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Preface

Mathematical and physical theories cannot be used directly to solve real-life

problems because models (theories) take into account only the most important

physical quantities and cannot account for each particular characteristic of the

given problem. The real-life engineering problems usually deal with objects of

complicated geometrical configuration that cannot be easily modeled. Thus,

simplifications are always required in order to apply the theory. The ability to

simplify the real-life problems and represent them as solvable models is the most

important skill of an engineer. Simplifications are commonly applied to the geom-

etry of a real structure and to the selection of most important physical quantities that

are of major importance to achieve an engineering solution. Because of these

simplifications it is obvious that the analytical solution based on the assigned

physical model does not represent the exact solution for the real problem, but at

the best is a good engineering approximation.

This textbook of mechanics aims to teach the engineering students the ability to

consider any problem and approach it in a systematic way that will allow creating a

physical model of a real-life problem and arrive at the solution by writing and

solving equations of equilibrium. In this process, the necessary simplifications will

take place, and the complicated, real-life problem will be reduced to a manageable

simple system that may be easily represented by its free body diagram and

corresponding set of equilibrium equations.

Even though the field of mechanics of rigid bodies is well established and did not

have any new developments in the last 100 years, we still have to develop better and

easier ways for students to understand these basic elements and be capable to

observe, understand, and simplify the existing problem. Thus, we enforce the

concept of taking the real-world engineering examples and simplify them to

become solvable by relatively simple means of the equations of equilibrium.

A set of equilibrium equations may be solved by “hand” or by any of the

available computer tools. These tools rapidly change with new developments in

computer science and engineering, which has nothing to do with the subject of this

book. We therefore leave to the discretion of the instructor and student which of the

available tools they may use for solving equations. These may be EXCEL,

MATLAB, MATHEMATICA, or any other programs that may appear in the future.
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Many of the currently available new texts are introducing so-called “computer”

problems that are nothing more than using the analytical solution and substituting a

range of variables to calculate the result. Our philosophy is that such an approach

distracts students from comprehending the problem and leads them to rely on a

numerical approach before developing a clear understanding of the mechanics.

Therefore, we try not to emphasize such exercises.

Today’s students are well versed in using computational software and thus just

running a “do loop” to run the calculation through a range of values that does not

contribute to the deeper understanding of the mechanics. Of course, we do not want

to preclude students from using any computational software capable to ease the

calculations necessary to get the result. For this purpose, a number of MATLAB

routines are provided on the Springer website (http://extras.springer.com) that

students may use to solve the linear system of equations of equilibrium. However,

these routines still require from students the deep understanding of a given problem

and ability to create the correct free body diagram. The MATLAB routines help to

solve the system of equations, but do not solve the problem by themselves.

The implemented approach here will allow students to build a better understand-

ing of the physical reality and ways to simplify it in order to create an acceptable

engineering solution.

Ljubljana, Slovenia Igor Emri

Bethlehem, PA, USA Arkady Voloshin
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Nearly, each “Statics” book starts with the statement similar to this one: “the main

objective of the book is to provide a student with a clear understanding of mechan-

ics and develop the ability to analyze the problem in a simple and logical manner.”

It is indeed hard to argue with such a statement. And if any of the “Statics” books

would “provide a clear understanding and ability to analyze the problem,” this book

would be unnecessary.

The underlying basic mechanics laws stay the same, but the way they are

presented and interpreted is changing with time. The structures built 2–3 thousand

years ago demonstrate that humans understood the underlying laws of mechanics

even though they were not stated in the forms as they were postulated by Newton in

seventeenth century. This clearly demonstrates that comprehending laws of nature

is a continuing process, and this book represents one of the small steps in evolution

of our understanding of nature.

1.1 General Approach

The intent of this book is to introduce and explain the basic concepts on which

“Statics” is based utilizing real-life engineering examples. This is why you will

see a large number of photographs of the real machinery and structures. The

traditional “teaching” is substituted here by a “learning” approach. We show

you a real problem, analyze it, simplify it, and develop a way to solve it. We

cannot solve each problem exactly, but we will show you that thinking and

# Springer Science+Business Media New York 2016
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simplification can help you to deal with many structural problems in a simple and

reasonable way.

1.2 Review of the Contents

The scientific approach is empirical, based solely on observation and experiment.

The book is built on the basis of fundamental laws of nature as were developed by

Sir Isaac Newton, knowledge of vector algebra and common sense. Chapter 2

introduces the basic concepts and definitions; it explains the system of units used

in engineering. Chapter 3 introduces a student to the very essential task—how to

represent physical reality in a way that one may solve problems and get meaningful

results. It teaches you how to identify the important features of the structure that

should be included in your model and what may be omitted. This is extremely an

important step since the obtained results will be useful only to the extent you

understand and justify the simplifications introduced in the process of creating

physical model and free body diagram.

Chapter 4 discusses how to find a resultant force replacing number of forces

acting on a point in two and three dimensions. After we are comfortable with

finding resultant, the main focus point of statics is discussed—how to analyze

equilibrium of forces acting at a point on the plane and in the space.

Equilibrium of rigid bodies is the topic of Chap. 5. We introduce procedures to

use the fundamental laws of nature in order to find the unknown parameters for a

system in equilibrium. Two- and three-dimensional cases are discussed.

Chapter 6 introduces concepts of the center of gravity and centroids. In the same

chapter, we discuss the problems of the water pressure on submerged surfaces.

In Chap. 7, we will introduce concepts, assumptions, and rules necessary to classify

structural elements. The following classes of structures are discussed: trusses,

beams, frames, machines, and cables. We also introduce a procedure to calculate

internal forces in various structural elements.

The following three Chaps. 8–10 introduce and discuss detailed procedures to

solve the corresponding problems. There we develop a set of approaches one may

use to calculate the internal forces and moments in a variety of structural elements

introduced in Chap. 7.

Chapter 11 discusses how to deal with the problems that do not fall in any of

simple classes of structures: trusses, beams, or cables. Here, we develop ways to

solve such problems by disassembling a structure and to solve each constituent

using the methods introduced in previous chapters.

Chapter 12 deals with the frictional forces that prevent relative movement of

solid bodies in contact.

The home problems are divided into two distinct classes: real-life problems and

problems represented via physical models, created mainly for methodological

reasons. The first group of problem will mainly teach how to study a real-life

problem, simplify it, and represent it as a “physical model,” which will allow using

the solution techniques explained in the book. The second group of problems

2 1 Introduction
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is mainly for learning the mathematical procedures and other tools necessary

to solve the real-life problems represented by physical models. This process

of modeling introduces inevitable errors; however, good engineering practice

allows minimizing them and still getting solutions that will satisfy the real-life

requirements. Some of the problems use the internationals system of units

(SI units), whereas the others use the US customary units. Such approach will

allow students to get familiar with both of the systems of units.

Problems identified by “*” are considered to be “challenging.” They may be

solved using the methods described in this book, but it will require extra effort from

the student, thus they may be assigned for “extra” credit.

Appendix contains the basic information about the vectors, matrices, and the

ways to manipulate them. It should be noted that the main purpose of this Appendix

is to provide a refreshment of the rules on vectors and matrix algebra; it cannot

serve as a tutorial.

Several routines written for MATLAB are available on the extras.springer.com.
They allow students to simplify the process of calculations, but they still leave the

burden of creating correct free body diagrams and writing appropriate equations of

equilibrium. Their routines may be easily modified to solve a range of problems;

they will decrease the calculation errors, but they will not solve a problem for you!

You should always consider the MATLAB and other numerical procedures as a tool

(e.g., pencil, calculator) and not as a problem solver.

Both authors are avid scuba divers and went to many scuba trips together (and

still do). Since one cannot dive more than couple of hours per day, they used the rest

of the time to discuss various topics of common interest. One of these was the way

the course of “Statics” is taught at different universities. This was the start of a long

and tedious work on this approach to comprehend “Statics.”

We decided to deal with real problems as one may encounter in the real life and

not with models and idealizations only, as it is customary in the many of the

existing text books.

1.3 Conventions on Notations

In the course of this book, we usually use bold letters to define external forces, and

we use capital letters to indicate the supports. For example, if A indicates support

then we would use A, Ax, Ay, and Az to define the components of the reaction

forces. Distributed forces are usually defined by lower case q. Every time we use a

summation sign ∑, it is assumed summation by all forces and/or moments. If we

need to specify the details,
XN

i¼1
is used.

Vectors are denoted in bold font and scalars in italics. Greek letters are used to

define angles.

Vector or cross product is defined by x and scalar product is defined by a dot (∙).

1.3 Conventions on Notations 3
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List of Symbols

a Distance

b Distance

c Distance

A, B, C, D, E Points

A, B, C, D, E, F, P, Q Force reactions, magnitudes

A, B, C, D, E, F, P, Q, R Force reactions, vectors

G Center of gravity

q Distributed forces

i, j, k Unit vectors

M Moment

O Origin of coordinates

r Position vector

x, y, z Rectangular coordinates

α, β, γ, θ. . . Angles

Acknowledgements This book would not be possible without the help from the numerous

colleagues and former students’ involvement. In particular, we are pleased to recognize the

contribution of Dr. Robert Cvelbar, Dr. Anatoly Nikonov, Dr. Barbara Zupančič, Alen Oseli,
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• Procedures to find a resultant force

• Mathematical definition of the moment
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Everyday experience with objects and forces acting upon them shows that there is a

definite relationship between the motion and the force. These relations were studied

by Newton in the seventeenth century.1 Based on the observation of the nature, he

postulated basic relations describing interactions between forces, matter, space, and

time. These physical quantities are fundamental quantities; they have to be accepted

intuitively as facts of nature. In the scientific literature, there are many different

ways to describe these quantities. Here, we are summarizing those that are appro-

priate for the purpose of this book.

Time is a quantity used to separate different stages of a process. In principle,

evolution of any phenomenon may be used to measure time, providing that certain

conditions are fulfilled. In order to introduce a unit of time, we have to consider a

well-defined reference process, for example, swing of a pendulum, rotation of the

Earth about its axis, and decay of a radioactive material. There are two commonly

accepted independent approaches to define the time scale. The first one is based on

the regularity of the celestial bodies’ motions. The second one is based on the

characteristic frequency of the electromagnetic radiation emitted or absorbed in

quantum transitions between internal energy states of atoms.

Space can be considered as a boundless, three-dimensional extent in which

objects and events occur and have relative positions and directions. The perception

of space allows the concepts of position and geometry of a body. The fundamental

elements of geometry are length, area, and volume. We have to define an appropri-

ate unit to measure length, area, and volume. In principle, any distance may serve as

the unit of length. Through the history, people used many different definitions for

the unit of length. According to an international agreement, today we are using the

unit of length called meter. Originally, the length unit called meter was defined as

one ten millions of the distance from the North Pole to the equator on the meridian

running through Paris. The latest definition of a meter is the length of the path

traveled by light in a vacuum during a time interval of 1/299,792,458 of a second.

Until recently, the English units of lengths were defined in terms of the imperial

standard yard, which was the distance between the two lines on a bronze bar made

in 1845. Because the imperial standard yard was shrinking at the rate of 1.5

millionths of an inch per year the United States adopted a copy of the international

prototype meter as the national standard of length in 1889.

Matter is a substance that constitutes the observable universe and, together with
energy, forms the basis of all objective phenomena. The main building blocks of

matter are atoms. Matter has several states: gas, liquid, solid states, and plasma.

Each state exhibits properties that distinguish it from the others. Moreover, these

general states can be subdivided into groups according to particular types of

properties listed in the periodic table. Matter exists in and occupies the space.

Matter that occupies a specific space (volume) is called body. When distribution of

matter in a given volume and its shape does not change in time, we talk about rigid

bodies. Quantity of matter in a unit volume is called density. Inherent and

1 Sir Isaac Newton, Principia, Vol. I The Motion of Bodies, University of California Press, 1962.
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permanent property of matter is inertia, which causes a body to resist any change in

its condition of rest or motion. The mass of a body is a measure of its inertia. It is

also commonly taken as a measure of the amount of matter contained in a body.

Each body possesses gravitation, the property by which it attracts every other body.

The gravitation is still not fully understood. Gravitational attraction is force acting
between bodies. When one of the bodies is a celestial body (e.g., Earth or Jupiter),

this force is called the weight of the second body. Of our interest will be weight of

the bodies located on the Earth. Hence, the weight is the force exerted on the matter

by gravitational attraction of the Earth. This force is proportional to the mass of two

bodies and inversely proportional to the square of the distance between them.

Therefore, since the shape of the Earth is not a perfect sphere, the weight of a

body varies from place to place. In contrast, the mass of the body remains constant

regardless of its location, assuming that the velocity of body is significantly smaller

than the velocity of light (which is the framework of the Newton’s mechanics). The

weight of a satellite launched into space, for example, decreases as it travels away

from the Earth. Its mass, however, stays the same.

The mass of a body is a measure of its inertia. It is also used as a measure of the

amount of matter contained in a body.

Weight is a force created by gravitational field, acting on each and every particle

constituting a body. The origin of gravitation is still not completely understood.

Weight of a body can be viewed as the force acting on a point, called center of
gravity.

The metric unit of mass is kilogram (kg) defined by a solid cylinder of platinum-

iridium alloy maintained at constant temperature in Sevres, France. English unit of

mass (pound mass) is one of the oldest units of weight. Its current definition is based

on the metric standard of mass.

Classical mechanics addresses the interrelation between matter, space, force,

and time as observed and postulated by Newton. In this book, we discuss systems

that are not time dependent, thus only the conditions under which bodies are and

remain at rest. This part of mechanics is called Statics.

Statics deals with time-independent problems, thus time does not appear in static

problems.

2 Laws of Nature and Fundamental Concepts 7



2.1 Forces and Newton’s Laws

Some of the important concepts of forces, their effect on bodies and the governing

laws are discussed below.

2.1.1 Newton’s Laws

When a cup of tea is served, one has to apply a force to the cup that is equal to its

weight, to keep it in place, i.e., the two forces are in equilibrium.

At this point, we are ready to make our first abstraction and assume that the cup

(or any other observed body) can be represented as a particle, which has no size, but

the same mass and weight as the original body (in our case the cup). Furthermore,

weight of the body, i.e., of the particle, can be viewed as the force acting at a

particular point of space. Definition and location of this point, called center of
gravity, will be discussed in detail later (Chap. 6).

Interaction of the cup and the hand, shown in Fig. 2.1, can be therefore viewed as

an interaction of two forces acting on a point, as shown in Fig. 2.2.

These two forces, commonly called action and reaction, are equal in magnitude

and opposite in direction. They represent one of the basic laws of nature, postulated

by Sir Isaac Newton as the Third Fundamental Law:

To every action there is always opposed and equal reaction: or, the mutual actions of two
bodies upon each other are always equal, and directed to contrary parts.

Third Newton’s Law: “To every action there is always opposed an equal

reaction: or, the mutual actions of two bodies upon each other are always

equal, and directed to contrary parts”.

Fig. 2.1 Equilibrium of the

cup’s weight and the force

acting on the cup, generated

by the hand
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Since action and reaction are equal in magnitude and opposite in direction, the

resultant force acting on the particle (body) is equal to zero. The particle (our cup)

therefore will not change its state of motion. If it was at rest at the moment of

observation, it will maintain its state, i.e., its location in space will not change.

To move the cup up, one has to increase the force acting upon it—force

generated by hand should be larger than the body’s weight and therefore the

resultant force will not be zero anymore. Quantitative observations of this and

similar examples show that application of an excessive force to an object causes its

acceleration that is directly proportional to the resultant force. The proportionality

constant happens to be reciprocal to the mass of the body. Sir Isaac Newton

summarized this phenomenon as the Second Fundamental Law of nature:

The change of motion is proportional to the resultant force and is made in the direction of
the line in which this force is acting.

Second Newton’s Law: “The change of motion is proportional to the motive

force impressed; and is made in the direction of the right line in which the force

is impressed”.

In other words, if the resultant force acting on a particle is not zero the particle

will have an acceleration proportional to the magnitude of the resultant force and in

the direction of this force. Mathematically, this can be expressed as

a ¼ 1

m
F ð2:1Þ

or in more common form

F ¼ ma ð2:2Þ
where m is a mass, F an acting force, and a the resulting acceleration of the body.

Acting resulting force F and corresponding acceleration a act in the same direction.

Fig. 2.2 Two forces, the

weight of the cup (W) and the

force generated by the hand

(F), are in equilibrium and are

acting at the point A

2.1 Forces and Newton’s Laws 9



They are vectors, having the same unit vector, which defines their direction

(Appendix).

Acceleration is defined as a change of particle’s velocity per unit time.

Newton’s definition of mass reads: “The quantity of matter is the measure of the

same, arising from its density and bulk conjointly” (see footnote 1).

Mass can be defined as a quantity of matter occupying a given volume. It is a

measure of resistance to its change in motion.

From the Second Fundamental Law follows that if no external force acts on a

body, its acceleration is equal to zero. This means that its state of motion will not be

altered. Newton summarized this observation as the First Fundamental Law:

Every body continues in its state of rest, or of uniform motion in a straight line, unless it is
compelled to change that state by forces acting upon it.

First Newton’s Law: “Every body continues in its state of rest, or of uniform

motion in a right line, unless it is compelled to change that state by forces

impressed upon it”.

In addition to the three Fundamental Laws above, one can observe some other

facts related to forces acting upon bodies.

The right-hand coordinate system is used throughout this book. This system is

commonly used in mechanics and is shown below.

10 2 Laws of Nature and Fundamental Concepts
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2.1.2 Internal and External Forces

The forces acting on a body can be separated into two distinct groups: external and

internal. The simplest way to distinguish between them is to assume that any force

that acts upon the object of interest is an external force. Any force exerted by one

part of the object on another part of the same object is an internal force.
External forces may be contact and noncontact forces. Noncontact forces are

gravitational and electromagnetic forces, whereas contact forces result from the

contact (interaction) between bodies.

The following example will make such distinction obvious. Let us say that a car is

stuck in mud, one person is pushing on the rear bumper of the car, while the driver

presses the gas pedal. Let us consider the car and the driver as our object. The force

which the person is applying on the rear bumper is an external force with respect to our

object (car and driver), while the force driver applies to the pedal is an internal force.

It will be shown later that it is convenient to use the same coordinate system for

representation of both, internal and external forces.

2.1.3 Principle of Transmissibility

An experiment shows that the effect of external force on the state of motion of a

rigid body will remain the same if the location of the point where force is acting is

moved along its line of action. For example, the effect of the external force on a

rigid body, applied at point A, is the same as if a force of the same magnitude and

direction is applied at another point B along the line of action of the first force

(Fig. 2.3). However, it should be emphasized that moving the point of external force

application will change distribution of internal forces.

It is convenient to use the same coordinate system for representation of internal

and external forces.

The effect of external force on the state of motion of a rigid body will remain the

same if the location of the point where force is acting is moved along its line of

action.

Fig. 2.3 Principle of transmissibility
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2.2 Two Forces Acting Upon a Body

Let us consider what happens when two forces are acting on a rigid body. We will

discuss the equilibrium case only—the basis for solving problems in statics. Also,

the concepts of couple of forces, parallelogram of forces, and transmissibility

principle will be introduced.

2.2.1 Equilibrium Pair of Forces

Two forces of equal magnitude and opposite in direction that are acting upon a body

along the same line are called an equilibrium pair of forces as shown in Fig. 2.4.

The resultant force of the equilibrium pair of forces is equal to zero.

When equilibrium pair of forces is acting upon a body, two extreme situations

may be observed. First, when two forces are sufficiently small or, equivalently, the

body is sufficiently rigid, the location and geometry of the body will remain

unchanged. Second, when the two forces are sufficiently large, or body is not

sufficiently rigid, the body will be deformed. In both cases, however, the body

will retain the same location.

Let us concentrate on a study of a special case: no motion—Statics.
Adding (or subtracting) an equilibrium pair of forces, of any magnitude and

direction to a nonrigid body, will change its geometry and internal forces. However,

it will not alter its initial state of motion.

At present, we are not interested in the deformation of a body due to applied

external forces, thus fromhere onwewill use the concept of rigid bodies. Rigid body is
the one in which distance between each and every point of the body remains constant

at all times. Adding (or subtracting) an equilibrium pair of forces, of any magnitude

and direction to a rigid body, will not change its geometry and its state of motion.

Adding (or subtracting) an equilibrium pair of forces will not alter the state of

motion of a body.

Rigid body is the one in which distance between each and every points of the

body remains constant at all times.

Fig. 2.4 Equilibrium pair

of forces
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2.2.2 Parallelogram of Forces

An experiment shows that the effect of two forces, acting at the same point on a

rigid body, may be replaced by only one force, whose direction and magnitude is

determined by the rule of parallelogram, as shown in Fig. 2.5. This force is

commonly called the resultant, and is the vector sum of these two forces. Using

vector algebra, this can be expressed as

R ¼ F1 þ F2

Two forces acting at the same point and their resultant are always in the same

plane; thus, the problemof force summationmay be considered as a two-dimensional

problem.

A body, acted on by two forces simultaneously, will describe the diagonal of a

parallelogram in the same time as it would describe the sides by those forces

separately (see footnote 1).

Let us introduce the coordinate system as shown in Fig. 2.6.

In two-dimensional space, each vector has two components: in x and y direction
as follows:

F1 ¼ F1x � iþ F1y � j
F2 ¼ F2x � iþ F2y � j
R¼ F1 þ F2 ¼ F1x � iþ F1y � jþ F2x � iþ F2y � j
¼ F1x þ F2xð Þ � iþ F1y þ F2y

� � � j ¼ Rx � iþ Ry � j
where i and j the unit vectors along the coordinates axes x and y and Fx and Fy are

projections of vector F on these axes.

The parallelogram of forces (the axiom defining the effect of two forces acting

upon a body) provides a basis for the rule of vector summation.

Fig. 2.5 Parallelogram of

forces defining magnitude

and direction of the resulting

force, R, which replaces two

forces, F1 and F2, acting at

a point A
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The generalized rule for vector summation in three dimensions is given in the

Appendix and may be summarized as

R ¼ F1 þ F2 þ F3 þ . . .þ FN

¼ F1x þ F2x þ F3x þ . . .FNxð Þiþ F1y þ F2y þ F3y þ . . .þ FNy

� �
j

þ F1z þ F2z þ F3z þ . . .FNzð Þk
¼ Rxiþ Rxjþ Rxk

Example 2.1 The hydraulic cylinder exerts a 300 N force F on the car at A. This

force makes an angle of 40� with the horizontal axis. Express F in terms of its scalar

components (Fig. 2.7).

Solution In two-dimensional space, each vector has two components. We will

represent force F as

F ¼ Fx � iþ Fy � j
where Fx and Fy are projections of vector F on the x and y axes.

Thus, the magnitude of Fx

Fx ¼
��F�� cos 40∘ ¼ 300 � cos 40∘ ¼ 230 N

Similarly, the magnitude of Fy

Fig. 2.6 Summation rule

14 2 Laws of Nature and Fundamental Concepts

http://dx.doi.org/10.1007/978-1-4939-2101-0_BM1


Fy ¼
��F�� sin 40∘ ¼ 300 � sin 40∘ ¼ 192:8 N

After you determined the vector components, it is a good idea to check your results

to make sure that they give the correct magnitude of the original force.

��F�� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
192:8ð Þ2 þ 230ð Þ2

q
¼ 300 N

Example 2.2 Force F1 ¼ 3i � 4j þ 2z N½ � and force F2 ¼ � 3i þ 2j � 2z N½ �
are acting at the point A. Find the resultant force.

Solution To find a resultant force, we will use a generalized rule for vector

summation.

R ¼ F1 þ F2 ¼ F1x þ F2xð Þiþ F1y þ F2y

� �
jþ F1z þ F2zð Þk

¼ 3� 3ð Þiþ �4þ 2ð Þjþ 2� 2ð Þk ¼ �2j N½ �
Example 2.3 Force F1 ¼ �8i þ 12j � 7z N½ � and force F2 ¼ �2i � 7j � 5z N½ �
are acting at the point A. Find the resultant force.

Solution To find a resultant force, we will use a generalized rule for vector

summation.

R ¼ F1 þ F2 ¼ F1x þ F2xð Þiþ F1y þ F2y

� �
jþ F1z þ F2zð Þk

¼ �8� 2ð Þiþ 12� 7ð Þjþ �7� 5ð Þk
¼ �10iþ 5j� 12k N½ �

Fig. 2.7 The car supported

by the hydraulic cylinder

2.2 Two Forces Acting Upon a Body 15



2.2.3 Couple of Forces

Two parallel forces of equal magnitude and opposite direction not acting along the

same line we call a couple of forces or shortly, a couple. An experiment

demonstrates that a couple of forces acting on a rigid body causes its rotation

around the axis perpendicular to the plane defined by those two forces. We will

discuss this subject in more detail in Chap. 5. At this point, it is important to

recognize that there is no rotation without a couple of forces acting upon a body.

Action of a couple is commonly represented as a physical quantity called moment.

Couple of forces are two parallel forces of equal magnitude and opposite

direction not acting along the same line.

Figure 2.8 shows a person applying a couple of forces on a swivel chair. This

couple, called moment, is represented as a vector M perpendicular to the plane

defined by the couple of forces F and �F. It has a tendency to rotate the chair as

shown in Fig. 2.8.

2.2.3.1 Definition of a Moment
Since the action of a couple, called a moment, is a derived physical quantity, we

need its proper mathematical definition.

Fig. 2.8 Couple of forces
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The moment is defined as

M ¼ r� F ð2:3Þ
where r is a space vector defining any point along the line of action of force F, r is

also known as a position vector. The unit of a moment is Nm. Both vectors, r and F,

can be represented in terms of their rectangular components,

r ¼ xiþ yjþ zk ð2:4Þ
F ¼ Fxiþ Fyjþ Fzk ð2:5Þ

Using the rule of a vector product (Appendix), one can find components of the

moment vector.

M ¼
i j k

x y z
Fx Fy Fz

������
������ ¼ Fzy� Fyz

� �
iþ Fxz� Fzxð Þjþ Fyx� Fxy

� �
k ð2:6Þ

Hence,

Mx ¼ Fzy� Fyz

My ¼ Fxz� Fzx

Mz ¼ Fyx� Fxy

The magnitude of the moment is (Appendix)

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

x þM2
y þM2

z

q
¼ F � r � sinφ ¼ F � d ð2:7Þ

where F and r are magnitudes of force and space vector, φ is the angle between the

two vectors, and d is the perpendicular distance between the origin of the coordinate
system and the force’s line of the action, as shown in Fig. 2.9. This perpendicular

distance d is called the moment arm. Increasing either the moment arm or the force

magnitude will increase the magnitude of the moment.

Moments are derived physical quantities. They result from the action of couple

of forces.

The direction of the moment vector is defined by its unit vector eM

eM ¼ M

M
¼ Mx

M
� iþMy

M
� jþMz

M
� k ¼ cos α � iþ cos β � jþ cos γ � k

where angles α, β, and γ are the angles between the vector M and the axes of the

coordinate system.
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There is an historical anecdote emphasizing the importance of the moments.

When ancient Greek mathematician–inventor Archimedes (c. 287–212 BCE) wrote

“Give me but one firm spot on which to stand, and I will move the Earth,” he

obviously knew that by using a long enough moment arm he can apply moment

equal to the moment created by the weight of the Earth applied relatively close to

the point of support (Fig. 2.10).

Fig. 2.9 Moment M of the

force F about the point O

Fig. 2.10 Archimedes moving the Earth
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Technically, the Earth does not have a weight, only the mass, since the weight is

defined as a force of the attraction between the Earth and the object.

Direction of the moment vector is perpendicular to the plane defined by vectors

r and F. It is important to note that cross product of two vectors is not commutative,

i.e., r� F 6¼ F� r.

Cross product of two vectors is not commutative, i.e., r� F 6¼ F� r.

Mathematical Corner

Prove that M is perpendicular to the plane defined by r and F.

For M to be perpendicular to the plane defined by r and F it should be

perpendicular to each one, hence

M � r ¼ 0

M � F ¼ 0

Using moment components from (2.6), we get

M � r ¼ Fzy� Fyz
� �

xþ Fxz� Fzxð Þyþ Fyx� Fxy
� �

z

¼ Fzyx� Fyzxþ Fxzy� Fzxyþ Fyxz� Fxyz

¼ Fzyx� Fzyxþ Fxzy� Fxzyþ Fyxz� Fyxz

¼ 0

M � F ¼ Fzy� Fyz
� �

Fx þ Fxz� Fzxð ÞFy þ Fyx� Fxy
� �

Fz

¼ FxFzy� FxFyzþ FyFxz� FyFzxþ FzFyx� FzFxy

¼ FxFzy� FxFzyþ FxFyz� FxFyzþ FzFyx� FzFyx

¼ 0

The above expressions prove that the moment is perpendicular to the plane

defined by the two vectors: F and r.

It is important to note that the moment of force F about point O does not depend

on vector r defining a particular point on the line of action of force F. Vector r is a

vector defining any point along this line; hence,

M ¼ rA � F ¼ rB � F
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To prove this, let us consider force F, acting at point A, as shown in Fig. 2.11.

According to the definition, (2.3), we have

M ¼ rA � F

Let us choose another point on the force’s line action, point B. The vector rA can

be represented as a sum (Fig. 2.11)

rA ¼ rB þ rBA

By substituting this expression in (2.3), one gets

M¼ rA � F ¼ rB þ rBAð Þ � F ¼ rB � Fþ rBA � F

¼ rB � F

Vectors rBA and F are parallel to one another. Since the cross product of two

parallel vectors is zero by definition, their vector product is equal to zero.

rBA � F ¼ 0

This is an important observation since it allows one to place the position vector

r at any point along the line of force action and not only at the point of force

application. This will be useful for solving problems, as it will be shown later.

Moment of a force is NOT dependent on the location of the position vector along

the force’s line of action (Fig. 2.11).

Fig. 2.11 Moment of the

force F about point O
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2.2.3.2 Varignon’s Theorem
French mathematician Varignon (1654–1722) developed a concept called principle

of moments, often referred as Varignon’s theorem. It states that the moment of

force R about a point is equal to the sum of the moments of the force’s components

(F1, F2) about the same point, Fig. 2.12. Therefore, the momentM of forceR can be

represented as

M ¼ r� R ¼ r� F1 þ F2ð Þ ¼ r� F1 þ r� F2

2.2.3.3 Moment of a Couple
Now, we are ready to apply the above definition to calculate the moment caused by

a couple acting upon a rigid body, Fig. 2.13. The moment of a couple is equal to the

sum of moments imposed by each of the forces constituting the couple. Hence,

Fig. 2.12 Principle

of moments

Fig. 2.13 Moment

of a couple
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M ¼ r1 � F1 þ r2 � F2

Since r2 ¼ r1 þ r, and F1 ¼ �F2 ¼ �F, we obtain

M ¼ r1 � �Fð Þ þ r1 þ rð Þ � F ¼ �r1 þ r1 þ rð Þ � F

¼ r� F
ð2:8Þ

This equation shows that the moment of a couple of forces (F1¼�F2) does not

depend on their position relative to the origin of the coordinate system, but only on

the relative position vector between the two forces. In other words, the vector rmay

run from any point along the line of action of the first force to any point along the

line of action of the second force.

Thus, the moment of a couple is a free-floating vector, i.e., it has NO point of

application; it may be moved to any point.

It should be noted that since the force may be moved along its line of action

(principle of transmissibility), then vector r is a vector that runs from any point

along the line of action of the force F1 to any point along the line of action of the

force F2.

The magnitude of moment M is equal to the product of the magnitude of force

F and the perpendicular distance between the two forces (see (2.7) and Fig. 2.9),

M¼Fd.

The moment of a force about a point is equal to the sum of the moments of the

force’s components about the same point.

The moment of a couple is a free-floating vector. It may be moved in parallel to

any point.

2.2.3.4 Moment of a Force About an Axis
There are some engineering applications where solid bodies are subjected to

rotation about the given axis. In this case, we may need to find the moment of an

external force with respect to a given axis.

In the above sections, we discussed how to calculate the moment of any force

with respect to a given point. Here, we will introduce a new concept of the moment
of a force about an axis.

Let us consider moment M created by force F about a point O, as shown in

Fig. 2.14. As defined above, the resulting moment M is

M ¼ r� F

Let us define direction of arbitrary axis AB by unit vector, λAB. The moment MAB

of force F about axis AB is a projection of momentM on axis AB (Fig. 2.14). As it

is known from the vector algebra (Appendix), in order to find the magnitude of the
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projection of one vector onto direction of another vector, one has to use a scalar

product of the two vectors. Thus, magnitude MAB of the projection of a moment

M on direction AB, defined by vector λAB may be calculated as

MAB ¼ λAB �M ¼ M � cos θ

Using the rules of matrix algebra and the relationship M ¼ r� F, the above

expression may be written as

MAB ¼ λAB � r� Fð Þ ¼
λx λy λz

x y z

Fx Fy Fz

�������
�������

¼ λx yFz � zFy

� �� λy xFz � zFxð Þ þ λz xFy � yFx

� �
ð2:9Þ

where λx, λy, and λz are the components of the units vector (direction cosines of the

vector) λAB, x, y, and z are the coordinates of any point along the line of action of

force F and Fx, Fy, and Fz are the components of vector F.

Example 2.4 Force F ¼ 8i � 3j þ 6z N½ � is acting at the point A [1, �3, �2]

m. Find the moment of this force about the point B [4, 7, 1] m.

Solution The moment is defined as

M ¼ r� F

where r is a space vector defining any point along the line of action of force F. Let

select r from the point B to point A. From the definition of the moment, we can

select point A as any point along the line of action of the force F. Thus,

Fig. 2.14 Moment of a force

about an axis AB
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r ¼ 1� 4ð Þiþ y �3� 7ð Þjþ �2� 1ð Þk ¼ �3i� 10j� 3k

and

M ¼
i j k

x y z

Fx Fy Fz

�������
�������

¼ Fzy� Fyz
� �

iþ Fxz� Fzxð Þjþ Fyx� Fxy
� �

k

¼ ��
6 � �10ð Þ � �3ð Þ � �3ð Þ�iþ ��8 � �3ð Þ � 6 � �3ð Þ�j

þ �3ð Þ � �3ð Þ � 8 � �10ð Þ½ �k
¼ � 69i� 6jþ 89k Nm½ �

Example 2.5 Force F ¼ 5i þ j þ 6z N½ � is acting at the point A [2, 3, 2] m. Find

the projection of the moment of this force about the axis through the coordinate

system origin defined by a unit vector λ ¼ � 4i þ 3j � 2z.

Solution Using the rule a vector product, one can find components of the moment

vector.

M ¼
i j k

x y z
Fx Fy Fz

������
������ ¼ Fzy� Fyz

� �
iþ Fxz� Fzxð Þjþ Fyx� Fxy

� �
k

To find a projection of a moment onto a given line, we can use the (2.9).

MAB ¼ λAB � r� Fð Þ ¼
λx λy λz
x y z
Fx Fy Fz

������
������ ¼

�4 3 �2

2 3 2

5 1 6

������
������ ¼ �44:0 Nm

It is obvious that when the vector, representing momentM, is parallel to the axis

AB, its projection is equal to the magnitude of the moment M. When vector M is

perpendicular to axis AB, its projection is equal to zero.

2.3 System of Units

To express quantities of matter, force, time, or length, we need to define the

corresponding units. Historically different systems of units were developed.

Here, we are going to use: the SI (Systeme International d’Unites), which uses

mass as a measure of matter, and US Customary Units System based on the weight

as a measure of matter. Due to globalization of the economy, it is very important to

use a proper system of units. When data are presented in different units, they have to
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be converted into a single system. For example, the failure of the space probe sent to

Mars in 1999 was due to the mistake of not converting the distance measured in

meters to inches, which were used in calculation of the orbit. However, we will put

emphasis on using SI system that is common in science and technology.

Example 2.6 Convert the weight of a car W¼ 4000 lb to appropriate SI unit.

Solution From Table 2.1, 1 lb¼ 4.448 N, thus W¼ 4000 lb¼ 4000 lb · 4.448 N/lb¼
17,790 N¼ 17.79 kN.

Example 2.7 Convert the moment of 56.8 lb ft to SI units.

Solution From Table 2.1, 1 lb¼ 4.448 N and 1 ft¼ 0.3048 m, thus 56.8 lb ft¼
56.8 lb · 4.448 (N/lb) · 0.3048 (m/ft)¼ 77.0 N m.

Table 2.1 System of units

Physical quantity SI units US customary units Conversion factor

Length m (meter) in (inch) 1 in¼ 0.02540 m

ft (foot) 1 ft¼ 0.3048 m

mi (mile) 1 mi¼ 1609 m

Mass kg (kilogram) slug (slug) 1 slug¼ 14.59 kg

Time s (second) s (second) –

Angle rad (radian) rad (radian) –

Area m2 (square meter) ft2 (square foot) 1 ft2¼ 0.0929 m2

in2 (square inch) 1 in2¼ 0.6452� 10�3 m2

Volume

Solids m3 (cubic meter) ft3 (cubic foot) 1 ft3¼ 0.0283 m3

in3 (cubic inch) 1 in3¼ 0.1639� 10�4 m3

Liquids L (Liter) gal (gallon) 1 gal¼ 3.785 L

(1 L¼ 10�3m3) qt (quart) 1 qt¼ 0.9464 L

Velocity m/s ft/s 1 ft/s¼ 0.3048 m/s

in/s 1 in/s¼ 0.0254 m/s

mph (mile/hour) 1 mph¼ 0.4470 m/s

Acceleration m/s2 ft/s2 1 ft/s2¼ 0.3048 m/s2

in/s2 1 in/s2¼ 0.0254 m/s2

Density kg/m3

Force N (Newton) lb (pound) 1 lb¼ 4.448 N

1 N¼ 1 kg m/s2 oz (ounce) 1 oz¼ 0.2780 N

Moment N m lb ft 1 lb ft¼ 1.356 N m

Pressure, stress Pa (Pascal) lb/ft2 1 lb/ft2¼ 47.88 Pa

1 Pa¼ 1 N/m2 lb/in2 (psi) 1 psi¼ 6895 Pa

Work, Energy J (Joule) ft lb 1 lb ft¼ 1.356 J

1 J¼ 1 N m

Power W (Watt) ft lb/s 1 ft lb/s¼ 1.356 W

1 W¼ 1 J/s hp (horse power) 1 hp¼ 745.7 W
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2.4 Numerical Calculations

Calculations of results are usually done by calculator: simple handheld or sophisti-

cated PC. These devices have a capability to calculate the results with many

significant digits. However, we have to remember that we are dealing with engi-

neering problems that rely on the measured data. This data are measured with a

particular error, usually about 1–5 %, therefore using three significant digits (4—for

values starting with 1) provides the sufficient accuracy (higher than 99 %) for

majority of engineering applications. Thus, three or four digit numbers usually

represent the results.

When doing computation, we use equal sign even though we are rounding the

result to 3–4 significant digits, which is strictly mathematically incorrect;

however, it is commonly used in the engineering practice.

Example 2.8 Convert the weight of 45,900 N to appropriate US Customary System

of units.

Solution From Table 2.1, the conversion factor is 1 lb¼ 4.448 N, or

1 N¼ 1/4.448 lb, thus 45,900 N¼ 45,900/4.448 lb¼ 10,320 lb.

Example 2.9 A car is going at a speed of 90 mph (not on the US highway, but in

Germany, where there is no speed limit). Convert this speed to the metric units

(m/s). Also, show the result in the unit of “km/h.”

Solution From Table 2.1, the conversion factor is 1 mph¼ 0.4470 m/s, thus

90 mph¼ 90 · 0.4470 m/s¼ 40.2 m/s, 40.2 m/s¼ 40.2 · 10�3 · 3600¼ 144.8 km/h.

What We Have Learned?

Basic concepts and definitions
In this chapter, we discussed basic physical quantities: matter, space, time, and

force that are accepted intuitively as the facts of nature.

Fundamental Laws of Nature, as defined by Sir Isaac Newton
Three Newton’s Laws and Axioms describing the effect of forces on a rigid body

define the interrelation between above discussed physical quantities.

Procedures to find a resultant force
The rule of finding a resultant force is based on the parallelogram of forces axiom.

To find resultant force acting on a rigid body, we have to represent each force

through its orthogonal components and calculate the sum of all components.
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R ¼ F1 þ F2 þ F3 þ . . .þ FN

¼ F1x þ F2x þ F3x þ . . .FNxð Þiþ F1y þ F2y þ F3y þ . . .þ FNy

� �
j

þ F1z þ F2z þ F3z þ . . .FNzð Þk
¼ Rxiþ Rxjþ Rxk

Mathematical definition of the moment
The moment is a derived physical quantity describing the effect of a force couple on

a body. It is defined as a vector product of the direction and the force vectors.

M ¼ r � F ¼¼ Fzy� Fyz
� �

iþ Fxz� Fzxð Þjþ Fyx� Fxy
� �

k

How to calculate the moment of a couple
The moment of a couple is a vector product of vector r pointing from any point

along the line of action of the first force toward any point along the line of action of

the second force.

How to calculate the projection of the moment on the axis
The projection of the moment on the axis defined by its unit vector λ can be

calculated by using the following expression:

MAB ¼ λAB � r� Fð Þ ¼
λx λy λz
x y z
Fx Fy Fz

������
������

¼ λx yFz � zFy

� �� λy xFz � zFxð Þ þ λz xFy � yFx

� �
System of units
We discussed two system of units used in the United States, Europe, and the rest of

the world. It is extremely important to use a consistent system of units.

2.5 Problems

2.1 A 750 lb force is acting at 30� to the horizontal at point A. What are the

horizontal and vertical components of this force?

2.2 Force F1 ¼ 6i� 3jþ k lb½ � and force F2 ¼ � 11i� 8j� 5k lb½ � are acting
on the point C. Determine the resultant force.

2.3 Force F¼�3i+ 7j�4z [N] is acting at the point A [�4, �7, 3] m. Find the

moment of this force about the point B [�3, 4, �2] m.

2.4 Force F ¼ � 4i þ 5j þ 11z N½ � is acting at the point A [�2, 5, 4] m. Find

the projection of the moment of this force about the line through the coordi-

nate system origin defined by a unit vector λ ¼ 4i � 3j þ 2z.
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2.5 Show that when momentM is parallel to axis AB, its projection is equal to the

magnitude of moment M.

2.6 Show that when momentM is perpendicular to axis AB, its projection on this

axis is equal to zero.

2.7 How many liters of gasoline are in one gallon? What is a price of the liter of

gasoline today?

2.8 Convert the mass of 24 slugs to SI units.

2.9 A wooden block has a size of 30� 50� 70 mm3. If the density of the wood is

900 kg/m3, determine the weight of this block in pounds and Newtons.

2.10 The weight of a person is 180 lb, express his weight in Newtons.

2.11 The pressure measured in a tire was 35 psi. Convert this value to SI units.

2.12 The new Ford has an engine rated at 120 hp, while the new Audi has an engine

rated at 95 kW. Which car has more powerful engine?

2.13 Express the power of 250 kW in hp units.

2.14 A scuba tank is under pressure of 3000 psi, express it in SI units.
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Beauty of style and harmony and grace and good rhythm
depend on Simplicity

Plato

A theory has only the alternatives of being wrong or right.
A model has a third possibility: it may be right but irrelevant

Manfred Eigen

In this chapter you will learn:

• How to single out the structure element of interest from its surrounding

• How to identify the key parameters of a system

• How to build a corresponding physical model

• How to draw a free body diagram of a system

In Chap. 2 we discussed laws of nature as they were observed and postulated by Sir

Isaac Newton. Laws of nature were defined on a macroscale using idealization of

physical reality. Forces were represented as vectors acting at a point. In this chapter
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we will develop ways to represent reality by correspondent physical models, so that

the “laws of nature” can be conveniently applied.

3.1 Mechanical Systems

In everyday life we encounter mechanical systems, which usually consist of a

number of structural elements. They have to be properly designed so that they

can sustain loads applied upon them during their lifetime. In order to design any

particular structural element we have to know magnitudes and locations of the

forces acting upon it. These forces comprise loads and supports. To calculate these

forces structural element has to be singled out and analyzed. This analysis is the

most important part in solving problems in mechanics.

A common step in the required idealization process is an assumption that the

observed structural element acts as a rigid body. Structural element may be modeled

as a rigid body if the change of its geometry due to forces acting upon it is negligible.

Geometry of this element should be simplified so that it will resemble an original

structural element and, at the same time, allow the application of equilibrium

equations to be discussed in Chaps. 4 and 5. All external loads will be represented

by forces and moments, whereas supports will be represented by the corresponding

symbols. A rigid body with a simplified geometry, applied loads, and symbolically

represented supports is called a physical model of an observed structural element. As

a matter of fact, drawing a physical model is essentially a step to simplify the

structure so that it will belong to a certain group of problems, for which procedure

to obtain the solution is known. Without doing this we cannot solve the problem.

To be a good, experienced engineer means having a good judgment on what can

be considered as being negligible.

Structural element may be modeled as a rigid body if the changes of its geometry

due to forces acting upon it are negligible.

Externally applied loads are forces and moments.

There is only one step between the physical model and the corresponding free

body diagram (FBD). This step is substitution of the symbols representing supports

with the corresponding reactive forces and moments. Sketch of the idealized rigid

body with forces and moments, representing all loads and supports, is called a free
body diagram.

Supports are commonly represented by symbols.
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All loads and supports acting upon a rigid body are called the external forces

andmoments. The principle of transmissibility, discussed in Sect. 2.1.3, allowsmoving

any force along its line of action. Any moment, applied upon a rigid body, can be

positioned at any location since moments are free-floating vectors (see Sect. 2.2.3.3).

Thus, the effect of external forces and moments does not depend upon the rigid

body’s geometry, but only on their positions and direction of action. You usually

see the whole structure, but the goal is to design each element separately. A selected

element should be separated from the rest of the structure, while the rest of the

structure will represent the loads and supports acting upon it.

Any moment, applied upon a rigid body, can be positioned at any location since

moments are free-floating vectors.

Let us discuss this process using a swing (Fig. 3.1a) as an example. First step in

the idealization process is to define the structural element of interest, i.e., to decide

which structural element you want to design. The next step is to identify which parts

of the remaining system act as supports and which as loads. Based on this informa-

tion, the FBD of the structural element of interest will be created. Since we are

dealing with problems in statics, the corresponding equations of equilibrium will be

derived and solved, as it will be discussed in the following chapters.

Sketch of an idealized rigid body with forces and moments, representing all

loads and supports, is called a free body diagram.

The process of simplification consists of two steps. In the first step we single out

the structural element under consideration and define the supports and the loads.

In this process, we simplify geometry of the structural element, replace supports by

appropriate symbols, and represent the loads as forces and moments. The result of

this process we call the “physical model” of the structural element. In the second

step we represent the action of the supports by corresponding forces and moments

called “reactions.”

Fig. 3.1 Child on a swing: design of the upper bar. (a) Physical reality, (b) physical model,

(c) free body diagram
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A rigid body with simplified geometry, applied loads, and symbolically

represented supports is called a physical model of an observed structural element.

Design of the upper bar. Assume that our task is to design the upper bar, thus it will

become a structural element of interest. The two legs in this case act as a support

and the child as a load. The corresponding physical model is shown in Fig. 3.1b.

Since the front pair of legs does not extend to the top of the swing, we will be able to

discuss this as a plane problem. The weight of the child is applied to the upper bar

via two vertical ropes; their effect is represented as two point forces (Fig. 3.1.b).

Since one can solve for only three unknowns in a plane problem (as will be

discussed in Chap. 4) we will simplify the supports and represent them as a pivot

(on the left side) and as a roller (on the right side). We need to be aware that this

simplification will introduce an error into the solution.

In the next step we will represent the supports by forces and moments (Fig. 3.1c).

In our case supports do not introduce any moments; therefore, they must be

represented by forces only, as shown in Fig. 3.1c. The procedure of solving for

unknown forces will be introduced later in Chap. 4.

It should be emphasized that this process of designing a FBD is one of the most

important steps in solving problems in statics.

Design of the seat. If our goal is to design the seat of the swing, it will become a

rigid body of interest. The child will be the load and the rest of the system will act as

a support (Fig. 3.2a). Therefore, the physical model will consist of the seat

supported by the cables (Fig. 3.2b). Next step is to represent the supports by

reaction forces and create a free body diagram (Fig. 3.2c).

The example discussed above was a simple two-dimensional case where the

loads were represented as forces acting at a point. However, depending on the

objects’ geometry, it can be modeled as a two-dimensional or three-dimensional

Fig. 3.2 The child on the swing. (a) Physical reality, (b) physical model, (c) free body diagram
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problem. In addition, we need to introduce proper representation of forces and

supports acting on the structural element of interest. In the above example, the child

was represented as a force acting at a point; however, in some cases it would be

more appropriate to model it as a distributed load.

It should be emphasized that the process of designing a FBD is one of the most
important steps in solving problems in statics.

3.2 Loads

Part of a system acting as a load should be represented (modeled) by one or more

forces. Generally, external forces can be divided into concentrated and distributed

forces, i.e., forces acting at a point, or along a line or an area. Let us consider several

examples of loads. Figure 3.3a shows a system consisting of two persons standing

on a bench. If we consider the bench as a structural element of interest, the two

persons represent the load. The latter may be modeled as two concentrated forces

acting at A and B, as shown in Fig. 3.3b.

In another case (Fig. 3.4a), a person is lying on a bench. Here we cannot use a

concentrated force to represent the effect of a person on the bench, so we will use a

distributed load, as shown in Fig. 3.4b. This distributed load may be uniform, as

Fig. 3.3 Two boys standing on a bench

Fig. 3.4 A boy lying on a bench
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shown in Fig. 3.4b, or it may resemble actual distribution of the load if this

information is available. Most often we assume that the load is distributed uni-

formly. As long as we are dealing with equilibrium of rigid bodies, distributed load

can be further simplified and replaced by a concentrated force acting at the load’s

center of gravity. The latter will be discussed in detail in Chap. 6. This simplifica-

tion is not permissible when we are concerned with the internal forces, which will

be discussed in Chap. 9.

From examples shown in Figs. 3.3 and 3.4 we may conclude that decision on

how to represent the load (as concentrated or distributed) depends on the size of the

contact area between the two bodies and not on the size of the body (observed

structure) itself.

This is further demonstrated in the following example. Consider a system

consisting of a person on a bike (Fig. 3.5a). Bike, as the structural element of

interest, is loaded by the weight of a person. Five concentrated forces represent

this load (Fig. 3.5b).

Decision how to represent the load, i.e., as concentrated or distributed, depends

on the size of the contact area between the two bodies.

As mentioned above the decision whether to consider the load as concentrated or

as distributed is influenced by the size of contact area.

3.3 Supports and Free Body Diagrams

The function of a support is to prevent movements of the observed rigid body. In the

orthogonal coordinate system, all possible movements of a rigid body can be

represented by three orthogonal components of translation and three orthogonal

Fig. 3.5 (a) A person riding a bike. (b) Forces acting on a bike
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components of rotation. Thus, all supports can be characterized according to their

ability to prevent particular components of the rigid body’s motion. For example, to

prevent a component of rotation we have to apply the corresponding reactive

moment; similarly, to prevent a component of translation we have to apply the

related reactive force. Thus, each of the two ropes that support the seat (Fig. 3.2a)

prevents only the movement in the vertical direction. This means that the effect of

ropes (the support of the seat) can be represented by the symbol for one reactive

force in the vertical direction (Fig. 3.2c).

Let us consider now the upper bar of the swing as the structural element of

interest (Fig. 3.1a). The two supporting legs prevent horizontal and vertical move-

ment of the bar. Their effect is represented by the symbol (Fig. 3.1b) that allows

rotation about its center, but prohibits any other motion in any direction.

These loads that represent the effect of supports on the rest of the rigid body are

called reactions. The supports can be identified by the number of reactions they

impose on a rigid body. Equivalently we may say that supports of a rigid body can

be identified by the number of the orthogonal movements and rotations they are

preventing.

Reactions are moments and forces that are preventing any rigid body motion.

It has to be mentioned that supports, which provide the same motion restriction,

i.e., they impose the same reactions on a rigid body, may represent different

engineering implementations. For example, Fig. 3.6a shows a caster wheel under

a chair. This wheel provides support for the chair and restricts the chair’s motion in

vertical direction. The corresponding symbol is represented in Fig. 3.6c. The same

symbol will also represent completely different engineering structure a bridge

support (Fig. 3.6b).

Depending on a structure’s geometry and spatial distribution of acting forces and

supports, it can be modeled as two- or three-dimensional system, as discussed

below.

Fig. 3.6 (a) Caster wheel under a chair. (b) A bridge support. (c) A symbol representing caster

wheel and a bridge support
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3.3.1 Two-Dimensional Systems

All real structures are three-dimensional; however, in many situations some of them

may be treated as the two-dimensional problems, especially if they have a plane of

symmetry. In this section we will discuss conditions under which some problems

may be treated as two-dimensional ones. It is important to utilize engineering

judgment in order to simplify the structure.

All real structures are three-dimensional; however, in many situations some of

them may be treated as two-dimensional problems, especially if they have a

plane of symmetry.

Consider a jutting roof over a door (Fig. 3.7a). The roof consists of three beams

(on the picture one of them cannot be seen), which are built into the wall (com-

monly called cantilever beams). The beams are also supported by hangers. Assume

that the goal is to design the cantilever beam that is loaded by the roof and the snow.

We may treat the beam as a two-dimensional case assuming that the load is

uniformly distributed over the whole area of the roof, and that each of the cantilever

beams carries one-third of the load, as shown in Fig. 3.7b. Since the roof is built into

the wall, its movement in horizontal and vertical directions is restricted, as well as

any rotation about the attachment to the wall. The physical model of the roof is

shown in Fig. 3.7c. The distributed load q represents 1/3 of the total load acting on

the roof normalized by the length of the beam. Force F represents the effect of the

hanger on the beam. The associated FBD is shown in Fig. 3.7d.

Similar approach can be applied to a person sitting on a chair (Fig. 3.8a). Here

the chair is the structural element of interest and the weight of a person is the

external load. Since this system has a plane of symmetry, we may consider it as a

two-dimensional problem, assuming that two side legs are carrying ½ of the

Fig. 3.7 (a) A jutting roof over a door. (b) Cantilever beam loaded with 1/3 of the roof weight.

(c) Physical model of the cantilever beam. (d) Free body diagram of the cantilever beam
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person’s weight. If we will assume that friction between the floor and the chair legs

may be neglected, the physical model can be drawn as shown in Fig. 3.8b.

Here q represents half of the body weight divided by the width of the seat. The

corresponding FBD is represented in Fig. 3.8c.

Another example of a three-dimensional system is a staircase (Fig. 3.9a), loaded

by its own weight (distributed load q) and by the weight of a person (concentrated

load P). The top and the bottom of this staircase are welded to supporting beams to

prevent its tilting. However, if the task is to design a beam supporting the segment

of stairs where the man is standing, we may simplify the problem and represent it as

a two-dimensional case. To make it solvable in the framework of statics of rigid

bodies, we need to make further simplifications, and represent the physical model as

shown in Fig. 3.9b. We should be aware that such simplifications bring in errors and

make analytical predictions less accurate.

However, defining the simplest physical model that sufficiently well represents

the structure of our interest is one of the key engineering challenges, which follows

the famous Einstein’s quote “make things as simple as possible, but not simpler.”

The free body diagram derived from the simplified physical model has three

unknown forces as shown in Fig. 3.9c.

Defining the simplest physical model that sufficiently well represents the struc-

ture of our interest is one of the key engineering challenges, which follows the

famous Einstein’s quote: “Make things as simple as possible, but not simpler.”

Different symbols are used to represent supports when dealing with various

structures. However, in 2D problems there are essentially only four possible

combinations of reactive forces and moments, which are summarized in the

Table 3.1. We are going to discuss some of them here.

Fig. 3.8 Person sitting on a chair. (a) Physical reality, (b) physical model, (c) free body diagram
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Let us start with a bridge support shown in Fig. 3.10a. The first step is to define a

coordinate system, e.g., as shown in Fig. 3.10a. This support prevents any move-

ment in a vertical direction, while it allows a free movement in a horizontal

direction. Usually such supports are represented by a symbol shown in

Fig. 3.10b, which corresponds to the case 1 in the Table 3.1. The effect of this

support on a body (i.e., structure of our interest) is represented by the unknown

reaction force Fy (Fig. 3.10c).

Supports are distinguished by the number of degrees of freedom that they

restrict. Therefore, completely different structure may be represented by the same

symbol, as it is shown in Fig. 3.11a. Here we model the chair wheel as a

two-dimensional structure. It is possible to do so if there are no external forces

Fig. 3.9 A staircase loaded by its own weight and by the weight of a person (concentrated load P).

(a) Physical reality, (b) physical model, (c) free body diagram

Fig. 3.10 (a) Bridge support. (b) Symbol. (c) Reaction
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acting in the direction of wheel’s axis. Such an external force would generate the

reaction and thus prevent us to treat this problem as a two-dimensional. Thus, if

such a force is absent, the only reaction will be vertical force Fy, as shown in

Fig. 3.11c. Its symbol and reactions are the same as in the previous example

(Fig. 3.10a), where the real structure is completely different.

Let us further consider a pulley suspended from a hook (Fig. 3.12a). The hook

allows a free rotation of the pulley. The only reaction which pulley generates is the

force acting along the pulley. This type of support may be represented by a symbol

as shown in Fig. 3.12b. The reaction is the force acting in the direction of the pulley

(Fig. 3.12c). This support is represented by the case 2 in Table 3.1.

In the next example, a pin that is used to support a cardan joint (Fig. 3.13a) is

usually considered to be a frictionless. It is represented by a symbol shown in

Table 3.1 Reactions and associated symbols

Case Reactions Symbol

1

2

3

4

5
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Fig. 3.13b. Such a pin prevents motion in any direction; therefore, we need to show

the two components of the unknown reaction force (Fig. 3.13c). This support is

represented by the case 3 in Table 3.1.

A built into the wall beam, similar to the one shown in Fig. 3.14a, is a three-

dimensional structure. However, in many cases, we may simplify it and treat it as a

two-dimensional case. Such a support is called a fixed one and is represented by the

symbol shown in Fig. 3.14b. This support prevents motion and rotation in any

direction; therefore, we have to show two force components and the moment as

reactions (Fig. 3.14c). This support is represented by the case 4 in Table 3.1.

It should be mentioned that not all supports have a generally accepted symbols,

e.g., the collar on a frictionless rod (case 5) does not have a commonly accepted

symbol. A possible symbol is shown in Table 3.1 as case 5. Collar on frictionless

rod or any other sliding element along the straight line will generate reaction force

that is always perpendicular to the line of sliding.

3.3.2 Three-Dimensional Systems

Many engineering systems cannot be modeled as the two-dimensional cases.

The necessity for a three-dimensional consideration can be either due to geometry

of a structural element or due to loads imposed upon it. One of such examples is a

structure supporting a basketball board with a ring attached to it (Fig. 3.15a). The

structure is loaded by the weight of the board and the ring (and sometimes a

basketball player who is hanging on it), which can be represented as a single

concentrated force. The structural element of interest is a three-dimensional object

Fig. 3.11 (a) Chair wheel. (b) Symbol. (c) Reaction
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supported by three legs. The reaction forces acting at the leg-to-ground contact and

the load do not belong to one plane. Thus, this system cannot be treated as a 2D

case. In the process of generating a physical model we have assumed that the two

Fig. 3.12 (a) Hook. (b) Symbol. (c) Reaction

Fig. 3.13 (a) Frictionless pin. (b) Symbol. (c) Reaction

Fig. 3.14 (a) Fixed support. (b) Symbol. (c) Reaction
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front legs are supported by supports that prevent motion in vertical direction only

(these are 3D analog to the 2D case 1 support), whereas the rear leg has the support

that prevents all three translations (this is a 3D analog to 2D case 3 support). This

physical model is shown in Fig. 3.15b and the corresponding FBD in Fig. 3.15c.

Hence, the assumptions we have made lead to five unknown reactions, which means

that one degree of freedom is not restricted. In this case this would be a rotation

around the axis that is perpendicular to the ground.

In the process of simplification from 3D to 2D we always introduce an error,

which in some cases may be too large to be neglected.

This shortcoming may be solved by replacing one of the front supports with the

one that would additionally restrict one of the horizontal translations. However, in

reality it is not easy to construct such a support. This example nicely demonstrates

that assumed physical models could never represent the reality in full; our analyti-

cal predictions are therefore as good as the assumptions.

It should be mentioned that one need to make a further simplification in order to

solve this problem. For example, we may further assume that the supporting

structure consists of a beam and a truss (to be discussed in Chaps. 8 and 9).

Physical models can never represent the reality in full; our analytical predictions

are therefore only as good as the assumptions.

The example below shows direction signs (Fig. 3.16a). In this case the

supporting structure holding the signs in place could be modeled as a 2D case.

However, the external load on the structure, which comprises W2 (weight of the

horizontal bar),W3 (weight of the vertical bar), the signs total weightW1 all acting

in a vertical direction, and the effect of the wind Fw, blowing in a horizontal

direction. Thus, this system cannot be represented as a 2D case. The corresponding

3D physical model and the FBD are shown in Fig. 3.16b, c.

Fig. 3.15 (a) Reality. (b) Physical model. (c) Free body diagram
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From the above examples, we have learned that some structures cannot be

modeled as two-dimensional systems due to their geometry and/or loads acting

upon them. For example, the sign structure as such (Fig. 3.16a) could be modeled as

a two-dimensional structure if we would neglect the effect of wind.

In Fig. 3.15b we have used symbols for supports that represent 3D analogs for

2D case-1 and case-3 supports. However, in general there are no widely accepted

symbols to represent a variety of different 3D supports; therefore, we will show

only pictures of some real structures and the associated reactions.

Let us consider a beam that is built into the wall (Fig. 3.17a). We have modeled

this beam as a 2D problem by assuming that there are no external loads in

z direction (see Fig. 3.14a). However, such a beam may sustain load in any

direction, thus we will treat it as a three-dimensional structure this time. The built

in support prevents the beam from any rotation and translation, thus we need to deal

with three unknown force components and three unknown moment components,

total of six reaction components (Fig. 3.17b).

Fig. 3.16 (a) Road signs. (b) Physical model. (c) Free body diagram

Fig. 3.17 (a) Fixed support. (b) Reactions
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A universal joint, also known as universal coupling, U-joint, Cardan joint,

Hardy-Spicer joint, or Hooke’s joint, is commonly used in a car transmission

(Fig. 3.18a). It resists rotation along its axis, but it is free to bend in directions

perpendicular to the axis. The reactions are three force components and one

moment component (Fig. 3.18b).

A door hinge (Fig. 3.19a), one of the most widely used supports, prevents three

translations and two rotations. The reactions are shown in Fig. 3.19b.

A ball joint is used in many engineering, as well as in some bioengineering

structures. The example shown in Fig. 3.20a represents a roentgenogram of an

artificial hip joint. Its role is to allow for a free rotation in any direction, but to

prevent any translation. The reaction components, which are in this case three

forces, are shown in Fig. 3.20b.

Fig. 3.18 (a) Universal joint. (b) Reactions

Fig. 3.19 (a) Hinge. (b) Reactions
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We have shown several examples of most common types of 3D supports.

Each of the shown force-moment combinations (reactions) may have different

engineering implementations. Each particular case should be studied and

analyzed.

Guidelines and Recipes for Creating a Free Body Diagram

• Define an element of interest, i.e., choose the structural element you want

to design.

• Identify which parts of the remaining system act as supports and which as

loads.

• Represent the structural element of interest by a rigid body with a

simplified geometry.

• Substitute parts of structure that act as loads, and external loads, such as

wind, by the appropriate forces and moments.

• Create the physical model consisting of rigid body, supports, and loads.

• Substitute supports by associated reaction forces and moments.

• Draw the corresponding free body diagram.

Fig. 3.20 (a) Ball joint.
(b) Reactions
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Example 3.1 It is required to design a calendar stand (Fig. 3.21a) that will resist the

weight of a person accidentally seating on it. The task is to draw a proper physical

model and associated FBD.

Solution One of the important steps in the design process is to define the external

loads and their distributions. The first step is to select the coordinate system

(Fig. 3.21b). Let us assume that the load is uniformly distributed along the y-axis
as shown with red arrows in Fig. 3.21b. Here it is assumed that the weight of a

person is distributed along the edge of the calendar stand, which is the most severe

case. It may appear that we oversimplified the loading situation; however, this leads

to a simple 2D case, which is easily solved. Figure 3.21c shows a 2D sketch of the

calendar stand. The distributed load applied by a person now becomes a

concentrated force acting at the edge, which is the most severe case leading to a

safer design of the stand. Now, we can show a physical model of the stand

(Fig. 3.21d), assuming that there is no friction between the stand and the surface.

The associated FBD is shown in Fig. 3.21e.

Any assumption we make in the process of simplification should lead to a safer
design (overdesign), i.e., resulting structure will be stronger than it is required.

Example 3.2 It is required to design a canopy support (Fig. 3.22a). The task is to

draw a proper physical model and associated FBD.

Fig. 3.21 (a) Picture of the stand. (b) Selection of coordinate system. (c) Reduction to a 2D case.

(d) Physical model. (e) Free body diagram
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Solution The roof and possible snow (not shown on the photo) represent external

load on the structure of interest. We will assume that four horizontal bars supported

by four vertical poles carry this load. Due to symmetry of the system we will further

assume that one-half of the load is carried by two vertical poles and the connecting

horizontal bar. This assumption will lead to overdesigned horizontal bar. However,

by doing this we can analyze the structure as a 2D problem. Each vertical pole is

built into the ground. Such a support prevents all possible movements. However to

be able to solve this problem within the framework of this course, we have to make

further simplifications and use supports as shown in Fig. 3.22b. This assumption

will lead to overdesign of the vertical poles. Corresponding FBD is presented in

Fig. 3.22c.

Example 3.3 Draw a physical model and FBD of a coat hanger (Fig. 3.23a).

Solution A coat hanger is loaded by the weight of pants and a jacket. We assume

that the weight of the pants and the jacket are uniformly distributed, and that the

hanger is supported by a hinge on its top. The physical model is shown in Fig. 3.23b

and the corresponding free body diagram in Fig. 3.23c.

Fig. 3.22 (a) Canopy. (b) Physical model. (c) Free body diagram

Fig. 3.23 (a) Hanger. (b) Physical model. (c) Free body diagram
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What We Have Learned?

How to extract the system of interest from its surroundings
A structural element of interest should be represented by a rigid body of appropri-

ately simplified geometry. It means that it should resemble the original geometry in

its key features and at the same time it should provide the possibility to model its

geometry easily.

How to represent the key parameters of a system
The key parameters of systems are loads and supports. Identify which parts of the

system act as supports and which as loads. The observed structural element could be

additionally loaded by the wind, snow, etc. Loads are represented either as

distributed or concentrated forces, and moments. Supports are represented by

reactions (forces and moments) preventing motion of the structural element of

interest. Forces prevent the structural element’s translations and moments its

rotations.

How to create a corresponding physical model
A physical model consists of a rigid body with simplified geometry, loads, and

properly selected supports.

How to create a free body diagram
A FBD is created from a physical model by replacing its supports by the

corresponding reactions.

3.4 Problems

3.1 You have to analyze a structure supporting two traffic lights and a traffic sign.

Draw a physical model and FBD of the structural system shown in Fig. P3.1.

Assume that the weights of the supporting structure, of the traffic lights, and of

the sign are known. Further assume that the size of the traffic light is small

enough that the wind has a negligible effect.
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Fig. P3.1 Traffic light

How would you address the problem if the effect of wind may not be

neglected?

3.2 The task is to analyze a structure supporting five highway signs (Fig. P3.2).

Draw a physical model and FBD of the structure, assuming that the wind is

blowing in the direction of 30� to the highway signs.

Fig. P3.2 Highway signs
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3.3 A canopy in Fig. P3.3 consists of number of semi-circular ribs designed to

support the weight of the roof and occasional snow. Draw the physical model

and FBD of a rib.

Fig. P3.3 Canopy

3.4 A cloth rack in a dormitory is loaded by a number of cloth items as seen in

Fig. P3.4. Draw the physical model and FBD of the rack.

Fig. P3.4 Closet
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3.5 A roof in Fig. P3.5 is supported by a rectangular structure consisting of two

supporting pillars and a horizontal beam. Draw a physical model and FBD of

the beam.

Fig. P3.5 House entry

3.6 Draw a physical model and FBD required for the analysis of the supporting

pillars at the house entry shown in Fig. P3.5.

3.7 Draw a physical model and FBD required for the analysis of the beams

supporting the wine barrels (Fig. P3.6).

Fig. P3.6 Wine barrels

3.8 Draw a physical model and FBD required for the analysis of the lamp pole

shown in Fig. P3.7.
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Fig. P3.7 Lamp pole

3.9 Draw a physical model and FBD of the bus-stop cover shown in Fig. P3.8.

Fig. P3.8 Bus stop cover

3.10 Draw a physical model and FBD of a C clamp (Fig. P3.9).
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Fig. P3.9 C clamp

3.11 Draw a physical model and FBD of a door handle (Fig. P3.10).

Fig. P3.10 Door handle

3.12 Draw a physical model and FBD for one of the supporting arms of the car jack,

shown in Fig. P3.11.

Fig. P3.11 Car jack
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3.13 For the car jack, shown in Fig. P3.11, draw a physical model and FBD of the

screw.

3.14 Draw a physical model and FBD of the left vertical column supporting

the bridge (Fig. P3.12).

Fig. P3.12 Bridge

3.15 A terrace cover (Fig. P3.13) is supported by a number of semi-curricular ribs.

Draw a physical model and FBD of a rib.
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Fig. P3.13 Terrace cover

3.16 Draw a physical model and FBD of the frame of the swing (Fig. P3.14).

Fig. P3.14 Swing set
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3.17 Draw a physical model and FBD of the horizontal beam of the bridge shown in

Fig. P3.12.

3.18 A person is pulling a rope attached to the middle of a bar fixed between two

pillars (Fig. P3.15). Draw a physical model and FBD of the bar. Neglect the

weight of the bar.

Fig. P3.15 Fixed bar

3.19 Solve problem 3.18 taking into account the weight of the bar.

3.20 Draw a physical model and FBD of the front loader’s arm (Fig. P3.16).

Fig. P3.16 Front loader
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3.21 A bike brake consists of two pieces AOB and COD (Fig. P3.17). Draw a

physical model and associated FBD for structural element AOB.

Fig. P3.17 The brake

3.22 Draw a physical model and associated FBD of the earth mover arm shown in

Fig. P3.18.

Fig. P3.18 Earth mover

3.23 Draw a physical model and associated FBD of the cable supporting a street

lamp (Fig. P3.19). Assume that the weight of the cable is negligible compared

to the lamp.
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Fig. P3.19 Street lamp

3.24 Draw physical model and associated FBD of a basketball stand (Fig. P3.20).

Fig. P3.20 Basketball stand
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Experience is the name that everyone gives to their mistakes.

Oscar Wilde

In this chapter you will learn:

• How to find a resultant force

• How to analyze an equilibrium of forces acting at a point in plane and in space

This chapter deals with forces acting at a point. This, however, does not imply that the

rigid body has to be small. Sometimes lines of action of all forces applied to a body
intersect at the same point. Thus, the effect of these forces may be studied as if they

would act at a point. Such forces are called concurrent. Any two nonparallel in-plane
forces acting on a rigid body will always intersect in a point. When two forces are

parallel and are opposite in direction, they are called a couple of forces (Sect. 2.2.2)
and they form a moment that tends to rotate the body. The effect of moments on rigid

bodies will be discussed in Chap. 5. When a moment is small, in engineering practice

we often neglect its effect and consider forces as if they are acting at a point.

# Springer Science+Business Media New York 2016

I. Emri, A. Voloshin, Statics, DOI 10.1007/978-1-4939-2101-0_4
59

http://dx.doi.org/10.1007/978-1-4939-2101-0_5
http://dx.doi.org/10.1007/978-1-4939-2101-0_2


In this chapter we will discuss the procedures to find the resultant of any number

of concurrent forces. Resultant is a force that has the same effect on the body as the

original set of forces acting at that point. First we will consider in-plane forces, and

then generalize the approach to three-dimensional cases.

4.1 Resultant and Equilibrium of In-Plane Forces

There are often situations where several forces act on a small area. In these cases we

may represent a rigid body as a point, and consider all acting forces as being

concurrent. Such an example is an electric pole with a number of wires attached

to it (Fig. 4.1a). We want to find the resulting force acting on the pole due to the

forces imposed by the attached wires.

We further assume that the forces imposed by wires are concurrent and belong to

the same plane (Fig. 4.1b). In order to use vector algebra, we need to introduce a

coordinate system, as shown in Fig. 4.2.

Fig. 4.1 Electrical pole with wires. (a) Photograph, (b) superimposed force vectors acting on the pole

Fig. 4.2 Forces acting

in the wires
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The process of making assumptions is an essential aspect of any engineering

solution, since the results will be only as good as the assumptions made.

4.1.1 Resultant of Forces

Using the principle (“axiom of parallelogram of forces,” explained in Sect. 2.1.3)

that any two forces can be replaced by their resultant force, we can find the resultant

for any number of concurrent forces (i.e., acting at the same point).

Let us consider an example of three forces acting at point O (Fig. 4.3a). Starting

with any two forces, say F1 and F2, we can replace them by resultant R12, as shown

in Fig. 4.3a. Obtained resultant R12 and another force, say F3, can be further

replaced byR123. By using this procedure we can obtain the resultant of any number

of concurrent forces.

The resultant may be found by repeated application of the parallelogram of force

axiom.

On basis of the above procedure one can develop a polygon rule for the addition

of forces. All forces have to be arranged in a “tip to tail” manner. We start with a

force; next we move the second force parallel to itself such that the “tail” of this

force meets the “tip” of the previous force. We follow this procedure for all forces.

The resultant force connects the “tail” of the first force with “tip” of the last force, as

shown in Fig. 4.3b. The sketch showing all forces for which we are trying to find a

resultant is called “force diagram.”

Resultant is a force that has the same effect on a body as the original set of forces

acting at that point.

The same result will be obtained by using vector algebra (see Appendix). In an

orthogonal Cartesian coordinate system, each force may be represented as the sum

of its two orthogonal components. For example, any force F (Fig. 4.4) can be

Fig. 4.3 Resultant of three

forces acting on a point
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represented as the sum of two forces Fx and Fy, acting in the directions of x- and
y-axis, respectively,

F ¼ Fx þ Fy ¼ Fxiþ Fyj ð4:1aÞ
where

Fx ¼ F � cos α
Fy ¼ F � cos β

Similarly, we can write the following equations for each force in Fig. 4.3b,

F1 ¼ F1x þ F1y ¼ F1xiþ F1yj ð4:1bÞ

F2 ¼ F2x þ F2y ¼ F2xiþ F2yj ð4:1cÞ

F3 ¼ F3x þ F3y ¼ F3xiþ F3yj ð4:1dÞ
The resulting force R is obtained as

R ¼
Xn¼3

n¼1

Fn ¼
Xn¼3

n¼1

Fnx

 !
iþ

Xn¼3

n¼1

Fny

 !
j ð4:2Þ

For arbitrary number of forces, say N, the above equation becomes,

R ¼
Xn¼N

n¼1

Fn ¼
Xn¼N

n¼1

Fnx

 !
iþ

Xn¼N

n¼1

Fny

 !
j ¼ Rxiþ Ryj ð4:3Þ

The resultant force may be also represented as the product of the force magni-

tude and the unit vector that defines the direction of the force action.

R ¼ R � e ¼ R � exiþ eyj
� �

Fig. 4.4 Orthogonal

components of a force
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where the magnitude R can be calculated as

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
x þ R2

y

q
and its direction as

ex ¼ Rx

R
and ey ¼ Ry

R

Here ex and ey are cosines between the direction of the force and coordinate axes
(Appendix). They are the components of a unit vector in 2D.

The force diagram represents the forces for which we want to find a resultant

force.

