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Foreword

The landmass on which we live is an integral part of our water catchment. Any human ac-
tivity will inevitably have some consequences on the availability and composition of fresh 
waters. These consequences are becoming increasingly important and detectable as the hu-
man population grows. The problem is to be addressed at the global scale, as frequently, 
decisions made have inter-regional and international impacts, and must therefore be coordi-
nated. In a number of European Member States, for example, the availability of water re-
sources depends on the activities of other upstream countries. The demand for fresh water 
in Europe, as well as in the world, is increasing. There is an upward pressure on European 
water demand for public supplies (drinking water, recreation, etc.), for industry, and for ir-
rigated agriculture. The ecological impacts of different uses are complex, and currently not 
always predictable. This book should help planners in their decisions on different water 
management options for human use. 

Water, of course, is not only relevant as a resource, exploited for human activities, but it 
is also relevant to aquatic ecosystems and to their quality. Preservation and restoration of 
the ecological quality of these ecosystems have a major social impact, as it has been 
stressed in several European Community actions. For example, those based on the United 
Nations Convention on Biological Diversity (OJ L309, 13 December 1993) such as the 
"Communication to the Council and to the Parliament on a European Community Biodiver-
sity Strategy" (COM (1998) 0042) or the Council Directive 92/43/EEC (21 May 1992) on 
the conservation of natural habitats and of wild fauna and flora. 

Water management and environmental policies of different countries in the European 
Union share a common base, such as the Urban Waste Water Treatment Directive 
91/271/EEC, the Integrated Pollution Prevention and the Control Directive 96/61/EEC as 
well as the Water Framework Directive, EU 2000. Thus policies will be become more and 
more integrated in the near future. Models for efficient ecosystem managements can and 
will in the near future aid throughout these processes. The need for general methodologies, 
based on advanced modelling techniques, for predicting structure and diversity of key 
aquatic communities under natural and under man-made disturbances will strongly support 
the implementation of the EU directives. Such tools further will add to the decision and pol-
icy making process. It is important to stress that the development of models for the predic-
tion of aquatic ecosystem quality in the context of a European Research and Development 
(R&D) project can not merely be a scientific exercise, but is a social one as well. 

In 1999 the European Commission initiated the R&D project PAEQANN (PAEQANN 
is the acronym for “Predicting Aquatic Ecosystem Quality using Artificial Neural Net-
works: Impact of Environmental characteristics on the Structure of Aquatic Communities 
(Algae, Benthic and Fish Fauna)”; under contract number EVK1-CT1999-00026. The main 
feature of the PAEQANN project was to provide a unified, common set of tools for 1) 
checking the river ecology status, and 2) predicting environmental impacts of management 
action on a European scale.  

The project not only provided a significant improvement of our knowledge about the 
ecological applications of classical statistical techniques, dynamic models, and artificial 
neural networks and other artificial intelligence techniques, but also a set of predictive tools 
that is easily applied to real management scenarios. This book disseminates the results of 
the research activities and makes them available to a wide spectrum of potential end-users. 
In the first phase of the project, the PAEQANN partners focussed their work in two direc-
tions: 1) to produce the databases, and 2) to develop the modelling methodology.  
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The quality of predictive models is strongly dependent on: i) the quality of the data sets 
used during the development phase of the model, ii) the strategy used during the model im-
provement in the calibration phase and iii) the range of ecological conditions represented in 
the validation phase. For these reasons, it was important that the databases covered a wide 
range of river types and ecological situations, representing, as far as possible, several eco-
regions in Europe. The data in the PAEQANN project did not cover all eco-regions of 
Europe, but the data collected on community structure and environmental conditions were 
representative of a wide range of river types. These data were used in different ways to de-
velop and test the models presented here. 

In the PAEQANN project, river ecosystem integrity was assessed using the relationship 
between environmental impacts and organism groups, i.e. community structure as depend-
ing upon the environmental variables. The classical statistical, artificial neural network and 
dynamic models developed were used as predictive tools, and also as tools to explain and 
understand the complex relationships between variables. These tools can be applied in other 
river networks throughout Western Europe. They are simple, easy to handle and applicable 
to stream management and stream policy-making. The PAEQANN partners focussed their 
work to improve the knowledge on these methods with several algorithms, e.g., multiplayer 
perceptron with a backpropagation algorithm, self-organising maps, goal function, Bayes-
ian function, and others. Several applications on diatoms, macroinvertebrates and fishes can 
be found in this book. By including also other scientists this books got a full modelling di-
mension.

Different end-users can be identified who can and partly will be the recipient of the 
PAEQANN project results: the scientific community, water professional management (pub-
lic and private managers and users), nature conservation managers and large people audi-
ence. By this book the PAEQANN project results reach firstly the scientific community, 
which is the most familiar group to the majority of the consortium participants. In the cur-
rent state of modelling aquatic ecology, this is still the first attempt to a serious validation 
of the work, a necessary background for large-scale dissemination on the long term. Sec-
ondly, the book broadens the scientific scope of the project towards wider developments in 
prediction. We are confident in this attempt that aquatic community modelling and predic-
tion issues have gained weight among the scientific community. This step also brings tools 
necessary to tackle future water related problems closer to the international, national and 
regional water managers and politicians.  

Chapter 1 is a review of publications on bioindicators for river quality assessment. 
Three major aquatic communities (algae, benthic macroinvertebrate and fish) were consid-
ered. Chapter 2 aims to review current ecological models that predict community structure 
in aquatic ecosystems for the selection of the appropriate models, depending on the type of 
target community. Ecological water management aims to contribute to the value of aquatic 
ecosystems. Such management requires the understanding of how these ecosystems func-
tion, and thus how communities are related to the environment. To learn about the commu-
nity-environment relationships, data-analytical approaches are explored: Classical statisti-
cal models, Artificial neural networks, Bayesian and Mixture models, Support vector 
machines, Genetic algorithms, Mutual information and regression maximisation tech-
niques, and Structural dynamic models. In the following sessions, we summarized these 
modelling techniques and presented their applications in ecological studies, with their 
strengths and weaknesses. Chapters 3-5 are designed for papers on different organism 
groups. Chapter 3 includes 7 papers studied on the modelling of fish communities. They 
present modelling techniques at several different countries including France (Garonne basin 
and national scale), Italy, Poland, New Zealand, and Thailand, using self-organizing map 
(SOM) for patterning communities and multilayer perceptron (MLP) for predicting fish as-
semblages. Chapter 4 introduces the use of different recently developed techniques to 
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model and predict macroinvertebrates in terms of richness, assemblages or functional 
groups. In chapter 4 several different techniques were implemented in the models: SOM, 
MLP, sensitivity analysis, cluster analysis, etc. Chapter 5 presents applications of machine-
learning techniques used for classification and prediction of mostly riverine micro-algal as-
semblages. Two papers are devoted to prediction of planktonic cyanobacteria and other five 
papers address modeling and prediction of benthic diatom assemblages in rivers, at differ-
ent scales, with two main objectives: classification of these assemblages as related to envi-
ronmental gradients, and prediction of community structure. Chapter 6 present 5 papers 
concerning techniques for exploratory data analysis of aquatic communities: Evaluation of 
relevant species in communities: Projection pursuit with robust indices A framework for 
computer-based data analysis and visualisation by pattern recognition, A rule-based vs. a 
set-covering implementation of the knowledge system LIMPACT and its significance for 
maintenance and discovery of ecological knowledge, Predicting macro-fauna community 
types from environmental variables by means of support vector machines. Chapter 7 is de-
signed to introduce the software tool which was developed in PAEQANN project. Models 
developed in the PAEQANN project were implemented in the PAEQANN tool software. 
The software is included in the CD-ROM accompanying this book. The main objective of 
the software is to propose a set of tools for water management and water policies to enable 
easy assessment of the ecological quality and perturbations of stream ecosystems. These 
tools will provide information about running water quality as well as community structure, 
and allow identifying measures which should be taken to restore biological integrity in run-
ning waters.

Acknowledgments: Most of the studies in this book were carried out in the framework of 
the EC-5thFP PAEQANN project, devoted to the use of ANN for predicting aquatic com-
munities in fresh waters. Furthermore, in this book we also invited some selected papers 
presented in the 3rd Conference for the International Society of Ecological Informatics 
(ISEI) organized under the direction of the PAEQANN project in Rome, Italy, in August 
2002. All papers presented here were peer reviewed at least by two specialists in their re-
search fields. Hopefully, the papers presented here are significant contributions to model-
ling aquatic communities, and can be considered as a first step toward linking the im-
provement of water quality through specific management measures (e.g. waste water 
treatment, habitat restoration, etc.) with the expected improvement in ecological and bio-
logical value of running water systems. It will also allow scientists and ecosystem managers 
to consult the occurrence patterns of organisms in streams based on the database used in the 
tool, visualise the results of patterning and predicting models with existing data, and pro-
vide the possibility to test the new data based on the models developed with existing data. 
We thank the European Commission for the financial support, and all our colleagues in and 
outside the consortium for their help in data collection, data provisions, data elaboration, 
scientific discussion and constructive remarks to finally produce the book. Furthermore, we 
thank all reviewers who were willing to spend their time on the evaluation of manuscripts 
and suggested ideas to improve the quality of papers to be published in this book.  

August 2004 

Piet Verdonschot and co-editors 
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General introduction 

Lek S*

Historical factors aside, the structure and diversity of aquatic communities in running wa-
ters are primarily dependent on a complex of physical, chemical and biotic factors. Physical 
and chemical variables are themselves heavily dependent on climate and catchment proper-
ties (hydrology, geology, topography, etc.) which are in turn influenced by anthropogenic 
impacts (hydraulic management, land use and agricultural practices, waste water discharge 
etc.).  

During the past several decades, hydrobiological studies have identified the main factors 
which determine freshwater communities, but very few have been able to establish deter-
ministic links between ecological factors and the structure of key aquatic communities. 
Ecological theories on determinism of biocenosis structure in streams have put forward the 
effects of morphodynamic properties of the river channel, and the importance of stream or-
der, related to various channel properties, to watershed surface area and to the contribution 
of various sources of organic matter. These theories have defined general schemes for ex-
plaining longitudinal variations in river systems; however they do not allow prediction of 
community structure down to the a relevant taxonomic or functional level. A notable excep-
tion is the RIVPACS system (Wright 1995), which has been developed in the UK to predict 
the composition of undisturbed macroinvertebrate assemblages; it clearly demonstrates the 
possibility to develop approaches for predicting community structure from sets of environ-
mental variables. Similarly, species richness in fish communities may be predicted from 
watershed surface area, average discharge and net primary productivity (Guégan et al. 
1998).

A major difficulty is to distinguish the influence of natural characteristics, including 
natural disturbances (storms, hydrological variability), from changes due to anthropogenic 
impacts. Despite these uncertainties, key aquatic communities have been utilised, some-
times for decades, to evaluate the biological quality of streams and rivers. Practical methods 
for calculating “biotic indices” have been designed, with the requirement that they be suffi-
ciently simple for application in routine surveys. As a result, a variety of standard methods 
have been suggested and used for assessing water quality in different river orders, often 
without regard to a reference to the natural state of the community. By contrast, recent ap-
proaches based on the concept of ecosystem integrity and biodiversity are more promising, 
especially for integrated water management. 

The aim of this book is to develop general methodologies, based on advanced modelling 
techniques, for the prediction of the structure and diversity of key aquatic communities un-
der natural and man-made disturbances. This allowed the detection of the significance of 
various environmental variables that structure these aquatic communities. These have been 
shown to reveal predictable changes due to natural variability and human disturbances. 
Natural conditions are described as undisturbed by human activities and man-made distur-
bances are defined as various pollutants, discharge regulation, etc. 

Such an approach to the analysis of aquatic communities made it possible: 
− to set up robust and sensitive ecosystem evaluation procedures that will work across a 

large range of running water ecosystems on a world-wide scale, 

                                                          
* Correspondance: lek@cict.fr 



2      Lek S 

− to point out the cause and effect relationships between environmental conditions (physi-
cal, chemical, results of management actions) and certain relevant aquatic communities 
(diatoms, macroinvertebrates and fish) 

− to predict biocenosis structure in disturbed ecosystems, taking into account all the rele-
vant ecological variables 

− to test ecosystem sensitivity to disturbance 
− to explore specific actions to be taken for the restoration of ecosystem integrity 

The long-term objective of these investigations was therefore to help to define strategies 
for conservation and restoration, compatible with local and regional development, and sup-
ported by a strong scientific background. 

As for scientific, technological and economical objectives, the development of these 
general methodologies allowed: 
− the production of predictive tools that can be easily applied to define the most effective 

policies and institutional arrangements for resource management; 
− the application of the most effective and innovative techniques (mainly Artificial Neural 

Networks) to identify problems in ecosystem functioning, resulting from ecosystem deg-
radation from human impact, and to model relevant biological resources; 

− the full exploitation of existing information, reducing the amount of field work (that is 
both expensive and time consuming) needed in order to assess the health of freshwater 
ecosystems; 

− the exploration of specific actions to be taken for the restoration of ecosystem integrity; 
− the promotion of collaboration among scientists of different countries and research 

fields, encouraging collaboration and dissemination of results and techniques.  

Applied objectives 

The principal applied objective of this book was to propose a set of tools for water man-
agement and water policies in order to allow the easy assessment of ecological quality and 
perturbations of stream and river ecosystems. These tools provide information concerning 
running water quality and community structure (see chapter 7). The assessment tools allow 
the identification of measures which should be taken to restore biological integrity to run-
ning waters. It is hoped that the study can be considered as a first step towards linking the 
improvement of water quality through specific management measures (e.g. waste water 
treatment, habitat restoration etc.) with the expected improvements in the ecological and 
biological value of running water systems. 

Scientific objectives 

The scientific objectives of this book were: 
1. to set up a standardised methodological approach (we have defined a set of technical 

procedures which will be used in a common framework, firstly to analyse and then to 
predict the community structure of the ecosystems studied with regard to environmental 
parameters; each reference site is sampled in a standardised way which will allow direct 
comparisons of the various sites for regional conservation priorities);  

2. to link the environmental characteristics and the community structure at each reference 
site by using a defined set of parameters and a combination of target groups representing 
the main functional levels of the ecosystems (rapid assessment procedures were imple-
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mented based on the hypotheses that include regulative and functional factors which de-
scribe ecosystem functioning in a unifying way); 

3. to evaluate, at a functional level, the sensitivity of the ecosystems studied and their re-
sponse to disturbance through implementation of sensitivity indices and modelling (the 
main threats on living communities and on local endangered species were identified as 
predictive models of community structure were built for a set of critical habitats);  

4. to investigate the effects of human impacts on the functioning of the ecosystem, i.e. on 
the composition and change in the groups of structural and functional organisms in 
comparison with nearby natural reference conditions. Special attention is directed at 
summarising ecosystem functioning by exploring the chances of community restoration 
at selected sites submitted to the most common types of disturbance. 

In summary, the assessments made and the predictions forecast are hoped to lead to im-
provements in the physical and chemical characteristics of freshwater ecosystems. More 
specifically, the tools proposed will be useful in the following: 
− implementing different existing water directives in Europe as well as in the rest of the 

world, such as the Water Framework Directive and the Municipal Waste Water Treat-
ment Directive; 

− adapting national or regional legislation or incitement measures, taking into account 
specific conditions; 

− agreeing on e.g. the allowable levels of waste water discharge, according to the capacity 
of the receiving aquatic ecosystem, providing help to the decision makers and water 
managers in their actions. 

Contribution to the policy 

The requirement for data on the status of water resources can be identified on different spa-
tial scales. Our concern is about an overall assessment of the sustainability of water re-
sources, at the level of the watershed. River ecology is an important area of research; the 
applied aspects of this discipline typically address water quality problems through studies 
of ecosystem function (e.g. water quality models) or through studies of biocenosis structure. 
The use of ecological indicators has become widespread, and integrated indicators are being 
developed (e.g. IBI and related approaches). Such indicator systems encompass a number 
of quality determinants and are also quantity-related. Indeed, the ability of water to support 
natural life provides a more appropriate and integrated measure of its health than individual 
chemical, biochemical and physical measurements. 

However, applicable and world-wide methodologies and standards are seriously lack-
ing. Several approaches based on aquatic fauna and flora have been developed, but further 
work is needed on their large scale applicability, and also on their value as water manage-
ment tools in member states. Ecological indicators could be used in combination with the 
conventional physical, chemical and eco-toxicological indicators, to establish more robust 
sets of criteria to assess the status of the most common and typical ecosystems found. Pre-
diction tools are also extremely helpful in assessing the success of management and resto-
ration measures, and the potential environmental impacts of major water supply infrastruc-
ture development. 

This research has helped to develop scientific instruments for the evaluation of the resil-
ience of aquatic systems and impact of different management practices. It has also helped to 
identify aquatic zones where the anthropogenic influence is minimal and which could serve 
as reference sites. 
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The lack of suitable methodologies means that the potential scope to improve existing 
models and to develop new models that have an EU or a world-wide applicability is clearly 
extensive.

From a scientific viewpoint, the prediction of aquatic ecosystem quality is a problem 
that can be approached at different spatial scales, ranging from local to global. The conti-
nental scale, as far as Europe is concerned, is the best compromise between homogeneity of 
environmental conditions and generalisation of the models. The rationale for this choice is 
that many forcing functions that have to be taken into account in ecosystem modelling can 
be considered as homogeneous on a European scale due to the relative homogeneity of 
land use as well as social and economical conditions. On the other hand, at smaller spatial 
scales (i.e. regional or national) the spectrum of aquatic ecosystems is not diverse enough to 
allow for optimal generalisation of the models. Moreover, the development of ecosystem 
models on a European scale provides a significant advantage because modelling is a data-
limited activity. In fact, the accuracy and the generality of the results rely on data availabil-
ity, which is obviously proportional to the number of participants in the development team 
and on the geographical range of the calibration and validation data base. 

The main feature of this book was to provide a unified, common set of tools for check-
ing river ecology status, and predicting environmental impacts of management action on a 
European scale. 

This book provides not only a significant improvement in our knowledge on ecological 
applications of Artificial Neural Networks and other artificial intelligence techniques, but 
also a set of predictive tools that are easily applied to real management scenarios. These 
models have been documented and are distributed in dedicated Web sites 
(http://aquaeco.ups-tlse.fr), either partially as Java applets (that can be executed on-line) or 
as stand-alone packages downloaded directly from the web site.  

Socio-economic contribution 

The land mass on which we live is also an integral part of our water catchment. Many hu-
man activities inevitably affect the availability and composition of freshwater. These con-
sequences are increasingly detectable and significant. The issue is addressed at the EU-
level, as decisions taken by the players concerned frequently have inter-regional and inter-
national impacts, and must therefore be coordinated. In a number of Member States, the 
availability of water resources depends on the activities of other countries located upstream, 
as many river basins are transnational. The demand for water in Europe is increasing. There 
is an upward pressure on European water for public supplies (drinking water, recreation 
etc.), for industry, and for irrigation. The ecological impacts of the various uses are com-
plex, and currently not always predictable. The results of our programme should help plan-
ners in deciding between different water management options for human use, aiming to 
preserve the quality of the ecosystem, particularly the diversity of aquatic organisms. 

Water, of course, is not only relevant as a resource to be exploited for human activities, 
but is also relevant to aquatic ecosystems and to their quality. Preservation and/or restora-
tion of the ecological quality of these ecosystems has a major social impact, as has been 
stressed in several Community actions. For instance, those based on the United Nations 
Convention on Biological Diversity (OJ L309, 13 December 1993) can be cited, e.g. as de-
fined in the "Communication to the Council and to the Parliament on a European Commu-
nity Biodiversity Strategy" or in the Council Directive 92/43/EEC (21 May 1992) on the 
conservation of natural habitats and of wild fauna and flora. 
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This book is organized in eight chapters: 
Chapter 1 is a review of bioindicators for river quality assessment summing up current 

scientific knowledge. A review of publications is classified per group of organisms, i.e. dia-
toms, macroinvertebrates and fish communities. This chapter is coordinated by L Ector and 
F Rimet.  

Chapter 2 reviews the models for aquatic assessment. Classical and modern modelling 
methods are presented along with a rich collection of references. This chapter is coordi-
nated by YS Park, P Verdonschot and S Lek. 

Chapter 3 concerns the predictive models of the fish community for aquatic ecosystem 
assessment. It includes 7 original papers relating to fish modelling in Europe, Asia and 
New-Zealand. This chapter is coordinated by S Lek. 

Chapter 4 relates to the use of the macroinvertebrate community for aquatic ecosystem 
assessment. Nine papers show how the new modelling techniques can contribute to model-
ling this important group, often used for aquatic assessment. This chapter is coordinated by 
P Verdonschot. 

Chapter 5 focuses on the prediction capacities of diatoms for aquatic assessment. A set 
of 7 papers shows the models of diatoms on different scales, from small drainage basins to 
the regional scale as part of Europe. This chapter is coordinated by JP Descy. 

Chapter 6 concerns modern modelling techniques in ecological assessment. Six original 
papers concentrate on recent techniques for patterning and predicting aquatic communities. 
This chapter is coordinated by YS Park. 

Chapter 7 presents a useful tool entirely in graphical user interface (GUI) mode. The in-
stalling programme is available on the accompanying CD-ROM, which includes the code 
source in Visual C++. This tool can be used by managers, as well as scientists. This chapter 
is coordinated by YS Park and S Lek. 

Chapter 8 relates to the discussion and conclusion. It is coordinated by M Scardi. 



1 Using bioindicators to assess rivers in Europe: 
An overview 

Editors: Ector L*, Rimet F 

1.1 Introduction 

Aquatic communities are the first element to be disturbed by modifications of physical or 
chemical quality of rivers. The study of aquatic organisms is thus very useful to detect and 
assess human impacts. It is of major interest because they can integrate the variability of 
ecosystems on different temporal scales, depending on the organisms considered. The use 
of several aquatic organisms integrating different time scale variations gives a precise idea 
of the ecosystem’s health. That is why for more than a century (Stevenson and Pan 1999) 
many concepts and tools based on biological aquatic organisms were developed in Euro-
pean countries for river quality assessment and are used by the water managers. Benthic 
diatoms, macroinvertebrates and fish are the mostly used organisms for these assessment 
tools.

In Europe, since 2000, the European directive 2000/60/EC has established a framework 
for a common action in the field of water policy. Precise requirements are given in order to 
have a homogenous river quality assessment in all the European Community. In particular, 
the status of a water body must be assessed based on its chemical and ecological status. The 
ecological status is defined as a deviation measurement between characteristic structural of 
aquatic flora, macrozoobenthos and age structure of fish fauna and the reference conditions 
of the same parameter. The reference conditions correspond to a water body with no or mi-
nor anthropogenic impacts. It is requested to define ecoregions, and stream types by mean 
of a determined list of physical parameters (e.g. geology, catchment area, altitude). In each 
stream type of each ecoregion, reference conditions have to be defined.

The aim of this review is first to inventory the different existing methods used to assess 
river quality with diatoms, macroinvertebrates and fish in the different European countries.

From this inventory, conclusions will be developed. In particular, the existing methods 
will be examined to see if they can fulfil the directive requirements. This overview will 
help the selection of methodologies, this in order to develop new assessment tools for river 
quality that will match with the directive requirements. 

1.2 Stream typology†

Stream typologies form an essential basis for the development of assessment and prediction 
systems, as required by the EU Water Framework Directive (WFD). A stream type is an 
ecological entity with a limited internal variation in biotic and abiotic components and 
which shows a certain biotic and abiotic discontinuity in comparison to neighbouring enti-
ties. Such stream types might serve as ‘units’, within which an assessment system can be 

* Correspondence: ector@crpgl.lu
† Verdonschot PFM, piet.verdonschot@wur.nl
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applied. The comparison with undisturbed sites of a certain stream type allows the defini-
tion and classification of different stages of degradation within that stream type. Assess-
ment and prediction both require sufficiently integrated stream typologies, which should 
consider both abiotic and biotic criteria. The most prominent abiotic factors are stream 
morphology, geochemistry, altitude, stream size and hydrology. Such typologies based on 
several ecological relevant parameters are only available for certain geographic regions in 
Europe.

Generally, stream typologies can be designed ‘top-down’ or ‘bottom up’. The major dif-
ference between a top-down and a bottom-up approach is the reliability of criteria (either 
environmental parameters or organism groups). In a top-down approach, often abiotic, pa-
rameters are chosen on the basis of knowledge and human prejudice. In a bottom-up ap-
proach the, often biotic or ecological, parameters are the direct results of ecological analy-
sis. For practical reasons one can start with a top-down approach but a typology should 
always be verified by a bottom-up ecological analysis.

Hering et al. (2003) presented a review of present available stream typologies in Europe 
(Table 1). The existing approaches used to define stream types differ greatly between coun-
tries and institutions. Some classification systems only use single abiotic parameters (like 
geochemistry in Greece), others are based on abiotic factors and functional elements (e.g. 
France), while there are also typologies integrating abiotic factors and the biocoenoses, 
mainly macro-invertebrates (e.g. Netherlands, Germany). Different European countries are 
presently dividing their territory into ‘sub-ecoregions’ or ‘aquatic landscape units’ (e.g. 
Austria: Fink et al. 2000). This is a first step to identify and describe stream types in a 'top-
down' approach (Hawkins et al. 2000a). Hering et al. (2003) estimated that for the whole of 
Europe about 100 stream types are present. 

Table 1. Stream typology approaches in European countries (Hering et al. 2003). 

Country  General approach of 
typology

Level References 

Austria  abiotic national Wimmer et al. (2000), Fink et al. (2000) 
Austria biotic (benthic inverte-

brates)
national Moog (2000) 

France abiotic national Agences de l’Eau (1998) 
Germany abiotic/biotic national

(regional
examples)

Schmedtje et al. (2001), LfU BW (1998), 
LUA NW (1999a,b)

Greece climatic, geological and 
hydrochemical 

regional Skoulikidis (1993) 

Iceland abiotic national Gardarsson (1979), Petersen et al. (1995), 
Friberg and Johnson (1995) 

Nether-
lands

abiotic/biotic national STOWA (1992)

Sweden  abiotic/biotic national Sandin and Johnson (2000) 
United
Kingdom

abiotic/biotic national NRA (1996), Fox et al. (1996) 
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1.3 Diatom ecology and use for river quality assessment‡

Diatoms are siliceous unicellular algae, with a size contained between a few and more than 
500 micrometers. They are worldwide spread, live in many aquatic habitats, and have many 
life forms. Their short generation time makes them respond rapidly to environmental 
changes (Stevenson and Pan 1999) and their taxonomic diversity represents a valuable tool 
to assess water quality as each taxon has precise responses to the environmental factors. 

Diatom ecology 

A first step to develop monitoring tools for rivers is to define diatom taxa ecology.
The analysis of relationships between diatom communities and pH is one of the major focus 
in diatom studies. pH preferences were first studied in lakes and rivers by Lowe (1974), and 
Arzet et al. (1986), Round (1990), Smith (1990), Dixit et al. (1990), Eloranta (1990), Cor-
ing (1993), Battarbee et al. (1997), van Dam (1997). Renberg and Hellberg (1982), ter 
Braak and van Dam (1989), Birks et al. (1990a,b), van Dam et al. (1993) and Håkansson 
(1993) developed indices and models to reconstruct pH with diatoms.

In similar ways, a halobiont index (Ziemann 1971, 1991) uses salt preferences of dia-
toms to evaluate water salt concentration in rivers. Others recent studies give salinity classi-
fications of diatoms in lakes and estuaries (Campeau et al. 1999, Cumming and Smol 1993, 
Gell 1997, Roberts and McMinn 1998, Snoeijs 1994, Underwood et al. 1998, Wilson et al. 
1994, 1997). 

Lange-Bertalot (1979) determined the ecology of about 100 worldwide abundant fresh-
water taxa in correlation with defined chemical, physical and saprobiological parameters in 
the Rhine-Main river system. Biological oxygen demand and oxygen saturation were used 
to define 4 classes of saprobity.

More recently Denys (1991a,b) defined the autecology of 980 fossil diatoms taxa based 
on 800 samples taken mainly from cores and also from some outcrops of Holocene deposits 
along the western Belgian coastal plain. Tolerances and preferences for salinity, pH, trophic 
state, saprobity, nitrogen uptake, oxygen requirements, intertidal exposure tolerance, cur-
rent velocity were defined. 

van Dam et al. (1994) determined pH, nitrogen, oxygen, salinity, saprobity preferences, 
trophic state and moisture of 948 diatom taxa of fresh and weakly brackish waters in the 
Netherlands.

Hofmann (1994) realised a similar work on several lakes, principally in nine alkaline 
lakes of the Bavarian Alps in Germany. A total of 487 taxa were found and about 200 taxa 
were described in detail for their trophic and saprobic state, and their preferences for con-
ductivity and pH.

Rott et al. (2003) made a large database of 450 running water sites. About 1000 species 
from 9 algae classes were listed. Classes of saprobity (Rott et al. 1997) and trophy (Rott et 
al. 1999) were defined for 650 diatom taxa.

‡ Rimet F, Ector L, rimet@crpgl.lu
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Biocenotic analysis 

Diversity indices like the Shannon-Weaver index (Shannon and Weaver 1949) are often 
used in ecological studies to give a first approximation of the ecosystem quality and the im-
pact of physical or chemical disease. Rank-abundance curves developed by Patrick (1949) 
and Patrick et al. (1954) can also inform on the ecosystem quality according to the curve 
shape. But, according to the “Intermediate Disturbance Hypothesis” (Connell 1978, Huston 
1979), these techniques can be ineffective to assess ecosystem health as diversity and shape 
of rank-abundance curves of polluted and undisturbed ecosystem can be similar. 

The Differentiating Species System (Lange-Bertalot 1979) takes into account 100 
worldwide abundant freshwater taxa. They are filed into 3 classes (resistant, sensitive, 
ubiquitous). Their relative abundances determine the quality of the site.

The SHE index (Steinberg and Schiefele 1988, Schiefele and Schreiner 1991) is the 
same method as the Differentiating Species System of Lange-Bertalot (1979), but has been 
modified to be applicable for the rhithral part of rivers. 386 species were filled in 7 groups 
of trophic state and pollution resistance. 

DAIpo, Diatom Assemblage Index to organic pollution (Watanabe et al. 1988) classifies 
taxa with pollution tolerance (biological oxygen demand), 226 taxa are integrated in this 
technique.

Zelinka and Marvan (1961) developed an index to assess water quality with algae 
(among which diatoms) and macroinvertebrates: 

With: Aj: species abundance, Ij: pollution index of the species, Vj: indicative value or 
stenoecy degree of the species.

The index of Zelinka and Marvan served as a basis for several indices: 
- DES (Descy 1979) 5 classes of sensitivity, 106 species are used. 
- IPS, Specific Pollution Index (Coste in Cemagref 1982) 5 classes of sensitivity to pol-

lution, all the species are used (1 to 5). 
- SLA (Sláde ek 1986), 5 classes of sensitivity (from 4 to 0), 323 species are used. 
- ILM, Leclercq and Maquet Index (Leclercq and Maquet 1987a) 5 classes of sensitivity, 

210 species are used. 
- GDI, Generic Diatom Index (Rumeau and Coste 1988, Coste and Ayphassorho 1991) 5 

classes of sensitivity (from 1 to 5) are defined. Determination level is the genus. This index 
was developed in order to propose an easy usable index for Water agencies. All freshwater 
species/genus are used. 

- CEE index (Descy and Coste 1991) this is a 2 input table, low indicator species hori-
zontally ranked by increasing tolerance, and high indicator species (characteristic of a typo-
logical level) vertically ranked by increasing tolerance, 208 species are used. 

- TDI Trophic Diatom Index of Schiefele and Kohmann (1993) uses the ecological re-
sults of Hofmann’s studies (Hofmann 1994).

- EPI-D Eutrophication Pollution Index Diatoms (Dell’Uomo 1996, 2004): the sensitiv-
ity of the species is an integrated index from 0 to 4, and the reliability from 1 to 5. 

- IDAP Artois Picardie Diatom Index (Prygiel et al. 1996) 5 classes of sensitivity to pol-
lution are defined (1 to 5). This index was developed for the Artois-Picardie (N-W French 
basin).

- IBD Biological Diatom Index (Lenoir and Coste 1996, Prygiel and Coste 1998, 2000): 
in order to have a practical index, usable for technicians of French Water agencies near 
morphological diatom are put together and constitute associated taxa. The ecology of these 

ID = i=1
n Ai.Ii.Vi

i=1
n Aj.Vj

ID = i=1
n Ai.Ii.Vi

i=1
n Aj.Vj
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taxa can be provided with the software OMNIDIA (Lecointe et al. 1993) and the indices 
values are calculated automatically. This index is standardized for sampling, preparation, 
counting the slide and calculation of the index (AFNOR 2000). 209 taxa are taken into ac-
count in the index calculation. 
- TDI, Trophic Diatom Index (Kelly 1998a, Harding and Kelly 1999): 5 classes of sensitiv-
ity to trophic state, and 3 classes of reliability are used. This index is widely used in the 
United Kingdom, and is part of a suite of techniques used to detect eutrophication in rivers 
caused by large, predominantly lowland sewage works. 

Use of diatoms in the different European countries 

These indices were already applied in several European countries. Table 2 summa-
rizes those applications. Some indices like the IBD in France, the IPS in Luxem-
bourg and Spain or the TDI in England are routinely used to assess biological 
quality of rivers on national networks. 

Until now, these currently used techniques do not establish comparisons to the 
reference conditions, as the European Water Framework Directive requires it. To 
follow these requirements tools based on the comparison of the existing status to 
its reference in the same ecoregion and the same stream type should be used. An-
other approach that could answer the requirements of the directive would be the 
adaptation of the existing indices to each ecoregion. 

Table 2: Most common diatom assessment index used in Europe. With: A: Austria; AND: 
Andorra; B: Belgium; CH: Switzerland; D: Germany; E: Spain; F: France; FIN: Finland; 
GB: Great Britain; GR: Greece; HU: Hungary, I: Italy; L: Luxembourg; MK: Macedonia; 
P: Portugal; PL: Poland. 

Assessment system Country of use  Reference

Zelinka and Marvan in-
dex

A: Rott and Pipp (1999) Zelinka and Marvan 1961 

Differentiating species 
system

CH: Hürlimann et al. (1999) 
D: Coring (1999) 
PL: Bogaczewicz-Adamczak et al. 
(2004)

Lange-Bertalot 1979 

Descy index, DES B, L: Descy and Ector (1999) Descy 1979 
Specific Pollution Index, 
IPS

F: Coste in Cemagref (1982) 
PL: Kawecka et al. (1999) 
L: Descy and Ector (1999), Rimet et 
al. (2004) 
FIN: Eloranta (1999) 
GR: Montesanto et al. (1999), Ziller 
and Montesanto (2004) 
HU: Szabo et al. (2004) 
E: Sabater et al. 1996; Gomà et al.
(2004)
P: Almeida et al. (1999) 

Coste in Cemagref 1982 

Sláde ek index, SLA HU: Szabo et al. (2004) 
P: Almeida et al. (1999) 

Sláde ek 1986 

Leclercq and Maquet In-
dex, ILM 

B, L: Descy and Ector (1999) 
HU: Szabo et al. (2004) 
P: Almeida et al. (1999) 

Leclercq and Maquet 1987a 
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Diatom assemblage in-
dex to organic pollution, 
DAIpo

MK: Krstic et al. (1999) Watanabe et al. 1988 

Steinberg and Schiefele 
index, SHE 

D: Schiefele and Schreiner (1991) Schiefele and Schreiner 
1991

Generic Diatom Index, 
GDI

PL: Kawecka et al. (1999) 
FIN: Eloranta (1999) 

Coste and Ayphassorho 
1991

CEE index F: Descy and Coste (1991) 
B, L: Descy and Ector (1999)
AND: Merino et al. (1995)
E: Sabater et al. (1996) 
GR: Ziller and Montesanto (2004) 
HU: Szabo et al. (2004) 
P: Almeida et al. (1999) 

Descy and Coste 1991 

Trophic Diatom Index, 
TDI

D: Coring (1999)
FIN: Eloranta (1999) 

Schiefele and Kohmann 
1993

Eutrophication Pollution 
Index Diatoms, EPI-D 

HU: Szabo et al. (2004) 
I: Dell’Uomo (1999), Torrisi (2003), 
Ciutti (2000, 2001) 

Dell’Uomo 1996, 2004 

Diatom Index of Artois 
Picardie, IDAP 

F: Prygiel et al. (1996) 
FIN: Eloranta (1999) 

Prygiel et al. 1996 

Saprobic Rott Index, 
ROTT

CH: Hürlimann et al. (1999) 
A: Rott and Pipp (1999), Rott et al. 
(2003)

(Rott et al. 1997) 

Biological Diatom In-
dex, IBD 

F: Lenoir and Coste (1996), Prygiel 
and Coste (1998), AFNOR (2000) 
L: Descy and Ector (1999) 
HU: Szabo et al. (2004) 
P: Almeida et al. (1999) 

Lenoir and Coste 1996, 
Prygiel and Coste 2000 

Trophic Diatom Index, 
TDI

GB: Kelly (1998a), Harding and Kelly 
(1999)

Kelly 1998a 

Trophic ROTT Index A: Rott et al. (2003) Rott et al. 1999 
Indice DI-CH CH: Hürlimann and Niederhauser 

(2002)
Hürlimann and Nieder-
hauser (2002) 

1.4 Typologies, assessment systems and prediction 
techniques based on macroinvertebrates§

The last thirty years, a number of macro-invertebrate assessment methods have been devel-
oped in different European countries. Macro-invertebrates are well suited for assessment 
and quality indication systems since a comparatively large amount of data exists, their iden-
tification is relatively simple, and they occur in large numbers in all stream types 
(Rosenberg and Resh 1993, Davis and Simon 1995). 

Until now, most methods indicate the ‘quality’ of sites and have mainly been used to 
detect anthropogenic impacts, especially focusing on organic pollution. In addition, systems 
to indicate eutrophication, acidification and salinization have been developed. Most sys-
tems are limited for three reasons: 
(1) they are restricted to a single impact factor,
(2) they are only applicable in a restricted geographic range or for a certain stream type, 

§ Verdonschot PFM, piet.verdonschot@wur.nl



1 Using bioindicators to assess rivers in Europe: An overview      13 

(3) they do not permit to take full account of the natural differences to be expected in dif-
ferent streams types. 

So, there is a strong demand for assessment systems considering different impact factors 
in combination, and thus to enable an integrated assessment of streams. This is of special 
importance because organic pollution, the overriding impact factor on streams in past dec-
ades, is declining in most European countries and other impact factors, such as deterioration 
of stream morphology and eutrophication, are becoming increasingly important. One of the 
first approaches to assess more than one impact on streams with benthic macroinvertebrates 
has been the Dutch EKO (Verdonschot 1990), which is now implemented into some Dutch 
regional water management approaches. Another comparable approach is the British 
RIVPACS system (Wright et al. 1993b), which attempts to integrate all factors affecting the 
biocoenosis, based on site comparisons with a database of unimpacted sites, within a habitat 
classification framework. Table 3 gives a general overview of the assessment methods 
based on benthic macroinvertebrates most frequently applied in the EU member states (af-
ter Hering et al. 2003).

This contribution gives an overview of the use of macro-invertebrates in ecological wa-
ter management. 

Macro-invertebrate assessment 

Indices assessment
Assessment techniques applied in Europe have been summarised by Woodiwiss (1964), 
Nixon et al. (1996) and Knoben et al. (1995). Most contributions dealt with further on, are 
based on macro-invertebrates. The following review is based on Verdonschot (2000).The 
first and most traditional biological assessment system was the saprobic system, which fo-
cused on species presence in relation to organic pollution (Liebmann 1962). It was quanti-
fied by Pantle and Buck (1955) and Zelinka and Marvan (1961) and extended and reviewed 
by a number of European authors (see amongst others, Knoben et al. 1995). Three tech-
niques dominated in Europe (Sláde ek 1973, Newman 1988, Metcalfe 1989), namely: 

Saprobic indices; use the difference in pollution tolerance of aquatic organisms. The 
tolerance is described in parameters of indicator values (1 to 5), weights (tolerance 
ranges) and species abundances (Sláde ek 1973). 
Diversity indices; use the decrease in species diversity under increasing distur-
bance/stress. Most widely used is the Shannon-Weaver formula (Shannon and Weaver 
1949), which is based on the number of species and their individual abundances. 
Amongst others, Hellawell (1986) and Boyle et al. (1990) reviewed and evaluateed di-
versity indices. 
Biotic indices and scores; use both a saprobic index and a diversity measure and thus 
combine taxa richness and (mostly organic) pollution tolerance (Woodiwiss 1964, 
Tuffery and Verneaux 1968, BMWP 1979, de Pauw and Vanhoren 1983). They were 
considerably modified recently by Andersen et al. (1994). An overview is given by De 
Pauw et al. (1992) and Metcalfe (1989). 

Most of these approaches are restricted to the main stressors of organic pollution and to the 
intrinsic natural value of waters. 
Multimetrics and rapid assessment techniques
In recent years rapid assessment techniques and multi-metrics have become popular in the 
US. The first emphasises a low cost approach through reduced sampling and efficient data 
analysis. The multimetric approach is more advanced and complex, and uses a number of 
single metrics to assess environmental degradation (Karr et al. 1986). The Index of Biologi-
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cal Integrity (IBI) was restricted to fish (Karr 1981). Later adaptations included the benthic 
macro-invertebrate assemblage (e.g. Invertebrate Community Index (ICI); Ohio EPA 
1987/1989, Plafkin et al. 1989, Kerans and Karr 1994, Karr 1999), or the macrophytes 
(Nelson 1990). Barbour et al. (1992, 1996) presented the conceptual base for the multimet-
rics approach in which the community health is composed of community structure, com-
munity balance and functional feeding groups, and in combination with habitat quality, an 
integrated assessment is obtained. Until now, the metrics remain based on ecological attrib-
utes of biological communities. Six major groups of metrics can be distinguished (adapted 
after Resh and Jackson 1993, Thorne and Williams 1997): 

Richness indices (e.g. no of taxa, no of EPT taxa, no of Chironomidae taxa); often these 
metrics are considered to be sensitive to organic pollution,
Enumeration indices (e.g. no individuals, % of the total EPT taxa (sensitive) and chi-
ronomids (tolerant), % dominant taxon, no intolerant taxa, % Oligochaeta, sediment 
tolerant taxa); often these metrics consider an increase in dominance of one or more 
taxa due to pollution, 
Diversity indices (e.g. Shannon-Wiener Index, sequential comparison index); often 
these metrics are considered to decrease with increasing disturbance,
Similarity/loss indices (e.g. no of taxa in common, community loss index, Bray-Curtis 
index); these metrics use comparisons between sites (reference versus disturbed sites), 
Tolerance/intolerance indices or biotic indices (e.g. Hilsenhoff’s family biotic index, 
BMWP score, ASPT score); these metrics rely on the assignment of (in) tolerance val-
ues to taxa and include richness, 
Functional indices (e.g. % of functional feeding groups); these metrics use the alteration 
in food types under different types of disturbance. 
The major assumption is that single metrics increase or decrease along an increase in 

disturbance. Scores of individual core metrics are aggregated to calculate the multimetric 
score (e.g. Karr 1981, Barbour et al. 1996). The metrics lack sensitivity to contaminants 
though these could provide different information (Fore et al. 1995). 
Assemblage and community assessment techniques
From the beginning of the eighties, with the upcoming multivariate analysis techniques, 
ecologists started to explore relationships between taxa lists and accompanying environ-
mental parameters. Wright et al. (1984) used multivariate analysis techniques to classify 
unpolluted running water sites and to use macro-invertebrate types for assessment and pre-
diction. Verdonschot (1990) conducted a large extensive data collection and multivariate 
analysis of macrofauna in surface waters in the Netherlands. He described macrofaunal site 
groups, which are recognised on the basis of environmental variables and the abundance of 
organisms (so-called cenotypes). The cenotypes are mutually related in terms of key fac-
tors, which represent major ecological processes. The cenotypes and their mutual relation-
ships form a web. This web offers an ecological basis for the daily practice of water and na-
ture management (Verdonschot 1991). The web allows the development of water quality 
objectives, provides a tool to monitor and assess, indicates targets and guides the manage-
ment and restoration of water bodies.
Assemblage and community approaches focus on almost all components and mutual inter-
actions in the aquatic ecosystem. 
Non-taxonomical assessment
Non-taxonomical assessment is defined as assessment based on non-taxonomical character-
istics. In fact the taxonomical entities are grouped into non-taxonomical categories. Two 
examples are the functional group and species trait assessment. Functional group assess-
ment is based upon functional groups, such as the macro-invertebrate functional feeding 
groups. Cummins and Wilzbach (1985) developed a key to the macro-invertebrate func-



1 Using bioindicators to assess rivers in Europe: An overview      15 

tional feeding groups and mutual score between pairs of groups. Groups can be scored for 
habitat-organic resource categories. Ratios can be calculated and related to general ranges 
in three groups of stream orders. Recently, the species traits approach was introduced by 
Southwood (1977, 1988) and applied in the Upper Rhone (Statzner et al. 1994). 

Macro-invertebrate prediction 

Wright et al. (1984) used multivariate analysis techniques to classify unpolluted running 
water sites and to predict community types from environmental data. The results were used 
in the River Invertebrate Prediction and Classification System (RIVPACS). RIVPACS of-
fers a prediction of the macro-invertebrate fauna to be expected at a given site from a small 
number of environmental parameters recorded. By comparing the fauna observed (at spe-
cies or at family level) with the expected or ‘target’ fauna predicted, a measure of site qual-
ity can be obtained (Wright et al. 1989).

The Australian River Assessment Scheme (AUSRIVAS) is based on the RIVPACS 
model. The difference is that the major habitat are sampled and modelled separately. Fur-
thermore, different models are used for different bio-regions in Australia. 

The benthic assessment of sediment (BEAST) (Reynoldson et al. 1995, 1997) is similar 
to AUSRIVAS/RIVPACS approach, but uses in particular abundances of macro-
invertebrates instead of presence/absence. 

The sophisticated ‘Instream Flow Incremental Methodology’ (IFIM; Bovee 1982) and 
the ‘Riverine Community Habitat Assessment and Restoration Concept’ (RCHARC; Nes-
tler et al. 1989) use habitat preferences of fish and macro-invertebrates and attempt to pre-
dict habitat availability at different flow levels.

Recently, the species traits approach was extended towards a prediction tool. Also Ver-
donschot and Goedhart (2000) used the macro-invertebrate typology as basis for a predic-
tion tool by using multi-nominal regression analysis. 

Table 3. Stream assessment methods most commonly applied in standard monitoring 
programmes in the EU member states. Country (countries) the method is most frequently 
used in standard monitoring programmes. A: Austria; B: Belgium; D: Germany; DK, 
Denmark; E: Spain; F: France; FIN: Finland; GB: Great Britain; GR: Greece; I: Italy; L: 
Luxembourg; IR: Ireland; NL: Netherlands; P: Portugal; S: Sweden (Hering et al. 2003). 

Assessment system Country References 

Acidification Index S Henrikson and Medin (1986), John-
son (1998) 

AMOEBA NL Ten Brink et al. (1991) 

Average Score Per Taxon (BMWP-ASPT) GB, IR, S Armitage et al. (1983), Chester 
(1980), Wright et al. (1984) 

Belgian Biotic Index (BBI) B, P, E, L, 
GR

De Pauw and Vanhooren (1983), De 
Pauw et al. (1992) 

BMWP Score UK, S Armitage et al. (1983), Chesters 
(1980), Wright et al. (1984) 

Chandlers Biotic Score and Average Chandler 
Biotic Score (GB) Chandler (1970), Balloch et al. 

(1976)
Danish stream Fauna Index (DSFI) DK, S Skriver et al. (2000) 
EKO NL Verdonschot (1990)

EBEOSWA NL STOWA (1992), Peeters et al. 
(1994)

Indice Biologique de la Qualité Générale 
France (IBG) L, B Verneaux et al. (1982) 
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Assessment system Country References 
Indice Biologique Global Normalisé France 
(IBGN) F, B AFNOR (1992) 

Indice Biotico Esteso (IBE) I Ghetti (1997) 
K-Index (Quality Index) NL Gardeniers and Tolkamp (1976) 
Modified BMWP Score (BMWP-ASPT), 
Spanish version E Alba-Tercedor and Sanchez-Ortega 

(1988)

ÖNORM M 6232 A Österrreichisches Normungsinstitut 
(1997)

Quality Rating System IR de Pauw and Vanhooren (1983), de 
Pauw et al. (1992) 

River Invertebrate Prediction and Classifica-
tion System (RIVPACS) GB, IR Armitage et al. (1983), Wright et al. 

(1993b)
River Oligochaeta-Chironomidae Index (ROCI 
Index) FIN Paasavirta (1990) 

Saprobic Water Quality Assessment Austria A Moog (1995), Moog et al. (1999) 
Saprobienindex DIN 38 410 D DEV (1992) 

1.5 Advantages of using fish as an indicator taxon**

Fishes live permanently in aquatic environments and they are the longest living freshwater 
aquatic organisms. They are present in all ecosystems including those where the situation is 
more or less damaged. Consequently, throughout their lives, fishes integrate the various 
events, which structure the physical and chemical qualities of their habitats. Furthermore, 
fishes occupy a wide range of food-web positions and are sensitive to a broad array of hu-
man perturbations. 

A brief overview of riverine fish community ecology 

Patterns of fish species richness in rivers at the global scale (i.e. river basins in different 
continents) have previously been examined by addressing three of the most widely held hy-
potheses in community ecology. The species-area hypothesis (Preston 1962, McArthur and 
Wilson 1963, 1967) explains that species richness increases as a power function of surface 
area. The species-energy hypothesis (Wright 1983, Wright et al. 1993a) predicts that spe-
cies richness correlates with energy availability. The historical hypothesis (Whittaker 1977) 
explains richness gradients by patterns of recolonisation and maturation of ecosystems after 
glaciation. Factors related to components of river size (surface area and flow regime) and 
energy availability (net primary productivity) are essential for predicting fish diversity 
Oberdorff et al. 1995, Guégan et al. 1998), whereas the roles of other factors, even if indu-
bitably acting (e.g. history) are often more marginal (but see Oberdorff et al. 1997). 

At the basin scale, longitudinal changes in local assemblage richness and composition 
have usually been attributed to one of two processes: biotic zonation or continual addition 
of species downstream. Biotic zonation corresponds to discontinuities in river geomorphol-
ogy or abiotic conditions promoting distinct assemblages along the longitudinal gradient 
(Huet 1959, Schlosser 1982, Balon et al. 1986, Rahel and Hubert 1991, Oberdorff et al. 
1993, Belliard et al. 1997). For example, species replacement may occur as a result of 
physiological specialization for temperature. In contrast to the advocates of zonation, addi-

** Oberdorff T, oberdorf@mnhn.fr
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tions of species are usually related to environmental gradients having smooth transitions of 
abiotic factors contributing to nested patterns of assemblage composition along the longitu-
dinal gradient (Sheldon 1968, Rahel and Hubert 1991). Whatever the process (i.e. biotic 
zonation or species addition) the local species richness usually increases along the up-
stream-downstream gradient (Grenouillet et al. 2004). This gradual accumulation of species 
is often attributed to a downstream increase in habitat diversity [e.g. measured as a function 
of depth, current velocity, substrate composition) (Gorman and Karr 1978, Schlosser 1982, 
Angermeier and Schlosser 1989) and in environmental stability (Horwitz 1978, Grossman 
et al. 1985, Schlosser and Ebel 1989, Poff and Allan 1995).

