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Chapter 1

Definition, Diagnosis, and Epidemiology
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Ricardo Azziz, MD, MBA, MPH1,2,3
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The Polycystic Ovary Syndrome (PCOS) is a heterogeneous disorder, whose
principal features include androgen excess, ovulatory dysfunction, and/or
polycystic ovaries, and is recognized as one of the most common
endocrine/metabolic disorders of women. This syndrome was first described
by Stein and Leventhal in 1935 [1], although the presence of sclerocystic
ovaries had been recognized for at least 90 years before the publication of that
seminal work. Following, we review the definition, diagnostic scheme, and
epidemiology of PCOS as it currently stands.

1. DEFINING PCOS: BASICS

We should first note that PCOS is a functional disorder of unclear etiology,
and, as such, is a diagnosis of exclusion, with other androgen excess and ovula-
tory disorders of clearly defined etiologies excluded. Androgen excess disorders
to exclude are 21-hydroxylase deficient nonclassic adrenal hyperplasia (NCAH),
adrenal or ovarian androgen-secreting tumors, disorders of generalized adreno-
cortical dysfunction (e.g., Cushing’s disease), and use or abuse of androgenic or
anabolic drugs. Although not true androgen excess, another functional disorder
resulting in clinical features suggestive of androgen excess, namely idiopathic
hirsutism, should be excluded. Although still controversial, many investigators
also consider patients with the HyperAndrogenic–Insulin Resistant–Acanthosis
Nigricans (HAIRAN) syndrome (a.k.a. type C insulin resistance syndrome [2]),
as distinct from PCOS, since these women have extreme degrees of hyperin-
sulinism and insulin resistance far greater than the vast majority of PCOS patients



and may have other unique features, including lipodystrophy. Generally, other
disorders that may result in ovulatory dysfunction, such as thyroid dysfunction
and hyperprolactinemia, will also need to be excluded.

Secondly, we should recognize that PCOS is still a “syndrome,” namely a
collection of signs and features that characterize a disorder, where no single test
is diagnostic. In essence, the whole (or global assessment) is greater than the
sum of the individual features. While the disorder is relatively heterogeneous,
three features are generally recognized to compose this syndrome, including
androgen excess, ovulatory dysfunction, and polycystic ovaries. Androgen
excess (or hyperandrogenism) is detectable either by laboratory analysis, gen-
erally measuring circulating androgen levels, or by clinical exam, primarily in
the form of hirsutism. Ovulatory dysfunction is generally detectable by the
presence of clinically evident oligo-amenorrhea, although about 20–30% of
oligo-ovulatory women with PCOS will present with a history of apparent
eumenorrhea (i.e. subclinical oligo-anovulation). Finally, while classically
polycystic ovaries were diagnosed by pathologic examination, today ultra-
sonography is used to establish the presence of this feature. These features have
been combined in various manners to arrive at specific criteria for PCOS.

2. SPECIFIC CRITERIA FOR PCOS

To date, three major criteria have been proposed, with other investigators
proposing modifications of these. We will review the criteria arrived at a NIH/
NICHD expert conference sponsored in 1990 [3], that proposed by an expert
conference of the European Society for Human Reproduction and Embryology
(ESHRE) and the American Society for Reproductive Medicine (ASRM) in
2003 [4], and that proposed by the Androgen Excess Society in 2006 [6].

2.1. The 1990 National Institutes of Health Criteria

The first useful definition of PCOS arose from the proceedings of an expert
conference sponsored by the US National Institutes of Health (NIH) in April
1990 (Table 1). Participants were surveyed, and tabulation of the results indi-
cated that most felt that the features of PCOS were (in order of importance):
(a) hyperandrogenism and/or hyperandrogenemia, (b) chronic anovulation,
and (c) exclusion of related disorders such as hyperprolactinemia, thyroid
disorders, and congenital adrenal hyperplasia [3]. Polycystic ovaries were
suggestive, not diagnostic, of the syndrome. We should note that these pro-
ceedings did not provide clear guidelines on how to define each criterion.

Three principal phenotypes of PCOS are recognized using the NIH
1990 criteria, including women with: (a) hirsutism, hyperandrogenemia, and
oligo-ovulation, (b) hyperandrogenemia and oligo-ovulation, or (c) hirsutism
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and oligo-ovulation. The overall prevalence of these phenotypes in a large
study of white or black women in the US was ~50, ~30, and ~20%, respec-
tively [7], without significant differences in mean age, body mass index
(BMI), waist-to-hip ratio, racial distribution, severity of oligomenorrhea, or
prevalence of family history for hyperandrogenism between the phenotypes.
Alternatively, fasting insulin levels were highest in patients with hirsutism,
hyperandrogenemia, and oligo-ovulation, and lowest in those women with
oligo-ovulation and hirsutism only (Fig. 1). Whether different mechanisms
underlie the development of these phenotypes remains to be demonstrated.

Definition, Diagnosis, and Epidemiology of the Polycystic Ovary Syndrome 3

Fig. 1. Phenotypes of PCOS: relationship to degree of β-cell function but not severity of insulin
resistance (adapted from Ref. [7]).

Table 1. Criteria for defining PCOS

NIH 1990 [3]
To include all of the following:

Clinical hyperandrogenism and/or hyperandrogenemia
Chronic anovulation
Exclusion of related disorders

ESHRE/ASRM (Rotterdam) 2003 [4,5]
To include two of the following, in addition to exclusion of related disorders:

Oligo-anovulation
Hyperandrogenism and/or hyperandrogenemia
Exclusion of related disorders

AES 2006 [6]
To include all of the following:

Hyperandrogenism (hirsutism and/or hyperandrogenemia)
Ovarian dysfunction (oligo-anovulation and/or polycystic ovaries)
Exclusion of related disorders

NIH is US National Institutes of Health; ESHRE is European Society for Human Reproduction and
Embryology, ASRM is American Society of Reproductive Medicine, and AES is Androgen Excess Society.



Overall, the NIH criteria have proven extremely useful to begin to define
and understand, among other features, the high prevalence of the disorder
[8–10], its high frequency of insulin resistance [11,12], and the considerable
risk of these women for developing type 2 diabetes mellitus (DM) [13,14].

2.2. The 2003 ESHRE/ASRM (Rotterdam) Criteria

Another expert conference was organized in Rotterdam in May of 2003
(Table 1), in part sponsored by ESHRE and ASRM. The proceedings of the
conference noted that PCOS could be diagnosed, after the exclusion of related
disorders, by two of three features: (a) oligo- or anovulation, (b) clinical
and/or biochemical signs of hyperandrogenism, or (c) polycystic ovaries [4,5].
As for the NIH 1990 criteria, other disorders should be excluded. It should be
noted that these recommendations did not replace the NIH 1990 criteria;
rather they expanded the definition of PCOS.

Additional phenotypes now considered as being PCOS by this criteria
included: (a) women with polycystic ovaries with clinical and/or biochemi-
cal evidence of androgen excess, but no signs of ovulatory dysfunction and
(b) women with polycystic ovaries and ovulatory dysfunction, but no signs
of androgen excess. However, expanding the definition of PCOS without
good supporting data could have significant detrimental implications for
research (e.g., increased heterogeneity of the study populations), clinical
practice (e.g., requiring that all these patients undergo ultrasonography), and
patient quality of life (e.g., requiring long-term monitoring for the develop-
ment of associated metabolic morbidities and potentially adversely affecting
health care insurability).

2.3. The AES 2006 Criteria

Because of the continuing controversy regarding the definition of the
PCOS, the AES, an international organization dedicated to promoting knowledge
and original clinical and basic research in every aspect of androgen excess dis-
orders, charged a Task Force to recommend an evidence-based definition for
PCOS, whether already in use or not, to guide clinical diagnosis and future
research. The Task Force, after review of all available published data, pro-
posed that PCOS should be diagnosed by the presence of three features: (a)
androgen excess (clinical and/or biochemical hyperandrogenism), (b) ovarian
dysfunction (oligo-anovulation and/or polycystic ovarian morphology), and
(c) exclusion of other androgen excess or ovulatory disorders (Table 1) [6].

The Task Force took the stand that all phenotypes (i.e., specific collection
of features) that composed PCOS should be associated with a morbidity not
directly part of the definition (much like diabetes is defined by those glucose
levels with have been associated with the development of microvascular
disease), namely insulin resistance. This definition then recognizes one
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additional phenotype above that noted by the NIH 1990 criteria, namely that
of women with polycystic ovaries, hyperandrogenism, and apparently normal
ovulation. These patients appear to have features that approximate patients
with PCOS defined by the NIH 1990 criteria, although of a milder nature.
These include slight excess in circulating LH, insulin, and other markers for
cardiovascular disease [15–18]. Essentially, these patients can be considered
to have “mild PCOS,” and, in the absence of long-term follow-up studies, may
not have the same degree of reproductive or metabolic consequences as
women with the full PCOS phenotype.

Alternatively, it was less clear that women with ovulatory dysfunction and
polycystic ovaries, but without any evidence of hyperandrogenism, as a group
have a similar morbidity to patients with PCOS (e.g., insulin resistance). For
example, the prevalence of polycystic-appearing ovaries does not appear to
predict abnormalities in insulin sensitivity either in women with PCOS [19] or
in their sisters [20]. In addition, it is uncertain how patients with hypothalamic
amenorrhea and polycystic ovaries will be differentiated from nonobese
women with PCOS, an important conundrum considering the significant dif-
ferences in long-term morbidity (e.g., bone loss for hypothalamic amenorrhea
and increased bone mass for PCOS, increased risk of diabetes in PCOS but not
hypothalamic amenorrhea patients).

Overall, the Task Force did not discard the possibility that future research
could demonstrate that the subset of women with polycystic ovaries, ovulatory
dysfunction, but without overt androgen excess, may actually have PCOS, but
considered it prudent to withhold expanding the definition of this disorder
much beyond that originally suggested by the NIH 1990 expert conference
until more complete epidemiologic and long-term longitudinal data were
made available.

2.4. Summary

There are strengths and weaknesses to all three criteria. The NIH 1990
criteria clearly represent the core of PCOS patients which all investigators
(and practitioners) would have no doubts of defining as affected. Both the
Rotterdam 2003 and the AES 2006 criteria strive to expand the NIH 1990
definition. The NIH 1990 and, to a lesser degree, the AES 2006 define popu-
lations of patients that on average (but not universally) are at higher risk for
insulin resistance than the general population. Alternatively, the Rotterdam
ESHRE/ASRM 2003 criteria defines a more heterogeneous group of women
whose overall incidence of insulin resistance is lower than either the NIH
1990 or the AES 2006 definitions. Alternatively, by emphasizing polycystic
ovarian morphology, the Rotterdam 2003 criteria identifies a group of women
who may be at higher risk for ovarian hyperstimulation during ovulation
induction for the treatment of ovulatory infertility.

Definition, Diagnosis, and Epidemiology of the Polycystic Ovary Syndrome 5



Note also that women with PCOS demonstrate a rate of obesity higher than
the general population (30–60%, depending on country of origin) [21–24],
insulin resistance and hyperinsulinism (present in 50–70%) [11,13], and an LH
to FSH ratio of greater than 2 or 3 (in 30–50%) [25–30]. However, these features
are not included in any of the major diagnostic criteria, as they are either highly
prevalent in disorders other than PCOS (e.g., obesity and insulin resistance) or
are not observable in the majority of patients with routine laboratory assess-
ments (e.g., an elevated LH:FSH ratio, because LH levels are lower in obese
individuals, which accounts for a large fraction of women with PCOS).

3. DIAGNOSIS OF PCOS

The diagnosis of PCOS entails two principal steps: (a) to determine whether
features suggestive of PCOS are present and (b) to exclude related androgen
excess or ovulatory disorders. The exact diagnostic scheme clearly depends on
what specific criteria are chosen to define PCOS. In general, we utilize the
AES 2006 criteria.

3.1. Determining Whether Features of PCOS are Present

Features that may obviously suggest PCOS include: (a) long-term men-
strual dysfunction or irregularity, suggestive of chronic ovulatory dysfunction,
(b) dermatologic signs suggestive of hyperandrogenism, such as hirsutism,
and less commonly acne or alopecia, and (c) polycystic ovarian morphology
on ultrasonography.

All women with menstrual dysfunction should be evaluated closely for
concomitant signs of hyperandrogenism. Any other sign or complaint of
androgen excess (acne, unwanted hair growth, scalp hair shedding or loss)
would warrant a more in depth evaluation for PCOS. Likewise, menstrual
dysfunction accompanied by clinical signs suggestive of insulin resistance
(e.g., acanthosis nigricans) would also indicate that a more thorough evalua-
tion for PCOS (and metabolic syndrome) is needed. Finally, the presence of
polycystic ovaries on ultrasonography (or at surgery) in a patient with
menstrual dysfunction would likewise suggest the need to exclude PCOS.
Overall, between one-quarter to one-third of all women with oligo-amenorrhea
or menstrual dysfunction will have PCOS [8–10,31]. We should note that not
all patients with PCOS demonstrate clinically obvious oligomenorrhea. In
fact, about 20–30% of oligo-ovulatory PCOS women will present with a
history of apparent eumenorrhea (i.e., subclinical oligo-anovulation) [8,21,32,33].
As such, ovulation should be confirmed (e.g., day 22–24 progesterone [P4]
level) in those apparently eumenorrheic patients who demonstrate other signs
of PCOS (e.g., androgen excess or polycystic ovaries).

6 R. Azziz



Patients with dermatologic signs suggestive of androgen excess, principally
hirsutism, should also be investigated for the presence of PCOS. Between 85
and 95% of patients with frank hirsutism (i.e., a modified Ferriman-Gallwey
[mF-G] score of ≥ 6–8) will have PCOS when evaluated [21,34]. We should
also note that the sole complaint of “unwanted” hair growth in the absence of
frank hirsutism is a strong predictor of PCOS. In a study of 228 patients who
presented with minimal unwanted hair growth and an mF-G score of 5 or less,
50% demonstrated PCOS; among patients with menstrual irregularities, 65%
had an underlying androgen excess disorder, while 22% of those women who
reported being eumenorrheic were so affected [35].

Alternatively, while complaints or signs of acne and scalp hair thinning are
suggestive of PCOS, their predictive value for the disorder is somewhat less
than is the presence of hirsutism or a complaint of unwanted hair. Between
20 and 40% of patients with persistent acne-only [36–38], and only 10% of
those women with alopecia-only [39–40] will have PCOS.

Finally, patients found to have polycystic ovaries are also at risk for PCOS.
Overall, it can be estimated that between 20 and 30% of patients with polycys-
tic ovaries will have PCOS. The likelihood increases, of course, if this finding
is associated with evidence of ovulatory dysfunction and/or androgen excess.
We should note that the diagnosis of polycystic ovaries is relatively specific and
should not be made subjectively. Dewailly and colleagues have suggested that
the presence of polycystic ovaries is established when at least one ovary has
either ≥12 follicles measuring 2–9 mm in diameter and/or an ovarian volume
of >10 cm3 by transvaginal ultrasonography (TV-U/S) [41]. This definition does
not apply to women taking the oral contraceptive pill, since its use can modify
ovarian morphology. If there is evidence of a dominant follicle (>10 mm) or a
corpus luteum, the scan should be repeated during the next cycle. We should
note that the definition of polycystic ovaries is still in flux. In a subsequent
study, these investigators reaffirmed the use of follicle number as the best
criterion, but noted that the threshold value for ovarian volume may need to be
reduced to >7 cm3 [42].

3.2. Exclusion of Other Androgen Excess or Ovulatory Disorders

As PCOS is a diagnosis of exclusion, the diagnosis can only be arrived at after
other disorders have been excluded. These include 21-hydroxylase deficient
NCAH (by a basal and/or stimulated 17-hydroxyprogesterone [17-HP] level, see
below), androgen-secreting neoplasms (by history and clinical exam and appropri-
ate studies in selected patients), adrenocortical hyperactivity (by clinical exam and
appropriate testing), and drug-induced hyperandrogenism (by history). Overall,
these disorders account for 5–10% of all women with androgen excess [21,34].

In addition, it is customary to exclude thyroid dysfunction and hyperpro-
lactinemia by measuring a TSH, using a third-generation assay, and prolactin

Definition, Diagnosis, and Epidemiology of the Polycystic Ovary Syndrome 7



level. However, we should note that recent studies suggest that the prevalence
of these endocrine abnormalities in patients with apparent PCOS is relatively
low, on the order of 1–3% [21,34]. Likewise, if polycystic ovaries are detected,
particularly in the absence of overt signs of androgen excess, disorders that can
result in this ovarian morphology need to be also excluded, such as hypothalamic
amenorrhea [43,44].

3.3. Laboratory and Radiologic/Sonographic Evaluation

Patients suspected of having PCOS can be subdivided into four groups:

(a) Women with overt long-term oligomenorrhea and hirsutism: these women
basically have PCOS, pending exclusion of related disorders. At a mini-
mum, these women should undergo measurement of circulating TSH, pro-
lactin, and 17-HP levels. If these values are normal, then the patient is
presumed to have PCOS. Androgen levels and ovarian ultrasonography,
while of some value, are not critical to establishing the diagnosis.

(b) Women with overt long-term oligomenorrhea, but no obvious sign of andro-
gen excess: these women should undergo measurement of circulating
androgen levels (generally total and free testosterone [T], and DHEAS)
and, if elevated, assessment of TSH, prolactin, and 17-HP levels. If these
latter values are normal, then the patient is presumed to have PCOS. In
these women, at least according to the NIH 1990 and the AES 2006 criteria,
the use of ovarian ultrasonography will not alter the diagnosis.

(c) Women with hirsutism but apparent eumenorrhea: these women should
undergo confirmation of ovulation (most simply by measuring a P4 level
in the luteal phase of the menstrual cycle, i.e., day 20–24 of the cycle) on
one or two cycles. They should also undergo ovarian ultrasonography. If
the patient is found to have anovulation or polycystic ovaries on ultra-
sonography, they should undergo measurement of TSH, prolactin, and 17-
HP levels. If these values are normal, then the patient is presumed to have
PCOS (either “classic PCOS” if anovulatory, or “ovulatory PCOS” if she
has polycystic ovaries but normal ovulation).

A note about using 17-HP levels to screen for NCAH: 21-hydroxylase
deficient NCAH affects 1–10% (depending on ethnicity) of patients with andro-
gen excess. Approximately 90% of NCAH patients can be detected by a basal
level of 17-HP > 2 ng/mL [45,46]. The blood sample should be obtained in the
morning, and, most importantly, in the follicular (preovulatory) phase of the
menstrual cycle. Obviously, the use of any corticosteroids will artificially sup-
press 17-HP levels and should not be used prior to screening. Values < 2 ng/mL
virtually exclude NCAH [47]. If the screening 17-HP level is > 2 ng/mL, and the
investigator is certain that the sample was not drawn in the luteal (postovulatory)
phase of the cycle, an acute 30–60 min. ACTH stimulation test is performed.
Values of 17-HP > 10–12 ng/mL at 30–60 min. after the IV administration of
ACTH are diagnostic for NCAH.
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4. PREVALENCE OF PCOS

Obviously, the prevalence of PCOS will depend to a degree on the criteria
used to define this disorder. To date the prevalence of PCOS has been deter-
mined primarily using the NIH 1990 criteria. Studying 277 women seeking a
preemployment physical in the southeastern US, we initially reported a preva-
lence of PCOS of 4.0%, not significantly different between Whites and Blacks
[31]. In a subsequent, and more intensive, study of 400 unselected consecutive
women ages 18–45 years in the same setting (223 Black, 166 White, and 11
of other races), the prevalence of PCOS was observed to be 6.6% [8]. The
prevalence was 8.0% in Black and 4.8% in White women. While the racial dif-
ference was not statistically different, this may primarily reflect inadequate
sample size (Fig. 2).

Also using the 1990 NIH criteria, a study of 192 Greek women on the island
of Lesbos reported a prevalence of PCOS of 6.8%, recruited through the
promise of a free medical exam [9]. Another study of 154 Caucasian blood
donors in Madrid, Spain, found a similar prevalence (6.5%) [10]. Among 230
volunteers (97% White) recruited from two Oxford universities and two gen-
eral practice surgeries and who agreed to participate in “a study of women’s
health issues,” the prevalence of PCOS using the NIH 1990 criteria was 8%
[48]. These data indicate that the prevalence of clinically evident PCOS using
the 1990 NIH criteria in unselected women of reproductive age ranges from
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6.5 to 8.0%, affecting 1 in 13–15 unselected women. This translates to at least
5 million affected women in the US and 105 million worldwide.

Alternatively, the prevalence when PCOS is defined more broadly is signif-
icantly higher. For example, in the study by Michelmore and colleagues [48]
of 230 volunteers participating in a study of women’s health issues in Oxford,
UK, when PCOS was defined loosely as “the presence of polycystic ovaries
on ultrasound plus one additional feature including: menstrual irregularity,
acne, hirsutism, BMI > 25 kg/M2, raised serum testosterone (> 3 nmol/l), or
raised LH (≥10 IU/l),” 26% of the women studied had evidence of PCOS. This
is threefold higher then the prevalence of PCOS (8%) that the investigators
observed when using the NIH 1990 criteria. However, we should note that
these features occurred frequently in women without polycystic ovaries, and
112 of the 150 women (75%) with normal ovaries had the presence of one or
more of these attributes.

Recently, among 827 women with World Health Organization class II
(WHO-II) oligo-ovulation (euestrogenic normo-gonadotropic ovulatory dys-
function), 456 (55%) were classified as having PCOS by the NIH 1990 crite-
ria [49] (Fig. 3). In contrast, 754 (91%) women were noted to have PCOS
according to the Rotterdam 2003 criteria, an increase of 65% and a significant
difference. Of those oligo-ovulatory women classified as having PCOS by the
NIH 1990 criteria, 89% also were found to have polycystic ovaries on ultra-
sound scan and, as such, fit all three criteria of the Rotterdam 2003 definition
for PCOS (Fig. 3). The 298 additional women identified as having PCOS solely
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according to the Rotterdam 2003 criteria were classified based on the presence
of polycystic ovaries on ultrasound (and ovulatory dysfunction), but without
clinical or biochemical evidence of androgen excess (Fig. 3). Overall, among
women with WHO-II ovulatory dysfunction, the prevalence of PCOS by the
Rotterdam 2003 criteria appears to be over 60% larger than the group classi-
fied as PCOS by the NIH 1990 definition (91% versus 55% of the entire
WHO-II cohort). 

Likewise, we have preliminarily compared the prevalence of PCOS by the
NIH 1990 criteria versus the Rotterdam 2003 definition among hirsute women,
all evaluated endocrinologically and sonographically. In the 62 women evalu-
ated, PCOS was diagnosed in 44 (71%) by the NIH 1990 criteria and in 57
(92%) by the Rotterdam 2003 definition [50]. We concluded that the use of
TV-U/S to evaluate ovarian morphology in combination with the Rotterdam
2003 criteria led to a 20–60% overall increase in the prevalence of PCOS among
hirsute or oligomenorrheic women. Further studies in larger and ethnically
different populations are required to confirm this suggestion.

A number of conditions are associated with increased prevalences of PCOS,
including obesity [51–53], insulin resistance [52], type 1 or type 2 DM
[54–56], or oligo-ovulatory infertility [17,57,58]. The prevalence of PCOS
also appears to be somewhat higher among Mexican-American than White or
African-American women [59] (Fig. 1), although this observation remains to
be confirmed in larger and more diverse populations. Finally, the prevalence
of PCOS seems higher among populations previously experiencing premature
adrenarche [60] and gestational diabetes [61,62], and, logically, in those with
first-degree relatives with PCOS [63,64].

5. CONCLUSIONS

PCOS is a heterogeneous disorder of functional androgen excess, detectable
either by laboratory analysis or by clinical exam, with ovulatory dysfunction and
polycystic ovarian morphology also affecting a large proportion of these patients.
PCOS is a diagnosis of exclusion, with other androgen excess or related disor-
ders to be ruled out. The first broadly used definition of PCOS arose from the
proceedings of an expert conference sponsored by the NIH in 1990, which noted
the features of PCOS to be (in order of importance): (a) hyperandrogenism and/or
hyperandrogenemia, (b) chronic anovulation, and (c) exclusion of related disor-
ders such as hyperprolactinemia, thyroid disorders, and congenital adrenal hyper-
plasia. Another expert conference held in Rotterdam in 2003 expanded the NIH
1990 criteria for PCOS, noting that the disorder could be diagnosed by having
two of the following three features: (a) oligo- or anovulation, (b) clinical and/or
biochemical signs of hyperandrogenism, or (c) polycystic ovaries, after the exclu-
sion of related disorders. This definition created two new phenotypes for PCOS:
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(a) women with polycystic ovaries and ovulatory dysfunction but no signs of
androgen excess and (b) women with polycystic ovaries with clinical and/or
biochemical evidence of androgen excess, but no signs of ovulatory dysfunction.

To accommodate currently available data and arrive at an evidence-based
definition for PCOS, a modification of the NIH criteria was proposed by the
AES in 2006. This definition recommended that PCOS be defined by three
features: (a) androgen excess (clinical and/or biochemical hyperandrogenism),
(b) ovarian dysfunction (oligo-anovulation and/or polycystic ovarian mor-
phology), and (c) exclusion of other androgen excess or ovulatory disorders.
Clearly the prevalence of PCOS will depend to a degree on the criteria used to
define this disorder. Using the NIH 1990 criteria, most studies have observed
a 6.5–8.0% prevalence in unselected reproductive-aged women. The preva-
lence of PCOS is increased in the presence of obesity, insulin resistance, type
1 or type 2 DM, oligo-ovulatory infertility, premature adrenarche, prior gesta-
tional diabetes, and first-degree relatives of PCOS. It is also 20–60% higher if
PCOS is defined using the Rotterdam 2003 criteria. Further investigations in
larger and more ethnically diverse populations are required to more clearly
establish the phenotype and epidemiology of PCOS.
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Polycystic ovary syndrome (PCOS) is a common endocrinopathy in women
that in its simplest form consists of unexplained hyperandrogenic chronic
anovulation, which affects ~7% of the US population [1]. Because its etiology
and natural history are poorly understood, there is controversy about the diag-
nostic criteria and clinical evaluation of the syndrome. Its origins as a named
disorder track back to its original description in the 1930s by Stein and
Leventhal, a pair of gynecologists from Chicago, who described a complex of
signs and symptoms including oligomenorrhea, enlarged polycystic ovaries,
hirsutism, and obesity, and also pioneered the treatment of wedge resection of
the ovaries which resulted in more regular menses and improved fertility [2].
Since that time, there has been debate as to what the cardinal features of the
syndrome are or should be, but a guiding thread of consensus stemming from
this original description has been that this is an ovarian disorder of hyperan-
drogenism (although whether this is primary or secondary is uncertain) and is
most readily diagnosed in women of reproductive age [3,4].

1. FEATURES OF PCOS

The current controversy regarding the definition and criteria for PCOS was
discussed in Chap. 1. Androgen excess may be manifested by either clinical
signs, most commonly by disorders of the pilosebaceous unit such as acne, hir-
sutism, or androgenic alopecia, or by biochemical measures, most commonly
elevated circulating total or free testosterone levels. Hirsutism is defined as
excess body hair in a male pattern distribution (primarily in the midline), and
many patients go to great lengths to remove such hair; thus it is important to
both elicit the distribution of unwanted hair on history as well on clinical exam.



Peripheral hyperandrogenism is dependent on a number of factors, most
likely genetic, given the racial differences in hair distribution (for instance,
Asian individuals who demonstrate little midline body hair [5]). As such, many
investigators prefer a more objective measure of hyperandrogenism, i.e.,
circulating hyperandrogenemia. However, assessment of biochemical evidence
of androgen excess can also be somewhat problematic as most testosterone
assays are geared toward measuring levels in the male range (> 200 ng/dL),
which is above most levels in women with PCOS, as mean levels in PCOS
are in the range of 60–80 ng/dL and are unlikely to exceed 150 ng/dL [6,7].
These levels are further confounded by age and reproductive stage [8], and by
medications, such as oral contraceptives, which normalize the levels of circulating
androgens in women with PCOS [9]. Despite the imprecision of testosterone
assays in women, a movement toward their greater standardization [10] and
the recognition of the role of female hyperandrogenemia and its association
with metabolic abnormalities [11,12] recommends it routinely be measured
in women with suspected PCOS [13].