4.1.2 Equilibrium of Forces

When a resultant force is equal to zero all the concurrent forces are in equilibrium,

thus the rigid body is in equilibrium. In such cases, according to the Newton’s First

Law (Chap. 2), the status of the body’s motion will remain unchanged; i.e., it either

moves with a constant velocity or has a zero velocity, depending on its status at the

time of observation.

Parameters defining the status of a body at the moment we start the observation

are commonly called initial conditions.

This condition is mathematically expressed as R¼ 0, or in scalar form

Rx ¼
Xn¼N

n¼1

Fnx ¼ 0 ð4:4Þ

and

Ry ¼
Xn¼N

n¼1

Fny ¼ 0 ð4:5Þ

The equations (4.4) and (4.5) are called equilibrium equations. Since there are

only two equations of equilibrium in 2D, we can solve them for only two unknown

values. Those may be any variables describing the state of rigid body equilibrium.

Each force can be described in two ways: either as magnitude F and direction α
(defining the unit vector e) or as its two orthogonal components Fx and Fy.

According to the rules of vector algebra (Appendix) the relations between these

four parameters representing a force are (Fig. 4.4):
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Fx ¼ F cos α ð4:6aÞ
Fy ¼ F cos β ¼ F sin α ð4:6bÞ

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
x þ F2

y

q
ð4:6cÞ

tan α ¼ Fy

Fx
ð4:6dÞ

It should be noted that (4.6c) contains a square root, i.e., we cannot solve it for,

let say, Fx, even if F and Fy are known, since the result will have an uncertainty in

sign, which defines the direction of the force action.

For finding a resultant, one should use formulae (4.4) and (4.5).

When an equation contains a square root the result has an uncertainty in the sign.

There are four different possibilities to represent a force acting in a plane as

shown in Table 4.1.

When dealing with a problem that involves a large number of forces acting at a

point, it may be convenient to organize the forces in a table form and utilize the

convenience of available spreadsheets.

For the demonstration we will consider again the problem of an electric pole. Its

physical model is illustrated in Fig. 4.2. Let us use the information provided in

Table 4.2. Force F1 has two known orthogonal components, force F2 is given by the

magnitude and the direction, force F3 is represented by its horizontal component

and the direction of the force, while F4 is defined via its vertical component and the

direction of the force action.

Thus, for each force one has to provide any two pieces of information, as shown in

Table 4.2. In the next step we have to calculate the missing values for force

components Fx and Fy, since they are needed for the calculation of the resultant.

This can be done by using (4.6). The result of this process is summarized in Table 4.3.

Table 4.1 Four

possibilities to define

a force in 2D

1 2 3 4

F Fx Fx Fy

α Fy α α

Table 4.2 What is known

about the forces acting

on the pole

Force ID Fx (N) Fy (N) Alpha (deg) Magnitude (N)

1 �350 6

2 150 300

3 100 140

4 250 95

5 450 500

6 6 400
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After calculating the components of the resultant, it is also possible to calculate the

magnitude and its direction, using (4.6). The results are Rx¼ 391 N and Ry¼ 749 N.

When calculating unknown component using (4.6c) we have an uncertainty in the

sign of the component. However, from the observation of the physical problem it is

clear that all wires are in tension, thus we selected the positive sign.

Example 4.1 A lamp is suspended by two cables above the street, as shown in

Fig. 4.5a. The tension of the left cable was measured to be 724 N and in the right

one 737 N. Determine the resultant of these two forces.

Solution

Step 1. Draw a physical model.

Drawing of the physical model requires the following:

(a) Knowledge of the geometry

(b) Assumption that the cables are straight

The corresponding physical model is derived from the image of the

actual street lamp indicating geometry and assumptions (Fig. 4.5b).

The measured distances are: h1¼ 10 m, h2¼ 9 m, h3¼ 12 m, a¼ 13 m,

and b¼ 15 m.

Step 2. Draw a force diagram.

Utilizing the above information, we draw a force diagram of the two forces

of interest (Fig. 4.6). The weight of the lamp is not shown in this diagram

since it is not a part of the current problem.

Angles α and β are calculated as

tan α ¼ h3 � h2
b

¼ 0:2; i:e:, α ¼ 11:3∘

tan 180� βð Þ ¼ h1 � h2
a

¼ 0:0769; i:e: β ¼ 175:6∘

It should be noted that we did not use a free body diagram in this case

because we were not dealing with an equilibrium problem, but rather were

Table 4.3 Calculation of the resultant force

Force Fx (N) Fy (N) Alpha (deg) Magnitude (N)

1 �350 6

2 �260 150 150 300

3 �100 119.2 140

4 251 250 95

5 450 218 500

6 400 6 400

Resultant 391 749
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looking for the resultant of two forces. This required the construction of a

force diagram only.

Step 3. Find the resultant.

The resultant force may be calculated by using one of the following

approaches.

(a) Graphical Solution

Figure 4.6 should be redrawn to scale in order to reflect the correct

geometry. The solution is achieved by application of the rule of force

parallelogram. Figure 4.7 shows the result.

The graphical solution provides a fast and simple determination of

the magnitude and direction of the resultant (even if it is drawn by a

freehand). In addition, such approach helps to develop an engineering

Fig. 4.5 (a) Street lamp. (b) Physical model of the lamp

Fig. 4.6 Force diagram

of the street lamp

Fig. 4.7 Force resultant
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intuition. However, the accuracy of obtained results is typically low.

From Fig. 4.7 we obtained the magnitude of resultant to be 200 N and

we determined that it acts in the vertical direction.

(b) Numerical Solution—“Hand” calculation

Since we have only two forces to deal with, one may directly use (4.6)

to calculate the force components as

F1x ¼ F1 cos α ¼ 723N

F2x ¼ F2 cos β ¼ �722N

F1y ¼ F1 sin α ¼ 144:4N

F2y ¼ F2 sin β ¼ 55:5N

Summation of the components above provides the resultant force

components:

Rx ¼ F1x þ F2x ¼ 0:847N

Ry ¼ F1y þ F2y ¼ 199:9N

If our assumptions and measurements were accurate, the resulting

component Rx would be equal to zero because forces F1 and F2 were

generated by the weight of the lamp, which acts in the vertical

direction. However, due to inevitable errors in measurements and

assumptions, the calculated resultant has an inherent error, about

0.4 % of the resultant. Such an error is acceptable in the majority of

engineering calculations.

The result may be also represented as a magnitude and direction:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
x þ R2

y

q
¼ 200N

tan α ¼ Ry

Rx
¼ 236; i:e: α ¼ 89:8∘

The angle should be 90� since the resultant force (weight of the lamp)

acts in the vertical direction. The small discrepancy comes from the

errors in the measured distances and forces.

(c) Use of MATLAB functions

Use the program “resultantPoint2D” to calculate the resultant for the

system of forces shown in Fig. 4.6. The procedure is as follows.

Start the “MATLAB,” select the program “resultantPoint2D” and

run it. The first dialog box will ask to:

Enter Number of forces acting on a particle—press OK to con-
tinue—enter 2 and click OK
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Since the magnitude and direction of each force is given, select

Magnitude and direction

Since force magnitude is given, select

Force magnitude and direction

The following dialogs will ask to enter the magnitude and direction

for each of the two forces, enter the magnitude in Newtons and the

angle in degrees from the x-axis. Thus, for first force and its directions
you will input

737 11:3 and clickOK

for the second

724 175:6 and clickOK

The result will be calculated to be: Rx¼ 0.847 N and Ry¼ 200 N

which corresponds to the numbers you got in the previous section.

Obviously, it is much easier to use the developed software, than to

calculate the values by using a calculator. To get the correct result you

need only to draw the Force Diagram and input the proper values into

the program.

When solving an engineering problem, one always starts with several

assumptions to create a model and uses measured quantities, assuming that

they are true values. The input data and the results based on this model will

always have an inherent error.

Example 4.2 Let us consider the problem shown in Fig. 4.5. Assume the weight of

the lamp is 200 N and the task is to determine the forces acting in each cable.

Solution Using the same assumptions we arrive to the same physical model as

shown in Fig. 4.5b.

In this problem, we are dealing with the equilibrium of three forces acting at point

O. The force diagram, which now became a free body diagram of point O, is

displayed in Fig. 4.8.

Fig. 4.8 Free body diagram
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(a) Graphical Solution

Figure 4.8 should be redrawn to scale in order to reflect the correct geometry.

Solution is achieved by application of the force polygon rule. The three forces

need to be in equilibrium; therefore, the polygon of forces should be closed,

i.e., the resultant force is equal to zero. We start with known forceW. From the

“tip” of force W we draw a line parallel to the direction of force F1, and from

the “tail” of forceW—the line parallel to the direction of force F2, as shown in

Fig. 4.9. Magnitudes of F1 and F2 can be measured from the drawing.

(b) Numerical Solution

Since the system is in equilibrium, the sum of all forces acting on point O

should be equal to zero. Mathematically, this is expressed as

R ¼ 0, or in scalar form

Rx ¼
Xn¼3

n¼1

Fnx ¼ 0 ð4:7aÞ

and

Ry ¼
Xn¼3

n¼1

Fny ¼ 0 ð4:7bÞ

In this case

F1x ¼ F1 cos α

F1y ¼ F1 sin α

F2x ¼ F2 cos β

F2y ¼ F2 sin β

Wx ¼ 0

Wy ¼ �W

Fig. 4.9 Polygon of forces
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Substituting the above expressions into equations of equilibrium (4.7a) and

(4.7b) yields two scalar equations with two unknowns F1 and F2

F1 cos αþ F2 cos βþ 0 ¼ 0

F1 sin αþ F2 sin β�W ¼ 0

The solution is F1¼ 737 N and F2¼ 725 N. Those results are slightly

different from the values used in Example 4.1. The reason is that in this case

we started the problem with the measured weight of the lamp and the assump-

tion that it is acting in the vertical direction only, while in the previous case we

started with the measured forces in the two cables. Such a mismatch is an

inherent part of the engineering work. Solving a problem with different

assumptions leads to a slightly different result.

(c) Use of MATLAB functions

The easiest way to solve for an unknown weight is to use the MATLAB routine

“equilibriumPoint2D.” Start the MATLAB and run the “equilibriumPoint2D.”

The dialog explaining how to input the data will appear. Enter the number of

forces acting on the point, 3 in our case. Next, you will have to enter the data

for each force. You will be asked to provide the magnitude of the force and

values for the projections on the x and y directions. Since this information is

needed to define the force’s direction, you have to provide the length of each

component. The input is shown in the table below:

Force number 1 2 3

Force magnitude (N) X X 200

X component length (m) �13 15 0

Y component length (m) 1 3 �1

The routine will calculate the unknown values and the result will be

presented as a free body diagram on the sketch and numerically in the

MATLAB “Command Window.” The first unknown is 724 N, and the second

737 N. These values are close to the ones calculated by using graphics or

calculator approach.

What is the difference between a force diagram and a free body diagram?

Free body diagram shows ALL forces acting on a body which may contribute to

its mobility. In the case of statics, these forces should be in equilibrium, i.e., the

resultant should be equal to zero.

Force diagrams are representations of the SELECTED forces acting on a body.

If one selects to show all forces, the force diagram becomes a free body diagram.
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Guidelines and Recipes for Solving 2D Problems When All Forces Are

Concurrent

• Draw a physical model of the problem.

Drawing a physical model means representing the simplified geometry of a
structural element under consideration, supports, and all forces acting on
a body in a coordinate system.

• Replace the structural element by a point.

• Represent the effect of the supports by the reactive forces.

• Create a free body diagram (FBD).

• Write equations of equilibrium.

• Find unknown values.

You may use one of these approaches:

Graphical approach requires drawing a FBD to the scale and use of the

basic principle of the force parallelogram, as discussed above (Fig. 4.3).

Numerical approach requires representation of forces as a vector

components, and writing and solving of the corresponding equilibrium

equations. This procedure may be easily programmed. The sample

MATLAB routines may be downloaded from the http://extras.springer.com.

4.1.3 Problems

4.1 A car, weight P¼ 15 kN is parked on a slope of 10�. Calculate the parallel and
normal to the slope components of the force acting between the car and

ground. Consider car as a point.
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Fig. P4.1

4.2 Force vector F forms a 30� angle with the y-axis. Determine its components in

the coordinate system x0 � y0.

Fig. P4.2

4.3 Determine the magnitude and direction of the resultant of the forces shown.

The force of 200 lb makes an angle of 45� and the force of 300 lb makes an

angle of 60� with the vertical axis.
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Fig. P4.3

4.4 Two forces are acting on point C: A¼ 12i+ 32j and B¼ 4i�21j. Determine

the resultant of these forces.

4.5 Determine the resultant of the three forces shown.

Fig. P4.5

4.6 Two water skiers are being pulled by a boat. The tension in rope A is 200 lb

and in rope B is 300 lb. Determine the resultant of these two forces.
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Fig. P4.6

4.7 Find the resultant of the three forces shown.

Fig. P4.7

4.8 Find the resultant of force 200 and 400 N (Fig. P4.7).

4.9 Find the resultant of force 100 and 400 N (Fig. P4.7).

4.10 Hip is loaded by body weight of 90 lb (1/2 body weight while standing).

Calculate the component of this force in the directions along the femoral neck.

Direction of the femoral neck is 60� to the vertical direction.

Fig. P4.10
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4.11 The boat tows three water skiers. Skier A makes an angle of 30� with the

direction of the boat ride, skier B makes an angle of 5�, while skier C makes a

negative angle of 15�. Assume that the magnitude of a force that is acting on

each skier is 200 lb. Calculate the magnitude of the resultant force and its

angle relative to the direction of the boat ride.

Fig. P4.11

4.12 Calculate the resultant of the three forces acting at a point.

F1 ¼ �12iþ 5j, F2 ¼ �2iþ 7j and F3 ¼ 4iþ 8j

4.13 200-N force P is acting on a frame. Calculate the components of P along struts

AC and BC for the case α¼ 30� and β¼ 45�.

Fig. P4.13
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4.14 10-N force Q is acting on a frame. Calculate the components of Q along struts

AB and BC for the case of α¼ 30� and β¼ 45�.

Fig. P4.14

4.15 60-lb force Q is acting on a frame. Calculate the components of Q along struts

KN and KM for the case of α¼ 30� and β¼ 60�.

Fig. P4.15

4.16 Force F¼ 80i+ 120jN is applied to a joint of two links. Resolve this force into

two components, one along the upper link and one along the lower link.

Assume that the upper link makes an angle of 45� and lower link makes an

angle of 30� with the horizontal axis.
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Fig. P4.16

4.17 Consider the part of a structure that is loaded by force Q¼ 200 N. Assuming

an angle α¼ 45�, compute the horizontal component of force Q.

Fig. P4.17

4.18 Three springs are attached to the central point and loaded by the forces as

shown. The system is in the state of equilibrium. What are the values of angles

α and β?
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Fig. P4.18

4.19 Determine forces acting in each bar using the graphical approach (Fig. P4.19).

Assume Q¼ 1000 N, α¼ 30�, and β¼ 60�.

Fig. P4.19

4.20 Determine forces in each bar (Fig. P4.19) when Q¼ 1000 N, α¼ 45�, and
β¼ 45�.

4.21 Determine forces in each bar when Q¼ 1000 N, α¼ 30�, and β¼ 60�

(Fig. P.4.19). Use equations of equilibrium.

4.22 The weight M1 is supported by a rod and is held in the position shown by

weight M2. Determine weight M2 and the tension in the rod.

78 4 Resultant and Equilibrium of Forces Acting at a Point



Fig. P4.22

4.23 Determine forces acting in rods KM and KN. Use Q¼ 1000 N, α¼ 60�, and
β¼ 30�.

Fig. P4.23

4.24 A street light is suspended by two cables. Find the tension in each cable, if

weight P of the light is 50 N, length of cable AB¼BC¼ 6 m, and distance

BD¼ 0.1 m.
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Fig. P4.24

4.25 A streetlight (weight 300 N) is supported by two bars. AC¼ 1.2 m and

BC¼ 1.5 m. Find the forces acting in each bar.

Fig. P4.25

4.26 A lamp (weight W¼ 20 N) is suspended by two cables as shown. The angle

α¼ 60� and the angle β¼ 135�. Determine the tension in each cable.

Fig. P4.26
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4.27 Two water skiers are being pulled by a boat with a force of 450 lb. Determine

the tension in each rope.

Fig. P4.27

4.28 Barrel P¼ 2000 N is supported by cable CB and boom AB. For the angles

shown, find the tension in the cable and the force acting along the boom.

Fig. P4.28

4.29* Three masses suspended by a rope AEB are in state of equilibrium. Masses C

and D each have weight P and mass attached at E weights 1.5 P, distance l is
given. What is the distance x?
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Fig. P4.29

4.30 A hot air balloon is moored to point O by a weightless cable of length l. The
lift force acting on the balloon is Q. The wind keeps it at the location shown.

Calculate the tension T in the cable and the wind force W. Assume that the

wind is acting in the horizontal direction and the angle of the cable with the

horizontal surface is α.

Fig. P4.30

4.31 Load P¼ 3 kN is supported by cable AD. Determine the forces in booms AB

and AC.
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Fig. P4.31

4.32 Ball B (weight P) is suspended from point A and is touching the surface of the

sphere with radius R. Knowing that line ACO is vertical, determine the

tension in rope AB and the force exerted by ball B on the sphere. Neglect

the size of the ball B. Use l¼ 30 cm and R¼ d¼ 20 cm.

Fig. P4.32

4.33 A disc (weight 60 N) is supported by two frictionless surfaces. Angle

ABC¼ 90�. Determine the forces between the disc and each surface using

the graphical approach. How the result depends on the radius of the disc?

Fig. P4.33
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4.34 A 10 N ball is supported by an incline and a cable making an angle α with the

vertical direction. Knowing the force in the cable equal to 5 N, determine the

angle α and the force exerted by the ball on the incline. Consider the ball as a

particle.

Fig. P4.34

4.35 Disc O (weight 10 N) is supported by two frictionless planes which are

perpendicular one to another. Determine the force exerted by the disc on

each plane. Solve problem analytically.

Fig. P4.35

4.36* A cylinder is suspended by two cables of the length l. Its weight is 2 P and

radius is r. The distance between the points where the cables contact the

cylinder is b. Calculate the tension in each cable.
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Fig. P4.36

4.37* Block A (weight P) is on a smooth surface making angle α with the

horizontal. It is held in the state of equilibrium by weight M and the spring,

as shown. The spring has stiffness “c.” What is the elongation Δ of the

spring? AB is horizontal. The force exerted by the spring is c ·Δ.

Fig. P4.37

4.38 Box B has a weight P. It is in equilibrium on a frictionless incline. Cable BC is

in the horizontal direction. Determine the tension in cable AB and pressure on

the surface. What must be the weight of D to lift box B from the surface?

Fig. P4.38

4.39* A weightless triangle can freely rotate about the horizontal axis at A. Box M

(weight P) is attached to BC. The system is in equilibrium.What are the axial

loads in bars AB and AC? The values of angles α and β are given; the angle

at A is 2α and AB¼AC.
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Fig. P4.39

4.40 Cylinder M (weight P) is held in equilibrium on a frictionless surface by

weightQ. Determine force N between the surface and cylinder M. What is the

value of angle α if P¼ 10 N and Q¼ 8 N.

Fig. P4.40

4.41 Homogeneous cylinder A has a weight P and radius r. It is placed on the

surface of cylinder B (radius R) and is held in equilibrium by rope CD¼ l.
Determine the tension in rope CD and the force between the two cylinders.

It is suggested to use the graphical approach for the solution of this
problem.

Fig. P4.41
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4.42* Smooth ring A can glide along circular path AB. Determine angle φ as a

function of P and Q for the system to be in equilibrium.

Fig. P4.42

4.2 Resultant and Equilibrium of Forces Acting in Space

Though there are many engineering problems in which forces are acting in a plane,

as discussed above, there are even more cases when forces are acting in three

dimensions. The goal is to consider the conditions necessary for equilibrium of all

forces acting at a point or to find the resultant of the selected forces. We will discuss

both cases using an example of an antenna tower supported by three cables

(Fig. 4.10).

Let us assume that all forces are acting at the same point. As we have discussed,

such an assumption is usually acceptable whenever distances between acting forces

are small comparatively to the size of a structure. Using this assumption, we may

represent forces in cables, as force vectors, acting at a point at the top of the tower

(Fig. 4.10b). Creation of the corresponding physical model representing the real

structure is probably the most important step in the process of solving engineering

problems.

Fig. 4.10 (a) Antenna tower supported by cables, (b) superimposed force vectors acting in the

wires
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It is important to emphasize that any solution obtained is as good as the

assumptions we have made when defining a physical model.

We are now ready to address the problem of finding the resultant of the selected

forces and to analyze the conditions to be fulfilled to ensure the equilibrium of

forces acting in the point.

4.2.1 Resultant of Forces

Let us find the resultant of the forces generated by three cables. The forces are

shown in a 3D Cartesian coordinate system whose origin was placed at point O, on

the base of the tower (Fig. 4.11a). Appropriate dimensions of the structure are

shown in meters. The forces acting in each wire were measured to be F1¼ 12 kN,

F2¼ 12.3 kN, F3¼ 14.2 kN.

All parallel vectors representing various physical quantities have the same unit

vector.

Since two concurrent forces always belong to one plane, we may use the basic

principal of parallelogram of forces, as demonstrated in Sect. 4.1, to find their

resultant. Doing this in three dimensions is a tedious and not very accurate proce-

dure. The numerical approach is therefore more convenient.

In the orthogonal Cartesian coordinate system, each force may be represented

through its three orthogonal components

F ¼ Fxiþ Fyjþ Fzk ð4:8Þ
or as the product of its magnitude F and its unit vector e. The unit vector defines the

orientation and direction in space (Appendix).

Fig. 4.11 (a) Cable forces acting on the tower. (b) Free body diagram of the point D
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F ¼ Fe ¼ F exiþ eyjþ ezk
� � ¼ Fexiþ Feyjþ Fezk ¼ Fxiþ Fyjþ Fzk ð4:9Þ

Therefore, the forces generated by cables may be expressed as

F1 ¼ F1 e1xiþ e1yjþ e1zk
� � ¼ F1xiþ F1yjþ F1zk

F2 ¼ F2 e2xiþ e2yjþ e2zk
� � ¼ F2xiþ F2yjþ F2zk

F3 ¼ F3 e3xiþ e3yjþ e3zk
� � ¼ F3xiþ F3yjþ F3zk

The resulting force is then obtained as a sum of three forces,

R ¼
Xn¼3

n¼1

Fn ¼
Xn¼3

n¼1

Fnx

 !
i þ

Xn¼3

n¼1

Fny

 !
j þ

Xn¼3

n¼1

Fnz

 !
k

As in 2D case we can generalize the above equation to any number of forces,

say N,

R ¼
Xn¼N

n¼1

Fn ¼
Xn¼N

n¼1

Fnx

 !
i þ

Xn¼N

n¼1

Fny

 !
j þ

Xn¼N

n¼1

Fnz

 !
k

¼ Rxiþ Ryjþ Rzk ð4:10Þ

Let us calculate the resultant of the three forces acting on the tower. The geometry

of the structure and the magnitudes of forces are known (Fig. 4.11a). This informa-

tion can be used to define force components. From the geometry of the structure, we

first define the unit vectors for each of the forces.

To find a unit vector for a force, say, F1 (Fig. 4.11a) we have to define the

coordinates of points A (xA, yA, zA) and D (xD, yD, zD) and use the following

equation (Appendix)

e1 ¼ xA � xDð Þiþ yA � yDð Þjþ zA � zDð Þkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xA � xDð Þ2 þ yA � yDð Þ2 þ zA � zDð Þ2

q ¼ e1xiþ e1yjþ e1zk

Similarly, we obtain the unit vectors for forces F2, and F3

e2 ¼ xB � xDð Þiþ yB � yDð Þjþ zB � zDð Þkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xB � xDð Þ2 þ yB � yDð Þ2 þ zB � zDð Þ2

q ¼ e2xiþ e2yjþ e2zk

e3 ¼ xC � xDð Þiþ yC � yDð Þjþ zC � zDð Þkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xC � xDð Þ2 þ yC � yDð Þ2 þ zC � zDð Þ2

q ¼ e3xiþ e3yjþ e3zk

The coordinates of points A, B, C, and D are summarized in the following table

(see Fig. 4.11a).
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Point x y z

A 10 �15 0

B �12 0 0

C 10 15 0

D 0 0 20

Substituting these values into above equations will provide values for the

components of the unit vectors for each force.

Unit vector x y z

e1 0.371 �0.557 �0.743

e2 �0.515 0.0 �0.858

e3 0.371 0.557 �0.743

Now we can use (4.10) to find the resultant force. One approach is to use these

equations directly and perform all needed calculations by hand; another is to use

MATLAB routines. Both approaches are shown below.

(a) “Hand” calculation

If directions and magnitudes of all forces acting in cables are known (i.e.,

F1¼ 12 kN, F2¼ 12.3 kN, F3¼ 14.2 kN), we can calculate their components

using (4.9) and their corresponding unit vectors, as shown above. The resultant

of those forces can be calculated from (4.10).

This process can be simplified by using Table 4.4. Columns 2, 3, and 4 show

the unit vector components, while the fifth one displays the corresponding

force magnitudes. The following three columns show the orthogonal

components of each force. To obtain the force component in a particular

direction, we multiply the force magnitude by the corresponding component

of the unit vector according to (4.9).

For example,

Fx ¼ F1e1x; etc.
Summation of all force components provides the resultant

R ¼ 3:39iþ 1:230j� 30:0kð Þ N
(b) Use MATLAB routine

Start the MATLAB and run the “resultantPoint3D.” A dialog will come up

asking to “Enter number of forces acting on a point:”—enter 3 in our case.

Table 4.4 Calculation of the resultant force

Force ex ey ez Magnitude Fx Fy Fz

1 0.371 �0.557 �0.743 12.0 4.45 �6.68 �8.92

2 �0.515 0.0 �0.858 12.3 �6.33 0.0 �10.55

3 0.371 0.557 �0.743 14.2 5.27 7.91 �10.55

Resultant 3.39 1.230 �30.0
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Next, you will have to enter the data for each force. You will be given a choice:

“components” or “magnitude and three projections of the force’s line of

action.” Since we know for each force its magnitude and projections of its

line of action, select the “magnitude and line of action,” i.e., we will be

providing three projections for the force direction. Now, enter the data for

each force. The result as calculated by MATLAB routine is: Rx¼ 3.40,

Ry¼ 1.226 and Rz¼�30.0. It should be noted that the small difference from

the results calculated in the table above are due to the rounding errors; since in

each step of “hand” calculation we were rounding the result to three significant

digits.

4.2.2 Equilibrium of Forces

To consider equilibrium of a point in space we have to draw a free body diagram of

this point showing all forces acting on that point, in our example—point

D (Fig. 4.11a). In addition to the three forces in cables, we have also a force

generated by the tower.

According to the Second Newton’s Law, point D will be in equilibrium when the

resultant of all forces acting upon it is equal to zero. Hence, R¼ 0, or in scalar form

Rx ¼
Xn¼N

n¼1

Fnx ¼ 0

Ry ¼
Xn¼N

n¼1

Fny ¼ 0 ð4:11Þ

Rz ¼
Xn¼N

n¼1

Fnz ¼ 0

The (4.11) are called the equilibrium equations.

If forces are represented in a component form, they can be directly used in (4.10)

and (4.11). However, when solving a real-life problem, this is rarely the case.

Usually, we know the geometry of a structure, as well as the force magnitudes,

since they can be measured.

Let us now consider the example of the tower with the cables mentioned above.

The goal is to find unknown force F4 imposed by the tower at point D. This force

and the three cable forces are considered to be external forces acting on the body of

interest, which is point D. The corresponding free body diagram, Fig. 4.11b, shows

these forces.

The forces will be in equilibrium if they fulfill (4.11). The goal is to find

unknown force F4. The equilibrium equations can be written utilizing the data

from Table 4.4.
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Rx ¼
Xn¼4

n¼1

Fnx ¼ F1x þ F2x þ F3x þ F4x ¼ 4:45� 6:33þ 5:27þ F4x ¼ 0

Ry ¼
Xn¼N

n¼1

Fny ¼ F1y þ F2y þ F3y þ F4y ¼ �6:68þ 0:0þ 7:91þ F4y ¼ 0

Rz ¼
Xn¼N

n¼1

Fnz ¼ F1z þ F2z þ F3z þ F4z ¼ �8:92� 10:55� 10:55þ F4z ¼ 0

We obtain three equations with three unknowns. The solution represents three

orthogonal components of force F4,

F4 ¼ �3:39i� 1:230jþ 30kð Þ N
The magnitude of the force is:

F4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3:39ð Þ2 þ �1:230ð Þ2 þ 30:0ð Þ2

q
¼ 30:2 N

Direction of the force is given by its unit vector e4, whose components are:

e4x ¼ cos α ¼ F4x

F4

¼ �0:1122

e4y ¼ cos α ¼ F4x

F4

¼ �0:0407

e4z ¼ cos γ ¼ F4z

F4

¼ 0:993

where α, β, and γ are the angles between force vector F4 and x-, y-, and z-axis,
respectively.

Procedure to use the MATLAB routines to solve for unknown forces in 3D

Start the MATLAB and run the “equilibriumPoint3D.” The dialog will appear

explaining how to input the data. Enter the number of forces acting on a point,

i.e., “4” in our case. Next dialog will ask to input the coordinates of the point. Enter

the known values, if not given, enter 0, 0, 0. Next, you will be asked to enter data for

each force. You will have to provide the magnitude and the directions of each force

vector. For direction, enter the coordinates of any point the force is pointed to. From

the given geometry of the structure, shown in Fig. 4.11, we can enter the values for

the force direction components in the x, y, and z directions. The input is shown in

the table below:
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Force F (N) X (m) Y (m) Z (m)

1 12.0 10 �15 �20

2 12.3 �12 0 �20

3 14.2 10 15 �20

4 x x x 1

The solution will appear on the screen as:

The value of the first unknown is: 30.23

The value of the second unknown is: �0.1134

The value of the third unknown is: �0.0408

Since we entered the amplitude of force #4 as the first unknown, the calculated

force F4 magnitude is 30.2 N. We entered x and y as unknown lengths components,

however for z we arbitrary prescribed value of 1, since three components of the

force directions are interconnected—the sum of their squares is equal to the squared

length. We have to normalize the calculated components by this length. Let us

calculate the correct components of the unit vector e4 along the fourth force

direction as shown below.

ex ¼ �0:1134=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:1134ð Þ2 þ 0:0408ð Þ2

q
¼ �0:1126

ey ¼ �0:0408=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:1134ð Þ2 þ 0:0408ð Þ2

q
¼ �0:0405

ez ¼ 1:0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:1134ð Þ2 þ 0:0408ð Þ2

q
¼ 0:993

These values are very close to the values calculated by hand, the differences can

be attributed to the rounding errors.

The schematic of the four forces in the space is shown on the screen.

Guidelines and Recipes for Solving 3-D Problems

• Draw a physical model of the problem.

Drawing a physical model means representing the simplified geometry of
the structural element under consideration, the supports, and all forces
acting on a body in the coordinate system.

• Substitute the supports by reactive forces and replace the structural ele-

ment by a point.

• Create a free body diagram (FBD).

• Find unknown values.

Represent forces as vector components, and write and solve the

corresponding equilibrium equations. This procedure may be easily

(continued)
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programmed. The example of the MATLAB routines may be downloaded

from http://extras.springer.com.

4.2.3 Problems

4.43 Cable OB is 25 m long and the tension in that cable is 500 N. What are the x, y,
and z components of the force exerted by cable OB on point B?

Fig. P4.43

4.44 Pole OA is 35 m long and the compression force in that pole is 900 N

(Fig. P4.43). What are the x, y, and z components of the force exerted by

pole OA on point A?

4.45 A tensile force of magnitude 600 N acts on point C. What are the x, y, and
z components of this force?
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Fig. P4.45

4.46 Determine the resultant of three forces acting at a point. The forces are:

F1¼ 12i+ 5j� 8k [lb], F2¼�2i+ 7j� 3k [lb], and F3¼ 4i+ 8j+ 4k [lb].

4.47 Determine the resultant of three forces acting at a point. The forces are:

F1 ¼ �9i� 2j� 14k N½ �, F2 ¼ �2i� 4j� 3k N½ �, and

F3 ¼ 11iþ 6jþ 17k N½ �:

4.48 Determine the resultant of (a) forces F1 and F4; (b) forces F2 and F3. Use the

following as the force magnitudes: F1¼ 3p[N], F2¼ p[N], F3¼ p[N], and

F4¼ 2p[N].

Fig. P4.48

4.49 Two identical poles AB and AC, each making the same angle with the ground,

support two horizontal cables AD and AE. The tension in each cable is 50 N.

Determine the forces in the poles, if the plane BAC divides angle DAE in half.
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Fig. P4.49

4.50 Load Q¼ 10 N is supported by rod AO and by two horizontal cables OB and

OC. Determine the axial force in AO and tension in the cables.

Fig. P4.50

4.51 Load P (weight¼ 300 N) is supported by rods AB, AC and cable AD. Plane

ABC is horizontal, angle CBA¼ angle BCA¼ 60�, angle EAD¼ 30�. Deter-
mine the forces in each rod and in the cable.
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Fig. P4.51

4.52 Determine the forces in rod AB and the cables AD and AC when the system is

loaded by the force Q¼ 30 N. AB¼ 70.7 cm, AC¼ 40 cm, AD¼ 50 cm.

Plane of rectangular CADE is horizontal, planes V and W are perpendicular.

Fig. P4.52

4.53 Determine forces in cable AB and the rods AD and AC that are loaded by

force Q¼ 80 N, when AB¼ 122.5 cm, AC¼AD¼CD¼ 100 cm, CK¼KD

and triangle ACD is in the horizontal plane.
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Fig. P4.53

4.54 Point D is loaded by weightW¼ 300 N and is supported by the rods as shown.

Determine the forces in links AD, BD, and CD.

Fig. P4.54

4.55 Determine forces in pole AB and cables AC and AD that support two

electrical wires. The wires are perpendicular to one another, are in the

horizontal plane, and each one is under the given tension T. Angle CBD¼ 90�

and φ¼ 120�.
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Fig. P4.55

4.56 For Problem 4.55 derive the dependence of the force in cable AC from the

angle φ between 90 and 270� and plot it.

4.57 Weight P¼ 3 kN is lifted by winch E as shown. Determine the axial forces in

each leg. Cable ED and each leg are making angle of 60� with the horizontal

plane, AB¼BC¼AC.

Fig. P4.57
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4.58 A barrel (weight Q) is suspended by three rods of equal length.

OA¼OB¼OC¼ 1 m. Point D is at x¼ y¼ z¼ 0.100 m. Determine the

force in each rod.

Fig. P4.58

4.59 Sphere A has a volume of 0.7 m3 and weights 5 kN. It is hold underwater by

three equidistant anchors B, C, and D planted at the same depth. Determine

tension in each cable if each makes angle of 45� with the vertical direction.

The specific weight of water γ¼ 10 kN/m3.

Fig. P4.59

4.60 Weight P¼ 3 kN is lifted by a cable as shown. Pulley D is mounted on a

tripod. Each leg of the tripod makes an angle of 60� with the horizontal plane

and AB¼BC¼AC. Determine the forces in each leg. Note that Fig. P4.60
shows the view in a vertical plane only.
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Fig. P4.60

4.61 A square plate (weight P) is suspended by three cables. Determine the tension

in each cable, if plane OAB is normal to the plane of the plate, angle

BOA¼ 90�, point C is in the middle of the side and OA¼OB. Assume that

the weight of the plate is acting along the vertical line passing through

point O.

Fig. P4.61

4.62 Force P¼ 2 kN is acting in vertical plane CDE. Determine forces in each link

when α¼ 30�, β¼ 45�, γ¼ 30�.
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Fig. P4.62

4.63 Weight K¼ 15 kN is suspended by cable FBK. Links BC and BD are in the

horizontal plane and are making angles of 45� with line BE. Determine the

forces in links BC, BD, and AB if angle α¼ 45� and γ¼ 30�.

Fig. P4.63

4.64 Sphere M (weight W) is held by two cables AM and BM on a frictionless

plane that makes angle αwith a horizontal plane. Determine the force between

the sphere and the plane, and the tension in each cable when α¼ 60�, β¼ 30�,
γ¼ 45�, and W¼ 10 N.

Fig. P4.64

4.65 A crane consists of two booms AB¼BC supported by horizontal cable

BE. Cable KDB supports load P¼ 10 kN. Angle ABC¼ 30� and AD¼DC.

Plane ABC makes an angle 60� with the horizontal plane. Determine the

forces in members AB, BC, and BE.
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Fig. P4.65

What We Have Learned?

Procedures to find the resultant force
Resultant force is equal to the vector sum of all forces acting at a point

R ¼
Xn¼N

n¼1

Fn ¼
Xn¼N

n¼1

Fnx

 !
iþ

Xn¼N

n¼1

Fny

 !
jþ

Xn¼N

n¼1

Fnz

 !
k ¼ Rxiþ Ryjþ Rzk

We have to express each force through its components and sum up the appropriate

components of all forces (Fig. 4.12). Magnitude and direction angles can be

obtained from

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
x þ R2

y þ R2
z

q

cos α ¼ Rx

R

cos β ¼ Ry

R

cos γ ¼ Rz

R

Procedures to analyze equilibrium of forces
A body, represented by a point, is in equilibrium when the sum of all forces

(resultant) is equal to zero, hence

R ¼
Xn¼N

n¼1

Fn ¼
Xn¼N

n¼1

Fnx

 !
iþ

Xn¼N

n¼1

Fny

 !
jþ

Xn¼N

n¼1

Fnz

 !
k ¼ 0

4.2 Resultant and Equilibrium of Forces Acting in Space 103



This means that each component separately should be equal to zero

Xn¼N

n¼1

Fnx ¼ 0,
Xn¼N

n¼1

Fny ¼ 0,
Xn¼N

n¼1

Fnz ¼ 0

When all forces are acting in a single plane, one component, usually z, is
commonly set to be zero.

4.3 Review Problems

4.66 Calculate resultant of the three forces acting at a point.

F1 ¼ 2i� 3j, F2 ¼ �3iþ 2j, and F3 ¼ �3iþ 7j

4.67 Determine the magnitude and direction of the resultant of the forces exerted

by supports CD and CE on stake C. Forces are A¼ 1 kN, D¼ 1.5 kN, and

E¼ 2 kN, the coordinates are A (1, 0.5, 0), B (0.2, 0.5, 2), C (1.2, 8, 0), D (0.6,

8, 1.8), and E (0.4, 7.5, 2.2).

Fig. 4.12 Three-

dimensional force

R and its components
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Fig. P4.67

4.68 A boat tows three water skiers. Skier A makes an angle of 30� with the

direction of the boat ride, while skier B makes an angle of 5�. Skier C makes a

negative angle of 15�. The boat pulls the skiers with the force of 300 N. The

force that is acting on skier B is 80 N. Calculate the magnitude of the forces

acting on skiers A and B.

Fig. P4.68

4.69 Slender rod AB (weight W¼ 160 N, length l¼ 1.2 m) is held in the state of

equilibrium by two cables AC and BC. Determine the tension in each cable.

AC¼BC¼ 1 m.
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Fig. P4.69

4.70 Crane BAC is loaded by force F and loadM. Determine the axial load in each

leg, AB and AC.

Fig. P4.70

4.71 Block M (weight P) is suspended by two identical springs. Without the block

the springs are not taut and are in the horizontal direction. Determine weight P
that results in x¼ 8 cm, when a¼ 6 cm and spring’s stiffness c¼ 200 N/m.

The force generated by a spring is equal to c ·Δ, where Δ is the spring’s

elongation.

Fig. P4.71

4.72 Weight M1 is supported by the rod and is held in position shown by weight

M2. Determine weight M2 and tension in the rod.
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Fig. P4.72

4.73 Two cables tied together at B and loaded as shown below. Knowing that

Q¼ 100 N, α¼ 45�, and β¼ 60�, determine the tension in cable AB and the

magnitude of load P.

Fig. P4.73

4.74 A ball is suspended by two cables as shown. The weight of the ball is 40 N.

Determine the tension in the cables. Consider the ball as a particle.

Fig. P4.74

4.75 Weight Q¼ 5 kN is supported by the system of rods and cables as shown.

AB¼AE¼AF¼ 2 m. Determine the forces in cable BC and rod AC.
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Fig. P4.75

4.76 For problem 4.75 calculate forces in cables BE, BF and rod AB, if the tension

in the cable BC is given to be 14.4 kN.

4.77 Tea kettle E (weight 10 lb) is suspended as shown. The supporting legs have

the same length and the angles between the legs are identical. Determine the

forces in each leg. Each leg makes an angle of 30� with rope BE.

Fig. P4.77
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Make things as simple as possible, but not simpler.

Albert Einstein

In this chapter you will learn:

• How to reduce a system of nonconcurrent forces into the system of forces acting

at a single point

• Procedures to find a resultant force and a resultant moment

• Procedures to analyze equilibrium of forces acting on a rigid body in a plane and

in a space

In Chap. 4, we discussed equilibrium of objects loaded by concurrent forces. Such

objects were modeled as a particle (point). In these cases, the principle of parallel-

ogram of forces may be applied to find the resultant force. Setting the resultant force

equal to zero, according to the First Newton’s law, leads to equilibrium equations.
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In reality, however, there are many situations when a body cannot be modeled as a

particle, i.e., forces acting upon it are not concurrent, Fig. 5.1a. The forces acting on

the pole are shown schematically in Fig. 5.1b. In these cases, we cannot directly

apply the basic principles discussed in Chap. 2. We therefore need to develop a rule

for moving a force to a point that is not located on its line of action, and use the

concept of a moment in order to fulfill the equilibrium condition.

In the real world, all bodies have a size and a shape. In some cases, we may

model a body as a particle and use the methods developed in the Chap. 4 to solve for

unknown forces. However, in majority of cases we have to account for the size of a

body, and the fact that the applied forces are not concurrent.

5.1 Force–Moment Systems

Since we do not model a rigid body as a particle, it becomes important to account

for the location of the external forces acting on the body. Below we discuss how to

account for the location of a force and the effect of moving it to a different position.

5.1.1 Moving a Force to an Arbitrary Point

Assume that there is only one force F1 acting on a rigid body at a point A, as shown

in Fig. 5.2a. The goal is to develop a rule on how to move the force F1 to another

arbitrary selected point B. One of the basic axioms postulated by Newton says that

Fig. 5.1 (a) Pole supporting electrical wires. (b) Set of nonconcurrent forces
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the state of the motion of a rigid body will not be changed by adding or subtracting

an equilibrium pair of forces (Sect. 2.2.1). According to this rule, we may add an

equilibrium pair of forces to an arbitrary selected point B without altering the state

of motion of the body. Let the pair of forces F2 and �F2 be of the same magnitude

as force F1 and be parallel to it, as displayed in Fig. 5.2b.

Forces F1 and �F2 form a couple (Sect. 2.2.3) which may be shown as a free

vector M perpendicular to the plane defined by these two forces. This process

leaves us with the force F2, being equal to F1, and the moment vector M, as shown

in Fig. 5.2c. Therefore, when moving a force to another point, we need to add a

couple of forces (moment) to preserve the state of motion1 of the body. The moment

is created by applying a couple of forces acting at the original and destination

points. Moment, i.e., action of a couple, happens to be a free vector (see Sect.

2.2.3.3), meaning that it has no definite point of application. In other words, it may

be positioned at any point of a rigid body without changing its state of motion.

Based on this procedure, a force can be moved to any point of the body as needed.

To move a force to another point and preserve the state of motion, we need to

add a couple of forces (called moment), acting at the original and the destination

point.

This process will create a new “equivalent force system,” consisting of the force

and the moment (couple of forces), whose effect on the motion of the body is

exactly the same as of the original force. As it will be shown later, this is not the

case when dealing with internal forces and moments.

Any two force systems are equivalent if they produce the same effect on a rigid

body motion.

Fig. 5.2 (a)–(c) Rule for moving a force to an arbitrary point

1 Body loaded by a force will accelerate according to the Second Newton’s Law.
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Moment (action of a couple) happens to be a free vector. It has no definite point
of action. In other words, it can be positioned at any point of a rigid body without

changing its state of motion.

Guidelines and Recipes for Moving a Force to an Arbitrary Point

• Apply an equilibrium pair of forces, which are equal in magnitude and are

parallel to the force you are moving, at the point where you want to move

the force, as shown in Fig. 5.2b.

• Calculate the moment of the couple consisting of forces F1 and �F2 as

M ¼ r � F1

where r is a vector from any point along the force F2 to any point along the

line of action of the force F1.

• Represent the effect of the couple by this moment.

• Apply the original force at the new point.

Example 5.1 Worker is pushing the crate at point A with coordinates [1.2, 1.5, 0.0]

m (Fig. 5.3a). The force between the hand and the crate is 350 N. Replace this force

with an equivalent force system by moving the force to the point B with coordinates

[0.6, 0.7, 0] m. The coordinates of point C is [2.3, 1.7, 1.0] m.

When calculating the moment of a couple of forces, r is the space vector

connecting any two points along the lines of action of the two forces.
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Solution Force F can be represented as a product of its magnitude F and the unit

vector e, F ¼ F � e

e ¼ xA � xCð Þiþ yA � yCð Þjþ zA � zCð Þkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xA � xCð Þ2 þ yA � yCð Þ2 þ zA � zCð Þ2

q
Substituting the values, we will get

e ¼ 1:2� 2:3ð Þiþ 1:5� 1:7ð Þjþ 0� 1:0ð Þkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1:1ð Þ2 þ �0:2ð Þ2 þ �1:0ð Þ2

q ¼ �0:733i� 0:133j� 0:667k:

Therefore,

F ¼ 350 �0:733i� 0:133j� 0:667kð Þ ¼ �257i� 46:6j� 233kð Þ N
Now, we can follow the procedure as described above.

1. Apply two forces F1¼F and�F1 at the point B (Fig. 5.3b)

2. Calculate the moment of the couple created by the original force F, acting at the

point A, and force �F1, acting at the point B, as M ¼ r� F, where r defines

location of the point A relative to point B. As you may remember from the

definition of the moment of a couple, r is a space vector connecting any point

along the line of action of the force F with any point along the line of action of

the force�F1 and pointing from the line of action of the force �F1 toward force

F. In our case, r is given as

r¼ xA � xBð Þiþ yA � yBð Þjþ zA � zBð Þk
¼ 1:2� 0:6ð Þiþ 1:5� 0:7ð Þjþ 0� 0ð Þk ¼ 0:6iþ 0:8jþ 0k

From (2.6) we can calculate the moment as

Fig. 5.3 (a) Worker pushing the crate. (b) Add two forces. (c) Resultant force and moment
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M ¼
i j k

0:6 0:8 0

�257 �46:6 �233

������
������ ¼ �186:4iþ 139:8jþ 177:6k Nm½ �

3. Now, we obtained an equivalent force system consisting of the force F of the

same magnitude and direction acting at the point B and moment M (Fig. 5.3c).

5.1.2 Reduction of a System of Forces

Any system of forces and moments acting on a rigid body may be replaced by an

equivalent force and a moment called resultant force and resultant moment. Consider
a rigid body loaded by number of moments (M1,M2,. . .,MK) and forces (F1, F2,. . .,
FN) at various locations (Fig. 5.4a). Each force may be moved to a new location

providing that a moment is added as described above (Sect. 5.1.1). Let us move all

forces to an arbitrary point O. Transferring each force to the point O will result in a

system of concurrent forces (F1, F2, F3,. . ., FN) and associated moments (MF1,MF2,

MF3,. . ., MFN) appearing due to the translation of forces (Fig. 5.4b). Since moments

are free vectors, we can place them at the same pointO. Adding original moments to

those generated by force translation, we get a resultant momentM.

M ¼
XK
i¼1

Mi þ
XN
i¼1

MFi ð5:1Þ

where K—number of original moments acting on a body, N—number of forces

acting on a body.

Since all forces acting on a body now are concurrent, their resultant may be

found as

R ¼
XN
i¼1

Fi ð5:2Þ

Thus, we reduced all forces and moments acting on a rigid body to the resultant

force F and moment M as shown in Fig. 5.4c.

Fig. 5.4 Reduction of a system of forces and moments to a resultant force–moment
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Example 5.2 Three forces are acting at points A (2, 4, 6) m, B (�2, 3,�1) m, and C

(1, �2, 4) m. The forces are

F1 ¼ 12i� 3jþ 6k N½ �
F2 ¼ �4iþ 7 j� 4k N½ �
F3 ¼ 2i� 8jþ 9k N½ �

Find the resultant force and the resultant moment (magnitude and direction) if

the resultant force is acting at

(a) Point A

(b) Point C

Solution (“hand” calculation)

(a) Resultant force can be calculated using (5.2)

R ¼ F1 þ F2 þ F3 ¼ 10i� 4jþ 11k N½ �
Moving force F2 from B to A will result in a free moment.

M2¼rAB�F2 ¼
i j k

�4 �1 �7

�4 7 �4

������
������ ¼ 53iþ 12j� 32k Nm½ �

Moving force F3 from C to A will result in a free moment.

M3 ¼ rAC � F3 ¼
i j k
�1 �6 �2

2 �8 9

������
������ ¼ �70iþ 5jþ 20k Nm½ �

The resultant moment is:M¼M2 +M3¼�17i+ 17j� 12k [N m]. Its mag-

nitude is M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

x þM2
y þM2

z

q
¼ 26:9 Nm and the corresponding unit

vector is

e ¼ Mx

M
iþMy

M
jþMz

M
k ¼ �0:632iþ 0:632j� 0:446k:

(b) Resultant force will be the same as in the case (a)

R ¼ F1 þ F2 þ F3 ¼ 10i� 4jþ 11k N½ �
Moving force F1 from the point A to point C will create a free moment.
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M1 ¼ rCA � F1 ¼
i j k

1 6 2

12 �3 6

������
������ ¼ 42iþ 18j� 75k Nm½ �

Similarly, moving force F2 from B to C will create a free moment.

M2 ¼ rCB � F2 ¼
i j k
�3 5 �5

�4 7 �4

������
������ ¼ 15iþ 8j� 1k Nm½ �

Now, the resultant moment is: M¼ 57i+ 26j� 76 k [Nm]. Its magnitude is

98.5 Nm and the corresponding unit vector is e¼ 0.579i+ 0.264j� 0.772 k.
The obtained resultant force is the same in both cases, while the resultant

moments are different, both in the magnitude and direction. It should be noted

that since two moments are different (direction and magnitude) in both cases,

the angles between the resultant force and the resultant moment are also

different. We have three different cases here: (a) three forces, (b) a resultant

force at the point A and a moment, and (c) the same resultant force at point C

and a different moment. However, the effect of each one of the three loading

cases on the state of motion of the rigid body is the same.

Solution (MATLAB calculation for the case a) To solve for the resultant force

and moment, you may use the MATLAB routine “resultantBody3D”. Run it, and

follow the prompts.

Enter number of forces: 3
Enter number of moments: 0 (there are no external moments)

Enter location of the point: 2, 4, 6 (x, y, z of point A)

Now, we have to prepare data for input. The magnitude of force #1 is:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
122 þ 32 þ 62

p
¼ 13:75 [N] and its line of action components are: 12, �3, 6.

Next, enter the coordinates of any point along its line of action. Since it is given that

this force acts at point (2, 4, 6)—enter these values.

For force # 2 the magnitude is 9 [N], components are: �4, 7, �4 [N] and the

point is: �2, 3, �1 [m].

Force # 3 has magnitude of 12.21 [N], components are: 2,�8, 9 [N] and it acts at

the point: 1, �2, 4 [m].

The solution is:

Equivalent resultant Force: 10.00 * i� 4.00 * jþ 11.00 * k
Equivalent resultant Moment: �17.01 * iþ 17.00 * j� 11.99 * k

These are the same values as calculated above. Small differences are due to the

rounding errors.
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5.1.3 Special Case of a Force-Couple System

Any number of external forces and moments acting on a rigid body may be reduced

to only one force and one moment. Magnitude and direction of the resulting

moment depends on the point to which the force was moved (see Example 5.2).

The fact that the magnitude of the resultant moment depends on the point where the

forces were moved to, raises the question—is there a location such that the resultant

moment will become zero?

To answer this question, let us consider again what happens when we move a

single force to a new location. A force appears at the new location and a couple is

created. As it was shown already, mathematically the effect of a couple is

represented by a moment, which is a vector resulting from the cross product of a

radius vector, r, with a force vector, F. Result of such a product is a vector

M perpendicular to the plane defined by vectors r and F. Now, it is obvious, that

only the force and the couple that are perpendicular to one another may be reduced

to force only (i.e., the resultant moment is zero).

Let us consider a case when the loading consists of a moment and force perpen-

dicular to each other. Without loss of generality, we may select a coordinate system

as desired. Let’s select a coordinate system such that the force Fwill act in x–y plane
and the moment M along z-axis (Fig. 5.5). This force–moment system may be

reduced to one force only by moving the force F to the new location A, defined by

the space vector r. Moving the forceF away from its original location will generate a

moment, acting in z-direction. The point A, defined by r, may be chosen so that the

newly generated moment will be equal in magnitude and opposite in direction to the

original moment M. Thus, by moving the force F to the point A, the new force-

couple system will consist of the force F only, since the resultant moment

MA ¼ Mþ r� �Fð Þ ¼ 0 only when

M ¼ r� F

Fig. 5.5 Force-couple

system
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From this equation, we can find the components of the vector r defining the

position of the point A. Since vector r belongs to the plane x–y, it may be

represented as

r ¼ xAiþ yAj

Let us rewrite the above equation in the matrix form

M ¼ r� F ¼
i j k

xA yA 0

Fx Fy 0

������
������ ¼ xAFy � yAFx

� �
k ¼ Mk ð5:3Þ

Since M has only one nonzero component in the z-direction, the above equation
is reduced to a scalar equation of a line in x–y plane.

xAFy � yAFx ¼ M

This is equation of a line representing a locus of points where we can move the

force F in order to reduce the force-couple system to one force only. It is should not

be a surprise, since one can move force along its line of action without changing the

effect of this force of a rigid body. To draw this line, one can find its intersection

with x- and y-axes by setting first xA ¼ 0 and solving for

yA ¼ �M=Fx ð5:4Þ
then, setting yA ¼ 0 that will result in a second point of intersection

xA ¼ M=Fy ð5:5Þ

To reduce a force-couple system to one force only, the force and couple must be

perpendicular to each other.

Example 5.3 Two workers are moving a box as shown in Fig. 5.6a. The worker on

the right applies a couple of forces (F1¼ F2¼ 50 N) and that on the left pushes the

box with a force of 100 N. The distance between the lines of action for forces F1 and

F2 is 0.8 m. The line of action for the force F3 passes from the point [0, 0, 0] to the

point [0.8, 0.5, 0.0] m in the coordinate system shown in Fig. 5.6a. Reduce this

system of forces (a) to force-couple system at A and, (b) if possible, to a single

force.

Two vectors A and B are perpendicular to each other when their dot product is

equal to zero:

A ∙B ¼ 0
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Solution Let’s show all forces applied to the box in the rectangular coordinate

system as shown in Fig. 5.6a. Each force can be represented as a product of its

magnitude and its unit vector. In our case,

F1 ¼ 50j N

F2 ¼ �50j N

Forces F1 and F2 represent a couple

MA ¼ r1 � F1 ¼ 0:8i� 50j ¼ 40k

where r1¼ 0.8i is the vector pointing from force F2 to force F1.

(a) The force-couple system at A equivalent to the given system of forces will

consist of a resultant force F and a couple MA.

F ¼
X2
i¼1

Fi ¼ 50jþ �50jð Þ þ 84:8iþ 53:0j ¼ 84:8iþ 53:0jð Þ N

MA ¼ 40k

Thus, the equivalent force-couple system at A is

F ¼ 84:8iþ 53:0jð Þ N
and

MA ¼ 40kð Þ Nm Figure 5:6bð Þ:
(b) Now, the force-couple system consists of the coupleMA and forceF. Since they

are perpendicular their scalar product is equal to zero,MA � F¼0. We can move

Fig. 5.6 (a) Workers moving the box. (b) The equivalent force-couple system. (c) The resultant
force
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the resultant forceF to another location (x, y) in order to reduce the force-couple
system to one force only. Using (5.3), we will get

M ¼ r� F ¼ xiþ yjð Þ � 84:8iþ 53:0jð Þ ¼
i j k
x y 0

84:8 53:0 0

������
������

¼ 53:0x� 84:8yð Þk ¼ 40k

or in the scalar form

53:0x� 84:8y ¼ 40:0

To find the intersection of the line of action of a single resultant force with

x-axis and y-axis, we use (5.4) and (5.5) and obtain

x ¼ 0:755 m and y ¼ �0:472 m

The position of the resultant force is shown in Fig. 5.6c.

5.1.4 General Case of a Force-Couple System

Generally, the vectors of a resultant force and resultant moment are not perpendic-

ular to one another. Let’s represent the moment vector M as a sum of two vectors,

one—perpendicular (MN) and one—parallel (MP) to the resultant force R acting on

the point A (Fig. 5.7a). The couple MN and resultant force R are perpendicular to

one another and thus may be substituted by a single force R acting along a new line

of action (Fig. 5.7b). Thus, we now have the force R acting along the new line of

action, called axis of wrench, which is parallel to its original line of action. The

Fig. 5.7 General case of force-couple system
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position of a point along the new line of action that is parallel to R may be found

from the following relationship.

rA=B � RþMN ¼ 0

Such system is called a wrench, since its action may be described as a combina-

tion of a push (or pull) and twist about the axis of the push (or pull). When the force

and moment vectors have the same direction, the wrench is defined as positive.

The axis of the wrench may be defined by a position vector r of a point along

this axis.

The preceding paragraphs showed that any system of external forces and

moments acting on a rigid body might be reduced to an equivalent force-couple

system or even to a single force in some cases. The resultant force causes translation

of a rigid body, while the moment causes rotation.

Example 5.4 Two friends are moving a box as shown in Fig. 5.8. The coordinate

system is shown. The friend from the left applies a couple of forces that create a

moment M¼ 40i+ 35j+ 40kNm and that on the right pushes with the force

F¼�20i+ 15j� 25kN applied at the point A (0.7, 0.1, 0.2) m. Determine (a) the

wrench force and moment and (b) the point, where the axis of the wrench intersects

the x–z plane.

Solution Let’s resolve the moment vector M as a sum of two vectors,

one—perpendicular (MN) and one—parallel (MP) to the force F.

Fig. 5.8 Two friends are moving a box
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The projection of vector M on direction of the force F may be figured out as

following. The dot product M·F will give the projection of the magnitude of the

vector M on the direction of the vector F. This direction λ of the vector F is

λ ¼ F

Fj j ¼
�20iþ 15j� 25k

35:4
¼ �0:565iþ 0:424j� 0:706k

By multiplying this projection of the magnitude by the unit vector in the direction of

the force F will result in the MP. Thus,

MP ¼ M � λð Þ λ ¼ 20:3i� 15:26jþ 25:4k Nm

The perpendicular component of the moment M is

MN ¼ M�MP ¼ 19:7iþ 15:3jþ 14:6k Nm

Now, we can reduce the force F and MN to one force only since they are

mutually perpendicular (Sect. 5.1.3). Let’s define the point B where the wrench

interests the x–z plane.
rB¼ xi+ zk; therefore, we can find the coordinates of the wrench intersect from

(rA� rB)�F¼MN

0:7� xð Þiþ 0:1jþ 0:2� zð Þk½ � � �20iþ 15j� 25kð Þ ¼ 19:7iþ 50:3jþ 14:6k

x ¼ �0:133m and z ¼ 1:673m

5.1.5 Moment of a Force About an Axis

Let us again consider force acting on a rigid body as we did in Sect. 5.1.1. Moving it

to an arbitrary point resulted in introduction of a vector quantity—moment M.

Sometimes, it is necessary to determine the moment of a force not about a point, but

rather about a given axis or specific direction. We define the momentMAB about the

axis AB as the projection of the momentM of the force F on the axis AB (Fig. 5.9).

Consider a door hinged along an axis AB and pushed by a force F (Fig. 5.9).

First, we calculate moment of the force F about any point along the axis AB as

M¼ r�F and next find projection of this vector on the direction AB; in other

words, a component of the vector M on direction AB. It is easily done by using a dot

product. Thus, MAB¼M ·AB¼ (r�F) ·AB. AB is a unit vector along axis

AB. This may be expressed as

MAB ¼
ABx ABy ABz

x y z
Fx Fy Fz

������
������
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where ABx, ABy, and ABz are direction cosines of the given axis AB. x, y, and z are
the coordinates of any point along vector F and Fx, Fy, and Fz are components of

force F.

Such expression is called mixed triple product of r, F, and AB.

Let us resolve force F into two rectangular components Fp along AB and Fn

lying in the plane perpendicular to AB, the same for the vector r¼ r1 + r2
(Fig. 5.10).

Fig. 5.9 Hinged door with

the applied force

Fig. 5.10 Applied force split

into components parallel to

the axis AB and component

lying in the plane

perpendicular to AB
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MAB ¼ r� Fð Þ ∙AB ¼ r1 þ r2ð Þ � Fp þ Fn

� �� �
∙AB

¼ r1 � Fp

� �
∙ABþ r1 � Fnð Þ ∙ABþ r2 � Fp

� �
∙ABþ r2 � Fnð Þ ∙AB

First three mixed triple products are equal to zero since all three vectors are

“coplanar,” i.e., they belong to the same plane, thus

MAB ¼ r2 � Fnð Þ ∙AB
The term r2 � Fnð Þ is a vector parallel to the axis AB, and it represents the

moment of the Fn about the point where AB intersects the plane. The other force

component Fp has no tendency to rotate the body around axis AB since it is parallel

to this axis.

Example 5.5 For the hinged door (Fig. 5.9), the force F¼ 20 (3i+ 5j� 4k) N is

acting at the point (40,�10, 5) cm; point A’s coordinates are (0,�30, 0) cm and B’s

coordinates are (0, 0, 0). Determine the moment of the force F about the AB.

Solution Axis AB may be defined by a unit vector along direction AB as

AB ¼ 0iþ 30jþ 0kð Þ=30 ¼ j

and r¼ 40i� 10j+ 5k, thus

MAB ¼ r� Fð Þ ∙AB ¼ 40i� 10jþ 5kð Þ � 20 3iþ 5j� 4kð Þ½ � ∙ jð Þ
MAB ¼ 3500 M ∙ cm:

5.1.6 Problems

5.1 A force F¼ 12i+ 21j� 15k acts on a point A (4, �7, 9). Calculate the moment

of the force about the origin of the coordinate system.

5.2 A bucket B with a person weights 200 lb. Determine the moment of this force

about the elbow A. Use AB¼ 20 ft and assume that it makes angle of 10� with
the horizontal.
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Fig. P5.2

5.3 A person (W¼ 600 N) is climbing a tree. He is supported by a rope that makes

angle of 30� with the vertical axis of the tree. Assume that his weight is applied

at the point of the rope attachment. His left leg makes an angle of 80� with the

vertical axis. Determine the moment of the force exerted by his weight about

the left leg contact with the tree. The distance between the point of the rope

attachment and the left leg contact with the tree is 1.1 m.

Fig. P5.3
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5.4 Use the parameters of the problem 5.3 to determine the moment of the force

exerted by the rope about the left leg contact with the tree.

5.5 Determine the moment of the forces F1 and F4 about point O. Use the

following as the force magnitudes: F1¼ 3p and F4¼ 2p.

Fig. P5.5

5.6 Determine the moment of the forces F2 and F3 about point O (Fig. 5.5). Use

the following as force magnitudes: F2¼ p, F3¼ p. Use b¼ 0.1 m, c¼ 0.2 m,

p¼ 10 N, and α¼ 30�.
5.7 Calculate the moment of a force F about the point L. DL¼KL¼CL¼ a.

Fig. P5.7

5.8 Replace the force F¼ 5i� 3j+ 8z acting at the point A (2, �1, 4) by the

equivalent force system at the point B(�3, 2, 5).

5.9 Replace the force F¼�2i� 7j+ 3z acting at the point A (�4, 1, �2) by the

equivalent force system at the point B(4, 1, �6).

5.10 Replace the force F¼�4i+ 3j� 5z acting at the point A (1, 7, �3) by the

equivalent force system at the point B(�2, �2, 7).
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5.11 Four forces: FA¼ 4i� 2j+ 6k, FB¼�2i� 3j+ 3k, FC¼�4i� j� 5k, and

FD¼ i� 7j+ 6k are acting at the points A (1, 4, 2), B (�3, 0, 4), C (2, �3,

�2), and D (�3, 0, 0). Find the resultant force and resultant moment if the

resultant force is acting at the point B.

5.12 Calculate the moment of the force (800 N) about the z-axis a basketball player
applied on the rim when he hangs from it. The player placed his hand 30� off
the x-axis, the radius of the rim is 25 cm, and the distance from the z-axis to
the rim’s center (d) is 30 cm.

Fig. P5.12

5.13 A pyramid with a square base (size “a”) is acted upon by the forces Q and F.

Determine the resultant force and its moment about the point A, edge OA, and

the diagonal BD.

Fig. P5.13

5.14 The cube with a side of 20 cm is acted upon the system of forces as shown.

Magnitude of each force is equal to 10 N. Replace these forces with an

equivalent force-couple system at the point A.
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Fig. P5.14

5.15 The force-couple system consisting of the force (0, 3, 4) kN and the moment

(�1, 2, 5) kN m is acting at the point A (1, 2, 3). Replace this system with the

equivalent force-couple system at the point B (2, �3, 4).

5.16 The forces F1¼ (0, 1) N, F2¼ (1,�1) N, and F3¼ (2, 2) N are acting at the

points A (1, 1), B (2, 1), and C (�1, 0), respectively. Reduce the system to a

single resultant force R and determine its line of action.

5.17 Reduce the forces P1¼ 4 kN, P2¼ 6 kN, P3¼ 8 kN, and P4¼ 10 kN to the

resultant force and moment about the point O. All the dimensions are in

meters.

Fig. P5.17

5.18 The box is loaded by the forces FA¼ 4i� 2j+ 6k, acting at A (0, 1, 1),

FB¼�4i+ 2j� 6k, acting at B (1, 0, 1), and FC¼ 4i� 2j+ 6k, acting at C

(1 ,�1, 1). Reduce these forces to a force-couple system. Is it possible to

reduce them to one force only?

5.19 A crate is loaded by a force (�2, 12,�4) kN acting at the point A (�1, 6, �2)

and the moment (12, 4, 6) kN m. Is it possible to reduce this force-couple

system to one force only? If yes, where this force will cross the XY plane?
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5.20 A power transmission system consists of three pulleys—A and B have belts

acting in the horizontal direction and C has a belt acting in the vertical

direction. The diameters are 0.15, 0.60, and 0.25 m (from left to right). The

tensions in the belts are 500, 1500, and 1000 N. The distance AD¼ 0.25 m,

DB¼ 0.15 m, and BC¼ 0.40 m. The whole assembly is supported by a

frictionless journal bearing D. Reduce all forces exerted by the belts to the

force-couple acting at the point D (neglect the size of the bearing).

Fig. P5.20

5.21 Replace the resultant force F¼�4i+ 3j� 5z N and couple M¼ 12i+ 4j

+ 6kNm by the equivalent wrench.

5.22 For the given force R¼ 12i� 4j+ 9k N acting at the point O (2, 1, 4) and the

couple M¼�2i� 5j+ 12kNm determine the equivalent wrench and find

where the line of action of the wrench’s force intersects the x–z plane.
5.23 Three forces are acting on the body: F1¼F2¼�8i� 9j+ 5kN and F3¼ 18i

+ 11j� 6kN. Calculate the resultant force and moment. The force F1 acting at

the point A (1, 0, 0), F2 at the point B (1, 2, 0), and F3 at the point C(2, 2, 0).

Determine the equivalent wrench.

5.24 Consider the force F¼ 4i+ 5j� 7kN acting at the origin and couple

M¼�8i� 9j+ 5kN. Represent this force and moment by a wrench and

determine where the line of action of F intersects the y–z plane.

5.2 Equilibrium in Two Dimensions

All problems in nature are three-dimensional since we are living in a three-

dimensional world. However, in many cases, the structure may have a plane of

symmetry, i.e., both in geometry and loading. In such case, the equilibrium of the

structure may be treated as a two-dimensional problem, assuming that the external

loads are acting in the same plane. In addition, the load distribution must be known.

Such example is shown in Fig. 5.11a depicting a gymnast on the beam, the physical
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model is shown in Fig. 5.11b. The beam has symmetry along its longitudinal axis in

the vertical plane. The load (the weight of the gymnast) is acting in the same

vertical plane.

Solving real problems in two dimensions requires simplifications that introduce

errors and reduce the accuracy of the solution. The allowed degree of simplifi-

cation relies on the engineering intuition and is based on experience.

Another less obvious example of the problem which is usually modeled as a

two-dimensional case is shown in Fig. 5.12a, its physical model is shown in

Fig. 5.12b. The chair and the person have a common plane of symmetry assuming

the weight of the person is equally distributed among all four legs of the chair. If the

structural elements of interest are the legs of the chair, the problem may be modeled

as a two-dimensional case.

Therefore, the problems that satisfy the following conditions may be treated as

two-dimensional cases:

• The objects are having a plane of symmetry.

• All external forces and reactions are acting in this plane.

• All external moments are being perpendicular to this plane.

Fig. 5.11 (a) Gymnast on the beam. (b) Physical model
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In both examples above, we are dealing with modeling of real-life problems.

Solving the real problems requires simplifications that introduce errors and thus

reduce the accuracy of the solution. The allowed degree of simplification relies on

the engineering intuition and is based on experience.

In Sect. 5.1, we showed that any force system may be reduced to a single

resultant force and a single resultant moment. According to the First Newton’s

law, the system is in equilibrium when the resultant force and resultant moment are

equal to zero.

R ¼
XN
i¼1

Fi ¼ 0 and M ¼
XN
i¼1

Mi ¼ 0 ð5:6Þ

Fig. 5.12 (a) Person on the chair. (b) Physical model
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Or in the scalar form

X
Fx ¼ 0

X
Mx ¼ 0X

Fy ¼ 0
X

My ¼ 0X
Fz ¼ 0

X
Mz ¼ 0

ð5:7Þ

There are ONLY three independent equations of equilibrium in a two-

dimensional case.

In the case of two-dimensional problems, we rewrite the equations of the

equilibrium (5.7). Let’s assume that all forces are acting in the plane x–y, thus
each force has only two components and the moment has only one.

Rx ¼
X

Fx ¼ 0

Ry ¼
X

Fy ¼ 0

M ¼
X

Mz ¼ 0

ð5:8Þ

while the rest of equations in (5.7) are automatically satisfied.

The three equations may be solved for maximum of three unknowns. The above

set of three equations is not the unique way of satisfying the equilibrium condition.

The problem may be treated as two-dimensional when:

• Objects are having a plane of symmetry.

• External forces and reactions are acting in this plane.

• External moments are being perpendicular to this plane.

There are additional ways in which three equations of equilibrium in two

dimensions may be expressed. Let us start with the set of equilibrium equations

(5.8) describing the loading schematically shown in Fig. 5.13a. Resolve force

R into components Rx and Ry (Fig. 5.13b). Next, let us move the force Ry to a

new location B. By doing so, we have to introduce an additional moment

MB¼ d�Ry, where d is the distance between the lines of actions of the forces at

the points A and B (Fig. 5.13c). Now, we have the forces Rx and Ry and moments

MB and MA. The equilibrium requires that the resultant force and the resultant

moment be equal to zero. Thus, MB¼ 0, but it is equal to zero only when Ry¼ 0.

Therefore, there is no need to write an explicit equation Ry¼ 0, and we may use the

alternate set of equilibrium equations.

This means that instead of the three equations (5.8), an alternative set of

equilibrium equations can be used, assuming that the points A and B do not
coincide.
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X
Fx ¼ 0X
MA ¼ 0X
MB ¼ 0

ð5:9Þ

Similarly, it may be shown that the first equilibrium equation in (5.9) may be

replaced by another moment equation.

X
MC ¼ 0X
MA ¼ 0X
MB ¼ 0

ð5:10Þ

where the subscripts A, B, and C mean sum of moments about the corresponding

points. It should be stressed that all three points A, B, and C should not belong to the

same straight line.

It is important to note that only three of the above equations (5.8), (5.9), and

(5.10) are linearly independent; therefore, we can solve them for three unknowns

only. Any combination of those equations can be used to guarantee the equilibrium

of a structural element. The only reason to use any combination other than (5.8) is to

reduce the effort required to solve them. However, usually the simplest way is to

write three independent linear equations (5.8) and to solve them using any of the

available computational tools, such as MATLAB, etc.

Example 5.6 The driver applied pressure to the brake pedal (Fig. 5.14a) with the

force of 300 N. Determine the tension in the cable CD and the reaction force at the

frictionless pin B. All dimensions are in centimeters.

Fig. 5.13 Schematic of equilibrium equations: (a) Force and Moment; (b) Moment and two force

components; (c) Two Moments and one force component

5.2 Equilibrium in Two Dimensions 133



Solution From Fig. 5.14a a physical model is drawn as shown in Fig. 5.14b. A free

body diagram of the brake pedal is shown in Fig. 5.14c. The cable CD exerts a

tension T on the brake in the direction of the cable, i.e., the direction of the tension

T is known. At the pin B neither the magnitude nor the direction of the reaction

force are known. Force F is known, since its magnitude is given and the direction

may be extracted from the picture. Let’s place the origin of coordinate system at the

point A and express each force as a vector.

F ¼ �300i

T ¼ T 15iþ 10jð Þ=18:03
B ¼ Bxiþ Byj

For the system to be in equilibrium, the following conditions should apply:X
F ¼ 0 and

X
M ¼ 0

or in scalar form

X
Fx ¼ 0:832T � 300þ Bx ¼ 0X
Fy ¼ 0:555T þ By ¼ 0

X
MB ¼ 300 ∙ 40� 0:832T ∙ 10 ¼ 0

From the last equation we can get T¼ 1442 N. This result is substituted into the first

and second equations to yield By¼�800 N and Bx¼�900 N.

The negative values of the force components indicate that the force

B components act in direction opposite to the shown in Fig. 5.14c.

Fig. 5.14 (a) Brake pedal. (b) Physical model. (c) Free body diagram
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Using the sum of moments about point A rather than point B would create a set

of three simultaneous equations with three unknowns that could be solved by a long

process of elimination or by using a numerical tool, like MATLAB.

You may use the MATLAB routine equilibriumBody2D.m (http://extras.

springer.com) to solve this problem. Start MATLAB, run the routine, and enter

all pertinent information.

Example 5.7 A bike rider applied the front hand brakes (Fig. 5.15a) with the force

of 100 N. Consider only half of the brake assembly as a structural element.

Determine the force applied to the tire and the reaction force at pin B.

Solution Since the hand brake is applied to the system attached to the flexible

cable, the force acting on the point A (Fig. 5.15a) is equal to the force applied to the

brake handle. From Fig. 5.15a a physical model is drawn as shown in Fig. 5.15b.

All dimensions are in meters.

This is a two-dimensional problem, it has three unknowns: two components of

the reaction force B and the horizontal force Q acting from the tire on the bracket.

Let us set a coordinate system at the point B (Fig. 5.15c). Now, we have to express

each of the forces through its rectangular components and use them in the equations

of equilibrium. The force T is acting in the vertical direction; therefore, its

components are Ty¼ 100 N and Tx¼ 0. The force B has two unknown components

Bx and By. Now, we are ready to write the equations of equilibrium.