However, the majority of the above studies mainly focused on species richness patterns 
without addressing explicitly the potential role of environmental factors on the functional 
aspect of these assemblages. Major exceptions are the studies of Rahel and Hubert (1991), 
Oberdorff et al. (1993), Belliard et al. (1997), Smogor and Angermeier (1999) which pro-
vided support for environmental factors effects on trophic and reproductive attributes of 
fish assemblages. Therefore, one can reasonably expect that functional attributes of fish as-
semblages would be related, as for species richness, to natural environmental gradients. 
However, patterns and processes observed in local fish assemblages are not only 
determined by local mechanisms acting within assemblages, but also result from processes 
operating at larger spatial scales (Angermeier and Winston 1998, Oberdorff et al. 1998). 
The richness and structure of local fish assemblages has been linked to factors ranging from 
geomorphology and climate (Hughes et al.  1987, Whittier et al. 1988), to richness of 
regional species pool (Belkessam et al. 1997, Angermeier and Winston 1998, Oberdorff et 
al. 1998).

This space organisation is in fact more complex because a high majority of the species 
must obligatorily carry out migrations of more or less great amplitudes between the various 
habitats of the catchment area for their biological cycle (Lévêque 1995). Thus, at this scale, 
the quality and the composition of the fish communities depend primarily on the integrity 
of the river continuum, the heterogeneity of habitats available, and on the accessibility of 
each element of the hydrosystem. 

Effects of human disturbances on fish communities 

Human uses can disturb relationships between fish and the environment by direct action on 
the composition of communities, (e.g., introduction of alien species, chemical and organic 
pollutions) or indirect action by modification of hydrosystems (e.g. channel and bank modi-
fications, flow regulation and fragmentation) (see Karr and Chu 1999, Sand-Jensen 2001 
for reviews). 

Use of fish for monitoring in Europe 

Fish communities are excellent indicators of aquatic ecosystem health (Karr 1981) and have 
been used to monitor water quality since the early seventies (Verneaux 1973, 1976a, 
1976b). Recently ecologists have developed indicators using a community-based approach 
(Fausch et al. 1990). One such approach to quantify the impact of human activities on the 
aquatic ecosystem via fish communities is the Index of Biotic Integrity (IBI), first formu-
lated by Karr (1981, 1991a). Since its introduction, the IBI has been modified for use in 
other regions and types of ecosystems throughout six continents including Europe (see 
Hughes and Oberdorff 1999 for a review).
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In France, Oberdorff et al. (2001) developed a probabilistic model based on species oc-
currence to define a fish-based index with nation wide application (Oberdorff et al. 
2002a,b; AFNOR 2004). A similar strategy has been adopted by the EC research 
programme FAME (http://www.fame.boku.ac.at) to develop a fish-based assessment 
method for the ecological status of European rivers. Models that are able to predict the 
presence or the abundance of a given species (or set of species) would be useful tools, not 
only for the ecological insight they could provide, but also because they allow the exploita-
tion of existing databases and help in obtaining estimates of ecosystems quality. Table 4 
summarises water assessment methods using fish community. 

Table 4. Water quality assessment using fish fauna in Europe: review of methods. 

Assessment system Concept Variables used Geographical 
area

References

Bio-typology Biocenosis, 
zonation, spe-
cies richness 

Slope, width West-Europe Huet (1959) 

Bio-typology Biocenosis, 
zonation, spe-
cies richness, 
species
composition

Distance from the 
source, width, 
slope, temperature 

West-Europe Verneaux (1973, 
1976a,b)

IBI (Index of Biotic 
Integrity)

Species rich-
ness and com-
position

12 variables: 
stream order, 
abundance classes 
of species richness, 
trophic structure, 
etc.

North American 
(USA), Western 
Europe

Karr 1981 
Oberdorff and 
Hugues (1992) 
Kestemont et al. 
(2000)
Belpaire et al. 
(2000)
Kesminas and 
Virbickas (2000) 

FBI - France Species rich-
ness and com-
position

7 metrics related to 
species richness 
and faunal compo-
sition

France Oberdorff et al. 
(2002a,b);
AFNOR (2004) 

1.6 Conclusions††

The European Water Framework Directive 2000/60/EC (European Parliament 2000) rec-
ommends methods using biological elements for monitoring the ecological status of surface 
waters. Macroinvertebrates, diatoms and fishes are part of the monitoring methods for the 
assessment of river quality. 

This directive also suggests establishing biological reference conditions for all the types 
of the different water-bodies in each European ecoregion. These biological references con-
ditions can be established either by sampling carried out in undisturbed sites, or by use of 
predictive modelling if the reference conditions are impossible to find on the field. A com-
bination of both methods can be envisaged. These reference conditions need to be known in 
order to measure the deviation between the existing conditions of a site and the reference 
conditions of the same site if it would not be disturbed by human activities. The Directive 

†† Ector L, Rimet F, ector@crpgl.lu
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2000/60/EC recommends this measure (Ecological Quality Ratio) to estimate the quality of 
water bodies. 

Many of the existing biological methods for the assessment of the river quality currently 
used in Europe are not exactly following the requirements of the directive 2000/60/EC.

- For benthic diatoms, the tools used in Europe by water managers are biotic indices 
based on species composition, species ecology and relative abundance. Until now no tools 
make comparisons to the reference conditions. It has been shown that diatom assemblages 
have regional distribution (Rimet et al. 2004, Soininen 2004). Therefore, the existing tools 
should be either adapted to each river type in each ecoregion, or replaced by new ones (Ec-
tor et al. 2004). 

- For benthic macro-invertebrates fauna, the tools used by the authorities in the Euro-
pean countries are more diverse. They are based on the diversity, the presence of sensitive 
taxa, or the species composition and abundance. Nevertheless the RIVPACS method is as-
sessing the river quality by establishing comparisons to the reference conditions. 

- The water managers are beginning to use the fish for a few years to assess river health. 
The methods are principally based on species composition and abundance, age structure or 
presence of sensitive species. Fishes constitutes a valuable tool for the assessment of long-
term environmental variations and of river continuity. 

Most of biotic indices are applicable in many regions because they are based on the 
ecology of worldwide spread species. They can give a good idea of the river quality but do 
not take into account the specificity of the precise sampled station; in particular its belong-
ing to a precise ecoregion and typological level. Rott et al. (2003) stated that uncritical use 
of diatom indication methods without check of regional situation and river-monitoring ob-
jectives should be avoided. Indices developed in Western Europe are probably applicable in 
Eastern Europe but are probably not optimised. In order to improve water quality assess-
ment tools for rivers, biological references conditions for each ecoregion and for each 
stream type have to be defined and to be taken into account. Finding reference conditions in 
the field is a critical point. As suggested in the directive, predictive models can be used for 
reference condition definition. Diatom, macroinvertebrate and fish communities can be es-
timated with predictive models by mean of physical and chemical parameters (Ector et al. 
2004). One of the aims of the PAEQANN project is to develop such predictive models.
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2.1 Introduction 

Ecological communities are the expression of complex biological processes (reproduction, 
nutrition, rest, interspecific relationships, et cetera) and abiotic processes (nutrient cycling, 
discharge regimes, erosion, et cetera), both being expressed on various scales of time and 
space. To analyse all these processes (i.e., to include and understand the relationships which 
exist in the community) and to characterise their relationships using environmental parame-
ters, their degree of importance, and their structuring, require the observation of variables 
related to the operation of the system. The complexity of the ecological systems often re-
sults in complex relations between the biological and abiotic variables, justifying the use of 
multiple modelling techniques. These models are based on different statistical and simula-
tion techniques, designed to predict community structure from environmental variables.

This chapter aims to review current ecological models that predict community structure 
in aquatic ecosystems for the selection of the appropriate models, depending on the type of 
target community. Ecological water management is designed to enhance the value of 
aquatic ecosystems. Such management requires the understanding of how these ecosystems 
function, and thus how communities are related to the environment. To learn community-
environment relationships, data-analytical approaches are explored: Conventional statistical 
models, Artificial neural networks, Bayesian and Mixture models, Support vector machines, 
Genetic algorithms, Mutual information and regression maximisation techniques, and 
Structural dynamic models. In the following sections, we have summarized these modelling 
techniques and presented their applications in ecological studies, together with their 
strengths and weaknesses.

2.2 Conventional statistical models 

Conventional statistical approaches mainly follow three steps:
1. Samples are clustered into groups on the basis of the biological data.
2. Groups are related to the environmental data, for example by discriminant analysis. 
3. The reverse process is used whereby regression techniques use environmental variables 

to predict the biological communities. 

Multinomial logistic regression is an improvement over normal discriminant analysis in 
carrying out step 2. In the traditional approach, environmental data plays no part in the clus-
ter analysis of step 1. This may be unfortunate. If the environmental data already shows dis-
tinct groups as a result of water chemistry processes, it is a shame not to use this informa-
tion. There is also a statistical reason. If, for example, discriminant analysis is used in step 2 
of the analysis, a sample may be misclassified on the basis of the environmental data but on 
further inspection happens to be a borderline case in the cluster analysis. In this case, it 

* Correspondence: lek@cict.fr
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would be better to reclassify such a sample and iterate the two steps. A popular rival 
method for studying community-environment relationships is to use ordination rather than 
cluster analysis in step 1. By using ordination, the biological data is reduced to continuous 
gradients rather than to groups. But groups have a simplicity that helps to communicate the 
results to ecosystem managers. Groups, when accurately described in a typology, can derive 
meaning and become real, as if they already existed. The cenotypes of Verdonschot (1990) 
are just one example. For the above reasons the potential benefits of other model-based 
methods were investigated within the EU funded R&D, Fifth Framework Programme (FP5) 
PAEQANN project (Predicting Aquatic Ecosystems Quality using Artificial Neural Net-
works: impact of environmental characteristics on the structure of aquatic communities (al-
gae, benthic and fish fauna)). 

Generalized linear models (GLMs) are used to perform regression modelling for non-
normal data with a minimum of extra complication compared to normal linear regression. 
In the statistical analysis of data and observational studies, the identification and adjustment 
for prognostic factors is an important component. A valid comparison of different treat-
ments requires the appropriate adjustment for relevant prognostic factors. The failure to 
consider important prognostic variables, particularly in observational studies, can lead to er-
rors in estimating treatment differences. In addition, incorrect modelling of prognostic fac-
tors can result in the failure to identify nonlinear trends or threshold effects.

Flexible statistical methods that may be used to identify and characterise the effect of 
potential prognostic factors on an outcome variable are also described in the following sec-
tions. These methods are called "generalised additive models", and extend the traditional 
linear statistical model. They can be applied in any setting where a linear or generalised lin-
ear model is typically used. These settings include standard continuous response regression, 
categorical or ordered categorical response data, count data, survival data and time series.

Tree-based methods involve dividing the observations into groups that differ with re-
spect to the variable of interest. A tree-based procedure automatically chooses the grouping 
that results in homogeneous groups that have the largest difference compared to the vari-
able of interest. The tree-based method first divides the observations into two groups. The 
next step is to subdivide each of the groups based on another characteristic. The process of 
subdividing is separate for each of the groups. This is an elegant way of handling interac-
tions that can become complicated in traditional linear models. When the process of subdi-
vision is complete, the result is a classification rule that can be viewed as a tree. For each of 
the subdivisions, the proportion of the variable of interest can be used to predict the effect 
of that variable. The structure of the tree gives insight into which characteristics are rele-
vant. There are several tree-based methods that differ with respect to the types of variables 
allowed, the way groups are chosen, and the way groups are split. The most common meth-
ods are Classification and Regression Trees (CART) and Chi-Squared Automated Interac-
tion Detection (CHAID).

Partial least squares (PLS) is a method for constructing predictive models when the fac-
tors are many and highly collinear. The general idea of PLS is to try to extract from many 
factors a few underlying or latent factors, accounting for as much of the manifest factor 
variation as possible while modelling the responses correctly. The overall goal is to use the 
factor to predict the response in the population.

Multinomial logistic regression (MLGR)

A two-step approach is often used to build a model for the prediction of community compo-
sition from environmental data. In the first step, sites are clustered into groups on the basis 
of the biological data alone. This is generally a so-called hard clustering in which every site 
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is assigned to one organism group only. In the second step, these groups are related to the 
environmental data. Two important methods to establish this organism group – environ-
ment relationship are discriminant analysis and multinomial logistic regression. Discrimi-
nant analysis assumes that the environmental data follows a multivariate normal distribu-
tion and that is often not the case, for example for dichotomous or nominal environmental 
variables. Furthermore, for the MLGR model, the whole range of methods and techniques 
for GLM is available, such as selection of environmental variables. A third advantage of 
MLGR is that it directly models the probability of occurrence of each organism group as a 
function of the environmental data, while in discriminant analysis, this is a by-product of 
the analysis. MLGR is therefore the preferred method for relating organism groups to envi-
ronmental data. The results can be used to predict the occurrence of organism groups from 
environmental variables. MLGR is a well-established technique and is a direct extension of 
ordinary logistic regression, which itself is a special case of GLM. Further information 
about multinomial logistic regression can be found in McCullagh and Nelder (1994) and in 
Hosmer and Lemeshow (1989). 

There are in general a lot of environmental variables in ecological studies, and they are 
frequently correlated. Using all variables in a model then yields unstable estimators of the 
regression coefficients and thus poor predictions. Some form of selection of environmental 
variables is therefore necessary. Forward selection, backward elimination or stepwise re-
gression result in only one model, and alternative models, with an equivalent or even better 
fit, are easily overlooked. A preferable method is to fit all possible regression models and to 
evaluate these according to some criterion such as deviance. However, the fitting of all pos-
sible regression models is very computing-intensive, especially for multinomial logistic 
models. A practical approach is to perform an iterative model selection. Firstly, the vari-
ables are subdivided into a few groups, and model selection is performed within each 
group. The best predictors from each group are then combined in a new model selection 
step, which yields a few best variables. With these few variables fixed in the model, the re-
maining variables are again subdivided into a few groups and the next iteration starts. This 
eventually results in a number of best candidate models. The predictive power of these can-
didate models can be assessed by means of leave-one-out, also called cross validation. In 
the first leave-one-out step, the first observation is temporarily deleted from the data, and 
the model is fitted to the remaining observations. This model is then used to calculate a 
leave-one-out prediction for the first observation. In the same way, leave-one-out predic-
tions are obtained for all observations, by subsequently removing them from the data. The 
mean leave-one-out probability of predicting the correct organism group can then be used 
as a criterion for choosing among the candidate models. 

Another approach, which has been proven beneficial for the prediction of organism 
groups, is what is called hierarchical modelling. This approach assumes that the effect of 
certain environmental variables is more or less the same for groups of organism groups. In-
stead of estimating this effect for every individual group, it is now estimated for groups of 
organism groups. In this way, a reduction of the number of estimated parameters can be ac-
complished.

Generalized linear models (GLM) 

GLMs are used to carry out regression modelling for non-normal data with a minimum of 
extra complication compared to normal linear regression. GLMs are flexible enough to in-
clude a wide range of common situations, but at the same time allow most of the familiar 
ideas of normal linear regression to carry over. The essay by Firth (1991) gives a good in-
troduction to GLMs; the comprehensive reference is McCullagh and Nelder (1994). GLM 
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assume a link linear relationship with some known monotonic function. Furthermore, re-
sponses are not normal, thus generalised linear models assume some known variance func-
tion appropriate for the data at hand. 

GLMs refer to a wide class of statistical models including log-linear models, analysis of 
variance, probit analysis, logistic regression and standard multiple regression (Dobson 
1983, McCullagh and Nelder 1994). As a result, GLMs have many applications. The GLMs 
were first given a firm theoretical and computational framework by Nelder and Wedder-
burn (1972), who assumed distributions in the exponential family. The algorithms for fit-
ting generalised linear models are robust and well established (Nelder and Wedderburn 
1972, McCullagh and Nelder 1994).

Generalized additive models (GAMs) 

One of the most commonly used statistical models in ecological research is multiple linear 
regression (MLR) for the quantitative dependent data and the logistic regression model for 
binary data. The logistic model is used as a specific illustration of GAM. Logistic regres-
sion (and many other techniques) model the effects of prognostic factors xj in terms of a 
linear predictor of the form 

jjx , where the 
j
 are parameters. The GAM replaces 

jjx  with 
jj xf  where 

jf  is a unspecified ("non-parametric") function. This func-

tion is estimated in a flexible manner using a scatterplot smoother (e.g., local regression; 
LOESS). The estimated function 

jj xf̂  can reveal possible nonlinearities in the effect of 

xj.
Hastie and Tibshirani (1990) is an excellent reference of GAM, and Chambers and 

Hastie (1992) cover GAM and LOESS. The building block of the GAM algorithm is the 
scatterplot smoother. Such procedure is known as "backfitting" and the resulting fit is 
analogous to multiple regression for linear models. When GAMs are fitted to binary re-
sponse data (and in many other settings), the appropriate error criterion is a penalised log 
likelihood or a penalised log partial-likelihood. To maximise this, the backfitting procedure 
is used in conjunction with a maximum likelihood or maximum partial likelihood algo-
rithm. The usual Newton-Raphson routine for maximising log-likelihoods in these models 
can be cast in an IRLS (iteratively reweighted least squares) form. This involves a repeated 
weighted linear regression of a constructed response variable on the covariates: each re-
gression yields a new value of the parameter estimate, which gives a new constructed vari-
able, and the process is iterated. In the GAM, the weighted linear regression is simply re-
placed by a weighted backfitting algorithm. Algorithm details can be found in Hastie and 
Tibshirani (1990). 

Tree-based regression models 

Tree-based methods involve dividing the observations into groups that differ with respect to 
the variable of interest. A tree-based procedure automatically chooses the grouping that re-
sults in homogeneous groups that have the largest difference in proportion to the variable of 
interest. The tree-based method first divides the observations into two groups. The next step 
is to subdivide each of the groups based on another characteristic. The process of subdivid-
ing is separate for each of the groups. This is an elegant way of handling interactions that 
can become complicated in traditional linear models. When the process of subdivision is 
complete, the result is a classification rule that can be viewed as a tree. For each of the sub-
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divisions, the proportion of the variable of interest can be used to predict the effect of that 
variable. The structure of the tree provides insight into the characteristics that are relevant.

Tree-based methods have several attractive properties when compared to traditional 
methods. They provide a simple rule for classification or prediction of observations, they 
handle interactions among variables in a straightforward way, they can easily handle a large 
number of predictor variables, and they do not require assumptions about data distribution. 
However, tree-based models do not conform to the usual hypothesis testing framework and 
there is no assumption of a linear model. This would be a tree with a lot of branches and as 
many terminal segments (leaves) as there are cases. Normally, some “stopping rule” is ap-
plied before this extreme condition is reached. Inevitably this means “impure partitions” 
occur, but this is necessary to balance accuracy against generality. A tree which produces a 
perfect classification of training data would probably perform poorly with new data. 

There are several tree-based methods that differ with respect to the types of variables al-
lowed, the way groups are chosen, and the way groups are split. The most common meth-
ods are CART and CHAID. CART and similar methods allow the response and grouping 
variables to be either categorical or continuous. CART methods are implemented in 
SYSTAT version 7, in S-Plus, and in SAS. CHAID and similar methods require the re-
sponse variable to be categorical. CHAID methods are available in an SPSS add-on module 
and in the SAS macro %TREEDISC. The best description of regression trees theory can be 
found in Breiman et al. (1984). 

Partial least square regression (PLS) 

In such so-called soft science applications, the researcher is faced with many variables and 
poorly understood relationships, and the object is merely to construct a good predictive 
model. For example, ecological communities are often used to estimate the biodiversity of 
the study site and their structures are related to different environmental variables. In this 
case, the factors are the measurements that comprise the environmental data; they can num-
ber dozens or hundreds but are likely to be highly collinear. The responses are community 
amounts that the researcher wants to predict in future samples. 

Population
Sample

Factors Responses

Factors Responses

T U

Fig. 2.1. Indirect modelling 

PLS is a method for constructing predictive models when the factors are many and 
highly collinear. Note that the emphasis is on predicting the responses and not necessarily 
on trying to understand the underlying relationship between the variables. For example, 
PLS is not usually appropriate for screening out factors that have a negligible effect on the 
response. However, when prediction is the goal and there is no practical need to limit the 
number of measured factors, PLS can be a useful tool. The general idea of PLS is to try to 
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extract from many factors, a few underlying or latent factors, accounting for as much of the 
manifest factor variation as possible while modelling the responses well. Figure 2.1 gives a 
schematic outline of the method. The overall goal is to use the factor to predict the re-
sponses in the population. This is achieved indirectly by extracting latent variables T and U
from sampled factors and responses, respectively. The extract factors T (also referred to as 
X-scores) are used to predict the Y-scores U, and then the predicted Y-scores are used to 
construct predictions for responses. For the details concerning PLS methods, readers can re-
fer to Geladi and Kowalski (1986), Höskuldsson (1988), and HeIland (1990). 

PLS is a regression technique to solve the linear model in a stepwise fashion, including 
every predictor variable in the model and bears some resemblance to principal component 
regression (PCR) in that PCR also creates an orthogonal set of variables. However, in PCR 
the orthogonal variable extraction is independent of the target variables and a subsequent 
multinomial regression (MR) step is needed to relate target and explanatory variables, while 
in PLS, the orthogonal set of variables is constrained to maximise directly the communality 
of the predictor and response variable blocks. PLS applies this constraint by using NIPALS 
(Non-linear Iterative Partial Least Squares) rather than digitalisation, to extract factors. PLS 
calculates an orthogonal set of explanatory variables that are linear combinations of the 
original variables. Cross validation is used to determine the number of components that 
yield an optimally predictive model. A cross validated PLS model is usually less subject to 
errors of over-specification than is a regression model.

Research in ecological sciences sometimes involves explaining controllable and/or easy-
to-measure variables (factors), or predicting the behaviour of other variables (response). 
When the factors are few in number, not significantly redundant (collinear), and have a 
well-understood relationship to the responses, then MLR can be a good way to turn data 
into information. However, if any of these three conditions breaks down, PLS can be more 
efficient and appropriate than MLR. 

Malmqvist and Hoffsten (1999) used PLS models to predict community parameters 
(taxonomic richness, abundance and biomass) of benthic macroinvertebrates at sites ex-
posed to elevated levels of copper, zinc, lead and cadmium resulting from leakage from old 
mine deposits. They showed that species richness at undisturbed sites was positively related 
to the size of the catchment, pH, channel width, calcium concentration and the proportion 
of deciduous trees in the riparian zone. Tegelmark (1998) also developed models for forest 
ecosystem management with PLS and revealed strong climatic correlation with forest re-
generation whereby the main variation could be expressed in terms of latitude and altitude, 
e.g. positive correlations with temperature sum, length of growing season and humidity, 
and negative correlation with frost frequency. 

2.3 Artificial neural networks (ANNs) 

ANNs are powerful computational tools that can be used for classification, pattern recogni-
tion, empirical modelling and for many other tasks. Even though most of these tasks can 
also be performed by conventional statistical or mathematical methods, ANNs often pro-
vide a more effective way to deal with problems that are difficult, if not intractable, for tra-
ditional computation. In fact, while traditional computation is based on the a priori selec-
tion of suitable functions or algorithms, ANNs are able to adjust their inner structures to 
provide optimal solutions, given enough data and a proper initialisation. Thus, if appropriate 
inputs are applied to an ANN, it can acquire knowledge from the environment, mimicking 
the functioning of a brain, and users can later recall this knowledge. 
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ANNs lie in a sort of machine learning middle ground, somewhere between engineering 
and artificial intelligence (Zurada 1992). They use mathematical techniques, such as mean-square 
error minimisation, but they also rely on heuristic methods, since very often there is no theo-
retical background to support decisions about ANNs implementation. Several kinds of ANNs 
have been developed during the last 10-15 years, but two main categories can be easily rec-
ognised, depending on the type of learning process: 

in supervised learning, there is a "teacher" who in the learning phase "tells" the ANN 
how well it performs or what the correct behaviour would have been; 
in unsupervised learning the ANN autonomously analyses the properties of the data set 
and learns to reflect these properties in its output. 

In the PAEQANN project, both categories of ANNs have been used, with special atten-
tion to self-organizing map (SOM) for unsupervised learning, and Multilayer Perception 
(MLP) with a backpropagation algorithm for supervised learning. Kernel-induced nonlinear 
models (KINMs) have been developed in recent years and they can be used to perform 
nonlinear modelling in complex problems found for instance in ecological research. They 
extract the most informative information from the real-world data sets and establish the 
nonlinear model by utilizing those partial informative data points in the high dimensional 
kernel-induced space. The possibility of modelling using unsupervised competitive artifi-
cial neural networks (CANNs) and the supervised linear vector quantization (LVQ) net-
work are also described. Applying these two networks in combination may give a powerful 
tool for fast classification of future observations.

Self-organizing maps (SOM) 

SOM was proposed by Kohonen in the early eighties (Kohonen 1982). Since that time, the 
SOM has been used in a number of different applications in diverse fields and they ware the 
most well known ANNs with unsupervised learning rules. The algorithm performs a topol-
ogy-preserving projection of the data space onto a regular low-dimensional space (usually a 
2-dimensional space) and can be used to visualise clusters efficiently (Kohonen 2001). This 
method is recommended for use in an exploratory approach for datasets in which unex-
pected structures might be found. The SOM approximates the probability density function 
of the input data, and is a method for clustering, visualisation, and abstraction, the idea of 
which is to show the data set in another, more usable, representation form. The goal of the 
SOM is to put the dataset on the map preserving the neighbourhood, so that similar vectors 
can be mapped close together on the grid. 

The SOM consists of two layers: the first (input layer) is connected to each vector of the 
dataset, the second (output layer) forms a two-dimensional array of nodes (computational 
units) (Fig. 2.2). In the output layer, the units of the grid (reference vectors) give a repre-
sentation of the distribution of the data set in an ordered way. Input and output layers are 
connected by the connection intensities represented in reference vectors. When an input 
vector x is sent through the network, each neuron k of the network computes the distance 
between the weight vector w and the input vector x. The output layer consists of D output 
neurons which are usually arranged into a two-dimensional grid in order to improve 
visualisation. The best arrangement for the output layer is a hexagonal lattice, because this 
does not favour horizontal and vertical directions as much as the rectangular array (Koho-
nen 2001). Among all D output neurons, the best matching unit (BMU), which has mini-
mum distance between weight and input vectors, is the winner. For the BMU and its 
neighbourhood neurons, the weight vectors w are updated by the SOM learning rule. The 
training is usually carried out in two phases: at first, a rough training for ordering with a 
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usually carried out in two phases: at first, a rough training for ordering with a large 
neighbourhood radius, and then a fine tuning with a small radius. This results in training the 
network to classify the input vectors by the weight vectors they are closest to. The detailed 
algorithm of the SOM can be found in Kohonen (2001) for theoretical considerations and 
Chon et al. (1996) and Park et al. (2003a) for ecological applications. After the learning 
process of the SOM, it is important to know whether it has been properly trained or not, be-
cause an optimal map for the given input data should exist. To evaluate the map quality, 
two criteria, the quantization error for resolution and the topographic error for topology 
preservation, are commonly measured. The former is the average distance between each 
data vector and its BMU for measuring map resolution, and the latter represents the propor-
tion of all data vectors for which first and second BMUs are not adjacent for the measure-
ment of topology preservation (Kiviluoto 1996). This error value is, thus, used as an indica-
tor of the accuracy of the mapping in the preserving topology (Kohonen 2001).

Fig. 2.2. A two-dimensional self-organizing map. Each sphere indicates a neuron in the in-
put layer as well as in the output layer.

On the trained SOM map, it is difficult to distinguish subsets because there are still no 
boundaries between possible clusters. Therefore, it is necessary to subdivide the map into 
different groups according to the similarity of the weight vectors of the neurons. To do this, 
the unified distance matrix algorithm (U-matrix; Ultsch 1993) is commonly used. The U-
matrix calculates distances between neighbouring map units, and these distances can be 
visualised to represent clusters using a grey scale display on the map (Kohonen 2001). In 
addition, a hierarchical cluster and a k-means cluster methods are frequently used.

During the learning process of the SOM, neurons that are topographically close in the 
array will activate each other to learn something from the same input vector. This results in 
a smoothing effect on the weight vectors of neurons (Kohonen 2001). Thus, these weight 
vectors tend to approximate the probability density function of the input vector. Therefore, 
the visualisation of elements of these vectors for different input variables is a convenient 
way to understand the contribution of each input variable with respect to the clusters on the 
trained SOM. This visualisation method is related to a principal component analysis (PCA), 
and more directly describes the discriminatory powers of input variables in mapping (Ko-
honen 2001). Therefore, to analyse the contribution of variables to cluster structures of the 
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trained SOM, each input variable (component) calculated during the training process is 
visualised in each neuron on the trained SOM map in grey scale.

According to these characteristics of the network, the SOM can be used for clustering 
without prior knowledge of the number or size of the clusters, and for studying multivariate 
time series (Ultsch 1999). Cho (1997) showed that the SOM is able to recognise clusters in 
datasets where other statistical algorithms failed to produce meaningful clusters. The visu-
alisation of clusters is very straightforward and can outperform the results obtained by con-
ventional classification methods. A drawback of the SOM is that the size and the shape of 
the map have to be fixed in advance. Growing self-organising networks have been proposed 
in order to deal with this problem (Villmann and Bauer 1998), but this approach remains 
still to be applied to ecological data. 

Multilayer perceptron (MLP) 

MLP with a backpropagation algorithm, also called multilayer feed-forward neural net-
works, is very popular and are used for a wide variety of problems more than other types of 
neural networks. The MLP is based on the supervised procedure, i.e. the network is built 
with a dataset where the outputs are known. The MLP is a powerful system, often capable 
of modelling complex relationships between variables. For a given input, one can predict an 
output.

Input Layer
Hidden Layer

Output Layer

Fig. 2.3. Schematic illustration of a three-layered feed-forward neural network, with one 
input layer, one hidden layer and one output layer 

MLP is a layered feed-forward neural network, in which the non-linear elements (neu-
rons) are arranged in successive layers, and the information flows unidirectionally, from in-
put layer to output layer, through the hidden layer(s) (Fig. 2.3). As can be seen in this fig-
ure, neurons from one layer are connected to all neurons in the adjacent layer, but no lateral 
connection between neurons within one layer, or feedback connection are possible. The 
number of input and output neurons depends on the number of explanatory and explained 
variables, respectively. The hidden layer(s) is (are) an important parameter in the network. 
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Fig. 2.4. Basic processing neuron in a network. Each input connection value (xi) is associ-
ated with a weight (wji).

The learning and update procedure of the MLP is based on a relatively simple concept: 
if the network gives the wrong answer, then the weights are corrected so that the error less-
ens, thus future responses of the network are more likely to be correct. The conceptual basis 
of the MLP was presented to a wide readership by Rumelhart et al. (1986a). In a training 
phase, a set of input/target pattern pairs is used for training, which is presented to the net-
work many times. After training is stopped, the performance of the network is tested. The 
MLP learning algorithm involves a forward-propagating step followed by a backward-
propagating step. 

Like a real neuron, the artificial neuron has many inputs, but only a single output, which 
can stimulate many other neurons in the network. The neurons are numbered, for example 
the one neuron in Figure 2.4 is called j. The jth input neuron receives from the ith neurons 
indicated as x. Each connection to the jth neuron is associated to a quantity called weight. 
The weight on the connection from the ith neuron to the jth neuron is denoted wji. An input 
connection may be excitatory (positive weight) or inhibitory (negative weight). A net input 
(called activation) for each neuron is the sum of all its input values multiplied by their cor-
responding connection weights. 

The backward-propagating step begins with the comparison of the network output pat-
tern to the target value, when the difference (or error) is calculated. The backward-
propagating step then calculates error values and changes the incoming weights, starting 
with the output layer and moving backward through the successive hidden layers. The error 
signal associated with each processing unit indicates the amount of error associated with 
that unit. This parameter is used during the weight-correction procedure, while learning is 
taking place. A large value for the error signal indicates that a large correction should be 
made to the incoming weights; its sign reflects the direction in which the weights should be 
changed. The adjustment of weight depends on three factors: the error value of the target 
unit, the output value for the source unit and the learning rate. The learning rate, commonly 
between 0 and 1, determines the rate of learning of the network. 

Before starting the training, the connection weights are set to small random values. 
Next, the input patterns are applied to the network to obtain the output. The differences be-
tween the output calculations and the target expected are used to modify the weights. One 
complete calculation is called an epoch or iteration. This processed is repeated until a suit-
able level of error is achieved. Using a parameter called momentum, chosen generally be-
tween 0 and 1, enables a local minimum to be avoided. 

A testing set of data serves to assess the performance of the network after training is 
complete. The input patterns are fed into the network and the desired output patterns com-
pared with those given by the neural network. The agreement or disagreement of these two 
sets gives an indication of the performance of the neural network model. If it is possible, 
the best solution is to divide the data set with the aim of using two different sets of data, 
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one for the training and the testing stage and the second to validate the model (Mastrorillo 
et al. 1998). Different partitioning procedures exist according to the size of the available 
dataset: k-fold cross-validation or hold-out (Utans and Moody 1991, Efron and Tibshirani 
1995, Friedman 1997), and leave-one-out (Efron 1983, Kohavi 1995). 

The network can be overtrained, that is it loses its capacity to generalise. Three parame-
ters are responsible for this phenomenon: the number of epochs, the number of hidden lay-
ers and the numbers of neurons in each hidden layer. It is very important to determine the 
appropriate numbers of these elements in MLP. 

MLPs can be regarded as an extension of the many conventional techniques for under-
standing complex data, and they have been developed over several decades. Feed-forward 
ANNs are powerful tools for performing non-linear pattern discrimination. They are espe-
cially powerful in pattern recognition and other decision-making, forecasting and signal 
processing and in the modelling of complex non-linear systems by fitting the network to 
non-linear data. These are major advantages of using MLP in ecology where the relation-
ships in the data sets are always non-linear and complex. 

However, they do not always show high performance abilities. These failures are due to 
inadequate training, inappropriate architecture for the used dataset, and non-separability of 
the feature data (inappropriate data). These problems underline the necessity of model cali-
bration for its successful use. One drawback of MLP is that the gradient training encounters 
multiple local minima. Another comes from the model type. MLP is in fact a black-box 
type model which means that it is not possible to interpret the phenomena that occur inside 
the network. The complexity of the model comparing to the classical one as the regression 
models can also be seen as a disadvantage. 

Counterpropagation network (CPN) 

CPN proposed by Hecht-Nielsen (1987) is a combined network of the two artificial neural 
networks: SOM (Kohonen 1982) and the Grossberg outstar (Grossberg 1982). The name 
“counterpropagation” is derived from the initial presentation of this network as a five-
layered network with data flowing inward from both sides (Fig. 2.5). There is literally a 
counterflow of data through the network. The network is designed to approximate a con-
tinuous function defined on a data set and serves as a statistically optimal self-programming 
look-up table (Hecht-Nielson 1987). 

Kohonen SOM – Grossberg network

Kohonen SOM – Grossberg network

Kohonen SOM – Grossberg network

Kohonen SOM – Grossberg network
(input) x

(output) x’

y’ (output)

y (input)

Fig. 2.5. Structure of a full counterpropagation network 

The full network is continuous and works best if the inverse function exists (Hecht-
Nielsen 1987, Lin and Lee 1996). Although this is an accurate picture of the network, it is 
complex; thus a simplified forward-only CPN is preferred with no loss of accuracy (Hecht-
Nielson 1987).

As with any neural network, there are a few steps that must be performed to test a net-
work's performance. Initially the data for explanatory variables and dependent variables are 
given to the SOM layer and the Grossberg layer, respectively. For the CPN the learning 
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process occurs in two phases. First, the SOM layer must be trained. The learning process is 
carried out in an unsupervised mode to follow the general SOM learning rules. After learn-
ing the SOM layer, the Grossberg layer should be trained. This is carried out in a super-
vised mode. The weight vector is updated according to the Grossberg outstar learning rule. 
Finally, the trained CPN functions exactly as an optimal self-programming look-up table. 

Strengths and weaknesses of CPN depend on the geometry and probabilities of the in-
puts and outputs. If this information is known or estimated, it can be a very good approach. 
Another advantage is the speed of convergence. Compared to other mapping networks, it 
typically requires fewer training steps to achieve its best performance. This kind of ap-
proach shows how to combine different network architectures, unsupervised network and 
supervised network, and can produce good results for certain classes of patterns. Finally, 
the CPN can provide the clustering and predicting values in the same model. However there 
are also certain limitations, in that a large database is required to train the network, and the 
predicted values by the network are dependent on the number of groups in the SOM layer. 

Competitive artificial neural network (CANN) in combination with 
linear vector quantisation (LVQ) 

Combination network of CANN and a supervised LVQ may give a powerful tool for fast 
classification of future observations. A CANN consists of two layers, an input layer and an 
output layer. The input layer consists of a number of input variables; the output layer con-
sists of one neuron for each cluster that will be formed. The researcher has to decide on the 
number of clusters. The aim of a CANN is to find this number of so-called ‘prototype vec-
tors’ that can be used to describe these clusters. Starting from the chosen number of initial 
prototypes (either randomly chosen, or obtained through, for example, K-means clustering), 
for each input pattern in turn the distance to each prototype is calculated. The prototype it is 
closest to, is then adjusted somewhat into the direction of this input pattern. This process is 
iterated until the change in the adjustments becomes smaller than a predetermined threshold 
(amongst others, Haykin 1999, Hagan et al. 1996).

The LVQ is a network for classification, i.e. it can be trained to learn the relation be-
tween a set of input variables and a qualitative output variable. In ordinary statistical lan-
guage, this means its parameters are iteratively estimated to minimise the prediction errors. 
Figure 2.6 gives a schematic description of an LVQ network. The circles represent ‘nodes’ 
in the network; the squares are indicators for the target variable which the network aims to 
reproduce. Each square represents one class or group. In addition to the input and output 
layers, this network has a third, so-called hidden layer. The hidden layer identifies, as it 
were, a number of ‘subclasses’ for each class. This feature of the network allows it to have 
classes formed from non-convex input regions. The number of hidden neurons has to be de-
termined by the researcher.

The first layer in the network is a competitive layer; it is similar to the one described 
above, except that here the prototypes and input patterns are not scaled to unit length. The 
second layer merely combines the subclasses into broader classes. The weights of this sec-
ond layer are not changed during the estimation process. More details again can be found in 
Haykin (1999) and Hagan et al. (1996).

CANNs can be used to discover clusters of natural sites. For example, think of cluster-
ing sites on the basis of environmental characteristics and biotic data. Once a satisfactory 
clustering has been achieved, an LVQ can then be trained to learn the features of the differ-
ent clusters from only a subset of the input variables, for example from only variables that 
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are easy to measure. Then future observations could be assigned to one of the clusters using 
this LVQ, that is to say, using only easy-to-measure variables. 
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Fig. 2.6. Schematic diagram of an LVQ network (The input layer should be fully connected 
to the hidden layer) 

Kernel-induced nonlinear model (KINM) 

KINMs are derived from the principle of statistical learning theory (Vapnik 1995). They 
have gained more and more attention since the 1990’s and have been applied in many areas 
due to the attractive features and the promising performances. As we know, MLR or its 
generalised version is widely used for a number of ecological problems. In order to deal 
with nonlinearity, ANNs are introduced and make great progress towards more accurate 
models (Lek and Guegan 2000). Nevertheless, there are still some weaknesses in ANN, 
such as the local minimum of the error surface and the difficulties with generalisation. 
Therefore, it is very significant to find an alternative or robust method to empirical data 
modelling in ecological areas. 

The main idea behind KINMs is to map the initial data space to the high dimensional 
feature space by a nonlinear kernel function chosen a priori, also called kernel-induced 
space. In this space, it is possible to implement a linear regression, which corresponds to a 
nonlinear regression function in the initial data space.

One of the most important concepts in KINMs is the loss function (L), which determines 
how to penalise the function according to the amounts of error ( ) between the desired and 
the practical values. Figure 2.7a is the commonly used quadratic loss function and Figure 
2.7b is the linear loss function. In KINMs, in order to obtain the sparse distribution of the 
“support vectors” (explained later), a new type extended from the linear one is developed as 
shown in Figure 2.7c, the so-called -insensitive loss function.

Vapnik (1995) and Gunn (1998) provide more details on both the theoretical and the 
practical aspects of KINMs. The advantages of KINMs, in comparison to ANNs, are due to 
the implementation of the structural risk minimization (SRM) principle. This principle has 
been shown to be superior to the most commonly used empirical risk minimisation (ERM) 
principles employed in ANN. SRM minimises an upper bound on the VC dimension, i.e. 
the generalisation error, while ERM minimizes the error on the training data, usually in a 
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quadratic fashion. This difference enhances the power of KINMs when modelling nonlinear 
complex problems. 

 (a)          (b)                         (c) 
L
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L
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Fig. 2.7. Three types of loss functions. (a) Quadratic, (b) linear, and (c) -insensitive

Application of ANNs in ecological studies 

Over the last ten years, ANNs have been applied in diverse ways in ecological modelling 
(Colasanti 1991) and resulted in different applications. Since Chon et al. (1996) applied the 
SOM for patterning benthic communities, the SOM has become more and more popular for 
extracting the complexity of ecological datasets in diverse ways: assessment of water qual-
ity (Walley et al. 2000, Aguilera et al. 2001), patterning communities (Chon et al. 1996, 
2000a, Park et al. 2003a, Foody 1999), evaluation of ecosystems using exergy (Park et al. 
2001a), prediction of population and communities (Cereghino et al. 2001, Obach et al. 
2001), modelling micro-satellite of fish (Giraudel et al. 2000), and conservation strategies 
for endemic species (Park et al. 2003b). Giraudel and Lek (2001) compared the ordination 
capability of the SOM with conventional statistical multivariate analysis showing high per-
formance of the SOM. Recently, Park et al. (2003a) presented a method to relate explana-
tory variables with the SOM map and contribution of input variables by simply calculating 
the mean value of each explanatory variable in each output neuron of the trained SOM. 
This simple technique can provide useful information to understand the nature of the data-
sets.

The MLP has been implemented in many different research topics of ecological studies in differ-
ent ways. Typical ecological applications of the MLP include amongst others: pattern recognition 
and classification in taxonomy (Nakano et al. 1991, Simpson et al. 1992, 1993, Boddy et al. 
2000), remote sensing (Civco 1993, Kimes et al. 1996, Mann and Benwell 1996, Keiner 
and Yan 1998, Gross et al. 1999, Carpenter et al. 1999), GIS data analysis (Silveira et al. 
1996), empirical models of ecological processes (Brey et al. 1996, Scardi 1996, Aoki and 
Komatsu 1997, Mastrorillo et al. 1997a, 1998, Brey and Gerdes 1998, Brosse et al. 1999a, 
Lae et al. 1999, Aoki et al. 1999, Barciela et al. 1999, Scardi and Harding 1999, Recknagel 
et al. 1997, 2000), tools for predicting community structure or population characteristics 
(Baran et al. 1996, Lek et al. 1996a, Guegan et al. 1998, Giske et al. 1998, Aussem and Hill 
1999, Schleiter et al. 1999, Wagner et al. 2000a), water management (Kastens and Feather-
stone 1996), time series analysis and prediction (Recknagel 1997, Chon et al. 2000a), eco-
system dynamics (Pineda 1987, Chon et al. 2000b, 2001), flowering and maturity of soy-
beans (Elizondo et al. 1994), changes in the size of animal populations (Stankovski et al. 
1998), establishment of grasslands (Tan and Smeins 1996), energy status of ecosystem
(Park et al. 2001), and habitat suitability (Paruelo and Tomasel 1997, Özesmi and Özesmi 
1999).
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The CPN has been implemented for relational patterning on different hierarchical levels 
in communities of benthic macroinvertebrates in an urbanised stream (Park et al. 2001b, 
Chon et al. 2002) and patterning and predicting aquatic macroinvertebrate diversity with 
quantitative environmental variables (Park et al. 2003c). The latter showed associations be-
tween environmental variables and community diversity in the SOM map through the pat-
terning process. These studies showed that CPN as a hybrid model can predict ecological 
characteristics as well as patterning input variables.

Tang et al. (1998) used the LVQ to identify plankton images and to classify them. Their 
results showed 95% classification accuracy on six plankton taxa taken from nearly 2000 
images and the possibility for a fully automated real time mapping of plankton populations 
in aquatic ecosystems. 

As for hydrological applications, although parametric statistical protocols and determi-
nistic models have been the traditional approaches in forecasting water quality variables in 
streams, many recent efforts have shown that, when explicit information of hydrological 
sub-processes is not available, ANNs can then be more effective (Zhu et al. 1994, Maier 
and Dandy 2000).

A comprehensive overview of ANN applications in ecological informatics has been 
compiled by Lek and Guegan (2000) and Recknagel (2003). There are also many valuable 
papers in the three Special Issues of Ecological Modelling: Volume 120 (2-3) in 1999, Vol-
ume 146 (1-3) in 2001, and Volume 160 (3) in 2003.

2.4 Bayesian and Mixture models

Bayesian models are based on the principles of Bayes rule or Bayes theorem. It defines the 
formalism of updating a belief about a hypothesis (or a priori probability) in the light of 
new evidence (e.g. new data). The updated probability is called the posterior probability. 
The distinctive feature of Bayesian models is the explicit consideration of probability. It is, 
therefore, a powerful way to increase knowledge about a certain system of the real world by 
the integrative analysis of probabilities of models and observation data.

The basic applications in Bayesian reasoning were extended for application in time se-
ries as well as for cases of interdependent probabilities. Extension of the basic method is 
the integration of Markov chain theory, Metropolis Hastings algorithm, Monte Carlo meth-
ods, information theory, and spatial analysis. Integrated methods are for example the Gibbs 
sampler, Markov chain Monte Carlo techniques, Bayesian maximum entropy, and Bayesian 
kriging. This family of methods is used in a wide field of disciplines, e.g. medicine, astro-
physics, economy as well as in ecology.

The integration of Bayesian principles into other methods has supported the develop-
ment of complex Bayesian models in Bayesian networks (BN). In hierarchical BNs, the hi-
erarchical influences of parameters with different probability functions can be modelled. 
Bayesian belief networks (BBN, also known as belief networks, causal probabilistic net-
works, causal nets, graphical probability networks, probabilistic cause-effect models, and 
probabilistic networks) are building the bridge to artificial intelligence by making it possi-
ble to integrate expert knowledge into the model. The advantages of BBNs are the ability to 
represent and manipulate complex models, and the possibility for event prediction based on 
partial or uncertain data.

A common application of Bayesian models is stock assessment especially in fish ecol-
ogy and fish management. An application of special practical interest is the determination 
of stock assessment for the regulation of fish catches and related topics, with a predomi-
nance of basic Bayesian models (Adkison and Peterman 1996, Ogle et al. 1996, Kinas 
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1996, McAllister and Ianelli 1997, McAllister and Pikitch 1997, Punt and Hilborn 1997, 
Newman 1997, Cow-Rogers 1997, Hammond 1997, Hilborn and Liermann 1998, 
McAllister and Kirkwood 1998a, 1998b, Pella et al. 1998, Punt and Walker 1998, Robb and 
Peterman 1998, Smith and Punt 1998, Peterman et al. 1999, Myers et al. 1999, Jon et al. 
2000). A lower number of publications in fish management is related to advanced Bayesian 
models (Lee et al. 1996, Lee and Rieman 1997, Liermann and Hilborn 1997, Vignaux et al. 
1998, Kuikka et al. 1999, Meyer and Millar 1999, Patterson 1999, Chen and Fournier 1999, 
Chen et al. 2000, Helu et al. 2000).

The improvement of Bayesian models by the addition of other methods affected an in-
crease in applications outside fish ecology. Basic Bayesian models are applied for risk and 
decision analysis (Steinberg et al. 1996, Varis 1997, Qian et al. 2000). A focus of complex 
Bayesian models is classification and diagnosis of water quality (Trigg et al. 2000, Varis 
and Kuikka 1997, Walley and Dzeroski 1996, Walley and Fontama 1997 2000). Other ap-
plications are related to environmental reconstruction (Vasko et al. 2000) and models about 
heterogeneous populations (Pinelalloul et al. 1995, Carpenter et al. 1996, Billheimer et al. 
1997, Mau et al. 1999, Meyer and Millar 1999, Cottingham and Schindler 2000, Lamon and 
Clyde 2000). 

Mixture models (Titterington et al. 1985) assume that each sample is a member of one 
of a finite number of classes, and use the data to estimate the parameters of the model. 
Within each class, a specific group of taxa is linked to a specific environment. The latter 
implies that knowledge of the environment enables a researcher to predict the group of taxa. 
Previous research (amongst others, Verdonschot and Goedhart 2000) indicated that the 
mixture assumption is reasonable and worthwhile pursuing. This approach can be seen as 
the counterpart of ANNs. ANNs use the data to construct a model with which the number 
of each taxon can be predicted using environmental variables. 

Traditionally mixture models are analysed using maximum likelihood. The latter in-
creases in difficulty with the complexity of the mixture model. It may be impossible to de-
termine if the likelihood has actually been maximised; as confidence intervals and standard 
errors for the model parameters are unobtainable, it is hard to determine the number classes 
that have to be used in the mixture, and, the distribution of goodness of fit tests is unknown. 
Using Bayesian computational statistics, these problems can almost completely be avoided. 
See Hoijtink and Molenaar (1997), Hoijtink (1998, 2001) for an application of this ap-
proach to mixture models where the observed variables are dichotomous. 

The use of Bayesian computational procedures for the analysis of data with mixture 
models does not solve the problem that the number of parameters in the model is rather 
large compared to the amount of data (the sample size). The consequence is that the predic-
tive validity of the model will probably be rather small if this problem is ignored. Two 
measures will be taken to control this problem. 

Some of the taxa have greater similarities (i.e. a higher probability of living in the same 
environment) than others. The similarity among the taxa will be quantified into a number of 
variables that will be used to determine the parameters of a hyper prior for each of the taxa. 
The result is that similar taxa will receive similar parameter-values. The latter will increase 
the predictive validity of the model. 

The environmental variables are correlated. The latter implies that not all environmental 
variables are needed to make a distinction among the mixture components. Instead of esti-
mating parameters for each environmental variable, the parameters of a (much smaller) 
number of discriminant-functions will be estimated. The latter will also increase the predic-
tive validity of the model. The parameters of the informed latent class/discriminant model 
can be estimated using a procedure based on the Gibbs sampler (Zeger and Karim 1991, 
Gelman et al. 1995). The selection of the number of classes and the number of discriminant 
functions can be based on Bayes factors (Kass and Raftery 1995). 
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The models described above have two features that distinguish them from other ap-
proaches. Both could be used in this context: they deal explicitly with the fact that the num-
ber of variables exceeds the sample size; in addition, it is a statistical model which implies 
that it can be used to make inferences with respect to the unknown population from which 
the sample is obtained. To clarify the latter, both cluster analysis and neural nets are models 
that describe the structure in the data without reference to a population from which the data 
are obtained. 

2.5 Support vector machines (SVMs) 

SVMs are used to predict known class membership from observed variables. In the tradi-
tion of machine learning, SVMs are a relatively new and modern tool. An advantage of 
SVMs over Artificial Neural Networks is that with SVMs the function to be minimised is 
very well shaped: it is convex and thus has no isolated local minima. SVMs can be used for 
classification and regression. A full SVM analysis requires three steps, and ideally in each 
of these three steps, a separate part of the data is used: 1) model selection, 2) fitting, and 3) 
validation.

The basic SVM distinguishes between two classes with either the value 1 or -1. Classifi-
cation into more classes is achieved using a combination of several 2-class SVMs. For ex-
ample, in Figure 2.8 the black dots represent sardines, the open circles are herrings, and the 
two x-variables are size and weight, respectively. The data in Figure 2.8a are linearly sepa-
rable, that is, it is possible to draw a straight line, such that all circles are on one side of the 
line, and all plusses are on the other side. In Figure 2.8b, however, the data cannot be sepa-
rated by a straight line. In this situation, it would help if a (nonlinear) transformation could 
be found, such that the transformed data were again linearly separable, or at least ’more’ 
linearly separable (Fig. 2.8c).
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Fig. 2.8. Linear and nonlinear separation of herrings and sardines. (a) linear separable her-
rings and sardines, (b) linear separation is not possible, and (c) after suitable transformation 
of x, linear separation is again possible. 

