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Preface

A helicopter, with its capability of vertical take-off and landing, is a crucial means of
aerial transportation. In fire-fighting rescue operations and missions for helping sur-
vivors of an earthquake or an avalanche, helicopters have played vital roles. The
expansion of the domain of the application of helicopters, however, faces a few
serious constraints; among them is the relatively poor ride quality due to severe
vibration and noise. Vibration can reduce the fatigue life of structural components and
hence increase the operating costs. Furthermore, environmental consequences of
noise and vibration have limited the range of application and the velocity of heli-
copters. That is why reducing noise and vibration is a major goal in the design of
helicopters.

Smart materials are good candidates for providing a way to control noise and
vibrations in helicopters. Embedded strain sensing and actuation in active structures
can be used to reduce blade vibration, minimize blade vortex interaction, decrease
noise, and improve stability and response characteristics of the helicopter (Traugott
et al. 2005).

Reliable and economically viable design of structures and machine elements is
impossible without the use of accurate and efficient methods of structural analysis.
Such methods should be capable of analyzing real-world problems that involve
different types of materials. While isotropic materials behave identically when
loaded in different directions, anisotropic materials are direction-dependent.
Fiber-reinforced composites are among the latter type of materials and by proper
orientation of fibers with respect to the direction of loading, they can provide higher
values of strength-to-weight ratio compared to conventional isotropic materials.

Materials may also be classified as passive or active. The usual characteristic of
active materials is that they deform in response to electrical stimuli. The conversion of
electrical input to mechanical output corresponds to the actuator mode of operation
and the resulting deformation is used as mechanical excitation. Conversely, active
materials may generate electrical signals when they are subjected to mechanical
loading and deformation. This is the sensor mode of operation. By embedding such
sensors and actuators in structures such as helicopter rotor blades, the two modes of
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operation (i.e., sensing and actuating) are combined. A control strategy then uses the
sensor output, processes it, and provides necessary input to the actuators in order to
minimize harmful effects such as noise and vibration.

In the linear range of response, small deformations are linearly related to the
imposed loads on a structure; so, doubling a load results in doubling deformation.
However, beyond a certain level of deformation, the linear relationship between
loading and deformation ends and transforms to a geometrically nonlinear relation.
In this nonlinear region, the superposition principle is no longer valid. Therefore,
many of the conventional methods that are used for solving differential equations,
such as splitting the general solution of a non-homogeneous equation into a
homogeneous (natural or transient) and a particular (forced or steady-state) part, are
no longer applicable. Solving such problems requires the use of alternative methods
such as the perturbation methods.

Various methods have been used for analyzing the mechanical behavior of
structures. Among them, the finite element method (FEM) has been successful in
solving problems with complicated geometry and without the need to accept many
simplifying assumptions. Application of the FEM, however, requires modeling
of the whole structure and calculation of large stiffness and inertia matrices.

An alternative solution technique is the variational asymptotic method (VAM).
This method splits the solution of the three-dimensional (3-D) problem into two
major parts. The first is a two-dimensional (2-D) analysis that develops the
cross-sectional stiffness and inertia matrices as well as the warping functions. These
results can then be used in a 3-D simulation of structures without the need to repeat
the 2-D analysis. The second is a geometrically nonlinear one-dimensional (1-D)
analysis of the beam-like structure along its longitudinal direction. Combining these
two solutions provides the complete 3-D response of the structure. Since VAM
eliminates the need to recalculate the cross-sectional properties, it is a more efficient
solution method compared to the 3-D FEM.

Using VAM and the corresponding cross-sectional and 1-D solutions, this book
covers the elastic response of isotropic and composite beams and rotor blades in geo-
metrically linear and nonlinear statics, as well as nonlinear dynamics situations. The
effects of aerodynamic loading, damping, and embedded actuators are also discussed.

This book is intended as a thorough study of nonlinear elasticity of slender
beams and is targeted to researchers, graduate students, and practicing engineers in
the fields of structural dynamics, aerospace structures, and mechanical engineering.
It broadens readers’ understanding of the nonlinear static and dynamic response of
composite beams, required in many applications such as helicopter rotor blades and
wind turbines, through comprehensive and step-by-step analysis. It provides
graduated analyses of phenomena beginning with the fundamental (static, linear,
isotropic, passive, and clamped) progressing through the complex (dynamic, non-
linear, composite, with actuators, and articulated), and it models both clamped and
hinged rotating beams and blades as well as analyzing beams and blades with
embedded active fiber composites.

The presented static solution can be used independently or to provide the initial
conditions that are needed for performing a dynamic analysis. The considered
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dynamic problems include the analysis of accelerating clamped (hingeless) and
articulated (hinged) rotating blades. Independent numerical solutions for the tran-
sient and the steady-state responses are presented, and as a verification, it is
illustrated that the transient solution converges to the steady-state solution obtained
by the shooting method. Other key topics include calculating the effect of per-
turbing the steady-state solution, coupled nonlinear flap-lag dynamics of a rotating
articulated blade with hinge offset and aerodynamic damping, and static and non-
linear dynamic responses of composite beams with embedded piezocomposite
actuators. The results obtained in each section are verified or justified.

The book starts with an introduction in Chap. 1, which is then followed in Chap.
2 by a review of the VAM and the equations of motion. These equations apply to
beams made of arbitrary materials and cross sections. In the rest of the book, the
equations of motion are used for solving a set of progressively complex problems
involving the dynamics of rotating blades.

Chapter 3 is dedicated to the linear static analysis of isotropic and composite
beams, and it is followed by Chap. 4 that presents the nonlinear static analysis of
such structures. In Chap. 4, foreshortening which is an inherently nonlinear phe-
nomenon is used for the verification of the results.

Chapter 5 is on the transient nonlinear dynamics of a clamped (hingeless) blade
that rotates at variable speed. The rotor blade starts its motion from rest and after an
acceleration interval converges to a steady-state condition. In order to solve this
problem, an explicit (direct) integration algorithm is developed that utilizes the
finite difference and the perturbation methods. A computer program that uses this
algorithm solves the transient form of the nonlinear differential equations of motion
and provides the elasto-dynamic response of the rotating composite blade. Using
this method, the steady-state behavior can also be obtained. However, it is only
possible after the whole transient response of the blade is calculated.

In Chap. 6, an alternative method for obtaining the steady-state behavior of a
rotating blade is presented. This method does not require calculating the transient
response in advance. Instead, it solves a boundary value problem that is based on
the steady-state form of the nonlinear differential equations of a beam. This problem
is then converted to a series of initial value problems which are solved by iterating
an implicit (indirect) integration method. In each iteration, the estimations for the
unknown initial conditions are improved by the use of the Newton–Raphson
algorithm and the shooting method. The solution is repeated and its convergence is
checked at every step. When a convergence criterion is satisfied, the correct solu-
tion of the boundary value problem and the steady-state response of the blade are
obtained. The calculated response includes the steady-state values of forces,
moments, velocities, and angular velocities along the blade. These results compare
very well with the solution obtained in Chap. 5 as the transient solution discussed in
Chap. 5 converges to the steady-state solution of Chap. 6. Having calculated the
steady-state response, the effect of imposing input perturbations on the blade (when
it is already in its steady-state condition) is analyzed. Small perturbations are
considered; therefore, the solution is valid only near the steady-state response.
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The rotating blades considered in Chaps. 5 and 6 are all clamped (hingeless). In
Chap. 7, the dynamics of rotating articulated (hinged) blades, both rigid and elastic,
is discussed. It starts with an introduction on the extended Euler equations of
motion and continues by using these equations to calculate the coupled nonlinear
flap-lag rigid body dynamics of articulated blades. The rigid body dynamics at the
root of the blade is used to provide the boundary conditions for the case
of the elastic rotating articulated blade. These boundary conditions together with the
solution method developed in Chap. 5 are implemented to calculate the nonlinear
dynamic response of an accelerating articulated blade. The solution is shown to be
in good agreement with approximate formulas for the axial force and with the
implemented boundary conditions.

Embedded actuators are used in rotating blades to control their shape in order to
reduce noise and vibrations or to gain other satisfactory performance such as higher
lift forces. In Chap. 8, the effect of inclusion of embedded piezocomposite actuators
in a composite beam structure is analyzed. Both geometrically nonlinear static and
dynamic cases are considered and the response sensitivity to the performance of
actuators oriented at various directions along the blade is evaluated. Specifically,
the steady-state force and moment components generated in the rotating blade are
calculated. Such results can be used to control the elasto-dynamic response of
rotating blades.

This book is based on my second Ph.D. thesis in mechanical engineering that I
worked on in Carleton University in Ottawa. However, in this book, I also use a few
solution techniques that I had developed in my earlier research for my first Ph.D. in
mechanical engineering in Sharif University of Technology in Tehran. That
research dealt with the dynamics of structures subjected to moving loads.

There have been a number of people that have contributed to this book in one
way or another. First, I sincerely thank Professor Fred Nitzsche, for introducing
Professor Hodges’ fascinating book, Hodges (2006), to me. This is clearly the best
resource for understanding the VAM. Also during the research that led to this book,
I have had the privilege of receiving plenty of valuable hints and suggestions from
Professors Dewey H. Hodges of Georgia Institute of Technology, Wenbin Yu of
Purdue University, Carlos E.S. Cesnik of University of Michigan, and Rafael
Palacios of Imperial College for which I am grateful. The constructive comments
received from four anonymous reviewers of an earlier draft of this book are also
thankfully appreciated.

I also gratefully acknowledge the Alexander Graham Bell Canada Graduate
Scholarship Award (CGS) by the Natural Science and Engineering Research
Council of Canada (NSERC), the J.Y. and E.W. Wong Research Award in
Mechanical/Aerospace Engineering, and the Research Assistantship Award for
carrying out my Ph.D. research that ultimately led to this publication.

Last, but not least, I appreciate the love and support that I have received from my
wife Marjaneh, my daughter Mehrnaz, and my son Ali during all the years that I
have been working on this book and the corresponding research.

Mehrdaad Ghorashi, Ph.D., P.E.
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Chapter 1
Introduction

1.1 Preliminary Remarks

The analysis of structures that have one dimension much larger than the other two
can be done by modeling them as beams. A beam model, also called a
one-dimensional (1-D) model, provides the advantage of simplicity of analysis and
faster solution. Such a modeling is widely used in applications like helicopter rotor
blades and wind turbine blades. However, one should always assure that the simpler
1-D model is able to provide a satisfactory picture of the truly three-dimensional
(3-D) real-life problem.

In many engineering applications where isotropic materials are used and the
member under consideration has simple geometry and undergoes small deforma-
tions, a classical beam theory can be used to provide an adequate solution for the
3-D problem. However, there are severe limitations for the use of classical beam
theories in today’s engineering applications.

The first limitation is the replacement of isotropic materials by composite
materials in many applications including helicopter rotor blades. A major reason for
the growing use of composites as the materials of choice is that they provide much
higher strength-to-weight ratios compared to isotropic materials. The second limi-
tation is that structural members in many engineering applications have complex
geometry that includes initial curvature.

The third limitation is due to the small deformations assumption that is a major
simplifying assumption in classical beam theories. The main impact of this
assumption is that all formulations become linear, and therefore, one may use the
superposition principle for solving problems. However, many lightweight and
thin-walled structural members undergo large deflections (even though at small
strain) when subjected to service loads. An example is the aeroelastic analysis of
high-altitude, long-endurance (HALE) aircraft that features high aspect ratio flex-
ible wings that requires the analysis of structural geometrical nonlinearities and
dynamic stall (Jian and Jinwu 2009). As a result, the nonlinear behavior of such

© Springer International Publishing Switzerland 2016
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structures cannot be ignored and nonlinear theories that can handle large defor-
mations should be used. Furthermore, geometrical nonlinearity is not the only type
of nonlinearity, and the material behavior or the existence of friction between
contacting surfaces of objects can also result in nonlinear formulations. A major
difficulty in analyzing nonlinear problems is that the superposition principle, which
is widely used for solving linear problems, is not applicable to nonlinear ones.

In order to understand the fourth limitation of classical beam theories, the
concept of warping should be reviewed. Figure 1.1a illustrates the application of
three force and three moment components (collectively named, stress resultants) to
the free end of a beam with rectangular cross section. Other parts of Fig. 1.1 show
the warping of this cross section, when the beam is free to warp (it has no warping
restraint), as a result of the application of each stress resultant.

Warping restraint is another source of nonlinearity and departure from classical
beam theories. Twisting a member with warping restraint requires increasingly
more torque than what is needed in the simple linear torsion theory. So, the relation
between torque and twist angle, even in the elastic region, is not linear. The reason
for this phenomenon is that warping restraint restricts the flow of the material (Park
and Yang 2007).

In Fig. 1.2, the effect of warping restraint on the clamped end of a cantilever beam
subjected to torsion is shown. It is seen that, as predicted by the Vlasov’s theory, a
bimoment (or moment couple) is generated at the clamped end to prevent the
warping shown in Fig. 1.1d from happening. Variations of such moments along the
length of the beam would be possible only if self-balanced shear forces are

Fig. 1.1 Cross-sectional warpings: (a) six stress resultants, (b) extension-induced in-plane
warping (due to F1), (c) bending-induced warping (due to M2), (d) torsion-induced out-of-plane
warping (due to M1), and (e) shear-induced out-of-plane warping (due to F2) (Pai 2014),
© Elsevier Ltd., reprinted with permission
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developed in flanges. Such force couples in turn generate a restrained
warping-induced torque that is added to the Saint-Venant’s torque to provide the
total torque.

In-plane and out-of-plane warpings are much smaller than the global displace-
ments. However, these warpings offer extra degrees of freedom for cross-sectional
deformation and hence significantly affect stiffness values. In linear extension,
torsion, and bending solutions for isotropic beams, one commonly applies
Saint-Venant’s principle. Saint-Venant’s principle implies that stresses at a point far
from the loaded cross section depend only on the magnitude of the applied load and
are independent of the load distribution pattern over the loaded cross section.

Deformations at points away from a loaded section subject to nonzero stress
resultants are called central solutions, Saint-Venant’s solutions or particular solu-
tions. Saint-Venant’s principle also implies that a set of distributed loads having
zero resultant forces and moments (i.e., a set of self-balanced loads) produces a
strain field that is negligible at points far away from the loading end. For highly
anisotropic and heterogeneous materials, however, such a self-balanced distributed
load can result in nonzero strain fields with long decay lengths, which are called
boundary solutions, extremity solutions, eigensolutions, or transitional solutions
(Pai 2014). The warping restraint effect is due to the contribution of such boundary
solutions, and they are needed in the analysis of composite beams.

The fourth limitation of classical beam theories is that they use ad hoc
assumptions about the displacement field and usually ignore warping displacements
or their couplings. The most accurate and powerful of the ad hoc methods appears
to be Jung et al. (2002). While ad hoc assumptions are not valid in general, they
work well for problems with simple geometry and for homogeneous and isotropic
materials. Conventional beam models rely on ad hoc assumptions on displacement
or stress fields. An example is the Saint-Venant’s torsion theory which assumes that
the cross section of a beam remains rigid in its own plane as it twists (i.e., warping
is possible only along the longitudinal axis of the beam). Ad hoc assumptions,
however, may not provide acceptable results for problems with more complex
geometry and for non-homogeneous and composite materials. In those cases, ad

Fig. 1.2 From left to right—illustration of Saint-Venant’s torque, restrained warping-induced
torque and bimoment on an I-beam (Kollár and Pluzsik 2012), © SAGE Publications, reprinted
with permission
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hoc assumptions are not valid and effects like in-plane and out-of-plane components
of warping displacement as well as the bending-twist and extension-twist couplings
should be taken into consideration.

In the analysis of helicopter blades which are made of composites (for weight
saving and enhanced fatigue life) ad hoc assumptions do not provide satisfactory
results. In fact, even though warping is small, it has effects that cannot be ignored.
While one may ignore its influence on the inertial and applied load terms, due to its
magnitude, the strain field depends on the gradient of the warping displacement,
which is not necessarily small. Ad hoc assumptions are neither necessary nor
correct in any sense (Hodges 2006).

Helicopter rotor blades have initial twist, and since they are laterally flexible,
they usually operate in the nonlinear range. Therefore, a beam theory that is suitable
for composite rotor blade analysis is required to include geometrical nonlinearities
and initial twist. The beam can undergo small strain, while it experiences large
deformations and rotations. The theory must accurately analyze global deformation
problems, such as static deflection, buckling, natural frequencies, mode shapes,
dynamic stability, and aeroelastic stability (when augmented by a suitable aero-
dynamic theory); it must accurately recover 3-D stresses. In addition, it should
reduce to the usual elementary theory when applied to prismatic, isotropic beams
(Yu et al. 2012).

In the past three decades, research has been focused on the analysis of aniso-
tropic composite beams using the variational asymptotic method (VAM). VAM, as
a powerful method for solving composite thin-walled beam problems, was first
introduced in Berdichevsky (1981). VAM solves problems that can be formulated
as minimization of a functional (e.g., finding the stationary points for the energy
functional) and have an inherently small dimension (e.g., beams, plates, and shells).
The solution has the common advantage of asymptotic methods of being mathe-
matically well grounded with no ad hoc assumptions about displacement or stress
fields. Interestingly, there are no theoretical restrictions on the geometry of the cross
section or on the materials of the problems for which VAM can be applied. It is
especially proper for realistic modeling of initially curved and twisted anisotropic
beams (like rotor blades) (Hodges 2006).

Figure 1.3 illustrates the beam analysis procedure by VAM. It can be seen how
VAM splits the three-dimensional (3-D) geometrically nonlinear elasticity analysis
of active composite rotating blades into two major parts. The first part is a (usually)
linear two-dimensional (2-D) analysis to determine the cross-sectional stiffness and
mass matrices as well as the warping functions. These results can then be used in
3-D simulation of structures without the need to repeat the 2-D analysis.

The second part is a geometrically nonlinear one-dimensional (1-D) beam
model, which utilizes the stiffness and mass matrices in order to solve the nonlinear
intrinsic equations of motion of a beam. These equations are not tied to a specific
choice of displacement or rotation variables. Combining these two solutions pro-
vides the complete 3-D response of the structure. Since VAM eliminates the need to
recalculate the cross-sectional properties, it is a more efficient solution method
compared to the 3-D finite element method (FEM).
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This beam theory addresses the following three aspects: a cross-sectional anal-
ysis leading to a stiffness matrix that is input into the 1-D analysis, the 1-D analysis
itself, and the formulae or procedure to recover stress, strain, and 3-D displacements
(Rajagopal and Hodges 2012).

The cross-sectional analysis requires details of the cross-sectional geometry,
elastic constants of materials, and material densities. It is solved by minimizing
strain energy with respect to warping. The asymptotic analysis yields asymptoti-
cally exact results for section constants for beams with thin-walled geometries.

For certain cases like isotropic beams with relatively simple cross-sectional
geometry or thin-walled beams made of laminated composite materials, the 2-D
analysis could be performed analytically and the stiffness matrices be calculated in
closed form. These matrices depend on the cross-sectional geometry, material
properties, and the initial twist and bending curvature distributions along the beam.

For complex cross sections, a 2-D FEM computer program named the variational
asymptotic beam sectional analysis program (VABS) can be used to implement the
VAM cross-sectional analysis. Professor D.H. Hodges initiated the research project
that gave birth to VABS when he was first introduced to VAM by Professor
V.L. Berdichevsky at Georgia Tech in 1989 (Hodges 2006). Professor C.E.S. Cesnik
is the author of the original version of VABS in Fortran 77, which appeared in 1992.

Fig. 1.3 Beam analysis procedure by VAM (Bauchau and Hodges 1999), © Kluwer Academic
Publishers, reprinted with permission
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He continued his work on VABS for piezoelectric materials at MIT and later at
University of Michigan. The original version of VABS was a research code, but later
research led to its transition to a production analysis tool for practicing engineers
(Palacios 2005). In Chen et al. (2010), a comprehensive set of test problems have
been presented and solved using VABS and a few other methods including analytical
methods. VABS has been shown to be an effective tool in the analysis of complex
elasto-dynamic problems like the analysis of the behavior of helicopter rotor blades.

The mentioned beam modeling has been used for analyzing beams and rotating
blades with and without embedded actuators. The reason is that modeling initially
twisted and curved active rotor blades using 3-D FEM is computationally demanding
and it is not suitable for preliminary design or for control purposes. Beam modeling is
suitable since a helicopter rotor blade is a slender structural member and it can be
modeled as a thin-walled composite beam. Such amodel for helicopter rotor blades is an
efficient alternative (Hopkins andOrmiston2003).Beammodelingof these structures is
simpler and is expected to yield sufficiently accurate results. This dimensional reduction
transforms the 3-D rotating structure into a 1-D nonlinear rotating composite blade,
which utilizes the cross-sectional properties obtained by a 2-D analysis done byVABS.

The objective of this book is to analyze the geometrically nonlinear elasto-static
and elasto-dynamic responses of hingeless or articulated composite beams with or
without embedded actuators, and with or without the effects of aerodynamic loading
or damping. After considering a few static problems, a scenario is studied in which
the blade is accelerated from rest and its speed of rotation gradually converges to a
steady-state value. Both the transient and the steady-state solutions are calculated.
Results of the cross-sectional analysis are obtained by VABS, and the solution of
the nonlinear intrinsic equations of the beam is performed using finite differences,
perturbations, and the shooting method. To verify the results, they are compared
with those of the perturbed steady-state method.

The mentioned topics are mainly based on the contents of Ghorashi and Nitzsche
(2008), Ghorashi (2009), Ghorashi and Nitzsche (2009), and Ghorashi (2012) and
are covered in the following order:

1. Linear and nonlinear elasto-statics of passive isotropic or composite beams.
Such static solutions provide initial conditions for performing the corresponding
dynamic analyses.

2. Nonlinear dynamics of passive clamped rotating composite blades (transient and
steady-state) accelerating from rest.

3. Analyzing the effects of perturbations on the response of rotating blades that are
already at their steady-state condition and comparing the results with those of
the accelerating blade analysis.

4. Generalizing the formulation of the nonlinear dynamics of rigid articulated
rotating blades by considering the nonlinearly coupled flap and lag motions,
hinge offset, and aerodynamic loads.

5. Combining the developed elastic model of the beam and the rigid body
dynamics model in order to formulate the hinge boundary condition of an
accelerating elastic articulated blade.
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6. Linear and nonlinear statics and stress analysis of composite beams with
embedded piezocomposite actuators.

7. Nonlinear dynamics of rotating composite blades with embedded piezocom-
posite actuators and analyzing the sensitivity of the response of such blades to
excitations received from actuators located at various directions.

1.2 Literature Review

A comprehensive monograph on the subject of nonlinear behavior of composite
beams is Hodges (2006). In this reference, the reasons why VAM is the optimal
solution method and the advantages of using the 1-D intrinsic equations of beams
have been discussed. It also includes a detailed review of the literature. The major
topics, which are not covered in that reference, are the application of embedded
actuators in beams and rotating blades and the way one can analyze complex
boundary conditions. In what follows, a summary of other significant contributions
to the subject is listed.

Danielson and Hodges (1987) and Atilgan and Hodges (1991) are among the
earliest studies on the subject. They include the nonlinear beam kinematics that is
valid for non-homogeneous, anisotropic beams undergoing large global rotation,
small local rotation, and small strain.

A review of various boundary conditions imposed on helicopter blades can be
found in Rosen et al. (1991). In this reference, many combinations of boundary
conditions at the root of the blades, including those with springs and dampers, are
discussed. The formulation is applicable to both linear and nonlinear problems, but
it is valid only for isotropic materials.

In Berdichevsky et al. (1992), VAM is applied to the cross-sectional analysis of
thin-walled closed anisotropic beams and results in a closed-form solution for the
4 × 4 stiffness matrices. The nonlinear 1-D intrinsic equations of a beam are used in
Shang and Hodges (1995) in order to perform the stability analysis of a hingeless
composite rotor blade in hover. The stability equations are obtained by imposing
small time-dependent perturbations to the steady-state solutions and substituting the
summation into the intrinsic equations of motion. Due to sparse coefficient matrices,
the method is computationally efficient and has low memory requirements. The
obtained numerical results are compared with available experimental data extracted
from Sharpe (1986).

A revised and extended version of Shang and Hodges (1995) is Shang et al.
(1999) in which it is shown that composite blades with appropriately chosen values
of initial twist and curvature can exhibit significantly improved stability charac-
teristics while simultaneously reducing steady-state loads. It is also shown that
blades with positive pitch–flap coupling have increased stability margin and
reduced structural load.
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In Hodges et al. (1996), VAM is used in order to analyze initially curved and
twisted composite beams. The resulting nonlinear equations are solved numerically
for both the nonlinear static deformation and the linearized free vibration about the
static equilibrium position. The results are compared with the available exact
solutions for isotropic beams and the published experimental data for rotating
isotropic and composite beams with swept tips, which are presented in Epps and
Chandra (1996).

In Trabucho and Viãno (1996) and Buannic and Cartraud (2000, 2001), the
formal asymptotic method (FAM) has been presented. This method was later
generalized in Kim et al. (2008), and its results were compared with VAM. The
results of the two methods have been shown to be close (Kim et al. 2008).

VABS was first introduced in Cesnik and Hodges (1997) where it has been
applied to perform the cross-sectional analysis of composite box and I-beams with
initial twist and curvature. It has been used for the computation of cross-sectional
properties like stiffness matrix, principal axes, neutral axes, area centroid, mass
centroid, and mass matrix.

At present, there are mainly two versions of VABS in use. A comparison of the
capabilities of these two versions can be found in Ghorashi and Nitzsche (2007) and
in Roy and Yu (2009a). One of these codes has been developed at Georgia Tech
and University of Utah and is simply named VABS. Professor Wenbin Yu who is
presently at Purdue University is maintaining it. The results of this code have been
validated in Yu et al. (2002). In this reference, the VABS results for elliptical,
channel, and triangular prism bars, as well as box and I-beams, are compared with
other methods. It is shown how the classical solution loses its validity in the
nonlinear range of behavior of composite members. Furthermore, it has been
demonstrated that although VABS is restricted to beam applications, it provides a
level of accuracy, which is comparable to that of standard 3-D FEM codes but with
fewer computing and processing requirements. In Yu and Hodges (2004), the
results of VABS are compared with those of 3-D elasticity. Identical results were
reported for beams with elliptical and rectangular cross sections. Therefore, VABS
can be used to avoid difficulties in dealing with 3-D elastic problems while pro-
viding results that are coincident with the exact solutions.

The other version is the University of Michigan version (UM/VABS) that has
been released and maintained by Professor Carlos E.S. Cesnik. The success of the
VAM as confirmed by 3-D elasticity FEM solutions and experimental results has
led researchers to extend its application to smart beams with embedded active
materials like active/macro fiber composites (AFC/MFC) (Cesnik and Palacios
2003; Palacios and Cesnik 2005, 2008). This extension has been included in
UM/VABS and more recently in VABS (Roy et al. 2007). UM/VABS is used to
analyze a beam with embedded actuators and to determine its sectional properties
such as stiffness and mass matrices, the chordwise locations of the center of gravity,
and the shear center. It can also provide the actuation forces, moments, and
deformations induced by smart materials.

Recently, a third version of VABS, named YF/VABS, has been introduced and
explained in Friedmann et al. (2009). It is based on coupling VAM and the work
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presented in Yuan and Friedmann (1995, 1998). The model has been validated by
comparing the fundamental rotating natural frequencies, aeroelastic stability char-
acteristics in hover, and vibratory hub loads in forward flight with other composite
rotor blade analyses.

In Cesnik and Shin (1998), an asymptotic formulation for analyzing multi-cell
composite helicopter rotor blades with integral anisotropic active plies is presented.
It discusses both the cross-sectional and the 1-D analyses. The theory is applied to a
two-cell thin-walled box beam as well as a single-cell airfoil-shaped cross section
(NACA 0012). In Cesnik and Ortega-Morales (1999), the VAM’s 2-D analysis is
applied to include the effect of an embedded active element in the structure. An
extended version of the same paper is Cesnik and Ortega-Morales (2001). In this
paper, stiffness and actuation constants for an active box beam, an active NACA
0012 blade, Mach-scaled CH47-D active blade section, and the active twist rotor
(ATR) prototype blade are calculated.

In Cesnik and Shin (2001a, b), piezocomposite actuators are added to the model
and an asymptotic closed-form solution of the actuation force using Berdichevsky
et al. (1992) method is presented. But since in Berdichevsky et al. (1992), the shell
bending strains are neglected, incorrect stiffness constants for certain cross sections
are reported in Cesnik and Shin (2001a, b) that also affected the active material
modeling. This flaw is discussed in Volovoi and Hodges (2000, 2002) and Volovoi
et al. (2001). In these references, an asymptotically correct theory for thin-walled
beams is developed. It is demonstrated how neglecting the shell bending strains can
lead to an overprediction of the torsional stiffness for certain cross sections by
almost 100 %. It is also shown that contrary to a widespread belief during twisting a
cross section of a composite beam is not rigid in its own plane.

In Roy et al. (2007), a classical model with piezoelectric materials is developed
and the results are compared with UM/VABS and a 3-D FEM solution performed in
ANSYS. As a continuation to that research, in Roy (2007) and Roy and Yu (2009a,
b), a generalized Timoshenko model for a composite rod with embedded or
attached piezoelectric materials is developed. The results of this electromechanical
analysis are compared with those of the ANSYS’s 3-D solution, and excellent
agreement is reported.

The VABS programs can calculate 2-D asymptotically correct solutions for
slender beams with embedded actuators and calculate sectional properties for solid,
open, closed, and multi-cell thin-walled cross sections. The beams can be initially
curved and twisted, been made of arbitrary material (isotropic or composite), and
have no constraint on their cross-sectional geometry. Trapeze effect and embedded
actuators can also be included in the analysis. Trapeze effect is a geometrically
nonlinear phenomenon, and it deals with the variations of the torsional rigidity and
the torsional natural frequency of rotor blades due to changes in their rotational
speed that alter the axial force. Using VABS, the classical, generalized Timoshenko
(for analyzing shear deformation) and generalized Vlasov (for analyzing
thin-walled open-section beams) studies have been performed.

Traugott et al. (2005) presents the use of VAM and the nonlinear 1-D analysis in
order to obtain the response of an active articulated rotor blade. The cross-sectional
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model with embedded actuators used in Traugott et al. (2005) is based on the model
developed in Patil and Johnson (2005). The rigid body modes of the articulated
blade are analyzed, and a multi-input and multi-output (MIMO) controller based on
full-state optimal control and optimal state estimation is presented with the aim of
enhancing the damping characteristics of the weakly damped system. No detail
about the way the articulated blades and their boundary conditions are modeled is
given.

The complex, unsteady aerodynamic environment near rotor blades in forward
flight causes poor ride quality, high levels of vibration and noise, and low fatigue
life of structural components. Higher harmonic control (HHC) and individual blade
control (IBC) have been proposed to tackle these problems and to improve heli-
copter performance. The HHC is accomplished by manipulating a conventional
swashplate to enable blade pitch control at a higher multiple frequency than integer
multiple frequencies of the rotor rotational frequency (Molusis et al. 1983; Wood
et al. 1985; Shaw et al. 1989). The IBC installs a feathering actuator in each blade
rather than modulating the swashplate and permits blade pitch control at arbitrary
frequencies (Ham 1987; Jacklin et al. 1995).

Figures 1.4 and 1.5 illustrate the NASA/Army/MIT ATR discussed in Shin et al.
(2008). In this project, integral blade twist actuation to achieve helicopter vibration
reduction has been implemented and a Mach-scaled fully active rotor system has
been tested in a wind tunnel. Shin et al. (2008) presents a general framework for
active rotor blade modeling. It includes 2-D cross-sectional, 1-D beam, and lami-
nate stress recovery analyses. This blade structural model has then been combined
with an aerodynamics model, and the resulting aeroelastic system has been solved
in the frequency domain. The Comprehensive Analytical Model of Rotorcraft
Aerodynamics and Dynamics (CAMRAD II) rotorcraft analysis software developed

Fig. 1.4 Schematic diagram of the ATR blade section design. Dimensions are in inches (Shin
et al. 2008), © SAGE Publications, reprinted with permission
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by Dr. Wayne Johnson of Johnson Aeronautics has been used for preliminary study
of the ATR concept in forward flight.

In ATR, a blade is integrally twisted by direct strain actuation which is
accomplished by distributing embedded piezoelectric AFC along its span to twist it
directly (Bent 1997). The AFC laminae are embedded in the blade structure at
alternating ±45° orientation angles to maximize the twist actuation capabilities of
the active plies. With an even number of AFC plies, it is also possible to keep the
passive structure of the rotor blade elastically uncoupled. This enables actuation of
blade torsional motion without applying either bending or axial actuation. In a
modified version of ATR discussed in Park and Kim (2008) to alleviate the need of
applying high voltages in the order of 4000 V peak to peak, as needed for the AFC
actuators, MFC actuators introduced in Wilkie et al. (2000) have been used.

There are three comprehensive analysis tools for rotorcraft. The first is
CAMRAD II, the second is the finite element-based multi-body dynamics code for
the comprehensive modeling of flexible multi-body systems (DYMORE) that has
been developed by DYMORE Solutions, and the third is the Rotorcraft
Comprehensive Analysis System (RCAS). All three codes can take output from
VABS as input and they all use the geometrically exact 1-D beam models.

DYMORE is used in Park et al. (2010) in order to investigate the whirl flutter
stability. It has various multi-body element libraries of rigid/elastic joints as well as
rigid bodies and elastic bodies such as beams, plates, and shells. The location,
orientation, and connections of these multi-body elements should be specified to
construct a complete DYMORE model. This powerful multi-body modeling
capability allows for highly realistic modeling of rotorcrafts.

In Roy and Yu (2009a), the results of the generalized Timoshenko model with
embedded or attached piezoelectric materials have been compared with those of
UM/VABS. It has been observed that the two solutions deviate in cases that the
percentage of the piezoelectric material is significant compared to the base
non-piezoelectric material. The authors state that such deviation is due to stronger

Fig. 1.5 ATR aeroelastically scaled model blade geometry. Dimensions are in inches (Shin et al.
2008), © SAGE Publications, reprinted with permission
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electromechanical coupling that can be handled by the fully coupled approach
presented by them.

For the analysis of smart beams with piezoelectric sensors/actuators, two types
of finite elements are presented in Neto et al. (2009). One is an ad hoc smart beam
element (ADSBE), and the other is the variational asymptotic smart beam element
(VASBE). The mathematical formulation of ADSBE uses a first-order displacement
field and a piecewise, linear, through-the-thickness electric potential. For VASBE,
the formulation allows decoupling of the original 3-D problem of the smart
structure into a 1-D beam analysis and a 2-D coupled cross-sectional analysis. It has
been observed that the VASBE model provides results that are closer to the ones
published in the literature.

An asymptotically correct analysis of passive anisotropic thin-walled open cross
section beamlike structures using VAM has been extended to include MFCs
(Khouli et al. 2010). The developed linear 2-D cross-sectional theory is validated by
comparing its results with those of UM/VABS. A thin-walled open cross section
(TWOCS) model is used in the analysis for which the classic Vlasov theory is
applicable. This theory, as explained in Gjelsvik (1981), relies on ad hoc kinematic
assumptions that are based on engineering intuition and therefore lack in rigor. In
this theory, strain measures of stretch, �c11, twist, j1, and mutual orthogonal
bendings, j2 and j3, and the derivative of the twist strain measure, j01, are used.

In the context of the VAM, thin-walled slender beams have two inherent small
parameters. The first is the slenderness ratio a/L, which is the ratio of the charac-
teristic dimension of the cross section to the wavelength of the deformation mode.
The second is the thinness ratio h/a, which is the ratio of the characteristic thickness
of the wall to the characteristic dimension of the cross section. The existence of the
inverse of the latter parameter in the asymptotically correct elastic displacement
field has rigorously confirmed the importance of the Vlasov solution for TWOCS
slender beams (Volovoi et al. 1999; Hodges and Volovoi 2000). The advantage of
having two inherently small parameters, as in the thin-walled slender beam prob-
lem, is the possibility of arriving at an analytical closed-form solution for the
asymptotically correct stiffness constants (Hodges and Volovoi 2000).

In Chakravarty (2010), SectionBuilder, an FEM-based tool for the analysis and
design of composite rotor blade cross sections, has been introduced. The tool can
create cross sections with parametric shapes and arbitrary configurations. It has the
ability to generate single- and multi-cell cross sections with arbitrary layups.

The process of using advanced analytical tools for the design and analysis of
composite rotor blade cross sections has been presented in Chakravarty (2010). In
this process, the rotor blade cross-sectional geometry is defined in a CAD tool,
CATIA, where the cross section is defined by areas with specified laminate material
properties, and the areas are bounded by reference curves that define material
orientation. This geometry is then exported to ANSYS and is used to create the
analysis mesh and identify reference edges for all areas. Custom macros and a
special-purpose C language code have been used to construct free meshes within
each area. The results along with material properties are exported in the form of a
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VABS input file. VABS is then run, and finally, ANSYS is used for postprocessing
and visualization: Custom macros create a two-dimensional stress field in a
cross-sectional layer (single element thick) to enable the user to visualize stress and
strain over the cross section (Chakravarty 2010).

Recently, the range of problems for which VAM is used has considerably
expanded. For example, this method has been applied for solving steady-state
thermoelastic problems in composite beam structures (Wang and Yu 2011, 2013).
In Lee and Yu (2011), modeling of composite beams with spanwise heterogeneity
has been presented. In addition, the nonlinear normal modes of oscillations of
beams have been derived from intrinsic equations (Palacios 2011).

In Freno and Cizmas (2011), the order of the nonlinear terms retained in the
analysis is extended to the third order. Additionally, comparisons are made between
the results of linear, quadratic, and cubic beam models. The authors mention that
their beam model accurately calculates natural frequencies and linear and nonlinear
responses. They conclude by saying that their results agree favorably with those
obtained through FEM, while taking less time.

In Chakravarty (2011), the analyses of composite beam cross sections using
VABS are compared with the corresponding boundary element method (BEM)
solutions. While in VABS, meshing of the entire cross section is required, in BEM
only a mesh of the boundary is needed. By using BEM, first the solution is obtained
on the boundary, and then, it is calculated inside the domain. While VABS matrices
are sparse and symmetric, the BEMmatrices are fully populated and non-symmetric.
The integrals to be calculated in the BEM are generally more difficult to evaluate,
and some contain integrands that might be singular. The paper concludes by stating
that VABS is a less computationally expensive method than BEM.

In Patil and Altoff (2011), a few models including a nonlinear steady-state
solution, a linear dynamic perturbation solution about the calculated nonlinear
steady state, and a nonlinear dynamic solution are presented.

Analysis of a tiltrotor (also called proprotor) aircraft has been presented in Park
et al. (2011). A tiltrotor aircraft is a highly attractive and versatile vehicle since it
has the capability of vertical take-off/landing and high-speed flight. The vehicle
consists of three operation modes: helicopter mode, transition mode, and the air-
plane mode. The tiltrotor blade can function as a blade in the helicopter mode and
as a propeller in the airplane mode. The difference in the inflows and rotor speeds
between the helicopter and airplane operation modes requires that the tiltrotor has a
low built-in twist for the helicopter mode but a high built-in twist for the airplane
mode in order to have a good performance characteristic. Because of the conflicting
requirements, in conventional design, the built-in twist often is determined from a
compromise between the two built-in twist angles. Therefore, this conventional
design is unable to guarantee the best performance in either operation mode.

One way for solving this problem is to take advantage of the anisotropic nature
of fiber-reinforced composite materials. When a composite blade is elastically tai-
lored in an appropriate manner, the extension and torsion behaviors may be cou-
pled. In this way, the change of centrifugal forces due to different rotor speeds
between the two operation modes is used to vary the built-in twist distribution
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(Nixon 1988; Soykasap 1999; Ozbay et al. 2005). However, since this approach is
based on a passive change, it is difficult to achieve the necessary build-in twist
angles under different flight conditions. To overcome this drawback, in Prahlad and
Chopra (2001), a variable-twist tiltrotor is obtained by the introduction of shape
memory alloy (SMA) wires in the blade structure. Since SMA can produce large
strain at low actuator frequency, it is mostly suitable for structural shape control
rather than vibration and noise control.

Figures 1.6 and 1.7 show an SMA hybrid composite (SMAHC), which consists
of SMA wires, embedded in a composite matrix. In Park et al. (2011), the SMAHC
has been used as actuator for built-in twist control of a variable-twist tiltrotor. The
optimal design framework consists of the following numerical tools: UM/VABS, an
automated mesh generator described in Brown (2003), the nonlinear flexible
multi-body dynamics analysis code, DYMORE, which has simple aerodynamic
models and can be used to calculate the rotating frequencies of the tiltrotor blade, a
MATLAB-based 3-D strain analysis module to investigate the structural integrity of
the blade, and a gradient-based constrained nonlinear optimizer provided by
MATLAB’s optimization tool box (using the ‘fmincon’ command). In Park et al.
(2011), all of these tools are explained and integrated using MATLAB. This
optimization framework is an extension of Park and Shin (2007), where the twist
performance of an ATR has been maximized using MFCs.

A geometrically exact beam theory (GEBT) and a general-purpose tool for
nonlinear analysis of slender composite structures are developed in Yu and Blair
(2012). Coupled with VABS, GEBT can analyze geometrically nonlinear slender
structures having any cross sections and made of arbitrary materials. GEBT has
been used for analyzing rotating blades and to perform steady-state response and
eigenvalue analyses. It can be downloaded from the Web site AnalySwift.com.