X
Fx ¼ 0 ) Bx � Q ¼ 0X
Fy ¼ 0 ) By þ Ty ¼ By þ 100 ¼ 0X
MB ¼ 0 ) 0:12 � Ty � 0:1 � Q ¼ 0:12 � 100� 0:1 � Q ¼ 0

Solution of the above set of three equations results in

Fig. 5.15 (a) Bike brake assembly. (b) Physical model. (c) Free body diagram
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By ¼ �100 N

Bx ¼ 120 N

Q ¼ 120 N

MATLAB Solution This problem may also be solved by using the MATLAB

routine equilibriumBody2D.m. Start the MATLAB and execute this routine. The

box will appear explaining how to use this routine and how to input the data. Read it

and click OK. Next, dialog box will ask you to input number of forces and

moments. In this problem, we have three forces and zero moments, enter these

values and click OK. Next, box will ask to input the following information for each

force (input values are shown in italic). Let us assign to the force T number 1, force

B number 2, and force Q number 3. Below is input for the force #1.

Magnitude (force). . .. . .. . .. . .. . .. . . 100
X component of the line of action. . .. . ..0
Y component of the line of action. . .. . ..1
X coordinate of force vector . . ..0.12 (i.e., point of force application)

Y coordinate of force vector . . .. . ...0.05

Click OK and fill the data for the rest of the forces, enter x for any unknown

value.

Input for the force #2:

Magnitude (force). . .. . .. . .. . .. . .. . .. . .. . ..X
X component of line of action. . .. . .. . .. X
Y component of line of action. . .. . .. . ..1
X coordinate of force vector . . .. . .. . ...0
Y coordinate of force vector . . . . . ...0

It should be noted that since we do not know the magnitude and direction of the

force B, we set its magnitude as unknown and, let say, direction x as unknown. For
direction y, we can enter any value since the vector is defined by only two

parameters and the third one is dependent on the values of the first two.

And finally, for the third force we input the following information:

Magnitude (force). . .. . .. . .. . .. . .. . .. . .. . ..X
X component of line of action. . .. . .. . .. �1
Y component of line of action. . .. . . . . ..0
X coordinate of force vector . . .. . .. . ... �0.05
Y coordinate of force vector . . .. . .. . ... �0.1
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Click OK and the solution will appear as:

Force # Magnitude X component Y component

1 100.0 0.000 100.0

2 156.2 120.0 �100.0

3 120.0 �120.0 0.000

The result will be also shown on a sketch showing the locations, magnitudes, and

directions of all forces.

Guidelines and Recipes for Solving an Equilibrium Problem in Two Dimensions

• Select a coordinate system.

• Draw a physical model.

• Show all reactions, external forces, and moments.

• Create a free body diagram.

• Represent all forces and moments in vector notation.

• Write two vector equations of equilibrium and represent them through the

corresponding three scalar equations.

• Solve the system of scalar equations for three unknowns.

5.2.1 Two-Force Members

Sometimes, structural elements are loaded by only two forces. Consider an example

of a bar connecting the ski lift chair to the cable (Fig. 5.16a). Assuming a friction-

less pin attachment at the top, the physical model may be represented as shown in

Fig. 5.16b and the corresponding free body diagram in Fig. 5.16c. For this system to

be in equilibrium, the moment of forces F andW about any axis should be equal to

zero. Taking the sum of moments, for example, about the point A leads to the

conclusion that the line of action of force W must pass through point A. Similarly,

taking the sum of moments about point B leads to the conclusion that the line of
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action of force Fmust pass through point B. This is possible only if both forces have

the same line of action, or in other words, are acting along the same line. By taking

the sum of forces along this line of action, we conclude that they have to have the

same magnitude, but act in opposite directions (Fig. 5.16c). These two forces

represent an equilibrium pair of forces, as described in Chap. 2. It is important to

recognize the two-force members in order to simplify solutions of certain problems.

Two-force body in equilibrium is loaded by two forces with the same line of

action, same magnitude, but acting in the opposite directions.

5.2.2 Three-Force Members

When only three coplanar forces are acting on a body, it is called a three-force body.

For such a body to be in equilibrium, the lines of action of the three forces must be

concurrent (Fig. 5.17a), i.e., intersect in one point, or the forces must be parallel and

coplanar (Fig. 5.17b).

When a body loaded with three coplanar, nonparallel forces is in equilibrium,

the three forces have to intersect at the same point.

Let us consider the case shown in Fig. 5.17a. Assume that the two of the forces,

e.g., F1 and F2 will intersect in point A. For a body to be in equilibrium, the sum of

the moments must be equal to zero. Moments of forces F1 and F2 with respect to the

point A are always equal to zero. Thus, the moment of force F3 with respect to the

same point has to be equal to zero. This is the case only when the line of action of

force F3 passes through the same point A. Therefore, we effectively reduced the

Fig. 5.16 (a) Lift chair. (b) Physical model of the bar. (c) Free body diagram
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problem of a body loaded by three forces to a problem of the forces acting at a point

A. Now, we have only two equations of equilibrium
X

Fx ¼ 0 and
X

Fy ¼ 0.

In the case when three forces are parallel to one another, equilibrium is possible

only when one of the forces is in the opposite direction to the other two, and it is

located between the two. The location of the middle force is dependent on the

magnitudes of the other two forces. The seesaw (Fig. 5.18a) is a good example of

such case; its free body diagram is shown in Fig. 5.18b.

Example 5.8 Use the three-force body approach to determine the force which

worker has to apply to the rope in order to keep the box, weighting 150 N, in

equilibrium at the distance of 3 m from the wall (Fig. 5.19a). All dimensions are in

meters.

Solution The free body diagram of the box is shown in Fig. 5.19b. We place the

origin of the coordinate system at point O, which is the point where all three forces

have to intersect (this is a three-force body). Now, we can use the same procedure

as we used for solving the equilibrium problems for a point in two dimensions

(Sect. 4.2.2).

The equilibrium equations are:

Fig. 5.18 (a) Seesaw. (b) Free body diagram

Fig. 5.17 (a) Concurrent forces. (b) Parallel forces
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X
Fx ¼ 0 ) �P � cos β þ T � cos α ¼ 0X
Fy ¼ 0 ) P � sin β þ T � sin α� Q ¼ 0

The angles may be determined from the geometry:

α ¼ tan �1 2

1:5

� 	
¼ 53:1∘ and β ¼ tan �1 4

3

� 	
¼ 53:1∘

The solution is: P¼ 93.8 N and T¼ 93.8 N. The worker has to apply force of

93.8 N in order to keep the box at the desired location.

Example 5.9 A box is loaded by forces A¼ 20 N and B¼ 50 N as shown in

Fig. 5.20a. Determine the position and magnitude of the force C to keep the box

in equilibrium. All dimensions are in meters.

Fig. 5.20 (a) Box. (b) Free body diagram

Fig. 5.19 (a) Physical model. (b) Free body diagram
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Solution The free body diagram of the box is shown in Fig. 5.20b. Since the two

known forces are parallel to one another, it is obvious that the third force should be

also parallel to them in order to keep the box in equilibrium. We place the unknown

force C at distance “a” from the coordinate system origin. The equations of

equilibrium are

X
Fx ¼ 0

X
Fy ¼ 0 ) Aþ Bþ C ¼ 20þ 50þ C ¼ 0 ) C ¼ �70 NX
Mo ¼ 0 ) A � 2þ B � 8þ C � a ) a ¼ 6:29 m

The first equitation is satisfied since all forces are in the y-direction.
It is obvious that the position of the force C is between the forces A and B.

You may also use the MATLAB routine equilibriumBody2D.m to solve this

problem. Start the MATLAB and run the equilibriumBody2D.m. The dialog box

will appear with general explanation on how to use this procedure. Read it and click

OK. The next dialog will ask you to input number of forces and number of moments

acting in this problem. You input 3—for number of forces and 0—for number of

moments. Now, you will be asked to input all relevant information for each of the

three forces acting on the body. Let us input data for force A as force #1, B #2, and

C #3. Remember to input x for any unknown value. The following table

summarizes the input.

Force number 1 2 3

Magnitude 20 50 x

x component of the line of action 0 0 x

y component of the line of action 1 1 1

x coordinate of force application 2 6 x

y coordinate of force application 0 0 0

When a body loaded with three coplanar, parallel forces is in equilibrium, one of

them should be opposite in direction and located between the other two forces.

We input x for unknown values of the third force magnitude, and x for its

x component of the line of action (since we do not know the direction of this

force). For its y component of the line of action, we input an arbitrary value (1 in

this case), since each force in two dimension is defined by two parameters. These

could be its x and y components or magnitude and one of the components of the line

of action. The result will appear as shown below.

Load # 3 the unknown parameter #1 is: �70.0000
Load # 3 the unknown parameter #2 is: 0.0000
Load # 3 the unknown parameter #4 is: 6.2857
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Force # Magnitude X component Y component

1 20.000 0.000 20.000

2 50.000 0.000 50.000

3 70.000 0.000 �70.000

First three lines provide the values of three unknowns we defined by x. The first
parameter is the force magnitude. It has a negative sign since we prescribed its

y-direction as +1, which is up and the correct direction is down. The second

unknown is equal to zero, which is the x component of the line of action for the

force C. The third is 6.29, which is the x coordinate of the force C application. Next

three lines represent each force as a magnitude and as its x and y components. The

MATLAB also draws a schematic of the forces as they applied to a rigid body.

Example 5.10 The ball is attached to the wall by cable AC (Fig. 5.21a). Assume

that the weight of the ball is P, determine the tension T in the rope, and the reaction

R at the wall/ball contact.

Solution The free body diagram of the ball is shown in Fig. 5.21b. Three forces are

acting on the ball: its weight P, reaction from the wall R, and tension from the cable

T. Since it is a three-body problem, all forces have to intersect at one point, O in this

case, in order to keep the box in equilibrium. The equations of equilibrium are

X
Fy ¼ T cos α� P ¼ 0

T ¼ P= cos α

Fig. 5.21 The ball attached to the wall. (a) Physical model, (b) Free Body Diagram, (c) Graphical
method
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X
Fx ¼ T sin α� R ¼ 0

R ¼ T sin α ¼ P sin α= cos α ¼ P tan α

Alternatively, we can use the graphical method and draw a triangle of forces

(Fig. 5.21c). Use the “sin” law to create the following relationships:

T

sin 90
¼ P

sin 90� αð Þ ¼
R

sin α

T ¼ P= cos α

and

R ¼ T sin α ¼ P sin α= cos α ¼ P tan α

5.2.3 Problems

5.25 Determine force F to keep the wheelbarrow (P¼ 80 N) in equilibrium if

Q¼ 450 N. All dimensions are in mm.

Fig. P5.25

5.26 Person (W¼ 180 lb) is standing on one foot. What is the contact force

between the ground and heel? The dimensions are in inches.

Fig. P5.26
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5.27 Car is located on the bridge, length AB¼ 30 m. Loads on each axel are

Q1¼ 12 kN, Q2¼ 18 kN, the distance between the axels 3 m. Determine

distance x that will result in equal vertical components of the reactions at A
and B.

Fig. P5.27

5.28 Calculate the force acting on the axis of the rear wheel of the bicycle when the

weight of the riderW is 500 N. The distance between the front and rear axles

is 1.2 m, and the distance between the rear axis and the seat is 0.3 m. Neglect

the bicycle weight.

Fig. P5.28

5.29 The front-end loader has total weight of 50 kN. Assume that the weight is

applied at the midline between the front and rear wheels. By activating the

cylinder, the loader is capable of lifting the front wheel from the ground by

pushing the bucket against the ground. What is the force necessary to apply

between the bucket and ground to lift the front wheel from the ground?
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Fig. P5.29

5.30 Calculate the load acting on the barrel at D, if a¼ 50 cm, b¼ 10 cm, and

M¼ 50 N.

Fig. P5.30

5.31 A free standing bridge is supported by two columns at C and D. Its weight is

1.5 kN/m. Determine the maximum length l so that the bridge will not flip

over when a truck will ride over it. Truck exerts load of 20 kN on the front

axle and 25 kN on the rear. Distance between the axles is 3 m and 2d¼ 8 m.

Fig. P5.31
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5.32 Homogeneous rod OA is loaded by the barrel Q and is held in equilibrium by

a block F. What is the length l of OA for the minimum value of F to keep the

system in equilibrium, if OB¼ b and rod OA weights q N/m?

Fig. P5.32

5.33 The homogeneous rod AB, length 10 in. and weight 90 lb is suspended by two

springs. Stiffness of the spring DL is twice of the spring EF. (Stiffness is the

force needed to extend the spring by 1 cm). Determine the load P that has to

be placed at point K to insure that the rod is horizontal. AD¼BE¼ 2 in.,

DK¼ 1 in. When springs are unloaded, they have the same length.

Fig. P5.33

5.34 Horizontal beam AB is loaded by two weights C (50 N) andD (10 N). At what

value of x, the reaction force at A is twice the reaction force at B.

Fig. P5.34

5.35 The power transmission system consists of three pulleys: P1¼ 20 kN,

P2¼ 34 kN, and P3¼ 12 kN, all acting in the downward vertical direction.

At what distance “x” one should install the pulley P2 so that the reaction forces

at A and B will be the same? Neglect the weight of the axis.
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Fig. P5.35

5.36 Determine the reactions at A and B as function of the position of the cart C

along the crane. Weight of the crane W¼ 60 kN, weight of the cart with the

load P¼ 40 kN. AC/AB¼ 0.8. Model crane as a two-dimensional structure.

Fig. P5.36

5.37 Beam AB (weight 150 N) is loaded by the weight Q¼ 750 N located at the

distance of 5 cm from the point A. The weight P¼ 200 N. What should be the

length of the beam AB for system to be in equilibrium?

Fig. P5.37
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5.38 Horizontal beam AB (length 10 m) is loaded as shown.

AC¼CD¼DE¼EF¼ FB¼ 2 m. Where should be located support so the

beam will be in equilibrium?

Fig. P5.38

Determine the reactions at A and B for the loads shown in the problems

5.39–5.42.

Fig. P5.39

Fig. P5.40

Fig. P5.41
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Fig. P5.42

5.43 Safety valve A (diameter d¼ 4 cm) of the pressure vessel is attached by the

link AB to the bar CD (weight of the bar CD¼ 12 N). Determine the weightQ

that will allow the valve to open when inside pressure will reach 8 N/cm2.

CD¼ 60 cm, BC¼ 6 cm.

Fig. P5.43

5.44 Three barrels are kept in equilibrium by system of pulleys as shown.

Determine the relationship between the barrels having weights M1, M2, M3,

and the tension in the cables. A radius of each pulley is given as r1, r2, r3, r4,
and r5.

Fig. P5.44

5.45 Crane (weight D¼ 500 kN) is riding along the rail AB (weight R¼ 30 kN)

with a load P¼ 10 kN. Horizontal distance between the left support A and

mass center of the crane is 20 m, distance between the mass center and the

load P is 30 m and rail AB is 70 m. Determine the reactions at A and B.
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Fig. P5.45

5.46 Helicopter (W¼ 10 kN) made a crash landing on the crane. What is the

tension in the vertical cable system that holds the crane in equilibrium?

Weight of the horizontal boom P¼ 500 N, its length is 10 m, helicopter

landed 1 m from its end. The distance between the vertical cables and the

crane is 1 m.
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Fig. P5.46

5.47 Power transmission tower is loaded by horizontal force P and by tension from

the electrical wire attached to the pulley D. Weight of the tower is G and is

acting along the midline mn. The counter balance has weight M. Determine

the vertical component of the reaction at A.
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Fig. P5.47

5.48 30 kN pipe with radius R¼ 1 m is supported by walls as shown. Determine the

forces exerted by the pipe on the wall at points A and B. Use l¼ 1.6 m.

Fig. P5.48

5.49 Horizontal beam BC (weight W¼ 600 N) is built into the wall as shown.

Determine the reactions at A and B if it is loaded by the weight P¼ 5 kN.

Fig. P5.49
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5.50 The railroad crane mounted on the cart is riding along the tracks as shown.

Weight of the cart applied at A is 20 kN, weight of the crane applied at C is

5 kN, weight of the counter balance D is 30 kN, and weight of the link FG

applied at H is 7 kN. Determine the largest load Q that can be safely hoisted

by the crane.

Fig. P5.50

5.51 Weight of the crane P1¼ 500 kN. It is designed to lift load P2¼ 250 kN. What

should be the minimum weight of the counter ballast Q and the maximum

distance x to assure that the crane will be stable with and without load P2?

Fig. P5.51

5.52 A crane A moves along the rail B to place load Q in the opening on the right.

Determine P (weight of the crane A and the holding column D) so that load

Q¼ 12 kN will not lift the wheel E from the rail.
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Fig. P5.52

5.53 Crane’s weight of 35 kN is applied at the point A. The base of the crane is a

square block (2� 2 m) of concrete with specific weight of 40 kN/m3. What

should be the base height so the crane will be able to safely lift load

P¼ 40 kN?

Fig. P5.53

5.54 The slender rod AB (weightW¼ 200 N and length 10 m) is suspended by two

cables and loaded by the weight P¼ 100 N. Determine the tension in each

cables if AE¼ 3 m.
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Fig. P5.54

5.55 Helicopter (P¼ 4000 lb) is hanging in the air. Assume that the lift F1¼ 0.04

P. Determine d, the distance between the axis of the main propeller and center

of gravity for the craft and the lift force F2. L¼ 15 ft.

Fig. P5.55

5.56 The weight of the boom AB (P¼ 3 kN) is acting at point C. Determine the

tension in the cable AD and the components of the reaction at B, ifQ¼ 10 kN,

α¼ β¼ 20�, BC¼ 1/3 AB.

Fig. P5.56

5.57 The slender homogeneous rod AB (weightW¼ 100 N, length l ) is held in the

state of equilibrium by two cables AC and BC. Determine the tension in each

cable. Consider equilibrium of the rod AB. Use AC¼BC¼ l¼ 1 m.
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Fig. P5.57

5.58 The link loaded as shown. Determine the force P and reaction at A, when

P1¼ 50 N, P2¼ 100 N, and P3¼ 200 N. All dimensions are in cm.

Fig. P5.58

5.59 Boom AD is loaded by load M and is held in equilibrium by cable BC. The

weight of the boom AD W¼ 2 kN, α¼ 30�, and the tension in the cable is

25 kN. Determine the weight of the load M, if AB¼AC¼ 0.7 AD.
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Fig. P5.59

5.60 Box (weight P) is lifted along the incline by block M. What should be the

weight of the block M so the box will flip over when it is in the position

shown?

Fig. P5.60

5.61 The ball M (weight Q and radius a) and the weight P are suspended by the

cables as shown. Determine the angle φ when the system is in equilibrium.

Use OM¼ b.

Fig. P5.61
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5.62 The part of the gym exercise equipment is shown in Fig. P5.62. The tension in

the cable is 500 N. The pulley is attached via frictionless bracket to the 0.1 m

tall vertical holder AB. Calculate the horizontal components of the reaction

forces acting at points A and B. The upper part of the cable is horizontal, while

the left part makes angle of 10� with the vertical direction. The diameter of the

pulley is 0.3 m. The distance between the center of the pulley and the holder

AB is 0.25 m.

Fig. P5.62

5.63 The beam rests upon support B. Its weight of 300 N is acting at C. Determine

the reactions at points A and B.

Fig. P5.63

5.64 A 30 kN roller is pulled by the horizontal force P over the frictionless obstacle

C. Determine the force P required to move the roller over the obstacle. Force

from the obstacle to the roller is perpendicular to the surface of the roller.
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Fig. P5.64

5.65 The cover of the aircraft engine is supported by two links AB and

BC. Determine the forces in each link, if cover weight is 10 kN and it is

acting along the line passing through the point B, α¼ 25� and β¼ 40�.

Fig. P5.65

5.66 The beam AB is held by the link CD as shown. Determine the reactions at A

and D when F¼ 15 kN.

Fig. P5.66

5.67 The weightless beam AB is supported as shown and loaded by force

P¼ 10 kN. Determine the reactions at A and B.
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Fig. P5.67

5.68 The weightless beam AB is supported as shown and loaded by force

P¼ 10 kN. Determine the reactions at A and B.

Fig. P5.68

5.69 The weightless beam CB is supported as shown and loaded by force F¼ 5 kN

and M¼ 10 k N m. Determine the reactions at A and B, if a¼ 3 m, l¼ 6 m,

and α¼ 200.

Fig. P5.69

5.70 The weightless beam AB is supported by the cable and loaded by force

F¼ 5 kN and M¼ 10 k N m. Determine the reactions at A and C, if a¼ 2 m,

l¼ 4 m, and α¼ 60�.

Fig. P5.70
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5.71 Beam AB is loaded by the weight P. Determine the tension in the cable BC as

function of the position “x”.

Fig. P5.71

5.72 Rigid link ABC weights 80 N, its weight is applied at point E which is 20 cm

from the vertical line BD. Determine angle φ if system is in equilibrium.

P1¼ 300 N, P2¼ 100 N, AB¼ 40 cm, BC¼ 80 cm.

Fig. P5.72

5.73 The beam AB, length l, is loaded by a box, weight M. It leans on the smooth

vertical wall at A and on the corner C. Determine the reactions at A and C, and

length AC when the beam AB is in equilibrium.
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Fig. P5.73

5.74 Cube, weight P is loaded by horizontal force Q. Determine the minimum

force Q necessary to start flipping the box over the point A.

Fig. P5.74

5.75 A slender rod AB is held in equilibrium as shown. Determine the reactions

at A, knowing that the weight of AB is 10 N.

Fig. P5.75

5.76 The bar AB (weightW ) is held open by the rope BCD. Determine the tension

in the rope as function of the angle φ, when AB¼AC.
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Fig. P5.76

5.77 A slender rod of length 2 m and weight 100 N is held in equilibrium as shown

with one end against a frictionless wall and the other end attached to a rope

BC. Determine the distance AC, tension in the rope BC, and the reaction at

point A.

Fig. P5.77

5.78 Two masses are attached to B by the cables BC and BD and they are in a static

equilibrium. Determine the angle α, if load C is P, load D is 2P, and weight of

the boom AB is 2P. AB¼AD.
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Fig. P5.78

5.79 Weightless plate ABCD (AB¼ a and BC¼ b) is attached by the pin at B and

supported by the frictionless wall at A. Determine the reactions at A and B,

when the weight M is suspended at C.

Fig. P5.79

5.80 The crane is lifting a crate having weightM. Determine the reactions at O and

tension in the cable BC, when AB¼OB¼ 2 m and OA¼ 3.5 m.

Fig. P5.80

5.81 Rod CB (weight W) is supported by two frictionless walls as shown. Deter-

mine reactions at C and B and angle θ, when the rod is in equilibrium.
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Fig. P5.81

5.82 Rod CB (weight 200 N) leans on the frictionless wall AB. It is held in

equilibrium by the cable AC. Determine the tension in the cable AC and

reactions at B and C.

Fig. P5.82

5.83 Rod CB (weight 200 N and length l¼ 4 m) leans on the frictionless wall AB,

3 m tall. It is held in equilibrium by the cable AC. Determine the tension in the

cable AC and reactions at B and C.

Fig. P5.83
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5.84 Rod AB is supported in a frictionless device as shown. AB¼ 3 m, CB¼ 0.5 m,

BD¼ 1 m, and weight of AB is 10 N. Determine the reactions at points B, C,

and D.

Fig. P5.84

5.85 The homogeneous rod AB (weight¼ 10 N) is supported by a smooth floor and

an incline as shown. Determine the reactions at A and B and the mass P.

Fig. P5.85

5.86 The horizontal rod is suspended by three ropes. Its weight is 5 N and it is

applied at the point D. Determine tension in each rope.

Fig. P5.86

5.87 The homogeneous plate AB (W¼ 12 kN) is supported by the wall at A and

frictionless support at B. Determine the reactions at A and B, when

sin α¼ 0.5.
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Fig. P5.87

5.88 The ladder AB (weight W¼ 100 N) is supported by a smooth wall at B and a

step at A. A person (weight F¼ 750 N) stands on it at the point D that is at

the 1/3 of the ladder’s length from the bottom. Determine the reactions at

A and B.

Fig. P5.88

5.89 A uniform ladder AB (length 16 m, weight 300 N) is suspended by the rope

BC. A person (weight G¼ 600 N) is standing at the point D. Determine the

tension in the rope BC and reaction at A.
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Fig. P5.89

5.90 Weightless plate BCED is loaded as shown and is held in equilibrium by cable

AE. Diagonal BE is in the horizontal direction. Determine reactions at C and

tension in the cable. P1¼ 50 N, P2¼ 200 N, angle BED¼ 60�, and

BD¼ 4ED.

Fig. P5.90

5.91 A 20 kN cylinder Q is suspended from the homogeneous rod AB (weight

6 kN) and kept in the equilibrium by a barrel (weightG). Determine weightG

and reaction at A, when BD¼AB/4.
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Fig. P5.91

5.92 The homogeneous L-shaped element ABC is suspended by the cable

AD. Link BC is twice as long as the link AB. Determine the angle α.

Fig. P5.92

5.93* The homogeneous plate ABD is attached to the floor by the pivot A. The

weight of the unit area of plate is q and is applied at the point C, CA/CK¼ 2

when AK that is perpendicular to BD. What is the maximum value for angle

α to keep the plate from flipping over the point A when force P applied as

shown?

Fig. P5.93
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5.3 Equilibrium in Three Dimensions

As it was shown in Sect. 5.1, a general three-dimensional system of forces and

moments can be reduced to a resultant force–moment system. The condition of

equilibrium may be expressed as shown in (5.6) and (5.7). In most problems, the

scalar equations will be convenient to use and we can solve for no more than six

unknowns.

X
Fx ¼ 0

X
Mx ¼ 0X

Fy ¼ 0
X

My ¼ 0X
Fz ¼ 0

X
Mz ¼ 0

This system of equations implies that the set of external forces and moments,

which satisfy the above equations will not impose any motion to the rigid body, i.e.,

the rigid body is in the state of equilibrium in accordance with the First Newton’s

Law. These equations are called the equations of equilibrium.
The procedure for solution is very similar to the procedure outlined for a

two-dimensional case, as seen below.

Guidelines and Recipes for Solving Equilibrium Problems in Three Dimensions

• Draw a physical model.

• Create a free body diagram; show all reaction and applied forces and

moments.

• Select a coordinate system.

• Represent all forces and moments in vector notation.

• Write two vector equations of equilibrium and corresponding six scalar

equations.

• Solve the system of equations.
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Two vectors A and B are perpendicular one to another when their dot product is

equal to zero: A∙B¼C.

Example 5.11 The homogeneous plate ABC (Fig. 5.22a) is suspended by a cable

CD and attached to the floor by two hinges. The weight P of the plate is 10 kN,

AB¼BC¼AC¼ 2 m. The plate is making an angle θ of 30� with the floor. The

coordinates of the point D are (0, 2, 2) m. Determine the tension in the cable and the

reactions at each of the hinges. The hinges do not exert couples on the plate and the

hinge B does not exert force in x-direction.

Solution Let’s draw a free body diagram shown in Fig. 5.22b. There are six

unknown values to solve for: Ax, Ay, Az, By, Bz, and T. The direction of the tension

in the cable is known from the geometry. You may recall that in the general three-

dimensional case one can write six equations of equilibrium and to solve for six

unknowns. Force P has only one nonzero component, Pz. Let us represent all forces

and reactions as vectors.

A ¼ Axiþ Ayjþ Azk

B ¼ Bxiþ Byjþ Bzk

T ¼ Txiþ Tyjþ Tzk

P ¼ Pxiþ Pyjþ Pzk

Since direction of the force T is known, let’s find its unit vector. From the geometry,

point C coordinates are (1, 0, √3/2), thus unit vector for force T is λ ¼ �0:399i
þ0:798jþ 0:452k and T¼T λ.

Fig. 5.22 (a) Physical model. (b) FBD
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Now, we can write the equations of equilibrium.

X
Fx ¼ Ax þ Tx ¼ 0

X
Fy ¼ Ay þ By þ Ty ¼ 0

X
Fz ¼ Az þ Bz þ Tz � P ¼ 0

X
MA ¼ rC=A � Tþ rB=A � Bþ rP=A � P ¼ 0

Define vectors

rC=A ¼ i� 1:5jþ 0:866k

rB=A ¼ 2iþ 0jþ 0k

rP=A ¼ i� 0:5jþ 0:578k

Let us expand the moment equation

X
MA ¼ �1:369T þ 5ð Þiþ �2Bz � 0:798T þ 10ð Þjþ 2By þ 0:2T

� �
k ¼ 0

into three scalar components.

i: �1.369T + 5¼ 0

j: �2 Bz� 0.798T + 10¼ 0

k: 2 By+ 0.2T¼ 0

From here, By¼�0.365 kN, Bz¼ 3.54 kN, and T¼ 3.65 kN. Substituting these

values in the first two equations will lead to Az¼ 4.81 kN, Ay¼�2.55 kN, and

Ax¼ 1.457 kN.

You may also use the MATLAB routine equilibriumBody3D.m to solve this

problem. Start the MATLAB and run the equilibriumBody3D.m. The dialog box

will appear with general explanation on how to use this procedure. Read it and click

OK. The next dialog will ask you to input number of forces and number of moments

acting in this problem. You have to input 4—for number of forces and 0—for

number of moments. Now, you will be asked to input the relevant information for

each of the four forces acting on the body. Let us input data for the force A as force

#1, B #2 and T #3, P #4.
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The following table summarizes the input.

Force ID number 1 2 3 4

Magnitude (force) x x x 10

Unit vector: X component (length) x 0 �0.399 0

Unit vector: Y component (length) x x 0.798 0

Unit vector: Z component (length) 1 1 0.452 �1

x coordinate of force application 0 2 1 1

y coordinate of force application 1.5 1.5 0 1

z coordinate of force application 0 0 0.866 0.578

The solution is shown below.

For load # 1 the unknown parameter # 1 is: 5.6321
For load # 1 the unknown parameter # 2 is: 0.3032
For load # 1 the unknown parameter # 3 is:�0.5307
For load # 2 the unknown parameter # 1 is: 3.5623
For load # 2 the unknown parameter # 3 is:�0.1028
For load # 3 the unknown parameter # 1 is: 3.6527

The above list summarizes the results for each value we entered as an unknown

(x), while each force acting on the pad is presented below through its rectangular

components and magnitude.

Force # 1: F¼ (1.457)i + (�2.550)j + (4.806)k Mag¼ 5.63
Force # 2: F¼ (0.000)i + (�0.364)j + (3.544)k Mag¼ 3.56
Force # 3: F¼ (�1.457)i + (2.914)j + (1.651)k Mag¼ 3.63
Force # 4: F¼ (0.000)i + (0.000)j + (�10.000)k Mag¼ 10.00

Compare these forces to the results we were getting by a manual solution and

you will see that we are getting the same results with less computational efforts.

Again, remember that this routine makes calculations easier, but it does not replace

the need for you to create a correct free body diagram.

What We Have Learned?

How to move a force to an arbitrary point
To move a force to an arbitrary point and preserve the state of equilibrium, one has

to add a couple of forces.

How to reduce a system of nonconcurrent forces into a system of forces acting at
the single point
To reduce a system of nonconcurrent forces to an equivalent system acting at the

particular point, one has to move each force to this point and add appropriate

moment.
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M ¼ r� F ¼
i j k

xA yA 0

Fx Fy 0

������
������ ¼ xAFy � yAFx

� �
k ¼ Mk

Procedures to find a resultant force and a resultant moment
To find the resultant force and the moment for a system of nonconcurrent forces, one

has tomove each force to the selected point. Add all forces using the appropriate rule

for adding concurrent forces to get a resultant force. All moments should be added

also, using the appropriate rules of vector algebra, to create a resultant moment.

R ¼
X

F

Mr ¼
X

M

Procedures to analyze equilibrium of forces acting on a rigid body in a plane and
in space
Reduce the system of forces and moments to one force and one moment, i.e., find

the resultant force and moment and set them equal to zero. The obtained system of

equations may be solved for three unknowns in the plane case and for six unknowns

in the 3D case. X
Fx ¼ 0

X
Mx ¼ 0X

Fy ¼ 0
X

My ¼ 0X
Fz ¼ 0

X
Mz ¼ 0

5.3.1 Problems

5.94 The 4� 6 m homogeneous plate (W¼ 40 N) is suspended by three vertical

rods attached at A (6, 1, 0), B (5, 4, 0), and C (0, 3, 0). Determine the force

acting in each rod.

174 5 Equilibrium of Rigid Bodies



Fig. P5.94

5.95 The ladder ABCD is leaning against frictionless wall and floor. Determine

reactions at A, B, C and D. Weight of the ladderQ is acting at its center, a and
h are given.

Fig. P5.95

5.96 Pole AB is held in the vertical position by symmetrically placed cables. The

angle between each adjacent pair of cables is 60�, the tension in each cable is

30 N, and the pole weights 80 N. Determine the pressure pole AB is exerting

on the bottom surface.
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Fig. P5.96

5.97 Ship steering system consists of the solid bar ACD attached to the rudder

F (weight P¼ 30 N). Water resistance force Q¼ 300 N acts in the negative

x-direction. Force S acts at the angle β ¼ 120o. Determine the magnitude of

the force S to keep the system in equilibrium. Also determine reactions at

A and B. AK¼ 30 cm, AB¼ 60 cm, CB¼ 20 cm, CD¼ 60 cm, EK¼ 20 cm,

EF¼ 10 cm.

Fig. P5.97

5.98 Square plate ABCD (weight G¼ 10 kN) is supported by the ball-and-socket

joint A, by the cable at B, and by the links CN and CK at C. Barrel (weight

M¼ 30 kN) is suspended at B. Determine the reaction forces at N, K, A, and

tension in the cable BS. Use AB¼AK¼ a.
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Fig. P5.98

5.99. The plate ABC (weightW¼ 20 kN) leans against the wall and makes an angle

of 30o with the horizontal plane. There is no friction. Hinges do not have any

force components in x-direction. Determine the reactions at A, B, and C, if

AB¼BC¼AC¼ a.

Fig. P5.99

5.100 The homogeneous rectangular plate ABCD weightsW¼ 500 N and is held in

the place by force F acting perpendicular to the plane of the plate. Determine

the magnitude of the force F and the reactions at bearings A and B. Use

α ¼ 20∘, AD¼ 0.3 m, CE¼ 0.2 m, and DC¼ 0.6 m. The bearings are

frictionless and they do not carry load in the y-direction.
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Fig. P5.100

5.101 The nonhomogeneous rectangular plate ABCD weights W¼ 500 N

(Fig. P5.100). Its weight W acts at the point (0.114, 0.200, 0.096) m. The

plate is held in the place by force F¼�123i+ 147k, it is acting at the point

(0.230, 0.400, 0.190). Determine the reactions at bearings A and B. Use

AD¼ 0.3 m, CE¼ 0.2 m, DC¼ 0.6 m. The bearings are frictionless, and

they do not carry load in the y-direction.

5.102 The square homogeneous plate ABC (weight P¼ 4 kN) is supported by the

ball-and-socket at A and by three rigid links. Determine the reactions at A

and the forces in each link. Use AB¼EF¼AD¼ a.

Fig. P5.102

5.103 The crankshaft is supported by bearings at A and B. The gear C has a radius

R¼ 20 cm. Determine force Q and reactions at the bearings A and B, if the

force F¼ 40 kN is acting in the plane YOZ and makes an angle α ¼ 30∘with

the vertical axis. ED¼ 15 cm, a¼ 15 cm, b¼ 20 cm, c¼ 25 cm.
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Fig. P5.103

5.104 The crankshaft is supported by bearings at A and B. The force P¼ 30 N is

acting at point C in a plane parallel to the plane ZY at the middle of the part

EG, and it makes angle α ¼ 10∘ with the vertical axis. Plane DECGF forms

an angle φ ¼ 60∘ with the horizontal plane. Reactions provided by bearings

A and B are only forces in the directions y and z. Determine the moment

needed to be applied to the crankshaft to keep the system in equilibrium.

Determine reactions at A and B using DE¼GF¼ 20 cm, FB¼AD¼
FD¼ 40 cm. Neglect the weight of the crankshaft.

Fig. P5.104

5.105 The bent rod ACDE, supported by the ball-and-socket joint at A, the bearing

at B and the cable EK, is acted upon by a force P¼ 100 N and a couple

M¼ 110 N m at point E. Cable EK is in the x-direction. Determine the

reactions at A and B and the tension in the cable EK. AC¼DE¼ 0.5 m,

BC¼ 0.4 m, BD¼ 0.2 m.
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Fig. P5.105

5.106 The bent rod ADEK is supported by three bearings and is loaded by the

forces A¼ 100 N and Q¼ 200 N. Determine the reactions at A, B, and

C. AD¼EC¼ 20 cm, BD¼ 10 cm, ED¼ 25 cm, and EK¼ 30 cm.

Fig. P5.106

5.107 The boom AB (weight P) is supported by a ball-and-socket joint at A and is

loaded by the load Q. Determine the reactions at A and the tension in each

cable. Use AB¼ 3b, α¼ 450, AD¼AE¼DC¼ b, AF¼ 2b.
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Fig. P5.107

5.108 A 5-m homogeneous bar AL (weight P¼ 2 kN) is held by the ball-and-socket

joint at A and two cables DF and DC. Each cable makes angle β ¼ 30∘ with

the horizontal plane. For the loading shown, determine the reaction forces at A

and the tension in each cable. M¼ 4 kN, LK¼ 1 m, AD¼ 2 m, α1 ¼ 45∘,

α2 ¼ 60∘.

Fig. P5.108

5.109 The 4-m pole OA (weight 2.1 kN) is supported by the toe A and bearing at

B. Cables OC, OD, and OE are under tension Tc¼ Td¼ 55 N and Te¼ 25 N.

AB¼ 1.2 m, OA¼ 4 m, α ¼ β ¼ 60∘, γ ¼ 30o. Determine the reaction

forces at A and B.
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Fig. P5.109
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Example isn’t another way to teach, it is the only way to
teach.

Albert Einstein

In this chapter you will learn:

• Difference between concentrated and distributed forces

• How to replace the effect of a distributed force by a concentrated force

• About centers of gravity and centroids

• How to find centers of gravity and centroids of various bodies

In previous chapters, we have learned about the equilibrium of rigid bodies loaded

by concentrated forces and moments. In this chapter, we will discuss the difference
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between the concentrated forces, i.e., force acting on a body at a given point, and

the distributed forces. It is obvious that the notion of a concentrated force is a

simplification of the load acting on a small area. This may be a valid representation

when the area of the contact between the load and the body is small. However, when

the contact area is not small, relative to the rigid body size, we have to account for

the actual force distribution.

6.1 Distributed Forces and Rigid Body

When the contact area between a load and a rigid body is large, it is not obvious

where to position the line of action of the force representing the distributed load.

For example, Fig. 6.1 shows a train riding on a rail. On a free-body diagram, we

have to show the effect of the train on the rail, but where should we apply its weight

W? As we already know, the placement of this force will have a direct effect on the

values of calculated reaction forces between the rail and the supporting columns.

Thus, we have to develop a procedure that will allow substituting the effect of the

distributed load (train) on supports by a concentrated force.

Replacement of a distributed load by a concentrated force is permissible only

when dealing with the equilibrium of a rigid body loaded by external forces and

reactions.

Fig. 6.1 Train riding on a rail
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6.2 Center of Gravity of a Flat Plate

Any rigid body may be considered to consist of a number of particles, each having a

weight, dW directed toward the center of the Earth. For bodies, that are significantly

smaller than the Earth, gravitational forces acting on each particle can be considered

parallel. The resultant of these parallel forces is equal to the weight of the bodyW,

W ¼
ð

volume

dW ð6:1Þ

The moment M of the resultant and the sum of the moments of all gravitational

forces acting on the particles, with respect to the same point, should be equal.

M ¼
ð

volume

dM ¼
ð

volume

r� dW ¼ rG �W ð6:2Þ

where rG defines the location of the center of gravity.

From the above, the location rG of the line of action of the resultant can be

determined by calculating the sum of moments for parallel forces.

The force exerted by the Earth, due to gravitation, on a particle or body is

defined as its weight.

Mathematical Corner

Derivation of the center of gravity equations.

We will start with (6.2)

M ¼
ð

volume

dM ¼
ð

volume

r� dW ¼ rG �W

where dM ¼ r� dW may be expressed as

dM ¼
i j k

x y z
dWx dWy dWz

2
4

3
5

¼ y � dWz � z � dWy

� �
iþ z � dWx � x � dWzð Þjþ x � dWy � y � dWx

� �
k

Similarly, we may write

(continued)
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M ¼
i j k

xG yG zG
Wx Wy Wz

2
4

3
5

¼ yG �Wz � zG �Wy

� �
iþ zG �Wx � xG �Wzð Þjþ xG �Wy � yG �Wx

� �
k

Integrating dM and equating it to M will result in the following expression:

ð
V

y �dWz�
ð
V

z �dWy

0
@

1
Aiþ

ð
V

z �dWx�
ð
V

x �dWz

0
@

1
Ajþ

ð
V

x �dWy�
ð
V

y �dWx

0
@

1
Ak

¼ yG �Wz� zG �Wy

� �
iþ zG �Wx� xG �Wzð Þjþ xG �Wy� yG �Wx

� �
k

Two vectors are equal if their corresponding components are equal.

Therefore, we get three equations for three unknown coordinates defining

the center of gravity.

ð
V

y � dWz �
ð
V

z � dWy ¼ yG �Wz � zG �Wy

ð
V

z � dWx �
ð
V

x � dWz ¼ zG �Wx � xG �Wz

ð
V

x � dWy �
ð
V

y � dWx ¼ xG �Wy � yG �Wx

Vectors W and dW are parallel, therefore we can express them as

W ¼ e �W
dW ¼ e � dW

where e may be expressed as e ¼ ex � iþ ey � jþ ez � k, therefore the above

three equations defining the center of gravity may be rewritten as

ez

ð
V

y � dW � ey

ð
V

z � dW ¼ ezyG �W � eyzG �W

ex

ð
V

z � dW � ez

ð
V

x � dW ¼ exzG �W � ezxG �W

ey

ð
V

x � dW � ex

ð
V

y � dW ¼ eyxG �W � exyG �W
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Mathematical Corner

Rewriting the above set of equations, we obtain

ez

ð
V

y � dW � yG �W
0
@

1
A ¼ ey

ð
V

z � dW � zG �W
0
@

1
A

ex

ð
V

z � dW � zG �W
0
@

1
A ¼ ez

ð
V

x � dW � xG �W
0
@

1
A

ey

ð
V

x � dW � xG �W
0
@

1
A ¼ ex

ð
V

y � dW � yG �W
0
@

1
A

The equity is true only if the values in parentheses are equal to zero. This

leads us to three linearly independent equations.

ð
V

x � dW � xG �W ¼ 0

ð
V

y � dW � yG �W ¼ 0

ð
V

z � dW � zG �W ¼ 0

From these equations the coordinates of the center of gravity are

yG ¼

ð
V

x � dW

W

xG ¼

ð
V

y � dW

W

zG ¼

ð
V

z � dW

W

We will start with a two-dimensional body (Fig. 6.2) in a xoy plane. This body
may be represented as an assembly of n small elements. Let’s define location of
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each element by its coordinates xi and yi, while the gravitational force exerted by the
Earth on it is defined as ΔWi, where i is the number of an element. The resultant

force (weight) of all these elements is defined by

W ¼
X
i

ΔWi

The location of the resultant force (line of action) may be determined by summing

the moments of each ΔWi about both axes and equating them to the moment of the

resultant W about the same axes.

About x-axis

X
i

ΔMi ¼
X
i

ΔWi � yi ¼ W � yG ð6:3Þ

and about y-axis,

X
i

ΔMi ¼
X
i

ΔWi � xi ¼ W � xG ð6:4Þ

Here, xG and yG are the coordinates of the application of the resultant forceW. This

point defines the center of gravity of the two-dimensional body.

We may increase the number of particles representing our body and at the same

time decrease their size to obtain an infinite number of infinitesimally small

particles. In this case, the following expressions will describe the weight and

location of the center of gravity.

W ¼
ð
dW ð6:5Þ

ð
ydW ¼ W � yG ð6:6Þ

Fig. 6.2 Locating of the

center of gravity for a

two-dimensional rigid body
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ð
xdW ¼ W � xG ð6:7Þ

The above equations were derived on the basis of a physical concept that the sum of

moments of number of forces affects a body as the moment of their resultant. The

same equations may be derived more generally as shown in the “Mathematical

Corner” above.

Since we did not place any restrictions on the shape of a two-dimensional rigid

body, one may consider bodies with cutouts (Fig. 6.3a) and wires (Fig. 6.3b). It is

clear that the location of the center of gravity may be outside the body.

6.3 Centroids

Let’s assume that a body (Fig. 6.3a) has a constant thickness t and is made of

homogeneous material (i.e., its physical properties are not the function of the

location) with a specific weight γ (weight per unit volume). The weight of an

element ΔWi, which occupies volume ΔVi¼ tΔAi may be expressed as

ΔWi ¼ t � γ � ΔAi ð6:8Þ
In the limit, equation (6.8) becomes

dW ¼ t � γ � dA ð6:9Þ
Substituting expression for dW into (6.5)–(6.7), one gets

ð
area

x � dA ¼ A � xG ð6:10Þ

Fig. 6.3 Center of gravity for bodies with different shapes (a) and for wires (b)

6.3 Centroids 189



ð
area

y � dA ¼ A � yG ð6:11Þ

where A is the area of the top surface of a rigid body. It should be noted that the

integration over volume is reduced here to the integration by area, since the

thickness of the body is constant. The values of xG and yG obtained from (6.10)

and (6.11) define the location of the centroid of the area of the top surface of the

rigid body we consider.

Similar equations can be derived for determination of the centroid of a flat wire

(i.e., all points of the wire belong to the same plane).

ð
contour

y � dl ¼ L � yG ð6:12Þ

ð
contour

x � dl ¼ L � xG ð6:13Þ

where dl is the length of the infinitesimal element of the wire and L is the total

length of the wire.

It is important to understand the difference between the centroid and center of

gravity of a body. The centroid is purely geometrical characteristic of a body. Both

locations coincide only when a body has uniform thickness and is homogeneous.

The integrals

ð
ydA and

ð
xdA are called the first moments of the area with

respect to the x- and y-axis.

Qy ¼
ð
area

x � dA

and

Qx ¼
ð
area

y � dA

Thus, one can get the location of the centroid by dividing the first moment of the
area by the area.

xG ¼ Qy

A

yG ¼ Qx

A

ð6:14Þ
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Area is a scalar quantity and is always positive, while the associated location of the

centroid, relative to the selected coordinate system, may be positive or negative,

thus the first moment of the area may be positive, negative, or zero. If it is zero, it

means that the centroid coincides with the coordinate axis. When an area has an axis

of symmetry, let say axis x, the centroid is on this axis, since for each element “a”

one may find a corresponding element “b” on the other side of the symmetry axis

(Fig. 6.4). It is obvious, that if an area has two axes of symmetry the centroid must

be on their intersection. This allows us to find centroids of a number of common

shapes, having an axis of symmetry, such as circles, squares, and rectangles,

without calculations. The same is true for bodies with openings and wires.

It should be emphasized that the above discussion applies only to the bodies

whose geometry may be analytically modeled. For all other cases, we have to

simplify the geometry so it may be modeled analytically.

6.3.1 Centroids by Integration

The centroid of an area bound by a curve, expressed by an analytical function, may

be calculated by direct integration of (6.10) and (6.11). A double integration is

necessary for calculation of the first moment. However, by choosing an element of

the area for which the distance from its centroid to the axis is known, one may

reduce the problem to a single integration. The following example illustrates such

approach.

Example 6.1 Find the centroid of an area defined by the curve f xð Þ ¼ x� 4ð Þ2 � 6

and the horizontal line y¼ b, when �2< x< 10 cm.

Solution Let’s choose a vertical rectangular strip (Fig. 6.5) at location x of width
dx. Its height is b� f(x), where b is a y value of the top horizontal line. The centroid
of the rectangle is located at the intersection of its diagonals. Its coordinates are:

x¼ x
y¼ b� f xð Þð Þ=2þ f xð Þ ¼ bþ f xð Þð Þ=2

Fig. 6.4 Axis of symmetry
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The area of this rectangular element is

dA ¼ b� f xð Þð Þdx
The location of the centroid xG may be calculated from (6.11) by direct single

integration. By using boundary x¼�2 or x¼ 10, from the equation f(x) of the line
one may get b¼ 30.

xG ¼

ð
area

xdA

A

A ¼
ð10
�2

20� x2 þ 8x
� �

dx ¼ 20x� x3

3
þ 4x2

� 	�����
10

�2

¼ 20 � 12� 1

3
� 1000þ 8ð Þ þ 4 � 100� 4ð Þ ¼ 288

and

xG ¼

ð10
�2

20� x2 þ 8x
� � � xdx

A
¼

10x2 � x4

4
þ 8

3
x3
����
10

�2

A
¼ 1152

288
¼ 4

This result may be predicted from the fact that the curve is symmetrical about

vertical axis passing through xG¼ 4 cm. Now, let’s calculate the location of yG

Fig. 6.5 Direct integration
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using (6.11). Consider again the vertical strip, shown in Fig. 6.5, its vertical

coordinate and area were defined above, thus we will substitute it in the equation

and integrate by dx.

yG ¼

ð
area

ydA

A
¼

ð10
�2

bþ f xð Þ
2

� b� f xð Þð Þdx

288
¼

1

2

ð10
�2

b2 � f 2 xð Þ� �
dx

288
¼ 15:60

The result is yG¼ 15.60 cm.

The integration may be easily done by using MATLAB routines. The website

“extras.springer.com” has a file named “centroidIntegr.m” with the necessary

information.

Example 6.2 Find the centroid of a rectangle of width b and height h (Fig. 6.6).

Solution Since the rectangle has two axes of symmetry, the centroid should be

located at the intersection of its diagonals. However, we will use integration to

show this.

Let us choose a vertical strip, as shown, which is located at the distance x from
the origin of the coordinate system and has an infinitesimal width of dx. The first

moment Qy of this strip about the y-axis is

Qy ¼
ð
area

xdA ¼
ðb
0

x � hdxð Þ ¼ h
x2

2


 �b
0

¼ b2h

2

and A ¼ b � h.
From (6.14) we obtain

Fig. 6.6 Centroid

of a rectangle
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xG ¼ Qy

A
¼ b

2

as we have predicted from the symmetry of the rectangle. In the similar manner, we

can calculate the value of yG to be equal to h/2.

The first moment for a rectangle about the axis parallel to its base is equal to the

base times square of the height divided by two.

Let us call the side of the rectangle along the axis about which we are calculating

the 1st moment a base, while the other side we will call a height. Thus, the first

moment for a rectangle about the axis parallel to the base is equal to the product of

its base by square of height divided by two.

Example 6.3 Find the centroid of a uniform wire in a shape of a quarter of a circle

with radius R (Fig. 6.7).

Solution We will use the formulae (6.12) and (6.13). Let us select an infinitesimal

element of the length dl ¼ R � dθ at the location defined by an angle θ, as shown in

Fig. 6.7. Centroid of this element is

x ¼ R � cos θ and y ¼ R � sin θ
The total length of the quarter arc is

L ¼ πR

2

Thus, the centroid can be calculated from the following expression:

xG ¼

ðL
0

x � dl

L
¼

ðπ=2
0

R cos θ � R � dθ

L
¼ R2

πR=2
�
ðπ=2
0

cos θ � dθ ¼ 2R

π

Fig. 6.7 Centroid of a wire
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and in the similar manner we can find that

yG ¼ 2R

π

It should be noted that xG ¼ yG since the structure (wire) has the axis of symmetry

at 45�.

Example 6.4 Find the location of a centroid of the quarter circle (Fig. 6.8).

Solution Quarter of a circle has an axis of symmetry at 45�. Thus, xG¼ yG. Let us
use a horizontal strip located at the distance y and having thickness of dy. The
equation of the circle is

x2 þ y2 ¼ R2

and the limits defining the quarter circle are 0< x<R and 0< y<R.
The area of the strip is dA ¼ x � dy, where

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � y2

q
Thus, the vertical coordinate of the centroid of the quarter circle can be calculated

by direct integration

yG � A ¼
ðR
0

y � dA ¼
ðR
0

y � x � dy ¼
ðR
0

y �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � y2

q
� dy ¼R3

3

Since the area of the quarter circle is

A ¼ πR2

4

Fig. 6.8 Centroid

of a quarter circle
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the location of the centroid in the y direction is

yG ¼ 4R

3π

Due to the symmetry we have xG ¼ 4R

3π
.

The shapes discussed in the above examples belong to basic elements, some of

which are listed in Table 6.1.

6.3.2 Centroids of Composite Bodies

Determination of the centroids by integration may become a rather tedious task for

complicated body shapes. Very often, an area may be divided into a number of basic

elements, like rectangle, triangles, circles, and others, whose centroid coordinates

may be easily obtained by using integration. The centroids of such elements are

summarized in Table 6.1. Many structures are built from those simple shapes. For

example, the structure in Fig. 6.9 is composed of two rectangles, a triangle, and a

circular cutout. Their boundaries are shown as dotted lines. Since we know the

centroid location of each constituent part, we may rewrite (6.3) and (6.4) utilizing

(6.8) to get the centroid of the whole assembly.

xG ¼
X

ΔWi � xi
W

¼
X

t � γ � ΔAi � xi
t � γ � A ¼

X
ΔAi � xi
A

ð6:15Þ

yG ¼
X

ΔWi � yi
W

¼
X

t � γ � ΔAi � yi
t � γ � A ¼

X
ΔAi � yi
A

ð6:16Þ

Let us introduce a common coordinate system as shown in (Fig. 6.9) and define

each constituent part by letters A, B, C, and D. All dimensions are in mm; the

diameter of a circular cutout is equal to 2 mm. It is convenient to organize all data in

a table, e.g., Table 6.2.

From the Table 6.2, we can calculate

xG¼ 3410/321¼ 10.62 mm and yG¼ 4529/321¼ 14.08 mm.

One should be careful to use a proper sign for an area (negative, if it is a cutout)

and proper sign for centroid coordinates of each component in a common coordinate
system. Table 6.1 contains examples of common shapes with their areas and

centroids for reference.

This problem may be solved much easier by using a simple MATLAB routine,

located at “extras.springer.com.”

Start the MATLAB and select the file “centroid.m”. It will ask you to prepare the
input data in a particular format for calculations. Follow the prompts and enter the

data for this problem as
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Table 6.1 Centroids of basic elements

Element Area xG yG
b � h
2

aþ b

3

h

3

b � h b

2

h

2

πR2

4

4R

3π

4R

3π

abnþ1

nþ 1

nþ 1ð Þb
nþ 2

nþ 1ð Þabn
4nþ 2

(continued)
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1 9 �21 �108

2 8 12 108

3 15 9 108

4 15 6 -0.785

Each raw has a data for a particular constituent area A, B, C, and D, very similar

to Table 6.2. Save this data in the file “centdata.m” and run the routine “centroid.
m”. It will use the data from the file “centdata.m” and calculate for you the values

for xG¼ 10.62 mm, yG¼ 14.08 mm, and area¼ 321 mm2. Compare them to the

Table 6.1 (continued)

Element Area xG yG

αR2 2R sin α

3α
0

Element Length xG yG
πR

2

2R

π

2R

π

2αR R sin α

α
0
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results presented in Table 6.2. You may use this routine for any problem dealing

with location of the centroid of a composite two-dimensional body.

Example 6.5 Find the center of gravity of a triangle structure (Fig. 6.10) made of a

homogeneous wire. The wire-specific weight per unit length is 5 N/m.

Solution Since the structure is made from a wire of uniform-specific weight, its

center of gravity coincides with its centroid. Therefore, we will proceed with

calculations for the centroid.

The lengths of the segments are:

LAB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ 1:62

p
¼ 1:89m

LBC ¼ 2:00m

LCA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 þ 1:62

p
¼ 3:40m

Fig. 6.9 Composite area

Table 6.2 Centroid of a composite body

Region A (mm2) xG (mm) yG (mm) A · xG (mm3) A · yG (mm3)

A 6 · 18 9 18 + 3 972 2268

B ½ · 12 · 18 2/3 · 12 2/3 · 18 864 1296

C 6 · 18 12 + 3 ½ · 18 1620 972

D �0.785 12 + 3 6 �11.18 �4.71

Total 323 3444 4531

Fig. 6.10 Triangle Structure
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The total length of the wire is equal to the sum of its constituent parts, i.e.,

L ¼ LAB þ LBC þ LCA ¼ 7:29m.

Now, let us find the coordinates of the centroid of each segment. They are

located at the geometrical center of each part, i.e.,

xAB ¼ 1

2
¼ 0:5m and yAB ¼ 1:6

2
¼ 0:8m

xBC ¼ 1þ 2

2

� 	
¼ 2:0m and yBC ¼ 1:6m

xCA ¼ 1þ 2

2
¼ 1:5m and yCA ¼ 1:6

2
¼ 0:8m

Let us organize all the data in Table 6.3:

By using (6.15) and (6.16) and replacing area A with length L, we calculate the
centroid location.

xG ¼
X

ΔLi � xi
L

¼ 10:05

7:29
¼ 1:38m

yG ¼
X

ΔLi � yi
L

¼ 7:43

7:29
¼ 1:02m

Guidelines and Recipes to Calculate the Centroid Location for Composite

Bodies

• Select a common coordinate system.

• Divide the body into number of parts with simple geometry, so that for

each part the location of its centroid is known.

• Identify the centroid location for each part in the common coordinate

system and its corresponding area or length.

(continued)

Table 6.3 Information for determining the centroid coordinates

Segment L (m) xG (m) yG (m) L � xG m2ð Þ L � yG m2ð Þ
AB 1.89 0.50 0.80 0.945 1.51

BC 2.00 2.00 1.60 4.00 3.20

CA 3.40 1.50 0.80 5.10 2.72

Total 7.29 10.05 7.43
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• Assemble all data in a table and calculate the location of the centroid by

using appropriate formulae. Alternatively, use MATLAB routine

“centroid”.

6.3.3 Problems

6.1 Determine the centroid of an area bounded by the x-axis, line x ¼ 8, and curve

y2 ¼ 2x.

Fig. P6.1

6.2 Determine the centroid of a triangle by integration.

Fig. P6.2
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6.3 Find the centroid of the area under one-half cycle of a sine curve with an

amplitude “a”.

Fig. P6.3

6.4 Find the centroid of an area bounded by a parabola y ¼ 4x2 and line y ¼ x.

Fig. P6.4

6.5 Find the centroid of a circular arc defined by radius R and angle α.

Fig. P6.5

6.6 Locate the centroid of a half-circle rod.

Fig. P6.6
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6.7 The line y¼ x2/5 is limited between x¼ 0 and x¼ 5. Locate the x coordinate of
its centroid.

6.8 Find the centroid C of an area bound by the half circle AOB (radius R) and two
lines of the equal length AD¼DB. Use OD¼ 3R.

Fig. P6.8

6.9 Find centroid C of a circular segment. OA¼OB¼ 40 cm and the angle

AOB¼ 60�.

Fig. P6.9

6.10 Find the centroid of a ring segment.

Fig. P6.10
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6.11 A wing of a WWII British plane has an elliptical shape. Its maximum width is

2 m and length is 6 m. Find the location of the wing’s centroid.

Fig. P6.11

6.12 Find the centroid of the area shown. a¼ 80 mm, b¼ 60 mm, d¼ 10 mm.

Fig. P6.12

6.13 Find the centroid of the area shown. a¼ 40 mm, h¼ 60 mm, b¼ d¼ 10 mm.

Fig. P6.13
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6.14 Find the centroid of the area shown. Use a¼ 20 cm.

Fig. P6.14

6.15 Find the centroid of the bent rod below. All dimensions are in cm.

Fig. P6.15

6.16 Determine the centroid of the area shown. All dimensions are in cm.

Fig. P6.16
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6.17 Find the centroid of the area shown. All dimensions are in cm.

Fig. P6.17

6.18 Find the centroid of the area shown. All dimensions are in cm.

Fig. P6.18

6.19 Find the centroid of the area shown. All dimensions are in cm.

Fig. P6.19
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6.20 Find the centroid of the area shown. All dimensions are in inches.

Fig. P6.20

6.21 Find the centroid of the beam section. Use a¼ 80 mm, b¼ 60 mm, d¼ 10 mm,

h¼ 100 mm.

Fig. P6.21
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6.22 Find the centroid of the area shown. Use a¼ 100 mm, b¼ 60 mm, d¼ 10 mm,

h¼ 80 mm.

Fig. P6.22

6.23 Locate the centroid of a plane area ADCO. Use OA¼OB¼ a, CB¼ a/3.

Fig. P6.23

6.24 Locate the centroid of the area shown. AB1¼ a, AB¼ 2 a, AD1¼ a, AD¼ 2a.

Fig. P6.24
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6.25 Locate the centroid of the area shown. R¼ 4a, OA¼OB¼ 3a.

Fig. P6.25

6.26 Locate the centroid of the area EBAD. AD¼ 15 in., CD¼ 30 in., EC¼ 9 in.

Fig. P6.26

6.27–6.34 Find the centroid of the plane areas shown. All dimensions are in cm.

Fig. P6.27
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Fig. P6.28

Fig. P6.29

Fig. P6.30
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Fig. P6.31

Fig. P6.32

Fig. P6.33
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Fig. P6.34

6.35 Locate the centroid of the homogeneous wire below.

Fig. P6.35

6.36 Locate the centroid of a homogeneous wire, a¼ 8 cm and b¼ 6 cm.

Fig. P6.36

6.37 Locate the centroid of the homogeneous wire below, a¼ 80 mm and α¼ 45�.

Fig. P6.37
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6.38 Locate the centroid of a homogeneous wire, a¼ 6 in.

Fig. P6.38

6.39 Locate the centroid of the homogeneous wire shown when a¼ 4 m.

Fig. P6.39

6.40 Locate the centroid of the homogeneous wire shown. Dimensions are in ft.

Fig. P6.40

6.41–6.47 The following structures are constructed from a set of homogeneous

bars. Locate the centroids of the structures. All dimensions are in m.
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Fig. P6.41

Fig. P6.42

Fig. P6.43
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Fig. P6.44

Fig. P6.45

Fig. P6.46
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Fig. P6.47

6.4 Distributed Loads

Until now, we considered forces that were applied at the relatively small areas.

Those forces were represented as the concentrated forces; however, in many cases

such approximation is not valid. Consider a two-dimensional case of a truck loaded

by an oddly shaped cargo (Fig. 6.11a). In order to calculate the reactions, we will

need to know where the resultant force of the cargo is acting.

Fig. 6.11 (a) Truck loaded

with two crates. (b)
Truck’s load
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Each crate exerts a force over an area. It is called a distributed force. We may

consider the distributed force to consist of an infinite number of concentrated

forces, where each force can be considered to act on an infinitesimal part of the

support. Assuming that all those forces are parallel and are acting in the vertical

direction, we may find their resultant and the point of its application, as explained in

Sect. 6.2. The distributed load q is defined as load per unit area q(A) or unit length q
(x). The latter is used for two-dimensional problems. Assuming the symmetry of the

truck, we may represent the load as a two-dimensional problem as shown in

Fig. 6.11b. The resultant force may be calculated as

W ¼
ð

length

q xð Þdx

and is applied at xG, the centroid of the load distribution diagram (Fig. 6.11b)

It has to be emphasized that substitution of a distributed load by its resultant may

be applied only to the task of finding reactions. It cannot be used for calculation

of internal forces in a structure since the substitution of the distributed load by a

concentrated one will change the distribution of the internal forces.

xG ¼

ð
xq xð Þdx
W

It should be noted that there is no need to calculate the location of yG since the

resultant force is acting in the vertical direction (weight) and, according to the

principle of transmissibility (Chap. 2), it may be applied anywhere along its line of

action. Thus, to calculate the reactions one may use resultant forceW applied at xG
instead of the distributed load.

It has to be emphasized that such substitutions may be applied only to the tasks

of finding reactions. It cannot be used for calculation of internal forces in a structure

since it is obvious that the substitution of the distributed load by a concentrated one

will change the distribution of the internal forces. For example, if you will push

something with a hand or with a needle using the same force, the global effect will

be the same. However, the local effect of the applied force will be obviously

different.

6.4.1 Effect of the Fluid Pressure

One of the interesting examples of distributed forces is the calculation of the

reactions due to a fluid pressure on a structure. The force due to the pressure always

acts normal to the surface; this fact may be used to solve problems dealing with the

effect of the fluid pressure on structures.
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Force due to fluid pressure is always acting in the direction perpendicular to the

surface. Thus, the direction of the resulting force is determined by the spatial

orientation of the surface upon which the pressure is acting.

Consider a plate submerged in water (Fig. 6.12). The pressure acting at any point

under the water, due to the weight of the water, is directly proportional to the depth

of the point and to the specific weight γ of the fluid. Thus, at the depth h the pressure
p is

p ¼ h � γ ð6:17Þ
Let’s consider an underwater gate AB shown in Fig. 6.13a and calculate the

resultant force acting on it. The water pressure on the gate may be represented as

a distributed load. Its magnitude increases linearly with the depth. The pressure

distribution along gate AB is schematically shown in Fig. 6.13b. At point A

the pressure is equal to pA ¼ hA � γ, while at point B the pressure is pB ¼ hB � γ.

Fig. 6.12 Submerged

surface

Fig. 6.13 Underwater gate. (a) Schematic. (b) Resultant of the water pressure
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One can find the resultant of the distributed load acting on gate AB by representing

it as rectangle ABDF and triangle DEF. The effect of the rectangle can be

represented by a resultant force Pr. The direction of this force is normal to the

surface it is acting upon, and its magnitude is

Pr ¼ hA � hB � hAð Þ � γ � d
where d is the width of the gate.

The resultant Pr is acting at the centroid of rectangle ABDF. The effect of

triangle DEF can be represented by force Pt. Its magnitude is

Pt ¼ 1

2
hB � hAð Þ � hB � hAð Þ � γ � d

where d is the width of the gate. The resultant Pt is acting at the centroid of triangle

DEF. Thus, we represented the effect of the distributed force due to the water

pressure by two concentrated forces. Using such approach one can calculate the

effect of the water pressure on a gate, as shown in the following example.

Example 6.6 To keep the water level constant, gate AC (width d¼ 2 m) can pivot

around point B located at distance a from the bottom (Fig. 6.14a). Find the water

level h if a¼ 0.5 m. The specific weight of the water γ¼ 9810 N/m3.

Solution Let’s show the distributed load acting on the gate by a black line

(Fig. 6.14b). The gate will turn clockwise when the moment about point B, created

by the distributed load acting on part AB, will become smaller than the moment

created by the distributed load acting on part BD. The distributed force acting on the

part AB may be represented by a triangle (F1) and rectangle (F2), while the force

acting on part BD may be represented by a triangle (F3). As we discussed above, the

Fig. 6.14 Self-regulated underwater gate. (a) Schematic. (b) Calculation of the resultant
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effect of the distributed load acting on the part AB may be represented by two

concentrated forces F1 and F2, and on part BD by force F3 as shown in Fig. 6.14b.

To calculate magnitudes of these forces, we need the values of the pressure at

points A, B, and D:

PD ¼ 0, PB ¼ γ � h� að Þ, and PA ¼ γ � h.
The magnitudes of these forces are represented by the areas of the rectangle and

the two triangles. The magnitude of the first force is F1 ¼ 1

2
� PA � PBð Þ � a � d, and

it is applied at the centroid of the triangle, i.e., at a point a/3 from the bottom. The

second force isF2 ¼ PB � a � d, and it is applied at the centroid of the rectangle, i.e.,
at a point a/3 from the bottom. Finally, the magnitude of the third one is

F3 ¼ 1

2
� PB � h� að Þ � d, and it is applied at the centroid of the triangle, i.e., at the

distance of h� að Þ=3 from point B.

The water level, at which the gait will start to open, may be determined from the

equilibrium equation (sum of moments about point B)

X
MB ¼ F1 � 2

3
� aþ F2 � a

2
� F3 � h� að Þ

3
¼ 0

Substituting the known values, we will get one equation of third order with one

unknown h:

h� 0:5ð Þ3 � 0:75 � h� 0:5ð Þ � 0:25 ¼ 0

Its solution yields three roots 0, 0, and 1.5. Sinceh ¼ 0 is a trivial solution, i.e., there

is no water, the correct result is h ¼ 1:5 m.

Guidelines and Recipes for Finding the Magnitude and Point of Application

of the Resultant of a Distributed Load

• Find the resultant load W by integrating the function representing the

distributed load.

W ¼
ð

length

q xð Þdx

• Find centroid of the area representing the distributed load. This centroid is

the point of the application of the resultant load.

xG ¼

ð
xq xð Þdx
W

(continued)
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6.4.2 Problems

6.48 Determine the magnitude and point of application of the resultant of a

distributed load.

Fig. P6.48

6.49 The turtle’s shape may be approximated as suggested by the dotted lines.

Assume that the turtle’s specific weight, γ¼ 10 kN/m2
. Treat the turtle as a

two-dimensional body. Replace the effect of the turtle’s weight by the

corresponding resultant force.

Fig. P6.49
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6.50 Replace the distributed load by a resultant force.

Fig. P6.50

6.51 Replace the distributed load by a resultant force.

Fig. P6.51

6.52 Replace the distributed load by a resultant force.

Fig. P6.52

6.53 Boxes are placed on a flat platform. Each box weights 10 N and has width of

0.20 m. Determine the location and magnitude of the resultant force.

Fig. P6.53
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6.54 Beam AB is built into a wall of thickness a. Assume that reaction forces are

distributed as shown. Determine an equivalent force system for the beam. Use

q1¼ 20 N/m, q2¼ 10 N/m, and a¼ 0.4 m.

Fig. P6.54

6.55 Determine reactions at the structure supports.

Fig. P6.55

6.56 Determine reactions at the wall.

Fig. P6.56
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6.57 Determine reactions at the wall. Use F¼ 100 lb, M¼ 500 lb ft, q¼ 50 lb/ft,

a¼ 3 ft, and l¼ 6 ft.

Fig. P6.57

6.58 Bracket ACDB is loaded by distributed load q¼ 20 kN/m. Determine reaction

forces at the supports. Use a¼ 6 m, b¼ 2 m, angle α¼ 45�.

Fig. 6.58

6.59 Determine reactions at the structure supports. It is loaded by the distributed

load q¼ 0.5 kN/m and force P¼ 3 kN. Use h¼ 6 m and l¼ 2 m.

Fig. P6.59
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6.60 Determine reactions at the beam supports. l¼ 6 m, q¼ 3 N/m, angle α¼ 30�.

Fig. P6.60

6.61 Determine reactions at A and B, when beam is loaded by distributed load

q¼ 4 kN/m and force F¼ 16 kN. Use a¼ 4 m, l¼ 8 m, and α¼ 30�.

Fig. P6.61

6.62 Determine reactions at A and B. Use q¼ 8 N/m, a¼ 4 m, l¼ 10 m,

M¼ 20 Nm, and angle α¼ 45�.

Fig. P6.62
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6.63 Determine reactions at A and B. Use q¼ 10 N/m, F¼ 20 N, a¼ 4 m, l¼ 12 m,

and angle α¼ 45�.

Fig. P6.63

6.64 Determine reactions at support A and tension in the cable. Use q¼ 4 lb/in.,

a¼ 30 in., l¼ 70 in., and α¼ 60�.

Fig. P6.64

6.65 Determine reactions at beam supports. Use q¼ 10 N/m, a¼ 3 m, b¼ 2 m,

l¼ 7 m, and α¼ 30�.

Fig. P6.65
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6.66 Determine reactions at the beam supports. Use q¼ 80 lb/ft, a¼ 4 ft, l¼ 8 ft,

and α¼ 30�.

Fig. P6.66

6.67 Determine reactions at support A and tension in cable C. Use q¼ 40 N/m,

a¼ 4 m, l¼ 8 m, and α¼ 45�.

Fig. P6.67

6.68 Determine reactions at A, when beam AB is loaded by distributed load

q¼ 60 N/m. Use a¼ 3 m and l¼ 7 m.

Fig. P6.68
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6.69 Determine the magnitude of M so that reactions at A and B are equal. Use

q¼ 2 N/m, a¼ 4 m, l¼ 8 m, and α¼ 45�.

Fig. P6.69

6.70 Rod AB has weight P¼ 200 N and length 2 m. It is loaded by a distributed

load q¼ 25 N/m. Determine reactions at A when α¼ 45�.

Fig. P6.70

6.71 Determine distance a so that vertical reactions at A and B are equal. Use

q¼ 2 kN/m, F¼ 5 kN, b¼ 1 m, l¼ 6 m, and α¼ 60�.

Fig. P6.71
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6.72 Find the resultant force magnitude and its line of action on a 750-m long dam.

The water depth is 50 m, its specific weight is 9800 N/m3, and φ¼ 60�.

Fig. P6.72

6.73 Solid gate ABC can freely rotate about pin B. It is closed as long as water level

is above a specific height h. When the level drops below this height, the door

will swing clockwise and the water will flow out. Find the minimum height

h to keep the gate closed. Use angle α¼ 45� and specific weight of the water

γ¼ 9800 N/m3.

Fig. P6.73

6.74 Find the value of the angle α in Problem 6.73 to keep water at the level of

2.3 m.
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6.75 A brick wall (2 m tall) is built to support the pressure of ground water from its

right side. Find the width “a” necessary to keep the wall from tipping around

point A. Specific weight of bricks is 25 kN/m3 and of water is �10 kN/m3.

Fig. P6.75

6.76 Gate AB can freely rotate about pin O. It is closed as long as water level is

below a specific heightH. When the level rises above this height, the door will

swing clockwise and the water will pour out. Find the minimum height H to

keep the gate closed. Use angle α¼ 60�, h¼ 2 m and specific weight of water

γ¼ 10 kN/m3.

Fig. P6.76

6.5 Center of Gravity and Centroid of Bodies

Many engineering problems may be treated as two-dimensional problems. How-

ever, some structure elements with more complex geometries need a three-

dimensional treatment. In this section, we will discuss the methodology to find

the center of gravity and centroid for such elements.
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6.5.1 Center of Gravity

Mathematical procedure to derive the coordinates of the center of gravity was

presented in theMathematical Corner above. Here, we show another way to derive

the same equations by extending the special case—center of gravity for a flat plate.

Let’s choose a coordinate system with the z-axis parallel to the weight of a body,
as shown in Fig. 6.15. The total weight W of the body can be represented as a sum

(integral) of weights of infinitesimally small elements dW comprising the body.

W ¼
ð

volume

dW ð6:18Þ

Since we selected the coordinate system with the z-axis parallel to the weight

(Fig. 6.15), the weight may be treated as a scalar quantity because its direction is

known.

W ¼ 0 � iþ 0 � j�W � k
The moment of the body (weight W ) should be equal to the sum (integral) of

moments of the body’s constituent elements with respect to the x and y axes.

W � xG ¼
ð

volume

xdW ð6:19Þ

W � yG ¼
ð

volume

ydW ð6:20Þ

where xG and yG are the coordinates of the center of gravity.

Now, let us rotate the body and the coordinate system by 90� about, let say, x-
axis (Fig. 6.16) so it is now parallel to the y-axis, i.e.,

Fig. 6.15 Center of gravity
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W ¼ 0 � iþW � jþ 0 � k
Now, we can calculate the moment of the weight and equate it to the sum of

moments of all elements with respect to x-axis.

W � zG ¼
ð

volume

zdW ð6:21Þ

where zG is the third coordinate of the center of gravity. From (6.19), (6.20), and

(6.21) we can calculate the location of the center of gravity of the given body as:

xG ¼

ð
volume

xdW

W

yG ¼

ð
volume

ydW

W

zG ¼

ð
volume

zdW

W

ð6:22Þ

The obtained equations are the same as the derived in the Mathematical Corner.

6.5.2 Centroids

When a body is made of a homogeneous material, i.e., it has a constant specific

weight γ at any point, the weight of each element of the body can be represented as

dW ¼ dV � γ and the total weight as W ¼ V � γ.
By substituting these relations into (6.19)–(6.21), we get

Fig. 6.16 Center of gravity

for a three-dimensional body

in a new coordinate system
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V � x ¼
ð

volume

xdV

V � y ¼
ð

volume

ydV

V � z ¼
ð

volume

zdV

ð6:23Þ

where xG, yG, and zG represent location of the body’s centroid. In this case, the

center of gravity of the body is located at the same point as the centroid. It is clear

that if the density of the body is not constant, as we assumed in this case, the

locations of centroid and center of gravity will not necessarily coincide.