In choosing a nonlinear transformation and increasing the number of dimensions, one 
should avoid overfitting. More often it is advisable to allow a certain non-separability and 
use a punishment or penalty term for the degree of violation of separability. The basic idea 
of SVMs is to transform the data in such a way that they become ’more’, or even com-
pletely linearly separable, and to perform a linear separation. Upon returning in the lower 
dimensional data space X, a nonlinear separation will have been performed. Details of 
SVMs are given in Chap. 6 in this book by Akkermans and her colleagues. 
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Morris et al. (2001) compared the SVMs to strongly partitioned traditional radial basis 
function (RBF) networks for the discrimination of single species of phytoplankton against a 
background of N other species, and showed that SVMs had a greater identification success 
than the unpartitioned, large single RBF networks. The greatest success was achieved by 
combining the outputs of the individual networks by means of a `winner takes all' strategy; 
with RBF, ANNs’ identification success dramatically increased, though there was only a 
modest increase with SVMs. When SVMs trained on one data set were tested with data on 
cells grown under different light conditions, the overall successful identification rate was 
low, but when SVMs were trained on a combined dataset identification was high. Akker-
mans and her colleagues (Akkermans et al. 2004) also applied the SVMs to two datasets of 
benthic macroinvertebrates, consisting of streams and canals in the Netherlands, for classi-
fying communities. They compared their performances to the results obtained with MLGR 
and showed that the SVM approach clearly yielded better results. Their results are given in 
Chap. 6 of this book. 

2.6 Genetic algorithms (GAs) 

GAs are a part of evolutionary computing, which is a rapidly growing area of artificial in-
telligence, and they were inspired by Darwin's theory about evolution. The idea of evolu-
tionary computing was introduced in the 1960s by I. Rechenberg in his work "Evolution 
strategies" and his idea was then developed by other researchers. Holland (1975) first ex-
plored GAs, operating on strings of bits called chromosomes. The algorithm is started with 
a set of solutions (represented by chromosomes) called a population. Solutions from one 
population are taken and used to form a new population. This is motivated by the hope, that 
the new population will be better than the old one. Solutions which are selected to form 
new solutions (offspring) are selected according to their fitness - the more suitable they are 
the more chances they have to reproduce. 

Fig. 2.9. Outline of the basic genetic algorithm 

GA is based on copying chromosomes and swapping parts of the chromosomes basically 
by three operations: reproduction, crossover and mutation (Recknagel 2001). Reproduction 

1. [Start] Generate random population of n chromosomes
2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population
3. [New population] Create a new population by repeating following steps until the 

new population is complete
a. [Selection] Select two parent chromosomes from a population according to their 

fitness (the better the fitness, the greater chance of being selected)
b. [Crossover] With a crossover probability, cross over the parents to form new 

offspring (children). If no crossover was performed, the offspring is an exact 
copy of the parents.

c. [Mutation] With a mutation probability, mutate new offspring at each locus (po-
sition in chromosome).

d. [Accepting] Place new offspring in a new population
4. [Replace] Use new generated population for a further run of algorithm
5. [Test] If the end condition is satisfied, stop, and return the best solution into the cur-

rent population
6. [Loop] Go to step 2
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means that chromosomes are copied according to their objective function where strings 
with higher evaluations will have a better chance to survive. Crossover means that pairs of 
chromosomes are recombined by swapping parts of them from a randomly selected point in 
order to create two new chromosomes. Mutation occurs only occasionally with a very low 
probability and means that the value in a string position may be changed, for example a 1 is 
changed into a 0 or vice versa. At the same time, mutation ensures that reproduction and 
crossover do not loose potentially useful material. The basic GA can be summarised in Fig-
ure 2.9. 

The GA has been applied successfully in ecological modelling. Recknagel et al. (2000) 
have applied GA to model the abundance of algae. This optimisation procedure steadily 
evolves best models for given data that unlike ANN become explicitly available. D’heygere 
et al. (2003) used the GA to select input variables in decision tree models for the prediction 
of benthic macroinvertebrates. The specific features of GA make them novel tools for eco-
logical modelling. Inductive models (multiple nonlinear regression functions, ANN de-
signs) and deductive models (rule sets, ecosystem process equations and parameters) can be 
evolved from databases of individual or classes of ecosystems with high validity  (Reckna-
gel 2001). 

2.7 Mutual information and regression maximisation (MIR-
max)

MIR-max has been developed to cluster datasets based on the information theory. This 
technique has a visualisation system similar to SOM, but the algorithm is consistently dif-
ferent. The Mir- max technique is based on two separate processes. A major advantage of 
MIR-max is that it separates the tasks of clustering and ordering into two independent proc-
esses (Walley and O'Connor 2001). It first clusters the data into a predefined number of 
classes using information theory, and then orders the classes in two-dimensional output 
space using the correlation between corresponding distances in data space and output space. 
This procedure assumes that the data are interval-valued, so its application to ordinal data 
involves an approximation. It does, however, provide added benefit to the user in terms of 
data visualisation. The algorithm can be found in Walley and O'Connor (2001). Walley and 
O'Connor (2001) applied this technique to clustering and ordering datasets of benthic 
macroinvertebrates and presented the suitability of the system for use on ordinal or discrete 
interval-valued data, especially for ordinal data. Rimet and Ector used this technique to ex-
plore the complexity of diatom assemblages in the Rhone basin and Mediterranean region. 
Their results are given in Chap. 5 of this book. 

2.8 Structural dynamic models 

Models that can account for the change in species composition as well as for the ability of 
species to change their properties, i.e. to adapt to the prevailing conditions imposed on the 
species, are called structural dynamic models (Bossel 1992). This type of model was devel-
oped by the use of biomass as a goal function in the late seventies and later by the use of 
the theoretically more correct, exergy, in the mid-eighties (Jørgensen 1997).

Exergy measures biomass and information, thus more developed organisms, will con-
tribute more to the exergy per weight unit than less developed organisms. Exergy is defined 
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as the work the system can perform when it is brought into equilibrium with the environ-
ment or another well-defined reference state. If we assume a reference environment for a 
system at thermodynamic equilibrium, meaning that all the components are: (1) inorganic, 
(2) at the highest possible oxidation state signifying that all free energy has been utilised to 
do work, and (3) homogeneously distributed in the system, meaning no gradients, then ex-
ergy becomes an expression for the biomass (physical structure) and the information (em-
bodied in the complex biochemical composition of the cells, determined by the genes. In 
any case, temperature and pressure differences between systems and their reference envi-
ronments make a small contribution to the overall exergy and for present purposes can be 
ignored.

The goal function (Table 2.1) describes the development direction of the considered 
ecosystem. The models describe how organisms will adapt to currently changing conditions 
and how - if the adaptation process is not sufficient - the present organisms will be replaced 
by other and better fitted organisms with other properties. This type of model using exergy 
as goal function has already been applied to aquatic systems (Jørgensen 1997). It should 
also be possible to use this model type to give the properties of the species present in a river 
or lake, provided that we know the conditions. From the properties it will in most cases 
probably be possible to describe the species that have these properties. 

Table 2.1. Examples of goal functions. 

Goal function Target system Reference 
Maximum useful power or en-
ergy flow

Several systems Lotka (1956), Odum and Pinkerton 
(1955)

Minimum entropy Several systems Glansdorff and Prigogine (1971)
Maximum ascendancy Networks Ulanowicz (1980)
Maximum exergy Several systems Mejer and Jørgensen (1979)
Maximum persistent organic
matter

Ecological systems Whittaker and Woodwell (1971), 
O’Neill et al. (1976)

Maximum biomass Ecological systems Margalef (1968), Straskraba (1979)
Maximum profit Economic systems Various authors

Changes in the structure can be described by the introduction of a goal function. Exergy 
is used as a goal function as it describes the distance of the ecosystem (described by the 
model) from thermodynamic equilibrium = the sum of biomass and information. Structur-
ally dynamic models (Jørgensen 1997) have already been applied in biomanipulation (Jør-
gensen and de Bernardi 1998), the intermediate disturbance hypothesis (Jørgensen and 
Padisak 1996), and the succession of phytoplankton species (Jørgensen and Padisak 1996). 
Exergy has been used most widely as a goal function in ecological models. Exergy has two 
pronounced advantages as a goal function compared to entropy and maximum power. It is 
defined far from thermodynamic equilibrium and it is related to the state variables, which 
are easily determined or measured.

The idea of structural dynamic models is to find continuously a new set of parameters 
(limited for practical reasons to the most crucial, i.e., sensitive parameters) that are better 
fitted to the prevailing conditions of the ecosystem. “Fitted” is defined in the Darwinian 
sense by the ability of species to survive and grow, which may be measured by the use of 
exergy (Jørgensen 1982, 1986, 1988, 1990, Jørgensen and Mejer 1977, Mejer and Jørgen-
sen 1979). Exergy has previously been tested as a “goal function” for ecosystem 
development (Jørgensen 1986). However, in all these cases, the model applied did not 
include the “elasticity” of the system, obtained by using variable parameters, and therefore 
the models did not reflect real ecosystem properties.
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3.1 Introduction 

Many groups of organisms have been proposed as indicators of environmental quality. Ide-
ally, a biological monitoring program will integrate multiple assemblages in order to better 
assess environmental quality (Jackson et al. 2001). Fish are one of the most widely used 
and useful organisms for measuring water resource quality. They are typically present even 
in the smallest streams and are easily sampled and identified with the proper equipment and 
training. The Clean Water Act mandates “fishable” waters and the public widely recognizes 
fish for their economic and aesthetic value.  

A fish community is an assemblage of fish sharing the same area of a stream and inter-
acting with each other. The structure of a fish community is determined by the species pre-
sent, their relative abundances, their life stages and size distributions, and their distributions 
in space and time (Meador et al. 1993, Matthews 1998). Natural variability in fish commu-
nities can be attributed to differences in land elevation, water temperature, water chemistry, 
food resources, and physical habitat. The abundance, condition, and species composition of 
fish communities can be influenced by water and habitat quality that are modified by sur-
rounding land uses (Deacon and Mize 1997). Fish-community data can have a high degree 
of variability, even when they are collected for the same site several times in one season 
(Karr 1999).

Fish are a diverse group of organisms and have a wide range of life history require-
ments. Some fish are sensitive to changes in water temperature, substrate composition, 
stream flow, or various water chemistry parameters, while others are tolerant to change in 
their environment. They occupy positions throughout the aquatic food web and characterize 
a range of trophic levels (planktivores, herbivores, omnivores, invertivores, piscivores). The 
structural and functional variety of fish communities make them excellent indicators of wa-
ter quality and provide an integrated view of waterbody condition. 

Many Control Agencies have been using fish community data to assess water resource 
quality for the last decade: IBI’s have been developed in USA for streams in the Minnesota, 
Red, St. Croix and Upper Mississippi River Basins. In Europe, Oberdorff et al. (2001) de-
veloped a probabilistic model based on species occurrence to define a fish-based index with 
national application. The objective of all the methods proposed is to develop biological cri-
teria utilizing fish for all streams in USA and Europe. 

Biological assessment is used for several aspects of water resource management, includ-
ing:

Long term condition monitoring (status and trends)  
Aquatic life use assessment  
Listing, diagnostics, and effectiveness of implementation  
Problem investigation monitoring  
Effectiveness monitoring  

                                                          
* Correspondence: lek@cict.fr 
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This chapter includes 7 papers: 

1. Park et al. present “Visualizing large scale distribution patterns of riverine fish assem-
blages using unsupervised neural networks”. The self-organizing map (SOM), was used 
to visualize distribution patterns of fish species in rivers, and to evaluate the relative im-
portance of several environmental factors in influencing the organization and structure 
of fish assemblages. A dataset (40 fish species) of 668 reference sites sampled across all 
French rivers, i.e. very large scale of data; 

2. Gevrey et al. present the capacity for predicting and sensitivity analysis of fish assem-
blages on the French scale, i.e. by using the same dataset as the first paper;  

3. Aguilar Ibarra et al. show for the Garonne basin the diversity patterns of fish assem-
blages proposing conservation measures by using a self-organizing map;  

4. Joy and Death show the capacity of neural network modelling to predict freshwater fish 
and macro-crustacean assemblages for biological assessment in New Zealand; 

5. Moreau et al. compare linear and nonlinear fitting techniques for predicting fish yield in 
Ubolratana reservoir (Thailand) from a time series data on catch and hydrological fea-
tures;

6. Penczak et al. use the self-organizing map (SOM) for patterning the spatial variation in 
fish assemblage structures and diversity in the Pilica River system.  

7. Scardi et al. show the predicting fish assemblages in Italian rivers, a neural network case 
study adapted to the presence/absence data. 
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3.2 Patterning riverine fish assemblages using an 
unsupervised neural network*

Park YS†, Oberdorff T, Lek S 

Introduction  

In temperate river systems, the uni-directional character of water tends to give them a linear 
structure along a gradient of environmental conditions. In these systems, biological assem-
blages are organised longitudinally and there is generally an increase in species richness 
from the source to the river mouth (e.g. measured by the river width, the distance from the 
source, the stream order, and the size of the watershed). Longitudinal changes in local as-
semblage richness have usually been attributed to one of two processes: biotic zonation or 
continual addition of species downstream. Biotic zonation corresponds to discontinuities in 
river geomorphology or abiotic conditions promoting distinct assemblages along the longi-
tudinal gradient (e.g. Huet 1959, Schlosser 1982, Balon et al. 1986, Rahel and Hubert 1991, 
Oberdorff et al. 1993, Belliard et al. 1997). For example, species replacement may occur as 
a result of physiological specialization for temperature. In contrast to the advocates of zona-
tion, additions of species are usually related to environmental gradients having smooth 
transitions of abiotic factors contributing to nested patterns of assemblage composition 
along the longitudinal gradient (e.g. Sheldon 1968, Rahel and Hubert 1991). Whatever the 
process (i.e. biotic zonation or species addition) local species richness usually increases 
along the upstream-downstream gradient (Huet 1959, Sheldon 1968, Schlosser 1982, Balon 
et al. 1986, Rahel and Hubert 1991, Belliard et al. 1997, Oberdorff et al. 2001, 2002a). The 
environmental factors that have been identified to explain this increase in species richness 
are generally linked (i) to upstream-downstream differences in local habitat characteristics 
defined by depth, slope, current velocity, temperature and substrate composition (Huet 
1959, Gorman and Karr 1978, Schlosser 1982, Angermeier and Schlosser 1989, Rahel and 
Hubert 1991, Oberdorff et al. 2001, 2002a) or by “dimensionless” hydraulic characteristics
such as the Froude number or the Reynolds number (Lamouroux and Souchon 2002, 
Lamouroux and Capra 2002) and (ii) to an upstream-downstream increase in environmental 
stability (Horwitz 1978, Schlosser 1982, Schlosser and Ebel 1989).  

Resulting from this common feature in riverine fish ecology (i.e., the longitudinal 
change in fish assemblage structure along the upstream-downstream gradient of a river), 
some authors have attempted to classify river basins into different biotic zones. The classi-
cal studies include the work of Thienemann (1925) who proposed six zones for continental 
European rivers: spring brook, trout zone, grayling zone, barbel zone, bream zone and 
brackish-water, each based on the presence of a specific fish species. This elegant concept 
persisted in the systems devised by Huet (1949, 1954), who proposed longitudinal zona-
tions of rivers based on the occurrence of key species. The Huet zonation consists of four 
zones, beginning with the headwater and moving to the lowlands (i.e., the trout zone, the 
grayling zone, the barbel zone, and the bream zone).  
                                                          
* This work was supported by the EU project PAEQANN (EVK1-CT1999-00026). 
† Corresponding: park@cict.fr 
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To visualize the organization and structure of fish assemblages, several multivariate 
techniques have been used depending on the aim of the studies, including multivariate 
analysis of variance (Bendell and McNicol 1987, Jackson and Harvey 1989), factor analysis 
(Stevenson et al. 1974, Oberdorff et al. 1993), correspondence analysis (Hughes and Gam-
mon 1987, Strayer 1993, Pusey et al. 1995, Vila-Gispert 2002), cluster analysis (Hughes et 
al. 1987, Poff and Ward 1989, Johnson and Wichern 1992), principal component analysis 
(Matthews 1985, Matthews and Robinson 1988, Paller et al. 1994, Vila-Gispert 2002) and 
canonical correspondence analysis (Taylor et al. 1993, Copp 1992, Koel 1997). These 
methods are all adversely affected by the non-linear nature of the ecological data, whereas 
the methods identified subsequently (i.e., adaptive learning algorithms) are not. As alterna-
tive methods, adaptive learning algorithms such as artificial neural networks (ANNs) are 
becoming more and more popular in ecological studies (Lek and Guégan 2000, Rekgnagel 
2003). Among the algorithms of the ANNs, the self-organizing map (SOM) shows an abil-
ity for classification, abstraction, and visualization, the idea of which is to show the data set 
in another, more usable, representation (Kohonen 2001), and to efficiently determine pat-
terns of aquatic ecological assemblages (Chon et al. 1996, Brosse et al. 2001, Park et al. 
2003a).

In this study, we propose a SOM model as an alternative method to display patterns of 
fish species distribution in French rivers, and to evaluate the relative importance of several 
environmental factors in influencing organization and structure of fish assemblages. 

Materials and methods  

Ecological data 

We used data previously analysed by Oberdorff et al. (2001, 2002a). A dataset of 668 refer-
ence sites (Fig. 3.2.1) was extracted from the database held by the Conseil Supérieur de la 
Pêche (Banque Hydrobiologique et Piscicole), covering a period of 13 years of survey 
(1985-98). The selection of the reference sites was carried out by regional experts (fish bi-
ologists) on the basis of water quality map inspection and field reconnaissance. The factors 
considered in the field inspection included the amount of stream channel modification, 
channel morphology, substrate character and condition, and general representatives of the 
sites within the region. The criteria used for selection of reference sites were that the site 
should belong to the water quality classes ‘Excellent’ or ‘Good’ as defined by the Water 
Quality Index developed by the French Water Agency (Oberdorff et al. 2001). The refer-
ence sites were not pristine nor totally undisturbed but were those considered as least im-
pacted within a particular biogeographical region (Hughes 1995).  

In the dataset, 40 species were identified (Table 3.2.1). Fish species were assigned to 
four different trophic guilds (i.e., invertivores, herbivores, piscivores, and omnivores) (Ta-
ble 3.2.1) to evaluate potential changes in fish trophic structure along the longitudinal gra-
dient. Assignment of fish species to trophic guilds was difficult due to flexibility in feeding 
habits and changes that occur over an individual’s life cycle. In this study, only adult fish 
were considered to categorize trophic guilds following Froese and Pauly (2003) and Ober-
dorff et al. (1993, 2002a). Invertivores include generalized insectivores, surface and water 
column insectivores and benthic insectivores. The more general term of invertivores was 
used because the fish typically eat crustaceans, oligochaetes, and molluscs, as well as 
aquatic or terrestrial insects. Piscivores are fish that eat primary fish and a smaller amount 
of aquatic and terrestrial insects. Herbivores include fish that are planktivores and herbi-
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vore-detritivores. Omnivores eat a wide range of plants, detritus, and animal materials with 
at least 25% plants and 25% animals (Schlosser 1982, Karr et al. 1986, Oberdorff et al. 
1993).

Eight abiotic environmental variables were also measured at each site: slope (%), eleva-
tion (m), July mean daily maximum air temperature ( C; JulTemp), January mean daily 
maximum air temperature ( C; JanTemp), stream width (m), mean depth (m), distance from 
headwater source (km), and catchment area of the basin (km2). The slope and elevation 
were derived from topographic maps, and the distance from the source and the catchment 
area were measured using a digital palimeter on a 1:1 000 000-scale map. A detailed de-
scription of all these environmental variables is given in Oberdorff et al. (2001). These 
variables are known to be the most consistent in structuring fish assemblages under natural 
conditions.

To find the biogeographical distribution patterns of fish species in French rivers, the as-
semblage dataset was applied to an adaptive learning algorithm, the self-organizing map 
(SOM). The densities of species were scaled between 0 and 1 in the range of the minimum 
and maximum values within a species, after a log-transformation process in order to reduce 
variations in densities.  

Figure 3.2.1 Map of France showing distribution of all sampling sites. 

Statistical analysis  

Geographical classification using the self-organizing map 
The self-organizing map (SOM) is an adaptive unsupervised learning algorithm and ap-
proximation of the probability density function of the input data (Kohonen 2001). The 
SOM has found wide applications in the fields of data exploration, data mining, data classi-
fication, data compression, and biological modelling, due to its properties of neighbourhood 
preservation and local resolution of the input space proportional to the data distribution. 
The SOM usually consists of input and output layers connected with computational weights 
(connection intensities). The array of input neurons (i.e. computational units) operates as a 
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flow-through layer for the input vectors, whereas the output layer consists of a two-
dimensional network of neurons arranged on a hexagonal lattice.  

Table 3.2.1. Names and trophic guilds of 40 species identified in dataset. 

Scientific name Acronyms Common name Trophic guild 
Abramis brama ABB Bream Omnivorous 
Alburnoides bipunctatus ALB Schneider Invertivorous 
Alburnus alburnus ALA Bleak Invertivorous 
Anguilla anguilla ANA European eel Piscivorous 
Barbus barbus BAB Barbel Invertivorous 
Barbus meridionalis BAM Mediterranean barbell Invertivorous 
Blennius fluviatilis BLF Freshwater blenny Herbivorous 
Blicca bjoerkna BLB Silver bream Omnivorous 
Carassius auratus CAA Goldfish Omnivorous 
Carassius carassius CAC Crucian carp Omnivorous 
Chondrostoma nasus CHN Common nase Omnivorous 
Chondrostoma toxostoma CHT Soiffe Omnivorous 
Cottus gobio COG Bullhead Invertivorous 
Cyprinus carpio CYC Common carp Omnivorous 
Esox lucius ESL European pike Piscivorous 
Gambusia affinis GAF Mosquitofish Omnivorous 
Gasterosteus aculeatus GAC Threespined stickleback Invertivorous 
Gobio gobio GOG Gudgeon Invertivorous
Gymnocephalus cernua GYC Ruffe Invertivorous 
Ictalurus melas ICM Black bullhead Invertivorous 
Lampetra planeri LAP Brook lamprey Herbivorous 
Lepomis gibbosus LEG Pumpkinseed Invertivorous 
Leucaspius delineatus LED Belica Herbivorous 
Leuciscus cephalus LEC Chub Omnivorous 
Leuciscus leuciscus LEL Dace Invertivorous
Leuciscus souffia LES Varione Invertivorous 
Lota lota LOL Burbot  Piscivorous 
Micropterus salmoides MIS Largemouth bass Piscivorous 
Nemacheilus barbatulus NEB Stone loach Invertivorous 
Perca fluviatilis PEF Perch Piscivorous
Phoxinus phoxinus PHP Minnow Omnivorous 
Pungitius pungitius PUP Ninespined stickleback Invertivorous 
Rhodeus sericeus RHS Bitterling Omnivorous 
Rutilus rutilus RUR Roach Omnivorous 
Salmo salar SAS Atlantic salmon Piscivorous 
Salmo trutta fario SAT Brown trout Invertivorous 
Scardinius erythrophthalmus SCE Rudd Omnivorous 
Stizostedion lucioperca STL Zander Piscivorous 
Thymallus thymallus THT Grayling Invertivorous 
Tinca tinca TIT Tench Omnivorous 

In the learning process of the SOM, initially the biological data were subjected to the 
learning network. Then, the weights were trained for a given dataset of the assemblage data 
matrix. When an input vector x (densities of species) is sent through the network, each neu-
ron k of the output layer computes the summed distance between the weight vector w and 
the input vector x. The output layer consists of N output neurons (i.e., computational units, 
35=7 5 in this study) which usually constitute a 2D grid for better visualization. 

The form of the output layer is a hexagonal lattice, because it does not favour horizontal 
or vertical directions as much as the rectangular array (Kohonen 2001). The output neurons 
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are considered as virtual units to represent typical patterns of the input dataset assigned to 
their units after the learning process. Among all N virtual units, the best matching unit 
(BMU) which has the minimum distance between weight and input vectors becomes the 
winner. For the BMU and its neighbourhood units, the new weight vectors are updated by 
the SOM learning rule. This results in training the network to classify the input vectors by 
the weight vectors they are closest to. The weight vectors trained in the learning process 
can be considered as probabilities for each species to occur in each virtual unit. In the same 
way, the virtual assemblages can be obtained by denormalizing weight vectors. To define 
clusters between virtual units of the SOM map, hierarchical cluster analysis was used with 
Ward’s linkage method. Based on linkage distances, the map was classified on different 
scales, which are considered to be differences of assemblages on different scales. 

Correspondence between assemblages and environmental variables 
During the learning process of the SOM, units that are topographically close in the array 
will activate each other to learn something from the same input vector. The weight vectors 
tend to approximate the probability density function of the input vector. Therefore, the 
visualization of these vectors is convenient to understand the contribution of each input 
variable to the clusters on the trained SOM (Kohonen 2001, Park et al. 2003a). To analyse 
the contribution of variables to cluster structures of the trained SOM, the value of each in-
put variable (component) calculated during the training process was visualized in each neu-
ron on the trained SOM map on a grey scale. 

To understand relationships between biological and environmental variables, we intro-
duced environmental variables into the SOM trained with biological variables by calculat-
ing the mean value of each environmental variable in each virtual unit of the SOM map fol-
lowing Park et al. (2003a). These mean values assigned on the SOM map were visualised 
with a grey scale, and then compared with maps of sampling sites as well as biological at-
tributes. Differences among patterns defined through the SOM with respect to the environ-
mental variables were analysed using a t-test, analysis of variance and Duncans’ multiple 
range test at different classification scales.  

Results  

Assemblage patterning 

The fish assemblages on the national scale were patterned by training the SOM (Fig. 
3.2.2a). After the learning process of the SOM, a hierarchical clustering analysis using the 
Ward method was applied to find similarities in the units of the SOM map (Fig. 3.2.2b). 
The numbers in the dendrogram in Fig. 3.2.2b correspond to the number of the units of the 
SOM map. The weight vector of each unit represents a typical assemblage composition of 
samples. The different sizes of the black circles stand for the number of samples that fell in 
each unit of the map ranging from 4 to 64 proportionally. The results show hierarchical 
classifications of the map units according to the dissimilarities. First, two major clusters (I, 
II) were considered at a high linkage distance of 2.3, and then at the distance of 1.3 both 
clusters were divided into two subclusters (IA and IB, IIA and IIB). Finally, six clusters ap-
peared at the distance level of 0.8 (IA-IIBb). These clustering approaches could help to un-
derstand the nature of the ecosystem at different scales. The unified distance matrix (U-
matrix; Ultsch 1993) was also applied to define the clusters in the units of the map and 
showed similar results with hierarchical agglomerative clustering. The results of the U-
matrix are not presented.  
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Figure 3.2.2 Classification of fish assemblages on the SOM map (a) and hierarchical classi-
fication of SOM units using Ward’s algorithm (b). Each unit of the map represents a typical 
assemblage composition of samples by taking its weight vector. The different sizes of the 
symboles stand for the number of samples in each unit of the map ranging from 4 to 64 pro-
portionally. 

Figure 3.2.3 displays the distribution of each component (fish species) in each unit of 
the SOM map in a grey scale, by visualizing the weight vectors of the SOM. For conven-
ience of interpretation and to stress the importance of each species in each unit of the map, 
the weights were rescaled between 0 and 1, representing the probability, assigned to each 
unit, of each species being observed at sampling sites. Dark represents a high probability, 
whereas light is low. It also represents the relative importance of each species in each unit 
of the map. Fig. 3.2.3 shows strong distribution gradients of each species displaying several 
different distribution patterns. Overall, species abundance and richness were higher in the 
lower areas of the SOM map, indicating that the classification of the sampling sites on the 
SOM map is strongly related to species richness. Fig. 3.2.4 shows the differences of species 
richness in different clusters of the SOM map. Although the highest values for most species 
werein the lower areas of the SOM map (cluster II in Fig. 3.2.2), different patterns were ob-
served in their distribution. For instance, the species Salmo trutta fario (SAT) and Thymal-
lus thymallus (THT) were the most abundant in the upper right areas of the map (cluster 
IA). Cottus gobio (COG), Lampetra planeri (LAP) and Salmo salar (SAS) are in the upper 
left areas (cluster IBa). Nemacheilus barbatulus (NEB), Phoxinus phoxinus (PHP) and 
Pungitius pungitius (PUP) were in the left areas (cluster IBb). 10 species including Albur-
noides bipunctatus (ALB), Esox lucius (ESL), and Leucaspius delineatus (LED) were in the 
lower left areas (cluster IIA). Barbus meridionalis (BAM), Blennius fluviatilis (BLF), Leu-
ciscus souffia (LES), and Lota lota (LOL) were in the middle right areas (cluster IIBa) and 
16 species including Blicca bjoerkna (BLB) and Perca fluviatilis (PEF) were in the lower 
right areas (cluster IIBb). Based on these distribution maps, we were able to find the species 
distribution patterns at different sampling sites. These different distribution patterns were 
considered to indicate differences of environmental gradients. These characteristics are ex-
plained in the following sections in detail.  
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Figure 3.2.3 Visualization of relative abundance of species calculated in the trained SOM 
in grey scale. The values were calculated during the learning process. Dark represents high 
values of abundance, whereas light is for low values. The acronyms of the species are pre-
sented in Table 3.2.1. 

Characteristics of environments 

To understand the effects of environmental variables on the fish assemblages and the classi-
fication of sampling sites in the SOM, mean values of each environmental variable were 
calculated and visualized in the SOM map trained with the assemblage dataset (Fig. 3.2.5). 
Dark represents high values of each variable, and light, low values. Environmental vari-
ables showed a clear gradient distribution on the SOM map. The catchment area, the dis-
tance from the source, the width and the depth of the sampling areas were the highest val-
ues in the lower right areas of the SOM map (cluster IIBb), whereas lower values appeared 
in the upper areas (cluster IA). In contrast, the slope and the altitude were the highest in up-
per left area of the SOM map (cluster IA), while lower values occurred in the lower right 
areas (cluster IIBb). Meanwhile, temperatures in January and July were higher in the mid-
dle right areas of the map, although the distribution gradients were not clear.  
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Figure 3.2.4. Species richness at different clusters. The same characters on the error bars 
indicate no significant difference at the 5% level of confidence using Duncan's multiple 
comparison test.

Patterns at different scales 

Since species are distributed along gradients, their spatial characterization is crucial for un-
derstanding ecological functioning at different scales. In this study, fish assemblages were 
hierarchically patterned at different similarity levels on the SOM map. Therefore, it is 
worth studying the characteristics of the environmental variables as well as fish assemblage 
structure at different scales. All environmental variables were significantly different be-
tween two large clusters I and II representing the upper watercourses and the lower water-
courses, respectively (Table 3.2.2). In the second level of classification with four clusters, 
clusters IA and IIB were distinctly separated from others in all variables. However, clusters 
IB and IIA were not clearly distinguished for different variables, indicating intermediate 
states of gradients of the variables. Finally we considered six number of clusters in the dat-
gaset. For catchment area, cluster IIBb was significantly different from the other groups, 
indicating that samples in this cluster were mainly from the lower reaches. Furthermore, the 
variables catchment area, altitude, distance from the source, width, slope and depth showed 
a gradient from clusters IA to IIBb, representing a gradient from the upper watercourses to 
the lower ones. However, considering temperatures, cluster IBa showed differences from 
others, displaying relatively high temperatures for this group. This was due to the character-
istics of the sampling sites assigned to this cluster. Most samples came from the southern 
parts of France, in particular the watershed running to the Mediterranean Sea. Furthermore, 
these characteristics were reflected in the differences of fish assemblage composition as 
shown in Fig. 3.2.3 displaying the gradient distribution map of species.  

The distributions of four species Barbus meridionalis, Blennius fluviatilis, Leuciscus 
souffia and Lota lota, showing the highest values in cluster IIBa, were limited mainly to the 
Mediterranean watershed , although they display different distributions on finer scales. 
Therefore, the patterns identified through the SOM showed the watercourse gradient from 
the upper right areas (cluster IA) of the SOM map, to the upper left areas (cluster IBa), to 
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the middle left (cluster IBb), to the lower left (cluster IIA), and to the lower right areas 
(cluster IIBb), excluding cluster IIBa. 

Table 3.2.2. Changes in environmental variables at different cluster levels. The numbers in 
parenthesis are the standard errors of each variable. 

Environmental variables 
Cluster Catchm 

(km2) 1
Altitude

(m)
Distance
(km) 2

Width 
(m) 

Slope
(%)

Dep
th (m)

Jl.tem. 
(oC) 3

Jn tem 
(oC) 4 N

2 I 89.3 
(12.3) 

431.1 
(18.3)

13.9 
(0.7)

5.6 
(0.2)

14.4 
(0.9)

0.5 
(0.0)

17.2 
(0.1)

2.2 
(0.1) 437 

 II 2542.1 
(474.5) 

149.5 
(9.2)

86.4 
(7.5)

18.4 
(1.4)

3.9 
(0.4)

0.8 
(0.1)

19.3 
(0.1)

3.7 
(0.1) 251 

4 IA 56.6 
(5.9) 

561.5 
(25.8)

11.3 
(0.7)

5.5 
(0.2)

20.7 
(1.4)

0.4 
(0.0)

17.1 
(0.1)

1.7 
(0.2) 245 

 IB 131.1 
(26.6) 

264.8 
(20.0)

17.2 
(1.3)

5.8 
(0.3)

6.4 
(0.4)

0.5 
(0.0)

17.4 
(0.1)

2.7 
(0.1) 192 

 IIA 479.1 
(77.5) 

183.1 
(13.9)

49.6 
(4.8)

10.7 
(0.9)

3.2 
(0.3)

0.6 
(0.0)

19.2 
(0.1)

3.4 
(0.2) 94 

 IIB 3777.3 
(740.6) 

129.5 
(12.0)

108.4 
(11.3)

23.0 
(2.1)

4.3 
(0.6)

1.0 
(0.1)

19.4 
(0.2)

3.9 
(0.2) 157 

6 IA 56.6 
(5.9) 

561.5 
(25.8)

11.3 
(0.7)

5.5 
(0.2)

20.7 
(1.4)

0.4 
(0.0)

17.1 
(0.1)

1.7 
(0.2) 245

 IBa 64.1 
(10.1) 

168.0 
(18.3)

12.6 
(1.3)

4.5 
(0.3)

7.7 
(0.8)

0.5 
(0.0)

17.2 
(0.1)

3.1 
(0.2) 67 

 IBb 166.9 
(40.3) 

316.7 
(28.1)

19.6 
(1.9)

6.5 
(0.5)

5.7 
(0.5)

0.5 
(0.0)

17.5 
(0.1)

2.5 
(0.2) 125 

 IIA 479.1 
(77.5) 

183.1 
(13.9)

49.6 
(4.8)

10.7 
(0.9)

3.2 
(0.3)

0.6 
(0.0)

19.2 
(0.1)

3.4 
(0.2) 94

 IIBa 1194.9 
(492.8) 

155.4 
(17.8)

51.7 
(8.2)

13.7 
(1.9)

6.2 
(1.0)

0.6 
(0.0)

19.7 
(0.2)

4.3 
(0.2) 98 

 IIBb 8066.6 
(1656.2) 

86.4 
(9.9)

202.4 
(21.9)

38.4 
(3.9)

1.0 
(0.1)

1.6 
(0.1)

18.8 
(0.2)

3.2 
(0.2) 59 

1 Catchment area, 2 distance from source, 3 temperature in July, 4 temperature in January 
Figure 3.2.6 shows the differences of the densities and proportions of different trophic 

guilds at different hierarchical levels. The densities of each guild were significantly differ-
ent between the upper watercourses (cluster I) and the lower ones (cluster II) (t-test, p < 
0.01), except piscivores (t-test, p = 0.36) (Fig. 3.2.6a). Planktivores and omnivores were 
significantly higher in the lower watercourses than in the upper ones, whereas invertivores 
were higher in the upper ones (t-test, p < 0.01). At the four- and six-cluster levels, inver-
tivores and omnivores showed the highest densities in middle watercourses. However, 
planktonivores were higher in the lower courses. Meanwhile, considering the proportions of 
each guild, the differences between the upper and the lower courses were more clearly ob-
served (Fig. 3.2.6b). With four and six clusters, the proportion of the invertivores decreased 
gradually according to the watercourse gradient, while that of omnivores increased. Pis-
civores and planktivores also showed high ratios in the lower watercourses. 

Discussion and conclusion 

In this study, fish assemblages were patterned through an adaptive learning algorithm, the 
self-organizing map (SOM), according to the distribution similarities of each species. Over-
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all the SOM showed six clusters of fish assemblages, highly related to longitudinal river 
gradient. These characteristics support the fish zonation theory in European continental riv-
ers (Huet 1954). The results also showed a significant relationship between species assem-
blages and river size such as catchment area, width, depth, and distance from head water 
source, supporting the river continuum concept (Vannote et al. 1980).  

Catchment DSource Width Slope

Altitude Depth JulTemp JanTemp

CatchmentCatchment DSourceDSource WidthWidth SlopeSlope

AltitudeAltitude DepthDepth JulTempJulTemp JanTempJanTemp

Figure 3.2.5 Visualization of environmental variables on the SOM map trained with fish 
assemblages. The mean value of each variable was calculated in each output unit of the 
trained SOM. Dark represents a high value and light a low value. Catchment; catchment 
area, DSource; distance from source, JulTemp; maximum temperature in July, and 
JanTemp; maximum temperature in January. 

Recently Oberdorff et al. (2001) developed a probabilistic model characterizing fish as-
semblages of French rivers with environmental variables. They showed that the probability 
of occurrence is highly dependent on the longitudinal gradient. Our findings on the occur-
rence patterns for most species agree with their results, although there are some small dif-
ferences for a few species.  

Considering the trophic guilds of freshwater fish in the geographical gradients, plank-
tivores and omnivores were significantly higher in the lower watercourses than in the upper 
ones, whereas invertivores were higher in the upper ones in French river reference sites. In-
vertivores and omnivores showed the highest densities in middle watercourses. However, 
planktonivores were higher in the lower courses. Meanwhile, the proportion of invertivores 
decreased gradually with the watercourse gradient, while omnivores increased. Piscivores 
and planktivores also showed high ratios in the lower watercourses. Oberdorff et al. (1993) 
also presented similar results, indicating that species richness and the proportions of omni-
vores and piscivores increased with river size, whereas those of invertivores declined 
downstream.

The River Continuum Concept (Vannote et al. 1980) explicitly predicts changes in fish 
trophic structure along the longitudinal gradient. This concept suggests a change in com-
munity structure and richness from upstream to downstream areas. The main reasons for 
this include flow regime, temperature, food availability and substrate conditions. This con-
cept attempts to relate the gradient of physical factors that occurs along river systems to 
changes in assemblage structure and function. According to this hypothesis, available food 
resources should change along this gradient and should thus be reflected by the trophic 
composition of the assemblages. Species richness increases with stream size, reaching a 
maximum in midorder streams, then decreases in large rivers. The lower species richness in 
headwaters and its decline in large rivers is assumed to be due to reduced environmental 
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variability resulting from interplay between riparian control and water volume (Minshall et 
al. 1985). These predictions (i.e., a decrease in invertivorous species and an increase in om-
nivorous species from upstream to downstream) have been confirmed for fish assemblages 
in French rivers by Oberdorff et al. (1993, 2001).  

The major form of environmental variability in stream ecosystems is fluctuations in 
stream flow (Jackson et al. 2001). Changes in these characteristics alter the physical habitat 
of streams and rivers, thereby influencing the composition and stability of fish assemblages 
(Grossman et al. 1998), primarily due to increased mortality and a reduction in recruitment 
(Jackson et al. 2001). In higher order streams, where the catchment area is larger and thus 
hydraulic variation is lower, habitat characteristics are more stable and assemblages are 
able to persist for relatively long periods of time. Maximum diversity is likely to occur in 
sites where the habitat diversity is enhanced and strong interspecific interactions are medi-
ated by intermediate environmental disturbance (Resh et al. 1988). 
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Figure 3.2.6 Proportion (%) (a; 2 clusters, b; 4 clusters, and c; 6 clusters) and abundance 
(d; 2 clusters, e; 4 clusters, f; 6 clusters) of trophic guilds at different cluster levels. 

In conclusion, the characteristics of the distribution patterns of fish assemblages were ef-
ficiently visualized on reduced dimensions through the adaptive learning algorithm, SOM. 
The results confirm major concepts in fish ecology such as the stream zonation and the 
river continuum concept. Furthermore, the SOM model showed probabilities of occurrences 
of each species in different environmental conditions. Finally the modelling techniques 
with the SOM seem to be a powerful analytical tool for identifying habitat and species 
grouping.
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3.3 Predicting fish assemblages in France and evaluating 
the influence of their environmental variables*

Gevrey M*, Park YS, Oberdorff T, Lek S

Introduction 

Fish are valid species for biological monitoring programs, although they have been less 
widely used than other organisms like diatoms or macroinvertebrates. Fish can be used as 
indicator organisms for numerous reasons (Karr 1981; Oberdorff et al. 2001): i) they are 
present in many water bodies, and fish species are relatively easily identifiable; ii) their life-
histories are well-known as are their ecological requirements; iii) they represent a variety of 
trophic levels in various habitat types and iv) their economic aspect plays an important role 
in their use in biomonitoring programs. 

This study was investigated as part of the PAEQANN project (Predicting Aquatic Eco-
system Quality using Artificial Neural Networks, EU project n° EVK1-CT1999-00026, 
http://aquaeco.ups-tlse.fr/) under the directive of the European Community (European Par-
liament 2000, directive 2000/60/EC), studying the impact of environmental variables on the 
structure and the diversity of aquatic communities. Fish assemblages of reference sites were 
studied over the whole territory of mainland France. As suggested in several studies (Ver-
neaux 1977; Mahon 1984; Oberdorff et al. 1993; Oberdorff et al. 2002a) fish assemblage 
structures change along an upstream-downstream gradient as proposed by the River Con-
tinuum Concept (Vannote 1980). Flow regime, temperature, food availability and substrate 
conditions vary from upstream to downstream areas. These variations lead to non-linear re-
lationships between the fish assemblage structure and the environmental variables which 
characterize the river. 

Due to their efficiency, artificial neural networks (ANN) with the error backpropagation 
algorithm are appropriate methods to model non-linear data (Rumelhart 1986). Often com-
pared to multiple linear regression, ANN, which can be used without transformation of the 
variables, shows higher predictive power (Scardi 1996; Paruelo and Tomasel 1997; Guegan 
et al. 1998; Kemper and Sommer 2002). Moreover, ANN, which was criticized earlier in its 
development due to its black-box model type and thus lack of explanatory capacity, has 
been improved by the introduction of sensitivity analysis methods which are increasingly 
used to define the most influent variables in ANN models (Lek et al. 1996b; Scardi and 
Harding 1999; Gevrey et al. 2003). 

In this paper we i) examined the capacity of ANN models to predict French fish species 
richness, trophic guild richness and the occurrence of five relevant species using 8 envi-
ronmental variables; ii) identified the importance of the predictive environmental variables 
on the output variables using the sensitivity analysis; and iii) discussed the potential of 
ANN methods in fish community prediction. 

                                                          
* Funding for this research was provided by the EU project PAEQANN (N° EVK1-CT1999-00026).
* Corresponding: gevrey@cict.fr 
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Materials and methods 

Study area and data collection 

The data set was extracted from the database held by the Conseil Supérieur de la Pêche 
(Banque Hydrobiologique et Piscicole), covering a period of 13 years of survey (1985-98). 
The data were from 688 least disturbed sites, fairly evenly distributed among French rivers. 
The fish were sampled by electrofishing during low-flow periods to evaluate fish assem-
blages throughout France (for details see Oberdorff et al. 2001). The size of each sample 
site was sufficient to be sure to include the home range of the dominant fish species. Fish 
were identified to species level, measured and weighed in the field, and then released. Forty 
species were identified in the dataset and used for the analyses. The total species richness as 
well as the species richness of 4 trophic guilds (omnivores (OSR), invertivores (ISR), her-
bivores (HSR) and piscivores (PSR)) were calculated at each sampling site (Table 3.2.1 and 
see # 3.2 for details). 

Local scale environment 

Eight abiotic environmental variables were measured at each site (Table 3.3.1): gradient 
(‰) (derived from topographic maps) (GRA), elevation (m) (derived from topographic 
maps) (ELE), July mean daily maximum air temperature (TJuly), January mean daily 
maximum air temperature (TJanuary), stream width (m) (WID), mean depth (m) (DEP), 
distance from source (km) (measured using a digital planimeter on a 1:1 000 000-scale 
map) (DIS), and surface area of the drainage basin (km²) (measured using a digital planime-
ter on a 1:1 000 000-scale map) (SAD) (see Oberdorff et al. 2001 for details). 

Table 3.3.1: Input and output variables from the French fish data used in the MLP model. 

Input variables Code Output variables Code 
Surface area of the drainage basin (km²) SAD Species richness SR 
Distance from headwater sources (km) DIS Omnivores 

Stream Width (m) WID Herbivores 
Gradient (‰) GRA Piscivores
Elevation (m) ELE Invertivores

Mean Depth (m) DEP  Bullhead 
July mean daily maximum air temperature TJuly Minnow 
January mean daily maximum air tempera-

ture TJanuary Barbel  

Bream 
Brown trout 

Modelling procedures 

From the eight environmental variables described above, three different types of commu-
nity descriptors were predicted using the ANN method: the total species richness (SR), the 
species richness of the four trophic guilds (TG), and the abundance of the five most rele-
vant species in river zonation: Brown trout, Salmo trutta fario (Linnaeus 1758), Bullhead, 
Cotus gobio (Linnaeus 1758), Minnow, Phoxinus phoxinus (Linnaeus 1758), Barbel, Bar-
bus barbus (Linnaeus 1758), and Bream, Abramis sp. (Linnaeus 1758). Each species is a 
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key member of the groups defined by Park et al. (2003a) (chapter 3.2 of this book) using 
the Self-Organizing Map method, and each group is strongly related to river zonation. 

The predictive models were constructed using the backpropagation algorithm (Rumel-
hart et al. 1986a). A multilayer perceptron (MLP), also called multilayered feed-forward 
neural network, trained with a backpropagation algorithm typically comprises three neuron 
layers linked by connection intensities characterized by a modifiable weight: an input layer, 
one or several hidden layers and an output layer. The number of neurons in the hidden lay-
ers depends on the accuracy of the results required (Smith 1994; Lek et al. 1996b). In the 
majority of cases, a MLP with one hidden layer is capable of achieving any mapping with a 
given degree of accuracy (Hornik et al. 1989; Bhat and McAvoy 1992).The input layer con-
tains neurons as independent variables. In our case, it comprises eight input neurons corre-
sponding to the eight environmental variables. The output layer comprises the neurons re-
sponsible for producing the results, i.e. the dependent variables to be predicted (SR, TG and 
the five selected fish species). In this network, signals are propagated from the input layer 
through the hidden layers to the output layer via the network connections. During the train-
ing phase, the network is designed to compare expected and calculated values and to mod-
ify connection weights in order to minimize the error of the response, i.e. the difference be-
tween expected and calculated values. 

To determine the performance of the model, a hold-out crossvalidation procedure was 
used. A set of the database, composed of half of the data, was used for training the model, a 
set consisting of a quarter of the data served for model validation and the last quarter was 
used to test the model. The training set was used to determine the internal parameters of the 
models, as well as connection weighting, with the best compromise between bias and vari-
ance (Kohavi 1995, Geman et al. 1996). The quality of the models was evaluated using the 
correlation coefficients. Results were also represented by scatter plot of the estimated or 
predicted values versus the observed values. 

To determine the response of the model to each of the input variables separately, a sensi-
tivity analysis of the ANN was performed, using a partial derivative (PaD) algorithm (Di-
mopoulos et al. 1999; Gevrey et al. 2003). This procedure is based on partial derivatives of 
the output with respect to each input in order to determine, first, the classification of the 
relative contribution of each independent variable to the dependent variables and second, 
the variation of the profiles of the dependent variables for small changes of each independ-
ent variable. The results are represented by bar diagrams to illustrate the contribution of 
each independent variable to model each dependent variable, and by scatter plot of the par-
tial derivatives versus each independent variable to enable direct access to the influence of 
the independent variables on the dependent variables.

Results 

Prediction of species richness 

The training results of the model showed high predictability with a correlation coefficient 
of 0.82 (p<0.001). Moreover, the majority of the points in the scatter plot of observed val-
ues and predicted values were well-aligned along the diagonal of the best prediction (Fig. 
3.3.1). In the validation and testing procedure, predictability was relatively low, but still 
highly significant (p<0.001) with correlation coefficient respectively r=0.76 and r=0.74 
(Fig. 3.3.1). 
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We can see that the estimated or predicted values are consistently lower than the ob-
served values in the range of higher values: larger than 10 on the x-axis in all cases. This is 
due to the necessity to stop the learning process to avoid the overfitting of the model, lead-
ing to worse prediction of some values and to bad generalization of the model. 

Prediction of trophic guilds 

After the learning process with 4 trophic guilds (invertivores, omnivores, herbivores, and 
piscivores), the correlation coefficients obtained for the training set between estimated and 
observed values were greater than 0.68 (p<0.001) (Table 3.3.2) for all TG. Validation of the 
MLP model on 25% of the dataset revealed a significant correlation (r>0.64, p<0.001) be-
tween predicted and observed values. Finally, in the testing part of the dataset (25%), the 
correlation coefficients obtained between predicted and observed values were lower, and 
the minimum and maximum values were 0.56 and 0.74, respectively (p<0.001 for both 
cases). However, for invertivore and omnivore groups, the majority of records were aligned 
on the 1:1 diagonal (Fig. 3.3.2). Good results were not obtained for piscivores or herbivores 
even though the correlation coefficients were high (Fig. 3.3.2). The maximum species rich-
ness of herbivores was 2. The low representativeness of the species in these two groups led 
to the worst predictions by the models. Whatever the input, the model has to respond by a 
0, 1 or 2 in output. There were not enough data to help the model to learn the output accord-
ing to the input. 

Model with 8 
independent variables

Model with 3 
independent variables
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Figure 3.3.1: Recognition performance of the ANN models for species richness, (i) using 
the eight environmental variables (gradient, elevation, distance from source, surface area, 
width, depth, July air temperature and January air temperature) with (a) the training dataset, 
(b) the validation dataset and (c) the test dataset; (ii) (d) using three environmental variables 
(gradient, distance from source and surface area) with the training dataset, (e) the validation 
dataset and (f) the test dataset. Scatter plot shows the relationships between observed values 
and estimated or predicted values: the diagonal solid line indicates the perfect fit line (i.e., y 
= x) 
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Prediction of relevant species  

The models predicting the abundance of 5 fish species showed significant predictabilities 
(p<0.05), although the correlation coefficients between observed and estimated values were 
relatively low ranging from 0.33 – 0.7 (Table 3.3.3). The models had difficulty fitting the 
relationship between fish density and the eight environmental variables. Table 3.3.3 shows 
that only one model for brown trout gave a correlation coefficient higher than 0.55 in the 
three datasets (training, validation and test). For the five models, the training and test re-
sults were better than the validation results. Nevertheless, the correlation coefficients ob-
tained with the test dataset were higher than 0.5 for brown trout and minnow, slightly lower 
than 0.5 for bullhead and bream and equal to 0.33 for barbel. Due to the low predictability 
obtained, the sensitivity analyses were not stable and thus not relevant. Therefore, the re-
sults of the sensitivity analysis are not presented in this paper. 

