both to the ocean depth and to
the horizontal dimension of the source, while the upper limit only to the depth.
For a depth H ∼ 103m and size of the source equal to a ∼ 104m we obtain
νmax ∼ 10−2 Hz, νmin ∼ 10−4 Hz. The spectrum of real tsunami waves lies precisely
within these limits (Murty 1977; Pelinovsky 1996).

The theoretical dependence (3.111) has been tested experimentally (Nosov and
Shelkovnikov 1992). Use was made of the setup shown in Fig. 3.9. The pneumatic
generator 30cm long simulated harmonic oscillations of an area of the ocean bot-
tom. Practically, all the remaining part of the wave tank was occupied by the wave
damping system representing a gentle slope covered with a plastic mesh. The wave
was registered by the IR wave gauge at a distance of 10cm from the boundary of
the generation area. The results of experiments and of theoretical calculations for
three different water depths in the wave tank are presented in Fig. 3.21. The experi-
mental data are seen to comply with the theoretical dependence.
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Fig. 3.21 Comparison of experimental and theoretical dependences of amplitudes of excited pro-
gressive wave versus frequency of bottom oscillations

3.4 Generation of Tsunami Waves and Peculiarities
of the Motion of Ocean Bottom at the Source

In this section we shall deal with the space (3D) problem of tsunami generation by
ocean bottom displacements. Transition from plane (2D)models to the more realistic
three-dimensional problem makes it possible to investigate the most important issue
of the directivity of wave emission and of its relation to parameters of the source.
The effect of directed emission of tsunami waves from the source area can be due
to various reasons, which are usually considered to comprise the geometrical shape
of the deformation area of the ocean bottom, the transfer of horizontal momentum
to masses of water, and the waveguide properties of the bottom relief (Voight 1987;
Dotsenko and Soloviev 1990a, b). The last reason, generally speaking, is related to
the tsunami propagation, and not towave generation. The directivity of tsunami emis-
sion, due to source asymmetry, has been studied theoretically (Kajiura 1963, 1970;
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Dotsenko et al. 1993), experimentally (Takahasi 1963), and numerically (Marchuk
and Titov 1993).

The strikingly clear directivity of the Chilean tsunami of May 22, 1960, when
the amplitude of the wave traveling in a direction, perpendicular to the South Ameri-
can coast, was several times larger than the amplitudes of waves propagating in other
directions, initiated the appearance of a series of publications (Voight et al. 1980,
1981, 1982; Lebedev and Sebekin 1982), in which the role was estimated of a hor-
izontal motion of the ocean bottom in forming an directed tsunami wave. In these
works, the influence of a horizontal motion on the ocean was simulated by applying
an effective mass force in the vicinity of the source, and, then, the properties of waves
at a large distance from the generation area were studied. Thus, for example, it was
established, that a wave, caused by a vertically directed mass force, exhibits axial
symmetry at long distances from the source, in spite of the perturbating force not
being axially symmetric, while at the same time the wave front of a tsunami caused
by a transfer of horizontal momentum remains anisotropic.

Numerical models of tsunamis, that gained well-known popularity as powerful
means for investigations (Chubarov et al. 1992; Kato and Tsuji 1995; Satake 1995;
Satake and Imamura 1995; Tanioka and Satake 1996b; Titov et al. 1999; Myers
and Baptista 1995; Suleimani et al. 2003; Zaitsev et al. 2005; Kowalik et al. 2005;
Titov et al. 2005; Horrillo et al. 2006; Rivera 2006; Gisler 2008), seem to have
achieved a certain limit in their perfection, in the sense that for their further successful
development it is necessary to introduce a number of essentially novel features, one of
which consists in the following: wave excitation must be described realistically, i.e.,
it must be dealt with as a process extended in time. As a rule, in describing tsunami
generation impulse displacements are considered, and, consequently, only geometric
characteristics of the source, i.e., the distribution of residual bottom displacements
in space, are taken into account. Here, the actual method (the time law followed by
motions of the ocean bottom), by which the different residual displacements came
about, is totally neglected. At the same time, the duration of processes at the source
may amount to 100 seconds, and more (Satake 1995). For example, the process at
the source of the Sumatran catastrophic tsunami of 2004 went on for about 1000s. In
such a long period of time, a long wave is capable of covering a distance comparable
to the size of a tsunami source, which means that a displacement cannot be assumed
to exhibit an impulse character. Moreover, in (Dotsenko 1996; Nosov et al. 1997;
Nosov 1998a, b) it was established that the energy, amplitude, and even directivity
of tsunami waves are not only related to the geometric characteristics of the source,
but to the time law of motion of the ocean bottom, also.

In Sect. 3.2.1 the general solution was obtained, within the framework of potential
theory, for the linear response of a layer of incompressible liquid of fixed depth to
deformations of the ocean bottom, η(x, y, t). We shall consider the following three
model laws of ocean bottom deformation:

• piston-like displacement

η1(x, y, t) = ηS(x, y) (θ(t)t − θ(t − τ)(t − τ)) τ−1, (3.114)
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• membrane-like displacement

η2(x, y, t) = ηS(x, y) (2θ (t) t − 4θ (t − τ/2) (t − τ/2)

+ 2θ (t − τ ) (t − τ)) τ−1, (3.115)

• running displacement

η3(x, y, t) = ηS(x − a, y) (1 − θ (x − vt)), (3.116)

whereηS(x, y) = η0 (θ (x + a) − θ (x − a)) (θ (y + b) − θ (y − b)) is the space dis-
tribution of ocean bottom deformations, θ (z) is the Heaviside step function. The
active region has the shape of a rectangle of length 2a and width 2b. The piston-like
and membrane-like displacements are characterized by amplitude η0 and duration τ ,
the running displacement by its amplitude η0 and propagation velocity v. In the case
of a running displacement the area of bottom deformations is shifted in the positive
direction of axis 0x by the quantity a, so as to have motions of the ocean bottom start
at the time moment t = 0.

We now introduce dimensionless variables (the sign “*” will be further dropped),

(
m∗, n∗) = H (m, n) ; (

x∗, y∗, z∗, a∗, b∗) = H−1 {x, y, z, a, b} ;
{
t∗, τ ∗} = {t, τ } g1/2H−1/2; {

ξ∗, ζ ∗} = η−1
0 {ξ, ζ } .

(3.117)

Part of the integrals, present in formula (3.48), can be calculated analytically. Zipping
intermediate calculations, we shall write out the formulae describing the perturbation
of a free surface in the case of oceanbottomdeformations of the form (3.114)–(3.116),

• piston-like displacement

ξ1 (x, y, t) = θ (t) ζ1 (x, y, t) − θ (t − τ) ζ1 (x, y, t − τ ), (3.118)

• membrane-like displacement

ξ2 (x, y, t) = 2θ (t) ζ1 (x, y, t)

− 4θ (t − τ/2) ζ1 (x, y, t − τ/2) + 2θ (t − τ) ζ1 (x, y, t − τ),

(3.119)

where

ζ1 (x, y, t) = 4

π2τ

∞∫

0

∞∫

0

dm dn

× sin (ma) sin (nb) cos (mx) cos (ny) sin
(
(k tanh k)1/2 t

)

mn cosh k (k tanh k)1/2
,

(3.120)
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k2 = m2 + n2,

• running displacement

ξ3 (x, y, t) = η0

2π2 i

∞∫

0

dn

+∞∫

−∞
dm

exp {i m x} sin (nb) cos (n y)

cosh (k) n

×

⎛

⎜⎜
⎜
⎜
⎝

1 − exp

{

−i2 a

(

m + (k tanh(k))1/2

v

)}

m + (k tanh(k))1/2

v

exp
{

i (k tanh(k))1/2 t
}

+
1 − exp

{

−i2a

(

m − (k tanh(k))1/2

v

)}

m − (k tanh(k))1/2

v

exp
{
−i (k tanh(k))1/2 t

}

⎞

⎟
⎟
⎟
⎟
⎠

.

(3.121)

Formula (3.121) is valid, when t � 2a/v (the reason that such a restriction exists
is expounded in Sect. 3.3.1). The integrals in expressions (3.120) and (3.121) were
calculated numerically.

Figure3.22 presents the space structure of waves excited by piston-like and run-
ning displacements, which have ultimately resulted in identical residual deformations
(a = 6, b = 2). The propagation velocity of a running displacement, v = 2, and
the duration of a piston-like displacement, τ = 6, satisfy the relationship τ v = 2 a.
Calculations are performed in accordance with formulae (3.118) and (3.121). From
the figure it is seen that in the case of a piston-like displacement the waves of maxi-
mum amplitude propagate in the negative and positive directions of axis 0y, i.e., in
a direction perpendicular to the direction of maximum extension of the source. In
the case of a running displacement the source emits waves of maximum amplitude at
the Mach angle to the direction of propagation of the displacement, (0x). Moreover,
attention is immediately drawn to the fact that the amplitude of waves caused by
a running displacement is significantly superior to the amplitude of waves in the case
of a piston-like displacement.

For detailed investigation of the directivity of waves emitted from the source
area wave time bases were calculated at points lying on a circle of a certain radius
(r > max[a, b]), with its center coinciding with the origin of the chosen reference
frame. Examples of such time bases are presented in Fig. 3.23. The azimuthal angle
was counted off from the positive direction of axis 0x. From the wave time bases
amplitude characteristics were determined, and the energy was estimated by the for-
mula proposed in (Kajiura 1970),
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Fig. 3.22 Free surface perturbations caused by piston-like and running displacements of the bottom
with parameters a = 6, b = 2, v = 2 (τ = 6). Calculations are performed for the time moments t
indicated in the figure

W = ρg(gH)1/2

T∫

0

∫

γ

ξ2(t) dt dγ. (3.122)

Formula (3.122) yields the energy that passed through the contour γ in time T .
In our case, the contour γ was chosen to be the segment of a circle of radius r,
given �α = 10◦. Energy values were normalized to the quantity W0 = 2ρgabη20.
The quantity W0 corresponds to the potential energy of the initial free surface eleva-
tion, exhibiting the shape of the residual bottom displacement.

Figure3.24 presents, in the form of directional diagrams, the dependences of
the amplitude of the first crest A1 (a, b), of the “maximum span” Amax − Amin
(c, d), and of the wave energy Wα (e, f) upon the azimuthal angle. Calculations
are performed for piston-like and running displacements, the durations of which are
chosen so as to satisfy the relationship τ = 2av−1. Thus, the process of wave exci-
tation can be investigated by varying the parameter, common to both piston-like and
running displacements, namely, the duration of the process in the active area. The
dotted line in the figure shows the shape and orientation of the active area. From
Fig. 3.24 the orientation is seen to be manifested most weakly for the amplitude of
the first crest. The evolution of directional diagrams differs essentially for piston-
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(a)

(b)

Fig. 3.23 Time base of waves caused by piston-like displacement. Calculations are performed
at points lying on a circle of radius r = 10 (a) and r = 30 (b) with its center at the origin
of the reference frame, for azimuthal angles α = 0, 30, 60, 90◦ (curves 1–4, respectively). The
parameters of the bottom displacement: a = 1, b = 5, τ = 1 (a) and a = 3, b = 15, τ = 1 (b)

like and running displacements, as the duration of the process at the source varies.
When the duration of a piston-like displacement increases, the amplitude and energy
of waves monotonously decrease, while their distribution over the azimuthal angle
tends to be isotropic.Here, thewave of largest amplitudes and energy are always emit-
ted in a direction, perpendicular to the largest extension of the source. In the case
of a running displacement, as the duration of the process at the source increases
(the propagation velocity of the displacement decreases), the directional diagrams
gradually transform from two-pronged into single-pronged diagrams, and the main
part of energy starts to be emitted in the direction of propagation of the displace-
ment. When the duration of the process at the source is small (τ = 2), the directional
diagrams for both cases investigated are practically identical. But in the case of large
values of τ , the character of motion of the ocean bottom already exerts significant
influence on the parameters of the excited wave.

Figure3.25 presents the dependence of the total wave energy (integrated over all
directions) upon the duration of the process at the source. In the case of a piston-
like displacement (curve 1) the dependence is monotonous—the energy falls as
the duration of the process increases. In the case of a running displacement (curve 2)
the dependence reveals a maximum, which corresponds to coincidence of the prop-
agation velocity of the displacement and the velocity of long waves. The running
displacement is also seen to be noticeablymore effective than the piston-like displace-
ment within a wide range of τ values.When durations of the process at the source are
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(a)

(c) (d)

(e) (f)

(b)

Fig. 3.24 Distribution of amplitude of the first crest (a, b), of the “maximum span” (c, d) and
of the energy (e, f) of a wave over the azimuthal angle. Curves 1–6 correspond to piston-like
displacements (a, c, e) of durations t = 2, 3.3(3), 5, 10, 12.5, 20 and to running displacements (b,
d, f) with propagation velocities v = 5, 3, 2, 1, 0.8, 0.5. The durations and propagation velocities
are chosen so as to have τ = 2av−1. The dotted line shows the shape and orientation of the active
area

Fig. 3.25 Total energy of
waves generated by
piston-like (1) and running
(2) displacements versus
duration of the process in
the active area. In the case of
a running displacement
τ = 2av−1
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small or large the efficiencies of both mechanisms of wave generation are approxi-
mately identical.

Figure3.26 presents energy directional diagrams for waves due to piston-like
and membrane-like displacements. The dotted line shows the shape and orientation
of the model source. Calculations have been performed for various deformation
durations of the bottom. The main part of energy is seen to be emitted in a direction,
perpendicular to the direction of maximum extension of the source, independently
of the time law satisfied by motion of the bottom. But as the displacement duration
increases, the diagram undergoes significant changes, the character of which does
depend on the type of time law of motion of the bottom.

We shall now introduce the directional coefficient of emission as the ratio of energy
fractions emitted in directions α = 0◦ and 90◦. Figure3.27 shows the dependence of
the directional coefficient upon the displacement duration. For a piston-like displace-
ment the quantity W0◦

/W90◦
decreases monotonously as the duration increases. But

the corresponding dependence for a membrane-like displacement exhibits a non-
monotonous character. It is interesting to note that in the case of a membrane-like
displacement the directional coefficient may assume larger values, than for a piston-
like displacement. From the figure it can also be concluded that a decrease in the size
of a source, if its shape (the ratio a/b) is conserved, results in aweakening of the direc-
tionality, especially when its size becomes comparable to the depth.

Why does the duration of the bottom deformation (or type of time law) influence
the orientation ofwave emission?The point is that an asymmetric source formswaves
of differing wavelengths in different directions. In other words, there exists an effec-

(a) (b)

Fig. 3.26 Directional diagrams for emission energy of waves caused by piston-like (a) and
membrane-like (b) displacements of ocean bottom. Curves 1–7 correspond to τ = 0.5, 1, 2, 4,
8, 16, 32
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Fig. 3.27 Directional
coefficient versus duration of
bottom displacement. Curves
1, 2 correspond to piston-like
displacement, 3, 4 to
membrane-like
displacement. Curves 1, 3
are obtained for
a = 1, b = 5, r = 10, curves
2, 4 for a = 3, b = 15,
r = 30

tive horizontal size of a source, depending on the direction. It was shown in Sect. 3.3.2
(Fig. 3.5) that when the displacement duration increases, the wave amplitude falls
more rapidly in the case of a source of smaller horizontal extension. Therefore, if
the source is elongated, then the degree of emission orientation inevitably decreases,
as the displacement duration rises. The behavior of the directional coefficient in
the case of a membrane-like displacement is explained in a similar manner.

Figure3.28 presents the total wave energy (integrated over all directions) ver-
sus the duration of the bottom displacement. In the case of a piston-like displace-
ment the energy monotonously decreases as the duration increases, while in the case
of the membrane-like displacement there exists a certain “optimal” duration, for
which the energy is maximal. For this “optimal” duration the membrane-like dis-
placement turns out to be more effective, than even a piston-like displacement of
small duration. Similar dependences were obtained in Refs. (Dotsenko and Soloviev
1990a, b, 1995) within the framework of linear theory of long waves.

Analysis of space distribution of vertical residual displacements shows that at
the tsunami source there usually exist two regions: an uplift and a subsidence of
the ocean bottom (Van Dorn 1964; Dotsenko et al. 1986; Satake 1995; Kato and

Fig. 3.28 Total energy of
waves due to piston-like and
membrane-like
displacements versus
displacement duration. The
curves are numbered like in
Fig. 3.27
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Tsuji 1995). We shall term such a displacement alternating in sign. We shall briefly
dwell upon certain peculiarities of the directionality of wave emission, related to such
bipolar deformation of the ocean bottom. Consider the displacement alternating in
sign to be described by the formula (Nosov et al. 1999),

η4(x, y, t) =
(
η1 a−1

1 (x + a1)
(
θ(x + a1) − θ(x)

)

+ η2 a−1
2 (x − a2)

(
θ(x) − θ (x − a2)

))

×
(
θ(y + b) − θ(y − b)

) (
t τ−1θ(t) − (t − τ) τ−1θ(t − τ)

)
.

(3.123)

The space distribution of the deformation amplitude of the bottom, determined
by formula (3.123), is shown in Fig. 3.29. As to the time law of bottom deformation,
we consider a displacement with residual deformation.

The perturbation of a free surface in the case of a displacement alternating in sign
is calculated in accordance with the following formula:

ξ4 (x, y, t) = θ (t) ζ4 (x, y, t) − θ (t − τ) ζ4 (x, y, t − τ),

where

ζ4(x, y, t) = 2

π2τ

∞∫

0

∞∫

0

dm dn
sin

[
(k tanh(k))1/2 t

]

cosh(k) (k tanh(k))1/2

cos(ny) sin(nb)

n

×
[
cos(mx)

(
η1

a1m2 [1 − cos(ma1)] − η2

a2m2 [1 − cos(ma2)]

)

+ sin(mx)

(
η1

a1m2 sin(ma1) − η1

m
+ η2

a2m2 sin(ma2) − η2

m

)]
.

(3.124)

Integration over the components m and n of the wave vector in formula (3.124) was
performed numerically.

Fig. 3.29 Model of residual deformations of the bottom for a displacement alternating in sign



142 3 Hydrodynamic Processes at the Source of a Tsunami …

Fig. 3.30 Perturbation of
free surface caused by
displacement of bottom
alternating in sign.
Calculations are performed
for a sequence of time
moments (indicated in
the figure) for a1 = 7,
a2 = 3, b = 10, τ = 1

Figure3.30 shows the example of the space structure ofwaves, excited by a bottom
displacement alternating in sign with parameters a1 = 7, a2 = 3, b = 10, τ = 1. The
active area (its horizontal projection) exhibits the shape of a rectangle of size 10×20
(along axes 0x and0y, respectively). The “fault” passes along the axis 0y, the elevation
and depression areas of the ocean bottom correspond, respectively, to negative and
positive values of the x coordinate. From the figure it is seen that waves of maximum
amplitude propagate in a direction, perpendicular to the “fault” direction. Besides
the above, attentionmust be drawn to the following nontrivial peculiarity: the leading
wave in the train exhibits negative polarity, not throughout the entire semiplane x > 0,
but only in a certain sector, the angle of which is noticeably smaller than 180◦. Note,
that in accordance with the theory of long waves the polarity of the leading tsunami
wave is determined by the sign of deformation of the ocean bottom at the nearest
point of the source. Potential theory provides a more precise result, demonstrating
that the polarity of the leading wave is related to a greater number of parameters.

Figure3.31 presents wave profiles, calculated for various azimuthal angles α

and for two displacement durations τ = 1, 10 (solid and dotted lines, respec-
tively). The waves are characterized by significant dispersion, and their amplitudes
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Fig. 3.31 Wave profiles (perturbation of free surface as function of radius r) for various azimuthal
angles α at time moment t = 50. The parameters of the displacement are a1 = 7, a2 = 3, b = 10,
τ = 1 (solid line), τ = 10 (dotted line)

depend essentially upon the direction of propagation. The energy directional dia-
grams are presented in Fig. 3.32. The energy values were normalized to the quantity
W0 = ρ g b

(
η21 a1 + η22 a2

)
/3, the physical meaning of which consists in it repre-

senting the potential energy of the initial elevation of the water, similar in shape to
the residual deformation of the ocean bottom. From Fig. 3.32 it is seen that in the case
of symmetry (a1 = a2 = 5) no wave whatever is emitted in the “fault” direction (90◦
and 270◦). This effect is evident from general arguments: perturbations that happen
to be identical in shape, but differ in their signs of bottom deformations, cancel each
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(a) (b)

Fig. 3.32 Directional diagrams of energy emission for waves, caused by a bottom displacement
alternating in sign. The shape and orientation of the source (a1 = a2 = 5 (a), a1 = 7, a2 = 3 (b))
are shown by the dotted line. Calculations are performed for b = 10, τ = 1 (thick line), τ = 10
(thin line)

other out along the symmetry axis. Such a symmetry is, naturally, quite improbable in
nature. Nevertheless, for the nonsymmetric case (a1 = 7, a2 = 3), also, the prevalent
part of wave energy is emitted perpendicularly to the “fault”, while the energy flux
along the “fault” direction is nearly 40 times smaller. An increase of the duration
of the bottom deformation reduces the energy of the generated waves and weakens
their directionality.

In conclusion it must be stressed that the characteristics of tsunami waves may
depend essentially not only on the shape of the source and on the space distribu-
tion inside it of residual deformations of the ocean bottom, but also on how these
deformations developed in time.

3.5 Calculation of the Initial Elevation at the Tsunami
Source

As a rule, numerical models of tsunami waves, applied in practical calculations, are
constructed on the basis of the theory of long waves, making use of the equations
of hydrodynamics averaged along the vertical coordinate (see Sects. 3.1.2 and 6.2).
The process of tsunami formation by an underwater earthquake is considered to be
instantaneous. Therefore, the set of equations of the long-wave theory is resolved
with initial conditions representing a certain displacement of the free water surface
from the equilibrium position (the initial elevation), given a zero flow velocity field.
The initial elevation is conventionally set equal to the vertical coseismic (residual)
deformation of the oceanic bottom due to the underwater earthquake.

http://dx.doi.org/10.1007/978-3-319-24037-4_6
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The conventional way of formulating initial conditions is widely applied in the
numerical simulation of real events (e.g., Titov et al. 2003; Alasset et al. 2006;
Zaytsev 2010; Popinet 2012), since it more or less adequately reconstructs the main
mechanism of tsunami generation—the displacement of water by a bottom deforma-
tion. At the same time, the conventional approach to formulating initial conditions
is far from being perfect owing to the following two reasons (Nosov and Kolesov
2009, 2011). First, at the moment when deformation of the bottom stops, the water
surface deviation from the equilibrium position and the vertical residual deformation
will not be equal to each other, even in the case of a flat horizontal bottom and an
instantaneous deformation—which is a manifestation of the “smoothing effect” of
a layer of water. Second, in the case of an inclined bottom horizontal deformation
components also lead to a displacement of water and, consequently, contribute to
the initial elevation. The significance of the contribution of horizontal components
is demonstrated in Sect. 2.4 by numerous examples of real events.

The existence of a “smoothing effect” is explained as follows. From the ana-
lytical solution of the problem of tsunami generation in a basin of constant depth
by small vertical bottom deformations (3.48) it follows that the spatial spectrum
of the water surface displacement is modulated by the rapidly decaying function
1/ cosh (kH), where k is the wavenumber. Consequently, movements of the bottom
cannot create surface perturbations of a wavelength λ < H . Therefore, a direct trans-
fer of bottom deformations to the water surface leads to artificial saturation of the
tsunami spectrumwith shortwave components that are actually nonexistent. For ade-
quate reproduction of these nonexistent shortwave components in numerical models
a nonrational reduction of the steps in space and time is required, which leads to
an increase of the computation time. Consequently, taking the smoothing effect into
account not only permits to avoid errors in calculating the initial elevation, but also
helps to enhance the efficiency of numerical models.

The idea of the smoothing influence of a water layer was first put forward by
Kajiura even before the era of numerical tsunami simulation (Kajiura 1963).Different
versions of initial elevation smoothing were applied in numerical tsunami simulation
or were analyzed theoretically by different scientific groups (e.g., Tinti et al. 1999;
Tanioka and Seno 2001; Rabinovich et al. 2008; Saito and Furumura 2009; Nosov
and Kolesov 2009, 2011; Fine and Kulikov 2011; Nosov and Sementsov 2014). The
contribution of horizontal deformations of an inclined bottom to a tsunami wave was
also dealt with in a whole number of studies (e.g., Iwasaki 1982; Tanioka and Satake
1996a; Nosov et al. 2011, 2014a; Bolshakova et al. 2015).

Before the end of the twentieth century an earthquake source was in most cases
represented simplistically as a rectangular fault area with a uniform slip distribu-
tion. Such a simplified representation permitted to obtain an approximate estimate
of the bottom deformation at the tsunami source, but no precise calculations were
intended. During the past decade a breakthrough took place in the reconstruction of
the slip structure at an earthquake source (see Sect. 2.4). Detailed data on the slip
structure already permit to hope for accurate calculation of the vector field of the
bottom deformation at the tsunami source. In this connection, taking into account the
contribution of horizontal deformations and the smoothing effect becomes at present

http://dx.doi.org/10.1007/978-3-319-24037-4_2
http://dx.doi.org/10.1007/978-3-319-24037-4_2
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an urgent necessity. Neglecting these factors will invariably result in errors in the
determination of tsunami amplitudes amounting to ten percent and even more.

In this section we shall present a modified method for formulating the initial
conditions, which, if the assumption of the bottom deformation being instantaneous
is retained, takes into account not only the vertical, but also horizontal deformations
of an uneven bottom as well as the “smoothing effect” of a water layer.

We shall consider a uniform incompressible layer of water of variable depth H.
Consider the origin of the reference system, 0xyz, to be situated on the unperturbed
free water surface. Let the 0z-axis be directed vertically upward, and the 0x and 0y
axes horizontally. Before the earthquake the position of the bottom is determined by
the formula zb = −H(x, y). After the earthquake the bottom is displaced to a new
position zb = −H(x, y) + η(x, y), where η(x, y) is the residual displacement of the
bottom surface (|η| � H). We recall that function η is related to the components of
the oceanic bottom deformation vector D = (Dx, Dy, Dz) and to the distribution of
depths H by the following formula (see Sect. 2.3):

η = Dx
∂H

∂x
+ Dy

∂H

∂y
+ Dz. (3.125)

In principle, calculation of the initial elevation can be based on the solution of
the three-dimensional problem of gravitational waves in a liquid with account of all
three components of the oceanic bottom deformation vector and of the distribution
of depths in the vicinity of the source. This problem can be considered within the
framework of the linear potential theory formulated as follows (see Sect. 3.1.3):

Δ F = 0, (3.126)

∂2F

∂t2
= −g

∂F

∂z
, z = 0, (3.127)

∂F

∂n
= (vb, n) for z = −H(x, y). (3.128)

where F is the flow velocity potential, n is the normal to the bottom surface, and vb
is the velocity vector of the bottom. The sought initial elevation is calculated via the
potential by the formula,

ξ(x, y, τ ) = −1

g

∂F

∂t

∣∣∣
∣
(x,y,0,τ )

,

where τ is the bottom deformation duration.
In the case, when the deformation can be considered instantaneous, the dynamic

problem (3.126)–(3.128) is readily reduced to the more simple static one (Nosov and
Kolesov 2009, 2011). Integrating equations (3.126)–(3.128) over time from 0 up to

http://dx.doi.org/10.1007/978-3-319-24037-4_2
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τ , we obtain the following set of equations:

ΔΦ = 0, (3.129)

Φ = 0, z = 0, (3.130)

∂ Φ

∂ n
= (D, n), z = −H(x, y), (3.131)

Φ ≡
τ∫

0

Fdt,

where Φ is the displacement potential. The sought initial elevation is calculated by
the displacement potential as follows:

ξ0 = ∂Φ

∂z

∣∣∣∣
z=0

. (3.132)

Equation (3.129) and the boundary condition at the bottom, (3.131), are straight-
forward and evident consequences of equations (3.126) and (3.128). The boundary
condition on the surface, (3.130), is derived from formula (3.127), if the process of
bottom deformation is assumed to be transient. To obtain formula (3.130) we choose
as the spatial and time scales the oceanic depth H and the deformation duration τ ,
respectively, uponwhichwe pass in expression (3.127) to the dimensionless variables
t∗ = t/τ and z∗ = z/H ,

∂2F

∂t∗2 = −g τ 2

H

∂F

∂z∗ . (3.133)

In the case of an instantaneous deformation, τ = 0, the right-hand part of
expression (3.133) turns to zero. Taking into account the zero initial condition
∂F
∂t = −gξ(x, y, 0) = 0, we integrate formula (3.127) twice over time with the
zero right-hand part. As a result, we arrive at the expression F = C, where C is the
integration constant. In accordance with the definition of the displacement potential
it assumes the value Φ = C · τ on the surface z = 0. The sought initial elevation
is determined as the derivative of the potential Φ with respect to the vertical coor-
dinate. Consequently, the displacement potential can be redefined (by subtraction of
the constant C · τ), so as to have it assume zero values on the surface: Φ = 0.

Usually, to justify considering the process of tsunami generation by an earthquake
to be instantaneous one takes advantage of the condition τ � R/

√
gH , whereR is the

horizontal dimension of the tsunami source. This condition is always fulfilled quite
well. But from formula (3.133) is it seen that the “instantaneity condition” should
actually be more rigorous: τ � √

H/g. And even if, instead of the fault rupture
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duration at the earthquake source, the quantity τ is understood to be the significantly
shorter rise time, in this case, also, the “instantaneity condition” τ � √

H/g will
often be violated. In this connection, the solution of the problem (3.129)–(3.131) is
to be considered the next approximation which is doubtless more accurate than the
traditional transfer of bottom deformations to the water surface, but is nevertheless
inferior in precision to the solutionof the complete dynamicproblem (3.126)–(3.128).

To determine the initial elevation at a real tsunami source the problem (3.129)–
(3.131) can be resolved by numerical methods. Numerical calculation is also per-
formed within a limited region of space. Therefore, the formulation is required of
boundary conditions for the external boundary of the calculation region, which runs
through the ocean. The external boundary must evidently be chosen to be at such a
distance from the tsunami source, where displacement of the free surface as well as
bottom deformation can be neglected. In this case the Dirichlet boundary condition,
that is easily realized, can be established on the external boundary: Φ = 0.

For testing numerical models it may turn out to be expedient to use analytical
solutions of problem (3.129)–(3.131) on a flat horizontal bottom and on a flat inclined
bottom, to be dealt with below.

For a basin with a flat horizontal bottom (H = const) and bottom deformation of
a rectangular form of dimensions 2a × 2b and amplitude η0

η(x, y) = η0 [θ (x + a) − θ (x − a)]
[
θ (y + b) − θ (y − b)

]
, (3.134)

where θ is the Heaviside step function, problem (3.129)–(3.131) has the following
analytical solution (Nosov and Kolesov 2011):

ξ(x, y) = 4η0
π2

+∞∫

0

dm

+∞∫

0

dn
cos(mx) cos(ny) sin(ma) sin(nb)

m n cosh (kH)
, (3.135)

k2 = m2 + n2,

where m and n are components of the vector k. The integral in formula (3.135)
is readily calculated numerically. The integrand function decreases rapidly as the
quantities m and n increase, therefore integration can be performed within finite
limits.

An example of calculation of the initial elevation by formula (3.135) is presented
in Fig. 3.33. It is seen that as compared to the bottom deformation of rectangular form
the surface elevation is essentially more smooth. Here, the water volume, displaced
by the bottom deformation, is equal to the volume occupied by the initial elevation.

The solution of the equivalent two-dimensional problem in the 0xz plane has the
following form (the analog of formula (3.135)):
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Fig. 3.33 Free surface disturbance caused by residual bottom deformation of rectangular shape
with parameters a = 2H, b = H. Calculations are performed using formula (3.135). The surface
disturbance and bottom deformation are shown on the same scale

ξ(x) = 2η0
π

+∞∫

0

dk
cos(kx) sin(ka)

k ch(kH)
. (3.136)

Formula (3.136) describes the free surface displacement caused by a bottom
deformation exhibiting a rectangular spatial distribution η (x) = η0 [θ(x + a) − θ

(x − a)] in a basin with a flat horizontal bottom.
For resolving the two-dimensional problem in a basin with a flat inclined bottom

(see Fig. 3.34) we make use of cylindrical coordinates, in which equations (3.129)–
(3.132) assume the form below.

r2
∂2Φ

∂r2
+ r

∂Φ

∂r
+ ∂2Φ

∂ϕ2 = 0, (3.137)

Φ = 0, for ϕ = 0, (3.138)

1

r

∂Φ

∂ϕ
= (D, n), for ϕ = −α, (3.139)
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Fig. 3.34 Formulation of 2D problem. Equivalence of sources on inclined and horizontal bottom

ξ(r) = 1

r

∂Φ

∂ϕ
for ϕ = 0, (3.140)

where α is the inclination angle of the bottom, n = (sin α, cosα) is the normal to
the bottom surface.

Like in the case of a horizontal bottom, we take advantage of a rectangular spatial
distribution of residual deformations (see Fig. 3.34). The right-hand part of formula
(3.139) for such a source has the form,

(D, n) = ηS [θ(r − R1) − θ(r − R2)] , (3.141)

where ηS is the deformation amplitude in a direction perpendicular to its surface, R1
and R2 are the respective positions of the left and right boundaries of the source.

Let us introduce a dimensionless space variable r∗ = r/L, where L is a certain
length scale. The structure of equation (3.137) is such that transition to the dimen-
sionless variable does not change the form of the equation,

r ∗2 ∂2Φ

∂r∗2 + r ∗ ∂Φ

∂r∗ + ∂2Φ

∂ϕ2 = 0.

Evidently, the boundary conditionon the surface, (3.138), also remains unchanged.
As a result of transition to the dimensionless variable only the forms of expressions
(3.139), (3.140) change. The right-hand part of the boundary condition on the bot-
tom, describing the source (bottom deformation), now turn out to be multiplied by
the quantity L:
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1

r∗
∂Φ

∂ϕ
= L · (D, n), for ϕ = −α.

At the same time the displacement sought of the free surface must now be divided
by the quantity L:

ξ(r) = 1

L · r∗
∂Φ

∂ϕ
for ϕ = 0.

Obviously, these two actions (multiplication and division by L), that mutually
compensate each other, may just not be performed at all.

Thus, an interesting feature peculiar to the problem considered consists in the
fact that transition to the dimensionless variable r∗ does not alter the form of the
equations. For reasons of convenience and definiteness we shall further set L = 1m.

We shall further consider equations (3.137)–(3.140), assuming them to be written
in dimensionless coordinates (r, R1, and R2 are dimensionless quantities). Here and
below we shall drop the symbol “*”.

The analytical solution of problem (3.137)–(3.139) is constructed by the method
of separation of variables. The resulting formula, describing the initial elevation
generated on the water surface in a basin with a flat inclined bottom in the case
of a rectangular bottom deformation (3.141), has the following form (Nosov and
Sementsov 2014):

ξ(r) = ηS

πr

+∞∫

0

R2 cos qδ2 − R1 cos qδ1 − qR2 sin qδ2 + qR1 sin qδ1

(1 + q2)cosh(qα)
dq, (3.142)

where δ1 = ln(r/R1), δ2 = ln(r/R2). The integral (3.142) can be readily calcu-
lated numerically. Owing to the rapid exponential decay of the integrand function
numerical integration can be performed up to a finite limit.

Examples of calculation of the shapes of initial elevations generated on a water
surface by sources on an inclined bottom (solid lines) and equivalent sources on
a horizontal bottom (dotted lines) are presented in Fig. 3.35. The calculation was
performed for tgα = 0.3 and two depths at the source center: 500 m and 2000 m.
The gray rectangles indicate the positions of the sources. The size of the source
(half-width a = 1000m) approximately corresponds to the typical grid increment
in numerical tsunami simulation (1 ang.min.). As equivalent sources on an inclined
or horizontal bottom we intend sources, involving a rectangular space distribution
of residual deformation, the depths at the centers of which are identical and the
parameters of which are related as follows: 2a = (R2 −R1) cosα and ηS = η0 cosα.
Note that these relationships correspond to the physically reasonable requirement
that the displaced volumes be identical.

In all cases, the initial elevations generated by rectangular bottom deformations
are seen from Fig. 3.35 to have smooth forms. The greater the depth in the vicinity of
the source the smoother becomes the initial elevation. If the calculation is performed
with the horizontal bottommodel, then the initial elevation is symmetric with respect
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Fig. 3.35 Comparison of initial elevation forms generated on thewater surface by source on inclined
bottom (solid line) and by equivalent source on horizontal bottom (dotted line). The calculation is
performed by formulae (3.136) and (3.142) for a = 1000m, tgα = 0.3 in the case of two sources
situated at depths H = 500m and H = 2000m. The positions of the sources are shown by gray
rectangles

to the source center. In the case of the sloping bottom model the initial elevation is
always asymmetric. In the region where the depth is smaller (on the left) the drop
in the curve is sharper than in the deepwater region. At small source depths the
difference between the inclined and horizontal bottom models is quite noticeable.
The difference becomes less significant as the source depth increases.

The maximum difference between the horizontal and inclined bottom models
should obviously be observed in the case of significant bottom inclinations. There-
fore, the choice of the maximum value of tgα requires justification. In Fig. 3.36 an
example is presented of the distribution of bottom inclinations in the region the 2011
Tohoku-Oki tsunami source. The bottom inclination was calculated from the data
in the numerical atlas GEBCO (http://www.gebco.net/) in steps of 1 ang.min. as
the absolute value of the depth gradient ( tgα = |grad H|). Only those points were
processed, the depth at which exceeded 10 m. From Fig. 3.36 the bottom inclinations
are seen, as a rule, to be limited by a value of 0.2, and only in extremely rare cases
they amount to 0.3.

Thus, the examples of calculations presented in Fig. 3.35 correspond to slopes
of maximum inclination. Even in this case the difference between the horizontal
and inclined bottom models is seen not to be critical (Nosov and Sementsov 2014).
Consequently, calculation of the initial elevation at real tsunami sources must rely on
analytical solution of the three-dimensional problemon aflat horizontal bottom. Such

http://www.gebco.net/
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Fig. 3.36 Distribution of ocean bottom slopes in the region of the 2011 Tohoku tsunami source.
The calculation was performed for the region 140–145 E, 35–42 N on the basis of data from the
numerical atlas GEBCO

an approach (analytical–numerical algorithm) was proposed in Refs. (Nosov and
Kolesov 2011; Nosov and Sementsov 2014), and it represents a possible alternative
to straightforward numerical solution of problem (3.129)–(3.131).

The analytical–numerical algorithm (ANA) is based on the application of formula
(3.135) and of the superposition principle. ANA consists in the following: (1) the
region of the tsunami source in a basin of variable depth is divided into identical rec-
tangular subregions of fixed dimensions 2a×2b; (2) each subregion is considered an
independent elementary source characterized by a certain depth H and a certain bot-
tom surface displacement amplitude η, calculated by formula (3.125); (3) elevation
of the free surface, generated by the elementary source at the point with coordinates
(x, y) with respect to its center, is calculated numerically by formula (3.135); (4) the
final initial elevation is determined as the superposition of the contributions of all
the elementary sources.

The perturbation created by an elementary source decays exponentially as the
distance from its boundary increases: already at a distance of the order of three depths
the perturbation becomes negligibly small. This fact justifies taking into account only
the contributions of the elementary sources nearest to the point dealt with, which
significantly facilitates the numerical calculation procedure.

Figure3.37a presents function η that describes coseismic deformation of the
oceanic bottom surface at the 2011 Tohoku-Oki tsunami source. The calculation
of function η was performed using formula (3.125). The coseismic deformation vec-
tor field was calculated from data on the slip distribution obtained by Gavin Hayes
(Hayes 2011). Figure3.37b shows the respective initial elevation of the water surface
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Fig. 3.37 The 2011 Tohoku-Oki tsunami source: coseismic ocean bottom deformation (a) and
initial elevation of water surface (b), obtained applying the analytical–numerical algorithm

(function ξ), obtained with the aid of the analytical–numerical algorithm described
above. It is seen that far from the coast, where the ocean depths are significant, the
structure of the initial elevation is essentially more smooth than the structure of the
coseismic bottom deformation. At small depths the difference between functions
ξ and η is practically not noticeable. Owing to the size of the 2011 Tohoku-Oki
tsunami source being many times larger than the ocean depth the difference between
functions ξ and η is not really significant. Actually, this difference represents a “fine
structure”, namely, shortwave perturbations that are peculiar to function η, but are
absent in function ξ . The negative role of such shortwave perturbations, that, as
we recall, are actually nonexistent, were already discussed at the beginning of this
section.

Manifestations of the smoothing effect may be more impressive in those cases,
when the size of the tsunami source and theoceandepth turnout to be commensurable.
A typical example, here, is presented by the tsunamigenic earthquake that took place
on the Central Kuril Islands on January 13, 2007. The tsunami source was related
to the deepwater Kuril–Kamchatka trench and at the same time had an insignificant
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width (Fig. 3.38a). The amplitude of the vertical bottom deformation, calculated
from the slip distribution, reconstructed by Ji C. (2007), amounted to the following:
uplift—1.8m, subsidence—7.7m. The initial elevation calculated applying ANA
(Fig. 3.38b) differs quite strongly from the coseismic deformation. The deviation of
the water surface at the initial elevation turns out to be nearly two times smaller
than the vertical bottom deformation amplitude (uplift—0.9 m, subsidence—4.6 m).
Most likely, in this case neglecting the “smoothing effect” leads to overestimation
of the tsunami wave amplitude nearly by a factor of two.

In conclusion we note that the initial elevation calculated from the solution of
problem (3.129)–(3.131) is, naturally, free from small-scale spatial inhomogeneities,
which may be peculiar to coseismic bottom deformation, but anyhow it involves
components of wavelength λ >∼ H. Such waves, unlike long waves (λ � H),
are subject to phase dispersion, and, consequently, their propagation, especially over
transoceanic distances, cannot be described adequately by the theory of long waves.

Fig. 3.38 The 2007 Central Kuril Islands tsunami source: coseismic bottom deformation (a) and
initial elevation of water surface (b), obtained applying the analytical–numerical algorithm
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3.6 Residual Hydrodynamic Fields that Accompany
the Generation of a Tsunami by an Earthquake

In this section we shall deal with horizontal movements of water layers that accom-
pany the generation of a tsunami by an earthquake in a rotating ocean. The spatial
structure of the potential and eddy residual fields will be analyzed within the frame-
work of the linear theory of long waves based on the analytical solution of the model
axially symmetrical problem for an ocean of constant depth. Estimates are obtained
for the horizontal displacements of particles of water, for the eddy flow velocity and
for the geostrophic vortex energy in the case of conditions peculiar to real tsunami
sources. Features are examined that are peculiar to residual fields due to stable strati-
fication. Static and dynamic numerical models are described that permit to calculate
the potential residual field and its evolution for real events. The field of residual hor-
izontal movements of water particles is calculated and analyzed for the catastrophic
earthquake that occurred on March 11, 2011, at the coast of Japan.

3.6.1 Definition of Concepts

The main mechanism underlying the origination of tsunami waves consists in the
displacement of water by residual (coseismic) deformations of the oceanic bottom,
caused by strong submarine earthquakes. In the case of very strong tsunamigenic
earthquakes, such as, for example, the earthquakes that occurred at the coast of
Sumatra on December 26, 2004 or Japan onMarch 11, 2011 the volume occupied by
the displaced water may even amount to ∼ 100 km3 (Grilli et al. 2007; Bolshakova
and Nosov 2011; Nosov et al. 2014a; Bolshakova et al. 2015). Gravity leads to
the displaced volume being distributed in the ocean over a region adjacent to the
source of the tsunami. This process is accompanied by a “residual” displacement
of water particles in a horizontal direction from their initial position. At the same
time the Coriolis force gives rise to a “residual” geostrophic vortex. Figuratively
speaking, a tsunamigenic earthquake leaves two traces in the ocean: a potential
trace (of the displacement of water particles) and a eddy one. We shall further call
such displacements of water particles and the geostrophic vortex potential and eddy
residual hydrodynamic fields (Nosov et al. 2014a). We note that these fields are only
conventionally residual, since they actually exist against the background of other
oceanic currents, and, besides, the eddy field must slowly attenuate owing to the
influence of dissipative processes.

The first analytical works devoted to the formation of eddy fields at the sources of
tsunamis appeared more than 30 years ago (Dotsenko 1982, 1999; Voit et al. 1986;
Bobrovich 1990; Pelinovsky 1996; Ingel 1998; Dotsenko and Shokin 2001). But the
potential residual field, which seems more promising from the point of view of its
revelation in nature, was, for some strange circumstances, left without any attention
up to recent years (Nosov et al. 2011, 2014a; Nosov and Nurislamova 2012, 2013).
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At present decisions to announce a tsunami warning are based on a magnitude–
geographical criterion (UNESCO/IOC 2009; Poplavskii et al 2009). The strong
dependence of the tsunami parameters on the tsunami source mechanism and its
depth, on the depth of the ocean and on the tectonic peculiarities of the region render
this criterion insufficiently reliable (Gusiakov 2011; Bolshakova and Nosov 2011;
Nosov et al. 2014a). In the case of one and the same magnitude the height of the
tsunami run-up can vary tens of times. Therefore, in order to improve the progno-
sis additional information is always made use of: data from deepwater stations or
onshore stations at sea level. Expansion of the pool of measured parameters should,
doubtless, contribute to enhancement of the tsunami prognosis. Besides variations
of the sea level (vertical movements of the water layer) estimation of the tsunami-
genicity level of submarine earthquakes can take horizontal movements into account
as well and, also, residual hydrodynamic fields. A remarkable property of the resid-
ual fields consists in their direct relation to the tsunami generation mechanism: the
displacement of water by coseismic deformation of the oceanic bottom.

Owing to the horizontal scale of the phenomenon considered being significantly
superior to the vertical one, the velocities of currents forming residual fields are prac-
tically independent of the vertical coordinate—the entire water layer is involved in
the motion. And, moreover, the horizontal movements significantly exceed the ver-
tical ones in amplitude (e.g., Lighthill 1978). Maybe, precisely these two properties
will subsequently permit to effectively reveal residual fields against the background
of other oceanic processes. It is important, here, to note that in the case of a strat-
ified ocean residual fields may exhibit an inhomogeneous vertical structure (see
Sect. 3.6.4).

At the present stage of development of oceanography residual fields can be reg-
istered in situ in several ways. First, to this end one can apply surface or subsurface
drifters equipped with a system of satellite positioning or with accelerometers (Okal
and Mac Ayeal 2006). We stress the importance of making use of precisely freely
floating systems, following the movements of the water layer. Anchored GPS buoys,
the use of which in the registration of tsunami (variations of the sea level) (e.g., Nagai
2010; Fujii et al. 2011) started recently, are evidently not suitable for measuring hor-
izontal movements. Second, horizontal movements can be revealed with the aid of
acoustic Doppler current profilers (ADCP), placed on the oceanic bottom (Mikada
et al. 2006). And, finally, the picture of the residual field can be reconstructed by
processing successive satellite high-resolution images (Etaya et al. 2005; Crocker
et al. 2007).

3.6.2 Basic Mathematical Model for a Homogeneous Ocean

Consider a layer of incompressible liquid of variable depth H on the rotating Earth.
We shall neglect the Earth’s sphericity. We choose the origin of the rectangular
reference system to be situated on the unperturbed water surface. The 0z-axis will
be directed vertically upward, and the 0x and 0y axes will point to the east and north,
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respectively. We shall base our mathematical model on equations of the linear theory
of long waves that are extensively applied in describing tsunami waves in the open
ocean (see Sect. 3.1.2),

∂ξ

∂t
− ∂η

∂t
+ ∂ (uH)

∂x
+ ∂ (vH)

∂y
= 0, (3.143)

∂u

∂t
= −g

∂ξ

∂x
+ f v, (3.144)

∂v

∂t
= −g

∂ξ

∂y
− fu, (3.145)

where ξ is the displacement of the free water surface with respect to its equilibrium
position, η is the displacement of the seafloor surface relative to its initial position,
u and v are components of the horizontal velocity of the current along the 0x and
0y axes, respectively, g is the acceleration of gravity, f is the Coriolis parameter. We
shall assume f = const (the f-plane approximation) (Gill 1982).

Consider the surface of the bottom to be described at the initial moment of time
by the equation zb = −H(x, y), and let the water layer be in a state of equilibrium
u = v = ξ = 0. As the result of an earthquake the bottom is shifted to a new position
zb = −H(x, y) + η∞(x, y), where η∞(x, y) is the residual bottom deformation of
small amplitude (|η∞| � H). Note that the smallness of the deformation amplitude
means that the change in profile of the bottom can be neglected.

We shall represent the velocity field of the current initiated by deformation of the
bottom as the superposition of a potential and an eddy field, (Nosov and Nurislamova
2012, 2013; Nosov et al. 2014b)

u = ∂ϕ

∂x
+ ∂ψ

∂y
, v = ∂ϕ

∂y
− ∂ψ

∂x
, (3.146)

where ϕ is the velocity potential, ψ is the stream function. Using formulas (3.146)
we rewrite the set (3.143)–(3.145) in terms of ϕ, ψ and ξ ,

∂ξ

∂t
− ∂η

∂t
+ HΔϕ + ∂H

∂x

∂ϕ

∂x
+ ∂H

∂y

∂ϕ

∂y
+ ∂H

∂x

∂ψ

∂y
− ∂H

∂y

∂ψ

∂x
= 0, (3.147)

∂ψ

∂t
= f ϕ, (3.148)

∂ϕ

∂t
= −g ξ − f ψ. (3.149)
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Integrating equations (3.147) and (3.148) over time from t = 0 to t = T with
account of the zero initial conditions (ξ0 = 0, η0 = 0), we obtain

ξT − ηT + HΔΦT + ∂H

∂x

∂ΦT

∂x
+ ∂H

∂y

∂ΦT

∂y
+

T∫

0

(
∂H

∂x

∂ψ

∂y
− ∂H

∂y

∂ψ

∂x

)
dt = 0,

(3.150)

ψT = f ΦT , (3.151)

where ΦT = ∫ T
0 ϕ dt is the displacement potential, ψT is the stream function at

t = T .
Consider deformation of the bottom to have come to an end by the moment of

time t = T , and consider the tsunami waves to have left the region examined. From
equation (3.150) it is seen that the existence of residual (i.e., stationary) fields is
possible under the condition,

∂H

∂x

∂ψ

∂y
− ∂H

∂y

∂ψ

∂x
= 0. (3.152)

Condition (3.152) signifies that the velocity of the stationary eddy current is
directed precisely along isobaths, i.e., the eddy current must be adapted to the bottom
relief (Zyryanov 1995; Nosov et al. 2011). Note that in stationary conditions, when
potential movements have stopped and eddy movements have steadied, Eq. (3.149)
assumes the following form:

g ξT + f ψT = 0. (3.153)

From formula (3.153) it is seen that the existence of a residual eddy field requires
a nonzero displacement of the free surface.

3.6.3 The Properties of Residual Fields in the Case
of a Homogeneous Ocean of Constant Depth: Analysis
of Analytical Solutions

When the condition H = const is fulfilled, problem (3.150), (3.151), (3.153) is
significantly simplified. The nonstationary term in equation (3.150) automatically
turns to zero, which provides for the absolute possibility of the existence of stationary
fields.

To identify residual fields we set T = ∞ in Eqs. (3.150), (3.151), (3.153). As a
result the set of equations assumes the following form:

ξ∞ − η∞ + HΔΦ∞ = 0, (3.154)
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ψ∞ = f Φ∞, (3.155)

g ξ∞ + f ψ∞ = 0. (3.156)

Excluding functionsψ∞ andΦ∞ from Eqs. (3.154)–(3.156) we arrive at the inho-
mogeneous Helmholtz equation (Nosov and Nurislamova 2012),

R2
0Δξ∞ − ξ∞ = −η∞, (3.157)

where R2
0 = gH/f 2 is a squared barotropic Rossby radius of deformation.

We shall now set the residual deformation in the form of an axially symmetric
elevation of the radius R and amplitude η0max

η0(r) = η0max [1 − θ(r − R)] , (3.158)

where θ is the Heaviside step function. We shall further pass in Eq. (3.157) to cylin-
drical coordinates and to the dimensionless variable r∗ = r/R

∂2ξ∞
∂r∗2 + 1

r∗
∂ξ∞
∂r∗ − μ2

0ξ∞ = −μ2
0η∞, (3.159)

where μ2
0 = R2/R2

0 is the only dimensionless parameter of the problem that varies
between 0 at the equator up to ∼1 at high latitudes in the case of an extended
source and shelf depths. A typical value of parameter μ0 ∼ 0.1 (for f ∼ 10−4

s−1, R ∼ 105m, H ∼ 103m). For presentation of the results we have chosen the
range 10−3 < μ0 < 101, within which the most interesting features of the solution
manifest themselves.

The solution of equation (3.159) is expressed via the Infeld and Macdonald func-
tions Ii and Ki, respectively, (Polyanin 2002),

ξ∞ = η0max

{
1 − μ0K1(μ0)I0(μ0r∗), 0 ≤ r∗ < 1,
μ0K0(μ0r∗)I1(μ0), r∗ ≥ 1.

(3.160)

In Fig. 3.39 the form of function ξ∞, calculated by formula (3.160) for a typ-
ical value of μ0 = 0.1 is presented. Function ξ∞ reaches a maximum at the
source center and remains practically unchanged right up to its boundary. In typ-
ical natural conditions the amplitude of the surface displacement in a geostrophic
vortex amounts to ∼1% of the bottom deformation amplitude. Outside the source
the function ξ∞ decreases monotonically, and at large radius values it decreases
exponentially in accordance with the asymptotic of the Macdonald function: ξ∞ ∼
exp(−μ0r∗)/

√
r∗.

Knowing function ξ∞, we find from Eqs. (3.155) and (3.156) functions Φ∞ and
ψ∞, which are used in determining the residual displacements of water particles in
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Fig. 3.39 Displacement of free water surface in a residual geostrophic vortex, ξ∞; function β (at
μ0 = 0.1) and its limit value β lim (for μ0 → 0)

the radial direction, D∞, and the velocity in the geostrophic vortex, v∞

D∞ = ∂Φ∞
∂r

= η0maxR

H
β, (3.161)

v∞ = −∂ψ∞
∂r

= −η0maxR f

H
β. (3.162)

Function β, that determines the spatial structure of residual fields, is given by the
following expression:

β =
{

I1(μ0r∗)K1(μ0), 0 ≤ r∗ < 1,
I1(μ0)K1(μ0r∗), r∗ ≥ 1.

(3.163)

The form of function β, calculated for a typical value of μ0 = 0.1, is presented
in Fig. 3.39. Function β is always positive. This means that the uplift of the bottom,
(η0max > 0) is accompanied by a displacement of water particles in the positive
direction—from the center of the source. In the northern hemisphere, where the
Coriolis parameter f > 0, the bottom elevation gives rise to a vortex rotating in the
negative direction (anticyclonic). Subsidence of the bottom (η0max < 0) leads to
an opposite result—to displacement of particles toward the center and to a cyclonic
vortex.
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At any values of parameter μ0 function β turns to zero at the source center
and reaches a maximum at its boundary. Outside the source function β decreases
monotonically, and at large values of the radius—like function ξ∞—it decreases
exponentially: β ∼ exp(−μ0r∗)/

√
r∗. Hence follows an interesting conclusion:

rotation of the Earth limits the region of manifestation of both the eddy and the
potential fields. In other words, contrary to “common sense”, the displaced volume
does not spread about the entire basin, but remains inside the region limited by the
barotropic Rossby radius of deformation (R0∗ ≡ R0/R = 1/μ). Outside this region
residual displacements turn out to pertain to zero, which naturally does not revoke
seesaw movements of water particles at any distance from the source in the case of
propagating gravitational waves.

Tending the Coriolis force toward zero, we find the limit of function β

β lim(r∗) ≡ lim
μ0→0

β(r∗, μ0) = 0.5

{
r∗, 0 ≤ r∗ < 1,
1/r∗, r∗ ≥ 1.

(3.164)

The limit function β lim is shown in Fig. 3.39 by the solid gray line. It is seen that
in typical natural conditions (μ0 = 0.1) rotation of the Earth affects the potential
field weakly right up to distances of the order of R0

β(r∗, μ0) ≈ β lim(r∗)atr∗ < 1/μ0.