The locations of centroid and center of gravity will always coincide in a

homogeneous body.

Example 6.7
Calculate the location of a cone’s centroid (Fig. 6.17). The height of the cone is h,
and the radius is R.

Solution Let us select a coordinate system as shown in Fig. 6.18. The centroid

should be on the axis of symmetry, which is in this case the x-axis. Therefore, only
location of centroid along this axis has to be calculated using (6.23). First, we have

to find the volume of the cone. Let us select a thin plate parallel to the cone’s base

located at distance x from yz plane. The volume of this plate is

dV ¼ πr2dx

Fig. 6.17 The cone
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where

r ¼ R h� xð Þ
h

dx is the thickness of the plate, and r is its radius.
Integrating this expression along the x-axis will result in the volume of the cone

V ¼
ðh
0

π � r2 � dx ¼
ðh
0

π � R2 � h� xð Þ2
h2

dx ¼ π � R2 � h
3

From (6.23) we obtain

V � xG ¼
ðh
0

x � dV ¼
ðh
0

x � π � r2 � dx ¼
ðh
0

x � π � R2 � h� xð Þ2
h2

dx ¼ π � R2 � h2
12

Thus, the location of centroid is at xG ¼ h=4.

Example 6.8 Find the location of a centroid of a uniform, 3D structure shown in

Fig. 6.19. Point A is located at (2.0, 0.0, 5.0)m, and the radius of quarter circle BC

is 3.0 m.

Solution We will use the approach of the composite bodies. The structure consists

of three segments: AB and AC are straight lines, and BC is a quarter circle. The

centroid of a straight line is located at its geometrical center, while the centroid of a

quarter circle is at location xG ¼ yG ¼ 2R=π, as was shown in Example 6.3. The

location of the centroid can be calculated as

Fig. 6.18 Geometry of

the cone
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xG ¼

X3
i¼1

xGi � Li
L

yG ¼

X3
i¼1

yGi � Li
L

zG ¼

X3
i¼1

zGi � Li
L

where centroids of each segment are shown in the table below

Segment L xG yG zG xG � L yG � L zG � L
AB 5.10 2.5 0.0 2.5 12.75 0.0 12.75

BC 4.71 1.910 1.910 0.0 9.00 9.00 0.0

AC 6.16 1.0 1.5 2.5 6.16 9.24 15.4

15.97 27.9 18.24 28.2

Thus,

xG ¼

X3
i¼1

xGi � Li
L

¼ 27:9

15:97
¼ 1:747m

yG ¼

X3
i¼1

yGi � Li
L

¼ 18:24

15:97
¼ 1:142m

Fig. 6.19 Centroid of a line
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zG ¼

X3
i¼1

zGi � Li
L

¼ 28:2

15:97
¼ 1:766m

6.5.3 Theorems of Pappus

Many geometrical shapes, which are used in engineering practice, can be generated

by revolving a plane curve or a flat surface about an axis. Greek mathematician

Pappus of Alexandria (circa 290–350 CE) derived the theorem for calculating the

surface area or volume created by revolving a plane curve or an area. They apply to

the curves and areas that do not intersect the axis of rotation. He showed that the

surface and the volume are related to the distance traveled by their centroids. These

theorems are sometimes called Pappus–Guldinus. Guldinus (1577–1643) was a

Swiss mathematician, who had rediscovered these theorems, but was not able to

give a satisfactory proof of them.

Theorem 1 The surface area created by revolution of a plane curve about the axis
belonging to the same plane is equal to the length of the curve multiplied by the
distance traveled by its centroid.

The line AB is revolved about the x-axis (Fig. 6.20) by an angle of 2π. The
differential length dl generates a surface of 2πydl. Thus, the entire area S generated
after rotation of 2π is

S ¼
ðB
A

2πydl ¼ 2π

ðB
A

ydl

Fig. 6.20 Surface generated

by a rotating line
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As it was shown above, (6.12), the integral in the above equation is

ð
contour

ydl ¼ L � yG

Therefore, we have

S ¼ 2πLyG ð6:24Þ
where is the distances traveled by the centroid of the curve during the 2π revolution

around the x-axis.

Theorem 2 The volume of a body created by revolution of a plane area about the
axis belonging to the same plane is equal to the area multiplied by the distance
traveled by its centroid.

Plane area A is revolving about the x-axis (Fig. 6.21) by an angle of 2π. Let’s
consider differential element dS. Rotation of element dS will generate a toroid with
volume dV ¼ 2πydS. Thus, volume V generated by rotation of the whole area A by

2π is

V ¼
ð
area

2πy dS ¼ 2π

ð
A

ydS

The above integral can be represented as (see (6.12))

ð
A

ydS ¼ AyG

Fig. 6.21 Rotating a

plane area
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where yG is the centroid of area A. The volume of the body may be expressed as

V ¼ 2πAyG ð6:25Þ
Here, 2πyG is the distance traveled by the centroid of the plane area.

If the curve or the area is revolved through an angle φ less than 2π, the resulted
area or volume can be found by substituting 2π by the angle φ. Thus, (6.24) and
(6.25) become

A ¼ φLyG ð6:26Þ
and

V ¼ φAyG ð6:27Þ
Example 6.9 Calculate the surface area generated by revolving a line ABC shown

in Fig. 6.22 about y-axis by the angle of 2π. The dimensions are: LAB¼ 1.2 m,

LBC¼ 2 m, and angle φ ¼ 45∘.

Solution Two surfaces will be generated by revolving line ABC about the y-axis:
one by segment AB, and the second-by segment BC. The centroid of the segment

AB is

xAB ¼ LAB � sinφ
2

and for segment BC

xBC ¼ LAB � sinφ.

Fig. 6.22 Rotating line ABC

238 6 Distributed Forces: Center of Gravity and Centroids



Using (6.24) and combining both surfaces, we will get

A ¼ 2πLABxAB þ 2πLBCxBC ¼ 2π � 1:2 � 0:6 � sin 45� þ 2π � 2 � 1:2 � sin 45�

¼ 13:86m2

Example 6.10 Calculate the area of the surface generated by rotation of a quarter

circle shown in Fig. 6.23 about y-axis by angle π/2. The radius of quarter circle

R ¼ 2m.

Solution The centroid of the quarter circle is defined in Table 6.1, and is shown in

Fig. 6.23, xG¼ 2R/π. We can use (6.26) to calculate the area of the surface

generated by rotation of the quarter circle,

A ¼ φLxG ¼ π

2
� 2πR

4
� 2R
π

¼ πR2

2
¼ 6:29m2

Example 6.11 Find the volume of the body created by rotation of a triangle by

angle about the y-axis using Pappus theorem. The geometry of the triangle shown in

Fig. 6.24 is defined as:

a ¼ 20cm, b ¼ 10cm, and h ¼ 18cm

Solution The volume may be calculated using (6.25),

V ¼ 2πAxG

where A is the area of the triangle and xG is the location of the centroid in

x direction.

Fig. 6.23 Rotating quarter

circle
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The area of the triangle is A ¼ bh=2. Location of its centroid, as given in

Table 6.1, is xG ¼ aþ bð Þ=3. Thus, the volume of the body created by rotating

the triangle around y-axis is

V ¼ 2πAxG ¼ 2π
bh aþ bð Þ

2 � 3 ¼ π
10 � 18 � 30

3
¼ 5650cm3

Example 6.12 Find the volume of the body created by rotation of the area defined

by a parabola and lines y¼ 0 and x¼ b around the x-axis (Fig. 6.25).

Fig. 6.24 Rotating triangle

Fig. 6.25 Rotating body
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Solution The volume is calculated by (6.25),

V ¼ 2πAyG

where A ¼ ab3=3 is the area of the parabolic triangle and yG ¼ 3ab2=10 is the

location of the centroid in y direction. The values are taken from Table 6.1. Thus,

the volume of the body created by rotating the parabolic triangle around y-axis is

V ¼ 2πAyG ¼ 2π
ab3

3
� 3ab

2

10
¼ πa2b5

5
:

What We Have Learned?

The difference between the concentrated and distributed loads
The concentrated loads act at a point, while the distributed loads act over an area. In
reality, there are no concentrated loads. However, when size of the contact area is

small compared to the structural element, the load may be considered as a

concentrated load. When dealing with the equilibrium of a rigid body only, all

distributed loads may be replaced by the equivalent concentrated loads.

About centers of gravity and centroids
Center of gravity is a point where the total weight (resultant) is acting. The effect of

the resultant on rigid body equilibrium is the same as of the distributed load.

Centroid is the geometrical center of a body, which depends on body’s geometry

only. For homogeneous bodies, the location of the centroid and the center of gravity

coincide.

How to find center of gravity and centroids of various bodies
Center of gravity is defined by equating the effect of the distributed load on the

body equilibrium with the effect of its resultant. Equations (6.22) and (6.12)–(6.13)

are used to calculate the location of the center of gravity and the centroid of 2D and

3D solid bodies and wires.

How to replace the effect of a distributed force by a concentrated force
To find the concentrated force equivalentTypeequationhere: to a distributed load

generated by the weight of a body, we have to integrate over the body volume to

find its total weight (force). The location of the concentrated load is in the center of

gravity of a body, which is defined by (6.22).

6.5.4 Problems

6.77 Find the center of gravity of a wire. Weight of the wire per unit length is

10 N/m.
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Fig. P6.77

6.78 Find the center of gravity of the dam. The left side is made of sand with

specific gravity of 1.8 kN/m3, and the right side is a concrete with specific

gravity of 24 kN/m3. Assume the depth of the dam is 1 m.

Fig. P6.78

6.79 Find the centroid of the structure made of two quarter-circles, each having

radius R, and a straight piece of a wire connecting them.

Fig. P6.79
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6.80 Find the centroid of a structure made of homogeneous bars. The length of

each bar is 40 cm, except the bars 9 and 10, their length is 20 cm each.

Fig. P6.80

6.81 Find the centroid of the structure made of five homogeneous rods. The length

of each road is 30 cm, and it makes angle of 45� with the plane ABCD.

Fig. P6.81
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6.82 Determine the volume of a body obtained by revolving the area between a line

and the y-axis about the y-axis. The dimensions are in m.

Fig. P6.82

6.83 Determine the area of the surface obtained by revolving the area between a

line and the y-axis about the y-axis. The dimensions are in m.

Fig. P6.83

6.84 Find the total surface area of a body using Pappus theorem. Height h is

100 cm, internal radius r is 20 cm, the outside radius at base R1 is 60 cm,

and at top R2 is 30 cm.

Fig. P6.84
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6.85 Calculate the volume of the body shown in Fig. P6.84 using Pappus theorem.

6.86 Locate the centroid of a homogeneous body. Use a¼ 40 cm, b¼ 140 cm,

c¼ 60 cm, d¼ 10 cm.

Fig. P6.86

6.87 Locate the centroid of a homogeneous body. All dimensions are in cm.

Fig. P6.87

6.88 Locate the centroid of a homogeneous body. All dimensions are in cm.

Fig. P6.88
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6.89 Locate the centroid of a homogeneous body. All dimensions are in cm.

Fig. P6.89

6.90 Determine the centroid of a bridge support. All dimensions are in cm.

Fig. P6.90
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6.91 A sphere (radius 2a) contains a spherical cutout with radius a centered at O1

(0, a/2, a/2). Find the coordinates of the centroid of this body.

Fig. P6.91

6.92 Centroid of a homogeneous body assembled from a cube with base “a” and a

prism (height b) is located at plane ABCD. Determine b.

Fig. P6.92
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Not everything that can be counted counts, and not
everything that counts can be counted

—Albert Einstein

In this chapter you will learn:

• When a structural element can be considered as a truss, frame, or machine

• When a structural element can be considered as a beam

• When a structural element can be considered as a cable

• How to find internal forces

In previous chapters, we were dealing with equilibrium of objects modeled either as

particles (points) or rigid bodies depending on their size and loading conditions. As

we already know the actual geometry of a rigid body has no effect on its equilib-

rium. The latter depends only on the moments and the relative location of the forces

acting upon the body.

In this chapter, we will introduce concepts, assumptions, and rules necessary to

classify structural elements. The following classes of structural elements will be

introduced: trusses, beams, frames, machines, and cables. We will also discuss the

procedure to calculate internal forces in various structural elements.
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There is no general approach for solving all possible structures. Historically,

methods were developed for solving a particular class of structural elements.

Whenever a structure is being analyzed, one of the first questions that arise is to

what class its elements belong. As a matter of fact, drawing a physical model is

essentially a step to simplify the structure so that it will belong to a certain group of

problems, for which the procedure to obtain the solution is known.

7.1 Types of Structural Elements

Observation of the nature and man-made objects reveals that usually they are not

made from a single homogeneous piece. In many instances, the objects are made

from a number of constituents. As a rule, the constituent elements are more

homogeneous and have simpler forms than the whole object. Even human being

may be considered as constructed of a number of different systems, like musculo-

skeletal, cardiovascular, etc. Each one of those is significantly simpler to model

than the human being as a whole. Though the engineering structures are much

simpler than the human body, they still need to be represented and modeled as an

assembly of their constituents. For example, even such sophisticated engineering

system as an airplane, which is made of different materials and structural elements

(Fig. 7.1), can be represented as an assembly of thin plates, straight and curved

elements, wheels, wires, etc.

Because the whole objects, like an airplane or car, usually cannot be analyzed

due to their complexity, here we will develop approaches to represent complex

Fig. 7.1 An airplane, a complex engineering structure
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objects as a sum of their simplified constituent parts. The simplification allows to

represent each of the constituent parts as an element belonging to a particular class

of structural elements for which the procedure to find the solution is known.

The simplification allows to represent a structure elements as an element

belonging to a particular class of structural elements for which the procedure

to find the solution is known.

Now we are ready to discuss the assumptions used in the process of creating a

physical model. These assumptions are needed in order to reduce the problem to a

case that is possible to solve. Historically, methods were developed for solving

different classes of problems such as beams, trusses, cables, plates, and shells. We

will discuss requirements that a structural element has to fulfill to be assigned to a

certain class of structural elements.

7.1.1 Truss Members

We will discuss truss members using an example of a high voltage transmission

tower (Fig. 7.2a). It is loaded by tension of wires applied at different points.

The tower below is built from straight, slender bars connected one to another at

their ends. We will assume that members of this structure are connected by joints

that may be represented as frictionless pins. We will also assume that the weight of

each member is negligible compared to the forces it carries. We shall further

assume that loads are applied only at the joints. When these assumptions are

fulfilled, each member is subjected either to tensile or compressive load along its

longitudinal axis. Such elements are called truss elements, and the structure built

from these elements is called a truss. Using these assumptions, we may model the

tower as a truss. A segment of this model is shown in Fig. 7.2b.

To find the forces acting on each member, we will have to disassemble the tower

and consider equilibrium of each member separately. Since there are only two

forces acting on an element of a truss, it is considered two-force elements

(Fig. 7.2c).

A structural element may be considered as a truss member if:

• It is a slender, straight element.

• It is connected to other members only at its ends with a frictionless pin.

• It is loaded by forces at its ends only.

Truss members are never loaded by moments.

It should be noted that in reality the connections between the structural elements are

not frictionless pins, but either bolts or welded joints. Such connections will
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introduce bending moments. The theory developed to solve trusses does not

account for these moments. Therefore, the results obtained by modeling such

structure as a truss will contain errors. These errors need to be accounted for in

the design process by utilizing appropriate safety factor.

7.1.2 Beams

In many engineering applications, slender structural elements are loaded by

moments or by forces positioned not only at joints, but also at some other locations.

Such members cannot be modeled as truss elements. The same is true when

structural elements are not straight. Slender elements that are curved or loaded by

moments or forces acting not only at the joints are called beams.

Bending of a structural element is always a result of a moment.

Let us consider an example, a flowerpot supported by a holder (Fig. 7.3a). The

physical model of the holder is shown in Fig. 7.3b. It is modeled as a curved beam,

loaded by a distributed load.

A structural element may be considered a beam if:

• It is a slender, straight, or curved element.

• It may be connected to other members at any point.

• It can be loaded at any point by forces and moments.

Beams are important parts of structures called frames. They will be discussed

later in Chap. 8.

Fig. 7.2 (a) High voltage tower. (b) Segment of the truss. (c) Two-force member
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It should be noted that a straight beam loaded only by forces acting at its ends

would behave as a truss member. It means that a truss member is a special case of a

straight beam.

7.1.3 Cables

If a structural element becomes very thin comparatively to its length, it will not be

able to support compressive loads or moments. It will be able to carry tensile loads

only. Such structural elements are called cables. Cables are considered as rigid

bodies only when loaded by tensile forces. They cannot sustain any compressive or

bending loads, i.e., they are considered to be ideally flexible. A cable loaded only by

an axial tensile force will behave as a truss member. When loading is applied in any

other than the axial direction, the cable will change its geometry to accommodate

the load. Cable can be connected to other member of a structure at its ends only, but

it may be loaded by force at any point. Cables cannot be loaded by moment.

Figure 7.4a depicts a cable loaded by its own weight, i.e., by a distributed load.

The cable loaded by a concentrated force, which is significantly larger than its own

weight, is shown in Fig. 7.4b.

A structural element may be considered a cable if:

• It is a slender element.

• It is rigid in axial direction, in tension only.

• It is ideally flexible.

• It is connected to other members at ends only.

• It can be loaded at any point by any force, but not by a moment.

Fig. 7.3 (a) Flowerpot suspended by a holder. (b) Physical model of the holder
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In both cases, the cable assumes the shape imposed by the load. It should be noted

here that the solution procedures are quite different for the cables loaded by

concentrated vs. distributed loads, as it will be shown in Chap. 10.

Geometry of a cable depends on the applied load.

Cables can support tensile loads only.

7.2 Internal Forces

Loads and supports represent external forces and moments acting on a matter

(material) comprising the body. Matter from which a body is built has to sustain

these external forces and moments. Forces acting on the matter at a particular

location inside the body are called internal forces. These forces appear in the body

due to the external forces according to the Newton’s Third Law, and they resist the

change of the body’s geometry. Knowledge of the internal forces distribution is

necessary for design of an element, i.e., choice of geometry and material.

Let us consider a free body diagram of the rigid body loaded by external forces and

moments, as shown in Fig. 7.5a.

To analyze the internal forces, we should utilize the principle of equilibrium.

The external forces and moments have to satisfy the equations of equilibrium:

Fig. 7.4 Cables
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XN
i¼1

Fi ¼ 0

XK
i¼1

Mi ¼ 0

ð7:1Þ

Let us mentally cut the body into two parts A and B at an arbitrary location

(Fig. 7.5b). Since the original rigid body was in equilibrium, each part should be

in equilibrium as well. Let us analyze each part as a separate body.

To keep each part in the equilibrium, we should add a force and moment, as

shown in Fig. 7.5b. That together with external loads acting on this part will satisfy

the equations of equilibrium. The force and the moment, that we have added, are

the resultant force and resultant moment of the internal forces acting on the surface

of the cut.

Fig. 7.5 (a) Free body diagram of a rigid body. (b) Body cut in two
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The equations of equilibrium for part A are

FA þ
Xj
i¼1

Fi ¼ 0

MA þ
Xk
i¼1

Mi ¼ 0

ð7:2Þ

and for part B

FB þ
XN
i¼jþ1

Fi ¼ 0

MB þ
XK
i¼kþ1

Mi ¼ 0

ð7:3Þ

The summations in (7.1) may be split into two ranges to obtain

Xj
i¼1

Fiþ
XN
i¼jþ1

Fi ¼ 0

Xk
i¼1

Miþ
XK
i¼kþ1

Mi ¼ 0

From here it follows that

Xj
i¼1

Fi ¼ �
XN
i¼jþ1

Fi

Xk
i¼1

Mi ¼�
XK
i¼kþ1

Mi

and therefore FA ¼ �FB and MA ¼ �MB . It means that the internal force and

moment acting on the part A are equal in magnitude and opposite in direction to the

internal force and moment acting on part B, as could be predicted from the

Newton’s Third Law. Thus, internal force and moment in this cross section can

be calculated either from (7.2) or (7.3).

Example 7.1 The beam shown in Fig. 7.6a is loaded by a vertical force P¼ 12 kN.

Determine the internal force and moment acting at point C when a¼ 0.1 m.

Solution Cut the beam at point C, apply the unknown internal force and moment at

this section and consider the equilibrium of the right hand part of the structure. The

free body diagram is shown in Fig. 7.6b. We will consider equilibrium of the right
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hand part of the beam since all external loads acting on it are known. The unknown

internal force is represented through its two orthogonal components: Cx and Cy as it

is shown on the free body diagram. Directions of the unknown forces and moments

can be assigned arbitrary. The solution will show if the direction was chosen

correctly, positive sign indicates that the direction was assumed correctly. The

equations of equilibrium are (we are taking the sum of the moments about point C):

X
Fx ¼ �FCx ¼ 0X
Fy ¼ FCy � P ¼ 0X
M ¼ MC � Pa ¼ 0

Solving these equations and using given values of P and a result in FCx¼ 0,

FCy¼ 12 kN, and MC¼ 1.2 kN m. It should be noted that the positive values

indicate that the unknown forces and the moment act in the directions as it was

shown in the free body diagram.

Example 7.2 The ladder, schematically shown in Fig. 7.7a, is loaded by a vertical

force P¼ 810 N. Determine the internal force and moment acting at the point D,

when a¼ 0.2 m.

Solution Before cutting the supporting leg at point D, we have to find the reactions

at point A. Assume that the ladder is on the frictionless floor. The corresponding

free body diagram is shown in Fig. 7.7b. Let us consider the equilibrium of the

ladder. Since we need to find only the reaction at support A, we will use only one

equation of equilibrium. Let us write the sum of moments about support B, this will

eliminate the unknown reaction B from the equation.

X
M ¼ �Ay � 3aþ P � a ¼ 0

Solution is Ay ¼ 1=3P. Now, we are ready to cut the leg at point D and apply the

unknown internal force and moment, as shown in Fig. 7.7c.

Fig. 7.6 (a) Physical model of the beam. (b) Free body diagram
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We will represent the unknown internal force by its two orthogonal components,

one along the member (D1) and one in the perpendicular direction (D2). From

Fig. 7.7a we can find the angle θ¼ a tan(8)¼ 82.9� and the length

AD ¼ 1:5a= cos θ. The equations of equilibrium for the part AD are:

X
Fx ¼ D1 � cos θ � D2 � sin θ ¼ 0

X
Fy ¼ D1 � sin θþ D2 � cos θ þ Ay ¼ 0

X
M ¼ MD � Ay � AD � cos θ ¼ MD � Ay � 1:5a ¼ 0

Solution of this system of three equations is

D1 ¼ �268N

D2 ¼ �33:4N
MD ¼ 81Nm

The negative sign means that the directions of both force components D1 and D2

should be reversed. The magnitude of the internal force D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1 þ D2
2

q
¼ 270 N.

Fig. 7.7 (a) The ladder. (b) Free body diagram. (c) Free body diagram of the section of interest
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Guidelines and Recipes for Determination of Internal Forces and Moments

• Find the unknown reactions.

• Cut the rigid body at the selected location.

• Add unknown internal force and moment to any part.

• Write and solve the equations of equilibrium for this part.

What We Have Learned?

When a structural element may be considered as a truss member
A structural element should be modeled as a truss member when it is a straight,

slender body loaded by the axial forces acting at its ends only. It should be

connected to the other members at its ends by frictionless pins only.

When a structural element may be considered as a beam
A structural element should be modeled as a beam when it is a slender, straight, or

curved element, connected to the other members at any point, and it is loaded by

moments or by forces acting at any point.

When a structural element may be considered as a cable
A structural element should be modeled as a cable when it is a slender element,

rigid in the axial direction and very (ideally) flexible. It should be connected to

other members at both ends only. It may be loaded at any point by forces, but not by

moments.

How to find internal forces
Internal forces and moments are obtained by cutting a rigid body at a selected

location, adding an unknown internal force and a moment and applying the equi-

librium equations.
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7.2.1 Problems

7.1 Four hangers are ready to support a 500 N beam. Determine the internal forces

and moments at the base of hanger A. Assume that the load of the beam is

uniformly distributed and the hanger’s width is 20 cm.

Fig. P7.1

7.2 The weight of homogeneous member DE is 300 N, it is acting at the middle of

span DE. Force Q¼ 100 N. Determine the internal forces and moments in the

member DE, just above the point A. Use AB¼ 3 m, BC¼ 1 m, AD¼ 1/4DE,
and α¼ 30�.

Fig. P7.2

7.3. Rod AB is supported by rod CD; attached weight Q¼ 200 N. Determine the

internal forces and moments in member CD, just below point E. Angle φ¼ 60�

and l¼ 60 cm.

260 7 Classification of Structural Elements



Fig. P7.3

7.4 Homogeneous rod Fig. P7.3 AB (weight W¼ 100 N) is supported by rod CD;

attached weight Q¼ 200 N. Determine the internal forces and moments in

member BC, just to the left of point C. Angle φ¼ 60� and l¼ 60 cm.

7.5 Rod AB is supported by rod CD and loaded by force F¼ 50 N. Determine the

internal forces and moments in the member AB, just to the right of point C.

Fig. P7.5

7.6 Rod AB (length l¼ 50 cm) is supported as shown below and loaded by force

P and moment M. Determine the internal forces and moment in member AB,

just to the right of point F. Use a¼ 20 cm, b¼ 30 cm, P¼ 30 N, and

M¼ 200 N m.
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Fig. P7.6

7.7 Member AOB is attached to cable CD and is loaded by force P¼ 100 N and

counterweight B¼ 300 N. Determine the internal forces and moment at the

section just to the left of point O. Use AO¼OB¼ 0.5 m, OC¼CB, α¼ 30�,
γ¼ 60�, and force P is acting normal to AO.

Fig. P7.7

7.8. Weightless beam AB leans on beam CD and is loaded by force P¼ 120 N.

Determine the internal forces and moment in member AB, just above point B1.

Use BB1¼ 1.2 m.

Fig. P7.8
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7.9 Disk C is held in equilibrium by cable AC and loaded by a homogeneous bar

AB. Determine the internal forces and moment at the point just above of the

contact between the bar and the disc. Weight of bar AB is 16 N and r¼ 0.5 m.

Fig. P7.9

7.10 Safety valve A of the pressure vessel is attached by link AB to homogeneous

bar CD (weight of bar CD¼ 12 N). Determine the internal forces and moment

at the point just to the right of point B. CD¼ 60 cm, BC¼ 6 cm, andQ¼ 20 N.

Fig. P7.10
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I find that the harder I work, the more luck I seem to have

—Thomas Jefferson

Do, or do not. There is no “try”

—Yoda

In this chapter you will learn:

• What is truss

• What is compound truss

• How to use different techniques to find the internal forces in trusses

As we described in Chap. 7, there are several main types of structural elements. In

this chapter, we will discuss ways to find the internal forces acting in structures.

Structures may be spatial or planar. For example, if all of the structure members and

loads belong to the same plane, we will call such a structure planar.

Some of the structures may be modeled as a truss, others as a frame, or a

mechanism. In this chapter, we will discuss how to solve for internal forces in

truss structures.
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Truss is a structure that is built only from two-force elements (truss members)

connected at the ends one to another (joints) in order to create a desired shape. The

external loads may be applied only at the joints.

Trusses are built to support external loads and prevent any movements.

We will use the principles of equilibrium of forces and moments to find forces

acting in each member of a structure.

One should use “common sense” in the process of idealization and modeling of

real objects. An exact analysis of the system may require very sophisticated

analysis tools, which are beyond the scope of this book. However, any system

may be simplified and modeled so that a lot of useful information can be obtained

by using methods discussed in this book. Let us consider, e.g., a racing car

(Fig. 8.1). Observation of the object leads to the conclusion that it has some kind

of symmetry, not in a pure mathematical sense, but rather in approximate, engi-

neering sense. Well, the car is not exactly symmetrical since, e.g., the steering

wheel is on the left side and the glove compartment is on the right. However, such

non-symmetry is not significant for the analysis of structural capacity of the car. We

will make our first simplification by assuming the car to be a symmetrical structure.

We will assume that the plane of symmetry cuts the car into left and right halves. In

such a case, one can reduce the three-dimensional problem into a two-dimensional

one. Let us now consider the plane view of the car (Fig. 8.1)

Truss is a structure that is built only from two-force elements (truss members)

connected one to another in order to create a desired shape.

Now, we make the next simplification and represent the car as a system of

uniform, straight members built to support the load of all essential car components.

To design the size and material of those components, we have to find a way to

estimate the forces that will be carried by each member of the structure. We also

assume that the members of this structure are straight, rigid members interconnected

by frictionless pins that are loaded at these joints only. Figure 8.2 shows an overlay

of the two-dimensional view of the car with the simplified model of the car as a truss

(solid lines).

Truss members are connected by frictionless pins at their ends and are loaded at

the pins only. The weight of the member is usually neglected.

Fig. 8.1 Your favorite car
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Next, let us apply all external loads and reactions. We assumed that the external

loads are applied to the pins (joints) only; it means that we neglect the weight of the

truss members and, therefore, each member is subjected to axial load only

(Fig. 8.3).

The truss representing our car is called a rigid truss, since removing any one

member will destroy its rigidity, and therefore it will become a mechanism. Adding
extra members will result in an over-rigid1 (over-constrained) truss.

For a three-dimensional rigid truss, we can develop a simple relationship

between the number of members and joints on the basis of equilibrium conditions.

We can consider a truss as a three-dimensional assembly of m members connected

by p pins. If the structure is in the static equilibrium, then each pin should be in

equilibrium as well. For each pin, we can write three equilibrium equations, thus the

total number of independent equations is equal to 3p. Each truss element has one

unknown internal force, i.e., if the truss consists of m elements, there are

m unknown internal forces. To keep a three-dimensional structure in a static

equilibrium, there will be additional r unknown reaction components. Value of

r is dependent on the type and the number of supports. It is equal to 3 for the

two-dimensional structures and to 6 for three-dimensional structures. Thus, to

Fig. 8.2 Model of the car as a truss

Fig. 8.3 Truss (physical

model of the car)

1Over-rigid trusses will be studied in the strength of material courses since deformations must be

considered to get the forces in members and this is beyond this course.

8 Analysis of Truss Structures 267



ensure the equilibrium of a three-dimensional truss, the following equation should

be satisfied:

3p ¼ mþ r ð8:1Þ
For a two-dimensional case, (8.1) will take the form

2p ¼ mþ r ð8:2Þ

To ensure the equilibrium of a 3D truss, the following equation should be

satisfied:

3p ¼ mþ r

For a two-dimensional case, the equation will take the form

2p ¼ mþ r

where m—number of elements, p—number of pins, r¼ 3 in a two-dimensional

structure, and r¼ 6 for a three-dimensional structure.

If the left hand side of (8.1) or (8.2) is larger than the right hand side, it means

that the truss is a mechanism, while in the opposite case the truss is over-rigid.
Above equations cannot be used to verify that the truss under consideration is a

rigid one, since (8.1) and (8.2) are only the necessary conditions for a solvable

system of equilibrium equations, but not sufficient. The example (Fig. 8.4) shows

two trusses satisfying the above conditions; however, truss (a) is obviously not

rigid, while truss (b) is a rigid one.

Since any structure composed from three members forming a triangle is

inherently a rigid one, it is often used to construct a truss. One can add two new

members to the existing joints to form a new triangle. Thus by adding new

members, a truss of any desired shape may be constructed. The truss that has

been built using only triangular additions is called a simple truss.

Fig. 8.4 Nonrigid (a) and rigid (b) trusses
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Truss constructed from triangles is called simple truss.

It is usually assumed that a truss member does not have weight; however, if this

is not a valid assumption, the total weight of the member may be divided by two and

applied at its ends. Thus, each member is loaded only at the ends and may be

considered as a two-force member. As we already know, the two-force member will

be in equilibrium only when those two forces are acting in opposite directions, are

equal in magnitude, and are collinear. When a force tends to extend a member, it

will be called a tensile force; when it tends to shorten a member, the force will be

called a compressive force. To distinguish between these two types of forces, we

assign to the tensile force a positive sign and to the compressive a negative sign.

Tensile forces are marked as positive ones, while compressive as negative ones.

The internal forces in truss members can be determined by using method of joints

or sections. Both methods are based on the principle of equilibrium, i.e., that the sum

of all forces and sum of all moments acting on the truss has to be equal to zero.

X
F ¼ 0

X
M ¼ 0

Since the whole structure is in equilibrium, each part of it also has to be in

equilibrium. This suggests a simple way to solve for unknown internal forces in

truss members. We can “disassemble” a truss into smaller parts, more convenient

for the solution, and by using equilibrium equations to solve for the unknown

forces. This procedure will be discussed in detail in the following sections.

Trusses shown in Figs. 8.3 and 8.4b represent simple trusses. They are usually

constructed by adding two new members to the existing truss to create a new joint

and a new triangle. We can build a truss of any size and shape using this procedure.

We will start with two-dimensional trusses and later, in Sect. 8.1.4, will discuss

space structures.

8.1 Method of Joints

This method is based on extracting (cutting) joints out of the truss one after another

and considering their equilibrium. For each two-dimensional joint, we can write

two equations of equilibrium. Even though each joint is in the state of equilibrium,

not each joint we can solve directly since there may be more unknown forces acting

on the joint than there are equations of equilibrium. Thus, we should use our

judgment on where to cut because it should be not more than two unknown forces

acting on the joint of interest! Proper selection of the cutting order will allow

solving each joint separately.

8.1 Method of Joints 269



Let us consider a two-dimensional truss (Fig. 8.5) loaded by external forces PA

and PB. We want to find the forces acting on the joint B, so let’s cut off joint B and

consider its equilibrium.

Figure 8.6 shows forces acting on joint B. They comprise the external force PB

and two unknown forces FBA and FBC imposed by two truss members acting upon

the joint B. These forces, FBA and FBC, are due to the action of the truss members on

the joint. Directions of these forces are chosen so that the truss members are

assumed to be under tensile loading. The lines of action of the internal forces are

along the corresponding truss members AB and BC; thus, there are only two

unknowns (magnitudes of the internal forces). Since we are dealing with the

concurrent system of forces, there are only two equations of equilibrium.

When a force is directed away from the joint (pin) the corresponding member is

under tensile load; when the force is directed toward the joint (pin) the truss

member is under compression.

Fig. 8.5 Physical model of a

truss

Fig. 8.6 Forces acting on

joint B
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X
Fx ¼ 0 ð8:3ÞX
Fy ¼ 0 ð8:4Þ

The solution of a system of two equations with two unknowns is a straightfor-

ward procedure. The same procedure should be applied to all joints until we

determine all unknown internal forces acting in all truss members.

Let us again consider a two-dimensional truss (Fig. 8.5), but this time it is loaded

only by force PA and force PB¼ 0. Here, we have a situation where pin B cannot be

in equilibrium unless the forces in each member are zero. This is obvious if you

write two equation of equilibrium ((8.3) and (8.4)) for the joint B. Thus, the truss

joint with two noncollinear members and no external load always has zero force in

each member, and these members are called zero-force members.

Guidelines and Recipes for Finding the Internal Forces in Truss Members using

the Method of Joints

• Create a physical model of the truss.

• Draw a free body diagram of the truss.

• Solve for the unknown reactions.

• Choose a joint with no more than two unknown internal forces and

disassemble it.

• Draw a free body diagram of this joint and solve for the unknown internal

forces.

• Repeat for each joint.

Example 8.1 A truck is traveling over a bridge (Fig. 8.7). Determine the internal

forces in each member of the bridge when the truck is passing the middle of the

bridge.
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Solution First, we have to create a physical model of the structure. Let us assume

that the left side of the bridge is supported by frictionless pin, while rollers support

the right end. Since the task is to find internal forces in the members comprising the

bridge, we may assume that the truck is much smaller than the bridge members, thus

its effect may be represented as a concentrated load. Therefore, the bridge may be

modeled as a truss.

Now, we can draw a free body diagram of the bridge (Fig. 8.8) and determine the

external reactions at joints A and H. Do we have to do this? Yes, since each joint is

subjected to more than two unknown forces, we need to know external reactions

before we will cut out the joints for analysis. The free body diagram is shown in

Fig. 8.8. The equations of equilibrium are

Fig. 8.7 Bridge and truck

Fig. 8.8 FBD of the bridge
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X
F ¼ 0 ¼ FA þ FH þ P

X
M ¼ 0 ¼ M FAð Þ þM FHð Þ þM Pð Þ

These equations of equilibrium may be expressed in a scalar form and solved as

shown below.

P
Fx ¼ Ax ¼ 0P
MA ¼ Hy � 4a� P � 2a ¼ 0 ) Hy ¼ P=2P
Fy ¼ Ay � Pþ Hy ¼ 0 ) Ay ¼ P=2

Assuming the total weight of the car is 16 kN, we get

Ay ¼ Hy ¼ 8 kN

Now, we have to select a joint that has only two unknown forces, say the joint

A. Free body diagram of the joint is shown in Fig. 8.9. It is a common practice to

assume that the truss members are under the tension while solving equilibrium

equation for a selected joint. Thus, if force is directed away from the pin, it means

tension in the corresponding member; when the force is directed toward the pin, it

means that the truss member is under compression. However, we do not know in

advance the magnitude and the direction of the forces acting upon the joint. It

should be noted that the order of the subscripts used for the member forces is of no

significance, thus force FAB¼FBA.

It should he noted that getting a negative value from solution of the equilibrium

equations means that we have chosen the wrong direction of the unknown force.

Therefore, setting the unknown internal forces as tensile (positive), as shown in

Fig. 8.9, will yield proper signs of the unknown forces. It means that the positive

result will indicate tension in the truss member, while the negative result—

compression.

Fig. 8.9 FBD of joint A
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Select the x–y axes as shown in Fig. 8.9 and write the equation of equilibrium.

X
F ¼ 0 ¼ FAC þ FAB þ A

In the above equation, we included all the forces acting on joint A; they are

shown as vectors. To solve this equation, we have to separate them into x and

y components and find two unknown values—the magnitudes of forces FAC and

FAB. Their directions are known—they coincide with members AC and AB.

X
Fy ¼ Ay þ FAC � sin α ¼ 0

It should be noted that the order of subscripts used for the member forces in this

and other examples is of no significance, thus force FAC and FCA refer to the

same force.

Angle α may be calculated from the known geometry of the bridge; it is 45�.
Solution of the above equation will give

FAC ¼ �11:31kN

The negative sign indicates that the member AC is a compression member rather

than a tension member as was our initial guess.

Now, we can substitute this value in the following equation:

X
Fx ¼ Ax þ FAC � cos αþ FAB ¼ 0

and find that FAB ¼ 8:00kN. Positive sign indicates that the initial guess was

correct and the member AB is in tension.

The next joint, which has only two unknown forces, is joint C. Let us cut it away,

draw a free body diagram (Fig. 8.10), and write equations of equilibrium. They will

include all three forces acting on the joint: FCA, FCB, and FCE. The directions of all

Fig. 8.10 FBD of joint C
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forces are known and the magnitude of the force FAC was found in the previous

step. Thus, we have two unknown values–magnitudes of forces FCB and FCE. As we

already know, in a two-dimensional case of concurrent system of forces we can

solve for only two unknown values, and this is exactly the case. Equations of the

equilibrium are

X
Fx ¼ FCE � cos θ � FAC � cos α ¼ 0, where α ¼ 45∘

X
Fy ¼ �FAC � sin α� FCB � FCE � sin θ ¼ 0, where θ ¼ 45∘

The solution of this system of equations is:

FCE ¼ �11:31kN and FCB ¼ 15:99kN

The negative sign in the first result indicates that the member CE is a compres-

sion rather than a tension member, as was our initial guess. The second result

indicates that the initial guess (tension) was correct.

Next, we will solve for forces in members connected at joint B. Four members

are connected together here, and the free body diagram is shown in Fig. 8.11. The

values of the internal forces are known for two of them (AB and BC). It is left to

solve for two unknown values—magnitudes of forces FBE and FBD. From the

bridge geometry, we may calculate angle β ¼ 26:6∘.
The equilibrium equation in y direction is

X
Fy ¼ FBC � FBD � sin β ¼ 0

From here

FBD ¼ 35:7 kN

In x direction, we have

X
Fx ¼FBD � cos β þ FBE � FAB ¼ 0

From here

Fig. 8.11 FBD of joint B
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FBE ¼ �23:9 kN

i.e., it is in compression.

We move now to the joint E; however, its FBD (Fig. 8.12) has three unknown

forces FED, FEF, and FEG. Since this is a concurrent system of forces, one can use

only two equations of equilibrium. Thus, we must choose another joint, and come

back to this one after the number of unknown will be reduced to two.

Thus, we have to choose another joint from the rest of the joints D, F, G, or

H. Only joint H has two unknown force values (Fig. 8.13).

The equations of equilibrium for the joint H are:

X
Fy ¼ FHG � sin δþ Hy ¼ 0, where δ ¼ 45∘ and

X
Fx ¼ �FHF � FHG � cos δ ¼ 0

The solution is

FHG ¼ �11:31kN and FHF ¼ 8:00kN.

Fig. 8.13 FBD of joint H

Fig. 8.12 FBD of joint E
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Now, we move to the joint G. Its FBD is shown in Fig. 8.14. The equations of

equilibrium are:

X
Fy ¼ �FGH � sin δ� FGF � FGE � sin γ ¼ 0, where γ ¼ 45∘ and

X
Fx ¼ FGH � cos δ� FGE � cos γ ¼ 0

The result is

FGE ¼ �11:31 kN, and FGF ¼ 16:00 kN.

We proceed to joint F, which now has only two unknown forces (Fig. 8.15). The

equations of equilibrium for the joint F are:

X
Fy ¼ FFG � FFD � sinψ ¼ 0, and where ψ ¼ 26:6∘

Fig. 8.14 FBD of joint G

Fig. 8.15 FBD of joint F
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X
Fx ¼FFH � FFE � FFD � cos ψ ¼ 0

The solution is

FFE ¼ �23:9kN and FFD ¼ 35:7kN:

Finally, we proceed to joint D, which has only one unknown force,FDE (Fig. 8.16).

The sum of forces in y direction is:

X
Fy ¼ FDE þ FDF � sinψ þ FDB � sin β ¼ 0

From here we obtain

FDE ¼ �32:00kN

The remaining joint is joint E, which we could not solve earlier since it had too

many unknown forces. However, since we have solved all other joints there are no

unknown forces left. Thus, the equilibrium in the joint E should be fulfilled. This

joint can be used to check the correctness of the results. Let us write the equations of

equilibrium, and substitute the values for all forces acting at the joint E (Fig. 8.12).

Both equations must be satisfied.

X
Fy ¼ FEG � sin γ � Pþ FEC sin θ � FED

� 11:31 � sin 45∘ � 16:00� 11:31 � sin 45∘ þ 32:00 ¼ 0

and

X
Fx ¼ FEF þ FEG � cos γ � FEC � cos θ � FEB

� 23:9� 11:31 � cos 45∘ þ 11:31 � cos 45∘ þ 23:9 ¼ 0

Both equations are satisfied, thus we solved the previous joints correctly. Since

the suggestion to show all unknown forces as positive (tensile) is not a standardized

Fig. 8.16 FBD of joint D
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rule, it is practical to indicate the mode of loading (tensile or compressive) by a

letter T for tension and C for compression, and leaving out the sign.

Thus, the results are:

FAB ¼ 8:00 kN Tð Þ, FAC ¼ 11:31kN Cð Þ, FBC ¼ 15:99kN Tð Þ
FCE ¼ 11:31 kN Cð Þ, FBD ¼ 35:7kN Tð Þ, FBE ¼ 23:9kN Cð Þ

FGH ¼ 11:31 kN Cð Þ, FFH ¼ 8:00kN Tð Þ, FGE ¼ 11:31kN Cð Þ

FGF ¼ 15:99 kN Tð Þ, FFE ¼ 23:9kN Cð Þ, FFD ¼ 35:7kN Tð Þ and

FDE ¼ 32:00kN Cð Þ

Each of the above equations may be solved by using the MATLAB routine

equilbriumPoint2D.m provided at the site extras.springer.com. Let us use this

routine to solve, for example, the forces acting at the joint A. Start MATLAB and

run equilbriumPoint2D. The first box will explain how to use the routine. Read it

and press OK. The next box will ask to input the total number of forces acting on a

given point. You have to enter 3, since the force Ax is already known to be zero. Let

us assign an ID number to each force as shown in Table 8.1. In the following box,

you will have to input data for each force.

The solution for the problem will be shown as:

The value of the first unknown is: 8.0000.
The value of the second unknown is: �11.3137.

It means that the first unknown, which we set to be magnitude of the force

FAB¼ 8.0 kN and the second unknown, which we set to be force FAC is equal to

�11.32 kN. The negative sign indicates that the member AC is under the compres-

sive force.

Example 8.2 Houses in old Amsterdam have very narrow staircases, thus people

used an outside lifting system (Fig. 8.17a) that is schematically shown in

Fig. 8.17b. We have to find forces in each member of the system when a man is

lifting a box weighting 400 N. All dimensions are in meters. The lifting system is

Table 8.1 Data for

MATLAB solution
Force number (name) 1 (Ay) 2 (FAB) 3 (FAC)

Magnitude (force) 8 x x

X component (length) 0 1 1

Y component (length) 1 0 1
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connected to the wall by a pin at the point A and is supported by a frictionless

roller at the point B.

Solution To solve this problem, we have to create a physical model of the shown

structure. Since there is no friction at point B, we can place a roller at this point. The

diameter of pulley E is small relative to the whole structure, thus we will assume its

diameter equal to zero. Utilizing these assumptions, we can draw a free body

diagram of the structure (Fig. 8.18). Each joint in this structure has more than

two members with unknown forces, thus we have to solve for the reactions first, and

use them for the solution of the problem. Let’s write three equations of equilibrium

and solve for unknown values of Ax, Ay, and Bx. The angle θ between the rope and

the bar DE (Fig. 8.18) is defined as:

tan θ ¼ 2:5

2:5
¼ 1; ) θ ¼ 45∘ ¼ π

4

The three equations of equilibrium are:

X
Fx ¼ Bx þ Ax � P � cos θ ¼ 0

X
Fy ¼ Ay � P � sin θ � P ¼ 0, and

Fig. 8.17 (a) House with the outside lifting device. Lifting system on the top floor. (b) Schematic

of the lifting system

280 8 Analysis of Truss Structures



X
MA ¼ Bx � AB� P � CE� P � sin θ � CE� P � cos θ � AC ¼ 0

We selected to write the sum of moments about the point A to exclude the

unknown forces acting at this point.

The solution is: Ax ¼ �428N, Ay ¼ 683N, and Bx ¼ 711N. The positive values

obtained for Ay and Bx confirm the original assumption concerning direction of

those forces. Negative sign for Ax indicates that the reaction Ax acts in the opposite

direction. We will continue to use this reaction as indicated on the free body

diagram and use its values as a negative number. You may get this solution either

by solving the above system of three equations manually or by using the provided

MATLAB routine equilbriumPoint2D.m (extras.springer.com).

Now, we can use the method of joints. Let us start with the joint B (Fig. 8.19).

Three forces act on this joint, magnitudes of two of them are unknown, FBC and

FBD. We can write two equations of equilibrium:

P
Fx ¼ Bx þ FBD � cos α ¼ 0P
Fy ¼ FBC þ FBD � sin α ¼ 0

where α is the angle between members BD and CD. From the geometry of structure,

we find tan α¼ 1.5/1 and α¼ 56.3�.

Fig. 8.18 FBD of the lifting

system
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The solution results in FBD ¼ �1281N and FBC ¼ 1066N, negative sign means

that the force acting in the member BC is a compressive force.

The next joint where there are no more than two members with unknown forces

appears to be the joint C shown in Fig. 8.19. Using the same procedure as for the

joint B, we can write two equilibrium equations:

P
Fx ¼ FCD ¼ 0P
Fy ¼ FCA � FCB ¼ 0

and solve them for FCA¼ 1066 N and FCD ¼ 0N. Next, we can proceed to joint D

and solve the following two equations of equilibrium.

X
Fx ¼ FDE � FDC � FDA � cos β � FDB � cos α ¼ 0

X
Fy ¼ FDA � sin β � FDB � sin α ¼ 0

where α is the angle between the truss members DB and DC, and β¼ α is the angle

between the truss members AD and CD.

The resulting forces are: FDE ¼ �1422N and FDA ¼ �1281N, negative value

indicates that forces in the members DA and DE are compressive forces. The last

unknown force in member AE can be calculated from the equations of equilibrium

for the joint E:

Fig. 8.19 FBD of joints A, B, C, D, and E
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P
Fx ¼ �FED � FEA � cos γ � P � cos θ ¼ 0P
Fy ¼ FEA � sin γ � P� P � sin θ ¼ 0

where tan γ¼ 1.5/2.5, thus γ¼ 31� and θ¼ 45�.
The unknown force in the member AE may be calculated from any of the above

two equations, since all other forces are known. Solving the first equation yields

force value of 1329 N, while from the second equation we will get value of 1326 N.

The difference is due to the rounding errors.

We did not utilize joint A for solution, thus it may be used to verify our

calculations. The equilibrium equations for this joint are:

P
Fx ¼ FAE � cos γ þ FAD � cos β þ Ax ¼ 0P
Fy ¼ Ay � FAE � sin γ � FAD � sin β � FAC ¼ 0

The left hand side of these equations should be equal to zero if we will substitute

appropriate values for all forces. The substitution yields for the first equation the

value of 0.4196 and for the second �1.752. These numbers are very small when

compared to the forces acting in the joints, thus our solution is correct.

If the truss has a joint where only two truss members are connected (two

unknown forces) we may start the determination of internal forces without

solving the equilibrium equations for reactions.

All of the above equations may be solved by theMATLAB routines (extras.springer.

com). This will save considerable amount of time and possible calculation errors.

You nevertheless have to draw a correct free body diagram for each joint of interest.

Let us consider some special cases when the joint is free from the external load.

(a) Truss joint with two collinear members. Sum of forces in the direction of

members is equal to zero, thus the axial forces are equal, FAC¼FAB

(Fig. 8.20a).

(b) Truss joint with two noncollinear members. Sum of forces in the direction y is
equal to zero, thus FBD¼ 0. Therefore, FBE must be equal to zero too. Thus,

both axial forces in this case are equal to zero (Fig. 8.20b).

(c) Truss joint with two collinear members and one noncollinear member. Sum of

forces in the direction y is equal to zero, thus FCM¼ 0. Sum of forces in the

direction x is equal to zero, thus FCN¼FCK (Fig. 8.20c).

(d) Trust joint with four members lying in two intersecting straight lines. Summa-

tion of forces in y direction results in FDT¼FDS, thus the magnitudes of FDP

and FDQ should be equal as well.
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8.1.1 Problems

8.1–8.3 Use method of joints to calculate the force in each member of the truss

shown. Use F¼ 80 N and a¼ 20 cm.

Fig. P8.1

Fig. 8.20 Special cases of joints physical models: (a) Two collinear members, (b) Two noncol-

linear members, (c) Two collinear members and one noncollinear member, and (d) Joint with four
members
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Fig. P8.2

Fig. P8.3

8.4 Determine the force in truss members 1–6. Use P¼ 60 N. Each trust member is

80 cm long.

Fig. P8.4

8.5 Determine the force in each member of the truss. Use F¼ 20 N and a¼ 20 cm.

Fig. P8.5
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8.6 Determine the force in each member of the truss. Use F¼ 10 N and a¼ 20 cm.

Fig. P8.6

8.7 Determine the force in each member of the truss. Use F¼ 40 N and a¼ 20 cm.

Fig. P8.7

8.8 Determine the force in each member of the truss. Use F¼ 10 N and a¼ 20 cm.

Fig. P8.8
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8.9 Determine the force in each member of the truss. Use F¼ 40 N and a¼ 20 cm.

Fig. P8.9

8.10 Determine the force in each member of the truss. Use F¼ 20 lb and a¼ 10 in.

Fig. P8.10

8.11 Determine the force in each member of the truss. Use F¼ 30 N and

a¼ 10 cm.

Fig. P8.11

8.1 Method of Joints 287



8.12 Determine the force in each member of the truss. Use F¼ 10 N and a¼ 20 cm.

Fig. P8.12

8.13 Determine the force in each member of the truss. Use F¼ 60 lb and a¼ 10 ft.

Fig. P8.13

8.14 Determine the force in each member of the truss. Use F¼ 40 N and a¼ 20 cm.

Fig. P8.14
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8.15 Determine the force in each member of the truss. Use F¼ 20 N and a¼ 30 cm.

Fig. P8.15

8.16 Determine the force in each member of the truss. Use F¼ 10 N and a¼ 20 cm.

Fig. P8.16

8.17 Determine the force in each member of the truss. Use F¼ 60 N and a¼ 10 cm.

Fig. P8.17
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8.18 Determine the force in each member of the truss. Use F¼ 40 N and a¼ 10 cm.

Hint: reaction at B is along the member BD. Why?

Fig. P8.18

8.19 Determine the force in each member of the truss. Use F¼ 30 N and a¼ 10 cm.

Fig. P8.19

8.20 Determine the force in each member of the truss.

Fig. P8.20

290 8 Analysis of Truss Structures



8.21 Determine the force in each member of the truss.

Fig. P8.21

8.22 Determine the forces in each member of the truss. Use P1¼ 10 N, P2 ¼ P3 ¼
30 N, and a¼ 30 cm.

Fig. P8.22

8.23 Determine the forces in each member of the truss when P1¼ 10 N, P2¼ 40 N,

P3¼ 30 N, and a¼ 30 cm

Fig. P8.23
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8.24 Determine forces in each member of the truss.

Fig. P8.24

8.25 Determine the forces in each member of the truss.

Fig. P8.25

8.26 Determine the forces in each member of the truss.

Fig. P8.26

292 8 Analysis of Truss Structures



8.27 Determine the forces in each member of the truss.

Fig. P8.27

8.2 Method of Sections

The method of joints allows finding the internal forces acting in each member of the

truss. However, in some applications we need forces in a limited number of

members only. To solve for the internal force in a selected member, we may have

to proceed through a large number of joints since the method of joints requires a

step-by-step procedure. Therefore, we will introduce an approach that will allow the

direct calculation of the needed forces.

If an entire truss is in equilibrium, then any part of the truss should be in

equilibrium as well. Thus, if we are looking for a force acting in a particular

member, we can divide the structure into two parts by an imaginary cut and

consider equilibrium of each part separately.

For example, let us consider the truss shown in Fig. 8.21a. Assume that only the

forces in members EC, FC, and FD are of interest. By using the method of joints, we

would have to solve each of the joints I, G, H, F, and E until we would get to the

members of interest. Alternatively, we could start on the left hand side, but we

would have to solve for the reactions first, and then to solve the joints A, B, C,

and D.

Using the method of sections, we may divide the truss into two parts by an

imaginary cut through members EC, FC, and FD, as shown in Fig. 8.21a by the red

dashed line “c-c.” In order to keep each part in equilibrium, we must add the

internal forces acting in the cut members. Now, we can draw a free body diagram

of each part separately (Fig. 8.21b). Since each member is a straight two-force

body, the internal forces are acting along the members (Fig. 8.21b).
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The force acting at the left side of a removed member is equal in magnitude and

opposite in direction to its counterpart acting at the right side of the member, i.e.,

FEC ¼ FCE and FFC ¼ FCF.

Now, we can consider equilibrium, e.g., of the right side of the structure and

write the appropriate equilibrium equations. If, e.g., only FFC is required, we can

use the equilibrium condition that the sum of forces in y direction equal zero and get
the desired result by solving one equation only. On the other hand, if only force FEC

is of interest, we may use the sum of moments about the point F. It is important to

note that since we chose the right side of the structure, there is no need to solve for

reaction forces acting at the points A and B. Thus, this approach of sections can

save a lot of valuable time and efforts while looking for a force in a particular

member of a truss.

It should be mentioned that the cut should involve not more than three members

with unknown internal forces. If one cuts in such a way that there are more than

three unknown internal forces, it is not possible to solve the problem since there are

only three independent equations of equilibrium in two dimensions.

If it is possible, cut through not more than three members with unknown forces,

since we can write only three equations of equilibrium in 2D.

Fig. 8.21 (a) Physical model of the structure with an imaginary cut along c-c. (b) Free body

diagrams for each part of the truss
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Example 8.3 Calculate the internal forces acting in the truss members CE, CF, and

DF using the method of sections (Fig. 8.21). Use a ¼ 2m, b ¼ 1m, and F ¼ 200N.

Solution Cut the truss along the section c-c, as shown in Fig. 8.21a and consider

the equilibrium of the right hand side. Let define the unknown internal forces as

positive. The free body diagram of the right hand side and the associated coordinate

system are shown in Fig. 8.21b. It is a two-dimensional case of a rigid body loaded

by several forces. The equations of equilibrium are

When using the method of sections, one should carefully select which equations

of equilibrium to use (sum of forces or moments). Proper selection may lead to

one unknown force per equation.

X
Fx ¼ �FEC � FFD � FFC � cos θ ¼ 0X
Fy ¼FFC � sin θ � F ¼ 0X
MF ¼ FEC � b� F � 2 � a ¼ 0

where tan θ¼ b/a, thus θ¼ 26.6�.
Solution of this system yields

FFC ¼ 447N, FEC ¼ 800N, and FFD ¼ �1200N:

The negative value indicates that the truss member FD is under compression,

while members FC and EC are under tensile loading.

Guidelines and Recipes for Finding the Internal Forces in Truss Members Using

the Method of Sections

• Select a cut through the truss members of interest.

• Draw a free body diagram of one of the two parts.

• Write the equilibrium equations and solve for the unknown forces.
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8.2.1 Problems

8.28 Determine the forces in members CD, CF, and GF. Use F¼ 40 N and

a¼ 20 cm.

Fig. P8.28

8.29 Determine the forces in members DF, ED, and CE. Use F¼ 20 N and

a¼ 20 cm.

Fig. P8.29

8.30 Determine the forces in members ED, EH, and GH, when F¼ 40 lb and

a¼ 2 ft. Hint: reaction at B is along the member CB. Why?

Fig. P8.30

296 8 Analysis of Truss Structures



8.31 Determine the forces in members KL, FL, and FG. Use F1¼ 20 N, F2¼ 30 N,

F3¼ 40 N, F4¼ 10 N, F5¼ 60 N, a¼ 20 cm.

Fig. P8.31

8.32 Determine the forces in members KL, FL, and FG. Use F1¼ 20 N, F2¼ 30 N,

F3¼ 40 N, F4¼ 10 N, F5¼ 60 N, a¼ 20 cm.

Fig. P8.32

8.33 Determine the forces in members DC, BC, and AB. Length of each member

a¼ 30 cm and P¼ 20 kN.

Fig. P8.33
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8.34 Determine the forces in members HG, CD, and DH. Use F1¼ 20 lb,

F2¼ 30 lb, F3¼ 10 lb.

Fig. P8.34

8.35 Determine the forces in members IJ, ID, and CD. Use F1¼ 20 lb, F2¼ 30 lb,

F3¼ 10 lb, and F4¼ 40 lb.

Fig. P8.35

8.36 Determine the forces in members IH, IE, and ED. Use F1¼ 20 N, F2¼ 30 N,

F3¼ 40 N, F4¼ 10 N, F5¼ 60 N, a¼ 20 cm.

Fig. P8.36
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8.37 Determine the forces in members GF, FC, and CD. Use F1¼ 20 N, F2¼ 30 N.

Hint: reaction at B is along the member HB. Why?

Fig. P8.37

8.38 Determine the forces in members IJ, JB, and EB. Use F1¼ 10 N, F2¼ 20 N,

and F3¼ 30 N.

Fig. P8.38

8.39 Determine the forces in members DH, CD, and GH. Use F1¼ 50 N,

F2¼ 20 N, and F3¼ 10 N.

Fig. P8.39
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8.40 Determine the forces in members IJ, IE, and EF. Use F1¼ 10 N, F2¼ 20 N,

and F3¼ 30 N.

Fig. P8.40

8.41 Determine the forces in members HG, HK, and JK. Use F1¼ 40 N, F2¼ 20 N,

F3¼F4¼ 30 N, a¼ 10 cm, and h¼ 12 cm.

Fig. P8.41

8.42 Determine the forces in members IJ, IE, and EF. Use F1¼ 40 N, F2¼ 10 N,

F3¼ 30 N, h¼ 20 cm, a¼ 15 cm.

Fig. P8.42

8.43 Determine the forces in members HI, HD, and ED. Use F1¼ 20 N, F2¼ 30 N,

F3¼ 40 N, F4¼ 10 N, h¼ 20 cm, a¼ 15 cm.

Fig. P8.43
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8.44 Determine the forces in members AE, AF, and BF. Use F1¼F2¼F3¼ 20 N,

F4¼F5¼ 40 N, a¼ 10 cm.

Fig. P8.44

8.45 Determine the forces in members IJ, IB, and BD. Use F1¼ 50 N, F2¼ 30 N,

F3¼ 20 N, a¼ 10 cm, h¼ 16 cm.

Fig. P8.45

8.46 Determine the forces in members attached to the support A. Use

P1¼P2¼ 20 N, P3¼ 40 N, a¼ 10 cm.

Fig. P8.46
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8.47 Determine the forces in members PR and ED. Use F1¼F2¼F3¼ 40 N,

F4¼F5¼ 10 N, a¼ 10 cm.

Fig. P8.47

8.48 Determine the forces in members EF and KJ. Use F1¼F2¼F3¼ 20 N,

F4¼ 40 N, a¼ 10 cm, h¼ 12 cm.

Fig. P8.48

8.49 Determine the forces in members EF and LM (Fig. P8.49). Use

F1¼F2¼F3¼ 20 N, F4¼ 40 N, a¼ 10 cm.

Fig. P8.49
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8.50 Determine the forces in members IH and BF (Fig. P8.50). Use F1¼ 20 N,

F2¼ 30 N, F3¼ 40 N, F4¼ 10 N.

Fig. P8.50

8.51 Calculate the forces in members GF and IF of Fig. P8.50.

8.52 Determine the forces in members ML and MC of Fig. P8.50.

8.53 Determine the forces in members GF and KF (Fig. P8.53). Use F1¼ 20 N,

F2¼ 30 N, F3¼ 40 N, F4¼ 10 N, a¼ 20 cm, and h¼ 30 cm.

Fig. P8.53

8.54 Determine the forces in members GF and HI. Use F1¼ 20 N, F2¼ 30 N,

F3¼ 40 N, a¼ 20 cm.

Fig. P8.54

8.55 Determine the forces in members EF and IE (Fig. P8.54). Use F1¼ 20 N,

F2¼ 30 N, F3¼ 40 N, a¼ 15 cm.
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8.56 Determine the forces in members IH and GF. Use F1¼F2¼F3¼ 20 N,

a¼ 10 cm, and h¼ 15 cm.

Fig. P8.56

8.57 Determine the forces in members IH and IL. Use F1¼F2¼F4¼ 40 N,

F3¼ 20 N, a¼ 10 cm.

Fig. P8.57

8.58 Determine the forces in members NB and FE (Fig. P8.57). Use

F1¼F2¼F3¼ 20 N, F4¼ 40 N, a¼ 10 cm.

8.59 Determine the forces in members ED and GF. Use F1¼ 30 lb, F2¼ 40 lb,

a¼ 3 in.

Fig. P8.59

8.60 Determine the forces in members BC and BH (Fig. P8.59). Use F1¼ 50 lb,

F2¼ 20 lb, a¼ 4 in.
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8.61 Effect of wind on a bridge is represented by forces P1¼P2¼P3¼P4¼ 30 kN

acting perpendicular to members 1, 2, and 3 (they are of the same length).

Determine the reactions at A and B and the forces in members 2, 8, and 18.

Fig. P8.61

In Problems 8.62 and 8.63, use any method: joints or sections.

8.62 Determine the force in truss members 1–9 when P¼ 50 N and each horizontal

and vertical member is 40 cm long.

Fig. P8.62

8.63 Determine the force in each member of the truss.

Fig. P8.63
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8.3 Compound Trusses

Until now, we have studied only simple trusses that were constructed by adding two

new members to the existing truss to form a triangle. However, we can build a truss

by connecting number of simple trusses, as shown in Fig. 8.22. This truss will lose

its rigidity if it is removed from its supports. The equations of equilibrium for the

unknown reaction cannot be solved. However, we still can solve for the forces in

each member since this truss would satisfy the relationship.

2p ¼ mþ r

where m is number of members connected by p pins, and r is the number of

reactions. It should be noted that in the case of a simple truss, the value of r is

equal to three, since this is a number of unknowns one can solve for in a

two-dimensional case. In our case, Fig. 8.22, r¼ 4. To solve this problem, one

has either to write the complete set of equilibrium equations for each pin or

separate the compound truss into simple trusses. The solution is demonstrated in

Example 8.4.

Example 8.4 Consider the compound truss shown in Fig. 8.23a. Assume that it is

loaded by a vertical force P¼ 2500 N. All dimensions are in meters. Determine the

internal forces in members BD and CD.

Solution The free body diagram of the compound truss is shown in Fig. 8.23b.

Since both supports are of a pin type, we have four unknown reaction components:

Ax, Ay, Ex, and Ey. The available equations of equilibrium allow solving only for

three unknown reaction components. Therefore, we need to disassemble the truss

into two structures and use the equations of equilibrium for each of them.

Figure 8.23c shows the free body diagrams of each of the structures. It should be

noted that the internal force D is represented via its two components Dx and Dy.

Since it is an internal force, we show it as acting in opposite directions at the point D

for each part of the structure. If you put the structure back, sum of these forces

should be equal to zero. Now, we have two rigid bodies. For each one, we can write

Fig. 8.22 Compound truss
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three equations of equilibrium, thus we will have a total of six equations. From the

other hand, there are six unknowns: Ax, Ay, Dx, Dy, Ex, and Ey.X
Fx ¼ Ax þ Dx ¼ 0X
Fy ¼ Ay þ Dy � P ¼ 0X
MD ¼ Ax � 3� Ay � 2þ P � 1 ¼ 0

These are equations of equilibrium for the left part of the truss.

Similarly, we can write the equations of equilibrium for the right side part of the

truss.

X
Fx ¼ Ex � Dx ¼ 0X
Fy ¼ Ey � Dy ¼ 0X
MD ¼ Ex � 2þ Ey � 3 ¼ 0

The solution yields the unknown reaction components:

Ax ¼ 3

13
P, Ay ¼ 11

13
P, Ex ¼ � 3

13
P, Ey ¼ 2

13
P

Fig. 8.23 (a) Compound truss. (b) Free body diagram. (c) Free body diagrams for each of the

structures. (d) Cut across members BD and CD
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Now, we can use the method of section and cut across members BD and CD, as

shown in Fig. 8.23d. The corresponding equations of equilibrium are:

X
Fx ¼ Ax þ FCD cos θ ¼ 0X
Fy ¼ Ay � Pþ FBD þ FCD sin θ ¼ 0

The solution yields

FCD ¼ � 3P

13 � cos θ and FBD ¼ 2P

13
þ 3P � sin θ
13 � cos θ

Substituting values for the load P¼ 2500 N and angle θ¼ 56.3� will result in

FCD¼�1040 N and FBD¼ 1250 N. The negative value of the internal force FCD

means that member CD is under compressive load.

8.4 Space Trusses

Some truss structures are built from the straight members that do not belong to the

same plane, such structure is called space truss. Since each member is straight, it

can be modeled as a two-force member and use the same approach of joints or

sections to find the unknown forces. We assume that the loading is applied at joints

only and that the joints are capable of resisting forces in any direction, but do not

support any moments. These joints are called ball-and-socket joint. The weight of a

member is frequently neglected. However, when it is of a significant value com-

pared to the external forces, we can apply it as an external load at the both ends of

a member. Half of the member’s weight is usually applied at each end of the

member. Simple space trusses are constructed from tetrahedrons (Fig. 8.24a),

which are spatial equivalents of a plane triangle. Figure 8.24b shows a space truss

constructed by joining two tetrahedrons. As we can see, addition of a new joint

results in creation of three new members, thus the relationship between the number

Fig. 8.24 (a) Tetrahedron. (b) Space truss. (c) Free body diagram of joint A
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of joints p, number of members m and number of reactions r may be expressed as

3p¼m + r.
The free body diagram of each joint consists of a number of concurrent forces.

Figure 8.24c shows the free body diagram of the joint A. Such system of forces is in

equilibrium if the resultant of all forces is equal to zero, i.e., we have three scalar

equations of equilibrium per joint. Thus, for a simple space truss we have 3p
equations of equilibrium, which have to be equal to the number of unknown internal

forces plus the number of unknown reactions. This condition will create a statically

determinate truss, i.e., a simple space statically determinate truss may have only six

unknown reaction components. If there are more than six reaction components, the

truss is over-constrained and it is statically indeterminate.

When the forces in all members have to be calculated, we may use the method of

joints. Since only three equations of equilibrium for each joint may be written, we

will have the total of three times the number of joints equations. Those equations

can be solved for unknown forces using any appropriate mathematical tools. When

it is required to find the forces in only some of the members, we can use the method

of sections. The selected section should have no more than six unknown forces

acting on the isolated part of the truss.

Example 8.5 We have to find the internal forces in the three bars supporting the

glass roof, as shown in Fig. 8.25a. Assume that all the bars are attached to the roof

and to the base support (point A) by frictionless pins. The total weight of the glass

Fig. 8.25 (a) Glass roof. (b) Physical model of the 3D truss. (c) Free body diagram
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roof supported by the bars is P¼ 15 kN. The coordinates of the attachment

points are: A (0, 0, 0), B (�2, �3, 2), C (3, 6, 2), and D (3, �3, 2). The dimensions

are in meters.

Solution We are dealing with a three-dimensional truss. The physical model is

shown in Fig. 8.25b. The load (weight of the roof) is supported at point A, and it is

in the vertical direction. Since there are only three truss members at the point of

support (A), we can use the method of joints. Let us select (cut out) the joint A and

draw a free body diagram as shown in Fig. 8.25c. We can write three equations of

equilibrium. There are three unknown values: the magnitudes of the internal forces

because the direction of each force is known. Let us calculate the unit vector for

each truss member.

eAB ¼ xB � xAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xB � xAð Þ2 þ yB � yAð Þ2 þ zB � zAð Þ2

q i

þ yB � yAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xB � xAð Þ2 þ yB � yAð Þ2 þ zB � zAð Þ2

q j

þ zB � zAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xB � xAð Þ2 þ yB � yAð Þ2 þ zB � zAð Þ2

q k

¼ �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2� 0ð Þ2 þ �3� 0ð Þ2 þ 2� 0ð Þ2

q iþ �3ffiffiffiffiffi
17

p jþ 2ffiffiffiffiffi
17

p k

¼ �2ffiffiffiffiffi
17

p iþ �3ffiffiffiffiffi
17

p jþ 2ffiffiffiffiffi
17

p k

Similarly, we can find

eAC ¼ 3ffiffiffiffiffi
49

p iþ 6ffiffiffiffiffi
49

p jþ 2ffiffiffiffiffi
49

p k

eAD ¼ 3ffiffiffiffiffi
22

p iþ �3ffiffiffiffiffi
22

p jþ 2ffiffiffiffiffi
22

p k

Since the sum of all forces should be equal to zero, we can write three

corresponding equations of equilibrium

X
Fx ¼ FAB � �2ffiffiffiffiffi

17
p
� 	

þ FAC � 3ffiffiffiffiffi
49

p
� 	

þ FAD � 3ffiffiffiffiffi
22

p
� 	

¼ 0

X
Fy ¼ F

AB
� �3ffiffiffiffiffi

17
p
� 	

þ FAC � 6ffiffiffiffiffi
49

p
� 	

þ FAD � �3ffiffiffiffiffi
22

p
� 	

¼ 0

X
Fz ¼ FAB � 2ffiffiffiffiffi

17
p
� 	

þ FAC � 2ffiffiffiffiffi
49

p
� 	

þ FAD � 2ffiffiffiffiffi
22

p
� 	

þ P ¼ 0
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The solution yields

FAB ¼ �18:55kN, FAC ¼ �17:50kN, and FAD ¼ �2:35kN.

The minus sign shows that truss member is under compression forces.

Example 8.6 A force P¼ 200 N is acting in the plane ABCD and its line of action

makes angle of 45� with vertical line AC. Angle EAK¼ angle FBM¼ angle

NDB¼ 90�, AE¼AK, BF¼BM, and ND¼BD. Determine the forces in each of

the six members.

Solution This is a three-dimensional truss. Its physical model is shown in

Fig. 8.26a. We have to identify a joint that is loaded by no more than three unknown

forces. Joint A is such a joint. Let us cut it out and consider its equilibrium. First, we

draw the free body diagram as shown in Fig. 8.26b. We can write three equations of

equilibrium. There are three unknown values: the magnitudes of the internal forces,

since the direction of each force is known. Let us express force in each member as a

vector.

FAK ¼ FAK i � cos 45∘ � k � cos 45∘ð Þ
FAE ¼ FAE �i � cos 45∘ � k � cos 45∘ð Þ
FAB ¼ FAB jð Þ
P ¼ P j � cos 45∘ � k � cos 45∘ð Þ

Fig. 8.26 (a) Physical model. (b) FBD of joint A. (c) FBD of joint B
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The corresponding equations of equilibrium are

X
Fx ¼ FAK � cos 45� � FAE � cos 45� ¼ 0X
Fy ¼ FAB þ P � cos 45∘ ¼ 0X
Fz ¼ �FAK � cos 45� � FAE � cos 45� � P � cos 45� ¼ 0

Solving these three scalar equations result in

FAB ¼ �P � cos 45o ¼ �141:4N
FAK ¼ FAE ¼ �P=2 ¼ �100:0N

Now consider joint B, since AB is a two-force cos member, we know the force it

will apply to the joint B (Fig. 8.26c). Thus, there are only three unknown forces

acting at this joint. The direction of each force is known, since each member is a

two-force member. We will write the equations of equilibrium and solve for

unknown values of these forces.

Let us express force in each member as a vector.

FBN ¼ FBN j � cos 45∘ � k � cos 45∘ð Þ
FBM ¼ FBM i � cos 45∘ � k � cos 45∘ð Þ
FBF ¼ FBF �i � cos 45∘ � k � cos 45∘ð Þ
FBA ¼ �FBA jð Þ

The corresponding equations of equilibrium are

X
Fx ¼ FBM � cos 45∘ � FBF � cos 45∘ ¼ 0X
Fy ¼ FBN � cos 45∘ � FBA ¼ 0X
Fz ¼ �FBN � cos 45∘ � FBM � cos 45∘ � FBF � cos 45∘ ¼ 0

Solving these three scalar equations result in

FBM ¼ FBF ¼ P=2 ¼ 100:0 N

FBN ¼ �P ¼ �200:0 N
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Guidelines and Recipes for Finding the Internal Forces in Three-Dimensional

Truss Members Using the Method of Joints

• Create the physical model of the truss.

• Draw the free body diagram of the truss.

• Solve for the unknown reactions.

• Choose and disassemble a joint, upon which not more than three unknown

internal forces are acting.

• Draw the free body diagram of this joint and solve for unknown internal

forces.

• Repeat for each joint.

What We Have Learned?
How to solve trusses
Truss is a structure that is built from only two-force elements connected at the ends

one to another in order to create a desired shape. To solve for unknown forces, we

can use the method of joints or method of sections.

8.4.1 Problems

8.64 The construction crane was designed to carry maximum loadW. Calculate the

internal forces acting in the truss members AB, AC, and AD attached to point

of loading A. Use W¼ 10,000 N, a¼ 1 m, b¼ 2 m, c¼ 4 m, and h¼ 3 m.
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Fig. P8.64 Construction crane

8.65 Six bars are connected and loaded as shown. The direction of forceQ is along

the diagonal LD. Determine the reactions at B, D, L, H, and forces in each bar

when P¼ 250 N, Q¼ 100 N, and AB¼AD¼AL¼ 50 cm.

Fig. P8.65
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8.66 The truss consists of six members loaded by forces Q¼ 3 N and F¼ 5 N.

Determine the forces in each member. AB¼BC¼BE.