A history of chronic anovulation is most commonly obtained by asking how
many spontaneous menstrual cycles per year the subject has. Most clinical studies
identify patients at some threshold such as 6, 8, or 9 or fewer per year [14–16]
or with an intermenstrual interval of more than 35–40 days. However, because
anovulation with androgen excess can present with unpredictable bleeding,
thought to be due to prolonged unopposed estrogen exposure, affected women may
also present with a history of frequent vaginal bleeding episodes [17].

Finally there is the characteristic appearance of the polycystic ovary on
ultrasonography which contains multiple (> 10–12) small follicles (~2–9 mm
in diameter) tightly spaced along the periphery of the ovary, what is known as
“the pearl necklace sign,” with increased central stroma (Fig. 1) [18,19].
Polycystic ovaries usually present bilaterally. The name polycystic ovary is a
misnomer, because there are actually an absence of “cysts,” i.e., no large (> 20
mm in diameter) dominant follicle or postovulatory corpus luteum cysts are
present due to the chronic anovulation [20]. The name harkens from the
pathologist’s view of the microscopic enlargement of these small follicles
(most likely arrested or atretretic follicles [21]) as “cysts.”

The designation of an ovary as “polycystic” often summons up in the patient’s
mind a picture of a pathologically enlarged ovary full of large symptomatic cysts.
In actuality, a polycystic ovary is only modestly enlarged in terms of volume
compared to a cycling ovary in the early follicular phase (prior to the develop-
ment of a physiologic cyst), with a mean volume of > 10 cm3 in PCOS versus
< 8 cm3, respectively [19]. The polycystic ovary is usually not associated with
any symptoms, other than those related to hyperandrogenic chronic anovulation.

It is difficult to make the diagnosis of PCOS when a woman is on hormonal
contraception, such as oral contraceptive pills (OCPs), as this will normalize
circulating androgen levels and can also significantly improve (especially
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over 1–2 y periods) stigmata of hyperandrogenism, such as acne and hirsutism
[22]. A recent study observed that discontinuing OCPs in women with PCOS
for at least 8 weeks allows the return of all measured androgens and sex
hormone-binding globulin (SHBG) levels to basal values [23].

Gonadotropins are also suppressed by hormonal contraception; however,
while women with PCOS tend to display increased luteinizing hormone (LH)
levels relative to follicle-stimulating hormone (FSH) [24], these are no longer
included in any recommended diagnostic criteria [3,4]. There are many
reasons for this. One is that the inherent pulsatility of gonadotropins [25], even
with disordered secretion, can lead to a high percentage of false positives and
negatives. Some investigators have recommended pooled collections to assess
gonadotropins, but these are difficult to obtain in clinical practice [26].
Another confounding influence is the degree of obesity, which tends to be
associated with blunted LH levels, although the same pattern of excess LH
secretion can be elicited by dynamic challenge tests with GnRH [27].
Gonadotropins, therefore, have little utility in the diagnosis of PCOS, with the
exception of diagnosing premature ovarian failure in which case a screening
FSH would be obtained. It is worth noting that FSH levels, both basal and
stimulated, tend to be normal in women with PCOS [24].

2. DIFFERENTIAL DIAGNOSIS OF PCOS

PCOS remains a diagnosis of exclusion, and it is useful to exclude other
potential etiologies that can present with the triad of polycystic ovaries, hyper-
androgenism, and chronic anovulation. It is important to note that the presence
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Fig. 1. Polycystic ovary on transvaginal ultrasound.



of one of these signs or symptoms alone presents a much wider differential
diagnosis. For instance, chronic anovulation alone may be due to failure or
dysfunction of the hypothalamic–pituitary axis or to frank ovarian failure,
states of steroid deficiency without androgen excess. In series of adult women
presenting with amenorrhea alone, PCOS is present in about one-third of these
patients [28], but rises to 70% or more when other symptoms such as hirsutism
are considered [29].

Other than PCOS, other potentially serious causes of hyperandrogenism
include such disorders as Cushing’s syndrome and an androgen-secreting
tumor [30]. These disorders are acquired and are often preceded by a period
of normal menses without symptoms of hyperandrogenism. In contrast, PCOS
presents in the postmenarche and tends to affect women throughout much of
their reproductive life.

As Cushing’s syndrome has an extremely low prevalence in the population
(1–2 per million) and screening tests do not have 100% sensitivity/specificity,
routine screening of all women with PCOS for Cushing’s syndrome is not
indicated [31]. Nonetheless, the presence of clinical signs more commonly
found in Cushing’s syndrome, such as ecchymoses, proximal muscle weakness,
centripetal reddened striae, facial rubor and swelling, and perhaps hypertension
and glucose intolerance, should signal the need for screening tests. Cortisol excess
can be screened for with a 24-h urine collection for free cortisol.

Androgen secreting tumors are rare in this age group, are usually ovarian in
origin, tend to have markedly elevated circulating androgen levels above the
usual PCOS range, and are associated with a comparatively rapid onset of
symptoms which frequently progress to frank virilization with clitoromegaly,
breast atrophy, and voice changes [32,33]. Virilization is rarely, if ever, associated
with PCOS, and this clinical presentation should always trigger a search for
other causes, including anabolic steroid abuse.

A disorder that can present peripubertally in a similar indolent fashion as
PCOS is 21-hydroxylase (21-OH) deficient nonclassic congenital adrenal
hyperplasia (NCAH), also known as late-onset congenital adrenal hyperplasia.
NCAH is a homozygous recessive disorder due to mutations in the CYP21
gene, which results in an abnormal (or absent) 21-OH activity and a shift
toward the overproduction of androgens. Overall, between 1 and 8% of
women with androgen excess have CYP21 deficient NCAH depending on
ethnicity, with the highest rates reported in Ashkenazi Jewish populations
[34]. Patients with NCAH may present with mild symptoms, many with only
persistent acne or moderate degrees of hirsutism and oligoamenorrhea, and
frank virilization or even severe hirsutism is relatively rare [35]. The levels of the
exclusive adrenal androgen metabolite dehydroepiandrosterone sulfate (DHEAS)
are not any higher in NCAH than in women with PCOS [35].

Although the frequency is relatively low, all patients with unexplained
androgen excess should be screened for NCAH due to CYP21 mutations, as
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this diagnosis has a different prognosis, a different treatment regimen, and
requires genetic counseling regarding the risks of congenital transmission
[36,37]. The measurement of a basal 17α-hydroxyprogesterone (17-HP) in the
follicular phase and in the morning can be used to screen for this disorder
(normal < 2–4 ng/mL) [38]. This level is also unlikely to be affected by the
concurrent use of oral contraceptives or glucocorticoids.

Other rare situations that may present with hyperandrogenic chronic anovulation
are thyroid disease and hyperprolactinemia. Although the evidence linking
thyroid disease to hyperandrogenism is weak, thyroid disease is common in
women and merits detection. A TSH level is easily obtained, and thyroid
abnormalities can readily be treated. The case for measuring prolactin is more
complex. About 20–30% of women with PCOS have been reported to have
mildly elevated prolactin levels [39]. In our lab, the normal prolactin level is
20 ng/mL, and we find many PCOS patients whose prolactin levels are in the
range of 20–30 ng/mL. The mild elevations in prolactin probably reflect the
hypothalamic–pituitary dysfunction associated with PCOS.

Polycystic ovaries on ultrasound are found in a wide variety of unrelated disor-
ders with some syndromes having little overlap with hyperandrogenic chronic
anovulation. For example, up to 30% of women with normal menses and normal
circulating androgens may have polycystic ovaries [18,40,41]. There have been
recent reports to suggest that polycystic ovaries per se may identify a group of
women with some subtle stigmata of reproductive and metabolic abnormalities
found in the endocrine syndrome of PCOS [42–44], and these data strengthened
the position for incorporating the ultrasound morphology of the ovaries as part of
the definition for PCOS [3,4,45]. However, clinical caution should be applied
when a random ultrasound reveals polycystic ovaries in the absence of symptoms.

3. EVALUATION FOR INSULIN RESISTANCE IN PCOS

The etiology of PCOS remains unknown and the source of much specula-
tion and research. It is the holy grail of female reproductive endocrinology, and
religious-like fervor frequently accompanies the favored theories of the experts.
Time and technology have shifted the focus from the ovary as the prime suspect
[2] to the hypothalamic–pituitary axis [46], and currently on some primary defect
in insulin action, as the primary instigator of the syndrome [47] (Fig. 2). There
is clearly a vicious feedback loop in which disordered steroid feedback from
the ovary (primarily androgen and weak peripherally aromatized estrogens)
can lead to disordered hypothalamic–pituitary function and gonadotropin
secretion (i.e., abnormal pulsatility with excess LH compared to normal FSH
levels). More recently, it has been suggested that this feedback loop might
have developed secondary to a systemic abnormality, such as the decreased
glucose uptake in response to a given level of insulin (i.e., insulin resistant)
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often observed in PCOS women [47]. Adding to the dilemma is that treatment
of each one of these putative mechanisms can restore ovulation in many
women with PCOS (Fig. 2).

This reconfiguration of PCOS as a metabolic syndrome with reproductive
implications has led to extensive study of these women for signs and stigmata
of insulin resistance. Women with PCOS appear to have a level of peripheral
insulin resistance comparable to that of women with type 2 diabetes mellitus
(DM) [48]. However, women with PCOS tend to demonstrate normal fasting
glucose and normal glycohemoglobin levels, but tend to be glucose intolerant
after glucose challenge. Consequently, about 40% of women with PCOS
display impaired glucose tolerance or a 2-h glucose level ≥ 140 mg/dL after a
standard 75 g oral glucose challenge after an overnight fast [49–51]. Women
with PCOS often display both fasting and glucose challenged hyperinsulinemia,
evidence for beta-cell compensation in response to the peripheral insulin
resistance. However, the degree of compensation is inadequate for the degree
of peripheral insulin resistance present, suggesting they are well on the road
to developing type 2 DM [52,53].

Based on the prevalence of glucose intolerance in the larger population of US
women ages 20–44 years (i.e., 7.8% impaired glucose tolerance and 1.0% undi-
agnosed diabetes) [54], the prevalence of glucose intolerance in PCOS (~40%)
[49–51], and the prevalence of PCOS (~7%) [1], it can be extrapolatedthat PCOS
contributes to approximately 30% of impaired glucose tolerance and 40–45% of
type 2 DM among reproductive-aged women in the US. Risk factors for glucose
intolerance in women with PCOS include a family history of diabetes, age, 
obesity, and especially, centripetal (android) body fat distribution [49–51].

22 R.S. Legro

Metformin
Thiazolidinediones
Weight loss, Exercise

FSH,
Ovarian Drilling

Pulsatile GnRH,
Clomiphene,
Aromatase Inhibitors

Insulin
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In the US, obesity frequently accompanies PCOS. In the most comprehensive
study of the prevalence of PCOS in an unselected population (i.e., women
applying for work at a university hospital in Alabama), 24% were overweight
(body mass index [BMI] 25.0–29.9 kg/M2), and 42% were obese (BMI > 30
kg/M2) [1]. Obesity further exacerbates metabolic and reproductive abnor-
malities in women with PCOS, worsening insulin resistance and the degree of
hyperinsulinemia, and stimulates the expression of the PCOS phenotype in
susceptible individuals as family studies suggest [55].

Overall, insulin resistance results in hyperinsulinemia, which, in turn, stimulates
androgen secretion by theca cells [56,57] and suppresses the hepatic production of
SHBG [58,59]. Thus, both obesity and insulin resistance lead to lower SHBG levels
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Table 1. Suggested diagnostic evaluation for PCOS

Physical
(1) Blood pressure
(2) Body mass index (weight in kg divided by height in M2) (BMI 25–30 = overweight,

BMI > 30 = obese)
(3) Waist: measure to determine body fat distribution (value > 88 cm = abnormal)
(4) Presence of stigmata of hyperandrogenism/insulin resistance. Acne, hirsutism, androgenic

alopecia, acanthosis nigricans
Laboratory
(1) Documentation of biochemical hyperandrogenemia. Total testosterone and/or bioavail-

able/free testosterone
(2) Exclusion of other causes of hyperandrogenism

● TSH (thyroid dysfunction)
● Prolactin (hyperprolactinemia)
● 17-Hydroxyprogesterone (nonclassical congential adrenal hyperplasia due to 21 hydroxylase

deficiency), random normal: <3–4 ng/mL or fasting am <2 ng/mL
● Consider screening for Cushing’s syndrome and other rare disorders such as acromegaly

(3) Evaluation for metabolic abnormalities
● 2-h OGTT (fasting glucose [<110 mg/dL = normal, 110–125 mg/dL = impaired fasting

glucose, >126 mg/dL = type 2 diabetes) followed by 75 g oral glucose ingestion and then
2 h glucose level (<140 mg/dL = normal glucose tolerance, 140–199 mg/dL = impaired
glucose tolerance, >200 mg/dL = type 2 diabetes)

● Fasting lipid and lipoprotein level (total cholesterol, HDL-C, triglycerides [LDL usually
calculated by Friedewald equation])

(4) Optional tests to consider
● Ultrasound of ovaries for baseline evaluation/morphology prior to ovulation induction or

in cases of virilization or rapid conversion to an androgen excess state
● Gonadotropin determinations to determine cause of amenorrhea
● Fasting insulin in younger women, those with severe stigmata of insulin resistance and

hyperandrogenism, or those undergoing ovulation induction
● 24-Urine test for urinary free cortisol with late onset of PCOS symptoms or stigmata of

Cushing’s syndrome

OGTT is oral glucose tolerance test, 75 g.



and higher bioavailable levels of androgens [60]. In fact, SHBG may become a
measure in the future that reflects both abnormalities in ovarian production and
insulin resistance [61].

4. SUMMARY

PCOS is a disorder associated with hyperandrogenism, polycystic ovaries,
and ovulatory dysfunction. The clinical evaluation discussed in this chapter has
been summarized in Table 1. Because PCOS is a diagnosis of exclusion, other
disorders should be excluded. Women with PCOS should be evaluated for both
reproductive and metabolic abnormalities. Like the heterogeneity in the
combination of reproductive signs and symptoms that characterize PCOS,
metabolic risk factors are variably present in women with PCOS. Alternatively,
there may be a publication bias toward linking PCOS with metabolic
adversity. Further study of the long-term sequelae and the predictive role
of surrogate markers will greatly aid the clinical evaluation of women with
PCOS (see Chap. 8).
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1. THE INHERITED BASIS OF PCOS 
AND ITS COMPONENT PHENOTYPES

Polycystic ovary syndrome (PCOS) is considered a common, complex genetic
disorder, as are conditions such as schizophrenia, asthma, and type 2 diabetes.
Such common diseases, including PCOS, appear to have a complex, multifacto-
rial etiology, wherein a variety of predisposing genes, not just one gene, interact
with environmental and lifestyle factors to produce disease. Studies in families
demonstrated the heritable nature of PCOS itself as well as the component phe-
notypes of PCOS. This has led to a large number of population studies attempt-
ing to discover genes that influence PCOS using the candidate gene approach.

1.1. Heritability of PCOS and Hyperandrogenemia

Family studies demonstrate that PCOS is significantly more prevalent
among family members than in the general population. A recent large study
of Dutch twins revealed a heritability for PCOS of 0.79 (1.0 indicating a trait
completely determined by genetics), suggesting genetic factors contribute highly
to development of the syndrome [1]. Among first-degree female relatives
(on no hormonal therapy) of 93 patients with PCOS, 35% of premenopausal
mothers and 40% of sisters were also affected with the disorder [2]. These
affection rates are significantly higher than the 4–6% observed in the general
population. In another study, 115 sisters of 80 women with PCOS were evaluated;
of these, 22% met criteria for PCOS [3]. An additional 24% of these sisters
had hyperandrogenemia with normal menses. Total and free testosterone levels



were similar between the sisters with hyperandrogenemia only and the sisters
and probands with PCOS. A bimodal distribution of testosterone levels in the
sisters of women with PCOS was observed, suggesting a major genetic com-
ponent to hyperandrogenemia [3]. Brothers of women with PCOS also have
elevated levels of androgens such as dehydroepiandrosterone sulfate [4].

1.2. Heritability of Insulin Sensitivity and Secretion in PCOS

Not only is PCOS itself a heritable condition, but within PCOS, insulin resist-
ance and insulin secretion appear to be under significant genetic control. Among
sisters of women with PCOS, those who had PCOS or hyperandrogenemia with
regular menses had lower insulin sensitivity than unaffected sisters, assessed by
fasting insulin and glucose measurements [5]. Likewise, in families of Australian
patients with PCOS, hyperinsulinemia was found to occur in ~70% of all family
members, suggesting that this trait was inherited [6]. In studies of families of
women with PCOS, insulin secretion levels, quantified directly by the frequently
sampled intravenous glucose tolerance test, displayed significant heritability,
suggesting a genetic component to beta-cell dysfunction in PCOS [7].

2. THE CANDIDATE GENE APPROACH 
AS APPLIED TO PCOS GENETICS

2.1. Genetic Epidemiology and the Candidate Gene Approach

Given that investigators often start with no knowledge of which genetic variants
may lead to disease, they must take advantage of chromosomal markers. Markers,
such as microsatellites and single nucleotide polymorphisms (SNPs), are poly-
morphic variants interspersed throughout the genome. Microsatellites are tandem
repeats of short nucleotide sequences, occurring with variable numbers of the
repeated unit; SNPs are changes at a single genomic base pair, comprising two
possible alleles. These markers are used as tags to track disease-causing variants
or mutations. The underlying principle is that markers that are close to disease-
causing variants tend to be inherited on the same chromosomes. Linkage refers
to the situation wherein markers in a region of the genome are inherited in a non-
random fashion in relation to a particular phenotype. Association refers to the
situation wherein a particular allele of a marker is found with greater frequency in
those with a particular phenotype. Candidate gene association studies have been
the main method applied to PCOS genetics. In the candidate gene approach,
common polymorphic genetic markers within a gene of interest, selected based on
its hypothesized role in the disease, are evaluated to determine whether the
polymorphisms are associated with the phenotype in populations or in families.

Inherent to the candidate gene approach are assumptions regarding the
underlying pathophysiology of the disease under study. This is a particular
problem in PCOS, as the underlying causes are still fundamentally unknown.
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Candidate genes evaluated so far were selected from pathways affecting
components of PCOS (see below). Genes coding for transcription factors or
signaling pathway components that may globally affect the organs involved in
PCOS (pituitary, ovaries, adrenals, pancreatic beta cells, insulin-responsive
tissues) are unlikely to be selected as candidate genes by this approach.

2.2. Challenges in PCOS Genetics

To date, efforts to identify genes that influence PCOS susceptibility have
largely utilized the candidate gene approach, resulting in over 155 publica-
tions over the past decade. Despite repeated attempts to identify the putative
gene or genes responsible for this disorder, the PCOS gene(s) remain elusive.
Despite many positive results, no gene or genes have clearly emerged as most
important in PCOS, and many positive results were not confirmed in subse-
quent studies. Studies of the genetic etiology of PCOS have been hampered by
various limitations, including: (a) only one or two variants genotyped in each
gene; (b) incomplete or inaccurate characterization of the phenotype in cases
or controls, (c) inability to assign a PCOS phenotype to prepubertal girls, post-
menopausal women, and men; (d) possible inclusion of patients with nonclassic
adrenal hyperplasia (NCAH); (e) lack of appropriate controls; (f) unclear
ethnic/racial composition; (g) varying criteria used to diagnose PCOS in
different studies (in part due to the lack of universally accepted diagnostic
criteria); (h) small numbers of subjects in most studies.

(a) Only one variant genotyped: almost every candidate gene study in
PCOS assessed the effect of one or two variants in each gene. This provides
only partial information on whether a gene is associated with PCOS. There is
increasing evidence that genetic variation is best described by groups of asso-
ciated polymorphisms (inherited together on the same chromosome) referred
to as haplotypes. Haplotypes reflect global gene structure, encompassing
chromosomal blocks that have remained unbroken by recombination during
the population history of the gene. Identification of a haplotype associated
with increased or decreased disease risk should facilitate identification of the
actual functional variant that affects disease risk, because this variant should
lie on chromosomes identified by that haplotype. Haplotypes carry more
information than the individual SNPs that comprise them. Haplotypes capture
the majority of common variation in a gene; consequently, the use of haplo-
types is more likely to identify gene variations than is the use of random SNPs.

The human genome is organized in haplotype blocks (most of which are
longer than 10 kb), with three to five commonly occurring (> 5%) haplotypes
per block [8]. Only six to eight variants are sufficient to define the most
common haplotypes in each block. Thus, a manageable number of appropriately
chosen SNPs (termed haplotype-tagging SNPs, or htSNPs) can be genotyped
to identify the most common haplotypes in a population, providing critical
tools for association studies. The goal of the International HapMap Project
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is to delineate haplotype-tagging SNPs in all human genes [9], which will
greatly facilitate future haplotype-based association studies.

As discussed above, prior candidate gene studies in PCOS genotyped only
one or a few SNPs per gene, indicating only incomplete coverage of each can-
didate gene. This is particularly true for larger genes that may contain multiple
haplotype blocks. As an example, consider the gene for PPAR gamma coactiva-
tor-1 (PGC1), a logical candidate gene for PCOS, given the role of the PPAR
gamma system in insulin sensitivity and adipogenesis. This large gene (98 kb)
contains several haplotype blocks, revealed by the International Hapmap
Project, which genotyped 157 SNPs in the gene; the linkage disequilibrium
structure in Caucasians is displayed in Fig. 1. Eight haplotype blocks are pres-
ent in the gene. The one study that evaluated PGC1 as a candidate gene for
PCOS was a negative study that examined only one variant, Gly482Ser (NCBI
dbSNP rs8192678) [10]. As indicated in Fig. 1, this variant is present in the first
haplotype block; therefore, it gives no information on the remainder of the gene
lying outside of this block. Thus, consideration of only one variant provided
incomplete coverage of the gene, leaving open the possibility that a relevant
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Fig. 1. Linkage disequilibrium plot for PGC1. Linkage disequilibrium (LD) among PGC1 single
nucleotide polymorphisms (SNPs) was determined by the International Hapmap study of the gene
in Caucasians. SNPs in the gene are arranged at the top. The linkage disequilibrium plot displays
D′ values (%) for each pair of SNPs in the box at the intersection of the diagonals from each SNP.
The dark solid blocks indicate D′ = 1 (100%) for the corresponding pair of variants. The lighter
solid boxes also indicate D′ = 1, but with a low confidence score. Haplotype blocks are indicated
by the black triangles and are numbered 1–8. Haplotypes were determined by the solid spine of
LD algorithm of the program Haploview (http://www.broad.mit.edu/mpg/haploview/). The variant
genotyped by Wang et al [10] is indicated by the arrow and circle. This variant is not informative
for the portions of the gene outside of block 1.



functional variant was missed in the remainder of the gene. Unfortunately, neg-
ative published studies tend to discourage other investigators from replication
attempts.

Application of the haplotype approach to PCOS genetics, particularly for
genes wherein functional variants are unknown, should reduce the number of
false negative studies and may allow more positive findings to be replicated.
Studies of the calpain-10 gene in PCOS utilized haplotypes, based on the htSNPs
from the original report associating calpain-10 with type 2 diabetes [11]. A few
other PCOS studies reporting haplotypes constructed haplotypes from only two
variants, unlikely to fully characterize haplotype blocks. Only a few other genes,
including those for calpain-5 [12], aromatase [13], and the steroid 5-alpha
reductase genes [14] have undergone detailed haplotype analysis in PCOS.

(b) Difficulties in phenotype assignment: PCOS presents unique challenges
to the genetic epidemiologist. Foremost is the lack of consensus on diagnostic
criteria. Thus, different genetic studies have classified individuals as having
PCOS based on many different diagnostic schemas. Some definitions depend
on ultrasound documentation of polycystic ovaries (alone or in combination
with hormonal/ovulation criteria), others utilize the 1990 NIH consensus con-
ference criteria, others the 2003 Rotterdam criteria, and others have required
biochemical hyperandrogenemia be present. Additionally, phenotypic criteria
even for component phenotypes of PCOS are not agreed upon. For example,
criteria to classify a woman’s ovaries as “polycystic” on ultrasound have
changed over time. These issues surely have contributed to the conflicting
results in the literature on PCOS genetics. Furthermore, some studies may not
have completely evaluated controls, carefully ruling out any personal or family
history of endocrinopathy. Other studies may have inappropriately included
within PCOS cases women with other disorders that phenotypically resemble
PCOS, such as adult-onset NCAH.

Thus, phenotypic heterogeneity leads to subtle differences in study popula-
tions between studies. Given that PCOS may represent the final phenotypic
expression of more than one underlying pathology (and thus different under-
lying genes), it is immediately apparent how this is a major challenge in PCOS
genetics.

(c) Small numbers of subjects: many of the studies in Tables 1–3 report
results on less than 100 women with PCOS. Therefore, it is likely that many
underpowered studies resulted in false negative reports and that several small
studies produced false positive results. The power issue is particularly relevant
to common disease genetics. Validated genetic determinants of type 2 diabetes,
such as the Pro12Ala variant of the PPARG gene and the Glu23Lys variant of
the Kir6.2 pancreatic potassium channel, only modestly alter risk for type 2 dia-
betes, on the order of 10–20%. If genes with similar magnitude of effect influence
PCOS risk, then many of the studies to date were seriously underpowered and
inadequate to detect genetic variants predisposing to PCOS.
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Table 1. Candidate genes for which the balance of the evidence is against 
a role in PCOS

ACTR1 Activin receptor 1
ACTR2A Activin receptor 2A
ACTR2B Activin receptor 2B
ADRB3 Beta 3 adrenergic receptor
APOE Apolipoprotein E
CYP11A Cholesterol side-chain cleavage enzyme
CYP21 21-Hydroxylase
DAX1 Dosage sensitive sex reversal
DRD3 Dopamine D3 receptor
F2 Prothrombin
FOXC2 Forkhead box C2
FSHB Follicle stimulating hormone beta subunit
FSHR Follicle stimulating hormone receptor
FST Follistatin
GCR Glucocorticoid receptor
GDF9 Growth differentiation factor-9
GDF9B/BMP15 Bone morphogenetic protein 15
GNRHR Gonadotropin releasing hormone receptor
GYS1 Glycogen synthase
H6PD Hexose-6-phosphate dehydrogenase
HLA-C Major histocompatibility complex, class I, C
HSD11B1 11-Beta hydroxysteroid dehydrogenase type 1
HSD17B1 17-Beta hydroxysteroid dehydrogenase, type I
HSD17B2 17-Beta hydroxysteroid dehydrogenase, type II
HSD17B3 17-Beta hydroxysteroid dehydrogenase, type III
HSD3B1 3-Beta hydroxysteroid dehydrogenase type I
HSD3B2 3-Beta hydroxysteroid dehydrogenase type II
IGF1 Insulin-like growth factor 1
IGF1R Insulin-like growth factor 1 receptor
IGF2R Insulin-like growth factor 2 receptor
IGFBP1 Insulin-like growth factor binding protein 1
IGFBP3 Insulin-like growth factor binding protein 3
IL1B Interleukin 1 beta
IL1RA Interleukin 1 receptor antagonist
INHA Inhibin A
INHBA Inhibin beta-A
INHBB Inhibin beta-B
INHC Inhibin C
INS Insulin
INSL3 Leydig insulin-like protein 3
LHB Luteinizing hormone beta subunit
LHR Luteinizing hormone receptor
MTHFR Methylenetetrahydrofolate reductase
OB Leptin
OBR Leptin receptor
PGC1 Peroxisome proliferator-activated receptor, gamma, coactivator-1, alpha
POMC Pro-opiomelanocortin



To illustrate the pitfalls of small studies, consider the gene for hexose-6-
phosphate dehydrogenase (H6PD). The Arg453Gln variant (NCBI dbSNP
rs6688832) in H6PD has been implicated in cortisone reductase deficiency, a
hyperandrogenic disorder resembling PCOS; thus, H6PD was considered a
candidate gene for PCOS. An initial study of 116 PCOS cases and 76 controls
found differences in Arg453Gln allele frequency between Spanish PCOS and
controls [15]. Subsequently, a United Kingdom study composed of 256
nuclear PCOS families, 213 unrelated PCOS cases, and 549 controls found no
association of this variant with PCOS [16]. A subset of the Dallas Heart Study
evaluated for PCOS (85 cases, 597 controls) also found no association of the
Arg453Gln variant with PCOS [17]. The following are a few of the possible
explanations for the conflicting results: (a) H6PD variation influences PCOS
risk in Spanish individuals but not United Kingdom or American individuals;
(b) the Spanish study result was a false positive related to small sample size;
(c) differences in how PCOS was diagnosed explains the different results. This
kind of uncertainly plagues the field of PCOS genetics.