From the displacement of the free surface and the velocity field we calculate the
potential energy Wp = πρg

∫∞
0 ξ2rdr and the kinetic energy Wk = πHρ

∫∞
0 v2rdr

of the geostrophic vortex (ρ is the water density). Calculating the integrals analyti-
cally we obtain

Wp/W0 = 1 − μ2
0I21 (μ0)K

2
0 (μ0) − 4I1(μ0)K1(μ0) + μ2

0I20 (μ0)K
2
1 (μ0), (3.165)

Wk/W0 = μ0[I1(μ0)K2(μ0) − I0(μ0)K1(μ0)], (3.166)

where W0 = 0.5πρgR2η20max is the potential energy of the free surface perturbation,
equivalent in form to the residual bottom deformation.

Figure3.40 presents components of the geostrophic vortex energy versus parame-
ter μ0. When μ0 increases, the potential energy increases monotonically, tending to
1. The dependence of the kinetic energy is not monotonic, it exhibits a maximum at
μ0 ≈ 1.587. At small μ0 values the potential energy is essentially smaller than the
kinetic energy. Atμ0 ≈ 0.956 the two energies become equal.Whenμ0 > 0.956, the
potential energy exceeds the kinetic energy. The total energymonotonically increases
with parameter μ0, and tends toward 1. In typical conditions (μ0 ∼ 0.1) ∼ 1% of
the initial elevation energy (the tsunami energy) is linked to the geostrophic vortex.

Figure3.40 also shows the free surface displacement amplitude ξ∞max/η0max ≡
ξ∞(r∗ = 0)/η0max = 1 − μ0K1(μ0), and the quantity βmax ≡ β(r∗ = 1) =
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Fig. 3.40 Total (Wk + Wp), potential (Wp), and kinetic (Wk) energies of a residual geostrophic
vortex; maximum value of free water surface displacement in a geostrophic vortex, ξ∞max, and
value of βmax versus parameter μ0

I1(μ0)K1(μ0) versus parameter μ0. An increase in μ0 leads to an increase of the
free surface displacement ξ∞max/η0max, while the value of βmax monotonically
decreases. In typical natural conditions (μ0 < 0.1) one can assume with a good
accuracy that βmax ≈ 0.5 and, instead of expressions (3.161)–(3.163), use for esti-
mation of the maximal values of horizontal displacements of water particles approx-
imate formulas: D∞max ≈ 0.5η0maxR/H , v∞max ≈ 0.5η0maxR f /H. Substituting
typical values of tsunami source parameters (η0max = 1m, R = 105m, H = 103m,
f = 10−4s), into them, we obtain D∞max = 50m, v∞max = 0.005m/s.

Horizontal displacements of ∼ 50m can be registered in the ocean, for example,
using drifters equipped with a Global Positioning System or an accelerometer (Okal
and Mac Ayeal 2006). But the velocity at the geostrophic vortex, ∼0.005m/s, turns
out to be so small, that it will not be so simple to reveal it against the background of
other oceanic currents.

A separate comment is due to the situation of μ0 > 1, hypothetical for the condi-
tions of our planet, when an eddy residual, instead of potential, field is dominant. This
situation is interesting in that, when it is realized, the main part of energy transmitted
to the water layer by the seismic source is not transferred to gravitational waves
(tsunami), but is accumulated in the geostrophic vortex. However, for the realization
of such exotic modes it is necessary that the horizontal dimension of the tsunami
source, R be noticeably superior to the barotropic Rossby radius of deformation



164 3 Hydrodynamic Processes at the Source of a Tsunami …

R0, which is practically impossible in the conditions of our planet (typical values:
R ∼ 105m (Pelinovsky 1996; Bolshakova andNosov 2011),R0 ∼ 106m (Gill 1982).

Let us point out themain results of this section. In the case of a homogeneous ocean
and on the basis of a fully analytical solution of themodel axially symmetric problem
it has been established that residual horizontal displacements of water particles in
typical natural conditions amount to∼50m, the velocity of the current in the residual
geostrophic vortex is∼0.005m/s, the free surface displacement is∼1%of the bottom
displacement, the vortex energy is∼1% of the tsunami energy, the dimensions of the
vortex are of the order of the barotropic Rossby radius of deformation (R0 ∼ 106m).
Rotation of the Earth restricts the “spread” region of the displaced water volume over
the tsunami source to the limits of the barotropic Rossby radius of deformation.

3.6.4 Features of Residual Fields Due to the Existence
of Stable Stratification

In Sects. 3.6.2 and 3.6.3 we assumed the ocean to be homogeneous. A feature of
the real ocean is stable stratification. In advance, we note that taking into account
stratification not only leads to correction of the estimates obtained above, but also
provides for the possible existence of a new sort of residual fields, namely, of station-
ary perturbations of the stratification structure at the tsunami source (Dotsenko and
Shokin 2001; Nosov and Nurislamova 2013; Nosov et al. 2014a). Such perturbations
can originate both as a result of the displacement of water by the residual bottom
deformation and as a result of the intensification of the vertical exchange above the
source of a submarine earthquake (Levin et al 1998; Nosov 1998a, b). In dealing
with evolution of the stratification structure one must consider the baroclinic, instead
of barotropic, Rossby radius of deformation as a horizontal scale. Contrary to the
barotropic radius (R0 ∼ 106m), the baroclinic radius (R1 ∼ 104m (Gill 1982) is
inferior to the dimension of the tsunami source (R ∼ 105m). Therefore, rotation
of the Earth is to be expected to effectively bind perturbations of the stratification
structure at the tsunami source and to prevent them from decaying into a series of
internal waves, as described, for example, in the classical work (Hammack 1980).
However, as it follows from the concluding part of this work, Joseph Hammack,
doubtless, understood the importance of the “Coriolis effect” for the evolution of
perturbations of the stratification structure.

As the simplestmodel of a stratified oceanwe shall consider a two-layer liquid. Let
the upper layer have a thickness H1 and density ρ, and the lower layer a thickness
H2 and density ρ + δρ (δρ > 0). To describe movements of the liquid we shall
again apply equations of the linear theory of long waves, written with account of the
assumption δρ/ρ � 1:

∂u1
∂t

= −g
∂ξ1

∂x
+ f v1,

∂v1
∂t

= −g
∂ξ1

∂y
− fu1, (3.167)
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+ f v2,

∂v2
∂t

= −g

(
∂ξ1

∂y
+ δρ

ρ

∂ξ2

∂y

)
− fu2,

(3.168)

(
∂u1
∂x

+ ∂v1
∂y

)
H1 + ∂ξ1

∂t
− ∂ξ2

∂t
= 0,

(
∂u2
∂x

+ ∂v2
∂y

)
H2 + ∂ξ2

∂t
− ∂η

∂t
= 0,

(3.169)

where ui and vi are components of the horizontal current velocity of the ith layer
(i = 1,2) along axes 0x and 0y, respectively, ξi is the surface displacement of the ith
layer from the equilibrium position. All other notations remain intact.

Like in the problem for a homogeneous ocean, we shall assume that before the
earthquake the ocean was in a state of rest, ui = vi = ξi = 0, and that all movements
in the ocean are initiated by small deformations of the bottom, η∞(x, y) (|η∞| � Hi).
The approach to the transformation of equations (3.167)–(3.169) is also similar to
the approach adopted in Sects. 3.6.2 and 3.6.3. The velocity field is expressed via
the velocity potential and the stream function, and the equations are integrated over
time from 0 up to ∞. As the result of simple transformations we arrive at a set of
equations describing residual fields in a two-layer rotating liquid,

H1ΔΦ1∞ = ξ2∞ − ξ1∞, H2ΔΦ2∞ = η∞ − ξ2∞, (3.170)

Δψi∞ = f ΔΦi∞, (3.171)

gΔξ1∞ + f Δψ1∞ = 0, gΔξ1∞ + g
δρ

ρ
Δξ2∞ + f Δψ2∞ = 0, (3.172)

where ξi∞ is the residual displacement of the ith surface, ψi∞ is the stream function

that describes the residual eddy field in the ith layer, Φi∞ ≡
∞∫

0
ϕi dt is the displace-

ment potential from which the vector is calculated of residual displacement of water
particles in the horizontal direction in the ith layer: Di∞ = ∇Φi∞.

Upon eliminating functions ψi∞ and Φi∞, in Eqs. (3.170)–(3.172), we obtain

R2
0Δξ1∞ = (1 + γ )(ξ1∞ − ξ2∞), (3.173)

R2
1Δξ2∞ − ξ2∞ = − 1

1 + γ
(η∞ + γ ξ1∞), (3.174)

where R0 = c0/f and R1 = c1/f are the respective barotropic and baroclinic Rossby
radii of deformation, c0 = √

g(H1 + H2) is the velocity of long gravitational waves
in a homogeneous liquid, c1 = √

gδρH1H2/ρ(H1 + H2) is the velocity of inter-
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nal waves in a two-layer liquid (Gill 1982), γ = H2
/

H1 is the ratio between the
thicknesses of the lower and upper layers.

Having determined from the set of equations (3.173) and (3.174) functions ξ1∞
and ξ2∞, it is also possible, using equations (3.171) and (3.172), to calculate all the
remaining functions sought,

ψ1∞ = −g

f
ξ1∞, Φ1∞ = − g

f 2
ξ1∞, (3.175)

ψ2∞ = −g

f

(
ξ1∞ + δρ

ρ
ξ2∞

)
, Φ2∞ = − g

f 2

(
ξ1∞ + δρ

ρ
ξ2∞

)
. (3.176)

As a model of residual bottom deformation we shall consider axially symmetric
elevation described by formula (3.158). But even in the case of cylindrical symme-
try it is not possible to construct an analytical solution for the set (3.173)–(3.174).
Therefore, we shall further resolve the problem approximately, assuming stratifi-
cation to weakly affect the free surface displacement in a geostrophic vortex. To
confirm the efficiency of such an assumption we approximate the Laplace operator
in Eqs. (3.157), (3.173) and (3.174) applying the dimensional analysis (Δ ∼ R−2).
From the obtained resulting algebraic equations follows the estimate:

ξ∞ − ξ1∞
ξ∞

∼ R2
1(R

2
0 + R2(1 + γ ))

(R2 + R2
0)(R

2 + R2
1) + R2R2

1γ
. (3.177)

Substituting into formula (3.177) typical parameter values (R = 105m, R0 =
106m, R1 = 104m, γ = 10), we obtain (ξ∞ − ξ1∞)/ξ∞ ∼ 0.01. Consequently,
the existence of stratification indeed weakly affects free surface displacement in the
geostrophic vortex.

Thus, to obtain an approximate solution we shall assume ξ1∞ = ξ∞, where
ξ∞ is a known function determined by formula (3.160). Equation (3.173) will no
longer be necessary to obtain the solution. We write equation (3.174) in cylindrical
dimensionless coordinates (r∗ = r/R)

∂2ξ2∞
∂r∗2 + 1

r∗
∂ξ2∞
∂r∗ − μ2

1ξ2∞ = − μ2
1

1 + γ
(η∞ + γ ξ1∞), (3.178)

where μ1 = R/R1. Equations (3.178) and (3.159) coincide in form. The solution of
equation (3.178) has the following form:

ξ2∞ = η0max

1 + γ
(ζ1 + γ ζ2), (3.179)
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ζ1 =
{
1 − μ1K1(μ1)I0(μ1r∗), 0 ≤ r∗ < 1,
μ1K0(μ1r∗)I1(μ1), r∗ ≥ 1,

ζ2 =
⎧
⎨

⎩

1 + μ0μ1(−μ1I0(r∗μ0)K1(μ0)+μ0I0(r∗μ1)K1(μ1))

μ2
1−μ2

0
, 0 ≤ r∗ < 1,

μ0μ1(μ1I1(μ0)K0(r∗μ0)−μ0I1(μ1)K0(r∗μ1))

μ2
1−μ2

0
, r∗ ≥ 1.

Upon determining functions ξi∞, with the use of formulas (3.175), (3.176), we
calculate functions Φi∞ and ψi∞, from which we find the residual water particle
displacement in the radial direction, Di∞ = ∂Φi/∂r, and the eddy current velocity
vi∞ = −∂ψi∞/∂r.

Owing to the adopted simplifying assumption (ξ1∞ = ξ∞), the sought quantities
in the upper layer correspond to the case of a homogeneous ocean, D1∞ = D∞,
v1∞ = v∞—they can be calculated from formulas (3.161) and (3.162).

The solution for the lower layer has the form,

D2∞ = η0maxR

H1 + H2
(β + Δβ), (3.180)

v2∞ = −η0maxR f

H1 + H2
(β + Δβ), (3.181)

Δβ = δρ

ρ

(σ1 + γ σ2)

(1 + γ )
, (3.182)

σ1 = μ2
1

μ2
0

{
I1(μ1r∗)K1(μ1), 0 ≤ r∗ < 1,
I1(μ1)K1(μ1r∗), r∗ ≥ 1.

σ2 = μ2
1

μ2
1 − μ2

0

{
I1(μ0r∗)K1(μ0) − I1(μ1r∗)K1(μ1), 0 ≤ r∗ < 1,
I1(μ0)K1(μ0r∗) − I1(μ1)K1(μ1r∗), r∗ ≥ 1.

From formulas (3.180), (3.181) it is seen that the influence of stratification on the
residual fields in the lower layer is described by function Δβ.

The solution describing residual fields in the two-layer ocean depends on three
dimensionless parameters: γ ,μ0 andμ1. These parameters are convenient for obtain-
ing an analytical solution, but they are not independent. In particular, the following
relation exists: μ2

1 = μ2
0(1 + γ )2/(γ δρ/ρ). To present the results it is more conve-

nient to use a set of independent parameters: δρ/ρ, γ and μ0.
All calculations to be presented in this section will be based on the fixed quantity

δρ/ρ = 0.003, which is a typical value of the relative density jump for an ocean
(Gill 1982). The ratio of layer thicknesses peculiar to a real ocean (H1 ∼ 102 m,
H2 ∼ 103 m) determines the typical value of parameter γ ∼ 10. However, the value
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of γ can varywithin a verywide range from γmin ∼ 10−3 (a thin benthicmixed layer)
to γmax ∼ 103 (a thin upper mixed layer). Like in Sect. 3.6.3, we vary parameter μ0
within the following limits: 10−3 < μ0 < 101.

Figure3.41 presents the shape of the free water surface displacement ξ1∞ and
the shape of the interface between layers displacement ξ2∞, calculated by formulas
(3.160), (3.179) for typical parameters values μ0 = 0.1 and γ = 10. First of all,
the fact draws attention that the displacement of the interface surface exceeds by
an order of magnitude the displacement of a free surface, i.e., the binding effect is
observed of a perturbation of the stratification structure that is due to rotation of the
Earth.

The displacements of the free surface, ξ1∞, and of the interface between layers,
ξ2∞, reach their respective maximum values ξ1max and ξ2max at the source center.
Using formulas (3.160), (3.179), we calculate the ratio ξ2max/ξ1max in dependence of
parametersμ0 and γ . The results of calculations are presented in Fig. 3.42. In all cases
the amplitude of the interface between layers displacement, ξ2max, exceeds the free
surface displacement amplitude ξ1max, and, in a number of cases, by several orders
of magnitude. The ratio ξ2max/ξ1max reaches maximum values at small values of the
parameters μ0 and γ . As the parameters μ0 and γ increase the value of ξ2max/ξ1max
tends toward 1.

Figure3.43 presents the shapes of functions β and Δβ, which determine the spa-
tial structure of residual fields. The calculation is performed by formulas (3.163),
(3.182) for typical parameter values μ0 = 0.1, γ = 10. At all values of the argu-

Fig. 3.41 Displacement of free water surface, ξ1∞, and displacement of interface between layers,
ξ2∞, in residual geostrophic vortex. The calculation is performed by formulas (3.160) and (3.179)
for μ0 = 0.1, γ = 10, δρ/ρ = 0.003
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Fig. 3.42 Ratio of residual displacement amplitudes of interface between layers and of free surface,
ξ2max and ξ1max, respectively, versus parameterμ0. The calculation is performed for δρ/ρ = 0.003
for different values of parameter γ (indicated in the figure)

Fig. 3.43 Functions β and Δβ, determining the spatial structure of residual fields in a two-layer
ocean. The calculation is performed by formulas (3.163) and (3.182) for μ0 = 0.1, γ = 10,
δρ/ρ = 0.003
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ment β > 0 and Δβ > 0. This means that the addition Δβ, which is due to the
influence of stratification, always enhances the residual displacement of water par-
ticles and the velocity of the eddy current in the lower layer. We shall calculate the
maximal values of these functions, βmax and Δβmax, which are reached at the source
boundary (r∗ = 1). Using formulas (3.163), (3.182) we determine the dependence
of ratio Δβmax/βmax on parameters μ0 and γ . The results of calculations are shown
in Fig. 3.44. It can be seen that the role of the correction due to stratification can-
not, generally speaking, be characterized as negligible. In typical natural conditions
(δρ/ρ = 0.003, μ0 = 0.1) the contribution of the value of Δβ to the amplitude of
residual particle displacements and to the velocity of the eddy current, is, of course,
not dominant (γ = 100: Δβmax/βmax ≈ 0.058; γ = 10: Δβmax/βmax ≈ 0.176).
However, in the case of a thin lower layer this contribution can become dominant.
Thus, for example, for μ0 = 0.1 and γ = 10−3 we have: Δβmax/βmax ≈ 18.

Let us formulate the main results of this section. For a two-layer ocean it is shown,
on the basis of the approximate analytical solution of amodel axially symmetric prob-
lem, that in typical natural conditions a residual displacement forms at the interface
between layers with an amplitude noticeably superior to the displacement amplitude
of the free surface. Accounting for stratification enhances the residual displacements
of water particles and the velocity of the eddy current in the lower layer (by ∼10%
in typical conditions). If the jump in density is related to large depths, then at the
interface between the layers a residual perturbation forms that is comparable in shape
and amplitude to the residual ocean bottom deformation. In the case of a thin lower
layer even weak stratification is capable of significantly altering the residual fields
in the lower layer, enhancing the residual displacements of water particles and the
velocity of the eddy current by more than an order of magnitude. In this relation,

Fig. 3.44 Ratio of maximum values of functions Δβ and β versus parameter μ0. The calculation
is performed by formulas (3.163) and (3.182) for δρ/ρ = 0.003 and different values of parameter
γ (indicated in the figure)
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estimates of residual fields, obtained using bottom devices for measuring the current
velocity, must be interpreted with caution.

3.6.5 Methods for Calculation of Residual Potential Fields
for Real Events

To determine residual potential fields with account of real bathymetry and real bot-
tom deformation at the tsunami source we shall take advantage of two numerical
models: static and dynamic (Nosov et al. 2014a, b). The static model is intended
for calculating the field of residual horizontal displacements of water particles. The
dynamic model describes the evolution of these displacements in time. The dynamic
model is necessary for understanding in what manner and how fast the field of resid-
ual displacements forms. For simplicity, in this section we shall again return to the
model of a homogeneous ocean, especially that, as it was shown above, the role of
stratification is not dominant in natural conditions.

In the vicinity of the tsunami source—inside the region limited by the barotropic
Rossby radius of deformation R0 ∼ 106m—rotation of the Earth weakly affects the
potential residual field. In this region it is expedient to neglect the Coriolis force in
problem (3.143)–(3.145), thus excluding from consideration the eddy component of
the velocity field. Expressing the velocity vector of the horizontal current via the
velocity potential v = ∇ϕ, we obtain from the continuity equation (3.143), written
in vector form, the following:

∂ξ

∂t
− ∂η

∂t
+ (∇, H∇ϕ) = 0. (3.183)

Integrating equation (3.183) over time from 0 to ∞ with account of the initial
condition η0 = 0, we arrive at the following static equation:

ξ∞ − ξ0 − η∞ + (∇, H∇Φ∞) = 0. (3.184)

Equation (3.184) can be resolved using two types of input data: (1) data on the
residual bottom deformation η∞ (in this case we set ξ0 = 0), (2) data on the initial
elevation of the water surface, ξ0 (in this case we set η∞ = 0). Here we shall make
use of the data on the initial elevation (Nosov et al. 2014a).

Equation (3.184) was resolved with boundary conditions of the second kind,
∂Φ/∂n = 0, where n is the external normal to the boundary. Physically this condi-
tion corresponds to impenetrable boundaries. At the coastline it adequately reflects
the physics of the process. But the external boundaries passing through water are,
of course, penetrable. In the static problem under consideration it is not possible
to realize the condition of “free passage”. To exclude the influence of artificially
closed boundaries on the solution we performed a series of preliminary calculations
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steadily increasing the calculation region until the results in the region of interest to
us stopped changing at the center of the calculation region.

The residual displacement of the water surface, ξ∞, was found as the ratio of the
displaced water volume and the area of the calculation area. The sought vector of
residual horizontal displacement of water particles is calculated via the displacement
potential Φ∞ by the formula D∞ = ∇Φ∞.

The dynamic model is based on the wave equation that is obtained by substitution
of expression (3.149) into equation (3.183) (at f = 0 and η = 0)

∂2ϕ

∂t2
− g (∇, H∇ϕ) = 0. (3.185)

Equation (3.185) was resolved with initial conditions (at t = 0: ϕ = 0, ∂ϕ/∂t =
−gξ0), the physical meaning of which consists in the initial elevation ξ0 for a zero
velocity field being set. At the coastline the condition of impenetrability, ∂ϕ/∂n = 0,
was imposed, and on the boundaries crossing the ocean the condition of free passage
for long gravitational waves was adopted.

Owing to the significant size of the calculation region, itwas necessary in resolving
equations (3.184), (3.185) numerically to take into account the surface curvature of
the Earth. Therefore, the differential operator∇, entering in the equationswaswritten
in a spherical reference system.

Equation (3.184) was resolved numerically by the method of finite elements on a
triangular grid with a variable step (Segerlind 1976; Nosov et al. 2014a). Near the
coast and in the source region the grid was condensed, and at the periphery of the
calculation region the grid step increased. Equation (3.185) was resolved numerically
by the explicit method of finite differences on a rectangular grid (Nosov et al. 2014a).
The time step was determined from the Courant–Friedrichs–Lewy condition.

3.6.6 Estimation of Residual Horizontal Displacements
of Water Particles Caused by the Tsunamigenic
Earthquake of March 11, 2011

In this section we shall deal with estimation of the potential residual field initiated
by the catastrophic tsunamigenic March 11, 2011 earthquake at the coast of Japan.

The initial elevation of the water surface at the tsunami source was determined
by the coseismic bottom deformation and bathymetry with the use of the method
expounded in Sect. 3.5. The bathymetry was adopted from the GEBCO numeri-
cal atlas (http://www.gebco.net/). The coseismic deformation was calculated taking
advantage of the Okada formulas (Okada 1985) on the basis of the model distribution
of slip presented at the site of the United States Geological Survey (USGS, http://
earthquake.usgs.gov/). The shape of the initial elevation is shown in Fig. 3.45 by
white isolines.

http://www.gebco.net/
http://earthquake.usgs.gov/
http://earthquake.usgs.gov/
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Fig. 3.45 Residual horizontal displacements of water particles (black arrows) caused by the
tsunamigenic earthquake of March 11, 2011 at the coast of Japan. The length of a vector is propor-
tional to the absolute value of the residual displacement multiplied by the ocean depth. The length
scale of the vector is shown in accordance with the color scale depicted in the lower right angle
of the figure. The initial elevation at the tsunami source is shown by white isolines with a step of
1m (the solid line represents an uplift, the dotted line represents subsidence). The white circles
with numbers indicate points at which calculation was performed of the tracks of water particle
movements, presented in Fig. 3.46
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The results of calculations by the static model are presented in Fig. 3.45. The
residual horizontal displacements of water particles are shown by black arrows. The
length of an arrow is proportional to the displacement multiplied by the ocean depth
(D∞H). The distribution of the value of |D∞| is shown in accordance with the color
scale placed in the lower right angle of the figure.

The field of residual horizontal displacements depends in a complicated manner
on the shape of the initial elevation at the tsunami source, on the bathymetry and on
the coastline configuration. Far from the coast the displacement direction of water
particles mainly depends on the shape of the initial elevation. The orienting influence
of the coast is manifested near islands: vectors tend to be oriented parallel to the
coastline. In a region of area of the order of 0.5 million sq. km, which is directly
adjacent to the tsunami source and includes a deepwater depression and an abyssal
plain, the amplitude of the residual displacement of water particles exceeded 10m.
In shallow-water regions the amplitude of residual displacements exceeded 100 and,
in certain individual cases 1000m.

In Okal and Mac Ayeal (2006) a description is given of the registration of the
Indonesian tsunami of December 26, 2004 in a far zone (in the Ross Sea) with the use
of an accelerometer placed on an iceberg. The amplitudes measured only amounted
to 1.33m horizontally and to 0.14m vertically. Clearly, displacements of the order
of 10m can be readily registered by a similar device situated on a drifter.

In Fig. 3.46 characteristic examples are presented of water particle tracks calcu-
lated with the use of the dynamic model, and of the vector of residual displacement
of water particles calculated by the static model. In an open ocean (points 2, 3, 4)
immediately after passage of the leading wave a particle is shifted to a position which
corresponds to calculation by the static model. Then, the particle undergoes chaotic
motion in the vicinity of this position. It is seen that in these cases the static model

Fig. 3.46 Horizontal movements of water particles caused by the tsunamigenic earthquake of
March 11, 2011 at the coast of Japan: tracks calculated by the dynamic model (curves) and residual
displacement vectors calculated by the static model (arrows). Calculations are performed at points,
the positions of which are shown in Fig. 3.45
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can indeed be used for the rapid estimation of residual displacements. And the data
on residual displacements can, in turn, be used for resolving the inverse problem of
reconstructing the initial elevation.

At points 1, 5, owing to the vicinity of the coast and the influence of reflected
and trapped waves, horizontal motions due to passage of the leading wave do not
put particles in a position predicted by the static model. Particles are shifted to this
position after a significant time period. At point 6 the horizontal movements of water
are of a particular character,which is related to such a point being close to the center of
the source. Note that in all three cases the static model quite accurately predicted the
residual displacement, but the direction of the initial motion is clearly not consistent
with the residual displacement vector.

In shallow-water regions the amplitude of horizontal motions (points 7, 8) signif-
icantly increases. But the real residual displacements are apparently achieved only
after the decay of waves captured by the shelf. In these cases tracks reveal chaotic
wandering of particles with a large amplitude and the static model is only capable of
providing an approximate estimate of the amplitude, but not of their direction. The
direction of motion is quite versatile and, consequently, not a reliable characteristic.

Let us point out the main results of this section. Numerical calculation shows that
the tsunamigenic March 11, 2011 earthquake at the coast of Japan was accompanied
by residual horizontal displacements of water particles with an amplitude exceeding
10m in a region of area ∼0.5 million sq, km. In shallow water the displacement
amplitude could reach 100 and even 1000 m. Analysis of the traces of horizontal
movements ofwater particles performedwith the aid of hydrodynamic simulation has
permitted to reveal that in open ocean residual displacements form immediately after
passage of the leading tsunami wave. Near the coast, although horizontal motions are
characterized by a significant amplitude (hundreds of meters), they look complicated
and knotty owing to the influence of waves trapped by the shelf.
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Chapter 4
Role of the Compressibility of Water
and of Nonlinear Effects in the Formation
of Tsunami Waves

Abstract The necessity is substantiated for taking into account the compressibil-
ity of water in describing behavior of water column in tsunami source. Within the
framework of linear potential theory of a compressible liquid in a basin of fixed
depth, the general analytical solution is constructed for 2D and quasi-3D (cylin-
drical symmetry) problems of the generation of acoustic-gravity waves by bottom
deformations of small amplitudes. Manifestations of compressibility of the water
column in the problem of tsunami generation are studied, making use of the example
of model bottom deformation laws (piston, membrane, and running displacements).
The main difference between the behavior of a compressible water column as com-
pared to an incompressible model medium is shown to consist in the formation of
elastic oscillations exhibiting significant amplitudes and a discrete spectrum. Char-
acteristic features of the dynamics of acoustic-gravity waves in a basin of variable
depth are described. Records of ocean bottom pressure gauges and seismometers are
used for analyzing manifestations of the 2003 Tokachi-Oki and the 2011 Tohoku-
Oki tsunamigenic earthquakes. The mechanism is considered of tsunami formation,
related to nonlinear energy transfer from “high-frequency” forced or elastic oscilla-
tions of the water column to “low-frequency” gravitational waves.

Keywords Tsunami generation · Water compressibility · Euler’s equations ·
Acoustic-gravity waves · T-phase · Linear potential theory · Laplace transforma-
tion · Fourier transformation · Analytical solution · Ocean bottom displacement ·
Waveguide · Normal modes · Numerical simulation · The 2003 Tokachi-Oki earth-
quake · The 2011 Tohoku-Oki earthquake · JAMSTEC · DONET · Nonlinear
tsunami source

The issue of accounting for the compressibility of water in the problem of tsunami
generation has been raised repeatedly in the literature Sells (1965), Kajiura (1970),
Pod’yapolsky (1978), Yanushkauskas (1981), Boorymskaia et al. (1981), Levin
(1981), Selezov et al. (1982), Garber (1984), Zhmur (1987), Nosov (1999, 2000),
Nosov and Sammer (1998), Panza et al. (2000), Ohmachi et al. (2001), Nosov and
Kolesov (2002, 2003, 2007), Nosov et al. (2005, 2007), Gisler (2008), Chierici
et al. (2010), Stiassnie (2010), Kadri and Stiassnie (2012), Sammarco et al. (2013),
Abdolali et al. (2015). However, in most of the tsunami models the ocean is
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considered to be an incompressible medium. Only one of the manifestations of water
being compressible in the case of underwater earthquakes, namely the T-phase, has
been studied relatively well (e.g., Ewing et al. 1950; Soloviev et al. 1968, 1980;
Brekhovskikh 1974; Kadykov 1986; Walker et al. 1992; Kadykov 1999; Lysanov
1997; Okal 2003; Okal et al. 2003). The range of frequencies between 2 and 100Hz
is usual for the T-phase. We note here that in this chapter we will be interested in
hydroacoustic phenomena which are related to another frequency range (∼0.1Hz)
and are localized in the immediate vicinity of the tsunami source.

The necessity of taking into account nonlinear effects during tsunami formation
is related to the fact that in the case of seismic motions of the seabed exhibiting small
amplitudes, the velocities of these motions may turn out to be quite significant. The
nonlinear mechanism of tsunami generation was first considered in Novikova and
Ostrovsky (1982). This line of research was further developed in Nosov and Skachko
(2001), Nosov and Kolesov (2002, 2005), Nosov et al. (2008).

4.1 Excitation of Tsunami Waves with Regard
to the Compressibility of Water

4.1.1 Preliminary Estimates

If the process is treated froma formal physical point of view (e.g., Landau andLifshits
1987), then a liquid can be considered incompressible only when�ρ

/
ρ � 1, where

ρ is the density of the liquid. As it is known, the necessary condition for the above
to be valid is that the motions of the liquid exhibit small velocities, as compared to
the velocity of sound. In the case of stationary motion this condition is sufficient.
The problem of tsunami generation is evidently nonstationary so onemore additional
condition must be fulfilled. In the problem of tsunami generation both conditions are
of the following form:

(1) v � c;
(2) τ � (

Hc−1, Lc−1
)
,

where v is the characteristic mass velocity of motion of water particles or of the ocean
bottom, c is the velocity of sound inwater,H is the ocean depth, L is the characteristic
horizontal size of the source. Note that even in those rare cases, when the authors of
one or another investigation substantiate application of the theory of incompressible
liquids in the tsunami problem, the second condition is always forgotten. The charac-
teristic values of the indicated parameters are the following: v ∼ 1m/s, c ∼ 1500m/s,
H ∼ 4500m, L ∼ 10–100km, τ ∼ 1–100s. The first condition is seen to be well
satisfied, while the second can be violated in many cases. In the case of a running
displacement (a fault ripped open or a surface seismic wave) the first condition will
also be violated.
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For problems concerning tsunami propagation in the open ocean and waves run-
ning up a coast, the first condition remains the same and is quite fulfilled. The
second condition assumes the following form: T � (

H c−1, λ c−1
)
, where T is

the tsunami period, and λ is the wavelength. With regard to the obvious relationship
T (gH)1/2 = λ and to the fact that the tsunami period is usually tens and even
hundreds of minutes long, fulfillment of the second conditions is also doubtless.

It is interesting to compare the energies of acoustic and gravitational waves,
excited by one and the samemechanism: by vertical displacement of part of the ocean
bottom. We shall consider a column of an ideal homogeneous compressible (or
incompressible) liquid with a free upper surface of thickness H located on an
absolutely rigid bottom in the field of gravity exhibiting the free-fall acceleration
g. At a certain moment of time an area S of the ocean bottom starts to move verti-
cally with a constant velocity v. The motion will take place during a time interval τ ,
upon which the ocean bottom stops. Such a process results in a residual displacement
of the ocean bottom of height η0 = v τ over an area S. It is known that in an incom-
pressible liquid, when τ � S1/2 (gH)−1/2, at the time moment t = τ the shape of
the surface perturbation is close to the shape of the residual displacement of the bot-
tom, so the energy transferred to the ocean by the moving bottom can be estimated
(from above) as the potential energy of the initial elevation of area S and height
ξ0 = η0:

E1 = 0.5 ρ g S ξ20 . (4.1)

Within the framework of themodel of compressible liquids, the energy of acoustic
waves (e.g., Landau and Lifshits 1987), excited by the displacement of the ocean
bottom, described above, has the following form:

E2 = c ρ S η20 τ−1. (4.2)

Note that, when bottom deformations happen to be prolonged, the water layer
behaves like an incompressible medium. In such cases estimation by formula (4.2),
naturally, has no sense. The critical duration permitting to distinguish between the
water layer dynamics of compressible and incompressible character is represented
by the quantity τc = 4H/c (justification will be presented in Sect. 4.1.5). This critical
duration amounts to τc = 10 s for a typical oceanic depth H = 4500m and sonic
speed c = 1500m/s.

It is readily verified that within the range of τ values peculiar to real seismic
events (1–10s), the ratio E2/E1 = 2c/(gτ) � 1. In other words, a significant part
of the energy transferred from the moving bottom to the ocean exists in the form of
acoustic waves. As time passes, this energy can be transferred to seismic waves or to
other forms of motion of the water column. In any case, elastic oscillations represent
an energetically significant effect that must be taken into account.

The obtained estimates are expediently comparedwith natural data. Taking advan-
tage of the empirical relationship (2.53) and of the ratio E2/E1 = 2c/(gτ), it is pos-
sible to calculate the energy of a gravitational tsunami wave and the energy of elastic

http://dx.doi.org/10.1007/978-3-319-24037-4_2
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Fig. 4.1 Earthquake energy, energy of gravitational tsunami waves, and energy of acoustic waves
in water versus earthquake magnitude

waves in water depending on the earthquake magnitude. We shall compare these
quantities with the earthquake energy estimated by the Kanamori formula (1977)

log10 EEQ[J] = 1.5Mw + 4.8. (4.3)

Figure4.1 presents dependences of the earthquake energy, of the energy of the
gravitational tsunami wave, and of the energy of acoustic waves upon the earthquake
magnitude. In calculating the energy of acoustic waves we assumed the bottom
deformation duration to vary between the limits of 1 and 10s. The dependence of
the acoustic wave energy is shown by the gray band, the upper boundary of which
corresponds to a duration of τ = 1s, while the lower one corresponds to τ = 10 s.
Formation of the tsunami gravitational wave is seen to consume less than 0.1% (see
Sect. 2.4). But tens and, maybe, even hundreds of times more, up to 10% of the
earthquake energy, may be transformed into the energy of acoustic waves. Thus,
submarine earthquakes are capable of exciting powerful acoustic waves and when
tsunamis are generated, noticeable manifestations of the compressibility effect of
water are to be expected.

http://dx.doi.org/10.1007/978-3-319-24037-4_2
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Further we shall consider the mathematical model of a compressible water col-
umn under the assumption of an absolutely rigid ocean bottom. Such an assumption
simplifies the problem noticeably and permits to concentrate on manifestations of
the compressibility of the water column. A realistic formulation of the problem
should, naturally, take into account the elasticity properties of the ocean bottom.
The problem thus formulated was first considered by G.S. Pod’yapolsky (1968a, b,
1978). This topicwas further developed in analytical studiesGusyakov (1972, 1974),
Alexeev and Gusyakov (1973), Zvolinsky (1986), Zvolinsky et al. (1991, 1994),
Sekerzh-Zen’kovich et al. (1999). In recent years publications have appeared, in
which attempts are made of numerical simulation of the dynamics of a compressible
water columnwith regard to the elasticity properties of the ocean bottom (Panza et al.
2000; Ohmachi et al. 2001; Balanche et al. 2009; Maeda and Furumura 2013; Maeda
et al. 2013). In particular, these properties will be manifested in the time interval,
during which elastic oscillations of a water column exist, being limited owing to
“leakage” of energy into the ocean bottom.

Consider elastic oscillations to be caused by a horizontally homogeneous ver-
tical deformation of the ocean bottom taking place within quite an extended area.
Then the problem becomes one-dimensional along the vertical coordinate. We write
the evolution equation for the energy E of elastic waves contained in a water column
of thickness H as

dE

dt
= − E

τs
.

The energy E obviously decreases exponentially with time. The quantity τs,
characterizing the damping time, can be deduced from the following arguments.
During the propagation of an elastic wave from the ocean bottom to the sur-
face and back (2H/c) its energy will be reduced by the quantity D0E, where
D0 = 4ρρbccb (ρc + ρbcb)

−2 is the transition coefficient at the “water–bottom”
boundary for a normally incident elastic wave, ρ, ρb and c, cb are the densities of and
elastic wave propagation velocities in water and the ocean bottom rock, respectively.
In the case of the ocean bottom, longitudinal waves are intended, since in the one-
dimensional case considered transverse and surface seismic waves are not excited.
The maximum period of elastic oscillations of a water column with a free surface
is known to be T0 = 4H/c. Thus, we obtain the following formula for the damping
time: τs = T0

/
2D0.

We shall consider the density of water and the propagation velocity of sound in
water to be ρ = 1000kg/m3 and c = 1500m/s, respectively. In the case of rock, mak-
ing up the ocean bottom, its density and the velocity of longitudinal waves in it vary
within the respective limits 1400 < ρb < 3500kg/m3 and 1700 < cb < 8000m/s.
Correspondingly, the transition coefficient varieswithin the limits 0.19 < D0 < 0.95.
The lower limits of the indicated ranges correspond to friable sedimentary rock.
Usually, the ocean bottom has a stratified structure. The effective reflection of
elastic waves takes place from the acoustic base—a certain sufficiently dense
and high-velocity column. Thus, for example, in the case of ρb = 3000kg/m3

and cb = 7000m/s, we obtain τs ≈ 2T0. So, it takes two periods for the energy
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of elastic oscillations to be reduced by a factor of e, and four periods for the oscilla-
tion amplitude.

4.1.2 Hydrodynamic Formulation of the Problem:
Analytic Solutions

The general formulation of the problem, considered in this section, remains exactly
the same as in Sect. 3.1.1 and is presented in Fig. 3.1. All the notations introduced
in Sect. 3.1.1 also remain in force. The main innovation in formulating the problem
consists in that we shall now consider the water environment to be a compressible
liquid. Moreover, we shall neglect the Coriolis force. Indeed, owing to the longest
possible period of hydroacoustic waves, Tmax = 4H/c ∼ 10 s, being certainly many
times shorter than the 24h of a solar day, rotation of the Earth is quite unlikely to
affect hydroacoustic waves.

To obtain a hydrodynamic description of the movements of a water layer (e.g.,
Landau and Lifshits 1987) we again take advantage of the Euler equation, in which
the density of water is no longer a constant, but depends on pressure,

∂v
∂t

+ (v,∇)v = −∇p

ρ
+ g, (4.4)

of the continuity equation for a compressible liquid,

∂ρ

∂t
+ div(ρ v) = 0 (4.5)

and of the equation of state for a barotropic liquid,

ρ = ρ(p). (4.6)

The set of Eqs. (4.4)–(4.6) must be supplemented with boundary conditions. Like
in the case of an incompressible liquid, dynamic and kinematic conditions must be
set on the free surface of the compressible liquid,

p = patm for z = ξ(x, y, t), (4.7)

∂ξ

∂t
+ u

∂ξ

∂x
+ v

∂ξ

∂y
− w = 0 for z = ξ(x, y, t), (4.8)

where patm is the atmospheric pressure along the free water surface, which we shall
consider to be constant. The no-normal flow condition is set on the moving oceanic
bottom,

(v, n) = (vb, n) for z = −H(x, y) + η(x, y, t), (4.9)

http://dx.doi.org/10.1007/978-3-319-24037-4_3
http://dx.doi.org/10.1007/978-3-319-24037-4_3
http://dx.doi.org/10.1007/978-3-319-24037-4_3
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where vb is the velocity vector of the ocean bottom motion, n is the normal to the
ocean bottom surface.

As the initial conditions we shall adopt zero displacement of the free surface,
ξ0 = 0 and a zero velocity field, v0 = 0. Here, the liquid will be in a state of
hydrostatic equilibrium, and the initial distributions of pressure p0(z) and density
ρ0(z) will be related by the equation of hydrostatics,

∇p0
ρ0

= g. (4.10)

We shall consider movements of the water layer caused by dynamic deformation
of the ocean bottom to be deviations from hydrostatic equilibrium. In this case it
is expedient to represent the flow velocity, pressure, and density fields as sums of
the respective static (v0 = 0, p0(z), ρ0(z)) and dynamic (v′(x, y, z, t), p′(x, y, z, t),
ρ′(x, y, z, t)) parts,

v = v′(x, y, z, t), (4.11)

p = p0(z) + p′(x, y, z, t), (4.12)

ρ = ρ0(z) + ρ′(x, y, z, t). (4.13)

Substitution of representations (4.11)–(4.13) into Eqs. (4.4) and (4.5) gives

∂v′

∂t
+ (v′,∇)v′ = − ∇p′

ρ0 + ρ′ + ρ′ g
ρ0 + ρ′ , (4.14)

∂ρ′

∂t
+ div(ρ0v′ + ρ′ v′) = 0. (4.15)

We stress that Eqs. (4.14) and (4.15) are obtained by identical transformations
without application of any simplifying assumptions. Therefore, they are just as diffi-
cult to resolve as the initial equations. But, if the assumption is made that deviations
from hydrostatic equilibrium are due to acoustic and gravitational waves of small
amplitudes, then Eqs. (4.14) and (4.15) can be linearized. Neglecting the small quan-
tities v′, p′, and ρ′, we obtain a set of linear equations describing waves of small
amplitude in a compressible liquid,

∂v′

∂t
= −∇p′

ρ0
+ ρ′ g

ρ0
, (4.16)

∂ρ′

∂t
+ ρ0 div (v′) = 0. (4.17)

Small variations of density ρ′ and pressure p′ are related to each other by the
following formula deriving from the equation of state (4.6):

ρ′ = p′/c2, (4.18)
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where c = √
(∂p/∂ρ)s ≈ 1500m/s is the velocity of sound in water (the derivative is

calculated for constant entropy, since the process of compression and decompression
in an acoustic wave is assumed to be adiabatic). Besides the equations, boundary
conditions (4.7)–(4.9) must, naturally, also, undergo linearization. The respective
procedure is described in Sect. 3.1.3 (see Eqs. (3.36) and (3.37)).

The last term in the right-hand part of Eq. (4.16) describes the force of buoyancy.
The significance of the force of buoyancy can be estimated by calculating the ratio of
the absolute values of the second and first terms in the right-hand part of Eq. (4.16).
With regard to formula (4.18) we obtain the following estimate:

∣
∣ρ′ g

∣
∣

|∇p′| ∼ gλ

c2
, (4.19)

where λ is the acoustic wavelength. From the obtained expression it follows that
the force of buoyancy can exert significant influence on acoustic waves when the
wavelength is comparable to the quantity c2/g ≈ 230km. The upper limit of the
acoustic wavelength is always noticeably smaller, being determined by the ocean
depth, λmax ≤ 4H. For this reason, it has sense to neglect the force of buoyancy in
Eq. (4.16). As a result we arrive at the equation

∂v′

∂t
= −∇p′

ρ0
. (4.20)

The set of Eqs. (4.17) and (4.20) represents a classical set of equations of
linear hydroacoustics (e.g., Landau and Lifshits 1987; Tolstoy and Clay 1987;
Brekhovskikh and Lysanov 2003). This set can be reduced to a single equation,
namely, to a homogeneous wave equation. Here, we introduce the flow velocity
potential F,

v′ = ∇F. (4.21)

Substitution of representation (4.21) into Eq. (4.20) gives a formula that relates
dynamic pressure and the potential,

p′ = −ρ0
∂F

∂t
. (4.22)

Expressing variations of the density ρ′ in Eq. (4.17) via variations of pressure p′
by formula (4.18) we obtain

1

c2
∂p′

∂t
+ ρ0 div (v′) = 0. (4.23)

http://dx.doi.org/10.1007/978-3-319-24037-4_3
http://dx.doi.org/10.1007/978-3-319-24037-4_3
http://dx.doi.org/10.1007/978-3-319-24037-4_3
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Substitution of pressure p′ and velocity v′, expressed by formulae (4.22) and
(4.21), into expression (4.23) gives the sought wave equation,

∂2F

∂ t2
− c2 Δ F = 0. (4.24)

We supplement wave equation (4.24) with linearized boundary conditions on the
free surface and on the oceanic bottom. We write the conditions in terms of the flow
velocity potential (see Sect. 3.1.3),

∂2F

∂t2
+ g

∂F

∂z
= 0 for z = 0, (4.25)

∂F

∂n
= (vb, n) for z = −H(x, y). (4.26)

The flow velocity can be calculated from the known potential F making use of
formula (4.21), while the dynamic pressure field can be calculated applying formula
(4.22). Displacement of the free surface is determined by the following formula (see
Sect. 3.1.3):

ξ = −1

g

∂F

∂t

∣∣∣∣
z=0

. (4.27)

As initial conditions for problem (4.24)–(4.26) at t = 0 we set the potential
equal to zero, F = 0, as well as the derivative of the potential with respect to time,
∂F/∂t = 0. Physically, the first condition signifies a zero initial flow velocity field
v′

0 = 0, while the second points to zero deviation of the pressure distribution from
hydrostatic equilibrium, p′

0 = 0.
The wave equation (4.24) with boundary conditions (4.25) and (4.26), supple-

mented with the initial conditions described above, represents the Cauchy–Poisson
problem formulated within the framework of linear potential theory. The solution of
this problem describes acoustic and gravitational waves, excited in a water layer by
small-amplitude dynamic deformations of the ocean bottom. Note that the problem
for an incompressible liquid, (3.26), (3.36), and (3.37), is a limit case of the problem
for a compressible liquid, (4.24)–(4.26), when c → ∞.

The problem (4.24)–(4.26) can be resolved analytically for an ocean of constant
depth H = const. In this case the boundary condition on the ocean bottom, (4.26),
transforms into the following simple form:

∂F

∂z
= ∂η

∂t
for z = −H, (4.28)

where η is the bottom surface deviation from its initial position.

http://dx.doi.org/10.1007/978-3-319-24037-4_3
http://dx.doi.org/10.1007/978-3-319-24037-4_3
http://dx.doi.org/10.1007/978-3-319-24037-4_3
http://dx.doi.org/10.1007/978-3-319-24037-4_3
http://dx.doi.org/10.1007/978-3-319-24037-4_3


190 4 Role of the Compressibility of Water and of Nonlinear Effects …

In subsequent sections analytic solutions will be obtained and analyzed for prob-
lems of the generation of wave motions in a compressible water layer of fixed depth
in the case of dynamic ocean bottom deformations of small amplitude |η| � H. We
shall restrict ourselves to resolving the two following two-dimensional problems:
the plane problem (in a Cartesian reference frame) and the quasi-three-dimensional
problem (exhibiting cylindrical symmetry).

Cartesian Coordinates

In a Cartesian reference frame, the solution of the problem (4.24), (4.25), (4.28) is
sought via the respective Laplace and Fourier transformations relative to the time
and space coordinates in the following form:

F (x, z, t) =
s+i∞∫

s−i∞
dp

+∞∫

−∞
dk Φ (z, p, k) exp {pt − ikx}. (4.29)

Substituting formula (4.29) into expression (4.24), we obtain an equation for deter-
mining function Φ (z, p, k),

Φzz − α2Φ = 0, (4.30)

where α2 = k2 + p2 c−2.
The solution of Eq. (4.30) is well known and can be written in the form,

Φ (z, p, k) = A cosh (αz) + B sinh (αz),

where A and B are arbitrary numerical coefficients.
Applying the boundary condition for a free surface, (4.25), we find the relationship

between the coefficients,
B = −A p2 (gα)−1.

With the aid of the boundary condition for the basin bottom, (4.28), we determine
the coefficient A:

A = − p Ψ (p, k)

α sinh (αH) + p2 g−1 cosh (αH)
,

where function Ψ (p, k) represents the Laplace and Fourier transforms of the space–
time law of motion of the bottom η (x, t),

Ψ (p, k) = 1

4π2i

∞∫

0

dt

+∞∫

−∞
dx η (x, t) exp (−pt + ikx). (4.31)
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Thus, we have function Φ (z, p, k) in the following form:

Φ (z, p, k) = pΨ (p, k)

α sinh (αH) + p2g−1 cosh (αH)

(
p2 (gα)−1 sinh (αz) − cosh (αz)

)
.

(4.32)

Substitution of expression (4.32) into formula (4.29) yields the final expression for
calculation of the potential corresponding to an arbitrary space–time law determining
the displacement of the bottom, η (x, t). In investigating analytical models, it is
of interest to consider the behavior of the free surface of the liquid (as the most
illustrative characteristic), the displacement of which relative to its unperturbed level
is expressed via the potential in accordancewith formula (4.27). As a result we obtain
the following expression:

ξ (x, t) = g−1

s+i∞∫

s−i∞
dp

∞∫

−∞
dk

p2Ψ (p, k)

α sinh (αH) + p2g−1 cosh (αH)
exp {pt − ikx}.

(4.33)
In choosing the concrete function for describing the space–time law determining

the motion of the bottom, part of the integrals in expression (4.33) can be calculated
analytically.

Cylindrical Coordinates

The cylindrical reference frame will be introduced in a standard manner with respect
to the Cartesian reference frame, described in Sect. 3.1.1. The origin of the cylin-
drical reference frame will be located on the free unperturbed surface, axis 0z will
be directed vertically upward. As a source of elastic gravitational waves we shall
consider axially symmetric movements of the bottom proceeding in accordance with
the law η (r, t). The wave equation in the cylindrical reference system exhibits
the following form:

r−1 (r Fr)r + Fzz = c−2Ftt. (4.34)

The boundary conditions on the surface, (4.25), and on the bottom, (4.28), retain
their form in the cylindrical reference frame.

The solution of the problem (4.34), (4.25), and (4.28) is sought applying the sep-
aration of variables in the form of the inverse Laplace transformation,

F (r, z, t) =
s+i∞∫

s−i∞
dp R(r, p) Z(z, p) exp {pt}. (4.35)

http://dx.doi.org/10.1007/978-3-319-24037-4_3


192 4 Role of the Compressibility of Water and of Nonlinear Effects …

Substituting formula (4.35) into (4.34), we obtain equations for determining func-
tions R(r, p) and Z(z, p),

r−1 (r Rr)r + k2 R = 0 (4.36)

Zzz − α2Z = 0, (4.37)

where α2 = k2 + p2c−2. The solutions of Eqs. (4.36) and (4.37) are well known
(Nikiforov andUvarov 1984).Making use of this result, one can represent the general
solution of Eq. (4.34) as follows:

F (r, z, t) =
∞∫

0

dk

s+i∞∫

s−i∞
dp exp {pt} J0 (kr) (A (p, k) cosh(αz) + B (p, k) sinh(αz)),

(4.38)

where J0 is the zeroth-order Bessel function of the first kind.
With the aid of the boundary condition on the free surface, (4.25), we find the rela-

tionship between the coefficients A and B,

B(p, k) = −A(p, k) p2 (gα)−1 .

The boundary condition on the bottom, (4.28), permits to determine the coefficient
A(p, k),

A(p, k) = − p k Ψ (p, k)

α
(
sinh(αH) + p2g−1α−1 cosh(αH)

) , (4.39)

where function Ψ (p, k) represents the Laplace and Fourier–Bessel transforms of
the space–time law of movements of the bottom, η (x, t),

Ψ (p, k) = 1

2π i

∞∫

0

dr

∞∫

0

dt η(r, t) r J0(kr) exp{−pt}. (4.40)

We shall further consider the behavior of a free surface, the displacement of which
from its unperturbed level is expressed through the potential as follows:

ξ (r, t) = −g−1 Ft (r, 0, t). (4.41)

With use of formula (4.38) expression (4.41) acquires the following form:

ξ(r, t) = −g−1

∞∫

0

dk

s+i∞∫

s−i∞
dp p exp{pt} J0(kr) A(p, k). (4.42)
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4.1.3 Piston and Membrane Displacements

We shall start exposition of the peculiarities of tsunami formation in a compressible
ocean by considering the axially symmetric problem (Nosov 2000). As sources of
acoustic-gravity waves we choose twomodel displacements of the bottom: the piston
and membrane displacements,

η1(r, t) = η0
(
1 − θ (r − R)

) (
θ (t) t − θ (t − τ ) (t − τ)

τ

)
, (4.43)

η2(r, t) = η0
(
1 − θ(r − R)

)

×
(
2θ (t) t−4θ (t−0,5τ) (t−0,5τ)+2θ (t−τ) (t−τ)

τ

)
, (4.44)

where θ is the Heaviside step function. The displacement amplitude η0 is the same
throughout the entire active zone, exhibiting a circular shape of radius R, and is zero
outside this region. The duration of the displacement is τ .

We introduce the dimensionless variables (the asterisk “*” will be dropped),

k∗ = kH; p∗ = pHc−1; α∗ = αH;
R∗ = RH−1; r∗ = rH−1; z∗ = zH−1;
t∗ = tcH−1; τ ∗ = τcH−1; c∗ = c (gH)−1/2.

(4.45)

Making use of the general solution (4.42), we obtain expressions, describing
motion of the free surface of a compressible liquid in the case of piston-like (ξ1) and
membrane-like (ξ2) displacements of the bottom,

ξ1 (r, t) = θ (t) ζ (r, t) − θ (t − τ) ζ (r, t − τ), (4.46)

ξ2 (r, t) = 2θ (t) ζ (r, t) − 4θ (t − 0,5τ) ζ (r, t − 0,5τ)

+ 2θ (t − τ) ζ (r, t − τ), (4.47)

where

ζ (r, t) = η0c2R

2π i τ

∞∫

0

dk

s+i∞∫

s−i∞
dp

exp{pt}J0(rk) J1(Rk)

α sinh(α) + p2c2 cosh(α)
. (4.48)

As a function of the complex parameter p the integrand in (4.48) has two or an
infinite number (depending on the sign of α2) of poles located on the axis Im(p)= 0.
An incompressible liquid (c = ∞) represents a special case of the problemdealtwith.
The solution for an incompressible liquid can be obtained by a formal substitution
of α → k in formula (4.48). The integrand, here, will have only two first-order poles
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p1,20 = ±i c−1 (k tanh(k))1/2, which permits to perform integration over the parame-
ter p analytically. In the case of an incompressible liquid, this results in the function
ζ(r, t), entering into formulae (4.46) and (4.47), assuming the following form:

ζ (r, t) = η0 c R

τ

∞∫

0

dk
J0(rk) J1(Rk) sin(tc−1 (k tanh(k))1/2)

cosh(k) [k tanh(k)]1/2
. (4.49)

The integrals in formulae (4.48) and (4.49) were calculated numerically for c = 8
and R = 1, 5, and 10.

Figure4.2 presents the example of time evolvents, showing the displacement of
a free surface at two fixed points (at the center of the active zone and outside it) for
compressible and incompressible liquids. The insets show the behavior of the free
surface of an incompressible liquid at long times. The theory of a compressible liquid
is seen to provide a more reliable description of the movement of the surface from
the point of view ofmoment of time the perturbation arrives at the given point. Before
the long gravitational wave arrives at point r = 20, acoustic precursors of noticeable
amplitude are observed. The main difference in behavior between compressible and
incompressible liquids consists in the existence of “fast” oscillations of the surface
with a prevalent period, equal to 4H/c. Oscillations take place against the background
of the development of a slower gravitational wave. The origin of surface oscilla-
tions is due to the excitation of standing acoustic waves in the natural quarter-wave
resonator of a “column of compressible liquid with a free surface on the rigid bot-
tom”. The resonator exhibits a set of frequencies, fn = 0.25 c (1 + 2n) H−1, where
n = 0, 1, 2, 3, . . . . Precisely, the lowest mode corresponds to the period observed.