Fig. 1.6 SMA hybrid
composite (SMAHC) (Park
et al. 2011), © Elsevier Ltd.,
reprinted with permission
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In the VAM approach, as mentioned in Kollár and Pluzsik (2012), the 1-D
displacement field is perturbed by an unknown 3-D warping field, w. Minimizing
the total strain energy of the cross section provides the warping function. Then, an
anisotropic beam theory that takes the effects of torsional warping shear defor-
mation into consideration is developed. It is shown that the outcome of this theory
is compatible with ANSYS, but the VABS results are far since VABS does not
consider the restrained warping-induced shear deformations in calculations. The
authors present a new method to determine stiffnesses of anisotropic beams without
assuming kinematical relationships. The applied theory contains the restrained
torsional warping (Vlasov theory), the in-plane shear deformations (Timoshenko
theory), and the torsional warping shear deformations.

In Rajagopal et al. (2012), VAM is used to develop a beam theory for planar
deformation of isotropic strips with initial in-plane curvature. Comparison shows
that variation of cross-sectional stiffness versus initial curvature obtained from
VABS 3.3 is in error. Corrections embodied in the newer edition, VABS 3.4,
capture the correct behavior.

A beam theory for analyzing the in-plane deformation of an initially curved
laminated strip beam has been proposed in Rajagopal and Hodges (2012). The
validity of this theory is limited to laminates whose in-plane and out-of-plane
deformations are decoupled (i.e., vanishing of matrix B in the classical lamination
plate theory). This is most common in the case of symmetric layup configurations.
This work serves as a validation tool for VABS and provides analytical expressions
for the stiffness matrix and stress–strain recovery, a rarity for composite structures.

In Yu et al. (2012), recent updates to VABS are introduced. The first update is a
modification of the warping constraints and torsional deformation. The second one
incorporates applied loads into the cross-sectional analysis. Finally, the third update
improves the energy transformation into generalized Timoshenko form. Examples
are presented to demonstrate that the updated energy transformation may yield
significantly different stiffness predictions from previous versions of VABS and to
show that the updated version is more accurate.

Fig. 1.7 Planform configuration of the variable-twist tiltrotor using SMAHC (Park et al. 2011), ©
Elsevier Ltd., reprinted with permission
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A geometrically nonlinear cross-sectional analysis of certain composite
beam-based four-bar mechanisms is presented in Pollayi and Harursampath (2012).
The component bars of the mechanisms are made of fiber-reinforced laminates.
They could, in general, be pretwisted and/or possess initial curvature, either by
design or by defect. The only restriction in the analysis is that the strains within
each elastic body (beam) remain small.

Another extension to the analysis of a four-bar mechanism is presented in
Pollayi et al. (2013) where the component laminate load-carrying capacity, i.e., the
load that causes the failure of individual layers and the component laminate as a
whole, is evaluated. Calculation of the load-carrying capacity is performed by the
use of the Tsai–Wu–Hahn failure criterion for various layups.

A helicopter rotor or the rotor system of a wind turbine operates in a highly
dynamic and unsteady environment leading to severe vibratory loads present in the
system. Repeated exposure to this loading condition can induce damage in the
composite rotor blades. Pollayi and Yu (2014) deal with the first damage mode (i.e.,
matrix micro-cracking) in helicopter rotor or wind turbine blades and explain how
this phenomenon affects the overall cross-sectional stiffness.

The 1-D and 3-D methods for modeling helicopter rotor blade structural
dynamics are presented in Truong et al. (2013), and the accuracy of the 1-D struc-
tural models is evaluated. Natural frequencies are calculated at various rotor angular
velocities and for a large variety of blades ranging from simple isotropic beams to
realistic composite blades. The 1-D beam analysis is conducted using RCAS with
2-D cross-sectional properties calculated from VABS and 3-D FEM results obtained
using MSC/Marc. When there is no coupling between modes of different nature
(e.g., flap and torsion) and the blade length is greater than ten times the chord, very
good agreement between the 1-D and the 3-D predictions for the first eight modes of
a large variety of blades is observed. With the presence of flap–torsion coupling
between the modes due to the composite material layup, the two approaches provide
different values for the torsion-dominated and the flap-dominated modes.

Modern rotor blades have begun to depart from the simple straight planform by
incorporating tip sweep and taper (Truong et al. 2013). The aim of such a deviation
from the classical rectangular shape has been to reduce the noise generated by
blades as demonstrated in the ‘ERATO’ blade (Prieur and Splettstoesser 1999;
Truong 2005). The blade has been developed jointly by DLR (German Aerospace
Center) and ONERA (Office National d’Etudes et de Recherches Aérospatiale).
EUROCOPTER and ONERA created the ‘Blue Edge’ blade for the same purpose
(Rauch et al. 2011).

The US Army Aero Flight Dynamics Directive (AFDD) and the French ONERA
conducted research to investigate the differences between a 1-D beam model ap-
proach and a 3-D FEM approach (Truong et al. 2013). The objective of this effort
was to better understand the accuracy of current rotor blade structural modeling and
identify the level of sophistication required to model modern rotor blades, i.e., to
determine when the use of 3-D methodology will be necessary. In this paper,
authors summarize the key results obtained in Truong et al. (2010) and Yeo et al.
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(2010) on the comparison of using 1-D and 3-D methods to analyze blades with
rectangular planform shape and with various lengths.

While, for decades, there have been many investigations on nonlinear effects in
the helicopter society, it is a relatively new focus area in the wind turbine society.
However, since wind turbine blades are getting larger and more flexible, higher
nonlinear behavior of wind turbines is expected. The nonlinear behavior of wind
turbine blades is considered in Kim et al. (2013).

Effects of multiple engine placement on aeroelastic trim and flutter character-
istics of a backswept flying wing resembling the HORTEN IV are investigated in
Mardanpour et al. (2014), using the code Nonlinear Aeroelastic Trim And Stability
of HALE Aircraft (NATASHA). NATASHA is based on the geometrically exact
formulation of the composite beam theory of Hodges (2006) and the finite state
inflow aerodynamic model of Peters et al. (1995). The governing equations for
structural model are geometrically exact, fully intrinsic, and capable of analyzing
the dynamical behavior of a general, non-uniform, twisted, curved, and anisotropic
beam undergoing large deformations. The partial differential equations’ dependence
on the axial direction coordinate is approximated by central differences, as pre-
sented in Patil and Hodges (2006). The resulting nonlinear ordinary differential
equations are linearized about a static equilibrium state. The equilibrium state is
governed by nonlinear algebraic equations, which NATASHA solves to obtain the
steady-state trim solution using the Newton–Raphson algorithm (Patil and Hodges
2006). This system of nonlinear aeroelastic equations, when linearized about the
resulting trim state, leads to a standard eigenvalue problem that NATASHA uses to
analyze the stability of the structure. NATASHA is also capable of time-marching
the nonlinear aeroelastic system of equations using a schedule of the flight controls,
which may be obtained from sequential trim solutions.

Finally, a few solutions for the 1-D intrinsic equations of a beam are presented in
Shang and Hodges (1995), Cesnik and Shin (1998), and Cesnik et al. (2001). These
solutions operate in two steps. The first is to calculate the steady-state response.
Then, in the second step, the steady-state solution is perturbed and motion about the
obtained steady-state position is calculated by solving the perturbed steady-state
equations for small perturbations of the dependent variables. This perturbed
steady-state solution is, of course, valid in the vicinity of the steady-state response.
An alternative solution is to calculate the whole dynamics of the rotating blade,
including its start from static equilibrium, acceleration to full speed, and even
experiencing some perturbations afterward, as will be explained in Chaps. 5 and 6.
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Chapter 2
Review of the Variational Asymptotic
Method and the Intrinsic Equations
of a Beam

2.1 Introduction

Helicopter rotor blades can be adequately modeled as thin-walled composite beams,
which are laterally flexible and, as such, usually operate in the nonlinear range. To
solve such problems, one method is to use conventional beam models that rely on
ad hoc assumptions on displacement or stress fields. An example of such models is
the Saint-Venant’s theory of torsion, which assumes that a beam remains rigid in its
cross section as it twists. While this assumption works fine in the linear range of
behavior for isotropic prismatic beams, it results in serious error when it is extended
to composite beams. Therefore, to get acceptable results, one should use alternative
solution methods.

A very promising alternative that is mentioned in Chap. 1 is VAM. It is a
powerful method for solving problems of composite thin-walled beams and is free
from ad hoc assumptions. The applicability of VAM in elasticity is because the
elasticity problem can be stated as obtaining the stationary points of the energy
functional. VAM simplifies the procedure for finding these stationary points of the
energy functional when this functional depends on one or more inherently small
parameters. It is therefore the right tool for building accurate models for dimen-
sionally reducible structures (e.g., beams, plates and shells), Hodges (2006). VAM
has both the merits of variational methods (viz., systematic and easily imple-
mentable numerically) and asymptotic methods (viz., without ad hoc assumptions),
Roy and Yu (2009).

VAM splits the 3-D geometrically nonlinear elasticity problem into a 2-D
analysis and a nonlinear 1-D analysis along the beam. The 2-D analysis is aimed at
determining the cross-sectional stiffness and inertia matrices as well as the warping
functions. It requires details of the cross-sectional geometry, elastic properties of
materials and material densities and can be performed by VABS. The results of this
analysis are used in all further 3-D analyses without the need to repeat such a 2-D
analysis over again.
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The necessary conditions for achieving a linear cross-sectional analysis from the
starting point of the geometrically nonlinear 3-D elasticity include small strain,
linearly elastic material, and the smallness of a relative to l and R (a ≪ l). Here, a is
a typical cross-sectional dimension, l is the wavelength of deformation along the
beam axis, and R is the characteristic radius of initial curvature and twist (Hodges
2006).

The solution of the 1-D problem is obtained by utilizing the outcome of the 2-D
cross-sectional analysis and by solving the nonlinear intrinsic differential equations
of motion of the beam. Combining these two solutions provides the complete 3-D
structural solution by recovering the 3-D stress, strain, and displacement fields.

2.2 Classification of Beams

2.2.1 Class T Beams

These are thin-walled beams with open cross sections, as seen in Fig. 2.1. If the
wall thickness is h and the main characteristic length within the cross-sectional
plane is a, then a ≫ h. For class T beams, the torsional stiffness of the beam is
considerably less than either of the two bending stiffnesses, and hence, the beam is
torsionally soft. Such open section beams can be analyzed using the generalized
Vlasov model.

2.2.2 Class S Beams

Figure 2.2 illustrates two examples of class S beams. These are strip-like beams that
are soft in torsion, and soft in bending in one direction. Therefore, one bending
stiffness is significantly larger than the other one and the torsional stiffness.
Examples include high-aspect-ratio wings and helicopter blades.

Fig. 2.1 Example cross sections of class T beams
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2.2.3 Class R Beams

These are called regular beams. They are not class T or class S beams and may have
solid or hollow sections that are closed (or closed cell) and are thin-walled. A few
examples of class R beams can be seen in Fig. 2.3.

2.3 Cross-Sectional Modeling Using VAM

Accurate determination of the cross-sectional elastic constants of composite beams
requires the presence of two distinct characteristics, Hodges (2006):

1. The theory behind the cross-sectional analysis must allow for elastic coupling in
the 3-D material constants.

2. All six components of strain and stress and all possible components of dis-
placement must be allowed, both in and out of the cross-sectional plane.

As seen in Fig. 2.4, two Cartesian coordinate systems are set up: the b-frame of
the undeformed beam and the B-frame of the deformed beam. The origin of the
undeformed system is usually put at the shear center (elastic center) of the cross
section so that shear forces do not produce any twisting moments. Shear center of a
cross section is a point in the cross section at which a shear force induces no twist.

Fig. 2.2 Example cross sections of class S beams

Fig. 2.3 Example cross sections of class R beams
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In an isotropic beam, the shear center is the same as the center of twist. This is the
point about which the cross section rotates under a pure twisting moment.

In addition, the tension center is the point in the cross section at which an axial
force induces no bending (i.e., the centroid; the spanwise locus of centroids is called
tension axis). Since in a cross section, the shear center, the center of gravity, and the
centroid of the section are not necessarily identical, their spanwise counterparts, i.e.,
the elastic axis, the center of gravity axis, and the tension axis are not necessarily
coincident either.

The unit vector b1 of the undeformed b-frame is tangential to the undeformed
reference line; b2 and b3 define the plane of the undeformed reference cross section.
The origin of the deformed B-frame is the origin of the b-frame translated by the
displacement components ui. The unit vector B1 is orthogonal to the non-warped
but translated and rotated reference cross section. Note that B1 is not necessarily
tangential to the deformed reference line because the displaced cross section does
not have to be orthogonal to the new reference line (i.e., Euler–Bernoulli approx-
imation is not made; shear deformation is not neglected), Traugott et al. (2005).

Since the behavior of an elastic body is completely determined by its energy
function, one may write the 3-D strain energy function, minimize it subjected to the
warping constraints and then solve for the warping displacements to create an
asymptotically correct 1-D energy function. In this way, by reproducing the 3-D
energy in terms of 1-D quantities, a beam theory is derived. This dimensional
reduction cannot be carried out exactly; however, VAM can find the 1-D energy
that approximates the 3-D energy as closely as possible.

Fig. 2.4 Frames and reference lines of the beam model, Wang and Yu (2013), © Elsevier Ltd.,
reprinted with permission
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The strain energy of the cross section (per unit length) of the beam can be
expressed as

U ¼ 1
2

CTDC
� �� � ð2:1Þ

where Γ is the 3-D strain vector,

C ¼ C11 2C12 2C13 C22 2C23 C33b cT ð2:2Þ

and

�h ih i ¼ �ð Þgh i ¼
Z
A

�ð Þ ffiffiffi
g

p
dx2dx3; �h i ¼

Z
A

�ð Þdx2dx3 ð2:3Þ

ffiffiffi
g

p ¼ 1� x2k3 � x3k2 ð2:4Þ

A is the cross-sectional plane of the undeformed beam (the reference cross section),
D is the 6 × 6 symmetric material matrix in the local Cartesian system and g is the
determinant of the metric tensor for the undeformed state.

Equation (2.1) for strain energy density implies a stress–strain law of the form

r ¼ DC ð2:5Þ

where the 3-D stress and strain components are elements of the following vectors

r ¼ r11 r12 r13 r22 r23 r33b cT
C ¼ C11 2C12 2C13 C22 2C23 C33b cT ð2:6Þ

The basic 2-D analysis problem is to minimize the strain energy functional
U subject to four no rigid body motion conditions for the warping functions wi ¼
wiðx1; x2; x3Þ: The explicit form of these conditions of no rigid body translation and
rotation are (Hodges 2006),

wih i ¼ 0; i ¼ 1; 2; 3; x2w3 � x3w2h i ¼ 0 ð2:7Þ

These conditions guarantee the uniqueness of the definition of the warping field and
are equivalent to removing the rigid body motion components (i.e., three transla-
tions and the in-plane rotation) of the warping field. The warping field is the
solution to the mentioned minimization problem. Using matrices and the concept of
orthogonality, Eq. (2.7) can be expressed as the orthogonality of the warping
function w to the kernel matrix ψ constraint,

wTw
� � ¼ 0 ð2:8Þ
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where

w ¼
w1

w2

w3

8<:
9=; w ¼

1 0 0 0
0 1 0 �x3
0 0 1 x2

24 35 ð2:9Þ

In order to solve the mentioned minimization problem and find the stationary value
of the strain energy per unit length, U, given in Eq. (2.1) subjected to constraints
(2.8), the warping vector is assumed as

wðx1; x2; x3Þ ¼ Sðx2; x3Þ|fflfflfflffl{zfflfflfflffl}
FEMShape Functions

� Vðx1Þ
zfflffl}|fflffl{NodalWarping

ð2:10Þ

where Sðx2; x3Þ represents the matrix of the FEM shape functions on the beam cross
section and V is a column matrix of the nodal values of the warping displacement
along the longitudinal axis of the beam. The use of shape functions reduces the 3-D
problem (i.e., calculating w) to a 1-D problem (i.e., calculating V). So, now the
strain energy per unit length, U, should be minimized with respect to
V. Minimization of strain energy subjected to the orthogonality constraint (2.8) is
obtained by using the method of Lagrangian multipliers. By ignoring the shear
deformations, one obtains the classic approximation of the strain energy for ani-
sotropic materials as follows (Hodges 2006):

2U0 ¼
�c11
�j1
�j2
�j3

8>><>>:
9>>=>>;

T
S11 S12 S13 S14
S12 S22 S23 S24
S13 S23 S33 S34
S14 S24 S34 S44

2664
3775

�c11
�j1
�j2
�j3

8>><>>:
9>>=>>; ð2:11Þ

In this quadratic form, the stiffness constants Sij depend on the initial twist and
curvature as well as on the geometry and material composition of the cross section.
This 4 × 4 model is sufficiently accurate for the analysis of long-wavelength static
or low-frequency dynamic behavior of slender initially curved and twisted com-
posite beams (Hodges et al. 1992). Using the classic stiffness matrix S,

S ¼
S11 S12 S13 S14
S12 S22 S23 S24
S13 S23 S33 S34
S14 S24 S34 S44

2664
3775 ð2:12Þ
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and for small strain, the 1-D constitutive law would be linear and expressible as

F1

M1

M2

M3

8>><>>:
9>>=>>; ¼

S11 S12 S13 S14
S12 S22 S23 S24
S13 S23 S33 S34
S14 S24 S34 S44

2664
3775

�c11
�j1
�j2
�j3

8>><>>:
9>>=>>; ð2:13Þ

For homogeneous prismatic beams made of isotropic materials, the expression
for classical strain energy per unit length is

2U0 ¼
�c11
�j1
�j2
�j3

8>><>>:
9>>=>>;

T EA 0 0 0
0 GJ 0 0
0 0 EI2 0
0 0 0 EI3

2664
3775

�c11
�j1
�j2
�j3

8>><>>:
9>>=>>; ð2:14Þ

where the classical stiffness matrix is

S ¼
EA 0 0 0
0 GJ 0 0
0 0 EI2 0
0 0 0 EI3

2664
3775 ð2:15Þ

Here, EA is the extensional stiffness, GJ is the Saint-Venant’s torsional stiffness,
EIα is the bending stiffness about xα (α = 2, 3), E is the Young’s modulus, G is the
shear modulus, and the cross-sectional axes xα are the principal axes of inertia
originating at the centroid. Furthermore, �c11 is the extension of the reference line, �j1
is the elastic twist, and the elastic bending curvatures are denoted by �j2 and �j3. The
zeros on the off-diagonal elements of the stiffness matrix are indications of the
decoupled behavior of the structure in different directions. If one computes the
results at the centroid (i.e., the origin of the reference frame is transferred to the
centroid), the existence of off-diagonal elements in the stiffness matrix is impos-
sible. In fact, for any homogeneous isotropic section, a 4 × 4 description, and the
reference at the centroid, there is no coupling between extension and bending
(Palacios 2008).

For thick beams or for beams in high-frequency vibrations, shear deformation
cannot be ignored. So, the classic model should be replaced with the generalized
Timoshenko model:

2U ¼

c11
2c12
2c13
j1
j2
j3

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;

T S11 S12 S13 S14 S15 S16
S12 S22 S23 S24 S25 S26
S13 S23 S33 S34 S35 S36
S14 S24 S34 S44 S45 S46
S15 S25 S35 S45 S55 S56
S16 S26 S36 S46 S56 S66

26666664

37777775
c11
2c12
2c13
j1
j2
j3

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
ð2:16Þ
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or

2U ¼ c
j

� �T
A B
BT D

� 	
c
j

� �
ð2:17Þ

Therefore, the 1-D constitutive law in generalized Timoshenko model is

F1

F2

F3

M1

M2

M3

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

S11 S12 S13 S14 S15 S16
S12 S22 S23 S24 S25 S26
S13 S23 S33 S34 S35 S36
S14 S24 S34 S44 S45 S46
S15 S25 S35 S45 S55 S56
S16 S26 S36 S46 S56 S66

26666664

37777775
c11
2c12
2c13
j1
j2
j3

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
ð2:18Þ

or

F
M

� �
¼ A B

BT D

� 	
c
j

� �
ð2:19Þ

Alternatively,

c
j

� �
¼ R Z

ZT T

� 	
F
M

� �
ð2:20Þ

As it is mentioned in Chap. 1, the linear cross-sectional analysis of the VAM is
performed by VABS. In order to run VABS, a 2-D meshed model of the cross
section is constructed by a CAD or FEM software. It can then be transformed into
an input file for VABS. To model initially twisted and curved beams, three real
numbers for the twist, k1, and the bending curvatures, k2 and k3, should be provided
in the input file. Also layup parameters such as the layup angle should be provided.
Finally, material properties including Young’s moduli, Ei, shear moduli, Gij,
Poisson’s ratios, υij, and mass density, ρ, should be given.

After performing the solution, the results include scalar quantities such as the
mass center, the principal axes of inertia, the centroid, and the neutral axes. Matrix
results include the cross-sectional 6 × 6 mass (three translation and three rotations)
and the 4 × 4 cross-sectional stiffness matrix of the classical model (extension,
torsion, and two bending). There are also the 6 × 6 cross-sectional stiffness matrix
of the generalized Timoshenko model (extension, two shears, torsion, and two
bendings), and the 5 × 5 cross-sectional stiffness matrix of the generalized Vlasov
model (extension, torsion, two bendings, and the derivative of torsion).

To obtain the generalized Vlasov model, first, the generalized Timoshenko
model that works best at high frequencies is constructed and the position of the
shear center is determined. Then, VABS moves the origin of the coordinate system
to the shear center and repeats the calculations to obtain a generalized Vlasov
model. This model is useful for analyzing thin-walled beams with open sections.
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The cross-sectional modeling of smart composite beams has also been suc-
cessfully performed (with distributed actuators embedded within the composite
structure) using UM/VABS.

2.4 General Formulation of the 1-D Analysis

Having used the VAM logic and obtained the 2-D cross-sectional properties by
VABS, a 1-D analysis along the longitudinal axis of the beam is now in order. The
combination of the previously mentioned 2-D solution and the solution of the 1-D
problem provide a complete 3-D picture of the mechanical quantities of interest
along and across the beam. The 1-D analysis utilizes the intrinsic equations of
motion, the intrinsic kinematical equations, the momentum–velocity equations, and
the constitutive equations of the material of the beam. It utilizes the results of the
cross-sectional analysis in order to calculate the generalized stress and strain
resultants as well as the 1-D displacements. It should be noted that the intrinsic
equations are not tied to a specific choice of displacement or rotation variables.
Furthermore, there is only one set of intrinsic equations; all other correct and
variationally consistent sets of beam equations are linear combinations of the
correct intrinsic set of equations.

2.4.1 Intrinsic Equations of Motion

The internal force and moment vectors F and M are partial derivatives of the strain
energy of the cross section (per unit length), U,

F ¼ @U
@c


 �T

; M ¼ @U
@j


 �T

ð2:21Þ

Similarly, the generalized sectional linear and angular momenta P and H are
conjugate to motion variables by derivatives of the kinetic energy function,

P ¼ @K:E:
@V


 �T

; H ¼ @K:E:
@X


 �T

ð2:22Þ

Now, recalling Hamilton’s principle,

Zt2
t1

ZL
0

dðK:E:� UÞþ dW
� 


dx1dt ¼ dA ð2:23Þ
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for the case of generalized Timoshenko beam without active elements, one obtains,
Hodges (2006)

Zt2
t1

ZL
0

d�qT F0 þ ~KFþ f � _P� eXP
� �

þ d�wT M0 þ ~KMþð~e1 þ~cÞF�n
þm� _H � eXH � ~VP

io
dx1dt

¼
ZL
0

d�qT P̂� P
� �þ d�wT Ĥ � H

� �� �jt2t1dx1 � Z
t2

t1

d�qT F̂ � F
� �þ d�wT M̂ �M

� �� �jL0dt
ð2:24Þ

where the tilde notation has been used to express a cross product of two vectors in a
concise matrix representation:

~KF ¼
0 �K3 K2

K3 0 �K1

�K2 K1 0

24 35 F1

F2

F3

24 35 ¼
K2F3 � K3F2

K3F1 � K1F3

K1F2 � K2F1

24 35 ¼ ~K �~F ð2:25Þ

The corresponding Euler–Lagrange equations are

F0 þ ~KFþ f ¼ _Pþ ~XP ð2:26Þ

M0 þ ~KMþð~e1 þ~cÞFþm ¼ _Hþ ~XHþ ~VP ð2:27Þ

Equations (2.26) and (2.27) are called the nonlinear intrinsic equations of motion of
a beam. Here, F and M are column vectors of internal forces and moments,
respectively. The first element of F is the axial force and the second and third
elements are the shear forces, expressed in the deformed beam basis, B. Similarly,
the first element of M is the twisting moment and its second and third elements are
the bending moments, again in the deformed beam frame, B. The scalar form of the
intrinsic equations of motion is

F0
1 þK2F3 � K3F2 þ f1 ¼ _P1 þX2P3 � X3P2 ð2:28Þ

F0
2 þK3F1 � K1F3 þ f2 ¼ _P2 þX3P1 � X1P3 ð2:29Þ

F0
3 þK1F2 � K2F1 þ f3 ¼ _P3 þX1P2 � X2P1 ð2:30Þ
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and

M0
1 þK2M3 � K3M2 þ 2c12F3 � 2c13F2 þm1

¼ _H1 þX2H3 � X3H2 þV2P3 � V3P2 ð2:31Þ

M0
2 þK3M1 � K1M3 þ 2c13F1 � ð1þ c11ÞF3 þm2

¼ _H2 þX3H1 � X1H3 þV3P1 � V1P3 ð2:32Þ

M0
3 þK1M2 � K2M1 þð1þ c11ÞF2 � 2c12F1 þm3

¼ _H3 þX1H2 � X2H1 þV1P2 � V2P1 ð2:33Þ

These equations are the geometrically exact equations for the dynamics of a beam
in an absolute frame of reference, A. They resemble Euler’s dynamical equations,
and their symmetric form enables one to write them in a compact matrix form.

For the special case of static behavior, Eqs. (2.26) and (2.27) reduce to those of
Reissner (1973). In fact, by setting the left-hand side of these equations equal to
zero, a generalized Euler–Kirchhoff–Clebsch theory is obtained. This static theory,
when specialized for isotropic materials, is often called the elastica theory, Hodges
(2006).

By ignoring the shear deformation components in Eqs. (2.26) and (2.27) and
renaming j ¼ �j and c ¼ �c11e1, the equations of motion for the classical theory of
beams are obtained as (Hodges 2006)

F0 þ ~KFþ f ¼ _Pþ ~XP ð2:34Þ

M0 þ ~KMþð1þ�c11Þ~e1Fþm ¼ _Hþ ~XHþ ~VP ð2:35Þ

where the total curvature and twist of the blade are the summation of their built-in
values and the added curvature and twist as a result of elastic deformation (i.e., the
summation of the initial and the elastic curvatures),

K ¼ kþ j ð2:36Þ

The boundary conditions are another output of the application of the Hamilton’s
principle in which either force or moment can be specified or calculated at the two
ends of the beam.

2.4.2 Intrinsic Kinematical Equations

The nonlinear intrinsic kinematical equations of a beam that should be solved
together with the equations of motion are (Hodges 2006)
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V 0 þ ~KV þð~e1 þ~cÞX ¼ _c ð2:37Þ

X0 þ ~KX ¼ _j ð2:38Þ

The corresponding scalar equations are

V 0
1 þK2V3 � K3V2 þ 2c12X3 � 2c13X2 ¼ _c11 ð2:39Þ

V 0
2 þK3V1 � K1V3 � ð1þ c11ÞX3 þ 2c13X1 ¼ 2 _c12 ð2:40Þ

V 0
3 þK1V2 � K2V1 þð1þ c11ÞX2 � 2c12X1 ¼ 2 _c13 ð2:41Þ

X0
1 þK2X3 � K3X2 ¼ _j1 ð2:42Þ

X0
2 þK3X1 � K1X3 ¼ _j2 ð2:43Þ

X0
3 þK1X2 � K2X1 ¼ _j3 ð2:44Þ

2.4.3 Momentum–Velocity Equations

The four nonlinear intrinsic vector equations mentioned so far, i.e., Equations (2.26),
(2.27), (2.37), and (2.38), are nonlinear partial differential equations. The momen-
tum–velocity equations, however, are a set of linear algebraic equations,

P
H

� �
¼ lD �l~�n

l~�n i

" #
V
X

� �
ð2:45Þ

where

n ¼
0
x2
x3

8<:
9=;; �n ¼

0
�x2
�x3

8<:
9=;; ~�n ¼

0 ��x3 �x2
�x3 0 0
��x2 0 0

24 35 ð2:46Þ

The expanded form of Eq. (2.45) is

P1

P2

P3

H1

H2

H3

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

l 0 0 0 l�x3 �l�x2
0 l 0 �l�x3 0 0
0 0 l l�x2 0 0
0 �l�x3 l�x2 i2 þ i3 0 0
l�x3 0 0 0 i2 i23
�l�x2 0 0 0 i23 i3

26666664

37777775
V1

V2

V3

X1

X2

X3

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
ð2:47Þ
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where the quantities with a bar refer to the location of the centroid with respect to
the shear center of the cross section. Also,

i ¼ q nTnD� nnT
� �� �� � ¼ i2 þ i3 0 0

0 i2 i23
0 i23 i3

24 35 ð2:48Þ

where

i2 ¼ q
Z
A

x23dx2dx3; i3 ¼ q
Z
A

x22dx2dx3; i23 ¼ �q
Z
A

x2x3dx2dx3 ð2:49Þ

are the cross-sectional mass moments and the product of inertia measured with
respect to the shear center. Finally, using Eq. (2.3),

l ¼ qh ih i ¼ q
ffiffiffi
g

p� �! l ¼
Z
A

q
ffiffiffi
g

p� �
dx2dx3 ð2:50Þ

Substitution of Eq. (2.4) in (2.50) gives

l ¼
Z
A

q 1� x2k3 � x3k2ð Þdx2dx3 ð2:51Þ

If the initial curvature k is zero Eq. (2.51) simply reduces to

l ¼
Z
A

qdx2dx3 ð2:52Þ

which for a homogeneous section results in the following familiar expression for
mass per unit length,

l ¼ qA ð2:53Þ

Now recalling Eqs. (2.45) and (2.46), since the reference frame has been put at the
shear center, the location of the centroid which is shown by bar coordinates would
be the position of the centroid with respect to the shear center of the section. If the
centroid is close enough to the shear center, the formulation simplifies. Since then,

�x2 ¼ �x3 ¼ 0 ð2:54Þ
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Therefore using Eq. (2.46),

�n ¼ 0; ~�n ¼ 0 ð2:55Þ

Consequently, when the centroid and shear center of the cross section coincide,
all off-diagonal (coupling) terms of Eq. (2.45) will vanish except for the ones that
are due to the polar moment of inertia.

2.4.4 Constitutive Equations

The 2-D analysis mentioned before provides the warping functions required for the
recovery of 3-D stress and strain, as well as the stiffness (or its inverse, i.e.,
flexibility) matrix used in the following constitutive equations:

F
M

� �
¼ A B

BT D

� 	
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

S

c
j

� �
;

c
j

� �
¼ R Z

ZT T

� 	
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

S�1

F
M

� �
ð2:56Þ

or in the scalar form,

c11
2c12
2c13
j1
j2
j3

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

R11 R12 R13 Z11 Z12 Z13
R21 R22 R23 Z21 Z22 Z23
R31 R32 R33 Z31 Z32 Z33
Z11 Z21 Z31 T11 T12 T13
Z12 Z22 Z32 T21 T22 T23
Z13 Z23 Z33 T31 T32 T33

26666664

37777775
F1

F2

F3

M1

M2

M3

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
Such a linear structural law is valid only for small local strains which can, however,
result in large global deformations as they occur in helicopter blades (Traugott et al.
2005).

In the general nonlinear elasto-dynamic case, Eqs. (2.26), (2.27), (2.36), (2.37),
(2.38), (2.45), and (2.56) form a system of four nonlinear vector partial differential
equations and five linear algebraic vector equations for a total of nine unknown
vectors: F, M, V, Ω, P, H, γ, κ, and K, at every point along the beam and at every
instant of time. These unknown vectors correspond to 27 scalar variables. Here,
F and M are the internal force and moment (generalized forces), P and H are the
linear and angular momentum (generalized momenta), V and Ω are the linear and
angular velocity (generalized velocities), γ and κ are the beam strains and curvatures
(generalized strains), and f and m are the applied external forces and moments per
unit length. All quantities refer to the B-frame of the deformed cross section.

Solution of these equations requires the application of initial and boundary
conditions. The boundary conditions are another output of the application of the
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Hamilton’s principle in which either force or moment can be specified or found at
the two ends of the beam. The intrinsic equations of motion are not a stand-alone set
of equations, and in general, they should be solved together with kinematical
equations, constitutive relations, as well as the initial and boundary conditions.
Having solved this system of equations for the mentioned unknowns, other vari-
ables of interest can be easily calculated.

2.4.5 Strain–Displacement Equations

The generalized strain–displacement equations are (Hodges 2006)

c ¼ Cðe1 þ u0 þ ~kuÞ � e1 ð2:57Þ

~j ¼ �C0CT þC~kCT � ~k ð2:58Þ

2.4.6 Velocity–Displacement Equations

The generalized velocity–displacement equations are

V ¼ Cðvþ _uþ ~xuÞ ð2:59Þ
~X ¼ � _CCT þC~xCT ð2:60Þ

where V and Ω are measured in the deformed frame, and v and ω are measured in
the undeformed frame.

2.4.7 Rodrigues Parameters

One may define a rotation by four parameters: three direction cosine values ei which
define the unit vector~e ¼ eibi in the direction of the axis of rotation, together with α
which is the angle of rotation about this axis. Based on this logic, the Rodrigues
parameters θ = h1 h2 h3½ �T are defined as,

hi ¼ 2eitanða=2Þ ð2:61Þ
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Also, the rotation matrix is

C ¼ 1� ð1=4ÞhTh� �
D� ~hþð1=2ÞhhT

1þð1=4ÞhTh ð2:62Þ

The associated curvature is related to the Rodrigues parameters in the following
way:

j ¼ D� 1
2
~h

1þ 1
4h

Th

 !
h0 þCk � k ð2:63Þ

Finally, Ω, the column matrix of angular velocity components in the deformed
system, B, can be related to the angular velocity vector, ω, in the undeformed
system, b, using the Rodrigues parameters

X ¼ D� 1
2
~h

1þ 1
4h

Th

 !
_hþCx ð2:64Þ

Having calculated γ and κ as a part of the solution of the system of equations
mentioned before, Eq. (2.63) can now be solved for θ, [notice that C itself depends
on θ as is seen in Eq. (2.62)]. Finally, Eq. (2.57) is solved for u, which is the
displacement vector on the beam reference line.

2.5 Recovery Relations and Their Application in Stress
Analysis

The suitability of a design can be evaluated using localized quantities like the 3-D
stress and strain components. Nevertheless, the 1-D beam analysis only provides
the global behavior of composite beams. Such a global outcome cannot replace a
detailed 3-D analysis. In order to recover the complete 3-D components, the 1-D
and the 2-D results should be combined properly.

Therefore, the next step is to calculate the 3-D strain and 3-D stress components.
This step is usually referred to as recovering the 3-D response and in which the
recovery relations are used. They include expressions for 3-D displacements, as
well as strain and stress components in terms of the 1-D beam quantities and the
local cross-sectional coordinates.

Referring to Fig. 2.4, one may express the position of a particle in the deformed
configuration, i.e., R(x1, x2, x3), in terms of its position vector r in the undeformed
beam,
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Rðx1; x2; x3Þ ¼ rþ u|{z}
from 1�D

0@ 1Aþ x2 B2|{z}
fromC got in 1�D

þ x3B3

0B@
1CAþ wi|{z}

from 2�D

Bi

ð2:65Þ

Having obtained the displacement of the reference line, u, from the 1-D analysis
and the warping functions of the cross section, wi, from the 2-D analysis, the
geometry of the deformed beam is now fully known. The 3-D strain components
can be written as (Hodges 2006)

C ¼ C11 2C12 2C13 C22 2C23 C33b cT ð2:66Þ

C ¼ Cðw;w0;�eÞ
C ¼ Ca w|{z}

2�D

þCe �e|{z}
1�D

þ CRw|ffl{zffl}
initial curvature 2�D

þClw
0 ð2:67Þ

where the 1-D generalized strain is

�e ¼
�c11
�j1
�j2
�j3

8>><>>:
9>>=>>; ð2:68Þ

and the operators are, for warping,

Ca ¼

0 0 0
@
@x2

0 0
@
@x3

0 0
0 @

@x2
0

0 @
@x3

@
@x2

0 0 @
@x3

266666664

377777775
ð2:69Þ

for the 1-D strain,

Ce ¼ 1ffiffiffi
g

p

1 0 x3 �x2
0 �x3 0 0
0 x2 0 0
0 0 0 0
0 0 0 0
0 0 0 0

26666664

37777775 ð2:70Þ
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for the initial curvature and twist,

CR ¼ 1ffiffiffi
g

p ~kþDk1 x3 @
@x2

� x2 @
@x3

� �
O3

" #
ð2:71Þ

and finally for the warping derivative,

Cl ¼ 1ffiffiffi
g

p D
O3

� 	
ð2:72Þ

Once strain components are calculated, stresses can be computed by the use of the
Hooke’s law,

r ¼ DC ð2:73Þ

To sum up, in a typical problem first using the VAM logic and VABS, the
cross-sectional properties are calculated. Then, the 1-D analysis is performed along
the span of the beam that utilizes the intrinsic equations of motion, the intrinsic
kinematical equations, the constitutive equations of the material of the beam, and
the momentum–velocity equations. Finally, the results are combined as shown
above to provide the 3-D stress and strain distributions.

2.6 Finite Difference Formulation in Time and Space

In order to solve the system of nonlinear partial differential Eqs. (2.34), (2.35), (2.37),
and (2.38) numerically, or to calculate the steady-state solution of this system, the
finite differencemethod (FDM) and the shootingmethodwill be used in the following
chapters. In this section, a few equations that will be used later are presented.