Fig. P8.66

8.67 Determine forces in each truss member, when P¼ 12 kN, a¼ 20 cm,

b¼ 40 cm, c¼ 50 cm, and d¼ 10 cm. Force P is acting along the line AB.

Fig. P8.67

8.68 Determine forces in each truss member, when P¼ 10 N, Q¼ 6 N, and

a¼ 10 cm. Force Q is acting along the line DB.

Fig. P8.68
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8.69 Determine forces in each truss member, when P¼ 100 N, Q¼ 200 N,

a¼ 20 cm, b¼ 40 cm, and c¼ 50 cm. Force P is acting along the line AB

and force Q—along the line DE.

Fig. P8.69

8.70 The space truss is loaded by the vertical force P¼ 20 N. Planes of the triangles

DAE and FBG are perpendicular to the plane of the triangle ABC. Determine

the forces in each bar. The angle BAC¼ angle ABC¼ 30� and angle

AED¼ADE¼BFG¼BGF¼ 60�. AB¼ 3BG.

Fig. P8.70
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8.71 Determine forces in each truss member, when P¼ 100 N, Q¼ 50 N,

a¼ 20 cm. Force P is acting along the member CH and force Q—along the

member CD.

Fig. P8.71

8.72 Determine forces in each truss member, when P¼ 40 lb, Q¼ 50 lb,

a¼ b¼ 20 in., c¼ 40 in. Force P is acting along the direction AB and force

Q—along the member DE.

Fig. P8.72
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8.73 Determine forces in each truss member, when P¼ 4 kN, Q¼ 2 kN, a¼ 20 cm,

b¼ c¼ 30 cm. Force P is acting along member AB and forceQ along the line

DE.

Fig. P8.73

8.74 Determine forces in each truss member, when P¼ 400 lb, Q¼ 100 lb,

a¼ b¼ c¼ 30 in. Force P is acting along line AB and force Q along member

DE.

Fig. P8.74
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8.75 Determine forces in each truss member, when P¼ 60 N, Q¼ 10 N, a¼ 20 cm,

b¼ 40 cm, and c¼ 30 cm.

Fig. P8.75

8.76 Determine forces in each truss member, when P¼ 400 N, a¼ 30 cm,

b¼ c¼ 50 cm, d¼ 10 cm. Force P is acting along the line AB.

Fig. P8.76
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8.77 Joints A, B, C, and D define a square in the horizontal plane. Joints E and B

belong to the same vertical line and BE¼AB. The truss is loaded by a vertical
force P¼ 60 kN. Determine forces in each truss member.

Fig. P8.77
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Few things are harder to put up with than a good example

—Mark Twain

In this chapter you will learn:

• How to calculate internal forces and moments in a straight beam

• How to calculate internal forces and moments in a piece-wise straight beam

• How to calculate internal forces and moments in a curved beam

• How to create a diagram of bending moments and internal forces using intuitive

approach

• How to use superposition principle to draw the diagrams of internal forces and

moments
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In Chap. 7, we have introduced three classes of structural elements: truss members,

beams, and cables. For each class, we have discussed the requirements that struc-

tural element has to meet in order to belong to a particular class. In Chap. 8, we have

discussed trusses, and frames. Frames and mechanisms (Chap. 11) are built from

truss members and beams.

Here, we will study techniques to calculate and to present graphically the

distribution of internal forces and moments in various types of beams along

their axis.

Beams are the most common structural elements in engineering applications.

They are capable of bearing any type of load. Beams can be classified according to

their geometry as: straight, piece-wise straight, or curved. When a beam and a

loading are in the same plane, the problem may be considered as two-dimensional.

In all other cases, it has to be treated as a three-dimensional problem.

When a beam and a loading are in the same plane, the problem may be

considered as two-dimensional. In all other cases, it has to be treated as a

three-dimensional problem.

Consider a free body diagram of a beam loaded by an arbitrary set of forces and

moments. Remember that we are interested in the internal forces and moments

acting at an arbitrary location of the beam. As discussed in Chap. 7, in order to find

the internal forces and moments, we have to cut the structure at a selected location,

apply unknown internal force and moment, and consider equilibrium of this part. In

engineering practice, we are interested in distribution of internal forces and

moments along the beam’s longitudinal axis to identify the most critical cross

section. Since we are looking for the distribution of internal forces and moments

along the beam axis, we have to express them analytically as a function of the

external loads and location along the beam axis. To do this, we have to divide the

beam into a number of regions, within which there are no changes in external loads
and beam geometry.

Region is a segment of a beam within which there are no changes in external

loads or the beam geometry.

When we are calculating internal forces and moments, we cannot change the

location of external forces and moments or substitute the distributed load by its

equivalent concentrated load. Such change would affect the distribution of internal

forces and moments. One need to remember that the principle of force transmissi-

bility and the fact that a moment is a free-floating vector and may be moved to any

location may be applied only for equilibrium of rigid bodies, and NOT when we

determine internal forces and moments!

When examining internal forces, the location of external moments and forces

cannot be moved.
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Internal and external forces and moments have to be represented in the same

coordinate system.

The principle of force transmissibility, and the fact that a moment is a free-

floating vector and may be moved to any location, may be applied only for

equilibrium of rigid bodies and NOT when the internal forces are determined!

Internal forces and moments are reactions to external forces and moments, as

follows from the Third Newton’s Law. Therefore, they have to be represented in the

same coordinate system. From the Third Newton’s Law follows also that the

changes in internal forces and moments along the axis of a beam are possible

only if there is a change in external loading. Therefore, “no action—no reaction.”

Next two sections describe the procedure for drawing diagrams of internal forces

and moments for straight beams loaded by variety of loads.

9.1 Selection of Coordinate System for the Internal Forces
and Moments and Sign Convention

Before analyzing internal forces andmoments, we have to select a coordinate system

and define convention for the internal forces and moment signs. Let us start with a

straight beam loaded by an arbitrary set of external loads as shown in Fig. 9.1a.

Fig. 9.1 (a) Free body diagram of a beam with arbitrary loading. (b) Internal forces and moments
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In order to determine internal forces and moments, as discussed in Chap. 7, we

need to cut the structural element at the location of our interest. Therefore, we will

cut this beam at an arbitrary location x, which may be measured from the left or,

equivalently, from the right side of the beam, as shown in Fig. 9.1b.

To keep the beam in equilibrium after the cut, we have to apply the internal

forces and moments. The force, F(x), and the moment,M(x), added on the left, and

on the right the internal forces and moments that are equal in magnitude and

opposite in sign are added, i.e., they form pair of forces and pair of moments,

respectively (see Chap. 2 for details). Each of the two internal forces may be

represented via their two components: one along the axis of the beam, N(x), and
another normal to the axis, T(x). Both forces are shown as dashed lines to indicated
that they are components of F(x) with which the force may be replaced.

The internal forces and moments acting at the left side of the cut should be

equal in magnitude and opposite in direction to the ones acting on the right hand

side of the same cut, as illustrated in Fig. 9.1b. This derives from the Third

Newton’s Law. In other words, we inverted the direction of the internal forces

and moments when applied them on the right side of the cut. In order to have

these internal forces and moment positive, the coordinate system should be

inverted as well, see Fig. 9.1b.

The coordinate system and direction of internal forces and moments, shown in

Fig. 9.1b, we will consider as positive internal forces and moments.
We will follow this agreement throughout this textbook. You may see other sign

conventions used in different books. There is no physical reason to select this or

another coordinate system and sign agreement. However, the same convention

should be followed throughout the course of solving a problem.

It is essential to use the same coordinate system for the external and internal

forces and moments. In our case, the right hand system, which is commonly used

in mechanics, is applied. The coordinate system of internal forces and moments

is always located at the point, where we cut the beam. The coordinate system

“travels” along the axis of the beam.

The coordinate system of internal forces and moments is always located at the

point, where we cut the beam. Hence, one may say that the coordinate system of

internal forces and moments “travels” along the axis of the beam.

9.2 Straight Beams

We will start with a free body diagram of a straight beam loaded by reaction forces

Ax, Ay, and By, external concentrated force FE, distributed force q xð Þ ¼ q0, and
moment MD ¼ M0. Angle φ indicates the direction of force FE (Fig. 9.1a). The

x-axis of Cartesian coordinate system is aligned with longitudinal axis of the beam.
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We will assume that the magnitudes of q0, M0, and FE are such that both

reactions Ay and By are positive.

It is a common practice that directions of all reactions are selected such that they

have the positive sign in a chosen coordinate system.

The beam will be in equilibrium when

X
Fx ¼ Ax þ FE � cosφ ¼ 0X
Fy ¼ Ay � q0 � LAC þ FE � sinφþ By ¼ 0

X
Mi ¼ �q0 �

L2AC
2

þM0 þ LAE � FE sinφþ LAB � By ¼ 0

ð9:1Þ

The sum of moments is taken with respect to point A. From the above equilib-

rium equations, we obtain the reactions.

Ax ¼ �FE � cosφ
Ay ¼ q0 � LAC � FE � sinφ� By

By ¼ 1

LAB
q0 �

L2AC
2

�M0 � LAE � FE � sinφ
� 	 ð9:2Þ

The internal force and the moment always point in opposite direction of the

external force and moment. In the selected coordinate system, this means that

internal forces and moments will have sign opposite to that of the external forces

and moments acting upon the rigid body.

Please note that reaction Ax is negative, which means that Ax acts in an opposite

direction as it was assumed in the free body diagram at the beginning, i.e., it acts to

the left. We will not change its direction in the free body diagram; therefore, from

here on we will need to take into account that Ax has the negative sign. From (9.2)

we see that the sign of the reactions and consequently distribution of internal forces

and moments depends on the magnitudes of q0, M0, and FE. Let us choose their

magnitudes such that both reactions Ay and By are positive!

Please note that choosing other possible magnitudes of q0,M0, and FE will result

in completely different distributions of internal forces and moments. Analyzing

these different possibilities could be a very instructive homework exercise.

The beam in Fig. 9.1a consists of four regions: AC, CD, DE, and EB. The

beginning and the end of each region define discontinuity or change in the loading.

The AC region is defined by the beginning and the end of the continuous load; the

CD region is defined by the end of the continuous load and the point of action of

moment MD ¼ M0 ; similarly, the regions DE and EB are defined between the

points of action of moment MD, force FE, and the end of the beam, respectively.
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A beam may be subdivided into regions. Beginning and end of each region

defines discontinuity or change in the loading.

Let us proceed with determination of distributions N(x), T(x), and M(x) within
each of the above mentioned regions.

Region AC
We cut the beam at location x between A and C, 0 � x < LAC (Fig. 9.2a), and write

the equilibrium equations

X
Fx ¼ Ax þ N xð Þ ¼ 0X
Fy ¼ Ay � q0 � xþ T xð Þ ¼ 0

X
M ¼ M xð Þ þ q0 �

x2

2
� Ay � x ¼ 0

ð9:3Þ

It is convenient to take the sum of the moments about the cut point. From (9.3)

we can find distributions of the internal forces and the moment within the

region AC.

Fig. 9.2 (a) Region AC. (b) Region CD. (c) Region DE. (d) Region EB. (e) Diagrams of the

internal forces and moments
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N xð Þ ¼ �Ax

T xð Þ ¼ q0 � x� Ay

M xð Þ ¼ �q0 �
x2

2
þ Ay � x

ð9:4Þ

Taking into account reactions displayed in (9.2), we obtain the distributions of the

axial and shear forces and the moment within region AC in an explicit form:

N xð Þ ¼ FE � cosφ

T xð Þ ¼ q0 � xþ
1

LAB
q0 �

L2AC
2

�M0 � LAE � FE � sinφ
� 	

þ FE � sinφ� q0 � LAC

M xð Þ ¼ �q0 �
x2

2
þ q0 � LAC � FE � sinφ� 1

LAB
q0 �

L2AC
2

�M0 � LAE � FE � sinφ
� 	
 �

� x

It is important to stress that one obtains exactly the same distribution of the internal

forces and the moment by considering equilibrium equations for the complemen-

tary part of the rigid body to the right of the cut.

Region CD
Now, we cut the beam at location x between C and D, as shown in Fig. 9.2b.

To cover region CD, x needs to change as follows LAC � x < LAD.
The corresponding equilibrium equations are

X
Fx ¼ Ax þ N xð Þ ¼ 0X
Fy ¼ Ay � q0 � LAC þ T xð Þ ¼ 0

X
M ¼ M xð Þ þ q0 � LAC � x� LAC

2

� 	
� Ay � x ¼ 0

ð9:5Þ

The sum of the moments was again taken relative to the cut point. From (9.5) we

find distributions of the internal forces and the moment within the region CD

N xð Þ ¼ �Ax

T xð Þ ¼ �Ay þ q0 � LAC

M xð Þ ¼ Ay � q0 � LAC
� � � xþ q0 �

L2AC
2

ð9:6Þ

After taking into account reaction forces (9.2), we find the explicit expressions of

the internal forces and the moment within the region CD
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N xð Þ ¼ FE � cosφ

T xð Þ ¼ FE � sinφþ 1

LAB
q0 �

L2AC
2

�M0 � LAE � FE � sinφ
� 	

M xð Þ ¼ � FE � sinφþ 1

LAB
q0 �

L2AC
2

�M0 � LAE � FE � sinφ
� 	
 �

� xþ q0 �
L2AC
2

Region DE
We cut the beam at location x between D and E; hence, LAD � x < LAE (Fig. 9.2c),
and write the equilibrium equations

X
Fx ¼ Ax þ N xð Þ ¼ 0X
Fy ¼ Ay � q0 � LAC þ T xð Þ ¼ 0

X
M ¼ M xð Þ þM0 þ q0 � LAC � x� LAC

2

� 	
� Ay � x ¼ 0

ð9:7Þ

From (9.7) we find distribution of the internal forces and the moment within

region DE:

N xð Þ ¼ �Ax

T xð Þ ¼ �Ay þ q0 � LAC

M xð Þ ¼ Ay � q0 � LAC
� � � x�M0 þ q0 �

L2AC
2

ð9:8Þ

Again, after substitution of reaction forces given with (9.2) we obtain the explicate

expressions for the internal forces and the moment within region DE.

N xð Þ ¼ FE � cosφ

T xð Þ ¼ FE � sinφþ 1

LAB
q0 �

L2AC
2

�M0 � LAE � FE � sinφ
� 	

M xð Þ ¼ � FE � sinφþ 1

LAB
q0 �

L2AC
2

�M0 � LAE � FE � sinφ
� 	
 �

� x�M0 þ q0 �
L2AC
2

Region EB
Again, we cut the beam at location x between E and B; hence, LAE � x < LAB
(Fig. 9.2d), and write the equilibrium equations
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X
Fx ¼ Ax þ N xð Þ þ FE � cosφ ¼ 0X
Fy ¼ Ay � q0 � LAC þ FE � sinφþ T xð Þ ¼ 0

X
M ¼ M xð Þ � x� LAEð Þ � FE � sinφþM0 þ q0 � LAC � x� LAC

2

� 	
� Ay � x ¼ 0

ð9:9Þ

Thus, distributions of the internal forces and the moment within the region DE are

N xð Þ ¼ �Ax � FE � cosφ
T xð Þ ¼ �Ay þ q0 � LAC � FE � sinφ

M xð Þ ¼ FE � sinφ� q0 � LAC þ Ay

� � � x� LAE � FE � sinφ�M0 þ q0 �
L2AC
2

ð9:10Þ
Taking into account (9.2), we find the explicate form of the internal forces and the

moment within region EB.

N xð Þ ¼ 0

T xð Þ ¼ 1

LAB
q0 �

L2AC
2

�M0 � LAE � FE � sinφ
� 	

M xð Þ ¼ � 1

LAB
q0 �

L2AC
2

�M0 � LAE � FE � sinφ
� 	

� x� LAE � FE � sinφ�M0 þ q0 �
L2AC
2

Diagrams of the internal forces and moments are shown and discussed in

following section.

9.2.1 Diagrams of Internal Forces and Moments

Now, we are ready to draw the diagrams of the internal forces and moments

(Fig. 9.1a) by using (9.4), (9.6), (9.8), and (9.10) and their explicit forms. The

diagrams of the internal axial force, N(x), the shearing force, T(x), and the bending

moment, M(x), are shown in Fig. (9.2e). We will discuss each diagram one after

another.

It is appropriate to stress again that the diagrams in Fig. 9.2e correspond to the

assumption that the magnitudes of q0, M0, and FE are chosen such that both

reactions Ay and By are positive! For other combinations of q0, M0, and FE, the

distributions of the internal forces and moments will look differently!
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Distribution of internal forces and moments depends on the magnitude and

direction of the external forces (loads and reactions) acting upon the beam.

Axial Force N(x)
At point A, there is an external reaction force Ax ¼ �FE � cosφ, which is

negative. According to the Third Newton’s Law, the internal force must be equal

in magnitude and opposite in sign (opposite in direction). The external and internal

forces together form an equilibrium pair of forces (see Chap. 2). Hence, within the

first region AC the internal axial force will be constant and positive,

N xð Þ ¼ FE � cosφ.

Any change in internal forces and moments is always equivalent to the magni-

tude of external load at that point, and opposite in sign—Third Newton’s Law!

Within the next two regions, i.e., CD and DE there is no external force acting on

the beam; therefore, the internal axial force will be unchanged and constant up to

point E, where an external forceFE � cosφ is acting in positive direction. According

to the Third Newton’s Law, the corresponding change of axial internal force will be

equal in magnitude and opposite in sign, i.e., negative �FE � cosφð Þ. Consequently,
the internal force within the last region EB will be equal to zero.

We may double-check if the axial internal force in region EB is indeed equal to

zero by starting the analysis of the internal axial forces from the right hand side of

the beam. Remember, in this case we need to invert the coordinate system as shown

in Fig. 9.1b and to maintain the same positive coordinate system used in analyzing

the internal forces from the left hand side of the beam.

In the inverted coordinate system, the signs of the external forces (loads and

reactions) are changed, i.e., all positive external forces become negative and all

negative become positive.

At point B, there is no external force acting on the beam in axial direction.

Hence, according to the Third Newton’s Law the internal force must be also equal

to zero. This means that there will be no axial force within the region EB. At

point E, there is an external force FE, which component in axial direction has

(in the inverted coordinated system) negative sign, i.e., �FE � cosφ. According to

the Third Newton’s Law, the corresponding internal force will be of equal magni-

tude and opposite sign, hence positive FE � cosφð Þ. Since within regions DE, CD,

and AC there are no external axial forces, the internal axial force fill remains

constant and unchanged till the end of region AC, i.e., point A, where the external

reaction Ax is acting. In the original coordinate system, this reaction was negative;

therefore, in the inverted coordinate system it will become positive. The

corresponding internal force will therefore be negative, which will bring diagram

N(x) to zero.
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If we analyze the internal forces from the right hand side of a beam, we need to

invert the coordinate system as shown in Fig. 9.1b.

Let us recall that the sum of all external forces (loads and reactions) and all

internal forces in any direction must be equal to zero, as shown in Fig. 9.2e.

The sum of all external forces (loads and reactions) and all internal forces in any

direction must be always equal to zero.

From this discussion we may conclude that we indeed obtain the same result in

the original and the inverted coordinate systems. Therefore, when solving

problems, we may use any of the two approaches.

Shear Force T(x)
At point A, there is an external reaction force Ay, which we assumed to be positive

(sign of Ay depends on magnitudes of q0, M0, and FE). According to the Third

Newton’s Law, the corresponding internal force will be equal in magnitude and

opposite in sign, hence negative. Within the first region AC, the external load is

changing linearly due to the constant distributed load (more about this will be

discussed in Sect. 9.2.2). At the support A, the external reaction force is positive.

According to the Third Newton’s Law, the corresponding internal force will be

negative and will be increasing linearly, i.e., T xð Þ ¼ q0 � x� Ay, to become positive

at the end of the first region, where x ¼ LAC. The internal shear force will change its
sign at the point, where x ¼ Ay=q0.

Let us remember again that any change in internal forces and moment along the

beam axis can happen only if there is a change in external loading.

Any change in internal forces or moment along the beam axis can happen only if

there is a change in external loading!

At the end of the third region, at point E, an external positive force,FE � sinφ, is
acting in y-direction. According to the Third Newton’s Law, this external force

generates equivalent internal shear force of opposite direction (negative sign).

Consequently, the positive internal shear force at point E will be reduced by

�FE � sinφð Þ and then will remain constant throughout region EB. At the end of

region EB, at point B, there is again an external force, reaction By, which is positive.

The corresponding internal force will be therefore negative and will bring the

internal shear force down to zero, as shown in Fig. 9.2e. Let us recall again that

the sum of all external forces (loads and reactions) and all internal forces in any

direction must be always equal to zero. This means that all diagrams should start

and finish with zero at both ends of the beam.

Sum of all external and internal forces in any direction must always be equal to

zero!
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Let us now briefly analyze the shear forces in the inverted coordinate system; see

Fig. 9.1b, which we use if we start analyzing the internal forces from the right hand

side of the beam.

At point B, the beam is loaded with the external reaction force By, which is

positive in the original coordinate system (see Fig. 9.1b) and negative in the

inverted coordinate system. Hence, the corresponding internal force will be positive

with the magnitude equal to By. Within the region EB there are no external forces;

therefore, the internal shear force will remain constant throughout the region.

At point E, we have another external force FE sinφ, which is negative in the

inverted coordinate system. Thus, the corresponding internal force will be positive.

Consequently, at this point the internal force is increased for the same value, i.e.,

FE sinφ, and remains constant throughout region CD.

At point C, we enter region AC where a constant distributed force q0 is acting. Its
cumulative magnitude will therefore change linearly, Q ¼ q0 � x. In inverted coor-

dinate system, the distributed force acts in positive direction, which means that the

corresponding internal force will be negative and its magnitude will increase

linearly. Consequently, the internal shear force will start to decrease linearly and

become negative at point A where it should be equal in magnitude to the external

reaction Ay, which is in the inverted coordinate system negative. The corresponding

internal force will be therefore positive and will bring the internal shear-force at

point A to zero, as it should be, because the sum of all external forces and all

internal forces in any direction should be equal to zero.

Only external forces acting at a point can generate discontinuity (“jump”) in the

distribution of internal forces!

Moment M(x)
We start again at the left hand side of the beam at point A. Since there is no

external moment acting on the beam at this point, the internal moment will be equal

to zero. Within region AC, the internal moment is changing as a quadratic (para-

bolic) function of the formM xð Þ ¼ �q0x
2=2þ Ay � x, see (9.4). This means that the

moment will increase and reach its maximum at the point, where dM xð Þ=dx ¼ 0, or

at x ¼ Ay=q0. From (9.4) we see that this happens to be exactly at the point where

the shear forces are equal to zero, i.e., T xð Þ ¼ 0, as shown in Fig. 9.2e. We will

discuss this in more details later.

At point C, where region AC ends and region CD starts, the magnitude of

the internal moment will be the same for both regions, i.e., M x ¼ LACð Þ ¼
�q0 � L2AC=2þ Ay � LAC. This also follows from the Third Newton’s Law. Since at

point C there is no external moment acting on the beam, there cannot be any change

in the internal moment. Within region CD, internal moment is changing linearly, as

seen from (9.6) up to point D, where the external positive momentM0 is acting. This

is the end of region CD and beginning of region DE. In Sect. 9.2.2, we will discuss

how to draw diagrams of internal forces and moment without using equations that

define their distribution within individual regions.
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Only an external moment can cause discontinuity (“jump”) in distribution of the

internal moments.

According to the Third Newton’s Law, positive external moment M0 will

generate a negative internal moment, which will be equal in magnitude, i.e.,

�M0. Consequently, the internal moment in point D will be decreased for the

same magnitude, as shown in Fig. 9.2e. Within region DE, the internal moment is

again changing linearly as shown in (9.8). Note that the slope at which moment

is changing within region DE is the same as slope within region CD. The reasons for

it we will discuss in Sect. 9.2.2. Region DE ends at point E, where external force FE

is acting and the last region EB starts. By introducing x ¼ LAE into (9.8) and (9.10),
we again find that at point E there is no change in the internal moment, as it should

be according to the Third Newton’s Law, because there is no external moment

acting on the beam at this point.

Within the last region BE, the moment is again changing linearly according to

(9.10) to become zero at point B, where x ¼ LAB.
In principle, we could obtain the same diagram of internal moments using the

inverted coordinate system (see Fig. 9.1b), which need to be used if we start solving

the problem from the right hand side. In case of the moments, without writing the

equilibrium equations for the inverted coordinate system, or using principles that

will be discussed in Sect. 9.2.2, this becomes quite cumbersome. Therefore, we will

refrain from doing this. However, the reader could write the equilibrium equations

for the moments in the inverted coordinate system and then draw the diagrams. This

could be a nice homework.

Let us proceed with solving an example.

Example 9.1 Draw a diagram of internal moments and forces in the shelf

supporting a radio and five books. The weight of the radio is 30 N and the weights

of books are 3, 6, 9, 12, and 15 N, respectively (Fig. 9.3a), where a ¼ 0:25m,

b ¼ 0:18m, c ¼ 0:20m, and L ¼ 0:80m.

Solution The physical model of the shelf is shown in Fig. 9.3b. We will approxi-

mate the weight of the books by a linearly distributed functionq1 xð Þ ¼ 1440x [N/m]

and the weight of the radio by a q2 xð Þ ¼ q2 ¼ 150 [N/m]. The corresponding free

body diagram is shown in Fig. 9.3c.

We can find the reactions from the equations of equilibrium

X
i

Fix ¼ Ax ¼ 0

X
i

Fiy ¼ Ay � 1

2
� q1 að Þ � a� q2 � cþ By ¼ 0

X
i

MA
i ¼ �1

2
� q1 að Þ � a � 2

3
� a� q2 � c � aþ bþ c

2

� 

þ By � L ¼ 0
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Fig. 9.3 (a) The shelf supporting five books and a radio. (b) The physical model of the shelf

supporting five books and a radio. (c) The free body diagram of the shelf supporting five books

and a radio. (d) Internal forces and moments in Region AC. (e) Internal forces and moments in

Region CD. (f) Internal forces and moments in Region DE. (g) Internal forces and moments in

Region EB
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Hence,

Ax ¼ 0

By ¼ 1

L
� 1

3
� q1 að Þ � a2 þ q2 � c � aþ bþ c

2

� 

 �

Ay ¼ 1

2
� q1 að Þ � aþ q2 � c� By

By substituting the appropriate numerical values, we obtain

Ax ¼ 0:0N

By ¼ 29:3N

Ay ¼ 45:8N

Now, we can proceed and define the internal forces and moments. The beam in

Fig. 9.3c consists of four regions: AC, CD, DE, and EB. The axial load is equal to

zero in all the regions since reaction Ax¼ 0. Now, we will derive expressions for

internal load and moment for each of the four regions.

Region AC
We cut the beam at location x between A and C, 0 � x < a (Fig. 9.3d), and write the
equilibrium equations for the left part of the beam.

X
i

Fiy ¼ Ay � 1

2
q1 xð Þ � xþ T xð Þ ¼ 0,

X
i

Mx
i ¼ M xð Þ þ 1

2
q1 xð Þ � x � x

3
� Ay � x ¼ 0

Thus, the distributions of the internal shear forces and moments within region

AC are

T xð Þ ¼ �45:8þ 720 � x2 N
M xð Þ ¼ �240 � x3 þ 45:8 � xð ÞNm

Region CD
Within the region

a � x < aþ bð Þ (Fig. 9.3e), we are again considering the left part of the beam.

X
i

Fiy ¼ Ay � 1

2
q1 að Þ � aþ T xð Þ ¼ 0

X
i

Mx
i ¼ M xð Þ � 1

2
q1 að Þ � a � x� 2 � a

3

� 	
� Ay � x ¼ 0
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The distributions of the internal forces and moments within region CD are

T xð Þ ¼ �0:75N,

M xð Þ ¼ 0:75 � xþ 7:52ð ÞNm

Region DE
aþ bð Þ � x < aþ bþ cð Þ (Fig. 9.3f). We are considering the left part of the beam.

X
i

Fiy ¼ Ay � 1

2
q1 að Þ � a� q2 � x� a� bð Þ þ T xð Þ ¼ 0

X
i

Mx
i ¼ M xð Þ þ q2 � x� a� bð Þ � x� a� bð Þ

2
þ 1

2
q1 að Þ � a � x� 2 � a

3

� 	
� Ay � x ¼ 0

The distributions of the internal forces and the moment within region DE are

T xð Þ ¼ �65:3þ 150 � xð ÞN
M xð Þ ¼ �75 � x2 þ 65:3 � x� 6:35ð ÞNm

Region EB
To simplify the equilibrium equations, we are considering here the right part of the

beam, 0 < x < L� a� b� cð Þ (Fig. 9.3g). In order to do that, we need to invert the
coordinate system as demonstrated in Fig. 9.1b.

Fig. 9.4 The diagrams of the internal shear force and bending moment for all regions of the beam
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X
i
Fiy ¼ T xð Þ � By ¼ 0X
i
Mx

i ¼ M xð Þ � By � x ¼ 0

The distributions of the internal forces and moments within region EB are

(Fig. 9.4)

T xð Þ ¼ 29:3N
M xð Þ ¼ 29:3 � xNm

9.2.2 Relationship Between the Distributed Load, Shear Force,
and Bending Moment – Rules for Drawing Diagrams
of Internal Forces and Moment Intuitively

In the previous section, we learned that according to the Third Newton’s Law, any

change in internal forces could be a result from the external loads only.We learned also

that a continuous load causes continuous changes in the internal forces and that the force

acting at a pointwill cause a “jump,” i.e., discontinuity, in the internal forces. In the case

of internal moments, we similarly observed that diagram of internal moments will be

continuous if there are no external moments acting on the observed beam, and that

moment acting at a point will cause a “jump,” i.e., discontinuity, in internal moment.

However, at this point we do not have a general rule how external forces,

continuous and those acting at a point, affect the distribution of internal moments.

The goal of this section is to discuss these interrelations and derive ten “intuitive

Rules” for drawing diagrams of internal forces and moment without writing equi-

librium equitations for each region along the beam.

Let us assume that a segment of a beam is loaded by an arbitrary distributed load

q(x) only, as shown in Fig. 9.5. We will have to determine internal forces and

moments at location x.
Internal Shear Forces
The internal shear force T(x) is obtained from the equilibrium equation in

y direction

Fig. 9.5 Segment of a beam

with distributed load
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Ay �
ðx
0

q uð Þduþ T xð Þ ¼ 0 ð9:11Þ

In (9.11), u is a running variable denoting the position of segment du within

interval [0, x]. From the above equation we can find shear force T(x)

T xð Þ ¼
ðx
0

q uð Þdu� Ay ð9:12Þ

Within a region loaded with a distributed load, the shear force will be equal to the

integral of the corresponding distributed load, and will act in the opposite direction

(opposite sign)

The magnitude of the shear force is proportional to the integral of distributed

load q(x) and acts in the opposite direction. In our case, the distributed load has a

negative sign; therefore, the corresponding internal shear force resulting from the

distributed load will be positive, as seen in (9.12).

Derivative dy/dx of function y¼ f (x) represents a slope (rate) at which f (x)
changes its magnitude.

Let us recall frommathematics that derivative dy/dx of function y¼ f(x) represents
a slope (rate) at which f(x) changes its magnitude. Therefore, knowing derivative

dT(x)/dx could be a very useful information. Unfortunately deriving (9.12), which is a

definite integral, is not a straightforward procedure. We need to use the rule for

derivative of definite integrals, shown inMathematical Corner, to obtain

dT xð Þ
dx

¼ q xð Þ ð9:13Þ

Mathematical Corner

How to take a derivative of the definite integral.

d

dx

ðb xð Þ

a xð Þ

f x; uð Þdu ¼
ðb xð Þ

a xð Þ

∂
∂x

f x; uð Þ½ �duþ f x, b xð Þ½ � � db xð Þ
dx

� f x, a xð Þ½ � � da xð Þ
dx

In our case, f x; uð Þ ¼ q uð Þ, b(x)¼ x, a(x)¼ 0; thus,

d

dx
T xð Þ ¼

ðx
0

∂
∂x

q uð Þduþ q xð Þ � dx
dx

� q xð Þ � d0
dx

¼ q xð Þ
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Hence, the derivative of the internal shear forces T(x) within the observed region
is equal to the magnitude of the corresponding distributed (continuous) load. From

mathematics we know that (i) when the first derivative (slope) of T(x) is positive the
T(x) will be an increasing function, whereas (ii) if the derivative (slope) is negative
the T(x) will be a decreasing function. Finally, (iii) when the derivative (slope) is

equal to zero the distribution of shear forces within the region will be constant.

From (9.12) it is derived that (iv) when the distributed load within the region is a

constant, q(x)¼ const., the shear force will change within the observed region

linearly. Finally, (v) when the distributed load changes linearly the shear force

T(x) within the region will be a quadratic function.

It is worthwhile to stress that when within the observed region the beam is

loaded with a distributed load in the axial direction, the same rules apply as for the

shear forces.

If a beam is loaded with a distributed load, p(x), in the axial direction, then the

very same rules apply as in the case of shear forces.

Internal Moments
Let us proceed with the equilibrium equation for moments with respect to the point,

where the beam was cut.

M xð Þ þ
ðx
0

x� uð Þ � q uð Þ � du� Ay � x ¼ 0

From the equilibrium equation we find

M xð Þ ¼ �
ðx
0

x� uð Þ � q uð Þ � duþ Ay � x ð9:14Þ

Using the rule of derivatives for definite integrals, shown in the Mathematical
Corner, we obtain

dM xð Þ
dx

¼ �
ðx
0

q uð Þduþ Ay ð9:15Þ

Thus, derivative of internal moment is equal to magnitude of the corresponding

internal shear force, c.f., (9.13), and is opposite in sign. Therefore,

dM xð Þ
dx

¼ �T xð Þ ð9:16Þ

Using (9.16), we may derive several useful rules, similar to those derived for

shear forces. Again, from mathematics we need to remember that the sign of a

function derivative defines if function is increasing or decreasing. The positive sign
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indicates that the function is increasing, whereas the negative sign indicates that it is

decreasing.

In a view of this, we may conclude that (vi) when within an observed region the

internal shear force is negative, the derivative of the internal moment will be

positive, i.e., dM(x)/dx> 0 and consequently the distribution of internal moment,

M(x), will be an increasing function. Similarly, (vii) when the internal shear force is

positive, then derivative of the internal moment will be negative, dM(x)/dx< 0 and

distribution of internal moment will be a decreasing function. Finally, (viii) when

the internal shear force within a region is zero, i.e., dM(x)/dx¼ 0, then internal

moment M(x) will be a constant.
As before, we may formulate two additional rules that are very useful when

drawing diagrams of internal forces and a moment. (ix) If the internal shear

force within the observed region is a constant, T(x)¼ const, then distribution of

the corresponding internal moment, M(x), will be a linear function. Similarly,

(x) when the internal shear force within the observed region changes as a linear

function, the corresponding internal moment, M(x), will change as a quadratic

function.

Internal Forces and Moments Within the Region
To determine the shear force change between points 1 and 2, we need to integrate

(9.13)

dT xð Þ
dx

¼ q xð Þ

ðT2

T1

dT xð Þ ¼
ðL2
L1

q xð Þdx

and

T2 � T1 ¼
ðL2
L1

q xð Þdx ð9:17Þ

Equation (9.17) shows that the change of the internal shear force between two

locations is equal to the cumulative contribution of the distributed load between the

two locations.

Similarly, we can integrate (9.16) to obtain an expression for the internal

moment

M2 �M1 ¼ �
ðL2
L1

T xð Þdx ð9:18Þ
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This equation shows that a change of the internal moment between two locations is

opposite in sign and equal to the cumulative contribution of the internal shear forces

between these two points.

Utilizing the derived ten “Intuitive Rules”, (i)-(x), we are ready to draw the

diagrams of the internal forces and moment intuitively without writing equilibrium

equations for the each region along the beam.

Rules for drawing diagrams of internal forces and moment “intuitively”:

(i) If within the observed region dT(x)/dx> 0, then T(x) will be an increasing
function.

(ii) If within the observed region dT(x)/dx< 0, then T(x) will be a decreasing
function.

(iii) If within the observed region dT(x)/dx¼ 0, then the internal shear force

will be constant, i.e., T(x)¼ const.
(iv) If within the observed region dT(x)/dx¼ const., then internal shear force

T(x) will change linearly.
(v) If within the observed region q(x) is a linear function, then T(x) will be a

quadratic function.

(vi) If within an observed region Tx< 0, and therefore dM(x)dx> 0, then the

internal moment, M(x), will be an increasing function.

(vii) If within an observed region Tx> 0 and consequently dM(x)dx< 0 then

the internal moment, M(x), will be a decreasing function.

(viii) If within an observed region dM(x)dx¼ 0, then M(x) will be a constant.
(ix) If within an observed region the internal shear force is a constant dM(x)

dx¼ const then the internal moment, M(x), will be a linear function.
(x) If within an observed region the internal shear force, T(x), changes

linearly, the corresponding internal moment, M(x), will change as a

quadratic function.

9.2.3 Intuitive Drawing of Internal Forces and Moment Diagrams

Utilizing the rules developed in previous section, we can draw the diagrams of

internal forces and moments “intuitively” without writing the equilibrium equations

for each region of a beam.

Internal forces are reactions to external loads, thus their directions are always

opposite to that of the external loads (Third Newton’s Law). Any change in the

external forces and moments (loads) will result in the equivalent change of

the internal forces and moments that will always be equal in magnitude and

opposite in direction (sign).

Internal forces are reactions to external loads, thus their directions are always

opposite to that of the external loads (Third Newton’s Law).
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Any change in external forces and moments (loads) will result in equivalent

change of internal forces and moments that will always be equal in magnitude

and opposite in direction (sign)

This approach of intuitive drawing of the diagrams of internal forces and

moment is demonstrated in Example 9.2 below.

Example 9.2 Draw the diagrams of internal shear forces and bending moment of a

bench loaded, as shown in Fig. 9.6a, by using the intuitive approach. Solve the

equilibrium equations for external forces, but do not write equations of equilibrium

for each region. The weight of the child on the left is P1¼ 50 lb, while the weight of

the child on the right is P2¼ 90 lb. The dimensions are in “in”.

Solution We will treat this problem as a 2D case since all external forces are

acting in the same vertical plane, and the bench is supported by two legs, which

may be replaced with two forces acting in the same plane as external forces. Since

we have only three equilibrium equations for a plane case, we will simplify the

supports and draw the physical model of the bench as shown in Fig. 9.6b. We will

represent the weight of each child by a concentrated force. It should be mentioned

here that from experiments it is known that such simplification results in over

design.

Engineering practice requires that any assumption or simplification of a struc-

tural part will result in its over design, meaning the part will be safer.

The reactions are calculated from the equilibrium equations for the free body

diagram (Fig. 9.6c). The results are Ay¼ 62 lb and Dy¼ 78 lb. Now, we can start

to draw diagrams of the internal forces and moment.

Diagram of Forces
There is no axial internal force because Ax¼ 0. Since there are two external forces

acting along the axis of the beam (bench), it should be divided into three regions:

AB, BC, and CD. We start at the left hand side of the bench and “travel” along the

bench (beam) axis, and apply the intuitive rules explained in the previous section.

Reaction Ay is positive, so the corresponding internal force should be of the same

magnitude and have the opposite (negative) sign, as shown in Fig. 9.6d. As there is

no distributed load acting on a beam, according to (9.13) the shear force has to be a

constant in all three regions (intuitive rule (iii)). At point B, we encounter external
force P1 acting in negative direction. The change in the internal force at this point

should be positive and equal to the magnitude of P1. At point C, we encounter force

P2, which causes a change of the internal force to positive direction. At this point,

the internal shear force changes its sign. Finally, we arrive to the end of the bench,

where the external reaction force Dy is acting. Since Dy is positive, the
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corresponding change of the internal force should be negative and equal in magni-

tude. At this point, the diagram of the internal shear forces should be closed,

because there are no forces outside of the bench, and the sum of all the internal

and external forces must be equal to zero. Thus, the diagram of the shear forces

looks as shown in Fig. 9.6d.

Diagram of Moments
Now, we draw the diagram of moments, and start from the left hand side of the

bench again. Since there is no external moment at the left end of the bench, we start

Fig. 9.6 (a) Two persons standing on a bench. (b) Physical model of the bench. (c) Free body

diagram of the bench. (d) Qualitative diagrams of the bending moment and transverse (shear)

forces
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the moment diagram from zero. Within the first region, the shear force is constant

and negative; therefore, dM xð Þ=dx > 0, and consequently the internal moment in

this region will be an increasing linear function, see (9.16), and the intuitive rules
(vi) and (ix). In the second region, the slope of the moment diagram should be also

positive but smaller because the slope is equal to the shear force magnitude, (9.16).

If the magnitude of T(x) is smaller, then the slope of M(x) will be smaller, and

vice versa.

Within the last region, the shear force is positive, thus the slope of the moment

M(x) must be negative and become zero at the right hand side of the beam. At the

point where the shear force changes the sign, T(x)¼ 0, the moment diagram should

have an extreme value, (9.16). This follows from the mathematical rule, which says

that a function has an extreme at the point, where its first derivative is equal to zero.

The diagram of bending moments is shown in Fig. 9.6d.

Within the region of a beam the slope ofM(x) is equal to the corresponding shear
force magnitude.

If the magnitude of T(x) is larger, then the slope ofM(x) will be larger, and vice

versa.

Example 9.3 Draw diagrams of internal shear forces and bending moments for a

beam loaded by its own weight (1500 N) and the weight of a boy (300 N)

(Fig. 9.7a). Do not write equations of equilibrium for each region; use intuitive

approach to draw the required diagrams.

Solution This is a cantilever beam, loaded by a distributed and concentrated load.

Assuming that the boy does not touch the ground, we will create a physical model as

shown in Fig. 9.7b and the related free body diagram as shown in Fig. 9.7c.

Examination of the free body diagram suggests that there are two regions: AC

and CB. From the equilibrium equations of the external forces we find that the

reactions are:

MA ¼ 4950Nm

Ay ¼ 1800N

Diagram of Forces
We start at the left hand side of the beam. At point A, the internal shear (transverse)

force will be negative because it has to be equal in magnitude and opposite in sign

to reaction Ay, which is positive (Third Newton’s Law). Within region AC, the

beam is loaded with a constant distributed load. According to (9.13) and

the intuitive rules (i) and (iv), the internal shear force will be a linear function

with a positive slope. From (9.17) we can calculate the shear force magnitude at

location C.
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TC ¼ TA þ
ð4
0

300dx ¼ �1800þ 1200 ¼ �600N

At point C, where the first region ends and the second starts, the external force P is

acting in negative direction. The related change in the internal shear force will be

therefore positive and equal to 300 N. Consequently, the magnitude of internal

shear force will change from – 600 to –300 N, Fig. 9.7d.

Within region CB, there is a distributed load of the same magnitude as in region

AC. Therefore, the internal shear force will have the same positive slope as before.

Since there is no external force acting at the end of the beam and the sum of all

external and internal forces must be equal to zero, the internal shear force in point B

must be zero. This also follows from the equation below.

Fig. 9.7 (a) A boy on the cantilever beam. (b) Physical model. (c) Free body diagram. (d)
Diagrams of the internal bending moment and shear force
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TB ¼ TC þ
ð1
0

300dx ¼ �300þ 300 ¼ 0:0N

Diagram of Moments
The internal moment at point A is equal and opposite to the external moment MA,

which is positive. Related internal moment at point A will be therefore negative, as

shown in Fig. 9.7d. Within region AC, the internal shear force is negative and a

linear function. Hence, the internal moment should be represented as a parabolic

function, the intuitive rule (x), and have a positive slope, (9.16) and the intuitive
rule (vi). The magnitude of the moment at point C may be calculated from (9.18)

MC ¼ MA � �4800ð Þ ¼ �4950þ 4800 ¼ �150Nm

In region CB, the internal shear force is again changing linearly; therefore, the

internal moment must approach zero parabolically at the right hand side of the

beam. The change in the value of the moment between points C and B is equal to

the area under the shear force diagram. Both diagrams are shown in Fig. 9.7d.

9.2.4 Problems

9.1–9.20 Draw diagrams of internal moments and forces. The values of external

concentrated forces, distributed forces and moments are given in the table

below. Related physical models are numbered accordingly and shown

below. Location of the coordinate system is in some cases given and in

some it is not.

n
F
(kN)

M
(kN m)

q
(kN/m)

q1
(kN/m)

q2
(kN/m)

a
(m)

b
(m)

c
(m)

l
(m)

α
(�)

9.1 – – 2 – – 1 2 1.5 – –

9.2 – – 4 – – – – – 4 –

9.3 – – 3 – – 2 3 2 – –

9.4 – – 5 – – 2 3 – – –

9.5 – – – 2 4 – – – 5 –

9.6 – – 3 – – – – – 5 30

9.7 8 – 3 – – 4 2 – 7 60

9.8 – – 4 – – 4 2 – 7 30

9.9 8 – 2 – – 4 – – 8 30

9.10 – 6 4 – – 2 – – 5 30

9.11 5 10 – – – 2 – – 4 30

9.12 – – 5 – – 4 – – 8 30

9.13 4 6 – – – 4 – – 8 60

(continued)
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n
F
(kN)

M
(kN m)

q
(kN/m)

q1
(kN/m)

q2
(kN/m)

a
(m)

b
(m)

c
(m)

l
(m)

α
(�)

9.14 – 10 3 – – 4 – – 8 30

9.15 – – 4 – – 2 – – 4 60

9.16 – – 3 – – 2 – – 5 60

9.17 8 – 4 – – 1 – – 4 60

9.18 6 – 2 – – – – – 4 30

9.19 – – 5 – – 2 – – 4 –

9.20 4 2 2 – – 2 – – 4 –

Fig. P9.1

Fig. P9.2

Fig. P9.3
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Fig. P9.4

Fig. P9.5

Fig. P9.6

Fig. P9.7
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Fig. P9.8

Fig. P9.9

Fig. P9.10

Fig. P9.11
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Fig. P9.12

Fig. P9.13

Fig. P9.14

Fig. P9.15
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Fig. P9.16

Fig. P9.17

Fig. P9.18

Fig. P9.19
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Fig. P9.20

9.21–9.32 Draw diagrams of internal moments and forces. The values of external

concentrated forces, distributed forces and moments are given in the

table below. Corresponding physical models are numbered accordingly

and shown below. Location of the coordinate system is in some cases

given and in some it is not.

N F (kN) W (kN) M (kNm) q (kN/m) a (m) b (m) c (m) α (�)
9.21 6 – 3 – 2 3 – –

9.22 – – – 6 2 3 – –

9.23 4 – – 6 5 1 – –

9.24 9 – – 4 3 3 1.5 45

9.25 10 – 4 – 3 3 2 30

9.26 – – 10 – 3 5 – –

9.27 – – 2 2 3 2 6 30

9.28 2 – – 4 4 4 – 30

9.29 8 4 5 2 1 – – –

9.30 – 12 10 4 1 – – –

9.31 6 4 10 4 1 – – –

9.32 2 4 6 – 1 – – 30

Fig. P9.21

352 9 Beams



Fig. P9.22

Fig. P9.23

Fig. P9.24

Fig. P9.25
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Fig. P9.26

Fig. P9.27

Fig. P9.28

Fig. P9.29
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Fig. P9.30

Fig. P9.31

Fig. P9.32

9.3 Curved Beams

In engineering practice, there are structures that cannot be modeled as straight or

piece-wise straight beams. In order to solve these structures, their shape (geometry)

should be possible to model by an analytical function. Most common are structures

that can be modeled as a part of a circle.
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Let us consider a curved beam supporting the roof of the shelter shown in

Fig. 9.8a, which can be modeled as a half circle with radius R, supported by pin

A and roller C, and loaded by vertical force F at point B, as shown in Fig. 9.8b.

Figure 9.8c shows the related free body diagram. By writing and solving the

equilibrium equations of the external forces, we obtain the reactions:

0
/ 2

x

y y

A
A C F
=

= =

Since we have only one external force acting at point B, the beam can be divided

into two regions: AB and BC.

Region AB
To obtain the internal forces and moment, we need to cut the beam at an arbitrary

location within region AB. We need to remember that the coordinate system of

internal forces and moments “travels” along the axis of the beam, which means that

the direction of internal forces will change from point to point. Since the beam’s

axis has a shape of a circle, we will use the polar coordinate system, as shown in

Fig. 9.9a.

The location of the cut is defined by angle φ. As we know, the internal force may

be represented through its two components: normal internal force N, which is

tangential to the beam, and the internal transverse force T that is perpendicular to

N, i.e., it acts in radial direction. Internal bending moment M is acting counter-

clockwise as shown in Fig. 9.9a.

Fig. 9.8 (a) Shelter. (b) Physical model. (c) Free body diagram
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The equilibrium equations are

X
Fx ¼ Ax � T cosφþ N sinφ ¼ 0X
Fy ¼ Ay þ T sinφþ N cosφ ¼ 0X
M ¼ M þ AxR sinφ� AyR 1� cosφð Þ ¼ 0

By multiplying the first equation by sinφ, second by cosφ, then summing them up

and substituting values of Ax and Ay, we obtain the expression for normal force N.
Similarly, by multiplying the first equation by cosφ, second by sinφ, and

subtracting them we obtain expression for shear force T. The expression for internal
moment M is obtained simply by substituting values of Ax and Ay. Hence,

N ¼ �F

2
cosφ

T ¼ �F

2
sinφ

M¼ F

2
R 1� cosφð Þ

The expressions above represent the diagrams of the normal and transverse

forces, and the bending moment within region AB (Fig. 9.10). Complete region

AB is covered when φ changes from 0 to π/2, hence φ∈ 0, π=2½ �.
The diagrams shown in Fig. 9.10 can also be drawn by using the intuitive

approach. Let us start at point A. The internal normal force at point A should be

equal and opposite in direction to external force Ay. Since Ay is positive, the internal

normal force will be negative. Since there is no distributed load acting within region

AB, the internal normal force should be constant, see the intuitive rule (iii).

However, due to the continuous changing of the beam’s geometry, the normal

force direction is also changing relative to the direction of the external load. Thus,

its magnitude will continuously change (diminish) as well. At point B, direction of

the internal normal force will become horizontal; therefore, its magnitude will

Fig. 9.9 (a) Region AB. (b) Region BC. (c) End of Region AB
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become zero. Similarly, the shear force is zero at point A and will gradually

increase to become F/2 at point B. The internal moment is an integral of the

shear force (9.18). Since the shear force within region AB is negative, the internal

moment will be an increasing function with its maximum at point B where the shear

force changes its sign, (9.16), and the intuitive rule (vi).

Region BC
For region BC, shown in Fig. 9.9b, we will skip writing the equilibrium equations

and draw the diagrams for the internal forces and bending moment using the

intuitive approach only.

Let us proceed with the normal (axial) forces first. External reaction force Cy is

acting at the end of region BC. It acts in normal (axial) direction. If the beam would

be straight, the normal (axial) force would be constant throughout the beam because

within both regions AB and BC there is no external force acting in normal (axial)

direction. Hence, the magnitude of the internal normal (axial) force is changing

merely because of changing geometry of the beam. As a result, the angle between the

external forces and the internal normal force is changing along the axis of the beam.

Fig. 9.10 Diagrams of axial

force, shear force, and

bending moment

358 9 Beams



At point B, where the first region AB ends and the second region BC start, the

internal normal (axial) force is again (still) zero since there is no external load in

horizontal direction. Progressing from point B toward point C, the magnitude of the

internal normal (axial) force gradually increases, and keeps the same negative sign,

i.e., the same direction of action as in region AB. This has to be so because there is

no external “reason” that would change direction of the internal axial force action.

When we reach point C, where the external reaction force Cy is acting, the

change in axial force magnitude will be equal to magnitude of Cy. Since Cy acts

upward, the related internal force will act in opposite downward direction. This

means that the change of the internal force will be positive, see the direction of N(x)
in Fig. 9.9b. In addition, at the end of the beam the diagram has to become zero

because the sum of all external and internal forces in any direction must be zero.

Let us now proceed with the internal shear forces. At point B, where region AB

ends and region BC starts there is an external force acting downward. According to

the Third Newton’s Law, the corresponding internal force will act upward.

The internal coordinate system at the end of region AB is shown in Fig. 9.9c. The

change of the internal force, caused by external force F, will be therefore positive.

Consequently, the internal transverse force at point B changes from negative,�F/2,
to positive F/2 value. Since in region BC there is no distributed load, the transverse

internal force should be constant throughout the region. However, due to the

changing geometry of the beam the transverse force gradually diminishes and

becomes zero at point C. At point C, there are no external forces acting in horizontal

direction; hence, related internal force should be also zero.

The internal moment at point B remains the same since there are no external

moments acting at this point. Within region BC dM(x)/dx< 0 therefore, according

to the intuitive rule (vii), internal moment M(x) will be a decreasing function and

will diminish as we approach point C. At point C, the internal moment is zero since

there are no external moments acting at the pin. The final diagrams are shown in

Fig. 9.10.

9.4 Piece-Wise Straight and Curved Beams

Geometry of real engineering structures is often complex. However, it usually may

be represented as a composition of a number of straight and/or curved beams rigidly

attached to one another. A simple example of a structure that can be modeled by

piece-wise straight and curved beams is shown in Fig. 9.11a. This structure can be

represented by two straight (AB and BC) and one curved (CD) beams rigidly

attached to one another. First, we draw a free body diagram, as shown in

Fig. 9.11b, and solve for reactions Ax, Ay, and Dy.

Geometry of real engineering structures is often complex. However, it usually

may be represented as a composition of a number of straight and/or curved

beams rigidly attached to one another.
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Now, we cut the structure into three parts AB, BC, and CD as shown in

Fig. 9.11c. To keep each part in equilibrium, we have to apply internal forces and

moments at the points of the cuts. It should be noted that the internal forces

and moment acting on part AB at point B, i.e., Bx, By, and MB, should be equal in

magnitude and opposite in direction to the internal forces and moment acting on

part BC at the same point B. Similarly, the internal forces and moment acting

on part BC in point C, i.e., Cx, Cy, and Mc, should be equal in magnitude and

opposite in direction to the internal forces and moment acting on part CD at point C,

see Fig. 9.11c.

To solve for unknown forces and moments at the location of the cut, we have to

start with the beam that is attached to one of the supports. If we would start with the

beam in the middle, it would be impossible to solve for unknown forces and

moments because there will be more unknowns than equations of equilibrium.

Now, consider equilibrium of part AB and solve for unknown reactions Bx, By,

andMB. Next, consider equilibrium of the second part BC and solve for Cx, Cy, and

Mc. The latter could be obtained also from the equilibrium equations for part

CD. Thus, these equilibrium equations could be used to check the correctness of

the obtained results.

The unknown forces and moments could be obtained simultaneously by writing

nine equations of equilibrium for all three parts at once. These nine equations will

Fig. 9.11 (a) Piece-wise straight and curved beam. (b) Free body diagram of a piece-wise straight

and curved beam. (c) Piece-wise presentation of the beam
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have nine unknowns, Ax, Ay, Bx, By, MB, Cx, Cy, MC, and Dy. MATLAB or similar

software package may be used to solve such system.

From this point on we can solve for internal forces and moments in each part

separately using the rules and procedures developed for the straight and curved

beams in Sects. 9.1 and 9.2, respectively.

When solving for the internal forces and moment in each part of a structure, the

forces and moments acting at the cuts, should be considered as external loads!

When solving for internal forces and moment in each part of a structure, the

obtained forces and moments (in this case Ax, Ay, Bx, By, MB, Cx, Cy, Mc, and Dy),

acting at the cuts, should be considered as external loads.

Example 9.4 Draw diagrams of internal forces and bending moments for the

staircase shown in Fig. 9.12a. The weight of a person is W¼ 800 N and the weight

of a box is G¼ 2000 N. All dimensions are shown in Fig. 9.12b.

Solution The first step is to construct physical model that will appropriately

represent the staircase, Fig. 9.12b. At point A, we assume that the structure is

supported by a pin, while at point C by a roller. The effect of the person’s weight is

represented by concentrated force W and the effect of the box by uniformly

distributed load q¼G/0.8 N/m. The related free body diagram of the staircase is

shown in Fig. 9.12c. From the equilibrium equations we find the reactions:

Ax ¼ 0N

Ay ¼ 800N

Cy ¼ 2000N

Now, we split the structure in two parts: AB and BC, as shown in Fig. 9.12d, and

add unknown internal forces and moments, Bx, By, and MB, to keep each part in

equilibrium.

We can obtain the unknown forces and moment Bx, By, and MB either from the

equilibrium equations for part AB or for part BC. Let us consider the part BC:

X
Fx ¼ �Bx ¼ 0X
Fy ¼ �By � Gþ Cy ¼ 0X
M ¼ �MB � 0:6 � Gþ 1 � Cy ¼ 0

The sum of the moments was taken about point B. Solving for unknown values

leads to

9.4 Piece-Wise Straight and Curved Beams 361



Fig. 9.12 (a) Staircase loaded by a person and a box. (b) Physical model of the staircase. (c) Free
body diagram of the staircase. (d) Free body diagrams of the parts AB and BC. (e) Free body

diagram of part AB. (f) Free body diagram of Region I (part AB). (g) Free body diagram of Region

II (part AB), analyzed from the right hand side. (h) Distributions of internal forces and moment

in part AB of the staircase. (i) Diagrams of normal and transverse forces and bending moments in

part BC



Bx ¼ 0

By ¼ 0 and

MB ¼ 800 N m

Interestingly, we find that for these loading conditions at point B there are no

forces in axial and transverse direction.

Now, we are ready to start solving for internal forces and moments in both parts.

Part AB
Since we are looking for the distribution of normal and shear forces along the

beam’s axis, we will orient the coordinate system along the longitudinal axis of part

AB. Part AB has two regions, i.e., Region I and Region II, as shown in Fig. 9.12e.

To obtain the distribution of the internal forces and moment, we need to cut the

beam in each of the two regions.

Within Region I, we cut the beam at distance x, as shown in Fig. 9.12f.

The equations of equilibrium are

X
Fx ¼ Ay cos 60þ N ¼ 0X
Fy ¼ Ay sin 60þ T ¼ 0X
M ¼ M � x � Ay sin 60 ¼ 0

When solving the right part of a beam, we need to flip the directions of the

internal forces and moment.

However, we should NOT change the direction of the external forces and

moments.

Solving for unknown forces and moment yields

N ¼ �400N

T ¼ �693Nand

M¼ 693xNm

Next, we cut the beam at any point within Region II. For a change, we will consider

the right part of the beam, Fig. 9.12g. In order to do that, we need to invert the

coordinate system of the internal forces and moment as explained in Sect. 9.1. The

z-axis is now pointing into the plane, which means that the positive moment has the

direction of a clock.

We need to stress that direction of external forces and moments remains

unchanged! Hence, in this case the direction of MB will remain unchanged!
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The equilibrium equations for Region II are:

X
Fx ¼ N ¼ 0X
Fy ¼ T ¼ 0X
M ¼ þM �MB ¼ 0

Solving for unknown internal forces and moment yields

N ¼ 0N

T ¼ 0N and

M¼ 800Nm

Diagrams showing the distributions of the internal forces and moment in part AB

of the staircase are given in Fig. 9.12h.

Intuitive Drawing of the Internal Forces and Moment in Part AB
Diagrams of the internal forces and moment could be drawn without explicitly

writing equilibrium equations, but simply by using intuitive procedures outlined in

Sect. 9.2.2.

We start the intuitive drawing at the left hand side of beam AB in Region I. At

point A, the external force Ay has two components (i) one in axial (normal)

direction, Ay � cos 60∘, and another, (ii) in transverse (shear) direction,

Ay � sin 60∘. According to the Third Newton’s Law, the internal forces at this

point should be equal in magnitude and opposite in direction to these two external

forces. The external axial force Ay � cos 60∘ acts in positive direction; hence, the

corresponding internal axial force will be negative. Similarly, it is true for the

transverse (shear) force. The external force Ay � sin 60∘ acts in positive direction;

hence, the related internal shear force will be negative. Within Region I, there are

no external distributed loads; therefore, the internal axial and shear force will be

constant. The internal moment at point A will be zero because the beam is

supported by a pin. Internal shear force within Region I is constant; hence,

according to the intuitive rule (ix), the internal moment will change as a linear

function (for details, see Sect. 9.2.2). Since dM=dx ¼ �T xð Þ > 0 we find thatM(x)
needs to be an increasing function.

We will start the analysis of the second region at the right hand side of the beam,

at point B and proceed to the left. This means that the coordinate system should be

inverted as discussed above. In this case, the z-axis points into the plane, which

means that the positive moments act clockwise.

Since there are no forces at point B, both internal forces (axial and shear) are zero.

The internal moment at point B will be equal in magnitude and opposite in direction

as moment MB. In the inverted coordinate system, MB is negative; therefore, the

related internal moment will be positive. The shear force in Region II is zero,
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according to the intuitive rule (viii) (Sect. 9.2.2).M(x) will be constant, as shown in
Fig. 9.12h. The diagrams for N, T, and M for part AB are given in Fig. 9.12h.

Part BC
To draw the diagrams of the internal forces and moment for Part BC, we will use the

intuitive approach only. There are two regions: Region I, extending from the left

end up to the beginning of distributed load, and Region II, covering section of the

beam loaded with a distributed load, as shown in Figs. 9.12d, and i.

We will analyze Region I from left to right. Since Bx¼ 0 and By¼ 0, both

internal forces (shear and normal) are zero, T¼ 0 and N¼ 0. Moment MB (consid-

ered as an external moment) is negative (it acts clockwise); the internal moment at

point B is therefore positive and constant within the region. This is so according to

the intuitive rule (viii) because the shear force within the region is zero, i.e.,

dM=dx ¼ �T xð Þ ¼ 0.

We will continue analyzing the internal forces and moments in part BC from left

toward right.

Within Region II, the internal normal force will remain zero because there are no

new axial forces acting at the beam. However, in transverse (shear) direction

Region II is loaded with constant distributed load q. Therefore, dT=dx ¼ q ¼
const: > 0, and according to the intuitive rules (i) and (iv) described in

Sect. 9.2.2, the transverse force will change linearly as an increasing function up

to point C where the external force Cy acts. According to the Third Newton’s Law,

the related change of the internal shear force at point C should be equal to Cy and

opposite in sign. The external force Cy is positive, the corresponding internal force

will be therefore negative and the diagram of internal shear forces will go down to

zero, as it should be, because the sum of all the external and internal forces acting

on a beam should be equal to zero.

The internal moment at the beginning of Region II should have the same value as

the moment at the end of Region I. This is so because there are NO external

moments at this location, which would cause a discontinuous “jump” in the

distribution of the internal moments. Similarly, the internal moment at the end of

the beam (point C) should be equal to zero since there is no external moment acting

at this point. Within Region II, the moment is equal to the integral of the transverse

force, and opposite in sign, thus it should decrease as a parabola. The diagrams of

the internal forces and moment are shown in Fig. 9.12i.

9.4.1 Problems

9.33–9.46 Draw the diagrams of internal moments and forces. The values of

external concentrated forces, distributed forces and moments are given

in the table below. Related physical models are numbered accordingly

and shown below.
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n F (kN) W (kN) M0 (kN m) q (kN/m) a (m) α (�)
9.33 10 – 6 5 1 –

9.34 6 – 4 4 1 –

9.35 2 – 4 1 0.25 –

9.36 4 6 8 4 1 –

9.37 6 4 2 – 1 30

9.38 6 – 8 2 1 45

9.39 8 10 4 1 30

9.40 4 – 3 2 1 30

9.41 2 – 6 4 1 30

9.42 6 8 4 1 45

9.43 4 – 6 2 1 45

9.44 6 – 10 2 1 30

9.45 4 – 2 2 1 30

9.46 6 – 8 4 1 20

Fig. P9.33

Fig. P9.34
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Fig. P9.35

Fig. P9.36

Fig. P9.37

Fig. P9.38
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Fig. P9.39

Fig. P9.40

Fig. P9.41

Fig. P9.42
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Fig. P9.43

Fig. P9.44

Fig. P9.45

Fig. P9.46
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9.5 Superposition Principle

Distribution of internal forces and moments in beams loaded by only one

concentrated or distributed load may be easily obtained by using the intuitive

approach, or else, using preprepared solutions for common types of beams and

loading cases. However, when the number of external loads is large the determina-

tion of the internal forces and moments could become a tedious job. In this chapter,

we present an approach called superposition principle, which to some extend

simplifies the solving procedure.

The number of external forces and moments acting on a structure may be viewed

as a sum of individual loads and moments each acting on a structure separately.

Since we are dealing here with rigid structures, it is possible to use the principle of

superposition to determine the internal forces and moments resulting from the large

number of loads by summing up the internal forces and moments resulting from

each individual load separately. Preprepared solutions for a several different load-

ing cases are shown in Table 9.1. For each case the corresponding reactions and

internal forces and moments are given in Table 9.2.

We demonstrate applicability of the superposition principle on an example of a

beam loaded by concentrated force F and uniformly distributed load q, shown in

Fig. 9.13a.

The loaded beam may be viewed as a sum of two beams of the same length and

geometry (Fig. 9.13b), one loaded by the concentrated force F, and another by the

distributed load q, as shown in Fig. 9.13b.

For each of the two beams, we will draw the distribution of the internal forces

and moments using the preprepared solutions Case 1 and Case 2, presented in

Table 9.1. Instead, one could easily draw these “basic” diagrams of the internal

forces and moments using the intuitive approach introduced in Sect. 9.2.2.

The left part of Fig. 9.13c shows the distribution of the internal forces and

moment arising from the concentrated load, while the central part of Fig. 9.13c

shows the same information caused by the distributed load. According to the

principle of superposition, we can add the diagrams of internal shear and normal

forces caused by the concentrated load F to the corresponding diagrams belonging

to the distributed load q. In this case, there are no normal (axial) forces; hence, we

need to deal with shear forces only. The resulting distribution of the shear forces is

obtained by point-by-point summing up the two shear force distributions. The result

is shown on the right side of Fig. 9.13c. We draw the diagram of the internal

moments again by adding the internal moments caused by the concentrated load

and those generated by the distributed load at each selected location. The result is

again shown on the right hand side of Fig. 9.13c. It should be noted that the

resulting diagrams of the internal moment and forces were drawn by assuming

that the q � a < F (See Case 1 and Case 2 in Tables 9.1 and 9.2).

Example 9.5 Consider a beam loaded by two forces P1 and P2 and distributed load

q (Fig. 9.14a). Find the distribution of internal forces and moments using principle
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of superposition. Assume that P1¼ 10 kN, P2¼ 20 kN, q¼ 2 kN/m, L1¼ 2 m,

L2¼ 3 m, and L3¼ 1 m.

Fig. 9.13 (a) A beam loaded by concentrated and distributed loads. (b) Superposition of two

loads. (c) Diagrams of the internal forces and moments for two loads
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Solution Loading of the beam can be represented as a sum of three single loads,

two concentrated loads and one distributed load, as shown in Fig. 9.14b.

Distributions of the internal forces and moment for each of this simple cases may

be obtained by using the intuitive approach, or simply by using preprepared

solutions shown in Tables 9.1 and 9.2. We will use the latter approach.

Solutions for the internal forces and moment for each individual loading we find

in Tables 9.1 and 9.2. The result is shown as a sum of two Case 1 and one Case

2 loads on the left of Fig. 9.14c. Now, we can add the corresponding diagrams for

the normal forces, shear forces, and bending moments, respectively. The resulted

“cumulative” diagrams are shown on the right of Fig. 9.14c.

Example 9.6 Consider a cantilever beam loaded by two concentrated loads P1 and

P2 and distributed load q (Fig. 9.15a). Find the distribution of the internal forces and
moment using the principle of superposition.

Use P1¼ 10 kN, P2¼ 20 kN, q¼ 5 kN/m. Force P1 makes angle of 60� with the

beam’s axis.

Solution Loading can be represented as a sum of individual loads, as shown in

Fig. 9.15b. Force P1 is represented as a sum of its vertical P1v¼Psin 60�, and
horizontal P1h¼Pcos 60� components.

For the three loading cases (first, second, and fourth), we find solutions for

internal forces and moment in Tables 9.1 and 9.2. Distributions are shown in

Fig. 9.15c. However, for the third loading case, where the cantilever beam is loaded

with external force P1h acting in axial direction, we do not find the preprepared

solution. Therefore, we will use the intuitive approach to draw related diagrams of

the internal forces and moment.

Since there is only one external force P1h acting to the left (i.e., it has negative

sign), there will be only one (positive) reaction force Ax, acting to the right. The two

forces have the same magnitude. Since there are no external moments and external

shear forces, there are no internal shear forces and no internal moment. The only

internal force is a normal force acting in axial direction. The external reaction force

in point A is positive; therefore, the corresponding internal axial force is negative

and its magnitude equal to Ax, as shown in Fig. 9.15c. The internal axial force is

constant up to the point where negative external force P1h acts. This force generates

a positive change in the internal axial force and brings the diagram to zero. From

this point on there are no external forces therefore all internal forces must be zero.

The result is shown in Fig. 9.15c.

Now, we are ready to add the individual diagrams for the normal forces,

transverse forces, and bending moment in order to obtain the solution for our

problem. The resulted diagrams are shown in Fig. 9.15d.

Example 9.7 Consider a beam with an overhang loaded by concentrated load P,

distributed load q, and moment M (Fig. 9.16a). Find the distribution of internal

forces and moments using principle of superposition. Use P¼ 10 kN,M¼ 20 kN m,

q¼ 5 kN/m.
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Solution The beam is exposed to the load consisting of the concentrated load,

moment, and distributed load. Since Table 9.1 does not show the distributed load

similar to the one in Fig. 9.16a, one can compose this loading by using a sum of two

distributed loads as shown in Fig. 9.16b.

Diagrams of the internal forces and moment for each case, and distributions of

the internal forces and moment for the case when all loads act simultaneously, are

shown in Fig. 9.16c.

Fig. 9.14 (a) Physical model of the beam. (b) Superposition of loads. (c) Diagrams of the internal

forces and moments
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Fig. 9.15 (a) Cantilever beam. (b) Superposition of four loads. (c) Diagrams of the internal forces

and moments for each load. (d) Diagrams of the internal forces and moments
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Fig. 9.16 (a) Beam with the overhang. (b) Superposition of the external loads. (c) Diagrams of

the internal forces and moments
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Guidelines and Recipes for Drawing Diagrams

• Whenever an external force or moment is acting on a rigid body, the

change of the corresponding internal force or moment should be of the

same magnitude and have opposite sign, i.e., should act in the opposite

direction.

• Region is a segment of a beam within which there are no discontinuities in

external loads and/or the beam’s geometry.

• An internal force within a region (shear and/or normal) is constant if there

is no continuous load in the same direction.

(continued)

Fig. 9.16 (continued)
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• If a region is loaded with a constant continuous load, then the

corresponding internal force will change linearly. If

dT xð Þ=dx ¼ q xð Þ > 0, then T(x) will be an increasing function, whereas

if dT xð Þ=dx ¼ q xð Þ < 0, then T(x) will be a decreasing function.

• A type of the function describing the distribution of shear forces is given

with the integral of the function describing distributed load.

• The internal moment within a region will be an increasing function when

related internal shear force is negative, T xð Þ < 0, whereas it will be a

decreasing function when T xð Þ > 0.

• When distributed load, q(x), is constant (and acts downward), the shear

force is a linearly increasing function, and the moment diagram is para-

bolic. Similarly, when q(x) acts upward the shear force will be a decreasing
function, i.e., it will have a negative slope and moment diagram will be

parabolic.

• If a distributed load can be represented as a first-order function (linear

function), the shear force diagram will be represented by a function of the

second order and the moment diagram by a function of the third order. The

same logic follows for the higher order of the distributed load.

What We Have Learned?

How to calculate internal forces and moments in straight beams
After determining reactions, we divide the beam into regions within which there are

no discontinuous changes in the external loading. Next, we cut the beam anywhere

within each region. To keep the part in equilibrium, we add at the cut unknown

internal normal and shear forces and moment. Writing and solving equilibrium

equations results in expressions for distribution of the internal forces and moment

within that region.
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How to calculate internal forces in a piece-wise straight or curved beam
When a structure consists of a number of straight and/or curved parts, we divide it

into basic elements: straight and curved. At the point of division, we add the

appropriate internal forces and moments. These forces and moments are determined

from corresponding equilibrium equations. From now on the internal forces and

moments in each part are determined as described above.

How to create diagrams of bending moments and internal forces using an
intuitive approach
There are few basic rules that allow us to draw diagrams of internal forces and

moment without explicitly writing equilibrium equations for the internal forces and

moments. We are using the Third Newton’s Law, which means that the change in

the internal forces is always opposite in direction and equal in magnitude to the

acting external force. We can draw the diagrams of internal forces and bending

moments using the following rules.

• Whenever a concentrated external force is acting, it causes a change of the

internal force equal in magnitude and opposite in direction to that force.

• Within a region of a beam where no distributed load is acting all internal forces

will be constant.

• If there is a uniformly distributed load within a region of a beam, the

corresponding internal forces will change linearly.

• Whenever there is an arbitrary distributed external load within a region of a

beam, the corresponding internal force will change as an integral of this load.

• The slope of the diagram of bending moments is opposite in sign to the

corresponding transverse force.

How to use superposition principle to draw the diagrams of internal forces
and moments
Represent a complex external load as a sum of simpler loads for which the

distribution of the internal forces and moments is known, such as shown in

Table 9.1. Add-up (point-by-point) the corresponding diagrams for internal forces

and moments to get the resultant diagram.

9.6 Problems

9.47 Calculate and draw distributions of internal forces and bending moment on

the roof of a bus stop shelter (Fig. P9.47).

(a) Assume that the width of the roof is 1.5 m and its weight is 900 N. The

weight of the gutter (500 N) is applied at the right hand side of the roof.

(b) Assume that the width of the roof is 5 ft and its weight is 200 lb. The

weight of the gutter (100 lb) is applied at the right hand side of the roof.
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Fig. P9.47 Bus stop shelter

9.48 Use an intuitive approach (do not write equations for each region) to solve

the problem shown in Fig. P9.47.

9.49 Calculate and draw distributions of the internal forces and bending moments

in the vertical support of the bus stop shelter for problem shown in Fig. P9.47.

9.50 Use an intuitive approach (do not write equations for each region) to solve

the problem shown in Fig. P9.51.

9.51 Calculate and draw distributions of the internal forces and bending moment

in a beam which supports the roof of a garage, Fig. P9.51. Make the

appropriate assumptions about the beam’s supports.

(a) Assume that the width of the garage is 4 m and the weight of the roof is

10,000 N. The 400 N box is suspended at 1.5 m from the right side of the

garage (Fig. P9.51).

(b) Assume that the width of the garage is 12 ft, weight of the roof is 2000 lb.

The 100 lb box is suspended at 5 ft from the right side of the garage.

Fig. P9.51 Roof of a garage
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9.52 Use an intuitive approach (do not write equations for each region) to solve

the problem shown in Fig. P9.53.

9.53 Calculate the internal forces and bending moment in a bridge, Fig. P9.53, if a

heavy rain would wash away the supporting ground on both ends of the

bridge. Assume that in such case the bridge is supported by two columns only.

(a) The weight of the bridge is 5000 kN and of a truck is 500 kN. Assume

that the distance between the supporting columns is 10 m and the left

and right overhangs are 4 and 5 m, respectively.

(b) The weight of the bridge is 106 lb and of the truck is 105 lb. Assume that

the distance between the supporting columns is 30 ft and the left and

right overhangs are 14 and 20 ft, respectively.

Fig. P9.53 Truck on the bridge

9.54 Use an intuitive approach (do not write equations for each region) to solve

problem shown in Fig. P9.55.

9.55 Draw diagrams of the internal moment and forces in a shelf supporting stacks

of CDs, Fig. P9.55.

(a) The weight of each tall stack is 20 N and the weight of the short stack is

5 N (Fig. P9.55). Assume that the width of each stack is 15 cm and the

space between the tall stacks is 15 cm as well. The space between the

long and short stack is 3 cm.
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(b) The weight of each tall stack is 5 lb and the weight of the short stack is

1 lb. Assume that the width of each stack is 6 in. and the space between

the tall stacks is 6 in. as well. The space between the long and short

stack is 1 in.