It is quite probable that such a resonator plays an important part in the formation of
seaquakes (see Sect. 1.6). In the case of depths of several kilometers, usual for oceans,
the eigenfrequencies of the resonator lie precisely within the range of frequencies of
seismic processes. Therefore, extremely effective transmission of energy is possible
from an oscillating ocean bottom to the thick volume of water.

Figure4.3 presents the dependences of the maximun free surface displacement
amplitudes for compressible and incompressible liquids versus the durations of
bottom displacements. Calculations were performed for three different sizes of
the source (R = 1, 5, and 10). The maximum amplitudes were determined from
the time evolvents in accordance with the following formulae:

• for model of compressible liquid:

A = η−1
0

(
max

(
ξcomp(t) − ξincomp(t)

) − min
(
ξcomp(t) − ξincomp(t)

));

http://dx.doi.org/10.1007/978-3-319-24037-4_1
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(a)

(b)

Fig. 4.2 Examples of time evolvents of free surface perturbations of compressible (thin line) and
incompressible (thick line) liquids, caused by displacements of the bottom of duration τ = 5 with
a residual deformation (a) and of duration τ = 20 without any residual displacement (b). Curves
1, 2 correspond to r = 0, 20, respectively. Calculation were performed for R = 10

• for model of incompressible liquid:

A = η−1
0

(
max

(
ξincomp(t)

) − min
(
ξincomp(t)

))
.

In the case of incompressible liquids the dependences of amplitudes and ener-
gies of gravitational waves upon the durations of bottom displacements have
been repeatedly investigated theoretically and experimentally by different authors
(Hammack 1973; Dotsenko 1995, 1996; Nosov and Shelkovnikov 1997). The
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Fig. 4.3 Dependences of maximum amplitude of “fast” surface oscillations (thin line) and of
maximum amplitude of gravitational waves (thick line) upon the durations of bottom displacements
with residual deformations (piston-like displacement) and without displacement (membrane-like
displacement). Curves 1–4 correspond to distances r = 0, 10, 20, and 40 from the center of
the source. Calculations were performed for R = 1, 5, and 10

character of the curves presented in Fig. 4.3 for the case of incompressible liquids is
in good agreement with the results of indicated publications and Sects. 3.3 and 3.4.

In the case of an incompressible liquid the characteristic features of the amplitude
dependence on the displacement duration are the following. When a displacement
of the ocean bottom is accompanied by a residual displacement, the dependence is
characterized by the presence of a plateau at small values of the parameter τ and
by a monotonous drop at large τ values. When no residual displacement accompa-
nies the displacement, the dependence considered has a local maximum that shifts

http://dx.doi.org/10.1007/978-3-319-24037-4_3
http://dx.doi.org/10.1007/978-3-319-24037-4_3
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to the right as the source radius increases. Short displacements of the ocean bottom
without residual displacement result in the formation of very weak surface perturba-
tions outside the source.

Enhancement of the size of the active zone leads to an increase in both the ampli-
tude of “fast” surface oscillations and the amplitude of gravitational waves. It must
be noted that an increase of the size of the active zone causes a noticeable change in
the amplitude only for values of the parameter R < 5, after which the dependence
reaches saturation.

The specific nonmonotonous character of the curves, related to the model of com-
pressible liquids, is due to the aforementioned resonance properties. As the displace-
ment duration increases, the amplitude of “fast” oscillations tends to decrease. It is
interesting to note that in the case of large values of parameter τ all the dependences
(both for compressible and incompressible liquids) behave like τ−1. Given other
conditions being equal, the amplitude of “fast” surface oscillations above the source
may be several times larger than the amplitude of surface displacements of an incom-
pressible liquid.

The duration of real ocean bottom displacements lies within the range 0.4–40
(1–100s). On the basis of data presented in Fig. 4.3 it is possible to conclude that
themaximum amplitude of gravitational waves proper in the case of bottom displace-
ments, involving residual deformation, is weakly sensitive to variations of the para-
meter τ . In the case of displacements of the ocean bottom without residual defor-
mation the amplitudes of gravitational waves, going beyond the limits of the source,
undergo quite significant changes within the range we are interested in. For any
type of displacement the amplitude of “fast” surface oscillations depends strongly
on the displacement duration.

Figure4.4 presents the dependences of amplitudes of gravitational waves and of
“fast” surface oscillations upon the distance from the source center r. The data cor-
respond to the duration of the ocean bottom displacement, τ = 1, which does not
violate the general nature of the conclusions, since the form obtained for the solu-
tion of (4.46) and (4.47) reveals that the parameter τ does not affect the decrease
of amplitude with distance. In all cases, the amplitude varies weakly immediately
above the source zone. Outside the source zone the amplitude of gravitational waves
decreases approximately like r−1/2 (corresponding to the known asymptotic esti-
mates, see Pelinovsky 1996), while the amplitude of oscillations drops like r−2.
Here, displacements of the ocean bottom with and without residual deformation lead
practically to the same oscillation amplitude, while the amplitudes of gravitational
waves differ noticeably. Figure4.4 permits to conclude that “fast” surface oscilla-
tions are considered local effects, the appearance ofwhich should be noticeable either
immediately at the tsunami source, or at relatively small distances, not exceeding
several sizes of the source.

The general picture of tsunami excitation in a compressible ocean can be repre-
sented as follows.When a vertical displacement of the ocean bottomoccurs, thewater
column is shifted correspondingly, and under the force of gravity it gradually starts to
spread out, at the same time undergoing elastic oscillations. Therefore, the tsunami
source not only serves as a source of gravitational tsunami waves, but also of
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Fig. 4.4 Dependences of maximum amplitude of “fast” surface oscillations (thin line) and of max-
imum amplitude of gravitational waves (thick line) upon the distance from the source center. Curves
1, 2 correspond, respectively, to displacements of the bottom with residual deformation (piston-like
displacement) and without residual deformation (membrane-like displacement). Calculations are
performed for τ = 1, R = 10

low-frequency acoustic waves, the emission of which is possible at the character-
istic frequencies fn = 0.25 c (1 + 2n) H−1. Waves of low energy-carrying modes
exhibit lengths that significantly exceed the width of the underwater acoustic channel
and that, consequently, cannot be captured by it. In this case the entire thickness of
the ocean must serve as the waveguide, while the elastic waves considered will effec-
tively be scattered on irregularities of the ocean bottom and of the water surface and
be absorbed by the elastic ocean bottom. Most likely, it is precisely for this reason
that at large distances from the source only relatively weak components of the signal
are observed at frequencies f > 2Hz, and precisely they are termed the T-phase.

4.1.4 The Running Displacement

In dealing with the running displacement problem in Sect. 3.3.3 we noted that move-
ments of the ocean bottom of such types are characterized by high propagation
velocities, at which the theory of incompressible liquids cannot be applied. The
velocity, with which the fault ruptures at the earthquake source, the crack propagat-
ing along the bottom, surface seismic waves—all these phenomena are character-
ized by velocities exceeding the speed of sound in water. And it is only in the case
of underwater slumps (landslides) that the velocity of a running displacement is

http://dx.doi.org/10.1007/978-3-319-24037-4_3
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significantly inferior to the speed of sound in water. Therefore, the aim of this section
is the construction of a mathematical model for the excitation of waves by a running
displacement of the ocean bottom in a compressible liquid.

Consider a plane problem, the general formulation ofwhich corresponds to (4.24),
(4.25), and (4.28). We shall choose the model law of motion of the ocean bottom in
the case of a running displacement to be of the form (Fig. 3.3)

η(x, t) = η0
(
θ (x) − θ (x − a)

)(
1 − θ (x − vt)

)
, (4.50)

where θ (z) is the Heaviside step function. The residual deformation of the ocean
bottom, η0, is the same over the entire active zone of length a and equals zero outside
this zone. The horizontal propagation velocity of the displacement is v. A similar
problem has been resolved in Sect. 3.3.1 for the case of an incompressible liquid.

We shall apply the general solution of the problem (4.33) and pass to dimension-
less variables in accordance with formulae (4.45), which in the case of a running
displacement must be complemented with the expression v∗ = v (gH)−1/2 (we
drop the asterisk “*”). As a result we arrive at the following expression describing
the surface perturbation of a compressible liquid caused by a running displacement
of the ocean bottom (Nosov and Sammer 1998),

ξ (x, t) = η0c2

4π2i

+∞∫

−∞
dk

s+i∞∫

s−i∞
dp

p (exp {a γ } − 1) exp {pt − ikx}
γ cosh (α)

(
α tanh (α) + p2c2

) , (4.51)

where γ = (
ik − pcv−1

)
, α2 = k2 + p2.

As a function of the complex parameter p the integrand expression has two or an
infinite number (depending on the sign of α2) of poles located on the axis Im(p) = 0.
Since the positions of the poles are determined from the solution of a transcendental
equation, and, besides, they depend on the parameter k, over which external integra-
tion is performed, further analysis of expression (4.51) was carried out numerically.
Formula (3.81), obtained in Sect. 3.3.1, is the analog of expression (4.51) for the case
of incompressible liquids.

The following parameter values were chosen for calculations: c = 8, a = 10,
which at ocean depths of 4000mapproximately correspond to the velocity of sound in
water, 1500m/s, and to a horizontal size of the source equal to 40km.The propagation
velocity of the displacement, v, was varied within limits from 0.125 up to 32 (from
23 up to 6000m/s).

Figure4.5 presents displacement profiles of the surface of a liquid, ξ (x), for
the timemoment t = 10, calculatedwithin the framework ofmodels for compressible
and incompressible liquids for three displacement propagation velocities, v = 4,
8, 16. In all cases, an account of the compressibility led to a significantly more
subtly structurized perturbation of the surface, differing from zero only at those
points, at which the elastic wave, formed by the running displacement, had time
to arrive. As it is seen from the figure, when v = 4, the differences between free

http://dx.doi.org/10.1007/978-3-319-24037-4_3
http://dx.doi.org/10.1007/978-3-319-24037-4_3
http://dx.doi.org/10.1007/978-3-319-24037-4_3
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Fig. 4.5 Profiles of surface displacement of a liquid atmoment of time t = 10 for different propaga-
tion velocities of the running displacement, v. The thick and thin lines correspond to incompressible
and compressible liquids, respectively

surface perturbations for compressible and incompressible liquids is not so large,
but in the case of high velocities the difference becomes quite significant. When
v � c, the profile is characterized by the presence of steep fronts and of an original
periodic structure, that is a consequence of multiple reflections from the surface and
from the ocean bottom of the front of the elastic wave, formed by the front edge
of the running displacement. From mathematical physics it is known that when an
elastic wave is reflected from a free surface, it changes polarity. Thus, for this reason
positive and negative fronts alternate.

The results of calculations of time evolvents ξ (t) for the center of the active zone
(x = 5) are presented in Fig. 4.6. The main feature, distinguishing the behavior of
a compressible liquid, consists in the rise in the source area of surface oscillations
with a pervalent period equal to four. Oscillations take place against the background
of a developing slower gravitational wave. The rise of surface oscillations is due
to the excitation of standing acoustic waves in the natural resonator of a “column
of compressible liquid with a free surface on the rigid bottom”. Similar oscillations
arise in the case of piston-like andmembrane-like displacements of the ocean bottom
(Fig. 4.2).
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Fig. 4.6 Time evolvents of surface displacements of liquids at the center of the active zone for dif-
ferent displacement propagation velocities v. The thick and thin lines correspond to incompressible
and compressible liquids, respectively

Within the framework of the model applied, the damping of oscillations is due to
the outflow of elastic wave energy from the generation area. The oscillation damping
process proceeds, in this case, faster than in the case of vertical displacements of
the ocean bottom, which is related to the existence of a large number of elastic wave
rays deviated from the vertical direction. In real natural conditions the damping will
proceed even more rapidly owing to losses occurring, when the elastic waves are
reflected and scattered from theboundaries “water–bottom”and“water–atmosphere”.

In Fig. 4.7, the dependence of the maximum amplitude of surface displacement
at the center of the active zone (x = 5) is presented in a semilogarithmic scale as
a function of the velocity v. From the figure it is seen that for propagation velocities
of the displacement inferior to v = 4 (v = c/2 ∼ 750m/s) practically no difference
exists between the models for compressible and incompressible liquids. Both theo-
ries reveal the presence of a local maximum at v = 1, corresponding to resonance
excitation of gravitational waves. At high velocities the model for incompressible
liquids more than twice underestimates the free surface displacement.
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Fig. 4.7 Maximum
amplitudes of surface
displacements for
incompressible (1) and
compressible (2) liquids at
the center of the active zone
versus the propagation
velocity of the bottom
displacement, v

4.1.5 Peculiarities of Wave Excitation in a Basin
of Variable Depth

Analytical resolution of the problemofmovements of a compressible liquid in a basin
with an irregular bottom encounters significant complications, while in the general
case it is not even possible. Therefore, in studying peculiarities of the excitation of
elastic gravitational waves in a basin of variable depth it is expedient to apply numer-
ical simulation (Nosov and Kolesov 2003, 2007). It must be noted that numerical
methods have also to be applied in dealing with analytical solutions (for calculating
integrals). Given all the obvious advantages of analytical solutions, direct numerical
simulation often turns out to be much more efficient.

We shall consider the plane problem (4.24)–(4.26).
Numerical resolution implies using a region of finite dimensions for calculations.

Thus, besides the boundary conditions on the bottom and on the surface, conditions
must be formulated for the left and right boundaries of the calculation region. As such
conditions for free second-order transition (of elastic waves) were chosen (Marchuk
et al. 1983):

c
∂2F

∂x∂t
− ∂2F

∂t2
+ c2

2

∂2F

∂z2
= 0, x = xmin, xmax. (4.52)

Equation (4.24) and the boundary conditions (4.25), (4.26) and (4.52) were
reduced to a dimensionless form in accordancewith formulae, (x∗, z∗) = (x, z)H−1

max,
t∗ = tH−1

maxc, where Hmax is the maximum depth of the basin.
The distribution of depths chosen for calculations imitated transition from the shelf

zone through the continental slope toward the abyssal plain (Fig. 4.8a). The parameter
L = 80kmwas not varied. The depthsH1 andH2 varied between 0.5 and 8.5km. The
maximum steepness of the slope amounted to 0.1. The tsunami source was located on
the slope and represented a displacement involving residual deformation. The form
of the space–time law of motion of the bottom deformation, η(x, t) = X(x)T(t),
is shown in Fig. 4.8b. Movement of the bottom occurred in a direction normal to
the surface of the bottom. The displacement duration varied between 1 and 100s.
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(a)

(b)

Fig. 4.8 Shape of calculation region (a). Space–time law of motion of bottom (b)

Resolution of the problem (4.24)–(4.26) and (4.52) was performed by the explicit
finite differencemethodona rectangularmeshwithfixed (but not identical) horizontal
and vertical steps. As the stability condition we adopted the Courant criterion �t <

min(�x,�z)
/

c, where �t is the time step, �x and �z are the space steps.
Figures4.9 and 4.10 show the calculated free surface disturbance at time moment

t = 1000 s for different depth values H1 and H2. The displacement duration was 10s.
Figure4.9 corresponds to a fixed depth of the shallow-water area,H1 = 0.5km; here,
the depthH2 is varied. Figure4.10 demonstrates the results of calculations for the case
of a fixed average depth of the calculation region: the slope “rotates” about its central
point x = 0, z = −4.5km. Practically, the wave perturbation of the surface in all
the cases consists of a slowgravitational component and of a fast acoustic component.

In the case of a horizontal oceanbottom (H1 = H2 = 4.5km) elastic oscillations of
the water column above the source area continue to be present for a long time. This is
due to the wave vectors retaining directions close to vertical, and the energy of elastic
oscillations slowly leaves the source area. The appearance of even a very insignificant
slope of the bottom (1:160 for H1 = 4.25km, H2 = 4.75km) alters the picture
drastically. In the deeppart of the basin an acoustic precursor is observedof significant
amplitude, the amplitude of elastic surface oscillations in the shallow region remains
practically intact. Oscillations immediately above the source are already close to
conclusion by the time moment t = 1000 s. Further enhancement of the slope’s
steepness, first, leads to a decrease in the amplitude of the acoustic precursor in
the shallow-water part of the basin, and, subsequently, to its total disappearance.
Hence follows the important conclusion, that it is impossible to register an acoustic
precursor in shallow water, for example, by variations of the sea level.
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Fig. 4.9 Perturbation of free surface at time moment t = 1000 s

The absence is also to be noted of any manifestation of the compressibility effect
on the surface in the case of insignificant depths H1 = H2 = 0.5km (Fig. 4.9).
Enhancement of the slope’s steepness is accompanied by an increase in the propa-
gation velocity of the acoustic precursor toward the deepwater area. Here, the region
of maximum amplitudes is intended, the front of acoustic perturbation, naturally,
travels with the velocity of a sonic wave.
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Fig. 4.10 Perturbation of free surface at time moment t = 1000 s

In the deepwater region, thewavelength of the acoustic precursor and its amplitude
may reach values comparable to the length and amplitude of a tsunami gravitational
wave. The wavelength of the acoustic precursor in the deepwater area grows starting
from the front toward the “tail”. This effect is a direct consequence of the geometri-
cal dispersion (or waveguide dispersion). Indeed, a column of compressible liquid,
limited by a free surface and by an absolutely rigid bottom, represents a waveguide.
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It is known (Tolstoy and Clay 1987) that the group velocity for each mode n in such
a waveguide is determined by the formula,

Cgr = c
√
1 + (

kn
z /kx

)2
,

where kx is the horizontal wavenumber, kn
z = π(1+2n)/2H is the vertical wavenum-

ber for thenthmode (n = 0, 1, 2, . . .). It is seen from the formula that the groupveloc-
ity rises, as the horizontal wavenumber increases, i.e., as the wavelength decreases.

As compared to the case of elastic surface perturbation, the amplitude charac-
teristics of gravitational waves are not so sensitive to variations in the ocean bot-
tom profile. Nevertheless, the wave of higher amplitude can be seen to propagate
into the shallow-water area. Anyhow, the wave entering the deepwater area exhibits
greater energy.

The dynamic pressure happens to be themost illustrative characteristic for describ-
ing the wave field throughout the thickness of a water column. In natural conditions
precisely, the dynamic pressure can be measured in a most simple manner (with
the aid of hydrophones). Figure4.11 presents an example of characteristic depen-
dences of the dynamic pressure versus time, calculated for six fixed points, the loca-
tion of which is shown in the inset. From the figure it is seen that the amplitude of
dynamic pressure related to elastic waves (the short-period component) increases as
it approaches the ocean bottom. The contribution given by the gravitational surface
wave (long-period component at points 1–3) is noticeable only in the shallow-water
region against the background of quite weak elastic oscillations. In the deepwater
area the amplitude of dynamic pressure reaches a significantly higher value, and
the main contribution to the perturbation is precisely due to the acoustic, but not
gravitational, component.

We shall further analyze the peculiarities of the space distribution of the dynamic
pressure amplitude for various shapes of the relief of the ocean bottom and conditions
for wave generation. We define the amplitude dynamic pressure in accordance with
formula,

pmax(x, z) = max
0<t<Θ

[p(t, x, z)],

where Θ is the moment of time, when the acoustic and gravitational waves have
already had time to leave the point considered.

The influence the ocean bottom slope in the source area has on the space distrib-
ution of the dynamic pressure amplitude is illustrated by Fig. 4.12. From the figure
it is seen that the amplitude of dynamic pressure reaches its maximum values near
the ocean bottom, while the presurface region is characterized by minimum values
of the dynamic pressure. This property is a direct consequence of the boundary con-
dition at the free water surface. When the bottom is flat, the region of maximum
pressures is localized immediately above the source, and the amplitude of the signal
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Fig. 4.11 Dynamic pressure, calculated as function of time at fixed points. The pressure is nor-
malized to the quantity ρ c vmax, where vmax is the maximum velocity of movement of the ocean
bottom. The scale units for realizing 1–3 and 4–6 are different (indicated in the figure for curves 2
and 5, respectively)

reaches noticeable values near the ocean bottom (pmax ∼ 0.5ρcvmax) at significant
distances from the source, ∼200km, also. In Fig. 4.12 the amplitude of the dynamic
pressure is normalized to the quantity ρcvmax, where vmax is themaximumvelocity of
motion of the ocean bottom. The appearance of even a very insignificant slope angle
in the vicinity of the source leads to a shift of the region ofmaximumpressures toward
large depths. In this case the amplitude of the signal in the shallow-water region is
noticeably reduced. Further enhancement of the ocean bottom slope angle results
in the maximum pressure values being achieved already outside the source area (in
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Fig. 4.12 Space distribution of maximum dynamic pressure. The calculation is performed at τ =
10 s for various profiles of the ocean bottom
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the deepwater region),while propagation of the acoustic signal into the shallow-water
region is strongly suppressed. Thus, for example, if H1 = 1km and H2 = 8km in
the shallow-water region, then the dynamic pressure remains at a level∼0.02ρcvmax,
and the main contribution to this quantity is not due to the acoustic, but to the surface
gravitational wave. At the same time, in the deepwater area the pressure amounts to
3ρ cvmax and more.

In the case of short-duration displacements the region of maximum dynamic
pressure may be observed not only near the ocean bottom, but also inside the thick
water column,which is due to the excitation of highermodes of elastic oscillations. In
the case of long-duration displacements the dynamic pressure becomes homogeneous
in the vertical direction, because effects of water compressibility lose their first-
priority significance, and the pressure related to gravitational waves starts to prevail.

In the case of a basin of variable depth, for instance, when the source of waves is
located on the sloping ocean bottom, a most important result consists in the shallow-
water region turning out to be practically closed to the penetration of elastic waves.
The acoustic signal in the shallow-water region being suppressed depends on two
reasons, the first ofwhich is trivial: the underwater slope is so oriented that the source
emits elastic waves into the deepwater region. But this reason is not the sole and even
less the principal one. The second reason is related to the waveguide properties of
a column of compressible liquid, limited by a free surface and by an absolutely rigid
bottom. It is known (Brekhovskikh andGoncharov 1982) or (Tolstoy andClay 1987),
that the dispersion relation for normal modes in such a waveguide has the form,

kx =
√

ω2/c2 − (
kn

z

)2
, (4.53)

where kx is the horizontal wavenumber, kn
z = π(1+2n)/2H is the vertical wavenum-

ber for the nth mode (n = 0, 1, 2, . . .), ω is the cyclic frequency (ω = 2π/T). It is
seen that for fixed frequency (or period T) and depth H the horizontal wave number
will be real only for a finite number of modes. These modes will be propagating
modes. For modes of higher numbers kx becomes a purely imaginary quantity, con-
sequently, the perturbation in the wave decreases exponentially in the x direction.
The situation is possible, when in the deepwater part of the basin there exist several
(or one) propagating modes of period T , while in the shallow-water part no mode
exists for such a period. Assuming in expression (4.53) n = 0, one can readily find
the critical period for the given depth H,

Tc = 4H

c
. (4.54)

The frequency corresponding to the critical period is called the cutoff frequency.
Modes of periods superior to Tc do not propagate in the considered waveguide.
Formula (4.54) also permits to calculate the critical depth Hc for a given period of
elastic waves, T . An elastic wave will not penetrate the region, where the depth is
smaller than the critical depth,H < Hc = cT/4. A displacement of the ocean bottom
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with residual deformation of duration τ forms elastic waves of period T ∼ τ , which
are capable of penetrating down to depths Hc ∼ cτ/4. The examples of calculations
presented in Figs. 4.9, 4.10, and 4.12 correspond to τ = 10 s, i.e., the critical depth
amounts to Hc = 3,75km. From the figures it is seen that manifestations of com-
pressibility of the water column correspond to those cases, when the depths exceed
the critical value Hc.

Note one more interesting effect, related to the shape of the ocean bottom relief.
We intend the possibility for the lowest mode of elastic oscillations to be captured
by regions of local depressions of the ocean bottom (deepwater trenches or hollows).
Indeed, if the lowest mode originates in the region of a local maximum depth, Hmax,
then it exhibits the period Tmax = 4Hmax/c. This mode cannot leave the region,
where it originated, since to do so it would have to propagate up the slope.

In conclusion of this section, we note that in tsunami catalogs (Soloviev et al.
1997; Soloviev and Go 1974, 1975) cases are repeatedly mentioned, when tsunami
waves throw out onto the coast deepwater fish (unknown species, “sea monsters”).
Moreover, cases have been described, when deepwater fish rised up to the surface
before an earthquake. We shall present two quotations from the catalog of tsunamis
in the Mediterranean sea.

1783, February, 5, 12h ± 30min. Calabrian Arc. 38◦25 ′N, 15◦50 ′E.
Catastrophic Calabrian earthquake, which initiated a long period of seismic activ-

ity in the southwest of Italy that continued for several years.
Unusual events at sea are described, which can be considered short-time pre-

cursors of the earthquake. At the beginning of February close to Messina and at
other sites deepwater fish Chichirella started appearing in large numbers, although
it usually does not leave the seabed and digs into the seabed silt.

1887, February (March), 23, 6h 20 min. Ligurian sea, Italy, France. 43◦42 ′N ,
08◦03 ′E.

Strong earthquake occupied an area of 570 thousand sq. km. Deepwater fish or
fish rarely seen in winter were found thrown out onto the beaches of Nizza, San-Remo,
Savona.

Such a behavior of the marine inhabitants is readily explained by the distribution
of the dynamic pressure amplitude. In attempts at avoiding the influence of uncom-
fortable changes in pressure, caused by the underwater earthquake, the fish goes to
those regions, where the variations in pressure are minimal, i.e., to shallow-water
regions or to the surface.

4.2 Observations of Tsunamigenic Earthquakes Using
Ocean Bottom Stations

In this section an analysis of in situ data will be presented, for the interpretation of
which it is important to take into account the compressibility of water. We shall deal
with variations of the bottom pressure and of the accelerations of bottom oscillations
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registered by the submarine observatories JAMSTEC during the tsunamigenic 2003
Tokachi-Oki and 2011 Tohoku-Oki earthquakes. In the first case the registrators were
established directly at the tsunami source, while in the second at a significant dis-
tance (800km) from the source. In the first subsection the basic theoretical concepts
necessary for interpretation of the signals observed are expounded.

4.2.1 Character of the Water Layer Response to Bottom
Oscillations in Dependence of Frequency

The spectrum of seismic bottommovements embraces quite a broad frequency range
(usually∼10−3–102 Hz). The lower boundary of this range is determined by the time
required for the rupture at the earthquake source to be ripped open, while the upper
boundary depends on the propagation conditions of seismic waves: high-frequency
waves die out more rapidly with distance.

How does a water layer react to bottom oscillations occurring with a certain
frequency f ? The answer to this, at first glance, absolutely theoretical question is
extremely important for adequate interpretation of the signals registered by pressure
gauges and seismometers established on the ocean’s bottom. Such systems have
recently becomewidespread in the practice of studying and predicting tsunamiwaves
and submarine earthquakes. Evidently, when the frequency varies within a range of
several orders ofmagnitude and the onset of different physical factors takes place, the
character of the reaction of a water layer may undergo essential changes. To reveal
the character of the linear response of a water layer to bottom oscillations, we shall
rely on results of the theoretical analysis expounded in Sects. 3.2.1, 3.3.4 and 4.1.5.

From the analytical solution of the problem of gravitational wave generation in
a layer of incompressible liquid by small dynamic bottom deformations, (3.48) it
follows that the spatial spectrum of these waves is always modulated by the rapidly
decaying function

χ(k) = 1

cosh(kH)
. (4.55)

The result of such modulation is an exponentially rapid decrease in the amplitude
of waves, excited by bottom movements, as the wavenumber k increases (or the
wavelength λ = 2π/k decreases). Thus, the wavelengths of gravitational waves
excited in a water layer by bottom movements or by other bottom processes turn out
to have a lower limit λmin ∼ H.

Note that function χ is responsible not only for the suppression of short gravita-
tional waves, excited by movements of the bottom. In the theory of potential gravita-
tional waves of small amplitude (e.g., Lacombe 1965) the relationship is known
between displacement of the free surface in a monochromatic wave, ξ , and the
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variations in pressure p, created by this wave at the bottom of the basin. This
relationship is realized by means of function χ :

p

ρgξ
= χ. (4.56)

Taking into account the character of the behavior of function χ , it is possible
to draw the conclusion from formula (4.56) that only long waves (kH � 1) mani-
fest themselves in variations of the bottom pressure. At the same time, shortwaves
(kH � 1) give rise to no oscillations of the bottom pressure.

In linear gravitational waves the wavenumber k is uniquely related to the cyclic
frequency ω (ω = 2π f ) by the dispersion relation: ω2 = gk tanh(kH). Taking
advantage of the dispersion relation one can represent function χ(k) in the form of a
frequency dependence χ(f ). In Fig. 4.13 the quantity χ is presented as a function of
the dimensionless frequency f

√
H/g. From the figure it is seen that at low frequen-

cies the quantity χ is close to 1. As the frequency increases, the quantity χ undergoes
a sharp decrease.

Since the quantity χ determines the amplitude of gravitational waves caused by
bottom movements, an analysis of the dependence depicted in Fig. 4.13 permits to
draw the following conclusions. Gravitational waves can be caused by bottom oscil-
lations only of sufficiently low frequencies: f < fg, where fg = α

√
g/H is the critical

frequency, at frequencies above which the wave amplitude becomes negligible, α is
a numerical coefficient. For unambiguous determination of the coefficient α it is
necessary to set the amplitude attenuation level of surface waves compared with the

Fig. 4.13 Quantity χ determining the amplitude of gravitational waves excited by bottom oscilla-
tions of frequency f in a water layer of depth H versus frequency
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amplitude of ocean bottom oscillations (see Fig. 4.13). Thus, for example, a hun-
dredfold attenuation of the wave compared to the amplitude of bottom oscillations
corresponds to the value of coefficient α100 ≈ 0.366. For comparison we present
values of the coefficient corresponding to a tenfold and thousandfold attenuation:
α10 ≈ 0.273, α1000 ≈ 0.439. Owing to function χ dropping quite sharply, coeffi-
cients corresponding to different attenuation levels do not differ strongly from each
other. For definiteness we shall further use the value of coefficient α100.

Within the “gravity-wave” frequency range of f < fg it is expedient to single out a
subrange of long (low-frequency) waves f < flw < fg. The long-wave approximation
implies fulfillment of the law of hydrostatics, in this case χ = 1. To determine the
critical frequency flw = α

√
g/H , restricting the long-wave range, one must establish

the deviation level of function χ from its hydrostatic limit χ = 1. In the case of a
deviation of 1% (χ = 0.99) the coefficient α0.99 ≈ 0.0225, while if the deviation is
10% (χ = 0.9) α0.9 ≈ 0.0718. We shall further apply the value α0.99.

The above reasoning permits to introduce two critical frequencies for gravitational
waves:

fg ≈ 0.366
√

g/H, (4.57)

flw ≈ 0.0225
√

g/H. (4.58)

Both critical frequencies only depend on the ocean depth and on the gravity
acceleration.

The dependences (4.57) and (4.58) are presented in Fig. 4.14. In the “depth-
frequency” plane these two curves identify regions, inwhich the excitation is possible
of gravitational waves (f < fg), or of long gravitational waves (f < flw). The region
in between the curves (flw < f < fg) corresponds to relatively short (dispersing)
gravitational waves. Here, it is appropriate to note that tsunami waves caused by
perturbations at the ocean bottom (seismic movements of the bottom, submarine
landslides etc.) by the very nature of their origination are not obliged to be long
waves, their spectrum may also involve shortwave dispersing components.

As it was already noted in Sect. 4.1.5, a layer of compressible liquid that is limited
frombelowby an absolutely rigid bottom and from above by a free surface, represents
a waveguide, characterized by a cutoff frequency,

fac = c/4H, (4.59)

where c is the velocity of sound in water. Hydroacoustic waves are capable of propa-
gating along such a waveguide only if their frequency exceeds the cutoff frequency:
f > fac. Thus, the cutoff frequency, determined by formula (4.59), represents a
critical frequency that imposes a lower limit on the frequency range for the exis-
tence of hydroacoustic waves. Dependence (4.59) is shown in Fig. 4.14 together
with dependences (4.57) and (4.58) that are responsible for the critical frequencies
of gravitational waves.

From Fig. 4.14 it is seen that the curves corresponding to critical frequencies fg
and fac never intersect in the conditions of our planet (the inequality fg < fac always
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Fig. 4.14 Critical frequencies for gravitational and acoustic waves in a water layer versus depth
H. Frequency ranges corresponding to the character of the linear response of a water layer to ocean
bottom oscillations of frequency f : “long gravitational waves”, “dispersive gravitational waves”,
“forced oscillations”, and “acoustic waves”

holds valid). Consequently, gravitational and hydroacousticwaves excited by seismic
movements of the bottom are always related to different (not intersecting) frequency
ranges. The intermediate frequency range fg < f < fac corresponds to the mode
of forced oscillations. If the frequency of bottom oscillations is within the range of
“forced oscillations”, then neither gravitational nor hydroacoustic waves arise, and
the water layer will followmovements of the bottom like a single whole. In the mode
of forced oscillations, when the ocean bottom is flat and horizontal, variations of the
bottom pressure p are related to the vertical component of acceleration a of bottom
movements, in accordance with Newton’s second law,

pfo = ρHa, (4.60)

where ρ is the density of water.
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In the frequency range fg < f < fac forced oscillations exist in a “pure form”,
outside this range they also exist, but in superposition with acoustic or gravitational
waves.

The fact that for the “forced oscillations” range there exists an exact formula
(4.60), by which it is possible to calculate the dynamic pressure at the bottom is, in a
certain sense, unique. The point is that no simple exact formulae exist for the ranges
of gravitational and acoustic waves. However, in these cases pressure variations can
be estimated applying approximate relationships. For the range of long gravitational
waves bottom pressure oscillations are exclusively due to changes in the water layer
thickness during the passage of gravitational waves. The amplitude of these waves is
approximately equal to the amplitude of bottom oscillations, η. Thus, the following
formula may be considered for estimation of the dynamic pressure at the ocean
bottom:

plw ∼ ρgη. (4.61)

Note that the contribution of forced oscillations to pressure variations can be
neglected in the frequency range f < flw,

plw

pfo
∼ g

Hω2 > 50.

As the frequency of bottom oscillations increases and approaches the value of
fg, forced oscillations start to be dominant in the formation of pressure variations.
Manifestations of gravitational waves, contrariwise, become weaker, owing to the
“double effect of function χ”, which consists in that, first, bottom oscillations of
frequency f ∼ fg are not capable of effectively exciting gravitational waves, and,
second, the waves generated are manifested at the ocean bottom with attenuation.

We shall base estimation of dynamic pressure in the range of “acoustic waves” on
the exact formula p = ρcu, well known in acoustics and according to which pressure
is calculated in the vicinity of a solid surface, moving with a velocity u along the
direction of its normal vector (e.g., Landau and Lifshits 1987). The presence of a
free water surface reflecting acoustic waves restricts the possibility of applying this
formula as an exact expression for calculating the pressure. But the same expression
can quite be used for approximate estimation of bottom pressure variations within
the range of acoustic waves,

pac ∼ ρcu, (4.62)

where u is the vertical component of the bottom movement velocity.
Thus, in the ranges of “gravitational waves”, “forced oscillations”, and “acoustic

waves” the pressure variations are, respectively, proportional to the following para-
meters of bottom oscillations: the linear amplitude, acceleration, and velocity. Taking
into account that the velocity and acceleration are related in a knownway to the ampli-
tude η and cyclic frequencyω (u ∼ ηω, a ∼ ηω2), one can expect pressure variations
in the range of forced oscillations to increase in proportion to the square frequency
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pfo ∼ ω2, and within the range of acoustic waves in proportion to the frequency
itself, pac ∼ ω.

In conclusion of this section we shall touch upon an estimate confirming, at least
in part, the existence of internal consistency of the reasoning presented above. From
general physical arguments, one should expect no drastic changes to occur in the
amplitude of the bottom dynamic pressure, if transition takes place from the range
of “forced oscillations” to the range of “acoustic waves” owing to gradual changes
of frequency in the vicinity of fac. It is not difficult to verify that the estimates
of quantities pfo and pac, obtained by formulae (4.60) and (4.62), for the critical
frequency fac are, indeed, quite consistent with each other,

pfo

pac
∼ Hω

c
= π

2
∼ 1.

4.2.2 The 2003 Tokachi-Oki Earthquake

Till recently all the information on tsunami sources were obtained exclusively by
remote measurements using mareographs (coastal or deepwater), hydroacoustic sys-
tems, or seismographs. The absence of direct measurements at the tsunami sources in
part explains why processes at the epicentral zones of underwater earthquakes have
been studied relatively weakly.

The possibility of investigating the formation of a tsunami at its source, in prin-
ciple, arose at the end of the twentieth century, when a system of bottom stations
involving, in particular, pressure gauges and seismometers was established at the
Pacific ocean bottom near the Japanese islands. Bottom stations are connected to
coastal registration points by cable lines, which makes it possible to transfer data
operatively with quite a high sampling frequency.

The aforementioned stations were established by four different organizations:
Japan Meteorological Agency (JMA), Japan Agency for Marine-Earth Science and
Technology (JAMSTEC), Earthquake Research Institute (ERI), the University of
Tokyo and National Research Institute for Earth Science and Disaster Prevention
(NIED) (Joseph 2011; Rabinovich 2014). It so happened that the first, in the history
of science, registration of a tsunami generation process with the aid of bottom sensors
situated precisely at its source, was accomplished by JAMSTEC Watanabe et al.
(2004). The analysis and interpretation of these unique data are dealt with in quite
a large number of publications (e.g., Nosov et al. 2005, 2007; Mikada et al. 2006;
Nosov and Kolesov 2007; Li et al. 2009; Ohmachi and Inoue 2010; Bolshakova et al.
2011; Matsumoto 2011).

The 2003 Tokachi-Oki earthquake was the first strong seismic event, the epi-
center of which was located in the immediate vicinity of the JAMSTEC sensors
(see Fig. 4.15). According to USGS Significant Earthquake Archive, this event took
place on September 25 at 19:50:06 UTC; the coordinates of its epicenter were
41.775N, 143.904E; its hypocenter depth was 27km, its magnitude was 8.3Mw. The
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earthquake gave rise to a tsunami wave, the height of which amounted to 4m along
the southeast coast of Hokkaido island (Tanioka et al. 2004).

In this section, data are analyzed on bottom oscillations and variations of the
bottom pressure registered by JAMSTEC sensors at the source of the 2003 Tokachi-
Oki tsunami.We consider the water column at the source to behave as a compressible
medium—this is essential here. A theoretical analysis of the role, played by water
compressibility in the tsunami problem, carried out in Sect. 4.1.1, permits to assert
that elasticity effects turn out to be essential only at the stage of tsunami generation
by an earthquake, while wave propagation or the runup of a wave onto the coast can
be described as the motion of an incompressible liquid. Simple estimation reveals
that the energy of elastic oscillations of a water column in the tsunami source area
may exceed the energy of the gravitational tsunami wave by more than an order of
magnitude.

If the case of a horizontal absolutely rigid ocean bottom is considered, then
the main difference in the behavior of a compressible ocean as compared to an
incompressible model medium consists in the formation of elastic oscillations of
the water column, which are characterized by a discrete set of normal frequencies

fn = c(1 + 2n)

4H
, (4.63)

where c is the velocity of sound in water, H is the ocean depth, and n = 0, 1, 2, . . ..
For typical conditions of a tsunami source the minimal normal frequency f0 ≡

fac = c/4H ∼ 0.1Hz is excited most effectively.
Real tsunami sources are, naturally, located not on a horizontal ocean bottom, but

in a region of complex bathymetry. But the slope of the oceanic bottom usually does
not exceed the value of 0.1. Therefore, the surface of the bottom can arbitrarily be
represented as a set of quasihorizontal segments, each of which is characterized by
its own depth and set of normal frequencies, corresponding to this depth. Thus, at
a certain fixed point of the source there, first, takes place formation of elastic oscil-
lations with normal frequencies determined by the ocean depth at this point. Then,
the spectrum of elastic oscillations can be enriched by high frequencies at the cost of
waves arriving from neighboring shallow-water regions. In Sect. 4.1.5 it was shown
that owing to the existence of a cutoff frequency low-frequency oscillations formed
in adjacent deepwater regions do not propagate up the slope.

Note two features peculiar to compressibility effects that explain why they have
been studied weakly. First, elastic low-frequency oscillations of a water column
can be revealed only at sufficiently large depths (in the open ocean), which hinders
their direct registration. Second, the compressibility effects were not quite within
the line of research of tsunamis, since, owing to the significant difference in frequency
ranges, elastic oscillations were not considered capable of giving any contribution
to a tsunami wave. Probably, such an assertion is erroneous, and the contribution of
elastic oscillations to a tsunami wave can be provided for by nonlinear mechanisms
(Sect. 4.3).
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Till recently the existence of elastic low-frequency oscillations of the water col-
umn at a tsunami source had not been confirmed by measurements in natural waters,
and, therefore, the effect remained only theoretically predicted. To avoid confusion,
the difference must be stressed between such a well-known phenomenon as the
T-phase and the effects dealt with here. Not only the T-phase is related to a range of
higher frequencies (f > 2Hz), but it is also registered at significant distances from
the source (e.g., Okal et al. 2003).

Figure4.15 shows the region, where the 2003 Tokachi-Oki earthquake occurred.
The epicenter of the seismic event is indicated by the asterisk. The vertical coseismic
deformation component, which permits to draw conclusions on the location and size
of the tsunami source, is shown in the figure by isolines (red lines indicate uplifts,
blue lines indicate subsidences, the isoline pitch is 0.1m). The coseismic deformation
is calculated using the Okada formulae (see Sect. 2.2) by the slip distribution model
developed in Koketsu et al. (2004) on the basis of joint inversion of strong motion
and geodetic data. The triangles indicate the positions of four JAMSTEC bottom

Fig. 4.15 Relative position of epicenter of the 2003 Tokachi-Oki earthquake (asterisk) and ocean
bottom JAMSTEC stations (triangles). The coseismic vertical deformation of the ocean bottom is
shown by isolines drawn with a pitch of 0.1 m (uplifts are shown by red lines, subsidences are
shown by blue lines). The maximum uplift and subsidence values are indicated in the lower right
angle. Isobaths are drawn with a 1 km pitch

http://dx.doi.org/10.1007/978-3-319-24037-4_2
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stations that registered the tsunami formation process immediately at its source:
two pressure gauges, PG1, PG2 and two ocean bottom seismometers, OBS1, OBS3.
The registrators are situated in pairs: “OBS1–PG1” and “OBS3–PG2”. The distance
between pairs amounts to about 70km. The seismometers and pressure gauges in
each of the pairs are separated by quite significant distances: 4km (OBS1–PG1)
and 3.6km (OBS3–PG2). According to data presented on the official JAMSTEC
site, the ocean depths at the points where the sensors are placed are the following:
HPG1 = 2218m, HPG2 = 2210m, HOBS1 = 2329m, HOBS3 = 2124m. The data
sampling frequency for seismometers is 100Hz, while for pressure gauges it is 10Hz.

Signals registered by the seismometers and pressure gauges during the 2003
Tokachi-Oki earthquake are presented in Figs. 4.16 and 4.17, respectively. The verti-
cal acceleration component (accelerogram) of the bottom movement and variations
of bottom pressure are shown together with spectrograms constructed with the aid of
the Morlet wavelet transformation. On the spectrograms, the positions are indicated
of critical frequencies fg and fac that restrict the regions of existence of gravitational
and hydroacoustic waves (see Sect. 4.2.1).

From the accelerograms presented in Fig. 4.16 one can conclude that the most
intensive bottom oscillations lasted about 2min, and at this phase the acceleration
exceeded 1m/s2 (the double amplitude amounted to 2.23m/s2 according to OBS1
data and to 2.20m/s2 according to OBS3 data). During the first few minutes the
signal was quite wideband and then frequencies that approximately corresponded to
the critical frequency of hydroacoustic waves, fac, started to dominate. In the region
of high frequencies weak splashes were observed that were probably caused by weak
aftershocks.

Figure4.17 presents variations of the bottom pressure during the 15min time
interval after the beginning of the earthquake. Like in the case of acceleration of the
bottom motion, the spectral composition of pressure variations is characterized by
a wideband beginning and further gradual transition to the singled out frequency,
close to fac. During the first two minutes the dynamic pressure attains an amplitude
of 200kPa and more (the double amplitude amounted to 490 and 518kPa according
to the respective PG1 and PG2 data).

In Fig. 4.18, the variations of bottom pressure are presented for a long time period
(2.5h) that involved both the main seismic event of Mw8.3 and a strong aftershock
of Mw7.3 that took place at 21h 08min 19.5 s (CMT Catalog). It is remarkable that
the “sounding” of the tsunami source at the chosen frequency lasted quite a long
time—more than an hour. After the aftershock the evolution picture of the spectral
composition is repeated: in several minutes after the shock the signal is localized
within a narrow frequency range near the value of fac.

The prolonged “sounding” of the tsunami source at a fixed frequency, that is
observed both in records of pressure variations and in accelerograms, permits tomake
the conclusion that we are dealing with manifestations of the response of a certain
high-Q oscillatory system to the earthquake. The results of a theoretical analysis
presented in Sects. 4.1.3–4.1.5 indicate that such a system could be represented by a
layer of compressiblewater restricted from above by a free surface and frombelowby
an absolutely rigid bottom. Indeed, in this case the system will respond at the lowest
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Fig. 4.16 Signals registered during the 2003 Tokachi-Oki earthquake by seismometers OBS1 and
OBS3 (the vertical component of acceleration). Spectrograms of signals constructed using the
Morlet wavelet transformation. On the spectrograms the position is indicated of critical frequencies
fg and fac (white dotted lines) that restrict the regions of existence of gravitational and hydroacoustic
waves. The beginning of an earthquake of Mw8.3 is indicated by the vertical line

possible normal frequency fac. However, from the spectrograms shown in Figs. 4.16,
4.17, and 4.18 frequencies somewhat lower than the theoretical value fac are seen to
correspond to the observed oscillations. This fact is explained as follows. The model
of a compressible water layer lying on an absolutely rigid horizontal bottom is not
quite accurate. Actually, the ocean bottom exhibits elasticity properties, stratified
structure, and is certainly not strictly horizontal. Moreover, the acoustic stiffness
(product of the density of the medium and the velocity of longitudinal waves) of
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Fig. 4.17 Signals registered during the 2003 Tokachi-Oki earthquake by bottom pressure gauges
PG1 and PG2. Spectrograms of signals constructed using the Morlet wavelet transformation. On
the spectrograms the position is indicated of critical frequencies fg and fac (white dotted lines) that
restrict the regions of existence of gravitational and hydroacoustic waves. The beginning of an
earthquake of Mw8.3 is indicated by the vertical line

the upper sedimentary layers does not differ significantly from the corresponding
characteristic of sea water. In this connection, an earthquake does not simply excite
elastic oscillations of a water layer, but coupled elastic oscillations of the water layer
and the upper sedimentary layers.

How significantly do the normal frequencies of such coupled oscillations differ
from the normal frequencies of a water layer lying on an absolutely rigid bottom? To
answer this question we shall consider the following model. Let a compressible layer
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Fig. 4.18 Signals registered during the 2003 Tokachi-Oki earthquake by bottom pressure gauges
PG1 and PG2. Recording lasted 2.5h. Vertical lines indicates the beginning moments of the main
earthquake of Mw8.3 and of the aftershock of Mw7.3. Other notations are similar to the notation in
Fig. 4.17

of water of thickness H be restricted from above by a free surface and from below by
an elastic sedimentary layer. Let the sedimentary layer have a thickness Hs and let it
lie on an absolutely rigid acoustic fundament. Such a system is characterized by a set
of normal frequencies fs, determined by the solution of the following transcendental
equation (Nosov et al. 2005, 2007; Bolshakova et al. 2011):

tan

(
2π fs H

c

)
tan

(
2π fsHs

cs

)
= ρscs

ρc
, (4.64)
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where cs is the velocity of elastic longitudinal waves in the sediment, and ρs is the
density of the sediment.

Let us estimate the minimum normal frequency with and without account of the
sedimentary layer for conditions peculiar, for example, to the PG1 station. We shall
characterize the water layer by the following parameter values: ρ = 1030kg/m3, c =
1500m/s, andHPG1 = 2218m. In accordance with the Global CrustalModel at 1× 1
Degrees (CRUST 1.0, http://igppweb.ucsd.edu/~gabi/crust1.html), the sedimentary
layer is characterized at the location of the PG1 station by the following set of
parameters: cs = 1740m/s, ρs = 1820kg/m3, 500 < Hs < 2000m. Without taking
into account the sedimentary layer the minimum normal frequency assumes the
value fac = 0.169Hz. If the sedimentary layer is taken into account, the minimum
normal frequency turns out to be noticeably smaller, 0.116Hz< fs < 0.154Hz (the
lower limit corresponds to a sedimentary layer of maximum thickness). The obtained
theoretical estimate for the value fs is in good agreementwith the observed quantity—
the frequency at which “sounding” of the tsunami source takes place during an hour
and more after the earthquake.

We note one more curious detail that is well seen on the spectrograms presented
in Fig. 4.18. Before the beginning of the earthquake the range of frequencies f > fg
contains no noise of natural origin. This is due to natural noise, that is, first of all,
due to gravitational surface waves, being capable of manifesting itself in variations
of the bottom pressure only at sufficiently low frequencies f < fg (see formula (4.57)
of Sect. 4.2.1). Thus, observational data confirm adequacy of the determined critical
frequency, fg. To avoid misunderstanding we note that the weak signals observed
in the range f > 0.1Hz, including regular “structures” on the spectrograms, are
probably manifestations of instrumental noise.

In Sect. 4.2.1 it was noted that within the “forced oscillations” frequency range
the pressure variation and the acceleration of bottom movements must be related by
the linear dependence (4.60) that follows from Newton’s second law. In Bolshakova
et al. (2011) the indicated relationship was indeed observed for the first time for
signals registered by pairs of sensors “OBS1-PG1” and “OBS3-PG2” during the
2003 Tokachi-Oki earthquake. Here, we shall not deal with the analysis of these
data, since, owing to the significant distance between the seismometers and the
pressure gauges, the correspondence between pressure variations and acceleration
was not perfect. A mutual analysis of pressure and acceleration is to be presented
in Sect. 4.2.3 using the example of records obtained during the 2011 Tohoku-Oki
earthquake by stations of the DONET system, in which seismometers and pressure
gauges are located in the immediate vicinity of each other.

In Fig. 4.19, the variations of near-bottom pressure are presented in a magnified
scale, permitting to see the formation of residual displacements of the ocean bottom,
caused by the earthquake. To discard the high-frequency components (>0.02Hz)
initially they were subjected to numerical filtration. The result of filtration is shown
in the figures by dotted lines. The smooth decrease of pressure down to the start-
ing point of the earthquake is related to tidal variations of the ocean level. The
behavior of the dotted curve clearly shows that the earthquake resulted in the aver-
age pressure at sensor PG1 decreasing by �pPG1 ≈ 4kP, and at sensor PG2 by

http://igppweb.ucsd.edu/~gabi/crust1.html
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(a)

(b)

Fig. 4.19 Signals registered during the 2003 Tokachi-Oki earthquake by bottom pressure gauges
PG1 (a) and PG2 (b) in magnified scale. The arrow indicates variation of the hydrostatic pressure
caused by elevation of the ocean bottom. The dotted line represents the result of low-pass (f <

0.02Hz) filtration of the initial signal

the quantity �pPG2 ≈ 1.5kP, which corresponds to a reduction of the water level
(elevation of the bottom) by �HPG1 ≈ 0.4m and �HPG2 ≈ 0.15m, respectively,
(�H = �p/ρg). Note that residual deformations of the ocean bottom were first
revealed from the data considered by the authors of Watanabe et al. (2004).

According to the Harvard CMT Catalog, the half duration of the process at the
2003Tokachi-Oki earthquake source amounted to τE = 33.5 s. But fromFig. 4.19 it is
seen that the pressure decreases during an essentially longer period of time (∼900s).
Evidently, the sensor registers not only the deformation process of the ocean bottom,
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but also the tsunami wave formation, which is observed as a relaxation of the water
column “elevated” by the displacement.

Section4.1.2 contains a description of the procedure for linearization of equations
describing the dynamics of a compressible water layer. Now, possessing the results
of measurements at the tsunami source we can estimate the actual significance of
nonlinear effects and quite justify the application of linear equations. To this end we
shall need peak values of the mass velocity of water motion and density, as well as
the mean values of water density and of sound velocity in water (ρ0 = 1030kg/m3,
c = 1500m/s).

We shall first dwell upon estimation of the double amplitude of water density
variations that can be performed with the aid of formula (4.18) by the measured
peak value of the double amplitude of bottom pressure variations: p′ ≈ 500kPa.
Using this quantity we obtain the sought estimate: ρ′ = p′/c2 ≈ 0.2kg/m3. The
density variations are seen to be quite insignificant as compared with the mean
value, ρ′ � ρ0. Consequently, the value ρ′ in Eqs. (4.14) and (4.15) can indeed be
reasonably neglected.

We shall associate the mass velocity of water particles with the vertical velocity
of the ocean bottom motion during an earthquake. The bottom motion velocity can
be estimated by the data provided by seismometers OBS1 and OBS3 by integra-
tion of the accelerograms over time. Velocities thus reconstructed are presented in
Fig. 4.20. From the figures it is seen that accurate reconstruction of the velocities
by accelerations, measured in the nearby zone, is, generally speaking, problematic.
The point is that in the case of strong bottom motions the spatial orientation of

Fig. 4.20 The velocity of bottom motion during the 2003 Tokachi-Oki earthquake reconstructed
by integration of accelerograms over time. The onset of the earthquake of Mw8.3 is indicated by a
vertical line
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accelerometers can change (even if insignificantly), which often results in a statis-
tical error in the determination of acceleration. The existence of statistical errors in
the value of acceleration leads to errors increasing with time in the determination of
velocity. Such a linear trend is quite noticeable in Fig. 4.20. In spite of the presence
of an error (the linear trend) it is not difficult to determine that the double amplitude
of vertical velocity of the bottom motion approximately amounted to 0.3–0.5m/s.

The obtained velocity estimate can be confirmed independently on the basis of
data on the measured double amplitude of bottom pressure variations p′ ≈ 500kPa.
Assuming pressure variations to bemainly due to hydroacoustic waves in accordance
with formula (4.62) of Sect. 4.2.1 we obtain an estimate for the double amplitude of
the bottom motion velocity: u ∼ p′/ρ0c ≈ 0.32m/s (Nosov et al. 2005, 2007).

To make it possible to neglect the nonlinear term (v′,∇)v′ in Eq. (4.14) it is
necessary to require fulfillment of the following condition:

∣
∣(v′,∇)v′∣∣

∣
∣
∣ ∂v′

∂t

∣
∣
∣

∼ UT

λ
= u

c
� 1,

where λ is the acoustic wavelength, T is the period of the acoustic wave. The estimate
obtained above for themass velocity of a liquid is significantly inferior to the velocity
of sound in water, hence at the 2003 Tokachi-Oki tsunami source it is possible, at
least in the first approximation, to neglect nonlinear effects.

4.2.3 The 2011 Tohoku-Oki Earthquake

At the beginning of the twenty-first century, bottom pressure gauges started being
used extensively for tsunami wave measurements in the open ocean. The most
well-known system in this field is the system involving stations DART (Deep-
ocean Assessment and Reporting of Tsunamis) (Bernard andMeinig 2011). Records
obtained using DART stations or other similar systems always contain a high-
frequency noise-like signal observed before the tsunami onset and generated by
seismicwaves (e.g., Filloux 1983;Heidarzadeh and Satake 2013). Adequate interpre-
tation of this signal is usually rendered complicated both by the large data sampling
interval (15 s in the case of DART) and by the absence of data on seismic bottom
displacements at the point where the pressure gauge is established.

Detailed analysis of signals preceding a tsunami onset became possible owing
to the unique technical potential of the system DONET (Dense Oceanfloor Net-
work System for Earthquakes and Tsunamis), established in 2006–2011 by the Japan
Agency for Marine-Earth Science and Technology—JAMSTEC (Kaneda 2010).