Figure 2.5 illustrates a beam that has been discretized by N nodes along its span.
The corresponding finite difference space–time grid presentation has been depicted

Fig. 2.5 Nodes along the blade and the coordinate system of the undeformed blade
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in Fig. 2.6. Consider the value of a generic variable, /ðx; tÞ, at position x and time
t. In order to simplify the notation, the following convention is used to express this
value:

/i ¼ /ðx; tÞ ð2:74Þ

where the subscript i is the beam node number corresponding to position x. At
points neighboring (x, t) on the space–time grid shown in Fig. 2.6, the same variable
can be expressed as

/iþ 1 ¼ /ðxþD x; tÞ; /þ
i ¼ /ðx; tþD tÞ; /þ

iþ 1 ¼ /ðxþD x; tþD tÞ ð2:75Þ

where the superscript ‘+’ refers to the values at the next time step and i + 1 is the
next spatial node (right-hand side of i). Using Taylor series expansion and a for-
ward and a backward difference in space, one obtains, respectively,

/ xþ Dx
2
; tþ Dt

2


 �
¼ / x; tþ Dt

2


 �
þ/0 x; tþ Dt

2


 �
Dx
2

ð2:76Þ

/ xþ Dx
2
; tþ Dt

2


 �
¼ / xþDx; tþ Dt

2


 �
� /0 xþDx; tþ Dt

2


 �
Dx
2

ð2:77Þ

Adding Eqs. (2.76) and (2.77) gives

2/ xþ Dx
2
; tþ Dt

2


 �
¼ / x; tþ Dt

2


 �
þ/ xþDx; tþ Dt

2


 �
þ /0 x; tþ Dt

2


 �
� /0 xþDx; tþ Dt

2


 �� 	
Dx
2

ð2:78Þ

Fig. 2.6 The space–time grid
for the numerical solution of a
partial differential equation
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Now, considering forward and backward differences in time,

/ x; tþ Dt
2


 �
¼ / x; tð Þþ _/ x; tð ÞDt

2
ð2:79Þ

/ x; tþ Dt
2


 �
¼ / x; tþDtð Þ � _/ x; tþDtð ÞDt

2
ð2:80Þ

Adding Eqs. (2.79) and (2.80) gives,

2/ x; tþ Dt
2


 �
¼ / x; tþDtð Þþ/ x; tð Þþ _/ x; tð Þ � _/ x; tþDtð Þ

h iDt
2

ð2:81Þ

Similarly, using forward and backward differences in time,

/ xþDx; tþ Dt
2


 �
¼ / xþDx; tð Þþ _/ xþDx; tð ÞDt

2
ð2:82Þ

/ xþDx; tþ Dt
2


 �
¼ / xþDx; tþDtð Þ � _/ xþDx; tþDtð ÞDt

2
ð2:83Þ

Adding Eqs. (2.82) and (2.83) results in

2/ xþDx; tþ Dt
2


 �
¼ / xþDx; tþDtð Þþ/ xþDx; tð Þ

þ _/ xþDx; tð Þ � _/ xþDx; tþDtð Þ
h iDt

2
ð2:84Þ

Substitution of Eqs. (2.81) and (2.84) into Eq. (2.78) gives

2/ xþ Dx
2
; tþ Dt

2


 �
¼ 1

2
/ x; tð Þþ/ x; tþDtð Þþ/ xþDx; tð Þþ/ xþDx; tþDtð Þ½ �

þ _/ x; tð Þ � _/ x; tþDtð Þ
h iDt

4

þ _/ xþDx; tð Þ � _/ xþDx; tþDtð Þ
h iDt

4

þ /0 x; tþ Dt
2


 �
� /0 xþDx; tþ Dt

2


 �� 	
Dx
2

ð2:85Þ

Taylor series expansions in time and in space can be used in Eq. (2.85) to give the
generic function value at the center of the space–time grid,
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/ xþ Dx
2
; tþ Dt

2


 �
¼ 1

4
/ x; tð Þþ/ x; tþDtð Þþ/ xþDx; tð Þþ/ xþDx; tþDtð Þ½ �

� €/ x; tð Þ Dtð Þ2
8

� €/ xþDx; tð Þ Dtð Þ2
8

� /00 x; tþ Dt
2


 �
Dxð Þ2
4

ð2:86Þ

Using the notation given in Eq. (2.75), and by ignoring the higher order terms,
Eq. (2.86) reduces to

/ xþ Dx
2
; tþ Dt

2


 �
¼ 1

4
/þ
iþ 1 þ/þ

i þ/iþ 1 þ/i

� �þO Dx2;Dt2
� � ð2:87Þ

According to Eq. (2.87), the function value at the center of a space–time grid may
well be approximated by the average of its values at the neighboring grid nodes.
Now, for the partial derivatives at the center point, using Taylor series expansion,

/ xþDx; tþ Dt
2


 �
¼ / xþ Dx

2
; tþ Dt

2


 �
þ/0 xþ Dx

2
; tþ Dt

2


 �
Dx
2

þOðDxÞ2

ð2:88Þ

/ x; tþ Dt
2


 �
¼ / xþ Dx

2
; tþ Dt

2


 �
� /0 xþ Dx

2
; tþ Dt

2


 �
Dx
2

þOðDxÞ2

ð2:89Þ

Subtracting Eq. (2.89) from Eq. (2.88) gives

/0 xþ Dx
2
; tþ Dt

2


 �
Dx ¼ / xþDx; tþ Dt

2


 �
� / x; tþ Dt

2


 �
þOðDxÞ2 ð2:90Þ

Similarly,

/ xþDx; tð Þ ¼ / xþDx; tþ Dt
2


 �
� _/ xþDx; tþ Dt

2


 �
Dt
2

þOðDtÞ2 ð2:91Þ

/ xþDx; tþDtð Þ ¼ / xþDx; tþ Dt
2


 �
þ _/ xþDx; tþ Dt

2


 �
Dt
2

þOðDtÞ2

ð2:92Þ
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Adding Eqs. (2.91) and (2.92) gives

2/ xþDx; tþ Dt
2


 �
¼ / xþDx; tþDtð Þþ/ðxþDx; tÞþOðDtÞ2 ð2:93Þ

Similarly,

/ðx; tÞ ¼ / x; tþ Dt
2


 �
� _/ x; tþ Dt

2


 �
Dt
2

þOðDtÞ2 ð2:94Þ

/ x; tþDtð Þ ¼ / x; tþ Dt
2
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þ _/ x; tþ Dt

2
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Dt
2

þOðDtÞ2 ð2:95Þ

Which result in

2/ x; tþ Dt
2


 �
¼ /ðx; tÞþ/ðx; tþDtÞþOðDtÞ2 ð2:96Þ

Substitution of Eqs. (2.93) and (2.96) into Eq. (2.90) gives

/0 xþ Dx
2
; tþ Dt

2
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Dx ¼ 1

2
/ xþDx; tþDtð Þþ/ xþDx; tð Þ � / x; tð Þ½

�/ x; tþDtð Þ� þO ðDxÞ2; ðDtÞ2
h i

ð2:97Þ

Using Eq. (2.97) and the notation introduced in Eq. (2.75), the generic form of the
derivative with respect to x1 becomes

/0 xþ Dx
2
; tþ Dt

2


 �
¼ 1

2Dx
/þ
iþ 1 � /þ

i þ/iþ 1 � /i

� �þO Dx2;Dt2
� � ð2:98Þ

For the generic form of the time derivative, one may start with

/ xþ Dx
2
; tþDt


 �
¼ / xþ Dx

2
; tþ Dt

2
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þ _/ xþ Dx

2
; tþ Dt

2
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Dt
2

þOðDtÞ2

ð2:99Þ

/ xþ Dx
2
; t
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¼ / xþ Dx

2
; tþ Dt

2
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� _/ xþ Dx

2
; tþ Dt

2
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Dt
2

þOðDtÞ2

ð2:100Þ
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Subtracting Eq. (2.100) from Eq. (2.99) gives

_/ xþ Dx
2
; tþ Dt

2
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Dt ¼ / xþ Dx

2
; tþDt
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� / xþ Dx

2
; t
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þOðDtÞ2

ð2:101Þ

Now,

/ x; tþDtð Þ ¼ / xþ Dx
2
; tþDt
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� /0 xþ Dx

2
; tþDt


 �
Dx
2

þOðDxÞ2 ð2:102Þ

/ xþDx; tþDtð Þ ¼ / xþ Dx
2
; tþDt
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þ/0 xþ Dx

2
; tþDt
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Dx
2

þOðDxÞ2

ð2:103Þ

Adding Eqs. (2.102) and (2.103) gives

2/ xþ Dx
2
; tþDt


 �
¼ / xþDx; tþDtð Þþ/ x; tþDtð ÞþOðDxÞ2 ð2:104Þ

Similarly,

/ðx; tÞ ¼ / xþ Dx
2
; t
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� /0 xþ Dx

2
; t
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Dx
2

þOðDxÞ2 ð2:105Þ

/ xþDx; tð Þ ¼ / xþ Dx
2
; t
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þ/0 xþ Dx

2
; t
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Dx
2

þOðDxÞ2 ð2:106Þ

Adding Eqs. (2.105) and (2.106) results in

2/ xþ Dx
2
; t


 �
¼ /ðx; tÞþ/ xþDx; tð ÞþO Dxð Þ2 ð2:107Þ

Substitution of Eqs. (2.104) and (2.107) into Eq. (2.101) gives

_/ xþ Dx
2
; tþ Dt

2
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Dt ¼ 1

2
/ðxþDx; tþDtÞþ/ðx; tþDtÞ � /ðx; tÞ½

�/ðxþDx; tÞ� þO ðDxÞ2; ðDtÞ2
h i

ð2:108Þ
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Finally, using Eq. (2.75) and Eq. (2.108), one obtains

_/ xþ Dx
2
; tþ Dt

2
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¼ 1

2Dt
/þ
iþ 1 � /iþ 1 þ/þ

i � /i

� �þO Dx2;Dt2
� � ð2:109Þ

Therefore, the set of difference equations for a 1-D dynamic problem would be

/ xþ Dx
2
; tþ Dt

2


 �
¼ 1

4
/þ
iþ 1 þ/þ

i þ/iþ 1 þ/i

� �þO Dx2;Dt2
� � ð2:87Þ

/0 xþ Dx
2
; tþ Dt

2


 �
¼ 1

2Dx
/þ
iþ 1 � /þ

i þ/iþ 1 � /i

� �þO Dx2;Dt2
� � ð2:98Þ

_/ xþ Dx
2
; tþ Dt

2


 �
¼ 1

2Dt
/þ
iþ 1 � /iþ 1 þ/þ

i � /i

� �þO Dx2;Dt2
� � ð2:109Þ

The quantities at the left-hand side of Eqs. (2.87), (2.98), and (2.109) are the
elemental ones and are expressed in terms of the nodal values. Equations (2.87),
(2.98), and (2.109) provide the second-order approximate finite difference expres-
sions for a variable and its derivatives with respect to time and space. They were
used in Ghorashi (1994) and in Esmailzadeh and Ghorashi (1997) to solve a moving
load problem. In this research, by properly defining the initial and boundary con-
ditions, these equations will be used to convert the discussed system of nonlinear
partial differential equations into a set of linear algebraic difference equations.
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Chapter 3
Linear Static Analysis of Composite
Beams

3.1 Introduction

In Chap. 2, the set of governing equations for the nonlinear analysis of the
elasto-dynamic response of a beam were reviewed. It was shown that this analysis
requires the solution of a system of four nonlinear partial differential equations
together with five linear vector equations for nine variables. As an especial case, in
this chapter, the finite difference method (FDM) is used for calculating the linear
static response of a beam. In this way, the performance of the mentioned formu-
lation for analyzing a linear static beam problem is illustrated.

3.2 Linear Static Solution Using Finite Difference Method

Recalling the nonlinear intrinsic equations of motion of a composite beam with
initial curvature and twist, i.e.,

F0 þ eKFþ f ¼ _Pþ eXP ð2:26Þ

M0 þ eKMþðee1 þecÞFþm ¼ _Hþ eXHþ eVP ð2:27Þ

and setting all of the linear and angular momentum terms equal to zero, the fol-
lowing equations for the nonlinear static case are obtained:

F0 þ eKFþ f ¼ 0 ð3:1Þ

M0 þ eKMþðee1 þecÞFþm ¼ 0 ð3:2Þ
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Next, considering a situation where all terms that are products of two dependent
variables (and hence are nonlinear) are small, the set of linear static equations are
obtained as follows:

F0 þ ekFþ f ¼ 0 ð3:3Þ

M0 þ ekMþee1Fþm ¼ 0 ð3:4Þ

On the other hand, recalling Eqs. (2.74) and (2.75), since in the special case of a
static problem, variables do not change in time, at every spatial node i,

/þ
iþ 1 ¼ /iþ 1, /þ

i ¼ /i ð3:5Þ

Therefore, the static version of Eqs. (2.87) and (2.98) becomes the following:

/ xþ Dx
2

� �
¼ 1

2
/iþ 1 þ/i

� �þO Dx2
� � ð3:6Þ

/0 xþ Dx
2

� �
¼ 1

Dx
/iþ 1 � /i

� �þO Dx2
� � ð3:7Þ

Now recall the strain–displacement equations,

c ¼ Cðe1 þ u0 þ ekuÞ � e1 ð2:57Þ

j ¼ D� 1
2
eh

1þ 1
4 h

Th

 !
h0 þCk � k ð2:63Þ

together with

C ¼ 1� ð1=4ÞhTh� �
D� ehþð1=2ÞhhT

1þð1=4ÞhTh ð2:62Þ

Equation (2.62) can be linearized as follows:

C ¼ D� eh ð3:8Þ

Substituting Eq. (3.8) into Eq. (2.57) and linearizing the outcome gives the
following:

c ¼ u0 þ eku� ehe1 ð3:9Þ

But, for any two 3 × 1 column vectors Y and Z,
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eYZ ¼ �eZY ð3:10Þ

Therefore, Eq. (3.9) reduces to the following:

c ¼ u0 þ ekuþee1h ð3:11Þ

Similarly, the linearized form of Eq. (2.63) is:

j ¼ h0 þCk � k ð3:12Þ

Substitution of Eq. (3.8) into (3.12) gives the following:

j ¼ h0 � ehk ð3:13Þ

Now, using Eq. (3.10), Eq. (3.13) changes to:

j ¼ h0 þ ekh ð3:14Þ

Since the vector of undeformed (initial) curvature and twist, k, is assumed to be
known, Eq. (3.14) is linear. For a beam with zero initial curvature and twist,
Eqs. (3.11) and (3.14) result in the following:

c ¼ u0 þee1h ð3:15Þ

j ¼ h0 ð3:16Þ

Now, recall the constitutive equation,

c
j

� 	
¼ R Z

ZT T


 �
F
M

� 	
ð2:56Þ

Substitution for γ and κ from Eq. (2.56) into the kinematical equations (3.15) and
(3.16) gives the following:

RFþ ZM ¼ u0 þee1h; ZTFþ TM ¼ h0 ð3:17Þ

or

u0 ¼ �ee1hþRFþ ZM; h0 ¼ ZTFþ TM ð3:18Þ

Equations (3.3), (3.4), and (3.18) form a set of four first-order vector (i.e., twelve
scalar) differential equations for four vector variables. Once the boundary condi-
tions at the two ends of the beam are specified, this boundary value problem can be
solved for the four vector variables. Assuming zero distributed load (f = 0 and
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m = 0) and zero initial twist and curvature, Eqs. (3.3) and (3.4) reduce to the
following:

F0 ¼ 0; M0 ¼ �ee1F ð3:19Þ

The finite difference equations (3.6) and (3.7) can now be used to convert the set
of first-order differential equations (3.19) into the set of difference equations:

Fiþ 1 ¼ Fi ð3:20Þ
1
Dx

Miþ 1 �Mið Þ ¼ �ee1 12 Fiþ 1 þFið Þ ð3:21Þ

or

Miþ 1 þ 1
2
Dxee1Fiþ 1 ¼ Mi � 1

2
Dxee1Fi ð3:22Þ

Similarly, the equivalent difference equations for Eq. (3.18) are as follows:

1
Dx

uiþ 1 � uið Þ ¼ �ee1 12 hiþ 1 þ hið ÞþR
1
2

Fiþ 1 þFið Þþ Z
1
2

Miþ 1 þMið Þ ð3:23Þ

1
Dx

hiþ 1 � hið Þ ¼ ZT 1
2

Fiþ 1 þFið Þþ T
1
2

Miþ 1 þMið Þ ð3:24Þ

or

uiþ 1 þ 1
2
Dxee1hiþ 1 � 1

2
DxRFiþ 1

� 1
2
DxZMiþ 1 ¼ ui � 1

2
Dxee1hi þ 1

2
DxRFi þ 1

2
DxZMi

ð3:25Þ

hiþ 1 � 1
2
DxZTFiþ 1 � 1

2
DxTMiþ 1 ¼ hi þ 1

2
DxZTFi þ 1

2
DxTMi ð3:26Þ

Equations (3.20), (3.22), (3.25), and (3.26) can be written in the following
matrix form:

I3�3 03�3 03�3 03�3

0:5Dxee1 I3�3 03�3 03�3

�0:5DxR �0:5DxZ I3�3 0:5Dxee1
�0:5DxZT �0:5DxT 03�3 I3�3

2664
3775

Fiþ 1

Miþ 1

uiþ 1

hiþ 1

8>><>>:
9>>=>>;

¼
I3�3 03�3 03�3 03�3

�0:5Dxee1 I3�3 03�3 03�3

0:5DxR 0:5DxZ I3�3 �0:5Dxee1
0:5DxZT 0:5DxT 03�3 I3�3

2664
3775

Fi

Mi

ui
hi

8>><>>:
9>>=>>; ð3:27Þ
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or

Biqiþ 1 ¼ Aiqi ð3:28Þ

where

Bi ¼
I3�3 03�3 03�3 03�3

0:5Dxee1 I3�3 03�3 03�3

�0:5DxR �0:5DxZ I3�3 0:5Dxee1
�0:5DxZT �0:5DxT 03�3 I3�3

2664
3775; qiþ 1 ¼

Fiþ 1

Miþ 1

uiþ 1

hiþ 1

8>><>>:
9>>=>>; ð3:29Þ

Ai ¼
I3�3 03�3 03�3 03�3

�0:5Dxee1 I3�3 03�3 03�3

0:5DxR 0:5DxZ I3�3 �0:5Dxee1
0:5DxZT 0:5DxT 03�3 I3�3

2664
3775; qi ¼

Fi

Mi

ui
hi

8>><>>:
9>>=>>; ð3:30Þ

There are eight unknown scalars in the four algebraic equations (3.27). To obtain
the unique solution of the problem, one needs to implement the boundary condi-
tions by relating q1 to qN (N is the number of spatial nodes). To this end, and by
using Eq. (3.28), one obtains the following:

qi ¼ A�1
i Bi|fflffl{zfflffl}
ai

qiþ 1 ð3:31Þ

So, one can now relate q1 to q2, q2 to q3, and so on. Therefore, finally q1 would
be related to qN as follows:

q1 ¼ a1a2. . .aN�1ð ÞqN ð3:32Þ

One may define the following:

HN�1 ¼ a1a2. . .aN�1 ð3:33Þ

where

Hi ¼ Hi�1ai ð3:34Þ

In order to complete the solution, the boundary conditions of the problem should
be implemented. Consider the cantilever beam shown in Fig. 2.5 where node 1 is
fixed and node N is free. In this case, the displacements at i = 1 would be zero and
the forces and moments at i = N would be either known from the applied loading or
just zero because of the free end condition. Thus, using the boundary conditions,
half of the variables at these two nodes are already known and Eq. (3.32) relating q1
and qN gives the following:
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F1

M1

0
0

8>><>>:
9>>=>>; ¼

h11 h12 h13 h14
h21 h22 h23 h24
h31 h32 h33 h34
h41 h42 h43 h44

2664
3775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
HN�1

FN

MN

uN
hN

8>><>>:
9>>=>>; ð3:35Þ

Equation (3.35) has four unknown scalars and four scalar equations. Using the
last two rows of Eq. (3.35),

0
0

� 	
¼ h31 h32

h41 h42


 �
FN

MN

� 	
þ h33 h34

h43 h44


 �
uN
hN

� 	
ð3:36Þ

from which the unknown displacements at the free end (node N) of the beam are as
follows:

uN
hN

� 	
¼ � h33 h34

h43 h44


 ��1
h31 h32
h41 h42


 �
FN

MN

� 	
ð3:37Þ

Substituting Eq. (3.37) into (3.35) results in the unknown forces and moments at
node 1,

F1

M1

� 	
¼ h11 h12 h13 h14

h21 h22 h23 h24


 � FN

MN

uN
hN

8>><>>:
9>>=>>; ð3:38Þ

Having obtained the unknowns at boundary nodes 1 and N, one may use
Eq. (3.28) to get the solution at all intermediate nodes by solving a system of four
equations with four unknowns.

3.3 Case Study: Isotropic Rectangular Solid Model

Figure 3.1 illustrates a prismatic member having a solid rectangular section. To
provide a numerical example, it is assumed that the beam has been made of a
hypothetical homogeneous and isotropic material for which,

E ¼ 17; 920 GPa; t ¼ 0:3

A ¼ 0:02m2; q ¼ 1770 kg/m3 ð3:39Þ

The origin of the coordinate system is located at the shear center of the cross
section which in this case is identical to the centroid of the section. The following
concentrated force and concentrated moment are applied at the tip of the beam:
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F1 ¼ 10; 000N; M2 ¼ 1000N.m ð3:40Þ

It should be emphasized that the subscripts in Eq. (3.40) refer to the directions at
which the mentioned forces and moments act, not to the node numbers. In this
problem, the matrix of the cross-sectional mass moments of inertia, introduced in
Eq. (2.48), can be calculated as follows:

i ¼
8:333 0 0
0 1:6667 0
0 0 6:6667

24 35� 10�5 � 1770 kg.m ð3:41Þ

The sectional stiffness matrix has been computed by VABS:

S ¼

0:358� 1012 0 0 0 0 0
0 0:1373� 1012 0 0 0 0
0 0 0:1074� 1012 0 0 0
0 0 0 0:354� 109 0 0
0 0 0 0 0:298� 109 0
0 0 0 0 0 0:119� 1010

26666664

37777775
ð3:42Þ

Now, recalling Eq. (2.56),

S�1 ¼ R Z
ZT T


 �
ð3:43Þ

where matrices R, T, and Z can be calculated by inverting Eq. (3.42). The results are
as follows:

0.1m

0.2 m

x1

x3 x2

Fig. 3.1 The geometry of the
beam and the coordinate
system
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R ¼
2:793 0 0
0 7:283 0
0 0 9:307

24 35� 10�12 s2

kg.m
;

T ¼
28:21 0 0
0 33:52 0
0 0 8:382

24 35� 10�10 s2

kg.m3; Z ¼ 03x3

ð3:44Þ

For the loading given in Eq. (3.40) applied at the tip of the beam, the algorithm
mentioned in Sect. 3.2 provides the results that are shown in Figs. 3.2, 3.3, 3.4, and
3.5. As expected, the induced axial force shown in Fig. 3.2 is equal to the applied
force and all shear forces are zero. The internal moment illustrated in Fig. 3.3 is also
equal to the applied moment. This is expected because there is no transverse load
that can generate any bending moment other than that of the applied moment.

The distributions of linear and angular displacements are justifiable too, and they
compare very well with the corresponding analytical solutions. For example, at an
arbitrary position x1 (in meters) from the clamped end,

u1 ¼ F1x1
AE

¼ 10; 000� x1
0:02� 1:7926� 1013

¼ 2:7892� 10�8 x1 m ð3:45Þ

The distribution given by Eq. (3.45) is shown in Fig. 3.4, and it compares very
well with the numerical solution. For bending deformation, the analytical solution is
as follows:

Fig. 3.2 The distribution of internal force components along the isotropic blade
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Fig. 3.3 The distribution of internal moment components along the isotropic blade

Fig. 3.4 The distribution of displacement components along the isotropic beam FDM (dashed)
and exact solution (asterisk)
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u3 ¼
� 1

2M2x21
Eði2=qÞ ¼ � 1

2 � 1000� x21
1:7926� 1013 � 1:6667� 10�5 ¼ �1:673� 10�6 � x21 m

ð3:46Þ

So, positive M2 produces negative u3. By combining Eqs. (3.45) and (3.46), the
analytically calculated displacement field would be the following:

u ¼ x1 � 10�8
2:7892

0
0

8<:
9=;� 100x1

0
0

1:673

8<:
9=;

0@ 1A ð3:47Þ

Equation (3.47) has been plotted in Fig. 3.4 and is in good agreement with the
displacement calculated numerically. Finally, for rotation θ2 generated by the
applied loading, the analytical solution is as follows:

h2 ¼ �u03 ¼
M2x1

Eði2=qÞ ¼
1000� x1

1:7926� 1013 � 1:6667� 10�5 ¼ 3:347� 10�6 � x1 rad

ð3:48Þ

Fig. 3.5 The distribution of rotation components along the isotropic beam FDM (dashed) and
exact solution (asterisk)
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or

h ¼ x1 �
0

3:352
0

8<:
9=;� 10�6 rad ð3:49Þ

Equation (3.49) has been plotted in Fig. 3.5 and is in good agreement with the
displacement field calculated numerically.

3.4 Case Study: Composite Box Model

Figure 3.6 illustrates a composite square box beam with constant properties along its
longitudinal axis and a cross section with 2.5 cm distance between the midlines. The
upper and lower sides are made of four plies of AS4/3506-1 at 45°, and the lateral
sides are made of four plies of a typical anisotropic piezocomposite actuator (APA) at
−45°. These ply angles are the angles of fibers with respect to the longitudinal x-axis
as shown in Fig. 3.7. If the fibers were in the 1st and 3rd quadrants of the x–
y coordinate system, the ply angle would be positive. If the fibers were in the 2nd and
4th quadrants of the x–y coordinate system, the ply angle would be negative.

45° AS4/3506-1

-45° APA -45° APA

45° AS4/3506-1

Fig. 3.6 The UM/VABS
model for the box beam as
used in Cesnik and Palacios
(2003)

x

y

z

1

2

3

4

Fig. 3.7 The laminate and
convention for material
orientation
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This model has been discussed in Cesnik and Palacios (2003), and the
UM/VABS input file for this case has been among the examples provided with the
software. It uses the CQUAD8 element that is an eight-nodded element, and it
follows the numbering scheme illustrated in Fig. 3.7. In this scheme, the first two
nodes (1 and 2) define the local y-axis, whereas nodes 2 and 3 define the local z-
axis; and then having y- and z-axes, the cross product of y by z would give the x-
axis. In this way, by stating the numbering sequence of the nodes, the local
coordinate system would be completely defined.

The material properties of the fiber-reinforced composite material have been
stated in the material coordinate system, ei, i = 1, 2, 3. Direction i = 1 is the fiber
direction, direction i = 2 is the transverse direction but in plane of the layer, and
direction i = 3 is the transverse direction but out of plane of the layer. The material
properties include Young’s modulus in the i direction, Ei; Poisson’s ratio in the i–
j plane νij for the material loaded in the i direction and its transversal deformation
measured in the j direction; shear modulus in the i–j plane, Gij; mass density, ρ; and
the coefficient of thermal expansion in the i direction, αi, where i, j = 1, 2, 3.

For this case study, some of these material properties are listed in Table 3.1. Here
only the passive mechanical properties are used in the model. The active material
properties will be introduced and used in Chap. 8. Furthermore, E3 = 0.8E2,
ρ = 1770 kg/m3 and the following equation provides the material properties that are not
given.

Eimji ¼ Ejmij i; j ¼ 1; 2; 3 ð3:50Þ

In addition, the thickness of each ply is 0.127 mm and the length of the box, L, is
1 m.

Using UM/VABS, the 2-D cross-sectional analysis has been performed and the
cross-sectional matrices of stiffness and mass moments of inertia were calculated as
follows:

S ¼

7:977 � 105 �0:9873 �0:8575 �1:5056� 103 �7:3017� 10�3 1:348� 10�3

�0:9873 2:5482� 105 4:6845� 10�3 �3:897� 10�3 1:962� 103 5:9626� 10�5

�0:8575 4:6845� 10�3 2:296� 105 1:0716� 10�2 9:912� 10�5 �2:8055� 102

�1:5056� 103 �3:897� 10�3 1:0716� 10�2 86:95 2:1193� 10�4 1:6532� 10�4

�7:3017� 10�3 1:962� 103 9:912� 10�5 2:1193� 10�4 90:397 3:6091� 10�6

1:348 � 10�3 5:9626� 10�5 �2:8055� 102 1:6532� 10�4 3:6091� 10�6 79:4434

26666664

37777775
ð3:51Þ

Table 3.1 Material properties of the active box beam (1 = fiber direction, 2 = transverse and in
plane of the layer, 3 = out of plane), Cesnik and Palacios (2003)

E1

(GPa)
E2

(GPa)
G12

(GPa)
G23

(GPa)
ν12 ν23 d111

(pm/V)

d112
(pm/V)

t (mm) Distance between
electrodes (mm)

AS4/3506-1 142 9.8 6.0 4.8 0.3 0.42 _ _ 0.127 _

APA 42.2 17.5 5.5 4.4 0.354 0.42 381 −160 0.127 1.143
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i ¼
9:9555 0 0

0 4:9777 0
0 0 4:9777

24 35� 10�9 � 1770 kg.m ð3:52Þ

Now, consider the following concentrated loading at the tip of the box beam
(i.e., at the free end)

F1 ¼ 100N; M2 ¼ 10N:m ð3:53Þ

where the subscripts refer to the global coordinate system shown in Fig. 3.1 (not to
the node numbers or the principal material directions).

The response of the composite box beam is obtained by the method that was
explained in Sect. 3.2, and the results are illustrated in Figs. 3.8, 3.9, 3.10, and 3.11.
As expected, the internal axial force in Fig. 3.8 is equal to the applied force and all
shear forces are zero. In Fig. 3.9, the induced moment is seen to be equal to the
applied moment. This is expected as there is no transversal load that can generate
moments other than that of the applied moment. The force and moment distribu-
tions in this case are similar to those of an isotropic material (shown in Figs. 3.2
and 3.3).

As to the linear and angular displacements shown in Figs. 3.10 and 3.11, because of
the coupling terms in the stiffness matrix of the composite structure, u2, θ1, and θ3 are
no longer zero. It is in contrastwith Figs. 3.4 and 3.5 for an isotropicmaterial subjected
to a similar loading in which u2, θ1, and θ3 have all been calculated to be zero. The
reason is because in the case of an isotropic material such coupling terms do not exist.

Fig. 3.8 The distribution of internal force components along the composite box beam
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Fig. 3.9 The distribution of internal moment components along the composite box beam

Fig. 3.10 The distribution of displacement components along the composite box beam
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3.5 Calculation of 3-D Strain and 3-D Stress Using 2-D
and 1-D Analyses

Having solved the 2-D cross-sectional problem by VABS and the 1-D beam
problem by the method explained in Sect. 3.2, these results can now be combined to
provide the generalized stress and strain values. The procedure that is necessary for
performing such calculations has been discussed in Sect. 2.5, and it is implemented
here for a beam made of an isotropic material.

Consider a cantilever beam that is 1 m wide and 2 m thick and is 10 m in length.
The beam has been made of a hypothetical material with the following properties:

E ¼ 2:6GPa G ¼ 1GPa ð3:54Þ

The following concentrated loads are now applied at the free end of the beam,
and the aim is to apply the mentioned procedure for calculating stress and strain
distributions.

F̂ ¼
100
0
0

8<:
9=; N; M̂ ¼

0
100
0

8<:
9=; N.m ð3:55Þ

Fig. 3.11 The distribution of rotation components along the composite box beam
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The load components are expressed in the global coordinate system shown in
Fig. 3.1. For this linear static case, with zero distributed load (f = 0 and m = 0) and
zero initial twist and curvature, Eq. (3.19) is applicable. Using the tip values of
force and moment as the imposed boundary conditions, one obtains the following:

M ¼ ðL� x1Þee1F̂þ M̂ ð3:56Þ

Substituting Eq. (3.56) into (2.56) results in the following:

c
j

� 	
¼ R Z

ZT T


 �
F̂

M̂þðL� x1Þee1F̂
� 	

ð3:57Þ

Equation (3.57) can be rewritten as follows:

c
j

� 	
¼ R Z

ZT T


 �
D 0

ðL� x1Þee1 D


 �
F̂
M̂

� 	
ð3:58Þ

Now, combining Eq. (3.16) and (3.58), one obtains the following:

h0 ¼ ZT þðL� x1ÞTee1� �
F̂þ TM̂ ð3:59Þ

Using the following boundary condition at the clamped end,

x1 ¼ 0; h ¼ 0 ð3:60Þ

Equation (3.59) may be integrated to give:

hðx1Þ ¼ x1Z
T þðLx1 � 0:5x21ÞTee1� �

F̂þ x1TM̂ ð3:61Þ

Substitution of the numerical values in Eq. (3.61) results in the following:

h ¼ x1 �
0

5:77
0

8<:
9=;� 10�8 rad ð3:62Þ

This result is reasonable. First, F has no rotational effect, and secondly, M is
applied about x2. That is why it produces rotation about x2. This rotation increases
linearly with x1 (measured from the fixed end and in meters). Having calculated the
rotation vector in Eq. (3.62), one can now compute the rotation matrix C by using
Eq. (2.62). This matrix, for such a lightly loaded beam, is very close to the identity
matrix, as expected. The displacement vector, u, can be calculated using Eq. (3.15)
which is the linearized form of Eq. (2.57).

64 3 Linear Static Analysis of Composite Beams



c ¼ u0 þee1h ð3:15Þ

Expansion of Eq. (3.57) gives the following:

c ¼ RþðL� x1ÞZee1½ �F̂þ ZM̂ ð3:63Þ

Using the given numerical values in Eq. (3.63) results in the following:

c ¼ 10�8
1:92
0
0

8<:
9=; ð3:64Þ

Substituting Eqs. (3.62) and (3.64) into Eq. (3.15) and applying the boundary
condition

x1 ¼ 0; u ¼ 0 ð3:65Þ

gives

u ¼ x1 � 10�8
1:92
0
0

8<:
9=;� 0:5x1

0
0

5:77

8<:
9=;

0@ 1A m ð3:66Þ

So, the moment about x2 has produced u3, and for positive M2, the corresponding
u3 is negative, as expected. Using Eq. (3.65), the displacement vector at the tip of
the 10 m beam is as follows:

u ¼
1:92� 10�7

0
�28:85� 10�7

8<:
9=; m ð3:67Þ

To obtain the stress distribution, one may use the calculated u, θ, and C matrices
in the VABS input file. VABS then uses these data, as well as the sectional stiffness
and inertia matrices and the warping functions to calculate the 3-D stress and strain
matrices along the beam. The calculations are performed at the Gaussian points
across the section. As an example, at a Gaussian point with x3 = 0.887m, a stress
value r1 ¼ �83 Pa is calculated by VABS. At the same location, using the fol-
lowing well-known linear elasticity equation, one obtains the following:

r1 ¼ �M2x3
I2

þ F1

A
ð3:68Þ
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or

r1 ¼ �100� 0:887
zfflffl}|fflffl{Gaussian Point

ð1� 23=12Þ þ 100
2

¼ �83 Pa ð3:69Þ

which is identical to the VABS output.
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Chapter 4
Nonlinear Static Analysis of Composite
Beams

4.1 Introduction

In Chap. 3, the linear static analysis of composite beams was carried out by using
the finite difference method and by transforming a set of linear differential equations
to a corresponding set of difference equations. These equations were then solved by
applying the boundary conditions. A linear solution is based on equilibrium
equations written with respect to the undeformed geometry. However, linearization
of differential equations is not always justifiable. If the displacements are large, the
nonlinear solution with equations of equilibrium written with respect to the
deformed geometry should be taken into consideration. In such a case, the gov-
erning differential equations cannot be linearized without compromising the accu-
racy of the solution. Therefore, other methods of solution such as perturbations
should be used instead.

4.2 Case Study: Solving a Nonlinear Initial Value Problem

Let us illustrate the perturbations method with an example. Consider the following
nonlinear ordinary differential equation that illustrates an initial value problem,

_xðtÞþ 0:03x2ðtÞ ¼ sinðtÞ; xð0Þ ¼ 0 ð4:1Þ

Due to the continuity of x(t), for a small time increment Dt, the value of the
dependent variable in the following time step, i.e., xðtþDtÞ or xþ , is only slightly
away from the value of the dependent variable at the present time, x(t) or x. This
slight variation or perturbation is shown by x_. So,
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xðtþDtÞ � xðtÞ ¼ x_ ð4:2Þ

or

xþ ¼ xþ x_ ð4:3Þ

Using Taylor series and forward differences, i.e.,

xðtþDtÞ ¼ xðtÞþ _xðtÞDtþ 1
2!
€xðnÞðDtÞ2 ð4:4Þ

One obtains,

_xðtÞ ¼ 1
Dt

xðtþDtÞ � xðtÞ½ � � 1
2!
€xðnÞDt ð4:5Þ

or

_xðtÞ ¼ 1
Dt

xðtþDtÞ � xðtÞ½ � þOðDtÞ ð4:6Þ

A more accurate forward difference approximation is given as follows:

_xðtÞ ¼ 1
2Dt

�3xðtÞþ 4xðtþDtÞ � xðtþ 2DtÞ½ � þOðDtÞ2 ð4:7Þ

However, this one requires two initial conditions that are not available in a
first-order problem given in Eq. (4.1). One may now start the solution by substi-
tuting Eq. (4.6) into (4.1) to get the following equation:

1
Dt

xðtþDtÞ � xðtÞ½ � þ 0:03x2ðtÞ ¼ sinðtÞ ð4:8Þ

Using Eqs. (4.2) and (4.8), the following equation for the perturbations is
obtained as

x
_ ¼ Dt sinðtÞ � 0:03x2

� � ð4:9Þ

Equations (4.3) and (4.9) result in the following perturbation solution for
Eq. (4.1),

xþ ¼ xþDt sinðtÞ � 0:03x2
� � ð4:10Þ

The solution starts at the initial condition x(0) = 0. Then, the repetitive use of
Eq. (4.10) provides future values of the dependent variable, x, at corresponding
t values.
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At each iteration, the current t and x values are updated. Figure 4.1 illustrates the
outcome of this procedure and the corresponding Runge–Kutta solution. The two
results are undistinguishable.

Another way of solving Eq. (4.1) using perturbations is to solve it in two steps.
First is to use Eq. (4.10) only once to produce a second “initial condition,” Then,
these two initial conditions can be used together in the more accurate Eq. (4.7) in
order to continue the solution.

In general, for a continuous variable /ðtÞ with gradual changes if its value / at
an instant t is known its perturbed value /þ (after a small increment Δt of the
independent variable t) would not be far from /. So, the perturbed variable can be
written as

/þ ¼ /þ/
_ ð4:11Þ

where /
_

is the small perturbation of the dependent variable /.
Substitution of Eq. (4.11) into the nonlinear differential equation of interest and

then ignoring higher order terms of /
_

result in a set of linear equations for the

unknown perturbations /
_

. These equations, using initial conditions, may then be

solved for /
_

. Having obtained the perturbations, they can be substituted into
Eq. (4.11) in order to provide the solution of the nonlinear problem.

If / is not small, linearization of nonlinear terms involving / in the governing
equations may not be justifiable. However, if / varies slowly, then its perturbations

would be small. Consequently, linearizing higher order terms containing /
_

can be
done without a problem. By choosing small enough time steps, perturbations can be
made as small as needed to increase the accuracy of the solution. However, too
small time steps will clearly increase the solution time.

Fig. 4.1 The two solutions
for Eq. (4.1): using the
Runge–Kutta method
(asterisks) and the
perturbation method (dashes)
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4.3 The Governing Nonlinear Statics Equations

The general nonlinear static intrinsic equations of a beam were discussed in Chap. 3
and are reminded here as follows:

F0 þ ~KFþ f ¼ 0 ð3:1Þ

M0 þ ~KMþð~e1 þ~cÞFþm ¼ 0 ð3:2Þ

The constitutive equations are given as

c
j

� �
¼ R Z

ZT T

� �
F
M

� �
ð2:56Þ

Equations (3.1), (3.2), and (2.56) form a system of four equations in terms of
four unknowns, i.e., F, M, κ, and γ. Once the boundary conditions imposed on the
beam are specified, this system of equations can be solved. Then, other relevant
unknowns, i.e., K, C, θ, and u, can be calculated using Eqs. (2.36), (2.57), (2.62),
and (2.63), repeated here for convenience,

K ¼ kþ j ð2:36Þ

c ¼ Cðe1 þ u0 þ ~kuÞ � e1 ð2:57Þ

C ¼ 1� ð1=4ÞhTh� 	
D� ~hþð1=2ÞhhT

1þð1=4ÞhTh ð2:62Þ

j ¼ D� 1
2
~h

1þ 1
4h

Th

 !
h0 þCk � k ð2:63Þ

Solution of Eqs. (2.57) and (2.63) that are differential equations in terms of u and
θ, respectively, requires the application of proper boundary conditions for u and θ.
Also, if the initial (undeformed) twist and curvature values are zero, then k = 0 and
using Eq. (2.36), K ¼ j. Otherwise, the total twist and curvature K should be
calculated using Eq. (2.36).

4.4 Perturbation Formulation of the Nonlinear Static
Problem

The following finite difference equations have already been derived for a static
problem,
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/ xþ Dx
2


 �
¼ 1

2
/iþ 1 þ/i

� �þO Dx2
� � ð3:6Þ

/0 xþ Dx
2


 �
¼ 1

Dx
/iþ 1 � /i

� �þO Dx2
� � ð3:7Þ

In order to deal with nonlinearities in a static problem, one needs to introduce
space perturbations. For a fine mesh and a continuously varying variable / with
gradual changes, its value at the spatial node i + 1 is close to its value at node

i. Therefore, spatial perturbation, /
^

iþ 1, can be defined as follows:

/iþ 1 ¼ /i þ/
^

iþ 1 ð4:12Þ

which may be compared with the time perturbation defined in Eq. (4.3).
Substituting Eq. (4.12) into Eqs. (3.6) and (3.7) gives the following:

/ xþ Dx
2


 �
¼ /i þ

1
2
/
^

iþ 1 ð4:13Þ

/0 xþ Dx
2


 �
¼ 1

D x
/
^

iþ 1 ð4:14Þ

The nonlinear terms in Eqs. (3.1) and (3.2) are products and for highly nonlinear
cases these terms may be large so one cannot linearize the system just by assuming
that the nonlinear terms are ignorable. That is exactly why perturbations should be
used. Unlike using the original variables, when their perturbations are used, one can
linearize the resulting equations based on the fact that perturbations are small and
therefore their product (i.e., the nonlinear term) is negligible.