Fig. 9.55 Shelf with compact disk stacks

9.56 Use an intuitive approach (do not write equations for each region) to solve

Problem 9.57

9.57 Draw diagrams of the internal forces and moments in a shelf loaded as shown

in Fig. P9.57. Assume that the shelf is supported by a pin on the left and is

supported by a roller on the right.

(a) Weight of the book is 10 N and of the box 40 N, a¼ b¼ 10 cm,

c¼ 30 cm, and d¼ 20 cm.

(b) Weight of the book is 2 lb and of the box 10 lb, a¼ b¼ 4 in., c¼ 12 in.,

and d 8 in.

Fig. P9.57 Shelf with a box and book
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9.58 Use an intuitive approach (do not write equations for each region) to solve the

problem shown in Fig. P9.59.

9.59 Draw diagrams of the internal forces and moment in a shelf loaded as shown

in Fig. P9.59. Assume that the shelf is supported by a pin on the left and is

supported by a roller on the right.

(a) Weight of the left empty bottle is 3 N, full bottle 10 N, the box 30 N,

a ¼ b ¼ c ¼ d ¼ e ¼ 10cm, and c¼ 30 cm.

(b) Weight of the left empty bottle is 1 lb, full bottle 4 lb, the box 10 lb,

a ¼ b ¼ c ¼ d ¼ e ¼ 4, and c¼ 10 in.

Fig. P9.59 Shelf with a box and two bottles

9.60 Use an intuitive approach (do not write equations for each region) to solve the

Problem 9.13.

9.61 Derive equations for the internal forces and bending moment for the loading

Case 1 shown in Table 9.1. Draw the appropriate diagrams.

9.62 Derive equations for the internal forces and bending moment for the loading

Case 2 shown in Table 9.1. Draw the appropriate diagrams.

9.63 Derive equations for the internal forces and bending moment for the loading

Case 3 shown in Table 9.1. Draw the appropriate diagrams.

9.64 Derive equations for internal forces and bending moment for the loading Case

4 shown in Table 9.1. Draw the appropriate diagrams.

9.65 Derive equations for the internal forces and bending moment for the loading

Case 5 shown in Table 9.1. Draw the appropriate diagrams.

9.66 Derive equations for the internal forces and bending moment for the loading

Case 6 shown in Table 9.1. Draw the appropriate diagrams.

9.67 Derive equations for the internal forces and bending moment for the loading

Case 7 shown in Table 9.1. Draw the appropriate diagrams.

9.68 Derive equations for the internal forces and bending moments for the loading

Case 8 shown in Table 9.1. Draw the appropriate diagrams.
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9.69 Derive equations for the internal forces and bending moment for the loading

Case 9 shown in Table 9.1. Draw the appropriate diagrams.

9.70 Derive equations for the internal forces and bending moment for the vertical

straight beam shown in Fig. P9.70. The weight of the board is 400 N. Neglect

the weight of the beam itself. Draw the appropriate diagrams.

Fig. P9.70 Basketball stand

9.71 Derive equations for the internal forces and bending moment for a straight

beam that extends under the angle shown in Fig. P9.70. The weight of the

board is 400 N. (a) Neglect the weight of the beam itself. (b) Consider that

the weight of the beam is 100 N/m. Dimensions of the basketball stand define

from the experience. Draw the appropriate diagrams.
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You may be disappointed if you fail, but you are doomed if
you don’t try.

—Beverly Sills

In this chapter you will learn:

• How to calculate the internal forces in cables loaded by concentrated forces?

• How to calculate the internal forces in cables loaded by distributed forces?

• How to determine the geometry of cables for different loading modes?

• How to determine the length of a cable for different loading modes?

• How to determine axial force at the any point of a cable?

• How to determine maximal deflection (sag) of a cable?

• How to determine location of a sag?

• How to determine length of a cable?
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In Chap. 7 we have introduced three classes of structural elements: truss members,

beams, and cables. For each class we have discussed the requirements that a

structural element has to meet in order to belong to a particular class. Here we

will study techniques to calculate the internal forces and geometry of cables loaded

by concentrated and distributed forces.

“Cables” are structural elements that can sustain tensile loads only. Wires,

chains, ropes, and cables are typical representatives of “cables.” For simplicity

reason we will use the word “cable” to indicate all previously mentioned structural

elements. These structures behave as rigid bodies only when loaded by tensile

forces. When loading is applied in any other than the axial direction, a cable will

change its geometry to accommodate the load, hence, geometry of the cable is “load

dependent” and, therefore, not known a priori. Therefore, procedures for solving

cables are quite different for cables loaded by concentrated forces in comparison to

those loaded by distributed forces.

Cables are structural elements that can sustain tensile loads only.

In this chapter we will consider situations where all external forces are acting in

the same plane, which is most common situation. Such loading arrangement allows

treating cables as 2D problem.

10.1 Cables Loaded by Concentrated Forces

There are situations when a cable is loaded by one or more concentrated forces

whose magnitudes are significantly larger than the weight of a cable. Such situation

is schematically shown in Fig. 10.1a, where a cable is loaded by two concentrated

forces F1 and F2, located at distances l1 and l2 from the left support, respectively.

The distance between the two supports is lAB ¼ l3, and support B is higher than

support A by distance h.
When magnitudes of concentrated forces are significantly larger than the weight

of a cable, the weight of the cable may be neglected, and individual segments of the

cable may be assumed to be straight. We will further assume that a cable at the point

of application of external force behaves as a joint. We need to stress that this

assumption leads to under-design of the cable in the vicinity of acting forces. In

practice we overcome this problem by using an appropriate safety factor.

When magnitudes of concentrated forces are significantly larger than the weight

of a cable, the weight of the cable may be neglected, and individual segments of

the cable may be assumed to be straight.

Assumption that each point where a force is applied acts as a joint leads to

under-designing of the structure.
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By taking into account these assumptions we may model each segment of a cable

as a truss member. The free body diagram of such cable structure is shown in

Fig. 10.1b.

With the procedures presented in this chapter we cannot predict internal forces

at the location of external forces action. In practice we overcome this problem

by using an appropriate safety factor.

When all external loads are acting in vertical direction then the horizontal forces

in both supports are equal in magnitude and opposite in sign, i.e.,

Ax ¼ �Bx ¼ �H

It should be noted that this system is externally statically underdetermined, since

there are four unknown reactions Ax, Ay, Bx, and By, and only three equations of

equilibrium.

X
i

Fix ¼ Ax þ Bx ¼ 0 ð10:1aÞ

Fig. 10.1 (a) Cable loaded by two concentrated forces. (b) Free body diagram of a cable loaded

by two concentrated forces. (c) Free body diagram of joint A. (d) Free body diagram of joint C.

(e) Free body diagram of joint D. (f) Free body diagram of support B
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X
i

Fiy ¼ Ay þ By � F1 � F2 ¼ 0 ð10:1bÞ

X
i

MiA ¼ By � l3 � Bx � h� F1 � l1 � F2 � l2 ¼ 0 ð10:1cÞ

From the first equation we obtain,

Ax ¼ �Bx ¼ �H ð10:2Þ

We assume that there are no internal bending moments and/or transversal forces

in a cable.

where H is as yet an unknown horizontal component of the reaction forces at points

A and B. Hence, when all external loads are acting in vertical direction then the

horizontal forces in both supports are equal in magnitude and opposite in sign. As

we will see later, this is very important information when solving for internal forces

in cable structures.

In case when we have N external concentrated forces, the second and the third

equilibrium equation may be generalized as,

X
i

Fiy ¼ Ay þ By �
Xi¼N

i¼1

Fi ¼ 0 ð10:3Þ

and

X
i

MiA ¼ By � lAB � H � h�
Xi¼N

i¼1

li � Fi ¼ 0 ð10:4Þ

In order to solve the problem we need to address the system as a whole, i.e.,

consider the equilibrium of external and internal forces simultaneously. The inter-

nal tensile forces in each of the three segments AC, CD, and DB are unknown.

However, it is known that they act along the longitudinal axis of each corresponding

segment. Also, it is important to mention that in cables loaded with concentrated

forces there are no internal bending moments and/or transversal forces. It should be

noted, however, that this assumption is not valid at the point of action of an external

concentrated load; consequently the obtained solution leads to under-design of

cables in the vicinity of acting external forces. As said before, in practice we

overcome this problem by using an appropriate safety factor.

This assumption is not valid at the point of action of an external concentrated

load; consequently the obtained solution leads to under-design of the cable in the

vicinity of acting forces.
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Since all internal forces act in axial direction and all segments of the cable may

be considered to be straight one may solve for internal tensile forces in each

segment by using the approach of joints introduced in Chap. 8.

In our case cable structure has four joints; therefore, we can write eight indepen-

dent equations of equilibrium, i.e., two equilibrium equations for each joint.

Unfortunately, geometry of a cable is not known because it depends on location,

magnitude, and direction of external forces. We therefore need some additional

information to make the problem solvable.

Let us analyze how many additional parameters we need to define the geometry

of a cable structure, if we assume that horizontal, lAB, and vertical, h, distance
between the two supports and locations where the external forces are acting, in our

case l1 and l2, are known.
After carefully analyzing geometry of the cable structure, shown in Fig. 10.1a, b,

we find that geometry of a cable structure is defined if in addition to the location of

external forces and supports, we would know at least one angle defining direction of

one of the internal forces acting to the left or right of each of the external force.

Hence, we need to know as many additional parameters as there are external forces

acting on a cable, hence, in our case two. However, if all external forces act in

vertical direction we need only one additional parameter.

The geometry of a cable structure is defined if, in addition to the location of

external forces and supports, as many additional parameters related to the

geometry of the cable, forces in the supports, or internal forces, in the cable,

as there are external forces acting on the cable are known.

However, in case when all external forces act vertically we need only one

additional parameter.

Since in our case all external loads act in vertical direction we have only nine

unknowns, i.e., three reactions, H, Ay, By, three internal forces, S1, S2, S3, and three

parameters defining geometry of the cable structure, α1, α2, α3. At the same time

we have only eight independent equilibrium equations, i.e., two for each joint. Hence,

we have one unknown more than the number of equilibrium equations, which means

that cable structures are underdetermined and consequently unstable. Their geometry

will change as soon as magnitude or direction of external forces changes.

All cable structures are underdetermined and consequently unstable. Their

geometry will change as soon as magnitude or direction of external forces

changes.

To solve cable structures we need additional information, such as length of a

cable L, or a force in a given segment of the cable, or one of the components of

reaction forces, or vertical deflection at a given point, or any other parameter related

to geometry or internal forces of a cable.
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For a demonstration let us assume that additional information is vertical deflec-

tion at point C where external force F1 acts, Fig. 10.1a, and solve for unknown

internal forces. This will be discussed as Example 10.1.

Example 10.1 Calculate internal forces and angles for each segment of a cable

loaded by two forces as shown in Fig. 10.1a, b. Assume that the following

parameters are given: F1, F2, l1, l2, l3, h and vertical deflection, hC, at the point of
action of external force F1. For numerical evaluation use hC ¼ 2m, F1 ¼ 30N,

F2 ¼ 10N, l1 ¼ 3m, l2 ¼ 6m, l3 ¼ 10m, and h ¼ 1m.

Solution The free body diagram is shown in Fig. 10.1b. From the equilibrium

equations (10.1a), (10.1b), (10.1c), we find,

By ¼ 1

l3
Hhþ F1l1 þ F2l2ð Þ, and

Ay ¼ F1 þ F2 � 1

l3
Hhþ F1l1 þ F2l2ð Þ

To determine internal forces we shall use the method of joints introduced in

Chap. 8. Let us start with joint A, Fig. 10.1c, and consider its equilibrium. We

can write two equations of equilibrium

X
Fx ¼ �H þ S1 cos α1 ¼ 0

X
Fy ¼ Ay � S1 sin α1 ¼ 0

Here angle α1 is known since we know deflection hC under the force F1 and its

distance l1 from support A,

tan α1 ¼ hC
l1

¼ 2

3
, and

α1 ¼ tan �1 hC
l1

� 	
ffi 33:69∘

From the above equilibrium equations we find the general rule that the reaction

force in a support is always equal to the tensile force in the cable. Considering that

in general we could have N external forces and N þ 1ð Þ sections of the cable, we

find,

A ¼ S1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
x þ A2

y

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ A2

y

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ S21y

q
ð10:5Þ
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B ¼ SNþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
x þ B2

y

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ B2

y

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ S2Nþ1ð Þy

q
ð10:6Þ

From there it also follows,

Ay ¼ S1y ¼ S1 sin α1 ¼ H � tan α1 ð10:7Þ
By ¼ S Nþ1ð Þy ¼ S Nþ1ð Þ sin α Nþ1ð Þ ¼ H � tan α Nþ1ð Þ ð10:8Þ

In this particular case we have,

Ay ¼ H tan α1 ¼ H
hC
l1

Considering in addition that Ay ¼ F1 þ F2 � 1
l3

Hhþ F1l1 þ F2l2ð Þ we obtain the

relation from H, and Ay. Hence

H ¼ l1 F1 l3 � l1ð Þ þ F2 l3 � l2ð Þ½ �
l3hC þ l1h

ffi 32:6N

and

Ay ¼ 21:7N

Now we may calculate the internal force within the first section of the cable,

S1 ¼ H

cos α1
ffi 39:2N

We proceed now and write the equilibrium equations for joint C shown in

Fig. 10.1d, X
Fx ¼ �S1 cos α1 þ S2 cos α2 ¼ 0

X
Fy ¼ S1 sin α1 þ S2 sin α2 � F1 ¼ 0

From the first equilibrium equation we find

S1 cos α1 ¼ S2 cos α2 ¼ H

which means that at any point along the cable the magnitude of horizontal compo-

nent of the internal force is equal to H,

Si cos αi ¼ H ð10:9Þ
Considering (10.5–10.9) we find also,
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Si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ S2iy

q
ð10:10Þ

tan αi ¼ Siy
H

, and ð10:11Þ

Si ¼ H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan 2αi

p
ð10:12Þ

Using the second equilibrium equation and (10.12) we obtain,

S2 sin α2 ¼ F1 � H � tan α1 ¼ F1 � H
hC
l1

tan α2 ¼ F1

H
� hC

l1

and

α2 ¼ tan �1 F1

H
� hc

l1

� 	
ffi 14:23∘

From (10.9) we can calculate tensile force in the second section of the rope,

S2 ¼ H

cos α2
ffi 33:6N

Equilibrium equations for point D (Fig. 10.1e) are

X
Fx ¼ �S2 cos α2 þ S3 cos α3 ¼ 0X
Fy ¼ �S2 sin α2 þ S3 sin α3 � F2 ¼ 0

From the first equilibrium equation for joint D we find again that the horizontal

component of the internal forces is equal to H,

S2 cos α2 ¼ S3 cos α3 ¼ H

which confirms (10.9). From the second equilibrium equation for point D we find,

S3 sin α3 ¼ F2 þ F1 � H
hC
l1

and considering (10.12) we find

tan α3 ¼ F2

H
þ F1

H
� hC

l1
, and
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α3 ¼ tan �1 F2

H
þ F1

H
� hC

l1

� 	
ffi 29:3∘

Finally, we write the equilibrium equations for joint B (Fig. 10.1f)

X
Fx ¼ �S3 cos α3 þ H ¼ 0

X
Fy ¼ �S3 sin α3 þ By ¼ 0

Using second equilibrium equation for joint B and (10.12) we obtain

Horizontal component of internal forces at any point of a cable is equal to

H when all external loads are acting in vertical direction,

Si cos αi ¼ H

tan α3 ¼ By

H
, and

α3 ¼ tan �1 By

H

� 	

Since α3 is known already we could calculate By,

By ¼ H � tan α3 ¼ 1

l3
Hhþ F1l1 þ F2l2ð Þ ffi 18:26N

From (10.9) we find the axial force in the last section of the cable.

S3 ¼ H

cos α3
ffi 37:4N

We see that unknown quantities may be calculated from different equations, which

gives us possibility to check the correctness of the obtained results.

We have confirmed that the horizontal component of the internal force in any

segment of a cable is constant and equal to the horizontal component at each

support.

Example 10.2 Consider again the cable loaded by two forcesF1 ¼ 500N, acting at

l1 ¼ 3m, and F2 ¼ 1000N, acting at l2 ¼ 6m, as shown in Fig. 10.1a. The distance

between the two supports is lAB ¼ 12m, and the right support ish ¼ 1mhigher than
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the left one. Determine the length of the cable that we need to use if the horizontal

force in two supports should not exceed H ¼ 300N. Determine also the maximal

tensile force in the cable and its lowest point. The corresponding free body diagram

is shown in Fig. 10.2a.

Fig. 10.2 (a) Free body diagram of a cable analyzed in Example 10.2. (b) Free body diagram of

the left segment of the cable, which is cut within the second region. (c) Free body diagram of the

right segment of the cable, which is cut within the second region
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Solution Since horizontal force H is known we may use equilibrium equation for

moments to determine both reaction forces Ay and By. Both reaction forces we find

by writing equilibrium equations for moments relative to supports B and A,

respectively.

X
i

MiB ¼ �Ay � lAB � H � hþ F1 � lAB � l1ð Þ þ F2 � lAB � l2ð Þ ¼ 0

Ay ¼ 1

lAB
�H � hþ F1 � lAB � l1ð Þ þ F2 � lAB � l2ð Þ½ �, and

Ay ¼ 1

12
�300 � 1þ 500 � 12� 3ð Þ þ 1000 � 12� 6ð Þ½ � ¼ 850N

Similarly we find the vertical reaction force in support A,

X
i

MiA ¼ By � lAB � H � h� F1 � l1 � F2 � l2 ¼ 0

By ¼ 1

lAB
H � hþ F1 � l1 þ F2 � l2½ �

By ¼ 1

12
300 � 1þ 500 � 3þ 1000 � 6½ � ¼ 650N

Using (10.5) we find the reaction force in a support A and the internal force in the

first segment of the cable,

A ¼ S1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
y þ H2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8502 þ 3002

p
ffi 901N

Similarly we find

B ¼ S3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
y þ H2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6502 þ 3002

p
ffi 716N

Angle α1 we can calculate from (10.9),

α1 ¼ cos �1 H

S1

� 	
¼ cos �1 300

901:4

� 	
ffi 70:6∘

We could determine all remaining internal forces and angles by using previously

developed equations. However, to demonstrate another way of solving cables

loaded with concentrated forces we will introduce another approach, which is

very useful when cables are loaded with many concentrated forces.

We will cut the cable within the second region, as shown in Fig. 10.2b.
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Form the equilibrium equation in y-direction we obtain,

X
Fy ¼ Ay � F1 þ S2y ¼ 0, and

S2y ¼ F1 � Ay ¼ 500� 850 ¼ �350N

Negative sign indicates that S2y acts downwards. Above equation may be

generalized as

Sky ¼
Xk�1

i¼1

Fi � Ay ð10:13Þ

Hence, sum of the external forces acting to the left of the observed section is equal

to the sum of the vertical reaction in the left support and vertical component of the

internal force in the observed section of the cable.

Angle α2 and S2 may be obtained from, Fig. 10.2b, and (10.10) and (10.11),

tan α2 ¼ S2y
H

, and S2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S22y þ H2

q
hence;

α2 ¼ tan �1 S2y
H

� 	
¼ tan �1 �350

300

� 	
ffi �49:4∘

S2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S22y þ H2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�350ð Þ2 þ 3002

q
ffi 461N

Internal force S3 and α3 may be obtained again from (10.13), (10.10), and (10.11)

S3y ¼ F1 þ F2 � Ay ¼ 500þ 1000� 850 ¼ 650N

α3 ¼ tan �1 S3y
H

� 	
¼ tan �1 650

300

� 	
ffi 65:2∘

S3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S23y þ H2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6502 þ 3002

p
ffi 716N

Hence, the largest internal force appears at support A.

If we analyze the right segment of the cable structure, shown in Fig. 10.2c, we

can derive similar rule as shown in (10.13) for support B.

Form the equilibrium equation in y-direction we obtain,

X
Fy ¼ By � F2 � S2y ¼ 0, and

S2y ¼ By � F2
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which may be generalized as,

Sky ¼ By �
XN
i¼k

Fi ð10:14Þ

where N denotes number of external concentrated forces.

By equating (10.13) and (10.14) we obtain,

Xk�1

i¼1

Fi � Ay ¼ By �
XN
i¼k

Fi

and

By þ Ay �
XN
i¼1

Fi ¼ 0

which is identical to (10.3) representing generalized equilibrium equation for the

external forces, as it should be.

Let us now calculate the sags at the joints where the external forces are acting.

From Fig. 10.2a we see that,

hC ¼ l1 � tan α1 ¼ 3 � tan 70:56∘ð Þ ffi 8:52m

Similarly we calculate for joint D,

hD ¼ hC � l2 � l1ð Þ tan α2 ffi 8:5� 6� 3ð Þ � tan �49:4ð Þ ffi 12:0m

We find that the largest sag appears at joint D where the external force F2 is acting.

We still need to calculate the length of the cable. From Fig. 10.2a we see that the

length of the cable may be expressed as,

L ¼ l1
cos α1

þ l2 � l1
cos α2

þ l3 � l2
cos α3

After inserting numerical values we obtain,

L ffi 3

cos 70:56∘ð Þ þ
6� 3

cos �49:4ð Þ þ
12� 6

cos 65:22∘ð Þ ffi 27:9m

For N external forces above equation may be generalized as,

L ¼
XNþ1

i¼1

li � li�1

cos αið Þ ð10:15Þ

where l0 ¼ 0, and lNþ1 ¼ lAB is the horizontal distance between the two supports.
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Guidelines and Recipes for Cables Loaded with Concentrated Forces

• For each of the N external forces Fi define location li of the line of action
relative to the left support.

• Write equilibrium equations for the external forces, i.e.,

X
i

Fiy ¼ Ay þ By �
Xi¼N

i¼1

Fi ¼ 0

X
i

MiA ¼ By � lAB � H � h�
Xi¼N

i¼1

li:Fi ¼ 0

Calculate internal forces in all sections of the cable, Sk, and its geome-

try, αk, hk, and L using:

Ay ¼ S1y ¼ S1 sin α1 ¼ H � tan α1
By ¼ S Nþ1ð Þy ¼ S Nþ1ð Þ sin α Nþ1ð Þ ¼ H � tan α Nþ1ð Þ

Sk cos αk ¼ H, Sk ¼ H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan 2αk

p

Sky ¼
Xk�1

i¼1

Fi � Ay; Sky ¼ By �
XN
i¼k

Fi; tan αk ¼ Sky
H

hk ¼ lk � tan αk; and L ¼
XNþ1

i¼1

li � li�1

cos αið Þ
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10.2 Cables with Distributed Loads

Cables are very often exposed to their weight only, which may be considered as

uniformly distributed load. If the cable has a weight Q and length L, then the

distributed load per cable unit length will be p ¼ Q=L [N/m or lb/ft]. An example of

such cable structure is shown in Fig. 10.3a, where we assumed that the distance

between the two supports is lAB ¼ l, and support B is h higher than support A. The

origin of the coordinate system we place at the lowest point of the cable, as shown

in Fig. 10.3a. The corresponding free body diagram is shown in Fig. 10.3b. From

the equilibrium equations of external forces we again find that the horizontal

Fig. 10.3 (a) Physical model of a cable loaded with its weight. (b) Free body diagram of a cable

loaded with its weight. (c) Free body diagram of the cable and of the infinitesimal cable segment
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components of the reactions at supports A and B are equal in magnitude and

opposite in direction, hence, �Ax ¼ Bx ¼ H.

It should be noted that geometry of the cable is not known a priori, it is again a

function of the load, i.e., cable weight, and location of both supports. To determine

the geometry of the cable we have to take into account the equilibrium equations for

the internal forces.

To do that we consider equilibrium of an infinitesimal segment of cable dx,
located at distance x, as shown in Fig. 10.3c, where dQ indicates the weight of the

infinitesimal segment, while S and Sþ dS denote the two axial forces acting in

tangential direction, which may be replaced with two corresponding orthogonal

components Sx and Sy, and Sx þ dSx and Sy þ dSy, respectively.

Geometry of cables is not known a priori. It depends on the cable weight and

location of both supports.

Equilibrium equations for the infinitesimal segment of the cable are:

X
Fx ¼ �Sx þ Sx þ dSx ¼ 0 ð10:16Þ

X
Fy ¼ �Sy þ Sy þ dSy � dQ ¼ 0 ð10:17Þ

From the first equilibrium equation we find that dSx ¼ 0, and after the integration,

Sx ¼ H ¼ const: ð10:18Þ
Similarly, as in the case of cables loaded by concentrated loads, we find that the

horizontal component of the internal force at any point along the cable is constant

and equal to the horizontal forces in both supports,

From the second equation we obtain,

dSy ¼ dQ ð10:19Þ
Since both forces, Sy andQ, are functions of xwe may not integrate both sides of the

equation independently. We need to express Sy and Q as functions of x first.

Horizontal component of the internal force at any point of the cable is constant

and equal to H.

Vertical component of the internal force at any point of the cable is equal to

Sy xð Þ ¼ H
dy

dx
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In any selected coordinate system geometry of a cable may be described as a

function, y ¼ f xð Þ. From differential calculus we know that first derivative of a

function f(x) represents its slope at selected point x, Fig. 10.3c. At any point x we

may write,

dy

dx
¼ f

0
xð Þ ¼ Sy

Sx
¼ tanφ ð10:20Þ

Since Sx ¼ H ¼ const:, we find

Sy ¼ Sx
dy

dx
¼ H

dy

dx
ð10:21Þ

and after differentiating both sides of the equation we obtain,

dSy
dx

¼ H
d2y

dx2
ð10:22Þ

and therefrom

dSy ¼ H
d2y

dx2
dx ð10:23Þ

Combining (10.19) and (10.23), we obtain a second order differential equation

which describes geometry of cables exposed to continuous load,

H
d2y

dx2
dx ¼ dQ ð10:24Þ

Equation (10.24) represents the second order differential equation, which defines

geometry of the cable exposed to continuous load.

When the length of a cable is not much larger than the distance between the two

supports one may assume that the weight of the cable is distributed uniformly

along the horizontal distance between the two supports

Before solving the above equation we still have to express dQ as function of x. It
turns out that there are two common ways of doing this, depending on (1) the length

of a cable and (2) the way in which a cable is loaded. Let us discuss these situations

in more details.

In case of suspension bridges we may again assume that the external load is

distributed uniformly along the horizontal distance between the two supports.

In many engineering applications cables are very taut and the length of a cable is

not much larger than the distance between the two supports, i.e., L 	 l, where L is

the length of a cable, and l is the horizontal distance between two supports. In such

10.2 Cables with Distributed Loads 405



cases we may make another simplification and assume that cable’s weight is

distributed uniformly along the horizontal distance between the two supports. In

this case the continuous load may be expressed as q ¼ pL=l.
Another situation when one may assume that a load is distributed along the

distance between the two cable supports are suspension bridges. Here the load to

which a cable is exposed is hanging on a cable, as schematically shown in

Fig. 10.4a. The world famous Brooklyn Suspension Bridge is a good example,

Fig. 10.4b.

In both described situations the load to which the cables are exposed can be

expressed as

dQ ¼ q � dx ð10:25Þ
This assumption leads to the so-called parabolic solution of (10.24), as discussed

below. We have to be aware that such simplification brings in an additional (small)

error. In real situations we overcome this shortcoming with an appropriate safety

factor.

Fig. 10.4 (a) Cables loaded with hanging load. (b) Brooklyn Suspension Bridge
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10.2.1 Parabolic Solution

The parabolic solution of (10.24) is obtained when a distributed load may be

expressed as dQ ¼ q � dx, as shown in (10.25). Physical model of such cable is

shown in Fig. 10.5a, where we assumed that the distributed load is constant along

the x-axis. The corresponding free body diagram is shown in Fig. 10.5b. The origin

of coordinate system we place into the lowest point of the cable. As we will see

later, such location of coordinate system provides the simplest boundary conditions,

from which we will need to determine the integration constants.

The horizontal component of the internal force in any segment of a cable is

constant and equal to the horizontal component at each support.

Fig. 10.5 (a) Physical model of a cable loaded with distributed load constant along the horizontal

distance between the two supports. (b) Free body diagram of a cable loaded with a distributed load

constant along the horizontal distance between the two supports
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When a load is distributed along the distance between the two supports the

equilibrium equations for the complete cable structure are:

X
i

Fiy ¼Ay þ By � ql ¼ 0 ð10:26aÞ

X
i

MiA ¼ l � By � h � H � ql2

2
¼ 0 ð10:26bÞ

By inserting (10.25) into (10.24) we obtain a simple second order differential

equation,

H
d2y

dx2
dx ¼ q � dx

Since H and q are constants the equation may be simplified as,

d2y

dx2
¼ q

H
ð10:27Þ

The solution of this equation is obtained through a double integration. After the

first integration we have,

dy ¼ q

H
xþ C1

� 

dx ð10:28Þ

and after the second,

y ¼ q

2H
x2 þ C1xþ C2 ð10:29Þ

When an external load is distributed uniformly along the horizontal distance

between the two supports, the geometry of the cable may be described with a

parabola.

y ¼ q

2H
x2 þ C1xþ C2

Equation (10.29) represents a function, which describes geometry of cables where

we may assume that distributed load is constant along the distance between the two

supports. Equation (10.29) is a parabola; therefore, this solution is called a para-
bolic solution.

Maximal internal force in a cable will appear at the support that has higher

elevation. Its magnitude will be equal to the reaction force in the pertaining

support and opposite in direction.
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Constants C1 and C2 may be determined from boundary conditions, which

depend on the location of the selected coordinate system and elevation and location

of the two supports. However, independently of the location of the two supports, all

parabolas have a common point, which is their minimum. Hence, the simplest

solution we obtain if we place the origin of coordinate system into the lowest point

of the cable, as shown in Fig. 10.5.

If the origin of the coordinate system is placed as shown in Fig. 10.5 the

boundary conditions are independent of the location of the two supports, hence,

x ¼ 0; y ¼ 0 ð10:30aÞ

x ¼ 0; y
0 ¼ 0 ð10:30bÞ

By applying the two boundary conditions to (10.29) and its derivative,

y
0 ¼ q=Hð Þxþ C1, we find that both integration constants are equal to zero,

0 ¼ q

2H
� 02 þ C1 � 0þ C2 ) C2 ¼ 0 ð10:31aÞ

and

0 ¼ q

H
� 0þ C1 ) C1 ¼ 0 ð10:31bÞ

By positioning the origin of a coordinate system into the vertex of the parabola

leads to the simplest parabola, which describes the geometry of the cable, i.e.,

y ¼ qx2=2H

Hence, by positioning the origin of the coordinate system into the minimum of

the parabola, known as vertex, leads to the simplest parabola describing geometry

of the cable that is loaded with continuous load distributed along the horizontal

distance between the two supports.

y ¼ q

2H
� x2 ð10:32Þ

10.2.1.1 Internal Tensile Force, S(x)
Tensile force S(x) at any point along a cable is equal to the vector sum of its two

components, see Fig. 10.3c,
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Tensile force S(x) at any point of a cable is equal to the vector sum of the two

components in vertical and horizontal direction, and it acts in tangential

direction.

S xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ qxð Þ2

q

S xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2x þ S2y

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ S2y

q
If xA and yA and/or xB and yB are known we can calculate horizontal force H from

(10.32),

H ¼ qx2A
2yA

¼ qx2B
2yB

ð10:33Þ

Horizontal component of the internal force H is constant along the entire cable.

Taking into account that Sy ¼ H dy=dxð Þ, (10.21), we find S xð Þ ¼ H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dy

dx

� 	2
s

By utilizing (10.32) and finding its derivative, dy=dx ¼ qx=H, we find the tensile

(tangential) force at any point along the cable,

S xð Þ ¼ H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qx

H

� 
2r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ qxð Þ2

q
ð10:34aÞ

and its both components,

Sx xð Þ ¼ H ¼ const, and ð10:34bÞ

Sy xð Þ ¼ H � dy
dx

¼ H � qx
H

¼ qx ð10:34cÞ

Vertical component of the internal force at any point is equal to

Sy xð Þ ¼ qx

The very same solution we may obtain from the equilibrium of a segment of a

cable, which starts at the lowest point of the cable where the internal force acts

horizontally and is equal toH. Let us consider the right part of the cable as shown in
Fig. 10.6.
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An internal force in a cable at the point of the largest deflection acts horizontally

and is equal to H.

The vertical component of the internal force at any point of the cable to the right

or left of the lowest point will be equal to the weight of the cable section located

to the right or left of the lowest point.

At point x the internal force is equal to S(x), while at the lowest point of the cable
it is equal to H. The weight of the cable segment within a distance x is Qx ¼ q � x
and it is positioned at the middle since the continuous load is distributed along the

distance x. The external and two internal forces need to be in equilibrium, as shown

in Fig. 10.6b. Since H and Qx are perpendicular S(x) may be expressed as in

(10.34a), (10.34b), (10.34c).

From Fig. 10.6 we see that the vertical component of the internal force at any

point of the cable to the right or left of the lowest point will be equal to the weight of

the cable section located to the right or left of the lowest point, as shown in (10.34c).

However, usually we are interested in the maximal tensile force acting in a cable.

From (10.34a), (10.34b), (10.34c) we see that S(x) increases with x and assumes the

smallest value at x ¼ 0. This can be also shown by setting the first derivative of

(10.34a), (10.34b), (10.34c) to zero,

dS xð Þ
dx

¼ q � xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q

H x
� �2q ¼ 0

Fig. 10.6 (a) Free body diagram of a cable segment located to the right of the lowest point and (b)
the equilibrium of the external and internal forces
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Hence, S(x) has minimum at x ¼ 0. From (10.34a), (10.34b), (10.34c) we find

that the tensile force in the cable at this point is equal to the horizontal component,

S x ¼ 0ð Þ ¼ H. Thus, S(x) will have the largest magnitude at the support that is

positioned further away from the origin of the coordinate system. This will be at the

support which is higher. Hence,

Smax ¼ S xkð Þ ¼ H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qxk

H

� 
2r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ qxkð Þ2

q
ð10:35aÞ

The maximal internal force in the cable will appear at the support that has higher

elevation. Its magnitude will be equal to the reaction force in the pertaining

support and opposite in direction.

where k ¼ A, for yA > yB, and k ¼ B, for yB > yA. The reaction forces in both

supports are,

Ax ¼ Bx ¼ H ¼ const, and ð10:35bÞ

Ay ¼ H � qxA
h

ð10:35cÞ

By ¼ H � qxB
h

ð10:35dÞ

To summarize, the maximal internal force in the cable will be equal to the reaction

force in the support that is higher.

In case when the two supports are at the same level then xA ¼ xB, and the two

results are identical.

10.2.1.2 Length of the Cable, L
Length L of a cable is another important parameter that is required when we build

cable structures. From Fig. 10.3c we see that a differential segment of a cable may

be expressed as,

dL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dxð Þ2 þ dyð Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dy

dx

� 	2
s

dx ð10:36aÞ

Utilizing (10.32), i.e., y ¼ qx2= 2Hð Þ, we find that dy=dx ¼ qx=H, and can rewrite

(10.36a) as

dL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qx

H

� 
2r
dx ð10:36bÞ

We obtain the length of the cable between two points along the cable, say T1 and T2,
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as shown in Fig. 10.7, by integrating the above equation within the interval

x2 x1; x2½ �. Hence,

L1,2 ¼
Zx2
x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qx

H

� 
2r
dx ð10:36cÞ

Wecan solve the above integral by using the binomial theorem and expand the radical

in an infinite series (see, e.g., http://en.wikipedia.org/wiki/Binomial_theorem).

ffiffiffiffiffiffiffiffiffiffiffi
1þ λ

p ¼ 1þ 1

2
λ� 1

8
λ2 þ � � �

By using the binomial theorem, one obtains simplified solution for the length of

a cable, which is sufficiently good for all engineering applications, providing

that we have taken appropriate number of terms in the series. Most often two

terms are sufficient.

By considering that in our case λ ¼ qx=Hð Þ2, we may rewrite (10.36c) as

L1,2 ¼
Zx2
x1

1þ 1

2

qx

H

� 
2
� 1

8

qx

H

� 
4
þ � � �


 �
ð10:37Þ

The solution of the corresponding indefinite integral is given in the Mathematical
Corner I,

Fig. 10.7 Length L1,2 of the cable between two arbitrary points T1 and T2 along the cable
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I ¼
Z

1þ 1

2

qx

H

� 
2
� 1

8

qx

H

� 
4
þ � � �


 �
dx ¼ x 1þ 1

6

qx

H

� 
2
� 1

40

qx

H

� 
4
þ � � �

� 	

By utilizing the above indefinite integral solution we obtain,

L1,2 ¼ x 1þ 1

6

qx

H

� 
2
� 1

40

qx

H

� 
4
þ � � �

� 	
 �x2
x1

ð10:38aÞ

and

L1,2 ¼ x2 1þ 1

6

qx2
H

� 
2
� 1

40

qx2
H

� 
4
þ � � �

� 	

� x1 1þ 1

6

qx1
H

� 
2
� 1

40

qx1
H

� 
4
þ � � �

� 	
ð10:38bÞ

Equation (10.38b) defines the length of the cable between two arbitrary points along

the cable. If we are interested in total length L of the cable we have to place T1 into

support A, x1 ¼ �xA, and T2 into support B, x2 ¼ xB.

L ¼ xB 1þ 1

6

qxB
H

� 
2
� 1

40

qxB
H

� 
4
þ � � �

� 	

þ xA 1þ 1

6

qxA
H

� 
2
� 1

40

qxA
H

� 
4
þ � � �

� 	
ð10:38cÞ

If the two supports are at the same elevation we have xA ¼ xB ¼ l=2, and

L ¼ l 1þ 1

6

ql

2H

� 	2

� 1

40

ql

2H

� 	4

þ � � �
 !

ð10:38dÞ

Equation (10.38b) may be reorganized by considering (10.32), i.e., y ¼ qx2=2H, to

obtain,

qx1
H

¼ 2y1
x1

, and
qx2
H

¼ 2y2
x2

ð10:39Þ

Using (10.39) (10.38b) and (10.38c) may be rewritten as,

L1,2 ¼ x2 1þ 2

3

y2
x2

� 	2

� 2

5

y2
x2

� 	4

þ � � �
 !

� x1 1þ 2

3

2y1
x1

� 	2

� 2

5

2y1
x1

� 	4

þ � � �
 !

ð10:40aÞ
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and,

L ¼ xB 1þ 2

3

yB
xB

� 	2

� 2

5

yB
xB

� 	4

þ � � �
 !

þ xA 1þ 2

3

yA
xA

� 	2

� 2

5

yA
xA

� 	4

þ � � �
 !

ð10:40bÞ
This series converges rapidly for y=x < 0:5; in most cases this ratio is much smaller,

and it is sufficient to take only first two terms. Of course, more terms may be used if

required.

When the two supports are at the same elevation we have xA ¼ xB ¼ l=2,
yA ¼ yB ¼ f , and yA=yB ¼ 2f=l. In a view of this, (10.40a) becomes

L ¼ l 1þ 2

3

2f

l

� 	2

� 2

5

2f

l

� 	4

þ � � �
" #

ð10:40cÞ

Equations (10.40a), (10.40b), (10.40c) allow an easy way to calculate length L of a

cable, between two points along the cable.

Mathematical Corner I: Solution of the Integral Corresponding to equation (10.37)

The corresponding indefinite integral is,

I ¼
Z

1þ 1

2

qx

H

� 
2
� 1

8

qx

H

� 
4
þ � � �


 �
dx ði� 1Þ

which may be expressed as a sum of integrals

I ¼
Z

dxþ
Z

1

2

qx

H

� 
2
dx�

Z
1

8

qx

H

� 
4
dxþ � � � ði� 2Þ

that, except the first term, have a common indefinite integral,

Z
qx

H

� 
n
dx ¼ H

q nþ 1ð Þ
qx

H

� 
nþ1

ði� 3Þ

By utilizing this, we find the solution of the above indefinite integral,

I ¼ xþ H

6q

qx

H

� 
3
� H

40q

qx

H

� 
5
þ � � �


 �
, and ði� 4Þ

I ¼ x 1þ 1

6

qx

H

� 
2
� 1

40

qx

H

� 
4
þ � � �

� 	
ði� 5Þ
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10.2.1.3 Sag of the Cable, f
We have derived the simplest form of (10.32), by describing the geometry of cables

loaded with a continuous load distributed along the horizontal distance between the

two supports. This form of the equation is obtained when the coordinate system is

positioned at the lowest point of the cable. Unfortunately, the location of the cable

lowest point is known a priori only when the two supports are at the same elevation.

When the two supports are not at the same elevation the location of the lowest point,

i.e., the location of the coordinate system, is NOT known. Equivalently, we may say

that the locations of two supports xA and xB, relative to the origin of the coordinate

system placed at the parabola’s vertex (minimum), is not known!

To determine the location of the cable’s lowest point (sag f, or vertex of the

parabola) we consider the equilibrium of the cable shown in Fig. 10.5b, and the

segment of the cable located to the right of the coordinate system origin. The segment

is shown in Fig. 10.8.

We write equilibrium equation for moments for the entire cable structure,

X
i

MiA ¼ � q � l2
2

þ By � l� H � h ¼ 0 ð10:41aÞ

and force equilibrium for the segment for y-direction,

X
i

Fiy ¼ �QB þ By ¼ 0 ð10:41bÞ

From (10.41b) we find

By ¼ QB ¼ qxB ð10:42aÞ

Fig. 10.8 Free body diagram

of the segment of a cable

shown in Fig. 10.5b, located

to the right of the coordinate

system origin
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We similarly find,

Ay ¼ QA ¼ qxA ð10:42bÞ
By inserting (10.42a) into (10.41a) we get

� q � l2
2

þ q � xB � l� H � h ¼ 0 ð10:43Þ

Solving (10.42a), (10.42b) for xB yields,

xB ¼ l

2
þ Hh

ql
, and ð10:44aÞ

xA ¼ l� xB ¼ l

2
� Hh

ql
ð10:44bÞ

In case when the vertical locations of both supports are known we can use (10.32),

y ¼ qx2= 2Hð Þ to obtain horizontal locations of the two supports,

yA ¼ qx2

2H
¼ fA, and yB ¼ q l� xAð Þ2

2H
¼ fA þ h

From both equations we express 2H/q and obtain

2H

q
¼ x2A

fA
¼ l� xAð Þ2

fA þ h

which reduces to h
fA
x2A þ 2lxA � l2 ¼ 0, and

xA ¼ l
fA
h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h

fA

s
� 1

 !
ð10:44cÞ

where we have used only positive solutions of the quadratic equation. Location of

the support we find from xB ¼ l� xA.

Maximal deflection f (sag) of a cable is always located at the distance

xA ¼ ��l=2� Hh= qlð Þ��
from the left support.

Equations (10.44a), (10.44b), (10.44c) define locations of the two supports

relative to the coordinate system origin. By considering the symmetry there are

four different possibilities for the locations of the two supports relative to the origin

of the coordinate system. This is shown in Fig. 10.9.
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The situation denoted as Cases (b) is most common; Case (a) is the simplest,

whereas Case (c) and Case (d) are two special cases that are possible if the cable

fulfills certain specific condition.

Case (a) and Case (b):

From Fig. 10.9 we may conclude that a cable will have a sag f, only when two

supports A and B are located to the left and to the right of the lowest point, i.e., to

the left and right of the coordinate system origin, shown as Case (a) and Case (b) in

Fig. 10.9. This condition is fulfilled when

xA ¼ Hh

ql
� l

2
< 0, or

l2

h
>

2H

q
ð10:45Þ

A cable will have a sag f, only when the supports are located to the left and to the
right of the lowest point. This condition is fulfilled when (l2/h)> (2H/q), which
is the most common situation.

Fig. 10.9 Four different possibilities for the location of the two supports
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Condition in (10.45) is always fulfilled whenh ! 0, and will not be fulfilled only

when one of the two supports is significantly higher than the other and/or when the

horizontal reaction force H is very large.

By using (10.32), and (10.44a), (10.44b), (10.44c) we can calculate the sag f,
relative to support A or to support B,

fA ¼ yA ¼ q

2H
x2A ¼ q

2H

l

2
� Hh

ql

� 	2

ð10:46aÞ

f B ¼ yB ¼ q

2H
x2B ¼ q

2H

l

2
þ Hh

ql

� 	2

ð10:46bÞ

When the two supports are at the same elevation, i.e., h ¼ 0, we have,

f ¼ fA ¼ f B ¼ ql2

8H
ð10:47Þ

Case (c):

Case (c) in Fig. 10.9 is a special case when

xA ¼ 0, andxB ¼ l ð10:48aÞ
Both conditions lead to the same result. We will have the situation denoted as Case

(c) when the following condition is fulfilled:

l2

h
¼ 2H

q
ð10:48bÞ

Hence, Case (c) will be present then and only then when (10.48b) is fulfilled. Hence

there is only one possible combination l, h,H, and qwhen this is possible; therefore,
in reality it will be encountered very seldom.

Case (d):

Case (d) in Fig. 10.9 will be observed in reality when

xA > 0 ð10:49aÞ
or

2H

q
>

l2

h
ð10:49bÞ

Such situation will appear when one of the supports is much higher than the other

and the horizontal reactions in both supports are very large, hence, H ! 1.
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Guidelines and Recipes for Cables with Distributed Loads—Parabolic Solution

• Place coordinate system into the lowest point of the cable and denote

location of the two supports as (xA, yA) and (xB, yB)
• Write equilibrium equations for the external forces, i.e.,

X
i

Fiy ¼Ay þ By � ql ¼ 0;
X
i

MiA ¼ l � By � h � H � ql2

2
¼ 0

Calculate reactions in the supports A and B and their locations (xA, yA)
and (xB, yB), internal force S(x), sag, f of the cable, and its length L by

using:

xA ¼ l

2
� Hh

ql
; or xA ¼ l

fA
h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h

fA

s
� 1

 !
; xB ¼ l� xA

y xð Þ ¼ f xð Þ ¼ qx2

2H
; yA ¼ fA ¼ qx2A

2H
; yB ¼ f B ¼ qx2B

2H

Ay ¼ qxA; By ¼ qxB; A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ qx2A

� �q
; B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ qx2Bð Þ

q

S xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ qxð Þ2

q
, and

L ¼ xB 1þ 1

6

qxB
H

� 
2
� 1

40

qxB
H

� 
4
þ � � �

� 	

þ xA 1þ 1

6

qxA
H

� 
2
� 1

40

qxA
H

� 
4
þ � � �

� 	
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Example 10.2 Derive the equation describing geometry of a cable in a coordinate

system located at the left support as shown in Fig. 10.10. Calculate the maximum

force in the cable, its sag fA relative to support A, and the location of the sag x( fA).
The span between the two supports is l ¼ 10m, weight of the cable per unit distance

between the two supports is q ¼ 10N=m, l=h ¼ 10, and H ¼ 100N.

Solution We will start from (10.29),

y ¼ q

2H
x2 þ C1xþ C2

For the selected coordinate system the boundary conditions are,

x ¼ 0; y ¼ 0

x ¼ l; y ¼ �h

From the first boundary condition we find that C2 ¼ 0. However, the second

integration constant is in this case

C1 ¼ � h

l
þ q

2H
l

� 	

Fig. 10.10 Cable geometry
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The equation describing the geometry of the cable in the selected coordinate system

is then,

y ¼ q

2H
x2 � h

l
þ q

2H
l

� 	
x

which is the first result that we are looking for. We see that the relation is indeed

more complicated as that presented in (10.32).

The internal force in the cable at any location x is given by (10.34a), (10.34b),

and (10.34c),

S xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2x þ S2y

q
¼ H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y0ð Þ2

q
Considering the first derivative

y
0 ¼ q

H
x� h

l
� q

2H
l

we find,

S xð Þ ¼ H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q

H
x� h

l
� q

2H
l

� 	2
s

Which is again much more complicated equation. Since the left support is higher

than the right one the maximum force in the cable will appear at the left support,

i.e., Smax ¼ S x ¼ 0ð Þ. Hence,

Smax ¼ H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h

l
þ q

2H
l

� 	2
s

and

Smax ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:1þ 10:10

2 � 100
� 	2

s
N ’ 116:6N

The location of the sag may be obtained also by setting the first derivative of the

function describing the geometry of the cable to zero,

y0 ¼ q

H
x� h

l
� q

2H
l ¼ 0
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which leads to

x fAð Þ ¼ H

q

h

l
þ q

2H
l

� 	
¼ l

2
þ Hh

ql

and

x fAð Þ ¼ 10

2
þ 100

10 � 10
� 	

¼ 6m

As expected, the obtained expression for x( fA) is the same as that in (10.43), where

we need to take into account that h is in this case negative.

The sag fA we obtain by inserting x( fA) into the equation describing geometry of

the cable,

fA ¼ y x fAð Þ½ � ¼ q

2H
x fAð Þ2 � h

l
þ ql

2H

� 	
x fAð Þ ¼ � q

2H

l

2
þ Hh

ql

� 	2

and

fA ¼ � 10

2 � 100
10

2
þ 100

10 � 10
� 	2

¼ �1:8m

Again, the obtained expression for the sag is the same as that in (10.46a), where we

need to take into account that h is now negative. Alternatively, if we take into

account the symmetry the above expression must be the same, and it is, as that in

(10.46b) for the support B. Negative sign indicates position of the sag in the

selected coordinate system.

From this example one may learn that selection of the coordinate system defines

boundary conditions and consequently complexity of the form of equations, which

describes the geometry of the structural element, in our case cables.

10.2.2 Hyperbolic Solution

The hyperbolic solution of (10.24), i.e.,

H
d2y

dx2
dx ¼ dQ

is obtained when a continuous load is distributed along the length of a cable, which

is usually its weight, and the cable assumes the shape of hyperbola, also known as

catenary. In this case line of action of the cable weight is at L/2, which location is

not known. Therefore we can write the equilibrium equations for external forces for

y-direction only:

10.2 Cables with Distributed Loads 423



X
i

Fiy ¼ Ay þ By � p � L ¼ 0 ð10:50Þ

By considering that p is weight of the cable per unit length, [N/m or lb/ft], we can

write (10.24) as

H
d2y

dx2
dx ¼ dQ ¼ p � dL ð10:51aÞ

where

dL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dxð Þ2 þ dyð Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dy

dx

� 	s
dx

Now, (10.51a) may be changed to

d2y

dx2
¼ p

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dy

dx

� 	s
ð10:51bÞ

The solution of the obtained differential equation presents the geometry of the

cable, commonly known as catenary. The solution of (10.51a), (10.51b), given in

Mathematical Corner II, is

y ¼ H

p
cosh

p

H
xþ C1

� 

þ C2 ð10:52aÞ

and its derivative is

y0 ¼ sinh
px

H
þ C1

� 

ð10:52bÞ

Hence, cables exposed to their weight will assume the shape of a hyperbolic

function, which is commonly called catenary.

Hyperbolic solution is obtained when a continuous load is distributed along the

length of a cable. In this case the cable assumes the shape known as catenary.

Similarly as for the parabolic solution, constants C1 and C2 are obtained from the

boundary conditions, which also depend on the location of the coordinate system

origin and position of the two supports. We will again place the coordinate system

into the lowest point of the cable, as shown in Fig. 10.11a.
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Mathematical Corner II: Solution of equations (10.51a), (10.51b)

Differential equation

d2y

dx2
¼ p

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dy

dx

� 	s
ðii� 1Þ

may be solved by introducing substitutions,

v ¼ dy

dx
; and

dv

dx
¼ d2y

dx2
ðii� 2Þ

which leads to

(continued)

Fig. 10.11 (a) Free bodydiagramofa cable loadedwith itsweight,p. (b) Freebodydiagramofa cable

loadedwith its weight p in the coordinate systemwith the originH/h below the lowest point of the cable

10.2 Cables with Distributed Loads 425



dv

dx
¼ p

H

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p
, and after separation of variables to,

dvffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p ¼ p

H
dx ðii� 3Þ

Obtained equation may be solved simply by integrating both sides of the

equation,

Z
dvffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p ¼
Z

p

H
dxþ C1: ðii� 4Þ

From the table of integrals (e.g., http://integral-table.com) we find the solu-

tion of both indefinite integrals,

sinh�1 vð Þ ¼ p
H xþ C1, which leads to v ¼ sinh p

H xþ C1

� �
.

Taking into account that, v ¼ dy=dx, we find

dy ¼ sinh
p

H
xþ C1

� 

dx ðii� 5Þ

After the integration, we obtain,

Z
dv ¼

Z
sinh

p

H
xþ C1

� 

dxþ C2 ðii� 6Þ

To solve the right side integral we need to introduce substitution

χ ¼ px=Hð Þ þ C1 ðii� 7Þ
which leads to

dx ¼ H=pð Þdχ and further

Z
dy ¼ H

p

Z
sinhχð Þdχ þ C2 ðii� 8Þ

Now we can integrate both sides and obtain the equation of catenary

y ¼ H

p
cosh

p

H
xþ C1

� 

þ C2 ðii� 9Þ

The cable exposed to its weight only assumes the shape of hyperbolic

function also known as catenary.

In this case the boundary conditions are the same as for the case of parabolic

solution (10.30a), (10.30b), i.e.,
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x ¼ 0; y ¼ 0 ð10:53aÞ
x ¼ 0; y0 ¼ 0 ð10:53bÞ

If we place the coordinate system into the lowest point of the cable the equation

of the catenary is:

y ¼ H

p
cosh

p

H
x

� 

� H

p

Whereas, if we “shift” the coordinate system H/h below the lowest point, the

equation obtains its simplest form:

ys ¼
H

p
cosh

p

H
x

� 


Applying the above boundary conditions to (10.52a) and (10.52b), respectively,

yields

H

p
cosh

p

H
� 0þ C1

� 

þ C2 ¼ 0 ð10:54aÞ

and

sinh C1ð Þ ¼ 0 ð10:54bÞ
Taking into account that sinh zð Þ ¼ ez � e�zð Þ=2, and cosh zð Þ ¼ ez þ e�zð Þ=2, we
find the expressions for the two integration constants:

C1 ¼ 0, and C2 ¼ �H

p
ð10:54cÞ

Introducing above expressions into (10.52a) we obtain the equation of the catenary,

y ¼ H

p
cosh

p

H
x

� 

� H

p
ð10:55Þ

Equation (10.55) describes geometry of the cable, in the coordinate system which

origin is placed at the lowest point of the cable. In this case the second integration

constant C2 is unfortunately not zero, which makes the equation slightly more

complicated.

Let’s see if we could change the location of the coordinate system so as to get rid

of the constant C2. Such coordinate system one obtains if the origin of the
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coordinate system is placed H/h below the lowest point of the cable, as it is shown

in Fig. 10.11b

x ¼ 0; y ¼ H=p ð10:56aÞ

x ¼ 0; y
0 ¼ 0 ð10:56bÞ

By applying these modified boundary conditions into (10.52a) and (10.52b),

respectively, yields

H

p
¼ H

p
cosh

p

H
� 0þ C1

� 

þ C2 ð10:57aÞ

and

sinh C1ð Þ ¼ 0; ð10:57bÞ
From (10.57a), (10.57b) we find that by taking into account that in “shifted”

coordinate system both constants are zero, C1 ¼ 0, and C2 ¼ 0, the equation for

the catenary obtains its simplest form

ys ¼
H

p
cosh

p

H
x

� 

ð10:58Þ

We have used the subscript “s” to distinguish this solution from the previous one.

10.2.2.1 Internal Tensile Force, S(x)
As in the case of parabolic solution, the internal tensile force at S(x) any point along
the cable is equal to the vector sum of the two components. Hence,

S xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2x þ S2y

q
¼ H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dy

dx

� 	2
s

Since y0 ¼ sinh px=Hð Þ for both coordinate systems, we find the relation for the

vertical component of the internal force,

Sy xð Þ ¼ Hsinh
px

H

� 

ð10:59aÞ

and the tensile force at any point of the catenary,

S xð Þ ¼ H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinh

px

H

� 
2r
¼ Hcosh

px

H
ð10:59bÞ
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Equations (10.59a) and (10.59b) define the internal force in the cable at any point

along the cable. However, usually we are interested in the maximal force. We see

again that when x ¼ 0 we obtain the minimal tensile force S x ¼ 0ð Þ ¼ H.

As x increases S(x) will increase and will have again its maximal value at the

higher support,

Smax ¼ Hcosh
pxk
H

ð10:60aÞ

where k ¼ A, for yA > yB, and k ¼ B, for yB > yA.
The vertical reaction forces in both supports are,

Ay ¼ Hsinh
pxA
H

� 

and By ¼ Hsinh

pxB
H

� 

ð10:60bÞ

whereas

A ¼ Hcosh
pxA
H

� 

, and B ¼ Hcosh

pxB
H

� 

ð10:60cÞ

The magnitude of the maximal tensile force in cable Smax will be equal to the

magnitude of the reaction force at the support that is located at the higher elevation.

In case when both supports are at the same elevation we have x ¼ l=2, and

Smax ¼ A ¼ B ¼ Hcosh
pl

2H
, and ð10:60dÞ

Ay ¼ By ¼ H � sinh pl

2H

� 	
ð10:60eÞ

All above equations require H to be known. In reality we often know (allowable)

sag of the cable, i.e., yA ¼ fA, distance between supports l, and the elevation

difference h. In this case we may use (10.55),

yA ¼ fA ¼ H

p
cosh

pxA
H

� 

� 1

� 

, and

yB ¼ f A þ h ¼ H

p
cosh

p l� xAð Þ
H

� 	
� 1

� 	

The two equations may be rewritten as,

cosh
pxA
H

� 

¼ pfA

H
þ 1, and
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cosh
pl

H
� pxA

H

� 	
¼ p fA þ hð Þ

H
þ 1

Since cosh2 xð Þ � sinh2 xð Þ ¼ 1, we can rewrite the first equation as

sinh
pxA
H

� 

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2

pxA
H

� 

� 1

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pfA
H

þ 1

� 	2

� 1

s

The second equation may be reorganized, by taking into account that

cosh x
 yð Þ ¼ cosh xð Þcosh yð Þ 
 sinh xð Þsinh yð Þ

cosh
pl

H

� 	
cosh

pxA
H

� 

� sinh

pl

H

� 	
sinh

pxA
H

� 

¼ p fA þ hð Þ

H
þ 1

After reorganization we find the transcendental equation, which has to be solved

numerically,

H ¼ pfA þ Hð Þ � cosh pl

H

� 	
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pfAð Þ2 þ 2pfA

q� 	
� sinh pl

H

� 	
� p fA þ hð Þ

ð10:61Þ
10.2.2.2 Length of the Cable, L
As in the cases of parabolic solution, we find the length of the catenary

dL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dxð Þ2 þ dyð Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dy

dx

� 	2
s

dx

By considering that in the both coordinate systems y
0 ¼ sinh px=Hð Þ, we obtain

dL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinh2

px

H

� 
r
dx ¼ cosh

px

H

� 

dx

The length of the catenary L1,2, between two arbitrary points T1 and T2, Fig. 10.12,

we obtain by integrating the equation over the interval x2 x1; x2½ �,

L1,2 ¼
Zx2
x1

cosh
px

H

� 

dx ð10:62Þ
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Solution of the above integral is given in Mathematical Corner III. The length of

the segment between the two arbitrary points T1 and T2 is

L1,2 ¼ I½ �x2x1 ¼
H

p
sinh

px2
H

� 

� sinh

px1
H

� 
h i
ð10:63aÞ

If we are interested in the total length of cable L, we have to place T1 into support A,

x1 ¼ �xA, and T2 into support B, x2 ¼ xB, to obtain,

L ¼ H

p
sinh

pxB
H

� 

þ sinh

pxA
H

� 
h i
ð10:63bÞ

When the two supports are at the same elevation the distance between the supports

A and B is called the span. In such cases we have xA ¼ xB ¼ l=2, and the length of

the catenary becomes,

L ¼ 2H

p
sinh

pl

2H

� 	
ð10:63cÞ

Mathematical Corner III: Solution of equation (10.62)

We have to solve the integral, (10.62), i.e.,

L1,2 ¼
Zx2
x1

cosh
px

H

� 

dx ðiii� 1Þ

(continued)

Fig. 10.12 Length of the cable L1,2, between the two arbitrary points T1 and T2 along the cable
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First, we have to solve the corresponding indefinite integral I

I ¼
Z

cosh
px

H

� 

dx ðiii� 2Þ

By introducing the substitution z ¼ px=Hð Þ, anddx ¼ H=pð Þdzand consulting
the table of integrals (e.g., http://integral-table.com) we find that

I ¼ H

p

Z
coshzð Þdz ¼ H

p
sinhz ¼ H

p
sinh

px

H

� 

ðiii� 3Þ

By utilizing the above solution we obtain the length of the cable by

introducing the integration limits and considering that sinh �xð Þ ¼ �sinh xð Þ,

L1,2 ¼ I½ �x2x1 ¼
H

p
sinh

px2
H

� 

� sinh

px1
H

� 
h i
ðiii� 4Þ

10.2.2.3 Sag of the Catenary, f
When two supports are at the same elevation the sag of a catenary may be

determined from (10.55),

f ¼ fA ¼ f B ¼ y x ¼ l

2

� 	
¼ H

p
cosh

pl

2H

� 	
� H

p
ð10:64Þ

However, when the two supports are not at the same elevation the location of the

catenary’s largest deflection, where we have positioned the coordinate system, is

NOT known! To determine the location of the cable lowest point we consider that

xB þ xA ¼ l and yB � yA ¼ h, as shown in Fig. 10.13.

By using (10.55) and above conditions we find,

H

p
cosh

p

H
1� xAð Þ

� 

� H

p
cosh

p

H
xA

� 

¼ h ð10:65Þ

Solution of this equation is given in Mathematical Corner IV. We have,

xA ¼ H

p
arccosh

ph

2H



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh pl

H

� �þ 1
� �
cosh pl

H

� �� 1
� �

s
ph

2H

� 	2

þ cosh
pl

H

� 	
þ 1


 �( )
ð10:66Þ
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By knowing location of the coordinate system we may find the sag of the cable

relative to support A and B by introducing (10.66) and xB ¼ l� xA, respectively,
into (10.55),

f A ¼ H

p
cosh

p

H
xA

� 

� H

p
ð10:67aÞ

f B ¼ H

p
cosh

p

H
l� xAð Þ

� 

� H

p
ð10:67bÞ

Equations (10.66) and (10.67a), (10.67b) are quite cumbersome; therefore, we

usually use the parabolic solution to determine the location of the lowest point.

However, the question arises how big is the difference between the parabolic and

hyperbolic solutions.

We examine this in continuation in Example 10.3.

Mathematical Corner IV: Solution of equation (10.65)

We start from (10.65), i.e.,

H

p
cosh

p

H
l� xAð Þ

� 

� H

p
cosh

p

H
xA

� 

¼ h ðiv� 1Þ

Taking into account that cosh xþ yð Þ ¼ cosh xð Þcosh yð Þþ sinh xð Þsinh yð Þ, see,
e.g., (http://en.m.wikipedia.org/wiki/Hyperbolic_function), we obtain

(continued)

Fig. 10.13 Free body diagram of a cable shown exposed to continuous load distributed along the

length of the cable
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cosh
pl

H

� 	
cosh

pxA
H

� 

� sinh

pl

H

� 	
sinh

pxA
H

� 

� cosh

p

H
xA

� 

¼ ph

H
ðiv� 2Þ

By considering that cosh2 xð Þ � sinh2 xð Þ ¼ 1 and introducing

λ ¼ cosh pxA=Hð Þ we find

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 � 1

p� 

¼ cosh pl

H

� �� 1
� �

sinh pl
H

� � � λ� ph

Hsinh pl
H

� � ðiv� 3Þ

Denoting

a ¼ cosh pl
H

� �� 1
� �

sinh pl
H

� � , and b ¼ ph

Hsinh pl
H

� � ðiv� 4Þ

we obtain a simple relation,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 � 1

p� 

¼ a � λ� b ðiv� 5Þ

which yields quadratic equation

a2 � 1
� �

λ2 � 2abλþ b2 þ 1
� � ¼ 0 ðiv� 6Þ

The solution of the above quadratic equation is

λ1,2 ¼ 2ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2b2�4 a2�1ð Þ b2þ1ð Þp

2 a2�1ð Þ , which may be rearranged as

λ1,2 ¼ ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2 þ 1

p
a2 � 1ð Þ ðiv� 7Þ

By using the explicate expressions for a and b, (iv-4), we may express the

parameters in (iv-7) as

ab ¼ ph

H

cosh pl
H

� �� 1
� �

sinh2 pl
H

� � ¼ ph

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinh2 pl

H

� �q
� 1

sinh2 pl
H

� � ðiv� 8Þ

(continued)
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b2 � a2 þ 1 ¼
ph
H

� �2
sinh2 pl

H

� �� cosh pl
H

� �� 1
� �2

sinh2 pl
H

� � þ 1

¼
ph
H

� �2 � 2þ 2cosh pl
H

� �
sinh2 pl

H

� � ðiv� 9Þ

a2 � 1 ¼ cosh pl
H

� �� 1
� �2

sinh2 pl
H

� � � 1 ¼ 2� 2cosh pl
H

� �
sinh2 pl

H

� � ðiv� 10Þ

By utilizing (iv-8), (iv-9), and (iv-10) we may rewrite (iv-7) as

λ1,2 ¼
ph
H

cosh
pl
Hð Þ�1½ �

sinh2
pl
Hð Þ 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ph
Hð Þ2�2þ2cosh

pl
Hð Þ

sinh2
pl
Hð Þ

r
2�2cosh

pl
Hð Þ

sinh2
pl
Hð Þ

ðiv� 11Þ

which reduces to

λ1,2 ¼ �ph

2H


sinh pl

H

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ph
2H

� �2 � 1� cosh pl
H

� �� �h ir
1� cosh pl

H

� � ðiv� 12Þ

or alternatively,

λ1,2 ¼ �ph

2H



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh pl

H

� �þ 1
� �
cosh pl

H

� �� 1
� � ph

2h

� 	2

þ cosh
pl

H

� 	
þ 1


 �s
ðiv� 13Þ

By taking into account (iv-6) (λ)¼ cosh(p�A/H) and considering that

cosh �xð Þ ¼ cosh xð Þ, we find the location of the maximal catenary deflection

(sag).

xA ¼ H

p
arcosh

ph

2H



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh pl

H

� �þ 1
� �
cosh pl

H

� �� 1
� �

s
ph

2H

� 	2

þ cosh
pl

H

� 	
þ 1


 �( )

ðiv� 14Þ
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Guidelines and Recipes for Cables with Distributed Loads—Hyperbolic Solution

Place a coordinate system into the lowest point of a cable and denote the

locations of two supports as (xA, yA) and (xB, yB)
Calculate the reactions in supports A and B and their locations, (xA, yA)

and (xB, yB), sag of the cable f, internal force S(x), and the cable’s length L by

using:

xA ¼ H

p
arcosh

ph

2H



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh pl

H

� �þ 1
� �
cosh pl

H

� �� 1
� �

s
ph

2H

� 	2

þ cosh
pl

H

� 	
þ 1


 �( )

xB ¼ l� xA

yA ¼ fA ¼ H

p
cosh

pxA
H

� 

� 1

� 

; yB ¼ fA þ h

Ay ¼ Hsinh
pxA
H

� 

; By ¼ Hsinh

pxB
H

� 


A ¼ Hcosh
pxA
H

� 

, and B ¼ Hcosh

pxB
H

� 


S xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2x þ S2y

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ Hsinh

px

H

� 
� 
2r
¼ Hcosh

px

H

� 


L ¼ H

p
sinh

pxB
H

� 

þ sinh

pxA
H

� 
h i

Relation between H and fA:

H ¼ pfA þ Hð Þ � cosh pl

H

� 	
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pfAð Þ2 þ 2pfA

q� 	
� sinh pl

H

� 	
� p fA þ hð Þ
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Example 10.3 A cable with weight p ¼ 8N=m hangs between two supports A and

B as shown in Fig. 10.14a. The span between the two supports is l ¼ 1000m, and

the sag is f ¼ yA ¼ yB ¼ 200m. Determine the maximal internal force in the cable

and its length. Compare the results obtained by using parabolic and hyperbolic

solutions.

Solution

(a) Parabolic Solution
The corresponding free body diagram is shown in Fig. 10.14b. In this case the

weight of the cable is distributed along the horizontal distance between two

supports; therefore, the total external load may be directly calculated. Assuming

that q ffi p we find,

Q ¼ q � l ¼ 8000N

In this case, due to symmetry, the vertical reaction forces in both supports will be

Ay ¼ By ¼ Q

2
¼ 4000N

By using (10.47), f ¼ ql2= 8Hð Þ, we can calculate the horizontal force in the cable,

Hpar ¼ ql2

8f
¼ 8 � 10002

8 � 200 ¼ 5000N

and the maximal force which will be equal to the reaction forces in the supports,

Smax,par ¼ A ¼ B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
y þ H2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
40002 þ 50002

p
ffi 6400N

The length of the cable we obtain from (10.40c),

L ¼ l 1þ 2

3

2f

l

� 	2

� 2

5

2f

l

� 	4

þ � � �
" #

, hence

Lpar ¼ 1000 � 1þ 2

3

2 � 200
1000

� 	2

� 2

5

2 � 200
1000

� 	4

þ � � �
" #

ffi 1096m

We have used subscript “par” to indicate parabolic solutions.

(b) Hyperbolic Solution
The free body diagram corresponding to hyperbolic solution is shown in

Fig. 10.14c.

Now the weight of the cable is distributed along its length which is not known;

therefore, reactions in both supports cannot be determined directly. First we need to

determine horizontal force H, using (10.64),
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Fig. 10.14 (a) Physical model of a cable loaded with its weight. (b) Free body diagram of a cable

loaded with continuous load distributed along the horizontal distance between two supports. (c)
Free body diagram of a cable loaded with its weight
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f ¼ H

p
cosh

pl

2H

� 	
� H

p

This equation is transcendental and has no close solution, hence, we have to solve it

numerically. After inserting numerical values and reorganizing the equation we

obtain,

H

8
þ 200 ¼ H

8
cosh

4000

H

� 	
, and

4

10
� 4000

H
¼ cosh

4000

H

� 	
� 1 ð10:68aÞ

By introducing χ ¼ 4000=H we obtain form of the equation that is easy to solve

iteratively,

10

4
� cosh χð Þ � 1½ � ¼ χ ð10:68bÞ

The solution is given in Mathematical Corner V,

Hhyp ¼ 4000

χ
¼ 4000

0:762
¼ 5250N

By knowing H we can calculate the length of the cable by using (10.63c),

Lhyp ¼ 2H

p
sinh

pl

2H

� 	
¼ 2 � 5250

8
sinh

8 � 1000
2 � 5250
� 	

ffi 1100m

Now we are ready to calculate the vertical reaction forces in supports A and B,

Ay ¼ By ¼ p � L
2

¼ 8 � 1099:7
2

ffi 4400N

and maximal internal force in the cable, which is equal to the reaction forces in

supports A and B,

Smax,hyp ¼ A ¼ B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
y þ H2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4398:82 þ 52472

p
ffi 6850N

We have used subscript “hyp” to indicate hyperbolic solutions.

(c) Comparison of Parabolic and Hyperbolic Solutions
By comparing the absolute and relative differences between parabolic and hyper-

bolic solutions for H, Smax, and L we find,

10.2 Cables with Distributed Loads 439



ΔH ¼ Hpar � Hhyp ¼ 5000� 5250ð ÞN ¼ �250N

δH ¼ ΔH
Hhyp

� 100% ¼ �250

5250
� 100% ffi �4:76%

ΔSmax ¼ Smax,par � Smax,hyp ¼ 6400� 6850ð ÞN ffi �450N

δS ¼ ΔSmax

Smax,hyp
� 100% ¼ �450

6850
� 100% ffi �6:57%

ΔL ¼ Lpar � Lhyp ¼ 1096� 1100ð Þm ¼ �4:00m

δL ¼ ΔL
Lhyp

� 100% ¼ �4:00

1100
� 100% ffi �0:364%

We have learned an important fact that the parabolic solution underestimates all

values; however, the error is less than 10 %. When designing cable structures this

discrepancy has to be taken into account by an appropriate safety factor.

Mathematical Corner V: Numerical Solution of equations (10.68a), (10.68b)

We start from (10.68a), (10.68b),

10

4
� cosh χiþ1

� �� 1
� � ¼ χi ðv� 1Þ

i 1 2 3 4 5 6

χi 1.0 0.8670 0.8105 0.7849 0.7730 0.7674

χi+1 0.8670 0.8105 0.7849 0.7730 0.7674 0.7648

i 7 8 9 10 11 12

χi 0.7648 0.7635 0.7629 0.7626 0.7625 0.7624

χi+1 0.7635 0.7629 0.7626 0.7625 0.7624 0.7624

The solution of the above transcendental equation is

χ ¼ 0:762 ðv� 2Þ
and after inserting into χ ¼ 4000=H

H ¼ 4000

χ
¼ 4000

0:7624
¼ 5250N ðv� 3Þ
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Example 10.4 A cable with the weight p ¼ 50N=m hangs between two supports A

and B, which have different elevation. B is h ¼ 10m higher than A, as shown in

Fig. 10.15a. The horizontal distance between the supports is l ¼ 80m, and the sag is

fA ¼ yA ¼ 20m. Determine the maximal internal force in the cable, its length and

location of the sag. Compare the results obtained with the parabolic and hyperbolic

solutions.

Solution

(a) Parabolic Solution
In case of the parabolic solution we assume that the load of the cable is distributed

along the horizontal distance between the two supports; therefore, the total external

load may be directly calculated. Free body diagram is shown in Fig. 10.15b.

By assuming that q ffi p we find,

Q ¼ q � l ¼ q � xA þ q � xB ¼ QA þ QB ¼ 4000N

Since vertical locations of both supports are known we can use (10.32), y ¼ qx2=
2Hð Þ to obtain locations of the two supports,

yA ¼ qx2A
2H

¼ f , and yB ¼ q l� xAð Þ2
2H

¼ f þ h

From both equations we express 2H/q and obtain

2H

q
¼ x2A

f
¼ l� xAð Þ2

f þ h

which reduces to h
f x

2
A þ 2lxA � l2 ¼ 0, and

x2A þ 320xA � 12800 ¼ 0

Quadratic equation has two solutions xA1 ¼ 36:0 and xA2 ¼ 356, out of which only

the first one has correct physical meaning. Hence,

xA,par ¼ 36:0m, and xB,par ¼ l� xA ¼ 80� 36:0 ¼ 44:0m

By using (10.32), yA ¼ qx2
A

2H ¼ f , we can calculate the horizontal force in the cable,

Hpar ¼ qx2A
2f

¼ 50 � 362
2 � 20 ¼ 1620N

By knowing xA and xB we can calculate the vertical reactions in supports A and B

by using (10.42a), (10.42b),
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Fig. 10.15 (a) Physical model of a cable loaded with its weight. (b) Free body diagram of a cable

loaded with a continuous load distributed along the horizontal distance between two supports. (c)
Free body diagram of a cable, which supports are at different elevations, is loaded with its weight
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Ay, par ¼ QA ¼ qxA ¼ 50 � 36:0 ¼ 1800N, and

By, par ¼ QB ¼ qxB ¼ 50 � 44:0 ¼ 2200N

The maximal force will appear at the support which is higher, i.e., at support B,

Smax,par ¼ B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
y þ H2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22002 þ 16202

p
ffi 2730N

The length of the cable we obtain from (10.38c),

Lpar ¼ xB 1þ 1

6

qxB
H

� 
2
� 1

40

qxB
H

� 
4
þ � � �

� 	

þ xA 1þ 1

6

qxA
H

� 
2
� 1

40

qxA
H

� 
4
þ � � �

� 	

¼ LB þ LA

By inserting numerical values we find,

LB,par ¼ 44:0 � 1þ 1

6

50 � 44:0
1620

� 	2

� 1

40

50 � 44:0
1616

� 	4

þ � � �
 !