Evaluation of influences of environmental variables 

The PaD algorithm was applied to the prediction models of SR and each TG. Two kinds of 
results were then available; the relative contribution of input variables and the response be-
haviour of the models according to changes in input variables (i.e., the profile of contribu-
tion).
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Figure 3.3.2: Recognition performance of the ANN models for the four trophic guilds 
(omnivores, invertivores, piscivores, and herbivores) using the eight environmental vari-
ables (gradient, elevation, distance from source, surface area, width, depth, July air tem-
perature and January air temperature) with the training dataset (respectively a, d, g and j), 
with the validation dataset (respectively b, e, h and k) and with the test dataset (respectively 
c, f, i and l). The scatter plots show the relations between observed values and estimated or 
predicted values: the diagonal solid line indicates the perfect fit line (i.e., y = x) 

For the prediction of SR (Fig. 3.3.3), the gradient was the variable that made the greatest 
contribution - over 35%, followed by the distance from the source (17.6%) and the surface 
area of the drainage basin (12.2%). The other variables made a contribution of less than 10 
% (Fig. 3.3.3). Standard errors of contributions of each variable were calculated after ten 
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training procedures (or repetitions) and the variations were very low, testifying the stability 
of the network models. Based on this sensitivity analysis of input variables, we selected the 
three variables making the strongest contributions to SR prediction (gradient, distance from 
the source and surface area of the drainage basin). A new SR prediction model was built us-
ing these 3 variables as inputs of the model. The prediction power was less efficient than 
those of the whole 8 environmental variables. However it was still highly significant and 
the loss of explanation power in the new model limited. The correlation coefficients, with 3 
environmental variables, were 0.74 (p<0.001) for the training dataset, 0.72 (p<0.001) for 
the validation dataset and 0.73 (p<0.001) for the test dataset (Fig. 3.3.1). 

The results of the sensitivity analysis with the PaD algorithm for the trophic guild mod-
els showed the relative importance of contribution of each environmental variable to each 
trophic guild (Fig. 3.3.4). Different trophic guilds were differently influenced by different 
variables. Invertivores were the most strongly influenced by the distance from the source, 
omnivores by the gradient, piscivores by the surface area, and herbivores by the distance 
from the source. Omnivores, herbivores and invertivores were closely linked to the distance 
from the source, gradient and depth whereas piscivores were strongly influenced by the sur-
face area and elevation. Herbivores were also related to elevation. Standard errors calcu-
lated for each variable after ten training procedures were very low, showing the stability of 
the network models. The contributions of each environmental variable to the model for the 
four trophic guilds are in agreement with the results of Park et al. (chapter 3.2 in this book) 
found, from the same dataset, using a self-organizing map algorithm.  

Table 3.3.2: Correlation coefficients between observed and estimated values in the training 
set (n=344 samples), between observed and predicted values in the validation set (n=172 
samples) and between observed and predicted values in the test set (n=172 samples) of the 
MLP modelling procedure for species richness (SR) and the 4 trophic guilds. All correla-
tions are highly significant (p<0.001). 

Variables Dataset 
Training Validation Test 

r n p r n p r n P 
SR 0.82 344 <0.001 0.76 172 <0.001 0.74 172 <0.001 

Omnivores 0.79 344 <0.001 0.72 172 <0.001 0.67 172 <0.001 
Invertivores 0.74 344 <0.001 0.64 172 <0.001 0.56 172 <0.001 
Herbivores 0.68 344 <0.001 0.71 172 <0.001 0.72 172 <0.001 
Piscivores 0.83 344 <0.001 0.65 172 <0.001 0.59 172 <0.001 

Table 3.3.3: Correlation coefficients between observed and estimated values in the training 
set (n=344 samples), between observed and predicted values in the validation set (n=172 
samples) and between observed and predicted values in the test set (n=172 samples) of the 
ANN modelling procedure for the 5 selected species. 

Variables Dataset 
 Training Validation Test 
  r n p r n p r n P 

Brown Trout 0.6 344 <0.001 0.6 172 <0.001 0.7 172 <0.001 
Bullhead 0.5 344 <0.001 0.3 172 0.001 0.5 172 <0.001 
Minnow 0.5 344 <0.001 0.2 172 0.006 0.5 172 <0.001 
Barbel 0.4 344 <0.001 0.3 172 <0.001 0.3 172 <0.001 
Bream 0.6 344 <0.001 0.2 172 0.032 0.5 172 <0.001 

The prediction models for the various TG showed that only omnivores and invertivores 
were well predicted by the 8 environmental variables. Therefore, we analyzed the profiles 
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of the contribution of environmental variables on SR as well as on these two trophic groups 
(Fig. 3.3.5), presenting partial derivatives of each model. The profiles of the contribution 
are analyzed based on the sign of the partial derivatives. If the partial derivative is negative, 
the output of the model tends to decrease against an increase of the input variable. In-
versely, if the partial derivative is positive, the output variable increases against an increase 
of the input variable. For example, for the contribution of depth to SR and OSR, the partial 
derivatives were mainly positive leading to an increase of SR or OSR with an increase of 
depth. For ISR, the partial derivatives were positive for small depths and became negative 
for large depths, indicating that ISR increased at shallow depths and decreased for great 
depths. The partial derivatives of the river gradient for ISR were negative at low gradients 
and became positive or constant on increasing the gradients, indicating a decrease of the 
ISR for a decrease of the gradient. The partial derivatives of the distance from the source 
were positive at low distances and decreased to become constant near zero as the distance 
from the source increased. Concerning SR and OSR, similar profiles were observed for the 
gradient but for variable DS, the partial derivatives (even if positive at low distances) in-
creased to reach an asymptote around a DS value of 100km and then decreased slightly. 
Overall, SR and OSR showed opposite trends to that of ISR along the upstream-
downstream gradient.
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Figure 3.3.3: Percentage contribution of each of the eight independent variables to the pre-
diction of species richness, obtained by PaD algorithm: GRA, Gradient; ELE, elevation; 
TJuly, July mean daily maximum air temperature; TJanuary, January mean daily maximum 
air temperature; WID, stream width; DEP, mean depth; DIS, distance from source and 
SAD, surface area of the drainage basin. Bars indicate the mean of the results from ten 
models; horizontal lines on the bars represent standard errors of the mean. 

Discussion and Conclusion 

The complexity of the relationships within an ecosystem has resulted in the development of 
increasingly sophisticated analytical techniques. In this study the MLP model demonstrated 
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its learning and predicative power as well as its explanatory capacities by presenting a high 
capability of modelling ecological problems involving non-linear relationships between the 
data.
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Figure 3.3.4: Percentage contribution of each of the eight independent variables to the pre-
diction of four trophic guilds, obtained by PaD algorithm: a, invertivores, b, omnivores, c, 
piscivores and d, herbivores. Bars indicate the mean the results of the ten models for each 
fish trophic guild, horizontal lines represent standard errors of the mean. The names of the 
environmental variables are explained in Fig. 3.3.3. 

-0,30
-0,20
-0,10
0,00
0,10
0,20
0,30

0,0 200,0 400,0 600,0

DIS

D
di

s

-0,30
-0,20
-0,10
0,00
0,10
0,20
0,30

0,0 2,0 4,0

DEP

D
de

p

-0,30
-0,20
-0,10
0,00
0,10
0,20
0,300,0 50,0 100,0 150,0

GRA

D
gr

a

-0,30
-0,20
-0,10
0,00
0,10
0,20
0,300,0 50,0 100,0 150,0

GRA

D
gr

a

SR

-0.40

-0.20

0.00

0.20

0.40

0.0 50.0 100.0 150.0

GRA

D
gr

a

-0.40

-0.20

0.00

0.20

0.40

0.0 200.0 400.0 600.0

DIS

D
di

s

-0.40

-0.20

0.00

0.20

0.40

0.0 2.0 4.0

DEP

D
de

p

OSR ISR

-0.30
-0.20
-0.10
0.00
0.10
0.20
0.30

0.0 50.0 100.0 150.0

GRA

D
gr

a

-0.30
-0.20
-0.10
0.00
0.10
0.20
0.30

0.0 200.0 400.0 600.0

DIS

D
di

s

-0.30
-0.20
-0.10
0.00
0.10
0.20
0.30

0.0 2.0 4.0

DEP

D
de

p

-0,30
-0,20
-0,10
0,00
0,10
0,20
0,30

0,0 200,0 400,0 600,0

DIS

D
di

s

-0,30
-0,20
-0,10
0,00
0,10
0,20
0,30

0,0 2,0 4,0

DEP

D
de

p
D

di
s

-0,30
-0,20
-0,10
0,00
0,10
0,20
0,30

0,0 2,0 4,0

DEP

D
de

p

-0,30
-0,20
-0,10
0,00
0,10
0,20
0,300,0 50,0 100,0 150,0

GRA

D
gr

a

-0,30
-0,20
-0,10
0,00
0,10
0,20
0,300,0 50,0 100,0 150,0

GRA

D
gr

a

-0,30
-0,20
-0,10
0,00
0,10
0,20
0,300,0 50,0 100,0 150,0

GRA

D
gr

a

SR

-0,30
-0,20
-0,10
0,00
0,10
0,20
0,300,0 50,0 100,0 150,0

GRA

D
gr

a

SR

-0.40

-0.20

0.00

0.20

0.40

0.0 50.0 100.0 150.0

GRA

D
gr

a

-0.40

-0.20

0.00

0.20

0.40

0.0 50.0 100.0 150.0

GRA

D
gr

a

-0.40

-0.20

0.00

0.20

0.40

0.0 200.0 400.0 600.0

DIS

D
di

s

-0.40

-0.20

0.00

0.20

0.40

0.0 200.0 400.0 600.0

DIS

D
di

s

-0.40

-0.20

0.00

0.20

0.40

0.0 2.0 4.0

DEP

D
de

p

OSR ISR

-0.40

-0.20

0.00

0.20

0.40

0.0 2.0 4.0

DEP

D
de

p

OSR ISR

-0.30
-0.20
-0.10
0.00
0.10
0.20
0.30

0.0 50.0 100.0 150.0

GRA

D
gr

a

-0.30
-0.20
-0.10
0.00
0.10
0.20
0.30

0.0 50.0 100.0 150.0

GRA

D
gr

a

-0.30
-0.20
-0.10
0.00
0.10
0.20
0.30

0.0 200.0 400.0 600.0

DIS

D
di

s

-0.30
-0.20
-0.10
0.00
0.10
0.20
0.30

0.0 200.0 400.0 600.0

DIS

D
di

s

-0.30
-0.20
-0.10
0.00
0.10
0.20
0.30

0.0 2.0 4.0

DEP

D
de

p

Figure 3.3.5 Partial derivatives of three ANN model responses (SR, omnivores and inver-
tivores) with respect to three independent variables (PaD algorithm, Derivatives Profile); 
GRA, Gradient; DIS, distance from headwater sources; DEP, mean depth. 
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Figure 3.3.6 Relationships between distance from the source (DIS) and river gradient 
(GRA) in the sampling sites. The sampling sites were ordered on the x-axis based on the 
gradient from low to high values. 

A previous study to explain the fish species richness on a local scale (Garonne River) 
using three environmental variables (elevation, distance from source and surface area of the 
drainage basin), explained most of the variability in species richness (Mastrorillo et al. 
1998). Here, we showed that local fish species richness of different basins can be relatively 
well explained by using only the three variables: river gradient, distance from source and 
surface area of the drainage basin. 

Our models were successful in the prediction of the trophic guilds (r>0.68 for the train-
ing set, r>0.64 for the validation set and r>0.5 for the test set). Moreover, the MLP models, 
with the help of sensitivity analysis, also revealed the relative importance of each environ-
mental variable in structuring species richness and trophic guilds.  

Looking at the profiles obtained, total species richness and omnivore species richness 
changed along the upstream-downstream gradient in an opposite way to invertivore species 
richness. These results are grossly concordant with predictions given by the River Contin-
uum Concept (i.e., an overall decrease in invertivorous species and an increase in omnivo-
rous species from upstream to downstream). Nevertheless, we found an unexpected trend in 
the relationships between total species richness or omnivore species richness and the river 
gradient. Total species richness and omnivore species richness are usually assumed to in-
crease with a decrease in river gradient, but we found the opposite trend. The disagreement 
may be due to the structure of the dataset. Fig. 3.3.6 shows differences of the gradient and 
the distance from the source at the sampling sites. The sampling sites were sorted based on 
the gradient from low to high values. A plot with two Y axes (one for distance from source 
and the other for gradient) and the number of sampling sites on X axis enable the variation 
of distance from source to be compared to the variation of gradient. Generally gradient val-
ues should decrease as the distance from source increases. Observing the curves in Fig. 
3.3.8, we can see that the distance from the source increases progressively. However, even 
if the general trend of the gradient plot is also a progressive decrease, large fluctuations are 
observed. For a given distance from the source, several gradient values are found, covering 
a large range (nearly 500 ‰). Although we were looking for a perfect negative regression 
fit between the distance from the source and the gradient, which would certainly be ob-
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served in the study of a single river, it is not surprising to find such results with data com-
ing from several rivers covering various regions. This result highlights the fact that patterns 
and processes observed in local fish assemblages are not only determined by local mecha-
nisms acting within assemblages, but also result from processes operating at larger spatial 
scales (i.e., basin and/or ecoregional scale). For example, the richness and structure of local 
fish assemblages has been linked to factors ranging from geomorphology and climate 
(Whittier Hughes and Larsen 1988, Nelson et al. 1992, Matthews and Matthews 2000), to 
richness of regional species pool (Hugueny and Paugy 1995, Angermeier and Winston 
1998, Oberdorff et al. 1998). In this study we modeled local fish assemblage structure by 
using only local scale environmental factors but we believe it is important to also account 
for the possible sources of inter regional variation in assemblage structure in natural condi-
tions.

It was interesting in this work to use some results from another study which applied an-
other kind of artificial neural network algorithm, the self-organizing map, on the same data-
set. The sampling sites were clustered into several groups using the species composition 
similarities and the groups were representative of the upstream-downstream river gradient 
(Park et al. chapter 3.2). In this study, we selected one relevant species in each of the 
groups and tried to predict their abundances from the environmental variables. The results 
were not a total success even though all predictions were significant. This may be caused 
by variation of species abundance. Due to the large scale of the dataset, the sample sites dif-
fer from each other, showing high variations in species abundances (i.e., absence in many 
samples and highly abundance in some samples). ANN can predict a zero quite accurately 
but has more difficulty predicting abundance values. The diversity of the sites can also be a 
drawback for the ANN which has difficulties in learning dissimilar values. 

Our results confirmed the longitudinal variation in the species richness of different tro-
phic guilds, with more invertivores near headwaters and more omnivores and piscivores in 
midreach locations (Oberdorff et al. 1993). Furthermore, as also previously noticed by 
Oberdorff et al. (1993) working on eight French rivers we found that total species richness 
peaks at midreach locations and then declines in the lowermost reaches of the systems, as 
suggested by the River Continuum Concept. Nevertheless, in their study, Oberdorff et al 
(1993) could not conclude if this decline in species richness was a natural pattern or a sim-
ple effect of man-induced disturbances. As in the present study we noticed the same decline 
while only "least disturbed sites" were included in the dataset, we are more confident about 
the ecological validity of the pattern. 

In conclusion, the MLP model is an efficient tool for modelling different fish commu-
nity descriptors using abiotic variables. The predictive power of ANN along with the use of 
explanatory methods should facilitate the ecologically oriented management of aquatic eco-
systems. 
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3.4 Fish diversity conservation and river restoration in 
southwest France: a review*

Aguilar Ibarra A*, Lim P, Lek S 

Introduction 

The evidence of human pressure on freshwater ecosystems has been largely recognised 
(Dynesius and Nilsson 1994). But it was only recently that water quality guidelines have 
laid a stronger emphasis on aquatic ecosystem health (Hart et al. 1999). For example, the 
European Water Framework Directive (EWFD) acknowledges that a good condition of eco-
systems is essential for sustainable development (Kallis and Butler 2001). Nevertheless, in 
order to recognise an aquatic ecosystem in good conditions, we need first to both character-
ise and identify its biotic communities (Bryce et al. 1999). Consequently, analysing diver-
sity patterns and distributions of aquatic communities has become a critical aspect for water 
quality management (Boulton 1999, Jenerette et al. 2002). 

One important element in aquatic ecosystem management is the spatial characterisation 
of riverine fish communities. Indeed, fish are considered as indicators of both aquatic qual-
ity and aquatic restoration success (Angermeier and Schlosser 1995, Paller et al. 2000, 
Oberdorff et al. 2001). Furthermore, there is a need to understand how fish assemblages 
vary within ecoregions, basins or physiographic regions (Naiman et al. 1988, Smogor and 
Angermeier 2001). 

This chapter deals with fish diversity and conservation in the Garonne basin and is heav-
ily based on work by Aguilar Ibarra (2004). We present a review of the research carried out 
on fish ecology and we discuss fisheries policies and options on fish conservation and river 
restoration. We organise our chapter as follows: we first discuss why the Garonne basin is 
an interesting case for studying riverine fish diversity. Second, we review the main results 
of research on fish ecology in the area of study and the main water fisheries policies. Third, 
options on fish conservation and river restoration are given, and finally we list perspectives 
for further management and research. 

The Garonne basin as a landscape unit for studying fish 
assemblages 

There are two approaches for considering the Garonne basin as an adequate landscape unit 
for studying fish assemblages: one refers to fish ecology and another to water policy. From 
the ecological viewpoint, drainage basins are ecologically relevant regions since stream 
fishes generally disperse within basins but not among large basins (Angermeier and 
                                                          
* We sincerely thank Tae-Soo Chon whose comments notably improved a former version of this paper. 
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Winston 1998). The potential number of fish species in a basin (i.e. regional species pool) 
is known as its gamma diversity, which is a function of its alpha and beta diversities. Alpha 
diversity relates to the number of species in each habitat (i.e. local species richness), and 
beta diversity is the turnover of species between habitats (Ward and Tockner 2001). There-
fore, the understanding of these diversities in a basin and their interactions with humans is 
of paramount significance to environmental managers (Matthews 1998, Karr 1999). This is 
thus linked to the water policy viewpoint. Indeed, the Water Framework Directive of the 
European Union reckons that basins are useful landscape units for water quality manage-
ment (Kallis and Butler 2001). Furthermore, the Garonne basin is considered an important 
basin, even on a world scale (Revenga et al. 1998). 

The Garonne basin is located in south west France and has a catchment area of 56,536 
km² . Its hydrological characteristics are related to the basin’s altitude, soil types, vegeta-
tion, orientation and climate (Gozlan et al. 1998). In this way, the oceanic influence, char-
acterized by warmth and humidity, prevails on the whole basin, diminishing towards the 
south-east where it faces the Mediterranean influence, with lower precipitation and drier 
winds (CBAG 1996). Following the classification of Dupias and Rey (1985) the Massif 
Central and the Pyrenees correspond to ecoregions X and XIII respectively. The other two 
ecoregions present are the Aquitain (XI) and the Landaise (XII) ecoregions which mainly 
comprise the flood-plains (Fig. 3.4.1). 

Massif Central
plateau

(Ecoregion X)
Floodplains

(Ecoregion XI)

Pyrenees
(Ecoregion XIII)

N

Lannemezan
Plateau

Figure 3.4.1 The Garonne basin in southwest France, showing the ecoregions. Sources: 
Dupias and Rey (1985) and IGN (2003).  

The main channel runs over 525 km from the Pyrenees (in the Maladeta plateau in 
Spain) to the Gironde estuary in the Atlantic coast, and is the third longest river in France 
(CBAG 1996). The Garonne bed is composed of a number of facies but gravel and bedrock 
dominate the channel bed (Sauvage et al. 2003). The flow regime is pluvio-nival since its 
tributaries come from the Massif Central (pluvial regime) and from the Pyrenees (nival re-
gime), including the Lannemezan plateau. Among the principal tributaries of the Garonne, 
the Lot river (491 km in length) and the Tarn river (375 km) are the largest, both having 
their source in the Massif Central plateau. With respect to the Pyrenees, the most important 
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tributary is the Ariege river (150 km). The remaining discharge is given by small rivers 
draining on the left side of the bank, formed in the Lannemezan plateau, where the Baïse 
river (180 km) and the Gers river (176 km) are the best known (CBAG 1996). The Garonne 
is characterised by a very fluctuant flow regime (Etchanchu and Probst 1988). Critical low-
water periods last from June through October, while maximum flows are exhibited in Feb-
ruary for Winter and in May for Spring. Variations in flow discharge are provoked by up-
stream dams and variations may reach 30% to 100% of the mean daily discharge on a daily 
basis (Sauvage et al. 2003). These variations result in a high habitat heterogeneity (i.e. side-
arms and oxbows) which is closely related to fish production in the floodplains (Decamps 
and Naiman 1989, Gozlan et al. 1998). 

The biological composition of rivers in the Garonne basin resulted from a rapid degres-
sion of glacial activity approximately ten thousand years ago (Persat and Keith 1997). Both 
the Massif Central and the Pyrenees acted as barriers to fish dispersal, a fact which explains 
the lower number of fish species (about 45) in the Garonne in comparison with other 
French basins (Mastrorillo et al. 1998). For example, grayling (Thymallus thymallus), al-
though a common fish in Europe, is absent from the Garonne basin (Keith and Allardi 
2001). This makes this region an interesting case for studying its fish communities since it 
does not fit the classical river zonation model of Huet (1959), who described western Euro-
pean rivers as having four zones according to their most important species: brown trout 
(Salmo trutta), grayling (T. thymallus), barbel (Barbus barbus), and bream (Abramis 
brama).

A review of fish diversity research in the Garonne basin 

Extensive field work on riverine fish communities in the Garonne basin has been carried 
out by the Aquatic Environment Team of the School of Agronomy at Toulouse, France 
(ENSAT) along with the government fisheries agency (CSP) and local associations of fish-
ermen. They have recorded 41 fish species, belonging to 13 orders and 16 families and 
whose main features are summarised in Table 3.4.1.  

Most of the studies carried out on fish ecology in the Garonne basin have focused on a 
small scale (i.e. a sector of a river). More research has been conducted on the main Garonne 
channel than its tributaries. For example, Lim et al. (1985) and Belaud et al. (1989a) tried to 
understand Huet’s zonation in the absence of grayling. Their analysis of fish species com-
position and abundance between Saint Gaudens and Agen led to the definition of a transi-
tional zone from a Salmoniform-rich area to a Cypriniform-rich area in the Garonne main 
channel (Cattaneo et al. 1999). Later, Reyjol et al. (2001a) found that this transition was in-
fluenced locally by summer water temperature and flow regulation. Gozlan et al. (1998) 
analysed the relationship between environmental variables and young fish (0+) between 
Muret and Moissac. They found that partially abandoned channels were important habitats 
for fish feeding, recruitment and refuge in the floodplains.  

The fish community on the Garonne river at Toulouse has been the subject of a few 
works. On the one hand, Palomares et al. (1993) constructed a preliminary model of trophic 
interactions (Ecopath II) including not only fish but plankton, macroinvertebrates and ben-
thic producers as well. On the other hand, Hutagalung et al. (1997) noted that the presence 
of tolerant fish, like roach (Rutilus rutilus) and common bream (A. brama), induced a 
higher local species richness in a polluted site than in an unpolluted one. Hutagalung (1998) 
explains this phenomenon as the result of the diminution of ammonia-related pollutants and 
of a higher water temperature in the polluted site.
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Table 3.4.1 Taxonomic and guild classification of the fish species recorded between 1986-
1996 by the Aquatic Envirnoment Team of the School of Agronomics at Toulouse (EAA-
ENSAT). 

Taxon Common name Origin in the 
basin (i) 

Feeding
habitat (ii) 

Type of 
food (iii) 

Repro-
ductive (iv) 

Petromyzontiformes      
Petromyzontidae      
Petromyzon marinus Sea lamprey D B D L 
Lampetra planeri  Brook lamprey N B D L 
Anguilliformes      
Anguillidae      
Anguilla anguilla  Eel D B Iv* Pe 
Clupeiformes      
Clupeidae      
Alosa alosa Allis shad D W O Pe 
Alosa fallax Twaite shad D W O Pe 
Cypriniformes      
Cyprinidae      
Alburnus alburnus  Bleak N W O PhL 
Barbus barbus  Barbel N? B O L 
Carassius carassius  Crucian carp I B O PhL 
Cyprinus carpio  Common carp I B O Ph 
Pachychilon pictum  Albanian roach I W O PhL 
Blicca bjoerkna  White bream N? B O Ph 
Abramis brama  Common bream N? B O PhL 
Chondrostoma 
toxostoma French nase N B O L 

Leuciscus cephalus  Chub N W O L 
Leuciscus leuciscus Dace N W O L 
Phoxinus phoxinus  Minnow N W O L 
Rutilus rutilus Roach I? W O PhL 
Scardinius 
erythrophthalmus  Rudd N? W O Ph 

Tinca tinca Tench N? B O Ph 
Gobio gobio  Gudgeon N? B O Ps 

Pseudorasbora parva  Top mouth gud-
geon I W O? PhL? 

Rhodeus sericeus  Bitterling I? W H Os 
Balitoridae      
Barbatula barbatula  Stone loach N B Iv L 
Siluriformes      
Siluridae      
Silurus glanis Wels catfish I B P PhL 
Ictaluridae      
Ictalurus melas Black bullhead I B Iv L 
Esociformes      
Esocidae      
Esox lucius  Pike I? W P Ph 
Salmoniformes      
Salmonidae      
Salmo salar Salmon D W Iv* L 
Salmo trutta fario  Brown trout N W Iv L 
Salmo trutta trutta Sea trout D W Iv* L 
Oncorhynchus mykiss  Rainbow trout I W Iv L 
Cyprinodontiformes      
Poecilidae      
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Gambusia affinis Mosquito fish I W Iv V 
Gasterosteiformes      
Gasterosteidae     

Gasterosteus aculeatus  3-spined stickel-
back N W O A 

Mugiliformes      
Mugilidae      
Mugil cephalus Lisa M W O Ps 
Perciformes      
Percidae      
Gymnocephalus cernua Ruffe I B O PhL 
Perca fluviatilis Perch I? W P PhL 
Stizostedion lucioperca Pikeperch I W P Ph 
Centrarchidae      
Lepomis gibbosus  Pumpkinseed I W Iv L 
Micropterus salmoides  Black bass I W P PhL 
Blennidae      
Blennius fluviatilis Freshwater blenny N B Iv L 
Scorpeaniformes      
Cottidae      
Cottus gobio Bullhead N B Iv L 
Pleuronectiformes      
Pleuronectidae     
Platichthys flesus European flounder M B Iv Pe 

(i) D= diadromous, I=introduced, N=native, M=marine (Keith 1998, Keith and Allardi 2001). 
(ii) B=Benthic, W=Water column (Michel and Oberdorff 1995, Berrebi-dit-Thomas et al. 1998, Ober-
dorff et al. 2002a, Bruslé and Quignard 2001, Keith and Allardi 2001). 
(iii) D=detritivore, H=Herbivore, Iv=Invertivore, O=Omnivore, P=Piscivore (op.cit.). 
(iv) A=Ariadnophil, L=Lithophil, Os=Ostracophil, Pe=Pelagophil, Ph=Phytophil, PhL=Phyto-litophil, 
Ps=Psammophil, V=Viviparous (Balon 1975, Bruslé and Quignard 2001). 

? Needs further verification. 
* During their freshwater period. 

Downstream of Toulouse, Pouilly et al. (1996) applied a model to estimate fish commu-
nity composition using the most abundant species in this stretch: barbel (B. barbus), gud-
geon (Gobio gobio), chub (Leuciscus cephalus), bleak (Alburnus alburnus) and roach (R. 
rutilus). Moreover, Belaud et al. (1990) and Bengen et al. (1992) investigated fish ecology 
of oxbows which are quite numerous and important to fish life cycles. In fact, they demon-
strated the importance of the main channel as a migration pathway among oxbows, and that 
these help to maintain fish diversity in the floodplains.  

The implications of a fish elevator in the largest dam on the Garonne river at Golfech 
have been considered by Belaud et al. (1985), Belaud and Labat (1992) and Bellariva and 
Belaud (1998). Several diadromous species have been affected by migration barriers along 
the Garonne river, mainly Atlantic salmon (Salmo salar), European eel (Anguilla anguilla),
lampreys (Lampetra fluviatilis and Petromyzon marinus) and shads (Alosa spp.). However, 
allis shads (A. alosa) have been more deeply studied. For example, Bellariva and Belaud 
(1998) showed that since 1987, when the fish elevator was fully operational, significant in-
creases have been recorded for allis shad populations.  

Trout populations have been extensively studied, mostly in the Pyrenees. For example, 
many studies have focused on the ‘microhabitat method’ or ‘instream flow incremental 
methodology’ for studying trout populations, (e.g. Belaud et al. 1989b, Delacoste et al. 
1993, Baran et al. 1995a,b, 1997). Other methods of analysis have been used, including ar-
tificial neural networks (e.g. Baran et al. 1996, Lek et al. 1996b, Reyjol et al. 2001b).  

Fish assemblages in headwater streams are almost exclusively composed of brown trout 
(Salmo trutta fario) (Baran et al. 1993a), however, bullhead sculpin (Cottus gobio) has been 
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observed in unregulated reaches (Crespin and Usseglio-Polatera 2002). Both species are 
closely correlated to both high water quality and high habitat quality (Baran et al. 1993a). A 
higher trout abundance is observed in regulated sectors than under natural flow conditions 
(Belaud and Baran 1997), being the reduced instream flow the most notable influence 
(Baran et al. 1995a). Indeed, it has been demonstrated that brown trout has a slower growth 
and a higher longevity in the Pyrenees than in other French streams, due to harsher envi-
ronmental conditions (Lagarrigue et al. 2001). In fact, trout abundance depends on a num-
ber of factors (Cuinat 1971). For example in the Neste de Louron river, the abundance of 
trout longer than 180 mm in total length is influenced by mean depth, mean bottom veloc-
ity, and the number of refugia (Baran et al. 1993b) and in the Neste d’Aure to the gradient, 
stream width and the presence of weirs and dams for the whole of the population (Baran et 
al. 1993a). These obstacles diminish the migrations of trout along the river, leading them to 
spend the whole of their life cycle in a limited stretch (Baran et al. 1993a). In the Neste 
d’Oueil, the occasional deteriorations in the population carrying capacity and of the physi-
cal habitat may lead to reductions in adult abundance (Gouraud et al. 1999, 2001). The 
habitat also has an important influence on trout-prey (i.e. benthic invertebrates) interactions 
(Lauters et al. 1996, Crespin and Usseglio-Polatera 2002), although neither abundance nor 
diversity of invertebrates are directly correlated with biomass or density of trouts in the 
Neste d’Aure river (Baran et al. 1993a).  

Much less work has been done under a multispecific approach. For example, Dauba et 
al. (1997) studied the recovery of fish assemblages in the Baïse river. This river was abiotic 
due to the chemical pollution by ammonia-derived products, but after waste treatment fa-
cilities were implemented in the 1970s, both fish assemblages and invertebrates recovered. 
However, although fish species richness increased from five in 1978 to eight in 1990 the 
recolonization of the whole river remained incomplete by 1996 (Dauba et al. 1997), as very 
sensitive species had not yet recovered to their original levels. In another multispecific 
study, Tourenq and Dauba (1978) showed the changes of the fish fauna composition in the 
Lot river as a consequence of dams construction. Mastrorillo et al. (1997a) predicted the 
presence of minnow (Phoxinus phoxinus) gudgeon (Gobio gobio) and stone loach (Barba-
tula barbatula) on the Ariège river.  

On a regional scale (i.e. the whole basin), fish assemblages have been studied by Mas-
trorillo et al. (1998) and Aguilar Ibarra et al. (2003) who analysed fish species richness by 
using a back-propagation neural network. Aguilar Ibarra et al. (2003) developed the work 
of Mastrorillo (1998a) in a deeper way by modelling fish guilds and examining the contri-
bution of environmental descriptors in explaining guild composition. They found that mod-
els showed high variability, presumably due to spatial heterogeneity, temporal variability or 
sampling uncertainty. The area of the catchment basin and annual mean water flow were 
the most important environmental descriptors of guilds composition; both variables imply-
ing human influence (i.e. land-use and flow regulation) on riverine fish. 

Other studies were those of Reyjol et al (2003) who compared the longitudinal distribu-
tion of fish and invertebrates in the Garonne basin, and Aguilar Ibarra (2004) who applied a 
Kohonen’s self-organising map (i.e. a non-supervised artificial neural network) to presence-
absence data of fish, finding three main nested patterns in an aggregated hierarchy: a suc-
cession of species along a gradient without defined boundaries, four main zones of fish as-
semblages, and an upstream-downstream shift of fish communities. Furthermore, the fish 
assemblages matched the physiography of the Garonne landscape, corresponding to two 
significant ecological boundaries: one in the upper piedmont and another in the lower 
piedmont, forming a transitional zone between a mountain assemblage and a floodplain as-
semblage.
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Historical context of water quality and fisheries management in 
France 

The history of management measures with regard to water quality and fisheries manage-
ment in France is summarised in Table 3.4.2. Domestic effluents were the first form of wa-
ter pollution in France. Angelier (2001) notes that in the times of Napoleon III in the 19th 
century, the Seine river was depopulated of fish along 5 km near Paris. This condition later 
worsened with the contribution of industrial waste during the 20th century (Leynaud and 
Trocherie 1980).  

Table 3.4.2 Historic summary of main events which influenced fish diversity conservation 
in the Garonne basin. 

Period Main events
19th Century Pollution from domestic effluent. 
Early 20th Century Organic pollution and industrial waste. 
1950 onwards Intensification of damming and use of fertilizers. 
1964 A French water law is enacted in order to improve water quality. 
1970s Fish depopulation in a number of rivers. 
1984 The French fishery law is enacted for protecting fish resources. 

1988 The application project of the European Water Framework Directive is born, 
with an emphasis on environmental quality. 

1992 A new French water law is enacted in harmonisation with European direc-
tives.

1994 Fisheries plans are aimed to encourage natural fish reproduction and habitat 
improvement. 

2002 The French water law is updated with the aim to restore habitats and protect 
biodiversity. 

2005 onwards Full application of the European Water Framework Directive. 

The water law of 16 December 1964 directly addressed the problem of pollution as one 
major national concern. This law, however, did not imply the protection of the biodiversity 
nor the integrity of aquatic ecosystems. It was just aimed at reducing the level of pollution 
entering the riverine systems by setting standards for drinking water. Such an approach 
proved successful in the fight against point-source pollution, but was poorly suited to inte-
grated management of river ecosystems (Oberdorff et al. 2002a). In spite of the 1964 law, 
natural ecosystems suffered severe damage, leading to the loss of a number of fish popula-
tions in several French rivers during the 1970s (Leynaud and Trocherie 1980). A response 
to such problems came with the fishery law of 1984, which indicated the importance of 
safeguarding aquatic environments and fish resources (Levêque 1999).  

More recently, French regulations concerning water resources have been harmonised 
with European directives. This is clearly seen in the new water law of 3 January 1992 as 
pointed out by Le Roch and Mollard (1996) and Levêque (1999). The 1992 water law 
stresses the need to preserve aquatic ecosystems with the aim of setting up a policy for the 
quality of ecosystems, based on three criteria of evaluation: water quality, biological qual-
ity, and physical quality of the channel (i.e. river habitats). Piégay et al. (2002) explain that 
in order to carry out this policy, two management plans have been created: the ‘Schéma Di-
recteurs d’Aménagement et de Gestion des Eaux’ (SDAGE) and the ‘Schémas 
d’Aménagement et de Gestion des Eaux’ (SAGE). 

The aim of the SDAGE is to promote balanced management of water resources. It in-
volves the evolution from water management to a management of the aquatic ecosystems in 
all their forms and all their components (chemical, biological and physical), taking into ac-
count their evolution, complexity, and their inter-relationships. The SAGE is simply a plan 
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operating on a local basis (Piégay et al. 2002). The main orientations defined by the 
SDAGE for the Adour and Garonne basins are: (i) the restoration of water flow by control-
ling its consumption, (ii) the protection of groundwater aquifers for the supply of drinking 
water, and (iii) the openning up of watercourses to fish migrations. 

This policy has led, since 1994, to a re-organisation of fisheries management plans in 
order to encourage natural reproduction of fish populations and their conservation, instead 
of plain re-stocking. According to Armand et al. (2002), this law established a change in di-
rection for French water management, as it shifts the approach from an ‘aquatic resources 
quantity’ policy towards an ‘aquatic resources quality’ policy. Its application thus implies 
the restoration of habitats and the conservation of the biodiversity.  

Management plans are also required for sportfishing. Rivers are managed in France by a 
system of property rights in which owners of a sector of a river have the exclusive right to 
fish, and the power to allocate fishing rights in it (Fishery Law of 29 June 1984). However, 
they must participate in the elaboration of fishing management plans under the supervision 
of local authorities. In general, permit holders bestow their rights and responsibilities to one 
of the local associations of fishermen (Associations Agréées de Pêche et de Protection du 
Milieu Aquatique –AAPPMA), which belong to 93 departmental associations (Fédérations 
Départamentales), in seven river basin unions (Unions Régionales) These regional associa-
tions formed in 1947 the Fishing Union of France (Union Nationale pour la Pêche en 
France) which to date count nearly two million anglers throughout the country (UNPF 
2000). Fisheries management is thus heavily supported by anglers' organisations along with 
the government fisheries agency (Conseil Supérieur de la Pêche –CSP) which provides 
technical and scientific advice (Changeux et al. 2001, Armand et al. 2002). 

The management plan has to be produced for every region or Département and contains 
two components: one dealing with conservation and restoration of freshwater ecosystems 
(Plan Departemental pour la Protection du Milieu Aquatique et la Gestion des Ressources 
Piscicoles –PDPG), and the other dealing with fishing effort (Plan Départamental pour la 
Promotion du Loisir-Pêche –PDPL). The PDPG establishes fishery management units 
based on the distribution and stock assessments of indicator species such as salmonids and 
pike. It encourages measures for protecting natural reproduction of wild stocks and restor-
ing riverine habitats (Changeux et al. 2001). In contrast with former fisheries policies, it 
tries to prevent ‘useless restocking’ even though restocking has flourished in France to re-
spond to anglers demands (Armand et al. 2002). Under the PDPL, the number of fishermen 
is assessed on the basis of their spatial distribution and traveling locations. This spatial dis-
tribution allows an estimation of services, accessible areas, training needs and any fishing 
restriction with respect to available fish stocks in every département (Armand et al. 2002). 

A conceptual framework for the management and conservation of 
fish

In spite of the regulations described above, according to Keith (2000), there are no man-
agement plans for conservation of fish diversity, with the sole exception of migratory spe-
cies. Eight species in four categories on the red list inhabit the Garonne basin (Keith 2000): 

Critically endangered fish: sturgeon (Acipenser sturgeon).
Endangered fish: Atlantic salmon (Salmo salar).
Vulnerable fish: brown trout (S. trutta), allis shad (Alosa alosa), twaite shad 
(Alosa fallax), eel (Anguilla anguilla), pike (Esox lucius) and sea lamprey 
(Petromyzon marinus).
Low-risk fish: soiffe (Chrondrostoma toxostoma). 
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Conservation plans would be preferable when the whole ecosystem is protected or re-
stored, rather than setting up plans for isolated species (Angermeier and Schlosser 1995, 
Maitland 1995). For example, ichthyoregions can be useful for fish protection and water
quality management (Hughes et al. 1987, Oswood et al. 2000). In the case of large basins, 
Angermeier and Winston (1998) and Smogor and Angermeier (2001) have shown that ich-
thyoregions should be coincident with physiographical provinces (e.g. mountains, pied-
mont, plains), because these have distinctive fish fauna. In fact, fish assemblage differences
among physiographic provinces in the Garonne river network (Aguilar Ibarra 2004) con-
firm that heterogeneity, especially in a large basin, should be carefully considered for water
management, river restoration and biodiversity conservation (Cowx and Welcomme 1998, 
Smogor and Angermeier 2001). Thus, we propose a conceptual framework of potential ich-
thyoregions in the Garonne basin (Fig. 3.4.2).
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Figure 3.4.2. Conceptual diagram showing fish communities corresponding to the physi-
ography of the landscape. Fish communities located in the upstream of the basin (U) are re-
lated to mountain streams, while downstream communities (D) inhabit floodplain rivers. 
Between both there exists a transition (T) in the piedmont reaches. Further downstream, a
hypothetical community is considered to be present in estuarine-influenced waters.

The ecophysiological requirements of downstream fish would not allow them to attain
upper reaches (U) or (of the basin, and vice versa, but a transition (T) zone (barbel and
grayling zones) could act as a link between the two ends. The upper boundary would corre-
spond to the mountain-piedmont landscape transition, where a change takes place from
salmoniform-predominant assemblages to more diverse assemblages where cypriniforms
predominate (Rahel and Hubert 1991, Reyjol et al. 2001a). The lower boundary would re-
late to the lower piedmont-floodplain boundary (Rahel and Hubert 1991, Smogor and An-
germeier 2001), where an even more diverse assemblage dwells, including cyprinids, icta-
lurids and percids. Further downstream, we predict the existence of another transition zone
between fresh and brackish waters coming from the estuary (E). The latter, in fact, has been 
identified elsewhere as the flounder zone by Keith and Allardi (2001), but remains to be 
verified in the Garonne basin. Diadromous species would pass throughout the whole gradi-
ent in order to complete their life cycles. 

One practical use of physiographic ichthyoregions for water quality management would 
be the detection of deviations from the normal composition of a community due to climatic
changes (Tonn 1990) or anthropogenic disturbances on the aquatic-terrestrial interface 
(Oswood et al. 2000, Smogor and Angermeier 2001). For example, Aguilar Ibarra (2004)
showed patterns of fish diversity highlighting the presence of discontinuities in the longitu-
dinal profile of rivers. Even when the causes of such discontinuities are difficult to deter-
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mine, fish guilds may show the relationship between environment and community structure. 
Indeed, as land use implies non-point source pollution, economic activities may deteriorate 
the primary productivity and the concentration of nutrients would have severe effects on 
fish assemblages (Berkman and Rabeni 1987, Harding et al. 1998). Under such circum-
stances, generalists will be favoured with the increase of organic matter, thus, omnivorous 
fish and some planctivores would be better adapted than specialists, such as invertivores. 
However, the increment of suspended matter may also cause sedimentation, which may be 
negative even for the best adapted species. The influences on a particular trophic group will 
also have consequences on other groups of the trophic chain, such as carnivores (Schlosser 
1990, Oberdorff et al. 1993).  

Table 3.4.3 Introduced fish in the Garonne basin (alphabetical order). Interrogation point 
means it is not sure whether it was introduced. Sources : Keith (1998), Bruslé and Quignard 
(2001), Keith and Allardi (2001).

Scientific name Common 
name Origin Date of in-

troduction Observations 

Carassius auratus Goldfish Asia 18th century Very invasive 
Carassius carassius Crucian carp Eastern Europe ? Rapidly expanding 
Cyprinus carpio Common carp Central Europe Roman Era Very common 

Esox lucius  Pike Western Europe ? Popular sportfish 

Gambusia affinis Mosquito fish North America 1920s Rapidly expanding 

Gymnocephalus cerna Ruffe East and North 
Europe 20th century Very rare 

Hypophthalmichtys mo-
litrix Silver carp Asia 1970s No natural repro-

duction

Ictalurus melas Black bullhead North America 1870s Intensive competi-
tor

Lepomis gibbosus Pumpkinseed North America 1877-1885 Very resistant spe-
cies

Leuscaspius delineatus Rain bleak Central and Eastern 
Europe ? Very rare 

Micropterus salmoides Black bass North America 1890s Very rare 
Oncorhynchus mykiss Rainbow trout North America 1880s Popular sportfish 

Pachychilon pictum Albanian roach Eastern Europe 1980s Accidentally in-
troduced 

Perca fluviatilis Perch Western Europe 19th century Popular sportfish 

Pseudorasbora parva  Stone moroko Asia 1970s Accidentally in-
troduced 

Pungitius pungitius Nine-spined 
stickelback Western Europe ? Very rare 

Rhodeus sericeus Bitterling Central and Eastern 
Europe ? Very rare 

Rutilus rutilus  Roach Central and Western 
Europe ? Very common 

Salvelinus fontinalis Charr Switzerland 19th century Only in mountain 
lakes

Salvelinus namaycush Lake trout North America 1880s Only in mountain 
lakes

Silurus glanis Wels catfish Central Europe 1850s Only in large riv-
ers

Stizostedion lucioperca Pikeperch Central Europe 20th century Popular sportfish 
Thymallus thymallus Grayling Western Europe ? Very rare  
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Other causes of discontinuities in the longitudinal distribution of fish in rivers are inten-
sive agricultural practices (Rahel and Hubert 1991, Harding et al. 1998), urbanisation 
(Hutagalung et al. 1997, Wang et al. 2000) and the presence of dams (Tourenq and Dauba 
1978), which create lotic-lentic environments along a river (Ward and Stanford 1983a). 
Dams and weirs have been built since the 14th century in the Garonne basin, but in the last 
few decades both damming and fertilizer use have increased (Steiger et al. 1998, Semhi et 
al. 2000), leading not only to concerns on fish conservation but on river restoration as well 
(Decamps and Naiman 1989, SMEAG 2003). 

A word should be devoted to introduced species. Exotic fish are especially successful in 
human-disturbed habitats (Moyle and Light 1996, Angermeier and Winston 1998) so an in-
crease in extension or frequency of these conditions may boost introduced populations to 
the detriment of native species. Although introduced fish are rarely the direct cause of local 
species extinctions (Moyle and Light 1996) they may lead to a reduction in beta-diversity, 
that is to say, a regional-scale homogenization of fish assemblages (Rahel 2000), and thus 
decreasing global fish diversity (Angermeier 1994). Table 3.4.3 lists the exotic species re-
corded in the Garonne basin.  

River restoration options 

Restoration of regulated flows involves reconnecting their lateral and longitudinal compo-
nents (Cowx and Welcomme 1998, Ward et al. 1999). Lateral connectivity is particularly 
important in the Garonne basin since a number of oxbows exist in its floodplains, serving as 
refuges for a diverse fish fauna (Belaud et al. 1990, Bengen et al. 1992). In fact, dredging 
activities downstream from Toulouse have lowered the river level, substituing typical riffle 
stretches with molassic paving (Pouilly et al. 1996), diminishing the surface of riparian for-
ests (Steiger et al. 1998), and reducing the number of refuges for fish (Gozlan et al. 1998). 
Therefore, actions should involve the regeneration of vegetation along the riparian zone of 
rivers in order to improve the environmental conditions for a number of fish species 
(Wichert and Rapport 1998, Paller et al. 2000). Indeed, the riparian forest offers shadow 
refuges for many fish and provides a diversity of food sources (Wang et al. 2000). Further-
more, vegetation on river banks could reduce the impact of non-point-source pollution, act-
ing as a biofilter against water pollutants (Hendry et al. 2003). 

Longitudinal restoration includes three actions, mainly the implementation of minimum 
flow, the openning up of waterways for fish migration, and the rehabilitation of spawning 
grounds. In the first case, a minimum flow is defined as the minimum water quantity neces-
sary for supporting fish life. Minimum flow has been applied since 1998 in the Pyrenees by 
hydropower facilities (Baran et al. 1997). However, even though minimum flow has shown 
favourable results, this method has been criticised (e.g. Barinaga 1996, Poff et al. 1997) be-
cause it aims primarily to favour selected species, and because it diminishes the natural 
transport of sediment by a river. In this respect, Ward et al. (1999) and Tockner et al. 
(2000) propose a higher diversity of flow levels set up by the authorities, representing a 
more "natural" flow regime. Allowing the migration of fish is another measure of restora-
tion in longitudinal connectivity of rivers (Cowx and Welcomme 1998). Fish ladders and 
by-passes have been built since the 1980s on several dams of the Garonne channel. These 
devices, along with implementation of restocking programmes have allowed Atlantic sal-
mon to come back after decades of absence in the region (Keith and Allardi 2001). In fact, 
the passage of diadromous species in the Garonne river is a prioritary goal of recent 
management plans (Piégay et al. 2002). However, fish ladders may favour salmonids but 
they make no difference for other diadromous species without jumping behaviour (Larinier 
2001). Thus, a fish elevator is a more efficient solution, like the one set up on the Garonne 
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river at Golfech, allowing the passage of diadromous fish such as Alosa alosa, A. fallax and 
Anguilla anguilla (Bellariva and Belaud 1998). Even when fish passages are effective, 
spawning grounds for a number of species also should be in good condition to achieve a 
successful restoration of diadromous fish populations (Cowx and Welcomme 1998, Crisp 
2000).

Perspectives 

The example of the Garonne basin can help us to provide some suggestions for other large 
basins in Europe or the world with respect to fish conservation and river restauration. Per-
spectives for further study and management of large basins should be directed:  

To gain a better comprehension of processes functioning on scales extending from lo-
cal to regional.  
To set up monitoring programmes for ecological quality according to physiographic 
ichthyoregions in order to detect changes in fish distributions and abundances. 
To understand more complex ecological processes, like trophic relationships, popula-
tion dynamics, and recruitment and recolonisation processes in ecosystems under hu-
man pressure.
To study the ecological and economic consequences of introduced species. 
To produce an integrative ecological index of quality for water management, including 
several biotic components, such as fish, invertebrates and plants. 
To promote reforestation efforts of over the whole basin, but especially of the riparian 
zones.
To coordinate the various users of a basin under an integrated management approach.  
To apply multidisciplinary research, including aspects of ecology and economics re-
lated to water quality and biodiversity use.  
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3.5 Modelling of freshwater fish and macro-crustacean 
assemblages for biological assessment in New Zealand*

Joy MK †, Death RG 

Introduction

Biological assessment of flowing water has undergone a conceptual change from the use of 
biological indicators of water quality to the assessment of ‘biological quality’ (Wright et al. 
2000) or ‘biological integrity’ (Karr 1991). This change from biological indicators to the 
assessment of biological integrity marks a shift towards ecosystem level evaluation and 
these approaches are often referred to as measures of ‘ecosystem health’ (Chessman et al. 
1999). These new concepts come from a recognition that water quality is the result of many 
factors including biological interactions, flow regimes and habitat structure and that these 
are all dependant on modification by human activities (Karr 1991, 1995). It follows from 
this movement to an ecosystem approach that impacts on the biological condition of rivers 
exposed to human impacts can be judged by comparing the river biota with that from rela-
tively unimpacted reference ecosystems. The prerequisite is that the sites occur in similar 
geomorphological and climatic settings referred to as reference conditions (Chessman et al. 
1999). Thus, we can assess the condition of human disturbed sites by measuring their struc-
tural attributes and then comparing them with relevant reference conditions that are pristine 
or, at worst, relatively undisturbed (Hughes et al. 1986). This reference site method of river 
assessment has been in use for some time although different approaches have been used in 
different parts of the world. In the USA, a reference site approach has been applied with 
‘indices of biotic integrity’ (e.g. Karr 1981). Whereas in the United Kingdom and more re-
cently Australia, multivariate reference site predictive models have been used (Simpson and 
Norris 2000).

The predictive reference condition approach (RIVPACS: River InVertebrate Prediction 
And Classification System) and its derivatives developed originally by Wright et al. (1984) 
and later advanced by Reynoldson et al. (1995), Simpson and Norris (2000) and Hawkins et 
al. (2000b) have been successfully applied to streams worldwide. The output from the mod-
els is a list of taxa expected to be at a site in the absence of human impacts predicted from a 
suite of environmental variables. The predictions come from a database of least impacted 
sites selected to cover all stream types within a region. In the bioassessment of a site, the fi-
nal output is a measure of the relationship between the fauna collected at a site and that 
predicted. That is the observed number of taxa (O) is compared to the number expected (E) 
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in the absence of stress as a measure of departure from expected conditions, and is thus, a 
measure of biological impairment. Although the predictive models described above have 
been developed using macroinvertebrates they have the potential for use with other biotic 
groups (Reynoldson and Wright 2000) and have been developed for use with fish (Joy and 
Death 2002), diatoms (Chessman et al. 1999) and stream habitat features (Davies et al. 
2000).