Now considering a generic nonlinear product term, / xþ Dx
2


 �
� c xþ Dx

2


 �
,

one may try to express it in terms of the nodal functional values and their pertur-
bations. Using Eq. (4.13), one obtains the following:

/ xþ Dx
2


 �
� c xþ Dx

2


 �
¼ /i þ

1
2
/
^

iþ 1


 �
ci þ

1
2
c
^

iþ 1


 �
ð4:15Þ

Since perturbations are small, one may ignore the small nonlinear perturbation

term,
1
4
/
^

iþ 1c
^

iþ 1 to get,

/ xþ Dx
2


 �
� c xþ Dx

2


 �
¼ /ici þ

1
2
/ic

^

iþ 1 þ
1
2
/
^

iþ 1ci ð4:16Þ

On the other hand, assuming zero initial twist and curvatures, i.e., k = 0,
Eq. (3.1) becomes as follows:
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F0 þ ~jFþ f ¼ 0 ð4:17Þ

Using Eqs. (3.6), (4.14), and (4.16) in Eq. (4.17) results in the following
equation:

1
Dx

F
^

iþ 1 þ ~jiFi þ 1
2
~jiF

^

iþ 1 þ 1
2
~j
^

iþ 1Fi


 �
þ 1

2
fiþ 1 þ fið Þ ¼ 0 ð4:18Þ

or

1
Dx

F
^

1

F
^

2

F
^

3

8>><>>:
9>>=>>;

iþ 1

þ
0 �j3 j2
j3 0 �j1
�j2 j1 0

264
375
i
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F2

F3

8><>:
9>=>;

i

þ 1
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0 �j3 j2
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�j2 j1 0

264
375
i
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1

F
^

2

F
^

3

8>><>>:
9>>=>>;

iþ 1

þ 1
2

0 �j
^

3 j
^

2

j
^

3 0 �j
^

1

�j
^

2 j
^

1 0

264
375
iþ 1

F1

F2

F3

8><>:
9>=>;

i

þ 1
2

f1;iþ 1 þ f1;i
f2;iþ 1 þ f2;i
f3;iþ 1 þ f3;i

8><>:
9>=>; ¼ 0

ð4:19Þ

Similarly, for k = 0, Eq. (3.2) becomes the following:

1
Dx

M
^

iþ 1 þ ~jiMi þ 1
2
~jiM

^

iþ 1 þ 1
2
~j
^

iþ 1Mi


 �
þ~e1 Fi þ 1

2
F
^

iþ 1


 �
þ ~ciFi þ 1

2
~ciF

^

iþ 1 þ 1
2
~c
^

iþ 1Fi


 �
þ 1

2
miþ 1 þmið Þ ¼ 0

ð4:20Þ

Next, for an arbitrary node i, the first part of the constitutive equation (2.56)
gives the following equation:

ci ¼ RFi þ ZMi; ciþ 1 ¼ RFiþ 1 þ ZMiþ 1 ð4:21Þ

Subtracting the two parts of Eq. (4.21) and using Eq. (4.12) for γ gives the
following equation:

c
^

iþ 1 ¼ RF
^

iþ 1 þ ZM
^

iþ 1 ð4:22Þ

Similarly, for the second part of Eq. (2.56),

j
^

iþ 1 ¼ ZTF
^

iþ 1 þ TM
^

iþ 1 ð4:23Þ

Equations (4.18), (4.20), (4.22), and (4.23) form a system of twelve linear
algebraic equations for twelve unknown perturbations corresponding to variables
F, M, γ, and κ at every node i + 1. These equations can be organized in the matrix
form shown in Eqs. (4.24) and (4.25).
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ð4:24Þ

bi ¼

j3F2 � j2F3 � 1
2 f1;i þ f1;iþ 1
� �

�j3F1 þ j1F3 � 1
2 f2;i þ f2;iþ 1
� �

j2F1 � j1F2 � 1
2 f3;i þ f3;iþ 1
� �

j3M2 � j2M3 þ 2c13F2 � 2c12F3 � 1
2 m1;i þm1;iþ 1
� �

�j3M1 þ j1M3 þF3 � 2c13F1 þ c11F3 � 1
2 m2;i þm2;iþ 1
� �

j2M1 � j1M2 � F2 þ 2c12F1 � c11F2 � 1
2 m3;i þm3;iþ 1
� �

0
0
0
0
0
0

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

ð4:25Þ

4.5 Algorithm of Solution

Consider the case of a cantilever beam with N nodes along the longitudinal
direction as shown in Fig. 2.5. At the free end or tip of the beam (i.e., at node N),
the force and moment boundary conditions are known. Therefore, the corre-
sponding values of κ and γ can be calculated using the constitutive equation (2.56).
Now that F, M, κ, and γ at the tip are all known, one may use Eqs. (4.24) and (4.25)
to calculate the corresponding perturbation values at this location (i.e., at node N).
Having calculated the mentioned perturbations at node N, one can use Eq. (4.12), or
equivalently,

/i�1 ¼ /i � /
^

i ð4:26Þ

in order to calculate variables F, M, κ, and γ at node N − 1 right beside the tip of the
blade. The mentioned procedure can be repeated until F, M, κ, and γ values at all
nodes are calculated.
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While for F and M the boundary conditions are known at the tip of the beam, for
u and θ the boundary conditions are known at the root of the beam (i.e., at the
clamped end). Such boundary conditions are going to be used in this step. Having
already calculated κ along the beam, and knowing θ at the root, Eq. (2.63) can be
used for calculating θ along the beam. Assuming k = 0, Eq. (2.63) reduces to the
following:

j ¼ D� 1
2
~h

1þ 1
4h

Th

 !
h0 ð4:27Þ

Using the perturbation Eqs. (3.6), (4.12), (4.13), and (4.14) for θ, one obtains the
following:

hiþ 1 ¼ hi þ h
^

iþ 1 ð4:28Þ

h xþ Dx
2


 �
¼ 1

2
hiþ 1 þ hið Þ ð4:29Þ

h xþ Dx
2


 �
¼ hi þ 1

2
h
^

iþ 1 ð4:30Þ

h0 xþ Dx
2


 �
¼ 1

Dx
h
^

iþ 1 ð4:31Þ

Equation (4.30) can be used to rewrite the denominator of Eq. (4.27) as follows:

1þ 1
4
hTh ¼ 1þ 1

4
hTi hi þ

1
8
hTi h

^

iþ 1 þ 1
8
h
^
T
iþ 1hi ð4:32Þ

However, hTh is a scalar, and also hTi h
^

iþ 1 ¼ h
^
T
iþ 1hi for the same reason. Thus,

1þ 1
4
hTh ¼ 1þ 1

4
hTi hi þ hTi h

^

iþ 1

� 

ð4:33Þ

Substitution of Eq. (4.33) into Eq. (4.27) gives the following:

1þ 1
4

hTi hi þ hTi h
^

iþ 1

� 
� �
j ¼ h0 � 1

2
~hh0 ð4:34Þ
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Using Eqs. (4.28) to (4.31), Eq. (4.34) reduces to the following:

1þ 1
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^
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2
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2
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2
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1
Dx

h
^

iþ 1
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ð4:35Þ

Ignoring higher order terms of perturbations in Eq. (4.35) and expanding the rest
in terms of the vector components results in the following:
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ð4:36Þ

The solution of Eq. (4.36) starts by using the θ-boundary condition at i = 1, or at
the root of the beam. For a cantilever beam, u and θ are zero at the root, whereas
M and F are given at the tip. Using the known value of θ at i = 1 in Eq. (4.36), one
can then solve this equation for the perturbation values of θ at i = 1. The
θ-perturbations at the root and Eq. (4.12) for θ are used to calculate θ at i = 2, i.e., at
the node beside the clamped end. The procedure is then repeated for each node and
in this way, using θ and its perturbation at node i, the value of hiþ 1 is calculated. By
continuing this procedure, values of θ at all nodes will be obtained.

Having calculated θ at all nodes, those values are substituted into Eq. (2.62) to
give C matrices at every cross section without performing any simplification.
Finally, Eq. (2.57) is solved for u. For no initial curvature and twist, i.e., for k = 0,
Eq. (2.57) reduces to the following:

c ¼ Cðe1 þ u0Þ � e1 ð4:37Þ

At this stage of the solution, all other quantities in Eq. (4.37) at every nodal point
are known. So, this equation can be solved for the only remaining unknown, i.e., for
u. To this end, first Eq. (4.37) is rewritten as follows:

u0 ¼ C�1ðe1 þ cÞ � e1 ð4:38Þ
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Using Eqs. (3.6) and (4.14), Eq. (4.38) is evaluated at xþ Dx
2

as follows:

u^iþ 1 ¼ Dx 1
2
Ci þCiþ 1ð Þ�1

h i
1
2
ci þ ciþ 1

� �þ e1
h i

� e1
n o

ð4:39Þ

Having already calculated γ and C at all nodes along the beam, Eq. (4.39) can
provide all u-perturbation values. Now, to use,

uiþ 1 ¼ ui þ u^iþ 1 ð4:40Þ

that is the application of Eq. (4.12) for u, one needs to know a starting value (i.e., a
boundary condition) for u. For a cantilever beam, the value of u at the root, i.e., u at
i = 1, is zero. So, by using Eq. (4.40) and the calculated u^2, the value of u at i = 2 is
obtained. This procedure can be repeated until displacement vectors at all nodes are
calculated. The algorithm of solution presented by Eqs. (4.24), (4.25), (4.36), and
(4.39) provides the most basic variables of interest along the beam.

It should be noted that the difference between Eqs. (4.26) and (4.40) is in the
direction of marching. Recalling Fig. 2.5 when Eq. (4.26) is used the marching
direction is to the left, whereas when Eq. (4.40) is used the marching direction is
switched to the right. The reason for such a choice is the way the boundary con-
ditions (that provide the starting points for the solution) are defined in a cantilever
beam problem. At the free end at right, F and M are the known variables so we
should march to the left to calculate these variables at other nodes. However, at the
root at left, values of u and θ are known. So, marching to the right is necessary for
providing u and θ at other nodes. That is why during the numerical solution the
directions of marching for the two cases are opposite.

4.6 Use of Foreshortening for Verification

Having calculated the displacement components along the beam, one may now use
these results in order to calculate the nonlinear quantity of foreshortening.
Foreshortening, as is shown in Fig. 4.2, is the axial contraction of the projected
length of a beam due to a lateral load. This is a nonlinear phenomenon, and it is not
predictable by linear modeling. In this section, exact and perturbation equations for

Fig. 4.2 Foreshortening in nonlinear bending of a cantilever beam
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foreshortening are given and the corresponding results are compared. Such a
comparison can be used as a verification tool to ensure that the nonlinear pertur-
bation algorithm works properly.

Referring to Fig. 4.2, the beam that is originally in the longitudinal x1 direction is
displaced laterally in the transversal x2 direction while it remains in the x1-x2 plane.
In this case, the exact foreshortening value at x1 is given as follows:

Dx1 ¼ �1
2

Zx1
0

u022 dn1 ð4:41Þ

Using Eq. (4.31), the integral in Eq. (4.41) can be approximated with the finite
summation

Dx1;n ¼ � 1
2Dx

Xn
i¼1

u^2;i

� 
2
ð4:42Þ

Nodes are numbered from the fixed end and the upper limit of the summation is
n; that is, the node number up to which foreshortening is to be calculated. For
n = N, foreshortening of the whole beam is calculated at its free end (shown in
Fig. 4.2).

For a beam that has been displaced laterally in both the x2 and x3 directions,
Eq. (4.41) can be generalized to

Dx1 ¼ �1
2

Zx1
0

u022 þ u023
� �

dn1 ð4:43Þ

Using Eq. (4.31), the integral in Eq. (4.43) can be approximated as follows:

Dx1;n ¼ � 1
2Dx

Xn
i¼1

u^2;i

� 
2
þ u^3;i

� 
2� �
ð4:44Þ

4.7 Case Study: Isotropic Rectangular Solid Model

The isotropic rectangular solid example introduced in Sect. 3.3 is considered here
again and three load cases are analyzed—F2 only, F3 only, and a combination of
F2, F3, and M1, all applied at the tip of the cantilever beam. The latter case is lightly
loaded so that one may expect that the nonlinear results should be very close to the
linear ones. In this way, the linear results can be used to verify the outcome of
the nonlinear analysis. In each case, 1000 nodes have been used in performing the
calculations but only 10 nodes have been used to draw the figures.
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4.7.1 Load Case 1: Loading in the x2 Direction

Consider a concentrated transversal load at the tip of the cantilever beam,

F1 ¼ 0 N, F2 ¼ 100 kN, F3 ¼ 0 N

M1 ¼ 0 N.m, M2 ¼ 0 N.m, M3 ¼ 0 N.m
ð4:45Þ

Figures 4.3, 4.4, 4.5, and 4.6 illustrate the output of the linear and nonlinear
perturbation analyses. It is observed that in most cases the results of the two
solutions are close. In addition, Fig. 4.6 illustrates that the applied load in the x2
direction generates a rotation about the x3 axis, which is expected. Interestingly,
however, in Fig. 4.3, the nonlinear analysis predicts the existence of a longitudinal
force, whereas the linear theory fails to do so. As to foreshortening, a review of
Fig. 4.5 reveals that the approximate nonlinear solution explained in this chapter
and the exact solution given by Eq. (4.41) provide almost identical results. In
addition, as shown in Fig. 4.5, since foreshortening is a nonlinear phenomenon the
linear model does not predict it and provides a zero value for u1. A linear
approximation for the value of the static deflection at the tip of the beam u2 due to
F2 (in the same direction) can be calculated as follows:

u2 ¼ F2L3

3EI
¼ 105 � 13

3� 1:7926� 1013 � 0:1�0:23
12

¼ 2:7892� 10�5 m ð4:46Þ

which is close to what is shown in Fig. 4.5.

Fig. 4.3 The distribution of internal force components along the beam: linear static (asterisks) and
nonlinear static (dashed) under Load Case 1
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Fig. 4.4 The distribution of internal moment components along the beam: linear static (asterisks)
and nonlinear static (dashed) under Load Case 1

Fig. 4.5 The distribution of displacement components along the beam: linear static (asterisks),
nonlinear static (dashed), and Eq. (4.41) (circles) under Load Case 1
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4.7.2 Load Case 2: Loading in the x3 Direction

Now consider the following loading at the tip of the beam,

F1 ¼ 0 N, F2 ¼ 0 N, F3 ¼ 100 kN

M1 ¼ 0 N.m, M2 ¼ 0 N.m, M3 ¼ 0 N.m
ð4:47Þ

The corresponding results have been presented in Figs. 4.7, 4.8, 4.9, and 4.10.
Using the linear theory, the static deflection at the tip of the beam, u3, due to F3 is
calculated as follows:

u3 ¼ F3L3

3EI
¼ 105 � 13

3� 1:7926� 1013 � 0:2�0:13
12

¼ 1:1157� 10�4 m ð4:48Þ

This is close to what is shown in Fig. 4.9. On the same figure, the foreshortening
results obtained by the nonlinear procedure explained in this chapter are observed to
be in agreement with the results of Eq. (4.41), as expected.

Fig. 4.6 The distribution of rotation components along the beam: linear static (asterisks) and
nonlinear static (dashed) under Load Case 1
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Fig. 4.7 The distribution of internal force components along the beam: linear static (asterisks) and
nonlinear static (dashed) under Load Case 2

Fig. 4.8 The distribution of internal moment components along the beam: linear static (asterisks)
and nonlinear static (dashed) under Load Case 2
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Fig. 4.9 The distribution of displacement components along the beam: linear static (asterisks),
nonlinear static (dashed), and Eq. (4.41) (circles) under Load Case 2

Fig. 4.10 The distribution of rotation components along the beam: linear static (asterisks) and
nonlinear static (dashed) under Load Case 2
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4.7.3 Load Case 3: Combined Loading

For the following combined loading at the tip of the beam,

F1 ¼ 0 N, F2 ¼ 1000 N, F3 ¼ 1000 N

M1 ¼ 100 N.m, M2 ¼ 0 N.m, M3 ¼ 0 N.m
ð4:49Þ

The corresponding solution using the linear and nonlinear methods is presented
in Figs. 4.11, 4.12, 4.13, and 4.14.

As a verification checkpoint, it is observed that the calculated linear and non-
linear solutions for forces, moments, displacements, and rotations for this relatively
light loading are very close. Also, the nonlinear solution and the exact solution
Eq. (4.41) provide identical foreshortening results.

4.8 Case Study: Composite Box Model

Consider the composite box model discussed in Sect. 3.4. This time, linear and
nonlinear analyses of this beam subjected to various loadings at its tip are presented.

Fig. 4.11 The distribution of internal force components along the beam: linear static (asterisks)
and nonlinear static (dashed) under Load Case 3
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Fig. 4.12 The distribution of internal moment components along the beam: linear static (asterisks)
and nonlinear static (dashed) under Load Case 3

Fig. 4.13 The distribution of displacement components along the beam: linear static (asterisks),
nonlinear static (dashed), and Eq. (4.41) (circles) under Load Case 3
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4.8.1 Load Case 1: Loading in the x2 Direction

Consider a concentrated load at the tip of the beam that acts in the x2 direction,

F1 ¼ 0 N, F2 ¼ 100 N, F3 ¼ 0 N

M1 ¼ 0 N.m, M2 ¼ 0 N.m, M3 ¼ 0 N.m
ð4:50Þ

Figures 4.15, 4.16, 4.17, and 4.18 illustrate the results of the linear and nonlinear
perturbation analyses.

In Fig. 4.15, it is observed that while the static equilibrium should be valid, the
end shear force F2 is not equal to the applied force in the x2 direction. The reason of
such a difference is that in the nonlinear analysis the forces are measured in the
deformed coordinates, whereas the static equilibrium conditions are written in the
undeformed coordinate system (in which the applied and the internal F2 forces
remain parallel). To satisfy static equilibrium in the deformed system, a component
of the deformed F1 is combined with a component of F2 in the deformed system to
result in F2 in the undeformed system. This force will then be equal and opposite of
the applied load, F2. This matter will be explained in more detail in the next load
case.

Fig. 4.14 The distribution of rotation components along the beam: linear static (asterisks) and the
nonlinear static (dashed) under the Load Case 3
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Fig. 4.15 The distribution of internal force components along the beam: linear static (asterisks)
and nonlinear static (dashed) under Load Case 1

Fig. 4.16 The distribution of internal moment components along the beam: linear static (asterisks)
and nonlinear static (dashed) under Load Case 1
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Fig. 4.17 The distribution of displacement components along the beam: linear static (asterisks),
nonlinear static (dashed), and Eq. (4.41) (circles) under Load Case 1

Fig. 4.18 The distribution of rotation components along the beam: linear static (asterisks) and
nonlinear static (dashed) under Load Case 1
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4.8.2 Load Case 2: Loading in the x3 Direction

Another concentrated load at the tip of the beam is now considered that is applied in
the x3 direction,

F1 ¼ 0 N, F2 ¼ 0 N, F3 ¼ 100 N

M1 ¼ 0 N.m, M2 ¼ 0 N.m, M3 ¼ 0 N.m
ð4:51Þ

The corresponding results are presented in Figs. 4.19, 4.20, 4.21, and 4.22.
In Fig. 4.19, it is observed that using the linear model, when the 100 N force is

applied, the induced shear force F2 remains constant along the span of the beam.
However (interestingly, and similar to the previous load case), if one uses the
nonlinear model, under the application of the same loading in the x3 direction, the
shear force is observed to reduce from the original 100 N value at the free end to
79.45 N at the clamped end. One wonders how this significant difference might
have happened especially since the static equilibrium equations should clearly be
satisfied.

The reason is that in the nonlinear model the deformed coordinate system is used
which tends to orient itself with the deformed beam and is not pointing in a fixed
way (unlike the undeformed coordinate system). As shown in Fig. 4.23, the result
of using the deformed coordinate system is that while F3 decreases, F1 and F2

Fig. 4.19 The distribution of internal force components along the beam: linear static (asterisks)
and nonlinear static (dashed) under Load Case 2
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Fig. 4.20 The distribution of internal moment components along the beam: linear static (solid
line) and nonlinear static (dashed) under Load Case 2

Fig. 4.21 The distribution of displacement components along the beam: linear static (asterisks),
nonlinear static (dashed), and Eq. (4.41) (circles) under Load Case 2
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increase in such a way that the vectorial summation of these forces along the span
of the beam remains equal in magnitude and opposite in direction to the applied
loading. For example, at the clamped end of the beam, the applied 100 N load is
balanced with the following resultant,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�60:826Þ2 þð�0:208Þ2 þð79:445Þ2
q

¼ 100:057 N ð4:52Þ

This phenomenon was not observed in Sect. 4.7 because in that case the rotation
angles were very small.

Fig. 4.22 The distribution of rotation components along the beam: linear static (asterisks) and
nonlinear static (dashed) under the Load Case 2

F1=60.8N

F
3 =
79.4N

x 3

Fig. 4.23 Free body diagram of the beam using deformed coordinates
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Fig. 4.24 The distribution of internal force components along the beam: linear static (asterisks)
and nonlinear static (dashed) under Load Case 3

Fig. 4.25 The distribution of internal moment components along the beam: linear static (asterisks)
and nonlinear static (dashed) under Load Case 3

4.8 Case Study: Composite Box Model 91



Fig. 4.26 The distribution of displacement components along the beam: linear static (asterisks),
nonlinear static (dashed), and Eq. (4.41) (circles) under Load Case 3

Fig. 4.27 The distribution of rotation components along the beam: linear static (asterisks) and
nonlinear static (dashed) under Load Case 3
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4.8.3 Load Case 3: Combined Loading

Having verified the validity of the calculation procedure in the preceding load cases,
in this section a combined loading at the tip of the composite beam is applied as
follows:

F1 ¼ 0N, F2 ¼ 10 N, F3 ¼ 10 N

M1 ¼ 1 N.m, M2 ¼ 0N.m, M3 ¼ 0N.m
ð4:53Þ

The corresponding solution is illustrated in Figs. 4.24, 4.25, 4.26, and 4.27.
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Chapter 5
Transient Nonlinear Dynamics
of Accelerating Hingeless Rotating Blades

5.1 Introduction

In Chaps. 3 and 4, linear and nonlinear static solutions for beams made of com-
posite materials were developed. In this chapter, a nonlinear dynamic model for
analyzing the transient behavior of a rotating blade is presented. In the coming
sections, static analysis serves two purposes. First, in order to run the nonlinear
dynamic model, initial conditions for the internal forces and moments as well as the
deflection and curvature distributions due to static forces (especially gravity) are
required. The nonlinear static model can be used to provide such initial conditions.
In this way, first static loads are applied to the nonlinear static computer program,
and then, the calculated output (internal force and moment, as well as deflection and
curvature distributions) are given as input to the nonlinear dynamics code. The
second application of the static code in this chapter is for verification purposes as it
will be explained later in Sect. 5.8.

The dynamic analysis, among other things, can be used for studying the
straightening of initially sagged helicopter blades (due to their weight) as they
rotate. The solution starts by setting the initial curvature, k, in the static problem
equal to the undeformed curvature of the blade. Then, after running the static code
and calculating the deformed curvature, κ, of the static problem, the total static
curvature K is used as the undeformed curvature, k, for solving the dynamic
problem.

To obtain the transient nonlinear dynamics of an accelerating rotating blade, the
dynamic form of the nonlinear intrinsic equations, which were presented in Chap. 2,
should be solved. One way of solving this problem is to use the direct (explicit)
method. The explicit method uses direct integration expressions in terms of finite
differences or perturbations, as was done in the past for solving the nonlinear static
problem presented in Chap. 4. To perform the solution, the finite difference and the
perturbation methods used in Chap. 4 for solving the nonlinear static problem are
expanded to include time-dependent variables. While the direct approach provides a
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relatively easy algorithm of solution, there are possibilities of error accumulation
and numerical instability, which should be taken into account.

Using the direct approach in this chapter, a blade model is analyzed that starts its
motion from rest, accelerates, and finally reaches its steady-state rotational speed. In
this way, the complete sequence of the nonlinear motion of a rotating composite
beam is analyzed. Most of the contents of this chapter have been presented in
Ghorashi (2009) and published in Ghorashi and Nitzsche (2009).

An alternative way is to use the indirect (implicit or iterative) method to calculate
the steady-state response. As will be seen in Chap. 6, the solution using this method
is more complex and time-consuming. However, the risk of error accumulation and
numerical stability would be significantly reduced since the solution is uncondi-
tionally stable. In Chap. 6, the steady-state solution that will be calculated in Chap. 5
will be compared with the result of the shooting method.

5.2 Governing Equations of Motion

The set of equations to be solved for analyzing the dynamics of a rotating blade are
presented in Chap. 2 and are reminded below. The nonlinear intrinsic equations of
motion are

F0 þ ~KFþ f ¼ _Pþ ~XP ð2:26Þ

M0 þ ~KMþð~e1 þ~cÞFþm ¼ _Hþ ~XHþ ~VP ð2:27Þ

and in scalar form,

F0
1 þK2F3 � K3F2 þ f1 ¼ _P1 þX2P3 � X3P2 ð2:28Þ

F0
2 þK3F1 � K1F3 þ f2 ¼ _P2 þX3P1 � X1P3 ð2:29Þ

F0
3 þK1F2 � K2F1 þ f3 ¼ _P3 þX1P2 � X2P1 ð2:30Þ

M0
1 þK2M3 � K3M2 þ 2c12F3 � 2c13F2 þm1

¼ _H1 þX2H3 � X3H2 þV2P3 � V3P2 ð2:31Þ

M0
2 þK3M1 � K1M3 þ 2c13F1 � 1þ c11ð ÞF3 þm2

¼ _H2 þX3H1 � X1H3 þV3P1 � V1P3 ð2:32Þ

M0
3 þK1M2 � K2M1 þ 1þ c11ð ÞF2 � 2c12F1 þm3

¼ _H3 þX1H2 � X2H1 þV1P2 � V2P1 ð2:33Þ
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The nonlinear intrinsic kinematical equations are

V 0 þ ~KV þð~e1 þ~cÞX ¼ _c ð2:37Þ

X0 þ ~KX ¼ _j ð2:38Þ

and in scalar form,

V 0
2 þK2V3 � K3V2 þ 2c12X3 � 2c13X2 ¼ _c11 ð2:39Þ

V 0
2 þK3V1 � K1V3 � ð1þ c11ÞX3 þ 2c13X1 ¼ 2 _c12 ð2:40Þ

V 0
3 þK1V2 � K2V1 þð1þ c11ÞX2 � 2c12X1 ¼ 2 _c13 ð2:41Þ

X0
1 þK2X3 � K3X2 ¼ _j1 ð2:42Þ

X0
2 þK3X1 � K1X3 ¼ _j2 ð2:43Þ

X0
3 þK1X2 � K2X1 ¼ _j3 ð2:44Þ

Equations (2.26), (2.27), (2.37), and (2.38) are fourth order in space and fourth
order in time, so in general, four vector boundary conditions and four vector initial
conditions are required for solving them.

The total curvature is the summation of the undeformed (initial) curvature and
the contribution of deformation. So,

K ¼ kþ j ð2:36Þ

Equations (2.26), (2.27), (2.37), and (2.38) are to be solved for the main variables,
F, M, V, and Ω. But such a solution is impossible without first expressing γ, κ, P,
and H in terms of F, M, V, and Ω. For this purpose, one may use the momentum–

velocity equation,

P
H

� �
¼ lD �l~�n

l~�n i

" #
V
X

� �
ð2:45Þ

and the constitutive equation,

c
j

� �
¼ R Z

ZT T

� �
F
M

� �
ð2:56Þ

In Eqs. (2.26), (2.27), (2.37), and (2.38), ~KF; ~XP; ~KM;~cF; ~XH; ~VP; ~K X;
~KV and ~cX are the terms that make the problem nonlinear. By developing expres-
sions for these terms using the nodal values of the variables and their perturbations
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(in time or space), a solution algorithm can be presented. However, before trying to
solve the nonlinear problem, one may want to investigate whether the presented
formulation can be linearized in a meaningful way.

5.3 An Attempt on Solving a Linearized Version
of the Dynamics Equations

As an analog to the solution method discussed in Chap. 3, one may want to try to
linearize Eqs. (2.26), (2.27), (2.37), and (2.38) by just dropping their nonlinear
terms. Such a simplification would be meaningful only if the dropped terms are
small. In what follows it is shown that this simplification, especially for the case of
rotor blades, is meaningless. In order to demonstrate this fact, let us proceed with
the mentioned linearization plan (by dropping the nonlinear terms) and see what the
outcome will be.

First, of course, we should detect the nonlinear terms. The term, ~XP, in
Eq. (2.26) is a nonlinear term. The reason is that if a given torque generates the
rotational motion of the blade, both components of this term would be unknown
dependent variables, and therefore, their product is nonlinear. By neglecting all of
such nonlinear terms in Eqs. (2.26), (2.27), (2.37), and (2.38), one obtains,

F0 þ ~kFþ f ¼ _P ð5:1Þ

M0 þ ~kMþ~e1Fþm ¼ _H ð5:2Þ

V 0 þ ~kV þ~e1X ¼ _c ð5:3Þ

X0 þ ~kX ¼ _j ð5:4Þ

But, interestingly, it can be demonstrated that ~XP is nothing but the centripetal
force generated in the blade as a result of rotation. To demonstrate this fact and for
simplicity, consider a case in which the origin of the reference frame (i.e., the shear
center) and the centroid at each section coincide. Thus,

�x2 ¼ �x3 ¼ 0 ð2:54Þ

Therefore,

�n ¼ 0 ~�n ¼ 0 ð2:55Þ
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In this case, Eq. (2.47) reduces to,

P ¼ l :V ð5:5Þ

H ¼ i :X ð5:6Þ

Using Eq. (5.5), the term ~XP for a beam that is rotating about the x3 axis becomes

~XP ¼
0 �X3 0
X3 0 0
0 0 0

2
4

3
5 lV1

lV2

lV3

8<
:

9=
; ¼

�lX3V2

lX3V1

0

8<
:

9=
; ð5:7Þ

where the transversal velocity V2 is,

V2 ¼ x1X3 ð5:8Þ

Using Eq. (5.8), the first term in Eq. (5.7) becomes, �l x1 X
2
3 which is the

centripetal force. Therefore, dropping ~XP in Eq. (2.26) to get Eq. (5.1) is equivalent
to ignoring the centripetal force in a rotating blade problem. In other words, such a
linear model can be valid only when the centrifugal force is negligible. This con-
dition is clearly not valid in a rotating blade problem.

Another alternative is to keep the ~XP term in the formulation but try to make it
linear. For this purpose, one might assume that the resulting angular velocity is
constant along the blade and its dependency on time has been given. Then, one can
search for the corresponding loadings f and m that can generate this velocity. While
it may seem a reasonable solution, it is not. The problem is that one cannot assume
that the angular velocity along the blade is constant (i.e., it is not a function of x1).
In fact, a constant angular velocity along the blade requires that the blade can be
treated as a rigid body and its longitudinal axis remains a straight line. Such an
assumption, however, is in contradiction with the elasticity of the behavior of the
blade. So, one cannot consider a constant angular velocity Ω3 along the beam as a
known input to the problem in order to keep the ~XP term in the formulation without
making it nonlinear.

Finally, considering a rotating cantilever blade, one might want to keep ~XP in
the formulation, by assuming that Ω3 has been given (accelerating from rest and to a
steady-state) only at the root of the blade. While this method does not contradict the
elasticity of the blade, it makes the problem nonlinear again. If this input is given
only at the root of the blade, Ω3 will still be unknown along the blade. Therefore,
~XP will remain to be a nonlinear term that cannot be neglected. So, it is concluded
that ~XP is an essential nonlinearity and cannot be ignored in a rotating blade
problem.
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5.4 Derivation of the Generic Nonlinear Term

The system of equations to be solved includes Eqs. (2.26), (2.27), (2.37), and
(2.38). In these equations, all of the nine nonlinear terms, i.e., ~KF; ~XP; ~KM;~cF;
~XH; ~VP; ~K X; ~KV and ~cX, have the same structure. Therefore, for developing
equations, one may analyze only a single generic nonlinear vector term, ~/k. This
term can be expanded as,

~/k ¼
0 �/3 /2
/3 0 �/1
�/2 /1 0

2
4

3
5 k1

k2
k3

8<
:

9=
; ¼

�/3k2 þ/2k3
�/1k3 þ/3k1
�/2k1 þ/1k2

8<
:

9=
; ð5:9Þ

Denoting a generic scalar nonlinear term in Eq. (5.9) by /mkn (m = 1:3, n = 1:3),
this term can now be evaluated at the center of a space–time grid, shown in Fig. 2.6,
using the nodal values of variables /m and kn and perturbations in time and space.

First, recalling Eqs. (2.75) and (4.12), perturbation in space in the next time step,

/
^

m;iþ 1, is introduced as,

/þ
m;iþ 1 ¼ /þ

m;i þ/
^

m;iþ 1 ð5:10Þ

where the function values with a plus superscript are evaluated at the next time
step. In this way, Eq. (5.10) relates function values at node i to those at node i + 1,

both measured at the next time step. Similarly, for the perturbations in time, /
_

m;i

/þ
m;i ¼ /m;i þ/

_

m;i ð5:11Þ

Equation (5.11) relates function values at a node on two consecutive time steps.
Now, using Eq. (2.87) for /m and kn, one obtains,

/m xþ Dx
2
; tþ Dt

2

� �
¼ 1

4
/þ
m; iþ 1 þ/þ

m; i þ/m; iþ 1 þ/m; i

� 	
þO Dx2;Dt2


 �
ð5:12Þ

kn xþ Dx
2
; tþ Dt

2

� �
¼ 1

4
kþ
n;iþ 1 þ kþ

n;i þ kn;iþ 1 þ kn;i
� 	

þO Dx2;Dt2

 � ð5:13Þ

Substituting space perturbation Eq. (5.10) in (5.12) and ignoring the higher order
terms result in,

/m xþ Dx
2
; tþ Dt

2

� �
¼ 1

4
2/þ

m; i þ/
^

m;iþ 1 þ/m; iþ 1 þ/m; i

� 	
ð5:14Þ
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Now, using time perturbation Eq. (5.11) in (5.14) gives,

/m xþ Dx
2
; tþ Dt

2

� �
¼ 1

4
3/m;i þ 2/

_

m;i þ/
^

m;iþ 1 þ/m;iþ 1

� 	
ð5:15Þ

Using Eq. (5.15) and a similar expression for kn, the generic nonlinear term /mkn at
the center of the space–time grid of Fig. 2.6 becomes

/mkn ¼
1
16

3/m;i þ 2/
_

m;i þ/
^

m;iþ 1 þ/m;iþ 1

� 	
3kn;i þ 2k

_

n;i þ k
^

n;iþ 1 þ kn;iþ 1

� 	
ð5:16Þ

After some mathematical manipulations, and by assuming the perturbations to be
small enough to justify elimination of the second-order terms, Eq. (5.16) reduces to,

/mkn ¼
1
16

9/m;ikn;i þ 3/m;ikn;iþ 1 þ 3/m;iþ 1kn;i þ/m;iþ 1kn;iþ 1

� 	

þ 1
16

2/
_

m;i 3kn;i þ kn;iþ 1

 �þ/

^

m;iþ 1 3kn;i þ kn;iþ 1

 �h

þ 2k
_

n;i 3/m;i þ/m;iþ 1


 �þ k
^

n;iþ 1 3/m;i þ/m;iþ 1


 �i
ð5:17Þ

Equation (5.17) is a linear expression in terms of the four unknown perturbations.
This equation, by using Eqs. (5.10) and (5.11), can also be written in terms of the
nodal values of variables,

/mkn ¼
1
16

/þ
m;iþ 1 þ/þ

m;i

� 	
kn;iþ 1 þ 3kn;i

 �þ kþ

n;iþ 1 þ kþ
n;i

� 	
/m;iþ 1 þ 3/m;i


 �h i

þ 1
16

/m;iþ 1kn;iþ 1 þ/m;iþ 1kn;i þ/m;ikn;iþ 1 � 3/m;ikn;i

 �

ð5:18Þ

Equation (5.18) is a generic equation for expressing the nonlinear terms that are
seen in Eq. (5.9).

5.5 The Finite Difference Formulation and Solution
Algorithm

One may use Eq. (5.18) for expressing ~KF; ~XP; ~KM;~cF; ~XH; ~VP; ~K X; ~KV and ~cX
(i.e., for all of the nonlinear terms in Eqs. (2.26), (2.27), (2.37), and (2.38)) at any
two adjacent nodes i and i + 1 along the longitudinal direction of the rotating blade,
and at every time step. By using Eq. (5.18) for each one of the nonlinear terms, four
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unknowns (the ones with a plus superscript) and four known terms (the ones without
a plus superscript) are added to the finite difference equations. By summing up all of
these terms, using Eqs. (2.87), (2.98), and (2.109), and after mathematical manip-
ulations, one can convert the system of vector Eqs. (2.26), (2.27), (2.37), (2.38), (2.
36), (2.45), and (2.56) into the following matrix equation,

Aiq
þ
i þBiq

þ
iþ 1 ¼ Ji; i ¼ 1; . . .;N � 1 ð5:19Þ

where N is the number of nodes in the model, and at a certain time step, all of the
quantities at the right-hand side of Eq. (5.19) are known from the initial conditions,
given data, or from the previous time step. Matrices Ai and Bi are 24 × 24 matrices
and qi and Ji are 24 × 1 column vectors. Expressions for matrices Ai and Bi as well
as the vector Ji have been given in the Appendix.

The column state vector, q, has 24 elements that include all of the variables of
interest in this problem,

q ¼ F1F2F3M1M2M3V1V2V3X1X2X3P1P2P3H1H2H3½
c11 2c12 2c13j1j2j3�T

ð5:20Þ

So, Eq. (5.19) relates unknown quantities at node i to those of node i + 1. It is
interesting to note that the corresponding elements of the Ai and Bi matrices are
almost identical. The only exception happens when it comes to the derivatives with
respect to x1 for which a sign difference is observed [due to the application of
Eq. (2.98)].

Referring to Fig. 2.5, for each i = 1, …, N − 1, Eq. (5.19) relates qi to qi+1 and it
is composed of 24 algebraic equations with 48 unknowns. Therefore, Eq. (5.19)
cannot be solved without the application of the boundary conditions. This method
has been applied for similar formulations in Ghorashi (1994) and Esmailzadeh and
Ghorashi (1997).

In order to apply the boundary conditions at the two ends of the blade, one
should relate the state vectors at these points at the next time step, i.e., qþ

1 and qþ
N ,

directly to each other. By successive use of Eq. (5.19), it can be shown that,

qþ
1 ¼ Mtot

N�1:q
þ
N þ T tot

N�1 ð5:21Þ

where,

Mtot
N�1 ¼ a1 a2 a3 a4. . .aN�1; ai ¼ �A�1

i Bi ð5:22Þ

T tot
N�1 ¼ b1 þ a1b2 þ a1a2b3 þ � � � þ a1a2a3. . .aN�2bN�1; bi ¼ A�1

i Ji ð5:23Þ

Once the boundary conditions are applied (as it will be shown in the following
section) and since half of the variables at the two end nodes are already known from
the boundary conditions, Eq. (5.21) would be a solvable set of 24 equations with 24
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unknowns. Therefore, it can be solved for the remaining unknowns at the two ends
of the blade. Having completely solved the problem at the boundary nodes 1 and N,
one can use Eq. (5.19) in order to obtain the unknowns at all of the interior nodes at
the next time step by starting either from node 1 or node N. The procedure can be
repeated to solve the problem at all time steps and spatial nodes.

The logic of the mentioned solution is like that of the boundary element method
where the solution is first obtained at the boundary, and then, the boundary solution
is used for the calculation of the solution inside the domain.

The order of variables in the state vector is identical to the order of the corre-
sponding equations so that the diagonal elements of Ai and Bi be nonzero. This
choice reduces the risk of ill-conditioning in which matrices are nearly singular and
therefore the solution is highly sensitive to the slightest changes in the boundary
conditions or to the numerical values of other physical quantities.

It should be noted that the likelihood of ill-conditioning in a matrix increases if
the ratio of the largest diagonal element divided by the smallest one is a large
number. Usually, non-dimensionalization reduces the mentioned ratio and brings
the values of all diagonal elements closer to each other.

5.6 The Case of a Rotating Hingeless Beam

In a rotating-wing aircraft, the rotor is unique because, unlike a propeller, it must
provide both a lifting force (in opposition to the aircraft weight) and a propulsive
force (to overcome the rotor and airframe drag) in forward flight. There are basi-
cally four types of helicopter rotor hubs in use. These are the teetering, articulated,
hingeless, and the bearingless designs.

A hingeless rotor design eliminates the flap and lead–lag hinges by using flexure
to accommodate blade motion. A feathering bearing is still used to allow for pitch
changes on each blade. The advantages of a hingeless design are low aerodynamic
drag and being mechanically simple with a low parts count. However, because
blade articulation is achieved by the elastic flexing of a structural beam, the design
of such rotors is rather complicated, Leishman (2006, p. 174).

The solution method explained in Sect. 5.5 is now applied to the analysis of the
nonlinear dynamic behavior of a rotating hingeless (cantilever) composite blade.
The aim is to calculate the transient and the steady-state responses of the blade as it
is gently accelerated. The angular velocity X3ðtÞ at the root of the blade is assumed
to vary as follows:

X3ðtÞ ¼ X3;ss � t2

k2X þ t2
ð5:24Þ

Therefore, the blade starts its motion from rest and accelerates until it reaches the
steady-state rotational speed, X3;ss (kΩ is a constant). In this formulation, even if one
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only wishes to analyze the response of the blade at the steady-state speed, calcu-
lating the whole dynamic response starting from zero velocity is necessary.