(d) Lack of replication of positive results: when an initial report describes
an association of a genetic variant with a disease, often subsequent reports

Genetics of PCOS 35

Table 1. Candidate genes for which the balance of the evidence is against 
a role in PCOS—cont’d

PTP1B Protein tyrosine phosphatase, non-receptor type 1
SF1 Nuclear receptor subfamily 5, group A, member 1
SORBS1 Sorbin and SH3 domain containing 1
STAR Steroidogenic acute regulator
TNFA Tumor necrosis factor alpha
UCP2 Uncoupling protein 2
UCP3 Uncoupling protein 3
UGT2B15 UDP glucuronosyltransferase 2 family, polypeptide B15

Table 2. Candidate genes with conflicting evidence for a role in PCOS

ADIPOQ Adiponectin
AR Androgen receptor
CAPN10 Calpain-10
CYP17 17α-hydroxylase/17,20-lyase
F5 Coagulation factor V
INSR Insulin receptor
IRS2 Insulin receptor substrate 2
MC4R Melanocortin 4 receptor
PPARG Peroxisome proliferator-activated receptor gamma
RETN Resistin
SERPINE1 Plasminogen activator inhibitor-1



36 M.O. Goodarzi

Table 3. Candidate genes for which current evidence suggests a role in PCOSa

ADRB2b Beta 2 adrenergic receptor
AGTb Angiotensinogen
CAPN5b Calpain 5
CYP11B2b Aldosterone synthase
CYP19 Aromatase
CYP1A1b Cytochrome P450, family 1, subfamily A, polypeptide 1
D19S884 Chromosome 19 microsatellite (in gene for fibrillin-3)
EPHXb Microsomal epoxide hydrolase
FEM1Ab Fem-1 homolog a
GSTM1b Glutathione S-transferase M1
GSTT1b Glutathione S-transferase theta 1
HLA-Ab Major histocompatibility complex, class I, A
HLA-Bb Major histocompatibility complex, class I, B
HLA-DRB1b Major histocompatibility complex, class II, DR beta 1
HSD17B5b 17-Beta hydroxysteroid dehydrogenase, type V
IGF2b Insulin-like growth factor 2
IL1Ab Interleukin 1 alpha
IL6 Interleukin 6
IL6Rb Interleukin 6 receptor
IL6STb Interleukin 6 signal transducer
IRS1 Insulin receptor substrate 1
MMP1b Matrix metalloproteinase 1
PC1b Plasma cell membrane glycoprotein 1
PON1b Paraoxonase
PPP1R3Ab Protein phosphatase 1, regulatory (inhibitor) subunit 3A
SHBG Sex hormone binding globulin
SRD5A1b Steroid 5-alpha reductase type 1
SRD5A2b Steroid 5-alpha reductase type 2
TNFR2b Tumor necrosis factor receptor 2

aAll studies require confirmation.
bSingle study or studies from one institution only.

attempt to replicate the initial result. Such replication is necessary to establish
whether a gene truly plays a role in disease.

PCOS genetics is often criticized because positive reports of association
were usually not subsequently confirmed by others. Besides false positive and
false negative studies, such lack of replication may be due to the study of dif-
ferent ethnic groups: a certain genetic variant may interact with other variants
and local environmental influences such that it alters phenotype only in a
particular group. Thus, ideally replication studies should first be carried out in
the same ethnic group, with the goal of validating the initial result. Subsequent
replication attempts in other populations would serve to determine whether the
particular genetic variant universally affects disease susceptibility. However,
even when ostensibly the same ethnic group is studied, subtle differences in
the history of the population may lead to ethnic differences such that two nominally



similar cohorts are sufficiently different in genetic background as to limit
replication. Unfortunately, given the international interest in PCOS genet-
ics, replication efforts have usually occurred in different ethnic groups.

2.3. Current State of Investigation on the Genetics of PCOS

Candidate gene studies in PCOS have generally targeted genes regulating
several areas: (a) steroid biosynthesis and action; (b) gonadotropic action; (c)
weight and energy regulation, and (d) insulin action and production (Tables
1–3). Most recently, candidate genes that may affect cardiovascular disease
via inflammation, hypercoagulability, or blood pressure have also been exam-
ined in PCOS. Several provocative genetic associations with PCOS have been
reported that are slowly starting to illuminate the underlying causes of PCOS.

Table 1 lists candidate genes for which the balance of the evidence is against
a role in the development or phenotype of PCOS. Several of these genes
(e.g. CYP21, HSD3B2) have been the subject of multiple studies, most of which
have been negative. A very few of them (e.g., CYP11A1, INS) have been con-
vincingly ruled out as candidate genes for PCOS by analyses of a large number
of subjects. On the other hand, several other genes (e.g. HSD17B3, UGT2B15,
FOXC2) were examined in only one study. As noted above, the issue of under-
powered studies of small sample size raises the possibility that a true genetic
association was missed in many instances. It is possible that a gene that exerts a
modest effect on PCOS risk may unfortunately be listed in Table 1.

Table 2 lists candidate genes whose role in PCOS is still controversial. For
most of these genes, there have been positive association studies as well as
negative association studies. Given the issues outlined above, it is difficult to
determine which studies are valid and which are not. It is also possible that a
particular gene does influence PCOS in one ethnic group but not in another,
such that an association study in the former but not the latter is positive. Given
that multiple groups around the world have conducted PCOS genetic studies,
this is a likely explanation, in part, for the nonreplication of many results.
However, the small sample size issue is likely to be a more important contrib-
utor to the confusion in the literature. For the genes in Table 2, studies with
very large sample sizes will be needed to provide convincing evidence for or
against these genes as etiologic in PCOS.

A review of the publications concerning the androgen receptor gene (AR) in
PCOS will illustrate the typical situation wherein the evidence is conflicting
regarding a gene’s role in PCOS. Regarding the androgen receptor, the litera-
ture has focused on a polymorphic CAG repeat in exon 1, which codes for a
polyglutamine tract in the N terminus of the androgen receptor protein (number
of repeats normally ranging from 11 to 31, usually around 20, with stable
inheritance). In vitro, increasing repeat length appears to modestly impair
androgen receptor transactivation function. Given that PCOS is a hyperandrogenic
disorder, the possibility that this variant could modulate risk of PCOS or the
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severity of hyperandrogenism in affected individuals led to its study as a can-
didate gene variant. The first published study included only 34 women with
hyperandrogenic hirsutism (presumably PCOS) and 15 healthy controls (all
Caucasians from Spain) and found no differences in the number of CAG
repeats between cases and controls [18]. Later in the same year, another group
found no difference in CAG repeat length between 91 PCOS cases and 112
controls (from Singapore), but that cases with lower testosterone levels tended
to have shorter repeats, suggesting that androgen receptors with higher func-
tionality allow women with lower testosterone levels to manifest PCOS [19].

Subsequently, an Australian study of 205 PCOS cases and 831 controls (the
latter originally recruited for a separate study) found that the cases had longer
CAG repeat lengths [20]. A Finnish study of 106 cases and 112 controls
showed no association of the CAG repeat with PCOS [21]. Recently, a
German study of 63 PCOS women found that the CAG repeat length modified
the relationship between free testosterone levels and insulin resistance [22].
The largest study (in terms of cases), consisting of 313 PCOS cases and 277
controls from the Southeastern United States (74% White, 21% Black), found
that shorter CAG length was associated with PCOS [23]. Immediately apparent
is the fact that each study was conducted in a different population. Also,
different diagnostic criteria for PCOS were used, some studies requiring ultra-
sound appearance of polycystic ovaries [19], while others did not [21,23].

Table 3 lists candidate genes that may play a role in PCOS but require con-
firmation. Multiple studies on four of these genes (CYP19, IRS1, IL6, SHBG)
and one microsatellite (D19S884) have been published, with most but not all
supporting a role in PCOS. The literature on D19S884 will illustrate one of the
more promising results in PCOS genetics. Suggestive association of this
marker with PCOS was first identified in a cohort of 150 PCOS families [24];
this marker was examined because it is on chromosome 19, ~1 Mb from the
insulin receptor. Subsequently, association of D19S884 with PCOS was found
in a group of 85 Caucasian PCOS patients and 87 matched controls [25].
A study in 108 Caucasian women with PCOS and 66 controls (roughly half
from Spain, half from Italy) found no association of D19S884 with PCOS in
either group separately or both groups combined [26]. The investigators that
originally described the D19S884 association have subsequently replicated asso-
ciation of D19S884 with PCOS first in an additional 217 families [27], then in
another 98 independent families [28], using robust family based testing of link-
age and association. They have also genotyped numerous additional markers in
the region and still find strongest evidence with D19S884, particularly the
allele comprising 17 CA repeats (termed allele 8). These studies provide strong
evidence for a PCOS susceptibility locus mapping to chromosome 19p13.2,
at or near the dinucleotide repeat marker D19S884. This marker lies in an
intron of the fibrillin-3 gene, which must now be considered a candidate for PCOS.
It is also possible that the region of this marker contains a regulatory element
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that controls expression of gene(s) elsewhere on chromosome 19. Of note,
chromosome 19 contains a number of potential PCOS candidate genes.

The majority of the genes listed in Table 3 have been reported in only one
publication or by only one group of investigators. Therefore, while promis-
ing, these genetic associations must be considered tentative until replicated
by other groups. Of note, many of these candidate genes are related to
inflammation or cardiovascular risk, reflecting a recent focus on these
processes in PCOS.

3. EPIGENETICS: A NEW AVENUE 
IN PCOS GENETICS

Epigenetics refers to a set of reversible heritable changes in gene expression or
function that occur without a change in DNA sequence (genotype). Epigenetic
processes include, among others, imprinting, gene silencing, X chromosome
inactivation, and gene regulation by histone modification. Epigenetics has been
scarcely considered in the genetics of common, complex diseases; however, it has
recently been shown to be a possible factor in PCOS genetics.

Investigation of the CAG repeat in the androgen receptor on the X chromosome
has also led to analyses of X chromosome inactivation. Fortuitously, the most
common method of analyzing X chromosome inactivation involves analysis of the
methylation state of a restriction fragment length polymorphism in the androgen
receptor gene itself, combined with assessment of CAG repeat length. When this
HpaII site is methylated, the restriction enzyme does not cut; when it is not methy-
lated, the restriction enzyme can cut. Methylation occurs on the inactivated X
chromosome; in individuals heterozygous at the CAG repeat, it can be determined
which allele is inactive. Theoretically, X chromosome inactivation should be
random, with 50% of paternal alleles inactivated and 50% of maternal alleles inac-
tivated within each subject. Skewed inactivation in cases but not controls, wherein
one allele is preferentially methylated, would indicate a possible role for this
epigenetic phenomenon in pathogenesis of the disease. One small study detected
skewed X chromosome inactivation in 5 of 34 women with hyperandrogenic
hirsutism, wherein the shorter allele was often preferentially inactivated [18].
Similarly, a larger study documented preferential expression of longer CAG repeat
alleles in PCOS; nonrandom X inactivation occurred more frequently in PCOS
than in control women [20]. In another study by the same investigators, 40 women
with PCOS and their sisters were evaluated. Discordance between the sister pairs
in terms of diagnosis (one with PCOS and one without) was correlated with
different X inactivation pattern between the sisters [29]. These few studies suggest
epigenetics may play a role in modulating the effect of the androgen receptor gene
(and other X chromosome genes) in PCOS pathogenesis. Whether skewed inacti-
vation of other chromosomes plays a role in PCOS is currently unknown.
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The results of a study examining genomic instability in PCOS hint at more
global epigenetic phenomena in PCOS [30]. In this study of 19 women with
PCOS and 19 well-matched controls, the frequency of micronuclei in cultured
peripheral lymphocytes was used as a marker of genomic instability. Micronuclei
were three times more common in PCOS than controls, suggesting higher
genomic instability in PCOS. It is possible that this instability reflects differences
in epigenetic changes in PCOS.

It is anticipated that future genetic studies of PCOS will also take into account
epigenetic phenomena. Perhaps the lack of consideration of epigenetics has
contributed to the lack of a breakthrough discovery in PCOS genetics to date.

4. CONCLUSIONS

The inherited nature of PCOS has been firmly established. Unfortunately,
most candidate gene studies have been in small cohorts. Additional issues
such as only one or two variants genotyped per gene have confounded PCOS
genetics. As a result, despite a large number of positive reports, no particular
gene is universally recognized as importantly contributing to PCOS risk.
However, significant progress has been made and a number of potential can-
didate genes have been identified. Future efforts should focus on confirming
these genes as well as considering epigenetics in the pathogenesis of PCOS.
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1. INTRODUCTION

Polycystic ovary syndrome (PCOS) is a common disorder affecting 6–10% of
women of childbearing age [1–3]. It is the most frequent endocrine disorder
among young women and the principal medical cause of female infertility in
North America. It is defined by the presence of hyperandrogenism, chronic
anovulation, and/or polycystic ovaries (see Chap. 1 for a fuller discussion of the
definition of PCOS), after exclusion of all secondary causes. However, most
experts in the field agree that hyperandrogenemia is the central feature of PCOS
and probably results from the same ovarian dysfunction that causes oligoanovu-
lation and infertility. Therefore, in this chapter, we will focus on the mechanisms
of hyperandrogenemia in PCOS, as this was the most studied characteristic of
PCOS in the literature, particularly with respect to insulin actions.

PCOS is also a major health issue for young women [1]. Indeed, the preva-
lence of metabolic syndrome (46%), impaired glucose tolerance (16–35%),
and type 2 diabetes mellitus (DM) (2.5–17.7%) are much more frequent in
PCOS women as compared to normal women of similar age (23, 7.8, and 1,
respectively). Women with PCOS are also characterized by hypertension,
dyslipidemia, procoagulant state, proinflammatory state, and endothelial dys-
function. Therefore, women with PCOS have a higher prevalence of risk factors
for cardiovascular diseases, disorders that have been demonstrated in cohort
studies to be more frequent in PCOS women [1].

PCOS is also a common and well-defined clinical model of insulin resist-
ance and prediabetic state. Indeed, women with PCOS demonstrate insulin



resistance and a compensatory hyperinsulinemia [1], which appears to play a
critical role in the syndrome’s pathogenesis [1–3]. However, not every woman
with insulin resistance and hyperinsulinemia develops PCOS, and there is evi-
dence that a subgroup of women with typical PCOS is neither insulin resist-
ant nor hyperinsulinemic [4,5]. Many questions remain unanswered regarding
both the nature of insulin resistance in PCOS and the mechanisms by which
insulin resistance or insulin produces hyperandrogenemia.

2. INSULIN ACTION IN PCOS

2.1. In Vivo Characteristics

Dunaif et al. [6] demonstrated that obese PCOS women were more
insulin resistant than their lean counterparts and that obese and lean women
with PCOS were both more insulin resistant than BMI-matched normal
controls. These findings suggested that, in PCOS, insulin resistance results
from an intrinsic form of resistance to insulin in addition to insulin resist-
ance due to obesity. Morin-Papunen et al. [7] confirmed these findings in
obese women, but were unable to demonstrate reduced glucose insulin sen-
sitivity in lean PCOS women. Furthermore, Vrbikova et al. did not find any
difference in glucose sensitivity to insulin between lean PCOS women and
matched controls [8]. This apparent contradiction might be explained by
the finding that lean PCOS women with normal insulin levels have normal
glucose insulin sensitivity compared to controls, in contrast to lean PCOS
women with hyperinsulinemia [9]. Therefore, the proportion of normo-versus
hyperinsulinemic lean women in the studied populations might explain
these discrepancies.

Dunaif et al. also demonstrated that resistance to insulin is not due to hyper-
androgenemia in PCOS. Indeed, normalization of testosterone levels in these
women after treatment with a long-acting gonadotropin-releasing hormone
(GnRH) agonist for 12 weeks did not change insulin sensitivity or hepatic glu-
cose production in women with PCOS [10]. These findings were confirmed in
more recent studies by other groups.

Taken together, these results demonstrate that some women with PCOS are
neither insulin resistant nor hyperinsulinemic. Thus, insulin resistance and
compensatory hyperinsulinemia are not necessary to develop PCOS. Insulin
resistance to glucose metabolism might just favor the clinical expression of
PCOS and result from the same genetic, metabolic, and/or environmental fac-
tors as in the general population. Most women with PCOS might just be more
likely to be insulin resistant because this latter abnormality favors the devel-
opment of hyperandrogenemia. This would explain why PCOS women are more
insulin resistant on average in most studies and why many of them are obese,
since obesity almost always causes some degree of insulin resistance.
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It must be clarified that in most scientific articles insulin sensitivity is
defined as the capacity of insulin to stimulate glucose metabolism. Indeed, the
gold standard technique to assess insulin sensitivity is the insulin–glucose
clamp, which directly measures insulin-stimulated glucose disappearance. This
measure reflects mainly glucose transport in peripheral insulin-sensitive tissue,
i.e., in muscles to a large degree. However, insulin has many other actions
beside glucose metabolism, such as regulating lipid and amino acids metabo-
lism, protein synthesis, and cellular growth and differentiation [11]. As dis-
cussed below, it is important to keep in mind that sensitivity to insulin actions
on glucose metabolism might differ from other insulin actions.

2.2. In Vitro Molecular Defects

The mechanisms of metabolic insulin resistance in women with PCOS
remain largely unknown. There is not enough evidence to actually discern
whether PCOS is a consequence of a specific defect in insulin action or results
from adaptive hyperinsulinemia associated with any condition of insulin resist-
ance. Overall, there are few studies specifically assessing the metabolic actions
of insulin in PCOS.

Studies in adipocytes from women with PCOS have shown that the number
and affinity of insulin receptors are not obviously decreased [12]. However, it
was demonstrated that the maximal rate of glucose uptake, the abundance of
GLUT4 glucose transporters, and the inhibition of lipolysis stimulated by
insulin were all decreased in adipocytes from women with PCOS. This
adipocytes insulin resistance was also shown to occur at an early step in
insulin signaling [12]. These findings were also described in PCOS women
without obesity, glucose intolerance, or increased waist-to-hip ratio, suggesting
that they might be intrinsic to the syndrome [13].

Dunaif and colleagues also did not find that the number or affinity of recep-
tors of insulin were affected in perpetuated cultured skin fibroblasts [14], but
observed that autophosphorylation of these receptors after binding with insulin
was decreased in approximately 50% of PCOS subjects. These receptors were
characterized by a constitutive increase in the phosphorylation of their serine
residues and a decrease in the insulin-stimulated phosphorylation of their tyro-
sine residues. They were also less capable of phosphorylating insulin receptors
substrates (IRSs), suggesting that exaggerated serine phosphorylation of
insulin receptors impairs their activity [14]. The high level of constitutive ser-
ine phosphorylation of insulin receptors was observed to be independent of the
presence of obesity and type 2 DM, suggesting that this defect affects an early
step in insulin signaling which might be unique to PCOS. Moreover, purifica-
tion studies and reversal by inhibitors of serine kinase activity suggested that
this defect was due to a putative serine phosphorylation factor [15].

Finally, Dunaif et al. [16] also found that muscle biopsies obtained during
insulin–glucose clamp protocols from women with PCOS were characterized
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by impaired insulin-stimulated association of insulin receptor substrate-1 (IRS-
1) with phosphatidylinositol 3-kinase (PI-3K), along with in vivo decrease in
glucose transport. Again, this defect appeared to affect an early step in insulin
signaling and was independent of obesity and type 2 DM, suggesting a unique
defect. However, most of the defects found in other common insulin resistant
conditions (e.g., type 2 DM, metabolic syndrome, obesity, etc.) have also been
described in PCOS. Thus, there is no clear evidence to date that the insulin
resistance found in PCOS is specific to this condition.

3. ANDROGENIC ACTIONS OF INSULIN IN PCOS

3.1. In Vivo Insulin Actions

3.1.1. PCOS and Hyperandrogenemia. Increased ovarian androgen
responsiveness was demonstrated in vivo in women with PCOS using GnRH
agonists or human chorionic gonadotropin (hCG) stimulation tests [17].
Chronic stimulation by luteinizing hormone (LH) or insulin has been suggested
as the cause of this ovarian androgen hyperresponsiveness. In order to deter-
mine the role of chronic stimulation by LH, normal and obese PCOS women
were challenged with hCG before and 4 weeks after LH suppression with a
long-acting analogue of GnRH [17]. This study demonstrated that suppression
of LH for 4 weeks did not alter the exaggerated 17-hydroxyprogesterone
response to hCG, suggesting that LH was not implicated in the androgenic
hyperresponsiveness of PCOS. Conversely, numerous studies have demon-
strated that any treatment aimed at improving insulin resistance in lean and
obese women with PCOS (e.g., weight loss, metformin, D-chiro-inositol, and
peroxisome proliferator-activated receptor gamma [PPARγ] agonists) results in
lower androgen levels [1]. Importantly, the exaggerated steroidogenic response
to LH stimulation tests also improved [18,19], suggesting a normalization of
androgen hyperresponsiveness due to correction of chronic hyperinsulinemia
or to direct effects on the androgenic pathway(s) of insulin signaling, or both.

Hyperandrogenemia is also improved in chronically hyperinsulinemic
PCOS women after interventions that only decrease their insulin levels.
Testosterone and nonsex hormone-binding globulin (SHBG)-bound testos-
terone levels decreased significantly in obese PCOS women after 10 days of
treatment with diazoxide, which decreases insulin levels by directly suppressing
insulin secretion from β-cells [20]. Moreover, a recent randomized-controlled
trial demonstrated that reduction of insulinemia for 6 months with acarbose
also reduced serum testosterone levels in obese PCOS women [21], and results
were confirmed in a 3-month prospective study in hyperinsulinemic PCOS
women [22]. Acarbose directly inhibits small intestine α-glucosidase enzymes,
which slows down glucose absorption and decreases glucose-stimulated
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insulin secretion. Thus, these studies underscore the importance of insulin in
the pathogenesis of PCOS hyperandrogenemia.

Low levels of SHBG contribute significantly to PCOS hyperandrogenemia
because it reduces testosterone binding, resulting in an increase in free testos-
terone levels. Since high free testosterone levels have little negative feedback
on ovarian or adrenal androgen production in women, testosterone binding is
an important contributor to androgenemia. Many studies have shown that
SHBG levels are inversely correlated with the circulating levels of insulin or
with the degree of insulin resistance in women with or without PCOS. In type 1
diabetic patients, portal insulin concentrations, rather than insulin sensitivity,
were found to be related to SHBG levels [23]. Furthermore, diazoxide-
induced insulin reduction increased SHBG levels in obese women with PCOS
[24]. This finding was also confirmed after lowering insulin concentrations for
3 or 6 months with acarbose [21,22]. Thus, insulin stimulation rather than
insulin resistance is the cause of low SHBG levels in obese PCOS women and
contributes to PCOS hyperandrogenemia also by this mechanism.

We conducted a randomized-controlled trial using two insulin-sensitizing
drugs (metformin and rosiglitazone, a PPARγ agonist) in 100 nonobese women
with PCOS and normal insulin levels, both during fasting and an oral glucose tol-
erance test (OGTT) [4]. Our results demonstrate normalization of testosterone
levels (Fig. 1a) in actively treated groups comparatively to placebo. Despite
normo-insulinemia at baseline, metformin significantly reduced insulin levels,
but not rosiglitazone (Fig. 1b). Therefore, metformin might improve hyperan-
drogenemia in these women in part by decreasing insulin levels, which suggests
that their hyperandrogenemia is indeed related to insulin action and might result
from increased androgenic sensitivity to insulin. However, rosiglitazone did not
improve hyperandrogenemia by decreasing insulin levels, suggesting that PPARγ
agonists might directly improve this androgenic hyperresponsiveness to insulin,
restoring the normal relationship between insulin levels and androgen produc-
tion. PPARγ agonists enhance insulin-stimulated glucose metabolism in adipose,
muscle, and hepatic tissues, and improve compensatory hyperinsulinemia. But
insulin levels remain unchanged in subjects with normal glucose insulin sensi-
tivity treated with PPARγ agonists [25], as in our trial.

Finally, it is possible to increase insulin levels while maintaining normal glu-
cose concentrations using the euglycemic-hyperinsulinemic clamp. Experimental
hyperinsulinemia for 22 hours in normal female rats did not increase testosterone
or androstenedione levels as compared to control rats infused with an identical
volume of vehicle [26]. Similarly, nonobese normal women did not increase their
androgen levels during a 2-hour euglycemic-hyperinsulinemic clamp [27].
However, similar elevation of exogenous insulin levels for 2 hours significantly
increased testosterone and androstenedione levels in obese and nonobese women
with PCOS as compared to weight-matched ovulating normal women [28].
Testosterone levels were also increased at the end of a 270-min insulin infusion,
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with clamped glucose levels, in six women with PCOS [29]. Therefore, in vivo
stimulation with exogenous insulin stimulates androgen production only in
women with PCOS, supporting again the hypothesis that PCOS is characterized
by increased androgenic sensitivity to insulin.
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The cause of hyperandrogenemia in women with PCOS might also arise
from dysfunction of the hypothalamic-pituitary axis. In vivo insulin actions on
this axis will be discussed later in the section reviewing insulin action in
PCOS ovulatory dysfunction.

3.1.2. In Vivo Androgenic Hypersensitivity to Insulin. So far, we have
presented many evidences suggesting that insulin action is pivotal to the patho-
physiology of PCOS, both in hyperinsulinemic and normo-insulinemic women.
We cannot exclude the possibility that metabolic insulin resistance with com-
pensatory hyperinsulinemia chronically increases the androgenic response to
insulin by, for example, up-regulating ovarian steroidogenic enzyme activities,
effectors of the LH signaling pathway, or type 1 insulin-like growth factor (IGF)
receptors, or by decreasing IGF binding globulin-1 (IGFBP-1) in the ovaries,
without involving specifically the androgenic insulin signaling pathways.
However, only a minority of woman with insulin resistance and hyperinsuline-
mia develop PCOS, and there is evidence that a subgroup of women with typical
PCOS is neither insulin resistant nor hyperinsulinemic [4,7–9]. Therefore, all
these observations suggest that the pathogenesis of PCOS involves a defect that
predisposes women to insulin-induced hyperandrogenemia.

We recently assessed the effect of insulin on androgen levels in lean PCOS
women with normal insulin levels and metabolic insulin sensitivity (measured
by the insulin–glucose clamp technique) [5]. Reduction of insulin secretion with
diazoxide in these women significantly decreases levels of free testosterone and
androstenedione, and increases SHBG levels (Fig. 2). Since androstenedione is
not bound to SHBG, its significant decrease confirms that androgen biosynthesis
was improved. Importantly, suppression of insulin secretion with diazoxide did
not alter testosterone or SHBG levels in healthy, nonobese women.

The significant improvement of free testosterone and SHBG levels
observed after treatment with diazoxide were in contrast to the absence of
change observed after treatment with the long-acting GnRH agonist leuprolide
acetate (Fig. 2), despite near total suppression of LH levels. Therefore, in lean
normo-insulinemic PCOS women, it appears that LH suppression is more
effective than insulin reduction to decrease androgen biosynthesis, as assessed
by androstenedione levels; but insulin lowering is more effective to reduce
hyperandrogenemia, as assessed by free testosterone levels, because it improves
both androgenesis and SHBG levels. Therefore, our novel findings further
support that insulin contributes to hyperandrogenemia even in PCOS women
with normal metabolic insulin sensitivity and insulin levels, possibly due to
increased insulin sensitivity of their androgenic insulin pathway(s).

3.2. In Vitro Molecular Mechanisms

Since hyperandrogenemia in women with PCOS might arise from either ovar-
ian theca cells, liver production of SHBG, or hypothalamic-pituitary dysfunc-
tion, we will now review in vitro molecular mechanisms of insulin actions on
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theca cells and hepatocytes. Molecular mechanisms of insulin action on hypo-
thalamic and pituitary cells will be discussed in the section reviewing insulin
actions and PCOS ovulatory dysfunction.

3.2.1. Ovarian Theca Cells. Multiple studies demonstrate that insulin stim-
ulates ovarian steroidogenesis in vitro (Table 1). The ovarian androgen
response to insulin is markedly increased in cultured ovarian cells from PCOS
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women [30–32] as compared to normal ovaries, suggesting that PCOS theca
cells are also characterized by androgenic hyperresponsiveness to insulin.
Indeed, physiologic concentrations of insulin are enough to stimulate andro-
gen biosynthesis in PCOS theca cells, but supra-physiologic levels are usually
needed in normal models. Furthermore, combined stimulation with LH and
insulin at physiological concentrations synergistically increases androgen
biosynthesis in normal (Table 1) and PCOS ovarian tissues [31,32], suggesting
important cross talks between both signaling pathways.