New Zealand has a limited native fish and macro-crustacean fauna of 39 recognised spe-
cies, dominated by Galaxiidae and Eleotridae as well as a non-migratory crayfish and a 
diadromous shrimp. The fauna is characterised by a high proportion of diadromous species 
such that there are marked longitudinal trajectories of fish distribution with species richness 
reducing with elevation (Joy et al. 2000). These distributional patterns negate the applica-
tion of bioassessment methods using fish employed elsewhere in the world such as the in-
dex of biotic integrity (IBI). These index approaches would be problematical in New Zea-
land because they rely on relationships between community metrics and habitat quality and 
would not account for the overriding longitudinal distributional patterns caused by 
diadromy (McDowall and Taylor 2000). Migratory fish and crustacea can however be used 
in bioassessment if the method used takes into account their longitudinal distribution pat-
terns. A predictive modelling approach using reference sites allows for the migration driven 
distributional patterns to be incorporated in the bioassessment of fish and macro-
crustaceans (Joy and Death 2002).  

We took a reference site predictive modelling approach to the use of fish and macro-
crustaceans in the assessment of biological quality in the rivers of Auckland, New Zealand. 
To achieve this we modeled the presence or absence of 10 fish and 2 macro-crustacean spe-
cies using individual artificial neural network models, one for each taxon based on envi-
ronmental variables. To make the predictions from the model independent of human im-
pacts we used only environmental variables unlikely to be influenced by human impacts 
and used only data from minimally disturbed reference sites. The predictions from these 
models were combined to predict the fish and macro-crustacean assemblage to be expected 
at sites.  

Methods 

Reference sites 

The sites designated as reference sites were those that represented the best available natural 
condition within the region, that is, sites with open access to the sea and the least evidence 
of human disturbance. These reference sites are used as a standard against which to assess 
the health of other sites with potential impacts. The reference site selection process in-
volved two phases. The first was essentially 'desk based' and was performed in consultation 
with staff from the local regulatory authority using topographic maps, global information 
systems (GIS) and local knowledge. From this initial phase, 165 potential reference and 35 
impacted sites were selected and these were sampled over the Austral summer of 2000-
2001 (Fig. 3.4.1). The 35 test sites had impacts includind migratory barriers in the form of 
weirs and dams, eutrophication, and high densities of introduced piscivorous fish. 

The second phase took place post sampling and included updated information from site 
visits. To further refine the reference site dataset the sites were ranked based on the follow-
ing criteria: 1) unimpeded access to the sea, 2) indigenous forested catchment, 3) mature 
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exotic forest catchment (Hughes et al. 1986). The sites below the 25th percentile of the 
rankings were discarded leaving 118 reference sites for further analysis.  

The aim of the model was to enable the determination of the biological condition of sites 
with respect to reference conditions; thus, only predictor variables that are uninfluenced or 
least influenced by human activity were included. Sixteen predictor variables were selected 
from the suite of variables available for each site from GIS databases or measures made 
during sampling (Table 3.5.1). 

Figure 3.5.1 Site map showing the reference sites (triangles) and test sites (circles) sur-
veyed in the Auckland region between January and May 2001. Inset shows location in New 
Zealand. 

Fish and macro-crustacean data 

Fish and macro-crustacean communities were sampled using overnight trapping. This is the 
most efficient sampling method for New Zealand fish found in the small, low gradient, low 
water clarity, streams common in this area (McDowall 1990). Although other sampling 
methods may have been more suitable at a few of the sites, the use of a consistent sampling 
method for all reference sites is imperative for data used in predictive modelling. At each 
survey site, two types of fish trap were used. The traps consisted of five pot type ‘Gee min-
now traps’ and three large fyke nets. The pot traps were metal with 5 mm mesh (220 mm 
diameter) and two of the three nylon fyke nets (660 mm diameter hoops, 3 m long, 3 m 
gate) at each site had 12 mm mesh and the other had 2 mm mesh (see McDowall 1990 for 
details). Traps were not baited and were positioned where possible to cover all microhabi-
tats over approximately 50m of the stream reach. Fyke nets were positioned with the en-
trance facing downstream and the gate angled across the stream. After 24 hrs in situ the 
traps were retrieved and fish and crustaceans were removed. Juvenile eels (< 300-mm 
length) were treated as separate operational taxonomic units (elvers) in the analysis because 
they are known to shift habitat during ontogeny (Hayes et al. 1989, Glova 1998). This proc-
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ess was applied only to eels, because there is no evidence of an ontogenetic shift of within-
species habitat requirements for the other species. All fish and crayfish data were pres-
ence/absence only not abundance. 

Table 3.5.1 Physical and chemical variables measured at the 118 reference and 35 test sites 
in the Auckland region between January 18 and May 2001 and selected for use as predictor 
variables in ANN models.  

Reference sites Test sites 
Variable Foot 

note
Min Mean Max Min Mean Max 

Geographic Variables        
 Altitude (m) 1 1.0 47.9 220.0 2.0 62.1 200 
 Longitude (grid) 1 26397 26641 27282 26379 26662 27293 
 Latitude (grid) 1 64419 65074 65611 64522 65082 65560 
 Distance to coast (km) 2 0.1 15.3 79.5 0.3 17.5 79 
Channel variables        
 Mean width (m) 3 0.8 3.3 31.8 0.8 3.8 17.3 
 Mean depth (m) 4 0.15 .42 1.96 0.02 0.47 1.42 
 Median substrate 5 0.0 9.1 39.1 0.0 6.2 40 
 Leaf litter 6 1.0 2.1 4.0 1.0 2.0 4 
 % Pool 7 0 75.3 100.0 0 59.4 100 
 % Riffle 7 0 12.7 70.0 0 24.3 100 
 % Run 7 0 10.8 90.0 0 15.7 100 
 Cobble packing 8 0 1.8 3.0 0 1.9 3 
Water variables        
 Temperature (  C) 9 12.9 16.5 24.0 13.5 16.8 20.9 
 Conductivity (µS/cm-1) 9 100.00 216.07 974.00 99.4 222.2 897.0 
 Velocity 10 0 0.2 1.3 0 0.2 1.0 
 pH 11 7.1 8.1 8.9 6.3 8.0 8.6 

1. Obtained from 1:50,000 NZMS topographic maps. 
2. Geographic information systems (ARCVIEW) using 1:50,000 vector data 
3. Mean of 5 measures over length of reach fished. 
4. Mean of the maximum depth measured at the 5 points above. 
5. Median substrate size index from 50 – 100 stones collected at random over the reach surveyed 

and measured in 11 classes (Wolman 1954). 
6. Leaf litter visually assessed (0 = absent, 1 = rare, 2 = sparse, 3 = common, 4 = abundant) 
7. Visually estimated at site 
8. Subjectively assessed at site after moving substrate (1 = loosely packed; 4 = tightly packed) 
9. Measured at time of fishing with YSI model 85 meter. 
10. Calculated from time taken for a slug of dye to travel 20m over length fished 
11. Orion Quickcheck model 106 pocket meter 

Predicting fish and macro-crustacean assemblages from habitat data 
using ANN models 

Artificial neural networks are derived from a simple model of the structure and function of 
the brain, and are characterised by their ability to ‘learn’. This is achieved by comparing ac-
tual and desired outputs during the model-training phase. In the training phase an algorithm 
modifies the internal parameters (weights) until the performance of the network, in this case 
prediction success, is maximized. For this case the presence or absence of each taxon was 
predicted using the back-propagation algorithm (Rumelhart et al. 1986a). The architecture 
of the layering has been described by other authors (Lek et al. 1995; Manel et al. 1999). 
The first layer, called the input layer, comprises 16 cells representing each of the environ-
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mental variables. The second or hidden layer, is composed of a further set of neurones the 
number of which depends on the reliability required and the structure that best optimises 
bias and variance (Lek et al. 2000). In this application we used a network with a single hid-
den layer of three neurones (more layers and more neurones did not improve performance) 
trained through 100 iterations (SAS 1999). The third layer or output layer consisted of a 
single neurone responsible for the prediction of presence or absence of the taxon from the 
environmental variables. We constructed one model for each of the species and the models 
were later combined to predict assemblages. 

Model evaluation 

For each site output values in the range of 0.5 - 1 were interpreted as presence and values 0 
- 0.5 as absence. We used several methods to assess the performance of the individual taxa 
models. First, all taxa models were assessed based on prediction success, which is the over-
all percentage of sites at which the presence or absence of each taxon was correctly pre-
dicted. This comparison involved using all 118-reference sites as training data and provided 
a lower boundary for the error probabilities (Fielding and Bell 1997). As an independent 
test, we employed k-fold-partitioning. In this partitioning method we randomly divided the 
reference sites into a training set of 80% (98 sites) of the sites and an independent valida-
tion set of 20% (24) of the sites (Manel et al. 1999). This process was repeated five times 
and the results pooled giving 120 sites for assessment of models. To deconstruct overall 
prediction success into separate elements, matrices of confusion were derived, after 
(Fielding and Bell 1997), in which true presence, false presence, true absence, and false ab-
sence were identified. From these values we calculated a range of performance measures: 
1) sensitivity (percentage of true presence correctly identified), 2) specificity (percentage of 
true absence correctly identified), 3) false positive (percentage of actual absences wrongly 
predicted as being present), 4) false negative (percentage of actual presence wrongly pre-
dicted as being absent), 5) positive predictive power (percentage of true positives that were 
real) and 6) negative predictive power (percentage of predicted absences that were real) 
(Fielding and Bell 1997; Manel et al. 1999). 

Relationships between taxa and environmental variables 

The habitat variables associated with the predictions from the ANN models were assessed 
by obtaining pairwise Spearman rank correlations using SAS (1999) between predictions of 
presence for each of the 12 taxa and the 16 predictor variables. To visualise these relation-
ships between the predictions from the models and the environmental variables the prob-
ability of capture for each taxon was plotted against environmental gradients for each of the 
variables. For this, the environmental variables were arranged in ascending order then split 
into five groups of 24 sites. The mean probability of occurrence was calculated for each of 
the groups and this was repeated for all taxa.  

Calculation of the expected number of taxa and O/E values 

To identify the assemblages expected to occur at sites, the individual models (one for each 
taxon) were combined using the following protocol of Wright et al. (1984). The probabili-
ties of the predicted taxa are summed to give the expected number of taxa (E). The number 
of species actually captured at a site, providing they were predicted to occur is the observed 
number of taxa (O). The ratio of the observed to the expected number of taxa (O/E) and 
taxonomic composition is the output from the model used for assessing the biological qual-
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ity of the test sites (see Moss et al. 1987). To calibrate reference site O/E variability the ref-
erence sites were run through the ANN models and O/E ratios were calculated using the 
process described above.  

Test sites 

After satisfying the validation criteria the 12 trained ANN models were applied to assess 
the status of 35 sites with potential impacts. Observed over expected ratios were calculated 
for the test sites using the process described above for reference sites. Analysis of variance 
was used to compare O/E ratios for test and reference sites using SAS (1999). To evaluate 
how the actual occurrence of individual taxa related to the predicted patterns of occurrence, 
the number of sites each taxon was predicted to occur at was plotted against the number of 
sites where it was observed. 

Results 

A total of 11 967 fish and macro-crustaceans from 23 species were caught at 200 sites dur-
ing this study. Of these, 16 fish and the 2 crustacean species (a diadromous shrimp and a 
non-migratory crayfish) were native (see Table 3.5.2 for names). Eleven fish species, in-
cluding all non-native species, were found at less than 2% (4) of the sites and were not used 
in any of the analyses. These rare species were not included because most were introduced 
and their rarity made association of habitat variables problematical. At the 118 reference 
sites, ten fish taxa (including elvers) and two crustacean species were used in analyses after 
the removal of rare species. The most common was the longfin eel occurring at 88% of the 
sites, and the rarest was the torrentfish at 4% of the sites (Table 3.5.2.). 

Table 3.5.2 The twelve fish and crustacean species found at more than 2% of the 200 po-
tential reference sites and the number of the 118 reference sites at which they were present. 

Scientific name Common name Code present absent 
Anguilla australis  shortfin eel ANGAUS 25 93 
Anguilla dieffenbachii  longfin eel  ANGDIE 105 13
Anguilla spp. Elvers ELVERS 7 111 
Cheimarrichthys fosteri  Torrentfish CHEFOS 5 113 
Galaxias fasciatus  banded kokopu GALFAC 73 45 
Galaxias maculatus  Inanga GALMAC 51 67 
Gobiomorphus basalis  Crans bully  GOBBAS 51 67
Gobiomorphus cotidianus  common bully GOBCOT 23 95 
Gobiomorphus huttoni  redfin bully GOBHUT 42 76 
Paranephrops planifrons koura  PARANE 72 46 
Parataya curvirostris Shrimp PARATA 69 49 
Retropinna retropinna  common smelt RETRET 7 111 

Fitting and validating models 

Training data  
The overall prediction success rate was high for the training dataset with 93% of the predic-
tions correct (ranging from 78% to 100%) (Table 3.5.3). The mean values for sensitivity, 
specificity, and were also high showing that prediction success was not linked to species 
prevalence (Table 3.5.3, Fig. 3.5.2). False positive and negative rates were also low but 
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suggested some linkage to prevalence with the most prevalent taxon longfin eel having the 
highest false negative rate (43%).  
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Figure 3.5.2 The relationship between species prevalence and A) and specificity (percent-
age of true presence’s correctly predicted) and B) sensitivity (percentage of true absences 
correctly predicted) for predictions of the presence of 12 fish and macro-crustacea taxa us-
ing ANN models. Open circles are 118 reference sites used in training and filled circles are 
120 validation sites pooled from 5 fold partitioning.

Validation data 
The average prediction success results for the independent data set pooled from the 5 fold 
partitioning also revealed a high overall success rate of 80% ranging from 64% to 98% 
(Table 3.5.3). However, inspection of the alternative assessment measures revealed a link-
age between prevalence and prediction success. Common smelt and elvers occurred at only 
one or two sites in this dataset and their presence was not correctly predicted (i.e. sensitiv-
ity, false positive and negative predictive power = zero) (Table 3.5.3). The percentage of 
true absence correctly predicted (specificity) was considerably higher (mean 81%) than 
prediction of true absence (mean 52%) revealing that the model was better at predicting 
presence than absence (Fig. 3.5.2). This bias however, may relate to the imbalance in preva-
lence, as there are more rare than common species (mean prevalence = 36%, Table 3.5.3). 
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The values for false positive, false negative, positive predictive power and negative predic-
tive power revealed similar patterns with prediction success linked to prevalence. 

Relationships between taxa and environmental variables 

There is a complex mixture of associations between predictor variables and taxa (Table 
3.5.4). Two variables latitude and pH, however, appeared to have little influence on any 
predictions. The highest correlation coefficients were between the three bully species and 
elevation and distance inland; the two migratory bully species were negatively correlated 
while the non-migratory Cran’s bully was positively correlated with distance inland and 
elevation. Torrentfish show a negative relationship with the percentage of pool and a posi-
tive association with the percentage of run and riffle, while in contrast redfin bullies show 
opposite associations with percentages of pool and run. Banded kokopu show an affinity for 
small streams evidenced by the negative coefficients for width and depth.  
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Figure 3.5.3 Mean probability (± SE) of capture of 12 taxa in five groups of 24 sites over 
an elevational gradient from the sea (left) to 260 m a.s.l. (right). The mean elevation in each 
of the five groups is 6, 20, 39, 61 and 105 m a.s.l. respectively

To visualise the relationships an example, Fig. 3.5.3 shows the probabilities of capture 
for each of the taxa plotted against the elevational gradient. The three bully species (com-
mon, Cran’s and redfin), shortfin eel and the crayfish (koura) showed a strong relationship 
with the elevational gradient. Five taxa showed reducing probability of capture with eleva-
tion, they were common and redfin bullies, inanga, koura, and shortfin eel. The non-
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migratory Cran’s bully and longfin eel showed increasing probability of capture with eleva-
tion. There was no discernable relationship with elevation for the rare taxa: smelt, torrent-
fish and elvers or the more abundant banded kokopu. 

Calculation of observed over expected ratios 

All reference sites were run through the ANN models and predictions were used to calcu-
late O/E ratios. The distribution of these O/E ratio values for the reference sites approxi-
mated a normal distribution (Fig. 3.5.4). The O/E ratios were centered on unity with a mean 
of 0.99 (standard error 0.02) and ranged between 0.6 and 1.41. The plot of observed versus 
expected species number (Fig. 3.5.5) shows a strong relationship between the two as re-
vealed by the slope and intercept very close to 1 (observed taxa richness = - 0.11 + 1.02 
predicted taxa richness; r2 = 0.64).  
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Figure 3.5.4 The distribution of O/E ratios from the 118 reference sites using predictions 
from the ANN models for the twelve taxa. 

Assessment of test sites 

The 35 test sites with potential impacts were run through the ANN models and predictions 
were used to calculate O/E ratios. The mean O/E ratio for the test sites (0.69, SE = 0.04) 
was significantly lower than the reference site O/E mean (F 1,152 = 62.9, P < 0.0001). The 
plot of observed versus expected number of sites revealed the individual taxa that occurred 
at fewer sites than expected and thus, contributed to the lower overall O/E ratios (Fig. 
3.5.6). The two galaxiid species (inanga and banded kokopu) as well as the two macro crus-
taceans (koura and shrimp) and the two migratory bullies (redfin and common) occurred at 
considerably fewer sites than expected. Three taxa however, occurred at slightly more sites 
than expected they were elvers, the non-migratory Cran’s bully and shortfin eels. 
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Figure 3.5.5 Observed species richness plotted against expected species richness from the 
118 reference sites using predictions from the ANN models for the twelve taxa. The dotted 
line has a slope of 1. 

Discussion 

This project was conceived to make available a practical tool for the assessment of a sig-
nificant part (fish and macro-crustaceans) of the biological integrity of stream sites in a re-
gion of New Zealand. It allows for an objective, statistically robust, site-specific prediction 
of the fish assemblage to be made without the requirement for extensive analysis. This is 
because the sophisticated statistical knowledge used to create the model is not required for 
its implementation. The model can be made available for use by others requiring only the 
input of environmental variables of a site to give a list of expected taxa. A RIVPACS type 
predictive model of biological quality using fish has been developed in New Zealand based 
on biotic site groups (Joy and Death 2002) and individual species discriminant function 
analysis (DFA) (Joy and Death, submitted). The ANN models reported here were applied to 
the same data used in the DFA models above (Joy and Death, submitted) and similar results 
were obtained. Discriminant function analysis was slightly less accurate than ANN using all 
training data but DFA was marginally more accurate than ANN when considering holdout 
validation data (Joy and Death, submitted). This similarity of results suggests that the rela-
tionships being modelled are linear. 

The species-specific models we have developed appear to be methodologically, and 
ecologically robust for comparing reference and impacted sites. The species that occurred at 
fewer test sites than expected (Fig. 3.5.6): inanga, banded kokopu koura, shrimp, redfin and 
common bullies are the same species that have been observed to have reduced densities 
and/or sensitivity to impacts in other studies (Dean and Richardson 1997; Richardson 1997; 
Richardson et al. 1998, 1994, 2001; Rowe et al. 1999a,b 2000). The species occurring at 
more sites than predicted (Cran’s bullies and shortfin eels) have similarly been shown to be 
tolerant to factors associated with human impacts (Richardson et al. 1994; Rowe et al. 
1999b, 2000). The correlations between the taxa and environmental variables from the ref-
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erence data also revealed ecologically realistic associations. Examples include the reducing 
probability of capture with elevation and distance from the sea for the diadromous species, 
and the association of banded kokopu with small streams (Joy et al. 2000; McDowall 
1990).
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Figure 3.5.6 Predicted number of sites plotted against observed number of sites for the 35 
test sites, the diagonal line represents the line of perfect agreement. 

The effectiveness of predictive models has in the past generally been judged based on 
prediction success alone (Mastrorillo et al. 1997a,b; Oberdorff et al. 2001). Recent work by 
Fielding and Bell (1997) and Manel et al. (1999) have revealed the importance of assessing 
the different elements of prediction success separately and our results support these rec-
ommendations. In this study, the models were much better at predicting absence (mean 
specificity 81%) than presence (mean sensitivity rate 52%) when using validation data (Ta-
ble 3.5.3; Fig 3.5.2). This is despite the apparently high percentage of correct predictions. 
However, the effect of prevalence on predictions was much more noticeable with the 20% k
fold validation data than the training data. There are two potential explanations for this pat-
tern. First that the reduction in number of training sites reduces the model precision, espe-
cially for the rarer taxa through a lack of experience of the conditions at these sites. The 
second explanation is that there was some overtraining of the total data set. Overtraining 
occurs when the network attempts to model noise in the data rather than real patterns 
(Walley and Fontama 1998, Lek et al. 1996b). 

The models generally performed well when applied to independent validation data sug-
gesting that the predictions are accurate. The validity of the models was further supported 
by the ecologically meaningful associations that were found between taxa predictions and 
environmental variables (Table 3.5.4). We are thus confident that the O/E ratios produced 
from the models provide an accurate assessment of the expected biological condition at a 
site in the absence of human impacts. The predominantly diadromous fauna of New Zea-
land has negated the application of other bioassessment tools such as the index of biotic in-
tegrity (McDowall and Taylor 2000). This ANN model for site assessment takes into ac-
count not only conditions at the site but also from the site to the coast as the diadromous 
species are dependent on access to and from the sea as well as proximal habitat and catch-
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ment quality. Thus, an O/E ratio indicates biological quality of the waterway at many scales 
over the whole catchment from the source to sea. 

Conclusions 

In this study, we developed an empirical model capable of predicting the stream fish and 
macro-crustacean assemblages expected to occur in the absence of human impacts using a 
suite of environmental variables. Expected assemblages based on data from reference sites 
were compared to those observed at a number of potentially impacted sites, and the devia-
tion between the two measures provided a measure of the magnitude of degradation of bio-
logical quality. This process also identifies individual taxa responsible for the deviations 
between observed and expected assemblages, which then potentially allows for diagnosis of 
the relationship between individual taxa and impacts. This diagnosis process can be 
achieved by correlating individual components (taxa) of the biological structure with 
known impacts.  

The model developed here provides a rapid and powerful technique for assessing the 
biological condition of the fish and macro-crustacean fauna of a stream and can potentially 
identify targets for management or rehabilitation. Therefore, it has potential for assisting 
with stream management in New Zealand because the stream is assessed from headwaters 
to the coast and migration induced trajectories of occurrence are taken into account. Fur-
thermore, the method applied here also has potential for application in other countries with 
a high proportion of diadromous species. 
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3.6 A Comparison of various fitting techniques for 
predicting fish yield in Ubolratana reservoir (Thailand) 
from a time series data*

Moreau J†, Lek S, Leelaprata W, Sricharoendham B, Concepcion Villanueva M

Introduction  

Understanding and predicting the biological productivity and the resulting fishery produc-
tion is a key goal of fisheries scientists and managers. Numerous studies have attempted to 
predict the possible catches using characteristics of the water bodies: area of the drainage 
basin of the rivers, floodplain areas, morpho-edaphic index, depth, coastal lines, primary 
production (e.g. Henderson and Welcomme 1974, Marshall 1984, Crül 1992). 

Diverse multivariate techniques have been used for this purpose including several meth-
ods of ordination and canonical analysis, univariate and multivariate regressions (Ryder 
1982; Welcomme 1986, De Silva et al. 1991, Payne et al. 1993, Bernascek 1997). With 
these conventional techniques, one problem is that relationships between ecological vari-
ables are, most often, not linear whereas most methods are based on linear principles. 
Therefore, non-linear methods were also used and have proved helpful in ecological sci-
ences as demonstrated by Lek et al. (1995) and Laë et al. (1999). 

In inland waters, the influence of the hydrological conditions at year t-1 on the catch at 
year t was documented by Welcomme (1985, 1986) based on time series data for the Kafue 
floodplain and the Central Delta of Niger in Mali (Western Africa). The time lagged rela-
tionship was attributed to the life span of one year most of the African fishes inhabiting 
these ecosystems, which is also the age of capture. Before that, Welcomme and Hagborg 
(1977) had identified that variations of the flooded area between low and high water level 
as a key factor regulating potential fish catch in tropical floodplains and shallow water bod-
ies.

A multispecific fishery is established in Ubolratana reservoir (North-East Thailand). The 
Royal Department of Fisheries of Thailand has collected actual catch data since the im-
poundment of the dam, in 1965, whereas the Royal Department of Irrigation has recorded 
monthly maximum and minimum area, water level and shoreline variables of the reservoir. 
This provides a good opportunity to develop predictive models of actual catch for a single 
reservoir based on time series data. The aim of this paper is therefore, to compare various 
linear and non-linear methods of prediction of the dependent variable (Catch of Clupeid and 
other fish species, referred to here as littoral fisheries) from the independent ones (the hy-
drological features). 
                                                          
* This work has been carried out under the EU INCO/DC Project number ERB 3514 PL 96 16 95, 
"FISHSTRAT". Thanks are due to Dr Pinit Sihapikutgiat, the coordinator of the FISHSTRAT project 
in Thailand for his helpful support and encouragement to produce this contribution. A preliminary ver-
sion of this paper was part of the BSc thesis of two students from I.N.P. Toulouse: Bérangère Dudog-
non and Myriam Aissa. We are also grateful to the anonymous referees for helpful comments and ad-
vice on this contribution. 
† Correspondence: moreau@ensat.fr 
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Material and methods  

Study site and data 

Damming the Pong River, 500 km North-Eastern of Bangkok, Thailand, in January 1965 
has created Lake Ubolratana (Fig. 3.6.1). It has a maximum area of 41 000 ha and a simul-
taneous average depth of 16 m at maximum water level (182 m above mean sea level, 
MSL). The shoreline development (the ratio between the shore length and the length of a 
circle of the same area) is 6.16. During the dry season, the water level commonly drops to 
about 175 m above MSL and the surface area decreases to about 16 500 ha. Floods events 
during the rainy season cause nutrients to be leached from the soils and facilitate the de-
composition of organic matter. These events increase the primary production and the result-
ing fish production and provide critical spawning habitats. 

A littoral fishery exploits endemic fish riverine populations, which have colonised the 
littoral shallow zones of the lake since its impoundment and some introduced species, 
mainly Oreochromis niloticus (Pawaputanon 1987; Benchaken et al. 1989, De Iongh and 
Van Zon 1993). In addition, a fishery oriented towards Clupeichthys aesarnensis using lift 
nets and lights started in 1972 and continued to flourish until 1990. This clupeid is a pelagic 
fish with a short life span (about 1 year). 

The actual catch increased from 1965 to the end of the seventies (Fig. 3.6.1) i.e. imme-
diately after the dam closure (Van Densen and Morris 1999) but since then, it has been sta-
bilised with important year to year variations. In the 1990s, the clupeid catch dropped dras-
tically and the authorities banned the utilisation of lights in 1993. This fishery is now of 
marginal importance.  

Modelling methods 

Actual catch (tonnes yr-1) of clupeids and of other fishes (littoral catch) at year t have been 
considered as dependent variables. Following the ideas of Welcomme and Hagborg (1977), 
and Welcomme (1986) the independent variables are "simple” hydrological parameters per-
taining to year t-1: maximum area; difference between maximum and minimum area (sur-
face area range); shoreline development. The data set is available on request from any of 
the authors. In order to examine the serial dependencies in fish catches, the partial auto-
correlation function (PACF) was used (Box and Jenkins 1970). The seasonal patterns of 
time series can be examined via correlograms. The correlogram (autocorrelogram) displays 
graphically and numerically the autocorrelation function, that is, serial correlation coeffi-
cients (and their standard errors) for consecutive lags in a specified range of lags (e.g., 1 
through 15). Ranges of two standard errors for each lag are usually marked in correlograms 
but typically the size of autocorrelation is of more interest than its reliability because we are 
usually interested only in very strong (and thus highly significant) autocorrelations. 

According to the results shown in Fig. 3.6.2 (the strong possible influence of catch the 
year before on the catch at year t) the lag of 1 was used in all subsequent models  
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Figure 3.6.1 Variations of the actual catch in Ubolratana reservoir from the closing of the 
dam to 1999 for littoral fish and clupeid catches. 

The present contribution will therefore deal separately with the Clupeid fishery (until 
1992 only) on the one hand and the littoral fishery on the other. The latter uses various 
types of fishing gear by both permanent and seasonal fishermen, the exact number has not 
been regularly monitored and seems to be permanently increasing mostly during the last 
twenty years (W. Leelaprata, pers. data). 
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Figure 3.6.2 Partial auto-correlation functions analysis for clupeid fisheries (a) and littoral 
fisheries (b): the dotted line (ordinate ± 0.35 shows the limits of 95% of confidence inter-
val)

The shoreline development and the area of the reservoir are highly correlated (r= 0.98). 
It is believed however that the shoreline development has to be incorporated as an inde-
pendent variable to the possible models has it expresses the availability of breeding area for 
strictly littoral species which do not benefit from surface availability for breeding but rather 
look for shore availability (Balon and Coche 1975, Welcomme 1985, Payne 1986, Kolding 
1994). A close relationship also exists between the maximum area and the surface area 
range (r = 0.88). However, some variability does exist as the slope can be variable with the 
water level as recorded with the hypsographic curve (The Royal Department of Irrigation of 
Thailand, available from the first author upon request). 

The relationship between hydrological characteristics and the fishing yield were studied 
with multiple regression analysis (James and McCulloch 1990). The diagnosis of the Stu-
dent residuals (normality and independence) was used to test the validity of the determina-
tion coefficient obtained (Tomassone et al. 1983). Aiming to improve the model's perform-
ance, we also used generalised additive models (GAM) (Hastie and Tibshirani 1990). The 
GAMs are a generalisation of multiple linear regression and generalised linear models. 
They are non-parametric regression methods, which model the dependent variable as an ad-
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ditive sum of unspecified functions of covariates. Least squares and maximum likelihood 
methods used in multiple linear regression and generalised linear models are replaced by 
quasi-likelihood methods which rely on local scatter plot smoothing methods. Here, we 
used the locally weighted smoother of Cleveland (1979), currently called "loess" in the 
Splus statistical computing language. The loess smoother first computes a defined percent-
age of the nearest-neighbours to the target point. A tricube kernel, centred at the target 
point, becomes zero at the furthest neighbour. The smoother at the target point is the fitted 
value from the locally weighted linear fit, with weights supplied by the kernel. One of the 
major advantages of this method is that it automatically shows the dependence of the re-
sponse on each of the predictors.  

The regression tree analysis (also referred to as the CART : Classification And Regres-
sion Tree) was also performed. This method was advanced by Breiman et al (1984) in the 
statistical literature. CART has proven to be a useful tool for identifying non-linear patterns 
of variability (Magnuson et al. 1998, Emmons et al. 1999, Rejwan et al. 1999, De’ath and 
Fabricius 2000, De’ath 2002). A tree regression analysis does not make assumptions re-
garding the linearity or homoscedasticity of the variances and it automatically accounts for 
interactions among variables. Although decision trees are intuitively attractive, there are 
several difficulties that can limit their use and performance in several instances such as the 
possible instability of the tree structure itself. Small changes in the data set used to grow the 
tree model can cause significant effects on the shape and on the predictive capabilities of a 
tree (De’ath 2002). Tree regressions analyses results in functions encompassing the com-
plexity between the dependent and independent variables while handling a lot of data. The 
strength of the tree regression analysis is also for prediction of covariate importance under 
broad environmental variations. In the present exercise, implementing the following proce-
dures enhances the performance of the tree. First, a tree model is grown on a learning ex-
ample and the selection of the best-sized tree is performed by cross validation (Breiman et 
al. 1984). A transfer procedure is then implemented based on the comparison of distances 
between the empirical distribution of the predictor variables at different states of the re-
sponse variable. The efficiency of this procedure applied on a tree model is tested using a 
test sample to estimate the error rate in classifying future observations. 

Finally, a three-layer feed-forward artificial neural network (ANN) was used such as in 
Laë et al (1999). A neural network is created by designing the so called layers. The first one 
connects with the input variables and is called the input layer. Here it comprises 4 neurones 
(the independent variables). The last layer connects with the output variable and is called 
the output layer of only one neurone (the dependant variable). The layer between the two 
previous layers is called the hidden layer. Each of the neurons of a particular layer is con-
nected to the neurons of the neighbouring layers and all connections are fed-forward; that 
is: they allow information transfer only from one layer to the next consecutive one. No 
feedback connections are permitted in these "feed-forward" networks. The back-
propagation algorithm which has been used here in order to train the network to provide the 
proper outgoing signal of the output layer (the predicted value of the fish yield in this 
study) is documented in Laë et al. (1999) following Rumelhart et al. (1986a).  

In order to compare the predictive performance of the different statsitical methodologies 
an application was made on the whole database (32 units). Then, a cross-validation was op-
erated to justify the predictive quality of the various methods by implementing a leave-one-
out procedure as used for ANN models (see Jain et al. 1987 for detail). This validation pro-
cedure is useful in cases where the quantity of observations is limited.

The S Plus software was used for analysis using GLM, GAM and CART; and the ANN 
was carried out using the software package Matlab for Windows. The output originating di-
rectly from the use of the software mentioned here is available on request from one of the 
authors (S.L.). 
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Results 

Multiple regression analysis (MLR) 

A MLR was performed in order to check if a significant correlation could be obtained with 
this classical method (Figs. 3.6.3 and 3.6.4). With the three hydrological variables and the 
littoral catch the year before, we obtained a determination coefficient (r2) of only 0.33 for 
the littoral catch. For the clupeid fishery, the determination coefficient was only 0.62.  

The two equations to predict the littoral and the clupeid catch are respectively: 
Littoral catch (t) = 1021 - 87.7 Maximum surface area (t-1) + 105.8 Shoreline (t-1) – 6.7 

Smax-Smin (t-1) + 0.22 Catch (t-1) 
Clupeid catch (t) = -31.16 - 1.48 Maximum surface area (t-1) + 3.65 Shoreline (t-1) + 

1.9 Smax-Smin (t-1) + 0.78 catch (t-1)  
In the case of the littoral catch, the model as a whole is significant (p < 0.05) whereas 

individual variables are not significant. On the other hand, for clupeid catch the model is 
highly significant (p< 0.01) and this also holds true for the catch of the year before. (p < 
0.001)

In order to completely fulfil the requirements of the MLR method (i.e. normal distribu-
tion of variables considered) the fish yield and the independent variables were transformed 
into their log10 but the MLR showed determination coefficients very close to those ob-
served before log transformation for both fisheries. 
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Figure 3.6.3 Comparison of the observed and fitted trends of variations of the littoral catch 
using multilinear regression, generalized additive model, tree regression analysis, ANN. 

The non linear fitting techniques and models  

When using the nonlinear techniques (GAM, CART) the determination coefficients be-
tween the predicted and observed values of the catch were computed and compared to the 
same values resulting from the MLR analysis. The computed determination coefficients 
were all much higher than when implementing the multi-linear regression analysis (Figs. 
3.6.3 and 3.6.4). When using the GAM, the determination coefficients were 0.67 for the lit-
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toral fisheries and 0.82 for pelagic fisheries; When using the regression tree analysis the de-
termination coefficient was only 0.44 for the littoral fishery and 0.80 for the Clupeid fish-
ery. In the tree regression analysis (Fig. 3.6.5), the dominant parameters to explain the 
variations of the littoral catch are the maximum surface area and the surface area variations 
the year before. For the Clupeid fishery, the catch the year before and the surface variations 
are the main variables to consider.  
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Figure 3.6.4 Comparison of the observed and fitted trends of variations of the actual catch 
of clupeids using multilinear regression, generalized additive model, tree regression analy-
sis, ANN . 

Comparing the percentage of explained variances (i.e. the determination coefficients) 
observed when using tree and MLR quantified the importance of non-linear relationships 
and interactions between catch and the concerned parameters. These non-linear relation-
ships are more important for the Clupeid catch than for the littoral one.  
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Figure 3.6.5 Tree regression models for littoral (a) and clupeid (b) catches. The number at 
the extremity of the tree is the quantity predicted (in tons/year). 

For the ANN analysis, in order to avoid possible over-fitting, several tests were carried 
out with different configurations of the neural network (change in the number of neurones 
in the hidden layer). The best configuration that had a minimal dimension and which gave 
satisfactory results was retained (in the present work, three neurones in the hidden layer). 
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Again, in order to avoid overfitting, the number of iterations was limited to 500 and the 
leave-one-out procedure was used to determine the predictive quality of the ANN model. 
Owing to the small size of the dataset, the leave-one-out validation procedure was used to 
test the performance of the model. The resulting determination coefficient between ob-
served and predicted values was 0.88 and 0.98, respectively for the littoral and clupeid 
catches. 

When using the ANN, the partial derivative algorithms (Dimopoulos et al. 1995, 1999) 
quantify the relative contribution of the hydrological variables in the model (Fig. 3.6.6). For 
littoral catch, the highest contribution is about 70% (S Max) and 50% (Shoreline and Smax- 
Smin) whereas the catch the year before contributed only about 10 %. For the clupeid fish-
eries, the main contributions are 35 % for the catch at year (t-1) and 20 % for the difference 
between maximum and minimum surface area. 
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Figure 3.6.6 Relative contributions of input variables to explain the littoral (a) and clupeid 
(b) catches in artificial neural network models (partial derivative analysis). 
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Figure 3.6.7 Contribution profiles (sensitivity analysis) of each of the four dependent vari-
ables for the prediction of the littoral catch. The values cover the whole range of variations 
of each independent variable under consideration. The observed value, i.e. the partial de-
rivative of the annual catch, was plotted vs. each of the independent variables. 

The sensitivity analysis, as summarized in Figs. 3.6.7 and 3.6.8 suggests that the influ-
ences of all the variables are complicated and nonlinear. The negative values of the partial 
derivative (y axis) for maximum surface area for both littoral and clupeid catches confirms 
the negative impact of this variable. When low values are recorded, maximum and mini-
mum surface area has a positive effect on both catches whereas negative impacts can be no-
ticed for the highest values of this variable. The partial derivatives of littoral catch related 
to shoreline are positive for all values due to the already identified positive effect of this 
variable (see Fig. 3.6.6). However, for the clupeid catch, the values of partial derivatives 
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are more or less equally distributed around the zero line, which confirms that shoreline de-
velopment has no observable influence on clupeid catches (see also Fig. 3.6.6). The positive 
values of partial derivative of littoral catch (y axis) for the majority of the values of littoral 
catch in year minus 1 (x axis) shows that the increase of the catch the year before contrib-
utes to the increase of current littoral catches. For clupeid catches, the influence of the catch 
the year before is more complicated to identify. It seems that there are positive effects for 
the low values of the catch the year before, but negative effects for high values. 
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Figure 3.6.8 Contribution profiles (sensitivity analysis) of each of the four dependent vari-
ables for the prediction of the catch of Clupeids. The values cover the whole range of varia-
tions of each independent variable under consideration. The observed values of annual 
catch were plotted vs. each of the independent variables. 

Discussion 

The fisheries statistics of the Royal Department of Fisheries of Thailand are collected on a 
very regular basis and have been shown in several cases to be suitable for the kind of exer-
cise carried out here (De Silva et al. 1991, Moreau and De Silva 1991). They were therefore 
considered to be reliable. 

The methods used here have so far only been applied to databases involving several wa-
ter bodies and, at least to our knowledge, time series data involving a multispecific fishery 
in a single water body have not yet been considered for such exercises except in a marine 
environment by Jarre-Teijmann et al. (1995) on Peruvian anchoveta (Engraulis ringens),
and by Cisneros et al. (2000) to forecast one year in advance the annual spawning biomass 
of Pacific sardine (Sardinops caeruleus) of the California Current. Moreover, Watters and 
Deriso (2000) carried out a regression tree analysis in order to estimate time series of abun-
dance indices of Thunnus obesus in the Central and Eastern Pacific Ocean from catch per 
unit effort data of Japanese long--line fisheries. 

The fishing effort has not been considered here because reliable data are unavailable. 
The main reason is the permanently unknown and variable number of "migrant fishermen" 
who come to the lake from other reservoirs for a short and variable periods of time in a 
completely unpredictable pattern in order to try to get, even very temporarily, higher finan-
cial incomes. This trend seems to have increased during the recent years because of the 
economic crisis which led workers from Bangkok and other large cities to return to the 
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countryside (W. Leelaprata, personal observations). In addition, the aim of this contribution 
was to provide a useful tool for fisheries managers and /or decision makers who need to 
predict the actual catch without long and costly surveys of fishing effort and fish population 
dynamics but by using, instead, easy to measure ecological parameters which can, at least 
partly, explain the population dynamics in the reservoir.  

The two fisheries considered here rely on different hydrological patterns: The pelagic 
catch is strongly related to the surface area variation and to the catch the year before, 
whereas the littoral catch relies to a large extent on the total area and to the difference be-
tween the maximum and minimum water area. This last result is in agreement with previous 
findings of Welcomme and Hagborg (1977) and Welcomme (1986) on floodplain fisheries. 
They discussed the importance of the area to be flooded during the rainy season for feeding 
and reproduction of shallow water fish. Tropical fish usually have a short life span, very of-
ten about 1 year and it helps to understand the influence of the flooded area at year t-1 on 
the actual catch at year t. Another finding here is the relative importance of the shoreline 
development. This comes from the fact that several littoral fish populations seek very shal-
low littoral water to breed. The variations of availability of such areas is taken into account 
more accurately by considering the shoreline than any other parameter related to the surface 
area as can be seen from the hypsographical curve, as already mentioned . 

The main limit of the present exercise is the relatively low number of observations (32). 
It comes from the fact that they are time series data which are always difficult to collect for 
such a long period of time. Several datasets exist for the marine environment (one of the 
oldest and most documented is from for plaice from the North Sea, Pleuronectes platessa in 
Daget and Le Guen 1975) whereas those concerning tropical inland water fisheries are very 
few: for instance Lake Victoria (Pitcher and Hart 1995), Lake Tanganyika (Petit 1996) or 
Lake Kariba (Kolding 1994; Moreau 1997). 

As already observed by Laë et al (1999), the advantage of the ANN over the MLR and 
even over the generalised additive model and the CART is the ability of the ANN to di-
rectly take into account any non-linear relationships between the dependent variable and 
each independent variable. The back propagation procedure of the ANN provides greater 
predictive power than MLR, especially for the training calculations. The result is that for 
any coming year, the yield would be computed by introducing four independent variables 
pertaining to the year before, including the actual catch. All this holds true for other non-
linear fitting techniques: the GAM and TREE regression method.  

Neural networks tend to be more successful with “large” data sets for fitting complex 
non-linear interactions, which was not really the case here, whereas the GAM, and to some 
extend the CART model can get by with few observations (Rejwan et al. 1999). In the case 
of GAM, it comes from the fact that they explicitly focus on lower interactions (Garrison 
1991). In addition, the fitting of neural network models requires some experience and effort 
from the investigator.

Conclusion  

For a proper prediction of the fisheries in the Ubolratana reservoir, and most likely in other 
similar Thai reservoirs in which a clupeid population is exploited, it is essential to distin-
guish the littoral fisheries and the pelagic ones. This comes basically from the fact that 
those two fisheries exploit target fish whose demography is not regulated by the same eco-
logical factors, at least at the current level of investigation. 

The relative importance of environmental variables assessed when using both CART 
and ANN methods is in accordance with ecological factors reported in previous studies 
(Hagborg and Welcomme 1977, Welcomme 1986). Both models are able to reproduce the 
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catch on the basis of the ecological variable introduced. Moreover, the predictive power of 
GAM, CART and ANN overpasses the capabilities of more common techniques. Conse-
quently, these methods can be used either as predictive tools or as explanatory tools. 
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3.7 Patterning spatial variations in fish assemblage 
structures and diversity in the Pilica River system*

Penczak T†, Kruk A, Park YS, Lek S

Introduction 

The study of fish assemblages in the Pilica River has not yet been undertaken despite data 
being available for various reaches. At the beginning we tried to analyse the data by de-
trended correspondence analysis (DCA), but obtained ordinations were not clear. On the 
two-dimensional scatterplot, sites from the main channel and sites from lower courses of 
the largest tributaries formed a long bowed “black cloud” on which single sites and their 
symbols were not visible.

Besides, there are well-known limitations for indirect gradient analysis, such as strong 
distortions with non-linear species abundance relations (horseshoe effect, arch effect, miss-
ing data, noise, redundancy, outliers, disjointed data matrix, etc.) (Gauch 1982; Kenkel and 
Orloci 1986; ter Braak 1987; Jongman et al. 1995; Guegan et al. 1998; Palmer 2000). These 
limitations can be avoided by applying the artificial neural network (ANN) which has al-
ready been successfully used in ecology (Chon et al. 1996; Guegan et al. 1998, 2001; Lek 
and Guegan 1999, 2000; Brosse et al. 2001; Park et al. 2001a). In this study we used the 
self-organizing map (SOM) with an unsupervised learning algorithm, which was used in a 
few studies to reveal relationships within ecological communities (Chon et al. 1996, 2000a; 
Giraudel et al. 2000; Giraudel and Lek 2001; Brosse et al. 2001; Park et al. 2001a). The 
conclusions drawn from these works indicate that the SOM algorithm is fully usable in 
ecology as a technique for analyzing data and for community ordination (Chon et al. 1996).  

The fish fauna of the Pilica River was selected for the study because it is one of the best 
known in Poland (Penczak 1988, 1989; Penczak et al. 1995, 1996). Also some comparative 
research on its stability and variability has already been done (Penczak and Kruk 1999, 
2000) and this fact creates a chance for determining which method used for data ordering 
gives a more clarified and closer-to-reality picture of the assemblage structure in the river 
system.  

In this fish fauna inventory study (1992-95) fish sampled at each site were not only 
counted but also weighed. It is well known that the potential energy of an ecosystem is not 
distributed proportionally between species (Odum 1980). Out of tens or hundreds of species 
forming a community, relatively few, named dominants, exert a major controlling influ-
ence, because they are ecologically successful in a given environment. Expressing the im-
portance of populations in an ecosystem is difficult in energy units, but it is much easier in 
biomass. Density can be effectively used only for comparing populations of species of simi-
lar body size (Acarina, Chironomids, etc.). 

The aim of the study is to show how two different methods, SOM and DCA, can be ad-
vantageous to analyse complex, non-linear fish population datasets. Here we try to test if 

                                                          
* Thanks are addressed to ukasz G owacki for improvement of the English and preparation of the 
DCA scatterplots. Collection of fish samples was possible thanks to the Polish Anglers Association.
† Correspondene: penczakt@biol.uni.lodz.pl
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clusters of neurons distinguished by the SOM on the basis of fish biomass only, also differ 
in terms of species diversity, community dominance and assemblage stability. 

Methods 

Study area  

The Pilica River is the longest (336 km) tributary of the Vistula (Fig. 3.7.1) in Poland. The 
dam of the man-made reservoir filled in 1975 is located 198. km from the source. In the 
main channel fish were sampled on: 14.06-9.09.1994 and 11.07-22.09.1995, while in tribu-
taries: 03.07-5.09.1992, 20.09-22.09.1993 and 13.06-20.10.1994. The Pilica River tributar-
ies in which fish samples were collected are marked with their names, or – if very small – 
with numbers (Fig. 3.7.1). In order to provide detailed information on the distribution of 
118 sites in the tributaries we include Table 3.7.1, in which every site has a successive 
number, a symbol for marking it on a self-organizing map (SOM) and on a DCA scatter-
plot, as well as a full name of the tributary and name of its receiving river. In the main 
channel, 63 sites were distributed proportionally, at a distance of about 5 km from each 
other, and on SOM and DCA scatterplots they are marked with an asterisk and successive 
numbers; the numeration starts from the source and is the same as in the former paper 
(Penczak et al. 1995). Sites from tributaries have numbers as in Penczak et al. (1996). In 
these papers, site characteristics are included.  

Because data on discharge are not available for individual sites we use the product of 
depth and width (DW) to show the difference in channel dimensions and thus approxi-
mately in amount of water carried as discharge is correlated with both depth and width 
(Allan 1995).  

Table 3.7.1 Sites located on the Pilica River tributaries. Site abbreviations used on SOM 
and DCA scatterplot are in the column “Symbol”. * no fish at a given site 

No. Symbol Tributary Receiving
river No. Symbol Tributary Receiving river 

1 Kr1 Krztynia Pilica 61 M61 Mogielanka Pilica 
2 Kr2 Krztynia Pilica 62 Cz62 Czarna Woda Pilica 
3 Kr3 Krztynia Pilica 63 Cz63 Czarna Woda Pilica 
4 Kr4 Krztynia Pilica 64 U64 Uniejówka Pilica 
5 Kr5 Krztynia Pilica 65 Z65 Zwlecza Pilica 
6 Kr6 Krztynia Pilica 66 Z66 Zwlecza Pilica 
7 KrB7 Bia ka Krztynia 67 Z67 Zwlecza Pilica 
8 KrB8 Bia ka Krztynia 68 ZJ68 Je ówka Zwlecza 
*9 KrZ9 ebrówka Krztynia 69 Ku69 Kurzelówka Pilica 

10 KrZ10 ebrówka Krztynia 70 Cw70 Czarna
W oszczowska Pilica

*11 KrZ11 ebrówka Krztynia 71 Cw71 Cz.aW oszczowska Pilica 
12 KrZ12 ebrówka Krztynia 72 Cw72 Cz. W oszczowska Pilica 
13 KrZ13 ebrówka Krztynia 73 Cw73 Cz. W oszczowska Pilica 
14 B14 Bia ka Pilica 74 CwC74 Czarna Cz.aW oszczowska 
15 B15 Bia ka Pilica 75 CwC75 Czarna Cz. W oszczowska
16 Bt16 tributary 1 Bia ka 76 CwCs76 Czarna Struga Cz. W oszczowska
*17 Lu17 Luci a Pilica 77 CwCs77 Czarna Struga Cz. W oszczowska
18 Lu18 Luci a Pilica 78 Cwt78 tributary No 3 Cz. W oszczowska
19 Lu19 Luci a Pilica 79 *Ck79 Czarna Konecka Pilica 
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20 Lu20 Luci a Pilica 80 Ck80 Czarna Konecka Pilica 
21 Lu21 Luci a Pilica 81 Ck81 Czarna Konecka Pilica 
22 Lu22 Luci a Pilica 82 Ck82 Czarna Konecka Pilica 
23 Lu23 Luci a Pilica 83 Ck83 Czarna Konecka Pilica 
24 Lu24 Luci a Pilica 84 Ck84 Czarna Konecka Pilica 
25 Lu25 Luci a Pilica 85 Ck85 Czarna Konecka Pilica 
26 Lut26 tributary 2 Luci a 86 Ck86 Czarna Konecka Pilica 
27 Lut27 tributary 2 Luci a 87 Ck87 Czarna Konecka Pilica 
28 LuP28 Pródka Luci a 88 Ck88 Czarna Konecka Pilica 
29 LuS29 Strawa Luci a 89 Ck89 Czarna Konecka Pilica 
30 W30 Wolbórka Pilica 90 Ck90 Czarna Konecka Pilica 
31 W31 Wolbórka Pilica 91 Ck91 Czarna Konecka Pilica 
32 W32 Wolbórka Pilica 92 CkK92 Krasna Czarna Konecka 
33 W33 Wolbórka Pilica 93 CkK93 Krasna Czarna Konecka 
34 W34 Wolbórka Pilica 94 CkK94 Krasna Czarna Konecka 
35 W35 Wolbórka Pilica 95 CkK95 Krasna Czarna Konecka 
36 W36 Wolbórka Pilica 96 CkCt96 Czarna Taraska Czarna Konecka 
37 WMi37 Miazga Wolbórka 97 CkCt97 Czarna Taraska Czarna Konecka 
38 WMi38 Miazga Wolbórka 98 CkCt98 Czarna Taraska Czarna Konecka 
39 WMi39 Miazga Wolbórka 99 CkCt99 Czarna Taraska Czarna Konecka 
40 WMi40 Miazga Wolbórka 100 CkCtt100 tributary No 4 Czarna Taraska 
41 WPB41 Bielina Piasecznica 101 CkP101 Plebanka Czarna Konecka 
42 WPB42 Bielina Piasecznica 102 D102 Drzewiczka Pilica 
*43 WP43 Piasecznica Wolbórka 103 D103 Drzewiczka Pilica 
44 WP44 Piasecznica Wolbórka 104 D104 Drzewiczka Pilica 
45 WP45 Piasecznica Wolbórka 105 D105 Drzewiczka Pilica 
46 WP46 Piasecznica Wolbórka 106 D106 Drzewiczka Pilica 
*47 WMo47 Moszczanka Wolbórka 107 D107 Drzewiczka Pilica 
48 WMo48 Moszczanka Wolbórka 108 D108 Drzewiczka Pilica 
49 WMo49 Moszczanka Wolbórka 109 D109 Drzewiczka Pilica 
50 WMo50 Moszczanka Wolbórka 110 D110 Drzewiczka Pilica 
51 G51 Ga  Pilica 111 Dt111 tributary No 5 Drzewiczka 
52 G52 Ga  Pilica 112 DM112 M ynkowska Drzewiczka 
53 Lb53 Luboczanka Pilica 113 DMt113 tributary No 6 M ynkowska 
54 Lb54 Luboczanka Pilica 114 DW114 W glanka Drzewiczka 
55 R55 Rokitnica Pilica 115 DW115 W glanka Drzewiczka 
56 R56 Rokitnica Pilica 116 DW116 W glanka Drzewiczka 
57 M57 Mogielanka Pilica 117 DW117 W glanka Drzewiczka 
58 M58 Mogielanka Pilica 118 *Dt118 tributary No 7 Drzewiczka 
59 M59 Mogielanka Pilica    
60 M60 Mogielanka Pilica    

Fish sampling

Fish were caught from a boat or while wading, by two people, each operating an anode dip-
net. Full-wave rectified, pulsed 230 V and 3-10 A DC current was taken from a 3 kW gen-
erator. Single electrofishing at each site in accordance with Becklemishev’s rule was done 
(Penczak 1967; Backiel and Penczak 1989). Species relative abundance and biomass, calcu-
lated on the basis of a catch per unit effort (CPUE), were assessed from a 100 m long reach 
when wading in shallow streams, and from a 500 m long one when drifting in a boat along 
a bank. In the main channel we collected 16,504 specimens representing two lamprey and 
31 fish species, and in tributaries 4,134 specimens belonging to one lamprey and 29 fish 
species. In the Appendix fish and lampreys are ordered according to reproductive guilds 
(Balon 1990).  
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Figure 3.7.1 The Pilica River system. Investigated tributaries are marked with names or
numbers.