To simplify the analysis, consider the case in which the origin of the reference
frame (i.e., the shear center) and the centroid of each section coincide. Thus,

�x2 ¼ �x3 ¼ 0 ð2:54Þ

Therefore,

�n ¼ 0 ~�n ¼ 0 ð2:55Þ

For a hingeless rotating blade with its root (i = 1) on the axis of rotation, and the
angular velocity at the root as the given kinematic input, the root boundary con-
ditions are

V ¼
0
0
0

8<
:

9=
;; X ¼

0
0
X3

8<
:

9=
; ð5:25Þ

Substituting Eqs. (5.25) and (2.54) into Eq. (2.45) results in the values of P and H at
node 1. Now, at the tip of the blade (i = N), the boundary conditions are kinetic,

F ¼
0
0
0

8<
:

9=
;; M ¼

0
0
0

8<
:

9=
; ð5:26Þ

Using Eq. (2.56) at the tip, one obtains: c ¼ 0; j ¼ 0. So, together with
Eq. (5.26), there are four vector boundary conditions at the tip that represent a total
of 12 scalar equations. Recalling the other set of 12 scalar boundary conditions at
the root (i = 1), in all 24 quantities [i.e., half of the number of variables in
Eq. (5.21)] are known from the boundary conditions. Therefore, enough number of
boundary conditions are now available to solve the problem. Substitution of
Eqs. (5.25) and (5.26) into (5.21) gives

F þ

M þ

0

Xþ
z}|{given

0

H þ
z}|{given

cþ

jþ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

1

¼ Mtot
N�1

0
0

V þ

Xþ

Pþ

H þ

0
0

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

N

þ T tot
N�1 ð5:27Þ
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Equation (5.27) relates the remaining unknowns at node 1 to the remaining
unknowns at node N. This equation should be solved for the eight unknown vectors
at the two nodes. To this end, a sub-matrix of MN−1 and a sub-vector of TN−1 are
made. To form these sub-matrices, one should keep elements on the row numbers
which are the same as the row numbers of the known boundary conditions at node 1
and for MN−1 keep elements on the column numbers which are the same as the row
numbers of the unknown boundary conditions at node N to get

V þ

Xþ

Pþ

H þ

8>><
>>:

9>>=
>>;

1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
all known

¼ Mtot
N�1ð7 : 18; 7 : 18Þ:

V þ

Xþ

Pþ

H þ

8>><
>>:

9>>=
>>;

N|fflfflfflfflfflffl{zfflfflfflfflfflffl}
all unknown

þ T tot
N�1ð7 : 18Þ ð5:28Þ

or,

V þ

Xþ

Pþ

H þ

8>><
>>:

9>>=
>>;

N

¼ Mtot
N�1ð7 : 18; 7 : 18Þ
 ��1

:

V þ

Xþ

Pþ

H þ

8>><
>>:

9>>=
>>;

1

�T tot
N�1ð7 : 18Þ

0
BB@

1
CCA ð5:29Þ

Equation (5.29) provides all of the remaining unknowns at node N. Substituting the
results obtained from solving Eq. (5.29) at node N, back into Eq. (5.27) results in
the remaining unknowns at node 1. Having calculated all of the unknowns at nodes
1 and N, one may now use Eq. (5.19) to calculate the unknowns at all interior
nodes, starting from either node 1 or node N. Starting from node N, and in order to
march toward node 1, the following may be used:

qþ
i ¼ �A�1

i Biq
þ
iþ 1 þA�1

i Ji; i ¼ N � 1 to 1 ð5:30Þ

or,

qþ
i ¼ aiq

þ
iþ 1 þ bi; i ¼ N � 1 to 1 ð5:31Þ

Using Eq. (5.31), and having already calculated qþ
N , one may calculate qþ

N�1 and
then continue to find qþ

N�2 and so on until eventually another approximate solution
for qþ

1 is obtained. This result may then be compared with the other qþ
1 value

calculated using Eq. (5.27). This comparison provides a measure for the accuracy of
the solution procedure and the impact of round-off errors.
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5.6.1 Approximate Equation of the Axial Force

Since the most significant force that is generated in the rotating blade is the axial
force, F1, it would be beneficial to derive an alternative expression for this force and
use it for verification. Figure 5.1 illustrates the free body diagram of an element of
the blade of length, dx1, where only the axial forces are shown. Using Newton’s
second law of motion,

X
F1 ¼ ma1 ð5:32Þ

one obtains,

dF1 ¼ ðqAÞ
zffl}|ffl{l

dx1 �x1X
2
3


 � ð5:33Þ

or,

dF1

dx1
¼ �qAx1X

2
3 ð5:34Þ

Integrating Eq. (5.34) and satisfying the free end boundary condition give

F1 ¼ 1
2
qAX2

3 L2 � x21

 � ð5:35Þ

Equation (5.35) provides an approximate expression for F1 which can be used as a
benchmark to evaluate the accuracy of the corresponding results provided by other
methods.

5.6.2 Effect of Weight

To make the model more realistic, the effect of the weight of the blade in its
dynamic response is taken into account. To this end, weight is modeled by the
following gradually increasing force per unit length,

1dF1F1F

1x

Fig. 5.1 Free body diagram of the blade for the axial tensile force component
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f3ðtÞ ¼ qAg� t2

k2g þ t2
ð5:36Þ

where kg is a constant. This gradually varying time function smoothens the con-
vergence of the solution, and kg can be tuned so that the speed of convergence to the
nominal gravity force can be adjusted.

5.7 Case Study: Isotropic Rectangular Solid Model

The isotropic rectangular solid model introduced in Sect. 3.3 is considered here
again. The blade rotates about the x3 axis at the angular velocity shown in Fig. 5.2a
and gently reaches a steady-state velocity. The response of the blade to this angular
velocity input has been illustrated in Figs. 5.2b, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, and
5.10. Two cases have been considered—with the effect of gravity and without it.

The resulting variation of the induced moment at the clamped end versus time
has been illustrated in Fig. 5.2b. It is observed that when the blade reaches its
steady-state velocity, since tangential acceleration is zero and as expected, the
bending moment converges to zero as well. Furthermore, it can be seen that the
maximum absolute value of the bending moment corresponds to an instant at which
the angular velocity curve has an inflection point, i.e., when the angular acceleration
is maximum.

Figure 5.3 illustrates the variation of the induced bending moment along the
blade and versus time. At x = 0, it shows the same variations as were observed in
Fig. 5.2b, and at x = 1 m, the free boundary condition value of zero is seen.

Fig. 5.2 a Time history
diagram of the angular
velocity Ω3 at the root,
b corresponding bending
moment at the clamped root
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Distribution of the induced internal forces along the blade span at t = 2 s is
shown in Fig. 5.4. In Fig. 5.5, the time history diagrams of the induced internal
forces at the mid-span of the blade are plotted. Figure 5.6 is the same as Fig. 5.5
except for the fact that it includes the effect of the weight of the blade. It can be seen
that weight, which acts in the x3 direction, mostly affects the F3 component, as
expected. Figures 5.5 and 5.6 also reveal that the obtained results for F1 are very

Fig. 5.3 Time history variation of the induced bending moment M3 along the blade

Fig. 5.4 Distributions of the internal force components along the blade at t = 2 s; weight not
included
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Fig. 5.5 Time history diagrams of the internal forces at the mid-span (solid line) Eq. (5.35)
(dashed); weight not included

Fig. 5.6 Time history diagrams of the internal forces at the mid-span (solid line) Eq. (5.35)
(dashed); weight included
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Fig. 5.7 Distributions of the internal moment components along the blade at t = 0.5 s; weight
included

Fig. 5.8 Time history diagrams of the internal moment components at the mid-span; weight not
included
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Fig. 5.9 Time history diagrams of the internal moment components at the mid-span; weight
included

Fig. 5.10 Distributions of the velocity components along the blade at t = 2 s (solid and dashed
lines) and according to Eq. (5.8) (asterisk)
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close to those predicted by Eq. (5.35). This force, as shown in Figs. 5.5 and 5.6, is
the prominent force generated in the blade.

Figure 5.7 presents the distributions of the induced moments along the blade.
The time history diagrams of the moments induced at the mid-span of the blade are
illustrated in Figs. 5.8 and 5.9. It is observed that if the weight of the blade is not
included in the analysis, M3 is the only significant moment that is generated.
However, in Fig. 5.9, with addition of gravity to the model, a nonzero moment M2

is also produced, as expected. The variation of the linear velocity along the blade is
illustrated in Fig. 5.10. As to V2, the calculated distribution is very close to the
linear distribution of Eq. (5.8), as expected.

5.8 Verification by the Nonlinear Static Model

The results of the nonlinear static model of Chap. 4 are now compared with those
calculated for the nonlinear dynamic model of a non-rotating hingeless blade that is
subjected to a gradually applied lateral load. If the load application in the dynamic
model is gradual enough, the outcome of this quasi-static loading should be close to
(and actually converge to) that of the nonlinear static model.

Since the blade is almost stationary, the clamped root boundary conditions, i.e.,
Eq. (5.25), reduce to

V ¼
0
0
0

8<
:

9=
;; X ¼

0
0
0

8<
:

9=
; ð5:37Þ

At the tip Eq. (5.26) is still valid.
As an example, consider the isotropic rectangular solid model introduced in

Sect. 3.3 that is subjected to a concentrated static load, F2 ¼ 25 N, at the tip of the
beam. The equivalent dynamic model can be built by dividing the 1-m-long beam
into 19 elements (similar to what is seen in Fig. 2.5) in which only the 19th element
(the tip element) is subjected to a triangularly distributed load f2 = 950 N/m (it varies
between zero at the 19th node and 950 N/m at the 20th node). This distributed load is
applied gradually to the beam, and at its full value, it is equivalent to a concentrated
load of: 950 � 1=19ð Þ=2 ¼ 25 N, which is the same as the applied static load.
However, this equivalent point force is not applied at the tip of the last element but at
an intermediate point along that element. Because of the slightly shorter moment
arm, the steady-state value of the bending moment induced by this gradually applied
dynamic load about the mid-span of the beam would be somewhat less than the
corresponding static force moment. In fact, the moment of the dynamic load about
the mid-span of the blade would be 25 � 0:5� 1=3ð Þ=19½ � ¼ 12:1 N.m, whereas
the corresponding static moment is 12.5 N.m.
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While in the static formulation the tip values of F and M are the applied loads at
the tip of the blade, in the dynamic formulation f and m are the applied loads per
unit length. This difference should be accounted for in order to get meaningful and
comparable results.

As it was mentioned, the load is applied gently to the nonlinear dynamic model.
The gradual application of the load is necessary to assure the effective performance
of the perturbation scheme. It is also compatible with the main assumption in the
application of the perturbation method according to which perturbations are small
and variations of variables in time and space happen gradually. If this is not the
case, the method fails to provide smooth and stable solutions. The gentle variation
of the applied distributed load is expressed by

f ðtÞ ¼ fss � t2

2þ t2
ð5:38Þ

where, fss is the target steady-state value of the distributed load, and the number in
the denominator is an arbitrary constant that tunes the speed of convergence of f
(t) to fss.

Using the gradually applied load in the nonlinear dynamic model, the induced
moment components at the mid-span of the beam have been calculated and illus-
trated in Fig. 5.11.

Fig. 5.11 Time history diagrams of internal moment components at the mid-span of the clamped
beam using the nonlinear dynamic model
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Fig. 5.12 Internal moment components along the beam under the application of an F2 = 25 N tip
load using the linear static model (asterisk) and the nonlinear static model (dashes)

Fig. 5.13 Time history diagrams of internal force components at the mid-span of the clamped
beam using the nonlinear dynamic model
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Figure 5.12 presents the corresponding nonlinear static model results for the
induced moment distribution along the length of the beam. It can be seen that the
value to which the M3 component is converging at the mid-span of the beam in
Fig. 5.11 is very close to the corresponding static moment value at the same point
shown in Fig. 5.12. The corresponding results for the nonlinear dynamic and the
nonlinear static values of the shear force, F2, at the mid-span of the blade have been
plotted in Figs. 5.13 and 5.14, respectively. Conclusions similar to those made
about the moments can be presented for these forces as well, and it can be seen that
the dynamic value of F2 converges to the nonlinear static shear force given in
Fig. 5.14.

5.9 Case Study: Composite Box Model

Having demonstrated the validity of the analysis in Sect. 5.8, one can now extend
the nonlinear dynamic solution to the composite box beam example discussed in
Sect. 3.4. The cross-sectional area of the composite material (excluding the hollow
part) is 5.08 × 10−5 m2. The model has 50 nodes along its span and 1600 nodes in
the cross section.

Fig. 5.14 Internal force components along the beam under the application of an F2 = 25 N tip load
using the linear static model (asterisk) and the nonlinear static model (dashes)
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The blade accelerates from rest and gradually reaches its steady-state speed of
100 rad/s, as it is shown in Fig. 5.15a. The dynamic response of the blade is
illustrated in Figs. 5.15b, 5.16, 5.17, 5.18, 5.19, 5.20, and 5.21. It is seen that by
using the full nonlinear model, one may start with the rest initial conditions,
accelerate the blade, and get its whole elasto-dynamic behavior until it reaches the
steady state.

Fig. 5.15 a Time history diagram of the angular velocity Ω3 at the root, b corresponding bending
moment at the clamped root

Fig. 5.16 Time history variation of the induced bending moment M3 along the blade
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Fig. 5.17 Distribution of the internal force components along the blade at t = 3 s

Fig. 5.18 Distributions of the internal moment components along the blade at t = 3 s
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Fig. 5.19 Time history diagrams of the internal forces at the mid-span

Fig. 5.20 Time history diagrams of the velocity components at the mid-span
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Chapter 6
Steady-State and Perturbed Steady-State
Nonlinear Dynamics of Hingeless Rotating
Blades

6.1 Introduction

The finite difference solution presented in Chap. 5 can provide the full dynamic
(transient and steady-state) response of a rotating blade. However, one may only be
interested in finding the steady-state response. In this chapter, finding an alternative
solution method with this capability is in order. Such an alternative solution can
also provide a means for verifying the steady-state results obtained by using the
method presented in Chap. 5.

To perform a numerical solution, one may use an explicit finite difference
method where explicit (direct) integration is performed. An explicit solution, as was
implemented in Chap. 5, is a straightforward method, but it may result in numerical
instability. While in a stable difference scheme small changes in the initial and
boundary data do not change the solution greatly, an unstable difference scheme
shows great sensitivity to the initial and boundary data.

Contrary to the direct methods, in an implicit (indirect or iterative) integration
method, there is not an explicit formula at a point for the value of the unknown
functions appearing in the differential equation. Generally, using implicit methods,
a nonlinear algebraic equation must be solved to determine a function value at a
given point. However, even though the solution algorithm of implicit methods is
more involved, they have the advantage of providing unconditionally stable
solutions.

In analyzing rotor blades, at the steady state, the governing equations are no
longer time-dependent, and therefore, they have no partial derivatives with respect
to time and no time-dependent applied forces. They form a two-point boundary
value problem with boundary conditions at the root (first point) and at the tip
(second point). Such a boundary value problem can be solved by using the shooting
method—as it was done by the author before in Esmailzadeh et al. (1995), for
example.
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In this chapter, an implicit integration method that uses the shooting method for
the numerical solution of nonlinear boundary value problems is developed in order
to calculate the nonlinear steady-state response of a hingeless rotating blade. The
outcome is the steady-state response of the nonlinear hingeless (cantilevered)
rotating blade.

The applied implicit method converts the original boundary value problem to a
series of equivalent initial value problems in terms of the space variable where the
unknown initial conditions are calculated through an iterative process using the
Newton-Raphson method. These initial conditions correspond to the boundary
conditions of the original boundary value problem. In each iteration, the
Newton-Raphson algorithm improves the unknown but guessed initial conditions.
The solution is repeated until it satisfies a convergence criterion that is checked at
the end of every iteration. When the convergence criterion is satisfied, the correct
solution of the boundary value problem and the steady-state response of the blade
are obtained. The solution includes the steady-state internal forces, moments,
velocities, and angular velocities along the blade. This solution is used to verify the
results of the explicit (or direct) method presented in Chap. 5.

Finally, the response of the system to small perturbations applied to the system
when it is already in its steady-state motion is calculated. In order to do that, the
complete solution is written as a summation of the steady-state and the perturbation
terms representing small changes in the response. This function is then substituted
into the original time-dependent equations, and the result is solved for the unknown
perturbations. Unlike the method used in Chap. 5 which produced the whole
dynamics of the blade in this chapter, the blade dynamics is calculated only in the
vicinity of the steady-state response.

Most of the contents of this chapter have been presented in Ghorashi (2009) and
published in Ghorashi and Nitzsche (2008, 2009). In Cesnik et al. (2001) and Shin
et al. (2008), the steady-state dynamics of rotating blades and their perturbed
solutions around the steady-state solution have been presented.

6.2 Formulation of the Boundary Value Problem and Its
Conversion to a Series of Initial Value Problems

The steady-state form of the governing differential equations (2.26), (2.27), (2.37),
and (2.38) can be obtained by dropping all of the time-dependent terms and all
terms with derivatives with respect to time. Also, the applied loads f(x1, t) and m(x1,
t) are now treated as functions of x1 only. The resulting set of nonlinear ordinary
differential equations forms a boundary value problem. The steady-state form of the
governing differential equations (2.26), (2.27), (2.37), and (2.38) is as follows:
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F0
1 ¼ �K2F3 þK3F2 þX2P3 � X3P2 � f1 ð6:1Þ

F0
2 ¼ �K3F1 þK1F3 þX3P1 � X1P3 � f2 ð6:2Þ

F0
3 ¼ �K1F2 þK2F1 þX1P2 � X2P1 � f3 ð6:3Þ

M0
1 ¼ �K2M3 þK3M2 � 2c12F3 þ 2c13F2 þX2H3 � X3H2 þV2P3 � V3P2 � m1

ð6:4Þ

M 0
2 ¼ �K3M1 þK1M3 � 2c13F1 þð1þ c11ÞF3 þX3H1 � X1H3 þV3P1 � V1P3 � m2

ð6:5Þ

M 0
3 ¼ �K1M2 þK2M1 � ð1þ c11ÞF2 þ 2c12F1 þX1H2 � X2H1 þV1P2 � V2P1 � m3

ð6:6Þ

V 0
1 ¼ �K2V3 þK3V2 � 2c12X3 þ 2c13X2 ð6:7Þ

V 0
2 ¼ �K3V1 þK1V3 þð1þ c11ÞX3 � 2c13X1 ð6:8Þ

V 0
3 ¼ �K1V2 þK2V1 � ð1þ c11ÞX2 þ 2c12X1 ð6:9Þ

X0
1 ¼ �K2X3 þK3X2 ð6:10Þ

X0
2 ¼ �K3X1 þK1X3 ð6:11Þ

X0
3 ¼ �K1X2 þK2X1 ð6:12Þ

One may use Eqs. (2.36), (2.47), and (2.56) in order to express all variables in
Eqs. (6.1)–(6.12) only in terms of the four vector variables F, M, V, and Ω (or the
corresponding twelve scalar variables).

For simplicity, consider a case in which the origin of the reference frame (i.e.,
the shear center) and the centroid of cross sections coincide. Then, using Eq. (5.5),
Eqs. (6.4)–(6.6) reduce to the following:

M0
1 ¼ �K2M3 þK3M2 � 2c12F3 þ 2c13F2 þX2H3 � X3H2 � m1 ð6:13Þ

M0
2 ¼ �K3M1 þK1M3 � 2c13F1 þð1þ c11ÞF3 þX3H1 � X1H3 � m2 ð6:14Þ

M0
3 ¼ �K1M2 þK2M1 � ð1þ c11ÞF2 þ 2c12F1 þX1H2 � X2H1 � m3 ð6:15Þ

The system of Eqs. (6.1)–(6.3) and (6.7)–(6.15) is a system of twelve scalar
nonlinear ordinary differential equations in terms of the twelve components of F,M,
V, and Ω. They should be solved together with the hingeless boundary conditions
(5.25) and (5.26) at the root and at the tip of the blade, respectively. Having solved
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this system, other variables of interest such as the 1-D displacement field u,
deformed curvature κ, Rodrigues parameters θ, and the finite rotation tensor C can
be calculated using Eqs. (2.36), (2.57), (2.58), and (2.62). In the coming sections, it
will be shown how this problem can be solved by conversion to an equivalent initial
value problem that is solved iteratively.

6.3 The Solution Algorithm and Formulation

In Sect. 6.2, it was shown that the steady-state analysis of a rotating blade includes
the solution of a system of twelve scalar nonlinear ordinary differential equations
(6.1)–(6.3) and (6.7)–(6.15) in terms of the twelve components of F, M, V, and Ω.
The objective here is to calculate the steady-state response of a composite rotating
blade by solving the nonlinear boundary value problem formulated in Sect. 6.2 and
by using the shooting method. To this end, at the steady-state, the boundary value
problem will be converted to a series of initial value problems (in terms of the
longitudinal coordinate, x1).

In the case of a fixed-free (hingeless or cantilever) blade, while based on the root
boundary condition given in Eq. (5.25), at x1 = 0, Ω and V are known, magnitudes
of F and M at this point are unknown. Therefore, in the equivalent initial value
problem, the fixed boundary provides the required initial conditions for velocity and
angular velocity. However, for the rest of the variables, i.e., forces and moments,
such initial conditions at the root are not known. So, for converting this two-point
boundary value problem (with boundaries at the root and at the tip of the blade) to
an initial value problem, initial conditions for variables whose boundary values at
the root are not known should be guessed (in order to solve the initial value
problem) and then corrected iteratively. After guessing them, a complete set of
known and assumed initial conditions at the root would be available. The initial
value problem is then solved by the Runge-Kutta method, and the solution along
the blade and especially at its other end (the free end or tip) is calculated.

At this step, the error that the current solution has at the known boundary
conditions at the tip of the blade is computed. The checkpoint for the accuracy of
the guessed initial conditions at the root is to see whether the calculated solution
satisfies the known boundary conditions at the tip of the blade, i.e., Eq. (5.26). If
these conditions are satisfied by the obtained solution, a solution of the boundary
value problem which satisfies all imposed boundary conditions is obtained. It is,
therefore, the correct solution to the boundary value problem. Otherwise, the
guessed initial conditions at the root are in error and they should be modified. The
modification is performed iteratively by the use of the Newton-Raphson algorithm.
It provides the best corrective increments for the guessed initial conditions. The
solution of the initial value problem and the updating of the initial conditions at the
root are repeated until the correct solution to the problem that satisfies the boundary
conditions at the tip of the blade is obtained.
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Now, let us formulate the mentioned discussion. Consider an arbitrary iteration
number, k, and let us denote the known (target) values of the boundary conditions at
the tip of the blade by βj (j = 1 to 6)—three indices are used for the three force
components and three indices for the three moment components. These known
values can be compared with the current (kth iteration) values, gjk (j = 1 to 6), that
have been calculated at the tip of the blade using the solution of the initial value
problem with the guessed initial conditions at the root. The closeness of βj to gjk at
the tip of the blade is a measure of the accuracy of the applied initial conditions at
the root of the blade.

Let us assume that αi (i = 1 to 6) are the correct values of the initial conditions at
the root (point one in the 2-point boundary value problem) that are unknown. These
are the values for which correct boundary conditions βj at the tip of the blade can be
obtained:

gjðai; LÞ ¼ bj; j ¼ 1 to 6 ð6:16Þ

In Eq. (6.16), the βj values are known from the tip boundary conditions of the
blade. The aim is to calculate an estimation for initial conditions, αi. The initial
guess values for these unknown initial conditions at the root are denoted by αi0
(i = 1 to 6). All gj quantities, i.e., function values at the tip of the blade (point two in
the 2-point boundary value problem), that are calculated based on the guessed root
initial conditions are functions of the selected values of the initial conditions (or
initial guesses), αi0. Using αi0 as initial condition, a corresponding estimation for βj
at the free end is obtained that is denoted by βj0:

gjðai0; LÞ ¼ bj0; j ¼ 1 to 6 ð6:17Þ

Now, a Taylor series expansion can be written that may be used to calculate the
necessary changes in the guessed initial conditions in order to improve them. To
improve the initial guess values, αi0, increments Dai1 are applied on them. The
modified values of gj are related to their current values, gj (αi0, L), using the
following Taylor series expansion:

gjðai1; LÞ � gjðai0; LÞþ
X6
i¼1

@gj
@ai

ðai0; LÞ:Dai1
� �

ð6:18Þ

At the free end of a cantilever blade, all βj (that correspond to the force and
moment boundary conditions) are zero. Therefore, using Eq. (6.18), the ideal initial
condition increments Dai1 are the ones for which the left-hand side of Eq. (6.18)
vanishes. So, in an expanded form,
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Elements of the Jacobian matrix in Eq. (6.19) are determined by analyzing the
sensitivity of the current boundary condition values at point two (i.e., at the tip of the
blade) with respect to slight variations of the guessed values of the initial conditions
(i.e., the unknown boundary condition values) at point one or the root. Such a
sensitivity analysis can be performed by numerical differentiation. The matrix of the
calculated derivatives would be the Jacobian matrix of the problem. In calculating
the Jacobian for the hingeless case, the increments are applied at the root and on
variables whose values are not known at the root (i.e., on, F1, F2, F3, M1, M2, M3)
and their effects on variables whose values at the tip are known are evaluated (i.e.,
on, F1, F2, F3,M1,M2,M3). Interestingly, for the hingeless blade, these variables are
the same. This will not be the case for the articulated blade where the unknown
values at the root are not the same as the known values at the tip.

The sensitivities (or partial derivatives) in Eq. (6.19) are calculated numerically
using the central difference formula and the definition of a partial derivative. To this
end, first a small positive (i.e., ε) increment and then a small negative (i.e., −ε)
increment are given to the guessed initial condition of interest, and then the effect of
the imposed two increments on the boundary values at the tip is obtained by solving
Eqs. (6.1)–(6.3) and (6.7)–(6.15) as an initial value problem. Then, the derivatives are
estimated based on a 2ε increment in the initial conditions at the root. As an example,

@gj
@a2

ðai 0; LÞ � gjða10; a20 þ e; a30; a40; a50; a60; LÞ � gjða10; a20 � e; a30; a40; a50; a60; LÞ
2e

ð6:20Þ

So, by using Eq. (6.19), the best modifications to the initial conditions (increments)
can be calculated as follows:
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At the end of the first iteration, the calculated increments are used to improve the
initial guess values:

ai1 ¼ ai0 þDai1 ð6:22Þ

Now, by using the new set of assumed initial conditions (6.22), the whole algorithm
can be repeated. By doing so repeatedly, at the end of the kth iteration, one obtains,

aik ¼ aik�1 þDaik ð6:23Þ

In this way, the estimations for the unknown ‘initial conditions’ are gradually
improved until finally a solution is obtained in which all of the blade tip boundary
conditions are approximately satisfied. The algorithm is stopped when a conver-
gence criterion is satisfied. The selected convergence criterion checks to see whe-
ther the summation of the absolute errors at the tip of the blade is small enough. So,
the algorithm will stop when the following convergence criterion is satisfied:

X6
j¼1

gjðai k; LÞ
�� ��\e ð6:24Þ

Once condition (6.24) is satisfied, the correct initial conditions and, consequently,
the correct steady-state solution of the problem are obtained with acceptable
accuracy. The level of accuracy of this solution can be tuned by adjusting ε.

The foregoing solution algorithm may be summarized as follows:

1. Guess initial values for the unknown variables at the root of the blade.
2. Solve the resulting initial value problem using the Runge-Kutta method.
3. Calculate the error of boundary condition values at the tip of the blade, shown

by Eq. (6.17).
4. Terminate the process when the convergence criterion (6.24) is satisfied.
5. Calculate the Jacobian matrix using the sensitivity analysis of the solution for

values of boundary conditions at point 2 (tip) with respect to the guessed
variable values at point 1 (root) by equations similar to Eq. (6.20).

6. Use the Newton-Raphson method to get improved values of the initial guesses
for the unknown initial conditions as given by Eq. (6.22).

7. Repeat the process from step 2.

6.4 Case Study: Isotropic Rectangular Solid Model

The isotropic rectangular solid model of Sect. 3.3 is considered here again. Root
angular velocity of Ω3 = 100 rad/s is applied, and the steady-state response of the
blade is sought.
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Table 6.1 shows the sequence of guessed and then improved initial conditions at
the root using the method discussed in Sect. 6.3. The corresponding sequence of
error values at the tip has been listed in Table 6.2. It is observed that even though
the initial guesses at the root have been far from correct, the mentioned algorithm
has been able to obtain the correct solution that satisfies the tip boundary conditions
listed in Eq. (5.26) in just a few iterations.

Figures 6.1, 6.2, 6.3, and 6.4 illustrate the calculated steady-state response of the
blade. As expected, the axial force F1 is the dominant force component. In addition,

Table 6.1 The initial conditions at the root for various iterations (all F in N and all M in N.m)

Iteration α1 = F1(0) α2 = F2(0) α3 = F3(0) α4 = M1(0) α5 = M2(0) α6 = M3(0)

1 100 100 1000 1000 1000 1000

2 1.77e+5 1.437e−1 −8.897e−1 −3.561e−3 4.973e−1 7.132e−2

3 1.77e+5 8.935e−12 5.735e−13 −2.697e−11 −1.541e−12 4.315e−12

Table 6.2 Calculated tip boundary conditions for the initial conditions in Table 6.1 (all F in N
and all M in N.m)

Iteration g1 = F1(L) g2 = F2(L) g3 = F3(L) g4 = M1(L) g5 = M2(L) g6 = M3(L)

1 −1.769e+5 1.001e+2 9.99e+2 1.00e+3 1.9998e+3 8.999e+2

2 −4.948e−3 1.437e−1 −8.897e−1 −3.561e−3 −3.924e−1 −7.236e−2

3 1.4188e−1 8.935e−12 5.735e−13 −2.697e−11 −9.678e−13 −4.619e−12

Fig. 6.1 Steady-state internal force components along the blade
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Fig. 6.2 Steady-state internal moment components along the blade

Fig. 6.3 Steady-state velocity components along the blade

6.4 Case Study: Isotropic Rectangular Solid Model 129



the linear variation of V2 along the blade is compatible with the constant value of Ω3

along the blade.
To verify the results, the obtained steady-state solution has been compared with

the results of the transient solution discussed in Chap. 5. The transient solution is
expected to converge to the steady-state response obtained by the shooting method.
The two steady-state solutions are illustrated in Fig. 6.5 and are seen to be almost
identical.

Fig. 6.4 Steady-state angular velocity components along the blade

Fig. 6.5 Steady-state values
of the internal force F1 along
the blade using the shooting
method (solid line) and the
finite difference method
(circles)
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The developed computer program that implements the shooting method provides
the steady-state solution in just a few seconds. In comparison, another program that
calculates the transient finite difference solution has to run for a few minutes in
order to converge to the steady-state solution.

6.5 Case Study: Verification Example

The case of a rotating blade with the following non-dimensional data has been
given in Hodges (2008):

X3 ¼ 1:4426 L ¼ 10 k ¼ 0 Rð1; 1Þ ¼ 1� 10�7

Z ¼ 0 Tð1; 1Þ ¼ 1� 10�6 Tð2; 2Þ ¼ 1� 10�6 Tð3; 3Þ ¼ 1� 10�8

l ¼ 4 ið1; 1Þ ¼ 0:1

ð6:25Þ

Other elements of R and i are assumed to be zero. Figures 6.6, 6.7, 6.8, and 6.9
illustrate the results obtained by the present method and those of Hodges (2008). It
is clear that the two steady-state solutions are dominated by the axial force and the
results obtained by the two methods are very close to each other.

Fig. 6.6 Steady-state internal force components along the blade; present solution (asterisk)
Hodges (2008) (circles)
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Fig. 6.7 Steady-state internal moment components along the blade; present solution (asterisk)
Hodges (2008) (circles)

Fig. 6.8 Steady-state velocity components along the blade; present solution (asterisk) Hodges
(2008) (circles)
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6.6 Case Study: Passive Airfoil Model

The case of a passive composite airfoil is discussed in Hodges et al. (2007). The
blade comprises of a spanwise uniform cantilever beam with the representative
helicopter airfoil cross-sectional configuration VR-7 shown in Fig. 6.10. The blade
section has a chord length of 20.2 in. and a web located 8.4025 in. from the leading
edge. The layup orientations for the D-spar, from outside to inside, are [45°/−45°/
0°/0°/0°]. The layup angle is 45° for the trailing edge skin and 0° for the web.

The shear center has been located at a point 5.889-in. back and 0.6579-in. up
from the leading edge. VABS has been run with the origin of the sectional coor-
dinate system reset to this point. The center of mass was located slightly to the rear
and above the shear center at �x2 ¼ �0:00351124 - in: and �x3 ¼ �0:196410 - in:
The sectional mass properties have been calculated as follows:

l ¼ 1:54601 � 10�3lb:s2=in:2 i2 ¼ 1:28544� 10�3lb:s2

i3 ¼ 2:68960 � 10�2lb:s2
ð6:26Þ

where μ is the mass per unit length, i2 is the cross-sectional mass moment of inertia
about the direction along the chordline, and i3 is the cross-sectional mass moment of
inertia about the perpendicular direction.

Fig. 6.9 Steady-state angular velocity components along the blade; present solution (asterisk)
Hodges (2008) (circles)
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The generalized Timoshenko model obtained from VABS for this cross section
is represented by the following stiffness matrix:

S ¼

128:550 �0:651479 0:026700 �1:17823 25:0459 �168:948
�0:651479 9:68119 �0:414611 0:021110 0:706635 1:03049
0:026700 �0:414611 1:44328 �0:001493 �0:054592 0:116498
�1:17823 0:021110 �0:001493 34:5784 1:30984 1:36493
25:0459 0:706635 �0:054592 1:30984 91:8417 25:3056
�168:948 1:03049 0:116498 1:36493 25:3056 1492:29

2
6666664

3
7777775
� 106

ð6:27Þ

Reviewing Eq. (2.56) reveals that the units associated with stiffness values are Sij
(lb), Si,j+3 (lb.in.), and Si+3,j+3 (lb.in.

2) for i, j = 1, 2, 3. It should also be noted that
the cross-sectional matrix for classical theory is obtained by striking the second and
third rows and columns from the inverse of the 6 by 6 stiffness matrix above [in
order to drop in-plane shear deformation, as seen in the scalar form of Eq. (2.56)]
and then inverting the resulting 4 by 4 matrix.

In the present analysis, a 120-in.-long blade that has the cross section shown in
Fig. 6.10 is considered and the blade rotates at 100 rad/s. Figure 6.11 illustrates the
calculated steady-state distribution of F1 using the shooting method algorithm
described in Sect. 6.3.

6.7 Perturbed Steady-State Analysis

Consider a rotating blade that has already reached its steady-state motion. The aim is
to calculate the behavior of this blade in the vicinity of its steady-state motion as a
result of small disturbances. Such disturbances induce perturbations on the
steady-state values of all variables. Therefore, the complete solution for each vari-
able can be written as the summation of the steady-state component (x1 dependent)
and a perturbed part (x1 and t dependent).

Fig. 6.10 Sketch of the rotor blade cross section, Hodges et al. (2007) © American Helicopter
Society, reprinted with permission
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Referring to Fig. 2.6, for every dependent variable, one may write as follows:

/ xþ Dx
2
; tþ Dt

2

� �
¼ /ss xþ Dx

2

� �
þ/p xþ Dx

2
; tþ Dt

2

� �
ð6:28Þ

in which the solution for the variable of interest has been expressed as the sum-
mation of its steady-state value and perturbations about the steady state. Using
Eq. (6.28) for /m and kn,
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ð6:29Þ

The purely steady-state term /m;sskn;ss satisfies the steady-state differential
equations, so it will not appear in the perturbations equations. Also, the product of
perturbation terms, i.e., /m;pkn;p, is small and can be neglected. So, the contribution
of Eq. (6.29) in the perturbation equations would be the following:
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� �

ð6:30Þ

Fig. 6.11 Steady-state
variation of the internal force
F1 along the blade
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Now, using Eq. (2.87),

/m;ss xþ Dx
2

� �
¼ 1

2
/m;ss;iþ 1 þ/m;ss;i

� �þO Dx2
� � ð6:31Þ

So, the perturbational contribution of /mkn becomes the following:
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h i
ð6:32Þ

Using the steady-state equations, (6.1)–(6.12) together with Eqs. (6.32), (2.87),
(2.98), and (2.109), the dynamic governing Eqs. (2.26), (2.27), (2.36)–(2.38), (2.45),
and (2.56) can be converted to the following matrix equation:

Ass;iq
þ
p;i þBss;iq

þ
p;iþ 1 ¼ Jss;i ð6:33Þ

where qp contains the perturbations of the variables given in Eq. (5.20). Even
though the expressions for Ass, Bss, and Jss in Eq. (6.33) are different from those of
Eq. (5.19), the solution methods are identical. Having solved Eq. (6.33), the
complete solution can be recovered by using Eq. (6.28).

6.8 Case Study: Isotropic Rectangular Solid Model

Consider the isotropic rectangular solid model introduced in Sect. 3.3 that is
rotating at the steady-state angular velocity, Ω3 = 100 rad/s.

The aim is to evaluate the effects of an angular velocity perturbation of

X3;p;1 ¼ sinð100tÞ rad/s ð6:34Þ

that is applied at the root.
Figures 6.12 and 6.13 illustrate the input angular velocity perturbations as well

as the resulting perturbations in the bending moment and in the force components at
the root. Having calculated the perturbed dependent variables, one may use
Eq. (6.28) to get the complete dynamic response. In Figs. 6.14, 6.15, 6.16, 6.17, and
6.18, the steady-state results are plotted in solid lines until t = 2.667 s. At this
instant, the perturbation is as follows:
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X3;p;1 ¼ sinð93:5tÞ rad/s ð6:35Þ

which is applied at the root of the blade. The effect of this perturbation, using the
foregoing algorithm, is illustrated in solid lines.

Fig. 6.12 Perturbations of angular velocity and bending moment at the root

Fig. 6.13 Perturbations of force components at the root
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Fig. 6.14 Accelerating and
perturbed steady-state angular
velocities at the root

Fig. 6.15 Zoomed-in view of
Fig. 6.14

Fig. 6.16 Steady-state,
accelerating, and perturbed
axial force at the root
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As an alternative method, the problem has also been solved using the algorithm
presented in Chap. 5 for an accelerating blade. For this purpose, the blade starts to
rotate from rest, and at t = 2.667 s when the beam has an angular velocity of 93.
5 rad/s, the perturbation shown in Eq. (6.35) is applied. In Figs. 6.14, 6.15, 6.16, 6.
17, and 6.18, the corresponding results are plotted in dash-dotted lines. It can be
observed that the predictions of the perturbed steady-state method discussed in this
chapter are close to those of the accelerating blade method of Chap. 5.

Fig. 6.17 Steady-state,
accelerating, and perturbed
shear force at the root

Fig. 6.18 Steady-state,
accelerating, and perturbed
bending moment at the root
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Chapter 7
Rigid and Elastic Articulated Rotating
Composite Blades

7.1 Introduction

In Chaps. 5 and 6, the nonlinear elasto-dynamics of rotating hingeless (cantilever)
blades was analyzed. Contrary to hingeless blades that cannot perform rigid body
motions, in order to reduce moment loads that are induced at the root, in many
helicopters blades are articulated. Analyzing the dynamics of these articulated or
hinged blades requires the inclusion of rigid body motions as a new set of unknown
variables.

One may start the analysis by first ignoring the elastic deformations of the blade
in comparison to its rigid body motions. In fact, for a number of important heli-
copter problems with hinged blades, the blade rigidity assumption is adequate. In
Bramwell et al. (2001), it has been mentioned that, ‘It is fortunate that, in spite of
the considerable flexibility of rotor blades, much of helicopter theory can be
affected by regarding the blade as rigid, with obvious simplifications in the anal-
ysis.’ That is why the analysis of rigid body motions is so essential for under-
standing the behavior of articulated blades.

However, still there are cases where the flexibility of the blade and its defor-
mations should be taken into consideration. Elastic deformations of a blade can
significantly affect its aerodynamic loadings. The elasticity of a rotor blade also
affects its natural frequencies and natural modes of vibration.

In this chapter, first a review of the analysis of rigid articulated rotating blades
having flap, lead–lag and feathering hinges is presented. In this analysis, the angular
velocity of the rotor is considered to be constant and the helicopter undergoes
rectilinear motion at constant speed. A generalized solution to the coupled rigid
body motion problem of helicopter blades in flap and lead–lag is derived to gen-
erate the root boundary conditions. Then, the elastic articulated rotating blades are
analyzed. The root boundary condition for the elastic blades is formulated by the
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use of the rigid articulated blade solution. Having done that, the root boundary
condition and the elastic rotating blade formulation (derived in Chap. 5) are
combined in order to solve the elastic articulated rotating blade problem. The
specific problem considered involves an accelerating rotor blade that starts its
motion from rest and converges to a steady-state angular velocity. In this way, a
direct integration method which utilizes perturbations is presented for the
elasto-dynamic analysis of an accelerating articulated composite blade by solving
the nonlinear intrinsic differential equations. This chapter is essentially based on the
material presented in Ghorashi (2009) and published in Ghorashi (2012).

7.2 Introduction to the Dynamics of Articulated Blades

A typical hinge arrangement for an articulated blade is shown in Fig. 7.1. The use of
these hinges in order to reduce the induced moments has been a main development
in the manufacture of helicopters. The most important of these hinges is the flap-
ping hinge which allows the blade to move in a plane containing the blade and the
shaft. Now, a blade which is free to flap experiences large Coriolis moments in the
plane of rotation. That is why a further hinge—called the drag or lead–lag hinge—is
provided to relieve these moments. Lastly, the blade can be feathered about a third
axis, usually parallel to the blade span, to enable the blade pitch angle to be
changed, Bramwell et al. (2001).

A large number of helicopters use the conventional fully articulated rotor hubs.
Hence, mechanical flap and lead–lag hinges are provided on each blade along with
a feathering bearing. Furthermore, because of the relatively low drag and aerody-
namic damping in the lead–lag plane, mechanical dampers are fitted at the lag
hinges. The articulated rotor design is mechanically complicated, heavy, and it
produces relatively high drag in forward flight. Nevertheless, the fully articulated
design is the classic approach to providing the blade articulation, and in practice, it
has been proven mechanically reliable but with relatively high maintenance costs
because of the large number of parts (Leishman 2006).

Fig. 7.1 Typical hinge
arrangement, Bramwell et al.
(2001), page 2 © Elsevier
Ltd., reprinted with
permission
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The main rotational motion of a blade about its rotor is measured by the azimuth
angle, ψ. It is the angle between the spanwise direction of the blade and the rear
centerline of the helicopter (rearmost position of the blade). At constant rotor shaft
angular velocity, the azimuth angle is related to this velocity and time by,

w ¼ Xt ð7:1Þ

Since aerodynamic loads are periodic functions of the azimuth angle (they
depend on the location of the blade with respect to the rest of the helicopter), it is
sometimes advantageous to use Eq. (7.1) to replace time with the azimuth angle, as
the independent variable.

The feathering mechanism is a parallel mechanism where the blades remain
parallel to the swashplate at all times. The swashplate has a lower plate that does not
rotate with the shaft but can be tilted in any direction by the pilot’s cyclic control.
The upper plate rotates with the shaft, but it is constrained to remain parallel to the
lower plate.

Collective pitch is the mechanism in effect in hover and can keep the helicopter
over a certain location. In hovering flight, the swashplate is used to tune the col-
lective (constant) pitch. The collective pitch is imposed by the collective lever and
the pitch link. The collective lever raises or lowers the swashplate without intro-
ducing any tilt on it; this alters the pitch angle of all the blades by the same amount.
The resulting flow field is azimuthally axisymmetric and adjusts the magnitude of
the thrust. In hover, each blade encounters the same aerodynamic environment. As
a result, the flapping angle does not change with the azimuth angle. So, b wð Þ ¼ b0 ,
which is a constant called the coning angle. The coning angle is calculated by
solving the equation of balance of moments of the centrifugal and aerodynamic
forces about the flapping hinge.