Studies in human or mammalian normal theca cells have also shown that
insulin stimulates basal and LH-induced P450c17 activity in vitro (Table 1),
which is the required enzyme for trafficking steroidogenesis toward androgen
biosynthesis. Basal and LH-induced progesterone production was stimulated
by insulin in many studies (Table 1), but not all. This effect is probably
observed mainly in thecal cells that have undergone a higher level of luteinization,
due to culture techniques or sources of the cells (e.g., in vitro fertilization pro-
tocols involving high doses of gonadotropins). Likewise, insulin alone did not
stimulate estradiol or progesterone production in theca cells from a woman
with hyperandrogenism and insulin resistance [33]. There is also important
evidence that insulin stimulates the proliferation of theca cells and decreases
their apoptosis in vitro (Table 1). This effect of insulin probably explains the
observation of increased ovarian stoma volume in women with PCOS. Finally,
insulin has been shown to increase the expression of high density lipoprotein
(HDL) receptors in theca cells, which favors cholesterol uptake and increases
intracellular levels of the cholesterol needed for androgen biosynthesis.

LH enhances theca-cell steroidogenesis principally through the cyclic
adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway. The
molecular mechanisms by which insulin regulates steroidogenesis are not well
understood. In classical insulin-responsive tissues, insulin actions are mediated
via two major pathways involving the phosphorylation of IRSs: the PI-3K
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Table 1. In vitro insulin actions in ovarian theca cells, based on studies in normal
mammalian ovarian cells, published and indexed in medline

Effects Change References

Basal androgen production ↑ [30, 34, 35, 73–80]
LH-induced androgen production ↑ [33–35, 39, 74, 77–87]
Basal P450c17 activation ↑ [88, 89]
LH-induced P450c17 activation ↑ [38, 39, 82, 89]
Basal progesterone production ↑ [73–75, 80, 86]
LH-induced progesterone production ↑ [80, 83, 86, 90, 91]
Cellular proliferation ↑ [75, 76, 83, 92–94]
Apoptosis ↓ [95]
HDL receptor expression and intracellular cholesterol ↑ [96]



pathway, implicated in the metabolic effects of insulin, and the mitogen-
activated protein kinase (MAPK) pathway, responsible for the mitogenic
effects of insulin [11] (illustrated in Fig. 3).

Both in normal [34] and PCOS [30] ovarian theca cells, it has been shown
that insulin acts through its own receptor. Because LH and insulin act physio-
logically via distinct intracellular signaling mechanisms, their synergistic
enhancement of theca-cell steroidogenesis likely entails important interactions
between these two respective pathways. Indeed, it has been shown that insulin
significantly increases LH-driven cAMP accumulation in cultured porcine
theca cells [35]. The insulin-stimulated increase of cAMP is probably induced
through PI-3K or protein kinase C (PKC), since the activation of adenyl
cyclase by insulin was blocked with the use of nonspecific inhibitors of PI-3K,
PKC, and Gi-protein in rat muscle tissues [36]. On the other hand, LH was
shown to induce rapid activation of Janus kinase 2 (JAK2) in whole ovary of
normal rats, which then activated IRS-1 and the PI-3K as well as the MAPK
pathways [37]. Simultaneous stimulation with LH and insulin induced higher
phosphorylation levels of these proteins compared with each hormone alone.
Therefore, important cross talks exist between the insulin and LH signaling
pathways, such that increased activity of one pathway might also increase the
responsiveness of the other pathway.
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Fig. 3. Possible molecular mechanisms involved in the actions of insulin on ovarian theca cells.
Abbreviations: ERK: extracellular signal-regulated kinases; FFAs: free fatty acids; GPI: glycosyl-
phosphoinositol; IPGs: inositol-phosphoglycans; IRSs: insulin receptor substrates; MAPK:
mitogen-activated protein kinase; MEK: MAPK/ERK kinase; PCOS: polycystic ovary
syndrome; PPARγ: peroxisome proliferator-activated receptor gamma; PI-3K: phosphoinositide
3-kinase; PKB: protein kinase B; PLC: phospholipase C; Ras: rat sarcoma virus; and SHC: Src
homologous and collagen-like.



A study on normal human theca cells demonstrated that specific blockade of
PI-3K, but not the specific inhibition of MAPK/ERK kinase (MEK), markedly
inhibits the combined insulin and LH stimulation of ovarian P450c17 activity
[38]. However, P450c17 activity increased after inhibition of MEK. A recent
study confirmed these results in normal and PCOS theca cells and found
constitutively reduced levels of phosphorylated MEK and extracellular signal-
regulated kinases (ERK) in PCOS cells. These constitutive defects were
correlated with increased androgen production, irrespective of the presence of
insulin [32]. Infection with dominant-negative MEK1 increased P450c17
mRNA, whereas constitutively active MEK1 reduced P450c17 mRNA abun-
dance. This suggests that alterations in the MAP kinase pathway might cause
androgen hyperresponsiveness to insulin in PCOS ovaries (Fig. 3).

It was also shown that insulin-stimulated theca cells proliferation was
inhibited by specific inhibitors of both MEK and PI-3K in rats. Finally,
Nestler et al. [30] provided evidence that insulin also stimulates testosterone
biosynthesis by PCOS theca cells through inositolglycan mediators. In this
study, the use of a synthetic inositolglycan mediator stimulated PCOS theca
cells androgen production to the same extent as insulin.

PPARγ nuclear receptors were found in theca ovarian cells, and ligands of
these receptors significantly decreased LH and insulin-stimulated testos-
terone production in theca cells [39]. To our knowledge, the molecular mech-
anisms underlying these observations have not been studied. However, it has
been found that PPARγ agonists can increase the levels of activated ERK in
adipose, liver, and muscle cell systems [40]. Therefore, these findings sug-
gest that PPARγ receptors are directly implicated in insulin-stimulated ovar-
ian androgen production and might improve some of the molecular defects
associated with increased androgen responsiveness to insulin in PCOS, such
as ERK activity (Fig. 3).

3.2.2. Hepatocyte Production of SHBG. In an in vitro model of human
hepatoma cells, insulin was shown to equipotently inhibit SHBG and IGFBP-1
production [41]. Insulin also directly inhibited in vitro SHBG production by
human hepatoblastoma-derived cells [42]. These results are in agreement with
in vivo observations and suggest that insulin directly inhibits hepatic production
of SHBG, which in turn will decrease testosterone binding and increase free
testosterone in women.

3.2.3. Selective Defects of Insulin Actions. Clinical examples of selective
defects in the metabolic pathway of insulin action were reported in
pseudoacromegaly and in diabetic patients with strong family history of type
2 DM. Resistance to insulin action on carbohydrate metabolism with pre-
served insulin stimulation of mitogenesis was demonstrated in cultured skin
fibroblasts from such patients [43]. Book and Dunaif also demonstrated that a
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selective defect in insulin action in PCOS fibroblasts affects metabolic, but not
mitogenic, signaling pathways [44].

Inhibition of the metabolic branch of insulin signaling, by blocking the PI-3K
pathway, leads to enhanced mitogenic action of insulin in endothelial cells,
suggesting significant cross talk between the different pathways of insulin sig-
naling. The studies of King et al. have led to the hypothesis that the cardio-
vascular complications of DM, for example, may result from diminution of the
PI-3K pathway activity, which causes a decrease in the antiatherogenic effects
of insulin, along with an increased activation of the MAPK pathway due to
hyperinsulinemia and/or PKC-induced up-regulation, which can result in an
increase in the atherogenic effects of insulin [45].

Finally, a study in ovarian luteinizing granulosa cells from women with
PCOS [46] highlighted a selective defect in insulin activity, e.g., resistance in
the metabolic pathway associated with an increase in mitogenic activity. Since
the mitogenic pathway of insulin implicates mainly the MAP kinase pathway
[11] (Fig. 3), as suggested for the androgenic pathway of insulin (see above),
the activity of the androgenic insulin pathway might be increased as well. Thus,
the observation that insulin-signaling pathways may express differential, and
even divergent, activity levels under various circumstances supports the possi-
bility that such selective defect also exists for the insulin androgenic path-
way(s) in PCOS women. Moreover, the study demonstrated that troglitazone, a
PPARγ agonist, corrects this hypersensitivity of the mitogenic insulin-signaling
pathway along with improvement of the insulin resistant metabolic pathway.
These results suggest that PPARγ agonists may also directly improve a possi-
ble hypersensitivity of the androgenic insulin-signaling pathway (Fig. 3).

4. INSULIN ACTIONS AND OVULATORY
DYSFUNCTION IN PCOS

4.1. In Vivo Insulin Actions

4.1.1. Ovulation. Many randomized and controlled studies have demon-
strated that insulin-sensitizing therapies, including lifestyle modifications and
drugs, improve ovulatory function both in lean and obese women with PCOS
[1]. Indeed, two recent meta-analyses of pertinent randomized-controlled
trials concluded that metformin significantly increases ovulation rates in
PCOS women, either alone or in combination with clomiphene citrate [47,48]
(see also Chap. 7). But it is not possible with these studies to determine
whether the improvement in ovulatory function with insulin-sensitizing treat-
ments is due to the decrease in insulin levels, following improved insulin
resistance, or to the direct correction of a defect in insulin action, or both.
However, two randomized-controlled trials have indicated that the sole reduc-
tion of insulin levels for 3 or 6 months with acarbose, which does not alter
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insulin signaling, significantly improves ovulation rates in hyperinsulinemic
women with PCOS [21,22]. Thus, these results suggest that insulin directly
alters ovulatory function in women with PCOS.

As previously mentioned, we conducted a randomized-controlled trial in 100
nonobese women with PCOS and normal insulin levels [4]. The use of two
insulin-sensitizing drugs in these PCOS women, i.e., metformin and rosiglita-
zone, significantly improved their ovulation rates comparatively to placebo.
Since their insulin levels were normal, these women were presumably normally
sensitive to the action of insulin on glucose metabolism. Thus, the observed ben-
efit was probably not due to direct correction of metabolic insulin resistance.

However, the benefit of insulin sensitizers on ovulatory function might
result from reduction of insulin levels below baseline concentrations, as
observed with the use of metformin (Fig. 1b). Indeed, if these women were
hypersensitive to the deleterious effects of insulin on ovulatory function,
insulin lowering would explain the improvement in ovulatory rates. Another
possibility is that these insulin-sensitizing drugs directly improve the defect
causing impaired insulin actions on ovulatory function. Indeed, rosiglitazone
improved ovulation rates without affecting insulin levels in our PCOS women
(Fig. 1b). Therefore, the results of our trial in nonobese PCOS women with
normal insulin levels suggest that PCOS might be characterized by increased
sensitivity to the actions of insulin on ovulatory function.

Women with PCOS were also subjected to a 10-h two steps hyperinsuline-
mic–euglycemic clamps, at low and very high insulin levels, before and after
treatment with pioglitazone for 5 months [49]. Before treatment, estradiol
responses to recombinant human follicle-stimulating hormone (rhFSH) were
unaltered during both low- and high-dose insulin infusions as compared to
baseline. As expected, pioglitazone significantly improved insulin sensitivity
and insulin levels in these PCOS women. After pioglitazone treatment, estra-
diol responses to rhFSH remained unchanged during low-dose insulin infu-
sion but were significantly increased with the high-dose insulin infusion.
These results suggested that PCOS granulosa cells might be resistant to
insulin-stimulated estradiol biosynthesis, which is reversed by pioglitazone.
However, it has been shown that incubation of normal bovine granulosa cells
with high levels of insulin inhibits FSH-induced P450 aromatase enzyme, as
opposed to low insulin levels (see also below) [50]. Therefore, it is also pos-
sible that chronic hyperinsulinemia in PCOS cause a resistance to FSH-
induced estradiol production, which is improved by reducing insulin levels or
by direct actions of PPARγ agonists.

4.1.2. Hypothalamic-Pituitary Axis. Hyperinsulinemia maintained for 22
days in normal female rats did not change GnRH-stimulated levels of FSH and
LH [26]. In addition, infusions of exogenous insulin do not alter LH secretion
in PCOS women [51]. Four-week treatment of obese PCOS women with
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metformin did not slow their LH pulse frequency despite significant improve-
ments in insulin levels [52]. Similarly, 16- and 20-week treatment with the thi-
azolidinedione pioglitazone in obese PCOS women did not alter LH pulse
patterns, despite improvement in insulin sensitivity [51,53]. However, rosigli-
tazone was shown to significantly decrease LH levels in lean and overweight
women with PCOS after 12 weeks [54]. In this last study, the average weights
of women with PCOS were lower as compared to PCOS subjects in the
pioglitazone studies.

Furthermore, LH levels appear to be negatively correlated with obesity in
women with PCOS [55], despite the fact that higher weight is associated with
higher insulin levels. Indeed, PCOS women with normal weight and insulin
levels tend to have higher levels of LH than obese hyperinsulinemic PCOS
women [56]. Another study, however, found similarly elevated plasma LH lev-
els, LH pulse amplitude, and integrated LH responses to GnRH in obese and
nonobese PCOS women as compared to the normal group, despite increased
insulin levels in the obese PCOS group [57]. Together, these findings suggest
that the hyperinsulinemia associated with PCOS does not directly result in
neuroendocrine abnormalities. However, we cannot exclude the possibility
that women with PCOS have increased sensitivity to insulin-stimulated LH
production, which is attenuated in obese PCOS women due to other factors,
such as leptin resistance, other adipokines, higher testosterone levels, etc.

Lean PCOS women were challenged with a GnRH agonist before and 4–6
weeks after treatment with metformin [18]. The results showed a significant
decrease in basal and GnRH-stimulated LH levels with metformin, but not with
placebo, along with significant reduction in insulin levels. Furthermore, we
recently assessed the effect of insulin in lean PCOS women with normal insulin
levels and metabolic insulin sensitivity, as above mentioned [5]. Our PCOS sub-
jects (n = 9) were characterized by very high LH levels as compared to normal
women (n = 17), i.e., 13.3 ± 1.5 versus 5.8 ± 1.1 mIU/mL, respectively. These
high levels of LH decreased nonsignificantly after pure reduction of insulin lev-
els with diazoxide, from 13.3 ± 1.5 to 10.5 ± 1.4 mIU/mL. However, diazoxide-
induced insulin reduction in obese PCOS women did not alter LH levels and LH
pulse frequency or amplitude [20]. Thus, these findings suggest that lean PCOS
women might display hypersensitivity to insulin-induced LH release, which
might be attenuated or counteracted by other factors in obese PCOS women.

4.2. In Vitro Molecular Mechanisms

Molecular mechanisms of ovulatory dysfunction might implicate ovarian
theca cells, ovarian granulosa cells, and hypothalamic and/or pituitary cells.
Since the actions of insulin in theca cells as well as potential dysfunction in
PCOS have been previously discussed, we will now review in vitro molecular
mechanisms of insulin action in granulosa cells as well as hypothalamic and
pituitary cells.
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4.2.1. Ovarian Granulosa Cells. Table 2 enumerates the actions of insulin
that are described in normal ovarian granulosa cells from human or mammalian
in vitro models. Insulin has been shown to stimulate basal and FSH- or LH-
induced progesterone and estradiol production. Insulin is also capable of stim-
ulating basal and FSH-induced P450 aromatase activity, which is the obligatory
step in order to convert androgens and progesterone to estradiol. However, in
bovine granulosa cells incubated with high dose of insulin, FSH failed to
stimulate aromatase activity [50]. Thus, high insulin levels might favor proges-
terone and androgen production over estradiol biosynthesis.

In granulosa cells insulin also inhibits IGFBP-1 synthesis, which causes an
increase in IGF-1 bioavailability and increases its actions on granulosa and/or
theca cells. IGF-1 has been shown to stimulate ovarian cell proliferation and
androgen production. Insulin can also directly stimulate granulosa cells prolif-
eration via its own receptor. Finally, insulin increases LH-induced low-density
lipoprotein (LDL) receptor expression, glucose transport, glycogen synthase
activity, and intracellular free fatty acids (FFAs) accumulation. Increased
accumulation of FFAs might exaggerate their potential deleterious effects on
insulin action (see Sect. 6 below). Therefore, increased actions of insulin in
granulosa cells might alter the hormonally induced selection of the dominant
follicle, by changing the progesterone-to-estradiol ratio, and might impair normal
follicular atresia, by promoting cellular proliferation. These effects could
induce anovulation and the development of polycystic ovaries.

Indeed, granulosa cells from PCOS women have been demonstrated to pro-
duce more estradiol under basal conditions, and after FSH and insulin stimu-
lation, and more progesterone following FSH, LH, and insulin stimulation, as
compared to controls [58]. Other investigators confirmed that FSH-induced
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Table 2. In vitro insulin actions in ovarian granulosa cells, based on studies
of normal mammalian ovarian cells

Effects Change References

Basal progesterone production ↑ [31, 59, 66–68, 97–104]
FSH-induced progesterone production ↑ [31, 58, 102, 103, 105, 106]
LH-induced progesterone production ↑ [31, 58, 60, 90, 104, 107]
Basal estradiol production ↑ [31, 59, 75, 97, 100, 108]
FSH-induced estradiol production ↑ [58, 87, 101, 106, 109]
LH-induced estradiol production ↑ [31, 58]
Basal P450 aromatase activity ↑ [50, 108, 110]
FSH-induced P450 aromatase activity ↑ [109]
IGFBP-1 synthesis (via insulin receptor) ↓ [66, 99, 111–113]
Cellular proliferation ↑ [75, 97, 101, 114, 115]
LH-induced LDL receptor expression ↑ [107]
Glucose transport or activation of glycogen synthase ↑ [46, 116]
Intracellular free fatty acids accumulation ↑ [111]



estradiol synthesis was higher following stimulation with insulin in PCOS
compared to normal granulosa cells [31]. However, highly luteinized granu-
losa cells collected from women with PCOS during in vitro fertilization pro-
tocols did not show increased progesterone production after stimulation with
FSH, LH, or insulin compared to controls, but demonstrated higher stimula-
tion of estradiol synthesis by FSH, LH, and insulin [59]. Therefore, PCOS
granulosa cells seem hypersensitive to the actions of insulin that are observ-
able in normal granulosa cells, particularly regarding estradiol production.

The molecular mechanisms of insulin action in granulosa cells are illus-
trated in Fig. 4. As depicted, studies have demonstrated that the metabolic
actions of insulin are mediated by the PI-3K pathway, similarly to classical
insulin-sensitive tissues [60]. Insulin stimulates granulosa cells proliferation
through the MAPK pathway, which is in accordance with the mitogenic
actions of insulin in other tissues [61].

The specific inhibition of MAPK in vitro resulted in higher FSH-induced pro-
duction of progesterone [62] and lower FSH-induced synthesis of estradiol [62].
Similarly, specific inhibition of MEK or ERK decreased FSH- or LH-induced
progesterone synthesis [63]. Also, activation of MAPK by the hepatocyte
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Fig. 4. Possible molecular mechanisms involved in the actions of insulin on ovarian granulosa
cells. Abbreviations: ERK: extracellular signal-regulated kinases; FFAs: free fatty acids; GPI:
glycosyl-phosphoinositol; IPGs: inositol-phosphoglycans; IRSs: insulin receptor substrates;
MAPK: mitogen-activated protein kinase; MEK: MAPK/ERK kinase; PCOS: polycystic ovary
syndrome; PPARγ: peroxisome proliferator-activated receptor gamma; PI-3K: phosphoinositide
3-kinase; PKB: protein kinase B; PLC: phospholipase C; Ras: rat sarcoma virus; and SHC: Src
homologous and collagen-like.



growth factor inhibited progesterone production and stimulated cells prolifera-
tion in granulosa cells [64], and prostaglandin F2α-induced activation of MEK
decreased LH-stimulated progesterone synthesis [65]. Inhibition of the MAPK
pathway was also shown to decrease the activity of P450 aromatose and FSH-
stimulated estradiol production [62]. This might be of importance in PCOS
because the activation of MEK/ERK appears to be constitutively reduced in
PCOS theca cells (as previously discussed) [32]. If such defect also exists in
granulosa cells, it would explain intracellular accumulation of progesterone and
reduction in estradiol levels, which would impair the selection of a dominant
follicle and ovulation.

Since insulin directly stimulates progesterone production in cultured granulosa
cells, this action is probably mediated through mechanisms other than the activa-
tion of the MAPK pathway. Furthermore, a group using mixed ovarian culture
showed that inhibition of PI-3K fails to abolish stimulatory effect of insulin on
progesterone production, suggesting the presence of PI-3K-independent insulin
signaling pathway(s) in human [66]. Since IGFBP-1 has been shown to be
reduced after stimulation of granulosa cells by insulin [66], it is possible that an
increase in IGF-1 bioavailability explains insulin-mediated progesterone biosyn-
thesis. Indeed, it was shown that IGF-1 stimulates progesterone production in
human granulosa cells [67]. Finally, Romero et al. [68] have demonstrated that
specific blockade of the inositolphosphoglycan putative mediators of insulin
action abolishes insulin-mediated progesterone synthesis in granulosa cells. Thus,
it appears that some intracellular pathways mediate insulin-stimulated proges-
terone production, which is in turn inhibited by activation of the MAPK pathway.

4.2.2. Hypothalamic and Pituitary Cells. In a model of hypothalamic cells,
i.e., immortalized neurons expressing GnRH, insulin-stimulated GnRH secre-
tion, which was mediated by ERK1/2, but not PI-3K [69]. Insulin also stimulated
GnRH promoter activity in mouse-derived GnRH-expressing neurons through
activation of MEK, another effector of the MAPK pathway. In vitro stimulation
with insulin increases basal and GnRH-stimulated LH and FSH mRNA expres-
sion or secretion from cultured rat pituitary cells [70] and pituitary-derived
LbetaT2 cells [71]. It was also shown in LbetaT2 cells that inhibition of MEK
decreases LHβ gene expression [72]. Therefore, increased insulin levels or activ-
ity could dysregulate the hypothalamic–pituitary control of ovulation and could
increase LH levels, which might contribute to hyperandrogenemia.

5. CONCLUSIONS

The key points discussed concerning the in vivo and in vitro actions of insulin
in PCOS are depicted in Table 3. The in vitro and in vivo evidences currently
available support the direct effect of insulin in stimulating androgen, estradiol,
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and progesterone biosynthesis, in decreasing SHBG production, in inducing
theca cell proliferation, in inhibiting granulosa cells apoptosis, and in affecting
GnRH and gonadotropin regulation. These findings suggest potential mecha-
nisms by which high insulin levels or increased insulin actions could cause
hyperandrogenemia and ovulatory dysfunction, which characterize PCOS.
Thus, insulin action, rather than metabolic insulin resistance, is probably cen-
tral to the pathogenesis of PCOS. Furthermore, there is some in vivo evidence,
in PCOS women with normal insulin levels and metabolic insulin sensitivity,
suggesting that insulin directly results in hyperandrogenemia and possibly
ovulatory dysfunction.

Therefore, these findings suggest that PCOS might result from hypersensi-
tivity to the effects of insulin on androgen biosynthesis and/or ovulatory func-
tion. In a minority of women, this defect could be sufficiently severe to cause
typical PCOS in the absence of metabolic evidence of insulin resistance and
hyperinsulinemia. However, in most women with PCOS, concomitant devel-
opment of insulin resistance and hyperinsulinemia would be necessary for
expression of the syndrome. This hypothesis could explain why most obese
women do not develop PCOS, because they lack this predisposing defect, and
why some women with typical PCOS are not insulin resistant, at least in
regards to glucose homeostasis.
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Table 3. Insulin Action and PCOS – Key Points

● PCOS women are characterized by androgen hyperresponsiveness to insulin in vivo 
and in vitro, even in those with normal insulin levels and sensitivity

● Insulin-sensitizing and pure insulin-lowering therapies of PCOS women, but not suppres-
sion of LH, improve hyperandrogenemia and/or hyperresponsiveness to LH stimulation,
suggesting that they are related to insulin action in vivo

● Increased androgenic responsiveness to insulin might be explained by reduced activity 
of the MAP kinase pathway in PCOS theca cells

● PPARγ agonist insulin-sensitizing agents increase MAP kinase activity in insulin-sensitive
tissues and decrease androgenic response to insulin in theca cells

● Insulin-sensitizing therapies and pure insulin lowering with acarbose improve ovulatory
function in both hyperinsulinemic and normo-insulinemic PCOS women, suggesting that
PCOS anovulation is directly caused by increased insulin actions

● In lean PCOS women, insulin directly stimulates in vitro GnRH and LH release, and 
metformin decreases GnRH-stimulated LH production, suggesting a role of insulin action 
in the hypothalamic-pituitary dysregulation of PCOS women

● Insulin-stimulated estradiol production and cellular proliferation are mediated by the MAP
kinase pathway in granulosa cells, and inhibition of this pathway increases progesterone
synthesis, which is otherwise stimulated by insulin through MAP kinase and PI-3K 
independent pathways



6. FUTURE AVENUES OF INVESTIGATION

Future investigations should probably focus on the mechanisms and the
causes of this hypothesized androgenic insulin hypersensitivity of PCOS. Such
studies might result in a better understanding of the pathogenesis of PCOS and
provide evidence for the selection or development of novel therapies for this
condition. Improved understanding of those mechanisms underlying the
increased insulin activity associated with metabolic insulin resistance might
also be pertinent to other conditions associated with insulin resistance, such as
the proliferative complications of type 2 DM or the development of metabolic
syndrome.

As mentioned, there is evidence suggesting that increased insulin action
in PCOS might be directly improved by PPARγ agonists. Although the
mechanisms by which PPARγ agonists improve in vitro insulin action in
theca cells is still unknown, a possibility is through the activation of MEK
or ERK, which have been shown to be constitutively inhibited in PCOS
theca cells. Therefore, future studies assessing the cellular mechanisms by
which PPARγ agonists improve PCOS hyperandrogenemia might lead to the
discovery of processes implicated in the reversal of the defects in insulin
action in PCOS.

Furthermore, such a defect might not be directly genetically determined,
but rather induced by the interaction between genetic and environmental fac-
tors. An interesting candidate factor is increased exposition of insulin-sensitive
tissues to FFAs, due to high dietary fat intake or altered FFAs metabolism.
Indeed, a recent controlled, randomized, crossover trial demonstrated that FFAs
increase the production of adrenal androgen precursors in vivo in men. It was
also shown that prolonged experimental elevation of plasma FFAs reduces
muscle and hepatic glucose insulin sensitivity in humans.

Plasma FFAs levels are increased in obese PCOS women, compared to
controls, and correlate with resistance to insulin-stimulated glucose metabo-
lism. Moreover, Usui et al. demonstrated that the FFA palmitate decreases
MAPK activity in vitro in rat fibroblasts and could therefore induce the
molecular defects observed in PCOS theca cells (Fig. 3). Finally, PPARγ
agonists prevent FFAs-induced hepatic, peripheral, and adipose tissue insulin
resistance. As mentioned, they also increase MAPK pathway activity.
Therefore, increased exposure to FFAs might explain both the metabolic
insulin resistance and the hyperandrogenemia of women with PCOS. Since
PPARγ agonists reduce tissue exposure to FFAs and prevent FFAs-induced
alterations of insulin actions, they might also improve hyperandrogenemia
through these mechanisms. Thus, future studies should assess the impact of
increasing FFA levels in vivo or exposing ovarian cells to FFAs in vitro on
hyperandrogenemia and androgenic hypersensitivity to insulin, in normal and
PCOS women.
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Polycystic ovary syndrome (PCOS) is a common, clinically heterogeneous
disorder that affects approximately 6–10% of premenopausal women [1,2].
Hyperandrogenemia is the biochemical hallmark of PCOS. Reproductive and
endocrine abnormalities include disordered gonadotropin secretion,
oligomenorrhea and anovulatory infertility, and endometrial hyperplasia.
Obesity, hirsutism, acne, and alopecia are often associated with PCOS. The
metabolic consequences of PCOS include insulin resistance, lipid abnormali-
ties, and possibly an increased risk of cardiovascular disease [3].

The familial aggregation of PCOS has been recognized for many years,
supporting a genetic contribution to its etiology. Recently, investigators have
reported a strong association between PCOS and an allele on 19p13.2 [3].
However, at present, there is no general agreement on a mode of inheritance.
Even though more than 50 candidate genes have been considered or studied to
no avail, most investigators believe that PCOS will prove to be an oligogenic
syndrome that involves genes governing steroid hormone biosynthesis as well
as insulin/glucose homeostasis. Limited progress in identifying the genetic
basis for PCOS has resulted, in part, from the difficulties arising from the
analysis of a complex genetic disease, which includes the heterogeneity of
the PCOS phenotype, the likely contribution of multiple genes, and the uncertain
contribution of the environment to the PCOS phenotype [3].