From the original data set, referring to lamprey and fish biomass, species occurring on 
less than 3 (out of the total 181) occasions: spirlin Alburnoides bipunctatus, rudd Scardin-
ius erythrophthalmus and bitterling Rhodeus sericeus were excluded as well as 7 fishless
sites (Table 3.7.1). The input data matrix was created for the remaining 34 species (col-
umns) and 174 sites, i.e. sample units (rows). The data were log-transformed and then nor-
malized on a (0, 1) scale. 

Data analysis  

Self-organising map (SOM) 
Artificial neural networks (ANN) are realistically models of the functional properties of the
human brain. The SOM is their most popular type used for unsupervised learning, and to
reduce a high-dimensional space to fewer dimensions, visualize and interpret the data struc-
ture with nonlinear relations (Kohonen 1982, 1995, 2001).  

The SOM consists of two layers: input and output layers, connected with weight vectors. 
The input layer receives input values from the data matrix, whereas the output layer con-
sists of output neurons which are usually arranged into a two-dimensional grid for better
data visualization. In this study, the output layer of the SOM consists of 24 neurons (virtual 
units) arranged into a 6 x 4 hexagonal lattice. During the learning process, the SOM 
weights are modified to minimize the distance between weight and input vectors. The learn-



104      Penczak T , Kruk A, Park YS, Lek S 

ing process is usually done in two phases: first rough training for ordering with a large 
neighborhood radius, and then finetuning with a small radius. This results in training the 
network to classify the input vectors by the weight vectors they are closest to. The detailed 
algorithm of the SOM can be found in Chon et al. (1996), Giraudel et al. (2000), and Park 
et al. (2001a, 2002) for ecological applications. 

The map obtained after learning represents all the observations assigned to neurons so 
that similar ones are located close to each other and far from those that are dissimilar. For 
each neuron, information relating to species composition is available. 

Detrended correspondence analysis 
Detrended correspondence analysis (DCA) was used in a modified version of DECORANA 
(Hill 1979). It is free of lax criteria for stability and a bug in the rescaling algorithm. The 
bug caused sensitivity of ordination results to sample order, mainly on the third axis and 
higher. These problems have been corrected in the PC-ORD Multivariate Analysis that we 
used (MacCune and Mefford 1992).  

Eigenvalues in DCA cannot be interpreted as proportions of the variance explained 
(Palmer 2000) but the minimum value recommended for data interpretation is 1 = 0.20 
(Matthews 1998), and for axes 1 and 2 they appeared to be remarkably crossed. Our choice 
for scaling axes was the raw scores, which is arbitrary and dependent on the units of the 
original data.  

Community indices 
The additional advantage for SOM would be the situation where the most distant clusters of 
neurons, differing from each other in fish biomass, would also differ in other community 
parameters which were not investigated directly with SOM. In order to do this, after the 
learning process, the SOM lattice was partitioned into clusters by the use of the unified dis-
tance matrix algorithm (U-matrix) (Ultsch 1993). The additional parameters studied were: 
number of species, diversity index and community dominance index. 

Biodiversity was assessed with the Shannon index (H’): 
H’ = -  pi ln pi, where pi is the proportion of individuals, being members of the ith spe-

cies, in a community, and S is the number of species present at a site.
The CDI was calculated as: CDI = 100 * (n1 + n2)/N, where n1 = number of the most 

abundant species, n2 = number of the second most abundant species, and N = total number 
of all species (Krebs 1994). Thus the CDI determines the percentage of abundance contrib-
uted to a community by the two most abundant species.  

The significance of differences in parameters studied between neuron clusters was as-
sessed with the Kruskal-Wallis test and the Tukey test adopted for non-parametric post-hoc 
comparisons.  

Results 

Community patterns 

The number of neurons in the chosen map is seven times smaller than the number of sites. 
The trained SOM showed three main clusters according to the U-matrix distances: 1) neu-
rons AB, 2) CD, and 3) EF (Fig. 3.7.2). The area of U-matrix corresponding with the mid-
dle cluster CD is dark which means that differences between its neurons are big (Fig. 3.7.2). 
The two most distant clusters AB and EF are homogeneous within themselves and should 
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differ from each other if the classification done by SOM is efective. Indeed, they differ es-
sentially from each other in the character of sites assigned to them (Fig. 3.7.3). Cluster AB 
is dominated by sites from small streams, while EF – by sites from the middle and lower 
courses of the main channel and lower courses of the biggest tributaries (Figs 3.7.1, 3.7.3, 
Table 3.7.1). In cluster AB, neurons A1-2 and B1-2 contain sites from the headwater area 
of the Pilica River as well as mountain sections and tributaries of the Czarna Konecka (Figs 
3.7.1, 3.7.3), whereas A3-4 and B3-4 (right side of SOM) contain lowland stream sites.  

Neurons EF contain 47 of the Pilica River sites and 11 located in the lower courses of 
its biggest tributaries (Drzewiczka, Czarna W oszczowska, Czarna Konecka and Luci a) 
(Figs 3.7.1, 3.7.3).  

Cluster CD contains sites located in the middle course of the biggest tributaries and 9 
sites of the main channel (Figs 3.7.1, 3.7.3). 

Differences in the size of assigned sites are clearly presented in Fig. 3.7.4A prepared 
without use of the artificial neural network. The product of stream depth and width shows a 
clear vertical gradient, which results in differences in species composition. For example 
neurons E1-2 and F1-2 located close to each other on the SOM contain exclusively Pilica 
River sites (Fig. 3.7.3) and have the same dominant species: the pike Esox lucius and roach 
Rutilus rutilus (Table 3.7.2). Their mean biomass is expressed in thousands of grams. These 
sites occupy four different neurons because of differences in some remaining species: in E1 
bream Abramis brama is a co-dominant; in F1 – chub Leuciscus cephalus and ide Leuciscus 
idus, while in F2 there is also barbel Barbus barbus.

Neurons B1-4 are characterised by the occurrence of loach Barbatula barbatula, pike, 
stickleback Gasterosteus aculeatus and perch Perca fluviatilis, and in B2-4 gudgeon Gobio 
gobio and roach, but in B1-2 the highest mean species biomass is expressed in tens of 
grams, while in B3-4 in hundreds (Table 3.7.2). Additionally in B4 crucian carp Carassius 
carassius attained high biomass. 

F4F3F2F1

E4E3E2E1

D4D3D2D1

C1 C2 C3 C4

B4B3B2B1

A1 A2 A3 A4

F4F3F2F1

E4E3E2E1

D4D3D2D1

C1 C2 C3 C4

B4B3B2B1

A1 A2 A3 A4

Figure 3.7.2 A self-organizing map formed by 24 hexagons representing neurons. Clusters 
of neurons were distinguished on the basis of the U-matrix: 1) neurons AB, 2) CD, and 3) 
EF. The shading intensity indicates the level of activation. 
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Table 3.7.2 Mean biomass of 34 fish species calculated for samples in each neuron:  <10 
g,  tens,  hundreds,  thousands of grams,  > 10 kg in CPUE 
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After the learning process, the importance of 34 species is shown along the SOM (Fig. 
3.7.6). This is particularly useful information illustrating how the biomass of a given spe-
cies is distributed between neurons, how its importance changes in neighbouring neurons, 
which species co-occur and thus have the same environmental demands. An example of 
such co-occurring species are pike, chub, perch and roach because their highest biomass 
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was recorded in neurons EF (Fig. 3.7.6). Again, the differences between neighbouring neu-
rons EF result from the changes in occurrence, increase or decrease in biomass of additional 
species, e.g. bleak Alburnus alburnus, bream, barbel, ide, dace Leuciscus leuciscus, burbot 
Lota lota and zander Stizostedion lucioperca (Fig. 3.7.6). 
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Figure 3.7.3 The 174 Pilica River and its tributaries sites mapped on the self-organizing 
map (Fig. 3.7.2). The main channel sites are marked with asterisks, and abbreviations for 
the sites in tributaries are explained in Table 3.7.1. 

Community indices 

Significant differences between the most distant clusters were also found in selected com-
munity parameters, of which some were based on fish number and were not revealed by 
SOM. 

A clear vertical gradient was noted in the total fish biomass. The highest mean values 
were noted in neurons F2 and F3, the latter of which contains four Pilica River sites located 
downstream of the dam and one located in the estuary of its large tributary, the Luci a
River (Figs. 3.7.3, 3.7.4B). 

The average participation of lithophils (obligatory riverine, reophilic species) in total 
fish biomass was highest in cluster AB on SOM because brown trout Salmo trutta was the 
main dominant at 16 sites of neuron A1 (Table 3.7.2). Cluster EF contains even more litho-
phils (Fig. 3.7.6) but their representatives were rare in comparison to other species and thus 
they contributed little to the total biomass (Fig. 3.7.4C). Instead, the biomass of phytophils 
in clusters CD and EF significantly exceeded cluster AB (Fig. 3.7.4D). Their biomass in-
creased successively and significantly from the top to bottom of the SOM. The clear gradi-
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ent in dominance of these two groups of species demonstrates the high quality of the classi-
fication done by the SOM as the neural network did not know which reproductive guild a 
given species belongs to. 

The number of species increased with channel size, and the difference between clusters
AB and EF was highly significant (Figs. 3.7.4A, 3.7.5A). Similarly, the Shannon biodiver-
sity index displayed significantly lower values in cluster AB (Fig. 3.7.5B), contrary to the
Community Dominance Index (CDI), which is based on the abundance of the first two
dominants and was significantly higher in cluster AB. The highest mean of CDI was calcu-
lated for A3 where stone loach, stickleback and minnow Phoxinus phoxinus were exclusive
dominants (Fig. 3.7.5C, Table 3.7.2). Again, highly significant differences in the above in-
dices were recorded between sites assigned to the most distant clusters though the neural
network did not have information on fish number. 
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Figure 3.7.4 Selected parameters not analysed by the SOM, compared between neuron 
clusters in order to assess the effectiveness of classification done by the SOM. The pre-
sented values are means calculated for sites assigned to a given neuron. Dark (normalised
for a given species) represents high values. Explanation for statistics: between clusters of 
neurons underlined with the same line no significant difference was recorded. A. Product of
depth and width. B. Total fish biomass. C. Participation of lithophils in total fish biomass.
D. Participation of phytophils in total fish biomass.  
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Figure 3.7.5 Selected community parameters not analysed by SOM, compared between
neuron clusters in order to assess the effectiveness of classification done by SOM. The val-
ues presented are means calculated for sites assigned to a given neuron. Explanation for sta-
tistics: between groups of neurons underlined with the same line no significant difference 
was recorded. A. Number of species in a sample. B. Shannon biodiversity index. C. Com-
munity Dominance Index (CDI). In B and C sites with less than 3 species were excluded. 

DCA analysis  

The scatterplot prepared for 174 sites is interpretable by axes 1 and 2 because 1 = 0.55, and
2 = 0.31, and the importance of groups of site scores are weighed by both axes (Fig. 3.7.7).

Eigenvalues calculated for axis 3, 2 = 0.19, is on the edge of the minimum threshold es-
tablished for the value (Matthews 1998). 

53 out of 63 Pilica River sites are ranked higher by the second axis score and form the 
clearly distinguished group A in multivariate space (Fig. 3.7.7). The ten remaining main
channel sites, among them those located in the source part (*1–*7), are spread in multivari-
ate space determined by positive parts of axes 1 and 2, with three exceptions (*2, *3 and
*5); site *2, located farther from others in the multivariate space, is represented only by
brown trout in the scatterplot. Group A also comprises 19 large tributary sites as well as
three from small streams (LuS29, Cz63, DW117). 

Site group B, located on the crossing of the main axes, corresponds to neurons C2, C3,
C4, D2 and D4, though the latter contains also a few other sites belonging to the DCA 
groups C and D (Figs. 3.7.3, 3.7.7). Group C, containing 13 sites, has sites situated in neu-
rons B2, B3 and B4, and additionally one in C2 and one in C4. Group D has one Pilica site 
(*2) and 27 tributary sites that occur exclusively in cluster AB in the SOM: all 15 sites from
neuron A4, 9 located in A3, two in B4, and one in B2 (Figs. 3.7.3, 3.7.7). The sites spread
in the central and marginal space appointed by positive lengths of axes 1 and 2 are in neu-
rons A1, with the exception of *2. Other single sites, with five exceptions, are spread over
cluster AB on SOM (Figs. 3.7.3, 3.7.7). 

The species score obtained from DCA analysis indicates which species are ranked with
axes. Axis 1, which can be named “a small river” or “cluster AB”, is best characterized by a
succession of minnow, brown trout, ten-spined stickleback Pungitius pungitius, brook lam-
prey Lampetra planeri, stickleback, stone loach, gudgeon, sunbleak Leucaspius delineatus,
mud loach Misgurnus fossilis. Axis 2, which can be named “the Pilica River” is ranked
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highest in succession of brook lamprey, eel Anguilla anguilla, brown trout, gudgeon, roach, 
pike, bream, burbot, silver bream Blicca bjoerkna, ruffe Gymnocephalus cernuus, barbel, 
dace, perch, ide, bleak and chub. In the DCA graph for species (Fig. 3.7.8) we can see that 
species typical for small streams are separated, and those situated in the positive part of the 
scatterplot occur in reaches settled by brown trout, and those below axis 1 in small streams 
with lower velocity. 

Figure 3.7.6 Importance of 34 fish species in the self-organizing Kohonen map (SOM). 

Discussion 

After comparing SOM to the DCA scatterplot we can infer that the former method effec-
tively solves difficult high-dimensional and nonlinear problems (Kohonen 1995, 2001), 
which was underlined with emphasis by scientists applying it to ecological studies (Chon et 
al. 1996, 2000a; Giraudel et al. 2000; Lek and Guegan 2000; Giraudel and Lek 2001; 
Brosse et al. 2001; Park et al. 2001a). ANN is a very convincing method because using 
biomass for expressing abundance of fish populations gave an excellent grouping into neu-
rons of a high number of sites on the topological map, which shows how useful this method 
is for classification of very large data sets (Kohonen 2001). 
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On the DCA scatterplot containing 174 samples, most sites lying on one another have to 
be separated, and if a given group forms a big “data cloud”, a reader does not know which 
symbol belongs to a given mark (Fig. 3.7.7).  

Another limitation of the DCA when compared to SOM in the study is that 53 Pilica 
River sites are together (group A, Fig. 3.7.7), but from the SOM analysis we know that 
these sites differ in fish community structure as adjoining neurons, containing the main 
channel sites, have some dominant species in common, but differ in additional species that 
enrich and differentiate these assemblages. Such moderate changes induced assignation of 
these samples to different neighbouring neurons though were not revealed by DCA (Fig. 
3.7.7), including the direct gradient analysis reported in a previous paper (Penczak et al. 
2002).

Fig. 3.7.7 Sites ordered on the basis of fish population biomass data in the Pilica River sys-
tem (DCA). The Pilica River sites are marked with asterisks, sites in tributaries are marked 
with symbols explained in Table 3.7.1. 

In general, there are similarities in results obtained with both methods, however the 
SOM constitutes a more reliable data representation than other clusters and gradient analy-
ses if different ecological characteristics are applied (Chon et al. 1996; Brosse et al. 2001; 
Giraudel and Lek 2001; Park et al. 2001a). The method provides “a realistic image of the 
spatial assemblage of populations without using a priori knowledge about their organisa-
tion” (Brosse et al. 2001). Such precision in ordering data is very useful for understanding 
fishery problems important for management, protection and rehabilitation (Hickley and 
Tompkins 1998). 

It is also very promising for the SOM method that the sites were grouped (Fig. 3.7.3) on 
the basis of one factor only, i.e. the biomass of fish populations, but the diversity indices 
analysed as well as the number of species, CDI, DW are also significantly different be-
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tween clusters (Figs. 3.7.4, 3.7.5) though most of these variables were not known by the 
neural network. The fact that the SOM can clearly order fish samples on the topological 
map without employing environmental parameters is also important in view of Rose’s re-
search (2000), which revealed that qualitative relationships between environment quality 
and fish populations can be very elusive. 

Coming to species distribution in multivariate spaces determined by SOM and DCA 
methods (Figs. 3.7.6, 3.7.8) we can conclude that DCA was less precise in separating a few 
species only, such as brown trout, brook lamprey, bullhead Cottus gobio, sunbleak and eel. 
However, the main dominants, typical for the Pilica River, distinguished by high biomass, 
were located in cluster EF (SOM) and group A of sites in the DCA scatterplot (Figs. 3.7.6, 
3.7.7, 3.7.8).  

Figure 3.7.8 Species sampled in the Pilica river system on multivariate space of DCA. 

Conclusion 

The SOM is a meaningful tool for analysing associations among fish communities, excel-
lent in reducing many dimensions of the input data. Very subtle differences in sites and 
species grouping are hardly possible to obtain with DCA and presumably other gradient 
analyses, hence authors recommend the self-organizing Kohonen map for studying fish as-
semblages in large river systems with a huge number of samples.  

Very useful information is provided by simultaneous analysis of sites and fish species 
biomass mapped on the self-organizing map. Distribution of fish species on the SOM facili-
tates the study of which species are present in samples assigned to a given neuron and thus 
have similar environmental demands.  
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Appendix 

List of fish species recorded in the Pilica river system; reproductive guilds according to Balon (1990)  

Nonguarding and open substratum egg scattering (A.1)
Scientific name Common names 

Pelagophil (A.1.1.) Anguilla anguilla (L.) Aangu / eel 
Lithopelagophil (A.1.2) Lota lota (L.) Llota / burbot 
Lithophils (A.1.3) Leuciscus cephalus (L.) Lceph / chub 

Phoxinus phoxinus (L.) Pphox / minnow 
Alburnoides bipunctatus (Bloch) Abipu / spirlin 
Aspius aspius (L.) Aaspi / asp 
Chondrostoma nasus (L.) Cnasu / nase 
Barbus barbus (L.) Bbarbu / barbel 

Phytolithophils (A.1.4) Leuciscus leuciscus (L.) Lleuc / dace 
Leuciscus idus (L.) Lidus / ide 
Blicca bjoerkna (L.) Bbjoe / silver bream 
Perca fluviatilis L. Pfluv / perch 
Gymnocephalus cernuus (L.) Gcern / ruffe 
Rutilus rutilus (L.) Rruti / roach 
Alburnus alburnus (L.) Aalbu / bleak 
Abramis brama (L.) Abram / bream 

Phytophils (A.1.5) Esox lucius L. Eluci / pike 
Scardinius erythrophthalmus (L.) Seryt / rudd 
Tinca tinca (L.) Ttinc / tench 
Carassius carassius (L.) Ccara / crucian carp 
Carassius aureatus gibelio (Bloch) Caura / giebel 
Cyprinus carpio L. Ccarp / carp 
Misgurnus fossilis (L.) Mfoss / mud loach 
Cobitis taenia L. Ctaen / spined loach 
Sabanejewia aurata (Filippi) Saura / goldside loach 

Psammophils (A.1.6)  Gobio gobio (L.) Ggobi / gudgeon 
Barbatula barbatula (L.) Bbarba / loach 

Nonguarding and brood hiding (A.2) 
Scientific name Common names 

Lithophils (A.2.3) Salmo trutta L. Sfari / brown trout 
Lampetra planeri (Bloch) Lplan / brook lamprey 
Eudontomyzon mariae Berg Emari / Ukrainian lam-

prey 
Ostracophil (A.2.4) Rhodeus sericeus (Bloch) Rseri / bitterling 

Guarding and clutch tending (B.1)
Scientific name Common names 

Phytophils (B.1.4) Leucaspius delineatus (Heckel) Ldeli / sunbleak 
Silurus glanis L. Sglan / wels 

Guarding and nesting (B.2) 
Scientific name Common names 

Ariadnophils (B.2.4) Gastreosteus aculeatus L. Gacul / stickleback 
Pungitius pungitius (L.) Ppung / ten-spined 

ststickleback
Phytophil (B.2.5) Stizostedion lucioperca (L.) Sluci / zander 
Spelophil (B.2.7) Cottus gobio L. Cgobi / bullhead 
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3.8 Optimisation of artificial neural networks for 
predicting fish assemblages in rivers*

Scardi M†, Cataudella S, Ciccotti E, Di Dato P, Maio G, Marconato E, Salviati S, 
Tancioni L, Turin P, Zanetti M

Introduction 

Fish assemblages are among the most sensitive and reliable indicators of the ecological 
status of stream and rivers (Fausch et al. 1990). Fish assemblages are able to integrate over 
both time and space the biological response to ecological processes more effectively than 
other biotic components (Harris 1995). Sampling fish fauna, of course, is not as simple as 
sampling other organisms, but in spite of this problem indices of biotic integrity based on 
fish have been developed and are now widely accepted (Karr 1981; Karr et al. 1986). Tar-
geting fish fauna in environmental monitoring activities is effective not only from the eco-
logical point of view, but also in the light of the need for straightforward communication 
with decision-makers as well as with other stakeholders. In fact, fish are probably the most 
direct and intuitive expression of aquatic ecosystem quality (McCormick et al. 2000). 

Therefore, it is not surprising that composition, abundance and age structure of fish 
fauna are considered as some of the main biological quality elements for the classification 
of the ecological status of surface water in the EU Water Framework Directive (i.e. Direc-
tive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 estab-
lishing a framework for Community action in the field of water policy). 

This Directive also states that biological reference conditions have to be established for 
each type of water body. These reference conditions are based on community structure and 
take into account all the biological quality elements, thus including fish fauna as well as 
benthic macroinvertebrates and aquatic flora. Hence, modeling fish assemblage composi-
tion on the basis of biotic and abiotic environmental descriptors will play a major role in the 
implementation of the Water Framework Directive and, more generally, in the management 
of aquatic ecosystems. 

Predicting fish fauna as well as other biotic assemblages is not only relevant to the defi-
nition of reference conditions that are aimed at the evaluation of environmental quality. In 
fact, it is also an important achievement in scientific research, e.g. as a framework for stud-
ies on species interactions, and it can be very useful for a number of other applied tasks. In 
particular, species composition models may support environmental management by simu-
lating different environmental scenarios and pointing out the most critical factors that need 
changes or regulation. Sensitivity analyses of the species composition models play a rele-
vant role in this kind of studies. 

                                                          
* This chapter has been supported by the EU 5th Framework Programme PAEQANN project [“Predict-

ing Aquatic Ecosystem Quality using Artificial Neural Networks: impact of environmental charac-
teristics on the structure of aquatic communities (algae, benthic and fish fauna)”, URL: 
http://aquaeco.ups-tlse.fr/], under contract EVK1-CT1999-00026.

† Correspondence: mscardi@mclink.it
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Even though the idea of modeling fish fauna composition on the basis of environmental 
variables is not new (e.g. Faush et al. 1988), only recently Artificial Neural Networks 
(ANNs) have been applied to this problem. ANNs have been used to predict fish species 
richness (e.g. Guegan et al. 1998) as well as density and biomass of single fish populations 
(Baran et al. 1996; Lek et al. 1996a,b; Mastrorillo et al. 1997b) and ecological characteris-
tics of fish assemblages (Aguilar Ibarra et al. 2003). As far as fish assemblage composition 
at the river basin scale is considered, only a few models have been developed so far, either 
using conventional statistical methods (e.g. Oberdorff et al. 2001) or ANNs (Boët and Fhus 
2000; Joy and Death, # 3.5; Olden and Jackson 2001). A very useful introduction to the 
ecological applications of ANNs can be found in Lek and Guégan (1999). 

ANNs and other modelling techniques that have been developed and formerly applied in 
other disciplines have often been introduced into ecological applications with no modifica-
tion. In most cases this was not a problem and very useful results were obtained anyway. 
However, in ecological modelling adaptations of the modelling techniques are sometimes 
required in order to fit particular needs or to properly exploit the available information. This 
is certainly the case of species composition models, as the data that are involved in this 
kind of application cannot be regarded as mere numbers, because each species has a differ-
ent ecological “meaning”, which in turn depends on its coenotic context. 

This chapter will present a case study about fish assemblages from some river basins in 
north-eastern Italy, showing how the above-mentioned problem can be tackled by develop-
ing ecologically enhanced ANNs. 

Data set 

The ANN models presented in this study are based on a data set that included sampling 
sites from several river basins in the Veneto region (north-eastern Italy), as shown in Fig. 
3.8.1. The data set consisted of 264 records and it comprised two groups of variables. The 
first group included the variables to be predicted by the models, i.e. 34 fish species, 
whereas the second group embraced 20 predictive environmental variables, as shown in 
Tables 3.8.1 and 3.8.2 respectively. 

Venice

Adriatic
Sea

Figure 3.8.1 The sampling sites (black dots) were located in several river basins in the Ve-
neto region (NE Italy). 
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Fish were collected by means of electrofishing gear. Either direct current or pulsed di-
rect current electrofishing devices were used in streams and small rivers, while these tools 
were supported by nets when only part of larger rivers was sampled. Basically, in the latter 
case the electrofishing area was closed by means of nets that also acted as a sampling de-
vice.

Table 3.8.1 List of the fish species in the Veneto data set. Modeled species are on white 
background, while species that were excluded (see text) are on grey background. Italian 
names are shown in parentheses for those species that do not have an English name. 

N Scientific name English name 
1 Salmo (trutta) trutta (Linnaeus 1758) Sea Trout 
2 Leuciscus cephalus (Linnaeus 1758) Chub
3 Padogobius martensii (Günther 1861) (Ghiozzo di fiume) 
4 Scardinius erythrophthalmus (Linnaeus 1758) Rudd
5 Esox lucius (Linnaeus 1758) European Pike 
6 Rutilus erythrophthalmus (Zerunian 1982) (Triotto) 
7 Alburnus alburnus alborella (De Filippi 1844) Bleak
8 Cottus gobio (Linnaeus 1756) Bullhead
9 Tinca tinca (Linnaeus 1758) Tench 
10 Cobitis taenia (Linnaeus 1758) Spined loach 
11 Phoxinus phoxinus (Linnaeus 1758) Minnow 
12 Anguilla anguilla (Linnaeus 1758) European Eel 
13 Knipowitschia punctatissima (Canestrini 1864) (Panzarolo)
14 Salmo (trutta) marmoratus (Cuvier 1817) Marble Trout 
15 Sabanejewia larvata (DeFilippi 1859) Italian Loach 
16 Ictalurus melas (Rafinesque 1820) Black Bullhead 
17 Lepomis gibbosus (Linnaeus 1758) Pumpkinseed 
18 Barbus plebejus (Bonaparte 1839) Italian Barbel 
19 Chondrostoma genei (Bonaparte 1839) South Europe Nase 
20 Gasterosteus aculeatus (Linnaeus 1758) Three-spined Stickleback 
21 Carassius auratus (Linnaeus 1758) Crucian Carp 
22 Gobio gobio (Linnaeus 1758) Gudgeon
23 Leuciscus souffia (Risso 1826) Blageon
24 Thymallus thymallus (Linnaeus 1758) Grayling 
25 Lampetra zanandreai (Vladykov 1955) Po Brook Lamprey 
26 Gambusia holbrooki (Girard 1859) Eastern mosquitofish 
27 Barbus meridionalis Meriditerranean Barbel 
28 Micropterus salmoides (Lacepede 1802) Large-Mouthed Bass 
29 Perca fluviatilis (Linnaeus 1758) Perch
30 Abramis brama (Linnaeus 1758) Common Bream 
31 Cyprinus carpio (Linnaeus 1758) Common Carp 
32 Salvelinus fontinalis M. Brook Char 
33 Oncorhynchus mykiss (Walbaum 1792) Rainbow Trout 
34 Salmo (trutta) hybr. trutta/marmoratus Sea Trout-Marble Trout hybrid 

Two fish taxa, namely Oncorhynchus mykiss, i.e. the rainbow trout, and Salmo (trutta)
hybr. trutta/marmoratus, i.e. a sea trout - marble trout hybrid (on grey background in Table 
3.8.1), were excluded from the models, as their distribution only partly depends on envi-
ronmental variables. In fact, the distribution of the first taxon is linked to the artificial re-
lease of reared juveniles, while that of the second taxon is clearly not independent of the 
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distribution of the two parent species and is probably associated to problems in species 
identification too. 

Some of the available records refer to sampling activities that were carried out at the 
same site at two different times, thus representing the local interannual variability of both 
the fish fauna and the environmental variables. 

The fish fauna composition was described using binary variables, i.e. presence or ab-
sence of each taxon. Quantitative data, although available in most cases, were not consid-
ered for model development as they were not sufficiently accurate because of the combined 
effects of varying efficiency of the electrofishing gear and morphodynamic heterogeneity of 
the sampling sites. The environmental variables were coded in different ways, either as 
quantitative or semi-quantitative data, and all the non-binary variables were normalized by 
rescaling them in the [0,1] interval. 

Table 3.8.2 Environmental descriptors used as input (i.e. predictive) variables in the mod-
els. 

1 elevation (m) 
2 mean depth (m) 
3 runs (area, %) 
4 pools (area, %) 
5 riffles (area, %) 
6 mean width (m) 
7 boulders (area, %) 
8 rocks and pebbles (area, %) 
9 gravel (area, %) 
10 sand (area, %) 
11 silt and clay (area, %) 
12 stream velocity (score, 0-5) 
13 vegetation covering (area, %) 
14 shade (%) 
15 anthropogenic disturbance (score, 0-4) 
16 pH 
17 conductivity ( S cm-1)
18 gradient (%) 
19 catchment area (km2)
20 distance from source (km) 

The whole data set was divided into three subsets for training, validating and testing the 
ANN models. The training data set included 50% of the records (n=132), whereas the vali-
dation and the test data sets included 25% each (n=66). Every record was assigned to a dif-
ferent subset after sorting all the records according to the elevation of the sampling sites. 
Starting from the highest elevation, the records were divided into the above-mentioned sub-
sets by assigning uneven records to the training subset and by assigning each couple of suc-
cessive even records to the validation and test subset, respectively. This way, the records in 
each group of four were assigned to the (1x) training, (2x) validation, (3x) training and (4x)
test data subset, with x ranging from 1 to 66. This break up strategy allowed a homogene-
ous allocation of records for different elevations classes among the three subsets, thus 
stratifying the procedure on the basis of the most relevant environmental variable. 
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Neural network training 

The most common type of ANN, i.e. the multilayer perceptron, was used for modeling the 
fish fauna composition. The error back-propagation algorithm (Rumelhart et al. 1986a) was 
used for training the ANNs, both in its original formulation and in a modified version that 
will be described later in this chapter. Other training algorithms were not tested because the 
theoretical advantages they might provide (e.g. quicker training) are not really relevant for 
ecological applications. 

ANNs with 20 input nodes, 32 output nodes and 17 nodes in the hidden layer were se-
lected after a set of empirical tests involving ANNs with different numbers of nodes in the 
hidden layer (from 10 to 40 nodes). The architecture selected was the one that provided the 
minimum overall error with respect to an independent test set. However, the selection of the 
number of nodes in the hidden layer was not a critical issue, as the differences among the 
models were negligible. Sigmoid activation functions [i.e. f(x)=1/(1-e-x)] were used both in 
the hidden and in the output nodes of all the ANNs that have been trained and used in this 
study. 

In order to prevent overtraining, i.e. to avoid that the ANN “learned by heart” the fish 
fauna composition at each known site while losing its generalization ability, different 
strategies were adopted. The first strategy involved stopping the training procedure early. In 
other words, the training procedure was terminated as soon as the error, computed on the 
basis of the validation set only, ceased to decrease monotonically (obviously, the validation 
set records were never used as training patterns). The second strategy was based on the ran-
dom selection of a subset of training patterns at each epoch during the training procedure. 
This way it was not possible for the ANN to be influenced by the order in which the train-
ing patterns were submitted (thus possibly memorizing them). Finally, white noise in the [-
0.01,0.01] range was added to each input, i.e. predictive variable. Such a small random per-
turbation of the input values, also known as jittering, favored the generalization of an ANN 
model because the latter learned how to associate each output pattern with a set of input in-
tervals rather than with a single input pattern (Györgyi 1990). 

The accuracy of the ANN predictions was expressed by the percentage of Correctly 
Classified Instances (CCI), while the significance of the deviation of the ANN predictions 
from a random model was tested by means of the K statistics (Cohen 1960; Fielding and 
Bell 1997). Details about the computation of CCI percentage and K statistics are provided 
in the Appendix. 

Model selection 

A few different basic options are available for developing models of species distribution us-
ing ANNs. The first option is to train a different model for each species, another is to train a 
single model that is able to simultaneously predict the distribution of all the species. A fur-
ther option is to split the species list into two or more subsets on the basis, e.g. of trophic 
characteristics, and to train a model for each subset. In the latter case, however, the number 
of possible models is very high and selecting the best combination is not a straightforward 
task.

If only the first two options are considered, the selection of the best approach may be 
based on empirical tests, but there are also some theoretical considerations that should be 
taken into account. 

In fact, when modeling the distribution of a complex set of species, such as a fish as-
semblage, an ANN model that predicts more than a single species is able to learn not only 
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the distribution of each species, but also some information about interactions among spe-
cies. Of course, ecologists know that this kind of information is relevant, but in many cases 
their theoretical knowledge about species interactions is not adequate, as it is often based on 
hypotheses, personal observations, etc. Therefore, it is not easy to exploit such knowledge 
in modeling applications using conventional statistical methods (e.g. logistic regression). 
Since ANNs are able to learn from data, they are also able to learn by themselves what is 
relevant in species interactions and this may enhance their predictive ability. 
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Figure 3.8.2 Percentages of Correctly Classified Instances (CCI) for the 32 modeled spe-
cies. Species are sorted in descending CCI order. 

Given a species assemblage containing s species, 2s different combinations of species 
presence and absence data exist. In the case of our data set, 232=4 294 967 296 different 
patterns are theoretically possible, but only 131 different patterns were actually found in 
264 observations. This is clear evidence for the non-independence of different species re-
sponses to environmental factors and for the role that biotic interactions play. 

Even though simultaneously modeling all the species in a community or in an assem-
blage is theoretically more efficient, there are practical constraints that may hinder this ap-
proach. In fact, the complexity of the ANN structure grows very rapidly with the number of 
species to be modeled, and the need for training data grows proportionally. Moreover, the 
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set of predictive environmental variables used by the model might be more relevant to some 
species than to others, and this would impair the model response. In the case of fish assem-
blages, however, the overall number of species is usually not too large and the species re-
sponse to environmental variables is rather homogeneous. Therefore, a single model ap-
proach was selected in our study. 

A conventional training procedure 

The first attempt at modeling the fish assemblage was based on a very conventional ANN 
approach, as a 20-17-32 multilayer perceptron was trained using an ordinary error back-
propagation algorithm. This ANN was able to predict the presence of all the species on the 
basis of environmental variables. The output values it returned ranged in the [0,1] interval 
and therefore they could be regarded as the probability for each species of being observed. 
The predicted fish assemblage composition was then obtained by setting a 0.5 threshold for 
each output, thus converting the continuous output values into binary values (i.e. species 
presence or absence estimates) by means of a process that is closely related to defuzzyfica-
tion.

The overall accuracy of the ANN model was very good, as the CCI ranged from 98.5% 
to 79.1% (Fig. 3.8.2), while the average percentage of CCI was 91.6%. The percentage of 
CCI, although very convenient and easy to compute, is sometimes a misleading criterion for 
evaluating the ability of a model to predict species composition. In fact, it would be really 
appropriate if the number of presence records for a given species were exactly the same as 
the number of absence records, and it would still be acceptable if the ratio between pres-
ence and absence records was not too far from one. On the contrary, when the ratio be-
comes too small (or too large), an ANN model can be easily affected by a significant bias. 
For instance, when very rare species are modeled, an ANN that always returns null outputs 
can easily provide a very high CCI percentage. In other words, if a species were present in 
2 out of 100 records (i.e. if its frequency were 2%), an ANN would be very easily able to 
provide 98% of CCI by constantly predicting the absence of that species. Needless to say, 
notwithstanding a very high CCI percentage, such an ANN could not be considered as a 
true model. 

Therefore, another procedure was selected for evaluating the accuracy of the ANN 
model in the light of the actual frequency of presence or absence record for each species. In 
particular, the K statistics system (Cohen 1960; Fielding and Bell 1997) was applied to test 
whether the predictions for each species were significantly different from those of a random 
model or not. The ANN model was able to effectively predict 20 species out of 32, i.e. in 
20 cases the K statistics was significantly different from zero (p=0.95), whereas it failed in 
the remaining cases (table 3.8.3). 

It was evident, however, that the ability of the ANN to predict species presence and ab-
sence was strictly related to species frequency. In fact, the maximum frequency among the 
12 species with non-significant K statistics was 8.71%, and 10 of them had frequencies 
lower than 5%. Thus, the model failed to predict several rare species, while it was quite ac-
curate in predicting more frequent species (Fig. 3.8.3). 

This result, of course, was not surprising. An ANN learns from examples, and it is obvi-
ous that it cannot learn how to correctly predict the presence of a species if the latter is only 
present in a few records. In these cases no ANN, or any other model, can associate the spe-
cies response to patterns in the variation of predictive variables. Obviously, exactly the 
same problem would occur if a model were trying to predict an almost ubiquitous species.  
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The lack of information about the distribution of rare species is usually related to the 
way data are collected. In many cases the sampling effort is evenly distributed over the 
studied region (e.g. a river basin), because the main purpose of the sampling is the charac-
terization of the fish assemblage composition. Therefore, stenotopic species are only found 
in a limited number of samples and not enough data are available about their relationships 
with environmental variables. A similar problem would also arise for really ubiquitous spe-
cies, although in practice it is not common that a species is present in almost all the records 
in a data set. Moreover, density and population structure data usually provide useful hints 
about the environmental gradients that play a role in defining the distribution of ubiquitous 
species. As far as assemblage composition modeling is concerned, however, the practical 
effects of the lack of information about the relationships between environmental variables 
and species absence are exactly the same as those of the lack of information about the rela-
tionships between environmental variables and species presence.
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Figure 3.8.3 Conventional ANN model: K statistics vs. species frequency. The model is 
not reliable as far as rare species are concerned, whereas it works much better with more 
frequent species. 

Problems in error computation 

Even though no modeling technique can actually fill the gaps in the available information, 
it is certainly possible to improve a model by exploiting that information in a more effective 
way.  

A conventional ANN training procedure is driven by the minimization of the Mean 
Square Error (MSE). As soon as the MSE becomes smaller than a previously defined value, 
the training procedure is stopped, assuming that the agreement between ANN output values 
and target (i.e. known) values is good enough. The early stopping procedure that was used 
in this study involves a similar role of the MSE, although the latter is minimized with re-
spect to a validation data set that is independent of the training data set. In particular, the 
MSE is computed by comparing the continuous ANN outputs with the binary target values. 

This approach makes perfect sense when continuous quantitative variables are involved 
(e.g. biomass, concentration, etc.), but it is not adequate when species composition is taken 
into account. There are at least three reasons for this inadequacy and they are probably not 
as obvious at they should be. 
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Table 3.8.3 Conventional ANN model: observed and predicted frequency by species 
(sorted in descending order of observed frequency) and K statistics (significant values are 
marked with asterisks). 

observed
frequency 

predicted 
frequency K

Salmo (trutta) trutta 76.5% 83.3% 0.719 * 
Leuciscus cephalus 28.0% 31.1% 0.727 * 
Padogobius martensii 26.1% 36.4% 0.660 * 
Scardinius erythrophthalmus 25.0% 28.0% 0.806 * 
Esox lucius 24.6% 31.1% 0.709 * 
Rutilus erythrophthalmus 24.6% 26.9% 0.723 * 
Alburnus alburnus alborella 21.2% 25.8% 0.748 * 
Cottus gobio 20.8% 19.3% 0.528 * 
Tinca tinca 20.1% 25.0% 0.816 * 
Cobitis taenia 17.8% 15.5% 0.619 * 
Phoxinus phoxinus 17.8% 11.4% 0.442 * 
Anguilla anguilla 17.4% 12.9% 0.560 * 
Knipowitschia punctatissima 17.0% 12.1% 0.440 * 
Salmo (trutta) marmoratus 10.2% 9.8% 0.853 * 
Sabanejewia larvata 9.8% 11.0% 0.696 * 
Ictalurus melas 9.5% 12.5% 0.807 * 
Lepomis gibbosus 8.7% 0.8% 0.148 n.s. 
Barbus plebejus 7.2% 2.7% 0.280 * 
Chondrostoma genei 6.8% 5.7% 0.709 * 
Gasterosteus aculeatus 6.8% 6.4% 0.419 * 
Carassius auratus 6.4% 0.0% 0.000 n.s. 
Gobio gobio 6.4% 7.2% 0.583 * 
Leuciscus souffia 4.9% 0.0% 0.000 n.s. 
Thymallus thymallus 4.9% 0.4% 0.137 n.s. 
Lampetra zanandreai 3.8% 0.0% 0.000 n.s. 
Gambusia holbrooki 3.4% 0.0% 0.000 n.s. 
Barbus meridionalis 3.0% 0.8% 0.190 n.s. 
Micropterus salmoides 3.0% 0.0% 0.000 n.s. 
Perca fluviatilis 1.1% 0.0% 0.000 n.s. 
Abramis brama 0.8% 0.0% 0.000 n.s. 
Cyprinus carpio 0.8% 0.0% 0.000 n.s. 
Salvelinus fontinalis 0.8% 0.0% 0.000 n.s. 

Firstly, when a threshold function is applied for discretizing the ANN outputs, the real 
contribution of each single error to the MSE strongly depends on the output value. For in-
stance, if the target value for a given species is 0 (i.e. absence), a 0.495 output value would 
contribute (0.495-0)2=0.245025 to the overall MSE, although it would result in a perfect 
agreement when the output value is transformed into a binary value by passing it to the 
threshold function (0.495<0.5 would be transformed into 0, i.,e. absence). A very similar 
output value, like, for instance, 0.505, would provide an almost identical contribution to the 
overall MSE (0.505-0)2=0.255025, but it would be in disagreement with the target value af-
ter applying the threshold function (0.505>0.5 would be transformed into 1, i.,e. presence). 

Secondly, the potential contribution of each modeled species to the MSE is identical and 
it varies between 0 and 1. Although this makes perfect sense from a computational point of 
view, it fails to capture the real effect of different errors in different contexts, because it 
does not weight each error according to its impact on the characterization of the species as-
semblage structure. In fact, a wrong prediction about a single species might have a limited 
effect on the overall composition of the predicted assemblage if the latter included many 
other species, while it might completely change the assemblage structure if the latter in-
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cluded only a few species. In other words, each species has an ecological “meaning” that 
depends not only on its ecological characteristics, but also on the way the species combines 
with other species, i.e. on the assemblage structure. 

Finally, the efficiency of sampling is usually not homogenous, even within a single 
study. For instance, it is much more likely that a species, although present at a given site, 
escapes from sampling devices in a large river than in a small stream. Therefore, the contri-
butions of different species to the error computation should not be simply added to each 
other, as in the case of MSE. 

In conclusion, species presence and absence data are not to be used as mere numbers 
(i.e. as 0s and 1s) in the error computations that are needed for optimizing species composi-
tion models. As a consequence, the MSE is not an appropriate measure of the error in such 
models.

An enhanced training procedure 

Several options exist for implementing an ecologically sound procedure for error computa-
tion, although not all the problems that were mentioned in the previous section can be 
solved. Since it is clear that the role of each species depends on other species, i.e. on spe-
cies assemblage structure, a binary similarity coefficient may provide a simple yet effective 
way to measure the difference between the model outputs (predicted assemblage) and the 
target values (observed assemblage). This solution leads to a different problem, i.e. the se-
lection of the most appropriate similarity coefficient. However, this is a common problem 
in ecological multivariate data analysis and most ecologists are acquainted with it and are 
certainly able to select a suitable coefficient. In our case study, we were able to assume that 
the fish assemblage composition was recorded very accurately at every sampling site. This 
implied that species absence in samples might be regarded as reliable information. There-
fore, a symmetrical similarity coefficient that slightly emphasized differences in species 
composition was selected as a measure for model errors. In particular, the Rogers and Tani-
moto (1960) similarity coefficient (Sjk) was chosen and transformed into a dissimilarity 
coefficient (Djk), which was monotonically related to the error in the species composition 
prediction:

jkjkjk SD
dcba

daS 1
22

In the above formula a and d are the number of species whose presence (a) or absence 
(d) are correctly predicted, whereas b and c are the number of species present that are not 
predicted by the model and vice-versa. 

The conventional ANN training procedure was then modified in order to use the mean 
dissimilarity between model outputs and validation patterns (i.e. samples) as the criterion 
for controlling ANN learning. In particular, the training procedure was halted as soon as the 
mean dissimilarity began to increase. This allowed an optimal generalization of ANN learn-
ing, which only takes place during the first part of the training procedure, i.e. while the er-
ror (the dissimilarity, in this case) decreases monotonically (Fig. 3.8.4). 

The results of this enhanced training procedure were almost identical to those of the 
conventional procedure in terms of CCI percentages, but they showed a substantial im-
provement when other criteria were taken into account. In fact, while the average value for 
the CCI was 91.8%, i.e. only 0.2% higher than the one obtained by conventional training, 
the differences between predicted and observed species frequencies, as computed on the ba-
sis of the whole test set, were substantially smaller than in the case of conventional training 
(2.2% and 3.5% in absolute values, respectively). 
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Figure 3.8.4 The training procedure for the enhanced ANN model. The modified steps are 
shown on grey background. 

However, the most important advantage of the modified training procedure over the 
conventional one was in its ability to obtain better predictions for those species whose fre-
quency was smaller than 10% (Table 3.8.4, but see also Table 3.8.3). 

Moreover, the only species whose presence was never predicted by the model were the 
two rarest species, namely Cyprinus carpio and Salvelinus fintinalis, while the convention-
ally trained model was not able to predict the presence of 9 species out of 32.  

Finally, the K statistics results were on average much higher than in the conventionally 
trained model (0.59 and 0.42, respectively), and only 5 out of the 7 less frequent species 
were associated to K values that were not significantly different from zero. This implied 
that the enhanced model was unable to predict only 5 species, while the conventionally 
trained model failed with 12 species. 

In order to summarize the differences between the conventional (MSE-based) ANN 
model and the enhanced (dissimilarity-based) one, it is useful to compare the K statistics 
species by species, as shown in Fig. 3.8.5. The small boxes show the K values for the con-
ventional model (solid boxes) and for the enhanced one (white boxes), while the whisker on 
the left of each box indicates the lower end of the confidence interval of the K statistics (the 
upper one is not relevant in this case, so it was omitted). Obviously, the K statistics is not 
significantly different from zero (at a probability level p=0.95) if the left whisker intersects 
the vertical axis at K=0. The boxes on the vertical axis with no whisker on the left show 
those cases in which the K statistics was not computed because the model always predicted 
the absence of the corresponding species. The species have been sorted according to their 
frequency, shown in parentheses on the right of each species name. 

It is very easy to notice that there were no cases in which the conventional training pro-
vided higher K values than the enhanced model, but the most striking difference between 
the two models can be observed for the less frequent species. In fact, the enhanced model 
led to dramatic improvements in the predictive ability and in several cases the K statistics 
for the enhanced model was significant, while it was not significant or not even computable 
for the conventional model. 

In the case of the enhanced model only five species were associated with values of the K 
statistics that were not significant, while twelve species were in that situation when the 
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conventional model was used. It is interesting to noe that the largest changes in K values 
were observed for species whose frequency ranged from 3% to 9%. These species, that 
cannot be considered as truly rare species, are certainly associated with particular physical, 
chemical and biotical conditions and play a relevant role in defining the ecological charac-
teristics of the fish assemblage. 

Table 3.8.4 Enhanced ANN model: observed and predicted frequency by species (sorted in 
descending order of observed frequency) and K statistics (significant values are marked 
with an asterisk). 

observed
frequency 

predicted 
frequency K

Salmo (trutta) trutta 76.5% 74.6% 0.726 * 
Leuciscus cephalus 28.0% 24.6% 0.805 * 
Padogobius martensii 26.1% 22.0% 0.767 * 
Scardinius erythrophthalmus 25.0% 23.5% 0.836 * 
Esox lucius 24.6% 21.2% 0.754 * 
Rutilus erythrophthalmus 24.6% 21.6% 0.765 * 
Alburnus alburnus alborella 21.2% 19.7% 0.790 * 
Cottus gobio 20.8% 12.5% 0.640 * 
Tinca tinca 20.1% 17.4% 0.824 * 
Cobitis taenia 17.8% 15.2% 0.675 * 
Phoxinus phoxinus 17.8% 14.0% 0.615 * 
Anguilla anguilla 17.4% 13.3% 0.721 * 
Knipowitschia punctatissima 17.0% 13.6% 0.665 * 
Salmo (trutta) marmoratus 10.2% 9.1% 0.876 * 
Sabanejewia larvata 9.8% 8.3% 0.794 * 
Ictalurus melas 9.5% 8.3% 0.829 * 
Lepomis gibbosus 8.7% 2.3% 0.375 * 
Barbus plebejus 7.2% 4.5% 0.603 * 
Chondrostoma genei 6.8% 4.5% 0.709 * 
Gasterosteus aculeatus 6.8% 3.8% 0.601 * 
Carassius auratus 6.4% 1.9% 0.415 * 
Gobio gobio 6.4% 4.5% 0.603 * 
Leuciscus souffia 4.9% 2.3% 0.476 * 
Thymallus thymallus 4.9% 1.5% 0.458 * 
Lampetra zanandreai 3.8% 1.5% 0.485 * 
Gambusia holbrooki 3.4% 0.4% 0.195 n.s. 
Barbus meridionalis 3.0% 1.5% 0.560 * 
Micropterus salmoides 3.0% 1.1% 0.490 * 
Perca fluviatilis 1.1% 0.4% 0.497 n.s. 
Abramis brama 0.8% 0.4% 0.394 n.s. 
Cyprinus carpio 0.8% 0.0% 0.000 n.s. 
Salvelinus fontinalis 0.8% 0.0% 0.000 n.s. 