The system DONET involves 20 bottom stations connected by cable lines to the
coastal center of data processing (within the framework of the project, 29 more
bottom stations are to be established in 2013–2015). Each station is equipped with
a Pressure Gauge (PG) and an Ocean Bottom Seismometer (OBS—accelerometer
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and velocimeter), located practically at the same point—at a distance less than 10m
from each other. The stations are established at depths between 1.9 and 4.4km, the
distance between them varies from 15 to 20km. The sampling frequency of data
amounts to 10Hz in the case of pressure variations and to 200Hz for seismograms.

By the time the catastrophic 2011 Tohoku-Oki earthquake occurred close to the
coast of Japan onMarch 11, 2011, 10DONET stationswere functioning—all of them
successfully recorded both the seismic event itself and the subsequent tsunami waves
that followed it (Matsumoto and Kaneda 2013; Nosov et al. 2015). According to data
of the United States Geological Survey (USGS) the Tohoku earthquake occurred at
05:46:24 (UTC), its epicenter (38.297˚N, 142.372˚E) was located 129km east of the
city of Sendai, the depth of its hypocenter was 30km, its moment magnitude Mw
= 9.0. The strong aftershock (Mw = 7.9, epicenter: 36.281˚N, 141.111˚E, depth:
42km) that occurred at 06:15:40 was also registered by all 10 DONET stations.
The relative positions of the epicenters of both seismic events and of the DONET
stations are shown in Fig. 4.21. The isolines in the figure image the vertical coseismic
bottom deformation (the tsunami source) calculated from the slip structure (Finite
Fault Model, USGS) (Nosov et al. 2013).

Since all 10 DONET stations are located quite close to each other, the signals
registered by them on the whole differ insignificantly. To present the data we chose
two stations, the most shallow-water one, B08 (1924m), and the most deepwater
one, C09 (3511m). The amplitude of seismic waves from the 2011 Tohoku-Oki
earthquake was so significant, that the velocimeters, regretfully, turned out to be
saturated. Therefore, we shall further only analyze seismograms obtained with the
aid of accelerometers.

In Fig. 4.22 presented are the original seismograms (vertical acceleration compo-
nent, sampling frequency 200Hz, and duration 15min). The signals are presented
together with spectrograms normalized to the maximum value (the Morlet wavelet
transformation). The positions of the critical frequencies fg and fac, limiting the
manifestation regions of gravitational and hydroacoustic waves (see Sect. 4.2.1), are
indicated in the spectrograms. From the figure it is seen that after the earthquake the
onset of high-frequency body waves takes place first, then comes the low-frequency
dispersive Rayleigh waves. The peak values of the acceleration double amplitude
measured by stationsB08 andC09 amounted to 0.0496 and 0.0285m/s2, respectively.
Note that these values are nearly two orders of magnitude inferior to the acceleration
amplitudes measured immediately at the source of the 2003 Tokachi-Oki tsunami
(see Sect. 4.2.2).

The DONET stations were situated at a significant distance from the epicen-
ter (∼800km). Therefore, the high-frequency components of the seismic signal
(>10Hz), that had time to decay while propagating, are actually not manifested in
the records. Consequently, the sampling frequency of the initial signal can be down-
sampled to 10Hz without loss of information—precisely such a sampling frequency
is peculiar to records of pressure variations.

The results of downsampling are shown in Fig. 4.23. The length of records was
1h—within this time interval manifestations occur of both the main seismic event of
Mw9.0 and of the first strong aftershock of Mw7.9. After its onset the seismic signal
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Fig. 4.21 Relative positions of DONET stations (triangles) and epicenters of the 2011 Tohoku-Oki
earthquake andof the first strong aftershock (asterisks). Isolines showcoseismic bottomdeformation
(red lines indicate uplift, blue lines indicate subsidence, the interval is 0.5m). Isobaths are drawn
with an interval of 1km, the color scale is shown in the lower right angle. The inset in the upper
left angle shows details of the region close to DONET stations. The absolute value of the depth
gradient in the inset is depicted in accordance with the color scale (upper left angle of inset). The
scale of lengths (10km) is shown at the center of the lower part of the inset
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Fig. 4.22 Vertical accelerations, registered by accelerometers of DONET stations B08 and C09
during the 2011 Tohoku-Oki earthquake, and spectrograms of signals. The sampling frequency of
data is 200Hz, recording lasted 15min. The time moment corresponding to the onset of the main
seismic event of Mw9.0 is indicated. White dotted lines in spectrograms show positions of critical
frequencies for hydroacoustic (fac) and gravitational (fg) waves

is quite broadband for the first few minutes. Then, the signal subsequently tends
to become localized within a narrow frequency range in the vicinity of the critical
frequency fac (a similar phenomenon was described in Sect. 4.2.2). From our point
of view the observed narrowband and long-lived signal is a manifestation of coupled
elastic oscillations of the water and the underlying sedimentary layers.

Figure4.24 shows the signal registered by pressure gauges. The time interval
of recording was chosen to be the same as for Fig. 4.23. Manifestations of high-
frequency body and of low-frequency dispersive surface waves (Rayleigh waves)
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Fig. 4.23 Vertical accelerations obtained by downsampling (200Hz → 10Hz) of signals, regis-
tered by accelerometers of DONET stations B08 and C09 during the 2011 Tohoku-Oki earthquake,
and spectrograms of 10Hz signals. Recording lasted 1h. Time moments corresponding to the main
seismic event of Mw9.0 and the first strong aftershock of Mw7.9 are indicated. White dotted lines
in spectrograms indicate positions of critical frequencies for hydroacoustic (fac) and gravitational
(fg) waves

are clearly seen in the spectrograms. The double amplitude of pressure variations
due to seismic waves amounts to 62.8kPa (B08) and 68.6kPa (C09).

By comparison of the spectrograms presented in Figs. 4.23 and 4.24 it is readily
seen that within the range of forced oscillations fg < f < fac a complete identity
(down to small details) is observed between the acceleration and the pressure spec-
trograms. Thus, the linear relationship is manifested between pressure variations and
bottom acceleration (see Sect. 4.2.1),

pfo = ρHa, (4.65)



4.2 Observations of Tsunamigenic Earthquakes Using Ocean Bottom Stations 231

Fig. 4.24 Variations of ocean bottom pressure, registered by DONET stations B08 and C09 during
the 2011 Tohoku-Oki earthquake, and spectrograms of signals. The data sampling frequency is
10Hz, recording lasted 1h. Time moments corresponding to the main seismic event of Mw9.0
and the first strong aftershock of Mw7.9 are indicated. White dotted lines in spectrograms indicate
positions of critical frequencies for hydroacoustic (fac) and gravitational (fg) waves

which should exist within the range of forced oscillations. We shall trace this corre-
spondence quantitatively by comparison of the power spectra of signals registered
by pressure gauges and acceleration sensors.

In order to depict the power spectra of pressure variations and of acceleration on
one and the same plot, we shall represent the signal registered by the accelerometer in
units of pressure in accordance with formula (4.65). In calculating spectra we made
use of fragments of records 15min long that corresponded to the main seismic event
of Mw9.0 (05:46-06:01 UTC) and to the aftershock of Mw7.9 (06:15-06:30 UTC).
The smoothed spectral estimates are presented in Fig. 4.25. The red curves show the
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power spectra of acceleration, the blue curves show the power spectra of pressure
variations.

FromFig. 4.25 it is seen that the red and blue curves indeed exhibit close behaviors
within the “forced oscillations” range (fg < f < fac). Outside this frequency range
the curves diverge. The coincidence according to the B08 station is more exact
than according to the C09 station. Most likely, this is due to the station C09 being
near underwater slopes, where the horizontal component of acceleration must be
taken into account to achieve better coincidence. It is remarkable that the degree of

Fig. 4.25 Power spectra of signals registered by pressure gauges (blue curve) and accelerometers
(red and black curves) of DONET stations B08 and C09 after the main seismic event of Mw9.0
(05:46-06:01 UTC) and after the first strong aftershock of Mw7.9 (06:15-06:30 UTC). Red curves
correspond to vertical acceleration spectrum presented in units of pressure by formula p = ρHa.
Black curves represent power spectra of vertical velocity shown in pressure units. The velocity
spectrum is calculated from the acceleration spectrum in accordancewith formula Sp = ρ2c2Sa/ω

2.
Vertical dotted lines show positions of critical frequencies for hydroacoustic (fac) and gravitational
(fg) waves
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coincidence between the curves does not depend onwhich seismic event the observed
signals correspond to—the main earthquake of Mw9.0 or the aftershock of Mw7.9.

In Sect. 4.2.1 we noted that within the frequency range of “acoustic waves” (f >

fac) pressure variations at the ocean bottom, pac, should be related to the vertical
component of the bottom displacement velocity, u, by the following formula:

pac ∼ ρcu. (4.66)

Regretfully, we had no possibility of taking advantage of records provided by
velocimeters (owing to saturation) for verifying regularity (4.66). But, owing to the
known relationship between velocity and acceleration, u ∼ a/ω, where ω is the
cyclic frequency, the velocity power spectrum Su can be readily reconstructed from
the acceleration power spectrum Sa: Su ∼ Sa/ω

2. Thus, the spectra of pressure
variations and of acceleration within the frequency range f > fac are to be expected
to be related as follows:

Sp ∼ ρ2c2Sa/ω
2. (4.67)

Spectra calculated from accelerograms in accordance with formula (4.67) are
presented in Fig. 4.25 by black curves. It is clearly seen that the black and blue
curves indeed exhibit a common tendency within the range of f > fac. Naturally, no
exact correspondence between the curves is intended in this case, since the initial
formula (4.66) is itself approximate. At high frequencies (and in the case of very
small amplitudes of the signal) a certain systematic difference is observed in the
behavior of the black and blue curves, which is probably related to a manifestation
of instrumental noises by the pressure gauges.

We shall now proceed to analyze gravitational waves. In Fig. 4.26 pressure vari-
ations are presented for a long period (3h) permitting to observe manifestations of
not only seismic waves, but of tsunami waves, also. In this figure the onset is clearly
noticeable of the leading tsunami wave, that reached the region, where the DONET
stations were established, in more than an hour after the main seismic event. Owing
to the significant epicentral distance, the seismic waves and the tsunami waves are
separated in time, and for this reason both phases are clearly observed. The ampli-
tude of pressure variations due to tsunami waves (∼4kPa) is more than an order of
magnitude inferior to the amplitude of seismic wave manifestations.

From the spectrograms presented in Fig. 4.26 it is possible to conclude that before
the onset of seismic waves the pressure gauges only register a weak low-frequency
noise in the range of f < fg. It can be asserted with certainty that the gauges register
nothing but manifestations of background surface gravitational waves. Gravitational
waves of higher frequencies, f > fg, are notmanifested in bottom pressure variations,
owing to reasons indicated in Sect. 4.2.1. It is not difficult to notice that the frequency
starting from which the pressure gauge no longer “feels” surface gravitational waves
has a lower value in the case of the station C09. This is totally consistent with
theoretical views: the critical frequency depends on depth, fg ≈ 0.366

√
g/H , and

the station C09 is situated at a large depth.
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Fig. 4.26 Bottom pressure variations, registered by DONET stations B08 and C09 during the 2011
Tohoku-Oki earthquake and tsunami, and spectrograms of signals. The data sampling frequency
is 10Hz, recording lasted 3h. Time moments corresponding to the main seismic event of Mw9.0
and the first strong aftershock of Mw7.9 are indicated. White dotted lines in spectrograms indicate
positions of critical frequencies for hydroacoustic (fac) and gravitational (fg) waves

The spectrograms presented in Figs. 4.22 and 4.23 permit to make the conclusion
that surface seismic waves from the 2011 Tohoku-Oki earthquakes are manifested
in the low-frequency range of f < fg, within which the generation is possible of
gravitational waves. From the spectrograms of pressure variations (Figs. 4.24 and
4.26) it is seen that after the onset of Rayleigh waves (both from the main event and
from the aftershock) weak pressure variations arise of frequencies ∼0.01Hz that
last more than an hour and then merge with the manifestations of tsunami waves.
These oscillations clearly stand out as an independent “branch” in the pressure
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spectrograms, for which there exists no analog in the acceleration spectrograms
(Fig. 4.23). The observed low-frequency oscillations represent a manifestation of
free surface gravitational waves, generated in the ocean by the propagation of sur-
face seismic waves along the ocean bottom (Nosov et al. 2015). Such gravitational
waves leave the leading tsunami wave behind by more than an hour, i.e., they can
be arbitrarily termed “tsunami precursors”. It is important, however, to understand
that the observed “precursors” actually have no direct relationship to the subsequent
tsunami waves, therefore, it is unlikely possible for them to be used in resolving
forecasting problems.

Figure4.27 presents the result of band-pass filtration of signals registered by the
pressure gauges of stations B08 and C09. Those signal components are singled out
that correspond to the frequency ranges “acoustic waves” (f > fac), “forced oscilla-
tions” (fg < f < fac), and “gravitational waves” (f < fg). For comparison original
(not subjected to filtration) signals are also presented. From Fig. 4.27 the conclu-
sion can be made that the maximum amplitudes of bottom pressure variations are
due to the high-frequency components of the signal (the ranges of “acoustic waves”
and of “forced oscillations”). The signal in the range of “gravitational waves” is an
order of magnitude weaker (in Fig. 4.27 this signal is presented upon tenfold ampli-
fication). It is remarkable that the signal amplitudes within the ranges of “acoustic
waves” and of “forced oscillations” are approximately equal to each other. However,
at large depths (C09) the signal in the range of “acoustic waves” is characterized by
a somewhat larger amplitude. From the low-frequency component (f < fg, without
the tidal component) of pressure variations, registered by stations B08 and C09, it is
seen that after the passage of Rayleigh waves oscillations are observed with a period
T ≈ 150 s and of amplitude p0 ∼ 100Pa, which is a manifestation of weak gravita-
tional surface waves or of “tsunami precursors”. Waves of the indicated period can
be considered long waves with an accuracy sufficient for estimates. Therefore, for
transition from the amplitude of pressure variations to the amplitude of oscillations
of the ocean surface, ξ0, we shall apply the simple formula ξ0 = p0/ρg, where ρ is
the density of water, (ρ = 1030kg/m3). Estimation of the wave amplitude yields the
value ξ0 ∼ 0.01m. From our point of view formation of the observed gravitational
waves occurs in regions, where the ocean depth undergoes sharp changes. The inset
of Fig. 4.21 shows the absolute value of the depth gradient. Numerous large-scale
underwater slopes are seen in the vicinity of the DONET stations.

Let us discuss possible mechanisms for generation of the observed gravitational
waves. Since we only interpret the low-frequency component of registered signals,
f < fg < fac, it is expedient to treat the ocean as an incompressible medium. The
most simple model, within the framework of which the generation of a tsunami by
bottom displacements is described adequately, is the linear theory of long waves.
Equations of this theory reduce to an inhomogeneous wave equation with respect to
the displacement ξ of a free surface (see Sect. 3.1.2),

∂2ξ

∂t2
− g∇ (H∇ξ) = ∂2η

∂t2
, (4.68)

http://dx.doi.org/10.1007/978-3-319-24037-4_3
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Fig. 4.27 Original signals (black curves), registered by pressure gauges of DONET stations B08
and C09 during the 2011 Tohoku-Oki earthquake and tsunami. Band-pass filtered signals (colored
curves). Frequency ranges are indicated near the curves in the figure. The signal from the “gravita-
tional waves” range is shown upon tenfold amplification. Time moments corresponding to the main
seismic event of Mw9.0 and the first strong aftershock of Mw7.9 are indicated
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where η is the deviation of the bottom surface from its initial position (the source
function). Consider the 0z-axis to be directed vertically upward, and the 0x and 0y
axes toward the east and north, respectively. Then, the source function η, present
in Eq. (4.68), can be expressed via components of the bottom deformation vector
D ≡ (Dx, Dy, Dz) and the distribution of depths by the following formula (see
Sect. 2.3):

η = ∂H

∂x
Dx + ∂H

∂y
Dy + Dz. (4.69)

In the low-frequency range of f < fg the vector field D represents a superposition
of Rayleigh and Love waves, and, consequently, it exhibits the character of a running
perturbation. The formof formula (4.69) points to the possibility of dealing separately
with the contributions of vertical and horizontal components of bottom movements.
Vertical displacements correspond exclusively to Rayleigh waves, while horizontal
displacements correspond to both Love and Rayleigh waves.

We shall first estimate the contribution of vertical bottom movements (η = Dz).
By the difference in onset times of low-frequency components of the seismic signal
(vertical acceleration) at theDONET stationswe determined the propagation velocity
of a Rayleigh wave, which amounted to U ≈ 3700m/s. By the velocity and the
maximum frequency we estimated the minimum Rayleigh wavelength: λ = U/fg ≈
150km. From Fig. 4.21 (the inset) the Rayleigh wavelength is seen to be essentially
superior to the typical horizontal extension of steep areas of underwater slopes (L <

10km � λ). In such a situation an underwater slope can be treated like a steplike
change in depth.

Consider a flat wave perturbation running with a velocity U along the infinite
surface of an even horizontal bottom, and the shape of which is described by the
function η(x, y, t) = f (x − UT). In this case a forced running perturbation is known
to arise (see Sect. 3.3.3) within the water layer involving a free surface displacement
ξ(x, y, t) = A f (x−UT), whereA = U2/(U2−gH). In such a systemno gravitational
waves are excited. For free waves to be excited there must be bottom irregularities.

Consider a plane seismicwave traversing a region, inwhich the ocean depth under-
goes a steplike change from H1 to H2. The change in depth will cause a restructuriza-
tion of the forced perturbation in the water layer, which is certain to be accompanied
by the generation of free gravitational waves. The amplitude of these waves can be
estimated by equating the free surface displacements and the fluxes of liquid at the
point of steplike change in depth,

ξ1 = g(H2 − H1)U2η0

(
√

gH1 + √
gH2)(gH1 − U2)(

√
gH2 + U)

(in the region of depth H1),

(4.70)

ξ2 = g(H1 − H2)U2η0

(
√

gH1 + √
gH2)(

√
gH1 − U)(gH2 − U2)

(in the region of depth H2),

(4.71)

http://dx.doi.org/10.1007/978-3-319-24037-4_2
http://dx.doi.org/10.1007/978-3-319-24037-4_3
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where η0 is the running perturbation amplitude. Integrating the accelerogram (the
vertical component) twice we obtain an estimate for the amplitude of vertical dis-
placements in the Rayleigh wave, η0 ∼ 0.1m. From formulae (4.70) and (4.71) it
follows that the amplitude of the arising waves does not exceed several percent of
the value η0. Thus, for example, in the case of H1 = 3000m and H2 = 2000m at
the jump in depth there will arise waves of amplitude ∼0.001m, which is essentially
less than the observed value. Thus, the mechanism related solely to vertical bottom
displacements in the Rayleigh wave cannot fully explain the observed amplitudes of
gravitational waves.

The contribution of horizontal bottom oscillations to the source function (η =
∂H/∂x Dx + ∂H/∂y Dy) is particular in that its manifestations are only present
in narrow (L � λ) areas on large-scale underwater slopes. In this case the source
function no longer exhibits the character of a running perturbation, it rather resembles
individual oscillating areas of the bottom.The amplitude ofwaves due to such sources
is easy to estimate. It will be of the order of the amplitude of horizontal bottom
displacements multiplied by the depth gradient. The amplitude of horizontal bottom
movements estimated by the twice integrated horizontal acceleration components
was ∼0.1m, a typical value of the depth gradient is 0.1. As a result we obtain an
estimate for the wave amplitude equal to 0.01m, that is in good agreement with the
observed value.

In conclusion of this sectionwe shall discuss possibilities for operative forecasting
of tsunami waves, that have newly opened up owing to the appearance of a dense
network of deepwater stations, such as, for example, DONET (Nosov and Grigorieva
2015). The main idea of the forecast method, which dates from the 1960–1970s
(Soloviev 1968; Jaque and Soloviev 1971), consists in that tsunami calculations are
only based on real data on the sea level obtained from stations located at distances
providing the necessary lead time. The data on the sea level are assimilated by a
hydrodynamic numerical model, with the aid of which, in the real time mode and on
a regular basis, oscillations are calculated of the sea level at the coast. An important
condition for such a scheme to be effective consists in the presence of a sufficiently
dense network of instruments for measuring the sea level. In principle, there may
be exceptions from this rule, but in such cases forecasting will involve resolution of
difficult inverse problems (e.g., Tsushima et al. 2009, 2011).

For an absolute and accurate reconstruction of the wave field from measure-
ments made at a set of points the distance between stations must not exceed half the
minimum wavelength. The minimum wavelength is calculated from the maximum
frequency and the velocity of long waves. As the maximum frequency it is expedient
to choose the frequency flw = 0.0718

√
g/H that separates the ranges of long and dis-

persive waves (see Sect. 4.2.1; the numerical coefficient in the formula corresponds
to a 10% level of signal attenuation). Thus, we obtain the condition for the distance
between stations,

d <∼ λmin

2
=

√
gH

2flw
≈ 7H. (4.72)
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Most of the DONET stations are established at depths of about 2km. Thus, in
accordance with formula (4.72) the distance between stations necessary for recon-
structing the tsunami wave field must not exceed 14km. The actual distance between
the DONET stations is quite consistent with this condition. The signal registered
by a bottom pressure gauge represents a superposition of manifestations of seismic,
hydroacoustic, and gravitational waves, as well as the hydrostatic pressure. Oscil-
lations of the sea level corresponding precisely to long gravitational waves must
be introduced into the long-wave prognostic model. Consequently, the initial signal
must be subjected to filtration and recalculation to oscillations of the sea level. The
maximum frequency of long waves, flw, is to be chosen as the filter cutoff frequency.
Estimation of the maximum frequency (for H = 2000m, g = 9.8m/s2) yields the
value flw ≈ 0.005Hz.

The high-frequency (f > 0.005Hz) components of signals registered by pressure
gauges of the DONET system were discarded applying the Morlet wavelet trans-
formation. Sea level variations reconstructed from data provided by the DONET
stations are shown in Fig. 4.28. The filtered signal is seen to contain only tsunami
waves and tides. Manifestations of seismic waves are not observed, although their
amplitude in the initial records exceeded the tsunami signal by more than an order
of magnitude.

It is remarkable that in the method of tsunami precalculation based on the assim-
ilation of data by a dense network of stations it is not necessary to discard the tidal
component of the signal. Contrariwise, reconstruction of a tsunami together with
the tide is extremely important from a practical point of view, since the arrival of
a tsunami wave during the phase of high tide may have more severe consequences.
Details of the tsunami precalculation method based on DONET data are expounded
in Nosov and Grigorieva (2015).

Fig. 4.28 Variations of sea level reconstructed from pressure measurements by DONET bottom
stations during the period from 00:00 to 24:00 UTC on March 11, 2011. The vertical line indicates
the moment of the 2011 Tohoku-Oki earthquake onset (Mw9.0)
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4.3 Nonlinear Mechanism of Tsunami Generation

This section deals with the formation mechanism of tsunami waves due to the non-
linear transfer of energy from “high-frequency” induced or elastic oscillations of
the water column to “low-frequency” surface gravitational waves. Seismic move-
ments of the ocean bottom are considered as the source of “fast” oscillations of
the water column. The “traditional” tsunami generation mechanism, related to resid-
ual displacements substituting the water, naturally, remains in force, and in most
cases precisely it plays the leading part. The nonlinear mechanism provides addi-
tional contributions to the tsunami amplitude and energy. It is not excluded that in
individual cases nonlinear effects can also provide a determinative contribution to
a tsunami wave.

At a first glance formulation of the problem, assuming the presence of periodic
oscillations, may seem restricted. Actually, such a restriction is important only under
the condition that the water column responds to movements of the ocean bottom
like an incompressible liquid. In this case one must indeed consider periodic oscil-
lations of a part of the bottom, which lead to corresponding induced oscillations
of the incompressible water column. But, if the water column reacts to seismic
movements of the ocean bottom like a compressible liquid, the necessity of peri-
odic movements of the bottom vanishes, since any vertical displacements will be
accompanied by elastic oscillations of the water column at normal frequencies.

In substantiating the application of linear theory in the tsunami generation problem
one usually quotes the condition that the amplitude of the ocean bottom deformation
be small as compared to the depth of the basin, η � H. Indeed, this condition is
quite fulfilled in reality. But even when the amplitude of the ocean bottom displace-
ment is small, the velocity of its movement may turn out to be sufficiently high for
the manifestation of nonlinear effects.

Before our studies were published (Nosov and Skachko 2001; Nosov and Kolesov
2002, 2005; Nosov et al. 2008) there existed only a single work (Novikova and
Ostrovsky 1982), in which the possibility was investigated of tsunami formation
resulting fromanonlinear effect—the “detection” of acoustic oscillations of thewater
column.

4.3.1 Base Mathematical Model

Before proceeding with the construction of a model describing nonlinear effects, it is
useful to present a description of the character of the linear response of a compress-
ible water column to movements of the ocean bottom without residual displacement.
The character of the response varies depending on the position of the spectrum of
ocean bottom movements with respect to the two characteristic frequencies fg and
fac (see Sect. 4.2.1). Further, without losing generality, we shall not speak of a spec-
trum, but of a certain frequency of bottom oscillations, f . Thus, if the frequency of
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bottom oscillations, f < fg, then the linear response of the water column represents
a superposition of forced oscillations (in the source area) and of gravitational waves,
emitted toward the distant zone. If the frequency lies within the range fg < f < fac,
then no gravitational waves arise, and movements of the water column exist only in
the immediate vicinity of the source in the form of forced oscillations. As the fre-
quency increases up to values f > fac, a qualitative change occurs in the dynamics of
the linear response—the water column starts to behave like a compressible medium.

The three frequency ranges identified above are shown in the “ocean depth–
frequency of bottom oscillations” plane in Fig. 4.14. It is interesting to note that
the dependences intersect at the hypothetical ocean depth of H ≈ 107km, con-
sequently, in the conditions of the planet Earth the three indicated ranges exist at
any point of the world oceans. Nonlinear effects are manifested only in the case
of sufficiently high velocities of bottom movements, which can be characteristic
of the frequency ranges “Forced Oscillations” and “Acoustic Waves”. Clearly, the
low-frequency range “Gravitational Waves” is of no special interest.

The mathematical model of tsunami generation due to nonlinear effects will be
constructed on the basis of Euler’s equations, assuming the liquid to be compressible,

∂v
∂t

+ (v,∇) v = −∇p

ρ
+ g, (4.73)

∂ρ

∂t
+ div (ρv) = 0. (4.74)

In the case of an incompressible liquid the density ρ will be assumed constant,
while for the compressible liquid we shall consider the variations in pressure to be
proportional to the variations in density, p ′ = c2 ρ ′.

Applying a device used, for instance, in turbulence theory or nonlinear acoustics,
we represent movement of the liquid as the sum of a slow (average) movement and
of a fast (oscillatory) movement,

v = 〈v〉 + v ′, p = 〈p〉 + p ′, ρ = 〈ρ〉 + ρ ′. (4.75)

Substituting formulae (4.75) into Eqs. (4.73) and (4.74) and averaging over
the period of “fast” oscillations, we obtain a set of equations for describing the aver-
age movement of the liquid,

∂ 〈v〉
∂t

+ (〈v〉 ,∇) 〈v〉 = −∇ 〈p〉
〈ρ〉 + g − 〈(

v ′,∇)
v ′〉 +

〈
ρ ′∇p ′〉

〈ρ〉2 , (4.76)

∂ 〈ρ〉
∂t

+ div (〈ρ〉 〈v〉) = −div
〈
ρ ′v ′〉 . (4.77)

In performing the averaging we applied rules, similar to the Reynolds rules,
applied in turbulence theory.
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In the case of an incompressible liquid (range ‘Forced Oscillations’) the mean is
calculated from the period of the ocean bottom oscillations, and the average motion
can, obviously, be described as the flow of an incompressible liquid. If the liquid is
compressible (range ‘Acoustic Waves’), then as the period for averaging one should
take the quantity 4Hmax

/
c,whereHmax is themaximumdepthof the basin. It is known

that acoustic modes with periods superior to 4Hmax
/

c do not exist, consequently, in
this case, also, the meanmovement can be described as the flow of an incompressible
liquid. Taking into account that 〈ρ〉 = const and neglecting the term quadratic in
the average velocity, (〈v〉 ,∇) 〈v〉, one arrives at the following system:

∂ 〈v〉
∂ t

= −∇ 〈p〉
〈ρ〉 + g − 〈(

v ′,∇)
v ′〉 +

〈
ρ ′∇p ′〉

〈ρ〉2 , (4.78)

div (〈v〉) = − 1

〈ρ〉div
〈
ρ ′v ′〉 . (4.79)

The expressions obtained differ from the usual linearized Euler equations for an
incompressible liquid by the presence of the following new terms:

Φ = − 〈(
v ′,∇)

v ′〉 +
〈
ρ ′∇p ′〉

〈ρ〉2 ≡ − 〈(
v ′∇)

v ′〉 +
〈∇p ′2〉

2c2 〈ρ〉2 , (4.80)

s = − 1

〈ρ〉div
〈
ρ ′v ′〉 ≡ − 1

c2 〈ρ〉div
〈
p ′v ′〉 , (4.81)

which can be interpreted as a force field Φ and a distributed source of mass, s.
The origin of the new terms is due to the nonlinearity of the initial equations. The
combined action of the force field and of the distributed source of mass under certain
conditions is capable of causing long gravitational waves. We shall speak of this
action as of a “nonlinear tsunami source”.

For calculating the waves caused by the action of the force field and of the distrib-
uted source of mass, we shall apply the linear theory of long waves. The expedience
of choosing this theory is, first of all, explained by the fact that we are interested in
large-scale motions correlated in space (i.e., long waves), and, moreover, this way
seems the most simple one.

We shall further restrict ourselves to dealing with the plane problem. We write
Eqs. (4.78) and (4.79) for the separate components:

∂u

∂t
= − 1

ρ

∂p

∂x
+ Φx, (4.82)

∂w

∂t
= − 1

ρ

∂p

∂z
+ Φz − g, (4.83)

∂u

∂x
+ ∂w

∂z
= s. (4.84)
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Neglecting vertical acceleration ∂w
/
∂t, we integrate Eq. (4.83) over the vertical

coordinate within limits from z to ξ . The result for the pressure is the following:

p(z) = patm + ρgξ − ρgz − ρ

ξ∫

z

Φzdz∗, (4.85)

where ξ is the displacement of the free surface, z is the running vertical coordinate,
varyingwithin the limits−H � z � ξ . Substituting expression (4.85) into Eq. (4.82),
we find,

∂u

∂t
= −g

∂ξ

∂x
+

ξ∫

z

∂Φz

∂x
dz∗ + Φx. (4.86)

Integration of formula (4.86) over dz within limits from−H to ξ yields the following
equation:

H
∂U

∂t
= −gH

∂ξ

∂x
+

ξ∫

−H

dz

ξ∫

z

∂Φz

∂x
dz∗ +

ξ∫

−H

Φxdz, (4.87)

where U is the horizontal velocity value averaged along the vertical direction. We
further integrate the continuity equation (4.84) over dz within the same limits,

H
∂U

∂x
+ ∂ξ

∂t
=

ξ∫

−H

s dz. (4.88)

In obtaining expression (4.88) account was taken of the no-flow condition on
the ocean bottom, w(x,−H, t) = 0 (the ocean bottom is considered motionless
for the mean movement), while the vertical velocity at the surface is expressed as
the partial time derivative of the displacement ξ .

Further, calculating the partial derivatives with respect to x and t of Eqs. (4.87)
and (4.88), respectively, and excluding the mixed derivative ∂2U

/
∂x∂t we arrive at

the nonuniform wave equation,

∂2ξ

∂x2
− 1

gH

∂2ξ

∂t2
= 1

gH
Q(x, t). (4.89)

Considering the free surface to deviate insignificantly from its equilibriumposition
(ξ � H), it is correct to perform integration over the vertical coordinate in the right-
hand part of Eq. (4.89) not up to z = ξ , but to z = 0. Thus, to calculate a long wave
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caused by the combined action of a force field and distributed sources of mass it is
necessary to calculate the following function:

Q(x, t) =
0∫

−H

dz

⎛

⎝∂Φx

∂x
+

0∫

z

∂2Φz

∂x2
dz∗ − ∂s

∂t

⎞

⎠. (4.90)

For a constant depth of the basin the solution of Eq. (4.89) is given by the well-
known integral formula (Tikhonov and Samarsky 1999). In the general case, when
the depth is a function of the horizontal coordinate, the equation is readily resolved
numerically by the finite difference method.

4.3.2 Nonlinear Mechanism of Tsunami Generation
by Bottom Oscillations in an Incompressible Ocean

Suppose that in the process of an underwater earthquake a section of the ocean
bottom oscillates with a frequency corresponding to range “Forced Oscillations”.
In this case the ocean behaves like an incompressible liquid, undergoing forced
oscillations following movements of the bottom. From formulae (4.80) and (4.81)
the nonlinear tsunami source is seen to be manifested only as a force field,

Φ incompr = − 〈(
v ′,∇)

v ′〉 . (4.91)

In this case the linear mechanism is not capable of leading to the formation of
gravitational waves, but they may arise as a result of the action of the force field.

Calculation of the quantity Φ incompr requires knowledge of the velocity field in
the induced oscillations of the water column. The velocity field can be calculated
from the solution of the problem within the framework of linear potential theory,
(3.67) and (3.68). Let the law of motion of the ocean bottom, η (x, t), have the form

η(x, t) = ηi(x)
(
θ(t) − θ(t − τ)

)
sin(ω t), i = 1, 2,

η1(x) = η0 exp{−x2a−2},

η2(x) =

⎧
⎪⎨

⎪⎩

η0, |x| � b,

η0[c−1(b − |x|) + 1], b < |x| � b + c,

0, |x| > b + c,

(4.92)

where η0 andω are the amplitude and cyclic frequency, respectively, of ocean bottom
oscillations, a, b, c are parameters characterizing the horizontal extension and shape
of the space distribution of the amplitudes of bottom oscillations, θ is the Heaviside
function. The model law of motion of the ocean bottom is shown in Fig. 4.29. We
shall consider ocean bottom oscillations to always terminate at the same phase, as

http://dx.doi.org/10.1007/978-3-319-24037-4_3
http://dx.doi.org/10.1007/978-3-319-24037-4_3
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Fig. 4.29 Model law of
motion of the ocean bottom:
time part (a), space
distribution of η(x) (b)
and (c)

(a)

(b)

(c)

when they started, otherwise the residual displacements of the ocean bottom will
certainly excite a gravitational wave via the ordinary piston mechanism.

Dropping intermediate calculations, we present formulae for components of
the flow velocity and displacement of the free surface in the case of ocean bottom
oscillations described by expression (4.92) (for τ = ∞),

u(x, z, t) = η0ω

π

∞∫

0

dk
sin(kx) cosh(kz)Xi(k)

cosh(k)(p20 − ω 2)

×
(
cos(ω t)

(
k + ω2 tanh(kz)

)
− cos(p0t)

(
k + p20 tanh(kz)

))
(4.93)

w(x, z, t) = −η0ω

π

∞∫

0

dk
cos(kx) cosh(kz)Xi(k)

cosh(k)(p20 − ω2)

×
(
cos(ω t)

(
k tanh(kz) + ω 2

)
− cos(p0t)

(
k tanh(kz) + p20

))
,

(4.94)
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ξ(x, t) = η0

π

∞∫

0

dk
ω cos(kx)(ω sin(ω t) − p0 sin(p0t))Xi(k)

cosh(k)(ω 2 − p20)
, (4.95)

where

p20 = k tanh(k), Xi(k) =
+∞∫

−∞
dx exp{ikx}ηi(x).

Expressions (4.93)–(4.95) contain under the integral sign dimensionless variables
(the asterisk “*” is omitted),

k∗ = Hk, t∗ = t
( g

H

)1/2
,

ω∗ = ω

(
H

g

)1/2

,
(
x∗, z∗, a∗, b∗, c∗) = 1

H
(x, z, a, b, c),

(4.96)

but the coefficients in front of the integrals are dimensional.
Numerical calculation of the flow velocity components has shown, that in the fre-

quency range considered, immediately after oscillations of the ocean bottom are
“switched on”, each point of the liquid starts performing harmonic oscillations with
an amplitude depending only on its coordinates,

u ′(x, z, t) = u ′(x, z) cos(ω t), w ′(x, z, t) = w ′(x, z) cos(ω t). (4.97)

Substituting formulae (4.97) into expression (4.91) and subsequently averaging
over the period of oscillations, we obtain formulae for calculating the horizontal and
vertical components of the force field, Φx and Φz, respectively,

Φx(x, z) = −1

2

(
u ′(x, z)

∂u ′(x, z)

∂x
+ w ′(x, z)

∂u ′(x, z)

∂z

)
, (4.98)

Φz(x, z) = −1

2

(
u ′(x, z)

∂w ′(x, z)

∂x
+ w ′(x, z)

∂w ′(x, z)

∂z

)
. (4.99)

Functions u ′(x, z) and w ′(x, z) can be calculated from formulae (4.93) and (4.94)
at t = 0,

u ′(x, z) = −η0ω

π

∞∫

0

dk
sin(kx) sinh(kz)Xi(k)

cosh(k)
, (4.100)

w ′(x, z) = η0ω

π

∞∫

0

dk
cos(kx) cosh(kz)Xi(k)

cosh(k)
. (4.101)
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As a result we arrive at the following expressions for the components of the force
field:

Φx(x, z) = − (η0ω )2

4π2H

∞∫

0

dk1

∞∫

0

dk2
Xi(k1)Xi(k2)k2

cosh(k1) cosh(k2)

× (sin ((k1 − k2)x) cosh ((k1 + k2)z)

− sin ((k1 + k2)x) cosh ((k1 − k2)z)), (4.102)

Φz(x, z) = − (η0ω )2

4π2H

∞∫

0

dk1

∞∫

0

dk2
Xi(k1)Xi(k2)k2

cosh(k1) cosh(k2)

× (cos ((k1−k2)x) sinh ((k1+k2)z)− cos ((k1+k2)x) sinh ((k1−k2)z)).
(4.103)

Figure4.30 presents a typical form of the force field in the case of the space
distribution of the oscillation amplitude calculated for different sizes of the source,
a. It is seen, that, as parameter a increases, the vertical component of the force, Φz,
decreases, while the dependence of the horizontal component Φx upon the vertical
coordinate z becomes weaker and weaker.

For estimation of the relative contributions of the horizontal and vertical com-
ponents of the force field to the amplitude of the long gravitational wave we take
advantage of formula (4.90) for function Q(x, t), entering into the right-hand part of
the wave equation (4.89). With regard to the set of dimensionless variables (4.96),
adopted above, we have,

Q(x, t) =
0∫

−1

dz

⎛

⎝∂Φx

∂x
+

0∫

z

∂2Φz

∂x2
dz∗

⎞

⎠. (4.104)

Fig. 4.30 Typical form of force field. The calculation is performed for the space distribution of
the ocean bottom oscillation amplitude η1 for a = 1, 3, and 5. The direction and length of the arrow
corresponds to the vector a Φ incompr
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Substituting formulae (4.102) and (4.103) into (4.104) andperforming the required
differentiation and integration, we obtain

Q(x, t) = “X” + “Z”, (4.105)

where

“X” = (η0ω )2

4π2H

∞∫

0

dk1

∞∫

0

dk2
Xi(k1)Xi(k2)k2

cosh(k1) cosh(k2)

×
(

(k1 + k2)

(k1 − k2)
cos ((k1 + k2)x) sinh ((k1 − k2))

− (k1 − k2)

(k1 + k2)
cos ((k1 − k2)x) sinh ((k1 + k2))

)
, (4.106)

“Z” = (η0ω )2

4π2H

∞∫

0

dk1

∞∫

0

dk2
Xi(k1)Xi(k2)k2

cosh(k1) cosh(k2)

×
(

(k1 − k2)2

(k1 + k2)2
cos ((k1 − k2)x) ((k1 + k2) − sinh (k1 + k2))

− (k1 + k2)2

(k1 − k2)2
cos ((k1 + k2)x) {(k1 − k2) − sinh (k1 − k2)}

)
. (4.107)

The quantity X(x) determines the contribution of the horizontal component of
the force field to the formation of long gravitational (tsunami) waves, and the quantity
Z(x) determines the contribution of the vertical component.

Figure4.31 presents functions Q(x), X(x), and Z(x), which were calculated in
accordance with formulae (4.105)–(4.107) for the space distribution of the ocean
bottom oscillation amplitude η1(x). From the figure it is seen that the terms X(x)
and Z(x), as a rule, exhibit differing signs. This means the structure of the force field
is such that the contribution of the horizontal force component to the gravitational
wave formation is always partly compensated by the vertical component. In the case
of a source of small size (a ∼ H) this effect is capable of significantly reducing
thewave amplitude. However, in the case of a large horizontal extension of the source
(a � H) the action of the horizontal component turns out to prevail (|X| � |Z|). The
dimensions of real tsunami sources are always significantly greater than the ocean
depth, therefore, the contribution of the vertical component of the force field can be
neglected.

Neglecting the contribution of the vertical component of the force field, Z(x), we
write Eq. (4.89) in a dimensionless form (in accordance with formulae (4.96)):

∂2ξ

∂x2
− ∂2ξ

∂t2
= H

g
∂Φx

∂x
, (4.108)
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Fig. 4.31 Characteristic formof functionQ(x) andof its componentsX(x) andZ(x). The calculation
is performed for the space distribution of the ocean bottom oscillation amplitude η1 for a = 1, 3
and 5

whereΦx = ∫ 0
−1 Φxdz is the horizontal component of the force field, averaged along

the vertical direction, ξ is the displacement of the free surface of the liquid from
its equilibrium position, corresponding to the mean movement. We recall that there
are, also, present above the oscillating ocean bottom fast oscillations of the surface,
which are related to induced oscillations.

The solution of Eq. (4.108) is well known (Tikhonov and Samarsky 1999),

ξ(x, t) = H

2g

t∫

0

dt̂

x+(t−t̂)∫

x−(t−t̂)

∂Φx

∂ x̂
dx̂. (4.109)

Oscillations of the ocean bottom (4.92) take place during a finite period of time
τ and exhibit fixed amplitude and frequency. Therefore, we can write

Φx(x, t) = Φx(x)
(
θ(t) − θ(t − τ)

)
. (4.110)

Substituting expression (4.110) into formula (4.109) and performing integration
over the space variable, we obtain

ξ(x, t) = − H

2g

t∫

0

(
θ(t̂) − θ(t̂ − τ)

) (
Φx

(
x + (t − t̂)

) − Φx
(
x − (t − t̂)

))
dt̂.

(4.111)
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Fig. 4.32 Profile of wave formed by the nonlinear mechanism in an incompressible ocean. The
calculation is performed for consecutive moments of time t = 2, 4, 6, 8, 10, 12 (curves 1–6) for
the case of η1 and a = 5, τ = 3

The process of tsunami formation by the nonlinear mechanism is shown in
Fig. 4.32. Shifts of the surface of the liquid, ξ , were calculated by formula (4.111)
as functions of the horizontal coordinate x for consecutive moments of time. A com-
pletely formed wave is sure to consist of a hump and depression, which have a zero
total volume. The perturbation always starts with a positive phase. The wave length
approximately corresponds to the size of the source.

Figure4.33 presents the wave amplitude ξmax (the height of the hump) as a func-
tion of the duration of ocean bottom oscillations for different shapes of the space
distribution of the oscillation amplitude. The quantity ξmax increases monoto-
nously with the duration of oscillations, but this increase is not without limit: the

Fig. 4.33 Amplitude of long
wave versus the duration of
the source action. Curves 1–3
are calculated for the space
distribution of η1 for a = 5,
10, and 20, curves 4 and 5
for η2 and b = 2, c = 3 (4)
and b = 1, c = 9 (5)
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amplitude cannot exceed a certain value,which is practically independent of the shape
of the space distribution of ηi(x). The horizontal extension of the oscillating area of
the ocean bottom noticeably affects the value of τ , at which the maximum amplitude
is achieved: when the extension in space of the source is greater, the formation of
a wave of maximum amplitude will require prolonged action of the source.

The nonlinear effect considered can be briefly presented as follows. When oscil-
lations of the basin bottom occur, the liquid is “pushed out” of the region of most
intense movements (the source), which is precisely what causes the formation of
a gravitational wave. The amplitude of such a wave does not depend on the space
law, governing variations in the amplitude of the ocean bottomoscillations (providing
the law is sufficiently smooth), but depends on the velocity amplitude of oscillations,
η0ω , their duration τ and the horizontal size of the oscillating area.

The data presented in Fig. 4.33 permit to estimate the amplitude of a tsunami wave
caused by the nonlinear mechanism considered. Thus, for example, when the ocean
depth is 1km, oscillations of an area of the ocean bottom of the characteristic size
of 20km (the space distribution of η1, a = 10), amplitude of oscillatory velocity of
10m/s, lasting for 60 s, gives rise to a wave of amplitude 0.8m.

For illustrative estimation of the contribution of the nonlinear effect to the tsunami
amplitude, Fig. 4.34 presents the dependence of the gravitational wave amplitude
upon the frequencyof oceanbottomoscillations. Thewave amplitude is normalized to
the amplitude of bottom oscillations. Calculation of the dependence is performed for
the case of η1(x) for a = 10km andH = 1km. The oscillations of the ocean bottom,

Fig. 4.34 Amplitude of gravitational waves, excited by oscillations of ocean bottom, versus oscil-
lation frequency: linear and nonlinear responses. Calculations are performed for exponential distri-
bution of amplitude of bottom oscillations for a = 10km and ocean depth of 1km
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having started at a certain moment of time, are assumed to continue sufficiently
long for the amplitude of the wave, formed by the nonlinear mecchanism, to reach
the maximum value. The linear response (dotted line) is calculated using formula
(4.95). Owing to the auxiliary problem being linear, this dependence is the same
for any amplitude of bottom oscillations. The contribution of the nonlinear effect if
proportional to the square velocity of bottom oscillations, therefore, it depends on
both the amplitude and the frequency of oscillations. Within the range 0.1–1Hz this
contribution is already capable of competing with the linear response and even of
exceeding it.

4.3.3 Nonlinear Tsunami Generation Mechanism with Regard
to the Compressibility of Water

This section deals with the tsunami generation mechanism related to the nonlinear
transfer of energy from “high-frequency” elastic oscillations of the water column
to “low-frequency” surface gravitational waves. Elastic oscillations are the reaction
of the water column to movements of the bottom of seismic origin. In this case
movements of the ocean bottom may not be periodic, it is only important for their
frequency spectrum to correspond to frequency range “AcousticWaves” (f > c/4H).
Our aim is to find the relationship between characteristics of the “low-frequency”
gravitational wave and the parameters determining the ocean bottom displacement,
and, also, a comparative analysis of the efficiencies of the piston and nonlinear
mechanisms in tsunami generation.

In the case of a compressible liquid, a nonlinear tsunami source is manifested as
the action of a force field Φ and of a distributed source of mass, s. For calculation
of these quantities knowledge is required of the fields of velocity v ′ and of dynamic
pressure p ′, whichwe shall find by resolving the plane problem of the linear response
of an ideal compressible liquid to small deformations of the ocean bottom, (4.24)–
(4.26).

The problem was resolved numerically by the explicit finite difference method,
using dimensionless variables (x∗ = x/H, t∗ = tc/H). The velocity of ocean bottom
deformation was given by the following model laws:

Upist(x, t) = vmaxη
( x

L

)
η

(
t

τ

)
(piston-like displacement),

Uosc(x, t) = vmaxη
( x

L

)
sin

(
2πNt

τ

) (
θ(t) − θ(t − τ)

)

(oscillations of ocean bottom),

where η(α) = 0,5
(
tanh

(
20(α − 0,15)

) − tanh
(
20(α − 0,85)

))
, vmax is the maxi-

mum deformation velocity value, θ(t) is the Heaviside function, L is the horizontal
extension of the deformation area, τ is the duration of the deformation process, N is



4.3 Nonlinear Mechanism of Tsunami Generation 253

the number of oscillation periods (an integer number). The form of function η(α)

is shown in Fig. 4.35. The piston-like displacement resulted in residual deforma-
tions of the ocean bottom, oscillations of the ocean bottom finished without residual
deformations.

Numerical calculations and theoretical estimates (Nosov andKolesov 2002, 2005)
reveal the contribution of the force field to tsunami formation to be essentially greater
than the contribution of distributed sources of mass. The characteristic form of
the field Φ, calculated at consecutive moments of time, is presented in Fig. 4.36.
The model parameters chosen for calculations are typical for a real tsunami source.

Fig. 4.35 Form of function
determining the space–time
law of ocean bottom
deformation

Fig. 4.36 Force field Φ at
consecutive moments of
time. Calculation for ocean
bottom displacement with
residual deformation,
τ = 8s, L = 40km,
H = 4km
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At most of the points the field is directed nearly vertically downward, which leads to
the water being pushed out of the area of intense elastic oscillations. Thus, the lead-
ing wave, in this case also, is positive. The quantity |Φ| develops in time as follows.
Being equal to zero at the initial moment of time, it reaches its maximum during
the first tens of seconds, then, as the elastic waves leave the source area, it tends
monotonously toward zero.

For the calculation of gravitational waves, due to the nonlinear mechanism, we
applied Eq. (4.89) written in dimensionless variables (x∗ = x/H, t∗∗ = t

√
g/H ,

ξ∗ = ξg/v2max)

∂2ξ∗

∂x∗2 − ∂2ξ∗

∂t∗∗2 = Q∗(x∗, t∗∗). (4.112)

Equation (4.112) was approximated by the explicit finite difference scheme. At
the boundaries of the calculation region the condition of free passage was realized,

∂ξ∗

∂t∗∗ = ∓∂ξ∗

∂x∗ . (4.113)

Since the fields Φ and s, determnining the function Q∗, are a result of averaging
over the time interval�t∗ = 4, the output of themodel (4.24)–(4.26) was the discrete
set: Q∗(x∗, n�t∗), where n = 1, 2, 3 . . . In passing to resolve the problem (4.112)
and (4.113) the step in space �x∗ remained the same, while the time steps �t∗
and �t∗∗ were made to comply with each other as follows: within the time interval
t∗∗ from 0 to 4

√
gH/c function Q∗(x∗, 4) was in force, within the time interval from

4
√
gH/c to 8

√
gH/c it was Q∗(x∗, 8) and so on.

The main part of numerical experiments was carried out for values of the
dimensionless parameters, corresponding to H = 4km, L = 20, 40 and 80km,
0.26 < τ < 26s. The vertical step amounted to �z = 20m. The horizontal
step was chosen to be such that 100 nodes could occupy the length L of the source
(�x = 200, 400 and 800m). The time stepwas determined by theCourant condition
�t < �z/c. In calculations the step �t = 0.009s was applied.

Figure4.37 presents the typical time behavior of function Q∗(x∗), reflecting
the action of a “nonlinear tsunami source”. The highest absolute values of Q∗(x∗) are
not achieved immediately, but only after the passage of a certain time (t∗ = 8
in the example considered), upon which the intensity of the “nonlinear source”
decreases monotonously, which is explained by elastic waves leaving the region
where deformation of the ocean bottom occurred. It is important to note that the time
the nonlinear source is in action noticeably exceeds the duration of the ocean bottom
displacement.

Figure4.38 presents typical profiles of surface waves, formed by a “nonlinear
source”. The action of this source leads to water being “pushed out” of the source
area, therefore, the waves always originate with a positive phase and finish with
a negative phase.
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Fig. 4.37 Characteristic form of function Q∗(x∗, t∗). Curves 1–6 correspond to t∗ = 4, 8, 12, 16,
20, 24. The source parameters: τ = 8s, L = 40km, H = 4km

Fig. 4.38 Profiles of gravitational waves formed by a “nonlinear source”.Curves 1–8 are calculated
for consecutive moments of time separated by intervals of 100s. The source parameters: τ = 8s,
L = 40km, H = 4km

From the profiles of the formedwaves calculation was performed of the amplitude

AN = v2max

g

(
Max

x∗ (ξ∗) − Min
x∗ (ξ∗)

)
≡ v2max

g
A∗(τ ∗, L∗), (4.114)
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and of the energy

WN = ρHg−1v4max

∞∫

−∞
ξ2dx∗ ≡ ρHg−1v4maxW∗(τ ∗, L∗). (4.115)

The result of calculations carried out for various durations of piston-like dis-
placements, τ ∗, and source sizes L∗ (τ ∗ = τc/H , L∗∗ = L/H), were dimensionless
functions of the dimensionless arguments A∗(τ ∗, L∗) and W∗(τ ∗, L∗).

Nonlinear effects can, obviously, provide a noticeable contribution to a tsunami
wave only in the case of sufficiently high velocities of the ocean bottom deformation,
which is equivalent to displacements of small durations. Therefore, in calculations
we only dealt with the range of τ < 8H/c. From the point of view of traditional
ideas, such displacements can be considered instantaneous (τ = 8H/c � L/

√
gH);

in the case of an instantaneous displacement, on the water surface an initial elevation
is formed that repeats the shape of residual deformations of the ocean bottom. Pre-
cisely the evolution of this elevation generates tsunami waves in their classical sense.
We shall term such a tsunami generation mechanism linear. The tsunami amplitude
formed by the linear mechanism can be estimated as the amplitude of residual defor-
mations of the ocean bottom,

AL ≈ η0 = vmaxτC1, C1 =
1∫

0

η(α)dα ≈ 0.7, (4.116)

and the energy as the potential energy of the initial elevation

WL ≈ ρg
2

+∞∫

−∞
ξ2(x, τ )dx = ρgv2maxτ

2L
C2
1C2

2
,

C2 =
1∫

0

η2(α)dα ≈ 0.65.

(4.117)

Applying formulae (4.116) and (4.117), we obtain relationships permitting to
calculate the relative contributions of the nonlinear and the linear mechanisms to
the amplitude and energy of tsunami waves:

AN

AL
=

(
η0c2

gH2

)
A∗(τ ∗, L∗)

C2
1τ

∗ 2
, (4.118)

WN

WL
=

(
η0c2

gH2

)2
2W∗(τ ∗, L∗)
C4
1C2τ ∗4L∗ , (4.119)
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Fig. 4.39 Ratio between
amplitudes of tsunami waves
formed by the nonlinear
(AN ) and the linear (AL)

mechanisms versus
the displacement duration.
Curves 1–3 are drawn for
L/H = 20, 10 and 5

Fig. 4.40 Ratio between
energies of tsunami waves
formed by the nonlinear
(AN ) and the linear (AL)

mechanisms versus
the displacement duration.
Curves 1–3 are drawn for
L/H = 20, 10 and 5

where η0 is the amplitude of the vertical ocean bottom deformation. From formulae
(4.118) and (3.2.47) the quantities AN/AL and WN/WL are seen to be determined to
a large extent by the dimensionless combination η0c2g−1H−2.

Figures4.39 and 4.40 present the dependences of quantities AN/AL and WN/WL

upon the piston-like displacement duration. The calculation is performed for three
different relationships between the source size and the ocean depth. The curves being
nonmonotonous for τ ∗ > 1 is due to the modal structure of elastic oscillations of
the water column (the minimum normal frequency corresponds to τ ∗ = 4). When
τ ∗ < 1, the dependences investigated behave approximately like the power func-
tions τ ∗ −1 and τ ∗ −2. An increase in the horizontal size of the source leads to an
insignificant enhancement of the role of the nonlinear mechanism.

Taking advantage of the data presented in Figs. 4.39 and 4.40 one can readily
perform the following estimations. For an ocean depth of 1.5km, displacement dura-
tion and amplitude of 1 s and 1m, respectively, the contribution of the nonlinear
mechanism to the tsunami amplitude will be at a level of 10%, and to its energy of
1%. The contribution of the nonlinear mechanism may increase as the amplitude of
the ocean bottom displacement increases or the displacement duration decreases, but,
most likely, the linear mechanism will continue to prevail in the case of a piston-like
displacement.

http://dx.doi.org/10.1007/978-3-319-24037-4_3
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The nonlinear mechanism may provide for an essential contribution to the ampli-
tude of a tsunami wave in the case of ocean bottom oscillations at one of the normal
frequencies, fk = c (1 + 2k) /4H, k = 0, 1, 2, . . . (resonance pumping of energy).
According to linear theory, ocean bottom oscillations without residual displacements
at frequencies f > fg do not produce gravitational waves (see Sect. 4.2.1). In condi-
tions of the planet Earth fk > fg, consequently, in the case of ocean bottomoscillations
with frequencies fk only the nonlinear mechanism can give rise to tsunamis.