In forward flight, cyclic pitch is produced by tilting the swashplate using pilot’s
control. Cyclic feathering takes place relative to a plane that is perpendicular to the
shaft. Feathering increases the lift in certain regions of blade rotation and decreases
it in others. The resultant is that the helicopter tends to move in a certain direction,
and forward flight is obtained.

In hover, with only the collective pitch, Ω1 is zero. However, in the forward
flight, due to cyclic pitch, Ω1 is not zero and it is an input provided by the pilot at
the root as a known function of time. Based on this discussion, pitch is not regarded
as a degree of freedom of the blade. It, however, generates aerodynamic moments,
which in turn produce flap and lag motions that are the two degrees of freedom of
the blade.

Therefore, the collective pitch controls the average blade pitch angle, and con-
sequently, it adjusts the blade lift and average rotor thrust. The cyclic pitch, on the
other hand, controls the orientation of the rotor thrust vector. Finally, the yaw
motion is controlled by using the tail rotor thrust that causes the nose to yaw right or
left.
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7.3 Euler Equations of Motion for Rigid Rotating Blades

Figure 7.1 illustrates the general case where a rotor blade rotates about a fixed point
and has a hinge system, which is effectively concentrated at a single point. The
relevant parameters of the system have been illustrated in Fig. 7.2. Point O is on the
center axis of the rotor shaft about which the blade rotates. The hinge system is
effectively concentrated at the single point P (at the root of the blade). Therefore,
OP is the hinge offset.

Using Fig. 7.2, the absolute angular momentum of a representative particle, mi,
with position vector, ρi, with respect to the mass center of the blade, G, can be
found by calculating the moment of the absolute linear momentum of this particle
about G. By adding the contributions obtained for all of the particles in the blade,
one obtains

~HG ¼
X
i

~qi � mi~við Þ ð7:2Þ

For a rigid blade, that is modeled as a continuum and rotates at an instantaneous
angular velocity x, Eq. (7.2) can be expressed as

~HG ¼
Z

~q� ð~x�~qÞ½ �dm ð7:3Þ

Similarly, if O is a fixed point in a Newtonian reference frame about which the
blade is rotating, the absolute angular momentum of the rigid blade about O could
be written as

~HO ¼
X
i

~ri � mi~við Þ ð7:4Þ

where ~ri is the position vector of particle mi with respect to hinge O. For a con-
tinuum, Eq. (7.4) can be expressed as

P G

O

Fig. 7.2 Rotating blade with
O on the shaft axis and the
hinge P at the root of the
blade
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~HO ¼
Z

~r � ð~x�~rÞ½ �dm ð7:5Þ

Equations (7.3) and (7.5) have identical forms.
In order to perform the calculations, the moment arm, r or ρ, can be written as

x~iþ y~jþ z~k where x–y–z refers to the coordinates of dm in the reference frame
located at G or O, respectively. Then, the cross products may be carried out.
Alternatively, to perform the calculations, one can use the triple vector product
identity

~A� ð~B� ~CÞ ¼ ð~A � ~CÞ~B� ð~A �~BÞ~C ð7:6Þ

Either way the result is

d~H ¼~i½ðy2 þ z2Þxx � xyxy � xzxz�dmþ~j½�yxxx þðz2 þ x2Þxy � yzxz�dm
þ~k½�zxxx � zyxy þðx2 þ y2Þxz�dm

ð7:7Þ

Integrating Eq. (7.7), all over the blade gives

~H ¼~iðIxxxx � Ixyxy � IxzxzÞþ~jð�Iyxxx þ Iyyxy � IyzxzÞ
þ~kð�Izxxx � Izyxy þ IzzxzÞ

ð7:8Þ

where the moments of inertia and the products of inertia (components of the inertia
matrix I) are defined as

Ixx ¼
R

y2 þ z2ð Þdm Ixy ¼ Iyx ¼
R
xydm

Iyy ¼
R

z2 þ x2ð Þdm Ixz ¼ Izx ¼
R
xzdm

Izz ¼
R

x2 þ y2ð Þdm Iyz ¼ Izy ¼
R
yzdm

ð7:9Þ

Equation (7.8) can be expressed in the following matrix form,

~H ¼ I~x;
Hx

Hy

Hz

8<:
9=; ¼

Ixx �Ixy �Ixz
�Iyx Iyy �Iyz
�Izx �Izy Izz

24 35 xx

xy

xz

8<:
9=; ð7:10Þ

Equation (7.10) is the general expression for the angular momentum of a rigid
blade about either its mass center, G, or a point, O, that is a fixed point in a
Newtonian reference frame (about which the blade is rotating with an instantaneous
angular velocity x). In both cases, if the reference frame x–y–z with origin at G or
O is attached to the rigid blade, the moment of inertia and the product of inertia
integrals will be invariant with respect to time. Next, one may use
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X
~M ¼ _~H ð7:11Þ

where the terms are calculated either about a fixed point, O, or the mass center,
G. Recalling that Ω is the angular velocity vector of the moving coordinate system,
application of the Coriolis theorem,

_~H ¼ d~H
dt

 !
xyz

þ~X� ~H ð7:12Þ

and Eq. (7.11) result in,

X
~M ¼ d~H

dt

 !
xyz

þ~X�~H ð7:13Þ

or, X
~M ¼ ð _Hx~iþ _Hy~jþ _Hz~kÞþ~X�~H ð7:14Þ

In Eq. (7.14), the terms in parentheses represent part of _~H which is due to the
change in the magnitude of the components of H as they are viewed by observers at
G or O. The cross product term is due to changes in the direction of the components
of H. Expansion of the cross product and rearrangement of the result giveX

~M ¼ ð _Hx � HyXz þHzXyÞ~iþð _Hy � HzXx þHxXzÞ~jþð _Hz � HxXy þHyXxÞ~k
ð7:15Þ

Equation (7.15) is the most general form of the moment equation of a rigid body
about a fixed point, O, or mass center, G. The angular velocity vector, Ω, of the
moving reference axes, in general, can be different from the angular velocity vector,
ω, of the rigid blade. If the moving reference axes are attached to the rigid blade,
then, Ω = ω, and Eq. (7.15) reduces toX

Mx ¼ _Hx � Hyxz þHzxyX
My ¼ _Hy � Hzxx þHxxzX
Mz ¼ _Hz � Hxxy þHyxx

ð7:16Þ

These are the general moment equations for a rotating rigid blade using a set of
reference coordinates which are attached to the blade at point, O, that is a fixed
point in a Newtonian reference frame about which the blade is rotating, or at its
mass center, G.
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At any point in a rigid body, there are three principal axes of inertia. The
products of inertia with respect to these axes are zero. If the coordinate axes x–y–
z are the principal axes of inertia of the blade with origin at G or O, Eq. (7.10)
reduces to

Hx

Hy

Hz

8<:
9=; ¼

Ixx 0 0
0 Iyy 0
0 0 Izz

24 35 xx

xy

xz

8<:
9=; ð7:17Þ

If the reference axes coincide with these principal axes (at mass center G or point
O), using Eqs. (7.16) and (7.17) one obtainsX

Mx ¼ Ixx _xx � ðIyy � IzzÞxyxz ð7:18ÞX
My ¼ Iyy _xy � ðIzz � IxxÞxzxx ð7:19ÞX
Mz ¼ Izz _xz � ðIxx � IyyÞxxxy ð7:20Þ

Equations (7.18)–(7.20) are the Euler’s equations of motion for a rotating rigid
body and they are used for writing moment equations for rotating articulated blades
with no hinge offset about a point O that is fixed in a Newtonian reference frame or
about the mass center G of the blade.

7.4 Extended Euler Equations for a Rigid Rotating Blade

As it was shown in Sect. 7.3, Euler’s equations of motion (7.18)–(7.20) can be
written about a point O that is fixed in a Newtonian reference frame or about the
mass center, G. However, as it is seen in Fig. 7.1, in rotor blades usually the offset
between the hinge system and the rotor axis (shown by OP in Fig. 7.2) is not zero.
Therefore, the flap/lag/pitch hinge has nonzero acceleration and it is not a stationary
point in a Newtonian reference system. Consequently, while Eqs. (7.18)–(7.20) can
still be written about G, they are not valid about the hinge point P.

Using the center of gravity to write moments about is inconvenient since in
calculating moments of forces about G, one has to deal with the moments of
unknown reaction forces at the hinge. Such a problem does not exist if moments are
written about the hinge point. Nevertheless, in order to be able to write moments
about the hinge location, P, when it is not fixed in a Newtonian reference system,
the Euler’s equations should be modified to what is called the ‘extended’ Euler’s
equations.

For a system of particles, using Fig. 7.2 and its corresponding kinetic diagram,
the moment equation about an arbitrary point P can be written as, Meriam and
Kraige (2003),

7.3 Euler Equations of Motion for Rigid Rotating Blades 147



X
~MP ¼ _~HP;rel þ~q� m~aP ð7:21Þ

where m is the mass of the body, and ~HP;rel is its angular momentum about P and
relative to P defined as

~HP;rel ¼
X
i

~q0i � mi~vi=P
� � ð7:22Þ

For a rigid blade, Eq. (7.22) can be written as

~HP;rel ¼
X
i

mi~q
0
i � ðx�~q0iÞ

� � ð7:23Þ

Finally, considering the whole blade as a continuum,

~HP;rel ¼
Z

~q0 � ð~x�~q0Þ½ �dm ð7:24Þ

Equation (7.24) is similar to Eqs. (7.3) and (7.5). Starting from Eq. (7.24) and
following a procedure similar to what was done in Sect. 7.3, one obtains

~HP;rel ¼ I~x;
Hp;x

Hp;y

Hp;z

8<:
9=;

rel

¼
Ixx �Ixy �Ixz
�Iyx Iyy �Iyz
�Izx �Izy Izz

24 35 xx

xy

xz

8<:
9=; ð7:25Þ

If the coordinate axes x–y–z are chosen to be the principal axes of inertia of the
blade with origin at the hinge point, P, Eq. (7.25) reduces to

Hp;x

Hp;y

Hp;z

8<:
9=;

rel

¼
Ixx 0 0
0 Iyy 0
0 0 Izz

24 35 xx

xy

xz

8<:
9=; ð7:26Þ

By taking the time derivative of Eq. (7.26) and using Eq. (7.12) (Coriolis theorem),
one obtains

_HP
� �

rel;x¼ Ixx _xx � ðIyy � IzzÞxyxz ð7:27Þ

_~HP

� �
rel;y

¼ Iyy _xy � ðIzz � IxxÞxzxx ð7:28Þ

_~HP

� �
rel;z

¼ Izz _xz � ðIxx � IyyÞxxxy ð7:29Þ
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Now, the term ~q� m~aP in Eq. (7.21) should be calculated. The position vector
of the mass center of the blade, G, with respect to hinge, P (shown in Fig. 7.2), can
be written as,

~q ¼ xGîþ yGĵþ zGk̂ ð7:30Þ

Considering the absolute acceleration of the hinge point P,

~aP ¼ aPx̂iþ aPŷjþ aPzk̂ ð7:31Þ

one obtains

~q�~aP ¼ yGaPz � zGaPy
� �̂

iþ zGaPx � xGaPzð Þ̂jþ xGaPy � yGaPx
� �

k̂ ð7:32Þ

Substitution of Eqs. (7.27)–(7.29) and (7.32) into (7.21) results in,X
MPx ¼ Ixx _xx � ðIyy � IzzÞxyxz þm yGaPz � zGaPy

� � ð7:33ÞX
MPy ¼ Iyy _xy � ðIzz � IxxÞxzxx þm zGaPx � xGaPzð Þ ð7:34ÞX
MPz ¼ Izz _xz � ðIxx � IyyÞxxxy þm xGaPy � yGaPx

� � ð7:35Þ

where m is the mass of the blade and the equations are written with respect to a
principal coordinate system of inertia that is attached to the blade and its origin is at
hinge, P.

Equations (7.33)–(7.35) are the ‘extended’ form of the Euler equations of motion
(7.18)–(7.20) in which the hinge point P is a general point with nonzero acceler-
ation. For zero offset (i.e., OP = 0) or zero acceleration of point P, Eqs. (7.33)–
(7.35) reduce to (7.18)–(7.20), as expected.

In helicopter blades, the center of gravity is practically on the x-axis. So

~q ¼ xGî; yG ¼ 0; zG ¼ 0 ð7:36Þ

Substituting Eq. (7.36) into Eqs. (7.33)–(7.35) results inX
MPx ¼ Ixx _xx � ðIyy � IzzÞxyxz ð7:37ÞX

MPy ¼ Iyy _xy � ðIzz � IxxÞxzxx � mxGaPz ð7:38ÞX
MPz ¼ Izz _xz � ðIxx � IyyÞxxxy þmxGaPy ð7:39Þ

Equations (7.37)–(7.39) are the ‘extended’ Euler equations adapted for the case of a
rotating blade with hinge offset and can be used for deriving the equations of
motion of a rigid articulated blade in flapping, lagging, and feathering motions.
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7.5 Uncoupled Equations of Motion of a Rigid Articulated
Blade

The blades of an articulated rotor, as seen in Fig. 7.1, have two primary degrees of
freedom, which are flapping and lagging, and they take place about the flap and lag
hinges, respectively. The flap and lag hinges are used in order to reduce the root
blade loads (since at the hinge moments must be zero). The flap hinge is usually
offset slightly from the center of rotation because of mechanical constraints and to
improve the helicopter handling qualities. The lead–lag hinge too must be offset
from the center of rotation to provide some moment arm and for the shaft to
transmit torque to the rotor.

The lag motion is only lightly damped. The small lead–lag displacements pro-
duce small aerodynamic and drag forces. These drag forces are almost two orders of
magnitude less than the lift forces. Therefore, the lead–lag motion is very sus-
ceptible to instabilities. An important example is ground resonance, where the blade
lead–lag motion and the lateral motion of the fuselage and rotor hub become
coupled to produce a catastrophic aeromechanical instability. To prevent this
phenomenon, most rotors have mechanical lag dampers, which provide artificial
damping.

7.5.1 Uncoupled Flapping

Figure 7.3 illustrates a rotating blade with a flap hinge mounted at distance eR from
the axis of rotation (the flap hinge offset distance is eR, where R is the rotor radius
shown in the figure and the blade span is R-eR, typically, e < 0.15).

Fig. 7.3 Flapping blade,
Bramwell et al. (2001), page 7
© Elsevier Ltd., reprinted
with permission
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In Fig. 7.3, the blade coordinate system that is attached to the blade has been
shown. The origin of this system is at the hinge and the axes are in the principal
directions of inertia of the blade at the root. In flapping, as it is seen in Fig. 7.4 the
angular velocity of the shaft Ω is always in the plane made by x- and z-axes. The
flap angle, β, is measured relative to a plane perpendicular to the rotor shaft axis,
and its positive sense, as is shown in Fig. 7.4, is in the negative y direction (flapping
up). Flapping up provides a balance between the moment of centrifugal forces and
the moment of lift forces about the flap hinge.

In the hub coordinate system shown in Fig. 7.5, the shaft angular velocity can be
written as, Ω.e3. Referring to Fig. 7.4, the total angular velocity of the blade in the
blade coordinate system can be written as the summation of the transformed vector
of the rotor shaft angular velocity and the flap motion, � _b̂j,

x1

x2

x3

8<:
9=; ¼

cos b 0 sin b
0 1 0

� sinb 0 cos b

24 35 0
0
X

8<:
9=;� _b̂j ð7:40Þ

or

~x ¼ ðX sin bÞ̂i� _b̂jþðX cos bÞk̂ ð7:41Þ

Fig. 7.4 Flapping of a
rotating blade in the blade
coordinate system

Fig. 7.5 Rotating rigid blade
with hub and blade coordinate
systems, Bramwell et al.
(2001), page 22 © Elsevier
Ltd., reprinted with
permission
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Equation (7.41) demonstrates the relation between the angular velocity of the shaft,
Ω, and the angular velocity of the blade, ω, during flapping.

Using the hub coordinate system shown in Fig. 7.5, for constant shaft angular
velocity, Ω, the acceleration of the hinge point, P, shown in Fig. 7.6 is �eRX2e1.
By implementing a rotation transformation, this acceleration can be expressed in the
blade coordinate system as follows:

aP1
aP2
aP3

8<:
9=; ¼

cos b 0 sin b
0 1 0

� sin b 0 cos b

24 35 �eRX2

0
0

8<:
9=; ð7:42Þ

or

~aP ¼ ð�eRX2 cos bÞ̂iþ 0̂jþðeRX2 sin bÞk̂ ð7:43Þ

But, using Eq. (7.9) for blades which are thin in the z direction,

Izz � Ixx þ Iyy ð7:44Þ

Since the flapping motion takes place about the y-axis, one may utilize the
second of the ‘extended’ Euler equations (7.38) as well as Eqs. (7.41) and (7.44) to
get X

MPy ¼ �Iyy€b� IyyðX sin bÞðX cos bÞ � mxGðeRX2 sin bÞ

or

�
X

MPy ¼ Iyy€bþX2ðIyy cos bþmxGeRÞ sin b ð7:45Þ

The non-dimensional position of the mass center, xGn, can now be defined as

xG ¼ RxGn ð7:46Þ

Fig. 7.6 The acceleration of
the hinge point in the blade
coordinate system
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Substituting Eq. (7.46) into (7.45) results in

�
X

MPy ¼ Iyy€bþX2 Iyy cos bþmxGneR
2� �

sin b ð7:47Þ

Equation (7.47) is the nonlinear flap-only (uncoupled) equation. The term in the
left-hand side of Eq. (7.47) is the negative of the aerodynamic moment (considered
positive in the positive y or in the negative β direction). The second term in the
right-hand side of Eq. (7.47) is equal to the moment of centrifugal forces on the
blade about the flap hinge. This moment acts like a torsional spring and tends to
return the blade to its equilibrium position.

For small values of the flap angle, which is usually the case, Eq. (7.47) may be
linearized to

€bþX2m2bb ¼ � 1
Iyy

X
MPy ð7:48Þ

where

m2b ¼ 1þ mxGneR2

Iyy
ð7:49Þ

If the blade is modeled as a slender bar with uniform mass distribution along its
span, since the reference of the coordinate system is roughly located at the root of
the blade,

xG ¼ 1
2

R� Reð Þ; Iyy ¼ 1
3
m R� Reð Þ2 ð7:50Þ

Substituting Eq. (7.50) into Eq. (7.49) gives,

m2b ¼ 1þ 3e
2ð1� eÞ ð7:51Þ

So the natural frequency of flapping that according to Eq. (7.48) is Xmb, becomes

xnf ¼ X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3e

2ð1� eÞ

s
ð7:52Þ

The value of eccentricity, e, is around 5 % so the natural frequency of the rotor is
only slightly greater than Ω. Setting hinge offset equal to zero (e = 0) results in a
flapping natural frequency equal to the frequency of rotation of the rotor shaft (or 1
per rev).

In hovering flight, the flap angle converges to a constant, β0 (independent of the
azimuth angle, ψ), which is called the coning angle. The coning angle is determined
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by a balance of the moments of aerodynamic and centrifugal forces about the
flapping hinge. Using Eq. (7.48),

b0 ¼ � 3
P

MPy

mR2X2ð1� eÞð1þ 0:5eÞ ð7:53Þ

Furthermore, substituting Eqs. (7.41) and (7.44) into Eq. (7.37) givesX
MPx ¼IxxX _b cos b� ð�IxxÞð� _bÞX cos b ¼ 0 ð7:54Þ

Therefore, the flapping motion produces no feathering inertia moment. For the
lead–lag motion, using Eqs. (7.41), (7.44) and Eq. (7.39) one obtainsX

MPz ¼ X _b sin b
� �

�Izz þ Ixx � Iyy
� � ¼ �2IyyX _b sin b ð7:55Þ

The in-plane lag moment given in Eq. (7.55) is generated by flapping. The existence
of this moment is, in fact, the reason for which in articulated blades a lead–lag hinge
is used.

7.5.2 Uncoupled Lead–Lag

Figure 7.7 illustrates a lead–lag hinge with hinge offset distance, eR. This hinge is
parallel to the rotor shaft axis, so the lead–lag angle, ξ, represents a change of the
blade angle in the plane of the hub. The lead–lag angle is defined positive in the
‘lagging’ direction (opposite to the rotor shaft angular velocity, Ω). This sign
convention is contrary to the one used in Bramwell et al. (2001) and is illustrated in
Fig. 7.7. Therefore, due to lagging, the instantaneous angular velocity of the blade
reduces to

~x ¼ ðX� _nÞk̂ ð7:56Þ

Fig. 7.7 Blade lagging, Bramwell et al. (2001), page 9 © Elsevier Ltd., reprinted with permission
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For constant Ω, and due to the lead–lag rotation, ξ, the acceleration �eRX2e1 of the
hinge point, P (i.e., aP), in the hub coordinate system can be written as

aP1
aP2
aP3

8<:
9=; ¼

cos n � sin n 0
sin n cos n 0
0 0 1

24 35 �eRX2

0
0

8<:
9=; ð7:57Þ

or

~aP ¼ �eRX2ðcos n̂iþ sin n̂jÞ ð7:58Þ

Substituting Eqs. (7.46), (7.56), and (7.58) into Eq. (7.39) gives

�
X

MPz ¼ Izz€nþmexGnR
2X2 sin n ð7:59Þ

For small ξ, Eq. (7.59) can be linearized to

€nþ m2nX
2n ¼ � 1

Izz

X
MPz ð7:60Þ

where

m2n ¼
mexGnR2

Izz
ð7:61Þ

The negative signs of moments in the right hand side of the flap Eq. (7.48) and
the lead–lag Eq. (7.60) are because the positive direction of flap is in the negative
y direction and the positive direction of lead–lag is in the negative z direction.

For a blade modeled as a slender bar with uniform mass distribution along its
span, using Eqs. (7.50) and (7.61) the natural frequency of lead–lag that according
to Eq. (7.60) is Xmn, and it becomes

xnl ¼ X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3e

2ð1� eÞ

s
ð7:62Þ

If the lead–lag offset distance is zero, Eq. (7.62) results in a zero lead–lag rigid body
natural frequency and an unbounded lead–lag response. A rotor blade that is pinned
in lead–lag to the axis of rotation generates the mentioned ill-conditioned problem
(zero stiffness at root and zero lead–lag natural frequency).

Interestingly, the lead–lag hinge offset and the lead–lag hinge torsional spring
have identical effects. With nonzero lead–lag hinge offset, but no hinge torsional
spring, Eq. (7.60) is the equation of motion. On the other hand, with a torsional
spring at the lead–lag hinge, when the hinge offset is zero,
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€nþKTn ¼ � 1
Izz

X
MPz

where KT is the torsional spring stiffness. The above equation is equivalent to
Eq. (7.60). So, the inclusion of a hinge offset is equivalent to the installation of a
torsional spring at the hinge. One may conclude that to prevent the mentioned
ill-conditioning either the lead–lag hinge should have an offset or a torsional spring
should be put at the root to ensure nonzero stiffness, Hodges (2008).

Therefore, the lead–lag offset distance should not be designed to be zero or if it is
going to be zero, the hinge should have a torsional spring to avoid the zero stiffness
condition that would otherwise happen when e = 0. In the flapping motion, how-
ever, always the stiffening effect due to rotation of the blade exists. Therefore, the
flap hinge may be located without an offset and it does not require a spring to
prevent zero stiffness and ill-conditioning. In flapping, neither hinge offset nor the
hinge spring is required and the M2 = 0 boundary condition at the hinge does not
make any trouble. These points will be explained in more detail later in this chapter.

For Iyy = Izz and coincident flap and lag hinges, Eqs. (7.52) and (7.62) result in
the following relation between the flap and the lead–lag natural frequencies,

x2
nf ¼ X2 þx2

nl ð7:63Þ

Therefore, the natural frequency of the lag motion is much smaller than the
flapping natural frequency. The reason is mainly that the centrifugal restoring
moment about the lag hinge is considerably less than the corresponding moment
about the flapping hinge. For articulated rotors, the uncoupled rotating lag fre-
quency is typically around 0.2 to 0.3Ω (Leishman 2006, page 195).

7.5.3 The Blade to Hub Coordinate Transformation

Blade and hub coordinate systems have been shown in Fig. 7.5. So far, since most
analyses have focused on the blade response, the results were presented in the blade
coordinates. The results can be transferred to the hub coordinates if the hub design
and the dynamics of the helicopter as a whole is of interest.

Let i, j, and k be the set of unit vectors attached to the blade and e1, e2, and e3 be
a set of unit vectors fixed in the rotating hub. When the blade is in its undeformed
position, i.e., when there is no flapping or lagging (or if the blade has no hinges),
the blade axes coincide with the hub axes. Now suppose the blade flaps through
angle β about e2, bringing the blade axes into a position whose unit vectors are i1, j1,
and k1. The unit vectors e1, e2, and e3 are related to i1, j1, and k1 through a rotation
matrix transformation
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i1
j1
k1

8<:
9=; ¼

cos b 0 sin b
0 1 0

� sin b 0 cos b

24 35 e1
e2
e3

8<:
9=; ð7:64Þ

The blade now rotates about the lag axis through angle ξ, bringing the unit
vectors of the blade into their final positions i, j, and k. The unit vectors i, j, and
k are related to i1, j1, and k1 through the following rotation matrix transformation

i
j
k

8<:
9=; ¼

cos n � sin n 0
sin n cos n 0
0 0 1

24 35 i1
j1
k1

8<:
9=; ð7:65Þ

The relationship between e1, e2, and e3 and i, j, and k will then be

i
j
k

8<:
9=; ¼

cos n � sin n 0
sin n cos n 0
0 0 1

24 35 cos b 0 sin b
0 1 0

� sin b 0 cos b

24 35 e1
e2
e3

8<:
9=; ð7:66Þ

or

i
j
k

8<:
9=; ¼

cos n cos b � sin n cos n sin b
sin n cos b cos n sin n sin b
� sin b 0 cos b

24 35 e1
e2
e3

8<:
9=; ð7:67Þ

If first flap is applied and then lag the above relationship enables one to express
quantities measured in one set of axes in terms of the other set. For large angles, the
outcome would be different if the order of implementation of rotations is reversed
because matrix multiplication is not commutative. For small angles, however,
Eq. (7.67) for both sets of orders of transformation reduces to

i
j
k

8<:
9=; ¼

1 �n b
n 1 0
�b 0 1

24 35 e1
e2
e3

8<:
9=; ð7:68Þ

In articulated blades, the existence of hinges generates a difference between the
angular velocity of the rotor shaft and the angular velocity of the blade. So, one
should be careful to distinguish between these two angular velocities.
Equation (7.66) can be used to transform the rotor shaft angular velocity from the
hub coordinate system to the blade coordinate system. Based on the previous
discussion, here the flap and the lead-lag angles are small. By adding the lead–lag
and the flap angular velocities to the transformed rotor angular velocity, the total
angular velocity of the blade in the blade coordinate system is obtained as
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x1

x2

x3

8<:
9=; ¼

cos n � sin n 0
sin n cos n 0
0 0 1

24 35 cos b 0 sinb
0 1 0

� sin b 0 cos b

24 35 0
0
X

8<:
9=;� _b̂j� _nk̂ ð7:69Þ

or

~x ¼ ðX sin b cos nÞ̂iþðX sin b sin n� _bÞ̂jþðX cos b� _nÞk̂ ð7:70Þ

7.6 Coupled Nonlinear Flap and Lead–Lag Motions
of Rigid Articulated Blades

So far a simplified version of rotating blade dynamics has been presented in which
the flap and lead–lag motions are assumed independent from each other. A more
realistic approach based on the system of Eqs. (7.37)–(7.39) comprises the coupling
of these motions. In what follows, the nonlinear and coupled flap and lead–lag
equations of motion are derived for a rotating rigid blade with coincident flap and
lead–lag hinges.

Referring to Figs. 7.5 and 7.6, for constant rotor shaft angular velocity, Ω, the
acceleration of the hinge point P (i.e., aP) in the hub coordinate system �eRX2e1
can be transformed to the blade coordinate system by using Eq. (7.67) to result in

aP1
aP2
aP3

8<:
9=; ¼

cos n cos b � sin n cos n sin b
sin n cos b cos n sin n sinb
� sin b 0 cos b

24 35 �eRX2

0
0

8<:
9=; ð7:71Þ

or

~aP ¼ eRX2ð� cos b cos n̂i� cos b sin n̂jþ sin bk̂Þ ð7:72Þ

Substitution of Eqs. (7.70) and (7.72) into Eq. (7.39) givesX
MPz ¼ Izzð�€n� _bX sin bÞ � ðIxx � IyyÞðX sin b cos nÞðX sin b sin n� _bÞ

� mðRxGnÞðeRX2 cos b sin nÞ
ð7:73Þ

For small β and ξ, from Eqs. (7.73) and (7.44) one obtains

�
X

MPz ¼ Izz€nþ 2IyyXb _bþmexGnR
2X2n ð7:74Þ

Using Izz � Iyy in Eq. (7.74) results in
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� 1
Izz

X
MPz ¼ €nþ mexGnR

2=Izz
� �

X2nþ 2Xb _b ð7:75Þ

or

€nþ m2nX
2nþ 2Xb _b ¼ � 1

Izz

X
MPz ð7:76Þ

where

m2n ¼
mxGneR2

Izz
ð7:61Þ

Equation (7.76) is one of the two coupled flap–lead–lag equations of motion and
is a generalized form of Eq. (7.60). Equation (7.76) reduces to Eq. (7.60) once the
flap angle is set equal to zero. Recalling ground resonance discussed before, a
mechanical lag damper can be included in the model to prevent it from happening.
In such a case, Eq. (7.76) is modified to

€nþCn
_nþ m2nX

2nþ 2Xb _b ¼ � 1
Izz

X
MPz ð7:77Þ

The second coupled flap–lag equation of motion can be obtained by substituting
Eqs. (7.70) and (7.72) into Eq. (7.38) to giveX

MPy ¼ Iyyð�€bþX _b cos b sin nþX _n sin b cos nÞ
� ðIzz � IxxÞðX cos b� _nÞðX sin b cos nÞ � mðRxGnÞðeRX2 sinbÞ

ð7:78Þ

Substituting Eq. (7.44) into Eq. (7.78) and for small flap and lead–lag angles one
obtains

€bþX2 1þ mxGneR2

Iyy

� �
b� Xð2 _nbþ _bnÞ ¼ � 1

Iyy

X
MPy ð7:79Þ

The flap and the lead–lag equations of motion (7.76) and (7.79) are nonlinearly
coupled, and linearization decouples them. In other words, like many other non-
linear models, coupling originates from nonlinearity. If the nonlinear terms are
ignored, these equations reduce to the decoupled set of linear Eqs. (7.48) and (7.60).
A slightly different equation has been presented in Leishman (2006), page 197, as

€bþX2m2bb� 2X _nb ¼ � 1
Iyy

X
MPy; m2b ¼ 1þ mxGneR2

Iyy
ð7:80Þ

In comparison with Eq. (7.79), Eq. (7.80) is missing the �X _bn term.
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So far, time has been used as the independent variable; however, as it was
mentioned before, sometimes it is advantageous to change the independent variable
to the azimuth angle, ψ, shown in Fig. 7.5. Azimuth angle is related to the constant
angular velocity of the rotor shaft as

w ¼ Xt ð7:1Þ

At constant rotational speed, using the chain rule, Eq. (7.1) gives

dð�Þ
dt

¼ dð�Þ
dw

dw
dt

¼ dð�Þ
dw

X ð7:81Þ

and

d2ð�Þ
dt2

¼ d2ð�Þ
dw2

dw
dt

� �2

¼ d2ð�Þ
dw2 X2 ð7:82Þ

Therefore, the coupled nonlinear flap–lag Eqs. (7.77) and (7.79) convert to,

d2b

dw2 þ 1þ mxGneR2

Iyy

� �
b� 2b

dn
dw

þ n
db
dw

� �
¼ � 1

X2Iyy

X
MPy ð7:83Þ

d2n

dw2 þ Cn

X
dn
dw

þ mxGneR2

Izz

� �
nþ 2b

db
dw

¼ � 1

X2Izz

X
MPz ð7:84Þ

7.7 Case Study: Undamped Coupled Motion of Rigid
Articulated Blades

The isotropic rectangular solid model introduced in Sect. 3.3 is considered here
again. In this case, the moments of inertia of the beam about its root are

Iyy ¼ Ix2x2 ¼ 11:8295 kg.m2; Izz ¼ Ix3x3 ¼ 11:9180 kg.m2; ð7:85Þ

Also,

xGn ¼ 0:48 e ¼ 0:04 R ¼ 1:04m ð7:86Þ

In a helicopter, the pitch command (the summation of the collective and cyclic
pitches) given by the pilot controls lift and drag and therefore, My and Mz. These
moments in turn produce nonzero flap and lead–lag motions. In this simple blade
model in hover, a steady-state shaft angular velocity of Ω = 100 rad/s and applied
moments My = −1000 N.m and Mz = −10 N.m are assumed. These constant

160 7 Rigid and Elastic Articulated Rotating Composite Blades

http://dx.doi.org/10.1007/978-3-319-14959-2_3


moments model the application of a collective pitch in hover where the moments
are not functions of the azimuth angle and they adjust the flap angle β in order to
provide the necessary thrust. So, the coupled flap–lag Eqs. (7.77) and (7.79)
without including the mechanical damper in lead–lag become

€bþ 10621b� 100ð2 _nbþ _bnÞ ¼ 84:53 ð7:87Þ
€nþ 617nþ 200b _b ¼ 0:839 ð7:88Þ

Figures 7.8 and 7.9 illustrate the solution of Eqs. (7.87) and (7.88) that is labeled
as ‘present.’ The ‘Leishman’ solution corresponds to the use of Eq. (7.80) for the
numerical values given in this case study. The contribution of the missing term in
Eq. (7.80) can be deduced from the figures. The ‘uncoupled’ response is obtained
by solving a modified version of Eqs. (7.48) and (7.60) that does not have the
nonlinear terms.

It is seen that the flap motion has a one per rev frequency, as expected. The lead–
lag oscillations, however, because of the small hinge offset are much slower (have a
larger period). The mean flap and lead–lag values, determined mainly by the col-
lective pitch that controls the forcing terms in Eqs. (7.87) and (7.88), are seen to be
positive, as expected. In this case, even though a collective pitch is applied, the
coning angle does not converge to a constant value. The reason is that there is no
damping in this model.

In this problem, if the hinge offset is set equal to zero, the linear lead–lag
frequency becomes zero and the lead–lag solution becomes unbounded, as it is

Fig. 7.8 Time history diagrams for lead–lag and flap motions
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observed in Fig. 7.10. In such a case, as it is mentioned in Sect. 7.5, in order to
control the lead–lag motion, a torsional spring should be installed at the hinge.

Fig. 7.9 Zoomed-in view of Fig. 7.8

Fig. 7.10 Time history diagrams for lead–lag and flap motions with zero hinge offset
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7.8 Aerodynamically Damped Flap and Lead–Lag
Motions of Rigid Articulated Blades

7.8.1 Aerodynamic Damping Effect in Flap Motion
with no Hinge Offset

By ignoring the free-stream velocity and axial climbing and including the effects of
blade pitch, flap motion, and the induced velocity field, the lift force per unit length
is (Leishman 2006, page 179)

L ¼ 1
2
qU2

TcCLa h�
_br
UT

� vi
UT

 !
ð7:89Þ

In Eq. (7.89), the induced velocity vi is the velocity imparted to the mass of air
contained in the control volume at the rotor disk. In addition, the tangential velocity
of the blade element in hover or axial climb is

UT ¼ rX ð7:90Þ

Furthermore, c is the local blade chord. By ignoring the hinge offset for now, the
aerodynamic moment about the hinge would be

�
X

MPy ¼
ZR
0

Lrdr ¼ 1
2
qX2cCLa

ZR
0

r3 h�
_b
X
� vi
rX

 !
dr

or

�
X

MPy ¼ 1
2
qX2cCLa

ZR
0

r3 h�
_b
X
� ki

R
r

 !
dr ¼ 1

8
qX2cCLaR

4 h�
_b
X
� 4ki

3

 !
ð7:91Þ

where the rotor-induced inflow ratio is defined as

ki ¼ vi
RX

ð7:92Þ

The linear uncoupled version of Eq. (7.83) with no hinge offset is

d2b

dw2 þ b ¼ � 1

X2Iyy

X
MPy ð7:93Þ

Substitution of Eq. (7.91) into Eq. (7.93) gives,
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d2b

dw2 þ b ¼ q c CLaR4

Iyy

1
8

� �
h� db

dw
� 4ki

3

� �
Therefore, the uncoupled flapping equation with pitch and aerodynamics is

d2b

dw2 þ c
8

� � db
dw

þ b ¼ c
8

h� 4ki
3

� �
ð7:94Þ

where the Lock number is defined as

c ¼ qcCLaR4

Iyy
ð7:95Þ

Lock number is a measure of the ratio of aerodynamic forces to inertia forces. The
Lock number, for a helicopter rotor blade, is approximately eight.

Equation (7.94) is the flapping equation for a hinged blade with no offset. It is
seen that the undamped natural frequency of the flapping blade about a hinge
located at the axis of rotation is one per rev. The obtained equation is that of a
damped motion, the damping is provided by the moment of aerodynamic forces
about the flap hinge and it is proportional to the flap rate. The restoring moment,
however, is produced by the centrifugal force.

7.8.2 Hinge Offset Effect on Nonlinear Aerodynamically
Damped Flap Motion

So far, the contributions of hinge offset and aerodynamic forces on the flap motion
have been considered separately. In this section, the combined effect of these two
factors on the flapping motion is formulated.

Equation (7.83) includes the effects of hinge offset and flap–lag coupling. The
moment of aerodynamic forces about the hinge location at, r ¼ eR, can be stated as

�
X

MPy ¼
ZR
eR

Lðr � eRÞdr ð7:96Þ

A modified version of Eq. (7.89) for the lift force per unit length of the blade that
includes the hinge offset effect can be written as

L ¼ 1
2
qU2

TcCLa h�
_bðr � eRÞ

UT
� vi
UT

 !
ð7:97Þ
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Combining Eqs. (7.96) and (7.97) results in

�
X

MPy ¼ 1
2
qX2cCLa

Z R

eR
r2ðr � eRÞ h�

_bðr � eRÞ
Xr

� ki
R
r

" #
dr

or

�
X

MPy ¼ 1
2
qX2cCLa

� R4ð1
4
þ 1

12
e4 � 1

3
eÞh� 1

4
R4ð1� eÞ3ð1þ 1

3
eÞ db
dw

	
� 1

3
R3ð1� e3Þ � 1

2
eR3ð1� e2Þ

� �
kiR


 ð7:98Þ

Substituting Eq. (7.98) into (7.83) gives

d2b

dw2 þ 1þ mxGneR2

Iyy

� �
b� 2b

dn
dw

þ n
db
dw

� �
¼ 1

2Iyy
qcCLa � R4ð1

4
þ 1

12
e4 � 1

3
eÞh� 1

4
R4ð1� eÞ3ð1þ 1

3
eÞ db
dw

	
� 1

3
R3ð1� e3Þ � 1

2
eR3ð1� e2Þ

� �
kiR



or, after rearrangements,

d2b

dw2 þ 1
8Iyy

qcCLaR
4 1� eð Þ3 1þ 1

3
e

� �� �
db
dw

þ 1þ mxGneR2

Iyy

� �
b� 2b

dn
dw

þ n
db
dw

� �
¼ 1

2Iyy
qcCLa R4 1

4
þ 1

12
e4 � 1

3
e

� �� �
h� 1

3
R3 1� e3
� �� 1

2
eR3 1� e2
� �� �

kiR

	 


Recalling the Lock number as defined in Eq. (7.95), the general form of the coupled
nonlinear flap–lag equation of motion including aerodynamic damping and hinge
offset is

d2b

dw2 þ c
8

1� eð Þ3 1þ 1
3
e

� �	 

db
dw

þ 1þ mxGneR2

Iyy

� �
b� 2b

dn
dw

þ n
db
dw

� �
¼ c

2
1
4
þ 1

12
e4 � 1

3
e

� �
h� 1

3
1� e3
� �� 1

2
e 1� e2
� �� �

ki

	 

ð7:99Þ
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In order to verify this result, a few special cases are considered. If the hinge offset is
zero, Eq. (7.99) reduces to (7.94), as expected. Alternatively, if no flap–lag cou-
pling and no cyclic pitch or induced velocity exist, Eq. (7.99) reduces to

d2b

dw2 þ 1
8
c 1� eð Þ3 1þ 1

3
e

� �	 

db
dw

þ 1þ mxGneR2

Iyy

� �
b ¼ 0 ð7:100Þ

which has been derived in Bramwell et al. (2001). Therefore, Eq. (7.99) is the
general flap equation of motion where the effects of hinge offset, aerodynamic
damping, and nonlinear coupling have all been taken into account.