Conclusions 

Predicting the species composition of fish assemblages on the basis of environmental de-
scriptors is a feasible task that can be carried out either by means of conventional probabil-
istic models (e.g. Oberdorff et al. 2001) or by means of ANNs (e.g. Aguilar Ibarra et al. 
2003; Joy and Death # 3.5; Olden and Jackson 2001). ANNs have been successfully used in 
these applications, as they allow exploitation of heterogeneous sources of information in a 
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very effective way (Scardi and Harding 1999). Moreover, ANNs may be easily enhanced 
and adapted to specific modeling tasks (Scardi 2001), as they are entirely empirical tools. 
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Figure 3.8.5 A comparison of K statistics values for the conventional model, using Mean 
Square Error as the error criterion (black squares), and the enhanced model, using Rogers 
and Tanimoto (1960) dissimilarity instead (white squares). The line on the left of each 
square shows the lower limit of the confidence interval of the K statistics. Therefore, when 
the line (or the symbol) intersects the vertical axis at K=0 the K statistics is not significantly 
different from zero (p=0.95). 

Even though ANNs are the most effective tools for modeling species composition 
(Olden and Jackson 2002), they cannot solve problems that arise from a lack of relevant in-
formation. In fact, in many cases the only predictive variables that are readily available for 
the modeler are those that can be obtained from cartographic records or direct observation. 
Other sources of information that involve sampling and laboratory analyses are usually less 
abundant and therefore play a secondary role. Moreover, species distribution data are also 
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scarce, and distributed in space according to the local resources for monitoring activities 
rather than on the basis of a suitable and consistent sampling design. Therefore, predicting 
the species assemblage composition is not feasible without compromises. For instance, ac-
curate ANN models can be trained on a regional scale, or focus on species assemblages 
simpler than communities. Our application, dealing with fish assemblages in northeastern 
Italian streams and rivers, belongs to this category and is certainly an example of successful 
modeling that can be used in practical applications. For instance, our model can be consid-
ered as a generator of expected fish assemblages, i.e. of biotic reference conditions in the 
light of the EU Water Framework Directive. 

In particular, our model predicts the assemblage structure on the basis of environmental 
descriptors that are mainly (but not exclusively) focused on the geo-morphological charac-
teristics and is based on data from real assemblages, as observed in a number of real sites. 
Therefore, the predicted assemblage is not just the one that is considered present at a theo-
retical pristine site, but a compromise that represents the more likely biotic response given a 
number of existing constraints, mainly related to the long term anthropogenic impacts on 
pristine ecosystems (e.g. changes in land usage, introduction of exotic species, modification 
of river banks, etc.). In regions where pristine conditions have not existed for several centu-
ries, this is probably the only meaningful way to define reference conditions. 

The ANN models presented here are not only an achievement in applied ecological re-
search, as they also point out more general problems in species distribution modeling and 
provide solutions for them. 

The most general scientific issue that emerged from our work is that very rare and very 
frequent species cannot be effectively modeled unless enough information is available. This 
obviously does not happen in many real studies, in which the only acceptable solution 
should be based on several species-specific sampling designs, i.e. on multiple sampling de-
signs tailored to fit the distribution of each studied species. 

Another relevant scientific issue that was highlighted by our work was the need for ade-
quate error measurements in ecological applications. In fact, conventional criteria like MSE 
may fail when applied to data that are not strictly quantitative, like species presence and ab-
sence data. These data are binary from a formal point of view, but they cannot be treated 
just as sequences of 1s and 0s. Each species contributes to the assemblage structure in a 
way that depends simultaneously on its ecological characteristics and on the composition of 
the assemblage. Therefore, some errors in predicting species composition might be more 
relevant than others. For instance, in many upstream sites the only fish species is Salmo 
trutta trutta, which is also very frequent as a member of much more complex assemblages 
in other sites downstream. It is obvious that not predicting its presence in an upstream site 
would be a much more severe error than not predicting its presence elsewhere. 

Using a binary dissimilarity coefficient instead of MSE as the criterion for measuring 
prediction errors provided a significant enhancement of a conventional ANN model. Even 
though the functioning of the error back-propagation algorithm was not changed, the modi-
fied training procedure relied on the minimization of the mean dissimilarity as a criterion 
for stopping the learning phase, thus allowing optimal generalization of the model. In other 
words, the enhanced training procedure did not change the way the ANN model learned, 
but it changed the conditions for stopping its optimization. 

In our application the Rogers and Tanimoto (1960) dissimilarity was used, because we 
were confident about the reliability of our absence data and because we wanted to stress 
differences rather than resemblances between assemblages. In different situations, however, 
other coefficients would prove more adequate. For instance, if absence data are not com-
pletely reliable (e.g. because of avoidance of the catching net) an asymmetric dissimilarity 
that only takes into account presence data, like that based on Jaccard’s coefficient (Jaccard 
1908), could be more appropriate. 
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The enhanced training procedure not only improved the overall accuracy of the species 
composition predictions, but it also significantly increased the ability of the model to cor-
rectly predict the occurrence of rare species, thus mitigating the effects of the unbalanced 
availability of information about rare species that was previously mentioned. 

In order to obtain further improvements of species composition models, however, 
changes in the modeling strategies should be coupled with the optimization of the sampling 
strategies. In fact, modeling rare or ubiquitous species is only feasible if adequate informa-
tion is available, such as the ratio between the number of absence and presence records in 
training and validation data set which should be as close to one as possible, while the vari-
ability of the environmental descriptors within each subset, i.e. within the presence or ab-
sence subsets, should be maximum. Therefore, ad hoc sampling designs that significantly 
deviate from the usual monitoring approaches are needed. This shortcoming is not specific 
to ANNs, as it obviously affects any modelling technique. 

The enhanced ANN model presented in this chapter was incorporated into the software 
tool that was published as one of the deliverables of the PAEQANN project and that can be 
found in the CD attached to this book. Therefore, the readers will be able to experiment the 
model on their own, to check its results and compare the predictions it provides with those 
of other models. 

Appendix 

Both the percentage of Correctly Classified Instances (CCI) and the K statistics (Cohen 1960; Fielding 
and Bell 1997) are based on the confusion matrix, i.e. on a 2 x 2 contingency table in which the pre-
dicted presence and absence of a taxon are compared with their observed counterpart. In particular, if 
each case is expressed as a proportion pij, then the confusion matrix will be: 

  Predicted 
  1 0 

1 p11 p12
Observed

0 p21 p22

and the sum of its elements will be 1. The CCI percentage will then be computed as: 

2

1
% 100 ii

i
CCI p

The K statistic can be easily computed from the same confusion matrix. The observed (Po) and ex-
pected (Pe) proportion of agreement between observed and predicted data are the basis for the K statis-
tics computation: 

1
o e

e

P PK
P

In particular, Po is closely related to CCI%, whereas Pe depends on the number of cases in all the ele-
ments of the confusion matrix: 
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1
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i
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In order to test the significance of the deviation from zero of the K statistics, the standard error sK0 has 
to be computed, because the ratio between K and sK0 is distributed as the standardized normal variate Z. 
The standard error sK0 can be obtained as: 

2

0 (1 )
e e

K
e

P P C
s

P n 0K

KZ
s

where n is the number of cases considered in the confusion matrix and C can be obtained as 

2 2 2 2 2

1 1 1 1 1
ij ji ij ji

i j j j j
C p p p p

 It is very important, however, to remember that the standard error sK0 is not exactly the same as that 
needed, for instance, to compute the two-sided confidence interval for K.
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Editor: Verdonschot PFM*

4.1 Introduction 

Ecological communities are the expression of complex biological processes (reproduction, 
nutrition, behaviour, interspecific relationships, etc.) and abiotic processes (such as nutrient 
cycling, discharge regimes, erosion-deposition), both being expressed on various scales of 
time and space. Analysing all these processes, i.e. including and understanding the relation-
ship which exists in the community, and characterising their relationships with environ-
mental parameters, their degree of importance, and their structuring, requires the observa-
tion of variables related to the functioning of the ecosystem. The complexity of ecological 
systems often implies complex relations between biological and environmental variables. 
This justifies the use of sophisticated modelling techniques. Such models are often based on 
different statistical and simulation techniques, designed to predict community structure 
from environmental variables.

Macroinvertebrates are well suited indicators for the state of ecosystems and the proc-
esses ocurring in them, because (i) there is a large amount of data available, (ii) the identifi-
cation of the composing taxa is relatively easy, and (iii) macroinvertebrates occur in high 
numbers in all types of surface waters (among others, Rosenberg and Resh 1993, Davis and 
Simon 1995). The use of macroinvertebrates in modelling has developed strongly over the 
last 20 years (Wright et al. 1984, Reynoldson et al. 1995, Nestler et al. 1989). With the in-
troduction of multivariate analysis techniques this use even accelerated (among others, 
Wright et al. 1989). Prediction techniques were a recent and logical follow-up, using envi-
ronmental variables as input and either macroinvertebrate communities or species as output 
(Verdonschot and Goedhart 2000, Nestler et al. 1989).

The use of macroinvertebrate - environment relationships during the last centuries can 
be summarised into four major steps:

multivariate/pattern/association analysis: macroinvertebrate groups or taxa are grouped 
based on, for example, pattern analysis, clustering or similarity calculation; 
(multiple/logistic) regression: the macroinvertebrate groups or taxa are related to the en-
vironmental data by using either regression or ordination techniques;
reverse regression: the environmental data are related to the macroinvertebrate groups or 
taxa whereby again regression techniques are used to predict the occurrence of the 
groups or taxa based on the environmental data; and
validation: the model developed is validated by an independent dataset. 

The strength of future models will take the first three steps together in a single approach 
such that several disadvantages of clustering, regression and ordination can be overcome. 
The present chapter introduces the use of different recently developed techniques to model 
and predict macroinvertebrates in terms of richness, assemblages or functional groups.

* Corresponding: piet.verdonschot@wur.nl 
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Dedecker and co-authors (section 4.2) use backpropagation algorithms to induce predic-
tive models on a macroinvertebrate dataset of the Zwalm river basin in Flanders. They 
show that these models are in general quite robust with a rather high predictive reliability. 

Di Dato and co-authors also use a neural network approach to predict the benthic macro-
invertebrate fauna composition in rivers (section 4. 3). The authors show that the best re-
sults in reproducing the similarities among sites were obtained by selecting the taxonomic 
units that are routinely used in the computation of biotic index variables to be predicted. 

Gevrey and co-authors compare (section 4.4) the ability of a multiple linear regression, a 
general additive model, a partial least square model, a regression tree, and an artificial neu-
ral network to predict Dutch macroinvertebrate species richness and functional feeding 
groups using environmental variables. The variability in predictive ability of five methods 
tested here indicates that there is no single best predictive method. Furthermore, macroin-
vertebrate species richness is always more accurately predicted than functional feeding 
groups.

In section 4.5 Nijboer and co-authors compare benthic macroinvertebrate data from 
streams and channels with three techniques: a Self-Organizing Map (SOM), non-
hierarchical clustering and canonical correspondence analysis. Non-hierarchical classifica-
tion shows less overlap in taxon composition compared to the SOM classification. By plot-
ting the environmental variables on the SOM, similar gradients in the environment are ob-
tained like those resulting from the canonical correspondence analysis. The two techniques 
are complementary. 

Park and co-authors (section 4.6) apply a counterpropagation neural network for pattern-
ing benthic macroinvertebrate data. The prediction performance of the counterpropagation 
neural network is compared with that of multilayer perceptron with a backpropagation algo-
rithm. Both methods show high predictability of species richness and diversity index, al-
though the backpropagation algorithm shows relatively higher values than the counter-
propagation neural network. 

In section 4.7 Park and co-authors use a combination of two unsupervised artificial neu-
ral networks (the SOM and the adaptive resonance theory) to construct a hierarchical pat-
terning of benthic macroinvertebrate communities. The resulting hierarchical grouping in 
macroinvertebrate communities reflects the environmental impacts and appears to be useful 
for recognizing pattern changes in community development caused by environmental dis-
turbances.

Compin and co-authors (section 4.8) describe the relationships between biological and 
environmental variables using SOM, and then use a backpropagation algorithm as a nonlin-
ear predictor, to predict richness of ephemeropterans, plecopterans, trichopterans and cole-
opterans on the basis of a set of four environmental variables. They show that this predic-
tion can be a valuable tool to assess disturbances. 

Kwak and co-authors (section 4.9) use artificial neural networks to pattern community 
changes in benthic macroinvertebrates in an urbanized polluted stream. The authors show 
that the model developed could be used as an alternative tool for identifying community 
changes.

Finally, in section 4.10 Horrigan and co-authors use three techniques for the classifica-
tion and prediction of stream macroinvertebrate assemblages in Victoria, Australia. The 
SOM are applied to localize ecological regions in the stream system identified by distinc-
tive clusters of macroinvertebrate communities. The multilayer perceptron neural networks 
are applied to predict the occurrence of clusters of macroinvertebrates and genetic algo-
rithms are applied to describe the ecological regions by predictive rule sets. The resulting 
rule sets reveal specific environmental conditions determining the spatial occurrence of 
macroinvertebrate assemblages in landscapes. 
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4.2 Sensitivity and robustness of a stream model based 
on artificial neural networks for the simulation of different 
management scenarios*

Dedecker AP†, Goethals PLM, de Pauw N 

Introduction

In recent years, ANNs have been increasingly used for predicting data in ecological and 
aquatic sciences (Lek and Guégan 2000). Examples can be found on water quality model-
ling (e.g., Schleiter et al. 1999) and on relating community characteristics with environ-
mental variables (e.g., Lek et al. 1996b, Recknagel et al. 1997, Maier et al. 1998, Wagner et 
al. 2000 a,b, Schleiter et al. 2001). ANNs are thus suited for the modelling of ecosystems 
which are known to be very complex and often non-linear (Lek et al. 1996b, Rumelhart et 
al. 1986b). In this study back-propagation ANN algorithms were used to induce predictive 
models on a dataset collected in the Zwalm river basin in Flanders, Belgium. Often, model 
validation is based on a dataset that consists of measurements similar to the model training 
dataset. In this way, the model performance can only be optimized and assessed for predic-
tions of river conditions that are in the same range as those in the collected dataset. Data-
driven models are thus less useful for predictions in river restoration management. Most 
relevant predictions can be classified as ‘extreme’ simulations for the induced ANN models 
and are therefore less useful for most decision support purposes. 

The aim of this paper was to test the sensitivity and robustness of the ANN models for 
these ‘extreme’ values. Since these ‘extreme’ values are not present in the collected dataset, 
the use of ecological expert knowledge is recommended. To introduce this expert knowl-
edge in the ANN models, a virtual dataset, containing ‘extreme’ values, was created. The 
ANNs were also assessed for their applicability in simulations of different river restoration 
scenarios. In this way, the sensitivity and robustness of the models were assessed from a 
theoretical and practical point of view. 

Materials and methods 

Study area 

In general, Flanders, Belgium, is a rather flat region. However, the Zwalm river basin is 
characterized by a number of differences in altitude, making it quite a unique ecosystem 
within the Flemish region (Soresma 2000). The Zwalm river basin is part of the hydro-

* The first author is a recipient of a grant of the Institute for the Promotion of Innovation by 
Science and Technology in Flanders (IWT) 

† Corresponding: andy.dedecker@UGent.be 
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graphical basin of the Upper-Scheldt (Carchon and de Pauw 1997). It drains an area of 
about 11,650 ha and its total length is 22 km (Fig. 4.2.1). Since 1999, the water quality in 
the Zwalm river basin has considerably improved due to investments in sewerage and 
wastewater treatment plants during the preceding years (VMM 2000). Nevertheless, some 
parts of the river are still polluted by untreated urban wastewater and by diffuse pollution 
originating from agricultural activities (Goethals and de Pauw 2001). Besides, still numer-
ous structural and morphological disturbances exist (e.g., weirs for water quantity control, 
artificial embankments, etc.) (Carchon and de Pauw 1997). 

N

EW

S

Belgium

Flanders 50 km

5 km

Figure 4.2.1 Location of the Zwalm river basin in Flanders, Belgium. 

Data collection 

To build and to assess the ANN models, data were used from 60 sampling sites fairly 
evenly distributed across the Zwalm river basin. Each site was examined twice over a two- 
year period (2000-2001). In this way, 120 sets of observations were available. At each site 
15 environmental variables were recorded (Table 4.2.1). Besides physical-chemical meas-
urements, observations were also made about the structural characteristics. Certain struc-
tural characteristics (meandering, hollow river beds, deep/shallow variation and artificial 
embankment structures) were monitored visually (Dedecker et al. 2002). Flow velocity was 
determined by timing the transport of a float over a distance of 10 m. Field measurements 
were made for temperature and dissolved oxygen (OXI 330/SET), pH (Jenway 071) and 
conductivity (WTW LF 90). Suspended solids were measured spectrophotometrically in the 
laboratory (Dedecker et al. 2002). Macroinvertebrates were collected by means of a stan-
dard handnet during five minute kick sampling within a river stretch of 10 m (NBN 1984) 
and by in situ exposure of artificial substrates (de Pauw et al. 1994). The objective is to col-
lect a representative sample of the macroinvertebrates at the examined site (de Pauw and 
Vanhooren 1983). 
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Modelling technique 

Modelling was carried out after rescaling the data. This rescaling was applied because the 
input variables are of a different order of magnitude. The variables are rescaled to be in-
cluded within the interval [-1, 1] by using the following equation: 

1
)(

)(
2

minmax

min0

VV
VV

Vn
   (4.2.1) 

in which V0 and Vn are respectively the original and rescaled value of the variable for a 
sampling point, Vmin and Vmax are the minimum and maximum values of that variable in the 
original dataset. Also the targets are rescaled over the interval [-1, 1] to adapt to the transfer 
function used (tangential sigmoid) in the output layer. In this way, the network will be 
trained to produce outputs in the range [-1, 1]. Afterwards, these outputs were converted 
back into the same units which were used for the original targets. 

Table 4.2.1 Abiotic input variables, units and range of the variables used in the ANN 
model.

Variables Units Range
Temperature °C 10.6 – 15.5
pH 6.96 – 8.10
Conductivity µS/cm 393 – 1078
Suspended solids mg/l 0 – 949 
Dissolved oxygen mg/l 3.25 – 10.8 
Depth Cm 3 – 170 
Fraction of pebbles % of river bed 0 – 100 
Shade % 0 – 100 
Water plants Absent / Present 0 – 1 
Width Cm 25 – 950
Flow velocity m/s 0.03 – 1.92 
Meandering 6 classes (1 = well developed to 6 = absent) 1 – 6 
Hollow river beds 6 classes (1 = well developed to 6 = absent) 1 – 6 
Deep/shallow variation 6 classes (1 = well developed to 6 = absent) 1 – 6 
Artificial embankment  3 classes (0 = absent; 1 = moderate; 2 = intensive) 1 – 6 

For ANN modelling, a multilayer feed-forward neural network was used. The process-
ing elements in the network, the neurons, are arranged in a layered structure. The network 
typically comprises three types of neuron layers: an input layer, one or more hidden layers 
and an output layer. The input layer connects with the input variables. In our case, it com-
prises fifteen input neurons corresponding to the fifteen environmental variables, respec-
tively. The last layer, called the output layer, comprises a single neuron which corresponds 
to the dependent variable to be predicted (the presence/absence of the macroinvertebrate 
taxa). The layer between the input and the output layer is called the hidden layer. The net-
work configuration is approached empirically by testing various possibilities and selecting 
the best solution for the prediction of the presence/absence of the macroinvertebrate taxa 
(Dedecker et al. 2004). Training was carried out by using a training data set to adjust the 
connection weights in order to minimise the error between observed and predicted values. 
This training was performed with the back-propagation algorithm described by Rumelhart 
et al. (1986b). The model validation was based on tenfold cross-validation (Witten and 
Frank 2000). For assessment of the model predictions, the percentage of Correctly Classi-
fied Instances (CCI), in other words the prediction success or matching coefficient (Buck-
land and Elston 1993), as well as Cohen’s kappa (Cohen 1960) were calculated. Manel et 
al. (2001) recommended Cohen’s kappa for the assessment of presence/absence models in 
ecology. Cohen’s kappa is a measure of the proportion of all possible cases of presence or 
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absence that are predicted correctly after accounting for chance effects. It is a very useful 
assessment method when predictions of very rare or very common taxa have to be evalu-
ated. The ANN models were implemented with the neural network extension of the soft-
ware package MATLAB 5.3 for MS Windows™. 

Results

Testing the sensitivity and robustness of the ANN models for 
‘extreme’ values 

To test the sensitivity and robustness of the ANN models for ‘extreme’ values, two exam-
ples for Asellidae (Crustacea) were elaborated. Asellidae were chosen as a representative 
taxon because of their highly variable presence in the headwaters of the Zwalm river basin 
and their use as bio-indicators in river quality assessment (MacNeil et al. 2002). Predictions 
were made for ‘extreme’ values of depth and flow velocity, which are important variables 
influencing the presence/absence of Asellidae. The distributions of flow velocity and depth 
for the collected sites are shown in Figs. 4.2.2 and 4.2.3 respectively. The ranges of flow 
velocity and depth are given in Table 4.2.1. 82.5% of the monitored sites have a flow veloc-
ity lower than 0.7 m/s. Only two sites situated in the southern part of the Zwalm river basin 
have a flow velocity of more than 1.4 m/s. 74% of the sites have a depth greater than 30 
cm. The sites with a depth of over 100 cm are mainly situated upstream of the weirs and 
just before the Zwalm river discharges in the Scheldt.

Since these ‘extreme’ values of depth and flow velocity were not present in the collected 
dataset, the use of ecological expert knowledge was recommended. To introduce this expert 
knowledge in the ANN models, two virtual datasets, containing ‘extreme’ values of depth 
and flow velocity respectively, were created. Based on information found in the literature, 
variables were set to an optimal level. Only depth and flow velocity were set to an ex-
tremely low and an extremely high level, respectively. In both cases, Asellidae are expected 
to be absent (Gledhill et al. 1993). To test the sensitivity of the ANN model, the virtual 
dataset was randomly implemented in the dataset for training. Validation was carried out on 
a virtual dataset consisting of three sites and on the original dataset, merely consisting of 
measurement data (a validation set without ‘extreme’ sites). Based on the optimisation 
study of the ANN model design (Dedecker et al. 2004) training was performed by means of 
the gradient descent back-propagation algorithm (Hagan et al. 1996). Table 4.2.2 indicates 
for the variable flow velocity, that three ‘extreme’ training sites were needed to predict 
Asellidae absence in the three ‘extreme’ validation sites. However, the percentage of Cor-
rectly Classified Instances (CCI) and Cohen’s kappa (CK) decreased with the original vali-
dation set from 80.0 to 74.9 and 0.59 to 0.47 when the number of ‘extreme’ sites at the end 
of the training set increased. 

A similar procedure was followed for studying the effect of the variable depth. Two ran-
domly implemented ‘extreme’ training sites were sufficient to predict the absence of Asel-
lidae correctly in the three ‘extreme’ validation sites (Table 4.2.3). The percentage of CCI 
and CK decreased with the original validation set from respectively 80.0 to 74.9 and 0.59 to 
0.48 when the number of ‘extreme’ sites in the training set increased from zero to three 
(Table 4.2.3).
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Figure 4.2.2 Distribution of flow velocity (m/s) for the collected sites in the Zwalm river 
basin.
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Figure 4.2.3 Distribution of depth (cm) for the collected sites in the Zwalm river basin. 

Table 4.2.2 Predictions of Asellidae with ‘extreme’ values of flow velocity. Results of the 
ANN models for the ‘extreme’ validation set (3 sites) and the original one (12 sites) (vali-
dation set without ‘extreme’ sites). The ‘extreme’ sites were located randomly in the train-
ing set. CCI: Correctly Classified Instances; CK: Cohen’s kappa (see text for detail). 

‘Extreme’ validation set Original validation set No. of ‘extreme’ sites 
in the training set % predicted absent CCI CK 

0 0.0 80.0 0.59
1 0.0 73.9 0.47
2 0.0 73.7 0.47
3 100.0 74.9 0.48
4 100.0 74.9 0.47
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Table 4.2.3 Predictions of Asellidae with ‘extreme’ values of depth. Results of the ANN 
models for the ‘extreme’ validation set (3 sites) and the original one (12 sites) (validation 
set without ‘extreme’ sites). The ‘extreme’ sites were randomly located in the training set. 

‘Extreme’ validation set Original validation set No. of ‘extreme’ sites 
in the training set % predicted absent CCI CK 

0 0.0 80.0 0.59
1 0.0 75.5 0.50
2 100.0 74.9 0.49
3 100.0 74.9 0.48

Sensitivity analysis was performed to determine the impact of both input variables on 
the predicted probability of presence of Asellidae (Figs. 4.2.4, 4.2.5). To perform sensitivity 
analysis, an experimental approach was used (Lek et al. 1996a). A range of variation of a 
single independent variable to the model was applied while the others were held constant. 
The sensitivity analysis was done with and without one to five ‘extreme’ sites in the data-
set. These ‘extreme’ sites included very low values of depth and very high values of flow 
velocity. In both cases, Asellidae were expected to be absent. If more ‘extreme’ sites were 
used in the dataset, the curve for flow velocity moved to the left (Fig. 4.2.4). In this way, 
the threshold of 0.5 was obtained by a lower level of flow velocity. For the variable depth, 
the inverse trend was obtained. If more ‘extreme’ sites were used, the threshold of 0.5 
moved to a higher level of depth (Fig. 4.2.5). The combined effect of the two input vari-
ables on the predicted probability of presence of Asellidae is shown in Fig. 4.2.6. If only 
the collected dataset was used to perform the sensitivity analysis, the network always gave 
a predicted probability of one (Fig. 4.2.6a). That means, Asellidae could be expected at the 
whole range of both variables. If ‘extreme’ sites were added, the cumulative effect of Fig. 
4.2.4 and Fig. 4.2.5 was obtained. The predicted probability decreased for the combination 
of high values of flow velocity and low values of depth. 

Model simulations of practical river restoration scenarios 

The ANN models tested were assessed for their practical applications to simulate different 
restoration management scenarios in the Zwalm river basin. First, the effect on Asellidae of 
the installation of six weirs (1-6) in the Zwalm river basin was simulated (Fig. 4.2.7). Be-
cause the six weirs are already present in the Zwalm river basin, a simple rule was used for 
the prediction of the presence/absence of Asellidae without weirs. The simple assumption 
used was that the site upstream of the actual weir would have the same content of dissolved 
oxygen, depth, width and flow velocity as downstream of the actual weir, while the situa-
tion downstream of the weir was not altered. When comparing Figs. 4.2.7a and 4.2.7b, rep-
resenting the observed and estimated values for Asellidae before installation of the six 
weirs, one can notice that good predictions were made (CCI = 76.5%; CK = 0.54).

For the prediction of the presence/absence of Asellidae after weir installation the actual 
data could be used. When the network was trained without weirs in the training dataset, 
Asellidae was predicted present upstream and downstream of all weirs (Fig. 4.2.7d). The 
same predictions were obtained when training was performed with weirs in the training 
dataset, except for the site downstream of weir 1 where Asellidae was predicted absent 
(Fig. 4.2.7e). The predictive performances for both networks were CCI = 75.7% and CK = 
0.50. Finally, ‘extreme’ data was added to the training dataset in which no weirs were in-
cluded (Fig. 4.2.7f). The same predictions were obtained. Asellidae was predicted present 
upstream of each weir (CCI = 75.7% and CK = 0.50). 
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Figure 4.2.4 The impact of flow velocity (m/s) on the probability of the presence of Aselli-
dae. The sensitivity analysis is performed for different numbers of ‘extreme’ sites in the 
dataset.
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Figure 4.2.5 The impact of depth (cm) on the probability of presence of Asellidae. The 
sensitivity analysis is performed for different numbers of ‘extreme’ sites in the dataset. 

In a second case study, the effect on Gammaridae (Crustacea) of the installation of six 
weirs in the Zwalm river basin was simulated (Fig. 4.2.8). Gammaridae were chosen as a 
representative taxon because of their variable presence upstream and downstream of a weir 
and their use as bio-indicators in river quality assessment (MacNeil et al. 2002). A similar 
procedure was followed as for the Asellidae. The same simple rule was used for the predic-
tion of the presence/absence of Gammaridae without weirs. Before the weirs were installed, 
the prediction performances were respectively 74.9% and 0.36 for the CCI and the CK. For 
the prediction of the presence/absence of Gammaridae after weir installation the actual data 
could be used. When the network was trained without weirs in the training dataset, Gam-
maridae was predicted absent upstream of all weirs (Fig. 4.2.8d). Only upstream of weir 6 
Gammaridae was predicted present (CCI = 70%; CK = 0.31). When training was performed 
with weirs in the training dataset, Gammaridae was predicted absent upstream of all weirs 
(Fig. 4.2.8e). The predictive performances for the network were CCI = 74.9% and CK = 
0.33. Finally, ‘extreme’ data was added to the training dataset in which no weirs were in-
cluded (Fig. 4.2.8f). Gammaridae was predicted present upstream of weirs 1 and 6 and ab-
sent upstream of weirs 2, 3, 4 and 5 (CCI = 71.7%; CK = 0.34). 
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Figure 4.2.6 The combined effect of flow velocity and depth on the predicted probability of 
presence of Asellidae. The sensitivity analysis is performed for different numbers of ‘ex-
treme’ sites in the dataset (a = without ‘extreme’ site; b = 1 ‘extreme’ site; c = 2 ‘extreme’ 
sites; d = 3 ‘extreme’ sites; e = 4 ‘extreme’ sites; f = 5 ‘extreme’ sites). 

In a third case study, the effect of an improvement of the water quality and structural 
characteristics on the Limnephilidae (Trichoptera) was simulated (Fig. 4.2.9). Limnephili-
dae were selected because of their sensitivity to pollution. These vulnerable macroinverte-
brates were only found in the upper reaches of the watercourses in the Zwalm river basin. 
Since Limnephilidae is a rare taxon in this basin (the frequency of occurrence was only 
10%), training was performed by means of the Levenberg-Marquardt back-propagation al-
gorithm (Hagan et al. 1996) and based on an optimisation study of the ANN model design 
(Dedecker et al. 2004). The Levenberg-Marquardt algorithm is similar to the quasi-Newton 
method in which a simplified form of the Hessian matrix is used.

Comparing Fig. 4.2.9a and 4.2.9b, which represent the observed and estimated values 
for Limnephilidae, one can see that the predictions were good (CCI = 86.7%; CK = 0.43). 
Because of this, three sites near the city of Zottegem in the north of the Zwalm river basin 
were selected. Using a virtual dataset, the variables were set to an optimal level, represent-
ing a good water and structural river quality. A good water quality could be obtained in this 
area if diffuse pollution originating from agricultural activities and could be minimized and 
if more households were connected to the sewerage system in the future. Where no connec-
tion to the sewerage system would be possible, individual small-scale wastewater treatment 
plants could be proposed. No improvement of the structural quality (meandering, hollow 
river beds and development of pools and riffles) was needed because quite good values 
were already obtained. The presence of Limnephilidae was predicted well for the three sites 
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and the overall prediction performance of the network was still good (CCI = 86.7%; CK = 
0.56).
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Figure 4.2.7 Distribution plots of Asellidae (Crustacea) in the Zwalm river basin. Black 
marks indicate the absence of Asellidae, white marks their presence. The six maps indicate 
what effect the installation of six weirs (1-6) in the Zwalm river basin can have on the Asel-
lidae populations (a = simple assumption without weirs; b = ANN simulations without 
weirs; c = measurements August/September 2000 (with weirs); d = ANN simulations, train-
ing without weirs; e = ANN simulations, training with weirs; f = ANN simulations, training 
without weirs with addition of ‘extreme’ data). 
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Figure 4.2.8 Distribution plots of Gammaridae (Crustacea) in the Zwalm river basin. Black 
marks indicate the absence of Gammaridae, white marks their presence. The six maps indi-
cate what effect the installation of six weirs (1-6) in the Zwalm river basin can have on the 
Gammaridae populations (a = simple assumption without weirs; b = ANN simulations 
without weirs; c = measurements August/September 2000 (with weirs); d = ANN simula-
tions, training without weirs; e = ANN simulations, training with weirs; f = ANN simula-
tions, training without weirs with addition of ‘extreme’ data). 
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Figure 4.2.9 Distribution plots of Limnephilidae (Trichoptera) in the Zwalm river basin. 
Black marks indicate the absence of Limnephilidae, white marks their presence. The four 
maps indicate what effect an improvement of the water quality and the structural quality (3 
encircled sites) in the Zwalm river basin could have on the Limnephilidae (a = measure-
ments August/September 2000; b = ANN simulations for August/ September 2000; c = 
simple prediction of the impact of the improvement of water and structural quality; d = 
ANN simulations of improvement of water and structural quality). 

Discussion

As mentioned by Lek and Guégan (1999), the ANN models are built up solely from the ex-
amples presented to the model. These examples are together assumed to completely contain 
the information necessary to establish the relation. In this way, simulations of the current 
situation in the Zwalm river basin, represented by the data measured, are reliable. The per-
formance of the predictions of the selected macroinvertebrate taxa based on the abiotic 
characteristics of their aquatic environment were rather good (CCI = 86.6% and CK = 
0.50). However, if predictions for practical river restoration scenarios have to be made, data 
describing these scenarios are not always included in the collected data. In this way, the 
collected data and induced models are less useful as such for predictions in river restoration 
management. However, the implementation of a virtual ‘extreme’ dataset in the training set 
containing relevant ecological expert knowledge can lead to better model validation. Con-
sequently, model performance cannot only be optimized and assessed for predictions of 
river conditions that are similar to those in the data collected but also for the predictions of 
river restoration scenarios. Nevertheless, two problems can occur when using an ‘extreme’ 
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dataset. To build this virtual dataset, first information has to be available. Expert knowledge 
and information found in the literature can be used. Second, the amount of ‘extreme’ sites 
in the virtual dataset should not be too high since the overall predictive power of the ANN 
models can decrease. As could be expected, the presence/absence of Asellidae in the ‘ex-
treme’ validation set is predicted well when the number of ‘extreme’ sites in the training set 
is increased. Two and three ‘extreme’ sites for depth and flow velocity respectively are suf-
ficient to predict absence of Asellidae in the three ‘extreme’ validation sites. In this way, 
the implementation of a virtual dataset can be very useful for predictions of scenarios out of 
the data range. As mentioned before, a disadvantage is that if ‘0’ (absence) is introduced in 
the output, the network will try to predict ‘0’, but it is bound to make some mistakes and 
predict ‘0’ where ‘1’ is expected. In this way, the overall predictive power of the ANN 
models decreases when a relatively large virtual training dataset is applied. Good predic-
tions are thus possible for the current conditions in the Zwalm river basin using the col-
lected dataset and for ‘extreme’ situations using a virtual one. However, a problem still ex-
ists where both current and ‘extreme’ conditions have to be reliably predicted. In the ANN 
models developed, the threshold to predict macroinvertebrates as present was set at 0.5 
(output < 0.5, Asellidae = absent; output  0.5, Asellidae = present). If only the variables 
flow velocity or depth are taken into account, based on the sensitivity analysis, Asellidae 
should always be predicted as present if no ‘extreme’ sites are used. If 5 sites containing ex-
tremely high values of flow velocity are added, it should be possible for the network to pre-
dict Asellidae as absent. However, the range of flow velocity in the collected dataset is 0.03 
to 1.92 m/s. Only two sites have a flow velocity of more than 1.40 m/s. In this way, even if 
5 ‘extreme’ sites are added to the dataset, Asellidae will be predicted as present for most of 
the sites in the collected dataset based on the variable flow velocity. The range of depth in 
the collected dataset is 2.5 to 170.0 cm. If sites containing extremely shallow depths are 
added to the collected dataset, the curve and the threshold of 0.5 move to the right (Fig. 
4.2.5). Based on the variable depth, the network should predict Asellidae as absent if depth 
is very low. 

A first practical case for the predictive models developed was the simulation of the ef-
fect of weir installation on the taxa Asellidae and Gammaridae. Goethals et al. (2001) used 
classification trees to perform the simulations of the effect of weir-removal on Asellidae. 
They predicted first the situation where weirs were already present, after that they predicted 
the presence/absence of Asellidae after weir-removal. Predictions after weir installation and 
before weir-removal (and vice-versa) are very similar with the two models.

The CCI before and after weir-removal for classification trees were 76.7% and 78.3% 
respectively. With the ANN models they were 75.7% and 76.5% after and before weir in-
stallation respectively. CK was 0.50 and 0.54 with both models for respectively after and 
before weir installation and before and after weir-removal. With both models ‘width’ is an 
important variable to predict the presence/absence of Asellidae. The only rule generated by 
the classification trees was: ‘if width is more than 3.5 meters then Asellidae are present, 
while absent in the narrower streams’ (Goethals et al. 2001). If the width is more than 3 me-
ters, the ANN model predicts Asellidae to be present in 97% of cases. Although the predic-
tive power was rather good, the ANN model was not able to predict the effect of the instal-
lation of the six weirs.

Based on the ANN models, the Asellidae continue to colonize the sites downstream of 
weirs 1 to 6. This could be explained by the sensitivity analysis (Figs. 4.2.4-6). The values 
of flow velocity and depth, which are important variables upstream and downstream of a 
weir, are not so extreme downstream of the six weirs. In this way, the ANN model pre-
dicted Asellidae as present downstream of the six weirs. Based on ecological expert knowl-
edge however, the Asellidae would not colonize river stretches downstream of the weirs 
because rather fast current conditions are not tolerated by Asellidae (Gledhill et al. 1993). 
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However, Asellidae were found downstream of the six weirs. This can most probably be 
explained by drift from the sites upstream of the weirs where the flow conditions are better 
suited to Asellidae.

Another explanation can be that the habitat is not so extreme downstream of the weirs. It 
is thus still suitable for Asellidae. Unlike Asellidae, fast current conditions suit Gammari-
dae (Gledhill et al. 1993). For this reason, the ANN model predicts Gammaridae almost al-
ways absent upstream of the weirs and present downstream of the weirs. Based on the sen-
sitivity analysis, Gammaridae are expected to be absent if the watercourse is too wide. 
Before weir installation the Gammaridae were predicted to be present upstream and down-
stream of weirs 1, 2 and 6 while absent upstream and downstream of weir 5 because the 
flow velocity was rather low and the variable ‘width’ exceeded 6.5 meters. But, no reason 
could be found why Gammaridae were predicted absent upstream of weirs 3 and 4 in spite 
of the river conditions suitable for Gammaridae. For both practical applications, the 
positive influence of the addition of ‘extreme’ data on the training dataset is negligible 
(Figs. 4.2.7f, 4.2.8f). Data-driven models are sufficient here to obtain good model predic-
tions. However, the addition of ‘extreme’ data has no negative influence on the predictions. 
On the other hand, data-driven models are not appropriate for the prediction of the ‘good 
ecological status’ in the Zwalm river basin as mentioned in the European Water Framework 
Directive. This is illustrated by the sensitivity analysis of the variables flow velocity and 
depth (Figs. 4.2.4-6). If the sensitivity analysis was performed only with the collected data, 
Asellidae were always expected to be present. No difference was made for the ‘extreme’ 
situations. However, if ‘extreme’ sites, including expert knowledge, were added to the data-
set, the ‘extreme’ situations could be better predicted. 

Based on an optimisation study of the ANN model design (Dedecker et al. 2004), in a 
third application, training was performed by means of the Levenberg-Marquardt back-
propagation algorithm since Limnephilidae is rare taxon in the Zwalm river basin. The per-
centage CCI was rather high (86.7%) which is quite normal for the prediction of very rare 
taxa since the models tend to learn that very rare taxa are always absent. Manel et al. (2001) 
mention that the prediction success (the CCI) may be affected by the frequency of the or-
ganism being modelled. Unlike the CCI, the effects of the frequency of occurrence on 
Cohen’s kappa appear to be negligible. Cohen’s kappa was considered ‘moderate’ (0.43). 
According to Manel et al. (2001) Cohen’s kappa values of 0.40-0.60 for presence/absence 
models are considered to indicate ‘moderate’ model performance. If training is performed 
by means of the gradient descent back-propagation algorithm a percentage of CCI and a 
Cohen’s kappa of 90% and 0 respectively are found. The apparently high percentage of CCI 
contrasted with the very low Cohen’s kappa. A high overall prediction performance was 
obtained since Limnephilidae were predicted absent for all sites. It can be concluded that 
the percentage of CCI does not always give a reliable evaluation of the suitability of ap-
pling models for management purposes. However, the CCI added to Cohen’s kappa is a 
good way to analyse presence/absence data. 

ANN models are in general quite robust with a rather high predictive reliability. The re-
liability of the models has to be assessed via simulations made by ecological experts who 
can deliver knowledge that is often not included in the database used for the model induc-
tion. For example, Limnephilidae are predicted present in three sites in the northern part of 
the Zwalm river basin when environmental parameters are modified in order to reach a 
good water quality. Although the river water quality is suited to this sensitive taxon, they 
cannot reach this part of the river basin without migration. To increase the model feasibility 
with regard to simulations for river restoration management, spatial-temporal expert-rules 
will also have to be included. Migration barriers along the river and the migration kinetics 
of the organisms in water, on land and in the air can provide important additional informa-
tion. Annual measurement campaigns will improve the database with regard to the 
information content of the data. Further optimisation of the ANN models could also be 
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tion content of the data. Further optimisation of the ANN models could also be obtained by 
the selection of more appropriate input variables (d’Heygere et al. 2002).

Conclusion

To predict different river restoration scenarios, ‘extreme’ datasets were added to the origi-
nal one. Therefore, ecological expert knowledge was used. The presence/absence of Aselli-
dae in the ‘extreme’ validation set was predicted well when the number of ‘extreme’ sites in 
the training set increased. However, the overall predictive power of the ANN models de-
creased when a relatively large virtual training dataset was applied. Three case studies have 
shown that ANN models are in general quite robust with a rather high prediction reliability. 
For very extreme situations, addition of ‘extreme’ data to the training dataset can be very 
useful. However, for practical applications, the positive influence of the addition of ‘ex-
treme’ data to the training dataset is negligible. Although the addition of ‘extreme’ data has 
no negative influence on the predictions, data-driven models are often sufficient to obtain 
good model predictions for practical applications. As a conclusion, adding extreme data 
improves the reliability of ANN models significantly for predictions under similar condi-
tions. The addition of only one ‘extreme’ case is however insufficient to obtain a significant 
improvement of the predictive performance in similar cases, while the addition of too many 
‘extreme’ cases in the training set decreases the general predictive performance of the mod-
els.
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4.3 A neural network approach to the prediction of 
benthic macroinvertebrate fauna composition in rivers*

Di Dato P†, Mancini L, Tancioni L, Scardi M 

Introduction

Predicting the composition of benthic macroinvertebrate fauna in rivers is not a trivial task, 
both because of the number of species to be modelled and because of the complexity of bi-
otic and abiotic relationships that determine their distribution. However, the composition of 
the benthic macroinvertebrate fauna usually provides very useful insights into the ecologi-
cal quality of lotic systems, as these organisms are very sensitive to disturbance. Benthic 
macroinvertebrates are relatively sedentary and long-lived, with life cycle durations ranging 
from a few months to 2-3 years, and they show a wide range of adaptations to local envi-
ronmental conditions. They represent a continuous monitoring system of the water body 
where they are living, but they are also very easy to collect and to identify, at least at an in-
termediate taxonomic level. Therefore, benthic macroinvertebrates are widely used as bio-
logical indicators (Hellawell 1986) and, in particular, they have been used for many years 
as a source of information for computing several biotic indices that are now used world-
wide to assess biological water quality (e.g., Metcalfe 1989, Resh et al. 1996, Lammert and 
Allan 1999). In this study, the Italian IBE index (Ghetti 1997), derived from the Extended 
Biotic Index proposed by Woodiwiss (1981) was used as a reference for selecting ecologi-
cally homogeneous taxa. 

Several different biotic indices have been developed, as they had to be suited to ecore-
gional characteristics in order to provide correct diagnoses of the riverine ecosystem qual-
ity. Most indices, however, share the same rationale that is based on the identification of 
sensitive taxa and on the recognition of the ecological role of other taxa. The main advan-
tage of this approach with respect to more thorough community structure analyses lies ob-
viously in its simplicity. In fact, even people with a limited taxonomic background can be 
easily trained to carry out rapid surveys aimed at the computation of biotic indices. A more 
complex approach to the assessment of the ecological status of streams and rivers is based 
on the prediction of the whole community structure. In the case of benthic macroinverte-
brate fauna, different modelling techniques based on ecological knowledge and monitoring 
data are now available. In the United Kingdom, the work by Wright et al. (1984) led to the 
prediction of community types on the basis of environmental data by means of a multivari-
ate analysis procedure. This appraoch was then extended and used in the River Invertebrate 
Prediction and Classification System (RIVPACS) (Wright et al. 1993b), which provides es-
timates of the ecological quality at a given site by comparing the observed macroinverte-
brate fauna composition with the expected one. 

*  Funding for this research was provided by the EU project PAEQANN (N° EVK1-
CT1999-00026).

† Corresponding: pdidato@mclink.it 
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The RIVPACS approach has also been adapted to other ecoregions. For instance, the 
Australian River Assessment Scheme (AUSRIVAS) (Simpson and Norris 2000) is based on 
the RIVPACS approach, although it has been expanded and adapted to each Australian eco-
region. Another method that is closely related to RIVPACS and AUSRIVAS is the benthic 
assessment of sediment (BEAST) (Reynoldson et al. 1995), that is based on quantitative 
data about macroinvertebtare fauna instead of presence/absence data only. Even though the 
RIVPACS approach proved to be very effective, it has limits related to the non-linearity, 
complexity and dynamic nature of biotic responses to environmental characteristics. More-
over, the development of an assessment system based on the RIVPACS rationale requires a 
considerable amount of work and thorough statistical analyses. 

A new generation of empirical techniques for analysing and modelling complex ecologi-
cal data in a more simple and straightforward way is now emerging. Among these new 
modelling methods Artificial Neural Networks (ANNs) play a relevant role and represent a 
useful tool when relationships among data are unknown and/or non-linear. ANNs learn 
from examples and do not require a priori theoretical models, nevertheless they are able to 
model complex temporal and spatial patterns and to reproduce the behaviour of very com-
plex systems (Recknagel and Wilson 2000). During the last 10 years, ANNs have been ap-
plied to various ecological fields (see, for instance, Lek and Guegan 2000), including stud-
ies relating community characteristics with environmental variables (e.g., Chon et al. 1996, 
Recknagel 1997, Recknagel et al. 1997, 1998, Guégan et al. 1998) and modelling habitat 
suitability (e.g., Paruelo and Tomasel 1997, Ozesmi and Ozesmi 1999). As for the particu-
lar case of macroinvertebrate fauna, Pudmenzky et al. (1998) and Walley and Fontama 
(2000) recently developed ANN approaches that are aimed at the same goals and ecore-
gions as AUSRIVAS and RIVPACS respectively. 

Our study was focused on a benthic macroinvertebrate data set provided by the Latium 
Regional Environmental Protection Agency and it is aimed at testing different strategies for 
modelling the presence or absence of macroinvertebrate benthic taxa on the basis of envi-
ronmental variables, using ANN models. 

Materials and methods 

Our data set is based on 153 sampling sites, distributed over 76 rivers in the Latium region 
(Central Italy), where macroinvertebrate fauna was sampled between 1998 and 2000. The 
hydrographic characteristics of the study area are highly variable, as a consequence of the 
very diverse origin and evolution of the river basin. The main river in the area is the Tiber, 
which is the second longest river in Italy, flowing from the north-eastern Appenine moun-
tains through Central Italy and Rome to the Tyrrhenian Sea. All the rivers and streams in 
the area studied are located in the Tiber basin, with the exception of those in the Liri-
Garigliano basin, which is located in the southern part of the Latium region. 

The macroinvertebrate benthic fauna was collected at each sampling site by means of a 
small dredge. The dredge consisted of a handle, a rectangular frame (25 x 40 cm) and a 
cone-shaped net. The net was made of nylon and mesh size was 0.5 mm. The net had a cup-
shaped detachable jar at its closed end that facilitates the collection of the organisms sam-
pled. The sampling sites were dredged from bank to bank to cover all the microhabitats us-
ing a technique called “kick sampling”. According to this technique the dredge, placed on 
the bottom of the river with the mouth against the water flow, was dragged along a fixed 
transect. At the same time the operator scrambled the substrate with his feet in order to di-
rect the benthic organisms towards the net. The fauna collected was preliminarily sorted in
situ, but an in-depth study by stereomicroscope was then carried out in the laboratory on 
material fixed in alcohol (70%). The taxonomic analyses led to the identification of 174 
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taxa. At each sampling site 11 environmental variables were also recorded (Table 4.3.1) 
some of them were derived from maps or from Geographical Information Systems (eleva-
tion, distance from source, gradient), while others were measured in the field (watershed 
drainage area, water flow, structure of sediment in terms of granulometric classes). The 
whole data set included 153 records for 11 predictive environmental variables and 174 taxa. 

Four modelling strategies, based on different model structures and different complexity 
levels in the model outputs were selected: 

Strategy A: a single model for all the taxa that were present in more than 5% of the 
samples (65 taxa out of 174); 
Strategy B: a separate model for each taxon that was present in more than 5% of the 
samples (65 taxa out of 174); 
Strategy C: a single model for all the taxa present in more than 20% of the samples (19 
taxa out of 174). Before adopting this strategy, we checked if the smaller subset of taxa 
preserved the information contained in the data set based on 65 taxa. A Principal Coor-
dinate Analysis (PCO) (Gower 1966) using Jaccard’s dissimilarity (Jaccard 1908) matri-
ces and a Mantel test (1967) were carried out to compare the results obtained with 19 
and 65 taxa. 
Strategy D: a single model for only 8 major taxa, which were selected on the basis of 
their ecological properties. In particular, we selected the taxonomic groups used for the 
computation of the Italian IBE index, namely Plecoptera, Ephemeroptera, Trichoptera, 
Gammaridae and Palaemonidae, Asellidae, Oligochaeta, the genus Leuctra, Baetidae 
and Caenidae. 

Table 4.3.1 Environmental variables collected at each sampling site. 

Environmental predictive variables

elevation (m) boulders (surface, %) 
distance from source (km) rocks (surface, %) 
gradient (%) pebbles (surface, %) 
watershed drainage area (km2) gravel (surface, %) 
water flow (score, 1-5) sand (surface, %) 

silt and clay (surface, %) 

The records available for both predictive and faunistic variables were divided into three 
subsets (training, validation and test). The training subset included 50% of the records 
(n=77), while the validation and test subsets contained 25% of the records each (n=38). The 
three subsets were defined according to a stratified procedure, using elevation as the strati-
fication criterion. Therefore, each subset includes samples from sites at different elevations. 
Faunistic information was exploited at its simplest (and most reliable) level, i.e. as binary 
(presence/absence) data. All predictive variables, that include heterogeneous quantitative 
and semiquantitative environmental variables, were normalized into the [0,1] interval. 

The composition of the benthic macroinvertebrate fauna was modelled using feed-
forward multilayer perceptrons. The number of nodes in the hidden layer was defined after 
empirical tests and the structures of the ANNs that provided the best results are shown in 
Table 4.3.2. The validation subset was used to compute the mean square error (MSE) of the 
ANN after each epoch, whereas the test set was used to test the performance of the ANN 
after completion of the training procedure. 