Calculations, carried out for U(x, t) = Uosc(x, t), have revealed the following. If
an area of the ocean bottom of dimension L = 40km at a depth of H = 4km under-
goes N = 10 oscillations of frequency f0 = c/4H ≈ 0.094Hz and amplitude 0.3m,
then the nonlinear mechanism produces a tsunami of amplitude ∼0.5m. In similar
conditions, but at a higher frequency f3 = 7c/4H ≈ 0.65Hz, the tsunami ampli-
tude will already amount to ∼1.2m. If the frequency of ocean bottom oscillations
differs noticeably from the normal frequency, then the efficiency of the nonlinear
mechanism decreases significantly. Thus, for example, if f = 0.55Hz (f2 < f < f3),
the tsunami amplitude will only be of the order of 6cm.

In conclusion we note that the frequencies of seismic oscillations of the ocean
bottom lie within the range of several first normal frequencies of the water column,
fk , which creates favorable conditions for realization of the nonlinear mechanism of
tsunami generation.
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Chapter 5
The Physics of Tsunami Formation
by Sources of Nonseismic Origin

Abstract The physics is described of tsunami formation by sources of nonseismic
origin: landslides, volcanic eruptions, meteorological causes, and cosmic bodies
falling into the ocean. Short descriptions are given of certain remarkable historical
events (with the exception of cosmogenic tsunamis). Approaches to the mathematical
description of tsunami generation by these sources are expounded. Basic regularities,
relating parameters of a source and of the tsunami wave generated by it are presented.

Keywords Tsunami generation · Gravitational surface wave · Earthquake · Land-
slide · Slump · Mud flow · River tsunami · Erosion · Sedimentary layer · Viscous
fluid · Froude number · Volcano · Volcanic eruption · Caldera collapse · Explosive
eruption · Underwater volcano · Pyroclastic flow · Equivalent source · Stationary-
phase method · Meteotsunami · Anemobaric waves · Resonance · Proudman reso-
nance · Internal waves · Storm surges · Tension of friction · Atmospheric pressure ·
Long-wave theory · Meteorite · Cosmogenic tsunami · Asteroid · Kinetic energy ·
Parametrization · Numerical simulation · Dispersion

Tsunami generation is mainly caused by sharp vertical displacements of separate
areas of the ocean bottom, taking place during strong underwater earthquakes. Details
of this process are described in Chaps. 2–4. But seismotectonic movements are not
the only possible mechanisms of tsunami formation. A significant number of events
are caused by landslides (slumps), processes related to volcanic eruptions, and mete-
orological causes (see Table 5.1). In accordance with the NOAA/WDS Global His-
torical Tsunami Database at NGDC, 73 % of events were due to earthquakes, 3.4 %
to landslides, 4.7 % to volcanic eruptions, and 3.6 % to meteorological causes. The
sources of the remaining 10 % of events are still unknown. In some cases, tsunamis
were due to combinations of earthquake and landslide (3.6 %), volcanic eruption and
earthquake (0.5 %), and volcanic eruption and landslide (0.4 %).

Recently, tsunami generation by meteorites falling into the ocean has been
the issue of active discussions. Such events are extremely rare. Such an event may
even never have occurred during the whole history of our civilization. But, bearing
in mind the scale of such a catastrophe, the authors considered it necessary to present
certain results of studies of this tsunami generation mechanism.
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Table 5.1 Distribution of the number of events over the cause of tsunami, based on data from
NOAA/WDS global historical tsunami database at NGDC, as of June 2015

Cause of tsunami Number of events

Unknown 258

Earthquake 1838

Questionable earthquake 13

Earthquake and landslide 90

Volcano and earthquake 13

Volcano, earthquake, and landslide 1

Volcano 120

Volcano and landslide 9

Landslide 86

Meteorological 92

Explosion 1

Astronomical tide 2

5.1 Tsunami Generation by Landslides

After tsunamis of seismotectonic origin, most often encountered are so-called land-
slide tsunamis (“Landslide”+ “ Earthquake and Landslide”+ “Volcano, Earthquake,
and Landslide” + “Volcano and Landslide” −7.4 %). This term stands for gravita-
tional surface waves caused by underwater landslides and mud flows, fragments of
steep coasts, rock and icebergs, and, sometimes, even buildings in harbors, collaps-
ing into the water. At present, in the World Ocean over 186 tsunamis are known to
have been caused or contributed by the mechanisms indicated. As a rule, landslide
tsunamis are considered local events (Okal and Synolakis 2004; Harbitz et al. 2006).
But studies, performed in recent years, reveal that landslides can give essential addi-
tional contributions to tsunamis generated by strong earthquakes (Gusiakov 2001;
Fryer et al. 2004; Suleimani et al. 2011; Tappin et al. 2014).

As compared to the horizontal dimensions of seismic sources (104–105 m), coastal
and underwater landslides usually exhibit smaller scales (102–103 m). The largest
known in geological history Storegga landslide took place in the late quaternary
period in the region of the steep continental slope off the coast of Norway (Jansen
et al. 1987; Harbitz 1992). Its horizontal extension is estimated to have amounted to
tens of kilometers.

In spite of their local character, the destructive force of landslide tsunamis is
no less than that of waves of seismotectonic origin. Such tsunamis are particularly
dangerous in narrow straits, fjords, and closed gulfs and bays (Murty 1977; Jiang and
LeBlond 1992). Among the best-known events one must mention the catastrophic
tsunamis in Lituya Bay (Lituya Bay, South-East Alaska, 1958) and in Vaiont Valley
(Vaiont Valley, Northern Italy, 1963). The tsunami in Lituya Bay was caused by
the fall of rock matter at the bay apex into the water, which led to the formation
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of a huge wave, the runup height of which amounted to 524 m (Miller 1960; Murty
1977; Lander 1996). The catastrophe in Vaiont Valley resulted in the destruction of
an entire city, and about 2000 people died (Wiegel et al. 1970; Murty 1977).

Landslide tsunamis are characterized by a high repetition rate at certain parts of
the coast. For example, in situ studies at Lituya Bay, carried out after the catastrophic
event of 1958, revealed that gigantic waves, caused by landslides, had also occurred
there previously—in 1853–1854 (120 m), in 1874 (24 m), in 1899 (60 m), and in
1936 (150 m) (Miller 1960). Even the Laperouse expedition suffered from a tsunami
in this bay—a two-mast schooner of the squadron with a crew of 21 men was shattered
by an “unusual wave” against the cliffs of the island in 1787.

It is interesting that landslide tsunamis can occur not only in oceans and seas,
but also in large rivers. The description of one such event, that took place in river
Volga in 1597, is presented in Didenkulova et al. (2007). We have succeeded in finding
reference to another river tsunami, which took place in river Irtysh in 1885. Here, we
quote the book of travel notes by K.M. Stanyukovich, the well-known Russian writer
on the Sea, “To far lands” (Collection of works in 10 volumes, Vol. 1—Moscow:
Pravda, 1977):

…The right sandy bank of the Irtysh, being constantly washed out, once in while caves in,
and, then, as the Siberians say, the “landslides”, that fall from the height into the water with
a crash and noise, happen to cause accidents and misfortunes. Such a misfortune occurred
just three weeks before we passed there. About two hundred versts1 from the estuary of
Irtysh we saw a schooner lying helplessly on its side in the sands. It had been passing one
verst from the right bank, precisely when the bank caved in. Such a mass of earth falling
together with century-old trees caused the water to shrink back from the bank, thus giving
rise to agitation so strong that it capsized the flat-bottomed schooner, which most likely had
no appropriate ballast, and threw it toward the left bank. The barge, towed by the schooner,
withstood the wave and remained unharmed. Of the crew and passengers of the schooner
several peoples died in the river, several were crippled. A day after the catastrophe, cries
for help were heard on the “Reytern”, that was passing by. The steamboat stopped and took
the people, asking help, on board …

Studies of landslide tsunamis have a long history; however, until recently publi-
cations, devoted to investigation of this phenomenon, were quite rare. One of the first
attempts at detailed investigation of tsunami waves, caused by underwater landslides,
was made by N.L. Leonidova (1972). This investigation was based on earlier works
of B. Gutenberg (1939) and R. Mitchell (1954); however, precisely this work laid
the foundation for modern ideas concerning the problem of landslide tsunamis. One
must also mention the experimental study, well known to specialists, carried out by
R. Wigel (1955), which was devoted to investigating wave generation in a channel,
when hard bodies of different shapes were made to slide along the channel bottom.

The recent enhancement of interest in studies of landslide tsunamis was initiated
by the catastrophic events in Papua New Guinea and Indonesia. The wave, which
demolished the coast of Papua New Guinea on July 17, 1998, was 15 m high. It
was due to a relatively moderate earthquake of Mw = 7.1, accompanied by a local

11 verst = 1.067 km.
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underwater landslide (Tappin 1998; Heinrich et al. 2000; Imamura et al. 2001). The
earthquake, which took place on December 12, 1992 with magnitude Mw = 7.7 on
island Flores (Indonesia), also gave rise to an underwater landslide and subsequent
tsunamis of heights up to 26 m.

The landslide process is usually the result of a prolonged accumulation of sed-
imentary material during tens and hundreds of years. With time the sedimentary
masses on slopes lose stability. Numerous factors can provocate a landslide (Ren
et al. 1996; Kulikov et al. 1998):

• sudden surge of river silt during a freshet;
• erosion of sedimentary layer on a steep underwater slope;
• coastal construction projects;
• prolonged rain, resulting in saturation of coastal land; and
• uncovering of coast during pronounced low tide.

Recently, the role of gas hydrates in provocating underwater landslides is also dis-
cussed (Parlaktuna 2003). Earthquakes, naturally, serve as most important causes of
landslides and collapses. Volcanic eruptions, also, happen not to play the last part in
initiating landslide processes and collapses.

Sedimentary masses, deposited on underwater slopes during many decades, accu-
mulate huge potential energy. As they lose stability, they are capable of moving over
the ocean bottom with high velocities, transferring part of the accumulated potential
energy to tsunami waves. Precipitations, annually accumulated in some canyons,
amount to 106–109 m3, while the bottom slopes often exceed 0.1. Precipitations on
slopes of the ocean bottom often exhibit thixotropic properties, i.e., they are capable
of becoming fluid in the case of sharp enhancement of the threshold pressure due to
blows, shaking, and vibrations. The unstable friable sedimentary material, possess-
ing a high content of subcolloidal fractions, may, when losing stability, form dense
suspension (muddy, turbidite) flows. Moving down a bottom slope with a velocity
exceeding 10 m/s, such a flow leads to waves of the tsunami type being generated
at the water surface, and it also severs underwater cables. The strong earthquake
that destroyed the city of Messina on December 28, 1908 gave rise to a landslide
or muddy flow, which severed seven underwater cables connecting continental Italy
and Sicily.

It must be noted that well-known large underwater canyons were located inside
the source areas of some strong tsunamis: the Lisbon canyon (tsunami of 1755),
the Messina canyon (tsunamis of 1783 and 1908), the Kamchatka canyon (tsunamis
of 1791, 1923, 1937), and others. N.L. Leonidova was, evidently, the first to note
that most aftershocks of strong tsunamigenic earthquakes, even when approximately
equal in force to the main shock, do not cause noticeable tsunami waves. Thus,
the well-known Kanto earthquake, which destroyed Tokyo in 1923, gave rise in
the Sagami bay to a tsunami wave 12 m high, while its aftershock, which originated
in about the same place and with practically the same energy, was accompanied by
waves less than 0.3 m high. Measurements showed that the volume of the landslide,
provocated by the first earthquake, amounted to about 7×1010 m3, the average width
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of the flow was 2 km, its length 350 km, it power (thickness) 100 m, and the flow veloc-
ity in the canyon was estimated to be 25 m/s. The potential energy of the landslide,
which covered a path from a depth of 1500 m (the average position of the landslide
body at the beginning of its movement) down to 7000 m (the bottom of the deepwater
depression) can be estimated to have been 1018 J. The energy of the tsunami waves
generated was of the order of 1016 J.

Note that after the earthquake on December 26, 2004 (Mw = 9.1), which gave
rise to a catastrophic tsunami with runups as high as 50.9 m (HTDB/WLD), another
strong earthquake took place in March 2005, (Mw = 8.7) approximately in the same
region, but caused quite a weak tsunami with heights up to 2.35 m.

Much of the information on ground or underwater landslides, avalanches, cliff
collapses indicate that the models, in which the movement of a landslide is consid-
ered just forward displacement of a solid body, not subject to deformation, are too
simplistic and do not describe the character of these processes adequately. The idea of
a landslide representing a flow of a heavy viscous fluid is much closer to the true
nature of landslide dynamics. In the region of river estuaries, the sedimentary silt
masses usually consist of diluted fractions, which after the breakdown of an unstable
sedimentary mass form a dense dirt (mud) flow, behaving like a viscous fluid.

In problems concerning landslide tsunami generation, the notion of a landslide
in the form of a flow of a heavy viscous fluid has started to be applied only quite
recently. Such an approach was first proposed in Jiang and LeBlond (1992, 1994).
Numerical methods, based on this approach, were successfully applied in analyzing
landslide tsunamis in Nizza of 1979 (Assier-Rzadkiewicz et al. 2000), in Skagway
Harbour of 1994 (Fine et al. 1998; Rabinovich et al. 1999), and in Papua New Guinea
of 1998 (Heinrich et al. 2000; Titov and Gonzalez 2001; Imamura et al. 2001). In
these studies, it was shown that the notion of a landslide in the form of a flow of
a heavy viscous fluid provides reasonable agreement with data of in situ observations.

The version of the model described here is based on Jiang and LeBlond (1994)
and Fine et al. (1998). We shall consider the horizontal scales of surface waves to
significantly exceed the basin depth, and the thickness of the landslide to be much
smaller than its width and length. In this case, it is possible to apply the long-wave
(hydrostatic) approximation both in the case of water and in the case of the fluid
forming the landslide. The Coriolis force is usually neglected in such problems.

The scheme of the model is presented in Fig. 5.1. The origin of the Cartesian
reference system 0xyz is placed on the unperturbed free surface, and the 0z axis
is directed vertically upward. The upper layer of water has a density ρ1, a free
surface displacement η(x, y, t), u is the horizontal velocity vector with components
x and y; t is time. The lower layer (the landslide body) has a density characteristic
of sedimentary deposits, ρ2, ν is the kinematical viscosity, and U is the horizontal
velocity vector of the fluid in the lower layer with components U and V . The slope of
the ocean bottom and the slope of the landslide surface are considered small, so that
the fluid can be considered to undergo purely horizontal movement. The landslide
body is limited by the bottom surface z = −h(x, y, t), while its upper surface is given
by its thickness D(x, y, t) = hs(x, y) − h(x, y, t).
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Fig. 5.1 Geometry of the
model: reference system and
notation. The shaded part
shows the body of a viscous
landslide. Adapted from
Rabinovich et al. (2003)

The main assumptions concerning landslide properties, substantiated in Jiang and
LeBlond (1992, 1994), are adopted in the form:

1. A landslide consists of an incompressible viscous fluid, and the sea water is
considered an incompressible liquid of zero viscosity.

2. The difference between the density of the landslide and the density of water must
be large, (ρ2 − ρ1) � 0.2 g/cm3.

3. The flow of a viscous fluid is laminary and quasistationary. For describing
the movement of a viscous fluid over an underwater slope, it is, generally speak-
ing, necessary to consider two modes—inertial and viscous (quasistationary)
(Simpson 1987). After the landslide body has suddenly become free (from its
initial state), the flow of the fluid forming the landslide undergoes transition from
the inertial-mode state to the viscous-mode state, when the vertical profile of
the flow has already been established. In the given model, we assume the tran-
sition time to be negligible, and the flow to be constantly in the quasistationary
mode, adapting relatively slowly, in the process of movement, to the shape of
the bottom relief.

4. In this model, we neglect mixing effects on the landslide–water boundary. This
means that no exchange of mass takes place between the flow of sedimentary
material and the water.

Owing to the no-slip boundary condition, the tangential velocity component at
the ocean bottom must turn to zero. At the upper boundary of the landslide, absence
is assumed of tangential tensions, i.e., the normal component of the velocity gradient
turns to zero. Under such conditions, the horizontal velocity of the stationary flow
of a fluid exhibits a parabolic vertical profile,

U(x, y, z, t) = Um(x, y, t)(2ξ − ξ2), (5.1)

where ξ = (z + hs)/D is the dimensionless vertical coordinate.
The continuity and momentum balance equations for a viscous flow in a land-

slide, obtained from the equations of hydrodynamics by integration along the vertical
coordinate with account of formula (5.1), have the following form:
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Here, the condition must be fulfilled that the landslide flow across the boundary of
the coastal line G always be zero, and that during its movement the landslide does
not cross the external (free) boundary Γ .

The upper layer of the fluid (water) is described by nonlinear equations of motion
in the approximation of shallow water:

∂(h + η)

∂t
+ [∇ · (h + η)u] = 0; (5.4)

∂u
∂t

+ (u · ∇)u = −g∇η. (5.5)

Actually, the generation of surface waves by a moving landslide body is only due to
the continuity Equation (5.4). The waves further propagate under the condition that
boundary conditions and the nonlinear Equation (5.5) be satisfied.

On the open external boundary of the region, Γ , the one-dimensional emission
condition for outgoing waves is applied: un = η(g/h)1/2, where un is the velocity
component, normal to the boundary Γ . Along the coastal line, fulfillment is assumed
of the noflow condition through a vertical wall: un = 0 on G.

As the initial conditions of the problem, the landslide and the water layer are
assumed to be at rest at time moment t = 0, i.e., all the velocities and the displacement
of the free water surface are equal to zero.

The set of Eqs. (5.2)–(5.5) can be resolved by the explicit finite-difference method.
Usually, the staggered leap-frog scheme in space and time is used (Imamura and Gica
1996) in calculations.

We shall make use of a hypothetical event in the Malaspina strait (British
Columbia, Canada) (Rabinovich et al. 2003) as an example in considering the pecu-
liarities of landslide tsunami formation. Numerical simulation of this tsunami is
performed applying the mathematical model, described above. Studies of hypo-
thetical tsunamis are important for estimation of the risk of tsunami hazard. For
the demonstration of research methods of this kind, we shall first give a detailed
description of the primary geophysical (geomorphological) information and, then,
present the results of simulation.

The Malaspina strait (Fig. 5.2), located between the continental coast of British
Columbia and Texada island, was about 50 km long and 5 km wide. Its depth along
the axis of the strait varies between 300 and 375 m. In the central part of the strait,
there is a thick (∼100 m) sedimentary layer, mainly consisting of silt carried out from
the estuary of Fraser River.

In 1946, an earthquake in the central part of Vancouver island, British Columbia,
gave rise to a series of landslides and slumps in the coastal area of Malaspina strait.
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Fig. 5.2 Malaspina strait: map of calculation region. Adapted from Rabinovich et al. (2003)

In the northern part of the strait, banks were observed to crumble and cave in, and
underwater cable lines were damaged.

Geophysical studies, performed by the Geological Survey of Canada, revealed
the existence of two separate deposition zones of bottom sediments, located between
isobaths 30 and 120 m. Identification of these areas was carried out with the aid
of echo sounding gear for lateral observation and equipment for seismic profiling
of high resolution. Special underwater video shooting, performed in 1996, revealed
that lower down the slope there are a number of blocks of well-consolidated sedi-
ments several meters thick, which obviously resulted from their breaking away from
the main mass and falling down the slope under the force of gravity. The main block
of sediments has corresponding areas with a very steep edges left after partial col-
lapse of the sedimentary mass. The lower boundary of this sedimentary layer exhibits
a very steep inclination everywhere—practically like a precipice.

The northern zone of the sedimentary cover is up to 38 m thick, and the inclination
of the inner boundary toward the sea is, on the average, 7.5◦. The layer above it is
inclined at approximately 16◦ relative to the boundary of the base layer and extends
about 400 m along the slope, exhibiting a thickness of about 300 m.

The hypothetical scenario of tsunami generation assumes that the earthquake
causes all the mass of sediments, accumulated in the northern zone of the sedimentary
cover, to break-off from and to slide down the steep slope of the basalt boundary
of the bottom. Owing to a lack of geotechnical data on the properties of sediments,
simulation of the movement of the landslide is based on a broad set of parameters
of the material. The possibility of the southern and northern sedimentary layers
collapsing at the same time is not considered. Such a joint scenario would, naturally,
lead to the generation of waves of higher amplitudes.
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Calculations were performed on a mesh with 365×197 nodes and steps �x =
�y = 25 m. In the initial state, the landslide body was considered to have a rectangu-
lar shape with a parabolic profile over the thickness in both directions. Calculations
were performed for the following landslide parameters:

Volume: 1,250,000 M m3;
Width: 200 m;
Average width 30 m;
Coordinates of center: 49◦37.94 ′N, 124◦16.80 ′W;
Average depth: 80 m;
Density (ρ2): 2.0 g · cm−3;
Kinematic viscosity (ν): 0.01 m2 · s−1.

Figure 5.3 shows fragments of numerical calculations of the movements of
the landslide and of tsunami waves in the strait. Unlike a solid-state body, retaining
its size and shape, the viscous landslide moves along the slope, spreading out and
assuming the form of a sickle. Displacement of the landslide takes place mostly along
the normal to the west bank. Movement of the landslide gives rise to radially diverg-
ing surface waves. The leading wave (positive) moves toward the continent, while
the negative wave (depression) moves in the opposite direction toward Texada island.
The leading wave crosses the Malaspina strait and reaches Cape Cockburn on Nelson
island in approximately 132 s after the slide starts moving. As a result, reflected waves
form, and the general picture of wave field in the Malaspina strait becomes complex,
reminding standing oscillations. The waves leaving through the open boundaries of
the strait leads to rapid dampening of the amplitudes of level oscillations.

Figure 5.4 presents examples of calculations of level variations at points A, B, and
C, the locations of which are indicated in Fig. 5.2. The maximum wave amplitude
is observed at site A, the closest to the landslide zone, and the minimum amplitude
turns out to be in the middle of the strait (point B). The tsunami starts with negative
phase at point A and positive phase at points B and C.

The amplitude distributions of a tsunami wave at its crest and its depression
along the west and east coasts of the strait are shown in Fig. 5.5. According to
these calculations, the maximum level reduction (down to −5 m) is observed in
the immediate vicinity of the source. Toward the North and South, the wave height
rapidly dies out. The maximum at the wave crest on the west boundary is smaller
than in the depression, and amounts to +2.7 m. At the opposite west coast, these
maxima are significantly smaller (by approximately ±1 m).

Numerical calculations were performed for a wide range of density values of
the landslide material (1.6 � ρ2 � 2.2 g/cm3), its viscosity coefficient (10−3 �
ν � 1 m2/s), and the initial positions of the landslide on the slope. It turned out that
the results of calculations are least sensitive to variations in the landslide viscosity.
An increase of the viscosity from 0.001 up to 0.1 m2· s−1 leads to a change in the wave
amplitudes by merely 1 %. Their sensitivity to changes in the density of the mate-
rial turned out to be much higher. Enhancement of the density ρ2 from 1.6 up to
2.0 g/cm3 leads to an increase of the tsunami amplitude by 20 %. The most important
characteristic of a landslide, affecting the formation of tsunami waves, turned out
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(a) (b)

Fig. 5.3 Results of numerical simulation of the movement of a landslide on the bottom of
Malaspina strait (a) and of the resultant surface waves (b) for times 20, 50, 90, and 132 s after
the landslide collapses. Adapted from Rabinovich et al. (2003)

to be its initial position on the slope. For example, displacement of the center of
a landslide by 100 m closer to the coast (the depth over the landslide amounts to
about 30 m, here) results in the amplitudes of the tsunami waves increasing by 85 %.
Displacement of the landslide center toward the sea (a change of depth from 80 down
to 118 m) reduces wave heights by 70 %. Additional test calculations have shown that
the amplitudes of surface waves generated are approximately proportional to the vol-
ume of the landslide. Summing up these results, one can conclude that the energy of
a landslide tsunami depends, first of all, on the potential energy of the landslide (its
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Fig. 5.4 Results of calculations of level oscillations at points A, B, and C, the locations of which
are indicated in Fig. 5.2. Adapted from Rabinovich et al. (2003)

Fig. 5.5 Maximum level deviations at the crest and in the depression of a tsunami wave, calculated
for the west and east coasts of Malaspina strait. Adapted from Rabinovich et al. (2003)

density, location on the slope, volume). The viscosity of the landslide body causes
no noticeable dissipation of the landslide energy, which leaves a certain freedom in
the choice of viscosity coefficient.
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The character of interaction between a landslide body and surface waves depends
on the relationship between the motion velocities of the landslide and of the surface
waves (see Sect. 3.3.3). Actually, the process of wave generation by a landslide is
similar to the formation of waves accompanying a ship, when it moves. The effect
of resonance excitation of the accompanying wave is well known in the case, when
a vessel moves toward shallow water with a velocity c = √

gh, where h is the depth of
the liquid. In this case, the wave resistance increases sharply, and the wave amplitude
starts to grow. In this manner, also, a landslide moving on the sea bottom gives
rise to perturbations of the water surface, which remind the wave accompanying
a ship. Here, a measure of “closeness” to resonance conditions can be the Froude
number Fr = U/c, where U is the velocity of the landslide, and c = √

gh(x, y) is
the velocity of gravitational waves on the variable relief of the bottom. The value
Fr = 1 corresponds to a resonance. For a landslide, representing a solid-state body,
not subject to deformation, the notion of “velocity of motion” is unambiguous. But
in the case of the flow of a viscous fluid, the particles of which move with differing
velocities, it is not simple to introduce the concept of “landslide velocity.” Owing
to the no-slip boundary condition, the velocity in the lower part of the landslide
is much smaller than at its surface. Moreover, while the landslide body moves, it
“spreads”, essentially changing its form. We shall estimate the velocity of a landslide,
Uf , as the velocity, with which its front moves (the corresponding Froude number
Fr = Uf /c).

The maximum velocity Uf max, obtained in numerical calculations of a landslide in
the Malaspina strait, amounted to 19.5 m/s at a distance of about 1 km from the coast of
Texada island. The plot in Fig. 5.6a shows the variations in velocity for a gravitational
wave, c = √

gh(x), and for the motion of a viscous slide front along the horizontal
coordinate (across the strait). Figure 5.6b shows the dependence of the corresponding
Froude number. The maximum value of the Froude number Frmax = 0.46 is achieved
at a distance of 0.85 km from the coast.

For comparison, calculations were performed for the movement of a landslide in
the form of a solid body sliding down the slope under the influence of the forces of
gravity and of friction (between the landslide and the bottom). The friction coefficient
k was set within the range from 0 to 0.2. The results of calculations are presented in
Fig. 5.6.

The motion dynamics of a solid body on an inclined plane under the influence
of the force of gravity with account of friction is such that there exists a “critical”
inclination of the bottom, ψ , at which the down-pulling force is balanced by the force
of friction, and the landslide moves without acceleration, k = tan ψ . It can be
considered that the “break-off” and subsequent sliding down of the landslide body
takes place precisely, when the “holding” forces (of friction) weaken (for instance,
owing to erosion at the edge of the sedimentary layer) so much as to allow the down-
pulling force to start to exceed the force of friction. The characteristic slope of
the bottom near Texada island is ψ ≈ 6◦, which corresponds to k = 0.1. For this
value, the maximum velocity of the solid landslide amounts to the value Uk

max =
33.1 m/s at a distance x = 1.86 km from the coast, and here the Froude number
Frmax = 0.61 turns out to reach its maximum at a distance x = 0.95 km, i.e.,

http://dx.doi.org/10.1007/978-3-319-24037-4_3
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(a)

(b)

(c)

Fig. 5.6 Velocities of long gravitational waves, of a solid slide, and of the front of a viscous slide
in the Malaspina strait. Velocities of the solid slide are calculated for various friction coefficients
(from 0 to 0.2) (a). Froude numbers, corresponding to these velocities (b). Depth profile in the strait
(c). Adapted from Rabinovich et al. (2003)

much closer to the coast. From the figure, it is seen that the Froude number rapidly
reaches its maximum along the initial length of sliding down and gradually decreases
as the landslide reaches the gently sloping bottom. Ultimately, the landslide stops,
when its potential energy has already been spent on friction and wave generation.
The “path length” of a solid landslide depends directly on the friction coefficient;
thus, for k = 0.05, 0.10, 0.15, and 0.20, the “path length” amounts, respectively, to
xs = 5.19, 3.13, 2.29, and 1.58 km.

When k < 0.15, the velocity of motion and the Froude number for a solid landslide
exceed the velocity of motion of the front of a viscous flow everywhere. Here,
the “path length” of the viscous landslide amounts to 1.6 km.
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We draw attention to the velocity of motion of underwater landslides being, as
a rule, smaller than the velocity of long gravitational waves (i.e., Fr < 1). This
fact follows from elementary physical arguments. If the motion of a landslide is
considered without account of the wave resistance and of friction (k = 0), then its
velocity is determined by the formula

U =
√

2g
ρ2 − ρ1

ρ2
�h, (5.6)

where �h is the change in vertical position of the center of mass of the landslide.
Suppose that, going down the slope, the landslide reaches a certain depth h. Clearly,
for an underwater landslide, the inequality �h < h is always satisfied. Comparing
the velocity of the landslide, determined by formula (5.6), and the velocity of long
waves,

√
gh, it is not difficult to arrive at the conclusion that equality of these two

quantities is possible, only if ρ2 > 2.0 g/cm3, i.e., for well-consolidated sediments
and rock. If the force of friction is taken into account, the required density of the land-
slide body will be even greater. Thus, a “resonance” (Fr = 1) is possible only for
landslides, consisting of very dense materials, or when the landslide enters the water
with a certain initial velocity. In the latter case, one can speak of both subaerial (par-
tially submerged) landslides and of landslides sliding into water from a “dry” coastal
slope.

5.2 Tsunami Excitation Related to Volcanic Eruptions

Explosions of volcanic islands (collapses of calderas), explosive (explosion-like)
eruptions of underwater volcanoes, pyroclastic flows landing in water are all phe-
nomena capable of giving rise to waves, which in their destructive strength are in
no way inferior to tsunamis of seismotectonic origin. At present, 143 tsunamis of
volcanic origin (“Volcano” + “Volcano and Earthquake” + “Volcano, Earthquake,
and Landslide” + “Volcano and Landslide”—see Table 5.1) are known in the World
Ocean.

One of the most striking historical examples of volcanogenic tsunamis is repre-
sented by the waves caused by the activity of the Krakatau volcano in August of 1883
(Self and Rampino 1981; Nomanbhoy and Satake 1995; Choi et al. 2003; Paris et al.
2014). On August 26, at 17:00, local time, a series of loud explosions took place,
and the volcano ejected an ash cloud to a height of up to 25 km. A small tsunami of
1–2 m high was formed. In the morning of August 27, three colossal explosions took
place. The first explosion (at 5:28) destroyed mountain Perboewatan on Krakatau
island, which was 130 m high. The caldera produced was immediately filled up with
sea water, leading to the generation of a small tsunami. At 6:36, mountain Danan,
which was 500 m high, exploded and collapsed, which gave rise to a tsunami wave
up to 10 m high. The main (third) explosion took place at 9:58. It literally blew
apart what remained of Krakatau island (Rakata island). The volcano threw out
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9–10 km3 of tephra (solid material) and 18–21 km3 of pyroclastic deposits, which
were distributed over an area of about 300 km2 with an average thickness of 40 m. Ash
covered a territory of approximately 2.8 × 106 km2. In the place of the island, there
emerged a caldera 6 km in diameter and 270 m deep. The third explosion came with
the most strongest noise ever heard by mankind. Air blasts circumvented the globe
seven times. The energy released during the main eruption of the Krakatau volcano
amounted to 8.4 × 1017 J. The waves that resulted from the third most strong explo-
sion were 42 m high, and they arrived 5 km inland. The average height of waves
on the coast of the Sunda straits (separating islands Java and Sumatra) was about
15 m. At least 36 thousand people were died. About 300 villages were destroyed.
The tsunami caused by explosion of the Krakatau volcano was noticed everywhere.
Waves were recorded by many mareographs not only in the Indian Ocean, but also in
the Pacific and Atlantic, as well. Far from the coasts of Indonesia, wave amplitudes
were relatively small.

On the basis of the diameter and depth of the caldera formed as a result of the explo-
sion of the Krakatau volcano, it is not difficult to estimate the volume of the initial
perturbation—the “local depression” of the ocean level. It amounts to ∼7 km3. It
is interesting to note that this volume approximately corresponds to the volume
of water ousted by ocean bottom deformations in the case of strong earthquakes
(100 × 100 km2 × 1 m = 10 km3). The potential energy corresponding to the initial
perturbation, which can be estimated by formula (2.4), amounts to ∼6×1015 J, which
is of the order of 1 % of the eruption energy.

Another frequently discussed event took place in the Bronze Age (around 35
centuries ago) in the Aegean sea (Antonopoulos 1992; Dominey-Howes 2004). There
exists a hypothesis that explosion of the volcanic Thera island (the Santorini volcano)
and the resulting tsunami caused the death of mythical Atlantis, while the explosive
eruption itself contributed to destruction of the Cretan-Mycenaean culture. At any
rate, geological traces of this tsunami have been found along the coastlines of Greece
and Turkey (Minoura et al. 2003).

Of about one thousand volcanoes, known to be active on Earth, some hundreds
are underwater volcanoes. Numerous works are devoted to the study of tsunami
generation, related to volcanic eruptions (Basov et al. 1981; Egorov 1990; Pelinovsky
1996; Waythomas and Neal 1998; Belousov et al. 2000; Tinti et al. 2003; Ward and
Day 2001, 2003; Kurkin and Pelinovsky 2004; Egorov 2007; Mader and Gittings
2006). The main physical mechanisms of volcanogenic tsunami generation comprise
the following:

(1) the discharge into water of a large volume of matter (from slow lava flows to
explosive eruptions);

(2) the collapse of a caldera (explosion of a volcanic island);
(3) pyroclastic flows, landslides, etc.; and
(4) volcanic earthquakes.

In the case of underwater volcanoes, the first two mechanisms are prevalent. The
third (landslide) mechanism may be more peculiar to volcanoes on coasts, although

http://dx.doi.org/10.1007/978-3-319-24037-4_2
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the possibility cannot be excluded of underwater landslides and mudslides initiated
by an underwater eruption.

In certain cases, volcanic eruptions can provocate enormous collapses. Thus, for
example, in Ward and Day (2001) the possibility is indicated for part of the La Palma
island (Canary islands) to collapse during the next eruption of the volcano, located
there. Geological estimates reveal that the volume of such a collapse may amount
to 500 km3. A tsunami wave caused by such a colossal collapse would be capable
of crossing the Atlantic Ocean and reaching the coasts of America with a height
exceeding 10 m.

In the present section, we shall only deal with those original mechanisms of
tsunami formation, which are peculiar precisely to volcanic eruptions. Thus, here
we shall not consider wave generation by volcanic earthquakes, as well as by vol-
canogenic landslides.

We shall first dwell upon certain peculiarities of tsunami formation in the case of
a caldera collapsing and being subsequently filled up with water. If one speaks of
an underwater volcano, then the description of the waves generated fully reduces to
the problem of tsunami generation by deformation of the ocean bottom, which has
been investigated in detail in Chaps. 3 and 4. Truly, in the case of a collapsing caldera,
the amplitude of the “bottom deformation”, η0 ∼ 102–103 m, and the horizontal
dimension of the deformation area, D ∼ 103–104 m, may turn out to be comparable
to the ocean depth. Note that underwater volcanoes may be located both at small
(shelf) and at large (abyssal) depths. If the explosion of a volcanic island takes place,
then the water filling up the caldera, like the waters surrounding the island, are
evidently characterized by shelf depths (∼102 m).

A suddenly generated caldera (in total absence of obstacles to water entering it)
will be filled with water in a time T ∼ D/

√
gH, where D is the diameter of the caldera

and H is its characteristic depth. Taking advantage of the aforementioned ranges of
these parameters, we obtain that the quantity T varies within the limits of 30–300 s.
In the case of the most probable development of events, when obstacles to the arrival
of water do exist, the time the caldera will take to fill up may increase significantly.

Thus, the caldera collapsing results in a source of waves (a flow of mass)
with a characteristic action time of 102–103 s. The volume of water, taking part
in the process, can be estimated as V ∼ πD2H/4 ∼ 0.3–30 km3. The obtained
characteristics of the source are quite in agreement with the values for a seismo-
tectonic tsunami source. Caldera collapses are capable of generating powerful long-
period tsunami waves. Simulation of tsunami wave propagation, due to activity of
the Krakatau volcano in 1883, performed within the framework of long-wave theory
(Choi et al. 2003), demonstrated good agreement between the model and observed
arrival times of waves at various points of the World Ocean distant from the source.
This result testifies that the wave front indeed propagated with a velocity close to
the velocity of long waves,

√
gH , i.e., the waves were sufficiently long. Note that,

in the case of abyssal depths, strongly dispersive waves are formed in the area of
the caldera collapse, which rapidly die out with the distance from the source.

Further, we shall deal with the most “original” of the tsunami generation mecha-
nisms peculiar to volcanoes. What is meant is the release of a large volume of matter

http://dx.doi.org/10.1007/978-3-319-24037-4_3
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in the case of an underwater eruption. First, consider the case of a slow outflow of
matter. An adequate model for describing the tsunami generation process will consist
of a set of hydrodynamic equations with a source of mass (volume). Assume eruption
of the underwater volcano to proceed slowly: a volume V0 is released in time τ from
the crater. On the basis of general physical arguments, it is not difficult to estimate
the amplitude and energy of surface gravitational waves, caused by such an under-
water “eruption”. Consider the ocean depth H to be fixed, the area S of the crater
to be small, and the condition

√
S � H to be satisfied. Of course, the model of an

ocean of constant depth is limited (the crater of the volcano is usually situated on
top of a cone), but for presenting general physical regularities of the process such
a simplified model is quite applicable.

The volume thrown out will oust an identical volume of water. This volume will
spread over the area of a circle of radius, equal to the distance, which a long wave has
time to cover during the eruption time r = τ

√
gH. As a result, we have the amplitude

of the initial water elevation

ξ0 = V0

πτ 2gH
. (5.7)

The potential energy of such an initial elevation is calculated by formula (2.4)

Wp = ρV2
0

2πτ 2H
. (5.8)

From formulae (5.7) and (5.8), the amplitude and especially the energy are seen to
increase with the rate V0/τ , at which volcanogenic material is released from the crater.
An increase of the ocean depth reduces the efficiency of tsunami excitation.

For more accurate description of the waves, caused by a flow of material from
a hole of radius R in the ocean bottom, it is possible to apply the general solution of
the problem, (3.52), (3.39), and (3.40), obtained in Sect. 3.2.2 within the framework
of linear potential wave theory. Formulation of the axially symmetric problem is
schematically presented in Fig. 5.7. In the case dealt with, the boundary condition
on the bottom, (3.40), assumes the following form:

∂F

∂z
= w(r, t) = w0

(
1 − θ(r − R)

)(
θ(t) − θ(t − τ)

)
, z = −H, (5.9)

where w0 = V0/(τπR2) is the outflow velocity of material from the crater. Dis-
placement of the free surface, caused by the flow, released from the ocean bottom,
is determined by formula

ξ (r, t) = θ (t) ζ (r, t) − θ (t − τ) ζ (r, t − τ) ,

ζ (r, t) = V0

πRτ

∞∫

0

dk
J0(rk)J1(Rk) sin

(
t
(
gk tanh(kH)

)1/2
)

cosh(kH)
(
gk tanh(kH)

)1/2 .
(5.10)
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Fig. 5.7 Mathematical formulation of the problem of tsunami generation by an underwater eruption

Fig. 5.8 Perturbation of free surface caused by underwater eruption. The calculation is performed
at the time moment, when the eruption finishes, t = 10

√
H/g, for various ratios of the crater

radius and the ocean depth, R/H (indicated in the figure). The x-axis is normalized to the quantity
r0 = τ

√
gH , and the y-axis to ξ0 = V0/(πτ 2gH)

The form of the free surface displacement at the moment, when the eruption
finishes (t = τ ), calculated by formula (5.10) for τ = 10

√
H/g and various radii of

the crater, R/H = 0.1, 0.3, 1, and 3, is shown in Fig. 5.8. The curves are presented in
dimensionless coordinates. The x-axis is normalized to the distance covered by a long
wave during eruption time τ

√
gH, and the y-axis is normalized to the free surface

displacement, determined by estimation formula (5.7). From the figure, it is seen that
the form and amplitude of the free surface perturbation depend little on the radius of
the crater, when R/H < 1. Moreover, the quantity ξ0, determined by formula (5.7),
is indeed seen to represent a good estimate for the surface displacement amplitude.
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Note that the application of the theory of incompressible liquids imposes nat-
ural limits on the outflow velocity of material from the crater, w0 < c, where c is
the velocity of sound in water, and on the relationship between the eruption duration
and the ocean depth, τ > 4H/c.

For estimates, we take advantage of the modest, as compared to the 1883 event
(Krakatau), eruption of an underwater volcano, located at a depth H = 1000 m.
Let the release of material amount be V0 = 1 km3, and the eruption duration τ =
100 s. For the indicated duration of the process, the perturbation (elevation) radius
of the water surface amounts to r ≈ 10 km. Its height, calculated in accordance with
formula (5.7), amounts to the significant value ξ0 ≈ 3 m. And the potential energy,
calculated by (5.8), is Wp = 1.7 × 1013 J. A tsunami, generated by such an initial
elevation, will evidently represent a serious threat.

In the model, described above, we assumed the eruption to be a slow process. This
provided grounds for applying linear theory and considering water to be incompress-
ible. But the eruption of an underwater volcano may exhibit an explosive character. In
such a case, the products of eruption form a gaseous bubble in the water, which con-
tains high-temperature gases and water vapor at high pressures. The expansion and
floating-up of the bubble lead to the formation of a cupola or plume—an elevation on
the water surface. An analog of this process is the formation of a plume in the case of
an underwater explosion. It must be stressed that the formation of a gaseous bubble
at large depths is not always possible, owing to the colossal hydrostatical pressure.

In this case, description of the wave generation process is a difficult task. But one
can select an equivalent source and use it as the initial perturbation in calculating
tsunami waves. Reasonable agreement with reality (explosions in water for energies
within the range of 2×106–3×1010 J) is achieved for the following form of the initial
displacement of the water surface (Kurkin and Pelinovsky 2004):

ξ0(r) = HS

(

2

(
r

Rs

)2

− 1

)
(
1 − θ(r − Rs)

)
, (5.11)

where Rs is the source radius and HS is the amplitude of the water level displace-
ment at the source. Both parameters, characterizing the source, can be estimated
via the equivalent energy of the explosion (or volcanic eruption) (Le Mehaute and
Wang 1996).

In the case of an ocean of constant depth H, evolution of the initial free surface
perturbation, exhibiting radial symmetry, is described by the following expression
(see general theory in Sect. 3.2.2):

ξ(r, t) =
∞∫

0

kdkA(k)J0(kr) cos
(
ω (k)t

)
, (5.12)

A(k) =
∞∫

0

rdr ξ0(r) J0(kr), (5.13)

http://dx.doi.org/10.1007/978-3-319-24037-4_3
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where ξ0(r) is a function describing the form of the initial perturbation and Jn is
the Bessel function of the first kind of nth order. The relationship between the cyclic
frequency and the wave number is determined by the known dispersion relation for
gravitational waves on water, ω 2 = gk tanh(kH). For an initial elevation, exhibiting
the form, determined by formula (5.11), we have

A(k) = −HSRSJ3(kR)

k
. (5.14)

For large times, we represent the integral in expression (5.12) with the aid of
the stationary-phase method,

ξ(r, t) ∼=
√

2π

t |S′′(k0)|k0A(k0)J0(k0r) cos
(
ω (k0)t − π

4

)
, (5.15)

where k0 is the extremum of function S(k) = √
gk tanh(kH) − kx/t, which exists

under the condition x < t
√

gH.
As an example, Fig. 5.9 shows the profiles of waves generated as a result of evolu-

tion of the initial perturbation (5.11). The calculation is performed by formula (5.15)
for the moment of time t = 100

√
H/g for two different radii of the initial perturba-

tion. The waves are seen to be strongly dispersive; therefore, the propagation velocity
of the wave packet depends strongly on the radius of the initial perturbation. The exis-
tence of such a dependence leads to an interesting effect (dispersion amplification),
which was first noted in Mirchina and Pelinovsky (1987). Consider two or more suc-
cessively amplified eruptions taking place. The radius RS of the perturbation created
on the water surface increases with the strength (energy) of the eruption. In accor-
dance with the growth of the radius, the propagation velocity of the wave packet
also increases. Consequently, during the process of wave propagation, the super-
position is possible of wave packets from different eruptions, which may lead to

Fig. 5.9 Profile of waves excited by underwater eruption. The calculation is performed for t =
100

√
H/g for two different ratios of the initial perturbation radius and the ocean depth, RS/H

(the values are indicated in the figure)
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significant amplification of the tsunami amplitude. We recall that in August 1883,
three eruptions occurred of the Krakatau volcano, each of which was stronger than
the preceding one.

5.3 Meteotsunamis

Long waves, similar in characteristics to tsunami waves of seismotectonic origin,
can form as a result of the influence of various atmospheric processes upon the water
layer. These waves are conventionally termed anemobaric waves or meteotsunamis.
The term “meteotsunami”was apparently coined in Nomitsu (1935).

The main causes for meteotsunamis to arise are moving inhomogeneities
of the atmospheric pressure or the tension of wind friction (e.g., Monserrat and
Rabinovich 2006). We at once note that, unlike other tsunami generation mecha-
nisms, in this case an important role is played by resonance effects, revealed, when
the propagation velocity of atmospheric perturbations and their period turn out to
be close to the velocity of long waves and to the period of eigen oscillations of
the acquatorium, respectively.

Like tsunamis of seismotectonic origin, meteotsunamis represent quite a rare
phenomenon. Similar to tsunamis not being excited by each individual earthquake,
not every cyclone, atmospheric front, train of internal gravitational waves or other
atmospheric perturbation leads to the formation of meteotsunamis. A great num-
ber of examples are known, when quite strong atmospheric perturbations were not
accompanied by any generation of long waves. Nevertheless, in the World Ocean,
92 events (3.6 %) have been registered, which are classified as tsunamis of meteoro-
logical origin (see Table 5.1).

The extent, to which the parameters of tsunamis due to meteorological and seis-
motectonic causes are identical, is such that in a number of cases it is difficult to
determine the actual cause of wave generation. Thus, for example, the group of long
waves about 60 cm high with a period of 24–60 min, registered at the coast of South
Africa on May 11, 1981, was initially identified as a seismotectonic tsunami and
described in the September issue of “Tsunami Newsletter”. Later, these waves were
classified as a meteotsunami caused by a deep cyclone and atmospheric waves related
to it.

From general arguments, it is clear that an intensification of atmospheric processes,
for example, in the case of tropical cyclones should lead to perturbations of the water
layer and to the generation of long waves. The passage of cyclones is nearly always
accompanied by significant oscillations of the atmospheric pressure, enhancement
of the wind, and development of storm agitation. Extreme values of pressure and
wind velocity in tropical cyclones reach 870 hPa (cyclone “TIP”, October 1979)
and 82 m/s (cyclone “LINDA”, September 1997), respectively. Part of the energy of
such intense atmospheric processes, doubtless, must be transformed into the energy
of long waves. But an analysis of synchronous measurements of ocean level oscil-
lations and of atmospheric pressure fluctuations reveal that the direct relationship
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between these processes, with the exception of individual cases, is not essential
(Munk 1962; Kovalev et al. 1991; Rabinovich and Monserrat 1996).

At the same time, there exist numerous examples of the observation of long waves,
the formation of which is unambiguously related to atmospheric processes. Thus, for
example, in Bondarenko and Bychkov (1983) a description is given of the generation
of long waves with a period of about 23 min, caused by internal gravitational waves
with the same period, that propagated over the Caspian Sea in the region of Svinoi
island. Several cases are known of catastrophic waves arising on the Great lakes
(Donn and Ewing 1956). On May 5, 1952, June 26, and July 6, 1954 sharp jumps
in the atmospheric pressure, which propagated with velocities of 20–40 m/s, led to
the formation of strong long waves, which caused significant destruction on the coast
and even the death of people.

The anomalous character of seiche oscillations in Nagasaki Bay (Kyusiu island) is
renown (Rabinovich 1993). Oscillations of amplitudes ∼0.5 m and periods of about
30 min in this bay represent quite a typical phenomenon. It is known by the local
term “abiki”. In a number of cases, abiki waves are capable of achieving significant
amplitudes. Thus, for example, on March 31, 1979, the maximum height of waves
that caused significant damage and the death of 3 persons amounted to 4.78 m. In
Hibiya and Kajiura (1982), this event was shown to be caused by the passage of a jump
of atmospheric pressure from 2 to 6 hPa over the western part of the East-Chinese
Sea. The propagation velocity of the pressure jump was about 30 m/s.

Characteristic depths of the sea in between the region, where the perturbation
originates, and Kyusiu island lie between 50 and 150 m. The propagation velocities
of long waves, corresponding to them, vary within the limits 22–28 m/s, which is
close to the propagation velocity of the atmospheric perturbation. The period of
the waves, which arrived in Nagasaki Bay, also turned out to be close to the period of
eigen oscillations. As a result of the double resonance, the height of waves increased
by more than a factor of 100. Thus, a jump in pressure of only several hPa caused
the formation of abiki waves in Nagasaki Bay several meters high.

Another well-known example consists in seiche oscillations with periods from
several minutes up to several tens of minutes, which are observed regularly in sum-
mertime off the south-east coast of Spain in the region of the Balearic islands. From
this point of view, the Ciutadella Bay, located in the north-west part of Menorca island,
is the most renown. The bay is of the order of 1 km long, about 90 m wide with a prac-
tically flat bottom at a depth of 5 m. In certain cases, seiches with typical periods
of about 10 min reach heights of 4 m, here, leading to serious damage to ships and
coastal structures. This calamity has received the local name “rissaga” (Monserrat
et al. 1991). An analysis of synchronous measurements of the atmospheric pressure
and of long waves, performed in Rabinovich and Monserrat (1996), has permitted to
reveal a series of cases, when strong level oscillations were caused by perturbations
of the atmospheric pressure. One of such events is the formation of seiche oscillations
in Ciutadella Bay with a amplitude of 0.87 m. Formation of the waves resulted from
the passage of a train of intense internal gravitational waves in the atmosphere with
an amplitude of about 200 Pa and propagation velocity of about 30 m/s. The period
of atmospheric waves was of the order of 1 h, while their length over 100 km, which



5.3 Meteotsunamis 285

essentially exceeds the period of proper oscillations of the bay and its dimensions.
These differences exclude a possible resonance response of the bay. Most likely, the
formation of the long waves was a result of resonance effects in open sea, after which
they approached the coast and caused strong oscillations in the bay. A fact, favor-
ing this assumption, consists in that the velocity of the long waves on the external
shelf with depths ∼100 m was in good accordance with the propagation velocity of
atmospheric perturbations.

The meteotsunami phenomenon has much in common with the so-called storm
surges. In the monograph of Murty (1984), storm surges are defined as sea-level
oscillations in the coastal zone or within internal basins with periods from several
minutes up to several days, and caused by atmospheric influence. Note that this
definition excludes wind waves and choppy sea, since they are characterized by
periods smaller than a minute. Actually, the terms meteotsunami and storm surge
denote phenomena of the same scope, which are caused by the same reason—by
influence of the atmosphere. The only formal difference between a storm surge
and a meteotsunami consists in the difference between their maximum periods. The
maximum period for a tsunami does not exceed several hours, while storm surges
may last several days.

Strong storm surges of heights up to 5 m are observed off the coast of China in
the northern part of the Yellow Sea. This phenomenon results in colossal calamities
for the Republic of Bangladesh—only during recent decades, it has brought about
the death of several hundreds of people. Storm surges are also known in Europe.
The catastrophic storm surge, which occurred in the North Sea in the period between
January 31 and February 2, 1953, destroyed protective coastal structures, flooded an
area of 25,000 km2, and killed 2000 people in Great Britain and Holland (Gill 1982).
The famous inundations of St. Petersburg are nothing, but storm surges. Besides St.
Petersburg, strong storm surges in Russia also take place off the coasts of the Asov
and Okhotsk seas, and the Sea of Japan.

The physical mechanism of meteotsunami formation can be related to the influence
upon the water surface of atmospheric pressure and tangential tensions, created by
the wind. In principle, there exists, also, the possibility of nonlinear energy transfer
from the relatively short wind (storm) waves to the long-wave components, but we
shall not deal with this mechanism, here.

From the point of view of mathematical description, the influence of the atmos-
phere upon a water layer is taken into account by the boundary condition on the free
water surface. Instead of the traditional for tsunami problems condition of constant
pressure on the free water surface, we shall now assume this quantity to be variable in
space and time, patm = p(x, y, t). Besides the pressure, acting upon the water surface
along the normal direction, there also exists a tangential tension of friction, caused
by the wind. The tangential tension per unit surface area, T, is related to the speed
of the wind, U, by the following approximate relationship:

TS = C ρatmU |U| ,

where ρatm is the density of air and C is a dimensionless empirical coefficient,
the value of which usually lies within limits from 0.0012 up to 0.003 (Lichtman 1970).
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A similar formula relates the velocity of the water flow near the bottom, v, and the ten-
sion of friction, acting on the water column from the bottom,

TB = −CBρv |v|,

where ρ is the density of water and CB is a dimensionless empirical coefficient,
the value of which is usually set equal to 0.0025 (Murty 1984). We recall that in
the case of tsunami generation by bottom landslides tangential tensions on the bottom
are not taken into account (owing to the short duration of a landslide). But in the case
considered the action of tangential tension of the wind may turn out to be prolonged
(up to several days) and to transfer significant momentum to the water column.

The presence of tangential tensions on the free water surface and on the bottom
is accompanied by the formation of a pronounced vertical flow structure, which in
real natural conditions is usually turbulent. Owing to the turbulence, the solution of
the problem should, evidently, not be based on the Navier–Stokes equations, but on
Reynolds equations. The existence of a vertical flow structure complicates transition
from the general nonlinear equations of hydrodynamics to the long-wave equations.
But, if the nonlinear term (v,∇) v is neglected, then the Reynolds equations can
be integrated over the vertical coordinate from the bottom, z = −H, up to the free
water surface, z = ξ . As a result, a set of equations will be obtained, which will
contain flow velocities averaged over the depth, while the term, describing the vertical
turbulent momentum transfer, will be expressed as the difference between tensions
on the bottom and on the free surface,

ξ∫

−H

∂

∂z

(
Kz

∂v
∂z

)
dz = 1

ρ
(TS − TB) .

Without going into the details of obtaining the equations, expounded, for example
in the monograph of Murty (1984), we present a version of the set of equations,
applied in practice for calculating meteotsunami generation and propagation (Vilibic
et al. 2004):

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv

= −g
∂ξ

∂x
− 1

ρ

∂patm

∂x
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+ KL

(
∂2u

∂x2 + ∂2u

∂y2

)
,

∂v

∂t
+ u

∂v

∂x
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∂v
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∂ξ
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ρ
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∂2v
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,
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+ ∂

∂x

(
(H + ξ) u

) + ∂

∂y

(
(H + ξ) v

) = 0,
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where u and v are velocity components averaged over the depth, ξ is the free surface
displacement from equilibrium position, f = 2ω sin ϕ is the Coriolis parameter, and
KL is the constant horizontal turbulence viscosity coefficient. In principle, the quan-
tity KL may be variable, and then it should be present under the derivative sign. In
Vilibic et al. (2004), the assumption was made that KL = 15 m2/s.