¼ 53:8m

LA,par ¼ 36:0 � 1þ 1

6

50 � 36:0
1616

� 	2

� 1

40

50 � 36:0
1616

� 	4

þ � � �
 !

¼ 42:0m

and

Lpar ¼ 53:8mþ 42m ¼ 95:8m

We have used again subscript “par” to indicate the parabolic solutions.

(b) Hyperbolic Solution
A free body diagram corresponding to the hyperbolic solution is shown in

Fig. 10.15c.

The weight of the cable is distributed along its length, which is not known;

therefore, the reactions in both supports cannot be determined directly. Since

vertical locations of both supports are known we can use (10.55),

y ¼ H

p
cosh

px

H

� 

� H

p

to obtain the locations of the two supports xA and xB and the horizontal force H,
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yA ¼ f ¼ H

p
cosh

pxA
H

� 

� 1

� 

, and

yB ¼ f þ h ¼ H

p
cosh

p l� xAð Þ
H

� 	
� 1


 �

The two equations may be rewritten as,

cosh
pxA
H

� 

¼ f � p

H
þ 1

� 	
¼ 1000þ H

H

� 	
, and

cosh
pl

H
� pxA

H

� 	
¼ f þ hð Þp

H
þ 1

� 	
¼ 1500þ H

H

� 	

Using cosh2(x)� sinh2(x)¼ 1, and first equation we find,

sinh
pxA
H

� 

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2

pxA
H

� 

� 1

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f � p
H

þ 1

� 	2

� 1

s

and after inserting numerical values,

sinh
pxA
H

� 

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1000

H
þ 1

� 	2

� 1

s
¼ 20

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5H þ 2500

p

Now, by using the second equation and taking into account that

cosh x
 yð Þ ¼ cosh xð Þcosh yð Þ 
 sinh xð Þsinh yð Þ, we obtain,

cosh
pl

H

� 	
cosh

pxA
H

� 

� sinh

pl

H

� 	
sinh

pxA
H

� 

¼ f þ hð Þp

H
þ 1

and

cosh
4000

H

� 	
� 1000þ H

H

� 	
� sinh

4000

H

� 	
� 20
H

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5H þ 2500

p ¼ 1500þ H

H

After reorganization we find transcendental equation, which need to be solved

numerically,

H ¼ 1000þ Hð Þcosh 4000

H

� 	
� 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H þ 500

p
� sinh 4000

H

� 	
� 1500

To solve it we need to write a small program by using MATLAB or similar. The

result is,

Hhyp ¼ 1795N
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Now we can calculate the locations of supports A and B by using

cosh
pxA
H

� 

¼ 1000þ H

H

� 	
¼ 1000þ 1795

1795
ffi 1:56, and

xA,hyp ¼ H

p
cosh�1 1000þ H

H

� 	
¼ 1795

50
cosh�1 1:56ð Þ ¼ 36:4m

xB,hyp ¼ l� xA ¼ 80� 36:4 ¼ 43:6m

The maximal internal force will appear at support B and can be calculated from

(10.60a)

Smax,hyp ¼ Hcosh
pxB
H

¼ 1795 � cosh 50 � 43:6
1795

� 	
ffi 3290N

We may also calculate the vertical components of the reactions in supports A and B

from (10.60b)

Ay, hyp ¼ Hsinh
pxA
H

� 

¼ 1795 � sinh 50 � 36:4

1795

� 	
ffi 2150N

and

By,hyp ¼ Hsinh
pxB
H

� 

Ay ¼ 1795 � sinh 50 � 43:59

1795

� 	
ffi 2760N

The length of the cable we find from (10.63b),

Lhyp ¼ H

p
sinh

pxB
H

� 

þ sinh

pxA
H

� 
h i
¼ LB,hyp þ LA,hyp

LA,hyp ¼ 1795

50
� sinh 50 � 36:41

1795

� 	
ffi 43:0m

Lhyp ¼ 1795

50
� sinh 50 � 43:59

1795

� 	
ffi 55:2m

Lhyp ¼ LB,hyp þ LA,hyp ¼ 98:2m

We have used subscript “hyp” to indicate hyperbolic solutions.
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(c) Comparison of Parabolic and Hyperbolic Solutions
By comparing the absolute and relative differences between parabolic and hyper-

bolic solutions for H, Smax, and L we find,

ΔH ¼ Hpar � Hhyp ¼ 1616:4� 1795ð ÞN ¼ �178:6N

δH ¼ ΔH
Hhyp

� 100% ¼ �178:6

1795
� 100% ffi �9:9%

ΔSmax ¼ Smax,par � Smax,hyp ¼ 2730� 3290ð ÞN ffi �560N

δS ¼ ΔSmax

Smax,hyp
� 100% ¼ �560

3290
� 100% ffi �17:02%

ΔL ¼ Lpar � Lhyp ¼ 95:8� 98:2ð Þm ¼ �2:4m

δL ¼ ΔL
Lhyp

� 100% ¼ �2:4

98:2
� 100% ffi �2:44%

In this case the discrepancy is much larger than in the previous one, which is mainly

due to the larger sag of the cable. In general parabolic solutions become less

accurate when the sag of the cable is more than 20 % of the horizontal distance

between the two supports.

Example 10.5 Figure 10.16 shows a cable loaded with continuous load

q ¼ 10kN=m, distributed along the distance between two supports. Distance

Fig. 10.16 Physical model of a cable loaded by a distributed load
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between the supports is l ¼ 50m. Location of the two supports relative to the lowest

point is known, yA ¼ 15m and yB ¼ 21m. Determine the reaction forces in both

supports and the sag location.

Solution Since vertical locations of both supports are known we can use (10.32) to

obtain the locations of the two supports,

yA ¼ qx2A
2H

, and yB ¼ q l� xAð Þ2
2H

From both equations we obtain

2H

q
¼ x2A

yA
¼ l� xAð Þ2

yB

which can be reduced to

x2A þ 250xA � 6250 ¼ 0

The quadratic equation has two solutions out of which only one has the correct

physical meaning. Hence,

xA ¼ 22:9m, and xB ¼ l� xA ¼ 50� 22:9 ¼ 27:1m

By using (10.32), yA ¼ qx2
A

2H , we can calculate the horizontal force in the cable,

H ¼ qx2A
2yA

¼ 10 � 22:902
2 � 15 ¼ 174:8kN

By knowing xA and xB we can calculate vertical reactions in supports A and B by

using (10.42a), (10.42b),

Ay ¼ qxA ¼ 10 � 22:90 ¼ 229kN, and

BY ¼ qxB ¼ 10 � 27:1 ¼ 271kN

The maximal force will appear at the support which is higher, i.e., at support B,

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ A2

y

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
174:82 þ 2292

p
ffi 288kN

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ B2

y

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
174:82 þ 2712

p
ffi 323kN

What We Have Learned?

How to calculate internal forces in cables loaded with concentrated forces
When external concentrated loads are much larger than the weight of the cable we

may neglect the latter and assume that individual segments of the cable are straight,
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and solve the problem by using the methodology developed for solving truss

structures. We place the coordinate system into the left support and define location

li of the lines of action of external forces Fi relative to the left support. In this case

equilibrium equations may be written as

X
i

Fiy ¼ Ay þ By �
Xi¼N

i¼1

Fi ¼ 0;
X
i

MiA ¼ By � lAB � H � h�
Xi¼N

i¼1

li � Fi ¼ 0

Internal forces in all sections of the cable Sk, and its geometry: αk, hk, and L may

be calculated by using equations:

Ay ¼ S1y ¼ S1 sin α1 ¼ H � tan α1 By ¼ S Nþ1ð Þy ¼ S Nþ1ð Þ sin α Nþ1ð Þ ¼ H � tan α Nþ1ð Þ

Sk cos αk ¼ H; Sk ¼ H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan 2αk

p

Sky ¼
Xk�1

i¼1

Fi � Ay; Sky ¼ By �
XN
i¼k

Fi; tan αk ¼ Sky
H

hk ¼ lk � tan αk; and L ¼
XNþ1

i¼1

li � li�l

cos αið Þ

How to calculate internal forces in cables loaded with continuous load distributed
along the horizontal distance between two supports—parabolic solution
When the load of a cable is distributed continuously along the horizontal distance

between two supports the cable assumes the shape of a parabola. By placing the

coordinate system into the lowest point of the cable its geometry may be described

with a simple formula y ¼ qx2= 2Hð Þ. In this case the equilibrium equations for the

external forces are:

X
i

Fiy ¼ Ay þ By � ql ¼ 0;
X
i

MiA ¼ l � By � h � H � ql2

2
¼ 0

The locations of the two supports (xA, yA) and (xB, yB) may be obtained from

xA ¼ l

2
� Hh

ql
, or xA ¼ l

fA
h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h

fA

s
� 1

 !
; xB ¼ l� xA

and, yA ¼ fA ¼ qx2A
2H

; yB ¼ f B ¼ qx2B
2H

We find the reactions acting in supports A and B from

Ay ¼ qxA; By ¼ qxB; A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ qx2A

� �q
; B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ qx2Bð Þ

q
Whereas, the internal force in the cable may be calculated from
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S xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ qxð Þ2

q
, where H ¼ ql2

h
� 1

2
� fA

h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h

fA

s
� 1

 !" #

The length of the cable we find from

L ¼ xB 1þ 1

6

qxB
H

� 
2
� 1

40

qxB
H

� 
4
þ � � �

� 	

þ xA 1þ 1

6

qxA
H

� 
2
� 1

40

qxA
H

� 
4
þ � � �

� 	
, or

L ¼ xB 1þ 2

3

yB
xB

� 	2

� 2

5

yB
xB

� 	4

þ � � �
 !

þxA 1þ 2

3

yA
xA

� 	2

� 2

5

yA
xA

� 	4

þ � � �
 !

How to calculate the internal forces in cables loaded with continuous load
distributed along the cable’s length—hyperbolic solution
When the load of the cable is distributed continuously along its length the cable

assumes the shape of a hyperbola, commonly called catenary. By placing the

coordinate system into the lowest point the geometry may be described as

y ¼ H

p
cosh

p

H
x

� 

� H

p

In this case the line of action of the cable’s weight is at L/2, which location is not
known. Therefore we can write the equilibrium equations for external forces for the

y-direction only:

X
i

Fiy ¼ Ay þ By � p � L ¼ 0

The locations of two supports (xA, yA) and (xB, yB) may be obtained from

xA ¼ H

p
arccosh

ph

2H



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh pl

H

� �þ 1
� �
cosh pl

H

� �� 1
� �

s
ph

2H

� 	2

þ cosh
pl

H

� 	
þ 1


 �( )

xB ¼ l� xA

and

yA ¼ fA ¼ H

p
cosh

pxA
H

� 

� 1

� 

; yB ¼ fA þ h
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The reactions acting in supports A and B we find from

Ay ¼ Hsinh
pxA
H

� 

; By ¼ Hsinh

pxB
H

� 

, and

A ¼ Hcosh
pxA
H

� 

, and B ¼ Hcosh

pxB
H

� 

Whereas, the internal force in the cable may be calculated from

S xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2x þ S2y

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ Hsinh

px

H

� 
� 
2r
¼ Hcosh

px

H

� 

The length of the cable we find from

L ¼ H

p
sinh

pxB
H

� 

þ sinh

pxA
H

� 
h i

The relation between H and fA is given by a transcendental equation. It should be

solved numerically:

H ¼ pf A þ Hð Þ � cosh pl

H

� 	
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pfAð Þ2 þ 2pfA

q� 	
� sinh pl

H

� 	
� p fA þ hð Þ

10.3 Problems

10.1 Calculate the internal forces in a 13 m long cable holding the street sign shown

in Fig. P10.1. Its weight is 80 N. The distance between the attachment points

is 12 m. They are at the same height from the street level. The sign is located

5 m from the left attachment point.

Fig. P10.1 Street sign
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10.2 Find the location and magnitude of the maximum tensile force in the cable

loaded by the corn cobs, as shown in Fig. P10.2. Assume that the total weight

of the cobs is 500 N.

Fig. P10.2 Corn cobs on the cable

10.3 A cable is attached to supports A and B, Fig. P10.3. The distance between the

two points is l¼ 80 m, and the length of the cable is L¼ 81 m. Cable’s weight

per unit length is q¼ 8 N/m. Determine the maximal tensile force, Smax, and

sag of the cable f.

Fig. P10.3

10.4 A cable is attached to two supports A and B, Fig. P10.4. The distance between

the two points in vertical direction is h¼ 6 m, and in horizontal direction

l¼ 30 m. The cable’s weight per unit length is q¼ 4 N/m. Determine the

location of the maximum sag of the cable f, length of the cable L, and the

maximal tensile force Smax, in the cable.

Fig. P10.4
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10.5 A cable is attached to support A, passes over a small pulley at support B, and

supports load G, Fig. P10.5. The cable’s weight per unit length is q¼ 8 N/m.

By knowing that the distance between A and B is l¼ 8 m, and the sag of the

cable is f¼ 0.3 m, determine the magnitude of loadG, the slope of the cable at

support B, and the total length of the cable L from A to B.

Fig. P10.5

10.6 A cable is attached to supports A and B, Fig. P10.6. The cable supports three

vertical loads at points C, D, and E, as shown in Fig. P10.6. The external loads

are: F1¼ 400 N, F2¼ 600 N, and F3¼ 500 N. Determine the reactions at

points A and B, and the maximum tensile force, Smax, in the cable.

Fig. P10.6

10.7 A cable is attached to supports A and B, and supports three vertical loads from

the points indicated in Fig. P10.7: F1¼ 150 N, F2¼ 300 N, and F3¼ 500 N.

The sag of the cable at point C is f¼ 12 m. Determine the reactions at points A

and B, and the sags of the cable at points B and D.

Fig. P10.7
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10.8 A cable is attached to supports A and B, and supports three vertical loads as

indicated in Fig. P10.8: F1¼ 200 N, F2¼ 50 N, and F3¼ 200 N. The sag of the

cable at point C is f¼ 12 m. Determine the reactions at points A and B, and the

maximal tensile force Smax in the cable.

Fig. P10.8

10.9 A cable is attached to supports A and B, and supports two vertical loads from

the points indicated in Fig. P10.9: F1¼ 100 N and F2¼ 150 N. Horizontal

component of the tension force in the cable is equal to H¼ 200 N. Determine

the reactions at points A and B, the length of cable L, and tensile force S in

each section of the cable.

Fig. P10.9

10.10 A cable is attached to supports A and B, Fig. P10.10. The distance between A

and B is l¼ 100 m, and the sag of the cable is f¼ 5 m. The weight per unit

length of the cable is q¼ 12 N/m. Determine the length, and the maximal

tensile force in the cable.

Fig. P10.10

10.11 A cable is attached to supports A and B, Fig. P10.11. The distance between

two points in vertical direction is 10 m, the sag of the cable is 5 m, and its

length is L¼ 200 m. By knowing that the weight per unit length is q¼ 5 N/m,
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determine distance l between points A and B, and the maximal tensile force

in the cable.

Fig. P10.11

10.12 A cable is attached to supports A and B, Fig. P10.12. The distance between

supports A and B in vertical direction is 20 m, the sag of the cable is 10 m,

and its length is L¼ 150 m. The weight per unit length of the cable is

q¼ 20 N/m. Determine distance l between points A and B, and the

magnitudes of tension forces at points A and B.

Fig. P10.12

10.13 Weights of the attached blocks are G¼ 50 N and P¼ 20 N, see Fig. P10.13.

Determine the magnitude of force F required to maintain equilibrium in

the position shown. In addition determine the tension of the cable at points

A and D.

Fig. P10.13

10.14 By knowing that F2¼ 60 N, determine the magnitude of forces F1 and F3

required to maintain the system in equilibrium, see Fig. P10.14. In addition

determine the tension force in the cable at points A and E
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Fig. P10.14

10.15 A cable is attached to two supports A and B, Fig. P10.15. The span and the

sag of the cable are l¼ 50 m and f¼ 30 m, respectively. The cable’s weight

per unit length is q¼ 4 N/m. Determine the length of cable L, maximal

tensional force Smax, and angle, α, slope of the cable at support B.

Fig. P10.15

10.16 A very long cable ABDE rests on the rough horizontal surface up to point B,

as shown in Fig. P10.16. By knowing that the weight per unit length of the

cable is 4 N/m, determine magnitude of force F required to keep the cable in

equilibrium.

Fig. P10.16
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Anything that happens, happens.
Anything that, in happening, causes something else to happen,
causes something else to happen. Anything that, in happening,
causes itself to happen again, happens again.
It doesn’t all necessarily happen chronologically, though.

Douglas Adams, Mostly Harmless

In this chapter you will learn:

• How to identify a compound structure

• How to disassemble it into known types of structures

• How to solve such structure

• When a compound structure is modeled as a frame

• When a compound structure is modeled as a mechanism

In the previous Chaps. 8, 9, and 10 we developed methodologies for solving

different types of structures and structural elements. We have introduced three

different procedures to deal with trusses, beams, and cables. In the process of

developing a physical model we have to represent physical reality in such a way

that it will fit in one of these three groups. By doing so, we will be able to utilize the

developed “standard” procedures to solve for unknown forces and moments.
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In reality, we have many situations where a structure does not belong to any of

three groups; however, it may be treated as a structure compounded of trusses,

beams, and cables.

In this chapter we will show how compound structures could be treated by using

the previously developed procedures. We will demonstrate this procedure using an

example.

11.1 Introduction

Let us consider a compound structure schematically represented in Fig. 11.1a. This

structure comprises three known types of structural elements: truss, beam, and

cable. The goal is to determine value of the forces in the cables KE and ED when

the system is in equilibrium and also to determine the reactions at A. The free body

diagram is shown in Fig. 11.1b. As may be seen from the free body diagram, this

structure has four unknown reactions: two at point A, one at each of the points D

and K. Thus, it cannot be solved directly for unknown reactions.

Fig. 11.1 (a) Compound structure. (b) Free body diagram. (c) Disassembly of the compound

structure
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We will solve this structure by separating it into three constituent parts: part I,

part II, and part III. Part I belongs to the type of structures called cables, part II

beams, and part III trusses.

To keep each part in equilibrium, we introduce the interaction forces (equilib-

rium pair of forces) at each points of separation, as it is shown in Fig. 11.1c.

These interaction forces were added in points F and E. At each of these points we

add only one pair of forces since their line of action is known and it is along the axis

of the member. Interaction forces are external forces when we consider equilibrium

of each part. Now, we can solve each part separately using procedures described in

Chaps. 8, 9 and 10.

It should be mentioned that the compound structure does not have to comprise all

three types of structural elements: truss, beam, and cable. It may contain any

mixture of these.

Let’s consider each part of the disassembled structure and count the number of

unknown forces. Here is the list: Ax, Ay, FEF, FEK, and FED. Thus, there are five

unknown forces. By considering the equilibrium of the part AB we can write three

equation of equilibrium and by considering equilibrium of the point E we can write

another two equations of equilibrium, total five equations that will allow us to solve

for five unknowns.

Let us consider equilibrium of the part AB.

Since the member EF is a two-force member, the force FFE is acting along the

member EF. We may write the following three equations

X
MA ¼ FFE � b� P � a sinα�M1 �M2 ¼ 0

X
Fx ¼ Ax þ P � cosα ¼ 0

X
Fy ¼ Ay � P � sinαþ FEF ¼ 0

Next, let’s consider equilibrium of point E and write two more equations of

equilibrium
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X
Fx ¼ �FEK þ FED � cosβ ¼ 0 and

X
Fy ¼ FED � sinβ � FFE ¼ 0

Therefore, we have five equations that can be solved for five unknowns.

Example 11.1 Determine the force between the drum N and link DE, if P¼ 250 N,

AC¼ 18 cm, BC¼ 6 cm, a¼ 6 cm, and b¼ 12 cm. Neglect weight of the rods

(Fig. 11.2a).

Solution Since this system may be considered as consisting of two beam elements:

DE and AB and one truss element: CD, we will consider equilibrium of each of

these constituents separately. The disassembled system with the interaction forces:

Cy and Dy is shown in Fig. 11.2b.

Fig. 11.2 (a) Compound structure. (b) Disassembly of the compound structure
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By considering the equilibrium of the member AB we can writeX
MB ¼ FCD � BC� P � AB ¼ 0

and solve for FCD¼ 1000 N.

Since member CD is a two-force truss member, the FCD¼ 1000 N is acting at

both the ends of the member CD. Let us define the force between the drum and the

member DE as Ny. From the equilibrium of the beam member DEX
ME ¼ FCD � DE� Ny � NE ¼ 0

we can solve for Ny¼ 1500 N.

Example 11.2 Determine the reaction forces at A and B, also determine the internal

force at C tension in the cable DE. Use q¼ 5 lb/ft, a¼ 5 ft, l¼ 9 ft, b¼ 4 ft, and

α¼ 30�.

Solution DE is a cable, thus the direction of the force DE is known to be along the

cable (Fig. 11.3a).

Let us disassemble the structure, remove it from its supports, show the reactions

and consider equilibrium of each part. We will start from the part AC (Fig. 11.3b).

Fig. 11.3b Free body

diagram of the part AC

Fig. 11.3a Compound

structure
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We can write three equations of equilibrium for the part AC

X
Fx ¼ Ax þ Cx ¼ 0

X
Fy ¼ Ay þ By þ Cy � q � l ¼ 0

X
MA ¼ �q � l

2

2
þ By � aþ Cy � l ¼ 0

Thus, Ax ¼ �Cx.

Next, let us consider the equilibrium of the part CD and write the equations of

equilibrium (Fig. 11.3c)

X
Fx ¼ FDE cosα� Cx ¼ 0

X
Fy ¼ �Cy � q � l þ FDE sinα ¼ 0

X
MC ¼ �q � b

2

2
þ FDE sinα � b ¼ 0

From the above equation, we can get FDE¼ 20 lb.

From the sum of forces in y direction we can get Cy¼�35 lb and from the sum of

forces in x direction Cx¼ 17.32 lb.

Using these values for the equation of equilibrium we derived for the part AC we

can solve for the rest of the unknowns.

Ax¼�17.32 lb.

By¼ 103.5 lb and Ay¼�23.5 lb.

11.1.1 Problems

11.1 Weightless beam AB is supported by link DC and loaded by force F¼ 10 kN.

Determine the reaction at A and the force in link CD.

Fig. 11.3c Free body

diagram of the part CD
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Fig. P11.1

11.2 Homogeneous beam AB is supported by homogeneous beam CD. Weight of

beam AB is 4 kN and of CD is 3 kN. The loads at points M and N are equal to

8 kN each. Determine the reactions at A, B, E, and D.

Fig. P11.2

11.3 A bridge consists of two segments connected at point A by a hinge. The

weights of each segment (40 kN) are applied at D and E, respectively.

The bridge is loaded by a truck represented by force P¼ 60 kN. Determine

the reactions at B, C and force at A.

Fig. P11.3
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11.4 Rod AB is loaded by force P¼ 20 N and momentM¼ 4 N m. Determine the

tension in link DF and the components of all forces acting on member

AB. Use AF¼ 40 cm, a¼ 30 cm, b¼ 20 cm, α¼ 45�.

Fig. P11.4

11.5 Ladder ACB consists of segments AC and CB connected by a hinge at C. It

supports a person (weight P¼ 650 N) standing at D.Weight of each segment of

the ladder isW¼ 80N and is applied at its corresponding center. Cable EF holds

the ladder in place. Determine the reactions at A, B, C and tension in cable EF.

Fig. P11.5

11.6 A bridge consists of two identical segments M and N connected by links

making an angle of 45� with the horizontal line. Determine the axial forces in

each link. The load P¼ 100 kN.

Fig. P11.6
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11.7 A crane is supported by two pin connected beams, AC and CB. The crane’s

weight W¼ 60 kN is acting at point D. For load P¼ 10 kN, determine the

reactions at A and B.

Fig. P11.7

11.8 Load P¼ 12 kN is located in the middle of member ML. Determine the load

at each wheel. Use AB¼ 2BC, DE¼ 0.75 EF, and GK¼ 0.8 KN.

Fig. P11.8

11.9 Weight P¼ 50 N is applied at point B of horizontal rod AB having weight

Q¼ 10 N that is acting at E. Determine reactions at A and C.

Fig. P11.9
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11.10 Two homogeneous bars are connected by a pin at C and loaded by force Q.

The weight of each bar is P. Determine the reactions at A and B. Use

Q¼ 80 N, P¼ 20 N, b¼ 40 cm, and d¼ 80 cm.

Fig. P11.10

11.11 Two homogeneous bars are connected as shown and loaded by loads

P1¼ 40 kN, P2¼ 40 kN, and Q¼ 100 kN. Determine the reactions at A

and B. Use AC¼BD, AE¼EC, and BF¼FD.

Fig. P11.11

11.12* A system of bars is loaded by weightM. Determine the axial forces in each

bar. AD is parallel to BC and AB to CD.

Fig. P11.12

11.13 Bars AB and CD support weight P¼ 100 N. The weight of bar AB is 30 N

and is applied at point E, while the weight of bar CD is 20 N and is applied at

point F. Determine the reactions at A and C. Use AB¼CD¼ 1.0 m,

AE¼ 0.35 m, CF¼ 0.5 m, α¼ 60�, and β¼ 35�.
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Fig. P11.13

11.14 Identical bars AB and BC connected by frictionless pin at B (each weight P

is 30 N) are held in the horizontal position by cables ED and EC. Determine

the tension in each cable and the reaction forces at A and B. α¼ 2β¼ 60�.

Fig. P11.14

11.15 Determine the reaction forces and moments at A, B, and C. Use q¼ 10 N/m,

F¼ 40 N, a¼ 5 m, b¼ 2 m, l¼ 10 m, α¼ 30�.

Fig. P11.15

11.16 Determine the reaction forces and moments at A, B, and C. UseM¼ 10 N m,

a¼ 3 m, l¼ 5 m, α¼ 30�.

11.1 Introduction 467



Fig. P11.16

11.17 Horizontal bar AB is attached to vertical bar AC and supported by bar

DE. Bar AC is built into the ground at C and supported by bar FG. All

bars are connected by pins. Determine axial load in bars FG and DE, and

reaction at point C. Use Q¼ 100 N.

Fig. P11.17

11.18 The disk (weight Q¼ 200 N) is logged between a vertical wall and member

AB (weight P¼ 100 N). Assume that there is no friction in the system.

AB¼ l, BD¼ 2/3 l and angle CAB is α¼ 60�. Determine the reaction forces

and moment at A, C, and D.

Fig. P11.18

11.19 Twohomogeneous beams are connected atB.Weight of each beam isW¼ 30N

and length is a¼ 40 cm. Determine the reactions at A and C and the pin

B. Force Q¼ 10 N is acting at the middle of BC and is perpendicular to it.
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Fig. P11.19

11.20 Weight of bar AB is 20 N and BD is 40 N. The length BE¼ 2/3BD¼ 15 cm

and AC¼ 2/3AB¼ 12 cm, α¼ 30�. Assuming that there is no friction at E

and C, determine the reactions at A, C, and E.

Fig. P11.20

11.21 Determine the reaction forces at A, B, and C. q¼ 100 N/m,

a¼ l¼ 2b¼ 40 cm, α¼ 30�.

Fig. P11.21

11.22 Determine the reaction forces at A, B, and C. Use q¼ 400 N/m,

a¼ l¼ 2b¼ 20 cm, α¼ 30�.

Fig. P11.22
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11.23 Homogeneous bar AB (weight Q¼ 200 N) leans on frictionless support

E. Homogeneous bar CD (weightW¼ 400 N) is loaded by weight P¼ 100 N.

CB¼ 4 m, BD¼ 1 m, BE¼ 0.830 m. Angle α¼ 45�. Determine the reactions

at A, C, and E.

Fig. P11.23

11.24 Member AB, weight 300 N, is leaning on frictionless support C and

supporting member DE, weight 400 N. Determine the reaction forces at B,

C, and D and contact force at point A. Use Q¼ 60 N, AB¼ 3 m, BC¼ 1 m,

AD¼ 1/3AE, and α¼ 30�.

Fig. P11.24

11.25 The weight of member AC is P¼ 800 N and member CK is Q¼ 160 N.

AC¼ 4 m, BC¼ 1 m. Member CK makes an angle of 45� with the horizontal
axis. Determine the reaction forces at B, C, and K. What is the axial force in

bar AD?

Fig. P11.25
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11.26 The weight of frictionless bar AB is 60 N and of bar BD is 100 N. The system

is loaded by force F¼ 100 N. AB¼ 4.5 m, BC¼ 1 m, AE¼ 1 m, α¼ 45�.
Determine the reactions at A, C, and D.

Fig. P11.26

11.27 Three homogeneous bars are connected as shown below. Force Q¼ 60 N is

applied at the center of member CD. Determine the components of forces

acting on members AB and CD. Bar AB weights 30 N, bars BC and CD each

weight 10 N. AB¼ 4 m and KB¼ 1 m. K is a frictionless support.

Fig. P11.27

11.2 Frames

In Sect. 8.1 we considered structures that can be modeled as trusses, i.e., they

consist of only two-force members. Frame is similar to truss, but it has to contain at

least one element which is not a two-force member (beam element). Therefore

frame has at least one three-force member.

When a truss member is loaded by an external force not acting at a joint, we have

a structure called a frame. An example of a frame is shown in Fig. 11.4a. This frame

has three external reactions, which can be determined by treating the entire frame as

a rigid structure. In order to analyze the frame we have to disassemble it and to draw

a free body diagrams for each member of the frame (Fig. 11.4b).
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Frame is similar to truss, but it contains at least one element that is not a
two-force member (i.e., a beam element). Frame and truss are built to support
external loads and prevent any motions.

We separate all members of the frame and show internal forces acting from one

member on another. At each joint we have a pair of equal and opposite forces. Since

they are internal forces with respect to the whole structure, their sum should be

equal to zero. Each one of the three members is not a two-force body, thus we do not

know the force direction and have to show its two unknown components. The

reaction force E has only one component in vertical direction, since we assume

frictionless support. The weight of the painter W is acting downward. Since we

have three rigid bodies in equilibrium, we can write nine equations of equilibrium.

The total number of unknown forces, both internal and reactions, is also equal to

nine, thus we can solve for all unknown forces. Although we could treat the whole

structure as a rigid body and solve for three unknown reactions, those equations will

not be independent from the previous set of nine. If we solve all disassembled

segments, we will get values for all internal forces and all reactions. Thus, a free

body diagram of the whole assembly is not necessary for solving for reactions.

There is no need to use the equilibrium equations for the whole structure, since
these equations would be linearly dependent on the equilibrium equations of the
constituent members. Thus, they would not provide any new information.

Example 11.3 Find the reactions at points A and B if the weight of the hoof and the

load applied at D is 20 kN.

Fig. 11.4 (a) Painter on the bench. (b) Free body diagrams
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Solution Physical model of the system is shown in Fig. 11.5b.

Let’s create a free body diagram of the model. It is obvious that there are four

unknown reactions (Fig. 11.5c). Therefore, we will have to disassemble the system

and consider equilibrium of each part separately. It should be noted that the part BC

is a two-force member, thus we know the direction of the internal force at B. From

the free body diagram of the part ACD (Fig. 11.5d) we can write three equations of

equilibrium.

Let us define the angle between the link BC and the x-axis as θ.

X
Fx ¼ Ax þ C cosθ ¼ 0X
Fy ¼ Ay þ C sinθ �W ¼ 0X
MA ¼ C cosθ � ðaþ bÞ þ C sinθ � d �W � ðd þ ‘Þ ¼ 0

From geometry (Fig. 11.5b) we find angle θ ¼ arc tan 0; 2 ¼ 11; 3. Solution of the

above set of three equations with three unknown results is C¼ 51 kN, Ax¼�50 kN,

and Ay¼ 10 kN. Since part BC is a two-force member, the reaction at point B is

equal to the force C. Its components are components of the force C.

Cx ¼ C cos θ ¼ 50 kN and Cy ¼ C sinθ ¼ 9:99 kN

Fig. 11.5 (a) Front-end loader. (b) Physical model. (c) Free body diagram. (d) Free body diagram
of ACD

11.2 Frames 473



Example 11.4 Frame (Fig. 11.6) is loaded by a horizontal force P¼ 100 lb at point

E. Determine the reactions at A and B. Use a¼ 6 ft, b¼ 5 ft, and c¼ 7.5 ft.

Solution Free body diagram of this frame is shown in Fig. 11.6b. It has four

unknown reactions, thus it is not possible to find them only from the equations of

equilibrium of the whole frame. We will have to disassemble it and consider

equilibrium of each part separately.

Let’s start with the whole structure and write three equations of equilibrium

X
Fx ¼ Ax þ Bx þ P ¼ 0X
Fy ¼ Ay þ By ¼ 0X
MB ¼ Ay � aþ P � 2b ¼ 0

From the above we can get

Ay ¼ �By

Bx ¼ �Ax � P

and

Ay ¼ � 2bP

a

Fig. 11.6 (a) Frame. (b) Free body diagram of the frame. (c) Free body diagram of the

member ACE
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Now let’s consider the equilibrium of the member ACE, its free body diagram of

the member ACE is shown in Fig. 11.6c.

It should be noted that the links CD and EF are two-force members, thus we

know the direction of the internal forces acting on the member AE at the points C

and E.

From the geometry of the frame we can calculate the angle α from the following

tan α ¼ c� bð Þ=a
Thus α¼ 22.6�.

Let’s write the equations of equilibrium for the member ACE.

X
Fx ¼ Ax þ FCD þ FEF cosαþ P ¼ 0X
Fy ¼ Ay þ FEF sinα ¼ 0X
MA ¼ FCD � bþ P � 2bþ FEF � 2b cosα ¼ 0

From here we can find

FEF ¼ � Ay

sinα
¼ 2bP

a � sinα

FCD ¼ � 2Pþ 4bP � cosα
a � sinα


 �

and

Ax ¼ � P� 2P� 4bP � cosα
a � sinα þ 2bP � cosα

a � sinα

 �

Substitute the known values to get

Ax ¼ 500 lb

Ay ¼ �166:7 lb

By ¼ 166:7 lb

Bx ¼ �P� Ax ¼ �600 lb
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Guidelines and Recipes for Finding Forces Acting at the Frame Joints

• Disassemble the frame at the joints.

• Show two unknown force components (2D case) or three force

components (3D case) at each joint.

• Draw the free body diagram for each member.

• Write the equilibrium equations.

• Solve for the unknown forces.

11.2.1 Problems

11.28 Determine the components of forces acting on members AB and CD. Weight

of each member is 40 N and length is 20 cm.

Fig. P11.28

11.29 Determine the reactions at A and the forces in links EG and HK,

CE ¼ EH ¼ HD ¼ a; P¼ 120 N.
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Fig. P11.29

11.30 At what distance from the point A one should place support O in order to

generate tensile force of 10 kN at M. F¼ 0.6 kN, AB¼ 4 m, CQ¼ 2 m,

DQ¼ 0.2 m.

Fig. P11.30

11.31 A bridge consists of two pin connected horizontal plates supported by rods.

The bridge is carrying load P. Determine the force acting in each rod and

reaction forces at A. Use P¼ 250 kN, AC¼ 3 m, AB¼ 12 m, a¼ 4 m, and

α¼ 45�.

Fig. P11.31
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11.32 Determine the forces exerted on bar AB (length 2a) and bar BC. Weight of

the homogeneous bar AB is P and of the homogeneous bar BC is Q.

Fig. P11.32

11.33 Two identical bars AB and BC (weight P and length a) are loaded by the

moment M. Determine reactions at A, B, and C.

Fig. P11.33

11.34 Two bars AB and CD (each has weight P¼ 50 kN and length a) are loaded
by the force F¼ 200 kN. Determine reactions at A, D, and C.

Fig. P11.34
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11.35 The structure is loaded by a force P¼ 200 N. Determine the reaction force

components at A and B.

Fig. P11.35

11.3 Mechanisms

Mechanism is a structure designed to transmit and modify forces. It contains

moving parts and allows motion of one part of the mechanism relative to another.

In the analysis presented here, we will not consider inertial forces, which will be

dealt with in the dynamics course.

Frames that are designed to transmit and change forces, and are capable of

motion are called mechanisms. The main difference between the frame and mecha-

nism is that frames are rigid structures, while mechanisms are not. However, both

frames and mechanisms consist of rigid elements. The method for solving frames,

as described above, is also applicable for solution of mechanisms. Since the

geometry of a mechanism is not fixed, the solution should be done for a particular

configuration. It should be noted that for different configurations, we usually would

obtain different values for internal forces. The approach for analysis of a mecha-

nism can be shown by using a hole puncher (Fig. 11.7a).

Mechanism is a structure designed to transmit and modify forces. It contains
moving parts and allows motion of one part of the mechanism relative to
another.

Figure 11.7b shows free body diagrams for each member of this mechanism. In

order to maintain equilibrium, force P applied to the handle should create a moment

about point A equal and opposite in direction to the moment created by the force C.

As a result, we have two equal and opposite forces acting on the plunger, shown as

forces C. Consider, for example, equilibrium of the upper member. By taking sum

of moments about point A we may solve for unknown forceC. During operation the

geometry of the mechanism is changing; therefore, the internal forces will change

accordingly. In the design process we have to consider the worst-case scenario, i.e.,

when the forces in members are at their maximum. The geometry for the worst case

may be different for different members. For complicated structures we will have to
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consider more free body diagrams; however, the process of solution will remain the

same. As in any static problem, the number of unknown forces should be equal to

the number of independent equations of equilibrium.

Example 11.5 The frictionless mechanism (Fig. 11.8a) is loaded by moment M1.

Determine moment M2 necessary to keep the mechanism in equilibrium.

OA¼ 2 PB¼ 2a, α¼ 90�, and β¼ 60�. Neglect the weight of the links.

Fig. 11.7 (a) The hole
puncher. (b) FBDs of the hole
puncher parts

Fig. 11.8 (a) The mechanism. (b) FBD of the mechanism’s components
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Solution Since the mechanism is in equilibrium, each link is in equilibrium as

well. Let us disassemble the structure (Fig. 11.8b) and consider equilibrium of each

link. At each joint we will show the internal forces. Of course, they have to be equal

in magnitude and should act in the opposite directions so that their sum for each

joint will be equal to zero. Since link AB is a two-force member and it is in a state of

equilibrium, A¼B. Because we are not interested in the reaction at the supports, let

us use the sum of moments about point O for link OA and the sum of moments

about point P for link PB.

For link OA:
X

Mo ¼ A � 2aþM1 ¼ 0

For link PB:
X

MP ¼ �B � a � sin β �M2 ¼ 0

Since A¼B the solution of the above equations will be

M1

2a
¼ M2

a � sin β

Or substituting the given values we will get

M2 ¼
ffiffiffi
3

p

4
M1

Guidelines and Recipes for Finding Forces Acting in Mechanisms

• Create a physical model.

• Disassemble the mechanism at joints.

• Show two unknown force components (2D case) or three force

components (3D case) at each joint.

• Draw a free body diagram for each member.

• Write equilibrium equations.

• Solve for the unknown forces.
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11.3.1 Problems

11.36 A mechanism is loaded by forces P and Q, force P is acting at the center of

link AB and Q is applied at point E. CD¼ 3CE. What is the relationship

between forces P and Q for the system to be in equilibrium? Determine the

reaction at D.

Fig. P11.36

11.37 Determine the force applied to block M when P¼ 5 kN, OE¼ 100 cm,

OA¼ 10 cm. Force P is perpendicular to EO, α¼ 60� and β¼ 45�.

Fig. P11.37

11.38 Bracket ABC is held in equilibrium by horizontal force Q. Bar DKE is

suspended by cable BKC, passing through frictionless pulley K, and loaded

by force P. The angles α¼ 30� and β¼ 45�. The distances are

EK¼KD¼OK¼ 0.1 m, OA¼ 0.2 m, KB⊥ BO, and KC⊥ CO. Determine

the magnitude of force Q.
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Fig. P11.38

11.39 Determine the force which is compressing barrel M, when force P¼ 60 kN

and is acting perpendicular to AO. Use AO¼ 2 m, OB¼ 0.4 m, link BC is

horizontal and divides the angle ECD¼ 160� in half.

Fig. P11.39

11.40 A mechanism is loaded by forces F and Q. Determine the value of force

Q to keep the system in equilibrium, when OA¼OB¼ 30 cm,

PC¼PD¼ 40 cm. Angle α¼ 60� and β¼ 30� and force F¼ 20 N.

Fig. P11.40
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11.41 Bar AB is attached to collar B that may move freely along CD. CD is loaded

by moment M¼ 450 lb ft. Determine moment M1 to keep the system in

equilibrium if AB¼ 1 ft and α¼ 30�. Also, determine reactions at A and C.

Fig. P11.41

11.42 A system of gears is loaded by moments M1¼ 30 lb ft and M2¼ 70 lb ft.

Determine moment M3. The radii of A, B, and C are r1¼ 0.6 ft, r2¼ 1.0 ft,

and r3¼ 0.4 ft.

Fig. P11.42

11.43 A system of gears (Fig. P11.42) is loaded by moments M1¼ 10 N m,

M2¼ 20 N m, and M3¼ 15 N m. Radii of A and C are r1¼ 0.4 m and

r3¼ 0.2 m. Determine r2 when the system of gears is in equilibrium.

11.44 Box Q, weighing 20 kN, is lifted by a pair of tongs CAE and DBF. Use

OC¼OD¼ 60 cm, OK¼ 10 cm. Determine the axial force in the member

AB. Assume that all parts have no weight.
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Fig. P11.44

11.45 A worker applies forces of magnitude Q¼ 20 N to the handles of a crimping

tool. CD¼DE¼ 10 mm. Determine the crimping force exerted by this tool.

Dimensions are in mm. BK is a two-force member.

Fig. P11.45

11.46 Determine the magnitude of the gripping forces produced when two forces

(Q¼ 20 N) are applied to the locking plier. Dimensions are in mm.
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Fig. P11.46

11.47 Find the force acting on body T loaded via the system of bars. Force

P¼ 100 N. Links DC¼CE¼MK¼MN and each makes an angle α¼ 5�

with the vertical direction, while links BC¼BM and each makes an angle

α¼ 5� with the horizontal direction.

Fig. P11.47

11.48 A crank and slider mechanism is activated by moment M¼ 150 N m. Deter-

mine force P to keep the mechanism from moving. OA¼ 0.40 m, α¼ 30�,
and β¼ 60�.

Fig. P11.48
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11.49* Three bars are loaded by vertical forces P and Q. Angles α¼ β¼ γ.
Determine the axial forces in each bar and relationship between P and

Q for this system to be in equilibrium.

Fig. P11.49

11.50 Mechanism is loaded by force F¼ 200 N. Determine momentM to keep it in

equilibrium if EO¼ 40 cm, α¼ 45�, and β¼ 90�.

Fig. P11.50

11.51 The press is activated by rotation of link OA. At the instance shown, force

P¼ 100 N is acting on joint B. Determine the force acting on the body M,

when α¼ 45� and β¼ 30�.

Fig. P11.51
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11.52 Horizontal link AB of the ratchet rack is kept in a place by force Q¼ 200 N.

Determine force P to move link AB to the right. P is acting perpendicular to

link DE. EC¼ 3 DC, φ¼ 30�, and ψ ¼ 60�.

Fig. P11.52

What Have We Learned?

How to separate a compound structure into structures of known types
A structure is separated into constituent parts that belong to the known types of

structures: cables, beams, trusses.

To keep each part in equilibrium, we introduce the interaction forces (equilib-

rium pair of forces) at each point of separation. After this, we can solve each part

separately using the procedures appropriate to each known type of structures.

How to solve frames
Frame is similar to truss, but it has to contain at least one element that is not a

two-force member (beam element). To solve for unknown forces, the frame should

be disassembled by adding internal forces at the points of separation. Then we write

equations of equilibrium for all constituent elements and solve for the unknown

forces. To solve for the internal forces we should use method appropriate for each

structural element.

How to solve mechanisms
Mechanism is a structure designed to transmit and modify forces. It contains

moving parts and allows motion of one part of the mechanism relative to another.

After selecting a desired position of the mechanism, we may use the same approach

as for the frames. Depending on the task, we may need to repeat the solution for

several different positions. For each position, we have to draw a new free body

diagram.
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In previous chapters we have discussed the conditions needed to prevent motion of

a rigid body (assuming that the body was at rest at the beginning of observation).

First Newton Law teaches us that we do not need any force to keep a body in motion

at a constant velocity. However, everyday experience demonstrates that this is not

the case when bodies are in contact with each other. For example, if we want to pull

a table from one part of a room to another, we have to use a force in order to move it

with a constant velocity. This force is used to overcome the so-called “friction

force” generated at the interface of two bodies that are in contact, in this case the

table’s legs and the floor. From the experience we know that to move a table will

require a larger force if somebody would sit on it. The additional weight will

increase the normal force (contact force) that acts between the two contact surfaces.

From such observations we may conclude that friction is a resistance encountered

when one body moves relative to another body with which it is in a contact. To keep

two bodies in contact we need a normal force, which is often called the contact

force. Within this textbook we will analyze friction between solid (rigid)

bodies only.

We encounter friction forces everywhere where objects come into contact with

each other.

Friction is a resistance encountered when one body moves, or tries to move,

relative to another body with which it is in contact.

12.1 Introduction

We encounter friction force everywhere where objects come into contact with each

other. The friction force acts always in the direction opposite to the way an object

wants to slide. Some friction forces, such as the traction needed to walk without

slipping, are beneficial; however, in many engineering applications friction is not

desirable. For example, about 20 % of a car engine power is consumed by

overcoming friction forces between the moving parts!

Friction force always acts in the direction opposite to the direction an object

slides or impends to slide.

The rules of sliding friction were first discovered by Leonardo da Vinci (1452–

1519), and much later rediscovered and further developed to the level presented

here by Charles-Augustin de Coulomb in 1785. Coulomb investigated the influence

of three main factors on friction: the nature of materials in contact, size of the

surface area in contact, and the normal force. Coulomb also considered the
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influence of sliding velocity, temperature, and humidity on the nature of friction. He

also indicated the distinction between static and kinetic friction. Further historical

prospective may be found in Encyclopedia Britannica, Wikipedia, or other

resources available on Internet and in literature.

Three simple experimental facts characterize the friction between rigid bodies

sliding relative to each other. First, the amount of friction is independent of the area

of contact. For example, if a brick is pulled along a table, the friction force is the

same whether the brick is lying flat or standing on end. Second, the friction force is

proportional to the normal load that presses the surfaces together. Third, the friction
force is generated in the plane of contact, which determines its line of action that is

perpendicular to the normal force.

The amount of friction is independent of the area of contact. It is proportional to

the normal load that presses two surfaces together.

Friction force is generated in the plane of contact, which determines its line of

action that is perpendicular to the normal force.

12.2 Friction Between Solid Bodies

In general there are two types of friction between solid bodies: (a) non-lubricated

also called dry friction or Coulomb friction and (b) lubricated friction. The theory
(model) presented and discussed here works well for dry friction, whereas for the

cases when the contact surfaces are lubricated its applicability is limited and one

has to use more advanced tribological models. In this chapter we will discuss the

models related to dry friction only.

In general there are two types of friction between rigid bodies: (a) non-lubricated

or dry friction and (b) lubricated friction.

The model discussed here works well for dry friction; for lubricated contact

surfaces its applicability is limited and one has to use more advanced tribologi-

cal models.

Dry friction between solid bodies is extremely complicated physical phenom-

ena. It depends mainly on surface roughness and type of the materials that are in

contact. When two surfaces move relative to each other the interaction between the

two surfaces leads to elastic and plastic deformations of the surface layers of the

contacting bodies, microfractures and interaction with wear particles. Latest

research results show that dry friction involves even excitations of electrons and

phonons, chemical reactions, and transfer of particles from one body to another.
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At the same time, it is astonishing that it is possible to formulate a very simple law

for dry friction, which is sufficient for many engineering applications. This simple

law is discussed below.

Let us consider a simple case when a box of weight Fg, which we will consider as

a rigid body, is lying on a horizontal flat surface. We want to move the box by

pushing it in horizontal direction with force F, as shown in Fig. 12.1a. Figure 12.1b

shows the corresponding physical model, Fig. 12.1c shows the free body diagram,

and Fig. 12.1d shows equilibrium of the external forces and reactions.

The friction force is generated at the contact surface of two bodies; therefore, it

is obvious (see Fig. 12.1c) that the line of action of the friction force Ff does not

pass through the mass center of the body. Consequently the external force, F, and
the friction force, Ff, form a couple of forces (moment) that tend to rotate the rigid

body (the box). To compensate this moment the line of action of the normal force

N is shifted in the direction of the intended movement of the body, Fig. 12.1c, d.

Force N together with the external normal force Fg forms a couple of forces that

compensates the moment of the first couple, Fig. 12.1c.

External force F acting parallel to the contact surfaces and friction force Ff form

a couple of forces that tends to rotate the rigid body.

Fig. 12.1 (a) A person pushing a box. (b) Physical model of the box. (c) Free body diagram of the

box. (d) Equilibrium of external forces and reactions
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This moment is compensated by the shift of the line of action of reacting normal

force N, which together with external normal force Fg form another couple of

forces that compensates the moment of the first couple.

Friction force Ff acts at the interface of two surfaces in contact and does not pass

through the mass center of the body. Consequently an external force and the

friction force form a couple of forces that tend to rotate the body.

Hence, the two moments are equal in magnitude and opposite in sign and their

resultant is equal to zero. This means that the resultant of the external forces,

RF,Fg
¼ Fþ Fg ¼ �F � i� Fg � j

and the resultant of the reactions,

RN,Ff
¼ Ff þ N ¼ Ff � iþ N � j

form a pair of forces and their sum is equal to zero, as shown in Fig. 12.1d

RN,Ff
þ RF,Fg

¼ 0

The resultant of external forces and the resultant of reactions on a body form a

pair of forces and their sum is equal to zero.

Now, let us analyze the case when we slowly increase external force F with

which we push the box. As we increase the external force we realize that the box

will not move until force F reaches a certain “threshold magnitude.” This is shown

in Fig. 12.2, where the magnitude of external force F is displayed on abscissa

(x-axis) and the corresponding friction force Ff is displayed on ordinate (y-axis).

The resultant of all external forces, including the weight of a body, and reaction

force from the ground, comprising friction and normal force, form a pair of

forces that are in equilibrium, Fig. 12.1d.

From a diagram (Fig. 12.2) we may analyze the specific characteristic of dry

friction. As we slowly increase external force F, we observe that the corresponding

friction force Ff increases linearly and consistently with Third Newton’s Law. It

takes place until the external force reaches certain threshold value at which the

box suddenly starts to move from the state of rest. This threshold force is called

static friction force Fs
f . Behavior of the friction force up to point Ff ¼ F s

f may be

summarized as

12.2 Friction Between Solid Bodies 493



The maximum friction force that can appear at the interface of two bodies is

called a static friction force Fs
f .

Ff F � Fs
f

� 

¼ F ð12:1Þ

As soon as a rigid body moves, the force required to keep the rigid body (in our

case box) in movement at a constant velocity Fk
f is smaller than the threshold force

Fs
f . Hence, F

k
f � Fs

f . This friction force is called kinetic-friction force (sometimes

called dynamic-friction force).We further observe that kinetic-friction force Fk
f is in

the wide range of velocities independent of applied external force F! So, as soon as

F > Fs
f , the friction force will be constant in the wide range of velocities,

As long as external force F acting on a body parallel to the contact surface

between the two bodies is smaller than static friction force Fs
f , friction force Ff

will be of the same magnitude as the external force. Hence, Ff F � Fs
f

� 

¼ F.

Fk
f ¼ Ff v > 0ð Þ ¼ μk � N ¼ const: ð12:2Þ

Consequently, as we increase the external force beyond Fs
f the rigid body will

start to move with an acceleration according to the Second Newton’s Law:

a ¼ F� Fk
f

� 

=m, where m is the mass of the rigid body. Hence, in order to keep

Fig. 12.2 Static and kinetic (dynamic) friction forces
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the rigid body in motion at a constant velocity we need to push the body with a

constant force equal to kinetic-friction force F ¼ F k
f . Experiments show that

kinetic-friction force Fk
f stays nearly constant as long as the relative sliding velocity

is small. At higher relative velocities the kinetic friction force usually decreases as

shown in Fig. 12.2.

When external force F acting on a body parallel to the contact surfaces between

the two bodies is larger than static friction force Fs
f , friction force Ff will be

constant within the wide range of velocities, Ff v > 0ð Þ ¼ Fk
f ¼ μk � N

Friction force always opposes the motion or attempted motion of one surface

relative to another surface. One may also say that the friction force always opposes

the resultant force that attempts to move the body. Value of the friction depends on

the nature and texture of both surfaces and magnitude of the contact (normal) force

pushing the two surfaces together.

Friction force always opposes the motion or attempted motion of one surface

relative to another surface.

In our case normal force N is the reaction to weight Fg of the box. The static
friction force may be expressed as

Fs
f ¼ μs � N ð12:3Þ

whereas the kinetic-friction force as

Fk
f ¼ μk � N ð12:4Þ

The characteristic of dry friction μs > μk may lead to a phenomenon known as

stick-slip effect.

Here μs and μk are static and kinetic friction coefficients. A few examples of

static and kinetic friction coefficients for different materials in contact are shown in

Table 12.1 (please note that given values are just representative values).

12.2.1 Stick-Slip Effect

Most often static friction force is larger than the corresponding kinetic friction force,

i.e., Fs
f > Fk

f . This is the special characteristic of Coulomb friction, as we commonly

call dry friction between rigid bodies. It leads to the phenomenon called stick-slip
effect. The effect may be demonstrated with a simple experiment shown in Fig. 12.3a.

A wooden block with mass m is attached to an elastic rubber band and placed on

a flat horizontal surface, i.e., table. Figure 12.3b, c shows the corresponding
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physical model and free body diagram. We start slowly pulling the block with the

help of the rubber band with a small constant velocity v0. In the physical model

Fig. 12.3b, the rubber band is represented as a spring. The rubber band will deform

and the force will gradually increase according to

Frb ¼ krb � x tð Þ ¼ krb � v0 � t
where krb is the stiffness of the rubber band and x tð Þ ¼ v0t is an increasing

deformation of the rubber band (as long as the body is in a state of rest). As long

as the external force generated by the rubber band, Frb, is smaller than Fs
f , i.e.,

Frb < Fs
f , the wooden block will remain in a state of rest. However, when the force

of the deformed rubber band reaches the threshold force, which is the static friction

force, Frb ¼ F s
f , the body will start to move.

Stick-slip effect is one of the key problems in the development of high precision

manufacturing systems, such as CNC machines.

To overcome the stick-slip effect we have to use materials with the same static

and kinetic friction coefficients, μs ¼ μk, such as Teflon, Table 12.1.

Fig. 12.3 Demonstration of the stick-slip effect. (a) A wooden block pulled by a rubber band.

(b) Physical model of a wooden block pulled by a rubber band. (c) Free body diagram of a wooden

block pulled by a rubber band

Table 12.1 Examples of

static, ms, and kinetic, mk,
friction coefficients

Materials in contact μs μk
Tire-on-dry pavement 0.9 0.8

Tire-on-wet pavement 0.8 0.7

Glass-on-glass 0.9 0.4

Wood-on-metal 0.7 0.5

Metal-on-metal (dry) 0.6 0.4

Wood-on-wood 0.6 0.4

Smooth tire-on-wet pavement 0.5 0.4

Metal-on-metal (lubricated) 0.1 0.05

Metal-on-ice 0.1 0.05

Metal-on-Teflon 0.05 0.05

Teflon-on-Teflon 0.04 0.04
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As soon as the wooden block starts to move, the resisting friction force will drop to

become kinetic-friction force Fk
f . As a result, at this moment we have the excessive

resultant force acting upon the body F ¼ Frb � Fk
f ¼ Fs

f � Fk
f . Consequently,

according to the Second Newton’s Law, the wooden block will start to accelerate,

i.e., a ¼ Fs
f � Fk

f

� 

=m. As a result, the velocity of the wooden block will increase

and may become larger than υ0 with which we pull the rubber band. Therefore, the

deformation of the rubber band will decrease and the force in the rubber band will

become smaller than the static friction forceFrb < Fs
f , forcing the body to stop. Since

we are pulling the rubber band with a constant velocity its deformation will increase

again, and the force in the rubber band will again supersede the threshold static

friction force, Frb > Fs
f , causing the “jump” of the wooden block. This process will

be repeated, and it will result in a “jump-like” movement of the wooden block.

Observed phenomenon is known as the stick-slip effect.

Stick-slip effect is instrumental mechanism for functioning of all stringed

instruments, such as violin.

Antonio Stradivari violin of 1703 on exhibit at the museum in Berlin

As friction itself, the stick-slip effect is one of the key problems in many

engineering applications. For example, stick-slip effect causes dynamic errors in

CNC machine tools and is one of the main problems in the development of high
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precision manufacturing machines. On the other hand the stick-slip effect may be

very beneficial, and without its existence our life would be different. The most vivid

examples are stringed instruments.

12.2.1.1 Stick-Slip Effect of String Instruments
The stick-slip effect is instrumental in functioning of all string instruments,

such as violin. The action of a bow that drives the strings is a regular cycle of

stick-slip-stick-slip. Let us analyze one such cycle. When the bow is placed over the

strings the relative velocity between the two is zero and the corresponding friction

coefficient between the two is static friction coefficient μs. The bow sticks to a string

and drags the string along, until the internal resultant force in the deformed

string reaches the threshold value of the static friction force. At this point, the

string breaks free of the bow and then slides past it easily with a very little friction,

thanks to the low kinetic-friction coefficient μk (players put rosin on the bow to have

a large difference between static, μs, and kinetic, μk, friction coefficients).

The string doesn’t stop when it passes the original (static) position because its

momentum carries it on until it eventually stops and reverses direction. At this

point, it catches on the bow again, the static friction reigns, and the cycle begins

once more.

Various string instruments on display at the Museo de Arte Popular in

Mexico City

Since the friction force depends on the normal contact force generated by a player

and the force in the deformed string depends on the location where the bow is

placed on a string, playing string instruments is very difficult.
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String instruments require materials that have a large difference between the

static, μs, and kinetic, μk, friction coefficient. To enhance the difference between
the two friction coefficients players put rosin on the strings of their instruments.

12.3 Angles of Friction

In the previous section we have analyzed the simplest situation when a rigid body

was laying on a flat horizontal surface and was loaded with its own weight and

one external horizontal force. The line of action was parallel to the friction force.

We have used this simple case to introduce the difference between the static and

kinetic (dynamic) friction forces, and explain the phenomenon known as the stick-

slip effect.

However, in reality bodies are most often exposed to more than one external

force, including their own weight. The most general situation we can have is when

n external forces are acting on a rigid body, Fi, ri; i ¼ 1, 2, . . . , nf g, where each

vector ri defines the location of the point of action of external forces. We have

assumed thatFn ¼ Fg: as shown in Fig. 12.4a. For the clarity we show only vector ri,

which defines the point of action of force Fi.

Let us assume that the external forces do not create a couple of forces

(a moment). In such cases, as we have previously learned, all external forces may

be replaced by the one resultant force,

R ¼
Xi¼n

i¼1

Fi ¼ Rxiþ Ryj ð12:5Þ

Its line of action may be determined from the equation by defining the resultant

external moment

When more than one external force is acting on a body, we have to find the

resultant force of the external forces. It includes the weight of the body.

Fig. 12.4 Rigid body loaded with n-forces. (a) Physical model of a rigid body. (b) Physical model

of a rigid body loaded with the resultant of n-forces. (c) Free body diagram of the rigid body loaded

with the resultant force
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MR ¼ r0 � R ¼
Xi¼n

i¼1

ri � Fi ¼ 0 ð12:6Þ

where vector r0 defines line of action of resultant forceR, which in general does not

go through the center of mass of the body.

The coordinate system should be placed in such a way that one of the

coordinates, say, x-coordinate will be parallel to the contact surface (parallel

to the line of action of the friction force), and y-axis will be in the direction

normal to the contact surface.

Here the coordinate system was placed into the center of the mass of the body, so

that x-coordinate is parallel to the contact surface (parallel to the line of action of

the friction force), and y-axis is normal to the contact surface (Fig. 12.4a).

The resultant force may be expressed as a sum of its two components, one acting

parallel to contact surfaces Rx, and another that acts normal to contact surfaces Ry,

((12.5) and Fig. 12.4b). Angle θ, which determines the line of action of resultant

external force R, may be obtained from its two components

tan θ ¼ Rx=Ry ð12:7Þ
Figure 12.4c displays the corresponding free body diagram, where we also show

reaction normal force N and friction force Ff. The magnitudes of these two forces

may be obtained from the force equilibrium equations in y and x directions,

respectively. From the equilibrium equations in y-direction we find,

N ¼ Ry ð12:8aÞ

As long as Rx � Fs
f , the magnitude of the friction force will be equal to Rx, thus

Ff Rx � Fs
f

� 

¼ Rx.

We have to remember that a rigid body will be in a state of rest as long as

Rx � Fs
f , where Fs

f is the static friction force, which is the largest friction force

possible between the two selected surfaces in contact. Let us assume that the

condition Rx � Fs
f is fulfilled. In this case we find from the equilibrium equation

in x direction

Ff Rx � Fs
f

� 

¼ Rx ð12:8bÞ
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When Rx � Fs
f , the shift of normal force N is defined by the intersection of the

line of action of the resultant external force and the line of action of the friction

force.

The line of action of normal force N is shifted again in order to compensate the

moment generated by friction force Ff, and Rx component of the resultant external

force; the two (always) form a couple of forces that tends to rotate a rigid body. The

line of action of the resultant reaction force

RN,Ff
¼ Nþ Ff ¼ Ff iþ Nj ð12:9Þ

is defined by angle ϕ, commonly called angle of friction. The angle of friction may

be obtained from Fig. 12.4c.

tanϕ ¼ Ff =N ð12:10Þ
From (12.8) we may conclude that as long as Rx � Fs

f ; the line of action of

resultant external force R must be equal to the line of action of resultant

of reacting forces, RN,Ff
,

ϕ ¼ θ Rx � Fs
f

� 

ð12:11Þ

Moreover, the two resultant forces R and RN,Ff
form an equilibrium pair of forces,

i.e.,RN,Ff
þ R ¼ 0, as shown in Fig. 12.4c. From Fig. 12.4c we see that the shift of

normal force N is defined by the intersection of the line of action of resultant

external force R and the line of action of friction force Ff.

A body will be in state of equilibrium as long as RN,Ff
þ R ¼ 0.

When the horizontal component of the resultant external force is smaller than

the static friction force, Rx < Fs
f , then the resultant of external forces and the

resultant of reactions form a pair of forces. The forces are equal in magnitude

and opposite in direction.

12.3.1 Angles of Static and Kinetic Friction

At the beginning of this chapter we have learned that the largest friction force that is

possible between two surfaces in contact is the static friction force Fs
f (Fig. 12.2).

Let us define the largest angle of friction

tanϕs ¼ Fs
f =N ð12:12Þ
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which we will call angle of static friction ϕs. By combining (12.3) and (12.12)

we get that the angle of static friction is defined by the static friction coefficient.

tanϕs ¼ μs ð12:13Þ

Similarly we may define the angle of kinetic friction, ϕk,

tanϕk ¼ Fk
f =N ¼ μk ð12:14Þ

Furthermore, if we take into consideration relation (12.11), we obtain a simple

methodology for determining static friction coefficient μs from the line of action of

the external resultant force R at which the body starts to move (slide),

μs ¼ tanϕs ¼ Fs
f =N ¼ tan θs ¼ Rx=Ry ð12:15Þ

Static friction coefficient μs may be determined from the line of action of

external resultant force R at which the body starts to move.

The easiest way to modify the line of action of the resultant external force is by

placing the body exposed only to its own weight on a plane with the inclination that

can be changed.

From the angle of the plane’s inclination at which the body starts to slide we can

calculate the static friction coefficient by using (12.15).

12.3.1.1 Friction of a Rigid Body on a Slope
Let us consider a rigid body that is exposed only to its own weight Fg and is laying

on a plane inclined by angle θ which may be changed as shown in Fig. 12.5a.

Onemay immediately see that the angle of the plane’s inclination θ is the angle that
is defining the line of action of the external resultant force, as discussed previously.

Fig. 12.5 A rigid body on a slope: (a) Physical model of the rigid body; (b) free body diagram of

the rigid body on a slope
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Static friction coefficient μs between two surfaces may be determined from

the angle at which the body starts to slide. In such experiments the weight

and the size of the body are not important.

Weight of the rigid body Fg may be split into two components, Fn
g, which acts

normal to the contact surface between the rigid body and the slope, and Fd
g, which

acts parallel to the slope and tries to move the rigid body down the slope. The

corresponding free body diagram is shown in Fig. 12.5b. There are also shown two

reaction forces: normal force N and friction force Ff. The line of action of normal

force N is shifted to form a couple of forces with external force Fn
g. The moment of

these two forces compensates the moment of the couple of forces Fd
g and Ff.

As long as θ < θs a body will not move along the plane, which means that such

slopes are “self-locking,” hence, we need an additional force to move the body

down the slope.

By slowly increasing the angle of the plane inclination θ, we may find angle θs at
which the body will start moving down the plane. According to (12.15) this angle of

inclination defines the static friction coefficient, μs ¼ tan θs. This means that the

friction coefficient between two surfaces may be determined from the angle at

which the body starts to slide. In such experiments the weight and the size of the

body are not important!

From this experiment we may also conclude that as long as θ < θs the body will
not move along the slope. It means that such slopes are “self-locking,” so we need

to apply an additional external force to move the body down the slope. This

information is very important for designing wedges, axial bearings, etc.

Guidelines and Recipes for Problems Involving Dry Friction

• Friction force always acts in opposite direction to the direction an object

slides or wants to slide.

• Draw a free body diagram of the body under consideration and place a

coordinate system such that one of the coordinates, say x-axis, will be
parallel to the friction contact surfaces. If several bodies are involved,

draw a free body diagram for each of them following the same procedure.

• Find the resultant of the external forces acting on the observed body

(including weight of the body), and present it via its components in

x and y directions, R ¼
Xi¼n

i¼1
Fi ¼ Rxiþ Ryj.

• The reaction exerted by a surface on a free body consists of two

components, RN,Ff
¼ Nþ Ff ¼ Ff iþ Nj, where N is a normal force and

Ff is a tangential friction force. The reaction forces are obtained from the

equilibrium equations.

(continued)
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• The two resultant forces, R and RN,Ff
, form a couple of forces, i.e.,

RN,Ff
þ R ¼ 0

– No motion will occur as long as Rx does not exceed the maximum value

of friction forceRx < Fs
f ¼ N � μs

� 

, where μs is the coefficient of static

friction.
– For Rx < Fs

f , the friction force will always be equal to Rx, hence

Ff Rx < Fs
f

� 

¼ Rx.

– A motion will occur if the value of Rx is larger than the value of Fs
f . As

the motion takes place the friction force drops to Fk
f ¼ N � μk, where μk

is the coefficient of kinetic friction.
• A body that is placed on an incline with angle θ and exposed to its own

weight will start sliding when tan θ � μs, where μs is the coefficient of

static friction.

Example 12.1 A car of weight Fg is parked on a slope with inclination φ
(Fig. 12.6a). Determine the conditions at which the car will slide along the incline

and at which it will rollover. Assume that the static friction coefficient between the

Fig. 12.6 Car standing on a slope: (a) schematic drawing; (b) physical model of a car standing on

a slope; (c) free body diagram of a car standing on a slope
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tires and the slope is μs. The location of the car’s center of gravity C and the distance

between the wheels are shown in Fig. 12.6a.

Solution The physical model and free body diagram are shown in Fig. 12.6b, c,

respectively. Weight Fg of the car may be split into two components, contact force

Fn
g, which acts normal to the slope, and Fd

g, which acts parallel to the slope and

pushes the car to slide down the slope,

Fn
g ¼ Fg � cosφ ð12:16aÞ

and

Fd
g ¼ Fg � sinφ ð12:16bÞ

Condition at which the car will slide along the slope:
The fastest and easiest way to determine the condition at which the car will slide

along the slope is to use (12.15). The car is loaded with its own weight only;

therefore, angle of the slope inclination φ is the angle defining the line of action of

external (resultant) force Fg. According to (12.15) the car will start sliding down the

slope when

μs ¼ tanφ ð12:17Þ

It means that the condition at which the sliding starts is independent of the

weight of the car. Let us recall once again that μs depends only on the type of

materials and roughness of the two surfaces being in contact. This explains why

quality of tires in Formula 1 racing plays such an important role and why replacing

tires during the race makes sense. The importance of choosing hiking shoes with a

proper sole material is another example where the static friction coefficient plays an

essential role.

Condition at which a car will rollover:
It is obvious that as soon as a car slides it cannot rollover, except if it hits a barrier

which, however, is not envisioned in this task. Therefore, in our case rolling over

can happen only before the car starts sliding. From the free body diagram in

Fig. 12.6c we see that the couple of forces that tends to rotate the car consists of

Fd
g and Ff. Let us recall that Ff Fd

g � Fs
f

� 

¼ Fd

g , and as soon as Fd
g > Fs

f , the car

will slide along the slope. Hence, the largest “rolling moment” that is possible is

Mroll ¼ h � Fs
f

where h is a perpendicular distance between Fd
g and Ff.
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This “rollover moment” is compensated by the shift of the line of action of

normal force N that we find from the equilibrium equation in y-direction,

N ¼ Fn
g ¼ Fg � cosφ

Stability of a car will be better if the center of its gravity is as low as possible and

if the distance between the two wheels (track) is as large as possible.

Forces N and Fn
g form a couple of forces that prevents the car to rollover. The

corresponding “stabilizing moment” is

Mstab ¼ ε � N
where ε is the magnitude of the normal force shift, as shown in Fig. 12.6c. The car

will start to rollover when Mroll � Mstab,

Mroll ¼ h � Fs
f

� 

� Mstab ¼ ε � Nð Þ ð12:18aÞ

When the size of the contact surface goes to zero, i.e., ε ! 0, we do not need

external moment for rolling a body,Mroll ε ¼ 0ð Þ ¼ 0!We have just (re)invented
the wheel!

The magnitude of the “stabilizing moment” depends on the magnitude of the

normal force and its horizontal shift. Thus its maximum value is limited by the

size of the contact surfaces.

This is a very important observation, because it tells us that when the size of the

contact surface goes to zero, i.e., ε ! 0, we do not need any external moment for

rolling a body!

From Fig. 12.6c we see that the largest possible shift of the normal force is

εmax ¼ a, which defines the largest stabilizing momentMmax
stab ¼ a � N. By consider-

ing that Fs
f ¼ μs � N, we find the condition at which the car will rollover,

μs �
a

h
: ð12:18bÞ

So, the car will rollover when static friction coefficient μs will be larger than the

ratio between the half of the distance between the wheels (track) a and the vertical

distance of the car’s center of gravity from the ground h. For the most modern cars

a=h � 1 and therefore at the normal conditions they will not rollover.

From this we may also conclude that stability of a car will be better if center of its

gravity h is as low as possible and if distance between the two wheels (track) 2a is

as large as possible.
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Finally, let us consider a “border situation” when a car is at the point to slip down

the slope and at the same time it is at the point to rollover. The condition for this

situation we find by combining (12.7) and (12.8),

tanφ ¼ a

h
: ð12:19Þ

Equation (12.9) defines the largest slope on which a car may stand without slipping

or rolling over. Hence, whenever tanφ > a=h the car will either slip or rollover,

depending on the magnitude of static friction coefficient μs. If μs < tanφ the car

will slip, and if μs > tanφ the car will rollover.

Condition tanφ ¼ a=h defines the largest slope on which a car will stand

without slipping or rolling over.

Example 12.2
A heavy wooden box (weight Fg) is located on a plane inclined at angle φ. External
force F is acting on the box parallel to the incline (Fig. 12.7a). Let’s assume that the

static friction coefficient between the contact surfaces is μs, whereas the kinetic

friction coefficient is μk and μs � μk. Let us analyze the following:

(a) Between which values we need to maintain the magnitude of force F to keep

the box in the state of rest, i.e.,

Fmin < F < Fmax?

(b) How large should be force F to move the box up the incline, Fk
up, and down the

incline, Fk
down, with a constant velocity?

Fig. 12.7 (a) Wooden box pulled with the force F. (b and c) Free body diagrams of a wooden box

with tendency to move (b) up and (c) down
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Solution

(a) Determination of limits Fmin < F < Fmax

To determine the range of the external force magnitude required to keep the

box in a state of rest, i.e., Fmin < F < Fmax, we have to consider two extreme

cases.

Fmax is the magnitude of applied force just before the box will start moving

up the slope, whereas Fmin is the magnitude of applied force just before the box

will start moving down the slope. The two cases are shown in Fig. 12.7b that

shows the corresponding free body diagrams. The friction force always

opposes the direction of relative motion, or tendency to motion; therefore, in

these two cases the direction of the friction force will be different. In the first

case the friction force will point down the slope, whereas in the second case it

will point up the slope, as demonstrated in Fig. 12.7b. In both cases the

magnitude of the friction force will assume its extreme value, Ff ¼ Fs
f .

The weight of box Fg may be split into two components, Fn
g, which acts

normal to the slope, and Fd
g, which acts parallel to the slope. Fd

g tries to make

the box slide down the slope and will be called the dynamic component,

Fn
g ¼ Fg � cosφ ð12:20aÞ

Fd
g ¼ Fg � sinφ ð12:20bÞ

From Fig. 12.7b we see that the resultant of all external forces (including the

weight of the body) and the reaction force of the ground (N+Ff) form an

equilibrium pair of forces.

The equilibrium equation in y direction for both cases is the same. So,

N ¼ Fn
g ¼ Fg � cosφ ð12:21Þ

Now we can calculate the magnitude of the static friction force,

Fs
f ¼ μs � N ¼ μs � Fg � cosφ ð12:22Þ

We obtain Fmin and Fmax from the equilibrium equations in x direction. For the
case when the box has tendency to move up we have

X
i

Fx, i ¼ Fmax � Fd
g � Fs

f ¼ 0 ð12:23aÞ

whereas for the case when it tends to move down the sign of the static friction

force will change,
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X
i

Fx, i ¼ Fmin � Fd
g þ Fs

f ¼ 0 ð12:23bÞ

By combining (12.20), (12.21), and (12.23) we find

Fmax ¼ Fg � sinφþ μs � cosφð Þ, and ð12:24aÞ
Fmin ¼ Fg � sinφ� μs � cosφð Þ ð12:24bÞ

The result for Fmin requires some further analysis. From (12.24b) we see that

depending on the inclination of the plane and the magnitude of the static

friction coefficient, Fmin can be positive, equal to zero, or even negative!

Particularly interesting is the situation when Fmin � 0. This will happen when

sinφ� μs � cosφ � 0

Since the static friction coefficient may be expressed as the angle of static
friction (12.13), μs ¼ tanϕs, we obtain that Fmin � 0 when

tanϕs � tanφ ð12:25Þ

Inclination slopes φ that are smaller than the angle of static friction φ < ϕs are

called self-locking.

i.e., when the angle of static friction is larger than the inclination angle of

the slope. The inclination angles that fulfill this condition we will call self-
locking!

From (12.24) we can calculate an answer to the first task:

Fg � sinφ� μs � cosφð Þ � F � Fg � sinφþ μs � cosφð Þ
Let us discuss the second task.

(b) Determination of limits Fk
up and Fk

down

To initiate the box movement up the incline, we first need to increase the

magnitude of force F to the level required to overcome the static friction force

defined in the previous section, hence

Fmax ¼ Fg � sinφþ μs � cosφð Þ
As soon as the box starts to move the friction coefficient will decrease from

static friction coefficient μs to kinetic-friction coefficient μk. So, we can

determine Fk
up from the following equation:

Fk
up ¼ Fg � sinφþ μk � cosφð Þ ð12:26Þ
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When μs� μk it could happen that while we are capable of keeping a load on a

slope in the state of rest, we will not be able to provide enough force to maintain

its movement down the slope at a constant velocity!