7.8.3 Aerodynamic Damping Effect in the Lead–Lag Motion

For the lead–lag motion, if P denotes the power required to drive one blade, the
corresponding moment would be (Leishman 2006)

X
MPz ¼ � P

X

� �
1� 2 _n

X

 !
ð7:101Þ

Substituting Eq. (7.101) into Eq. (7.84) and using Eq. (7.81) one obtains the fol-
lowing equation for the lead–lag motion of a rotating blade with a mechanical lag
damper,

d2n

dw2 þ Cn

X
þ 2P

X3Izz

� �
dn
dw

þ mxGneR2

Izz

� �
nþ 2b

db
dw

¼ 1

X2Izz

P
X

� �
ð7:102Þ

The linearized version of (7.102) represents a damped harmonic motion about the
following steady value,

n0 ¼
P

eX3Izz
; e ¼ mxGneR2

Izz

� �
ð7:103Þ

Typical values of P
X3Izz

and ε are 0.006 and 0.075, respectively. Consequently, the

steady value of ξ would be about 4.5°. Equations (7.99) and (7.102) are the general
set of coupled nonlinear flap and lead–lag equations of motion with aerodynamic
damping in flap and mechanical damping in lead–lag for a rigid blade with offset
hinge.
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7.9 Case Study: Articulated Rotating Blade
with Aerodynamic Damping

The articulated blade model discussed in Sect. 7.7 is considered here again. Using
Eqs. (7.99) and (7.102) with the drag moment Mz = −10 N.m, steady-state angular
velocity of Ω = 100 rad/s, γ = 8, and a collective pitch angle of 2° (which should
tune the average value of β in order to provide the necessary thrust), the set of
nonlinear flap–lag equations of motion becomes

€bþ 89:6 _bþ 10621b� 100ð2 _nbþ _bnÞ ¼ 330:45 ð7:104Þ
€nþ 617nþ 200b _b ¼ 0:839 ð7:105Þ

where time has replaced azimuth angle as the independent variable.
Figures 7.11 and 7.12 illustrate the solutions of Eqs. (7.104) and (7.105) that are

labeled as, ‘present.’ The ‘Leishman’ label corresponds to the solution of
Eqs. (7.104) and (7.105) with the _bn missing from the flapping Eq. (7.104). The
‘uncoupled’ solution is obtained by solving Eqs. (7.104) and (7.105) in which all
nonlinear terms have been ignored. Interestingly, since all of the nonlinear terms in
Eqs. (7.104) and (7.105) are dynamic, all three solutions for the flap angle converge
to the same steady-state result.

Fig. 7.11 Time history diagrams of flap and lead–lag motions with aerodynamic damping
included
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Figure 7.12 illustrates a zoomed-in view of Fig. 7.11 and highlights the differences
among the obtained solutions. It is observed that because of the aerodynamic
damping and due to the application of the step input, which represents the collective
pitch, the flapmotion converges to a new steady-state position which corresponds to a
coning angle. However, the aerodynamic damping that exists in the flap motion does
not have any damping effect on the lead–lag motion through the nonlinear coupling.

To control the lead–lag motion, that is otherwise naturally undamped, mechanical
dampers can be implemented. In order to illustrate this effect, Eqs. (7.104) and
(7.105) are modified as

€bþ 89:6 _bþ 10621b� 100ð2 _nbþ _bnÞ ¼ 330:45 ð7:106Þ
€nþ 10 _nþ 617nþ 200b _b ¼ 0:839 ð7:107Þ

Figures 7.13 and 7.14 illustrate the corresponding solutions where the effect of
damping on both motions is observed. The three solutions, i.e., ‘present,’
‘Leishman,’ and ‘uncoupled,’ are presented, and they have the same meaning here
as they had before in Figs. 7.11 and 7.12. It is seen that due to the application of the
step input (i.e., the collective pitch), both flap and lead–lag motions converge to
new steady states. These steady states represent a coning angle and a steady lag
angle for the blade. Figures 7.13 and 7.14 reveal that while there are some dif-
ferences in the dynamic responses, all of the three solutions predict the same
steady-state outcome. This is expected as the nonlinear terms in Eqs. (7.106) and
(7.107) are all dynamic and hence they have no effect on the steady-state response.

Fig. 7.12 Zoomed-in view of Fig. 7.11
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Fig. 7.13 Time history diagrams of flap and lead–lag motions; aerodynamic damping and lead–
lag dampers are included

Fig. 7.14 Zoomed-in view of Fig. 7.13

7.9 Case Study: Articulated Rotating Blade with Aerodynamic Damping 169



7.10 Elastic Articulated Composite Rotating Blades

In the previous sections of this chapter, the articulated blades were assumed to be
rigid. They were considered to rotate at a constant angular velocity and had artic-
ulated boundary conditions at the root. In comparison, in Chap. 5 the elasto-dynamic
analysis of hingeless rotor blades was presented in which the angular velocity of the
rotor was a variable. The root boundary conditions of the considered hingeless
blades were clamped and the blades were modeled as elastic members.

In this section, to present a more realistic model of articulated rotor blades, they
are modeled as elastic members. To perform the analysis of elastic articulated
rotating blades, a solution algorithm that is a combination of the mentioned two
solution methods is presented.

While for a rigid blade one can calculate the flap and lead–lag motions by
solving the set of two coupled nonlinear differential Eqs. (7.99) and (7.102), the
same is not easily achievable for elastic blades. The main problem is that one
should solve a combined initial and boundary value problem whose root boundary
conditions depend on the unknown solution of the differential equations of motion.
This dependence creates an endless cycle in which solving the differential equations
of motion for the elastic blade requires the knowledge of the boundary conditions
and finding the boundary conditions, on the other hand, is possible only after the
differential equation of motion has been solved. In other words, without solving the
differential equations of motion the boundary conditions would not be known and
without knowing the boundary conditions one cannot solve the differential equa-
tions of motion.

In this section, in order to circumvent the mentioned problem, the unknown
angular velocity boundary conditions of the elastic blade at its root are taken from
the corresponding solution of its rigid articulated blade analog. Therefore, first the
rigid body motions of lead–lag and flap are calculated by analyzing the rigid body
dynamics of the blade. Then, these solutions are utilized for obtaining the angular
velocity boundary conditions of the elastic blade at its root.

Having obtained the root boundary conditions of the elastic blade, in the rest of
the solution the blade is treated as an elastic member and the nonlinear elastic
problem of the rotating blade is solved using the perturbation method discussed in
Chap. 5. It is expected that the impact of the rigid body approximation in the first
part of the solution be minor unless the blade deforms in higher modes with
significant deformations.

Combining the algorithms for analyzing the rigid articulated blade and the elastic
hingeless blade problems generates an algorithm, which is suitable for analyzing
elastic articulated rotating blades. Such an analysis is performed in the following
steps:
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Step 1 The elastic blade, initially modeled as hingeless, is accelerated from rest to
its full speed (the steady-state speed). The blade gently starts its rotation
from rest and then using angular velocity functions like Eq. (5.24) gently
converges to full speed. For such an accelerating rotor, one cannot use the
hinged blade equations because they were obtained for a blade that rotates
at constant angular velocity. So, in this first part of motion the methods that
were developed in Chap. 5 could be utilized in the solution.

Step 2 Achieving the steady-state speed does not, of course, mean that the
response of the blade is steady state. So, the blade is given some time
(shown by Tlim) to continue to rotate at full speed and reach its steady-state
response after the end of the acceleration phase and before the aerody-
namic loads are applied and the hinges function.

Step 3 While the blade is still rotating at its steady-state speed, it is subjected to
aerodynamic loadings and as a result, angular displacements in the flap and
the lead–lag hinges happen. To simulate this phase of motion, first, the
rigid body code is run and the flap and lead–lag solutions are calculated by
solving Eqs. (7.99) and (7.102). Then, recalling that for a rigid blade with
flap and lag degrees of freedom the angular velocity of the blade is a
function of these degrees of freedom as well as the rotor shaft angular
velocity,

~x ¼ ðX sin b cos nÞ̂iþðX sin b sin n� _bÞ̂jþðX cos b� _nÞk̂ ð7:70Þ

the linear and angular velocity components at the root of the elastic blade are
calculated. Considering Fig. 7.3, for a lead–lag hinge located at an offset distance
eR from the rotation axis (R is the rotor radius), the root boundary conditions for
linear and angular velocity components at the steady-state angular velocity Xss

would be

V ¼
0

eRXss

0

8<:
9=;; X ¼

Xss sin b cos n
Xss sin b sin n� _b
Xss cos b� _n

8<:
9=; ð7:108Þ

Having obtained these unknowns and referring to Fig. 2.5, one may apply the
solution method discussed in Chap. 5 by using

qþ
1 ¼ Mtot

N�1 � qþ
N þ T tot

N�1 ð5:21Þ

Substituting the zero force and the zero moment boundary conditions at the tip, i.e.,
at node, N, into Eq. (5.21) result in
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F þ

M þ
0

eRXss

0

8<:
9=;

Xss sin b cos n
Xss sin b sin n� _b
Xss cos b� _n

8<:
9=;

0
leRXss

0

8<:
9=;

ði2 þ i3ÞXss sin b cos n
i2ðXss sin b sin n� _bÞ
i3ðXss cos b� _nÞ

8<:
9=;

cþ

jþ

8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>;
1

¼ Mtot
N�1

0
0

V þ

Xþ

Pþ

H þ

0
0

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;
N

þ T tot
N�1 ð7:109Þ

Equation (7.109) should now be solved for the sub-vectors of q1 and qN, which
include the remaining unknowns at these two nodes. The solution method has been
explained in Chap. 5 and is reminded by the following equations:

V þ

Xþ

Pþ

H þ

8>><>>:
9>>=>>;

1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
all known

¼ Mtot
N�1ð7 : 18; 7 : 18Þ �

V þ

Xþ

Pþ

H þ

8>><>>:
9>>=>>;

N|fflfflfflfflfflffl{zfflfflfflfflfflffl}
all unknown

þ T tot
N�1ð7 : 18Þ ð5:28Þ

or

V þ

Xþ

Pþ

H þ

8>><>>:
9>>=>>;

N

¼ Mtot
N�1ð7 : 18; 7 : 18Þ� 
�1

:

V þ

Xþ

Pþ

H þ

8>><>>:
9>>=>>;

1

�T tot
N�1ð7 : 18Þ

0BB@
1CCA ð5:29Þ

By solving Eq. (5.29) all of the unknown variables at node N are obtained.
Substituting Eq. (5.29) into (7.109) results in the remaining unknown variables at
node 1. Having calculated all of the unknown variables at nodes 1 and N, one may
use

Aiq
þ
i þBiq

þ
iþ 1 ¼ Ji; i ¼ 1; . . .;N � 1 ð5:19Þ

in order to calculate the unknown variables at all interior nodes, by starting either
from node 1 or node N.
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7.10.1 Notes on Hinged and Hingeless Boundary
Conditions

In determining the boundary conditions, the following notes should be utilized
(Hodges (2008)):

1. The boundary conditions at the two ends are independent of each other and do
not need to be complements in order to prevent rigid body motions.

2. At either end, one may not specify same components of both Ω and M, or both
V and F. So, one cannot apply M3 = 0 because of the hinge and at the same time
apply Ω3 at the root as input.

3. If one sets M3 (lead–lag) equal to zero at the center of rotation, a zero stiffness
condition will be introduced which results in a singular Jacobian. Such a sin-
gularity happens even when Ω1 and Ω2 at the root were set equal to zero.

4. One should not have M3 equal to zero at the center of rotation. To this end, one
may either introduce a hinge offset for the lead–lag or impose a constraint on it
with something like a spring at the center of rotation.

In this section, the foregoing points are going to be discussed in more detail. In
the cantilever case, the boundary conditions at the root and at the tip of the blade are
complements (constrained Ω and V at the root versus constrained M and F at the
tip). In articulated blades, however, the boundary conditions at the root and at the
tip are not necessarily complements and there are variables that are not known at
either end of the rotor blade. One example of the application of various boundary
conditions is Rosen et al. (1991) in which the general case of an isotropic blade with
orthogonal flap, lead–lag, and pitch hinges at its root has been discussed. It is
assumed that no coupling between the motions about the hinges exists, the three
hinges are located at the axis of rotation and the hinge offset values are zero.

In general, at either end of the blade, one may not specify same components of
both Ω and M, or both V and F. So, if Ω3 at the root has been given as an input, one
cannot simultaneously apply M3 = 0 at the root due to the lead–lag hinge.
A formulation where both of these quantities are given is not valid.

Quantities such as V3 and M1 for a blade without pitching should be zero (for en
vacuo dynamics where natural frequencies and mode shapes of the blade are
studied). This solution is the steady-state solution, and therefore, it is limited to
hover. In forward flight, the time-dependent Ω1 at the root due to cyclic pitch cannot
be ignored.

In the case of a lead–lag hinge, M3 = 0 is applicable, but if the hinge has been
placed at the axis of rotation (i.e., hinge offset is zero) it corresponds to zero
stiffness at the root and a zero lead–lag natural frequency. Such a hinge placement
results in a singular Jacobian matrix, an ill-conditioned problem, and an unbounded
response. So, a blade pinned in lead–lag at the axis of rotation is an inherently
ill-conditioned problem and the lead–lag hinge should not be put at the center of
rotation. That is why real blades almost always have a nonzero offset lead–lag
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hinge. To prevent this problem, one may either give the lead–lag hinge an offset or
put a torsional spring at the root to ensure nonzero stiffness.

For a flap hinge (with M2 = 0 boundary condition), always the stiffening effect of
rotor shaft rotation on the flapping motion exists; so the flap hinge may be even
located at the center of rotation of the blade and it does not require a spring to
prevent zero stiffness and ill-conditioning problems (neither hinge offset nor hinge
spring is required).

The solution for the elastic blade can be verified by analyzing the resulting
moments at the hinge location when the same aerodynamic load and the same hinge
motion as the rigid blade are applied on the elastic blade. If the flap and lead–lag
motions calculated at the hinge using the rigid body motion code is suitable for the
elastic blade too, the moments at the hinge location obtained from the elastic model
should be practically zero. Otherwise, application of the flap and lead–lag motions
from the rigid body model in the elastic model is not justifiable.

7.11 Case Study: Damped Elastic Articulated Blade
in Hover

The isotropic rectangular solid model introduced in Sect. 3.3 is considered here
again, but it is modeled as an articulated rotating blade with flap damping. The
blade is assumed to have a hinge offset ratio of e = 0.04 and a steady-state rotor
shaft angular velocity of 100 rad/s. The accelerating part of the motion lasts for 0.
5 s, during which the blade accelerates to full speed.

The second part of the motion lasts for 0.1 s in which the blade continues to
rotate at its full speed. Finally, in the last 0.5 s of the motion, while the blade is still
rotating at full speed, it is subjected to two moment pulses in flap and lead–lag
directions and as a result, angular displacements in the flap and the lead–lag hinges
happen. One of the applied moments corresponds to the application of a collective
pitch and the second one originates from the drag force in the lead–lag direction.
The corresponding equations of motion for the rigid body motion of the blade in
flap and lead–lag originate from Eqs. (7.99) and (7.102) and are, respectively,

€bþ 89:6 _bþð100Þ2ð1þ 0:0621Þb� 100ð2 _nbþ _bnÞ ¼ 0:0845 ð7:110Þ
€nþ 0:0617� ð100Þ2nþ 200b _b ¼ 0:0839 ð7:111Þ

Here, the flap motion has aerodynamic damping but the lead–lag motion has no
mechanical damper. The solution of Eqs. (7.110) and (7.111) has been used in the
algorithm discussed in Sect. 7.10 and the complete elasto-dynamic solution of the
elastic articulated blade has been obtained and illustrated in Figs. 7.15, 7.16, 7.17,
7.18, 7.19, 7.20, 7.21, 7.22, and 7.23.
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The time history variation of the induced bending moment M3 along the blade is
plotted in Fig. 7.15. Figure 7.16 illustrates the flap and lead–lag motions. It is
observed that even though these motions are coupled, imposing damping only on
the flap motion has negligible effect on the lead–lag motion. The reason is that the
coupling happens only by small nonlinear terms.

Fig. 7.15 Time history variation of the induced bending moment M3 along the blade

Fig. 7.16 Time history diagrams of lead–lag and flap motions

7.11 Case Study: Damped Elastic Articulated Blade in Hover 175



Variations of the root angular velocity and the resulting root moment are
illustrated in Fig. 7.17. As expected, the maximum dynamic moment happens when
the angular acceleration of the beam is the greatest. The moment diagrams in
Fig. 7.18 illustrate the induced moments at the root of the blade before and after the

Fig. 7.17 Time history diagrams of the blade angular velocity, Ω3, and the bending moment
induced in the blade, M3, at the root

Fig. 7.18 Time history diagrams of the internal moment components of the blade at its root
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hinges come into play in the third step of solution. The moment values at the end of
the third step are seen to be small and always oscillating around zero as it is
expected from a hinge.

The time history diagrams of the induced internal forces at the root of the blade
are plotted in Fig. 7.19. It can be observed that the obtained result for F1 (solid line)
is very close to that of the approximate solution given in Eq. (5.35), which is plotted
in dashed lines. In Fig. 7.20, the time history diagrams of various components of
angular velocity have been illustrated. The convergence of Ω2 to zero corresponds
to the convergence of the flap angle to the constant coning angle in hover. One may
compare Figs. 7.16 and 7.20 to see that the flap angle first has a positive slope and
then a negative one, but Ω2 first decreases and then increases. Therefore, their
directions of variation are opposite. This observation makes sense because the
positive sign conventions for the flap angle and its angular velocity are opposite to
that of Ω2.

The variations of the internal forces, induced moments, and angular velocities
along the span of the blade at t = 0.85 s (during the third step of solution) are
illustrated in Figs. 7.21, 7.22, and 7.23, respectively. In Figs. 7.21 and 7.22, the free
boundary conditions at the tip of the beam are observed to have been satisfied, as
expected.

Fig. 7.19 Time history diagrams of internal force components at the root of the blade; present
solution (solid line), Eq. (5.35) (dashed line)
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Fig. 7.20 Time history diagrams of angular velocity components of the blade at the root

Fig. 7.21 Variation of the internal force components of the blade along its span at t = 0.85 s
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Fig. 7.22 Variation of internal moment components of the blade along its span at t = 0.85 s

Fig. 7.23 Variation of angular velocity components of the blade along its span at t = 0.85 s
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7.12 Case Study: Damped Elastic Composite Airfoil

Consider the case of a composite airfoil similar to what is discussed in Cesnik et al.
(2003). The UM/VABS input file for this case is among the examples that is pro-
vided with the software. The airfoil is NACA 4415, which is a representative
cross-sectional shape for high-altitude wings, and of similar basic geometry of rotor
blades. It has double cells and a spar located at 38.6 % chord from the leading edge,
as it is shown in Fig. 7.24. The centroid is located at y = 0.3084 m and z = 0.06210 m.

Figure 7.25 illustrates the ply layup definitions and the orientation angles on the
section. A passive 0° ply is used to enclose the cross section. The inner layers
consist of 90°, +45°, −45° and 0° active plies. So, the stacking order is, [0, +90,
+45, −45, 0]. The angles are measured with respect to the longitudinal axis along

Fig. 7.24 Cross section of
the airfoil

Fig. 7.25 Ply layup and
orientation angles of the
airfoil cross section
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the wingspan. Therefore, the 0° and 90° plies are spanwise and chordwise,
respectively. Here, no actuation is imposed. The case of active blades is discussed
in Chap. 8.

The properties of the applied passive and active materials are shown in Table 8.4.
Using that data and UM/VABS, the stiffness matrix of the cross section has been
calculated as

S ¼

1:12577� 109 3:615437� 103 �1:28217� 104 �1:64732� 105 �2:168324� 105 �5:681057� 106

3:615437� 103 3:15555� 108 �4:04582� 105 �1:0509 � 107 7:05125� 104 4:33983� 103

�1:28217� 104 �4:04582� 105 2:79485� 107 �1:06215� 107 5:81197� 102 1:08681� 104

�1:64732� 105 �1:0509� 107 �1:06215� 107 1:75149 � 107 �2:4470� 103 2:00316� 103

�2:168324� 105 7:05125� 104 5:81197� 102 �2:4470 � 103 1:39200� 107 1:16753� 105

�5:681057� 106 4:33983� 103 1:08681� 104 2:00316 � 103 1:16753� 105 3:3672� 108

26666664

37777775
ð7:112Þ

Other parameters are the full-speed angular velocity of 30 rad/s, a 4 % hinge offset
ratio, unit moments applied in the transversal 2 and 3 directions and the
cross-sectional inertia matrix,

I ¼
77:255 0 0

0 3:1362 �0:20052
0 �0:20052 74:119

24 35� 10�2 ð7:113Þ

Figures 7.26, 7.27, 7.28, 7.29, 7.30, and 7.31 illustrate the solution for this case
and result in conclusions that are similar to those of Sect. 7.11. Time history
diagrams of induced moments, internal forces, and angular velocities are illustrated
in Figs. 7.28, 7.29, and 7.30, respectively. In Fig. 7.31, the free boundary condi-
tions for internal forces at the tip of the blade are observed to have been satisfied, as
expected.

Fig. 7.26 Time history variation of the induced bending moment M3 along the blade
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Fig. 7.27 Time history diagrams of the blade angular velocity, Ω3, and the bending moment
induced in the blade, M3, at the root

Fig. 7.28 Time history diagrams of the internal moment components of the blade at its root
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Fig. 7.29 Time history diagrams of internal force components at the root of the blade; present
solution (solid line), Eq. (5.35) (dashed line)

Fig. 7.30 Time history diagrams of angular velocity components of the blade at the root
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Chapter 8
Static and Dynamic Analysis of Beams
and Rotor Blades with Embedded
Piezocomposite Actuators

8.1 Introduction

A promising method for controlling the response of a rotor blade is by embedding
piezocomposite actuators in it. Such actuators are basically composites made of
piezoelectric fibers in an epoxy matrix. In this chapter, after a brief introduction of
piezoelectric sensors and actuators, the mathematical modeling of such elements is
presented and expressed in compressed matrix notation. Then, the intrinsic equa-
tions of motion of a beam with embedded piezoelectric elements are presented and
solved using VABS for performing the cross-sectional analysis. The solution is
applied to the static loading of an active composite box model and an airfoil-shaped
beam. The chapter concludes by presenting the steady-state response of an active
composite rotor blade with airfoil cross section. Both articulated and hingeless
boundary conditions have been considered. In this way, the impact of inclusion of
embedded piezocomposite actuators in a beam structure is analyzed. The presented
method calculates the response of adaptive rotor blades that embedded actuators
can control their geometry in order to achieve an intended performance. The
contents of this chapter are mostly based on Ghorashi (2009) and Ghorashi and
Nitzsche (2009).

8.2 Conceptual Introduction to Piezoelectric Sensors
and Actuators

An intelligent structure includes sensors that monitor and actuators that change its
state. Such sensors and actuators can be networked through feedback control to
provide robust control of structures. Piezoelectric elements are frequently used to
provide the mentioned sensing and actuating capability. A piezoelectric material
changes its polarization under stress. Therefore, piezoelectricity is a coupling
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between electrical and mechanical systems. Imposing a mechanical force on a
piezoelectric element results in the generation of an electrical field (direct piezo-
electric effect also called the generator or the sensor mode). Conversely, application
of an electrical field on such an element deforms it (inverse piezoelectric effect,
motor, or actuator mode).

Perhaps, the best-known piezoelectric material is lead zirconate titanate
(PZT) whose properties vary significantly due to small alterations in the constituent
materials. The term PZT, however, is commonly used to refer to piezoelectric
materials in general, including those of other compositions (Srinivasan and
McFarland 2001).

In its original state, a piezoelectric material (usually a polycrystalline ceramic) has
electric dipoles arranged in random directions so there is no net polarization and the
ceramic is isotropic. This random orientation can be transformed into a preferred
orientation through poling. Poling aligns the dipole domains and gives the piezo-
electric material a net polarization. A piezoelectric material has a characteristic Curie
temperature, Tc. During poling, the material is heated above its Curie temperature and
a strong electric field (1–3 kV/mm) is applied to the part for sometime. As a result, the
external field reorients the dipoles in the solid phase material so that a distinct poling
direction is developed that is aligned with the applied field. The material is then
cooled below its Curie temperature, while the poling field is maintained, with the
result that the alignment of the dipoles is permanently fixed and the ceramic retains
the polarization after the field is removed. As a result, the polycrystalline material
behaves like a single crystalline one, with permanently fixed dipole directions. The
piezoelectric material is then said to be poled and it becomes anisotropic.

The response of a poled PZT to an applied electric field is mechanical defor-
mations. In this case, the piezoelectric element behaves as an actuator. The nature of
this deformation (whether it is a tensile, compressive, or a shear deformation)
depends on the orientation of the applied electric field E with respect to the existing
poling direction P of the material. If these two directions are parallel, the PZT will
expand or contract but does not distort. If these two directions are not parallel, the
PZT would expand and distort at the same time. So both normal and shear strain
will be developed. In the case these directions are perpendicular, the PZT will only
distort, without expansion or contraction.

Figure 8.1 illustrates the PZT deformations in various cases. Applied electric
field E that is parallel and is acting in the same direction as the existing poling
direction P results in the increase in thickness in the poling direction (usually shown
by z or 3) and contraction in a transversal direction (x or 1) due to the Poisson’s
effect. Conversely, if P and E are parallel but they have opposite directions, the PZT
contracts in the z or 3 direction and it expands in the transversal direction x or 1.

Through the thickness induced strain, that was just mentioned, is used in stack
actuators to create displacement in the direction of the stack. These linear actuators
have several layers of piezoelectric material that are connected in series mechani-
cally and in parallel electrically. They are characterized by small deflections and
high forces. The very small deformations at high electrical voltages (1–10 kV) are
disadvantageous for this kind of actuators (Ballas 2007).
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In unimorph and bimorph PZT benders, deformations along directions
transversal to the poling and thickness direction are utilized (the transverse PZT
effect). A unimorph bender has an active PZT and a passive elastic layer. In order to
increase the deflection of a beam in a bimorph bender, as shown in Fig. 8.2, two
active PZT layers are attached on opposite sides of the beam and act in opposite
directions. The parallel bimorph shown in Fig. 8.2a has two layers that are elec-
trically connected in parallel and have the same P directions. The serial bimorph
actuator shown in Fig. 8.2b has two layers that are electrically connected in series
and have opposite P directions.

In Fig. 8.2a, in the top layer, imposing the electric field E opposite to the poling
direction P reduces the thickness of that layer (in the z direction). So the PZT will
expand in the transversal direction x (i.e., the axial direction of the beam) due to
Poisson’s effect. The reverse happens in the bottom layer and the PZT will contract
in the x direction. Since the two layers are constrained by the bond between them,
the unimorph will bend. The resulting bending deflection of the beam in the z
direction is much larger than the induced transversal PZT deformation along the
x direction, and it can happen at relatively low voltages (24–200 V) (Ballas 2007).

Fig. 8.1 PZT ceramics. a Polarized state. b Electric field E aligned parallel with P. c Electric field
E aligned antiparallely with P, dotted lines illustrate the original geometry of the PZT (Ballas
2007, page 27 © Springer, reprinted with permission)

Fig. 8.2 Bimorph
piezoceramic actuator
subjected to an electric
voltage. a Parallel bimorph.
b Serial bimorph (Ballas
2007, page 28 © Springer,
reprinted with permission)
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Furthermore, since free induced strain is analogous to free thermal strain, the way a
bimorph acts would be comparable to a bimetallic thermostat. In both cases, a
normal strain causes a moment that bends the beam.

In the sensor mode of operation, forces and deformations generate electric
charge that appears on the electrodes of PZT. If the electrodes are not
short-circuited, a voltage is developed between the surfaces that is used to measure
the applied deformation. In the actuator mode, the PZT elements have the ability to
impose shape control. An example is a smart wing, which is capable of changing its
geometry under certain flight conditions. In order to maximize a PZT’s effective-
ness for a particular mode, the center location of the PZT should be placed on an
antinode for that mode.

Another application of PZT elements is in Structural Health Monitoring (SHM).
Figure 8.3 illustrates the use of piezoelectric-wafer active sensors (PWAS) in
Apache 64H helicopter rotor blades. These blades have a built-up construction
consisting of preformed sheet metal members adhesively bonded with
high-performance structural adhesive. In-service experience with these blades has
shown disbands between the structural elements appearing because of in-flight
vibrations.

An impedance analyzer is used to measure the electromechanical impedance of
PWAS transducers. The variations of the real part of the impedance spectrum
versus frequency are recorded at the sensors. Changes in the frequency response are
indicators of structural changes like delamination.

Fig. 8.3 Electromechanical impedance sensors were placed on a rear rotor blade section in critical
areas to detect delamination between the adhesively bonded structural elements (Giurgiutiu 2008,
page 406 © Academic Press, reprinted with permission)
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8.3 Mathematical Modeling of Piezoelectric Sensors
and Actuators

In the linear range of operation of piezoelectric materials, their constitutive equa-
tions can be described by the following tensorial equations (Giurgiutiu 2008),

Sij ¼ sEijklTkl þ dkijEk þ dija
Eh i; j; k; l ¼ 1; 2; 3 ð8:1Þ

Di ¼ diklTkl þ eTikEk þ eDih i; k; l ¼ 1; 2; 3 ð8:2Þ

where the Einstein summation convention for repeated tensor indices is used
(Knowles 1997). In Eqs. (8.1) and (8.2), Sij and Tkl are the strain and stress (N/m2),
respectively. Variables Ek and Di are the electric field intensity (V/m) and electric
displacement (charge per unit area, C/m2), and θ is the temperature (°C). The
coefficient sijkl is a compliance (strain per unit stress, m2/N). The piezoelectric
coefficients dikl and dkij (in C/N or m/V) represent the coupling between the elec-
trical and the mechanical variables, i.e., the charge per unit stress (PZT charge
coefficient) and the strain per unit electric field, respectively. The term dij is the
Kronecker delta, (dij ¼ 1 if i = j; zero otherwise). The coefficient α is the coefficient
of thermal expansion, (°C−1), εik is the permittivity (measured in F/m), and ~Di is the
electric displacement temperature coefficient (°C−1m−2C).

Equation (8.1) is the actuation equation and it is used to predict how much strain
is induced at a given stress, electric field, and temperature. Equations (8.1) and (8.2)
can be replaced by the following equivalent set of equations to demonstrate
piezoelectric sensor design and to predict how much electric field intensity will be
generated by a given state of stress, electric displacement, and temperature
(Giurgiutiu 2008).

Sij ¼ sDijklTkl þ gkijDk þ dija
Dh ð8:3Þ

Ei ¼ giklTkl þ bTikDk þ ~Eih ð8:4Þ

Equation (8.4) predicts how much electric field intensity is generated by
squeezing the piezoelectric material (direct piezoelectric effect). The coefficient gikl
is the piezoelectric voltage coefficient, and it represents how much electric field is
induced per unit stress. The coefficient ~Ei is the pyroelectric voltage coefficient, and
it represents how much electric field intensity is induced per unit temperature
change (Giurgiutiu 2008).

In Eqs. (8.1)–(8.4), the superscripts T, D, and E are used to show that the
quantities are measured at zero stress (T = 0), zero electric displacement (D = 0), or
zero electric field (E = 0), respectively. In practice, the zero electric displacement
condition corresponds to open circuit (zero current across electrodes), whereas the
zero electric field corresponds to closed circuit (zero voltage across electrodes).
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As a convention, the orthogonal Cartesian axes 1, 2, and 3 (analogous to x, y,
and z) are usually assigned to a piezoelectric element with the 3 or z direction being
the thickness and the poling direction. Often, the polarization vector is shown on
the manufacturer’s data sheets.

8.4 Piezoelectric Equations in Compressed Matrix
Notations

In a 2-D problem involving an elastic isotropic material, the compliance matrix can
be used to relate stress and strain components to each other,
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where G ¼ E
2ð1þ mÞ. If the material is orthotropic and it is loaded along its principal

material directions 1 and 2, the stress–strain relation can be expressed as follows:

e1
e2
c12

8<
:

9=
; ¼

1
E1

� m21
E2

0
� m12

E1

1
E2

0
0 0 1

G12

2
64

3
75 r1

r2
s12

8<
:

9=
; ð8:6Þ

where due to the symmetry of the compliance matrix,

m12
E1

¼ m21
E2

ð8:7Þ

In the case of a 3-D orthotropic material loaded along its principal material
directions 1, 2, and 3, the stress–strain relation can be expressed as follows:
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The symmetry of the compliance matrix results in

m21
E2

¼ m12
E1

;
m31
E3

¼ m13
E1

;
m32
E3

¼ m23
E2

ð8:9Þ
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In Eq. (8.8), the 3 × 3 second-order stress and strain tensors Tij and Sij are
replaced by 6-element-long column vectors. One may express these vectors as Tp
and Sp, p = 1, 2, 3, 4, 5, 6. The 3 × 3 × 3 × 3 fourth-order compliance tensor sEijkl is

replaced by the 6 × 6 compliance matrix, sEpq. In general, using this alternative
representation, the tensor notation is replaced by the compressed matrix (Voigt)
notation. This compressed notation consists of replacing ij or kl by p or q where, i, j,
k, l = 1, 2, 3 and p, q = 1, 2, 3, 4, 5, 6 according to Table 8.1.

In the compressed matrix notation, subscripts 1, 2, and 3 indicate the principal
axes and 4, 5, and 6 denote shear around axes 1, 2, and 3, respectively. Similar
transformations can be done on piezoelectric Eqs. (8.1) and (8.2). In these equa-
tions, piezoelectric coefficients dikl and dkij are used to express the constitutive
equations in tensorial form. In the compressed matrix notation, the 3 × 3 × 3
third-order piezoelectric tensor dijk is replaced by the 3 × 6 piezoelectric matrix of
elements, dip.

The piezoelectric matrix elements have a clear physical meaning. For actuators
and for given indices i and j, the piezoelectric modulus dij is defined as the ratio of
normal strain in the j direction to the applied electric field intensity in the i direction
(perpendicular to the electrodes). So,

S3 ¼ d33E3; S1 ¼ S2 ¼ d31E3; S5 ¼ d35E3; E3 ¼ V
t

ð8:10Þ

where V is the applied voltage and t is the thickness of the specimen, both in the 3
directions.

While stack actuators rely on the d33 or out of plane induced strain, benders like
unimorphs and bimorphs rely on the d31 or the in-plane induced strain. Due to the
Poisson’s effect, clearly if d33 [ 0, then d31\0. For shear strain, d35 indicates that
the electrodes are perpendicular to the 3 axis and that the PZT-induced strain is
shear around the 2 directions (i.e., on the 1-3 plane).

For sensor applications, the piezoelectric moduli dij can be defined as the ratio of
the short circuit charge density over applied stress. In both actuator and sensor
applications, materials with large d constants are desirable. This constant is the best
single measurement of the strength of piezoelectric effect. The relationships
between the tensorial and the compressed matrix forms of representations are as
follows (Giurgiutiu 2008).

Table 8.1 Conversion of
indices from tensor to
compressed matrix (Voigt)
notation

Tensor (ij or kl) Compressed matrix (p or q)

11 1

22 2

33 3

23 or 32 4

31 or 13 5

12 or 21 6
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1. For the second-order tensors of stress and strain,

Tp ¼ Tij p ¼ 1; 2; 3; 4; 5; 6 whereas i; j ¼ 1; 2; 3

Sp ¼ Sij i ¼ j; p ¼ 1; 2; 3 whereas i; j ¼ 1; 2; 3

Sp ¼ 2Sij i 6¼ j; p ¼ 4; 5; 6 whereas i; j ¼ 1; 2; 3
So,
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The factor of two in the strain equation relates to a factor of two in the definition
of shear strains in the tensor and matrix formulation.

2. For third-order tensor of charge coefficient, dijk,

diq ¼ dikl k ¼ l; q ¼ 1; 2; 3 whereas i; k; l ¼ 1; 2; 3 ð8:12Þ

diq ¼ 2dikl k 6¼ l; q ¼ 4; 5; 6 whereas i; k; l ¼ 1; 2; 3 ð8:13Þ

3. For the fourth-order tensor of compliance, sijkl,

sEpq ¼ sEijkl i ¼ j; k ¼ l; p; q ¼ 1; 2; 3 whereas i; j; k; l ¼ 1; 2; 3 ð8:14Þ

sEpq ¼ 2sEijkl i ¼ j; k 6¼ l; p ¼ 1; 2; 3; q ¼ 4; 5; 6 whereas i; j; k; l ¼ 1; 2; 3

ð8:15Þ

sEpq ¼ 4sEijkl i 6¼ j; k 6¼ l; p; q ¼ 4; 5; 6 whereas i; j; k; l ¼ 1; 2; 3 ð8:16Þ

The compressed matrix notations have the advantage of brevity, and they are
commonly used in engineering applications. The values of the elastic and piezo-
electric constants given by the active material manufacturers in their product
specifications are given in compressed matrix notations. Using compressed matrix
notation, the PZT tensor Eqs. (8.1) and (8.2) can be rewritten in the following
matrix form,

Sp ¼ sEpqTq þ dkpEk þ dpka
E
k h p; q ¼ 1; 2; 3; 4; 5; 6; k ¼ 1; 2; 3 ð8:17Þ

Di ¼ diqTq þ eTikEk þ ~Dih q ¼ 1; 2; 3; 4; 5; 6; i; k ¼ 1; 2; 3 ð8:18Þ
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which can be expanded as follows:
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As it has been seen so far, because of the anisotropic nature of piezoelectric
materials, their properties are dependent on direction. Showing the poling direction
by the 3 axes, if the piezoelectric material has transverse isotropy, material prop-
erties along the 1 and 2 axes would be identical. Thus, for simplicity, usually only
the 3 and the 1 directions are mentioned and it is understood that 1 also implies 2.
As a result, d24 ¼ d15 and d31 ¼ d32. Hence, Eqs. (8.19) and (8.20), for piezo-
electric materials with transverse isotropy and pole axis 3, become,
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or in short,

Sf g ¼ s½ � Tf gþ d½ �t Ef gþ af gh ð8:23Þ

Df g ¼ d½ � Tf gþ e½ � Ef gþ ~D
� �

h ð8:24Þ

Equations similar to (8.23) and (8.24) have been presented in Giurgiutiu (2008),
for other constitutive equations as well.

8.5 The 1-D Beam Formulation with Embedded
Piezoelectric Element

With actuators embedded in the structure, the whole applied force and moment
vectors per unit length on the structure, at every location and every time, can be
written as the summation of a mechanically applied load and a load that is imposed
by the actuators. So,

f
m

� �
¼ fM

mM

� �
þ fA

mA

� �
ð8:25Þ

For a certain actuation scenario, UM/VABS can be used to provide the unit vectors
of actuator forces and moments for each active material used in Eqs. (8.25). Then, the
whole actuator forces andmoments are obtained bymultiplying each of the unit forces
and moments by the corresponding electric field intensity and then adding up all of
these terms together. Substitution of Eq. (8.25) into Eqs. (2.26) and (2.27) gives

F0 þ ~KFþðfM þ fAÞ ¼ _Pþ ~XP ð8:26Þ

M0 þ ~KMþð~e1 þ~cÞFþðmM þmAÞ ¼ _Hþ ~XHþ ~VP ð8:27Þ

The following linear static equilibrium equations can be obtained from
Eqs. (8.26) and (8.27) by ignoring initial curvature and assuming that all nonlinear
terms are negligible.

F0 þ ðfM þ fAÞ ¼ 0 ð8:28Þ

M0 þ~e1FþðmM þmAÞ ¼ 0 ð8:29Þ

by using,

~e1 ¼
0 0 0
0 0 �1
0 1 0

2
4

3
5 ð8:30Þ
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Equations (8.28) and (8.29) can be expanded as follows:

F0
1 þ fM1 þ fA1 ¼ 0 ð8:31Þ

F0
2 þ fM2 þ fA2 ¼ 0 ð8:32Þ

F0
3 þ fM3 þ fA3 ¼ 0 ð8:33Þ

M0
1 þmM1 þmA1 ¼ 0 ð8:34Þ

M0
2 � F3 þmM2 þmA2 ¼ 0 ð8:35Þ

M0
3 þF2 þmM3 þmA3 ¼ 0 ð8:36Þ

8.6 Case Study: Static Active Composite Box Model

Consider the composite box model discussed in Sect. 3.4, but having a length of
L = 0.5 m. This time active plies of the box are activated and two cases are
considered. The first one is bending deformation obtained by imposing the left-hand
side of the box to −2 kV and its right-hand side to +2 kV. In this case, the
expansion of one side and contraction of the other result in a bending deformation.
The second one is when both active sides are subjected to +2 kV that twists the box.

The actuation forces for the bending and twist actuations were calculated by
UM/VABS and are listed in Tables 8.2 and 8.3, respectively. The results have also
been compared with the ones presented in Cesnik and Palacios (2003) which are
also based on using UM/VABS. As expected, the two sets of results are close.

The last step is to calculate the amount of deflections at the tip of the beam due
to an actuation. For the case of twist actuation, using Eqs. (8.31) and (8.34), as well
as Table 8.3, one obtaines

F0
1 þ 16:860 ¼ 0 ð8:37Þ

M0
1 þ 3:518 ¼ 0 ð8:38Þ

Table 8.2 Actuation force
and moment in bending
actuation

UM/VABS Cesnik and Palacios (2003)

f3 (N/m) 227.98 232.67

m3 (N.m/m) −1.231 −1.283

Table 8.3 Actuation force
and moment in twist actuation

UM/VABS Cesnik and Palacios (2003)

f1 (N/m) 16.860 17.219

m1 (N.m/m) 3.518 3.666
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Integration results in,

F1 ¼ �16:86x1 þC1 ð8:39Þ

M1 ¼ �3:518x1 þC2 ð8:40Þ

To satisfy the free boundary conditions at x1 = 0.5 m, i.e., at the free end of the
beam, the integration constants should be

C1 ¼ 8:43;C2 ¼ 1:759 ð8:41Þ

Substituting these constants into Eqs. (8.39) and (8.40), the force and moment
distributions are obtained as follows

F1 ¼ �16:86x1 þ 8:43 ð8:42Þ

M1 ¼ �3:518x1 þ 1:759 ð8:43Þ

Using Eqs. (8.42) and (8.43), at the clamped end, i.e., at x1 = 0, one obtains the
following reactions as a result of activating the actuators,

F1A ¼ 8:43N

M1A ¼ 1:759N:m
ð8:44Þ

Therefore, the maximum tensile force and twisting moment happen at the
clamped end, and they decrease to zero at the free end of the beam. In order to
calculate the total twist angle at the free end, one may apply the constitutive
equation (2.56) together with the stiffness matrix (3.51) and the actuator induced
force and moment values in Eq. (8.44) to get κ1 = 0.042 rad/m. Using this outcome
in Eq. (3.14) with zero undeformed (initial) curvature and twist, k, results in,

h1 ¼ 0:042x ð8:45Þ

Consequently, the twist angle at the free end, using L = 0.5 m, would be 1.209°.
This value is close to 1.195° that is given in Cesnik and Palacios (2003).