Now consider the main physical regularities of the meteotsunami generation
process, taking advantage of the example of waves, caused by moving perturba-
tions of atmospheric pressure. For clarity, the problem will be considered within
the framework of the simple one-dimensional model. Let |ξ | be the absolute value
of the free surface displacement from equilibrium, and consider the ocean depth
H = const and the horizontal scale of atmospheric perturbation a to be related
as follows: |ξ | � H � a. With account of such assumptions, the meteotsunami
formation process can be described by linear equations of long-wave theory:

∂u

∂t
+ g

∂ξ

∂x
= − 1

ρ

∂patm

∂x
, (5.16)

∂ξ

∂t
+ H

∂u

∂x
= 0. (5.17)

If the atmospheric pressure is constant in time, but depends on the space coor-
dinate (∂/∂t = 0), then from Eq. (5.16) immediately follows the so-called “inverse
barometer law”

ξ(x) = −patm(x)

ρg
. (5.18)

In accordance with this law, the local enhancement of atmospheric pressure “presses
down” the free sea surface, forcing the water to occupy those regions, where
the atmospheric pressure is lower. And, contrariwise, in the region of local reduc-
tion of pressure, for example, in cyclones, an enhancement of the water level should
be observed. Extreme variations of atmospheric pressure are observed in tropical
cyclones. The pressure at the center of such a gigantic whirlwind can drop by a value
of ∼100 hPa, which amounts to about 10 % of normal atmospheric pressure. A local
elevation of the level by ∼1 m corresponds to such a depression. But in the case of
most tropical cyclones and of other atmospheric processes, the amplitude of pressure
perturbations and, consequently, the amplitude of the free water surface deviation
will be by 1–3 orders of magnitude smaller. Variations of atmospheric pressure
with amplitudes exceeding 10 % can, most likely, arise only in the case of powerful
explosions of natural (volcanoes, meteorites) or of artificial origin. In such cases,
the pressure perturbation will, naturally, not be motionless, but will propagate in
the atmosphere, most probably, like a shock wave.

We, now, introduce the dimensionless variables (the asterisk * will be further
omitted)
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x∗ = x

H
, t∗ = t

√
g
H

, V∗ = V√
gH

,

p∗
atm = patm

ρgH
, ξ∗ = ξ

H
.

(5.19)

Note that the square dimensionless velocity is the well-known Froude number Fr =
V2/gH. With account of transformations (5.19), the set of Eqs. (5.16) and (5.17) is
easily reduced to the nonlinear wave equation

∂2ξ

∂t2 − ∂2ξ

∂x2 = ∂2patm

∂x2 . (5.20)

If motion exists only at times t > 0, then for zero initial conditions the solution
of Eq. (5.20) is determined by the formula (Tikhonov and Samarsky 1999)

ξ(x, t) = 1

2

t∫

0

dT

x+(t−T)∫

x−(t−T)

dX
∂2patm

∂X2 . (5.21)

Let the propagating perturbation of atmospheric pressure be described by the formula

patm(x, t) = p(x − Vt)θ(t), (5.22)

where p is an arbitrary function determining the space distribution of the pressure, θ is
the steplike Heaviside function, and V is the propagation velocity of the perturbation.
The dynamics of the atmospheric process, described by formula (5.22), is such that
at time moment t = 0 the atmospheric pressure perturbation is “switched on” and
starts movement unlimited in time with constant velocity V in the positive direction
of axis 0x. In the case considered, the integrals in expression (5.21) are calculated
analytically, and the solution of the problem is given by the formula

ξ(x, t) = p(x − Vt)

V2 − 1
− p(x − t)

2(V − 1)
+ p(x + t)

2(V + 1)
. (5.23)

From formula (5.23), it follows that the wave perturbation on the water surface has
three components. One of them propagates with the velocity V , following the area
of altered pressure. The other two components correspond to free waves traveling
along axis 0x in the positive and negative directions, respectively, with the veloc-
ity of long waves. The amplitude of waves on the water surface depends strongly
on the propagation velocity of the atmospheric perturbation. Here, the amplitude
of waves traveling in the the same direction as the atmospheric perturbation may
undergo a sharp increase, when V ≈ 1. When the equality V = 1 is satisfied exactly,
the growth of amplitude is without limit, within the model considered. This effect
is known as the ‘Proudman resonance”. The amplitude of waves traveling in the
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negative direction of axis 0x exhibits no such peculiarities. Always remaining a rel-
atively small quantity, it monotonously decreases as the velocity V increases.

It is possible to determine the behavior of a wave perturbation on a water surface
in resonance conditions by calculating the limit of expression (5.23), when V → 1.
The resonance effects involve the first two terms of expression (5.23). In the case of
resonance, each of these terms tends toward infinity, but their sum has a finite limit.
We shall, now, expand function p(x − Vt) in a Taylor series at point z0 = x − t with
an accuracy up to the linear term,

p(z0) ≈ p(z0) + p ′(z0) (z − z0).

Upon performing elementary transformations, we obtain an expression, describing
the free surface displacement in the case of resonance,

ξres(x, t) = lim
V→1

(
ξ(x, t)

)
= −p ′(x − t)t

2
− p(x − t)

4
+ p(x + t)

4
. (5.24)

From formula (5.24), it follows that, when resonance conditions are fulfilled,
the wave perturbation comprises three components. The first component represents
a wave of amplitude, increasing linearly with time, and the growth rate of the ampli-
tude is proportional to the derivative of the distribution of pressure in space. The
other two components describe waves of insignificant and fixed amplitudes.

For definiteness, we shall further consider the distribution of pressure in space in
formula (5.22) to have a Gaussian form:

p(z) = p0 exp

{
− z2

a2

}
, (5.25)

where p0 is the pressure amplitude. Figure 5.10 presents the example of the movement
of an atmospheric perturbation (in the region of a local enhancement of pressure) and
of the evolution of waves, generated by this perturbation. The calculation is performed
in accordance with formula (5.23) for three different velocities of the perturbation.
From the figure, it is seen that below the critical velocity (V = 0.75), immediately
under the atmospheric perturbation, a similar in shape, but opposite in sign, pertur-
bation forms of the water surface—an induced wave. Moreover, there arise two free
waves, traveling in opposite directions, and the one propagating in the same direction
as the atmospheric perturbation has a larger amplitude, while its polarity is oppo-
site to the polarity of the induced wave. When V � 1, the amplitude and polarity
of the induced wave are in accordance with the values determined by the inverse
barometer law. Practically, all atmospheric processes in open ocean serve as natural
prototypes for slowly propagating atmospheric perturbations. Thus, for instance,
the propagation velocity of a tropical cyclone usually amounts to V ∼ 5–10 m/s,
which is significantly inferior to the propagation velocity of long waves at large
depths

√
gH ∼ 200 m/s (for H = 4000 m).
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Fig. 5.10 Profiles on free water surface of waves (thin line), formed by perturbation of atmospheric
pressure (thick line), traveling with a velocity V . The calculation is performed at a = 10 for fixed
time moments t

√
g/H = 0, 50, 100, 150, 200 (curves 1–5)

In the case of resonance (V = 1), only two waves are observed on the water sur-
face. The induced wave follows the atmospheric perturbation, linearly increasing its
amplitude with time. The second wave is free. It travels in the opposite direction, and
its amplitude is small. We underline that within the framework of the model problem
considered, the amplitude of the induced wave grows without limit. Fulfillment of
the resonance conditions is possible, for example, in shallow water (H ∼ 10–100 m),
where the velocity of long waves (

√
gH ∼ 10–30 m/s) may turn out to be close to

the typical propagation velocity of atmospheric perturbations.



5.3 Meteotsunamis 291

Fig. 5.11 Amplitude (range)
of waves on water surface
versus distance L = Vt,
covered by perturbation of
atmospheric pressure of
amplitude p0 and with
horizontal dimension a. The
calculation is performed for
different propagation
velocities of the atmospheric
perturbation. The numbers
indicate values of
dimensionless velocity
V/

√
gH for respective

curves

If the velocity V exceeds the critical velocity (in Fig. 5.10, the case of V = 1.25 is
presented), then the induced wave turns out to be similar in shape and sign to the per-
turbation of atmospheric pressure. The polarity of the free wave, traveling in the same
direction as the atmospheric perturbation, differs in polarity from the induced wave.
The free wave, traveling in the opposite direction, here, like in all other cases, repeats
the polarity of the atmospheric perturbation. From formula (5.23), it is seen that at
high velocities V the amplitude of the free surface response tends asymptotically
toward zero. Note that the similar dependence (3.94) for waves generated by a run-
ning landslide of the ocean bottom exhibits a somewhat different character: at high
velocities V , the surface displacement tends toward a constant, instead of zero. In
reality, the pressure perturbations, corresponding to the velocity range V � 1, may
be related, for example, to acoustic waves in the atmosphere or to the propagation of
atmospheric internal waves above shallow-water areas.

Figure 5.11 illustrates the character of variation of the double amplitude of waves
on the water surface versus the distance covered by the atmospheric perturbation,
L = Vt. The double amplitude is calculated by the formula

Amax(x) = max
t

(
ξ(x, t)

)
− min

t

(
ξ(x, t)

)
. (5.26)

From the figure, it is seen that for a noticeable increase in the amplitude, it is
necessary that the resonance condition be fulfilled along a path the length of which
holds several horizontal extensions of the atmospheric perturbation. If the velocity
V �= 1, then the growth of the amplitude is limited. At any rate, at the initial stage of
wave formation, when V ≈ 1, the growth rate of the amplitude does not differ strongly
from the resonance case. Therefore, if the velocity of the atmospheric perturbation,
V , varies within limits ±10 % of the resonance velocity, then a tenfold increase is
possible of the wave perturbation amplitude as compared with the value determined
by the inverse barometer law.

http://dx.doi.org/10.1007/978-3-319-24037-4_3
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One of the most important properties of meteotsunamis is the proportionality of
the wave amplification coefficient to the ratio of the length of the “resonance” area
of water and the horizontal size of the atmospheric perturbation. Taking advantage
of this property, it is possible to determine in advance the sections of the coast,
potentially endangered by meteotsunamis. To this end, it is necessary to analyze
the littoral bathymetry and to reveal extended shelf zones, within which the reso-
nance conditions can be fulfilled. For this work, it is, naturally, necessary to know
the characteristic propagation velocities of atmospheric perturbations.

Since typical propagation velocities of atmospheric perturbations amount are from
units to tens of meters per second, fulfillment of the Proudman resonance conditions
is most probable in shallow-water areas of the ocean. But, when meteotsunamis
of significant amplitude are excited within shallow-water areas, linear theory is no
longer applicable. Therefore, it is expedient to consider the problem of wave genera-
tion by atmospheric perturbations within the framework of nonlinear theory of long
waves. We shall now assume that the displacement amplitude of the free water sur-
face may be comparable to the basin depth, i.e., the main parameters of the problem
are related as follows: |ξ | ∼ H � a. We shall write the equations of nonlinear theory
of long waves in dimensionless variables, bearing in mind the formulae (5.19),

∂u

∂t
+ u

∂u

∂x
+ g

∂ξ

∂x
= −∂patm

∂x
, (5.27)

∂ξ

∂t
+ ∂

∂x

(
(1 + ξ) u

) = 0. (5.28)

It is not possible to resolve the complete nonlinear problem (5.27) and (5.28)
analytically. But, when movement of the atmospheric perturbation is not limited in
time (−∞ < t < +∞), it is possible to obtain an analytical relationship between
the free surface displacement in the induced wave and the perturbation of atmospheric
pressure.

Like in the linear problem, we shall consider a perturbation of the atmospheric
pressure (deviation from a certain standard value), which propagates with a constant
velocity V in the positive direction of axis 0x,

patm(x, t) = p(x − Vt). (5.29)

We shall assume the response of the water column to represent an induced wave,
traveling with the velocity V in the same direction,

u(x, t) = u(x − Vt), (5.30)

ξ(x, t) = ξ(x − Vt). (5.31)

Successive differentiation with respect to time and integration over space of functions
with arguments of the form (x − Vt) is similar to multiplication by the quantity −V ,
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∫
∂

∂t
f (x − Vt) dx = −V f (x − Vt).

Making use of this fact, we pass from differential equations (5.27) and (5.28) to
the algebraic relations (Pelinovsky et al. 2001)

− Vu + u2

2
+ ξ = − patm, (5.32)

− Vξ + (1 + ξ) u = 0. (5.33)

Generally speaking, expressions (5.32) and (5.33) are correct with an accuracy
up to certain integration constants. We have chosen the values of these constants so
as to have zero flow velocities and zero free surface displacements u = 0, ξ = 0,
respectively, to correspond to zero perturbation of the atmospheric pressure.

Excluding the quantity u from the set of Eqs. (5.32) and (5.33), we obtain the rela-
tionship between the moving perturbation of atmospheric pressure and the free water
surface response, corresponding to it,

patm = V2
(

ξ

1 + ξ
− ξ2

2 (1 + ξ)2

)
− ξ. (5.34)

When ξ � 1, the problem considered reduces to the linear problem. In this case,
formula (5.34) can be written in the form

ξ = patm

V2 − 1
, (5.35)

which fully corresponds to the first term in the analytical solution of the linear
problem (5.23).

The free surface displacement ξ can also be expressed explicitly in the nonlinear
case via the perturbation of pressure patm. Equation (5.34) has three solutions, and
some of them have no physical sense in the case of certain values of quantities patm
and V . Moreover, the form of the solutions is determined by quite cumbersome
formulae. In this connection, it is much more simple to select a certain free surface
displacement and, by applying the unambiguous functional relationship (5.34), to
determine the pressure perturbation, which could have caused this displacement.

For definiteness, we shall assume the free surface displacement to be determined
by the function

ξ(x, t) = Amax exp

{

− (x − Vt)2

a2

}

.

The perturbation of pressure, corresponding to it, which can be calculated by for-
mula (5.34) in the vicinity of the resonance or for large values of the quantity
Amax, generally speaking has a form essentially differing from a Gaussian. There-
fore, it has sense to introduce a certain quantity pmax, characterizing the intensity of
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Fig. 5.12 Ratio of free surface displacement amplitude Amax and amplitude of atmospheric pressure
perturbation, pmax, versus propagation velocity of atmospheric perturbation. The calculation is
performed for positive (Amax/H = 0.25), negative (Amax/H = −0.25), and infinitesimal (dotted
line) displacements of the free surface

pressure variations. Let pmax denote the amplitude of pressure variations, understood
in the sense of formula (5.26). The ratio of quantities Amax and pmax (in dimensionless
form Amaxρg/pmax) represents the “amplification coefficient” of the wave amplitude.

In Fig. 5.12, the quantity Amaxρg/pmax is plotted against the propagation velocity
V of the atmospheric perturbation. The dotted line in the figure shows the dependence,
corresponding to linear theory and calculated with the use of formula (5.35). The
amplification coefficient is seen to depend, in accordance with nonlinear theory, not
only on the velocity V , but also on the sign of the wave, produced, also. For positive
waves, the Proudman resonance point turns out to be shifted to the right as compared
with the linear case, while in the case of negative perturbations to the left. Moreover,
the growth of the wave amplitude for any fixed values of velocity V turns out to be lim-
ited. This fact is a most important manifestation of nonlinearity in the problem dealt
with. Let us briefly dwell upon its physical interpretation. Consider the resonance
condition V2/gH = 1 to be fulfilled, starting from a certain moment of time. Then,
at the initial stage, in accordance with linear theory, an increase in the amplitude of
the free surface perturbation will take place. But, as soon as the quantity ξ reaches
sufficiently high values, the actual basin depth, present in the resonance condition,
will change from H to H ± ξ . As a result, the resonance condition will be violated,
and growth of the amplitude will stop. Further enhancement of the amplitude is pos-
sible in certain cases, when the resonance conditions are continuously corrected by
variation of the velocity V or by realization of a certain particular profile of depths
along the route.

5.4 Cosmogenic Tsunamis

Recently, particular interest has been shown in the possibility of catastrophic tsunami
waves arising due to bodies falling into the ocean from outer space (Toon et al. 1997;
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Ward and Asphaug 2000; Kharif and Pelinovsky 2005; Gusiakov 2007; Bryant et al.
2007; Gisler et al. 2011; Kozelkov et al. 2015).

Such waves are conventionally termed cosmogenic tsunamis in modern scientific
literature. Geological structures, reminiscent in shape of craters and found on all
continents, have been understood to be traces of collisions of meteor bodies with
the Earth only during the past 30–40 years. Such structures called astroblems—
star scars, contain rock that was produced under huge pressures (up to a million
atmospheric pressures) and exhibit signs of shock-wave transformations of the min-
eral components and are often related to diamond deposits. According to Expert
Database on Earth Impact Structures (http://tsun.sscc.ru/nh/impact.php), at present,
on Earth, more than one thousand such objects have been found (e.g., Arizona crater,
USA, 1.2 km; (Popigai astroblem, East Siberia, Russia, 100 km). The World Ocean
occupies approximately 2/3 of the surface of our planet; therefore, a great part of
meteorites falls precisely into the ocean, the bottom of which guards the traces of
many such collisions, that in the past caused catastrophes of a planetary scale (Kharif
and Pelinovsky 2005).

Since in this section we are entering into a field far from oceanology, we shall
define some concepts. Meteorites are the remains of meteor bodies, which survived
transition through the atmosphere and that have fallen to the Earth’s surface from
outer space. According to their composition, meteorites are divided into three main
classes: stony (93.3 %), stony-iron (1.3 %), and iron (5.4 %).the atmosphere, air resis-
tance causes the body to heat up strongly and to shine brightly (the bolide phe-
nomenon). According to modern ideas, meteorites are fragments of parent bodies—
asteroids. Asteroids are considered small planets of diameters approximately between
1 and 1000 km.

The task of describing cosmogenic tsunamis can be divided into three stages. First,
it is necessary to determine the characteristics (dimensions, density, and velocity) of
meteorites, which can fall into the ocean, and to estimate the probability of such an
event. Second, the essentially nonlinear process of interaction of a meteorite with
the water column must be described, and the relationship between parameters of
the initial perturbation of the water column and characteristics of the celestial body
must be revealed. At the third stage, an analysis must be performed of the peculiarities
of cosmogenic tsunami propagation in open ocean and of waves running up shores.
All three stages are connected with numerous uncertainties, which arise primarily
because no cosmogenic tsunami has been recorded yet.

Estimates made by specialists reveal that several thousand large objects (asteroids
and comets) of diameters over 1 km have a potential possibility of colliding with
our planet (Solem 1999). A cosmic body of size superior to 2 km colliding with
the Earth will result in a global catastrophe (Paine 1999). Luckily, the probability
of such a collision is extremely small, and in all written history of the existence
of mankind no such catastrophe occurred. Objects of relatively small dimensions
regularly bombard the Earth, but most of them are destroyed and already burn up
in the upper layers of the atmosphere. The critical for a stony meteor body size,
with which it is capable of reaching the Earth’s surface, amounts to about 100 m in

http://tsun.sscc.ru/nh/impact.php
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Fig. 5.13 Number of asteroids colliding with the Earth per year versus their radius. Dotted line a
number of objects reaching the Earth’s surface (with account of losses in the atmosphere). Stars
show the results of Nemtchinov et al. (1997) and Shoemaker et al. (1990). Adapted from Ward and
Asphaug (2000)

diameter. In the case of iron objects, this critical size is significantly smaller (∼1 m),
but they are encountered very rarely, so they will not be dealt with.

From Fig. 5.13, one can judge the collision probability of a celestial body with
the Earth depending on the radius of the object. This dependence has been obtained
in Ward and Asphaug (2000). Actually, it represents a straight line (in logarithmic
scale), which passes through the two points indicated in the figure by stars. The first
point is based on existing material—observations from geostationary satellites of
meteor bodies with dimensions ∼1 m exploding in the atmosphere. These data per-
mit to assert that on the average about 25 events of this kind take place in a year
(Nemtchinov et al. 1997). The second point is based on estimations of the colli-
sion frequency of the Earth with large objects (∼1 km), made in Shoemaker et al.
(1990) and Toon et al. (1994). Large objects collide with our planet approximately
once every 100,000 years. The authors of Ward and Asphaug (2000) point out that
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the dependence presented in Fig. 5.13 is not quite accurate, but that it is the best
estimate of all, which could be made for objects with radiuses of 1–1000 m, using
presently available information. The actual collision frequency of the Earth with
celestial bodies within the range of dimensions indicated may differ by a factor of 3
as compared to the dependence proposed.

The dotted line in Fig. 5.13 shows the number of objects, which are not destroyed
in the atmosphere and are capable of reaching the Earth’s surface. From the point of
view of tsunami generation, we will be interested precisely in these objects, since
they are capable of effectively influencing the water column. Of course, large meteor
bodies, exploding in the atmosphere at small heights (such as the Tungus meteorite,
1908) over the surface of the ocean, are probably also capable of causing gravita-
tional waves, but, most likely, their energy will be insufficient for exciting dangerous
tsunami waves.

The typical density of stony asteroids amounts to about 3000 kg/m3, and their
velocity to 20 km/s. Assuming the object to have a spherical shape, it is easy to
estimate its kinetic energy. Thus, for example, a meteor body of diameter 100 m will
have a kinetic energy ≈3 × 1017 J. This value corresponds to the energy of a very
strong seismotectonic tsunami (see Fig. 2.18). Now, if the diameter of the object
amounts to 1 km, then its energy will be colossal, ≈3 × 1020 J. This value is already
many times greater than the energy of the source of the strongest earthquake of
the 20th century, which occurred in Chile in 1960. It is not difficult to estimate
that such an energy is sufficient to evaporate 1011 m3 of water (the heat required
to evaporate water is 2.3 × 106 J/kg). It is interesting to note that precisely such
a volume of water is ousted by ocean bottom deformations in the case of very strong
earthquakes (source area of 1000 × 100 km, average vertical deformation of bottom
of 1 m). At any rate, a relatively small part of the energy is, most likely, spent on
the evaporation of water.

Following Ward and Asphaug (2002), we shall assume a meteorite falling into
the ocean to create, at the initial stage, a radially symmetric cavity, described by
the following function:

ξ0(r) = DC

(
r2

R2
C

− 1

) (
1 − θ(r − RD)

)
, (5.36)

where DC is the depth of the cavity, RC and RD are its internal and external radiuses,
respectively, and θ is the Heaviside step function. The case, when RD = RC , cor-
responds to water being released into the atmosphere (or to its evaporation). The
initial perturbation, here, represents a depression (Fig. 5.14a). When RD = RC

√
2,

the water ejected from the cavity forms an external circular structure (a splash or
circular swell), the volume of which is exactly equal to the volume of the water,
ejected from the cavity (Fig. 5.14b).

http://dx.doi.org/10.1007/978-3-319-24037-4_2
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(a)

(b)

Fig. 5.14 Model shape of perturbation (cavity), resulting from a meteorite falling into the ocean.
DC depth of cavity, RC and RD internal and external radiuses of cavity. Adapted from Ward and
Asphaug (2000)

From the shape of the cavity, it is possible to estimate the tsunami energy as
the potential energy of the initial elevation,

ET = πρwg
2

(DCRD)2

(

1 − R2
D

R2
C

+ R4
D

3R4
C

)

, (5.37)

where ρw is the density of water, g is the acceleration of gravity. When RD = RC
√

2,
the general formula (5.37) assumes the more simple form

ET = πρwg
3

(DCRC)2 . (5.38)

Only a fraction ε of the meteorite’s kinetic energy EI is transformed into
the tsunami energy, so we can write

ET = εEI = ε
ρI(4π/3)R3

I V2
I

2
, (5.39)

where ρI , RI , and VI are the meteorite density, radius, and velocity, respectively. The
part of the meteorite energy transferred to the tsunami is not, generally speaking,
a constant, but depends on the properties of the water column and of the falling body.

Comparison of expressions (5.38) and (5.39) permits to express the depth of
the cavity as follows:

DC =
(

2ερI R3
I V2

I

ρwgR2
C

)1/2

. (5.40)

We further assume the relationship between the depth of the cavity and its radius
to be of the form

DC = qRα
C, (5.41)
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where q and α are coefficients related to the properties of the meteorite and of
the water column. Substitution of relation (5.41) into formula (5.40) permits to
express the radius of the cavity as follows:

RC = RI

(

2ε
V2

I

gRI

)δ (
ρI

ρw

)1/3
⎛

⎝
(

ρw

ρI

)1/3−δ
(

1

q Rα−1
I

)2δ
⎞

⎠ , (5.42)

where δ = 1/(2α+2). The form of formula (5.42) corresponds to the known relation
for the radius (diameter) of a crater Schmidt and Holsapple (1982)

RSH
C = RI

(
1

3.22

V2
I

gRI

)β (
ρI

ρT

)1/3 (
CT

1.24

)
, (5.43)

where β and CT are parameters depending on the properties of the target (water, in
this case). For water, their values are β ≈ 0.22 (i.e., α = 1/(2β ) − 1 ≈ 1.27),
CT ≈ 1.88. By comparison of formulae (5.42) and (5.43), one can note that about
16 % of the kinetic energy of the falling body is transformed into tsunami energy
(ε = 1/(2·3.22) ≈ 0.16). Of course, this is an approximate estimate, and it is correct
only if the quantity ε is actually not subject to strong variations.

The quantity q present in formula (5.41) varies weakly with the size of the falling
celestial body, RI , and of the density ratio ρI/ρw. By comparison of formulae (5.42)
and (5.43), it is not difficult to obtain the following approximate dependence:

q ≈ 0.39

(
ρw

ρI

)0.26 1

R 0.27
I

. (5.44)

In the case, when the density of the celestial body is three times that of the density
of water, (ρI/ρw = 3), the value of q varies between 0.1 (RI = 50 m) and 0.054
(RI = 500 m).

To simplify the calculations, it is possible, instead of the cumbersome expressions
(5.41) and (5.43) to use approximate formulae, which are valid for VI = 20 km/s
and ρI/ρW = 3 (Ward and Asphaug 2002),

RC ≈ 98 · R3/4
I , (5.45)

DC ≈ 0.64 · RC . (5.46)

In Fig. 5.15, the dependences (5.41) and (5.43) are shown by solid lines, the approx-
imate relationships (5.45), and (5.46) by dotted lines. The cavity diameter is usually
2.5–3 times greater than its depth. Thus, for example, a cosmic body of radius 200 m
falling into the ocean creates a cavity of diameter about 10 km and depth of the order
of 3.5 km. Note that in the case of celestial bodies of radius RI > 300 m the calculated
cavity depth DC will, as a rule, exceed the ocean depth H. In this case, a crater will
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Fig. 5.15 Size of cavity (depth and diameter), produced in water by a falling meteorite, versus
the meteorite’s radius. Adapted from Ward and Asphaug (2002)

not only form in the water, but in the ocean bottom, also. To avoid overcomplicating
the problem, we shall further assume an effective cavity depth Deff

C , equal to the ocean
depth, to be applicable, when DC > H. The cavity radius is calculated as previously,
in this case.

Figure 5.16 presents a comparison of cavity shapes calculated using the proposed
parametrization (5.41) and (5.43) and obtained by detailed numerical simulation
of the process, performed in Crawford and Mader (1998). The complex nonlinear
model and the parameterizations proposed are seen to be in quite reasonable agree-
ment. Noticeable divergence is only observed in the external circular structure, but
for preforming tsunami calculations at a level of estimations, it is not too impor-
tant. Owing to dispersion and dissipation, the shortwave components making up
the external circular structure will not play any noticeable role at large distances
from the source.

At the next stage, we must describe the evolution of waves from the initial per-
turbation (5.36), generated by the celestial body. We assume that at the moment,
when the cavity and circular swell behind it have formed, the velocity of motion of
water particles can be neglected. To describe the waves, we take advantage of linear
potential theory. In this problem, it is essential to take into account phase dispersion,
so application of the long-wave approximation is not permitted. Note that owing
to the large wave amplitudes (comparable to the depth), the application of linear
theory is also not quite correct. But for approximate estimation of the properties of
a cosmogenic tsunami, such an approach is quite justified.
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Fig. 5.16 Shape of cavity formed in water by a falling meteorite: comparison of results of numerical
simulation (Crawford and Mader 1998) and of idealized model (formula (5.36) with account of
relations (5.41) and (5.43)). Calculations are performed for a time moment of 25 s, an asteroid
diameter of 500 m, a fall velocity of 20 km/s, a density of 3.32 g/cm3, ocean depth of 5 km. Adapted
from Ward and Asphaug (2000)

In the case of an ocean of constant depth, evolution of the initial free surface
perturbation, exhibiting radial symmetry, is described by the following expression
(see general theory in Sect. 3.2.2):

ξ(r, t) =
∞∫

0

k dkA(k)J0(kr) cos
(
ω (k) t

)
, (5.47)

A(k) =
∞∫

0

r drξ0(r)J0(kr), (5.48)

where ξ0(r) is the function describing the form of the initial perturbation and J0 is
the Bessel function of the first kind of zeroth order. The relation between the cyclic
frequency and the wave number is determined by the known dispersion relation for
gravitational waves on water, ω 2 = gk tanh(k H). For an initial perturbation, deter-
mined by formula (5.36), the Fourier-Bessel transformation (5.48) yields the follow-
ing form for the dependence of the amplitude of space harmonics upon the wave
number:

A(k) = DC

RD

((
R2

D − R2
C

)
kJ1(k RD) − 2RDJ2(k RD)

)

R2
Ck2

. (5.49)

http://dx.doi.org/10.1007/978-3-319-24037-4_3
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Fig. 5.17 Dynamics of wave perturbation in the vicinity of the incidence point of a meteorite during
the first 3 min. Adapted from Ward and Asphaug (2000)

Figure 5.17 presents the example of a calculation of waves caused by the fall into
an ocean 4 km deep of a celestial body of radius 100 m and density 3000 kg/m3,
moving with a velocity of 20 km/s. It is seen that during the first minutes after the fall
the waves in the immediate vicinity of the incidence point may reach colossal heights
of the order of 1 km and more. Figure 5.18 presents in dimensionless coordinates
the wave number dependences of phase and group velocities of surface gravitational
waves on water. The same plot shows the amplitude distribution of space harmon-
ics over the wave numbers, calculated in accordance with the form of the initial
perturbation (5.36) for an internal cavity radius equal to the ocean depth. The ampli-
tude distribution is determined by function |k A(k)|, where A(k) is given by formula
(5.49). The position of the space spectrum on the wave number axis is related in
an evident manner to the cavity radius. Therefore, on the basis of calculations for
RC = H, from which the maximum turns out to be located at the value kH ≈ 2.97, it
is possible to write the formula determining the position of the maximum as function
of the cavity radius, kmax ≈ 2.97/RC . Recalculation for the wave lengths reveals
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Fig. 5.18 Phase and group velocities of gravitational waves on water versus the wave number,
space spectrum (absolute value of function kA(k))

this to correspond to λmax ≈ 2.12RC , which somewhat exceeds the cavity diameter.
Taking advantage of the dispersion relation, it is not difficult to determine the period
corresponding to the maximum of the spectrum, Tmax = 2π/

√
gkmax tanh(kmaxH).

For typical values of RC = H = 5 km, the period amounts to Tmax ≈ 83 s. We
recall that the range of tsunami wave periods is 102–104 s. The orders of magnitude
of wave periods caused by falling meteorites can be seen to correspond to the most
short-period region of the tsunami spectrum. This fact is essentially reflected in
the character of cosmogenic tsunami propagation. Unlike waves of seismotectonic
origin, cosmogenic tsunamis have no fronts propagating with the velocity of long
waves,

√
gH. From Fig. 5.18, their spectrum is seen just not to contain components

of the necessary wavelength (kH < 0.1). As to the components carrying energy, they
will propagate significantly slower (about two times slower in the case of RC = H)
than usual seismotectonic tsunamis.

Straightforward calculation of waves for long times, the results of which are shown
in Fig. 5.19 confirm the arguments, presented above. At the point, corresponding to
the position of the front of a long wave, no visible signal is present. The wave packet,
in which the long-wave components lead at long times, propagates with a velocity
more than 2 times inferior to the velocity of long waves. Here, the amplitude of
waves rapidly decreases with time and distance from the area of origin. Thus, while
at the third minute after the impact of the celestial body, the amplitude amounts to
over 2000 m, in 27 min it no longer exceeds 70 m. And then, waves of noticeable
amplitude only have time to cover 100 km. Note that in 27 min long waves cover
distances of over 300 km.
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Fig. 5.19 Dynamics of wave perturbation at long times. Adapted from Ward and Asphaug (2000)

Analysis of numerous calculations have permitted the authors of Ward and
Asphaug (2000) to propose a formula describing the damping of cosmogenic
tsunamis with distance in an ocean of constant depth. These calculations show that
variation in the wave amplitude is only related to geometrical factors and phase disper-
sion. Dissipative factors and the Earth’s sphericity are not taken into account. More-
over, the assumption is made that, independently of the characteristics of the celestial
body falling into the ocean, the initial wave amplitude cannot exceed the ocean depth.

ξmax(r) = min(DC, H)

(
1

1 + r/RC

)γ

, (5.50)

where γ = 1/2 + 0.575 exp {−0.035RC/H}. The dependence (5.50) is shown in
Fig. 5.20. It is calculated for various sizes of falling celestial bodies and ocean depths.
The data, shown in the figure, permit to estimate the degree of danger (the height
of waves) represented by tsunamis of cosmogenic origin at different distances from
the point of impact. When one approaches the coast, the wave amplitude (like in all
tsunami cases) will increase by several times, owing to a decrease in depth.
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Fig. 5.20 Decrease of cosmogenic tsunami amplitude with distance from impact point of object.
Calculations are preformed for various sizes of object and ocean depths. Adapted from Ward and
Asphaug (2002)

In conclusion, we once again draw attention to the probability of a large mete-
orite, capable of causing significant tsunami waves, falling on Earth being extremely
small. But, if such an event actually does take place, then among other catastrophic
consequences tsunami waves will certainly not play the last part.
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Chapter 6
Propagation of a Tsunami in the Ocean
and Its Interaction with the Coast

Abstract Traditional ideas of tsunami propagation in the open ocean are dealt with.
The significance is estimated of manifestations of phase and amplitude dispersions.
Classical problems are considered, concerning variation of the amplitude of a long
wave in a basin with gently varying depth (the Green’s law) and the reflection of a
wave from a step and from a rectangular obstacle. Formulae of the ray method are
presented in Cartesian and spherical coordinate systems. Phenomena of long-wave
refraction and capture by underwater ridges and the shelf are described. Estimation
is performed of linear (viscous) and nonlinear (turbulent) dissipation of the energy
of long waves. The effect of a wave amplitude being reduced by scattering on bottom
irregularities is considered. Approaches to the numerical simulation of tsunami wave
propagation are described. Conventionally applied equations of nonlinear long-wave
theory, taking into account the Coriolis force and bottom friction, are presented both
in Cartesian and spherical coordinate systems. The technique for formulating ini-
tial and boundary conditions in the tsunami propagation problem is described. Brief
information is given on certain tsunami models (codes), that are actively applied,
at present. Features of transoceanic wave propagation are considered, taking advan-
tage of the December 26, 2004 tsunami as an example. The main results, due to
investigation of the issues of a tsunami run-up on the shore, are presented.

Keywords Tsunami propagation · Tsunami run-up · Phase dispersion · Amplitude
dispersion · Long-wave theory · Green’s law · Refraction · Reflection · Scatter-
ing · Trapped waves · Wave attenuation · Numerical tsunami models · Nonlinear
long-wave theory · Bottom friction · Coriolis force · Manning coefficient · Carte-
sian coordinates · Spherical coordinates · Initial elevation · Boundary conditions ·
Bathymetry · Topography · Waveguide · Breaking waves · Run-up height · Labo-
ratory experiments

The following three stages are traditionally distinguished in the life of a tsunami: gen-
eration of the wave, its propagation in open ocean, and its interaction with the coast
(run-up). The most simple task is to describe tsunami propagation in the open ocean.
In this case, the wave’s amplitude A ∼ 10−1–100 m is significantly smaller than
the ocean depth H ∼ 103m, while the depth, in turn, is much smaller than the wave-
length λ = T (gH)1/2 ∼ 104–106m. These two facts permit to apply with success
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the simplest linear theory of long waves. At any rate, the manifestations of ampli-
tude and phase dispersion will be insignificant. To describe the run-up of waves is
already a more complicated problem pertaining to the class of nonlinear problems
in a region with moving boundaries. Indeed, as one approaches the coast, the ocean
depth decreases, while the tsunami amplitude increases, so the nonlinearity parame-
ter A/H is no longer a small quantity. Moreover, currents associated with the wave
become turbulent, the influence of friction on the seafloor increases, processes result-
ing in suspension of bottom sediments are activated. A problem of no less complexity
is presented by the fact that as the wave propagates over the land, the boundaries of
the region, in which the hydrodynamic problem is resolved, alter quite essentially.
First of all, this naturally concerns the advancement of the shoreline, but the “water–
air” and the “water–bottom” (owing to erosion) boundaries alsomove. In this chapter,
the main physical regularities, determining tsunami propagation in the open ocean
and the run-up of waves on a shore, will be dealt with. Significant attention will be
devoted to mathematical models, applied in numerical tsunami simulation.

6.1 Traditional Ideas Concerning the Problem
of Tsunami Propagation

Right up till the last quarter of the twentieth century all measurements of tsunami
waves were performed exclusively by coastal stations. Only during the past decades
has the development of engineering reached a level that provides for the possibility
of reliable tsunami registration in the open ocean and even at the very source during
generation. Measurements of wave parameters, done with the aid of pressure sensors
at the ocean bottom (Jacques and Soloviev 1971; Gonzalez et al. 1987; Kulikov and
Gonzalez 1995; Milburn et al. 1996; Rabinovich and Eblé 2015), GPS buoys (Kato
et al. 2011) and satellite radioaltimeters (Okal et al. 1999; Kulikov et al. 2005) permit
to claim with certainty that the amplitude of a tsunami in open ocean, as a rule, lies
between several centimeters and several tens of centimeters. In the most strong cases
the amplitude of the free water surface displacement in the vicinity of the source
may, apparently, reach several meters.

In any case, at great distances from the coast the tsunami amplitude A turns out
to be essentially smaller than the ocean depth H. The value of H, in turn, is essen-
tially inferior to the wavelength λ. These two facts permit, in a first approximation,
to consider tsunami as long (not subject to dispersion) linear waves, the velocity
of which is determined by the simple formula c = √

gH, where g is the acceler-
ation of gravity. The period of tsunami waves, T , lies within the range 102–104 s.
With account of the relationship λ = T

√
gH it is possible to rewrite the condition

λ � H as T
√
g
/

H � 1. It is easy to verify that for the range of periods indicated
this condition is always quite satisfied at small (shelf) depths. But for short-period
tsunamis, propagating in the openocean, fulfillment of this condition is not so evident.
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The linear theory of long waves, representing the most simple version of a theory
of gravitational surface waves on water, serves as quite an applicable approximation
for describing the process of tsunami propagation in the open ocean along short
routes. But, when waves cover long distances, dispersion and nonlinear effects, that
exhibit the property of accumulating, are capable of essentially altering not only
the amplitude, but the very structure of the wave perturbation also.

Manifestations of phase dispersion are well observed in measurements of tsunami
waves in the open ocean by bottom pressure sensors. In Fig. 6.1 the example is pre-
sented of a record of ocean-level variations occurring during the passage of a weak
tsunami, caused by an underwater earthquake in Alaska Bay on March 6, 1988
(Milburn et al. 1996). The distance between the earthquake epicenter and the reg-
istration point was 978km. The upper part of the figure shows the original record,
in which tidal oscillations of the level prevail. The lower part of the figure presents
thefiltered signal, fromwhich the tidal component has been removed. From the record
two groups of waves are well distinguished. The first group, taking effect practically
immediately after the earthquake, represents the response of the pressure sensor to
the surface seismic wave. The second group of waves, delayed by over an hour, repre-
sents oscillations of the ocean level due to passage of the tsunami. From the tsunami
record it is well seen, that at the beginning there are long-period components of
the signal, and only subsequently there appear short-period oscillations. This fact is
established well by spectral-time analysis, the results of which are shown in Fig. 6.2.
The spectral composition of the signal not only changes with time, but the behavior
of these changes satisfy the dispersion law for gravitational waves on water (Kulikov
and Gonzalez 1995). The dispersion law is shown in the figure by the solid line,
calculated by formula t(ω ) = L

/
Cgr(ω ), where L is the distance from the sensor

Fig. 6.1 Example of tsunami registration in open ocean by bottom pressure sensor (Adapted from
Milburn et al. 1996)
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Fig. 6.2 Spectral-time diagram for amplitude of ocean-level oscillations during passage of tsunami
of March 6, 1988, tsunami (the record is shown in Fig. 6.1). The isolines are drawn in steps of 1dB.
The solid line shows theoretical calculation of time spectral components take effect, performed in
accordance with the dispersion law for gravitational waves (Adapted from Kulikov and Gonzalez
1995)

to the earthquake epicenter, Cgr(ω) is the group velocity, which is a function of
the cyclic frequency ω.

We shall take advantage of the dispersion relation for gravitational surface waves
in a liquid, ω2 = gk tanh(kH), where k = 2π/λ is the wave number according to
which the group velocity is determined by the formula

Cgr = ∂ω

∂k
=

g
(

kH

cosh2(kH)
+ tanh(kH)

)

2
√
gk tanh(kH)

.

We recall that in wave physics, besides the group velocity, due to which energy is
transported, one also deals with the phase velocity, i.e., the velocity with which the
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phase of a wave propagates. The phase velocity of gravitational waves on water is
determined by the following expression:

Cph = ω

k
=

√
gk th(kH)

k
.

A feature peculiar to gravitational waves is so-called normal dispersion, in the
case of which the phase velocity exceeds the group velocity. Moreover, here, both
the group and phase velocities are always inferior to the velocity of long waves:
Cgr < Cph <

√
gH . When the wavelength increases, the group and phase veloci-

ties tend asymptotically to a common limit, namely, to the velocity of long waves:
limkH→∞ Cgr = limkH→∞ Cph = √

gH .
We shall now estimate the distance, at which manifestations of dispersion effects

should turn out to be quite significant. The distance of dispersive destruction of
a wave, Lcd , can be determined as the product of the velocity of long waves by
the time, required for a wave packet to lag behind the front at a distance equal to
the wavelength (Kulikov et al. 1996),

Lcd = λ
√
gH√

gH − Cgr
. (6.1)

The following approximate relation follows from formula (6.1), when λ � H:

Lcd ≈ λ3

2π2H2 . (6.2)

For estimates it is often convenient to use the period of a wave, T , instead of
its wavelength. The phase velocity of weakly dispersive waves is quite close to the
velocity of long waves, so the approximate formula λ ≈ T

√
gH holds valid, and

taking it into account we obtain from (6.2) the following relationship:

Lcd ≈ T3g3/2

2π2H1/2 .

This approximate formula can be successfully applied in estimating the dispersive
destruction for any values of tsunami periods and ocean depths taken from real natural
value ranges. Noticeable deviations from the exact formula (6.1) arise only in the case
of small periods and large depths. Thus, for example, in the case of H = 5km and
T = 100 s the approximate formula only underestimates the value of Lcd by 10%.

The dependence (6.1) is presented in Fig. 6.3. The periods of tsunami waves,
that vary within limits of 102–104 s, are plotted along the x-axis. Calculations are
performed for different depths of the water column (numbers near the curves). The
dotted line in the figure shows the length of the Earth’s equator, indicating a measure
of the limit distance which can be covered by a tsunami wave. For typical depths
of the open ocean the whole range of tsunami wave periods can be divided into
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two intervals. “Short-period” waves (T < 103 s), for which the manifestation of
dispersionmay turn out to be significant, correspond to the first interval. In the second
interval (T > 103 s), along routes not longer than the Earth’s equator, no significant
manifestation of dispersion will be observed. In those cases, when the wave periods
exceed 100s only slightly, the manifestation of dispersion will already be noticeable
at relatively short distances of the order of 100–1000km.

It must be noted, here, that a recent analysis of the transoceanic propagation of
tsunami waves caused by the 2011 Tohoku-Oki and the 2010 Chilean earthquakes
revealed an insignificant (below 2%) deviation from the “classical” dispersion law
(Watada et al. 2014). The deviation from the “classical” law ω2 = gk tanh(kH),
that was obtained assuming a homogeneous incompressible layer of water on an
absolutely rigid ocean bottom, is explained by manifestations of the effects of sea-
water compressibility, gravitational potential variation, and solid Earth elasticity. It
is remarkable that “classical” normal dispersion turned out to be peculiar to tsunami
waves with short periods (T < 103 s), while long-period (T > 103 s) waves are
characterized by anomalous dispersion, in the case of which the phase velocity of
waves decreases as the period increases.

Similar estimation can be performed in the case of transformation of a wave
packet due to amplitude dispersion, arising as a consequence of nonlinearity. Con-
sider a wave with a crest of height A. The propagation velocity of the crest will differ
from the velocity of linear long waves, its value can be estimated as

√
g(H + A).

By analogy with the distance of dispersive destruction, we introduce the distance of
“nonlinear destruction” of a wave,

Lcn = λ
√
gH

√
g(H + A) − √

gH
. (6.3)

If A/H � 1, then the following approximate relation will be valid:

Lcn ≈ 2Hλ

A
. (6.4)

Fig. 6.3 Distance of
dispersive destruction of
a tsunami wave as function
of period T and ocean depth
(numbers at curves). The
dotted line shows a distance
equal to the Earth’s equator,
as a measure of a limit
distance, that can be covered
by a tsunami wave
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From formula (6.4) it is seen that, even when the tsunami wave height in open
ocean is quite significant, A = 1m, in the case of a typical depth H = 4km and
wavelength λ = 100km, the value of Lcn will amount to about 400,000 km, which
exceeds the length of the Earth’s equator by an order of magnitude. Therefore, non-
linear effects, in the case of tsunami propagation in the open ocean, can indeed be
neglected.

The ratio of the quantities Lcd and Lcn, determined in accordance with the approx-
imate formulae (6.2) and (6.4), gives the Ursell parameter Lcd/Lcn ∼ Aλ2/H3 = Ur
(Pelinovsky 1996), known in the theory of nonlinear dispersion waves on water. In
open ocean, as a rule, Ur � 1, which means that phase dispersion prevails over non-
linear effects. Near the coast (in shallow water), if microtsunamis are not considered,
the parameter Ur � 1, i.e., nonlinear effects become predominant. Estimation of
the distances of dispersive and nonlinear destruction, yielding formulae similar to
(6.2) and (6.4), can be found in the book Pelinovsky (1982).

From the above analysis it follows that in simulating tsunamis, even along
extended routes, the application of linear theory is quite justified. Moreover, long-
wave theory is also quite appropriate for long-periodwaves. In this connection, it will
be expedient to dwell upon certain partial results, following from the linear theory
of long waves.

Tsunami waves are capable of covering enormous transoceanic distances. In this
connection, the basic regularities exhibited by wave amplitude variations far from
the source are of interest. Consider the ideal case of a limitless ocean with a flat
horizontal bottom. We shall consider the water to be an ideal (nonviscous) liquid.
In the approximation indicated a decrease in the wave amplitude may be due to two
factors: geometrical divergence and phase dispersion.

In those cases, when phase dispersion can be neglected (long waves), a decrease
in the wave amplitude A will only be due to geometric divergence. Indeed, the total
wave energy is proportional to the square amplitude multiplied by the length of
the wave front. As a wave propagates away from its source the length of its wave
front increases in proportion to the distance from the source r. From the energy
conservation law follows the formula A2r = const, precisely which determines the
sought regularity in the amplitude variation of long waves with distance: A ∼ 1/

√
r.

Note that, when long waves propagate within a channel, no geometric divergence
exists, so, consequently, the wave amplitude remains intact.

Dispersive “smearing” of a wave packet in space serves as an additional factor
that reduces the amplitude of waves propagating away from the source. Therefore,
the amplitude of dispersing waves should evidently decrease more rapidly than the
amplitude of long waves. The analytical solutions of the plane (channel) and space
problems of tsunami generation by bottom deformations, obtained in Chap. 3 in an
integral form, can be represented at large distances from the source by analytical
formulas using the stationary phase method. From these formulas it follows that
the amplitude of dispersing waves propagating within a channel falls in accordance
with the law A ∼ 1/

√
r, while in the case of propagation in space (on the plane) in

accordance with the law A ∼ 1/r.

http://dx.doi.org/10.1007/978-3-319-24037-4_3
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Since the distance from the source and the wave propagation time are related
by r = t

√
gH (this formula is approximate in the case of dispersing waves), the

regularities in thewave variation can be represented in the formof time dependencies.
Thus, for example, in the spatial problem the amplitude of dispersingwaves decreases
with time as A ∼ 1/t.

The ocean depth is the only variable quantity entering into the formula for
the velocity of long waves, c = √

gH. Therefore, many effects of tsunami prop-
agation and run-up are related to the relief of the ocean bottom.

Consider the one-dimensional problem of the propagation of a long wave in
a basin, the depth of which varies along the horizontal coordinate. We consider depth
variations to be sufficiently smooth, so the reflection of waves from inclined sections
of the bottom can be neglected. For definiteness, we shall consider a sine wave of
length λ. Within the linear model, the kinetic and potential energies of the wave are
equal to each other, therefore, the total energy attributed to a single space period (and
to unit front length) can be calculated as twice the potential energy,

W = ρg

λ∫

0

ξ2dx, (6.5)

where ξ is the free water surface displacement from the equilibrium position, ρ is
the density of water.

Since in a linear system the perturbation frequency remains unchanged, while
the wavelength may change during propagation, it is worthwhile to perform in for-
mula (6.5) integration over time, instead of space,

W = ρg
√
gH

T∫

0

ξ2dt = const · ξ20

√
H. (6.6)

From energy conservation (we neglect dissipation here) it follows that the quan-
tity ξ20

√
H must be conserved along the route of the wave propagation. In other

words, if the ocean depth decreases, as the wave propagates, then the wave ampli-
tude will increase by the law ξ0 ∼ H−1/4. The relationship obtained is termed as
the Green’s law or the “one-quarter” rule. This law, for instance, explains why
the tsunami amplitude increases as it approaches the coast. Owing to a decrease in
depth and, consequently, in propagation velocity, the wave packet shrinks in space,
but boosts its amplitude.

Another “classical” effect of the interaction of long waves with the relief consists
in their transformation in the region of abrupt changes in the ocean depth. In those
cases, when the ocean depth changes over distances much shorter than the wave-
length, the distribution of depths is expediently represented in the form of a step
(Fig. 6.4a). Such a situation is dealt with in many sectors of classical wave theory
(optics, acoustics), and it is known aswave refraction and reflection at the boundary of
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(a)

(b)

Fig. 6.4 Ocean bottom geometry in problem of long wave transformation on irregularities of
the bottom relief: step (a), rectangular obstacle (b)

two media. We shall only consider normal incidence of waves (the one-dimensional
problem). We shall determine the amplitude coefficients for reflection, R, and trans-
mission, T . To this end, following the classical book Lamb (1932), we take advantage
of the continuity conditions for the free surface displacement, ξ , and thewater release
(Hu) at the depth jump point. The resulting reflection and transmission coefficients
R and T , respectively, are

R =
√

H1/H2 − 1√
H1/H2 + 1

, (6.7)

T = 2
√

H1/H2√
H1/H2 + 1

. (6.8)

The dependences (6.7) and (6.8), calculated within a wide range of depth ratios
H1/H2, are shown inFig. 6.5. IfH1 > H2, then thewaves, that are transmitted through
and reflected from, respectively, a step, will have the same polarity as the incident
wave, and the amplitude of the transmitted wave will increase. In the case of trans-
formation on a step the wave amplitude cannot be more than twice the initial value.
When H1 < H2, the reflected wave changes polarity, and the amplitude of the wave,
reaching deepwater, is reduced.

Now, consider the “classical” problem, akin to the previous one, of transformation
of a long wave above a rectangular obstacle (Fig. 6.4b), of length D and height
|H2 − H1|. The role of the obstacle can be assumed both by a local elevation of
the bottom and by a depression. We note, right away, that this problem cannot be
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Fig. 6.5 Amplitude coefficients for transmission, T , and reflection, R, versus the depth ratio in
the case of wave transformation on a step

reduced to two consecutive independent acts of wave transformation on the front and
back edges of the obstacle, i.e., on two steps. Anyhow, in the case of a solitary wave,
with a length much shorter than the length of the obstacle, such an approach is quite
adequate (Nakoulima et al. 2005).

In the general case, a correct description of wave transformation above a rectangu-
lar obstacle requires the examination of a constrained system comprising five waves.
Consider a sinewave incident upon the obstacle and traveling in the positive direction
of axis 0x. Then, in the regions x < 0 (before the obstacle) and 0 < x < D (above
the obstacle) there exist two wave perturbations, propagating in both the positive and
negative directions, while in the region x > D there is only one perturbation, running
in the positive direction. From the continuity condition for the free surface displace-
ment ξ and the water release (Hu) at points x = 0, D the following expression is
obtained for the amplitude transmission coefficient (Mofjeld et al. 2000):

T = Tmin√
T2
min cos

2 β + sin2 β

, (6.9)

where Tmin = 2
√

H1/H2

1 + H1/H2
, β = k2D is the phase difference between the boundaries

of the obstacle, k2 is the wave number over the obstacle. In the case of transforma-
tion of a long wave on a step the transmission and reflection coefficients were only
determined by the depth ratio and did not depend on any parameters of the wave. In
the case of wave transformation above the rectangular obstacle the transmission coef-
ficient turns out to depend on the wave frequency. The phase difference β is related
to the wave number and, consequently, to the wave frequency, β = ω D/

√
gH2.

The dependence (6.9) is presented in Fig. 6.6. Its important peculiarity consists
of the existence of a minimum transmission coefficient Tmin, the value of which is
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(a)

(b)

Fig. 6.6 Amplitude transmission coefficient for a long wave on a rectangular obstacle versus
the depth ratio (a) and versus the phase difference between the edges of the obstacle (b)

only determined by the depth ratio H1/H2, but does not depend on the width of
the obstacle or the wavelength. The transmission coefficient is quite weakly related
to the quantity H1/H2. The less the width of the obstacle, i.e., the smaller the ratio
D/λ, the weaker this relationship happens to be.

If the width of the obstacle is small as compared to the tsunami wavelength
(D/λ < 0.2), then an increase in the dimensions (width and height) of the obsta-
cle unambiguously results in a decrease of the transmission coefficient. As soon
as the width of the obstacle is commensurable with the wavelength, interference
effects start to become apparent. When the phase difference β (Fig. 6.6b) changes,
the values of coefficient T change periodically from Tmin up to 1. These changes are
explained as follows. The interference between the waves, reflected from the front
and rear boundaries of the obstacle, leads to mutual canceling of the waves and, con-
sequently, to amplification of the transmitted wave intensity.We recall that this effect
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is widely applied for producing antireflection optics. As to applications to the tsunami
problem, we are, first of all, interested in wave transformation on obstacles of small
sizes, D � λ. The point is that the transformation of waves by large-scale bottom
irregularities, D � λ, is automatically taken into account in numerical simulations.
Therefore, it is practically important to estimate the contribution of small-scale (sev-
eral kilometers and less) or so-called sub-net inhomogeneities, the size of which
turns out to be smaller than the distance between the nodes of the mesh. We shall
return to this estimate at the end of the section.

Small-scale inhomogeneities of the open ocean bottom exhibit heights signifi-
cantly smaller than the thickness of the water column. Therefore, it is reasonable to
introduce the relative height of an obstacle,

α ≡ H1 − H2

H1
,

that is a small quantity. When α � 1 and β � 1, from formula (6.9) we obtain
the simple approximate relation

T ≈ 1 − (αβ )2

8
. (6.10)

The expression obtained permits to assert, that in the case of transformation
of a wave passing above an obstacle, the decrease in amplitude is proportional to
the square area of the obstacle.

We have hitherto considered influence of the bottom relief on tsunami waves
within the framework of one-dimensional problems. Actually, tsunami propagation
takes place in two-dimensional space: on a plane or on the surface of a sphere. Cer-
tain two-dimensional peculiarities of the bottom relief, such as underwater oceanic
mountain ridges, the shelf, are capable, for example, of effectively capturing waves,
thus creating priority directions for tsunami propagation and providing for prolonged
“sounding” of tsunamis at a coast. Phenomena of such kind are readily tracked mak-
ing use of ray theory, which is also called an approximation of geometrical optics.
Ray theory provides an effective instrument for operative calculation of tsunami
arrival times. Its application permits to determine the contours of a tsunami source
from data of the network of mareograph stations. Ray theory is extremely illustrative
and permits to judge about the directions of tsunami energy propagation. Computa-
tional methods have been developed for calculating wave amplitudes on the basis of
equations written “along the ray” (Pelinovsky 1996).

The velocity of a wave c being a function of two coordinates, x and y, the ray
equations for nondispersive waves are written as follows (Lighthill 1978):

dX

dt
= c

kx√
k2x + k2y

, (6.11)
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dY

dt
= c

ky√
k2x + k2y

, (6.12)

dkx

dt
= −∂c

∂x

√
k2x + k2y , (6.13)

dky

dt
= −∂c

∂y

√
k2x + k2y , (6.14)

where X, Y are the coordinates of ray points, kx and ky are components of the wave
vector, t represents time. The ray equations written in this form, permit not only to
easily calculate the course of thewave ray, but also the evolution of thewave front. For
computing the ray evolution the set of Eqs. (6.11)–(6.14) must be supplemented by
initial conditions consisting of determination of the initial coordinates and direction.
It is not difficult to note that in the case of a fixed basin depth (c = const) the rays
will be straight lines.