1. OVARIAN ANDROGEN AND ESTROGEN 
BIOSYNTHESIS

In the human ovarian follicle, androgen biosynthesis takes place primarily
in theca interna cells in response to the pituitary gonadotropin, luteinizing hormone
(LH) [2]. Theca-derived androgens then diffuse into ovarian granulosa cells
where estrogen biosynthesis takes place in response to follicle stimulating
hormone (FSH) in the nonluteinized follicle and in response to LH in the
luteinized follicle. Both FSH and LH act predominately via cyclic AMP/protein
kinase A mediated post-receptor signaling. A large array of paracrine and
autocrine signals including hormones, growth factors, and cytokines have also
been reported to regulate estrogen and androgen biosynthesis.

Theca cells express a cytochrome P450 with 17α-hydroxylase and 17,20-lyase
activity (P450c17; encoded by the CYP17 gene), which is the rate-limiting
enzyme required for androgen biosynthesis. P450c17, a single enzyme with
both 17α-hydroxylase and 17,20-lyase activities, is necessary for the conversion
of pregnenolone (P5) to 17α-hydroxypregnenolone (17OHP5), dehydroepiandros-
terone (DHEA), and ∆5-androstenediol, and for the conversion of
progesterone (P4) to 17α-hydroxyprogesterone (17OHP4) [2]. Granulosa
cells express cytochrome P450 aromatase (P450arom, encoded by the CYP19
gene), which aromatizes the A ring of C19 androgens to the phenolic A ring
of ∆4-androstendione (∆4-A) and testosterone (T) to estrone (E1) and
estradiol (E2), respectively [4].

Both granulosa and theca cells express steroidogenic acute regulatory protein
(StAR), encoded by the STAR gene, which promotes the translocation of
cholesterol to the inner mitochondrial membrane, as well as cytochrome P450
cholesterol side chain cleavage enzyme (P450scc; encoded by the CYP11A1
gene). Both cell types also express 3β-hydroxysteroid dehydrogenase type II
(3β-HSD; encoded by the HSD3B2 gene), and a variety of 17β-hydroxysteroid
dehydrogenase (17β-HSD) isoforms (encoded by aldo-ketoreductase [AKR]
genes) each of which is required for androgen biosynthesis [2]. In human
theca cells, the 17β-HSD type V (17β-HSDV, encoded by AKR1C3) reduces
∆4-A to T, rather than the type III, which catalyzes the formation of T in
Leydig cells, or the type I, an estrogenic enzyme that catalyzes the formation
of E2 in granulosa cells [2].

In human theca cells, androgen biosynthesis (Fig. 1) proceeds through the ∆5
steroid pathway and metabolism of P5 to 17OHP5, DHEA and ∆5-androstenediol
by the combined action of 17α-hydroxylase/17,20-lyase; and conversion of
DHEA to ∆5-androstenediol by 17β-HSDV or 20α-hydroxysteroid dehydro-
genase (20α-HSD, encoded by the AKR1C1 gene) [2]. Both DHEA and
∆5-androstenediol can be further converted to ∆4-A and T by 3β-HSD in either
the granulosa or theca cell compartment. Human theca cells have the capacity to
convert P5 to P4 and 17OHP4. However, human 17,20-lyase completely lacks the
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ability to convert 17OHP4 to ∆4-A. In contrast to the rodent and bovine ovary,
studies examining steroid metabolism in normal and PCOS theca cells have
demonstrated that DHEA and ∆5-androstenediol, rather than ∆4-A, are the major
products of P5 metabolism. Therefore, ∆5 steroids are the primary source of
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Fig. 1. A schematic diagram of the human ovarian steroid biosynthetic pathway. In the human
ovarian follicle, theca cells produce androgens that are converted to estrogens by granulosa
cells. Theca and granulosa cells express steroidogenic acute regulatory protein (StAR), encoded
by the STAR gene, which promotes the translocation of cholesterol to the inner mitochondrial
membrane. P450 cholesterol side chain cleavage enzyme (P450scc) encoded by the CYP11A1
gene, which converts cholesterol to pregnenolone (P5), is also expressed in both cell types. For
androgen biosynthesis, theca cells express cytochrome P450 17α-hydroxylase (P450c17), a
single enzyme with 17α-hydroxylase and C17,20 lyase activities, which are necessary for the
conversion of P5 to 17α-hydroxypregnenolone (17OHP5), dehydroepiandrosterone (DHEA),
and for the conversion of progesterone (P4) to 17α-hydroxyprogesterone (17OHP4). In the
human ovary, as in the adrenal, androgen biosynthesis proceeds through the ∆5 steroid pathway,
whereby P5 is metabolized to 17OHP5 and DHEA by the combined action of 17α-hydroxylase
/17,20-lyase (i.e., P450c17); this is followed by subsequent conversion of DHEA to ∆5-
androstenediol by 17β-hydroxysteroid dehydrogenase (17β-HSD). P5, DHEA, and
∆5-androstenediol can be converted to P4, ∆4-androstenedione (∆4-A, and testosterone (T) by
3β-HSD in granulosa or theca cells. In granulosa cells, androgen substrates (i.e., ∆4-A, DHEA,
and T) can be further converted to estrogens by cytochrome P450 aromatase (P450arom), encoded
by the CYP19 gene. In granulosa cells, 17β-HSD types I, II, and IV are expressed, whereas type
V is expressed in the theca.



substrate for androgen biosynthesis in the human ovary and the most suitable
markers for examining the regulation and dysregulation of androgen production in
the PCOS ovary.

The ovarian phenotype of PCOS is characterized by an increased number of
small antral follicles, with a hypertrophied thecal wall, aligned under a thickened
capsule. The PCOS ovary maintains increased steroidogenesis in association
with abnormal and arrested follicle growth [4]. The increased number of
follicles in polycystic ovaries is likely to result from an extended period of
follicle growth, which results in abnormal folliculogenesis at all stages [4].
These follicles are arrested in development at the stage where selection of a
dominant follicle would normally occur. Compared with follicles of the same
size in cycling ovaries, these growth arrested follicles contain an increased
number of steroidogenic cells in the theca interna with increased CYP17 and
CYP11A1 mRNA [5] and a decreased number of granulosa cells.

During normal follicle development, the granulosa cells begin to express
CYP19 mRNA when the follicle grows to approximately 6–7 mm in diameter
[6]. In the PCOS ovary, follicles arrest at 5–8 mm in diameter, and granulosa
cells express lower levels of CYP19 mRNA independent of the follicle size,
even though there are normal concentrations of FSH in the follicular fluid [6].
In addition, both theca and granulosa cells appear to be luteinized as they
express LH receptors and have increased CYP11A1 mRNA abundance [5].
Therefore, it is clear that there are abnormalities of proliferation and differen-
tiation in both the theca and granulosa compartments of the polycystic ovary
in vivo, which are discussed further below and summarized in Table 1.

2. DYSREGULATED ESTROGEN BIOSYNTHESIS 
IN PCOS

Follicular fluid from PCOS follicles contain elevated levels of androgens
and lower amounts of E2 [7]. This elevated androgen to estrogen ratio results
from an increase in thecal CYP17 gene expression and androgen production
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Table 1. Abnormalities of the PCOS ovary “in vivo”

● Follicular androgen to estrogen ratio is increased
● The number of small (5–8 mm) follicles, resulting from growth arrest at primary follicular

stage, is increased
● Thecal CYP17 and STAR expression are elevated
● Granulosa CYP19 expression is reduced
● Both theca and granulosa CYP11A1 and LH receptor mRNA are increased
● Follicular 5α-reductase activity is enhanced
● Granulosa cell sensitivity to FSH is enhanced



concomitant with a reduction in CYP19 gene expression and decrease in the
conversion of androgens to estrogens in granulosa cells [2,6]. Even though
excess thecal androgen substrate is provided to the PCOS granulosa cell, these
androgens are not aromatized to estrogens, and follicular fluid levels of E2 are
reduced. This loss of aromatase and E2 biosynthesis “in vivo” has been pro-
posed to involve dysregulation of autocrine and paracrine signaling within the
follicle. These findings are substantiated by the observation that in contrast to
PCOS granulosa cells “in vivo” where CYP19 gene expression and aromatase
enzyme activity and E2 production are suppressed, PCOS granulosa cells both
in short- and long-term culture “in vitro” have both markedly increased aromatase
activity and P4 production compared to normal granulosa cells [8,9].
5α-Reductase activity has also been reported to be elevated in the granulosa
cells of PCOS ovaries, leading to markedly increased metabolism of ∆4-A to
5α-androstanedione, a competitive inhibitor of aromatase activity [10].

Women with PCOS also exhibit an exaggerated serum E2 response to
recombinant human FSH compared with similarly treated normal women.
This enhanced granulosa cell responsiveness is consistent with excessive
follicular development following gonadotropin therapy and the corresponding
risk of ovarian hyperstimulation syndrome. Reports also suggest that inhibin
B and E2 induction by FSH is significantly enhanced in PCOS women, occurring
more rapidly and robustly than in normal controls. In contrast, the induction
of inhibin A was similar in normal and PCOS women. In women with PCOS,
the increased response to FSH does not appear to be the result of elevated
circulating androgens, since treatment with the antiandrogen flutamide does
not alter FSH responsiveness [11].

3. DYSREGULATED ANDROGEN BIOSYNTHESIS 
IN PCOS

There is convincing evidence to support the concept that excess androgen
production in PCOS results from a primary abnormality in ovarian thecal
steroid production. Immunohistochemical studies have demonstrated that
there is greater immunoreactive CYP17 protein in the theca interna cell layer
of small, large, and atretic follicles from PCOS ovaries that is independent of
the thickness of the theca interna layer. In 1994, Gilling-Smith et al. [12]
published the first studies demonstrating that androgen and progestin produc-
tion are elevated on a per cell basis in PCOS theca cells in primary culture.
Subsequent studies by these investigators demonstrated that androgen production is
inhibited following complete GnRH suppression of pituitary LH production in
patients with PCOS, further establishing that ovarian theca cells are the
primary source of excess androgen biosynthesis in PCOS [12]. In 1999, a
comparison of the steroid biosynthetic capacity of normal and PCOS theca
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cells grown for multiple population doublings verified that in PCOS theca
cells, basal and cAMP-stimulated DHEA, 17OHP4, T, P4, and ∆4-A produc-
tion was increased compared to cells propagated from normal cycling women
[13]. The latter studies were of significant importance because propagating the
cells for successive population doublings under long-term culture conditions
should negate the effect of their prior “in vivo” hormonal environment.

The finding that increased androgen and progestin biosynthesis is a stable
characteristic of propagated PCOS theca cells maintained in long-term
culture has provided new opportunities to examine the molecular and cellular
basis for increased ovarian androgen biosynthesis in PCOS cells under
conditions where the cells are distant from their in vivo paracrine and
endocrine milieu. Studies of propagated PCOS cells have revealed that
augmented steroid biosynthesis is due to increased steroidogenic activity and
transcription of genes encoding steroidogenic enzymes, which is reflected by
increased levels of steroidogenic enzyme mRNAs as well as enhanced
promoter activities [2].

The biochemical phenotype displayed by PCOS theca cells is consistent
with the findings from family studies indicating genetic control of androgen
production. Steroidogenic abnormalities associated with PCOS theca cells in
long-term culture are presented in Table 2, and include increased 3β-HSD, P450c17,
and 20α-HSD enzyme activities, and increased P450scc, 3β-HSD,
P450c17, and 20α-HSD mRNA accumulation [2]. In contrast, similar levels of
STAR and 17β-HSDV (AKR1C3) mRNA were observed in normal and PCOS
theca cells in long-term culture [2].
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Table 2. Steroidogenic abnormalities of PCOS theca and granulosa cells “in vitro”

Activity mRNA Transcription mRNA stability

Theca cellsa

StAR – – –
P450scc ↑ ↑ ↑
3βHSD ↑ ↑
P450c17 ↑ ↑ ↑ ↑
20α-HSD ↑ ↑
17β-HSDV – –
Granulosa cellsb ⎪ ⎪ ⎪
P450arom ↑ ↑

(↑) increase; (–) no significant difference.
aIncreased 17α-hydroxyprogesterone, DHEA, and progesterone biosynthesis.
bIncreased Progesterone biosynthesis.



4. INCREASES IN CYP17 AND CYP11A1 GENE
TRANSCRIPTION AND mRNA STABILITY IN PCOS

In PCOS theca cells maintained in long-term culture, increased basal and
cAMP-stimulated androgen and P4 biosynthesis has been reported to result
from increased CYP17 and CYP11A1 mRNA accumulation, gene transcrip-
tion, and mRNA stability in PCOS [2]. Significant progress has been made
examining the molecular basis for increased transcriptional regulation of
CYP17 and CYP11A1 gene expression in PCOS theca cells. Analysis of 
the CYP17 promoter in normal and PCOS theca cells has demonstrated that a
16 bp sequence, spanning −174 to −158 bp from the start site of transcription,
is required for increased CYP17 promoter function in PCOS theca cells [2,14].
Mutation of specific base pairs within this sequence was found to ablate
increased promoter activity in PCOS. Moreover, these mutations resulted in
the loss of binding of the transcription factor nuclear factor 1C (NF-1C).

A comparison of NF-1C binding in nuclear extracts isolated from normal
and PCOS theca cells demonstrated that NF-1C binding was reduced in PCOS
cells. In addition, NF-1C was observed to repress CYP17 promoter function,
suggesting that reduced NF-1C-dependent repression may be associated with
increased CYP17 promoter activity and gene expression in PCOS theca cells.
In Fig. 2, an illustration is presented of the sequence between −188 and −140
bp of the 5′ flanking sequence of the human CYP17 promoter showing the
binding sites of factors that are known to regulate the CYP17 promoter in
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Fig. 2. The −188 to −140 bp region of the CYP17 promoter and associated regulatory factors.
A schematic diagram of the −188 to −140 bp region of the 5′-flanking sequence of the human
CYP17 gene, which confers increased transcription of the CYP17 promoter in PCOS theca cells.
Regulatory factors that are known to bind this region are shown in color, including Sp1 and Sp3
factors, nuclear factor-1 (NF-1), and steroidogenic factor-1 (SF-1). Putative binding elements
for CCAT-enhancer binding protein-β (C/EBP-β), activating protein-1 (AP-1), retinoic acid
receptor (RAR), and myeloid zinc finger-1 (MZF-1) have also been included based on similarities
to consensus binding sites, however, the association of these factors with the CYP17 promoter
has not been confirmed.



theca cells, as well as the approximate binding sites of putative regulatory
(derived from database analysis).

It is interesting to note that a common feature of these putative CYP17
regulatory factors (i.e., AP-1, NF-1, SF-1, C/EBPβ, MZF-1, RAR, and Sp1),
is that they have been reported to be regulated by intracellular cell signaling
pathways including the mitogen activated protein kinase (MAPK) pathways
ERK, p38, and JNK [2]. Recent supershift analysis has indicated that the
transcription factors NF-1C, SF-1, Sp1, and Sp3 from normal and PCOS theca
cell nuclear extracts bind to the −188/−140 CYP17 promoter sequence [14].
Whereas NF-1C represses the CYP17 promoter, steroidogenic factor-1 (SF-1)
potently stimulates the CYP17 promoter and contributes to cAMP-dependent
responsiveness. Sp1 and Sp3 have also been shown to activate the CYP17
promoter in adrenocortical H295 cells, however, the role of Sp factors in theca
cell CYP17 transcription is still unknown.

Analysis of the CYP11A1 promoter in normal and PCOS theca cells has
demonstrated that augmented promoter function in PCOS theca cells results
from preferentially increased basal regulation conferred by sequences between
−160 and −90 bp of the transcriptional start site. We have analyzed the −160/−
90 bp sequence of the human CYP11A1 promoter and have found regions of
homology to the minimal −188/−140 bp CYP17 promoter sequence that
confers increased regulation in PCOS theca cells. As expected, transcription
factor database analysis of the homologous regions indicates putative recognition
sequences similar to those presented in Fig. 2, including SF-1, NF-1, Sp1/Sp3,
C/EBPβ, RAR, and MZF-1. NF-1C was observed to repress not only CYP17
promoter function but also CYP11A1 promoter function, suggesting that
diminished NF-1C-dependent repression may be associated with the
coordinate increase in CYP17 and CYP11A1 promoter activity and gene
expression in PCOS theca cells.

With respect to the increase in CYP17 and CYP11A1 mRNA stability in
PCOS theca cells, there is a growing body of literature demonstrating that
RNA degradation is not a default process. Sequences that control mRNA
decay can be found in the 5′ untranslated region (UTR), coding region, and/or
3′UTR of a specific mRNA. Regulation of transcript stability is accomplished
through the association of proteins that bind to the 5′UTR alone or in associ-
ation with proteins that bind with the 3′UTR. Although the transcriptional
regulation of genes encoding steroidogenic enzymes has been widely studied,
the regulation of mRNA abundance by posttranscriptional mechanisms, i.e.,
alterations in mRNA stability, has been largely unexamined. Cumulative data
from in vitro degradation assays and transient transfection analyses have
demonstrated that increased CYP17 and CYP11A1 mRNA abundance in
PCOS theca cells results not only from increased mRNA synthesis, but also
from a coordinate decrease in the degradation of CYP17 and CYP11A1 mRNA
[2,15]. This enhanced mRNA stability in PCOS has recently been shown to
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require the 5′UTRs of the CYP17 and CYP11A1 mRNAs [2], however, the
factors involved in altered mRNA stability in PCOS have not yet been identified.

5. INSULIN SENSITIVITY AND THE PCOS OVARY

There is controversy about whether the hyperandrogenism associated with
PCOS results from alterations in the intracellular signaling cascades linked
with insulin resistance. Although investigators initially proposed that hyperin-
sulinemia resulting from the insulin resistant state produces ovarian
hyperandrogenism by spillover occupancy and activation of the insulin-like
growth factor-1 (IGF-1) receptors [16], studies have shown no differences in
the ED50 of insulin-stimulated androgen biosynthesis in propagated theca cells
[13] or estrogen biosynthesis in freshly isolated granulosa cells obtained from
normal and PCOS ovaries [17].

PCOS theca and granulosa cells are not insulin resistant and are, in fact,
equally sensitive to insulin. In contrast, subsequent reports have shown that
insulin-dependent lactate production in granulosa-lutein cells from PCOS was
reduced compared with normal ovulatory women, suggesting that insulin-stimulated
glucose uptake and utilization are impaired in PCOS [18,19]. In patients with PCOS
and insulin resistance, there are reports to suggest that D-chiro-inositol signaling is
altered [2,20].

Total insulin receptor mRNA expression, but not intrafollicular insulin
levels, was observed to be elevated in follicular aspirates of PCOS in vitro
fertilization patients [2]. Differences in insulin receptor substrate (IRS)
signaling molecules in normal and PCOS theca cells, but not granulosa cells
have been reported [2]. Furthermore, reports demonstrating increased IRS-2
expression in PCOS theca cells, as well as studies demonstrating inhibition of
thecal androgen biosynthesis by insulin sensitizing drugs such as metformin,
have suggested that insulin-dependent signaling may in fact be disrupted in
the PCOS ovary [2].

6. MITOGEN ACTIVATED PROTEIN KINASE
SIGNALING AND ALTERED STEROID 
BIOSYNTHESIS IN PCOS

MAPKs are all proline directed, serine-threonine kinases, that are phosphory-
lated (i.e., activated) on threonine and tyrosine in response to a wide variety
of stimuli, including cytokines, growth factors (i.e., insulin), hormones, cellular
stress, and cell adherence [21]. The Ras/MEK/ERK pathway is an important
signaling cascade involved in the control of cell proliferation and differentiation.
While some investigators have suggested that cAMP-stimulated activation of
the MEK/ERK signaling cascade augments ovarian steroid biosynthesis, others

Ovarian Steroidogenic Abnormalities in PCOS 77



have demonstrated that inhibition of the MEK/ERK signaling cascade is asso-
ciated with increased steroid biosynthesis. In human adrenocortical H295
cells, a reduction in the activation state of the ERK1/2 has also been associated
with increased CYP17 gene expression [21].

Similarly, a comparison of the phosphorylation states of MEK1/2 and
ERK1/2 in normal and PCOS theca cells propagated in long-term culture
revealed a gross reduction in the tone of MEK/ERK signaling in PCOS cells.
Infection of normal theca cells with a dominant negative MEK1 adenovirus
resulted in increased DHEA production, CYP17 mRNA accumulation, and
17α-hydroxylase enzyme activity, and treatment with the pharmacological
MEK1 inhibitor, PD98059, augmented CYP17 gene transcription [21]. In contrast,
infection with a constitutively active MEK1 inhibited both DHEA synthesis
and CYP17 mRNA accumulation. The observed lack of a response of PCOS
theca cells to PD98059 at the level of transcription further supports the idea
that the suppression of the MEK/ERK signaling pathway plays a pivotal role
in regulating androgen synthesis in the PCOS.

Given the controversial role of insulin in regulating androgen biosynthesis
in normal and PCOS theca cells, experiments were performed to assess the
effects of insulin on ERK phosphorylation and overall androgen biosynthesis.
Results from these experiments demonstrated that insulin treatment did not
significantly affect the phosphorylation state of ERK1/2 in normal or PCOS
theca cells. Moreover, in the absence of insulin treatment, CYP17 mRNA
abundance and DHEA accumulation remains increased in PCOS theca cells as
compared to normal theca cells [21]. These data suggest that alterations in
MEK/ERK signaling, CYP17 mRNA accumulation, and androgen biosynthesis
do not appear to be directly associated with insulin action [21]. Nonetheless,
the conundrum still remains that insulin does in fact modulate androgen and
CYP17 mRNA accumulation and other insulin-mediated signaling pathways
differentially in normal and PCOS theca cells.

7. GENE EXPRESSION PROFILING AND 
CANDIDATE GENE ANALYSIS IN PCOS

Global gene expression profiling of normal and PCOS theca cells using
subtractive suppressive hybridization and oligonucleotide microarray has
provided data to suggest that dysregulation of androgen biosynthesis is asso-
ciated with selective differences in several gene networks that are involved in
steroid hormone biosynthesis as well as insulin and glucose homeostasis [2].
These analyses demonstrated that approximately 2% of genes expressed in the
theca cell exhibit altered mRNA abundance in PCOS. Characterization of
these genes revealed that specific enzymes involved in retinoic acid synthesis
and metabolism are altered in the PCOS theca cell.
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Further examination of the effects of retinoids on theca cells demonstrated
that retinoid treatment differentially stimulated androgen biosynthesis and
CYP17 gene expression in normal and PCOS theca. The transcription factor
GATA6 was also increased in PCOS as compared to normal theca cells.
GATA6 is expressed in both the gonads and the adrenal and has been shown
to activate the CYP17, CYP11A1, STAR, and cytochrome b5 promoters.
Furthermore, both GATA6 transcription and mRNA stability were observed to
be altered in PCOS theca cells. Additional data from array analysis have sub-
stantiated that cross talk between several signaling pathways, including the
MAPK pathway, may be dysregulated in the PCOS ovary. For instance, there
are data to suggest that the Wnt signaling pathway is altered. Tribble 3
(TRB3), which inhibits Akt/PKB phosphorylation, exhibits decreased gene
expression in PCOS theca cells, and cAMP-GEFII, which augments Akt/PKB
phosphorylation, exhibits increased gene expression in PCOS theca cells [22].
Thus, global gene expression profiling has identified potential pathways that
may determine the PCOS theca cell phenotype. These observations reinforce
the notion that PCOS theca cells have a unique molecular fingerprint suggestive
of a genetic alteration or a stable epigenetic imprint. Additional investigation
and characterization of these signaling networks in normal and PCOS theca
cells could elucidate the molecular mechanisms underlying PCOS and provide
insight regarding new modes of therapeutic treatment.

Genetic linkage studies have identified a candidate PCOS susceptibility
locus D19S844 on chromosome 19p13.2 [3]. D19S884 is located in a
nonconserved intronic sequence between exons 55 and 56 of fibrillin 3
(FBN3) [3]. The identity of the affected gene(s) or putative gene regulatory
element associated with the PCOS phenotype is presently unknown. However,
there are several known candidate genes in this region that are currently under
investigation including FBN3, MAP2K7, and RETN [3]. FBN3 is a component
of the microfibrils of the extracellular matrix. At first glance, there is little to
suggest a connection between an extracellular matrix component and the
morphological and metabolic phenotypes of PCOS. However, the family of
fibrillin genes also regulates the action of the transforming growth factor beta
(TGFβ) superfamily of signaling molecules, which include activin, inhibin,
and the bone morphogenic proteins (BMPs), molecules that have known roles
in controlling ovarian function.

MAP2K7, encodes mitogen activated protein kinase kinase 7 (MKK7), a
mitogen-activated serine/threonine kinase that activates c-Jun N-terminal
kinase in response to activation by growth factors, cytokines and stress.
MKK7 phosphorylation has been observed to be increased in propagated
PCOS theca cells, and infection of human theca cells with a MKK7 aden-
ovirus increases CYP17 mRNA and DHEA accumulation [15]. The resistin
(RETN) gene is also localized to this region. No evidence has been found for
the association of variants in the RETN gene with hyperandrogenemia, obesity,
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or insulin resistance in PCOS families [3]. However, serum resistin concen-
trations are elevated 40% in PCOS women as compared to control women and
are indicative of body mass index and T levels, but not insulin resistance in
women with PCOS. Moreover, since resistin has been shown to augment
cAMP-dependent thecal P450c17 activity in vitro, abnormal resistin secretion
in the PCOS ovary may contribute to abnormal androgen biosynthesis [23].

8. PARACRINE AND AUTOCRINE REGULATORS
THAT MAY IMPACT OVARIAN STEROID
ABNORMALITIES AND FOLLICULAR GROWTH 
IN THE PCOS OVARY

Paracrine and autocrine regulation in and between granulosa and theca cells
is known to involve a variety of signals including hormones (androgens, prog-
estins, ApoE), growth factors (inhibins, EGF, TGFα, TGFβ IGFs, KGF,
BMPs, relaxins, INSL factors, endothelin, VEGF), cytokines (interleukins,
TNF), and extracellular matrix components (fibronectin, laminin, collagen)
[24–26]. However, as of yet, there are only a handful of factors that have been
casually related to altered androgen biosynthesis and PCOS. For example,
recent findings suggest that the steroidogenic capability of the developing
follicle and corpus luteum is regulated by neovascularization and paracrine
modulation by endothelial cells [27]. Specifically, steroidogenic cells produce
and respond to angiogenic factors and vasoactive peptides.

Endocrine gland-derived vascular endothelial growth factor (EG-VEGF), an
endothelial cell mitogen within steroidogenic tissues, is strongly expressed in
the theca interna and stroma of the PCOS ovary. Vascular endothelial growth
factor (VEGF) is mainly localized within the granulosa. Furthermore, cell and
stage-specific expression of these two factors in PCOS ovaries suggests that
they may coordinate angiogenesis and possibly ovarian cyst formation.

Another endothelial factor capable of regulating steroid biosynthesis in the
PCOS ovary is endothelin. Elevated levels of endothelin have been observed
in PCOS women, irrespective of BMI. Interestingly, endothelin levels are
returned to normal following metformin therapy [28]. Endothelin receptors
are expressed on human luteinizing granulosa and endothelin-1 inhibits
P4 and estrogen production purportedly by decreasing both cAMP- and FSH-
responsiveness [28]. Furthermore, endothelin-converting enzyme, an endo-
peptidase which converts big endothelin-1 to endothelin-1, is expressed in
granulosa and theca cells of growing and preovulatory follicles. Examination
of the role these endothelial factors play in the normal and PCOS ovary has
been limited and further investigation is required.

Anti-Mullerian hormone (AMH), a member of the TGFβ superfamily, is produced
by both granulosa and theca cells and reflects follicular development. PCOS
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women have been reported to have increased serum levels of AMH which have
been shown to be associated with an excessive number of growing antral follicles.
Recent studies also indicate that prepubertal daughters of women with PCOS
have increased serum AMH levels both during infancy and childhood, suggesting
that follicular development may also be altered during infancy and childhood
[29]. In contrast, lower amounts of AMH have been reported in PCOS granulosa
cells of primordial and transitional follicles [30]. These findings indicate that a
relative deficiency of AMH in primordial and transitional follicles may contribute
to disordered early follicle development and annovulation in PCOS.