Let us emphasize again that Fk
up < Fmax, which means that as soon as the

box starts to move force F has to be decreased to maintain its velocity constant.

We observe quite a different situation when we start decreasing the magni-

tude of F, which brings into dominance the dynamic component of the box

weight, Fd
g. Consequently, the box at some point assumes tendency to move

down the slope. This “switch” will happen when the magnitude of force

F will become equal to the dynamic component of the box weight, i.e.,

when Fd
g ¼ F. At this point friction plays no role. However, this is also the

point when the friction force changes its direction of action and starts acting up

the slope. Upon further decreasing of the magnitude of force F the friction will

reach the minimum.

Fmin ¼ Fg � sinφ� μs � cosφð Þ
Fmin is the smallest magnitude of force F that maintains the box in the state of

rest. At this point the box will start moving down the slope and static friction

coefficient μs will switch to kinetic-friction coefficient μk, which is always

smaller than μs.

Fk
down ¼ Fg � sinφ� μk � cosφð Þ ð12:27Þ

That means that as soon as the box starts moving down the slope the magnitude

of force F (which acts up the slope) has to be increased to maintain its constant

velocity, Fk
down > Fmin.

Since the difference between μs and μk can be quite large, see Table 12.1, it

could happen that while we are capable of keeping the load in the state of rest,

we will not be able to provide enough force to maintain its movement down the

slope at a constant velocity.

12.4 Wedges

Wedges are commonly used to elevate heavy objects such as heavy machinery in an

industrial environment. Figure 12.8a shows an example of the use of a wedge to lift

object A with weight Fg, which rests against vertical wall D. For the lifting of the

object we use two wedges B and C with the same angle of inclination φ to assure

that the object will keep its original orientation, Fig. 12.8a. Usually the weight of

wedges may be neglected. We will assume that static and kinetic friction
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coefficients μs and μk are the same for all contact surfaces. The wedge inclination

angle should be selected so that the wedge will be self-locking, i.e., tanφ < μs.
Figure 12.8b, c shows the free body diagrams for object A and for wedge B that

include the reaction and friction forces. It is important to show the direction of

friction forces correctly. The direction of the friction force depends on the assumed

direction of the impending motion.

The direction of the friction force depends on the assumed direction of the

impending motion. It cannot be guessed!

Friction force Ff,2,A that is acting on object A, Fig. 12.8b, and friction force Ff,2,B

that is acting on wedge B, Fig. 12.8c, should be of the same magnitude and opposite

in direction, Ff , 2,A ¼ �Ff , 2,B, hence they form a pair of forces. Since wedge B

moves to the left, friction forcesFf,2,B andFf,3 should oppose its movement and act to

the right as shown in Fig. 12.8c. The corresponding friction force Ff,2,A that is acting

on object A will therefore act in opposite direction, i.e., to the left. The same is true

for normal reaction forces N2,A and N2,B; they also need to form a pair of forces.

Hence N2,B ¼ �N2,A. Normal force N3 acts up because the top wedge presses the

lower wedge down. Object A presses against the wall, i.e., to the left; therefore,

reaction normal forceN1 has to act to the right. Since object A will move up, friction

force Ff,1, generated between the wall and the object, will act down, opposing its

movement. Unknown forces can be determined from the equilibrium equations.

Guidelines and Recipes for Applying the Laws of Friction to Wedges

• Draw a free body diagram of all wedges and of all other bodies involved.

• Determine the maximum static friction force at each contact surface.

• Friction forces always act opposite to the direction of the wedge’s or

body’s relative motion or its impending motion.

(continued)

Fig. 12.8 (a) Physical model of a wedge for lifting an object; (b) Free body diagram of object; (c)
Free body diagram of wedge B
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• Determine unknown forces from the equilibrium equations.

Example 12.3 Determine the smallest force F required to raise object A (Fig. 12.8).

Fg, φ, and friction coefficients μs and μk are known.

Solution The smallest force required to start moving object A upwards is the static

friction force. From then on, the smallest force required to maintain its movement at

a constant velocity is the force needed to overcome the kinetic friction force.

The magnitude of all friction forces may be expressed in terms of corresponding

normal forces Ni, N2,B ¼ �N2,A ¼ �N2, and N3 only when the motion is

impending. Hence, Fs
f , 1 ¼ N1 � μs, Fs

f , 2,A ¼ N2 � μs, Fs
f , 2,B ¼ N2 � μs, and

Fs
f , 3 ¼ N3 � μs.
Force F may be obtained from the equilibrium equations of the forces for object

A and wedge B,

X
i

FA
i,x ¼ N1 � N2 � μs ¼ 0

X
i

FA
i,y ¼ �N1 � μs þ N2 � Fg ¼ 0

X
i

FB
i,x ¼ �Fþ N2 � μs þ N3 � μs � cosφþ N3 � sinφ ¼ 0

X
i

FB
i,y ¼ �N2 � N3 � μs � sinφþ N3 � cosφ ¼ 0

From the first two equilibrium equations we find,

N1 ¼ Fg � μs
1� μ2s
� � , and
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N2 ¼ Fg

1� μ2s
� �

From the fourth equilibrium equation we then obtain,

N3 ¼ Fg

cosφ� μs � sinφð Þ 1� μ2s
� �

Finally, from the third equation we find the expression for the initial force that is

required to overcome the static friction forces,

Fs ¼ Fg � μs
1� μ2s
� �þ μs � cosφþ sinφð Þ

cosφ� μs sinφð Þ 1� μ2s
� �

" #

The force required for the continuous movement upwards with a constant velocity

of object A we obtain by replacing the static friction coefficient with the kinetic-

friction coefficient,

Fk ¼ Fg � μk
1� μ2k
� �þ μk � cosφþ sinφð Þ

cosφ� μk sinφð Þ 1� μ2k
� �

" #

Example 12.4 Determine the smallest force F required: (a) to raise and (b) to lower

object B at a constant velocity shown in Fig. 12.9a. The weight of the object B is

Fg ¼ 10 kN, the angle of the wedge inclination is α ¼ 10∘, and the kinetic friction

coefficient between all the surfaces μk ¼ 0:3.

Solution The smallest force required to start moving object B upwards is equal to

the sum of static friction forces. From then on, the smallest force required to

maintain its movement at a constant velocity is the force needed to overcome

kinetic-friction forces. In this example we need to determine a force required to

Fig. 12.9 (a) Physical model of a wedge used to raise or lower an object; (b) Free body diagram
of the object and the wedge for raising the object; (c) Free body diagram of the object and the

wedge for lowering the object
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overcome kinetic friction force. Figure 12.9b, c shows the free body diagrams for

the cases when object B is moving upwards and downwards, respectively.

(a) Object B is moving upwards
Let us first write equilibrium equations for the case when object B is moving

upwards. The corresponding free body diagram is shown in Fig. 12.9b. For

object B we have

N1 � N2 � sin α� Ff , 2 � cos α ¼ 0

�Ff , 1 þ N2 � cos α� Ff , 2 � sin α� Fg ¼ 0

and for object A,

�Fþ N2 � sin αþ Ff , 2 � cos αþ Ff , 3 ¼ 0

�N2 � cos αþ Ff , 2 � sin αþ N3 ¼ 0

The friction forces are given as,

Ff , 1 ¼ μk � N1, Ff , 2 ¼ μk � N2, and Ff , 3 ¼ μk � N3

From the above set of equations we find the solution for the case when object B

is moving upwards,

N1,up ¼ Fg
sin αþ μk cos α

1� μ2k
� �

cos α� 2μk sin α

N2,up ¼ Fg

1� μ2k
� �

cos α� 2μk sin α

N3,up ¼ Fg
cos α� μk sin α

1� μ2k
� �

cos α� 2μk sin α

and

Fup ¼ Fg

1� μ2k
� �

sin αþ 2μk cos α

1� μ2k
� �

cos α� 2μk sin α
¼ Fg

1� μ2k
� �

tan αþ 2μk
1� μ2k
� �� 2μk tan α

By expressing the kinetic friction coefficient as angle of kinetic friction, and
using (12.14), tanϕk ¼ μk, we may express the above equations for Fup as
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Fup ¼ Fg
1� tan 2ϕkð Þ tan αþ 2 tanϕk

1� tan 2ϕkð Þ � 2 tanϕk � tan α
¼ Fg

tan αþ tan 2ϕk

1� tan 2ϕk � tan α
¼ Fg tan αþ 2ϕkð Þ

After inserting numerical values we obtain

ϕk ¼ 16:7∘, and Fup ¼ 9:46 kN

It is interesting to note that sinceϕk > α the wedge will be self-locking, which
means that for lowering body B force Fwill need to change its sign (direction),

as will be shown later.

(b) Object B is moving downwards
Similarly we obtain equilibrium equations for the case when object B is

moving downwards.

N1 � N2 � sin αþ Ff , 2 � cos α ¼ 0

Ff , 1 þ N2 � cos αþ Ff , 2 � sin α� Fg ¼ 0

The equations for object A,

�Fþ N2 � sin α� Ff , 2 � cos α� Ff , 3 ¼ 0

�N2 � cos α� Ff , 2 � sin αþ N3 ¼ 0

As before, the friction forces may be expressed as

Ff , 1 ¼ μk � N1, Ff , 2 ¼ μk � N2, and Ff , 3 ¼ μk � N3

By solving the obtained set of linear equations we get the solution for the case

when object B is moving down,

N1,down ¼ Fg
sin α� μk cos α

1� μ2k
� �

cos αþ 2μk sin α

N2,down ¼ Fg

1� μ2k
� �

cos αþ 2μk sin α

N3,down ¼ Fg
cos αþ μk sin α

1� μ2k
� �

cos αþ 2μk sin α

and

Fdown ¼ Fg

1� μ2k
� �

sin α� 2μk cos α

1� μ2k
� �

cos αþ 2μk sin α
¼ Fg

1� μ2k
� �

tan α� 2μk
1� μ2k
� �þ 2μk tan α

12.4 Wedges 515



If we will express the kinetic friction coefficient again as angle of kinetic
friction and use (12.14), tanϕk ¼ μk, we may express the above equations

for Fdown as,

Fdown ¼ Fg
1� tan 2ϕkð Þ tan α� 2 tanϕk

1� tan 2ϕkð Þ þ 2 tanϕk � tan α
¼ Fg

tan α� tan 2ϕk

1þ tan 2ϕk � tan α
¼ Fg tan α� 2ϕkð Þ

After inserting the numerical values we find,

Fdown ¼ �4:33 kN

Hence, we need to pull the wedge out under object B in order to lower it. This

will be true for 0 � α � tan �1 μkð Þ. After substituting by numerical values:

0 � α � 33:4∘.

For rolling a perfectly round and rigid cylinder or wheel on a perfectly flat and

rigid surface at a constant velocity we do not need any force and any energy input!

12.5 Rolling and Rolling Resistance

Engineering structures that very closely mimic ideal rolling conditions are trains

where steel wheels are rolling over steel rails.

In Example 12.1 we have learned that rolling of a body is caused by rolling

moment Mroll, generated by a couple of forces consisting of friction force Ff and a

component of the external resultant force whose line of action is parallel to Ff. We

have also learned that rolling of a body is prevented by shift ε of the line of action of
normal force N along the contact surface between the body and ground, Fig. 12.10b.

The rolling of the body happens when

Mroll � ε � N ð12:28Þ
From the above equation we see that the size of the contact surface and conse-

quently the magnitude of ε depend on geometry of the body. This means that by

changing geometry of the body we can change ε and, as a result, the magnitude of

Mroll required to rotate the body. In the extreme situationMroll ε ¼ 0ð Þ ¼ 0 (12.28).

Friction is a precondition for wheels rotation, hence, NO friction –NO rotation.
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Let us consider a perfectly round rigid cylinder with diameter 2r0 and weight Fg,

which is placed on a perfectly flat rigid surface, as shown in Fig. 12.10a.

Figure 12.10b shows the corresponding free body diagram. The static and kinetic

friction coefficients are μs and μk, respectively. In this case the contact surface

between the cylinder and the flat surface will be just a line or a point if we observe

the contact in two dimensions, as shown in Fig. 12.10a. Therefore, the size of the

contact surface is equal to zero, ε ¼ 0, and Mroll ε ¼ 0ð Þ ¼ 0.

If the external force is larger than the static friction force, F > Fs
f , then the

cylinder will slide and rotate simultaneously.

This means that for rolling a perfectly round and rigid cylinder or wheel over a

perfectly flat and rigid surface at a constant velocity we do not need ANY external

moment or force. In other words, in described ideal case rolling of a body with a

constant velocity does not require any energy input! The external force in this case

will immediately and continuously accelerate the cylinder. If the external force is

larger than the static friction force, F > Fs
f , then the cylinder will slide and rotate

simultaneously. It is worth mentioning that if there is no friction there would be no

rotation! Static friction is therefore precondition for rotation of wheels. One may

experience this in winter while driving a car over an icy road.

Engineering structures that very closely mimic described ideal rolling conditions

are trains where steel wheels are rolling over steel rails. Next to trains are all

wheels-based vehicles. Of course, rubber tires are far from being rigid, which

means that the contact surface will not be zero (Fig. 12.11).

As soon as there is a contact surface between a body and the ground, the line of

action of the reaction force will be shifted in the direction of motion. The

amount of the shift we call coefficient of rolling resistance e[μm].

Fig. 12.10 (a) Rigid cylinder on a flat rigid surface; (b) Free body diagram of a rigid cylinder on a

flat rigid surface
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In reality ideally rigid bodies do not exist. Due to the contact forces the wheel

and the surface deform, as shown in Fig. 12.11a. This means that the contact surface

between the wheel and the ground is NOT zero and, therefore, ε ¼ e 6¼ 0 as

schematically shown in the free body diagram (Fig. 12.11b).

Hence, as soon as there is a contact surface between the body and the ground, the

line of action of the reaction force will be shifted in direction of the motion, forming

with the external normal force a couple of forces whose moment tries to prevent

rotation of the wheel (Fig. 12.11b). This moment is called rolling resistance
moment. The amount of the shift of the line of action of normal force ε ¼ e μm½ �
caused by deformation of the wheel and the ground is called the coefficient of
rolling resistance. The coefficient of rolling resistance as units of distance, and is

usually measured in micrometers, μm, millimeters, mm or inches, in.

The coefficient of rolling resistance e has units of distance, and is usually

measured in micrometers, μm, millimeters, mm, or inches, in.

From the equilibrium equation of moments about point C (Fig. 12.11b)X
i

MC
i ¼ N � e� F � r0 ¼ 0

we can find the force required to overcome the rolling resistance

F ¼ N � e
r0

¼ Fg � e
r0

ð12:29Þ

Here we assumed that N ¼ Fg, while e is the coefficient of the rolling resistance,

and r0 is the radius of the rolling body (cylinder or wheel).

To experience how the amount of deformation affects the rolling resistance you

can perform a simple experiment. Find a flat empty parking space, put the gears of

the car into neutral, and try to push the car a few meters (yards). Then deflate the

Fig. 12.11 (a) Non-rigid wheel on a flat deformable surface; (b) free body diagram of a non-rigid

wheel on a flat deformable surface
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tires for, let say 0.5 bars, and try to push the car again. You will experience the

practical meaning of (12.29)!

Guidelines and Recipes for Rolling and Rolling Resistance

• The rolling resistance results from the deformation of both a wheel and the

surface on which the wheel is rolling. As a result, reaction force N of the

ground is shifted in the direction of the body motion. The distance of this

shift e is known as the coefficient of rolling resistance and is usually

expressed in millimeters or inches.

• The force required to overcome the rolling resistance is

Froll ¼ N � e
r0

where N is the reaction force of the ground, e is the coefficient of rolling-
resistance and r0 is the radius of the rolling body (cylinder or wheel).

• Draw the free body diagram of a rolling body, write the equilibrium

equations, and solve for unknown forces.

Example 12.5 Cylinder with radius r ¼ 0:5 mand weightFg ¼ 100N is located on

a slope inclined by angleα ¼ 25�. External force F is acting horizontal, as shown in

Fig. 12.12a. The static friction coefficient between the contact surfaces is μs.
Determine the minimal friction coefficient and magnitude of force F to keep the

cylinder in the state of rest if (a) there is no rolling resistance and (b) if there is

rolling-resistance coefficient e ¼ 10 mm.

Solution The first step in solving the problem is drawing the free body diagram,

which is shown in Fig. 12.12b, for the case (a) when there is no rolling resistance,

and in Fig. 12.12c, for the case (b) when between the cylinder and the slope there is

a coefficient of rolling resistance e. In both cases we obtain minimal force F when

the cylinder has tendency of moving downwards. In all three figures the forces are

not shown in scale.
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(a) No rolling resistance
In this case the contact between the cylinder and the slope is a point and there

will be no rolling resistance. Since it is a two-dimensional problem, we can

write three equilibrium equations.

�Fg sin αþ F cos αþ Fs
f ¼ 0

�Fg cos α� F sin αþ N ¼ 0

r � Fs
f � r � F ¼ 0

and by assuming the impending motion, we can use the following relationship

Fs
f ¼ μsN

From the third equation we find Fs
f ¼ F. By introducing this into the first

equation we get

F ¼ Fs
f ¼ Fg

sin α

1þ cos α
¼ 22:2 N

By introducing the result into the second equation we find

N ¼ Fg ¼ 100 N

From the last equation we find the required static friction coefficient.

μs,min ¼
sin α

1þ cos α
¼ 0:222

(b) With rolling resistance
In this case reaction normal force N is shifted in the direction of the cylinder

motion for distance e ¼ 10 mm. We can write two equilibrium equations for

Fig. 12.12 (a) Physical model of a cylinder; (b) free body diagram of a cylinder (no rolling

resistance); (c) free body diagram of a cylinder (with rolling resistance)
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translation, one equilibrium equation for rotation, and one for the static friction

force, assuming impending motion

�Fg sin αþ F cos αþ Fs
f ¼ 0

�Fg cos α� F sin αþ N ¼ 0

r � Fs
f � r � F� e � N ¼ 0, and

Fs
f ¼ μsN

Solving for N and Fs
f from the first two equilibrium equations and substituting

them into the third equation we obtain,

r Fg sin α� F cos α
� �� r:F� e Fg cos αþ F sin α

� � ¼ 0

and

F ¼ Fg

sin α� e
r cos α

cos αþ 1þ e
r sin α

¼ 100
sin 25� 10

500
cos 25

cos 25þ 1þ 10
500

sin 25
¼ 21:2 N

Introducing this into the first two equilibrium equations we obtain

Fs
f ¼ Fg sin α� sin α� e

r cos α

cos αþ 1þ e
r sin α

cos α

� 	
¼ 23:1 N

and

N ¼ Fg cos αþ sin α� e
r cos α

cos αþ 1þ e
r sin α

sin α

� 	
¼ 99:5 N

From the equation for the static friction force we obtain the required static

friction coefficient,

μs ¼
sin αþ e=r

cos αþ 1
¼ 0:232

From the obtained results we see that when we have rolling resistance force

F required to maintain the cylinder in equilibrium is smaller than the rolling

resistance force of no rolling resistance. This is an expected result. However,

the required static friction coefficient to maintain the cylinder in static equilib-

rium is larger! From the above equation we see that as the rolling-resistance

coefficient increases, the static friction coefficient must increase in order to

maintain the equilibrium. In other words this means that if we drive with
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underinflated tires the breaking efficiency will be smaller than if the tires are

inflated correctly.

Example 12.6 Weight Q ¼ 80 kN hangs on a weightless rope, which is winded

around the cylinder with radius r1 ¼ 0:18 m (Fig. 12.13a). This cylinder is attached

to another cylinder with radius r2 ¼ 0:35 m, which serves as a brake. Braking is

achieved by pressing a break shoe against it as shown in Fig. 12.13a. Static friction

coefficient between the cylinder and shoe is μs ¼ 0:4 and dimensions of the braking

mechanism are: a ¼ 0:4 m, b ¼ 0:5 m, and c ¼ 0:08 m. Determine the required

minimal force to keep the system in equilibrium and the reaction forces in supports

O and A.

Solution The free body diagram is shown in Fig. 12.13b. The device consists of

two rigid bodies that have to be in equilibrium. We obtain the minimal force just

before weight Q starts to move downwards. For each body we can write three

equilibrium equations, two for translation and one for rotation. In addition we have

an equation for the friction force. For the first body we have

Ax þ Ff ¼ 0

Ay þ N � F ¼ 0

a � N þ c � Ff � aþ bð Þ � F ¼ 0

and similarly for the second body,

Fig. 12.13 (a) Physical model of the problem described in Example 12.6; (b) free body diagram
of the problem described in Example 12.6
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� Ff þ Ox ¼ 0

� N þ Oy � Q ¼ 0

r2 � Ff � r1 � Q ¼ 0,

and for the friction force, assuming the motion is impending

Ff ¼ μsN

By solving the set of equations we can calculate the sought for unknowns. From the

fifth and sixth equations we find

Ff ¼ Q � r1
r2

¼ 41:1 kN, and N ¼ Ff

μs
¼ 102:8 kN

Similarly, from the first and fourth equation we find

Ax ¼ �Ff ¼ �41:1 kN, and Ox ¼ Ff ¼ 41:1 kN

We may now calculate the sought for braking force from the third equation,

F ¼ aN þ cFf

aþ b
¼ 49:4 kN

Finally, we obtain the remaining two unknown forces from the second and fifth

equation

Ay ¼ F� N ¼ �53:5 kN, and

Oy ¼ Qþ N ¼ 182:8 kN

12.6 Plain Bearings

Plain bearings are the simplest and the oldest type of bearings consisting of a

bearing surface and a shaft that is in contact with the bearing surface, e.g., the

shaft rotating in a hole. Plain bearings are known since invention of the wheel. The

oldest wooden wheel dates back more than 5000 years (Fig. 12.14). It was found

about 20 km south of Ljubljana, the capital of Slovenia in 2002. It was created in

Chalcolithic period of Copper Age, 5150 BCE. The wheel has a radius of 70 cm and

is made of ash and oak.

With the invention of solid plastics plain bearings became increasingly popular

due to the dry-running lubrication-free behavior. Solid polymer plain bearings have

low weight, corrosion resistant and are maintenance free. Plastic bearings are used

from printers to cash registers in supermarkets. Other applications include agricul-

tural and textile machinery, medical devices, food and packaging machines, car
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seating, marine equipment, and many more. They are particularly important for

equipment in food and pharmaceutical industry where use of oil lubricated bearings

is not permitted. The physics behind their operation is dry friction.

Plain bearings are known since the invention of the wheel. The oldest wooden

wheel in the world was found about 20 km south of Ljubljana, the capital of

Slovenia in 2002. It was created in Chalcolithic period of Copper Age,

5150 BCE.

Depending on the direction in which plain bearings carry the load they may be

subdivided into two main groups: (a) Radial or journal bearings and (b) axial or

trust bearings. Each of them will be discussed later.

12.6.1 Radial or Journal Bearings

A radial bearing carries external load F in the radial direction and is driven by

external moment M, as schematically shown in Fig. 12.15a. Static and kinetic

friction coefficients are μs and μk, respectively.
Radial plain bearings usually consist of an inner rotating shaft or an axis and

outer supporting part, which is stationary. Of course, it can be the other way around,

the axis can be fixed and the outer part, say wheel, mobile. We will analyze the

first case.

Fig. 12.14 The oldest

wooden wheel in the world

found in 2002 in Ljubljana

Marshes, Slovenia. Present

location: Ljubljana City

Museum, Ljubljana, Slovenia
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Radial plain bearings most often consist of an inner rotating shaft or axis and

outer supporting part, which is stationary, or the other way around, the axis can

be fixed and the outer part, the wheel mobile.

In our analysis we will assume that both parts of the bearing are infinitely rigid.

Thus, there will be no rolling resistance caused by deformation of any part. Let us

further assume that the diameter of the outer nonmoving part is 2r0 and of the axis is
2ρ. The outer diameter 2r0 of a bearing is usually just slightly larger than 2ρ, hence
r0 ffi ρ. However, for easier understanding of the physical concept we will assume

that r0 � ρ, as shown in Fig. 12.15b.

Consider that the shaft is in the state of rest at point A (Fig. 12.15a) and starts

rolling clockwise with constant angular velocity ω. As a result, the axis will start

climbing against the outer part, which may be viewed as a slope with a changing

inclination (Fig. 12.15b, c). At the certain point B the angle of the slope becomes

equal to angle of static friction ϕs, i.e., tanϕs ¼ μs. At this point the shaft will slip
and the friction coefficient will drop from the static friction to kinetic friction

coefficient, i.e., μs ! μk. At the same time angle of static friction ϕs will decrease

to angle of kinetic friction ϕk, where tanϕk ¼ μk. This situation is presented in

Fig. 12.15c, which shows the free body diagram of the shaft that rotates at constant

angular velocity ω.
External moment M, needed to maintain the rotation of the shaft at a constant

angular velocity, is the moment required to overcome the friction resistance of the

Fig. 12.15 (a) Schematic presentation of plain radial bearing; (b) schematics of the physical

concept of the plain radial bearing. (c) Free body diagram of the shaft, which rotates at constant

angular velocity ω
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radial plain bearing. Let us determine the magnitude of momentM. The equilibrium

equations for the selected coordinate system (Fig. 12.15c) are

X
i

Fi,x ¼ �N � sinϕk þ Fk
f � cosϕk ¼ 0

X
i

Fi,y ¼ N � cosϕk þ Fk
f � sinϕk � F ¼ 0

X
i

Mi ¼ ρ � Fk
f �M ¼ 0

ð12:30Þ

From the above equilibrium equations we obtain,

N ¼ F

cosϕk þ μk sinϕk

, and

M ¼ ρ � F � μk
cosϕk þ μk sinϕk

ð12:31aÞ

A rotating axis climbs against the outer part, which may be viewed as a slope

with a changing inclination. The axis stops climbing when the inclination

becomes equal to angle of static friction ϕs, tanϕs ¼ μs

Angle of kinetic friction ϕk is usually small (good bearings should have small

friction coefficient); therefore, we may assume that cosϕk 	 1, and μk sinϕk 	 0,

and obtain,

M ffi F � ρ � μk ð12:31bÞ
Equation (12.31) defines momentM, required to maintain the rotation of the shaft at

a constant angular velocity, i.e., to overcome the friction resistance of the radial

plain bearing. Considering that μk ¼ tanϕk 	 sinϕk, (12.31) may be simplified

even further (Fig. 12.15c),

M ffi F � ρ � sinϕk ¼ F � ρf ð12:32Þ

and

ρf ¼ ρ � sinϕk 	 ρ � μk: ð12:33aÞ

Radius ρf of a circle of friction is used as an independent parameter to define the

characteristics of a dry friction bearing. The smaller is the radius ρf, the better is
the bearing.
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ρf is often called radius of the circle of friction and is used as an independent

parameter to define the characteristics of dry friction bearings. The smaller is radius

ρf, the better are the bearings. When the motion is impending, i.e., just before it

starts, we have

ρf ¼ ρ � sinϕs 	 ρ � μs: ð12:33bÞ

12.6.2 Axial or Trust Bearings

Axial bearings provide support in the axial direction. In general there are three

types of axial bearings: (a) conical bearings, (b) end bearings, and (c) collar

bearings. The last two are essentially special cases of conical bearings, which we

will analyze first.

12.6.2.1 Conical Axial Bearings
An example of a conical bearing, which carries an external axial force F, is

schematically shown in Fig. 12.16. Our goal is to determine external moment

M required to overcome the friction resistance of the axial plain bearing and to

rotate the axis at a constant angular velocity. We will call this moment an opera-
tional moment. Let us assume that static and kinetic friction coefficients are μs and
μk, respectively.

The bearing carries load over conical-shaped area with inner radius r1, outer
radius r2, and opening angle 2α, as shown in Fig. 12.16. We will use the cylindrical

coordinate system and assume that the pressure between the surfaces of the contact

is uniform and equal to

p ¼ F

π r22 � r21
� � ¼ const: ð12:34Þ

The normal force acting on the differentially small area of the contact surface is

then

dN ¼ p � dA ð12:35Þ
The kinetic friction force acting on dAwill bedFk

f ¼ μk � dN, and the corresponding
moment

dM ¼ r � dFk
f ¼ μk � r � p � dA

To obtain external moment M required to overcome the friction resistance of the

axial bearing and to rotate the axis at a constant angular velocity we need to

integrate (12.24) over the entire contact surface area A, hence
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M ¼ pμk

ðð
A

rdA ð12:36Þ

By considering that (Fig. 12.16)

dA ¼ r � dφð Þ � ds ¼ r

sin α
� dr � dφ

we will cover the entire contact surface by integration of r from r1 to r2, and φ from

0 to 2π,

M ¼ pμk
sin α

ð2π
0

ðr2
r1

r2dr

2
4

3
5dφ

After the integration and introduction of (12.34) we will find the moment required

to rotate the axis at a constant angular velocity,

M ¼ 2πpμk
3 sin α

r32 � r31
� � ¼ F � 2μk

3 sin α
� r32 � r31
� �
r22 � r21
� �

" #
ð12:37Þ

From (12.37) we see that conical bearings require quite large operational moments;

therefore, they are not as widely used as radial bearings; however, they are often

used in applications where rotation must be prevented.

Fig. 12.16 Schematic

presentation of a plain conical

axial bearing
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12.6.2.2 End Bearings
Example of an end bearing is schematically shown in Fig. 12.17. The equation for

the operational moment for an end bearing (moment required to rotate axis at a

constant angular velocity) may be obtained from (12.37) by assuming that r1 ¼ 0,

r2 ¼ r, and α ¼ π=2),

M ¼ F � 2rμk
3

ð12:38Þ

From (12.38) we observe very interesting and important fact that M r ! 0ð Þ ! 0.

Hence, if we reduce the contact area the required operational moment will tend

towards zero. Example of such bearing which carries the load F is schematically

shown in Fig. 12.18. Torque M required to rotate the bearing at a constant angular

Fig. 12.17 Schematic

presentation of plain axial end

bearing

Fig. 12.18 Axial end

bearing with M r ! 0ð Þ ! 0
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velocity will be very close to zero. In reality the contact area cannot be a point but

some reasonably small circular area that will according to (12.38) require a very

small torque. Such bearings are used in handmade mechanical watches and in many

other mechanisms.

12.6.2.3 Collar Bearings
In the case of collar bearings, the friction forces develop between two ring-shaped

areas that are in contact, as shown in Fig. 12.19.

The operational moment required to rotate the axis with a constant angular

velocity may be obtained from (12.37) by letting α ¼ π=2,

M ¼ 2πpμk
3

r32 � r31
� � ¼ F � 2μk r32 � r31

� �
3 r22 � r21
� � ð12:39Þ

Collar bearings are usually used for relatively small axial forces only. However,

similar engineering solutions are used in automotive industry as disk clutches, often

called friction disks. Here the friction between two disks is beneficial and the

magnitude of moment M defines the quality of the clutch. Since clutches has to

transmit the moment there should be no relative rotation between the two disks.

Therefore, the friction coefficient between the two disks will be static friction

coefficient μs.

Fig. 12.19 Axial collar

bearing
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Guidelines and Recipes for Applying Laws of Friction to Bearings

For all types of bearings first draw corresponding free body diagram and

determine resultant external load F that a bearing needs to carry.

Journal Bearings are used to provide lateral support to rotating shafts and

axises.

• The moment required to maintain shaft rotation at a constant angular

velocity is M ffi F � ρ � μk, where F is the load carried by the shaft, ρ is

the radius of the axis, and μk is the kinetic friction coefficient between the

two surfaces.

• Characteristics of bearings are often expressed with parameter called

radius (circle) of friction, ρf ¼ ρ � sinϕk 	 ρ � μk.

Axial or Trust Bearings are used to provide axial support to rotating shafts
and axis.

• For all types of axial bearings the moment required to maintain shaft

rotation at a constant angular velocity may be obtained from the formula

of conical bearings:

M ¼ F � 2μk
3 sin α

� r32 � r31
� �
r22 � r21
� �

(a) By letting r1 ¼ 0, r2 ¼ r, and α ¼ π=2 we describe the end bearing,
and

(b) By letting α ¼ π=2, we describe the collar bearing

Example 12.7 A hoist of a bridge crane (weightFg ¼ 100 kN) has four wheels and

travels horizontally along the bridge and carries load Q ¼ 500 kN, as shown in
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Fig. 12.20. The diameter of the wheels is D ¼ 0:7 m. The wheels are mounted to

the hoist via radial bearings with diameter d ¼ 0:06 m. The coefficient of the

kinetic friction is μk ¼ 0:1, and coefficient of the rolling resistance between the

wheels and the rails of the bridge crane is e ¼ 0:75 mm. Calculate force F required

to move the hoist with a constant velocity (Fig. 12.20).

Solution We will assume that external load Q and weight of the hoist Fg act along

the same line of action and that each of the wheels carries one-quarter of the load,

Fg þ Q
� �

=4. By using (12.31b), M ffi F � ρ � μk, for the radial bearings we can

calculate the moment required for rotating each of the four wheels

Mw ¼ Fg þ Q

4
� d
2
� μk

By using (12.28) we may calculate moment Mr required to overcome the rolling

resistance of each of the four wheels,

Mr ¼ Fg þ Q

4
� e

Now, by using the equilibrium equation for moments we can calculate the force

required to move the hoist with a constant velocity,

4 Mw þMrð Þ ¼ F � D
2
;

and obtain

F ¼ 8 Mw þMrð Þ
D

¼ 6:43kN

Example 12.8 Figure 12.21 shows the physical model of a disk clutch with inner

diameterd1 ¼ 0:4 m, and outer diameterd2 ¼ 0:7 m. The static friction coefficient

between the contact surfaces is μs ¼ 0:45. Calculate contact force F, which is

required to generate a uniform contact pressure, p ¼ 500 kN=m2, between two

Fig. 12.20 Physical model

of a hoist
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ring-shaped equal areas and determine maximal moment M which the clutch can

transmit.

Solution The maximal moment that the clutch can transmit may be calculated

from (12.39) by replacing kinetic friction coefficient μk by static friction

coefficient μs

M ¼ 2πpμs
3

r32 � r31
� � ¼ 16:4kN=m:

We calculate the required axial force from (12.34)

F ¼ pπ r22 � r21
� � ¼ 129:6 kN

12.7 Belts and Ropes Friction

There are several situations when flexible belts, cables, or ropes are in contact with

rigid cylinders. Examples are capstans and Halyard Winches on sailing boats

(Fig. 12.22). From the experience we know that by winding several times a rope

over the winch we can generate force S2, which will hold the sail in the required

position by pulling the other side of the rope with relatively small force S1. This is

because the friction force between the rope and the surface of the winch helps us to

keep force S2 in equilibrium.

The friction force between a rope and the surface of a cylinder helps us to keep a

very large force S2 in equilibrium with small force S1.

Let us derive a model, which will relate two forces S1 and S2 as a function of an

angle of the contact between a rope and winch φ, and static friction coefficient

μs acting between the rope and the surface of the winch. In this derivation we will

assume that winch is rigid and has cylindrical geometry, and that the rope is ideally

Fig. 12.21 Physical model of a clutch
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flexible and non-deformable in axial direction. Physical model of such a case is

shown in Fig. 12.23a, and the corresponding free body diagram in Fig. 12.23b.

To derive the relation between two forces S1 and S2 we assume that the cylinder

(winch) is rigid, and that the rope is ideally flexible and non-deformable in the

axial direction.

The rope and the cylinder are in contact between points A and B over angle φ as

shown in Fig. 12.23a. The rope is loaded on both ends with forces S1 and S2, and has

Fig. 12.22 Halyard Winch on a sailing boat

Fig. 12.23 (a) Physical model of a rope (belt) passing over a rigid cylinder. (b) Free body

diagram of a small segment of the rope (belt)
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a tendency to move to the left. At an arbitrary angle θ we cut out an infinitesimally

small segment of rope dθ and analyze its equilibrium. The free body diagram of this

segment is shown in Fig. 12.23b.

Four external forces are acting on the infinitesimal rope segment: two axial

forces, S on the right hand side, andSþ dSon the left; reaction force of the cylinder

dN ; and friction force dFs
f . We may write two equilibrium equations for the forces

and the equation for the friction force,

S � cos dθ

2

� 	
� Sþ dSð Þ � cos dθ

2

� 	
þ dFs

f ¼ 0 ð12:40aÞ

�S � sin dθ

2

� 	
� Sþ dSð Þ � sin dθ

2

� 	
þ dN ¼ 0 ð12:40bÞ

dFs
f ¼ μs � dN ð12:40cÞ

Angle of contact φ must be expressed in radians and may be larger than 2π. For
example, if a rope is wrapped n times around a cylinder, φ is equal to 2πn.

By taking into account the fact that cos dθ=2ð Þ ffi 1 and sin dθ=2ð Þ ffi dθ=2 we can
reduce the first two equations to

dFs
f ¼ dS ð12:41aÞ

dN ¼ S � dθ þ dS � dθ
2

ffi S � dθ: ð12:41bÞ

In (12.41b) the second term on the right hand side may be neglected, dS � dθ=2 	 0,

because it is an order of magnitude smaller than the first term. By introducing

(12.41) into (12.40c) we obtain,

dS

S
¼ μsdθ ð12:42Þ

In case when there is a movement we need to replace the static friction coeffi-

cient μs with the kinetic friction coefficient μk.

By integrating between the limits, we find,
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ðS2
S1

dS

S
¼
ðφ
0

μsdθ

and after the integration

lnS2 � lnS1 ¼ μsφ

ln
S2
S1

¼ μsφ, or ð12:43aÞ

S2 ¼ S1 � eμsφ ð12:43bÞ

Equation (12.43) may be used to solve problems involving band breaks. In such

problems the drum has a tendency to rotate whereas the band remains fixed.

The angle of contact φ must be expressed in radians, and it may be larger than 2π.
For example, if the rope is wrapped n times around the cylinder, φ is equal to 2πn
[rad].

In (12.43) we have assumed that the rope (belt) does not move relative to the

cylinder. In case when there is a relative movement between the rope (belt) and the

cylinder we need to replace static friction coefficient, μs with the kinetic friction

coefficient μk.
The derived formulas apply equally to the problems involving flat belts passing

over cylinders or cylindrical drums and to the problems involving ropes wrapped

around a post, capstan, or winch. They can also be used to solve the problems

involving band breaks. In such problems the drum has a tendency to rotate whereas

the band remains fixed.

Equation (12.43) may also be used to solve problems of belt drives. In this case

both the pulley and the belt rotate and our concern is to find under what conditions

the belt will slip, i.e., move relative to the pulley.

12.7.1 V-Shaped Belts

Belts used in belt drives are often V-shaped with grove angle α, as shown in

Fig. 12.24a. The corresponding free body diagrams of the V-shaped belt in z–y
and x–y planes are shown in Fig. 12.24b. The contact between a belt and a pulley

takes place along the side of a groove. In this case the equilibrium equations are

S � cos dθ

2

� 	
� Sþ dSð Þ � cos dθ

2

� 	
þ 2dFs

f ¼ 0 ð12:44aÞ
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�S � sin dθ

2

� 	
� Sþ dSð Þ � sin dθ

2

� 	
þ 2dN sin

α

2

� 

¼ 0 ð12:44bÞ

dFs
f ¼ μs � dN ð12:44cÞ

By considering again that cos dθ=2ð Þ ffi 1 and sin dθ=2ð Þ ffi dθ=2we can reduce the
first two equations to

dFs
f ¼

dS

2
, and ð12:45aÞ

dN ¼ S

2 sin α
2

� � � dθ ð12:45bÞ

By introducing (12.45) into (12.44c) we find

dS

2
¼ μs �

S

2 sin α
2

� � � dθ
and after the integration, by following the same procedure as before, we can obtain

ln
S2
S1

¼ μsφ

sin α=2ð Þ , or ð12:46aÞ

S2 ¼ S1 � eμsφ= sin α=2ð Þ ð12:46bÞ

The carrying capacity of V-shaped belt drastically increases when α ! 0. The

angle has to be adjusted to the axial strength of the belt and it is usually about

α ¼ 40�.

Fig. 12.24 (a) V-shaped belt with groove angle α; (b) free body diagram of a V-shaped belt

shown in z–y and x–y plane
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From (12.46) we can see that if α ¼ π the relation reduces to solution for flat belts,

(12.43b). On the other hand we see that the carrying capability will drastically

increase whenα ! 0. In reality the size of α should be adjusted to the axial strength,
and it is usually about α ¼ 40�.

Guidelines and Recipes for Belts and Ropes Friction

• Determine total angle of contact φ, between a rope/belt and cylinder

expressed in radians and static friction coefficient μs.
• Use equation S2=S1 ¼ eμsφ to calculate the ratio between two forces acting

on both sides of the rope.

• When the belt is V-shaped with groove angle α, use formula S2=S1 ¼
eμsφ= sin α=2ð Þ instead.

• In case when the rope/belt is moving relative to the cylinder (as in the case

of band breaks), replace the static friction coefficient μs with the kinetic

friction coefficient μk.

Example 12.9 A flexible rope is wrapped around a fixed cylinder with diameter

d ¼ 0:9 m. The static friction coefficient between the rope and the cylinder is

μs ¼ 0:4. The rope is fixed at both ends to the horizontal bar with weight

Q ¼ 200Nas shown in Fig. 12.25. Determine distance xwemaymove forceF ¼ 250

N before the rope will start to slide relative to the cylinder.

Solution As force F starts moving from point O towards point B the rope will get

the tendency to move to the right. However, as long as the rope is not moving bar

AB needs to be in equilibrium. For the bar we may write two equilibrium equations,

one for the forces in y-direction and one for the moments,

S1 þ S2 � Q� F ¼ 0
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d

2
� S2 � S1ð Þ � x � F ¼ 0

In this case the contact area between the rope and the cylinder is φ ¼ π, and the

relation between the two forces on both ends of the belt is,

S2 ¼ S1 � eμπ ¼ 3:51 � S1
By applying the result to the first equation, we will get

S1 ¼ Qþ F

1þ eμπ
¼ 200þ 250

1þ 3:51
¼ 99:7 N, and

S2 ¼ Qþ F� S1 ¼ 450� 99:7 ¼ 350 N

From the second equation we can now calculate distance x,

x ¼ d S2 � S1ð Þ
2F

¼ 0:451 m

Example 12.10 Figure 12.26a shows the physical model of a band-break. The rope

wrapped around a drum may be considered flexible. The friction coefficient

between the drum and the rope is μ ¼ 0:3. The drum is exposed to external moment

M ¼ 200 Nm. Determine the magnitude of force F, which acts at the end of a lever

to prevent the rotation of the drum if (a) the moment is acting clockwise and

(b) counterclockwise. For both cases calculate reactions at the supports A and O.

Solution The rope-break consists of two structural elements: the rope wrapped

around the drum and the lever supported at joint A and loaded with external

braking force F. Hence, we need to construct two free body diagrams (Fig. 12.26b).

Fig. 12.25 Free body

diagram of the rope wrapped

around the fixed cylinder
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In order to determine the relation between forces S2 and S1 we need to determine

the angle of the contact between the rope and the break drum. From Fig. 12.26a we

find, tan γ ¼ 0:25
0:15 ¼ 1:67; therefore, γ ¼ 1:03 rad ¼ 59∘. This leads to

φ ¼ 2π � 2γð Þ ¼ 2π � 2 � 1:03 ¼ 4:22 rad ¼ 242∘

The relation between the two forces acting on both sides of the rope may be

expressed as

S2 ¼ S1 � eμφ

From the equilibrium equation of the moments for both cases, Fig. 12.26b, we

obtain

S2 � S1 ¼ M
r . By combing both equations, we find

S1 ¼ M

r
� 1

eμφ � 1
¼ 523 N, and

S2 ¼ eμφ

eμφ � 1
¼ 1856 N

Now we can calculate the required force F acting at the end of the lever. Its

magnitude will depend on direction of the external moment acting on the drum.

Therefore we have to solve each case separately.

Case (a)—external moment is acting clockwise
When the moment is acting clockwise force S2 will appear on the left of the drum

and force S1 on the right. Force F may be obtained from the equilibrium of the

moments with respect to point A,

Fig. 12.26 (a) Physical model of a band-break. (b) Two free body diagrams of the rope-break
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0:15 � S2 � sin θ þ 0:15 � S1 � 0:15þ 0:25ð Þ � F ¼ 0

Since θ ¼ 2γ � 90∘ ¼ 28∘ (Fig. 12.26a) we find

F ¼ 0:15 � S2 � sin θ þ 0:15 � S1
0:15þ 0:25

¼ 523 N

To determine the reaction forces at supports O and A, we have to write the

equilibrium equations for the forces for both free body diagrams,

Ox þ S2 cos θ ¼ 0

Oy � S2 sin θ � S1 ¼ 0

Ax � S2 cos θ ¼ 0, and

Ay þ S2 sin θ þ S1 � F ¼ 0

From these equations we find:

Ox ¼ �Ax ¼ �1639 N; Oy ¼ 1393 N; and Ay ¼ �870 N

Case (b)—external moment is acting counterclockwise
When the moment is acting counterclockwise force S1 will act on the left of the

drum and force S2 on the right. Force F may be obtained from equilibrium of the

moments in respect to point A,

0:15 � S1 � sin θ þ 0:15 � S2 � 0:15þ 0:25ð Þ � F ¼ 0, and

F ¼ 0:15 � S1 � sin θ þ 0:15 � S2
0:15þ 0:25

¼ 788 N

For the case (b) we write the similar equilibrium equations for the forces for both

free body diagrams,

Ox þ S1 cos θ ¼ 0

Oy � S1 sin θ � S2 ¼ 0

Ax � S1 cos θ ¼ 0, and

Ay þ S1 sin θ þ S2 � F ¼ 0

From these equations we find:

Ox ¼ �Ax ¼ �462 N; Oy ¼ 2100 N; and Ay ¼ �1313 N

What We Have Learned?
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The origin of friction
Friction is a resistance encountered when one body moves relative to another body

with which it is in contact. Friction between solid bodies is extremely complicated

physical phenomena. It depends mainly on surface roughness and type of the

materials that are in contact. When two surfaces move relative to each other they

encompass elastic and plastic deformations of the surface layers of the contacting

bodies, microfractures and interaction with the wear particles. The latest research

results show that dry friction involves even excitations of electrons and phonons,

chemical reactions, and transfer of particles from one body to another. At the same

time it is astonishing that it is possible to formulate a very simple phenomenological

law for dry friction, which is sufficient for many engineering applications.

This simple law encompasses three important facts: First, the amount of friction

is independent of the area of contact. Second, friction is proportional to the normal

load that presses the surfaces together. Third, the friction force is generated in a

plane of the contact, which determines its line of action that is perpendicular to the

normal force and acts always in opposite direction to the way an object slides or

impends to slide.

Friction between solid bodies
The friction force is generated at the contact surface of two bodies; therefore, the

line of action of friction force Ff does not pass through the center of mass of the

body. Consequently the component of the resultant of external forces Rx which acts

in parallel to the contact surfaces and friction force Ff form a couple of forces that

tends to rotate the rigid body. This moment is compensated by the shift of the line of

action of reacting normal force N, which together with the normal component of the

resultant of external forces Ry, forms another couple of forces that compensates the

moment of the first couple.

The resultant of the external forces, which includes the weight of the body, and

the reactions from the ground (consisting of normal force and friction force) form

an equilibrium pair of forces.

Difference between Static and Kinetic friction
The static friction force appears when there is no relative motion between the two

surfaces in contact. It is expressed as

Fs
f ¼ μs � N

The kinetic friction force appears when the surfaces in contact move relative to each

other,

Fk
f ¼ μk � N

Here μs and μk are static and kinetic friction coefficients, respectively, and N is the

reaction of the ground force acting normal to the contact surfaces.
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Static friction force Fs
f ¼ μs � N is the largest friction force that is possible

between the two surfaces (bodies). As long as the component of the resultant of

external forces Rx, acting in parallel to the contact surface between the two bodies is

smaller than the static friction force Fs
f , Rx � Fs

f , friction force Ff will be of the

same magnitude as the external force Rx, hence Ff Rx � Fs
f

� 

¼ Rx. When Rx > Fs

f

friction force Ff will be equal to kinetic friction force Fk
f and constant within wide

range of relative velocities, Ff v > 0ð Þ ¼ Fk
f ¼ μk � N.

Static friction coefficient μs may be determined from the angle of the slope

inclination θs, when a body starts to slide μs ¼ tan θs. The kinetic friction coeffi-

cient from angle θk, when a body slides with a constant velocity μk ¼ tan θk. For
most materials μs > μk.

A body exposed to its own weight and standing on a slope inclined by angle φ
will be in the state of rest when

Fg � sinφ� μs � cosφð Þ � F � Fg � sinφþ μs � cosφð Þ
How to apply laws of friction to wedges
Wedges are commonly used to raise heavy objects. For each wedge and all other

bodies in contact we have to draw the free body diagram and determine the

maximum static friction force at each of the contact surfaces. Friction forces always

act opposite to the direction of a wedge’s or body’s relative or impending motion.

Unknown forces are determined from the equilibrium equations, which we write for

each body (wedge) separately.

Wedge inclination angle φ should be selected so that the wedge will be self-

locking, i.e., tanφ < μs.

Principles of rolling friction
For rolling a perfectly round and rigid cylinder or a wheel on a perfectly flat and

rigid surface at a constant velocity we do not need any force and any energy input.

In this case the contact surface between the two bodies (e.g., cylinder and the flat

surface) will be just a line or a point if we observe the contact in two dimensions.

The rolling resistance results from the deformation of the wheel and the surface

on which a wheel is rolling. As a consequence reaction force N is shifted in the

direction of the body motion. The distance of this shift e is known as the coefficient
of rolling resistance and is expressed in the units of length, e.g., millimeters or
inches. The force required to overcome the rolling resistance is

Froll ¼ N � e
r0

where N is the reaction of the ground, e is the coefficient of the rolling-resistance

and r0 is the radius of the rolling body (cylinder or wheel). After drawing the free

body diagram of the rolling body, we find the solution by solving the equilibrium

equations for the unknown forces.

12.7 Belts and Ropes Friction 543



Friction bearings
Plain or friction bearings are the simplest and the oldest type of bearings comprising

just the bearing surface and shaft that are in contact with the bearing surface,

e.g., a shaft rotating in a hole. Based on the direction of the load the bearings

carry we may group them into (a) radial and (b) axial bearings. In all the cases we

have to draw their free body diagrams and determine resultant external load F that

the bearing has to carry.

Journal Bearings are used to provide lateral support to rotating shafts and axis.

The moment required to maintain the rotation at a constant angular velocity is

M ffi F � ρ � μk;
where F is the load carried by shaft, ρ is the radius of the axis, and μk is the kinetic
friction coefficient between the two surfaces. The characteristics of bearings are

often expressed by parameter called radius (circle) of friction,

ρf 	 ρ � μk
Axial or Trust Bearings are used to provide the axial support to rotating shafts and

axis. For all types of axial bearings the moment required to maintain the shaft

rotation at constant angular velocity may be obtained from the formula of conical

bearings:

M ¼ F � 2μk
3 sin α

� r32 � r31
� �
r22 � r21
� �

(a) By letting r1 ¼ 0, r2 ¼ r, and α ¼ π=2, we obtain End bearing and

(b) By letting α ¼ π=2, we obtain Collar bearing

Friction of ropes and belts
There are several situations when flexible belts or cables are in contact with rigid

cylinders. The friction force between the rope and the surface of the cylinder helps

us to keep a very large force S2 in equilibrium with a small force S1. To determine

the relation between the two forces S2/S1 we have to determine the total angle of

contact, φ, between the rope (belt) and the cylinder expressed in radians, and static

friction coefficient μs. The relation between the two forces may be calculated from,

S2
S1

¼ eμsφ:

When a belt is V-shaped with a groove angle α, the relation is given as
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S2
S1

¼ eμsφ= sin α=2ð Þ

In case when a rope (belt) is sliding relative to a cylinder, (as in the case of band

breaks) the static friction coefficient μs has to be replaced with kinetic friction

coefficient μk.

12.8 Problems

12.1–12.10 A disk is attached to the pin O and loaded as shown in Figs. P12.1–

P12.10. Determine the minimum value of the force P needed to keep

the system in equilibrium. The friction coefficient between the disk and

the pusher is μ. The values of the external forces and geometrical

parameters are given in the table below. The friction between the

rope and the disk is neglected. In some figures are given geometrical

data that are not needed for solving the problem.

Figure Q (kN) a (m) b (m) e (m) α (�) μ (/)

P12.1 8 0.6 0.2 0.1 30 0.2

P12.2 18 – – – – 0.4

P12.3 10 0.3 0.2 0.1 – 0.25

P12.4 12 0.4 0.8 0.1 – 0.15

P12.5 18 0.4 0.6 0.1 – 0.3

P12.6 20 – – – – 0.4

P12.7 26 0.8 1.6 0.3 60 0.4

P12.8 20 – – – – 0.25

P12.9 18 – – – – 0.2

P12.10 12 0.8 0.8 0.2 45 0.2
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Fig. P12.1

Fig. P12.2

Fig. P12.3
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Fig. P12.4

Fig. P12.5

Fig. P12.6
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Fig. P12.7

Fig. P12.8
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Fig. P12.9

Fig. P12.10

12.11 A square block has weight P. The friction coefficient between the block and

the horizontal plane is μ. Determine angle β at which minimal forceQ should

be applied to move the block. Determine the magnitude of minimal force

Q as well.

Fig. P12.11

12.12 Three blocks A, B, and C have weights of 20 kN, 60 kN, and 120 kN,

respectively. They lie on an inclined plane. The angle between the inclined

and horizontal plane is α. The blocks are connected by rigid cables.
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The coefficients of friction between the blocks and the plane are μA ¼ 0:2,
μB ¼ 0:3 and μC ¼ 0:5, respectively. Determine angle α at which the blocks

move down at constant velocity, and the tension in the cables between blocks

A and B, and B and C.

Fig. P12.12

12.13 Blocks A and B weight 120 N and 200 N, respectively. Force P¼ 80 N is

applied to block A at the angle equal 30�. The coefficient of the friction

between blocks A and B is μ1 ¼ 0:5, between block B and the horizontal

plane is μ2 ¼ 0:3. Determine if the applied force will move blocks A and B?

Fig. P12.13

12.14 Blocks A and B weight 120 N and 200 N, respectively. Force P acts parallel

to the plane, which is inclined relative to the horizontal plane at the angle of

30�. The coefficient of friction between the blocks A and B is μ1 ¼ 0:7, and
between block B and plane C μ2 ¼ 0:2. Investigate the equilibrium state of

the system as function of the magnitude of force P?

Fig. P12.14

12.15 Two blocks A and B weight 150 N and 300 N, respectively. They lie on a

plane inclined at the angle of 30o relative to the horizontal plane and are

connected by a rigid cable. The coefficients of friction between the blocks

and the plane are μA ¼ 0:5 and μB ¼ 0:8, respectively. Check if blocks A and
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B will move? Determine the internal force in the cable that connects blocks

A and B.

Fig. P12.15

12.16 Two blocks A and B weight 500 N and 400 N, respectively. Wedge C is

placed between blocks A and B, its weight may be neglected. The

coefficients of friction between block A, the horizontal plane and wedge C

is μ1 ¼ 0:2, and between block B, the horizontal plane and wedge C is

μ2 ¼ 0:25. Determine the value of forceQ, at which one of the blocks moves

and the value of the force of friction acting on the remaining motionless

block. The angle of the wedge is φ ¼ π=8. Analyze how the size of the

wedge angle affects the magnitude of force Q.

Fig. P12.16

12.17 Cylinder A is lying in the wedge of block B. The cylinder has weight Q. The

coefficient of friction is μ. Determine the value of force P at which the

cylinder will start to move in horizontal direction. Determine the value of

angle θ at which cylinder A will start to move if exposed to force P that is

equal to weight Q.

Fig. P12.17
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12.18 A cylinder of weight Q leans on two motionless blocks A and B. The

coefficient of friction at the contact surfaces is μ. Determine the magnitude

of force T at which the cylinder will start to rotate. Determine the magnitude

of force T at which angle θ of the cylinder will be self-blocked.

Fig. P12.18

12.19 Two forces, which generate the moment of 150 kN/m, are applied to a

cylinder. The radius of the brake shoe is 0.3 m, and the coefficient of friction

is 0.4. Determine the minimum value of force Q required to keep the system

in equilibrium.

Fig. P12.19

12.20 Bar AB of length l leans against a support. The weight of the bar is P.

Determine the minimum coefficient of static friction between the bar and the

floor to maintain equilibrium. Assume α ¼ 60� and a ¼ l=2.
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Fig. P12.20

12.21 Disk D with radius r and weight W is attached to pin O, which is located at

distance e (Fig. P12.21) on the diameter of the disk and is loaded by moment

M and a force from the pusher. Determine the minimum value of force F to

keep the system in equilibrium. Friction coefficient between the disk and the

pusher is μ.

Fig. P12.21

12.22 A special friction based device consists of three parts A, B, and C and serves

to lift tubes. A tube shown in figure weights P. The coefficient of friction

between the blocks A and B and the parts is μ. Neglect friction between the

block C and blocks A and B. Determine the minimum value of angle of

wedges α to keep the system in equilibrium.
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Fig. P12.22

12.23 Friction based device for lifting tubes consist of the parts A, B, and C that

weight GA, GB, and GC. Assume that friction coefficient is μ for all contact

surfaces and α ¼ 15�. Determine the minimum coefficient of friction μ to lift
a tube that weights GT.

Fig. P12.23

12.24 Square blocks A and B weight P and Q, respectively. Their dimensions are

shown in Fig. P12.24. The coefficient of friction between block A and the

horizontal plane is μ. Block B is placed on a frictionless inclined plane.

(a) Determine the relationship betweenQ, P, α and μ needed to keep blocks
A and B in equilibrium when the reaction normal force on block A is

acting at point K. Determine the distance OK as well.

(b) Consider the case when the friction coefficient between block B and the

inclined plane is μ
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Fig. P12.24

12.25 Determine force P that will keep a disk in equilibrium if the coefficient of

friction between the disk and the brake is 0.25, F¼ 45 kN, a¼ 17 cm,

b¼ 170 cm, d1¼ 10 cm, and d2¼ 60 cm.

Fig. P12.25

12.26 Determine equal forces F1 and F2 that will keep a roller in equilibrium. The

roller is loaded by a moment equal to 80 Nm. Assume that the coefficient of

friction is 0.2, a ¼ 0:4 m, b ¼ 0:4 m, d ¼ 0:2 m, and l ¼ 1 m.

Fig. P12.26
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12.27 Determine force F to keep box P ¼ 1 kN in equilibrium. The coefficient of

friction between cylinders A and B is 0.5 and ratio D/d is 2.

Fig. P12.27

12.28 Two cylinders with radii RI and RII are loaded as shown in Fig. P12.28.

Assume Q1¼Q2. The coefficient of friction between the two cylinders is μ.
Determine the magnitude of Q1 to keep the system in equilibrium.

Fig. P12.28

12.29 Load Q is supported by two wedges A and B; their weights may be

neglected. The coefficient of friction between block A and the ground is μ.
(a) Determine the minimum force P to maintain load Q in equilibrium if

there is no friction between blocks A and B. (b) How large should force P be

if the friction coefficient between blocks A and B is μ/2?
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Fig. P12.29

12.30 LoadQ is supported by two wedges A and B, which weights areGA andGB.

The coefficient of friction between blocks is μ1 and between block A and the

ground μ2. Determine minimum force P to maintain load Q in equilibrium.

Fig. P12.30

12.31 A cylinder with radius r is moved along the horizontal plane by the force Q.

The coefficient of the rolling friction is e. What should be the value of

coefficient μ to assure that the cylinder will roll without slipping.

Fig. P12.31
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12.32 A wagon moves with a constant velocity under force P. The weight of wagon

isQ, the radius of each wheel is r and the coefficient of rolling resistance is e.
Determine force P at which wheels of the wagon will start slipping. The

coefficient of static friction is μ.

Fig. P12.32

12.33 Cylinder B and weight D are in static equilibrium. Determine the coefficient

of the rolling resistance e and minimal static friction coefficient μ.

Fig. P12.33

12.34 MomentM is applied to link OA.What should be the tensile force in link OA

to keep the system in equilibrium? Cylinder II is moving around cylinder I

without sleeping. The coefficient of friction is μ.

Fig. P12.34
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12.35 Weightless bar O1O2 connects wheels I and II. Radii of the two wheels are

r and their weights are Q. The coefficient of friction between the wheels and

the surface is μ. The coefficient of the rolling resistance is e. Determine

maximum moment M so that the system will be in static equilibrium.

Fig. P12.35

12.36 A radial bearing carries external load F¼ 20 kN in the radial direction. The

diameter of the shaft is 60 mm. Calculate the radius of the circle of friction

and moment M that is required to maintain the rotation of the shaft at a

constant angular velocity, μk ¼ 0:03.

Fig. P12.36

12.37 An end bearing carries external load F¼ 15 kN. The diameter of the shaft is

50 mm. Calculate momentM required to rotate the axis at a constant angular

velocity, μk ¼ 0:02.

Fig. P12.37
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12.38 An axial bearing with enclosing surface in the form of a ring carries external

load F¼ 50 kN. The outer diameter of the ring is 120 mm, inner diameter is

90 mm. Calculate operational momentM required to rotate axis at a constant

angular velocity, μk ¼ 0:025.

Fig. P12.38

12.39 A conical bearing carries external axial force F. Determine value of angle α
at which operational moment M, that is required to overcome the friction

resistance of the axial plain bearing and to rotate the axis at a constant

angular velocity, will be minimal. The static and kinetic friction coefficients

are μs and μk, respectively.

Fig. P12.39
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12.40 Rope AB with length l ¼ 200 m and specific weight q ¼ 90 N=m is lying on

the floor. We start to pull one end of the rope over frictionless wheel A

located at height h as shown in Fig. P12.40. Calculate distance x where the

rope touches the ground at the moment when it starts sliding against the

floor. The friction coefficient between the rope and the floor is μ ¼ 0:5.

Fig. P12.40

12.41 A disk is attached to pin O and loaded with weight Q as shown in

Fig. P12.41. Determine minimum value of force P to keep the system in

equilibrium. The friction coefficient between the disk and the pusher is

μ1 ¼ 0:6. Directions of external forces and geometrical parameters are

shown in Fig. P12.41. The friction between the rope and the cylinder with

radius r is μ2 ¼ 0:4.

Fig. P12.41
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12.42 A disk is attached to pin O and loaded with weight Q as shown in

Fig. P12.42. Determine minimum value of force P to keep the system in

equilibrium. The friction coefficient between the disk and the pusher is

μ1 ¼ 0:5. Directions of external forces and dimensions of the mechanism

are shown in Fig. P12.42. The friction between the rope and the cylinder with

radius r is μ2 ¼ 0:25.

Fig. P12.42

12.43 A disk is attached to pin O and loaded with weight Q as shown in

Fig. P12.43. Determine the minimum value of force P to keep the system

in equilibrium. The friction coefficient between the disk and the pusher is

μ1 ¼ 0:3. Directions of external forces and dimensions of the mechanism are

shown in Fig. P12.43. The friction between the rope and the cylinder with

radius r is μ2 ¼ 0:2.

Fig. P12.43
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Appendix

Vector A can be represented through its three orthogonal components

A ¼ Axiþ Ay jþ Azk

where the unit vectors i, j, and k correspond to the coordinate axes in x, y, and
z directions.

Its magnitude can be represented as

��A�� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
x þ A2

y þ A2
z

q
And its unit vector

λ ¼ A

Aj j
Thus, vector A may be represented also as

A ¼ Aj jλ
Its direction cosines (cosine of the angle between the vector and corresponding

axis) are

λx ¼ Ax

Aj j λy ¼ Ay

Aj j λz ¼ Az

Aj j
Two vectors are equal if there corresponding components are equal, i.e.,

A¼B, when Ax¼Bx, Ay¼By, and Az¼Bz.

Vector addition

A +B¼(Ax+Bx) i+(Ay +By) j+(Az+Bz) k
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Vector may be multiplied by a scalar

nA¼ nAxi+ nAyj+ nAzk

Cross product (vector product) is defined as

C ¼ A� B ¼ λ Aj j Bj j sinα
where α is the angle between the vectors, λ is the unit vector perpendicular to the

plane formed by the vectors A and B. Its direction is defined by the right hand rule.

From the definition of cross product follows

i� i ¼ 0 j� j ¼ 0 k� k ¼ 0

i� j ¼ k j� i ¼ �k k� i ¼ j

The rectangular components of the cross product are

Cx ¼ AyBz � AzBy

Cy ¼ AzBx � AxBz

Cz ¼ AxBy � AyBx

Using a determinant

C ¼
i j j
Ax Ay Az

Bx By Bz

������
������

Scalar or dot product of vectors A and B is defined as

A � B ¼ Aj j Bj j cosθ
where θ is the angle between the vectors.

A � B ¼ AxBx þ AyBy þ AzBz

From the definition of dot product follows

i � i ¼ 1 j � j ¼ 1 k � k ¼ 1

i � j ¼ 0 j � k ¼ 0 k � i ¼ 0

It should be noted that the main purpose of this Appendix is to provide a

refreshment of the rules on vectors and matrix algebra; it cannot serve as a tutorial.
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Index

A
Acceleration, 9

Angle of kinetic friction, 504

Angle of static friction, 504

B
Ball joint, 44

Beams

classification, 322

coordinate system and sign convention,

323–324

curved beams

free body diagram, 356

region AB, 356

region BC, 358

roof of shelter, 356

in engineering applications, 322

internal forces and moments

arbitrary distributed load, 337

axial force N(x), 329

intuitive approach, 341–346

mathematical corner, 338, 339

moment M(x), 332

physical model, 333

positive and negative sign, 340

region AC, 335

region CD, 335–336

region DE, 336

region EB, 336–337

shear force T(x), 331, 337, 339

in shelf supporting a radio and five

books, 333

within region, 340

piece-wise straight and curved beams

axial (normal) direction, 364

external loads, 361

free body diagram, 361

geometry, 359

intuitive rules, 365

MATLAB/software package, 361

part AB, 363–365

part BC, 365

physical model, 361

structure, 359

transverse (shear) direction, 364

regions, 322

straight, 324–329

superposition principle

beam loading, 370, 376

bending moment, 377

distributed load, 370, 376, 378

external reaction force, 377

guidelines, 381

internal axial force, 377

internal moment and forces, 370

intuitive approach, 370, 377

length and geometry, 370

normal forces, 377

preprepared solutions, 370

transverse forces, 377

C
Cables

concentrated forces

approach of joints, 393

appropriate safety factor, 390

axial force, 397

cable structure, 391

equilibrium equation, 393, 395, 396, 401

external forces, 392, 401

free body diagram, 394

geometry, 393

guidelines, 402

horizontal component, 395, 397

inserting numerical values, 401

internal forces, 392
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Cables (cont.)
length of cable, 401

method of joints, 394

negative sign, 400

previously developed equations, 399

reaction force, 399

tensile force, calculation, 396

two forces, 390, 397

unknown reactions, 391

vertical deflection, 396

definition, 390

distributed loads, 432

Brooklyn Suspension Bridge, 406

free body diagram, 403

geometry, 404, 405

horizontal component, 404

hyperbolic solution, 423–428

infinitesimal segment, 404

internal tensile force, 409–412

internal tensile force,S(x), 428–430
length of the cable,L, 430–432
origin of, 403

parabolic solution, 4, 7–409

sag of the cable, 416–423

sag of the catenary, f (see Sag of the

catenary, f)

vertical component, 404

Cardan joint, 44

Composite bodies, 196–201

Compound structures

beam elements, 460

frames

definition, 473

equilibrium equations, 461, 462, 474

free body diagram, 472–474

geometry of, 475

guidelines, 476

physical model, 473

free body diagram, 458

interaction forces, 459

mechanisms, 479–488

reaction forces, 461

schematically representation, 458

types of, 459

Compressive force, 269

Conical axial bearings, 527–528

D
Density, 6

Distributed forces

centre of gravity

concentrated force equivalent, 241

definition, 241

of flat plate, 185–189

mathematical procedure, 231

moment of body, 231

centroids

area, 191

composite bodies, 196–201

definition, 241

first moments, 190

flat wire, 190

geometrical characteristics, 190

guidelines, 200

integration, 191–196

location of, 232–234

segments, 235

Theorems of Pappus, 236–241

distributed loads

vs. concentrated loads, 241

fluid pressure, effect of, 217–220

guidelines, 220

oddly shaped cargo, 216

two-dimensional problems, 216

load and rigid body, 184

Door hinge, 44

E
Equilibrium forces

in-plane forces

equilibrium equations, 63

force diagram, 65

graphical solution, 66, 69

horizontal component and direction, 64

initial conditions, 63

magnitude F and direction α, 63, 64
MATLAB functions, 67, 70

numerical solution, 67, 69

orthogonal components Fx and Fy, 63, 64

physical model, 64, 65

rigid body equilibrium, 63

solving 2D problems, 71–87

vertical component and direction, 64

in space, solving 3-D problems, 91–108

Equilibrium pair of forces, 12

equilibriumPoint 2D, 70

F
Free body diagram (FBD), 71, 257

basketball stand, 58

the brake, 57

bridge, 54, 272

bus stop cover, 52

calendar stand, design, 46

canopy support, 46, 50

car jack, 53

caster wheel, 35
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C clamp, 52

closet, 50

coat hanger, 47

door handle, 53

earth mover, 57

fixed bar, 56

front loader, 56

guidelines, 45

highway signs, 49

house entry, 51

joint A, 273

joint B, 275, 281

joint C, 274, 282

joint D, 278

joint E, 276

joint F, 277

joint G, 277

joint H, 276

lifting system, 280

mechanical systems

definition, 30

external forces and moments, 31

idealization process, 31

loads, 33–34

physical model, 30, 31

rigid body, 30

seat design, 32

selected element, 31

simplification process, 31

swing, 31

upper bar design, 32

reactions, 35

street lamp, 58

swing set, 55

terrace cover, 55

three dimensional systems, 40–45

traffic light, 49

two-dimensional systems, 36–40

wine barrels, 51

Friction

angles of friction

angle of plane’s inclination, 502

coefficients, 499

components, 500

coordinate system, 500

definition, 501

free body diagram, 500

kinetic, 502

line of action, 499

point of action of force, 499

resultant external moment, 499

resultant reaction force, 501

rigid body, 502

static, 501

belts and ropes friction

acting clockwise, 540

acting counterclockwise, 541

angle of contact, 535

flat belts passing over cylinders/

cylindrical drums, 536

forces and moments, 538

free body diagram, 534

guidelines, 538

ideally flexible and non-deformable,

533, 534

infinitesimal rope segment, 534

physical model, 539

V-shaped belts, 536–537

components, 508

dry friction, 491

dynamic component, 508

experimental facts, 491

external forces, 492, 493

free body diagram, 492, 505

guidelines, 503

with inclination, 504

intended movement, 492

kinetic-friction force, 494, 495

limits, determination of, 508, 509

lubricated friction, 491

physical model, 492, 505

plain bearings

axial/trust bearings, 527

bearing surface and shaft, 523

collar bearings, 530

end bearing, 529

external load Q and weight

of hoist, 532

guidelines, 531

oldest wooden wheel dates, 523

physical model, 532

radial/journal bearing, 524–527

replacing kinetic friction

coefficient, 533

solid polymer, 523

reactions, 492

rolling and rolling resistance

changing geometry, 516

coefficient of, 517, 518

equilibrium equations, 520,

521, 523

free body diagram, 519, 522

guidelines, 519

kinetic friction coefficients, 517

rolling conditions, 517

rolling moment, 516, 517

static friction coefficient,

517, 521

Index 567



Friction (cont.)
rollover moment, 506

sliding friction, 490

without slipping/rolling over, 508

slope, 505

stabilizing moment, 506

static friction coefficient, 507, 509

static friction force, 493, 495

stick-slip effect

definition, 497, 498

engineering applications, 498

high precision manufacturing systems,

development, 496

instrumental mechanism, 497

physical model and free body

diagram, 496

rubber band, deformation of, 496

stringed instruments, 498

threshold magnitude, 493

wedges

free body diagrams, 511

guidelines, 511

moving object A upwards,

512, 513

object B, moving upwards and

downwards, 513–515

pair of forces, 511

wedge inclination angle, 511

Fundamantal law of nature

couple of forces

experiment demonstration, 16

moment, definition of, 16–20

moment of a couple, 21, 22

moment of a force, 22–24

Varignon’s theorem, 21

equilibrium pair of forces, 12

First Fundamental Law, 10

First Newton’s Law, 9

internal and external forces, 11

matter, 6

numerical calculations, 26–27

parallelogram of forces, 13–15

space, 6

statics, 7

systems of units, 24–25

time, 6

transmissibility, principle of, 11

G
Graphical approach, 71

H
Hardy-Spicer joint, 44

Hook’s joint, 44

I
Internal forces, 254–259

K
Kinetic-friction force, 494

L
Learning approach, 1

M
Mass, 10

MATLAB, 3, 70

Matter, 6

Mechanical systems

definition, 30

external forces and moments, 31

idealization process, 31

physical model, 30, 31

rigid body, 30

seat design, 32

selected element, 31

simplification process, 31

swing, 31

upper bar design, 32

Mechanics laws, 1

Meter, 6

Moment arm, 17

N
Newton’s First Law, 63

Numerical approach, 71

P
Physical model, 2

Plain bearings

axial/trust bearings, 527

bearing surface and shaft, 523

collar bearings, 530

conical axial bearings, 527–528

end bearing, 529

guidelines, 531
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oldest wooden wheel dates, 523

radial/journal bearing, 524–527

solid polymer, 523

R
Resultant forces

in-plane forces, solving 2D problems,

60–63, 71–87

in space

Cartesian coordinate system, 88

orthogonal components, 90

parallel vectors, 88

resulting force, 89

solving 3-D problems, 93–108

unit vector, 88, 89

Resultant moment, 114

Right-hand coordinate system, 10

Rigid bodies equilibrium

force-moment systems

Force-couple system, 117–120

moment of force, 122–129

moving force, 110–114

system of forces, reduction of, 114–116

three dimension, 170–173

two dimension

brake assembly, 135

brake pedal, 133

components and moment, 132

equilibrium equations, 134

free body diagram, 134

guidelines, 137

gymnast on the beam, 129

locations, magnitudes,

and directions, 137

MATLAB routine equilibriumBody2D.
m., 135

physical model, 135

plane of symmetry, 129, 130

real-life problems, 131

single resultant force and resultant

moment, 131

three-force body, 138–143

two-force members, 137

S
Sag of the Catenary, f

appropriate safety factor, 440

guidelines, 436

hyperbolic solution, 437, 439, 443

location of, 432, 433

mathematical corner, 432, 433, 439, 440

parabolic and hyperbolic solutions, 433,

440, 446

parabolic solution, 438, 441

quadratic equation, 447

transcendental equation, 440

vertical reaction forces, 441

Self-locking, 503, 509

Sliding friction, 490

Static friction coefficient, 498

Static friction force, 493, 498

Statics, 3, 7

Structural elements

guidelines, 259

internal forces, 254–259

truss elements

beams, 252–253

bending, 251, 252

cables, 253–254

segment model, 251

types of, 250

T
Tensile force, 269

Theorems of Pappus, 236–241

Truss structures

compound trusses, 306–308

compressive force, 269

external loads and reactions, 267

FBD (see Free body diagram (FBD))

mechanism, 268

method of joints

bridge and truck, 271

concurrent system of forces, 270

external load, 283

forces acting on joint B, 270

guidelines, 271

MATLAB, 279

outside lifting system, 279

two-dimensional truss, 270, 271

unknown internal forces, 273

zero-force members, 271

method of sections

guidelines, 295

imaginary cut, 293

right hand side and coordinate

system, 295

step-by-step procedure, 293

racing car, 266

rigid, 267

simple, 268, 269

space truss

definition, 308
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Truss structures (cont.)
free body diagram, 309–311

glass roof, 309

guidelines, 313

physical model, 310, 311

tetrahedrons, 308

tensile force, 269

two-dimensional view, 266

U
Universal coupling, 43

Universal joint, 44

V
Varignon’s theorem, 21
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