Figure6.7 presents two examples of the computation of ray behavior, performed
with the aid of formulae (6.11)–(6.14). The model bottom relief in the first case
(Fig. 6.7a) imitates a mountain ridge in the middle of the ocean. Part of the rays
emitted by a pointlike source turn out to be captured, these rays further propagate
along the underwater eminence. Not all rays happen to be captured, but only those
the direction of which does not differ strongly from the axis of the ridge, namely, in
this case is the condition of total internal reflection realized.

Fig. 6.7 Examples of influence of bottom relief on the course of wave rays emitted by a pointlike
source: capture of rays by an underwater ridge (a); refraction and capture of waves in the shelf
zone (b)
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Figure6.7b shows the course of rays fromapointlike source, situatedon the “shelf”.
It is well seen that part of the rays, curved at the beginning toward large depths, turn
back to shallowwater. Thus, refraction results in a significant part of the wave energy
turning out to be captured by the shelf and to propagate along the coast. In Fig. 6.7b,
one also observes a classical refraction effect: as the rays arrive in shallow water,
they are turned around in the direction normal to the coastline.

A striking example of the role of waves, captured by the shelf is related to
the tsunami, that took place in Indonesia on December 12, 1992. This event is
known as the tsunami of Flores island. At a distance of 5km north of the Flores
island coast there is a small island (the Babi island) of approximately circular shape
and diameter about 2.5km. The tsunami source was north of Babi island, however,
the maximum run-up (7.1m) was observed on the southern coast of the island. This
effect is explained by the fact that the tsunami wave, having approached the island
from the north, happened to be captured by the shelf, then turned round the island on
both sides and provided maximum run-up on the coast of the back side of the island
relative to the tsunami source. This effect has been studied with the use of laboratory
simulation (e.g., Yeh et al. (1994); Briggs et al. (1995)) and numerical simulation
(e.g., Liu et al. (1995); Choi et al. (2007)).

In the analysis of real events, the use of equations (6.11)–(6.14) is limited to small-
scale areas of water. Beam computation for transoceanic routes requires taking into
account the Earth’s sphericity. Calculation of the path of a ray on a spherical surface
is performed applying the following set of equations (Satake 1988):

dθ

dt
= cos ς

n R
, (6.15)

dϕ

dt
= sin ς

n R sin θ
, (6.16)

dς

dt
= − sin ς

n2R

∂n

∂θ
+ cos ς

n2R sin θ

∂n

∂ϕ
− sin ς cot θ

n R
, (6.17)

where θ is the colatitude (supplement up to the latitude), ϕ is the ray longitude, t is
time, the quantity n = (gH)−1/2 is the inverse velocity of long waves,R is the Earth’s
radius, ς determines the ray direction counted anticlockwise from the direction
toward the South. For computation of the evolution of wave rays knowledge is
required of the distribution of ocean depths over latitude and longitude. At present,
information on the global topography and bathymetry with a space resolution of
30 arcsecond (GEBCO) is available on the site of the British Oceanographic Data
Centre (http://www.ngdc.noaa.gov/mgg/gebco/). An example of the application of
equations (6.15)–(6.17) can be found, for example, in Choi et al. (2003).

Any wave motion in a nonideal (viscous) liquid is subject to dissipation. Tsunami
waves also lose part of their energy as they travel, owing to its irreversible transfor-
mation into heat. We shall estimate the influence of dissipative factors on tsunami
propagation.

http://www.ngdc.noaa.gov/mgg/gebco/
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The damping of long gravitational waves in a viscous liquid is known to be due to
energy dissipation within a thin bottom layer. The wave amplitude, here, decreases
exponentially with time,

A ∼ exp{−γ t}.

The following formula has been obtained in the book Landau and Lifshitz (1987)
for the time decrement of amplitude damping for a wave propagating in a basin of
constant depth H:

γ =
( νω

8H2

)1/2
,

where ν is the molecular kinematic viscosity of the liquid, ω is the cyclic frequency
of the wave. If a long wave propagates only in the direction of axis 0x, then its
amplitude will also decrease exponentially with the distance,

A ∼ exp

{
− x

L1

}
,

where

L1 =
√
gH

γ
=

(
8gH3

νω

)1/2

. (6.18)

The physical meaning of quantity L1 is the distance, over which the amplitude of
a long wave in a viscous liquid becomes e times smaller. We shall call this quantity
the viscous (linear) dissipation length.

Note that formula (6.18) is correct for any constant viscosity coefficient, which,
generally speaking, can be both molecular and turbulent. One must, however, bear
in mind, that in the bottom boundary layer the turbulent viscosity, as a rule, depends
strongly on the vertical component, i.e., is not a constant value. Therefore, it would
not be quite correct to substitute into formula (6.18) any values of the turbulent
viscosity coefficient. On the other hand, in a real ocean exchange of momentum
does not proceed via molecular mechanisms, but by turbulence. Indeed, in spite
of the relatively low flow velocity, characteristic of tsunami waves in open ocean,
u ≈ A

√
g/H ∼ 10−2 m/s, the Reynolds numbers turn out to be sufficiently large for

the development of turbulence.
Determination of the quantity L1 from formula (6.18) actually gives an idea of

the minimum possible level of tsunami wave energy losses. Actually, owing to turbu-
lence these losses may turn out to be more significant. We shall estimate the damping
of tsunami waves on the basis of the known parameterization of frictional tension
exerted by the ocean bottom on the water flowing along it with a velocity v,

TB = −CBρv |v| , (6.19)

where ρ is the density of water, CB is a dimensionless empirical coefficient, the value
of which is usually set to 0.0025 (Murty 1984). The minus sign in formula (6.19)



326 6 Propagation of a Tsunami in the Ocean and Its Interaction with the Coast

indicates that the water flow is hindered by a force directed against the flow velocity
vector. The absolute value of the force of friction is proportional to the square flow
velocity, therefore, the problem of wave damping under the action of bottom friction
is certainly not linear, and, consequently, one can expect the damping not to be
exponential in character.

For definiteness, we shall consider the one-dimensional problem of a sine wave
propagating in the positive direction of axis 0x in a basin of fixed depth H,

u(x, t) = u0 sin(x − √
gHt).

Assume the action of the friction force to be insignificant, so that the amplitude
and shape of a wave covering a distance comparable with the wavelength λ undergo
no significant changes. We shall estimate the wave energy per period in space (and
per unit length of front), as twice the kinetic energy,

E = ρH

λ∫

0

u2dx = ρH λu20
2

. (6.20)

Strictly speaking, such an estimate is only valid for linear waves, but, as we have
already noted, we consider the nonlinearity to be weak.

The losses of wave energy per unit time in the region from 0 up to λ, that are due
to the action of bottom friction, are determined by the following formula (the point
above the variable signifies differentiation with respect to time):

Ė =
λ∫

0

(TB, u) dx = −CBρ

λ∫

0

|u|3 dx = −4CBρλu30
3π

. (6.21)

Now, pass in formulae (6.20) and (6.21) to specific energy per unit mass of liquid

b ≡ E

ρ H λ
= u20

2
, (6.22)

ḃ ≡ Ė

ρH λ
= −4CBu30

3πH
. (6.23)

Excluding the quantity u0 in expression (6.23), with the aid of the constraint (6.22)
one obtains the ordinary differential equation

ḃ = −8
√
2CB b3/2

3πH
. (6.24)

We recall, that we are tracing the energy of a sole space period of the wave. The
ordinary differential equation (6.24) describes the variation of this quantity in time.
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The solution of Eq. (6.24), written with respect to the wave velocity amplitude u0,
has the following form:

u0(t) = u0(0)

1 + 4CB u0(0)

3π H
t
, (6.25)

where u0(0) is the velocity amplitude at time moment t = 0. Taking advantage of
the relationship between the free surface displacement and the flow velocity u ≈
ξ
√
g/H and taking into account, that x = t

√
gH, we obtain an expression describing

variation of the wave amplitude along the horizontal coordinate,

ξ0(x) = ξ0(0)

1 + x/L2
, (6.26)

where L2 = 3π H2

4CB ξ0(0)
is the distance, along which the wave amplitude becomes

two times smaller.1 We shall call this quantity the nonlinear dissipation length.
We shall point out a number of special features, distinguishing viscous (linear) and

nonlinear damping of longwaves from each other. First, the actual character of damp-
ing is different: in the first case it is exponential, while in the second it is hyperbolic.
Second, the characteristic distance, alongwhich noticeable wave damping occurs (L1
and L2), is related to different parameters of the problem. The quantity L1 depends
on the wave frequency and on the basin depth, while the quantity L2 depends on
the wave amplitude and depth. In both cases the distance Li increases with the depth
H, but in the case of nonlinear damping this dependence is stronger.

Figure6.8 presents the dependences of dissipation lengths L1 and L2 upon
the ocean depth. Calculations are performed for characteristic ranges of tsunami
wave frequencies (10−4–10−2 Hz) and amplitudes (0, 1–10m) for the coefficient
CB = 0.0025, viscosity ν = 10−6 m2/s. From the figure it is seen that for condi-
tions of the open ocean, H > 103m, viscous and nonlinear friction cannot influence
tsunami wave propagation in any noticeable way. For dissipative effects to be mani-
fested in a noticeable manner the wave must cover a distance exceeding the length of
the Earth’s equator, which is not possible in practice. From a purely theoretical point
of view it is interesting that at large depths the quantities L1 and L2 become closer.
Anyhow, this fact rather reflects the correct choice of coefficient CB. The point is that
viscous dissipation is not taken into account in tsunami models, applied in practice.
At the same time nonlinear dissipation is present in model equations. As it is seen, it
provides approximately the same (albeit tiny) contribution to wave damping, which
could have been provided by viscous dissipation.

Essential manifestations of dissipation are only possible at small depths H<10m.
Here, the role of viscous linear wave dissipation turns out to be insignificant. Most
likely, in shallow water the dissipation lengths will be related as L1/L2 > 10. There-

1With a precision up to a numerical coefficient, this quantity is in accordancewith the result obtained
in the book Pelinovsky (1996).
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Fig. 6.8 Tsunami wave dissipation length versus ocean depth. Curves 1, 2—viscous (linear) dissi-
pation, 3, 4—nonlinear dissipation. The calculation is performed for CB = 0.0025, ν = 10−6 m2/s.
Curve 1—10−4 Hz, 2—10−2 Hz, 3—0.1m, 4—10m. For comparison, the dotted line shows a dis-
tance equal to the length of the Earth’s equator

fore, only taking into account nonlinear dissipation, like it is presently done in prac-
tical models, can be considered justified. The role of classical linear dissipation can
indeed be neglected. We stress that one can speak of a noticeable influence of dis-
sipation on a tsunami wave only in the case of very small depths. If we were to
consider, for example, typical shelf depths H ∼ 100m, then the dissipation length
would, most likely, exceed 1000km.

The wave amplitude decreasing as it propagates can be related not only to dissi-
pation, but also to waves being scattered on small-scale irregularities of the ocean
bottom. For estimating the significance of the scattering effect, we shall make use
of the aforementioned results, concerning the transformation of long waves above
a rectangular obstacle. Consider a “comb”on the ocean bottom, consisting of rectan-
gular obstacles with a repetition period in space of 2D. Then, along a route of length
x, the number of obstacles encountered by a wave will be N = x/2D. Each time
interaction with an obstacle takes place, a decrease in the wave amplitude will occur
determined by the transmission coefficient T . The law by which the wave amplitude
A decreases with distance is written as

A(x) = A0TN . (6.27)

Formula (6.27) is expediently represented in a more customary exponential form,

A(x) = A0 exp

{
− x

L3

}
,

where L3 = −2D/ ln T is the characteristic distance, along which the wave ampli-
tude is reduced by e times, owing to scattering on irregularities of the ocean bottom.
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In the case of small relative heights of the roughnesses α and a small phase difference
β we obtain the simple formula

L3 = 16D

(αβ )2
.

Expressing parameter β through the wavelength and the obstacle width, we
ultimately obtain

L3 = 4

π2

λ2

α2D
. (6.28)

Applying expression (6.28), we shall perform a simple estimation showing
the negligible role of wave scattering by small-scale irregularities of the ocean bot-
tom. Let the tsunami wavelength be 100km and the ocean depth 4km. Then, if
the obstacle has a width D = 1km and is 100m high, then the quantity L3 will
amount to 6.5 × 109m, which is equivalent to over 160 lengths of the Earth’s
equator.

6.2 Numerical Models of Tsunami Propagation

The headlong development of computational technologies, taking place in recent
decades, has opened up new possibilities for numerical studies of problems of
the mechanics of continuous media (MCM). The necessary computational facili-
ties are now available to a wide range of researchers.

Description of tsunami evolution from the moment of generation to arrival of
the wave on the shore represents one of the tasks of MCM. The application of ana-
lytical models for describing real tsunamis is limited, even if only for the complex
topography of the ocean bottom. The only obvious alternative consists of numerical
modeling. The efficiency of such means for studying tsunamis has long been unani-
mously acknowledged by the scientific community. Hopes of resolving the problem
of tsunami prediction are also to a great extent related to the development of numer-
ical models.

The “age” of numerical simulation of real tsunamis started at the end of the 1960s
of the twentieth century. The first works in this direction were performed by Japanese
researchers Aida (1969, 1974), Abe (1978, 1979). One of the first numerical mod-
els developed in Russia was described in Gusyakov and Chubarov (1982, 1987),
Chubarov et al. (1984).

At present there exist numerous software means developed for hydrodynamic
simulation of tsunamis. Without claiming to present a full list, we can indicate the
most well-known models: TUNAMI (Imamura et al. 2006), MOST (Titov et al.
2003), COMCOT (Liu et al. 1998), NAMI DANCE (Zaytsev et al. 2010), MGC
(Shokin et al. 2008), TsunAWI (Harig et al. 2008), NEOWAVE (Yamazaki et al.
2009), GeoClaw (LeVeque et al. 2011), ALASKA (Nicolsky et al. 2011), BOSZ
(Roeber and Cheung 2012).
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Certain tsunami models do not have special names, but are actively applied by
scientific groups—their descriptions can be found in Fine et al. (2005), Fujii and
Satake (2007), Kowalik et al. (2007), Nicolsky et al. (2011), Nosov et al. (2013).

The development of all aforementioned models was based on the theory of long
waves, within the framework of which the initial 3D hydrodynamic problem reduces
to the 2D problem by the integration of equations along the vertical coordinate. In
spite of 3D numerical tsunami models undergoing active development and being
introduced into practice (Ohmachi et al. 2001; Nosov and Kolesov 2007; Choi et al.
2007, 2008; Maeda and Furumura 2013; Bolshakova et al. 2011; Ma et al. 2012),
vertically integrated (2D) models will doubtless continue to be in demand for the fol-
lowing two reasons. First, such models quite adequately reflect the physical essence
of the phenomena examined. Second, 2D simulation requires a relatively small com-
putational capability.

In theCartesian reference systemwith 0x and 0y axes directed eastward and north-
ward, respectively, the equations of nonlinear theory of long waves, with account of
the bottom friction and the Coriolis force, has the following form:

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
= −g

∂ξ

∂x
− CBU

√
U2 + V 2

D
+ f V, (6.29)

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
= −g

∂ξ

∂y
− CBV

√
U2 + V 2

D
− fU, (6.30)

∂ξ

∂t
+ ∂

∂x

(
DU

) + ∂

∂y

(
DV

) = 0, (6.31)

where U, V are the flow velocity components, along the axes 0x and 0y, respec-
tively, ξ is the free surface displacement from the equilibrium position, D(x, y, t) =
H(x, y)+ξ(x, y, t) is the thickness of the water column, g is the acceleration of grav-
ity, f = 2ω sin ϕ is the Coriolis parameter, ω is the angular velocity of the Earth’s
rotation, ϕ is the latitude, CB is a dimensionless empirical coefficient, which is usu-
ally set to 0.0025. There also exist more precise models, which take into account
the dependence of quantity CB on the thickness of the water column. Thus, for
example, the following dependence is applied in Titov et al. (2003):

CB = gn2

D1/3 , (6.32)

where n is the Manning coefficient, the value of which depends on the roughness of
the bottom surface. A typical value of the Manning coefficient for a coast free from
dense vegetation, amounts to n = 0.025s/m1/3.

Note that formula (6.32) yields the value CB = 0.0025 for a water column of
D ≈ 15m. The dependence of CB(D) is weak (CB(1m) ≈ 0.006, CB(100m) ≈
0.0013), therefore, the results of calculations of wave dynamics carried out assuming
the coefficient CB to be constant and with account of the dependence (6.32), should
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not differ strongly fromone another.We recall that the bottom friction does practically
not influence tsunami propagation at large depths.

In certain models another form is used for writing the nonlinear equations of
the theory of long waves (“in total fluxes”),

∂M

∂t
+ ∂

∂x

(
M2

D

)
+ ∂

∂y

(
MN

D

)
= −gD

∂ξ

∂x
− CBM

√
M2 + N2

D2 + fN, (6.33)

∂N

∂t
+ ∂

∂x

(
MN

D

)
+ ∂

∂y

(
N2

D

)
= −gD

∂ξ

∂y
− CBN

√
M2 + N2

D2 − fM, (6.34)

∂ξ

∂t
+ ∂M

∂x
+ ∂N

∂y
= 0, (6.35)

where M = UD, N = V D are components of the water release along the 0x and 0y
axes, respectively. Transition from system (6.29)–(6.31) to system (6.33)–(6.35)
is performed as follows. Equation (6.29) is multiplied by the quantity D, while
Eq. (6.31), in which the partial derivative ∂ξ

/
∂t is replaced by the equivalent quan-

tity ∂D
/
∂t, is multiplied by the velocity component U. Upon adding up the obtained

expressions and performing elementary transformations, we obtain Eq. (6.33). Equa-
tion (6.34) is derived in a similar manner. Transition from formula (6.31) to (6.35) is
trivial and requires no comments.

Note that system (6.29)–(6.31) is not a rigorous consequence of the equations
of hydrodynamics. First of all, this is due to the expression for the force of bottom
friction having been obtained from an empirical dependence. Moreover, the stop-
ping of the flow is due to tangential tension, acting only on the lower boundary.
This circumstance hinders the rigorous derivation of nonlinear equations for long
waves. However, linear equations (without advective terms) can be obtained in a rig-
orous manner by integration of the linearized Reynolds equations along the vertical
coordinate from the bottom up to the free water surface.

In calculating tsunami propagation along extended routes account must be taken
of the curvature of the Earth’s surface. The form of the surface of our planet can
be considered spherical with a precision sufficient for our problem, therefore, it is
expedient to write the equations of the theory of long waves in spherical coordinates,

∂U

∂t
+ 1

R cos ϕ

(
U

∂U

∂ψ
+ V cos ϕ

∂U

∂ϕ

)
− UV tan ϕ

R

= − g
R cos ϕ

∂ξ

∂ψ
− CBU

√
U2 + V 2

D
+ f V, (6.36)
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∂ξ

∂t
+ 1

R cos ϕ

(
∂(U D)

∂ψ
+ ∂(V D cos ϕ)

∂ϕ

)
= 0, (6.38)

whereψ is the longitude, ϕ is the latitude,U and V are the flow velocity components,
along the parallel (West–East) and along the meridian (North–South), respectively,
R ≈ 6371 km is the mean radius of the Earth.

The serious disadvantages of 2D models, based on the theory of long waves,
must be considered to include the neglection of phase dispersion, manifestations
of which, as it was already noted in Sect. 6.1, are, generally speaking, peculiar to
tsunami waves. Thus, for example, in the case of a typical oceanic depth of 5km the
distance of dispersive destruction due to a wave with a period of 500s (see formula
(6.1)) will amount to about 2800km, which is significantly inferior to the length
of transoceanic tsunami propagation routes. Attempts are known at the simulation
of real dispersion in long-wave models on the basis of a numerical effect, namely,
numerical dispersion (see, for example, theMOST (Burwell et al. 2007) packet). But
such an approach can hardly be acknowledged to be universal and quite correct.

All the advantages connected to 2D simulation can be retained and at the same
timeweak phase dispersion can be taken into account correctly within the framework
of the Boussinesq approximation. Precisely, this approximation serves as a basis for
such tsunami models as FUNWAVE-TVD (Shi et al. 2012), COULWAVE (Lynett
et al. 2003), GloBouss (Løvholt et al. 2010).

The set of equations of long-wave theory, written in a Cartesian or spherical
reference system, is usually resolved with initial conditions (initial elevation), repre-
senting a free surface displacement, equivalent to vertical residual deformations of
the ocean bottom, resulting from an earthquake. The initial field of flow velocities is
assumed to be zero. The method for calculating the initial elevation is discussed in
detail in Sect. 3.5.

As a rule, the boundary conditions used for simulating tsunami propagationwithin
the theory of long waves pertain to one of the following three types (Marchuk et al.
1983):

(1) interaction with the coast,
(2) free transmission,
(3) perturbation, arriving from external area.

In the most simple case, the interaction of waves with the coast is described as
total reflection from the coast. To this end one considers that on a certain fixed isobath
(usually, 10–20m) the flowvelocity component normal to the coastline (or the chosen
isobath) turns to zero,

Vn = 0.

A direct consequence of this condition is the equality to zero of the compo-
nent normal to the shoreline (or the chosen isobath) of the derivative of the free
surface displacement,

∂ξ

∂n
= 0.

http://dx.doi.org/10.1007/978-3-319-24037-4_3
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The choice of isobathic line H0, the condition of total reflection on which is
imposed is not, generally speaking, arbitrary. The quantity H0 is related to the spatial
increment, Δ, and, also, to the minimal wave period Tmin, that are reproduced by
the numerical model. The point is that, when a tsunami approaches shallow water,
its wavelength is significantly reduced—sometimes by dozens of times. When the
wavelength becomes comparable to the spatial increment, the numerical model no
longer describes the tsunami dynamics adequately. The waves evidently exhibit the
shortest lengths precisely at those points, where the oceanic depth is the smallest,
i.e., on the isobathic line H0: λmin = Tmin

√
gH0. In accordance with the Nyquist–

Shannon–Kotelnikov theorem, the wavelength should accommodate at least two
spatial increment: λmin ≥ 2Δ. From this condition follows a restriction on the value
of H0

H0 >
4Δ2

T2
ming

. (6.39)

Substituting into formula (6.39) the value, often applied in practice, of the spatial
increment corresponding to 1 angular minute (at the equatorΔ ≈ 1855m), we obtain
for the minimal tsunami wave period Tmin = 100 s the following: H0 > 140m. Note
that this value significantly exceeds the values usually chosen in establishing the
reflection condition. Such large H0 values move the isobathic line too far away from
the true coastal line, which may turn out to be inadmissible even in the case of global
calculations. Theproblem is resolvedby rendering the spatial increment smaller in the
coastal region. From formula (6.39) it follows that the choice of isobath H0 = 10m
in the case of Tmin = 100 s requires the spatial increment to be set to Δ < 500m.

The condition of total reflection is usually applied in those cases, when the main
goal is to investigate wave propagation in the open ocean. In analyzing tsunami
dynamics in the shelf zone a more detailed description is necessary in the interaction
of waves with the coast. Here, it has sense to consider partial reflection of waves and
to make use of the formula proposed by A.V. Nekrasov (1973),

Vn = 1 − r

1 + r

ξ
√
gH

H + ξ
,

where the parameter r, characterizing the degree of reflection, varies within limits
from 0 up to 1.

The limited nature and complexity must be noted of practical implementation of
the partial reflection conditions. In principle, these conditions could be applied for
taking into account the energy losses arising, for example, when waves collapse. In
this case the energy losses always turn out to be concentrated within quite a narrow
coastal strip, while their absolute value may reach tens of percent (Li and Raichlen
2002). But preliminary estimation of the dependence of parameter r upon time and
coordinates represents quite a nontrivial task. If the run-up of waves occurs without
them collapsing, then the application of partial reflection conditions no longer has
any sense owing to the following two reasons (Bernatskiy and Nosov 2012). First,
the tsunami wave energy losses related to bottom friction cannot be treated as an
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effect concentrated near the coastal line. Second, in most cases these energy losses
are so insignificant (<1%) that it is quite expedient to neglect them.

A more complex version of the description of tsunami interaction with the coast
implies numerical simulation of waves running up the coast. We shall dwell upon
methods for resolving this problem in Sect. 6.3.

In those cases, when detailed simulation of the tsunami dynamics within a
restricted region is required, the necessity often arises to make use of boundaries that
freely transmit incident waves. In other words, the amplitude of a wave, reflected
from such a boundary, should be reduced to the minimum. The physical principle
for realization of such a “nonreflecting” boundary condition is quite simple. At each
moment of time a boundary point is assigned that value, which should be brought to
it by the wave incident upon the boundary. However, technical realization of the con-
dition of free transmission turns out to be elementary only in the one-dimensional
case. If one considers wave propagation along the 0x axis, then the condition of free
transmission will be of the form

∂u

∂t
= ±c

∂u

∂x
, (6.40)

where c = √
gH is the velocity of long waves. The quantity u in formula (6.40)

is understood to be any of the sought functions (the free surface displacement or
the flow velocity component).

A condition of the same form as (6.40) is also applicable in resolving two-
dimensional problems, but it will no longer provide for ideal free transmission
through the boundary x = const of waves, travelling at a certain angle to the 0x axis.
Regretfully, no success has been achieved in totally avoiding the reflected wave,
when resolving the problem on a plane. It is possible to reduce the amplitude of
waves, reflected by the boundary, by enhancing the order of the boundary condition
approximation (Marchuk et al. 1983; Ilgamov and Gilmanov 2003),

c
∂2u

∂x∂t
= ∂2u

∂t2
− c2

2

∂2u
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,

c
∂2u

∂t2
− c3

4

∂3u

∂y2∂x
= ∂3u

∂t3
− 3c2

4

∂2u

∂y2∂t
.

In the case of a wave impinging at an incidence angle of 45◦ the 1-st order
condition (6.40) yields an amplitude reflection coefficient R ≈ −0.17, while at
the same time the 2-nd order condition gives R ≈ 0.03 (Ilgamov and Gilmanov
2003). The 2-nd order condition is seen to provide quite a good precision. Note
that one must be careful in imposing boundary conditions of a high order. Unlike
the classical boundary conditions, introduced by Dirichlet, Neumann or Robin, a
boundary condition of higher order may lead to problems, for which no uniqueness
theorem has been proven.
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There also exists another approach to realizing nonreflecting boundaries. It con-
sists in the introduction of an absorbing layer in the vicinity of the boundary (Israeli
and Orzag 1981; Kosloff and Kosloff 1986).

Let us indicate one more original approach to implementing the nonreflection
boundary condition (Ilgamov and Gilmanov 2003). For definiteness we shall assume
a plane wave to be incident at a certain angle upon the boundary x = 0, reflection
from which is to be excluded. The approach consists in superposing two solutions
of one and the same problem upon each other, given that at the boundary x = 0
they, first, satisfy the Dirichlet condition ξ = 0 and, then, the Neumann condition
∂ξ/∂x = 0. The Dirichlet condition is known to provide for an amplitude reflection
coefficient R = −1, while the Neumann condition gives R = 1. Superposition of
these two solutions excludes waves reflected by the boundary x = 0.

The third type of boundary conditions (perturbation, arriving from external area)
is the most simple to realize. If a certain perturbation approaches the boundary from
outside of the calculation region, then at all points of the boundary one must set
the velocity components and the surface displacement to correspond to this pertur-
bation. Depending on the concrete problem these quantities can either be determined
from the solution of another numerical problem or be given by certain functions.

The key information, upon the reliability of which the precision of numerical
tsunami calculations depends, comprises data on the ocean bottom bathymetry and
on the topography of the coastal area. At present, free access is provided to a 1-minute
global database for the Earth’s relief (ETOPO1, http://www.ngdc.noaa.gov/) and a
30 arcsecond digital atlas (GEBCO, British Oceanographic Data Centre, http://www.
ngdc.noaa.gov/mgg/gebco/). For some regions data are available with a significantly
improved space resolution, for example, like in the NGDC Tsunami Inundation
Gridding Project (http://www.ngdc.noaa.gov/mgg/inundation/tsunami/). In run-up
simulation it may turn out to be useful to take advantage of 3 arcsecond data, obtained
by the Shuttle Radar Topography Mission (SRTM). SRTM successfully collected
data over 80% of the Earth’s land surface, for all the area between 60◦N and 56◦S
latitude. The data are available at the site http://seamless.usgs.gov/.

The most widespread approach to the numerical solution of equations describing
tsunami dynamics is based on the finite-difference method, which uses structured
(regular) grids. In those cases, when a detailed description of the wave dynamics
within a region defined beforehand is required, the method of nested grids is applied.
Here, inside the computation region one singles out a sole or several (usually rec-
tangular) subregions of the 1-st level, inside which the spatial increment is rendered
small. In a 1-st level region it is possible to single out subregions of the 2-nd level,
within which the spatial increment is further reduced, and so on. At the boundary
between the subregions of levels n and n + 1 the solutions are dynamically made
to match. Implementation of the method of nested grids is quite simple, so it is
widespread (e.g., TUNAMI, MOST, NAMI DANCE, MGC, FUNWAVE-TVD).

Besides the finite-difference method, use is also made in tsunami simulation of
the method of finite elements applying unstructured grids (variable step) (Harig et al.
2008; Piatanesi et al. 1999; Walters 2006; Zhang and Baptista 2008; Androsov et al.
2011). Implementation of the method of finite elements is more difficult than of

http://www.ngdc.noaa.gov/
http://www.ngdc.noaa.gov/mgg/gebco/
http://www.ngdc.noaa.gov/mgg/gebco/
http://www.ngdc.noaa.gov/mgg/inundation/tsunami/
http://seamless.usgs.gov/
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the finite-difference method. But it does have an important advantage: unstructured
grids are readily adapted to the complex form of a computation region and they admit
condensation of the grid when enhanced spatial resolution is required.

In recent years, works have appeared, in which dynamically adaptive grids are
used in tsunami simulation (LeVeque et al. 2011; Popinet 2012). The main idea of
this approach consists in partitioning the grid into smaller cells inside those zones
of the computation region and at that time, where and when the solution exhibits a
small-scale structure. If the problem is nonlinear and the structure of the solution
is unpredictable, then application of dynamically adaptive grids is doubtless one of
the most optimal approaches. But the dynamics of tsunami waves in open ocean is
linear and all the spatial peculiarities of the wave field are unambiguously related to
the distribution of depths. Therefore, the use of dynamically adaptive grids for the
description of tsunamis in the open ocean is not most optimal. It is expedient to apply
this “fine tool,” for instance, in the shallow-water zone and for describing the run-up,
i.e., precisely in those cases, when the manifestations of nonlinearity are certain to
be significant. In open ocean, when the grid can be readily adapted to the depth
distribution, dynamical adaptation evidently only leads to additional consumption of
computational resources.

For numerical description of the dynamics of linear long waves, the velocity of
which is determined by the expression

√
gH , while their period is conserved during

propagation, it has sense to vary the spatial increment depending on the depth as
follows:

Δ(H) = Δmax
√

H/Hmax, (6.41)

whereΔmax is themaximum spatial increment, established in the vicinity of the point
of maximum depth Hmax. The law (6.41) provides for conservation of the number of
grid nodes per wavelength. Consequently, the possibility is excluded for the length of
a wave in the shallow-water region to drop down to the “dangerous” limit of λ = 2Δ.
Moreover, application of grids of variable step will permit significant reduction of
the computational work content required by the problem.

The law (6.41) can, naturally, not be applied straightforwardly in constructing
a plane rectangular computational grid. In this case, only multiple division of the
spatial increment is possible. Thus, for example, in the case of depths within the
range Hmax/4 < H ≤ Hmax a 1-st level grid is constructed with a spatial increment
Δ1 = Δmax; for depths within a range of Hmax/16 < H ≤ Hmax/4 a 2-nd level grid
is constructed with a spatial increment Δ2 = Δmax/2, and so on. An example of
such a grid is shown in Fig. 6.9a. A more or less smooth decrease in the grid step can
be achieved, in accordance with law (6.41), if triangular partitioning is applied (see
Fig. 6.9b).

Let us estimate the work content required for numerical solution of the prob-
lem concerning the propagation of long waves, when grids with constant and
variable (in accordance with formula (6.41)) spatial increments are used. By the
work content we intend the number of grid nodes multiplied by the necessary num-
ber of time steps, N = NxNyNt . For our estimation we shall assume the computation
region to have a characteristic horizontal extension L. Computation of the tsunami
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Fig. 6.9 Examples of unstructured grids adapted to the ocean depth

propagation must, evidently, be carried out at least until the time, required for the
wave to cover a distance equal to the dimension of the computation region, passes:
T ∼ L/

√
gHmax.

The amount of nodes in a grid of constant step Δ is determined by the simple
formula Nxy ≡ NxNy ∼ (L/Δ)2. The time step is determined by the Courant–
Friedrichs–Lewy Condition: Δt < Δ/

√
gHmax. The number of steps in time is
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estimated as Nt ∼ T/Δt = L/Δ. Thus, when a grid of constant step is used, the
computational work content increases vary rapidly—in proportion to the cubic ratio
of the size of the computation region and the spatial increment:

N ∼
(

L

Δ

)3

.

Let us further estimate the computational work content of the problem, when a
grid of variable step, determined by formula (6.41), is used. We right away note that
the advantage of unstructured grids is not only due to significant reduction of the
amount of nodes, while the necessary spatial resolution in the shallow-water region
is conserved, but, also, to the possibility of setting a large time step and at the same
time maintaining stability of the numerical scheme.

To calculate the number of nodes of a unstructured grid we divide the compu-
tation region into subregions, the oceanic depth in which varies within the ranges
Hmax/4n < H ≤ Hmax/4n−1, where n = 1, 2, 3 . . . The spatial increment in a sub-
region of level n is determined by the formula Δn = Δmax/2n−1. The total number
of grid nodes is estimated as follows:

NU
xy =

∑

n

Sn

Δ2
n

∼ L2

Δ2
max

∑

n

Sn

S
4n−1, (6.42)

where Sn is the area occupied by a subregion of level n, S = ∑
n Sn is the area of all

the region.
The time step is determined by the Courant–Friedrichs–Lewy criterion ΔtU <

Δ(H)/
√

gH , from which, with account of relation (6.41), we obtain ΔtU <

Δmax/
√

gHmax. We can now estimate the number of necessary steps in time:

NU
t ∼ T/ΔtU ∼ L/Δmax. (6.43)

As a result, we have an estimate of the computational work content required for
solution of the problem using an unstructured grid,

NU ∼ NU
xyNU

t ∼ L3

Δ3
max

∑

n

Sn

S
4n−1.

The advantage of applying an unstructured grid is determined by the ratio of the
work contents N and NU

N/NU ∼ 1
∑

n
Sn
S 4n−1

(
Δmax

Δ

)3

. (6.44)

An accurate calculation of the sum present in formula (6.44) requires setting the
concrete bathymetry. As an example, consider the region near to the islandHokkaido,
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shown in Fig. 6.9a. We shall only single out 6 subregions. In this case the spatial
increment varies between Δmax for large depths and Δmax/32 in the coastal region.
Applying the bathymetry GEBCO08 (30 angular seconds) we obtain the following
value for the sum present in formula (6.44):

∑

n

Sn

S
4n−1 ≈ 14.3.

When a structured grid is used, in order to achieve a spatial resolution equivalent
to the resolution, obtained with an unstructured grid, it is necessary to set the step in
space to Δ = Δmax/32 over the entire region. As a result, for the example of a com-
putation region, dealt with, we obtain N/NU ≈ 2300. Hence follows an important
conclusion: application of an unstructured grid permits to reduce the computational
work content of the problem by thousands of times, at the same time maintaining the
required spatial resolution in the shallow-water region.

The decrease in wavelength upon arrival in a shallow-water region is not the only
factor to give rise to short-wave perturbations and to require condensation of the
computational grid. If the ocean depth variation is described by a discrete function,
situations may occur when a significant change of depth occupies a single grid step
in space. In such a case we arrive at an analogy to the classical interaction problem
of a long wave propagating within a channel involving a jump in depth. At the jump
point of the depth the continuity conditions are fulfilled for the displacement of the
free surface ξ1 = ξ2 (pressure) and for the flow of liquid, u1H1 = u2H2 (indices
“1” and “2” are related to the regions separated by the depth jump). Consequently,
at this point a discontinuity forms in the flow velocity as well as a discontinuity in
the spatial derivative of the surface displacement,

u2 − u1 = u1
H1 − H2

H2
, (6.45)

∂ξ2

∂x
− ∂ξ1

∂x
= ∂ξ1

∂x

H1 − H2

H2
. (6.46)

Naturally, the representation of functions in a discrete form in resolving problems
by the finite-difference method implies their saltatory variation. But the validity of
the method will clearly be violated it such saltatory variations alter the values of
the functions strongly. The computation grid must obviously be partitioned so the
calculated functions do not undergo significant changes along distances of the order
of the spatial increment. Mathematically, this condition can be written as follows:

∣
∣
∣
∣
u2 − u1

u1

∣
∣
∣
∣ � 1,



340 6 Propagation of a Tsunami in the Ocean and Its Interaction with the Coast

∣
∣
∣
∣
∣
∣
∣

∂ξ2

∂x
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∂ξ1

∂x

∣
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∣
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∣
� 1.

With account of formulae (6.45) and (6.46) we obtain a sole condition:
∣
∣
∣
∣
H1 − H2

H2

∣
∣
∣
∣ � 1,

which can be rewritten as follows:

|H1 − H2|
H2

≈ |gradH| Δ
H

� 1. (6.47)

From formula (6.47) follows the condition to be imposed on the length of the
spatial increment, which can be readily applied in practice:

Δ � H

|gradH| . (6.48)

Figure6.10 presents the distribution of the quantityH/ |gradH|, calculated for the
region near the island Hokkaido, shown in Fig. 6.9. A typical range of the quantity
investigated is 103–106m, and inmost of the cases it exceeds 104 m. Consequently, in

Fig. 6.10 Distribution of quantity H/ |gradH| for the region shown in Fig. 6.9. In calculations use
was made of the bathymetry GEBCO08 with a resolution of 30 angular seconds
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accordancewith criterion (6.48), the spatial increment can be set at a levelΔ ∼ 103m.
However, in certain cases the quantity H/ |gradH| may reach ∼103m, which makes
it necessary to reduce the spatial increment down to a value Δ ∼ 100m.

In constructing an unstructured grid the spatial increment must, naturally, be
chosen to be equal to the smallest of the values specified by formulae (6.41)
and (6.48).

We shall further touch upon certain results of numerical simulation of the Indone-
sian catastrophic tsunami that took place on December 26, 2004. The example
of this tsunami will be used in describing characteristic features of tsunami wave
propagation for demonstrating the possibilities of modern numerical models. We
shall mainly adhere to the results obtained in Titov et al. (2005).

The tsunami ofDecember 26, 2004, happened to be the first global event, forwhich
there were high-quality measurements of the sea level supplemented with data from
satellite altimeters. The first instrumental measurement of this tsunami appeared 3
hours after the earthquake—the wave was registered by a station on the Coconut
islands (Fig. 6.11) at about 1700km from the epicenter. According to these data,
the first wave was only 30cm high. The first wave was followed by prolonged level
oscillations with a maximum amplitude not exceeding 53cm. At the same time, at
a number of coastal sites of India and Sri Lanka, located at approximately the same
distance, waves ten times higher, than on the Coconut islands, were registered. Such
a large difference in amplitude, confirmed by the results of numerical simulation,
demonstrates a pronounced directivity of the wave energy emission. The data from
othermareographs in the IndianOcean showedwave amplitudes between 0.5 and 3m,
and no noticeable damping was observed as the distance from the source increased.

Fig. 6.11 Time series of tsunami wave heights (cm) as recorded at selected tide-gauge stations in
the three major ocean basins. Arrows indicate first arrival of the tsunami (Reprinted from Titov et al.
2005 by permission of the publisher)
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Note that the wave heights measured by mareographs are not always in good
accordance with the tsunami run-up heights on the coast. Several records, obtained
from regionswith significant run-ups, registeredwave heights 2–5 times smaller, than
actually observed values. Thus, for example, themareograph at Phuket showed 1.5m,
while the actual run-up height was from 3 to 6m. This divergence strongly compli-
cates determination of the true tsunami height on the coast. Moreover, many mare-
ographs in the Indian Ocean were destroyed (Thailand) or happened to be strongly
damaged (Colombo, Sri Lanka). Therefore, the true maximum wave heights may
have remained unknown.

Data on tsunamis in the remote zone revealed that, unlike manifestations near
the source, the maximum wave amplitude was not associated with the leading wave.
In the North Atlantic and at the North of the Pacific Ocean maximum wave heights
were observed with delays from several hours up to several days after the onset of
the tsunami front (Fig. 6.11). It is interesting to note, that at Callao (Peru), situated
19,000km from the source, the waves were higher, than on the Coconut islands,
lying significantly closer (1700km). Moreover, the tsunami amplitude at Halifax
(Nova Scotia, Canada) was also greater, while in this case the waves had to cross not
only the Indian but also the Atlantic Ocean (longitudinally) and in doing so to cover
over 24,000km.

Model studies of tsunami propagation in the open ocean permit to obtain a picture
of energy propagation, which cannot be reconstructed having only the data of coastal
measurements at one’s disposal. Since the tsunami dynamics in the open ocean is
linear, the height of a wave is proportional to the square root of its energy. Thus,
the space distribution of calculated maximum wave heights, presented in Fig. 6.12
provides a clear picture of tsunami energy propagation. Numerous versions of calcu-
lations, performed for different values of bottom deformations, sizes and orientations
of the source, have revealed that all these parameters insignificantly influence wave
propagation in the remote zone. We right away note, that in the close zone the shape
and orientation of the source happen to be decisive parameters.

A very important fact, testifying in favor of the numerical model being adequate,
is the good agreement between wave amplitudes, resulting from calculations, and
those registered by coastal stations. Thus, for example, the anomalously high values
of amplitudes in the remote zone reflect precisely the main directions of wave energy
propagation. The coastal stations in Halifax (Canada), Manzanillo (Mexico), Callao
(Peru), Arice (Chile) recorded wave heights exceeding 50cm. Being at a significant
distance from the source (over 20,000km), each of the sites indicated is to be found
in an area, related to the end of one of the “wave rays”.

Numerical calculations, corroborated by in-situ data, confirm the assumptions that
twomain factors influence tsunami propagation: the source configuration (geometry),
and the waveguide properties of mid-oceanic ridges. We recall that the continental
shelf can also serve as a waveguide. In many cases waves, captured by the shelf, are
the cause of prolonged oscillations of the water level at the coast.

In the nearby zone, the orientation of energy emission was related to the large
extension of the tsunami source. The long and narrow region (stretched out in
the meridional direction), in which deformations of the ocean bottom, caused by
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Fig. 6.12 Global chart showing energy propagation of the 2004 Sumatra tsunami calculated from
MOST. Filled colors show maximum computed tsunami heights during 44h of wave propagation
simulation. Contours show computed arrival time of tsunami waves. Circles denote the locations
and amplitudes of tsunami waves in three range categories for selected tide-gauge stations. Inset
shows fault geometry of the model source and close-up of the computed wave heights in the Bay of
Bengal. Distribution of the slip among four subfaults (from south to north: 21, 13, 17, 2m) provides
best fit for satellite altimetry data and correlates well with seismic and geodetic data inversions
(Reprinted from Titov et al. 2005 by permission of the publisher)

the earthquake of December 26, 2004, were concentrated, formed waves of large
amplitude in the perpendicular, i.e., longitudinal, direction. The waves propagating
in the meridional direction were of essentially smaller amplitude. This effect is not
only manifest in simulations, but it also follows from analysis of records of mare-
ographs and expedition data. Thus, for example, on the opposite coast of the Indian
Ocean, 5000km from the source, on the Somalia coast (East Africa) run-up heights
from 5 up to 9m have been observed (Synolakis et al. 2005). From numerical calcu-
lations of the distribution of maximum amplitudes (Fig. 6.12) it is seen that one of
the “wave rays”ends precisely on this coast.

The main factor, determining the orientation of energy propagation in the remote
zone, is now the topography of the bottom of the World Ocean (Fig. 6.13). Analysis
of the Indonesian tsunami of December 26, 2004, reveals the important role of mid-
oceanic ridges in channeling the tsunami energy. From comparison of Figs. 6.12 and
6.13 it is readily seen that the Southwest Indian Ridge, as well as the Mid-Atlantic
Ridge served as waveguides for propagating the tsunami toward the Atlantic. The
Pacific Antarctic Ridge and Southeast Indian Ridges, and, also, the East-Pacific
Rise contributed to the penetration of waves into the Pacific Ocean. It is interesting
that ridges cope well with the role of waveguides until their curvature does not
exceed a critical value. Thus, for example, the sharp bend in the Mid-Atlantic Ridge
at the parallel of 40◦ S contributed to the waveguide losing beams. As a result,
waves of noticeable amplitude were observed at the Atlantic coast of South America.
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Fig. 6.13 Topography ofWorld Ocean. Mid-oceanic ridges that essentially influenced propagation
of the Indonesian tsunami of December 26, 2004

The numerical model pointed correctly to the significant amplitude (∼1m) in Rio
de Janeiro. Regretfully, no other measurements were carried out at any points of
the Atlantic coast of South America.

In the southern direction from the source, the waves propagated along the Ninety-
East Ridge. In accordance with calculations they could have had a significant height
on the Antarctic coast. However, it was practically impossible to check this fact,
owing to the absence of mareograph stations. Two stations (one Japanese, “Syowa”,
and the other French, “Dumont d’Urville”), located approximately 2000km to
the West and East, respectively, from the point of incidence of the main “beam”,
registered moderate wave heights (of amplitude 60–70cm).

In most cases of tsunami records, obtained in the eastern and central regions of
the Indian Ocean (Fig. 6.11), only the first several waves exhibited the maximum
amplitude. Further, the amplitude approximately exponentially decreased in time.
The duration of anomalously large level oscillations amounted to 12 h. Numerical
simulation shows that such a character of level oscillations at the coast corresponds
to those cases, when waves of maximum amplitude, being focused by an extended
source, traveled directly from the source to the observation point. The pronounced
orientation of wave emission, seen well in Fig. 6.12, once more confirms the fact,
that one of the most important factors determining tsunami propagation in the near
zone is the shape of the source.

Tsunami records, obtained in the western part of the Indian Ocean and in other
oceans, reveal a significant duration of tsunami “sounding”, while level oscillations of
maximum amplitude were observed with an essential delay after the onset of the first
wave. This is due to enhancement of the role of waves reflected from the coasts
and from irregularities of the ocean bottom, and also to propagation along natural
waveguides—submarine ridges. The relatively slow, but energy-saving waveguide
propagation provides for a late onset of the largest waves. Numerical simulation
has shown that a wave perturbation often consists of two (or more) clearly dis-
tinguishable packets. One of them has a relatively small amplitude and propagates
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straightforwardlywith a high velocity, “taking advantage of” deep areas of the ocean.
The second packet has a greater amplitude, but propagates slower along underwater
ridges (elevations).

It is interesting, that the tsunami penetrated the Pacific Ocean via two routes:
directly from the Indian Ocean and through the southern part of the Atlantic Ocean,
bypassing the Drake Passage between South America and Antarctica. Numerical
simulation reveals the waves, that arrived in the Pacific Ocean from the West from
the Indian Ocean, and those, that came from the East through the Atlantic, to have
commensurable amplitudes. For all the Pacific coast, with the exception of southern
Chile, the onset of waves arriving from the East occurs later.

To conclude the section we note that no destructions related to the tsunami of
December 26, 2004 were reported outside the Indian Ocean. But experience in obser-
vations and simulations of the global propagation of tsunamis shows that the penetra-
tion of waves into all oceans is possible in principle. Such a danger can be withstood,
if a global system of tsunami warning is created.

6.3 Tsunami Run-Up on the Coast

Of all problems relevant to tsunami dynamics, the description of wave transforma-
tion in the coastal belt, together with flooding of the coastal zone or uncovering of
the ocean bottom, represents one of the most difficult tasks. This is, first of all, due
to the problem being nonlinear and the boundary, i.e., the shoreline, being movable.
The topic of tsunami run-ups on the coast is so vast that it could be the subject
of a separate monograph. In this section we shall only briefly dwell upon some of
the main results of and approaches to resolving the tsunami run-up problem and give
references to key publications.

The well-known book by J. Stoker (1957) contains the classical formulation of
the run-up problem. An extensive bibliography, reflecting development of the issue
up to the end of the 1980s of the twentieth century, can be found in Voltsinger et al.
(1989). A significant part of the monograph by E.N. Pelinovsky (1996) is devoted to
analytic approaches to resolving the problem of a tsunami run-up. The most signifi-
cant achievements in this field are also expounded in Carrier and Greenspan (1958),
Keller et al. (1960), Shen and Meyer (1963), Sielecki and Wurtele (1970), Lyatkher
and Militeev (1974), Spielvogel (1975), Hibberd and Peregrine (1979), Pedersen
and Gjevik (1983), Kim et al. (1983), Kaistrenko et al. (1985a), Synolakis (1987),
Synolakis et al. (1988), Golubtsova and Mazova (1989), Pelinovsky (1992, 1995),
Pelinovsky et al. (1993), Tadepalli and Synolakis (1994), Liu et al. (1995), Peli-
novsky (1995), Titov and Synolakis (1995), Liu et al. (2003), Carrier et al. (2003),
Kanoglu (2004), Tinti (2005), Dotsenko (2005), Shermeneva and Shugan (2006),
Kanoglu (2006), Madsen et al. (2008), Didenkulova (2007b, 2009a, b), Dobrokho-
tov and Tirozzi (2010), Bernatskiy andNosov (2012). A large part of these references
are based on approximation of the coastal topography by a flat escarp. However, the
bottom profile in the coastal zone can evidently not always be represented by a linear
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function. And, besides other features, the shape of the bottom profile also affects
the run-up characteristics strongly. A special place, here, is occupied by the depth
profile, that is proportional to the coordinate raised to the power 4/3 and is pre-
sented in Cherkesov (1976), Tinti (2001), Didenkulova (2009a), and, also, by the
profile proportional to the coordinate raised to the fourth power (Didenkulova 2010).
Waves can propagate along such profiles without being reflected, which leads to their
anomalous enhancement and, consequently, to an anomalous run-up onto the shore.

Similar “reflectionless” structures also exist in two-dimensional problems
(Didenkulova 2011a, b). The most striking example, here, is a bay with a linear
slope and parabolic cross section,—bays of similar shapes are quite often encoun-
tered in nature (Didenkulova 2011b). Thus, the anomalous tsunami run-up in the
Pago Pago port during the 2009 tsunami on Samoa was primarily due to the specific
“reflectionless” shape of the harbor (Didenkulova 2013).

Publications of the past two decades reveal significant progress in numerical
simulation of tsunami interaction with the coast. Here, in calculating inundation of
the shore use is made both of nonlinear shallow-water equations (in the case of
long-period tsunamis, as a rule, of seismic origin and propagating short or moderate
distances) and of Boussinesq equations (in the case of shorter wave tsunamis, as a
rule, of landslide origin). Of the numerous models based on the nonlinear shallow-
water equations themost well-known are TUNAMI (Imamura et al. 1995), ALASKA
(Nicolsky et al. 2011), MOST (Wei et al. 2008; Tang et al. 2012) and GeoClaw
(Berger and Leveque 1998). Of the models based on Boussinesq equations we note
FUNWAVE (Shi et al. 2012; Grilli et al. 2013), COULWAVE (Park et al. 2013),
BOSZ (Roeber and Cheung 2012) and GloBouss (Harbitz et al. 2014).

To verify numerical models analytic test problems have been developed, and
special laboratory experiments have also been performed (Liu et al. 1991; Yeh et al.
1996).known as the “Catalina benchmark” can be found on the site page http://isec.
nacse.org/workshop/2004_cornell/background.html.Another groupof test problems
is available at the following address (Mapping&ModelingBenchmarkingWorkshop,
February 9–10, 2015, Portland, Oregon): http://coastal.usc.edu/currents_workshop/
problems.html.

There exist different types of tsunami run-ups on a shore. They vary from gradual
flooding (like during the tide) to the onslaught on the coast of a vertical wall of
turbulent water—a bore. As a rule (in about 75% of events), tsunami waves flood
the shore without breaking (Mazova et al. 1983). Tsunami run-ups in the form of
a wall are quite rare, and usually in the case of waves of significant amplitude.

The three following main types of wave run-ups onto the coast can be identified
(Pelinovsky 1996):

• spilling breaker—crest of wave breaks, foam flows down its frontal slope, peculiar
to gently sloping bottom;

• plungingbreaker—crest ofwave surpasses foot and curls down, peculiar to inclined
bottom slopes;

• surging breaker—wave floods coast without breaking, peculiar to steep slopes.

http://isec.nacse.org/workshop/2004{_}cornell/background.html
http://isec.nacse.org/workshop/2004{_}cornell/background.html
http://coastal.usc.edu/currents{_}workshop/problems.html.
http://coastal.usc.edu/currents{_}workshop/problems.html.
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We note that at different points one and the same tsunami may manifest both
different run-up types and different run-up wave shapes (regular wave trains, single
waves, N-waves, etc.). This variety of shapes explains the large number of works
on tsunami wave run-ups of different shapes (see references at the beginning of this
section). As an example we shall touch upon studies of the influence the shape of a
wave hitting a shore has on its run-up characteristics (the maximum run-up height
and velocity, the wave breaking parameter) performed in Didenkulova (2008) for a
flat escarp and in Didenkulova et al. (2015) for narrow bays. The difference in shape
was shown to be insignificant from the point of view of run-up characteristics in all
the cases of symmetric pulses of bell-like shape (sinusoidal pulses, solitons, Lorentz
pulses, and others). The asymmetry of the incident wave turned out to be essential.
In particular, it was established that steepening of the wave front leads to significant
enhancement of the height and velocity of a wave run-up on the shore (Didenkulova
et al. 2007a). The last result was confirmed experimentally in the 309-mwave channel
of the Hannover university (Didenkulova et al. 2015).

The most widespread mathematical model, applied in describing wave dynamics
in the coastal zone, makes use of the nonlinear equations of long waves, (6.29)–
(6.31), in which the Coriolis force is usually neglected. In many cases, for reasons
of simplicity, bottom friction is also neglected, although this factor may actually
influence the run-up value noticeably. The main ideas of the tsunami run-up process
can be understood by considering a one-dimensional problem along the axis perpen-
dicular to the shoreline. Most model studies are performed for a region, representing
a slope connected with a smooth horizontal ocean bottom (Fig. 6.14).

In determining boundary conditions for practical tsunami calculations the so-
called “vertical wall”approximation has become widespread. A boundary condition
of this type provides for total reflection of the wave at a fixed isobath. Note that
the vertical wall approximation is not a purely academic abstraction, it imitates quite
a type of coast, encountered quite often—a rocky precipice, falling off to the water.
In the notation, given in Fig. 6.14, the vertical wall corresponds to β = 90◦ or to
L = 0.

Fig. 6.14 Formulation of the problem of a tsunami run-up on the coast
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From elementary theory of linear waves it is known, that, if a channel of fixed
depth ends in a vertical wall, then the height of the run-up onto the wall is determined
as twice the incident wave amplitude, RL = 2ξ0.

Actually, when approaching the coast, the tsunami amplitude may be commensu-
rable with the depth. Therefore, to determine the run-up height one must, generally
speaking, apply nonlinear theory. Omitting the details of resolving the nonlinear
problem of long-wave theory, expounded in the book Pelinovsky (1996), we present
the resulting analytical formula, that relates the run-up onto a vertical wall, RN , and
the wave amplitude far from the coast, ξ0,

RN = 4H

(

1 + ξ0

H
−

(
1 + ξ0

H

)1/2
)

, (6.49)

whereH is the basin depth. It is readily verified, that the relation RL = 2ξ0 is a partial
case of formula (6.49) given the condition ξ0/H � 1. Comparison of quantities RL

and RN shows, that taking into account nonlinearity enhances the run-up amplitude
insignificantly. As the nonlinearity (of quantity ξ0/H) increases, the ratio RN

/
RL

grows monotonously, but this growth is not without limit,

lim
ξ0
H →∞

(
RN

RL

)
= 2.

This means, the run-up amplitude, calculated with account of nonlinearity, cannot
be superior to twice the amplitude corresponding to linear theory.