There are data to suggest that the action of other members of the TGFβ
superfamily could be disrupted in the PCOS ovary. For instance, inhibin A and
inhibin B concentrations are significantly reduced in the follicular fluid of
women with PCOS compared with those in the follicular fluid of size-matched
follicles from normal women, which is consistent with evidence that the
mRNA expression of specific inhibin subunits is decreased in PCOS granulosa
cells [7,31,32]. The finding that the TGFβ superfamily member, growth
differentiation factor-9 (GDF-9), has reduced expression in PCOS oocytes is
also interesting, in view of the observation that GDF-9 inhibits androgen
biosynthesis in human ovarian theca cells maintained in long-term culture
[32]. In addition, the BMPs have been shown to modulate follicle growth and
development by influencing granulosa cell sensitivity to FSH and IGF and
inhibiting thecal androgen production [33]. Theca cells produce BMP-4 and -7,
which act in an autocrine/paracrine fashion upon both theca cells and neigh-
boring granulosa cells to regulate steroidogenesis, cell proliferation, and
peptide hormone secretion [33].

In luteinized granulosa cells from women with PCOS the matrix metallopro-
teinase to tissue inhibitor of metalloproteinase (MMP:TIMP) balance is shifted
toward greater MMP activity. Cultured luteinized granulosa cells obtained from
PCOS patients secrete higher levels of MMP-9 and MMP-2 compared to gran-
ulosa cells from normal ovulatory patients whereas the secreted basal level of
TIMP-1 was similar in both types of granulosa cells. It is therefore reasonable
to speculate that inappropriate extracellular matrix remodeling may contribute
to dysregulated follicular development and atresia in the PCOS ovary [34].

In addition to the findings presented above, immunohistochemical and
biochemical approaches have been utilized to identify differences in the
expression and localization of a variety of potential regulators of ovarian
follicular development and steroidogenesis in the normal and PCOS ovary.
Differential expression of leptin in the PCOS ovary has been reported,
whereas no differences in plasminogen activator inhibitor-1, and apoptotic-
inducing factors Fas and Fas ligand were observed [32]. There are also data to
suggest that the EGF receptor is upregulated in PCOS granulosa cells. A variety
of other autocrine and paracrine factors have also been examined and impli-
cated in the etiology of PCOS. Leukemia inhibitory factor, a cytokine expressed
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in endometrial and trophoblast cells and required for implantation, is
decreased in follicular fluid in PCOS patients and has been reported to be
associated with early pregnancy loss in PCOS [32]. In addition, circulating
levels of tumor necrosis factor α have been reported to be elevated in women
with PCOS [32]. However, the collective impact of these findings on ovarian
androgen biosynthesis is presently unknown.

9. SUMMARY

Although we are learning significantly more about the dysregulation of
androgen and estrogen biosynthesis in the PCOS ovary, it is evident that there
are a wide array of studies that successfully determine the genetic and/or
molecular and cellular basis for PCOS. To reach this objective, clinical and
basic science investigators will need to continue to combine forces and design
new collaborative and complementary studies utilizing both in vivo and
in vitro approaches to further examine the basis of altered steroid biosynthesis
and folliculogenesis in the PCOS ovary.

Unfortunately, one of the major obstacles for investigators examining
biochemical and molecular processes in the PCOS ovary, without question, is
the increasing difficulty in obtaining fresh ovarian specimens, as well as other
tissue, from well-characterized PCOS and normal patients. For in vitro
studies, there are distinct benefits to performing experiments with ovarian
cells in primary culture as well as long-term culture, and investigators will
need to make coordinated efforts to work together and perform studies using
both systems. Comparable studies focusing on alterations in steroid biosynthesis,
cellular function, and gene expression in PCOS granulosa, luteal, stromal
cells, as well as epithelial cells and oocytes, are necessary.

Given that PCOS is a genetic disorder, future studies examining alterations
in endometrial, testicular, and adrenal steroid biosynthesis in PCOS are
warranted to fully understand the common mechanisms underlying defects in
androgen biosynthesis in PCOS. Moreover, investigators examining the ever-
increasing array of network signaling cascades in various tissues affected in
women with PCOS (i.e., adipose, muscle, ovary, endometrium, skin), should
also work together with similar and overlapping scientific approaches to more
fully understand the primary and/or full array of signaling defect(s) in PCOS.
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The polycystic ovary syndrome (PCOS), one of the most common causes of
hyperandrogenism and chronic oligo-anovulation, affects 4–7% of women
[1]. The clinical features of PCOS are heterogeneous and may change
throughout the lifespan, starting from adolescence to postmenopausal age.
Among other factors, this is largely dependent on the influence of obesity and
metabolic alterations, including an insulin resistant state and the metabolic
syndrome, which consistently affect most women with PCOS [2].

This represents an important factor in the evaluation of PCOS throughout
life and implies that PCOS, by itself, may not be a hyperandrogenic disorder
exclusively restricted and relevant to young and fertile-aged women, but may
also have some health implications later in life. Whereas in young women
with PCOS, hyperandrogenism and menstrual irregularities are the major
complaints, symptoms related to androgen excess, oligomenorrhea or amen-
orrhea, and consequent infertility, represent the major complaints of adult
PCOS women during the reproductive age.

Obesity has an important impact on the progression and severity of these man-
ifestations in proportion to its degree, particularly in the presence of the abdom-
inal type of obesity [2]. Obesity also renders affected women more susceptible to
develop type 2 diabetes mellitus (T2DM), although there are some differences in
the prevalence rates between countries and ethnicities, and potentially favors the
development of cardiovascular disease (CVD). While the pathophysiology of
PCOS has a genetic component (see Chap. 3), it is likely that the main factors
responsible for the increasing prevalence of PCOS are related to the influence of
the environment, including dietary habits and other still undefined factors [1].

This chapter focuses on the prevalence of obesity in women with PCOS
and its pathophysiologic role in the development of the PCOS phenotype, with
specific reference to clinical and biochemical hyperandrogenism, menstrual



abnormalities, and infertility. Metabolic alterations, including insulin
resistance, the metabolic syndrome, and states of glucose intolerance will also
be discussed.

1. PREVALENCE OF OBESITY IN PCOS

The prevalence of PCOS in the general population is approximately 6% accord-
ing to the major clinical studies published so far [3] (see Chap. 1). These studies
have been performed in several European and North-American populations, with
a total of 1,253 women investigated [3]. Notably, the populations included in these
studies were different in ethnicity (Caucasians, European, Black, and White
Americans), as were the recruitment criteria for the studies (preemployment eval-
uation, blood donors, or women accepting an invitation to participate in a free-
medical examination), whereas the prevalence rates proved remarkably similar,
at least in four studies. Overall, these studies have several limitations, the most evi-
dent of which is that none of them was performed according to the classical epi-
demiological rule, which is the random selection of a representative large cohort
of women living in a well-defined geographical area or a specific country.
Although the finding of a similar prevalence rate in most of the available studies
renders this methodological flaw less unacceptable, nonetheless it is quite clear
that well-designed epidemiological studies need to be performed in order to achieve
more accurate estimates worldwide. Notably, an increased prevalence of PCOS
has been reported for women who present with gestational diabetes and T2DM.

We are facing a worldwide public health emergency due to the increasing
epidemic of obesity and related disorders. The problem of obesity has achieved
global recognition only in the past 10–15 years. Recent estimates of the preva-
lence of obesity, based on the body mass index (BMI) measurement in appro-
priate population samples, demonstrate that its increasing prevalence is
recognized worldwide, with few exceptions. The International Obesity Task
Force estimates that at least 1.1 billion adults are currently overweight world-
wide, including 312 million who are obese [4]. Furthermore, with the use of
new Asian BMI criteria, the number of affected individuals may be even
higher. Most importantly, there is emerging evidence that obesity is increasing
not only in adults, but also in children, where prevalence rates of more than
10% have been reported, particularly in Western countries. This may be
particularly relevant for PCOS, whose clinical manifestations generally first
appear at the time of adolescence, as obesity may unfavorably affect the natural
history of the hormonal (androgen secretion) and metabolic changes character-
izing the transition from prepuberty to adulthood [5].

It is possible that the increasing epidemic of obesity may be one of the
factors responsible for the worldwide increased incidence of young women
attending endocrinologic or gynecological clinics because of menstrual
irregularities, clinical hyperandrogenism, and infertility, features consistent
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with the PCOS phenotype. The association between obesity and alterations
of reproductive function in women was recognized long ago. In Stein and
Leventhal’s original description, obesity, together with hirsutism and infer-
tility, represented one of the characteristics of the syndrome that eventually
bore their names. The association between obesity and signs of androgen
excess, menstrual alterations, and infertility, was subsequently confirmed in
epidemiological and clinical studies (reviewed in [2]).

The prevalence of obesity in PCOS appears to be much greater than that
expected in the general population. Although the cause of this association
remains unknown, a recent comprehensive review by Ehrmann [1] noted
obesity in more than 30% of PCOS patients and in some series, a prevalence
of as high as 75%. In the few epidemiological articles cited above, the
prevalence of obesity among PCOS women ranged from 40 to 60%. In our
large cohort of PCOS women, we observed that 18% were overweight (BMI
25–29.9 kg M−2) and 43% were obese (BMI ≥ 30 kg M−2) [3].

2. PATTERN AND IMPLICATIONS OF BODY FAT
DISTRIBUTION IN WOMEN WITH PCOS

Obesity tends to be abdominal in its distribution in PCOS women, and even
lean affected women may have a fat distribution favoring visceral depots,
particularly in the abdomen [2]. This is likely due to the action of androgens on
the regulation of fat metabolism, differentiation, and morphology, through
specific receptors whose distribution and characteristics vary according to the
different fat depots [6]. In fact, stimulation with androgens appears to upregulate
the expression of their own receptors in fat [6]. Androgens stimulate lipolysis
in adipose tissue and, when administered chronically, they induce an antiadi-
pogenic effect, at least in primary cultured preadipocytes [6]. In isolated
cultured differentiated adipocytes from omental and abdominal subcutaneous
fat obtained from overweight or obese individuals, testosterone in physiological
concentrations caused a depot-specific reduction in catecholamine-stimulated
lipolysis in subcutaneous fat cells. This effect may be result from reduced protein
expression of β3-adrenoreceptors and hormone sensitive lipase (HSL), the
principal regulatory factors of the lipolytic pathways (see [7]).

The action of androgens on adipose tissue is part of the biology of human
sex differences. Insulin acts to inhibit lipolysis, potentially stimulating fat
deposition. Alternatively, in men, testosterone acts as a lipolytic hormone,
therefore acting to somewhat counteract the insulin and dietary-induced
increase in visceral fat depots. The obese male phenotype, which is associated
with a reduction in testosterone blood levels [8], as well as classic hypogonadal
men, is in fact typically associated with increased abdominal fat distribution
and an enlargement in visceral fat depots [8].
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In contrast, in normal weight and normal insulin sensitive women,
adipocytes release limited amounts of free fatty acids (FFAs) while demonstrating
normal amounts of lipoprotein lipase (LPL); normal testosterone levels
support the action of insulin in suppressing FFA release (i.e., antilipolytic
effect) from adipocytes [8]. Obese women actually demonstrate increased
production of FFAs and inhibition of LPL secretion, due to the presence of
hyperinsulinemia secondary to their prevalent insulin resistance [8]. In this
setting, increased androgens further aggravate the detrimental effects of
insulin on FFA release from adipocytes.

This gender difference in the effect of testosterone on adipocyte lipoly-
sis may relate, in part, to differences in the hormonal milieu. While testos-
terone would be expected to reduce abdominal obesity in women, as it does
in men, this does not occur because of the protective effect of estrogens.
In fact, the androgen receptors in female adipose tissue seem to have the
same characteristics as those found in male adipose tissue, but estrogens
down-regulate the density of these receptors [8]. Furthermore, the addition
of androgens may further increase the pool of circulating estrogens via
aromatization. As such, it appears clear that testosterone increases visceral
fat deposition in women [8]. Female-to-male transsexuals treated with
testosterone do in fact have an increase in visceral fat only after being
oophorectomized [8]. In addition, administration of androgens to post-
menopausal women has been documented to increase visceral fat content,
while reducing subcutaneous fat [8].

Testosterone may therefore favor the development of the abdominal fat
distribution pattern in hyperandrogenic states. In a series of 121 consecutive
women with PCOS, we demonstrated that approximately 60% had an abdominal fat
distribution, regardless of BMI [6]. A high prevalence of the abdominal
phenotype has been observed even in normal weight PCOS patients [6]. These
data imply that abdominal adiposity may be regarded as a common feature of
hyperandrogenic states and consequently may have some, albeit still poorly
defined, role in the pathophysiology of the metabolic abnormalities associated
with the abdominal obesity phenotype.

3. PATHOPHYSIOLOGY OF OBESITY ON 
THE HYPERANDROGENIC, OVULATORY, 
AND METABOLIC ALTERATIONS OF PCOS

The high prevalence of obesity in women with PCOS has profound effects
on both the pathophysiology and the clinical manifestations of the disorder.
The pathophysiologic mechanisms by which obesity influences the expression
of PCOS are complex and not completely understood (see [2,6] for recent
reviews). In the following sections, we will focus on the role of obesity in the
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development of hyperandrogenism and associated metabolic alterations,
principally insulin resistance and the metabolic syndrome.

3.1. Hyperandrogenism, and Ovulatory and Menstrual Dysfunction

Obesity has profound effects on the clinical, hormonal, and metabolic features
of PCOS, which largely depend on the degree of excess body fat and on the
pattern of fat distribution. Various studies have evaluated the impact of obesity
on the hyperandrogenic state in women with PCOS. They have uniformly
demonstrated that obese PCOS women are characterized by significantly lower
sex hormone-binding globulin (SHBG) plasma levels and more severe hyperan-
drogemia, in comparison to their normal-weight counterparts. In addition, a negative
correlation has been reported between body fat mass and circulating androgens in
PCOS. It has also been repeatedly reported that a higher proportion of obese PCOS
women complain of hirsutism and menstrual disorders compared to normal-weight
patients. There is, therefore, consistent evidence that increasing body weight may
favor a more severe form of hyperandrogenism in women with PCOS [2].

Menstrual abnormalities and chronic oligo-anovulation are dependent,
among other factors, on the exaggerated ovarian androgen production. They
are more frequent in overweight and obese subjects than in normal-weight
PCOS women. There is also evidence that blunted responsiveness to phar-
macological treatments for induction of ovulation, such as clomiphene
citrate or gonadotropin administration, may be more common in obese PCOS
women [6]. In addition, compared to normal-weight women, obese PCOS women
may have lower ovulatory responses to pulsatile gonadotropin-releasing
hormone (GnRH) analog administration and lower pregnancy rates after
gonadotropins, including low-dose human menopausal gonadotropin (hMG)
or pure FSH administration [6]. Altered spontaneous or stimulated ovulation
are, however, also dependent on insulin resistance and hyperinsulinemia,
which are much more marked in obese PCOS women, particularly those
with the abdominal phenotype [3,6]. In fact, administration of insulin-
sensitizing agents (metformin and thiazolidinediones) has been repeatedly
associated with improved ovulatory and menstrual cyclicity [9] and
clomiphene-induced ovulation rates [10], even if androgen levels are not
significantly modified.

The pathophysiologic mechanisms underlying the relationship between
obesity and PCOS, and the mechanisms involved in determining hyperandro-
genism and associated infertility, have been extensively reviewed [6]. It is likely
that the mechanisms by which excess androgen production occurs in PCOS
women differ in part depending on whether the patients are normal weight, over-
weight, or obese. Briefly, the main factors responsible for the differences
include gonadotropins, insulin, estrogens, the growth hormone (GH) insulin-like
growth factor 1 (IGF-1) axis, the hypothalamic–pituitary– adrenal axis, opioids,
leptin, and the insulin-like factor 3 (INSL3). These are discussed as follows.

Role of Obesity and Adiposity in PCOS 89



3.1.1. The Gonadotropic Axis. An increase in circulating luteinizing
hormone (LH) levels, as a result of a GnRH-mediated increase in the amplitude
and frequency of pulsatile LH secretory pattern, is inconsistently found in
PCOS women [11,12]. The occurrence of spontaneous ovulation is associated
with normalization of LH secretion in PCOS women. However, the
gonadotropin secretion is markedly affected by the presence of obesity in
PCOS. In fact, LH concentrations are inversely related to body weight in PCOS
women, associated with decreased LH pulse amplitude and a decreased LH
response to GnRH stimulation. In contrast, increased LH concentrations are a
common finding in normal-weight women with PCOS. Obesity, therefore,
attenuates the role of altered gonadotropin secretion in the pathogenesis of
hyperandrogenism in PCOS women.

In females, insulin acts as a true gonadotropic hormone [13,14]. At the ovar-
ian level, acting through its own and the IGF-I receptor, insulin synergizes LH
action and stimulates ovarian steroidogenesis in both granulosa and theca cells.
In addition, insulin appears to increase pituitary sensitivity to GnRH action
[4]. Notably, a large number of PCOS women demonstrate insulin resistance
and compensatory hyperinsulinemia, and ovarian androgen production can, in
this way, be over-stimulated. Interestingly, it is not completely clear why this
over-responsiveness of ovarian androgen secretion does not occur in insulin-
resistant hyperinsulinemic women without PCOS. Estrogens may be involved,
since obesity is associated with increased production of estrogens in the adipose
tissue. Excess estrogens may exert positive feedback regulation on gonadotropin
release, in turn stimulating a rise in ovarian androgen production [15].

3.1.2. The GH/IGF-1 Axis. Alterations of the GH/IGF-1 system activity
may also play a role in favoring altered ovarian androgen secretion and gran-
ulosa cell function in PCOS [14]. The bioavailability of IGF-1 is increased in
normal-weight PCOS women, probably because of the insulin-induced
suppression of hepatic and ovarian IGF-binding protein-1 (IGFBP1) and the
GH-induced stimulation of hepatic IGF-1. Alternatively, IGF-1 bioavailability
appears to be reduced in obese PCOS women, due to the obesity-related
reduction in basal and stimulated GH concentrations and the inhibitory effect
of high circulating insulin on IGF-1. Given the close interaction between
insulin and IGF-1 in stimulating ovarian steroidogenesis, it is likely that
insulin excess, rather than IGF-1, has the major responsibility in stimulating
androgen production in obese PCOS women. By contrast, high IGF-1 action
at ovarian level may be more relevant in normal weight PCOS women.

3.1.3. The Adrenal Cortex. The role of the adrenal glands in determin-
ing androgen excess in PCOS has been debated for a long time, since
increased levels of the adrenal androgen metabolite dehydroepiandrosterone
sulfate (DHEAS), which is predominantly of adrenal origin, are frequently
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observed in these patients. Recent data suggest that hyperactivity of the
hypothalamic–pituitary–adrenal (HPA) axis may occur in obese individuals,
particularly those with abdominal obesity [16], and may be in part responsi-
ble for increased testosterone levels in women with obesity and PCOS. An
increased response of adrenal androgens, and adrenocorticotropic hormone
(ACTH) and cortisol, to corticotrophin releasing hormone (CRH) adminis-
tration is observed in a subset of obese PCOS women [7].

Conditions of hypercortisolism, such as Cushing’s syndrome, are good
examples of how the HPA axis may differently regulate gonadal function
according to gender. In men, Cushing’s syndrome is associated with reduced
gonadotropin levels and low testosterone concentrations, regardless of the
extent of hypercortisolism. Alternatively, women with Cushing’s syndrome
and mild hypercortisolism may present with androgen excess of both adrenal
and ovarian origin, and polycystic ovaries; however, when the hypercorti-
solism is severe the gonadal axis is inhibited, similar to what is observed in
men with Cushing’s syndrome. A recent study [17] has observed a positive
relationship between the HPA axis activity (measured by the ACTH and cor-
tisol response to a combined stimulation with human CRH plus
arginine–vasopressin [AVP]) and free testosterone levels in obese females; in
contrast, obese men demonstrated a negative relationship between the activity
of the HPA axis and free testosterone levels. These findings suggest that, at
least in PCOS women with abdominal obesity, increased HPA axis activity
may play a role in determining the higher testosterone levels.

3.1.4. The Opioid System. As in obesity, PCOS women are characterized
by increased opioid system activity and increased levels of plasma immunore-
active β-endorphin (reviewed in [2]). In humans, β-endorphin administration
increases insulin secretion from the pancreatic β-cells [2]. Inhibition of the
opioid tone may decrease the degree of hyperinsulinemia in PCOS women,
secondary to reduced insulin secretion and improved hepatic clearance. The
administration of β-endorphin has been found to reduce LH release in normal
but not PCOS women, suggesting a condition of β-endorphin resistance in this
disorder. Alternatively, the infusion of physiological doses of β-endorphin has
been observed to induce a significant increase in insulin concentrations in
obese, but not in normal-weight subjects, suggesting β-cell hypersensitivity to
opioids in obesity. Moreover, administration of opioid antagonists has been
found to suppress basal and glucose-stimulated insulin blood levels in obese
women, particularly in those with the abdominal phenotype, but not in nor-
mal-weight controls [2]. Finally, increased β-endorphin responsiveness to
acute CRH administration has also been observed in women with abdominal
obesity [2]. These data suggest that increased opioid tone would be expected
to play a role in the hyperinsulinemia of obese PCOS women, although no
studies confirming this hypothesis are available as yet.
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3.1.5. Leptin. Leptin, a product of the OB gene, is an adipose-derived
messenger to the brain reflecting the amount of energy stored and is one of the
most important orexigenic hormones acting at the central neuroendocrine
nuclei to control food intake and energy balance [18]. Obesity is characterized
by increased leptin concentrations, and hyperleptinemia is thought to be indica-
tive of leptin resistance at central levels, thereby explaining the lack of reduced
feeding in the presence of excess leptin concentrations. Leptin, however, is also
a crucial hormone for gonadal function and reproduction [19], regulating the
gonadal axis at both central and peripheral levels. In fact, leptin regulates
GnRH and gonadotropin secretion, leptin receptors being highly expressed in
the hypothalamus. In addition, high leptin concentrations in the ovary may par-
ticipate in the regulation of theca cell function and interfere with the develop-
ment of dominant follicles and oocyte maturation [18]. In addition, leptin
appears to directly stimulate ovarian 17α-hydroxylase activity and is involved
in both ovarian and adrenal steroidogenesis. To date, contradictory results have
been reported on leptin levels in women with PCOS, and either higher levels
than expected for BMI or normal concentrations have been detected [6].
Whether high leptin levels play a role in determining increased ovarian androgen
production in PCOS has not been adequately investigated as yet.

3.1.6. Insulin-Like Factor 3. INSL3 is a member of the relaxin-insulin fam-
ily and is produced by the Leydig cells in the testis and, at reduced levels, by
ovarian theca interna cells of antral follicles, the corpora lutea, and the ovar-
ian stroma [20]. Among the factors potentially involved in the stimulation of
the gonadal expression of INSL3, recent data obtained in rats suggests an
important role for LH [21]. The ovaries from most women affected by PCOS
are characterized by hyperplasia of the theca interna and of the cortical stroma
and by an increased number of small antral follicles. The majority of women
with PCOS, particularly normal-weight subjects, also have LH levels that are
above the normal range. In a recent study [22], we measured INSL3 circulat-
ing levels in a group of women with PCOS, both normal-weight and over-
weight/obese, and compared them to appropriate age and BMI-matched
controls. In PCOS women, we also investigated the association of INSL3
with the gonadotropin and androgen pattern and with the ovarian morphology.
We found that INSL3 serum concentrations were significantly higher in nor-
mal-weight PCOS women, but not in overweight/obese affected patients,
compared to matched controls. Moreover, INSL3 serum concentrations
were significantly and positively correlated with androgen levels and LH
concentrations not only in PCOS, but in all women. Finally, in PCOS women,
INSL3 levels were significantly correlated with ovarian follicle number, but
not with ovarian volume. These data are consistent with the possibility that
LH-mediated ovarian androgen hypersecretion is mediated by INSL3, at least
in normal-weight PCOS. Accordingly, these findings also introduce new
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concepts in the pathophysiology of ovarian hyperandrogenism in PCOS
women, which may partially differ according to the different phenotypes.

Other potential factors involved in favoring excess androgen production in
obese PCOS women, but not discussed, include diet, ghrelin, and the
endocannabinoid system [2,6]. A simplified overview of the various factors
influencing ovarian androgen production in PCOS women, according to their
adiposity phenotype, is depicted in Fig. 1.

3.2. Hyperinsulinemia, Insulin Resistance 
and the Metabolic Syndrome

PCOS women are characterized by a high prevalence of several metabolic
abnormalities that are strongly influenced by the presence of obesity.
Adequate confirmation of the role of obesity in determining hyperinsuline-
mia and insulin resistance in women with PCOS derives from studies
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Fig. 1. A schematic representation of the balance of factors determining hyperandrogenism in
obese PCOS women. The genetic background can influence excess androgen production directly
or through hyperinsulinism. Dietary factor may have an additional, albeit still undefined, role in
favoring insulin resistance and hyperandrogenemia. Abbreviations: GH is growth hormone;
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comparing groups of normal-weight and obese PCOS women. Both fasting
and glucose-stimulated insulin concentrations are significantly higher in
obese than in nonobese PCOS subgroups [2,11]. Studies using the
euglycemic–hyperinsulinemic clamp technique, the frequently sampled intra-
venous glucose tolerance test (FSIVGTT), or the intravenous insulin toler-
ance test have clearly demonstrated that obese PCOS women have
significantly lower insulin sensitivity than their nonobese PCOS counterparts
and, therefore, a more severe insulin resistant state (reviewed in [5]). The
percentage of women affected by PCOS and obesity who present with glu-
cose intolerance is rather high, ranging from 20 to ~50 [11]; this prevalence
rate is higher than that reported in population-based studies of pre-
menopausal women. In contrast, glucose intolerance in normal-weight PCOS
women is uncommon [11]. Collectively, these data suggest that obesity per se
plays an important role in altering the insulin–glucose system in PCOS women.

Various studies in American, Asian, and Italian cohorts have indicated that
women with PCOS have a tendency toward the early development of T2DM
and that its prevalence was higher in these women when compared to the gen-
eral population, regardless of ethnicity and geographic area [3]. Interestingly,
in all these studies it was also found that T2DM occurred almost always in
women who were obese and very rarely in their nonobese counterparts.
Obesity therefore seems to favor the development of T2DM in PCOS women.

Several recent studies have identified defects of insulin secretion in obese
women with PCOS. Using the FSIVGTT, Dunaif and colleagues reported that
obese PCOS women mount an inadequate insulin secretory response to
compensate for their peripheral insulin resistance, suggesting relative β-cell dys-
function [11]. However, regardless of the degree of alteration in insulin secretion,
in a 10-year follow-up study, we found that both fasting and glucose-stimulated
insulin and C-peptide levels tended to increase spontaneously and significantly in
PCOS women with age, suggesting a worsening insulin resistant state over time
[23]. In the same study, we also found that several women developed impaired
glucose tolerance. Longitudinal data are therefore warranted to investigate which
factors, namely progressive insulin resistance and/or subtle alterations of insulin
secretion, can predict the susceptibility of obese PCOS women toward the devel-
opment of T2DM. Although PCOS per se may be associated with alterations of
both lipid and lipoprotein metabolism, the coexistence of obesity usually leads to
a more atherogenetic lipoprotein pattern. A greater reduction in high-density
lipoprotein (HDL), together with higher levels of both triglycerides and total
cholesterol levels, have been observed in obese PCOS women compared to their
normal-weight counterparts (reviewed in [2]).

Many women with PCOS may present with features characteristic of the
metabolic syndrome. Defining the metabolic syndrome is a difficult task, and,
over the past few years, many definitions have been proposed, focusing on the
association between obesity, abdominal fat distribution, dyslipidemia, and
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other cardiovascular risk factors. One of the most commonly used definitions
is the one proposed by the National Cholesterol Education Program Expert
Panel (NCEP/ATPIII) in the US [24]. The prevalence of the metabolic
syndrome is very high in the general population, with significant variability
according to the prevalence of various environmental factors, ethnicity, and
geographic distribution; regardless, available data suggest that the prevalence
of the metabolic syndrome is significantly higher in women with PCOS, ranging
from 35 to 50% [3]. As expected, the majority of these women are obese, and
most of them are characterized by the presence of the abdominal phenotype.
However, the metabolic syndrome may also be present in apparently normal-
weight PCOS women, although to a much lesser extent.