8.7 Case Study: Static Active Composite Airfoil

Consider the composite airfoil discussed in Cesnik et al. (2003) and in Sect. 7.12,
but this time the activation of the piezocomposite actuators embedded in it is going
to be investigated. The properties of the passive and active materials used in the
airfoil are shown in Table 8.4.

196 8 Static and Dynamic Analysis of Beams and Rotor …

http://dx.doi.org/10.1007/978-3-319-14959-2_2
http://dx.doi.org/10.1007/978-3-319-14959-2_3
http://dx.doi.org/10.1007/978-3-319-14959-2_3
http://dx.doi.org/10.1007/978-3-319-14959-2_7


Glass/epoxy is chosen as the passive material, and a hypothetical anisotropic
piezocomposite material is selected with the same passive properties as the
glass/epoxy, except for the different mass density and piezoelectric constants. The
spar has no active layers, and each material layer has a thickness of 3429 μm.
A constant electric potential of +1 kV between the two electrodes at a distance of
1100 μm is applied to the piezoelectric actuators.

Using UM/VABS, forces, moments, and stress components generated as a result
of activating the plies at various directions are calculated and the results are listed in
Table 8.5. A review of these results confirms that, as expected, the activation of the
0˚ spanwise ply and the ±45° plies generate maximum longitudinal force, F1, and
twisting, respectively. Furthermore, activation of the chordwise 90° ply results in
negative extension due to Poisson’s effect. It can also be observed that actuators
aligned with the chord or span directions can generate twisting deformation through
extension–twist and shear–twist couplings, as indicated by the existence of
off-diagonal elements in the stiffness matrix.

In the forthcoming figures, in order to show the details of stress distributions
more clearly, the original cross section shown in Fig. 7.24 has been stretched as it is
illustrated in Fig. 8.4. Figures 8.5, 8.6, 8.7, 8.8, 8.9, and 8.10 illustrate the distri-
bution of various stress components across the cross section when only the 90˚ plies
are activated by the +1 kV excitation. The figures show high stresses in the 90°
plies due to their actuation. They also illustrate the existence of stress concentration
where the spar is connected to the rest of the airfoil or wherever sudden changes in
geometry happen. The distributions of various stress components due to the actu-
ation of all plies by +1 kV are depicted in Figs. 8.11, 8.12, 8.13, 8.14, 8.15, and 8.
16.

Table 8.4 Material properties of active composite airfoil (Cesnik et al. 2003)

E11

GPa
E22

GPa
E33

GPa
G12

GPa
G13

GPa
G23

GPa
ν12 ν 13 ν23 q

kg/m3
d11
pm/V

d12
pm/V

d13
pm/V

Passive 19.3 9.8 9.8 5.5 5.5 4.4 0.35 0.35 0.496 1716 – – –

Active 4060 310 −130 −130

Table 8.5 Actuation forces and moments generated by active plies at various directions

0° ply
actuation

90° ply
actuation

±45° plies
actuation

All
together

Extension (N/m) 71,042 −21,653 49,705 99,095

Shear f2 (N/m) 0.603 5.089 2.658 8.349

Shear f3 (N/m) 1.095 19.705 −16.799 4.002

Twist (N.m/m) −0.288 15.67 −238.13 −222.746

Bending m2 (N.
m/m)

−41.44 15.19 −33.03 −59.28

Bending m3 (N.
m/m)

454.29 −409.01 575.276 620.557
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Fig. 8.4 The stretched image of the airfoil for enhancing clarity

Fig. 8.5 Distribution of the T11 stress component due to 1 kV actuation of the 90° plies
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Fig. 8.6 Distribution of the T22 stress component due to 1 kV actuation of the 90˚ plies

Fig. 8.7 Distribution of the T33 stress component due to 1 kV actuation of the 90° plies
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Fig. 8.8 Distribution of the T12 stress component due to 1 kV actuation of the 90° plies

Fig. 8.9 Distribution of the T13 stress component due to 1 kV actuation of the 90° plies
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Fig. 8.11 Distribution of the T11 stress component in material coordinates due to 1 kV actuation
of all active plies

Fig. 8.10 Distribution of the T23 stress component due to 1 kV actuation of the 90° plies
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Fig. 8.12 Distribution of the T22 stress component in material coordinates due to 1 kV actuation
of all active plies

Fig. 8.13 Distribution of the T33 stress component in material coordinates due to 1 kV actuation
of all active plies
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Fig. 8.14 Distribution of the T12 stress component in material coordinates due to 1 kV actuation
of all active plies

Fig. 8.15 Distribution of the T13 stress component in material coordinates due to 1 kV actuation
of all active plies
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8.8 Case Study: Steady-State Response of Rotating Active
Airfoil

Consider the case of actuation of piezocomposite actuators embedded in the
composite airfoil discussed in Sect. 8.7. However, this time the 3-m blade is
rotating at an angular velocity of 100 rad/s and its steady-state response under
different actuation scenarios is of interest. To this end, and using μ = 248.35 kg/m,
the method discussed in Chap. 6 is utilized to obtain the steady-state response.

First, no activation is applied and in order to analyze the effect of elastic cou-
pling, two cases are considered. In one case, all of the terms in the stiffness and
mass matrices are included in the analysis. Then, in the second case, the
off-diagonal terms are ignored. The difference between these two sets of results
provides an overall estimation of the impact of elastic coupling in the solution. The
corresponding results are plotted in Figs. 8.17, 8.18, 8.19, and 8.20.

Next, active plies are activated one by one by applying a +1 kV potential to each
one at a time, and the corresponding steady-state solutions are obtained. Finally, all
of the active plies are activated simultaneously. The corresponding results are
plotted in Figs. 8.21, 8.22, 8.23, and 8.24. Such diagrams can be used for con-
trolling the response of the blade and the load distribution along it. It is observed
that the actuators have significant controllability on M3, but little control on F1.

Fig. 8.16 Distribution of the T23 stress component in material coordinates due to 1 kV actuation
of all active plies
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Fig. 8.17 The variation of internal force components along the blade; coupled solution (solid line)
and uncoupled solution (dashed or circles)

Fig. 8.18 The variation of internal moment components along the blade; coupled solution (solid
line) and uncoupled solution (dashed)
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Fig. 8.19 The variation of velocity components along the blade; coupled solution (solid line) and
uncoupled solution (dashed or circles)

Fig. 8.20 The variation of angular velocity components along the blade; coupled solution (solid
line) and uncoupled solution (dashed or circles)
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Fig. 8.21 The steady-state variation of internal force components along the beam due to various
modes of activation of piezocomposite actuators

Fig. 8.22 The steady-state variation of internal force components along the beam due to various
modes of activation of piezocomposite actuators (zoomed-in)
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Fig. 8.23 The steady-state variation of internal moment components along the beam due to
various modes of activation of piezocomposite actuators

Fig. 8.24 The steady-state variation of internal moment components along the beam due to
various modes of activation of piezocomposite actuators (zoomed-in)
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8.9 Case Study: Rotating Articulated Active Composite
Airfoil

Consider the case of actuation of the piezocomposite actuators embedded in the
composite airfoil discussed in Sect. 8.7. Using 1 % of the full actuation forces and
moments shown in Table 8.5, and a full speed angular velocity of 30 rad/s, dis-
tributions of forces with and without actuation are calculated and plotted in
Figs. 8.25, 8.26, and 8.27. It is observed, in Figs. 8.26 and 8.27, that for this low
inertia case with zero M3 at the root, actuation (which happens at t = 0.6 s) has
maximum influence on the axial force F1.

Fig. 8.25 Time history diagrams of shaft angular velocity and theM3 bending moment induced in
the blade at its root
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Fig. 8.26 Variation of the blade internal force components along its span at t = 0.85 s after
actuation

Fig. 8.27 Time history diagrams of the blade internal force components at the root
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Appendix
Matrices A, B and J in Chap. 5

Jið1Þ ¼ 1
2Dx

F1;i � F1;iþ 1
� �þ 1

16
j3;iþ 1F2;iþ 1þ j3;iþ 1F2;i þj3;iF2;iþ 1 � 3j3;iF2;i
� �

� 1
16

j2;iþ 1F3;iþ 1þ j2;iþ 1F3;i þj2;iF3;iþ 1 � 3j2;iF3;i
� �� 1

4
f1;iþ 1 þ f1;i þ f þ1;iþ 1þ f þ1;i

� �

� 1
2Dt

P1;i þP1;iþ 1
� �� 1

16
X3;iþ 1P2;iþ 1 þX3;iþ 1P2;i þX3;iP2;iþ 1 � 3X3;iP2;i
� �

þ 1
16

X2;iþ 1P3;iþ 1 þX2;iþ 1P3;i þX2;iP3;iþ 1 � 3X2;iP3;i
� �

ðA:1Þ

Jið2Þ ¼ 1
2Dx

F2;i � F2;iþ 1
� �þ 1

16
j1;iþ 1F3;iþ 1þ j1;iþ 1F3;i þj1;iF3;iþ 1 � 3j1;iF3;i
� �

� 1
16

j3;iþ 1F1;iþ 1þ j3;iþ 1F1;i þj3;iF1;iþ 1 � 3j3;iF1;i
� �� 1

4
f2;iþ 1 þ f2;i þ f þ2;iþ 1þ f þ2;i

� �

� 1
2Dt

P2;i þP2;iþ 1
� �� 1

16
X1;iþ 1P3;iþ 1 þX1;iþ 1P3;i þX1;iP3;iþ 1 � 3X1;iP3;i
� �

þ 1
16

X3;iþ 1P1;iþ 1 þX3;iþ 1P1;i þX3;iP1;iþ 1 � 3X3;iP1;i
� �

ðA:2Þ

Jið3Þ ¼ 1
2Dx

F3;i � F3;iþ 1
� �þ 1

16
j2;iþ 1F1;iþ 1 þ j2;iþ 1F1;i þ j2;iF1;iþ 1 � 3j2;iF1;i
� �

� 1
16

j1;iþ 1F2;iþ 1 þ j1;iþ 1F2;i þ j1;iF2;iþ 1 � 3j1;iF2;i
� �� 1

4
f3;iþ 1 þ f3;i þ f þ3;iþ 1 þ f þ3;i

� �

� 1
2Dt

P3;i þP3;iþ 1
� �� 1

16
X2;iþ 1P1;iþ 1 þX2;iþ 1P1;i þX2;iP1;iþ 1 � 3X2;iP1;i
� �

þ 1
16

X1;iþ 1P2;iþ 1þX1;iþ 1P2;i þX1;iP2;iþ 1 � 3X1;iP2;i
� �

ðA:3Þ

Jið4Þ ¼ 1
2Dx

M1;i �M1;iþ 1
� �þ 1

16
j3;iþ 1M2;iþ 1 þ j3;iþ 1M2;i þ j3;iM2;iþ 1 � 3j3;iM2;i
� �

� 1
16

j2;iþ 1M3;iþ 1 þj2;iþ 1M3;i þj2;iM3;iþ 1 � 3j2;iM3;i
� �� 1

4
m1;iþ 1þm1;i þmþ

1;iþ 1 þmþ
1;i

� �

� 1
2Dt

H1;i þH1;iþ 1
� �� 1

16
X3;iþ 1H2;iþ 1 þX3;iþ 1H2;i þX3;iH2;iþ 1 � 3X3;iH2;i
� �

þ 1
16

X2;iþ 1H3;iþ 1 þX2;iþ 1H3;i þX2;iH3;iþ 1 � 3X2;iH3;i
� �

þ 1
8

c13;iþ 1F2;iþ 1 þ c13;iþ 1F2;i þ c13;iF2;iþ 1 � 3c13;iF2;i
� �

� 1
8

c12;iþ 1F3;iþ 1þ c12;iþ 1F3;i þ c12;iF3;iþ 1 � 3c12;iF3;i
� �

� 1
16

V3;iþ 1P2;iþ 1 þV3;iþ 1P2;i þV3;iP2;iþ 1 � 3V3;iP2;i
� �

þ 1
16

V2;iþ 1P3;iþ 1 þV2;iþ 1P3;i þV2;iP3;iþ 1 � 3V2;iP3;i
� �

ðA:4Þ
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Jið5Þ ¼ 1
2Dx

M2;i �M2;iþ 1
� �þ 1

16
j1;iþ 1M3;iþ 1 þ j1;iþ 1M3;i þj1;iM3;iþ 1 � 3j1;iM3;i
� �

� 1
16

j3;iþ 1M1;iþ 1 þ j3;iþ 1M1;i þ j3;iM1;iþ 1 � 3j3;iM1;i
� �� 1

4
m2;iþ 1 þm2;i þmþ

2;iþ 1þmþ
2;i

� �

� 1
2Dt

H2;i þH2;iþ 1
� �� 1

16
X1;iþ 1H3;iþ 1 þX1;iþ 1H3;i þX1;iH3;iþ 1 � 3X1;iH3;i
� �

þ 1
16

X3;iþ 1H1;iþ 1 þX3;iþ 1H1;i þX3;iH1;iþ 1 � 3X3;iH1;i
� �þ 1

4
F3;i þF3;iþ 1
� �

þ 1
16

c11;iþ 1F3;iþ 1þ c11;iþ 1F3;i þ c11;iF3;iþ 1 � 3c11;iF3;i
� �

� 1
8

c13;iþ 1F1;iþ 1 þ c13;iþ 1F1;i þ c13;iF1;iþ 1 � 3c13;iF1;i
� �

� 1
16

V1;iþ 1P3;iþ 1 þV1;iþ 1P3;i þV1;iP3;iþ 1 � 3V1;iP3;i
� �

þ 1
16

V3;iþ 1P1;iþ 1 þV3;iþ 1P1;i þV3;iP1;iþ 1 � 3V3;iP1;i
� �

ðA:5Þ

Jið6Þ ¼ 1
2Dx

M3;i �M3;iþ 1
� �þ 1

16
j2;iþ 1M1;iþ 1 þ j2;iþ 1M1;i þj2;iM1;iþ 1 � 3j2;iM1;i
� �

� 1
16

j1;iþ 1M2;iþ 1 þ j1;iþ 1M2;i þ j1;iM2;iþ 1 � 3j1;iM2;i
� �� 1

4
m3;iþ 1 þm3;i þmþ

3;iþ 1þmþ
3;i

� �

� 1
2Dt

H3;i þH3;iþ 1
� �� 1

16
X2;iþ 1H1;iþ 1 þX2;iþ 1H1;i þX2;iH1;iþ 1 � 3X2;iH1;i
� �

þ 1
16

X1;iþ 1H2;iþ 1 þX1;iþ 1H2;i þX1;iH2;iþ 1 � 3X1;iH2;i
� �� 1

4
F2;i þF2;iþ 1
� �

þ 1
16

c11;iþ 1F2;iþ 1þ c11;iþ 1F2;i þ c11;iF2;iþ 1 � 3c11;iF2;i
� �

þ 1
8

c12;iþ 1F1;iþ 1 þ c12;iþ 1F1;i þ c12;iF1;iþ 1 � 3c12;iF1;i
� �

� 1
16

V2;iþ 1P1;iþ 1 þV2;iþ 1P1;i þV2;iP1;iþ 1 � 3V2;iP1;i
� �

þ 1
16

V1;iþ 1P2;iþ 1 þV1;iþ 1P2;i þV1;iP2;iþ 1 � 3V1;iP2;i
� �

ðA:6Þ

Jið7Þ ¼ 1
2Dx

V1;i � V1;iþ 1
� �þ 1

16
j3;iþ 1V2;iþ 1 þj3;iþ 1V2;i þ j3;iV2;iþ 1 � 3j3;iV2;i
� �

� 1
16

j2;iþ 1V3;iþ 1 þj2;iþ 1V3;i þj2;iV3;iþ 1 � 3j2;iV3;i
� �

þ 1
8

c13;iþ 1X2;iþ 1 þ c13;iþ 1X2;i þ c13;iX2;iþ 1 � 3c13;iX2;i
� �

� 1
8

c12;iþ 1X3;iþ 1 þ c12;iþ 1X3;i þ c12;iX3;iþ 1 � 3c12;iX3;i
� �� 1

2Dt
c11;i þ c11;iþ 1

� �
ðA:7Þ

Jið8Þ ¼ 1
2Dx

V2;i � V2;iþ 1
� �þ 1

16
j1;iþ 1V3;iþ 1þ j1;iþ 1V3;i þ j1;iV3;iþ 1 � 3j1;iV3;i
� �

� 1
16

j3;iþ 1V1;iþ 1þ j3;iþ 1V1;i þ j3;iV1;iþ 1 � 3j3;iV1;i
� �þ 1

4
X3;i þX3;iþ 1
� �

þ 1
16

c11;iþ 1X3;iþ 1 þ c11;iþ 1X3;i þ c11;iX3;iþ 1 � 3c11;iX3;i
� �

� 1
8

c13;iþ 1X1;iþ 1 þ c13;iþ 1X1;i þ c13;iX1;iþ 1 � 3c13;iX1;i
� �� 1

Dt
c12;i þ c12;iþ 1

� �
ðA:8Þ

Jið9Þ ¼ 1
2Dx

V3;i � V3;iþ 1
� �þ 1

16
j2;iþ 1V1;iþ 1 þj2;iþ 1V1;i þj2;iV1;iþ 1 � 3j2;iV1;i
� �

� 1
16

j1;iþ 1V2;iþ 1 þj1;iþ 1V2;i þj1;iV2;iþ 1 � 3j1;iV2;i
� �� 1

4
X2;i þX2;iþ 1
� �

� 1
16

c11;iþ 1X2;iþ 1 þ c11;iþ 1X2;i þ c11;iX2;iþ 1 � 3c11;iX2;i
� �

þ 1
8

c12;iþ 1X1;iþ 1 þ c12;iþ 1X1;i þ c12;iX1;iþ 1 � 3c12;iX1;i
� �� 1

Dt
c13;i þ c13;iþ 1

� �
ðA:9Þ
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Jið10Þ ¼ 1
2Dx

X1;i � X1;iþ 1
� �þ 1

16
j3;iþ 1X2;iþ 1 þj3;iþ 1X2;i þ j3;iX2;iþ 1 � 3j3;iX2;i
� �

� 1
16

j2;iþ 1X3;iþ 1 þj2;iþ 1X3;i þj2;iX3;iþ 1 � 3j2;iX3;i
� �� 1

2Dt
j1;iþ j1;iþ 1
� � ðA:10Þ

Jið11Þ ¼ 1
2Dx

X2;i � X2;iþ 1
� �þ 1

16
j1;iþ 1X3;iþ 1 þj1;iþ 1X3;i þ j1;iX3;iþ 1 � 3j1;iX3;i
� �

� 1
16

j3;iþ 1X1;iþ 1 þj3;iþ 1X1;i þj3;iX1;iþ 1 � 3j3;iX1;i
� �� 1

2Dt
j2;iþ j2;iþ 1
� � ðA:11Þ

Jið12Þ ¼ 1
2Dx

X3;i � X3;iþ 1
� �þ 1

16
j2;iþ 1X1;iþ 1þ j2;iþ 1X1;i þ j2;iX1;iþ 1 � 3j2;iX1;i
� �

� 1
16

j1;iþ 1X2;iþ 1 þ j1;iþ 1X2;i þ j1;iX2;iþ 1 � 3j1;iX2;i
� �� 1

2Dt
j3;i þ j3;iþ 1
� � ðA:12Þ

Jið13Þ ¼ � 1
4

P1;i þP1;iþ 1
� �þ l

4
V1;i þV1;iþ 1
� �þ l

4
�x3 X2;i þX2;iþ 1
� �

� l
4
�x2 X3;i þX3;iþ 1
� � ðA:13Þ

Jið14Þ ¼ � 1
4

P2;i þP2;iþ 1
� �þ l

4
V2;i þV2;iþ 1
� �� l

4
�x3 X1;i þX1;iþ 1
� � ðA:14Þ

Jið15Þ ¼ � 1
4

P3;i þP3;iþ 1
� �þ l

4
V3;i þV3;iþ 1
� �þ l

4
�x2 X1;i þX1;iþ 1
� � ðA:15Þ

Jið16Þ ¼ � 1
4

H1;i þH1;iþ 1
� �� l

4
�x3 V2;i þV2;iþ 1
� �þ l

4
�x2 V3;i þV3;iþ 1
� �

þ 1
4
ið1; 1Þ X1;iþX1;iþ 1

� �þ 1
4
ið1; 2Þ X2;i þX2;iþ 1

� �þ 1
4
ið1; 3Þ X3;i þX3;iþ 1

� � ðA:16Þ

Jið17Þ ¼ � 1
4

H2;i þH2;iþ 1
� �þ l

4
�x3 V1;i þV1;iþ 1
� �

þ 1
4
ið2; 1Þ X1;i þX1;iþ 1

� �þ 1
4
ið2; 2Þ X2;i þX2;iþ 1

� �þ 1
4
ið2; 3Þ X3;i þX3;iþ 1

� � ðA:17Þ

Jið18Þ ¼ � 1
4

H3;i þH3;iþ 1
� �� l

4
�x2 V1;i þV1;iþ 1
� �

þ 1
4
ið3; 1Þ X1;i þX1;iþ 1

� �þ 1
4
ið3; 2Þ X2;i þX2;iþ 1

� �þ 1
4
ið3; 3Þ X3;i þX3;iþ 1

� �
ðA:18Þ

Jið19Þ ¼ � 1
4

c11;i þ c11;iþ 1

� �þ 1
4
Rð1; 1Þ F1;i þF1;iþ 1

� �þ 1
4
Rð1; 2Þ F2;i þF2;iþ 1

� �
þ 1

4
Rð1; 3Þ F3;i þF3;iþ 1

� �þ 1
4
Zð1; 1Þ M1;i þM1;iþ 1

� �þ 1
4
Zð1; 2Þ M2;i þM2;iþ 1

� �
þ 1

4
Zð1; 3Þ M3;i þM3;iþ 1

� � ðA:19Þ

Jið20Þ ¼ � 1
2

c12;i þ c12;iþ 1

� �þ 1
4
Rð2; 1Þ F1;i þF1;iþ 1

� �þ 1
4
Rð2; 2Þ F2;i þF2;iþ 1

� �
þ 1

4
Rð2; 3Þ F3;i þF3;iþ 1

� �þ 1
4
Zð2; 1Þ M1;i þM1;iþ 1

� �þ 1
4
Zð2; 2Þ M2;i þM2;iþ 1

� �
þ 1

4
Zð2; 3Þ M3;i þM3;iþ 1

� � ðA:20Þ
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Jið21Þ ¼ � 1
2

c13;i þ c13;iþ 1

� �þ 1
4
Rð3; 1Þ F1;i þF1;iþ 1

� �þ 1
4
Rð3; 2Þ F2;i þF2;iþ 1

� �
þ 1

4
Rð3; 3Þ F3;i þF3;iþ 1

� �þ 1
4
Zð3; 1Þ M1;i þM1;iþ 1

� �þ 1
4
Zð3; 2Þ M2;i þM2;iþ 1

� �
þ 1

4
Zð3; 3Þ M3;i þM3;iþ 1

� �
ðA:21Þ

Jið22Þ ¼ � 1
4

j1;i þ j1;iþ 1
� �þ 1

4
Zð1; 1Þ F1;i þF1;iþ 1

� �þ 1
4
Zð2; 1Þ F2;i þF2;iþ 1

� �
þ 1

4
Zð3; 1Þ F3;i þF3;iþ 1

� �þ 1
4
Tð1; 1Þ M1;i þM1;iþ 1

� �þ 1
4
Tð1; 2Þ M2;i þM2;iþ 1

� �
þ 1

4
Tð1; 3Þ M3;i þM3;iþ 1

� �
ðA:22Þ

Jið23Þ ¼ � 1
4

j2;i þj2;iþ 1
� �þ 1

4
Zð1; 2Þ F1;i þF1;iþ 1

� �þ 1
4
Zð2; 2Þ F2;i þF2;iþ 1

� �
þ 1

4
Zð3; 2Þ F3;iþF3;iþ 1

� �þ 1
4
Tð2; 1Þ M1;i þM1;iþ 1

� �þ 1
4
Tð2; 2Þ M2;i þM2;iþ 1

� �
þ 1

4
Tð2; 3Þ M3;i þM3;iþ 1

� �
ðA:23Þ

Jið24Þ ¼ � 1
4

j3;i þj3;iþ 1
� �þ 1

4
Zð1; 3Þ F1;i þF1;iþ 1

� �þ 1
4
Zð2; 3Þ F2;i þF2;iþ 1

� �
þ 1

4
Zð3; 3Þ F3;iþF3;iþ 1

� �þ 1
4
Tð3; 1Þ M1;i þM1;iþ 1

� �þ 1
4
Tð3; 2Þ M2;i þM2;iþ 1

� �
þ 1

4
Tð3; 3Þ M3;i þM3;iþ 1

� �
ðA:24Þ

Aið1 : 24; 1 : 3Þ ¼

�1
2Dx

�1
16 j3;iþ 1 þ 3j3;i
� �

1
16 j2;iþ 1 þ 3j2;i
� �

1
16 j3;iþ 1 þ 3j3;i
� � �1

2Dx
�1
16 j1;iþ 1 þ 3j1;i
� �

�1
16 j2;iþ 1 þ 3j2;i
� �

1
16 j1;iþ 1 þ 3j1;i
� � �1

2Dx
0 �1

8 c13;iþ 1 þ 3c13;i
� �

1
8 c12;iþ 1 þ 3c12;i
� �

1
8 c13;iþ 1 þ 3c13;i
� �

0 �1
4 � 1

16 c11;iþ 1 þ 3c11;i
� �

�1
8 c12;iþ 1 þ 3c12;i
� �

1
4 þ 1

16 c11;iþ 1 þ 3c11;i
� �

0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

�1
4 Rð1; 1Þ �1

4 Rð1; 2Þ �1
4 Rð1; 3Þ

�1
4 Rð2; 1Þ �1

4 Rð2; 2Þ �1
4 Rð2; 3Þ

�1
4 Rð3; 1Þ �1

4 Rð3; 2Þ �1
4 Rð3; 3Þ

�1
4 Zð1; 1Þ �1

4 Zð2; 1Þ �1
4 Zð3; 1Þ

�1
4 Zð1; 2Þ �1

4 Zð2; 2Þ �1
4 Zð3; 2Þ

�1
4 Zð1; 3Þ �1

4 Zð2; 3Þ �1
4 Zð3; 3Þ

2
66666666666666666666666666666666666666666664

3
77777777777777777777777777777777777777777775

ðA:25Þ
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Aið1 : 24; 4 : 6Þ ¼

0 0 0
0 0 0
0 0 0
�1
2Dx

�1
16 j3;iþ 1 þ 3j3;i
� �

1
16 j2;iþ 1þ 3j2;i
� �

1
16 j3;iþ 1þ 3j3;i
� � �1

2Dx
�1
16 j1;iþ 1 þ 3j1;i
� �

�1
16 j2;iþ 1 þ 3j2;i
� �

1
16 j1;iþ 1þ 3j1;i
� � �1

2Dx
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

�1
4 Zð1; 1Þ �1

4 Zð1; 2Þ �1
4 Zð1; 3Þ

�1
4 Zð2; 1Þ �1

4 Zð2; 2Þ �1
4 Zð2; 3Þ

�1
4 Zð3; 1Þ �1

4 Zð3; 2Þ �1
4 Zð3; 3Þ

�1
4 Tð1; 1Þ �1

4 Tð1; 2Þ �1
4 Tð1; 3Þ

�1
4 Tð2; 1Þ �1

4 Tð2; 2Þ �1
4 Tð2; 3Þ

�1
4 Tð3; 1Þ �1

4 Tð3; 2Þ �1
4 Tð3; 3Þ

2
6666666666666666666666666666666666666666664

3
7777777777777777777777777777777777777777775

ðA:26Þ

Aið1 : 24; 7 : 9Þ ¼

0 0 0
0 0 0
0 0 0
0 �1

16 P3;iþ 1 þ 3P3;i
� �

1
16 P2;iþ 1 þ 3P2;i
� �

1
16 P3;iþ 1 þ 3P3;i
� �

0 �1
16 P1;iþ 1 þ 3P1;i
� �

�1
16 P2;iþ 1 þ 3P2;i
� �

1
16 P1;iþ 1 þ 3P1;i
� �

0
�1
2Dx

�1
16 j3;iþ 1 þ 3j3;i
� �

1
16 j2;iþ 1 þ 3j2;i
� �

1
16 j3;iþ 1 þ 3j3;i
� � �1

2Dx
�1
16 j1;iþ 1 þ 3j1;i
� �

�1
16 j2;iþ 1 þ 3j2;i
� �

1
16 j1;iþ 1 þ 3j1;i
� � �1

2Dx
0 0 0
0 0 0
0 0 0

�1
4 l 0 0
0 �1

4 l 0
0 0 �1

4 l
0 1

4 l�x3
�1
4 l�x2

�1
4 l�x3 0 0
1
4 l�x2 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

2
6666666666666666666666666666666666666666664

3
7777777777777777777777777777777777777777775

ðA:27Þ
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Aið1 : 24; 10 : 12Þ ¼

0 �1
16 P3;iþ 1 þ 3P3;i
� �

1
16 P2;iþ 1 þ 3P2;i
� �

1
16 P3;iþ 1þ 3P3;i
� �

0 �1
16 P1;iþ 1 þ 3P1;i
� �

�1
16 P2;iþ 1 þ 3P2;i
� �

1
16 P1;iþ 1 þ 3P1;i
� �

0
0 �1

16 H3;iþ 1 þ 3H3;i
� �

1
16 H2;iþ 1 þ 3H2;i
� �

1
16 H3;iþ 1þ 3H3;i
� �

0 �1
16 H1;iþ 1 þ 3H1;i
� �

�1
16 H2;iþ 1 þ 3H2;i
� �

1
16 H1;iþ 1 þ 3H1;i
� �

0
0 �1

8 c13;iþ 1 þ 3c13;i
� �

1
8 c12;iþ 1 þ 3c12;i
� �

1
8 c13;iþ 1þ 3c13;i
� �

0 �1
4 � 1

16 c11;iþ 1 þ 3c11;i
� �

�1
8 c12;iþ 1 þ 3c12;i
� �

1
4 þ 1

16 c11;iþ 1 þ 3c11;i
� �

0
�1
2Dx

�1
16 j3;iþ 1 þ 3j3;i
� �

1
16 j2;iþ 1 þ 3j2;i
� �

1
16 j3;iþ 1þ 3j3;i
� � �1

2Dx
�1
16 j1;iþ 1 þ 3j1;i
� �

�1
16 j2;iþ 1 þ 3j2;i
� �

1
16 j1;iþ 1 þ 3j1;i
� � �1

2Dx
0 �1

4 l�x3 1
4 l�x2

1
4 l�x3 0 0
�1
4 l�x2 0 0

�1
4 ið1; 1Þ �1

4 ið1; 2Þ �1
4 ið1; 3Þ

�1
4 ið2; 1Þ �1

4 ið2; 2Þ �1
4 ið2; 3Þ

�1
4 ið3; 1Þ �1

4 ið3; 2Þ �1
4 ið3; 3Þ

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

2
66666666666666666666666666666666666666666664

3
77777777777777777777777777777777777777777775

ðA:28Þ

Aið1 : 24; 13 : 15Þ ¼

�1
2Dt

1
16 X3;iþ 1 þ 3X3;i
� � �1

16 X2;iþ 1 þ 3X2;i
� �

�1
16 X3;iþ 1 þ 3X3;i
� � �1

2Dt
1
16 X1;iþ 1 þ 3X1;i
� �

1
16 X2;iþ 1 þ 3X2;i
� � �1

16 X1;iþ 1 þ 3X1;i
� � �1

2Dt
0 1

16 V3;iþ 1 þ 3V3;i
� � �1

16 V2;iþ 1 þ 3V2;i
� �

�1
16 V3;iþ 1 þ 3V3;i
� �

0 1
16 V1;iþ 1 þ 3V1;i
� �

1
16 V2;iþ 1 þ 3V2;i
� � �1

16 V1;iþ 1 þ 3V1;i
� �

0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1
4 0 0
0 1

4 0
0 0 1

4
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

2
6666666666666666666666666666666666666666664

3
7777777777777777777777777777777777777777775

ðA:29Þ
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Aið1 : 24; 16 : 18Þ ¼

0 0 0
0 0 0
0 0 0
�1
2Dt

1
16 X3;iþ 1þ 3X3;i
� � �1

16 X2;iþ 1 þ 3X2;i
� �

�1
16 X3;iþ 1 þ 3X3;i
� � �1

2Dt
1
16 X1;iþ 1þ 3X1;i
� �

1
16 X2;iþ 1þ 3X2;i
� � �1

16 X1;iþ 1 þ 3X1;i
� � �1

2Dt
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1
4 0 0
0 1

4 0
0 0 1

4
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

2
6666666666666666666666666666666666666666664

3
7777777777777777777777777777777777777777775

ðA:30Þ

Aið1 : 24; 19 : 21Þ ¼

0 0 0
0 0 0
0 0 0
0 1

16 F3;iþ 1 þ 3F3;i
� � �1

16 F2;iþ 1 þ 3F2;i
� �

�1
16 F3;iþ 1 þ 3F3;i
� �

0 1
16 F1;iþ 1 þ 3F1;i
� �

1
16 F2;iþ 1þ 3F2;i
� � �1

16 F1;iþ 1þ 3F1;i
� �

0
�1
2Dt

1
16 X3;iþ 1 þ 3X3;i
� � �1

16 X2;iþ 1 þ 3X2;i
� �

�1
16 X3;iþ 1 þ 3X3;i
� � �1

2Dt
1
16 X1;iþ 1 þ 3X1;i
� �

1
16 X2;iþ 1þ 3X2;i
� � �1

16 X1;iþ 1þ 3X1;i
� � �1

2Dt
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1
4 0 0
0 1

4 0
0 0 1

4
0 0 0
0 0 0
0 0 0

2
6666666666666666666666666666666666666666664

3
7777777777777777777777777777777777777777775

ðA:31Þ

Appendix: Matrices A, B and J in Chap. 5 219



Aið1 : 24; 22 : 24Þ ¼

0 1
16 F3;iþ 1þ 3F3;i
� � �1

16 F2;iþ 1þ 3F2;i
� �

�1
16 F3;iþ 1þ 3F3;i
� �

0 1
16 F1;iþ 1 þ 3F1;i
� �

1
16 F2;iþ 1 þ 3F2;i
� � �1

16 F1;iþ 1 þ 3F1;i
� �

0
0 1

16 M3;iþ 1þ 3M3;i
� � �1

16 M2;iþ 1þ 3M2;i
� �

�1
16 M3;iþ 1þ 3M3;i
� �

0 1
16 M1;iþ 1 þ 3M1;i
� �

1
16 M2;iþ 1 þ 3M2;i
� � �1

16 M1;iþ 1 þ 3M1;i
� �

0
0 1

16 V3;iþ 1þ 3V3;i
� � �1

16 V2;iþ 1þ 3V2;i
� �

�1
16 V3;iþ 1þ 3V3;i
� �

0 1
16 V1;iþ 1 þ 3V1;i
� �

1
16 V2;iþ 1 þ 3V2;i
� � �1

16 V1;iþ 1 þ 3V1;i
� �

0
�1
2Dt

1
16 X3;iþ 1þ 3X3;i
� � �1

16 X2;iþ 1þ 3X2;i
� �

�1
16 X3;iþ 1þ 3X3;i
� � �1

2Dt
1
16 X1;iþ 1 þ 3X1;i
� �

1
16 X2;iþ 1 þ 3X2;i
� � �1

16 X1;iþ 1 þ 3X1;i
� � �1

2Dt
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1
4 0 0
0 1

4 0
0 0 1

4

2
66666666666666666666666666666666666666666664

3
77777777777777777777777777777777777777777775

ðA:32Þ

Bið1 : 24; 1 : 3Þ ¼

1
2Dx

�1
16 j3;iþ 1 þ 3j3;i
� �

1
16 j2;iþ 1þ 3j2;i
� �

1
16 j3;iþ 1 þ 3j3;i
� �

1
2Dx

�1
16 j1;iþ 1 þ 3j1;i
� �

�1
16 j2;iþ 1 þ 3j2;i
� �

1
16 j1;iþ 1 þ 3j1;i
� �

1
2Dx

0 �1
8 c13;iþ 1 þ 3c13;i
� �

1
8 c12;iþ 1 þ 3c12;i
� �

1
8 c13;iþ 1 þ 3c13;i
� �

0 �1
4 � 1

16 c11;iþ 1 þ 3c11;i
� �

�1
8 c12;iþ 1 þ 3c12;i
� �

1
4 þ 1

16 c11;iþ 1 þ 3c11;i
� �

0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

�1
4 Rð1; 1Þ �1

4 Rð1; 2Þ �1
4 Rð1; 3Þ

�1
4 Rð2; 1Þ �1

4 Rð2; 2Þ �1
4 Rð2; 3Þ

�1
4 Rð3; 1Þ �1

4 Rð3; 2Þ �1
4 Rð3; 3Þ

�1
4 Zð1; 1Þ �1

4 Zð2; 1Þ �1
4 Zð3; 1Þ

�1
4 Zð1; 2Þ �1

4 Zð2; 2Þ �1
4 Zð3; 2Þ

�1
4 Zð1; 3Þ �1

4 Zð2; 3Þ �1
4 Zð3; 3Þ

2
66666666666666666666666666666666666666666664

3
77777777777777777777777777777777777777777775

ðA:33Þ
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Bið1 : 24; 4 : 6Þ ¼

0 0 0
0 0 0
0 0 0
1

2Dx
�1
16 j3;iþ 1 þ 3j3;i
� �

1
16 j2;iþ 1 þ 3j2;i
� �

1
16 j3;iþ 1 þ 3j3;i
� �

1
2Dx

�1
16 j1;iþ 1 þ 3j1;i
� �

�1
16 j2;iþ 1þ 3j2;i
� �

1
16 j1;iþ 1 þ 3j1;i
� �

1
2Dx

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

�1
4 Zð1; 1Þ �1

4 Zð1; 2Þ �1
4 Zð1; 3Þ

�1
4 Zð2; 1Þ �1

4 Zð2; 2Þ �1
4 Zð2; 3Þ

�1
4 Zð3; 1Þ �1

4 Zð3; 2Þ �1
4 Zð3; 3Þ

�1
4 Tð1; 1Þ �1

4 Tð1; 2Þ �1
4 Tð1; 3Þ

�1
4 Tð2; 1Þ �1

4 Tð2; 2Þ �1
4 Tð2; 3Þ

�1
4 Tð3; 1Þ �1

4 Tð3; 2Þ �1
4 Tð3; 3Þ

2
6666666666666666666666666666666666666666664

3
7777777777777777777777777777777777777777775

ðA:34Þ

Bið1 : 24; 7 : 9Þ ¼

0 0 0
0 0 0
0 0 0
0 �1

16 P3;iþ 1 þ 3P3;i
� �

1
16 P2;iþ 1þ 3P2;i
� �

1
16 P3;iþ 1 þ 3P3;i
� �

0 �1
16 P1;iþ 1 þ 3P1;i
� �

�1
16 P2;iþ 1 þ 3P2;i
� �

1
16 P1;iþ 1 þ 3P1;i
� �

0
1

2Dx
�1
16 j3;iþ 1 þ 3j3;i
� �

1
16 j2;iþ 1þ 3j2;i
� �

1
16 j3;iþ 1 þ 3j3;i
� �

1
2Dx

�1
16 j1;iþ 1 þ 3j1;i
� �

�1
16 j2;iþ 1 þ 3j2;i
� �

1
16 j1;iþ 1 þ 3j1;i
� �

1
2Dx

0 0 0
0 0 0
0 0 0

�1
4 l 0 0
0 �1

4 l 0
0 0 �1

4 l
0 1

4l�x3
�1
4 l�x2

�1
4 l�x3 0 0
1
4l�x2 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

2
6666666666666666666666666666666666666666664

3
7777777777777777777777777777777777777777775

ðA:35Þ
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Bið1 : 24; 10 : 12Þ ¼

0 �1
16 P3;iþ 1 þ 3P3;i
� �

1
16 P2;iþ 1 þ 3P2;i
� �

1
16 P3;iþ 1þ 3P3;i
� �

0 �1
16 P1;iþ 1 þ 3P1;i
� �

�1
16 P2;iþ 1 þ 3P2;i
� �

1
16 P1;iþ 1 þ 3P1;i
� �

0
0 �1

16 H3;iþ 1 þ 3H3;i
� �

1
16 H2;iþ 1 þ 3H2;i
� �

1
16 H3;iþ 1þ 3H3;i
� �

0 �1
16 H1;iþ 1 þ 3H1;i
� �

�1
16 H2;iþ 1 þ 3H2;i
� �

1
16 H1;iþ 1 þ 3H1;i
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