We further consider the one-dimensional problem of a long wave moving along
a slope (0 < β < π/2). We write the nonlinear equations for shallow water, taking
into account that the basin depth is a linear function of the horizontal coordinate,
H = H0 − αx,

∂U

∂t
+ U

∂U

∂x
+ g

∂ξ

∂x
= 0, (6.50)

∂ξ

∂t
+ ∂

∂x

(
(ξ − αx) U

)
= 0. (6.51)

Consider the wave, arriving on the shelf, to be characterized by a height ξ0 and
period T . We introduce dimensionless variables (the asterisk “*” will be further
dropped)

t∗ = t

T
, x∗ = xα

ξ0
, ξ∗ = ξ

ξ0
, U∗ = UαT

ξ0
.

In these variables the system (6.50)–(6.51) assumes the following form Kaistrenko
et al. (1985a, b):

∂U

∂t
+ U

∂U

∂x
+ 1

Br

∂ξ

∂x
= 0, (6.52)
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∂ξ

∂t
+ ∂

∂x
[(ξ − x) U] = 0, (6.53)

where Br = ξ0
/
(gα2T2) is the only dimensionless parameter, which from a physical

point of view represents a criterion for the breaking of a wave running up a plane
slope. Note, that this criterion is not quite precise, since it does not take into account
phase dispersion and bottom friction.

Numerous experimental studies have permitted to introduce the Iribarren number
as a criterion for wave breaking (Battjes 1988),

Ir = αλ1/2

ξ
1/2
0

,

where λ is the deepwater wavelength. We consider the depth along the slope to
increase indefinitely, therefore, for waves of any length there exists a region, where
they do not “feel” the bottom. Expressing the wavelength via the period from the dis-
persion relation for gravitational waves in deepwater, λ = gT2

/
(2π), we obtain,

that the empirically introduced Iribarren parameter and the quantity Br are uniquely
related to each other, Ir−2 = 2π Br. The existence of such a relationship tesitifies in
favor of the correct choice of nonlinear long-wave model for describing the tsunami
run-up on the shore. Transition from surging to plunging breaker (wave breaking)
occurs when Ir ≈ 2 (Br ≈ 0.04).

An important step in resolving the run-up problem was the work (Carrier and
Greenspan 1958), in which it was shown, that nonlinear long-wave equations can
be reduced to a linear wave equation, which, unlike the initial system is resolved in
semispace with a fixed boundary. We recall, that the initial system has an unknown
movable boundary—the shoreline. This transformation was subsequently termed
the Carrier–Greenspan transformation.

The approach based on the Carrier–Greenspan transformation has permitted to
find awhole series of analytical solutions to the problem of tsunami run-up on a plane
slope (Pelinovsky 1996).

One of the main results of the analysis of nonlinear run-up problems consists of
the proof that run-up characteristics depend linearly on the wave amplitude far from
the coast. This fact provides for the possibility of applying linear theory in calculating
the run-up. A rigorous substantiation of such possibility can be found in Pelinovsky
(1982), Kaistrenko et al. (1991).

Thus, for instance, in the case of the run-up of a monochromatic wave on a plane
slope, resolution of the linear problem results in it being possible to construct the fol-
lowing simple approximation for the maximum run-up value:

R = ξ0

⎧
⎪⎨

⎪⎩

2, L < 0.05λ;

2π

(
2L

λ

)1/2

, L > 0.05λ.
(6.54)
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(a) (b)

Fig. 6.15 Normalized maximum run-up of solitary waves on plane slope (a 1:1, b 1:19.85) versus
normalized height of incident wave. Squares—nonbreaking data, rhombus—breaking data. Full
and empty symbols correspond to laboratory and numerical experiments, respectively. Solid line—
run-up height on vertical wall, calculated by formula (6.49) (Adapted from Titov and Synolakis
1995)

If the length of the slope is insignificant as comparedwith the length of the incident
wave, then the run-up process will proceed like in the case of a vertical wall, i.e.,
the run-up height will turn out to be twice the amplitude of the incident wave. An
increase in the slope length L (a decrease of the angle β) will lead to a certain
enhancement of the run-up height.

Similar calculations were performed, also, for the run-up of an impulse wave. The
maximum run-up in this case, also, is described by a formula identical to (6.54), but
with a somewhat different numerical coefficient. It is interesting that oscillations of
the shoreline on steep slopes repeat the form of the initial wave. Shoreline oscillations
on a gentle slope are related to the form of the incident wave in a more complex
manner. Thus, for instance, when a solitary wave (of positive sign) is incident upon
a slope, shoreline oscillations turn out to alternate in sign.

The relation between the wave height far from the coast and its run-up height
on a plane slope being linear is confirmed by results of laboratory and numerical
experiments. Figure6.15 presents such a relation, obtained for the run-up of solitary
waves on steep (1:1) and gentle (1:19.85) slopes. The solid line in Fig. 6.15 shows
the dependence corresponding to the run-up height on a vertical wall, calculated by
formula (6.49). In the case of a run-up on a steep slope, the dependence of R(ξ0) is
actually very close to (6.49). But in the case of the run-up of waves of large amplitude
on a gentle slope deviation is seen of the dependence from (6.49) toward an increase in
the run-up height. The bend in the dependence observed at ξ0

/
H ∼ 0.03 (Fig. 6.15b)

corresponds to transition to run-ups involving wave breaking.
In Fig. 6.15a it is seen that the run-up on a steep slope is approximately twice

the wave amplitude far from the coast, which complies with the theoretical result
for the run-up on a vertical wall (6.49). In the case of a run-up on a gentle slope
(Fig. 6.15b) the run-up height increases noticeably; here, it is 3–4 times higher than
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the wave amplitude far from the coast. In any case, the energy losses, related to wave
breaking, result in a reduction of the run-up height. In certain conditions the run-up
height on a gentle slope, involving wave breaking, may even turn out to be smaller
than the same quantity in the case of a vertical wall.

The data of numerical simulation, presented in Fig. 6.15, are in good accordance
with the results of laboratory experiments. Details of the numerical algorithm are
described in Titov and Synolakis (1995).

In conclusion of this section we shall dwell upon certain difficulties arising in
numerical simulation of a tsunami run-up with account of the real relief of the coastal
area. The first difficulty is related to the absence of or insufficiently detailed bathy-
metric and topographical data. For modeling tsunamis in the open ocean, where
wavelengths are significant, of the order of 100km, the existing global data, for
example, GEBCO with a resolution of 30 arcseconds (∼1km) are quite sufficient.
But for reliable numerical simulation of the tsunami dynamics in the coastal zone
it is necessary to have data on the reliefs of the bottom and of the coastal area with
a space resolution hundreds of times better (∼10m). This requirement is related
not only to the significant reduction of wavelengths in shallow water. The qual-
ity of topographical data directly influences the precision in resolving the practical
problem—determination of the run-up boundaries. Here, it must also be noted, that
for resolving the run-up problem accurately it is also necessary to have at one’s
disposal information on tidal level oscillations.

Themost reliable applicability criterion for one or anothermodel of a tsunami run-
up is based on practical tests. Large-scale experiments in basins of lengths exceeding
a hundred meters, like the basin 309m long of the Coastal Research Centre (FZK—
Forschungszentrum Küste), Germany (Fernandez et al. 2014), the basin 205m long
of the Central Research Institute of Electric Power Industry) in Japan (Matsuyama
et al. 2007), the basin 110m long of the Oregon University in the USA (Linton et al.
2013; Riggs et al. 2014) and others, have recently become widespread.

After publication of Madsen et al. (2008), the authors of which showed that the
shape of a real wave cannot be represented by a soliton, the philosophy of tsunami
simulation in a laboratory started to undergo changes. At present the main accent
in laboratory simulations is on the reproduction of real records of tsunamis (Ros-
setto et al. 2011; Chan and Liu 2012; Schimmels et al. 2014). Of course, laboratory
experiments permit to judge the operational integrity of numerical models, but, nev-
ertheless, most reliable tests are based on comparison of the results of simulation
with data on real tsunamis. Here, we encounter the second difficulty, related to
the existence and quality of results of in-situ measurements. To test a model detailed
measurements of the run-up area are required, desirably supplemented with informa-
tion on the water flow parameters on the coast. In recent years, the database of run-up
parameters is regularly upgraded with high-precision measurements performed by
international expeditions, for which the investigation of coastal areas hit by tsunamis
is mandatory. Contributions to the resolution of this problem are also provided by
high-quality satellite photographs, permitting to determine the run-up area. Until
recently, the water flow velocity in a tsunami run-up on a shore was, as a rule, esti-
mated on the basis of indirect data. In recent years such goals are more and more
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often accomplished with the aid of video filming realized, for example, by cameras
mounted on helicopters or other aircraft, by electronic surveillance or by amateur
cameras (e.g., Fritz et al. 2006, 2012; Hayashi and Koshimura 2013).

The third difficulty is related to the fact, that strong tsunami waves are capable
of changing the initial aspect of a coast, including the topography of the coastal
belt (erosion, demolition of buildings, destruction of vegetation). Thus, subsequent
waves will interact with a coast, the properties of which (topography, irregularities)
were altered by the precedingwave. High-precision run-up simulationwill inevitably
encounter the necessity of taking these effects into account.

The fourth difficulty is due to a tsunami run-up on a shore often not being simply
a flow of seawater. The water flow carries with it floating objects of different sizes
(including vessels, vehicles, floating debris) and, also, boulders and suspended sedi-
ment particles. Significant damage to buildings and other engineering constructions
in the coastal zone are often due to the presence of large floating objects and debris in
the water flow. The hydrodynamic problem of describing such a flow is quite nontriv-
ial, but at the same time extremely called for. Its solution is necessary for estimating
the force exerted by a tsunami on coastal engineering constructions (e.g., Nistor et al.
2009;Ko et al. 2014;Riggs et al. 2014).Another quite important aspect consists of the
transport of sediments and in analyzing the formation of tsunami deposits Sugawara
et al. (2014). Note that understanding the laws of sediment transport and deposition
is the key to the interpretation of paleotsunami deposits (see Sect. 7.2).
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Chapter 7
Methods of Tsunami Wave Registration

Abstract The traditional method for tsunami wave registration by coastal mare-
ographs is described. The technique is described for measuring tsunami waves in
the open ocean with the aid of bottom pressure sensors. The advantages of this tech-
nique are discussed. The technique for studying and documenting effects of tsunami
influence on the coast are briefly expounded. The significance of searching for and
identifying paleotsunami sediments is discussed. The application is described of
satellite altimeters for registering tsunamis in the open ocean. Data are presented on
tsunami manifestations in the Earth’s ionosphere.

Keywords Tsunami registration · Sea level · Tide gauge · Ocean bottom pressure
gauge ·DART ·GPSbuoy ·Tsunami impact ·Tsunami runup ·Tsunami inundation ·
Tsunami deposits · Erosion · Accumulation · Paleotsunami · Satellite altime-
try · Phase dispersion · Ionosphere · Total electron content · Radiotomography ·
Ionospheric airglow

The first information on the potential generation of a tsunami comes from the World
SeismicNetwork. Data on the time, epicenter coordinates, and energy (magnitude) of
an underwater earthquake permit to estimate the location of the source, the probability
for the tsunami to originate, and the time thewavewill arrive at the coast. But tsunami
waves are not related in a unique manner to a seismic event. A strong earthquake
is sometimes accompanied by an insignificant tsunami, while, contrariwise, a weak
earthquake in a number of cases causes the formation of catastrophic waves. For
amore accurate estimationof the tsunamihazard, information is requiredon the actual
development of the wave process with time. In the absence of such information,
the existence of a great number of false alert signals and neglected tsunami events is
practically inevitable.

Tsunami registration is performed by various methods, including traditional mea-
surements of the sea level close to the coast (mareographs) (Lander et al. 1993;
Merrifield et al. 2005), measurements with the aid of ocean bottom pressure sen-
sors (Rabinovich and Eblé 2015), and GPS buoys (Kato et al. 2000, 2011) in the
open ocean, measurements making use of coastal radar systems (Barrick 1979;
Lipa et al. 2012), as well as methods, recently undergoing development, of dis-
tance measurements, which primarily involve satellite altimetry (Okal et al. 1999;
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Kulikov et al. 2004) and interpretation of tsunamigenic ionosphere disturbances
(Occhipinti et al. 2006; Kunitsyn et al. 2011). Investigation of tsunami manifesta-
tions on the coast is performed by in situ expeditions immediately after the event
(post event field survey) (Borrero et al. 2006; Mori and Takahashi 2012). Some
traces of the influence of tsunamis on the coast are conserved for many thousands
of years. Searching for and analyzing such traces of prehistoric tsunamis, or paleot-
sunamis (Atwater 1987; Minoura and Nakaya 1991; Pinegina et al. 2013), permit to
significantly supplement tsunami catalogs.

7.1 Coastal and Deepwater Measurements of Sea Level

The first instrumental registration of a tsunami was obtained by a coastal mareograph
(tide gauge), a device intended for measuring low-frequency variations of the ocean
level (primarily, of tides). The scheme of a traditional mareograph is presented in
Fig. 7.1. Level measurements are carried out in a shaft connected with the ocean
by a relatively thin pipe. Such a scheme permits to automatically filter out high-
frequency level oscillations, related to wind waves.

Independently on how they work, modern coastal tide gauges (floating-type,
hydrostatic, ultrasonic) are equipped with systems for transmitting and/or storing
data. It goes without saying that precisely operative access to the information on sea
level variations is of utmost importance for tsunami forecasting. Telemetric informa-
tion on the sea level is received and processed in national tsunami warning centers
in the real-time mode. Note that in the case of catastrophic tsunamis tide gauges
may not only be damaged, but they may also be totally destroyed by the wave. In
this connection, continuous transmission of data on the sea level becomes especially
important. In the case of gauges that accumulate data, the destruction of a station
may also involve a loss of information accumulated during a certain, even quite long,
time interval.

Until recently, all ideas of the character of tsunami wave evolution in the open
ocean were based exclusively on coastal measurements. The idea of “hydrophysical”
tsunami forecasting based on advance wave registration far from the coast (in open
ocean) by ocean bottom pressure gauges was put forward back in the 60–70s of the
past century by Soloviev (1968), Jacques and Soloviev (1971). But broad practical
implementation of this idea in such systems as DART was made possible by techno-
logical developments only at the beginning of the twenty-first century (Bernard and
Meinig 2011), GITEWS (Münch et al. 2011), NEPTUNE (Thomson et al. 2011),
EMSO (Favali et al. 2009), and DONET (Kaneda 2010; Matsumoto and Kaneda
2013).

Themost well-known system used formeasuring tsunamiwaves in the open ocean
is DART (Deep-ocean Assessment and Reporting of Tsunamis). The system is based
on deepwater pressure sensors, developed in one of the NOAA divisions—Pacific
Marine Environmental Laboratory (PMEL). ADART station consists of an anchored
surface buoy and a bottom platform; information is exchanged between them via an



7.1 Coastal and Deepwater Measurements of Sea Level 361

Fig. 7.1 Traditional tide gauge (mareograph) in a shaft: 1 float; 2 pen; 3 drum with chart strip;
4 counterweight; 5 shaft; 6 pipe connecting shaft with sea; 7 cabin housing the device

acoustic communication channel (Fig. 7.2). The sensor on the platform measures the
pressure with an accuracy, corresponding to a 1mm water column. The level of the
natural longwave noise (without account of tides) in the deepwater part of the ocean
is not high (its root-mean-square value is ∼1mm). This makes it possible to reliably
single out tsunamis of heights of merely 1cm, when the ocean depth at the site of
the sensor varies between 1500 and 6000m. The surface buoy is equipped with a
satellite system for data transmission to the respective Tsunami Warning Centers
for Hawaii and Alaska and, also to PMEL. At present, 62 DART stations are in
operation. Information can be found at the freely accessible site http://www.ndbc.
noaa.gov/dart.shtml.

The creation of an automatized system of level observation in the open ocean rep-
resents a promising way for providing reliable and timely tsunami warning. More-
over, deepwater level measurements are important for developing an understanding

http://www.ndbc.noaa.gov/dart.shtml
http://www.ndbc.noaa.gov/dart.shtml
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Fig. 7.2 Location of DART buoy stations, for registering tsunamis in the open ocean (as of June
2015) (a). Layout of station DART II (b). The figures is taken from http://www.ndbc.noaa.gov/dart.
shtml

http://www.ndbc.noaa.gov/dart.shtml
http://www.ndbc.noaa.gov/dart.shtml
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of the processes of wave excitation and propagation. Compared to coastal measure-
ments, deepwater tsunami registration displays a whole number of important advan-
tages (Titov et al. 2005). First, owing to the tsunami velocity depending on the ocean
depth, the deepwater sensor registers awave faster, than a coastalmareograph, located
at the same distance from the source. Second, a tsunami wave approaching the coast
is strongly distorted (for instance, owing to resonances in bays), and it “forgets”
the properties of the source that generated it. Therefore, coastal mareographs are not
sensitive to the true frequency spectrum of a tsunami. At the same time, a tsunami
signal in the open ocean is not distorted or filtered and contains all the components of
the original spectrum.Third, the amplitude–frequency characteristic (AFC)of bottom
pressure sensors is totally flat within the range of tsunami waves, while the AFC,
peculiar to many coastal mareographs, is complex and not constant. Most mare-
ographs are, generally speaking, not intended for tsunami measurements, since they
were created for observing relatively low-frequency tidal level oscillations. Fourth,
the amplitude of a tsunami in the open ocean is small compared to the ocean depth;
therefore, wave propagation is described with a very good accuracy by simple linear
models. For this reason, the results of deepwater measurements can be applied effec-
tively in resolving inverse problems (reconstruction of perturbation forms at sources,
etc.). And, finally, fifth, one more important advantage of deepwater, as compared
to coastal gauges, consists in their “invulnerability” to the destructive impact of
catastrophic tsunami waves, which always occurs in the coastal shallow-water zone.

Level registration in the open ocean (at large depths) is a difficult technical task,
which has been accomplished only in recent decades. Of the various numerous sys-
tems, quartz sensors provide the best measurement precision and stability.

The amplitude of variations of the bottom pressure p, which arise in the case of a
monochromatic surface gravitational wave traveling in a basin of depth H, is known
to be related to the amplitude ξ of this wave by the following classical formula (e.g.
Lacombe 1965):

p

ρgξ
= 1

cosh(kH)
, (7.1)

where k is the wavenumber related to the cyclic wave frequency ω by the dispersion
relation ω2 = gk tanh(kH).

The quantity p/ρgξ is presented in Fig. 7.3 versus the wave frequency (period) f .
From the figure, it is seen that only sufficiently low-frequency/long-period (T >

10min) waves are manifested in the bottom pressure variations practically without
attenuation (p/ρgξ ≈ 1). Short-period waves turn out to be either noticeably atten-
uated, or not to show up at all in bottom pressure variations. The cutoff frequency of
this natural frequency filter is related to the ocean depth: fc ∼ √

g/H (see Sect. 4.2.1).
Thus, the smaller the depth, at which the pressure gauge is established, the higher-
frequency waves it is capable of registering. Note that direct measurements of the
water surface position using GPS buoy systems (e.g., Kato et al. 2000, 2008, 2011)
permit to reconstruct short-period sea level variations without distortion. However,
this advantage, also, has its reverse side. Short-period level oscillations due, for
instance, to wind waves give rise to significant noise that contaminates the useful

http://dx.doi.org/10.1007/978-3-319-24037-4_4
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Fig. 7.3 Amplitude of bottom pressure variations versus frequency (period) of gravitational surface
wave. The calculation is performed by formula (7.1) for different ocean depths (indicated in the
figure)

signal, although the signal registered by a pressure gauge at the ocean bottom is
initially free from short-period components related to surface gravitational waves.
Such a pressure gauge, however, does not measure the position of the ocean surface
directly: the surface position is reconstructed from the pressure taking advantage of
existing theoretical ideas. An important advantage of the GPS buoy systems consists
in that they measure the position of the ocean surface precisely.

Variations of pressure at the ocean bottom exhibit a broad frequency spectrum and
are due to a whole complex of processes in the atmosphere, ocean, and lithosphere.
Surface, internal, and elastic waves in the water column, as well as seismic surface
waves and changes in the atmospheric pressure, all contribute to variations of the
bottom pressure. The contribution of changes in the atmospheric pressure is readily
taken into account, if observational data on this characteristic are available. The
contribution of long internal waves to pressure variations is estimated by the quantity
(the rigid lid case) pint = δρgAint , where Aint is the internal wave amplitude and δρ is
the change in density at the pycnocline. A typical change in density for the ocean is
δρ ∼ 3 kg/m3 (Gill 1982), therefore, the amplitude of pressure variations caused by
internal waves even of significant amplitude Aint = 10m will only be pint ≈ 300 Pa
(3cm of water).

The most significant contribution of noise to pressure variations is due to hydroa-
coustic and seismic waves (see Sect. 4.2), and, also, to tidal oscillations of the ocean
level. The amplitude of tidal oscillations in open ocean (∼1m) is comparable to
the amplitude of catastrophic tsunami waves. Manifestations of seismic and hydroa-

http://dx.doi.org/10.1007/978-3-319-24037-4_4
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coustic waves in bottom pressure variations, especially in the near-source zone, are
tens of times and more larger in amplitude than tsunami wave manifestations (see
Sects. 4.2.2 and 4.2.3). Owing to the propagation velocities of seismic waves and
tsunamis differing from each other, it can be easy to separate “seismic noise” and
a tsunami signal in the distant zone, since they are separated in time. In the near-
source zone, the tsunami signal is identified using a low-pass filter of cutoff frequency
fc = 0.0718

√
g/H (the selection principle of the numerical coefficient in the formula

is described in Sect. 4.2.1).
In comparing the results of numerical tsunami calculations with measurements,

the necessity usually arises to remove the tidal component from the measured signal.
This procedure has been termed “de-tiding.” Usually, harmonic analysis is applied
for de-tiding. Application of this method implies the existence of quite a long row of
observations of sea level variations at the gauge location (∼1 month). From obser-
vations, one determines the harmonic constants, the knowledge of which permits to
calculate the tidal behavior of the ocean level. Subtracting the tidal course of the
level from the measured signal, we obtain the sought de-tided tsunami signal. Note
that the application of simple high-pass filtration in de-tiding is far from yielding a
satisfactory answer in all cases.

As an example of a record obtained by a deepwater DART station (21413), Fig. 7.4
presents a de-tided signal registered during the 2011 Tohoku-Oki tsunami. The signal
is shown together with its spectrogram (Morelet transformation). The manifestations
of seismic waves (the high-frequency splash) that reached the station first are seen

Fig. 7.4 Variations of sea level, registered by deepwater station DART21413 during the 2011
Tohoku-Oki tsunami (March 11), and spectrogram of signal. Recording lasted 12hours. The time
moment corresponding to the beginning of the earthquake of Mw9.0 is indicated. The white-
dotted line on the spectrogram shows the position of the critical frequency (fg) of gravitational
waves. The black-dotted line indicates the theoretical estimate for the arrival time of the signal,
calculated by the formula: tar = L/Cgr

http://dx.doi.org/10.1007/978-3-319-24037-4_4
http://dx.doi.org/10.1007/978-3-319-24037-4_4
http://dx.doi.org/10.1007/978-3-319-24037-4_4
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well from the record. The onset of the leading tsunami wave occurs significantly
later—more than an hour after the arrival of seismic waves. The amplitude of the
leading wave was of the order of 1meter. The tsunami signal is characterized by quite
a noticeable phase dispersion. The black-dotted line in the spectrogram indicates the
calculated arrival time depending on the signal frequency: tar = L/Cgr , where L
is the distance of the earthquake epicenter from the station DART21413 and Cgr is
the group velocity of gravitational surface waves. The calculation is performed for
L = 1147km and for an ocean depth H = 5776m (the average ocean depth along
the propagation path). The theoretical estimate of the onset time is seen to be quite
consistent with the observed picture.

7.2 The Investigation of Coasts After Tsunamis:
Tsunami Deposits

Detailed investigation and documentation of results of the tsunami impact upon
coasts is an important task that permits to study the nature of this phenomenon
more thoroughly, to work out necessary recommendations for tsunami zoning, and
to improve schemes for evacuation of the population. As a result of studies carried out
in the close aftermath of the tsunami impact on a coast, it is possible to determine the
height of the tsunami runup and the distance of the tsunami inundation, to estimate
the water level at different segments of the coast and at different distances from
the coastline, to reveal local peculiarities in tsunami parameters depending on the
bathymetry of the coastal zone and on the coastal morphology. In a number of cases,
the results of studies carried out after tsunamis permitted to correctly determine the
number of tsunami waves and the velocity and direction of the tsunami runoff and
runout.

All effects due to the onset of tsunamis on coasts can be divided into two groups:
erosion and accumulative. On the whole, erosion effects are dominant in the accel-
erating flow zone, while accumulative effects are dominant in the quasistable or
decelerating flow zone (Jaffe and Gelfenbaum 2007). In space, erosion of the relief
and the most significant destruction of natural and civil objects occur closer to the
coastline, while accumulation of the displaced material and deposits takes place at
a certain distance from the coastline (Fig. 7.5). Studies performed in recent years
reveal that both tsunami runoffs and tsunami runouts are capable of exerting erosion
and accumulative effects on a shore (Choowong et al. 2008). Since a tsunami, as a
rule, approaches the coast in the form of a series of waves, division of the coast into
erosion and accumulative zones is, to a certain extent, somewhat arbitrary, as, for
example, the erosion zone of the first wave may happen to be the accumulative zone
of subsequent waves and vice versa. Therefore, in each concrete case one can only
speak of the dominance of tsunamigenic erosion or accumulation at one or another
segment of the coast (Kravchunovskaya et al. 2008; Pinegina et al. 2008).
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Fig. 7.5 Location of erosion and accumulative zones for tsunami runoff. Idealized scheme adapted
from Jaffe and Gelfenbaum (2007)

In several cases, it turned out to be possible to measure the topographic profiles
at one and the same segment of the coast before and after a tsunami (Pinegina et al.
2008; MacInnes et al. 2009a, b). These data permitted to estimate quantitatively the
relationship between the volumes of eroded and accumulated material on the coast
after the tsunami. The results of measurements, carried out on the Kuril islands
before and after the tsunami of November 15, 2006, revealed the volume of material
displaced as a result of erosion to exceed the volume of deposited material. When the
tsunami height was less than 8meters, the erosion volume was 5–15 times greater
than the accumulative volume. When the tsunami height exceeded 15meters, the
erosion volume was 30–40 times greater than the accumulative volume (MacInnes
et al. 2009a).

Investigation of the consequences of a whole series of historical tsunamis at dif-
ferent world sites revealed that tsunamis do not give rise to new forms (such as new
beach ridges) of the coastal relief, but locally they can significantly erode the exis-
tent forms (Fig. 7.6). As a rule, strong erosion effects accompany strong tsunamis
of heights >5m with high flow velocities (Raszhigaeva et al. 2012). In such cases,
tsunamis strip away from the surface the sod cover, erode beach ridges, river sandbars,
terrace scarps, wash out niches along banks made up of sedimentary rock (Fig. 7.7).
The width of the erosion zone depends, first of all, on the tsunami height and on the
flow velocity. Thus, for example, the width of the erosion zone due to influence of the
December 26, 2004 tsunami in the province of Aceh at the northern end of Sumatra
amounted to 2–3km, and farther, at a distance up to 5–10km from the coastline,
there existed an accumulative zone of material brought by the tsunami (Fig. 7.8).

Tsunamigenic sediments consist of the material that composes the beach and the
shallow-water part of the coastal zone (Fig. 7.9). Tsunami deposits may contain silt,
sand, pebbles, boulders, fragments of corals, blocks of unearthed and displaced turf
and soil, trunks of trees, fragments of destroyed buildings, etc. Numerous surveys
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Fig. 7.6 Coast ofMatua island: a before tsunami of November 15, 2006 (photo by E.Vereschagin);
b after the tsunami (photo by T. Pinegina)

have shown that in most cases the spreadout boundaries of tsunami sediments are
close to the boundaries of maximum horizontal tsunami inundations (Bourgeois
and Reinhart 1989; Dawson 1994; MacInnes et al. 2009b). Therefore, when the
consequences of tsunamis on coasts are investigated, their deposits are used for
determining inundation parameters.

The maximum height of the tsunami water column can reach any point between
the maximum inundation line and the coastline. It can be measured by the dirt marks
composed of the finest ground particles (silt, soil, sand), which are quite visible on
smooth surfaces (for instance, on the walls of houses). The height at which one finds
broken branches, torn off bark, or seaweed hanging from the branches of trees that
survived a tsunami indicates the water column height. Thus, to study accumulative
tsunami deposits is a reliable method for estimating tsunami runups and inundations
in both historical and prehistorical (paleotsunamis) cases.

In spite of tsunamis occurring on Earth every year, strong and catastrophic
tsunamis are quite rare phenomena, and in the case of most tsunami dangerous
coasts, the catalog of these events is insufficiently representative to obtain statistical
estimates. Therefore, by the end of the 80s, studies of paleotsunami deposits became
important throughout the whole world.
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Fig. 7.7 Erosion niches developed in sedimentary rock due to the Indonesian tsunami of December
26, 2004 on Sumatra island (photo by T. Pinegina)

The first studies of the deposits of paleotsunamis were carried out in Japan and the
USA at the end of the 80s and the beginning of the 90s (Atwater 1987; Minoura and
Nakaya 1991). During the subsequent period, similar work was performed on the
western coast of Canada, in Chile, Australia, New Zealand and in a number of other
countries—in most of the regions subject to tsunamis. In Russia, comprehensive
work in this field was initiated by the middle of the 90s—on Sakhalin, Kamchatka,
the Kuril islands—in the most tsunamihazardous regions of the Russian Far East
(Pinegina et al. 1997a, b, 2000, 2003, 2012; Pinegina andBourgeois 2001;Bourgeois
et al. 2006; Raszhigaeva et al. 2012).

The main features distinguishing deposits of tsunamis from other genetic types
include the following: (1) their confinement to a coastal belt beyond the zone of
storm accessibility and to different hypsometric levels (approximately up to 30–40m
above the sea level); (2) they contain a beach and upper shoreface sediments; (3) the
insignificant thickness of tsunami deposits (from several millimeters up to several
tens of centimeters, rarely up to a meter); and (4) the periodicity in deposit formation
(tens–hundreds of years). Numerous articles have been devoted to characterizing
tsunami deposits and their peculiarities, for example, the following: Morton et al.
(2007), Tuttle et al. (2004), Lakshmi et al. (2010), Fujiwara and Kamataki (2007),
and Choowong et al. (2008).

The choice of sites for studying the tsunami deposits is based on a careful analy-
sis of aerial photographs and space images as well as topographic maps. With their
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Fig. 7.8 Accumulative zone of deposits due to the tsunami of December 26, 2004 in the town of
Banda-Aceh (photo by T. Pinegina)

aid, key sites on coasts are identified, where tsunamigenic deposits may have been
preserved for a long period of time. These sites must not be within the zone of the
influence of fluvial and slope processes; it is desirable for the coastal relief to exhibit
different height levels and for the configuration of shores not to hinder the free pen-
etration of tsunamis. Moreover, the descriptions are collected of historical tsunamis
related to the contemplated site to be studied. The deposits of historical tsunamis
serve as key deposits for the identification of even more ancient events. During field
work, geodetic surveying is performed of topographic profiles from the coastline
through the beach, beach ridges up to a distance exceeding the maximum tsunami
inundations. Geological excavations are digged along the profiles and geological
sections inside of them are described, and samples on mineralogical, radio-carbonic,
diatomic, pollen, granulometric, and other analysis are collected.

In the Far East, in particular, on the Kamchatka, the investigation of tsunami
deposits is closely related to the possibility of applying the method of tephrachronol-
ogy. This method is based on studying and correlating identified horizons of volcanic
ashes (tephras), each of which manifests a characteristic image, chemical and miner-
alogical composition, and is also spread over a large territory. In studies of tsunami
deposits on the Kamchatka, the tephrachronological method is applied as the key
method for correlating and dating deposits (Fig. 7.10).
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Fig. 7.9 Different types of
tsunami deposits: a fine
sands deposited by the
tsunami of 2004 on the
Simelu island, Indonesia
(photo by N. Raszhigaeva); b
sandy loam with fragments
of peat included, deposited
by a prehistoric tsunami
between 3000 and 3950
years ago at the Kamchatsky
Bay, Kamchatka (photo by T.
Pinegina); c boulders
deposited by the tsunami of
2006 on the Kuril islands
(photo by T. Pinegina)
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Fig. 7.10 Peat outcrop with strata of volcanic ashes (tephras) and tsunami deposits. The horizon
is shown by the red arrow (photo by A. Kozhurin)
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When the geological sections have been described, key geological sections and a
geochronological (time) section are combined, on the basis of which it is possible to
calculate the tsunami frequency on the coast. For the Kamchatka and Kuril coasts,
tens of ancient tsunamis that occurred during the past 2–6 thousand of years were
revealed (Bourgeois et al. 2006; Pinegina and Bourgeois 2001; Pinegina et al. 2013).

The data on tsunami frequencies at individual coastal sites are insufficient for
estimation of the intensity of ancient tsunamis and of the sources of earthquakes
that caused them. To resolve these issues, it is necessary to reconstruct the heights
of tsunami runups and the zones of inundation, as well as the length of the coast,
influenced by each of the tsunamis. This task is difficult and complex. For each of
the sites investigated, it is necessary to reconstruct the ancient coastline and of the
height of the relief at different moments of time during the Holocene. Only upon
implementation of the above it will become possible to determine the necessary
parameters of ancient tsunamis (Pinegina et al. 2012, 2013). Under conditions of
rapid coastal uplifts and subsidence (which is typical for subduction and collision
zones), the reconstruction of ancient coastal lines is especially important. In the case
of most of the regions subject to tsunamis, investigation of their deposits provides
the only possibility for extending the short historical catalogs of strong tsunamis and
earthquakes back to thousands of years in the past.

7.3 Tsunami Detection in the Open Ocean
by Satellite Altimetry

Revelation of the place and time a tsunami wave originates is based on seismic infor-
mation obtained immediately after the earthquake. The absence of observational
data on the tsunami parameters at the source leads to a low efficiency of the com-
putational models, determining the arrival time and amplitude of a wave at each
concrete point. As a result, the level of false tsunami warnings increases.

Thus, for example, during the Shikotan tsunami of October 4, 1994, which hap-
pened to be catastrophic for the Southern Kurils and the Hokkaido island, the inter-
national service sent a warning to the Hawaii islands about the possible approach
of a tsunami several meters high. Significant financial means (up to 30 million US
dollars) were applied in evacuating thousands of people, although the height of
the tsunami turned out to be about half a meter. In these conditions, the application
of remote satellite methods for registering tsunami waves would have permitted to
obtain the lacking information at the very moment of the earthquake or immediately
afterward.

Many thousands of human lives could have been saved during the tsunami of
December 26, 2004, if the system for satellite registration of tsunami waves had
already been functioning within the Indian Ocean.

Direct tsunami measurements, received by coastal level recorders, contain oscil-
lations strongly distorting the initial record of a wave in the open ocean. The arrival
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of a wave in shallow water and its reflection from the coast leads to enhancement
of its amplitude, but the spectrum (shape) of the signal is distorted by the resonance
properties of the shelf, bays, and straits. The best in quality records of tsunamis in
the open ocean are provided by sensors of the bottom hydrostatic pressure (Kulikov
and Gonzalez 1995). However, such systems are very expensive and they do not
provide for total coverage of probable zones of tsunami wave origination. The rapid
development of remote (satellite) methods opens up new possibilities for resolving
problems of efficient tsunami forecasting.

At present, a cardinal way for resolving the problem of sea level investigation
not only near but also at a significant distance from the coast with clear connec-
tion to a unique geodetic reference system consists in the application of satel-
lite altimetry and, for example, high-precision radio altimetry measurements using
the Earth’s artificial satellites (EAS) GEOSAT, TOPEX/POSEIDON, ERS-1, 2,
JASON-1, and ENVISAT. For this purpose, in the future, measurements can be made
use of that were made by the Russian geodetic EAS “Musson-2” and other satellites
with altimeters, designed in other countries. The accuracy, with which the data on
the sea level are correlated to the common system of heights, is provided for by
the receivers of one of the navigational systems, GLONASS, GPS, or DORIS, estab-
lished on board the satellite. At present, the data of satellite altimetry are widely
applied in investigations of mesoscale variations of flows, tides, etc.

Modern systems and means of satellite altimetry are successfully applied for
studying properties of the oceanic lithosphere, determining the parameters of lunar–
solar tides in the ocean. The existence of a correlation has been established between
the level topography of the World Ocena and circulation of water masses and mete-
orological phenomena. Moreover, satellite altimetry has been shown and confirmed
experimentally to serve as an effective means for studying deviations of the vertical
slope, the ocean bottom relief, and the dynamics of the World Ocean surface.

Taking into account the prospects of applying satellite altimetry for resolving
the above-indicated broad class of problems, intensive work was initiated during
the period after 1980 for creating a new class of high-precision radio altimeters and
EAS, to be equipped with them. From the middle of the 80s till the present day,
seven EAS with high-precision radio altimeters on board were put into orbit. During
this period, the precision in determining the orbit improved from 45 to 5cm, while
themeasurement precisionwas improved from 1.5m to 3–6cmENVISAT-1), put into
orbit in 2001 and 2002, provide for a root-mean-square measurement error within
2cm.

Original satellite altimetry databases have been created and are regularly updated,
and they are available for scientific purposes in the Distributed Archive of physical
oceanography of the Jet Propulsion Laboratory of the California Institute of Technol-
ogy (PODAAC) in the USA and the Center for satellite oceanographic data storage,
control, and interpretation (AVISO) in Europe.

An integrated database for satellite altimetry (IDBSA) and a System for autom-
atized satellite altimetry data processing have also been created in the Geophys-
ical Center of the Russian Academy of Sciences (GC RAS) with support of
the RFBR. The database includes altimetry data from satellites GEOIC, GEOSAT,
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TOPEX/POSEIDON, ERS 1, 2, GFO, and JASON for the period from 1985 to 2003.
The System for automized data processing, designed in the GC RAS, supports all
data formats adopted in foreign centers and IDBSA.

The first attempts at applying satellite altimetry data in searching for tsunamis in
the open ocean were evidently made in 1994–1999 (Okal et al. 1999). They analyzed
satellite altimetry data, obtained in the experiments TOPEX/POSEIDON, related to
several strongest tsunamigenic earthquakes: the Nicaragua tsunami of September
2, 1992, the Okushiri tsunami of July 12, 1993, the tsunami of June 2, 1994, on
the island Java, and the Shikotan tsunami of October 4, 1994. Spectral analysis has
only permitted to identify definitively the wave of the 1992 Nicaragua tsunami.

Tsunami researchers recently developed an improved procedure (Zaichenko et al.
2005) of satellite information processing, which comprised several stages for the reg-
istration of tsunami waves in the open ocean. At the first stage, the satellite cycle,
corresponding to the tsunamigenic earthquake,was chosen. Then, all the routes of this
cycle covering the PacificOceanwere selected from the database of theRASGC. The
satellite circuits preceding the earthquake were further discarded. At the same time,
the model, chosen for calculation of the arrival time of the waves, was applied to cal-
culate the position of thewave front in the case of each tsunami source. Calculation of
the arrival timeswas based on bathymetric data. Further, for each point of the satellite,
route comparison was performed of the satellite time, counted from the earthquake
origination moment, and the calculated time for the position of the wave front. This
resulted in determination of the position of the intersection point of the satellite’s
route and the tsunami front.

The position of the wave front is to a certain extent conventional. Calculations are
performed assuming the maximum of the wave propagation velocity to be c = √

gH,
where c is the wave propagation velocity, g is the acceleration of gravity, and H is
the ocean depth. In reality, the wave velocity also depends on its length (see Sect.
6.1). The shorter the wavelength, the slower it propagates. Owing to this dispersion
effect, the real front, as a rule, lags behind this theoretical estimate. The longer
the propagation path, the stronger is the dispersion effect. The wave front can be
distorted even stronger in shallow water. Nevertheless, the estimate of the tsunami
wave front position, calculated by formula c = √

gH, is quite accurate and its error
does not exceed the size of the tsunami source ∼50–100km.

The evolution of a wave packet is due to the dependence of the group velocity on
the frequency:

cg = dω

dk
= ω

2k

(
1 + 2kH

sinh(2kH)

)
, (7.2)

where ω is the angular wave frequency, k is the wave number, and H is the ocean
depth.

A detailed analysis of altimetry data has been performed in Zaichenko et al. (2004)
for six strongest tsunamis: the Shikotan tsunami of 1994, the 1996 tsunami near
the island Irian Jaya, the Okushiri tsunami of 1993, the 1998 tsunami near the coast
of Papua New Guinea, and the tsunamis near Island Java (1994) and the coast of
Peru (2001). In the first four cases, it turned out to be possible to reveal specific
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perturbations of the ocean level, which appear in the records within the time range
close to the moment, when the calculated tsunami front passes. Such perturbations
were most strikingly revealed in the records obtained on July 17, 1998 (Papua New
Guinea). In the last two cases, searches for traces of tsunamis in the records were not
met with success.

Figures7.11 and 7.12 present a map of the investigated region of the Pacific
Ocean with isolines of tsunami arrival times and oceanic level profiles at the coast of
PapuaNewGuinea, onwhich the perturbation, supposedly corresponding to the 1998
tsunami passage time, is indicated.

Fig. 7.11 Map of Pacific Ocean region adjacent to the island Papua New Guinea with isolines of
arrival times of the 1998 tsunami (in 1hour steps). Shown are the routes of the satellites Topex-
Poseidon (circuit 215-18) and ERS-2 (circuit 34-304), which intersect the tsunami wave front. The
crossing points of the routes and the respective isolines of the tsunami front arrival times (dashed
line) are indicated by arrows (Adapted from Zaichenko et al. 2004)
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Fig. 7.12 Profiles of the ocean level with indication of the direction of wave motion (horizontal
arrows) and the crossing point of the theoretical tsunami front and the route of the satellite (vertical
arrows) (Adapted from Zaichenko et al. 2004)

Extremely interesting results were obtained from the analysis of radio altime-
try observations of the catastrophic tsunami of December 26, 2004 in the Indian
Ocean Kulikov et al. (2004). All available altimetry data from TOPEX/POSEIDON,
ENVISAT, and JASON-1 were analyzed for the period immediately after the seis-
mic shock. Individual routes revealed anomalous level variations, probably related to
the passage of tsunami waves. The best-quality record JASON-1 (cycle 109, circuit
129) was chosen for further calculations.

Figure7.13 presents the map of the north-eastern part of the Indian Ocean with
epicenters of the main earthquake red star and the main aftershocks (circles). The
isochrones, showing the calculated position of the tsunami front, are constructedwith
an interval of 0.5 an hour. The figure also shows the route of the satellite JASON-1
(cycle 109, circuit 129) and the respective profile of the ocean level, measured by
the altimeter. In Fig. 7.14b, the profile is depicted in an enhanced scale. For compar-
ison, the level profile, obtained 10 days before the tsunami (preceding cycle 108),
is also plotted. The time it took the satellite to cross the Indian Ocean corresponds
to the period between 2h 51min (12◦ of southern latitude) and 3h 02min (20◦ of
northern latitude), i.e., approximately 2hours after formation of the tsunami wave.
The wave front is seen well at approximately 6◦ of southern latitude. The maximum
wave amplitude amounts to 80cm.
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Fig. 7.13 Map of north-eastern part of the Indian Ocean with isochrones, showing the calculated
front position of the tsunami of December 24, 2004 (with an interval of 0.5 an hour), epicenter of
the main earthquake (red star) epicenters of main aftershocks (circles) Route of JASON-1 satellite
(circuit 109-129). The profile of the ocean level determined from altimetry data is shown along the
route (Courtesy of E.A. Kulikov)

From Fig. 7.13, the intersection angle of the satellite’s route and the wave front
is seen to be approximately 45◦. Therefore, the real horizontal scales of ocean level
variations must be (for geometrical reasons) divided by 1.4. The main wave length
in the record of an altimeter amounts to about 700km, which corresponds to 500km
for the length of a real tsunami wave. On the basis of the average wave velocity
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in the open ocean, equal to ∼200m/s, it is possible to calculate the main tsunami
period T ≈ 40min. Attention should be drawn tomanifestations of higher-frequency
oscillations of the level being observed noticeably more to the North, i.e., closer to
the source. This actually reflects linear tsunami wave dispersion, when short-period
waves exhibit propagation velocities inferior to those of long-period components.

Fig. 7.14 a Altimetry sea level taken along track 129 of the Jason-1 satellite for Cycle 109 and
along the same track 10 days earlier for Cycle 108; and b wavelet analysis of the sea level profile
in (a). The theoretical curve, calculated in accordance with the linear dispersion law for surface
gravitational waves, shows the calculated ‘onset’ moments of the respective spectral components.
Letter “T” indicates the tsunami wavefront (Courtesy of E.A. Kulikov)
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To analyze the effect of linear tsunami wave dispersion, the dependence was cal-
culated of the spectral amplitude of the signal on time and the wave number (wavelet
diagram). The result of calculations is presented in Fig. 7.14b. The wave front is
clearly seen to be related to the onset moment of the low-frequency components
(k < 0.05km−1). High-frequency components appear to the North of the front. The
dispersion curve cg(k), corresponding to formula (7.2), is also shown in the figure. It
was calculated taking into account the intersection angle between the satellite’s route
and the front. Good accordance is observed between “onsets” of the signal spectral
components and the theoretical curve.

The revealed effect of tsunami wave dispersion demonstrates the restrictions of
the longwave approximation, widely applied in numerical models of tsunami wave
propagation. Owing to the “lag” of the high-frequency components in the wave
spectrum, the tsunami amplitude decreases more rapidly than in the “shallow-water”
model. This error is especially noticeable in calculations of the wave field at sig-
nificant distances from the source. In Kulikov and Gonzalez (1995), it was shown
that the effect of linear dispersion can actually totally distort the form of the tsunami
signal in the open ocean. In this case, the main energy is concentrated in the region
of periods around 30–50min, and at a distance of about 1000km from the source,
the distortion is not so significant.

The results described above, in principle, demonstrate the possibility of timely
registration of a dangerous tsunami wave in the open ocean with the aid of modern
systems, permitting to observe the ocean from outer space. Suchmethods of effective
tsunami forecasting will obviously develop in the direction of creating a technol-
ogy for continuous monitoring of the ocean surface both with the aid of sensors of
the open ocean level, equipped with telemetric connection to the processing centers,
and making use of satellite altimetry measurements.

Note that the ocean bottom pressure gauges (see Sect. 7.1) used for measuring
the level of the open ocean possesses an essential advantage as compared to the satel-
lite altimeter. The point is that the frequency range of tsunami waves is practically
free of irrelevant signals, while the corresponding range of wavelengths is quite noisy
(for example, owing to ocean mesoscale eddies). Therefore, a tsunami wave can be
readily singled out in the record of ocean level variations in time, but not in space. A
sole “instantaneous shot” of the ocean level along the track is insufficient for reliable
identification of a tsunami wave—it will just be invisible against the background of
other processes. But, by comparing the data, obtained from two or more satellites
traveling along the same track with a certain time delay between them, it is pos-
sible to single out a tsunami wave against a noisy background. Anyhow, such an
approach will require significant enhancement of the number of satellites, equipped
with altimeters.
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7.4 Tsunami Wave Manifestations in the Ionosphere

The upper layers of the Earth’s atmosphere, including the ionosphere, happen to be
quite sensitive to vertical movements of the ocean or land surface, which involve
sufficiently large areas. Such movements may be seismic oscillations of the Earth’s
surface or perturbations of the ocean surface that occur at the tsunami source or that
are caused by thewave propagation. The ionosphere sensitivity to perturbations of the
ocean or land surface can be explained as follows. Vertical displacements generate
acoustic-gravitational waves (AGW) that penetrate upper layers of the atmosphere,
where the collisions of neutral and charged particles initiatemotion of the ionospheric
plasma. The energy flux density of elastic waves caused by perturbation of the ocean
or land surface is determined by the formula q = cρu2, where c is the velocity of
sound in the atmosphere, ρ(z) is the atmospheric density at height z, and u is the
mass velocity of air particles. The density of Earth’s atmosphere drops exponentially
as the height increases. Consequently, an increase in height should be accompanied
by a multiple increase in the wave perturbation amplitude.

The ionosphere is understood to be the upper part of the atmosphere, where the
concentration of ions and electrons is high. Several layers can be distinguished in the
Earth’s ionosphere,which actually have no clearly identifiable boundaries.Maximum
ionization is observed in the upper layer (F). This layer can be split into layers F1 and
F2 with ionization maxima at heights of 160–200 and 220–320km, respectively. At
nighttime, layer F ascends up to heights of 300–400km. Layer E is located at heights
of 90–150km. Layer D is below 90km. It is important to note that the concentration
of electrons in the ionosphere layers depends essentially on solar activity, on solar
wind, on the actual season, as well as the time of day or night and on other factors.
Characteristics of the ionosphere also exhibit a strong latitudinal dependence. In
this connection, the interpretation of tsunami and earthquake manifestations in the
ionosphere represents a non-trivial problem.

The ionospheric response, caused by a tsunami wave, was first analyzed in a num-
ber of theoretical studies in the past century (Hines 1972;Najita et al. 1974; Peltier and
Hines 1976). The first experimental work, which confirmed the theory, appeared only
three decades later (Artru et al. 2005). Using the dense Japanese Global Positioning
System (GPS) network GEONET, the authors of this work succeeded in identifying
the Total Electron Content (TEC) disturbance, caused by tsunami waves due to the
Mw = 8.2 earthquake in Peru on June 23, 2001. Before long, after the pioneering
work (Artru et al. 2005), a whole series of publications appeared on ionospheric
manifestations of the catastrophic tsunami that occurred in 2004 in the Indian Ocean
(e.g., Liu et al. 2006a, b; DasGupta et al. 2006). The first attempt at a reconstruction of
TEC disturbances associated with tsunamis applying the method of numerical sim-
ulation was made in Occhipinti et al. (2006). The result obtained in this work, and,
also, in subsequent investigations (e.g., Mai and Kiang 2009; Occhipinti et al. 2008;
Makela et al. 2011; Kunitsyn and Vorontsov 2014) confirmed the existence of a clear
relationship between tsunami waves and ionospheric disturbances. In recent years,
the interest in ionospheric tsunami manifestations has risen significantly. Without
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claiming to present a complete list, we shall indicate some more publications in this
field (Hickey et al. 2010; Occhipinti et al. 2011; Kunitsyn et al. 2011; Rozhnoi et al.
2012, 2014a, b).

The existing Global Navigation Satellite systems (GPS, GLONASS, Galileo
and others) with a network of land-based receivers make it possible to probe the
ionosphere in different directions.With the aid of tomographicmethods, it is possible
from the results of probing to reconstruct the spatial structure of the concentration of
electrons in the ionosphere. For this purpose, the measured phases are usually used
of radiosignals of two working frequencies (for GPS satellites: 1575.42MHz and
1227.60MHz) propagating from a satellite to a land-based receiver. The obtained
data represent the phase paths of radiosignals measured in wavelengths. Knowledge
of the phase paths permits to calculate the total electron content (TEC) along the ray
connecting the transmitter and the receiver.

From a mathematical standpoint, a radiotomography problem reduces to resolu-
tion of a set of integral equations. Each equation is an integral along the propagation
path of the signal between the receiver and the transmitter on the satellite. Details of
this method can be found in the monograph (Kunitsyn and Tereshchenko 2003).

Let us examine certain results of ionosphere probing during the 2011 Tohoku-Oki
earthquake and tsunami, presented in Kunitsyn et al. (2011). The Japanese network
of land-based stations includes about 1200 GPS receivers, each of which simul-
taneously receives signals from 10 satellites. Thus, the number of aforementioned
integral equations in the set amounts to∼104. For simplification, a two-dimensional,
instead of three-dimensional, tomographic problem was resolved (in the thin-layer
approximation). As a result, TEC maps were obtained with time intervals of 2min
and horizontal spatial resolution of about 20km for the region of Japan (125–155◦E,
25–50◦N). From the TEC maps, a sharp increase in TEC was revealed that occurred
immediately after the earthquake (after 6min) in a region with a radius of the order
of 50km. The disturbance center was located at approximately 200km east of the
earthquake epicenter (which corresponds to the position of maximum bottom defor-
mations (see Fig. 4.21)—comment by authors). After about 20minutes from the
beginning of the earthquake, the maps clearly show concentric circles that represent
the ionospheric perturbation propagating from the region, where the acoustic pulse
enters the ionosphere (see Fig. 7.15). An analysis of the acoustic-gravitational waves
generated in the atmosphere after the 2011 Tohoku-Oki earthquake was performed
in Kherani et al. (2012) on the basis of three-dimensional simulation and a detailed
dynamic reconstruction of the ocean surface. The results of calculations are in good
agreement with the data of radiotomographic reconstructions presented in Kunitsyn
et al. (2011).

The sharp TEC enhancement observed after the earthquake is evidence of a rapid
and significant uplift of the ocean surface and, consequently, of tsunamigenicity of the
seismic event. It is important to note that information on the sharp TEC enhancement
was received 10min after the beginning of the earthquake, i.e., such information can,
at least in principle, be used for issuing tsunami warnings.

Another interesting result, concerning ionospheric manifestations of the 2011
Tohoku-Oki tsunami, was obtained for the region of the Hawaiian Islands, where the
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Fig. 7.15 Radiotomographic reconstruction of the ionospheric perturbation (acoustic-gravity
waves) generated by the 2011 Tohoku-Oki earthquake. The scale of TEC variations (1 TECU
= 1016 electron/m2) is shown on the right (Courtesy of V.E. Kunitsyn)

tsunami wave arrived approximately 7hours after the earthquake. According to data
provided by the DART51407 station (the station closest to the Hawaiian Islands),
the amplitude of the leading tsunami wave amounts to 15cm. Observations of the
ionosphere were performed by intensity surveys of the red airglow (630.0nm) of
ionospheric plasma (Makela et al. 2011). The height of the assumed peak in the
airglow intensity was 250km.

Fig. 7.16 The ionospheric airglow response overHawaii to the 2011Tohoku-Oki tsunami. Example
of 630.0nm images processed using length—8 FIR filters with passbands of (left) 0.3–1.7mHz,
(middle) 0.3–1.0mHz to highlight the 26.2min period waves, and (right) 1.0–1.7mHz to highlight
the 14.2min period waves. The red line in each image indicates the tsunami location at the time of
the image (Reprinted from Makela et al. 2011 by permission of the publisher)
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The picture of the ionospheric response (see Fig. 7.16) clearly shows that it rep-
resents a series of waves, and some of them are significantly ahead (by an hour) of
the tsunami front. In attempts to explain the nature of the waves propagating more
rapidly than the tsunami front, the authors of Makela et al. (2011) put forward the
following three hypotheses: “(a) an infrasonic wave generated at the earthquake
source propagating in the ionosphere faster than the ocean tsunami wave front, (b) a
plasma diffusion oscillation related to the sea level disturbances of the tsunami wave
front, or (c) the initial tsunami wave generated by pre-rupture processes.” On the
basis of the data of numerical simulation (Occhipinti et al. 2011), the authors of the
publication (Makela et al. 2011) finally considered the third hypothesis to be correct.
The results of simulations performed by a Russian group (Kunitsyn and Vorontsov
2014) rather testify in favor of the second hypothesis. Apparently, it is still too early
to make a final conclusion concerning the physical nature of an “ionospheric precur-
sor.” In any case, however, the existence of an “ionospheric precursor” opens up one
more possibility for the early revelation of a tsunami.

Methods of radiotomography and of observation of the airglow of ionospheric
plasma, which are mainly relevant to the upper ionosphere, are not the only possible
ways of registering ionospheric disturbances. In certain conditions, low-frequency
and very-low-frequency radio signals (the range of 10–40kHz), propagating from the
emitter to the receiver within the layer in between the Earth’s surface and the lower
ionosphere, are also capable of identifying perturbations in the plasma density and
of transmitting this information to the antenna of the receiving device. Application
of this technique permitted, in particular, to observe ionospheric manifestations of
tsunami waves caused by the 2006 Central Kuril Island earthquake, the 2010 Chile
earthquake, and the 2011 Tohoku-Oki earthquake (Rozhnoi et al. 2012, 2014a, b).

At present, the effect of tsunamimanifestations in the ionosphere is very important
as a scientific fact that was, first, predicted theoretically, and, then, registered in
natural conditions by several independent methods. Whether this effect is promising
from the point of view of its application in systems of tsunami warning will be
clarified in the nearest future.
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