There are several reasons to suggest that insulin resistance and the metabolic
syndrome should be considered separate entities. Very few studies describing
the relationship between reliable measurements of insulin resistance and all of
the components of each cluster of features used to define the metabolic
syndrome have been reported. In a large group of healthy volunteers, Cheal
et al [25] found that, although insulin resistance and the presence of the
metabolic syndrome were significantly associated, the sensitivity and positive
predictive values only equaled 46 and 76%; the presence of overweightness, high
triglycerides, low HDL-cholesterol, or elevated blood pressure were the most
common factors included in the diagnosis of the metabolic syndrome itself.

In a study performed in a cohort of 289 PCOS women with a wide range of
BMIs, comparing them to age-matched normal weight healthy control
women, we determined the prevalence of insulin resistance (measured by
simple mathematical tests and insulin concentrations). We also determined
how many women with PCOS and the metabolic syndrome, according to the
NCEP/ATP III criteria, were insulin-resistant compared to PCOS women
without the metabolic syndrome [6]. We found that 55% of PCOS women had
fasting hyperinsulinemia, 37% had higher values of insulin resistance deter-
mined by the homeostasis model assessment (HOMA-IR), and 49.5% had a
higher insulin sensitivity index (ISI), i.e., higher insulin resistance, as
determined by the response to an oral glucose tolerance test [6]. These data
indicate that 40–50% of our PCOS subjects were insulin resistant. Moreover,
we found that in those PCOS women with the metabolic syndrome, 87.3% had
hyperinsulinemia, 74.6% had higher HOMA-IR values, and 79.4% had higher
ISI values, compared to 54.7, 32.8 and 56.7%, respectively, in those without
the metabolic syndrome, a significant difference. Notably, the mean BMI was
significantly higher in the PCOS women with the metabolic syndrome than
without. Overall, it appears that insulin resistance is present in at least 70–85%
of women with PCOS and the metabolic syndrome and that obesity plays a
major role in determining which women will develop the metabolic syndrome.

There is considerable debate as to whether women with PCOS are susceptible
to an increased risk of CVD [26]. Recently, a growing amount of data have
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indicated that states of insulin resistance, such as T2DM, obesity (particularly
the abdominal phenotype), and PCOS, are characterized by evidence of
impaired coagulation and fibrinolysis, anatomical and functional endothelial
injury, vascular dysfunction, and chronic subclinical inflammation, all of
which represent independent risk factors for CVD. Despite the fact that obese
PCOS women have been found to demonstrate a worse profile in these
pro-atherosclerotic risk factors, it nonetheless remains controversial whether
this increased risk is primarily related to the obesity and the consequent
insulin resistant state or to PCOS per se.

4. SUMMARY AND PERSPECTIVES

Obesity is a costly and increasingly prevalent condition in Western
societies. Among other comorbidities, it is frequently associated with
reduced fertility and signs and symptoms of androgen excess. In women
with PCOS, obesity is very common, although its prevalence in this disor-
der has not been estimated on a strictly epidemiologic basis. Intriguingly,
obesity has an important pathophysiologic impact on PCOS, and obese
PCOS women are characterized by a worsened endocrine and metabolic
profile and poorer fertility. Moreover, there is some evidence that the patho-
genetic factors involved in determining the hyperandrogenism and meta-
bolic abnormalities may differ somewhat between overweight/obese and
lean PCOS women; some of these mechanisms may be amplified or reduced
according to the presence of excess body weight. These findings emphasize
the concept that PCOS is a heterogeneous disorder potentially involving
different pathophysiologic mechanisms, according to the degree of obesity
and the distribution of the adiposity.
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The management of anovulatory infertility in the polycystic ovary syndrome
(PCOS) has traditionally involved the use of clomiphene citrate (CC) and then
gonadotropin therapy or laparoscopic ovarian surgery, in those who are
clomiphene resistant. There is no clear role for insulin sensitizing and insulin
lowering drugs, and algorithms for their place in therapy are still to be agreed
upon. Newer therapeutic approaches include aromatase inhibitors and the
potential use of in vitro maturation (IVM) of oocytes collected from unstimulated
(or minimally stimulated) polycystic ovaries. There has been an unfortunate
shift away from monofollicular ovulation induction to the use of in vitro fertil-
ization treatment (IVF), based on a false premise of greater cumulative conception
rates and appropriate concerns about multiple pregnancy. Superovulation for
IVF presents significant risks for women with polycystic ovaries, namely
the potentially life-threatening complication of ovarian hyperstimulation
syndrome (OHSS). Carefully conducted and monitored ovulation induction can
achieve good cumulative conception rates, and, furthermore, multiple pregnancy
rates can be minimized with strict adherence to criteria that limit the number of
follicles that are permitted to ovulate.

1. PCOS AND ANOVULATORY INFERTILITY: 
THE BASICS

The PCOS accounts for approximately 80% of women with anovulatory
infertility. Various factors influence ovarian function, and fertility is adversely
affected by an individual being overweight or having elevated serum concentra-
tions of LH. The principles of therapy are first to optimize health before commencing



therapy and then induce regular unifollicular ovulation, while minimizing the
risks of OHSS and multiple pregnancy. Weight loss, in those who are overweight,
improves the endocrine profile, the likelihood of ovulation and a healthy pregnancy,
and the response to every type of ovulation induction therapy.

Strategies to induce ovulation include first weight loss, then drugs to
induce ovulation with conventional first line therapy being oral antiestrogens
(principally CC), parenteral gonadotropin therapy, and laparoscopic ovarian
surgery. There have been no adequately powered randomized studies to deter-
mine which of these therapies provides the best overall chance of an ongoing
pregnancy.

Appropriate pretreatment investigations are required including a semen
analysis of the male partner and an assessment of tubal patency. There are some
who consider the latter unnecessarily invasive in those who are at low risk of
tubal damage. We consider, however, that it is important to exclude a
covert tubal obstruction before committing to the time, expense, and risks
associated with ovarian stimulation.

Normal ovarian function relies upon the selection of a follicle, which
responds to an appropriate signal (follicle stimulating hormone [FSH]) in
order to grow, become “dominant,” and ovulate. This mechanism is disturbed
in women with PCOS, resulting in multiple small cysts, most of which con-
tain potentially viable oocytes but within dysfunctional follicles.
Hypersecretion of luteinizing hormone (LH) is found in 40% of women with
PCOS and is associated with a reduced chance of conception and an increased
risk of miscarriage, possibly through an adverse effect of LH on oocyte mat-
uration [1]. The finding of a persistently elevated early to midfollicular phase
LH concentration in a woman who is trying to conceive suggests the need to
suppress LH levels by either pituitary desensitization, with a gonadotropin-
releasing hormone agonist, or laparoscopic ovarian diathermy (LOD). There
are, however, no large prospectively randomized trials that demonstrate a
therapeutic benefit from a reduction in serum LH concentrations during
ovulation induction protocols. The assessment of serum LH concentration in
the midfollicular stage of the stimulated cycle is helpful in predicting the
likelihood of a successful outcome – particularly in the context of CC therapy
(see below).

Elevated serum concentrations of insulin are more common in both lean and
obese women with PCOS than weight-matched controls with normal ovaries.
Indeed, it is hyperinsulinemia that many feel is the key to the pathogenesis of
the syndrome, as insulin stimulates androgen secretion by the ovarian stroma
and appears to affect the normal development of ovarian follicles, both by the
adverse effects of androgens on follicular growth and possibly also by
suppressing apoptosis and permitting the survival of follicles otherwise
destined to disappear.
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2. LIFESTYLE AND WEIGHT LOSS IN PCOS

The patient’s body mass index (BMI) correlates with both hyperinsulinemia
and an increased rate of cycle disturbance and infertility [2,3]. The greater the
interval between menstrual periods, the greater the disturbance in insulin
metabolism [4]. Even moderate obesity, such as a BMI > 27 kg m−2, is associated
with a reduced chance of spontaneous ovulation [5] or response to ovulation
induction therapy [6]. A body fat distribution leading to an increased waist:hip
ratio (WHR) appears to have a more detrimental effect than body weight alone,
due to the metabolic activity of visceral fat [7]. Monitoring treatment is also
harder in obese women because their ovaries are more difficult to see on
ultrasound scans, thus raising the risk of missing multiple ovulation and
multiple pregnancy. National guidelines in the United Kingdom for managing
overweight women with PCOS advise weight loss, preferably to a BMI of less
than 30 kg m−2, before commencing drugs for ovarian stimulation [8].

Clark and colleagues [9] studied the effect of a weight loss and exercise
program on women with a BMI > 30 kg m−2 and anovulatory infertility who
were CC-resistant. The emphasis of the study was a realistic exercise schedule
combined with positive reinforcement of a suitable eating program over 6
months. Thirteen out of the 18 women enrolled completed the study, reinforcing
the difficulties some individuals have in sustaining even moderate changes in
lifestyle. Weight loss had a significant effect on endocrine function, ovulation,
and the chance of pregnancy. Fasting insulin and serum testosterone concen-
trations fell, and 12 of the 13 subjects resumed ovulation; 11 becoming pregnant
– five spontaneously and the remainder were now responsive to CC.

Thus, with appropriate support, patients with PCOS may ovulate sponta-
neously without medical therapy. An extension of this study, in women with a
variety of diagnoses, demonstrated that in 60 out of 67 PCOS subjects, weight
loss resulted in spontaneous ovulation with lower than anticipated rates of
miscarriage and a significant saving in the cost of treatment [10]. Even a
modest loss of 5% of total body weight can achieve a reduction of central fat,
an improvement in insulin sensitivity, and restoration of ovulation. Lifestyle
modification is clearly a key component for the improvement of reproductive
function in overweight women with anovulation and PCOS [8].

In a recent editorial we argued that the considerable risks in pregnancy
associated with obesity are not usually appreciated when patients with PCOS
attend clinics and request fertility treatment [11], and we posed the question
as to whether it is appropriate to offer treatment or to insist on weight loss. Or
does any overweight woman have the right to receive treatment, irrespective
of the possible outcome?

It is well known that pregnancy carries considerable risks for women who are
obese, including increased rates of congenital anomalies (neural tube and cardiac
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defects), miscarriage, gestational diabetes, hypertension, and problems during
delivery [12,13]. In addition, women with PCOS and obesity have an increased
risk of gestational diabetes because of the additional insulin resistance caused
by pregnancy itself [14]. Increasingly many women with PCOS have type 2
diabetes mellitus (DM) prior to conception. The outcomes of pregnancy in
women with DM are much worse than in the general population and are at least
equivalent to, if not slightly worse than, in women with type 1 diabetes [15].
Overweight mothers are also more likely than others to have hypertension and
thromboembolism, leading to a higher risk of maternal mortality [16].

The use of insulin lowering or sensitizing agents has excited much interest
in the management of PCOS, but even metformin is less effective for women
with anovulation and extreme obesity, although perhaps a higher dose is
required than currently prescribed [17]. Many obese women who wish to con-
ceive are now prescribed metformin, often at body weights greater than would
be permissible for treatment to induce ovulation. Those who ovulate and
conceive while remaining obese will have to face considerable additional risks
during pregnancy. Is it appropriate to treat these women with metformin
unless they have already lost weight? At the very least, the risks of the
pregnancy to mother and child should be explained, understood, and actively
managed before embarking on treatment. The importance of encouraging and
achieving weight loss as first line treatment cannot be overestimated.

We suggest that women with obesity and PCOS should try to attain a BMI
of less than 30 kg m−2 prior to commencing ovulation induction and defer even
treatment with metformin until they reach a target BMI of 35 kg m−2 or less.
Consideration of age is of course important, yet ultimately the main consideration
should be for the potential health of the pregnancy and any children born.

3. CC THERAPY

Antiestrogen therapy with CC or tamoxifen has traditionally been used as
first line therapy for anovulatory PCOS [18]. Clomiphene citrate has been
available for many years, and its use has tended not to have been closely
monitored.

Antiestrogen therapy is usually commenced on day 2 of the cycle and given
for 5 days. If the patient has oligo/amenorrhea, it is necessary to exclude
pregnancy and then induce a withdrawal bleed with a short course of a
progestogen, such as medroxyprogesterone acetate 5–20 mg/day for 5–10 days.
The starting dose of CC is 50 mg/day, for 5 days beginning on days 3–5 of the
menstrual cycle (the first day of bleeding is considered day one of the cycle).
If the patient has not menstruated by day 35 and she is not pregnant, a
progestogen-induced withdrawal bleed should be initiated. The dose of CC
should only be increased if there is no response after three cycles, as of those
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women who will respond to 50 mg/day, only two-thirds will do so in the first
cycle. Doses of 150 mg/day or more appear not to be of benefit. If there is an
exuberant response to 50 mg/day, as in some women with PCOS, the dose can
be decreased to 25 mg/day. Discontinuation of CC therapy should be consid-
ered if the patient is anovulatory after the dose has been increased up to 100
mg/day. If the patient is ovulating, conception is expected to occur at a rate
determined by factors such as the patient’s age.

Clomiphene citrate may cause an exaggeration in the hypersecretion of LH
and have antiestrogenic effects on the endometrium and cervical mucus. All
women who are prescribed CC should be carefully monitored with a combi-
nation of endocrine and ultrasonographic assessment of follicular growth and
ovulation because of the risk of multiple pregnancies, which is approximately
10%. Clomiphene therapy should therefore be prescribed and managed by
specialists in reproductive medicine.

An ovulatory trigger in the form of parenteral administration of human
chorionic gonadotropin (hCG) is very rarely required and should only be given
if there has been repeated evidence of an unruptured follicle, by ultrasound and
serum progesterone monitoring. Women with PCOS should have LH measured
on day 8 in a cycle that follows an ovulatory cycle; if the LH is >10 IU/L, the
chance of conception is reduced and risk of miscarriage is elevated. In this
case, the options include LOD or gonadotropin therapy.

3.1. Results of CC Therapy

Clomiphene citrate induces ovulation in approximately 70–85% of patients,
although only 40–50% conceive [19]. It is recommended that at least the first
cycle of treatment, if not all cycles, should be monitored with a combination
of serial ultrasound scans and serum endocrinology [20]. Kousta and
colleagues [21] reported treatment of 167 patients with CC in whom there was
a cumulative conception rate of 67.3% over 6 months in women who had no
other subfertility factors, which continued to rise up to 12 cycles of therapy.
These investigators reported a multiple pregnancy rate of 11%, similar to that
described in other series, and a miscarriage rate of 23.6%, with those who
miscarried tending to have a higher serum LH concentration immediately after
CC administration. If a pregnancy has not occurred after 10–12 normal
ovulatory cycles, it is then appropriate to offer the couple assisted conception.

Shoham and colleagues [22] studied the hormonal profiles in a series of 41
women treated with CC, of which 28 ovulated. In those who ovulated, 17
exhibited normal patterns of hormone secretion and five conceived, while
11 exhibited an abnormal response, characterized by significantly elevated
serum concentrations of LH from day 9 until the LH surge, together with premature
luteinization and higher E2 levels throughout the cycle. None of the patients
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with this abnormal response conceived. This strengthens the argument for
careful monitoring of therapy and discontinuation if the response is abnormal.

Patients with anovulatory infertility who are resistant to antiestrogens may
be prescribed metformin combined with CC, parenteral gonadotropin therapy,
or laparoscopic ovarian surgery. The term “clomiphene-resistance” strictly
speaking refers to a failure to ovulate rather than failure to conceive despite
ovulation, which should be termed “clomiphene-failure.”

4. AROMATASE INHIBITORS

Aromatase inhibitors have been proposed as an alternative treatment to CC
therapy, as the discrepancy between ovulation and pregnancy rates with CC has
been attributed to its antiestrogenic action and estrogen receptor depletion.
The aromatase inhibitors suppress estrogen production and thereby mimic the
central reduction of negative feedback through which CC works. Letrozole,
the most widely used antiaromatase for this indication, has been shown to be
effective, in early trials, in inducing ovulation and pregnancy in women with
anovulatory PCOS and inadequate CC response and improving ovarian
response to FSH in poor responders [23]. Anastrozole is currently being
examined as a possible alternative. Evidence from larger trials is still awaited,
but some encouragement may be taken from the solidity of the working hypoth-
esis and the success of the preliminary results. The role of aromatase inhibitors
in an algorithm for ovulation induction has yet to be agreed upon. Furthermore,
the possible teratogenicity of aromatase inhibitors has to be fully evaluated, and
manufacturers currently do not advise its use for ovulation induction.

5. GONADOTROPIN THERAPY

Gonadotropin therapy is indicated for women with anovulatory PCOS who
have been treated with antiestrogens and have either failed to ovulate or, if
they responded to CC, developed other issues reducing their chance of
conception (e.g., persistent hypersecretion of LH). In order to prevent the risks
of overstimulation and multiple pregnancy with gonadotropin therapy, the
traditional standard step-up regimens (when 75–150 IU/day are increased by
75 IU/day every 3–5 days [24]), have been replaced by either “low-dose step-
up” regimens [25] or “low-dose step-down” regimens [26].

The low-dose step-up regimen employs a starting daily dose of 0.5–0.75 of
an ampule (37.5–50 IU/day), which is only increased after 14 days if there is
no response and then only by half an ampule every 7 days [27]. Treatment
cycles using this approach can be quite long – up to 28–35 days – but the risk
of multiple follicular growth is lower than with conventional step-up
regimens. The initiation of follicular growth requires a 10–30% increment in
the dose of exogenous FSH, and the threshold changes with follicular growth
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due to an increased number of FSH receptors, so that the concentration of FSH
required to maintain growth is less than that required to initiate it. In ovulation
induction protocols, stimulation with gonadotropins does not require a back-
ground of pituitary desensitization. To date, there is no difference in efficacy
between the different gonadotropin preparations [28].

It can be very challenging to stimulate the development of a single dominant
follicle in women with PCOS. While attempts have been made to predict a multi-
follicular response by determining midfollicular endocrine profiles and numbers
of small follicles, it is harder to do so prior to commencing ovarian stimulation and
hence determine the required starting dose of gonadotropin. In order to prevent
multiple pregnancy, strict criteria are required before the administration of hCG
with no more than two follicles ≥ 14 mm, with the largest > 17 mm.

White and colleagues [29] reported their extensive experience of the low-dose
regimen in 225 women, with over 934 cycles of treatment and resulting in 109
pregnancies in 102 women (45%). Seventy-two percent of the cycles were
ovulatory (fewer than 5% of patients failed to ovulate) and 77% of these
uniovulatory. The multiple pregnancy rate was 6%. Despite using a low-dose
protocol, 18% of cycles were abandoned because more than three large folli-
cles developed – a further reminder of the sensitivity of the polycystic ovary
even when attempts are made to reduce the response. The only factor that
influenced the outcome significantly was the patient’s BMI; those women
with a BMI > 25 kg/M2 had a higher rate of abandoned cycles (31% versus
15% in those of normal weight), a lower cumulative conception rate over six
cycles (46.8% versus 57% for the whole group), and a miscarriage rate of
31%. Another series reported the cumulative conception and live birth rates in
103 women with CC-resistant PCOS [30], with the cumulative conception
and live birth rates after 6 months being 62% and 54%, respectively, and after
12 months 73% and 62%, respectively.

6. SURGICAL OVULATION INDUCTION

An alternative to gonadotropin therapy for CC-resistant PCOS is laparo-
scopic ovarian surgery, which has replaced the more invasive and damaging
technique of ovarian wedge resection. Laparoscopic ovarian surgery is free of
the risks of multiple pregnancy and ovarian hyperstimulation and does not
require intensive ultrasound monitoring. Furthermore, LOD appears to be as
effective as routine gonadotropin therapy in the treatment of CC-insensitive
PCOS [31]. In addition, laparoscopic ovarian surgery is a useful therapy for
anovulatory women with PCOS who fail to respond to CC and who persist-
ently hypersecrete LH, need a laparoscopic assessment of their pelvis, or who
live too far away from the hospital to be able to attend for the intensive mon-
itoring required of gonadotropin therapy. Surgery does of course carry its own
risks and must be performed only by fully trained laparoscopic surgeons.
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After laparoscopic ovarian surgery, with restoration of ovarian activity,
serum concentrations of LH and testosterone fall. Whether patients respond to
LOD appears to depend on their pretreatment characteristics, with patients
with high basal LH concentrations having a better clinical and endocrine
response. We performed a small prospective study in which we randomized
women to receiving either unilateral or bilateral LOD [32]. We found that
unilateral diathermy restored bilateral ovarian activity, with the contralateral,
untreated ovary often being the first to ovulate after the diathermy treatment.
We also found that the only significant difference between the responders and
nonresponders was a postdiathermy fall in serum LH concentration.

Commonly employed methods for laparoscopic surgery include monopolar
electrocautery (diathermy) [33] and laser [34], while multiple biopsy alone is
less commonly used. The greater the amount of damage to the surface of the
ovary, the greater the risk of periovarian adhesion formation. This led Armar
to develop a strategy of minimizing the number of diathermy points to four per
ovary for 4 s at 40 W [35]. Wedge resection of the ovaries resulted in signifi-
cant adhesions – in 100% of cases in some published series. The risk of
adhesion formation is far less after LOD (10–20% of cases), and the adhesions
that do form are usually fine and of limited clinical significance. We advise
instilling 1,000 mls of Adept® solution into the pouch of Douglas, which, by
cooling the ovaries, prevents heat injury to adjacent tissues and reduces the
adhesion formation.

Ovarian diathermy appears to be as effective as routine gonadotropin therapy
in the treatment of CC-insensitive PCOS, and the Cochrane database concludes
that, while there is insufficient evidence to demonstrate a difference between 6
and 12 months follow up after LOD and 3–6 cycles of ovulation induction with
gonadotropins, multiple pregnancy rates are considerably reduced with LOD
[31]. The largest randomized controlled trial (RCT) to date is the multicenter
study performed in the Netherlands in which 168 patients resistant to CC were
randomized to either LOD (n = 83) or ovulation induction with recombinant
FSH (rFSH, n = 65) [36]. The initial cumulative pregnancy rate after 6 months
was 34% in the LOD arm versus 67% with rFSH. Those who did not ovulate
in response to LOD were then given first CC and then rFSH, so by 12 months
the cumulative pregnancy rate was similar in each group at 67% (Fig. 1). Thus,
those treated with LOD took longer to conceive and 54% required additional
medical ovulation induction therapy.

It has been suggested that, to demonstrate a 20% increase in pregnancy rate
over 6 months from 50 to 70% with an 80% power, at least 235 patients would
be required in each arm of a study to compare LOD with gonadotropin therapy.
The current meta-analysis in the Cochrane database includes a total of only
303 women [31]. The ongoing pregnancy rate following ovarian drilling
compared with gonadotropins differed according to the length of follow up.
Overall, the pooled odds ration for all studies was not statistically significant
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(OR 1.27, 95% CI 0.77, 1.98). Multiple pregnancy rates were reduced in the
ovarian drilling arms of the four trials where there was a direct comparison with
gonadotropin therapy (OR 0.16, 95% CI 0.03, 0.98). There was no difference
in miscarriage rates in the drilling group when compared with gonadotropin in
these trials (OR 0.61, 955% 0.17, 2.16).

7. THE ROLE OF METFORMIN AND OTHER INSULIN
SENSITIZERS

It is logical to assume that therapy that achieves a fall in serum insulin
concentrations should improve the symptoms of PCOS. The biguanide
metformin both inhibits the production of hepatic glucose, thereby decreasing
insulin secretion, and also enhances insulin sensitivity at the cellular level.
The efficacy of metformin in PCOS was first described by Velazquez and
colleagues [37], and, in the last decade, many studies have been carried out to
evaluate the reproductive effects of metformin in patients with PCOS. Most of
the initial studies, however, were observational, and any randomized studies
published involved a small number of participants. Indeed, two systematic
reviews published in 2003 revealed that the majority of the published studies
on the effects of metformin alone on the menstrual cycle in women with
PCOS had a sample size of less than 30 women [38,39].
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Metformin ameliorates hyperandrogenism and abnormalities of gonadotropin
secretion in women with PCOS and can also restore menstrual cyclicity.
Metformin appears to be less effective in those who are significantly obese
(BMI > 35 kg m−2) [40,41], and there are still no agreed algorithms for its
use. Furthermore, there is no agreement on predictors for response or the
appropriate dose or whether dose should be adjusted for body weight or
other factors.

Initial studies appeared to be promising, suggesting that metformin could
improve fertility in women with PCOS [39]. Additional data on the use of
metformin together with CC has indicated striking results with a 90% preg-
nancy rate compared with only 8% in those who received placebo with CC
[45]; however, the number of patients was small. More recent large RCTs
have observed that the beneficial effects of metformin first line therapy for
the treatment of the anovulatory patient with PCOS is significantly less than
CC. In a multicenter trial of 20 Dutch hospitals, 228 women with PCOS were
treated either with CC plus metformin or CC plus placebo [42]. The ovula-
tion rate in the metformin group was 64% compared with 72% in the placebo
group, a nonsignificant difference (Table 1). There were no significant dif-
ferences in either rate of ongoing pregnancy (40% versus 46%) or rate of
spontaneous abortion (12% versus 11%). A significantly larger proportion
of women in the metformin group discontinued treatment because of side
effects (16% verssus 5%). The investigators concluded that metformin is not
an effective addition to CC as the primary method of inducing ovulation in
women with PCOS.

108 A. Balen

Table 1. Randomized double blind trial of clomiphene citrate (CC) plus metformin
versus CC plus placebo for induction of ovulation in women with newly diagnosed

PCOS: rates of ovulation, pregnancy, and spontaneous abortion

Clomiphene Clomiphene
citrate + citrate +

metformin placebo Risk difference Relative risk 
(n = 78) (n = 84) % (95% CI) (95% CI)

Ovulation 61 (78%) 68 (81%) −3 (−15 to 10) 0.97 (0.8 to 1.1)
Ongoing 44 (56%) 51 (61%) −4 (−19 to 11) 0.93 (0.7 to 1.2)

pregnancy
Spontaneous 13 (17%) 12 (14%) 2 (−9 to 14) 1.17 (0.6 to 2.4)

abortion

Figures are numbers (percentages in parentheses) of women.
Reprinted with permission from [42].



The pregnancy in polycystic ovary syndrome (PPCOS) trial sponsored by
the US National Institutes of Health (NIH) noted that, as first line therapy for the
treatment of anovulatory infertile PCOS women, metformin alone was signif-
icantly less effective than CC alone and that the addition of metformin to CC
produces only marginal benefits [43]. This multicenter study enrolled 676
infertile PCOS women (diagnosed by an elevated testosterone level and
oligomenorrhea, ≤ 8 spontaneous menses/year, after exclusion of secondary
causes of hyperandrogenemia) who were seeking pregnancy. All were off
confounding medications and in otherwise good health, ages 18–39 years, and
had no other obvious infertility factors, with at least one patent fallopian tube,
normal uterine cavity, and partner with sperm concentration of 20 million/mL in
at least one ejaculate. After progestin withdrawal, these women were equally
randomized to three different treatment arms for a total of six cycles or 30
weeks: (a) metformin 1,000 mg twice daily plus placebo, (b) CC 50 mg/day
for 5 days (day 3–7 of cycle) plus placebo, or (c) combined metformin 1,000 mg
twice daily plus CC 50 mg /day for 5 days (day 3–7). Overall, live birth rates were
7.2% (5/208), 22.5% (47/209), and 26.8% (56/209), respectively, with the met-
formin alone group being significantly lower than the other two groups.
Pregnancy loss rates tended to also be higher in the metformin alone group
(40.0% versus 22.6% and 25.5%, respectively).

We set out to evaluate the combined effects of life-style modification and
metformin on obese anovulatory women (BMI > 30 kg/M2) with PCOS [41]
in a prospective, randomized, double blind, placebo-controlled, multicenter
study. All the patients had an individualized assessment by a research dietitian
in order to set a realistic goal which could be sustained for a long period of
time with an average reduction of energy intake of 500 kcal/day. As a result,
both the metformin-treated and placebo groups managed to lose weight, but
the amount of weight reduction did not differ between the two groups. An
increase in menstrual cyclicity was observed in those who lost weight but
again did not differ between the two arms of the study [41].

The very variable findings from the published studies on the use of met-
formin reflect the large differences in study populations, particularly with
respect to body weight. Insulin sensitivity decreases (or insulin resistance
increases) with BMI. It has been known that nonobese women with PCOS
respond better to metformin than obese women to metformin [40,44].

We have shown a dramatic increase in ongoing pregnancy rates in women
with polycystic ovaries treated with metformin for only 4 weeks during an
IVF cycle. It therefore appears that metformin may have a direct effect on
ovarian function and enhances the outcome of some fertility therapies in some
women – probably those with relatively mild metabolic dysfunction. There
has been a tendency to discontinue metformin once a pregnancy has been
achieved, although a number of studies have confirmed its apparent safety,
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with lack of teratogenicity and potential for reducing the risk of miscarriage
and gestational diabetes, although large RCTs are awaited.

An interesting study of 120 CC-citrate-resistant women found no signifi-
cant difference in rates of ovulation when LOD was compared with metformin
therapy (approximately 55% in each group), yet those treated with metformin
had higher pregnancy rates (18.6% versus 13.4%) and live birth rates (82.1%
versus 64.5%) [47], although the differences were not significant [48].

The insulin-sensitizing agent troglitazone also appeared to significantly
improve the metabolic and reproductive abnormalities in PCOS [49], although
this product has been withdrawn because of reports of fatal liver damage. The
new generation of thiazolidinediones (rosiglitazone and pioglitazone) may be
of benefit to the older woman with PCOS but should not be prescribed to
women wishing to conceive, because of an uncertain safety profile in
pregnancy. Newer insulin sensitizing agents are currently being evaluated as
is the phosphoglycan containing drug d-chiro-inositol [50].

8. IVF IN WOMEN WITH POLYCYSTIC OVARIES

In vitro fertilization is not the first line treatment for PCOS, but many
patients with the syndrome may be referred for IVF, either because there is
another reason for their infertility or because they fail to conceive despite ovu-
lating (whether spontaneously or with assistance) – that is their infertility
remains unexplained. Furthermore, approximately 30% of women have poly-
cystic ovaries as detected by ultrasound scan. Many will have little in the way
of symptoms and may present for assisted conception treatment because of
other reasons (for example tubal factor or male factor). When stimulated,
these women with asymptomatic polycystic ovaries have a tendency to
respond sensitively and are at increased risk of developing OHSS.

The response of the polycystic ovary to stimulation in the context of ovulation
induction aimed at the development of unifollicular ovulation is well documented
and differs significantly from that of normal ovaries. The response tends to be
slow, with a significant risk of ovarian hyperstimulation. Conventional IVF
depends on inducing multifollicular recruitment, and again the response of the
polycystic ovary differs from the normal, with a potentially “explosive”
response based on the presence of many partially developed follicles present
in the polycystic ovary. Thecal hyperplasia (in some cases with raised levels
of LH and/or insulin) provides large amounts of androstenedione and testos-
terone, which act as substrates for estrogen production. Granulosa cell
aromatase, although deficient in the “resting” polycystic ovary, is readily
stimulated by FSH. Therefore, normal quantities of FSH act on large amounts
of substrate (testosterone and androstenedione) to produce large amounts of
intraovarian estrogen. Ovarian follicles, of which there are too many in polycystic
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ovaries, are increasingly sensitive to FSH (receptors which are stimulated by
high local concentrations of androgens and estrogen) and, as a result, there is
multiple follicular development associated with very high levels of circulating
estrogen. In some cases, this may result in OHSS, to which patients with
polycystic ovaries are particularly prone.

In addition, insulin acts as a cogonadotropin and augments theca cell
production of androgens in response to stimulation by LH and granulosa
cell production of estrogen in response to stimulation by FSH. Also, there is
widespread expression of vascular endothelial growth factor (VEGF) in polycystic
ovaries. VEGF is an endothelial cell mitogen that stimulates vascular perme-
ability, hence its involvement in the pathophysiology of OHSS. VEGF is
normally confined in the ovary to the blood vessels and is responsible there for
invasion of the relatively avascular Graafian follicle by blood vessels after
ovulation. The increase of LH at midcycle leads to expression of VEGF, which
has recently been shown to be an obligatory intermediate in the formation of the
corpus luteum. It has been shown that, compared with women with normal ovaries,
women with polycystic ovaries or PCOS have increased serum VEGF [51].

The above data serve to remind us of the close relationship of polycystic
ovaries with OHSS and also provide a possible explanation for the multifol-
licular response of the polycystic ovary to gonadotropin stimulation. One of
the mechanisms that underpins the unifollicular response of the normal ovary
is diversion of blood flow within the ovaries, first from the nondominant to the
dominant ovary and, second, from cohort follicles to the dominant follicle.
This results in diversion of FSH away from the cohort follicles and permits
them to undergo atresia. The widespread distribution of VEGF in polycystic
ovaries may prevent this diversion of blood flow, leaving a substantial number
of small and intermediate sized follicles in “suspended animation” and ready
to respond to gonadotropin stimulation. The distribution of VEGF in the
polycystic ovary therefore helps to explain one of the fundamental features of
the polycystic ovary, namely the loss of the intraovarian autoregulatory
mechanism that permits unifollicular ovulation to occur.

Case–control study of the outcome of IVF in women with polycystic ovaries
as compared with control patients with normal ovaries has consistently shown
the development of more follicles, higher serum estradiol concentrations, and
more eggs but often lower fertilization rates [52,53]. Rates of OHSS are sig-
nificantly higher than controls at 10% compared with the expected rate of 1%.

A long running debate in ovulation induction for women with PCOS is
whether the use of FSH alone has any benefit over human menopausal
gonadotropins (hMG) – is the hypersecretion of LH responsible for the exag-
gerated response to stimulation of the polycystic ovary? Does minimizing
circulating LH levels by giving FSH alone improve outcome? The consensus
from a combination of meta-analyses suggests that there is no difference in
outcome whether hMG, urinary-FSH, or recombinant-FSH is used [54,55].
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The recent introduction of schedules of gonadotropin stimulation that incorpo-
rate treatment with GnRH antagonists holds promise for patients with polycystic
ovaries and PCOS. Gonadotropin-releasing hormone (GnRH) antagonists do not
activate the GnRH receptors and produce a rapid suppression of gonadotropin
secretion within hours. A systematic review in the Cochrane Database showed that
there is a trend of reduction of OHSS in the GnRH antagonist treatment groups
with the combined odds ratio of 0.47 (95% CI: 0.18, 1.25) [56]. A dramatic reduc-
tion in the rate of OHSS has also been shown with the use of metformin for the
first four weeks of an IVF treatment cycle [46].

9. IVM OF OOCYTES

In recent years, IVM has attracted a lot of interest as a new assisted reproduc-
tive technique. The immature oocytes are retrieved from antral follicles of
unstimulated (or minimally stimulated) ovaries via the trans-vaginal approach.
The oocytes are subsequently matured in vitro in a special formulated culture
medium for 24–48 h. The mature oocytes are fertilized, usually by intra-cytoplasmic
sperm injection (ICSI), and the selected embryos are transferred to the uterus 2–3
days later. Although IVM is labor-intensive compared with conventional IVF
treatment, there are a number of clinical advantages by the avoidance of large
doses of exogenous gonadotropins, most importantly by avoiding the risk of
OHSS. Since patients with PCOS have more antral follicles and a higher risk
of developing OHSS compared with those without, IVM may be a promising
alternative to conventional IVF.

Significantly more immature oocytes are retrieved from polycystic ovaries
than from normal ovaries, and the overall oocyte maturation and fertilization
rates are similar among the three groups. The subsequent pregnancy and live
birth rates per transfer are then significantly higher in patients with polycystic
ovaries because of a greater choice in the embryos selected for transfer. IVM
yields significantly fewer mature oocytes than IVF cycles and therefore fewer
embryos per retrieval, and implantation rates are still lower in IVM compared
with IVF cycles, which may be due to a reduced oocyte potential or a reduced
endometrial receptivity [57]. Continuous improvements in the culture medium
and synchrony between endometrial and embryonic development will
hopefully result in better IVM success rates in the future.

10. SUMMARY

The key principle in achieving ovulation induction for women with PCOS
is to achieve unifollicular ovulation and thereby avoid the significant risks of
multiple pregnancy and OHSS. Clomiphene citrate still remains the first line
medical therapy for anovulatory PCOS; however, it may be time to rethink
current strategies, particularly with the promising early experience of metformin.
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Further studies are currently underway comparing gonadotropin therapy with
CC as first line treatment.

Compared with medical ovulation induction with gonadotropins for the
CC-resistant patient, the advantage of LOD is that it need only be performed
once and intensive monitoring is not required, as there is no danger of multiple
ovulation or ovarian hyperstimulation. Gonadotropin therapy appears to
provide similar long term cumulative conception rates as LOD, although time
to pregnancy is quicker. In the future, gonadotropin therapy may be made
easier by the use of long-acting FSH preparations and orally active agents.
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1. INTRODUCTION

The polycystic ovary syndrome (PCOS) results in a number of immediate
and long-term morbidities that are associated with a significant impact on qual-
ity of life and on economic costs. Immediate morbidities include menstrual
dysfunction and abnormal uterine bleeding, subfertility and infertility, and
androgen excess-related dermatologic abnormalities including hirsutism, acne,
and androgenic alopecia, and an increased risk of obstetrical complications
such as pregnancy-induced hypertension and gestational diabetes. However,
PCOS is also associated with an increased risk of various other long-term
complications or morbidities including cancer, type 2 diabetes mellitus (DM),
the metabolic syndrome (MS), and possibly cardiovascular disease (CVD).

2. PREVALENCE OF PRINCIPAL MORBIDITIES
ASSOCIATED WITH PCOS

2.1. Cancer

Because PCOS is associated with oligo-anovulation in the face of continued,
and generally unopposed, hyperestrogenemia, obesity, and hyperinsulinism,
the risk of estrogen-sensitive neoplasias may increase, including endometrial



and breast cancer. In turn, as excess androgen action has been implicated in
the etiology of ovarian cancer [1], it is possible that the hyperandrogenism of
PCOS may result in an increased risk of ovarian malignancy. In the following
sections, we review the currently available epidemiologic data to support or
refute these suppositions.

2.1.1. Endometrial Hyperplasia and Carcinoma. In addition to menstrual
dysfunction and infertility, women with PCOS may be at increased risk for
endometrial hyperplasia [2,3] and carcinoma [4,5]. However, most of these stud-
ies have actually investigated groups of women with endometrial neoplasia and
ascertained the prevalence of polycystic ovaries. In a small study, Cheung evalu-
ated 36 consecutive patients with PCOS by endometrial biopsy and observed that
35.7% had endometrial hyperplasia and 25% of these had cytological atypia [2].
However, today most women with menstrual dysfunction or irregularity are
placed readily on some form of progestin, either cyclic or more commonly in the
form of an oral contraceptive. Since these drugs decrease the prevalence of
endometrial carcinoma to close to the background rate [6], it is possible that the
risk of frank endometrial cancer in PCOS patients today is relatively low. Overall,
the prevalence of endometrial abnormalities in PCOS is still unclear due to the
paucity of large-scale screening studies and the small number of patients actually
identified with carcinoma [7].

2.1.2. Breast Cancer. Data concerning the risk of breast cancer in PCOS are
conflicting and insufficient [8–13]. In a long-term follow-up study of 786 women
diagnosed with PCOS in the UK between 1930 and 1979 and followed for an
average of 30 years, Pierpoint and colleagues reported that the standardized mor-
tality ratio (SMR; the ratio of observed to expected deaths) was 1.48 (95th per-
centile confidence interval [CI] 0.79–2.54) for breast cancer; breast cancer was
also reported to be the leading cause of death in their population [10]. However,
in a subsequent report, these same researchers stated that the 31-year-follow-up
did not demonstrate a significantly increased risk of mortality and morbidity
from breast cancer in women with PCOS [11].

In agreement, in a US cohort study of 34,835 women, 833 of which developed
breast cancer during the follow-up, subjects with PCOS were not more likely
to have a breast cancer (relative risk [RR] 1.2; 95th CI 0.7–2); adjustment for
age at menarche, age at menopause, parity, oral contraceptive use, body mass
index (BMI), waist/hip ratio, and family history of breast cancer further
lowered this RR to 1.0 (95th CI 0.6–1.9) [9]. A multicenter, population-based,
case–control study including 4,730 women with breast cancer and 4,688
controls aged 20–54 years revealed an age-adjusted odds ratio (OR) for breast
cancer of 0.52 (95th CI 0.32–0.87) among women with a self-reported history
of physician-diagnosed PCOS [8].

A family history of breast cancer may also be another indicator of the
risk these individuals may have. Atiomo and colleagues performed a survey
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of 107 women with (n = 41) and without (n = 66) PCOS and reported a
higher prevalence of a positive family history of breast cancer among
women with PCOS compared to controls (20% versus 5%, p < 0.05) [12].
Alternatively, in a 12-year-follow-up study of 240 women (116 cases and
124 controls), Soran and colleagues found similar percentages of women
with a family history of breast cancer in PCOS compared to controls
(23.3% versus 21.8%) [13]. Overall, current data suggests that PCOS
patients do not have a significantly higher risk for breast cancer than do
matched controls.

2.1.3. Ovarian Cancer. Using whole-organ multiple ovarian sections from
200 hysterectomy and bilateral salpingo-oophorectomy specimens, Resta
and colleagues [14] found a high frequency of hyperplastic and metaplastic
changes on the surface epithelium or in the inclusion cysts of ovaries of
PCOS patients compared to patients without PCOS (68% versus 22%,
respectively). These epithelial changes were considered possible morpho-
logical precursors of common epithelial tumors. Analyzing data from the
Cancer and Steroid Hormone Study (CASH), Schildkraut et al. [15] identi-
fied 476 women with epithelial ovarian cancer and assessed 4,081 controls
ascertained via random-digit telephone dialing. The risk of ovarian cancer
was found to be 2.5-fold (95th CI 1.1–5.9) higher among women who
reported that they had been diagnosed with PCOS before the study period.
However, we should note that this OR was calculated using only seven
women with ovarian cancer (1.5%) and 24 controls (0.6%) who reported that
they had been diagnosed with PCOS.

In a long-term follow-up study of 786 women diagnosed with PCOS in the
UK between 1930 and 1979, traced from hospital records and followed for an
average of 30 years, the SMR relative to the national rate for ovarian cancer
among PCOS women was 0.39 (95th CI 0.01–2.17) [10]. In agreement, a
cross-sectional questionnaire survey of 217 women with and without PCOS
failed to detect a positive association between PCOS and a family history of
ovarian cancer [12].

Overall, it would appear that PCOS is not associated with an increased risk
of ovarian cancer when compared to matched controls, although prospective
studies of large populations of PCOS and matched controls are still needed.

2.2. Glucose Intolerance

Among women with PCOS in the US, with average of 28–30 years, the preva-
lence of type 2 DM ranges from 4% to 10% [16–19]. In a study of 11,035 women
with PCOS identified in an integrated health care delivery system, using health
plan databases indicated that these women were more likely than those without
PCOS to be diagnosed with diabetes (OR 2.45, 95th CI 2.16–2.79), even after
adjusting for BMI and known confounders [19]. Overall, women with PCOS are
at a 2- to 6-fold higher risk of developing type 2 DM compared to age-matched
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average women, who have a prevalence of type 2 DM of 1.6%–2.0% [20,21]. As
expected, the risk of impaired glucose tolerance (IGT) is also higher, with
20–30% of PCOS subjects affected [16–18]. This risk is higher in those PCOS
women with a positive family history of diabetes, although there is no significant
association between race and glucose tolerance status [22].

The prevalence of diabetes appears to be also higher among first-degree
relatives of women with PCOS [18,23,24], suggesting that the risk of type
2 DM among women with PCOS is, in part, determined by heritability. Sir-
Petermann and colleagues reported that insulin sensitivity was significantly
lower and the prevalence of type 2 DM was 1.89-fold higher in the parents of
PCOS women compared with the parents of controls, even after adjustment
for sex, age, and BMI [24]. Yildiz et al. observed type 2 DM and IGT in 16%
and 30% of mothers and in 27% and 31% of fathers, respectively, of women
with PCOS [23]. In addition, IGT was found in 5% of PCOS sisters. We
observed that type 2 DM in a first-degree relative was evident in 44% of PCOS
women with diabetes and 39% of those with IGT [18]. In contrast, signifi-
cantly fewer (21%) of normal glucose-tolerant women with PCOS had a
diabetic first-degree relative. These data suggests that the risk of type 2 DM in
PCOS is, at least in part, determined by inherited factors.

We should note that the increased risk for type 2 DM observed in PCOS
women reflects, to a significant degree, the high prevalence of obesity
observed in these patients. For example, 90% of diabetic PCOS patients
diagnosed in the study by Legro and colleagues, who assessed 254 patients
diagnosed either at the Pennsylvania State University College of Medicine or
at Mount Sinai School of Medicine, had a BMI of 30 kg/M2 or greater [16].
When the risk of type 2 DM in PCOS was adjusted for BMI, the increased
prevalence of diabetes was no longer significantly different than controls, at
least in one study assessing 319 women with PCOS and 1,060 controls [25].

2.3. Metabolic Syndrome

It is likely that PCOS is present in a significant fraction of women with the
MS. As women with PCOS are frequently obese, and abdominal obesity is an
important feature of MS, most of these patients will already have at least one
of the features of this latter syndrome. Furthermore, in PCOS, obesity is
associated with greater degrees of insulin resistance [26] and dyslipidemia,
particularly lower levels of high-density lipoprotein (HDL)-cholesterol [27],
increasing the probability that these patients will exhibit MS. Alternatively, it
is less clear that nonobese women with PCOS are at increased risk for the MS.

In one study of 106 women with PCOS, the prevalence of MS was not
increased in those women whose BMI was < 25 kg/M2 and were less than 30
years old; alternatively, patients with a BMI > 25 kg/M2 and/or who were 30
years or older had a higher prevalence of MS when compared to age-matched
controls [28]. The importance of obesity, and possibly diet, on the prevalence
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of MS is further highlighted by the relatively low prevalence of the syndrome
in non-US PCOS patients [29,30] compared to those patients residing in the US
[28,31,32]. In general, PCOS women in the US are significantly more obese
than their non-US counterparts [33].

We studied 368 nondiabetic PCOS women who were screened for partici-
pation in a multicenter trial to evaluate the effects of troglitazone on ovulation
and hirsutism [22]. The prevalence for individual components comprising MS
were (a) waist circumference > 88 cm (80%), (b) HDL-cholesterol < 50 mg/dL
(66%), (c) triglycerides ≥ 150 mg/dL (32%), (d) blood pressure ≥ 130/85 mm
Hg (21%), and (e) fasting glucose levels ≥ 110 mg/dL (5%). Three or more of
these individual criteria, defining the presence of MS, were present in 123
(33.4%) subjects overall. This prevalence is markedly higher than the 6.7%
prevalence of MS reported in women between the ages of 20 and 30 years, and
the 15% prevalence reported in women between ages 30 and 40 years., from
the Third National Health and Nutrition Examination Survey (NHANES III)
using the Third Report of the National Cholesterol Education Program Expert
Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in
Adults (ATP III) definition for MS [34]. The prevalence of MS did not differ
significantly between racial/ethnic groups but increased with the free testos-
terone level; the prevalence of MS was 19.8, 31.3, 46.9, and 35.0%, from low-
est to highest quartile of free testosterone concentration, respectively, after
adjustment for BMI. Women in the top BMI quartile were 13.7 times more
likely (95th CI 5.7–33.0) to have MS compared with those in the lowest quar-
tile, and none of the 52 women with a BMI < 27.0 kg/M2 had MS.

The prevalence of MS in PCOS is, at least in part, a matter of definition.
Diagnostic criteria for both disorders are multiple and in flux, with at least
three different criteria in use for PCOS [35] and six for MS [36]. As such, the
definitions used will have an important impact on the specific prevalence
observed. For example, Vural and colleagues evaluated 43 women with PCOS
and 43 age-matched controls in Turkey [30], using the WHO criteria, and
11.6% of PCOS women were diagnosed as having MS, significantly greater
than controls (0%). Alternatively, if the ATP III criteria were used only 2.3%
of PCOS were affected with MS, a nonsignificant difference from controls. In
addition, this study included PCOS women diagnosed by the Rotterdam 2003
criteria, which has the potential of including less androgenized and insulin
resistant patients, possibly partially accounting for the lower frequency of MS
observed in this population.

Overall, MS and its individual components are common in PCOS, particularly
among women with the highest BMI, and insulin and androgen levels. The
prevalence of MS increases with age [34], and likewise the prevalence in PCOS
rises with age [32]. Nonetheless, of the patients studied by Dokras and
colleagues, ~24 and 46% of the patients aged less than 30 years or 30–39 years,
respectively, had MS [32]. These data clearly denote the importance of screening
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all women with PCOS for MS, regardless of age. Finally, we should note that
the prevalence of MS among women in the US, defined by the ATP III criteria,
is ~23% among all women and ~15% among those aged 20–49 years [34].
Since PCOS, defined by the NIH 1990 criteria, affects 6.6% of reproductive-aged
women [37], it is possible that this disorder is present in 10% of all women with
MS and in 20% of those of reproductive age. Consequently, because PCOS has
other important reproductive and quality of life implications, women with MS
should also be investigated for the presence of PCOS.

2.4. Cardiovascular Disease

CVD, including coronary heart disease (CHD), stroke, and peripheral artery
disease, is a leading cause of death, affecting 6% of the overall population, at
least in the US. Patients with PCOS demonstrate a higher prevalence of CVD
risk factors, and possibly selected CVD events, than comparable controls.

2.4.1. Risk Factors for CVD in PCOS. Patients with PCOS demonstrate a
higher prevalence of insulin resistance, hyperandrogenemia, type 2 DM, MS,
and total and abdominal obesity, compared to controls, important risk factors
for the development of CVD. A higher prevalence of dyslipidemia has also
been reported among PCOS patients [19,38–40].

In a study including 195 women with PCOS and 62 controls, Legro and
colleagues reported that the prevalence of borderline high total cholesterol
(TC; ≥ 200 mg/dL) was higher among PCOS than controls (48% versus 22%,
respectively), although the prevalence of abnormally low levels of high density
lipoprotein (HDL)-cholesterol (< 35 mg/dL) was similar in both groups (48%
versus 45%, respectively) [39]. Lo and colleagues, in their study of 11,035
women with PCOS, observed that women diagnosed with PCOS were more
likely than those without PCOS to also be diagnosed with dyslipidemia (OR 1.53,
95th CI 1.39–1.68), even after adjusting for BMI and known confounders [19].
Overall, it appears that women with PCOS are 1.5–2.0 more likely to have
dyslipidemia than matched controls. However, we should also note that evidence
supporting an increased prevalence of dyslipidemia in PCOS is not uniform. For
example, in a study of 398 women with PCOS screened for inclusion in a trial
evaluating the effectiveness of troglitazone, we [41] reported that the prevalence
of abnormally high TC levels in this population was similar to, and the prevalence
of low HDL-cholesterol levels was actually less than, that observed among
women aged 20–39 in NHANES IIII, i.e., 7.6% and 25.6%, respectively [42].

The prevalence of hypertension in PCOS ranges from 10 to 39%, depend-
ing on age, representing a 1.4- to 3.5-fold increase above controls
[9,25,43–46]. However, we should note that the prevalence of hypertension in
PCOS is significantly greater in obese patients [45] and, in one study, when
the prevalence of hypertension was adjusted for BMI, the difference in risk
between PCOS and age-matched controls was no longer significant [25].
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Finally, other risk factors for CVD, including evidence of impaired fibri-
nolysis (e.g., increased plasminogen activator inhibitor-1 [47–49] and homo-
cysteine levels [50,51]) and chronic subclinical inflammation (e.g., increased
levels of white blood cells [52], soluble intercellular adhesion molecule-1 and
soluble endothelial leukocyte adhesion molecule-1 [53], and C-reactive
protein [53–58]) are more prevalent in PCOS than controls. Overall, patients
with PCOS demonstrate an increased prevalence of conditions that are
associated with an increased risk for CVD. The beneficial effect of insulin
sensitizers on these parameters has been documented [47,53,55,59,60].

2.4.2. Clinically Evident CVD in PCOS. In agreement with the above find-
ings, there is evidence of subclinical CVD including morphologic alterations
(e.g. left ventricular hypertrophy [61], increased carotid intimal media thickness
[62–65], and coronary artery and aortic calcification [40,66]), and functional and
endothelial abnormalities (e.g., decreased diastolic filling [50,61], left ventricular
ejection fraction [61,67], leg blood flow responses to graded intrafemoral artery
infusions of methacholine chloride [68], and brachial flow-mediated dilation
[57,64], and higher pulse wave velocity across the aorta and brachial artery [54],
resistance to the vasodilating action of insulin [68], and endothelin-1 levels
[59,64]). Evidence of cardiovascular dysfunction is present even in young
normal-weight women with PCOS [49,52,58,61,64,69].

Notwithstanding, evidence for clinically apparent CVD is much less clear.
Legro [70] reviewed the available evidence for an association between PCOS
and CVD, and noted that while existing data suggested that PCOS may
adversely affect or accelerate the development of an adverse cardiovascular risk
profile, and even of subclinical signs of atherosclerosis, it did not appear to
lower the age of clinical presentation to a premenopausal age group. A number
of populational studies support the apparently modest role of PCOS in
premature CHD [25,45]. It is possible that the lack of a significant association
of PCOS with CVD or CHD-related events or mortality in these studies may
be due to the short length of follow-up of the studies or the relatively young
age of the PCOS patients at the time of follow-up.

To address, we prospectively studied 390 postmenopausal women enrolled in
the NIH-NHLBI sponsored Women’s Ischemia Syndrome Evaluation (WISE)
study, not currently taking hormone replacement or oral contraceptive therapy
[71], PCOS was observed in 104 women (defined by a history of irregular
menses accompanied by biochemical evidence of hyperandrogenemia, i.e. the
top quartile of either androstenedione, total or free testosterone, or free andro-
gen index). Women with evidence of PCOS had a 2.6-fold (95th CI 1.5–4.5)
higher risk of CVD or myocardial infarction (MI), compared to their counter-
parts. This relationship was maintained in a risk-adjusted model controlling for
diabetes, hypertension, and angiographic coronary artery disease severity.
Furthermore, a study of 319 PCOS women surveyed a mean of 31 years after
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diagnosis observed a significant increase in the incidence of cerebrovascular dis-
ease in PCOS compared to controls (3.1% versus 1.2%, respectively) [25],
although this association remains to be confirmed by other investigators.

Overall, although the long-term risk of hypertension and cerebrovascular
disease appears to be increased in PCOS, these risks remain to be confirmed,
and the extent to which the prevalence of CHD events are increased in the
disorder is unclear. Most importantly, the incidence of CVD-associated
events or mortality does not appear to be grossly increased in reproductive-
aged PCOS patients compared to age-matched controls, although it is possi-
ble that these women may demonstrate an increased incidence of CVD as
they age.

3. ESTIMATING THE ECONOMIC BURDEN OF PCOS

We have previously calculated the healthcare-related economic burden in
PCOS based on the above prevalence of disease [72]. Our estimate of the
health-care-related economic burden of premenopausal women with PCOS,
which did not include CVD, exceeded $4 billion annually in the US alone. The
calculated economic burden of PCOS patients during their reproductive years
is about threefold that of hepatitis C ($1 billion in 1998) [73] and about
one-third that of morbid obesity ($11 billion in 2000) [74]. Approximately
40% of the calculated burden was due to the increased prevalence of type 2
DM associated with PCOS. The recognition that MS, and possibly its CVD
consequences, could affect as many as 50% of women with PCOS could easily
triple the estimated health care burden of these patients. Notably, the costs of
the diagnostic evaluation on all patients accounted for a relatively small
portion of the calculated economic burden, about 2%.

4. CONCLUSIONS

Women with PCOS are at significantly higher risk for glucose intolerance
and type 2 DM (Table 1). In addition, while they demonstrate a higher preva-
lence of markers for CVD and of cardiovascular dysfunction during the repro-
ductive age, PCOS women may demonstrate a higher prevalence of CV,
including MI and cerebrovascular accidents, but only in the menopause. While
women with PCOS appear to be at increased risk for endometrial cancer, the
extent of this risk is unclear. Overall, the risk of these women for ovarian or
breast cancer does not appear to be grossly increased. Nonetheless, it is clear
that large well designed epidemiologic and longitudinal studies are required to
determine the true prevalence and risk of PCOS patients for long-term mor-
bidities. These studies are critically needed, particularly in view of the high
prevalence of PCOS, which appears to affect at least 7% of unselected repro-

124 R. Azziz



ductive aged women. Finally, we should note that costs of the diagnostic
evaluation accounts for a relatively minor part of the total economic burden of
the disorder. This suggests that more widespread screening for the disorder is
potentially a cost-effective strategy, leading to earlier diagnosis and intervention
and possibly the amelioration and prevention of serious sequelae.
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7, 20, 31
Nuclear factor 1C (NF-1C) binding 
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