The learning procedure was iterated over 100 000 epochs, restarting the learning proce-
dure each time the validation began to increase, and keeping the set of synaptic weights that 
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provided the minimum validation error. In order to prevent overtraining, only a random 
subset of the training patterns (38 patterns) was submitted to the ANN at each training ep-
och, and white noise in the [-0.01,0.01] range was added to each input value at each epoch. 
Sigmoid activation functions were used in all the nodes of the hidden and output layers of 
the ANN, whereas the error back-propagation algorithm was selected for adjusting the 
ANN weights during the training procedure. The learning rate and the momentum were 
constant and set respectively to 0.90 and 0.10. 

Table 4.3.2 Four different model outputs, corresponding to different modelling strategies 
were selected. The optimal ANN structure for each modelling strategy was defined after 
empirical tests. 

MODEL OUTPUTS MODELLING 
STRATEGY

ANN
STRUCTURE

Only taxa present in more 
than 5% samples 

1 model 
65 outputs 11-19-65

Only taxa present in more 
than 5% samples 

65 models 
1 output each 11-5-1

Only taxa present in more 
than 20% samples 

1 model 
19 outputs 11-5-19

Only taxa involved in IBE in-
dex (Ghetti 1997) computation 

1 model 
8 outputs 11-14-8

The continuous ANN outputs, representing the probability of presence in a given site for 
each modelled taxon, were converted back to binary presence/absence estimates using a 
threshold function set to 0.5. The percentage of Correctly Classified Instances (CCI) was 
then computed for each modelling strategy and for each taxon, but a more reliable method 
for evaluating the accuracy of the models was needed. Therefore, the K statistic (Cohen 
1960, Kraemer 1982) was also computed. In particular, this method tests the null hypothe-
sis of independence between the modelled presence and absence data and the observed 
data. Finally, the modelling strategies were compared by computing Jaccard’s dissimilari-
ties (Jaccard 1908) between observed and modelled patterns (i.e. samples). 

Results

Only data belonging to the independent test set, which was not used during the training and 
validation phases, were used for evaluating the performance and the accuracy of the differ-
ent models. In the case of Strategy C the effects of the reduction of the number of modelled 
taxa from 65 to 19 were analysed by comparing the first Principal Coordinates (PCoo1) ob-
tained from PCOs performed on the two data sets. The overall agreement between the two 
cases was very good, as shown in Fig. 4.3.1, and Spearman’s rank correlation was highly 
significant (r=0.905, p<0.01). The Mantel test confirmed this result, as the null hypothesis 
of independence between the dissimilarity matrices was rejected (r=0.67, p<0.01). The re-
sults about the performances of the models trained according to the four different strategies 
are shown in Tables 4.3.3 to 6, in which the percentage of CCI, the values in the four con-
fusion matrix cells and the K statistic are reported. Only taxa that were associated to sig-
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nificant K statistics, i.e. predicted by the ANN models in a way that was significantly dif-
ferent from random, have been included in the tables. 

Table 4.3.3 Strategy A modelling results. Only 6 out of 65 taxa, which are associated to 
significant K statistics are shown. 

Overall CCI: 83.8% 

Strategy A CCI % 1-1 1-0 0-1 0-0 K 

Baetis 76.32 19 4 5 10 0.50 

Simuliidae 73.68 12 2 8 16 0.48 
Elmidae 81.58 5 5 2 26 0.47 
Hydropsychidae 78.95 6 5 3 24 0.46 
Rhyacophilidae 76.32 5 7 2 24 0.38 

Lumbricidae 68.42 7 8 4 19 0.31 
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Figure 4.3.1 The overall structure of the data set including taxa that were present in more 
than 20% of the samples (19 taxa) was compared to that of the data set including taxa that 
were present in more than 5% of the samples (65 taxa). The information contained in the 
two data sets was similar, as shown by the agreement between the first Principal Coordi-
nates obtained from Jaccard’s dissimilarity matrices (Spearman’s r=0.905, p<0.01). 
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Table 4.3.4 Strategy B modelling results. Only 10 out of 65 taxa, which are associated to 
significant K statistics are shown. 

Overall CCI: 80.6% 

Strategy B CCI % 1-1 1-0 0-1 0-0 K 

Dinocras 89.47 5 1 3 29 0.65 
Simuliidae 78.95 12 2 6 18 0.57 
Rhyacophilidae 76.32 8 4 5 21 0.46 
Baetis 73.68 22 1 9 6 0.39 
Hydropsychidae 65.79 11 0 13 14 0.38 
Ephemerella 71.05 7 5 6 20 0.34 
Ceratopogonidae 68.42 8 6 6 18 0.32 
Onychogomphus 84.21 3 3 3 29 0.41 
Limoniidae 78.95 4 5 3 26 0.37 
Limnephilidae 76.32 4 1 8 25 0.35 

Table 4.3.5 Strategy C modelling results. Only 7 out of 19 taxa, which are associated to 
significant K statistics are shown. 

Overall CCI: 68.3% 

Strategy C CCI % 1-1 1-0 0-1 0-0 K 

Baetis 73.7 19 4 6 9 0.44 
Hydropsychidae 71.1 10 1 10 17 0.43 
Elmidae 73.7 6 4 6 22 0.36 
Gammaridae 68.4 9 9 3 17 0.36 
Leuctra 76.3 4 8 1 25 0.35 
Lumbricidae 68.4 8 7 5 18 0.32 
Ceratopogonidae 68.4 8 6 6 18 0.32 

Table 4.3.6 Strategy D modelling results. Only 3 out of 8 taxa, which are associated to sig-
nificant K statistics are shown. 

Overall CCI: 73.3% 

Strategy D CCI % 1-1 1-0 0-1 0-0 K 

Plecoptera 86.84 8 1 4 25 0.67 
Ephemeroptera 73.68 23 7 3 5 0.33 
Trichoptera 68.42 23 12 0 3 0.23 

The comparisons between the results of the different modelling strategies, although 
based on a small number of efficiently predicted taxa, provided some useful hints. In par-
ticular, the comparison between Strategies A and B (Tables 4.3.3, 4.3.4) showed that the 
predictions were slightly more accurate when a set of models, one for each taxon, was 
trained instead of a single model simultaneously predicting all the taxa. In fact, with Strat-
egy B not only was the number of taxa efficiently predicted larger (10 instead of 6 out of 
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65), but the average value of the K statistics for the predicted taxa was also slightly larger. 
This evidence, however, is not in agreement with the results for other groups of organisms, 
like fishes or diatoms (see sections 3.8 and 5.8), and is probably related to the smaller spa-
tial scale at which the benthic macroinvertebrates respond to environmental conditions. 
Four taxa, namely Simuliidae, Rhyacophilidae, Hydropsychidae and the genus Baetis, were 
efficiently predicted both by Strategy A and by Strategy B, while two taxa (Elmidae and 
Lumbricidae) were efficiently predicted only by Strategy A, i.e. by using a single model for 
predicting all the species. Since information about interspecific interactions can only be 
embedded into this kind of model, it is possible that the success in modelling Elmidae and 
Lumbricidae depends on consistent association with other taxa or on the role that biotic in-
teractions play in determining their distribution. 

In Strategy C, a single model was trained for predicting the 19 taxa that were present in 
more than 20% of the samples. The accuracy of the predictions was not very different from 
the previous cases, as seven taxa had K statistics significantly different from zero (Table 
4.3.5). Four of these taxa (Hydropsychidae, Elmidae, Lumbricidae and the genus Baetis) 
were also included among those that were efficiently predicted by the Strategy A model. 
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Figure 4.3.2 Strategy A: comparison between 65 ANN outputs (grey bars) and targets 
(white bars). The percentage of CCI is also shown (solid line with black dots). 

Finally, eight taxa were modelled according to Strategy D (Table 4.3.6). In particular, 
these taxa are the ones that are routinely used for computing the IBE index. Obviously, 
these taxa have been considered for the biotic index because they have distinct ecological 
characteristics, and this is also the reason why they were selected as targets for ANN mod-
elling. Three out of eight taxa were efficiently predicted by the ANN model, namely Ple-
coptera, Ephemeroptera and Trichoptera, but it is important to point out that these taxa are 
certainly the most sensitive to disturbance and pollution. 

The difference between the apparently high CCI percentages, ranging from 83.8% to 
68.6%, and the limited number of taxa that can be reliably predicted by the ANN models 
needs some explanation. In Figs. 4.3.2 to 5 the observed (target, white bar) and modelled 
data (ANN output, grey bar) are ranked according to the observed frequency of the taxa in 
the test set (n=38). It is obvious that the two bars are similar in height when the predicted 
values closely approximate the observed ones. The bars are not labelled to avoid clutter and 
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because distinguishing each modelled taxon is not relevant in this case. The CCI percentage 
(solid line with black circles) was also plotted for each taxon. 
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Figure 4.3.3 Strategy B: comparison between 65 ANN outputs (grey bars) and targets 
(white bars). The percentage of CCI is also shown (solid line with black dots). 

When the number of taxa to be modelled was large (Strategies A and B, 65 taxa), the 
CCI percentage tended to be inversely correlated to the taxon frequency. This inverse rela-
tionship is a clear symptom of model malfunction, as the predictive ability of a model 
should not be related to the frequency of the taxa to be predicted. In fact, the models mainly 
failed in predicting the rarest taxa, and this bias was caused by the tendency of the ANNs to 
output only absence predictions when those taxa were considered. 
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Figure 4.3.4 Strategy C: comparison between 19 ANN outputs (grey bars) and targets 
(white bars). The percentage of CCI is also shown (solid line with black dots). 
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Figure 4.3.5 Strategy D: comparison between 8 ANN outputs (grey bars) and targets (white 
bars). The percentage of CCI is also shown (solid line with black circles). 

In the case of Strategies C and D, in which only frequent taxa have been modelled, the 
inverse relationship between CCI percentage and taxon frequency was not observed, and 
the overall agreement between predicted and observed presence data was better than in the 
case of Strategies A and B. Therefore, these strategies were more effective in providing un-
biased predictions about community structure, even though they obviously traded resolution 
for accuracy. 
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Figure 4.3.6 Comparison of the mean dissimilarities between observed and modelled sam-
ples for the four selected ANN training strategies. 

Finally, observed and modelled data were compared using Jaccard’s dissimilarities (Jac-
card 1908) as a criterion for summarizing their resemblance. In Fig. 4.3.6 the distribution of 
these dissimilarities is shown, and it is evident that the closest match between modelled and 
observed data was obtained when the eight taxa that are used in the IBE index computations 
(Strategy D) were taken into account. In fact, the three lower quartiles in the dissimilarity 
distribution for the latter training strategy do not extend beyond the lowest quartile for the 
other training strategies (A, B and C). In other words, the similarity relationships that de-
scribe the structure of the test data set were closely reproduced by the ANN model when 
only a small number of ecologically significant taxa were selected as ANN outputs. 
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Conclusions

The benthic macroinvertebrate data set that was available for our study was certainly too 
small to support the development of accurate models. However, it provided a good oppor-
tunity for testing different training strategies and collecting useful hints for further devel-
opments. As in the case of other groups of organisms (see chapters 3 and 5), rare taxa (as 
well as very frequent ones, although the latter case is less likely to occur) could not be ac-
curately predicted by the ANN models, independently of the training strategy. In fact, ANN 
models tend to “learn” that predicting only absence of rare taxa is the best solution for 
minimizing errors, even though this practice is obviously not appropriate for a real model. 
Obviously, the only solution to this problem would be a larger data set, but the way data are 
collected also plays a major role. In particular, more information is needed to model taxa 
that are insufficiently frequent. This goal can be attained, for instance, by planning the 
sampling activities at different spatial scales, thus allowing the collection of information 
about widely distributed taxa as well as about taxa that are only found in limited areas. It is 
obvious that a homogeneous spatial allocation of the sampling effort, although very con-
venient from a practical point of view, is not the best practice in this case. On the contrary, 
a multi-scale approach is needed, in which part of the samples are collected according to a 
ecoregional systematic sampling design, while other samples are collected in sub-areas 
where local maxima in beta diversity are detected. This way more information about the re-
lationships between environmental variables and spatial distribution of benthic macroinver-
tebrates would probably be available. 
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Figure 4.3.7 Three training strategies involving a single model for simultaneously predict-
ing all the taxa are qualitatively compared. The comparison criterion is the mean dissimilar-
ity between observed and predicted samples. The optimal efficiency of the modelling ap-
proach, corresponding to the minimum mean dissimilarity, was observed in the case of the 
modelling strategy based on the smallest set of taxa. 

As for the different training strategies that have been tested, the macroinvertebrate fauna 
was predicted more efficiently when a set of single-taxon models was trained instead of a 
single model with multiple outputs. This result was not in agreement with previous findings 
obtained for other organisms (see chapters 3 & 5 in this book). Given the limited size of our 
data set, it is not easy to figure out whether this is a particular characteristic of benthic 
macroinvertebrate fauna or not. However, it is certainly possible that the lack of efficiency 
of the single model approach was somehow related to the complexity of underlying inter-
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specific associations or interactions that were not adequately incorporated into a single 
ANN model. 

Finally, the best training strategy among the ones we tested was based on very broad 
taxonomical units, namely on the taxa that are routinely used in the Italian IBE index com-
putation. In particular, this approach was the one that gave the closest approximaiton of the 
observed structure of the dissimilarities among the samples in the test set. This result is not 
surprising, because the ecological characteristics of the taxa considered in the IBE index are 
certainly well defined. Therefore, they represent entities that are probably easier to model 
than others that are less closely related to the environmental variables. This result can be 
very useful in other ecoregions, where species that have been selected for other biotic indi-
ces could probably play a similar role in defining the structure of the macroinvertebrate as-
semblage. The different efficiencies, measured in terms of mean dissimilarity between ob-
served and predicted data, of the three strategies involving a single model for the prediction 
of all the species is qualitatively shown in Fig. 4.3.7. It is obvious that the output resolution, 
i.e. the potential accuracy of the model, can be expressed as the number of modelled taxa, 
although the taxonomic level of the latter also plays a role. According to our results, the 
mean dissimilarity between observed and modelled data tends to increase with the output 
resolution, i.e. with the number of modelled taxa. Therefore, even though only a few cases 
have been considered in our study, our results support the hypothesis that the taxa to be 
modelled should be limited to the minimum set that provides the relevant information for 
correctly reproducing the relationships among observed samples. 
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4.4 Predicting Dutch macroinvertebrate species richness 
and functional feeding groups using five modelling 
techniques*

Gevrey M†, Park YS, Verdonschot PFM, Lek S 

Introduction

When establishing a quantitative model to predict macroinvertebrate communities from en-
vironmental variables, the variety and complexity of variables often make the process of se-
lecting a modelling method difficult. The most popular prediction method in ecology is 
multiple linear regression (Holler et al. 1993, Chhetri and Fowler 1996, Green 1996, Quen-
sen and Woodruff 1997, Kolozsvary and Swihart 1999). In spite of numerous qualities, this 
method has two major weaknesses. Firstly, the parametric approaches involved assume dis-
tributions of relationships between data that may or not may hold. Secondly, the assumption 
of the linearity of the data is often questionable. In recent years, considerable attention has 
been given to the development of techniques for exploring data sets. New computational 
methods either overcome the parametric assumption, such as Partial Least Squares (PLS, 
Wold et al. 1983), or identifying non-linear relationships between the data, such as General 
Additive Models (GAM, Hastie and Tibshirani 1986, 1990), Regression Trees (RT, Bre-
iman et al. 1984) and Artificial Neural Networks (ANNs, Rumelhart and Mc Clelland 
1986). The predictive capacity of Multiple Linear Regression (MLR) was compared with (i) 
ANNs (Lek et al. 1996b, Brey et al. 1996, Paruelo and Tomasel 1997, Brasquet et al. 1999, 
Kemper and Sommer 2002), (ii) RT (Rejwan et al. 1999, Boone and Krohn 2000), (iii) PLS 
(Sanz et al. 1999, Schmilovitch et al. 2000, Dane et al. 2001, Delalieux et al. 2002), and (iv) 
GAM (Ette and Ludden 1996, Brosse and Lek 2000a). Several studies have compared dif-
ferent modelling techniques; to predict vegetation types (Cairns 2001), to fit the biological 
structural activity relationship in microbiology (Ramos-Nino et al. 1997), to model fish mi-
crohabitats (Brosse and Lek 2000b), to model fish species distributions (Olden and Jackson 
2002), to predict the abundance of aquatic insects (Wagner et al. 2000a,b), to develop quan-
titative inference models in paleolimnology (Racca et al. 2001), to predict forest character-
istics (Moisen and Frescino 2002), and to capture ozone behaviour (Gardner and Dorling 
2000).

Species richness (SR) is an integrative descriptor of the community, as it is influenced 
by changes of natural environmental variables as well as anthropogenic disturbances 
(Rosenberg and Resh 1993). Therefore, it is commonly used as an ecological indicator for 
ecosystem assessments. The functional feeding groups (FFGs) of benthic macroinverte-
brates are guilds of invertebrate taxa that obtain food in similar ways, regardless of taxo-
nomic affinities. Therefore, they can represent a taxonomicaly heterogeneous assemblage 
of benthic fauna as well as a variety of disturbances of their habitats. Moreover, they reflect 

*  Funding for this research was provided by the EU project PAEQANN (N° EVK1-
CT1999-00026).

† Corresponding: gevrey@cict.fr
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the food resources available in a given area, therefore their distributions respond mostly to 
disturbances that alter the food base of the system (e.g., Hershey et al. 1988, Hart and Rob-
inson 1990). The proportion of different groups may change in response to disturbances 
that affect the food base of the system, thereby offering a means of assessing disruption of 
ecosystem function. Therefore, the percentages of FFGs have commonly contributed as in-
dicators of rapid bioassessment (Resh and Jackson 1993, Barbour et al. 1999). Predicting 
SR and FFGs is valuable for aquatic ecosystem management.

The primary objective of this work was to compare several recently developed tech-
niques to predict a simple community index, SR. The second objective was to determine the 
relative strength of these methods while increasing the complexity of the variables i.e. in 
the prediction of FFGs. The last objective was to compare their ability to select those envi-
ronmental variables that best predict the macroinvertebrate SR and FFGs. 

Materials and Methods 

Data description 

We used the dataset compiled and presented by Verdonschot (1990, 1994). Samples came 
from 664 sites situated in the province of Overijssel (The Netherlands) including species 
abundances and a number of environmental variables (Table 4.4.1). The sampling dates 
were spread over the four seasons as well as over several years (1981 up to and including 
1985). Six hundred fifty sites were used for our study, as fourteen sites were discarded due 
to missing values or other inconsistencies. 

Table 4.4.1 Environmental variables used in the models. 

Parameter Definition 
pH Acidity 
Ca calcium Ca2+

DO dissolved oxygen
NO3 nitrate NO3

-

NH4 Ammonium 
conductivity Conductivity 
slope Slope 
depth Depth 
width Width 
temp water temperature
submerg % sampled habitat of submerged vegetation 
emerg % sampled habitat of emergent vegetation 
float % sampled habitat of floating vegetation 
velocity current velocity
season Season 
silt % sampled habitat of silt substrate 
bank % sampled habitat of bank vegetation 
gravel % sampled habitat of gravel substrate 

The sampling objective was to capture the majority of the species and their relative 
abundances present at a given site. At each site, major habitats were selected over a 10 to 
30 m long stretch of the water body and were sampled with the same sampling effort. 
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Macroinvertebrate samples were taken to the laboratory, sorted by eye, counted and identi-
fied to species level. From 853 macroinvertebrate species, we calculated the SR to be used 
as response variable. Furthermore, among six existing FFGs, the species richness of four 
FFGs (filterers, predators, scrapers and shredders) were calculated following Resh and 
Jackson (1993) and Barbour et al. (1996, 1999), because these four groups are used for the 
rapid bioassessment of aquatic ecosystems. Finally, the response variables considered in 
our model correspond to all species richness and number of species in each of 4 FFGs. 

Table 4.4.2 Correlation matrix of the 18 environmental variables used in the models. A 
dark colour indicates strong linearity between these variables, whereas a light colour indi-
cates weak linearity between variables. The abbreviations for environment variables are 
given in Table 4.4.1. 
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For predictor variables, many abiotic and biotic variables were collected at each sam-
pling site. Some were measured directly in the field (width, depth, surface area, tempera-
ture, transparency, percentage of vegetation cover, percentage of sampled habitat), and of 
these, some (such as regulation, substratum, bank shape) were classified into two or several 
classes according to their properties. Field instruments were used to measure oxygen, elec-
trical conductivity, stream velocity and pH. Surface water samples were taken to determine 
chemical variables (PO4

3-, Cl-, K+, NO3
-…). Other parameters, like land-use, bottom com-

position, and distance from source, were gathered from additional sources (data from water 
district managers, maps). From the 90 environmental variables available in this database, 18 
environmental variables were selected on the basis of sensitivity analysis performed on a 
preliminary ANN model using a backpropagation learning algorithm, showing high 
contributions to the explanation of species richness (Table 4.4.1). These 18 variables 
showed low correlation coefficients for most of the variables (less than 0.4) (Table 4.4.2). 
In order to perform the test of the models, i.e., to validate the models, these sites were 
randomly split into two data sets, 500 samples for training to calibrate the models and 150 
for testing. 

Modelling

The five modelling techniques used in this study will be described briefly (for detail, see 
chapter 2). Modelling and analyses were conducted in S-Plus 2000 (Mathsoft 1997) for the 
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MLR, GAM and RT, Matlab 6.0 (MathWorks 1998) for the ANN and Simca-P 9.0 (Umet-
rics 2001) for the PLS.

Multiple linear regression (MLR) 

MLR is a powerful and useful technique to determine the form and strength of a linear rela-
tionship between variables. It is used to predict the values of the dependent variable (y) for 
given values of the n independent variables (x1, x2,…,xn). MLR is a direct extension of 
simple linear regression. The model can be written in the following form (Walker and Lev 
1969) for object i: 

iinniii xaxaxaay ...22110   (4.4.1) 
The best-fit line is made up of a separate ‘slope’ for each of the independent variables. 

The second component of the output is the intercept (a0). This is the predicted value of y 
when all independent variables are equal to zero. 

Generalized additive models (GAM) 

This method (Hastie and Tibshirani 1986, 1990) extended the traditional linear statistical 
model. It can be applied in any setting where a linear or generalised linear model is typi-
cally used. These settings include standard continuous response regression, categorical or 
ordered categorical response data, count data, survival data and time series data. GAM al-
lows non-parametric functions to be estimated from the data using smoothing operations. In 
this study, we used a cubic smooth spline function to determine the non-parametric estima-
tion of the species-environment relationships. 

Regression trees (RT) 

Tree-based methods (Breiman et al. 1984) involve dividing the observations into groups 
that differ with respect to the variable of interest. A tree-based procedure automatically 
chooses the grouping that results in homogeneous groups that have the largest difference in 
proportion of the variable of interest. The tree-based method first divides the observations 
into two groups. The next step is to subdivide each of the groups based on another charac-
teristic. The process of subdividing is separate for each of the groups. This is an elegant 
way of handling interactions that can become complicated in traditional linear models. 
When the process of subdivision is complete, the result is a classification rule that can be 
viewed as a tree. For each of the subdivisions, the proportion of the variable of interest can 
be used to predict the effect of that variable. The structure of the tree provides insight into 
the characteristics that are relevant. RT does not have to conform to the same distributional 
restrictions as classical statistics methods and there is no assumption of a linear model. This 
would generate a tree with a lot of branches and as many terminal segments (leaves) as 
there are cases. Normally, some “stopping rule” is applied before we arrive at this extreme 
condition. Inevitably this means “impure partitions” occur, but this is necessary to balance 
accuracy against generality. A tree which produces a perfect classification of training data 
would probably perform poorly with new data. 

Partial least square (PLS) 

PLS (Wold et al. 1983) is a method for constructing predictive models when the factors are 
many and highly co-linear. The general idea of PLS is to try to extract from many factors a 
few underlying or latent factors, accounting for as much of the manifest factor variation as 
possible while modelling the responses well. In the sample, latent factors and latent re-
sponses are extracted from the independent (X) and dependent variables (Y), respectively. 
The extracted latent factors are used to predict the extracted latent responses. Next, the pre-
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dicted latent responses are used to predict the dependent variables. Last, inferences are 
made from the sample to the population. 

Artificial neural network (ANN) 

ANN (Rumelhart and McClelland 1986) is a computational tool, derived from a simplified 
concept of the brain which enables a nonlinear relationship between a dependent and some 
independent variables to be determined. A neural network contains nodes, called neurons, 
which are interconnected in a net-like structure generally composed of three layers: one in-
put layer, one output layer and one or many intermediate (hidden) layer (s). The required 
number of hidden neurons is optimized by an iterative process. The degree of influence be-
tween interconnected neurons is represented by numerical weights called connection 
weights. The overall behaviour of the system is modified by adjusting the connection 
weight values through the repeated application of the back-propagation algorithm. ANN 
training is terminated when the error function, which measures the difference between cal-
culated and desired output values, is minimized. In this study, we used only one hidden 
layer. The input layer contained 18 neurons corresponding to the 18 environmental vari-
ables and one neuron was used in the output layer. Several models were then used, i.e. as 
many as the variables to be predicted. The ANN models were optimised with 10 neurons in 
the hidden layer and nearly 500 iterations. 

Evaluation of environmental variable contribution 

Depending on the modelling method used, different ways to determine the contribution of 
the environmental variables were applied: (i) with MLR the influence of each variable was 
roughly assessed by checking the final values of regression coefficients; (ii) with GAM, the 
"Analysis of Deviance" provided the influence of the variables. For each smoothing effect 
in the model, this analysis gave a chi-test that compared the deviance between the full 
model and the model without each respective variable to a significance level (P<0.05); (iii) 
with PLS, the variable importance in the projection (VIP) was obtained that reflected the 
importance of terms in the model both with respect to Y, i.e. its correlation to all the re-
sponses, and with respect to X (the projection) with designated data, i.e. close to orthogonal 
X. The VIP values mainly reflect the correlation of the terms to all the responses. VIP val-
ues were computed, by default, from all extracted components; (iv) the most important 
variables in the RT model were those selected by the pruning method, i.e. those that com-
posed the pruned tree; the pruning is a standard approach to fitting RT models: an overly 
large tree is fitted and then pruning is used to simplify the tree; (v) with ANN, the PaD al-
gorithm (Gevrey et al. 2003) was applied to the model to classify the environmental vari-
ables by order of importance according to a calculation on the partial derivatives. 

Comparison of model performances

The predictive performances of the models were evaluated through independent estimates 
from test sets of the global root mean squared error (RMSE) and the correlation coefficient 
(r) between observed and predicted values. RMSE indicates the average error in the analy-
sis. The correlation coefficient indicates the quality of fit of all the data to a model. 

Results

Established models MLR, PLS, GAM, ANN and RT were used to predict the same data 
cases. The correlation coefficient and errors obtained using learning and testing sets for 
each modelling technique are illustrated in Figures 4.4.1 and 4.4.2. 
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r
Figure 4.4.1 Predicting power (correlation coefficient; r) of each of the 5 models (ANN, 
TREE, GAM, PLS, MLR) used per 4 FFG (filterer, predator, scraper, shredder) and for the 
species richness (SR), on the right side, the testing set and on the left side, the learning set. 

Comparison of methods 

The results suggest that all five models often perform competitively for RMSE and r, but 
occasional erratic behaviour can be anticipated. GAM and ANN performed marginally bet-
ter using the learning data set, but ANN performed marginally better using the testing data 
set. In terms of coefficient r, as shown in Fig. 4.4.1, the MLR and PLS models clearly ex-
hibited similar levels of performance with the learning data sets, and also with the testing 
data sets. The values of r were generally lower than those obtained with the other models, 
and the RMSE values are higher (Fig. 4.4.2). This may be due to the non-linear relationship 
between the environmental variables and the SR or the FFG. The RT model had a medium 
behaviour with respect to the learning data set as well as to the testing data set. GAM was 
also intermediate with respect to the testing data set. Using the training data set the maxi-
mum r was 0.736 with the FFG, and 0.862 with SR. When using the testing data set, the 
FFG maximum r was 0.666 and 0.792 with SR. In the case of the filterers, the RMSE val-
ues obtained with the GAM and the ANN models were never higher than 0.1242 using the 
learning and the testing data set. 
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Figure 4.4.2 Root mean square error (RMSE) values of each of the 5 models (ANN, TREE, 
GAM, PLS, MLR) used per 4 FFGs (filterer, predator, scraper, shredder) and for the spe-
cies richness (SR), on the right side, the testing set and on the left side, the learning set. 

Table 4.3.3 The contribution of each environmental variable (grey colour) to all 5 models 
for each response variable (SR and 4 FFGs). Numbers (last column) refer to the number of 
models that selected the respective variable. 

MLR PLS GAM TREE ANN MLR PLS GAM TREE ANN MLR PLS GAM TREE ANN MLR PLS GAM TREE ANN MLR PLS GAM TREE ANN
pH 2 5 5 4 4
Ca 3 4 5 0 3
DO 4 1 1 1 2

NO3 4 3 0 5 4
NH4 1 2 0 1 4

conductivity 3 3 2 1 3
slope 4 2 4 4 5
depth 1 1 5 2 3
width 5 1 3 5 3
temp 2 1 0 2 2

submerg 0 4 3 0 3
emerg 0 1 1 1 3
float 1 3 0 0 3

velocity 2 2 0 1 0
season 0 2 1 0 2

silt 2 0 0 2 0
bank 0 2 0 1 3

gravel 0 0 1 3 0

SRFiltrerer Predator Scraper Shredder

Comparison of predicted output 

There was a large difference between the results obtained in predicting the FFGs in com-
parison to the SRs (Fig. 4.4.2). For all five models the prediction of the SRs was better than 
for the FFG. The ANN and GAM models performed best whatever the predicted variables. 
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For the training data set the maximum value of r was 0.736 for FFG prediction but the 
mean values was 0.642, and for SR prediction the maximum value was 0.823 and the mean 
0.862. For the testing data set, the maximum value obtained when the FFG’s were predicted 
was 0.666 and the mean was 0.592, as for SR the maximum value predicted was 0.792 and 
the mean 0.747. It was easier to predict SR than the FFGs independently. In fact, there was 
more information included in the SR in comparison to the FFGs, where the information is 
divided over four groups. 

Comparison of variable contribution 

Table 4.4.3 shows that the important environmental variables varied according to the mod-
els used. Some variables were shown to be important by all or four out of five models. 
These environmental variables can be seen as the most important variables. For the group 
of filterers the most important variables were width, DO, NO3 and slope. For the group of 
predators, these were pH, Ca and submerged vegetation. Ca, pH, depth, and slope were the 
most important variables for the scrapers and width, NO3, pH, and slope for the shredders. 
In general, slope was an important variable for predicting the filterers, scrapers and shred-
ders while pH commonly explained the predators, scrapers and shredders. Width and NO3
were common predictors for both filterers and shredders and Ca was the predictor common 
to explain the predators and scrapers. When the SR was predicted, the most important vari-
ables were pH, NO3, NH4 and slope. 

Discussion and conclusion 

Regression models play an important role in data analysis by providing prediction rules, 
and in identifying important predictor variables. The simple linear models, however, often 
fail in real life because responses are not linear. MLR fails if high correlations exist be-
tween input variables. Although MLR is the most commonly applied technique, it is not the 
most suitable when the data set contains col-inear variables, which is often the case for en-
vironmental data (Delalieux et al. 2002).

PLS, which deals with linear relationships, offers the possibility to combine co-linear 
variables in the X-matrix and to decide which variables contribute to explain the variance 
of the Y-matrix. It is also robust to atypical observations (outliers) and some statistical 
packages (such as simca-P) even tolerate missing values up to about 10-20% of the inde-
pendent variables without seriously affecting the outcome, unless the data are missing in 
some systematic way (Eriksson et al. 1995, Lindgren et al. 1994). The PLS method is, in 
contrast to many other regression methods, suitable for data sets with fewer observations 
than variables and a high degree of intercorrelation between the independent variables 
(Delalieux et al. 2002). 

GAM goes one stage further. Rather than using predefined functions as approximations 
to the data being modelled, the data themselves dictate the form of the function through 
spline smoothing. The GAM approach has several advantages in ecology. Firstly, by retain-
ing the familiar regression structure, model building is relatively straightforward and the 
contributions of different predictors may be assessed. Secondly, by providing a close fit to 
the original data, GAM may produce models simpler than an equivalent GLM with several 
polynomial terms (Suarez-Seoane et al. 2002). However, one must be extra cautious not to 
over-fit the data, i.e., apply an overly complex model (with many degrees of freedom) to 
data so as to produce a good fit that likely will not replicate in subsequent validation studies
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Methods, like ANN and RT, have the advantage that they can handle complex relations 
among data. Their drawback is that they are highly complex in regard to their algorithmic 
basis and therefore require substantial expertise and human interaction or interpretation (or 
both). RT when compared to ANN is a much more interpretable model. However, the main 
advantage provided by ANN is the ability to represent any smooth measurable functional 
relationship between one or more predictor and predicted variables. 

In conclusion, this paper showed the feasibility of using environmental variables to de-
termine SR or FFGs in aquatic macroinvertebrates. In order to find out which model is best, 
several methods were compared. Major differences between modelling techniques exist, 
and are critical in deciding which procedure to use. Each of the methods examined here 
have different advantages but also drawbacks. However, best results, root mean squared er-
rors and correlation coefficient, were obtained with ANN and GAM. RT performs better in 
comparison to PLS and MLR. The latter are not the most suitable methods with respect to 
ecological data as relationships between environment and biota are non-linear. 

Predictive modelling of macroinvertebrate communities provides an important tool for 
evaluating species-environment interactions. The choice of the best model to use has to be 
made by people who have a thorough knowledge of the properties of the model as well as 
of the data. 
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4.5 Comparison of clustering and ordination methods 
implemented to the full and partial data of benthic 
macroinvertebrate communities in streams and channels*

Nijboer RC†, Park YS, Lek S, Verdonschot PFM

Introduction

We analysed benthic macroinvertebrate data from streams and from channels with three 
techniques: the self-organizing map (SOM), non-hierarchical clustering (NHC) and canoni-
cal correspondence analysis (CCA). These techniques are often used in bioassessment. As-
sessment of the integrity of the biological elements of surface waters is an important aspect 
in water management (Barbour et al. 2000). To restore surface waters, managers need tech-
niques to identify the community present and to predict which community they can expect 
if the environment changes either due to degradation or to restoration measures (Verdon-
schot and Nijboer 2000). Therefore, understanding community patterns is fundamental for 
ecosystem management. Benthic macroinvertebrates are recognised as one of the most reli-
able biological indicator groups in aquatic ecosystems (Hellawell 1986). They play a key 
role in food web dynamics, linking producers and top carnivores, and a number of species 
show clear responses to environmental variables. Their spatial sedentariness and intermedi-
ate life span, from several months to several years, make macroinvertebrates ideal as an in-
tegrative and continuous indicator group of water quality (e.g., Sláde ek 1979, Hellawell 
1986). Many useful biological indices use benthic macroinvertebrates (reviews of biologi-
cal indices and metrics: Metcalfe 1989, Resh and Jackson 1993, Verdonschot 2000). For a 
long time, biological assessment of water quality had been uni-dimensional (Cairns and 
Pratt 1993) and focussed, for example, on organic pollution. However, Karr (1991a) 
stressed that species can react to a complex of factors and that they can also influence each 
other, for example by competition, thus the use of one species as indicator has its shortcom-
ings. During the last decades, ecological assessment systems have been developed. This 
was stimulated by the development of integrated ecological indices (Karr et al. 1986, EPA 
1988). In ecological assessment the overall environment is added to the biological compo-
nent (Odum 1971), and the combination of species composition and environmental vari-
ables is used to assess the quality of surface waters (Verdonschot 1990). In these ecological 
assessment systems often a group of organisms, or even a whole community is used as bio-
indicator e.g., in RIVPACS (Wright et al. 1993b, Wright 2000) and EKOO (Verdonschot 
and Nijboer 2000). Multivariate techniques such as principal component analysis, cluster 
analysis, and correspondence analysis have been used to understand these ecological data, 
to extract communities, and to relate these to the environment (e.g., Gauch 1982, Jongman 
et al. 1995, Ludwig and Reynolds 1988, Legendre and Legendre 1998). Assessment sys-

* Funded by PAEQANN project (EVK1-CT1999-00026). The authors thank Cajo ter Braak 
for giving useful comments on an earlier version of the manuscript. 

† Corresponding: rebi.nijboer@wur.nl 



168      Nijboer RC , Park YS, Lek S, Verdonschot PFM 

tems, such as EKOO and RIVPACS, are based on a stepwise progression of clustering and 
ordination. The basic unit is the community which is interpreted using cluster analysis.

Recently, artificial neural networks (ANNs) have been used for classifying groups (e.g., 
Chon et al. 1996) and patterning relationships between variables (Lek et al. 1996a). The 
ANN proved to be a versatile tool for dealing with problems in the extraction of informa-
tion out of complex and non-linear data (Hoang et al. 2001), and could be effectively ap-
plied in classification and association (Lek and Guegan 2000). ANNs have been success-
fully applied to classify communities and to predict species distribution, communities and 
community parameters such as diversity (Lek and Guegan 2000, Recknagel 2003). Other 
authors have related community characteristics to environmental variables (e.g., Lek et al. 
1996a, Recknagel et al. 1997). Among ANN techniques, the Self-Organizing Map (SOM) 
which is based on an unsupervised learning algorithm is often used to analyse the commu-
nity structure. In several applications, e.g., Chon et al. (1996, 2000a, b, c) and Park et al. 
(2001a, 2003a), the SOM was successfully used to pattern benthic macroinvertebrate com-
munities. However, analysing community patterns is difficult because the data sets are non-
linear and composed of many species varying over different locations and time and with a 
different distribution and density. At one site, only part of the community present is col-
lected at any given moment. Therefore, each sample contains some information about the 
community but none are complete. Analysing large data sets is always an interpretation of 
the real situation; it is difficult to make the community structure apparent (Giraudel and 
Lek 2001).

In classification, sampling sites are clustered to reduce the variability and complexity of 
ecosystems and to make the results more useful in water management. Various techniques 
can give insight into the structure of communities, but the results can differ between tech-
niques or within a technique depending on the choices that are made, e.g., the number of 
clusters and the basic algorithm. If the data set is small and shows clear gradients, different 
techniques show similar results (Giraudel and Lek 2001). But if the gradients in the data are 
less clear, different techniques might result in different community structures. Furthermore, 
classification and ordination results could differ if some species are excluded from analysis. 
This is frequently the case because rare species can add noise to the analyses (Gauch 1982, 
Marchant 2002) or because processing complete macroinvertebrate samples implies high 
costs. For management purposes, it is more effective if the number of species required as 
inputs in an assessment system can be reduced. In addition, results of clustering data sets 
with over 500 species are hard to analyse and interpret. Many researchers have reduced the 
species data before using ANN to pattern the community. Chon et al. (2000a) for example, 
summed the densities of taxa to seven selected taxa. Park et al. (2003a) expressed the biotic 
data as EPTC (Ephemeroptera, Plecoptera, Trichoptera, and Coleoptera) richness. Hoang et 
al. (2001) used only presence/absence of the 37 most common taxa. Walley and Fontama 
(1998) used the Biological Monitoring Working Party (BMWP) score or number of 
families as a biological index. However, these researchers did not compare the results ob-
tained by analysing only part of the data with those obtained analysing the complete data 
set.

The aims of our study were: (1) to investigate the differences between classification with 
an unsupervised artificial neural network and with a classical clustering technique using 
two large data sets, (2) to test the stability of the classification results from both techniques, 
if only part of the taxon data is used, (3) to compare the gradients in environmental vari-
ables resulting from an artificial neural network with those resulting from a classical ordi-
nation technique, and (4) to study the ordination results using the complete and reduced 
data sets.
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Materials and methods 

Data

Comparison of techniques could yield different results between data sets, depending on the 
total number of sites or taxa, the number of taxa per site, the distribution of species over the 
sites or the distribution of individuals among the taxa. Therefore, two different data sets, 
both including samples taken in different seasons were used in this study. The first data set 
contained 563 samples from streams and included 767 macroinvertebrate taxa. The second 
data set was composed of 408 samples from small channels, less than 15 m wide, used for 
drainage in agricultural areas. In this data set 695 macroinvertebrate taxa were present. The 
benthic macroinvertebrate data in both data sets were collected by water district managers 
all over the Netherlands by using a standard sampling protocol (Verdonschot 1990). In 
summary, a 5 m surface sample was taken with a pond dip net. The sample was divided 
over the dominant habitats representative for the stretch of stream or the channel. In both 
data sets animals were identified to species level where possible. The abundances were log-
transformed (ln(x+1)) to normalise the data distribution. 

Water district managers measured environmental variables. The variables measured and 
the methods used differed between water managers. Therefore, in a first step, variables that 
were measured in less than 90% of the samples were removed from the data. In a second 
step, environmental variables were selected from the total data set based on their impor-
tance, which appeared from the first ordination results and expert opinion. Different vari-
ables were selected for streams and channels. For all variables annual means were used. To 
estimate lacking values for environmental variables (less than 10% of the sites per variable) 
average values were used from samples that were classified in the same cluster using non-
hierarchical clustering. Finally, the stream data included 19 environmental variables, the 
channel data 22 variables.

Self-organizing map (SOM) 

We used the SOM to pattern and classify species communities and to relate them to envi-
ronmental variables. The SOM is an unsupervised learning algorithm for clustering, visuali-
sation, and abstraction. The SOM is used to represent the data set in another, more usable 
form; it is an approximation of the probability density function of the input data (Kohonen 
2001). The SOM consists of two different units (i.e. computational units) of input and out-
put layers, connected by the computational weight vectors (i.e. connection intensities). To 
train the SOM, initially the community data with species densities were subjected to the 
SOM as inputs. When the input vector x is sent through the network, each neuron k of the 
network computes the summed distance between weight vector w and input vector x. The 
output layer consists of N output neurons which usually constitute a two dimensional grid 
giving better visualisation. The form of the output layer is a hexagonal lattice, because it 
does not favour horizontal or vertical directions as much as the rectangular array (Kohonen 
2001). Among all output neurons, the best matching unit (BMU) which has minimum dis-
tance between weight and input vectors becomes the winner. For the BMU and its 
neighbouring neurons, the new weight vectors (w) are updated by the SOM learning rule. 
Training is usually done in two phases: first rough training for ordering with a large 
neighbourhood radius, and then fine tuning with a small radius. This results in training the 
network to classify the input vectors by the weight vectors they are closest to. The detailed 
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algorithm of the SOM is described by Kohonen (1989, 2001) together with theoretical con-
siderations, and Chon et al. (1996) and Park et al. (2003a) included ecological applications. 

The number of output neurons (map size) affects the resolution of patterns resulting 
from the SOM. Therefore, the map size is an important parameter. To find the optimum 
map size, we trained the SOM with different map sizes ranging from 15 to 200 output units. 
Finally, we chose 40 (i.e., 8x5) as number of SOM output neurons on the 2D hexagonal lat-
tice based on our experience and reasonable ecological meaning with each technique. The 
learning process of the SOM was carried out using the Matlab SOM Tool Box (Alhoniemi 
et al. 1999, MathWorks 1998). After training the SOM, hierarchical cluster analysis using 
Ward’s linkage method was conducted to find clusters on the units of the SOM map accord-
ing to their similarities. The clusters were characterised using expert judgement and litera-
ture about the indicative taxa (Mol 1984, Gittenberger et al. 1998, Drost et al. 1992, Gei-
jskes and van Tol 1983, Bos and Wasscher 1997, Smit and van der Hammen 2000). To 
analyse the relationship between biological and environmental variables, the mean values 
of environmental variables were visualised on the SOM map. To do this, we calculated the 
mean value of each environmental variable in each output unit of the trained SOM (Park et 
al. 2003a) and represented these means by a grey scale.

Non-hierarchical clustering (NHC)

The same data sets were clustered by means of the NHC using the program FLEXCLUS 
(van Tongeren 1986). The strategy is based on an initial, non-hierarchical clustering, fol-
lowing the algorithm of Sørensen (1948) for a site-by-site matrix based on the similarity ra-
tio, using species abundances. During this initial clustering, sites are fused according to 
single linkage but a fusion is skipped when two sites with a lower resemblance to each 
other than a specified threshold would become members of the same cluster. The value of 
the threshold depends on the number of sites clustered and the cluster homogeneity. The 
homogeneity of a cluster is defined as the average resemblance (based on the similarity ra-
tio) of the sites of this cluster to its centroid. The initial clustering is optimised by relocative 
centroid sorting. Large and/or heterogeneous clusters are divided, small and/or comparable 
clusters (with a high resemblance) are fused, and then sites are relocated. During the reloca-
tion procedure, each site is compared to each cluster (as it was before relocation of any site) 
and, if necessary, moved to the cluster to which its resemblance is highest. Before a site is 
compared to its own cluster, the respective site is removed from that cluster and the new 
cluster centroid is computed.

To make both techniques (SOM and NHC) comparable, the number of resulting clusters 
should be the same. In the SOM modelling procedure 40 output units were chosen which 
were later grouped into 19 groups for streams and 23 groups for channels. The same num-
bers of clusters were chosen in FLEXCLUS. Therefore, some runs were done to explore the 
correct threshold value to obtain this number of clusters. After the initial clustering 50 relo-
cation cycles were carried out. This was sufficient to result in stable clusters. 

Comparison of SOM with NHC classifications 

Distribution of the sites over the clusters 

First, the distributions of the sites over SOM and NHC clusters were compared. This was 
done by constructing a matrix, with SOM clusters in the rows and NHC clusters in the col-
umns. In the matrix cells, the number of sites that occurred in the respective combination of 
SOM and NHC clusters was given. For each row and column the total number of sites and 
the maximum number of sites were calculated. The total number of sites minus the maxi-
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mum number of sites was considered as the deviation. The total deviation was calculated 
for all rows together as well as all columns together. Finally, the percentage was calculated 
by dividing the total deviation by the total number of sites. Two types of error were calcu-
lated, (1) type a error calculated over the rows, here, this signifies the percentage of sites 
that were combined in a cluster in the SOM but spread over other clusters using NHC, and 
(2) type b error calculated over the columns, in this case it is the percentage of sites that 
were combined in a cluster in NHC but spread over other clusters in the SOM.

Cluster characteristics 

The stability of a classification can be expressed by the mean isolation value over all clus-
ters. The mean isolation value is calculated for each cluster by dividing the homogeneity of 
a cluster by the resemblance of a cluster to the most similar cluster. The homogeneity is the 
average similarity between all combinations of two sites in the cluster. The resemblance is 
the similarity of the sites within one cluster to the sites of the most similar cluster. If the 
isolation is higher than 1, the homogeneity of the cluster is higher than the resemblance to 
the most similar cluster. In these calculations, the similarity measure used is the similarity 
ratio. For all NHC classifications minimum, average, and maximum homogeneity, resem-
blance and isolation were calculated. For the site groups resulting from the SOM the same 
values were calculated using the FLEXCLUS program. Therefore, the classification result-
ing from the SOM modelling was introduced as a fixed classification into FLEXCLUS. An 
additional cluster characteristic is the distribution of the sites over the clusters. We used the 
number of clusters with only one site and the maximum number of sites within a cluster. 

Typifying taxa 

For each cluster a set of indicators was established by using a calculation of typifying 
weights. A typifying weight represents the indicative value of a species for a cluster. The 
typifying weight for a single taxon differs between clusters. The weights for all species per 
cenotype were calculated using the program NODES (Verdonschot 1990). The clusters and 
the sites with the abundances of the taxa were used as input. In NODES the typifying 
weight of a taxon was calculated per cluster by combining the formulae of constancy, fidel-
ity, and concentration of abundance (Boesch 1977, Verdonschot 1984). The greater the 
weight, the more characteristic the taxon is for a cluster. For example, if a species occurs 
within one cluster with a high frequency of occurrence and high abundance and it does not 
occur in any of the other clusters, the typifying weight of the taxon for that cluster is ex-
tremely high and low for all other clusters. If a taxon occurs in all clusters in about the same 
frequency and with similar abundances, the typifying weight of that taxon is low for all 
clusters. The weights vary from one to twelve (Verdonschot 1990). The taxa can be divided 
into four indicator groups: indifferent taxa (weights 1-3), slightly typifying taxa (weights 4-
6), moderately typifying taxa (weights 7-9), and highly typifying taxa (weights 10-12).  

To compare the results of classification between SOM and NHC, the number of highly 
typifying taxa (all taxa that have a typifying weight > 10 for one or more clusters) was cal-
culated for classifications with 40 and 19/23 clusters (19 clusters for stream data, 23 clus-
ters for channel data), respectively. The overlap of highly indicative taxa between SOM and 
NHC classification was further determined by calculating the mean abundance and fre-
quency of occurrence for three groups of taxa: (1) only typifying in SOM, (2) only typify-
ing in NHC, and (3) typifying in both classifications, using stream data and 40 clusters.
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Classification with reduced taxa data

We used three methods for taxa reduction. Firstly, we considered the frequency of occur-
rence and abundance of taxa in the samples from the different sites. We excluded the spe-
cies that occurred at less than 1% of the sites and had an average abundance of less than 8. 
The species that remained in the data were called ‘dominant species’. Secondly, we consid-
ered taxonomic groups according to the ecological indicative value. We used species’ 
abundances of five taxonomic groups for streams as well as for channels. These groups in-
clude a variety of species, which we thought to be ecologically indicative for the respective 
water types. For streams we included Ephemeroptera, Chironomidae, Gastropoda, Oli-
gochaeta, and Crustacea. For channels we included Chironomidae, Coleoptera, Crustacea, 
Heteroptera, and Gastropoda. The third method of taxon reduction was done after the first 
SOM including all taxa. We selected indicator taxa (in this study defined as taxa that are 
indicative for a certain SOM unit). After training the SOM, we considered the weights of 
the SOM as occurrence probability ranging between 0 and 100% in each SOM unit. In the 
weight matrix, high values represent a high probability of occurrence in the corresponding 
neuron, while low values represent a low probability of occurrence. For example, a species 
with maximum 100% in a certain SOM unit displayed, we can observe this species with 
relatively high abundances in most of the sampling sites assigned to the unit. Using these 
values we selected species that had a maximum probability > 5% (in one or more of the 
output units the probability is > 5%). We considered these selected species as ‘indicator 
species’ in this study.

Table 4.5.1 The number of taxa in each of the data sets. The numbers in parentheses are the 
percentages of the number of taxa in the complete data set.

Water type Number of species in 
complete data set 

Indicator
taxa

Dominant
taxa

5 taxonomic 
groups

Streams 767 (100) 270 (35.2) 214 (27.9) 255 (33.2) 
Channels 695 (100) 310 (44.6) 241 (34.7) 391 (56.3) 

The reduction of species resulted in three new data sets which included about 28-56% of 
the species in the complete data sets (Table 4.5.1). With the smaller data sets SOM and 
NHC were repeated, using the same methods. The results of the complete data sets were 
compared with the results using part of the data by comparing (1) site distribution over the 
clusters and (2) measures for classification consistency. 

Comparison of SOM with Canonical Correspondence Analysis (CCA) 

The results of the SOM were compared with ordination results to study the role of the envi-
ronmental variables in the data. Within the SOM the most important environmental vari-
ables were selected using the distribution of variables on the map. Used in this way, the 
SOM is a method for relating community data to environmental data. The state of the art 
method to this aim is CCA (ter Braak and Verdonschot 1995). This is the reason why we 
compared the results of the SOM with CCA which was carried out with the same data using 
the program CANOCO (ter Braak and Šmilauer 2002). Before analysis, the data were trans-
formed. Species data were transformed into Preston classes (Preston 1962, Verdonschot 
1990) and environmental variables except for pH were log transformed (ln(x+1)).
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Ordination with reduced taxa data 

Ordination results were compared between the complete dataset, the data with indicator 
taxa, with dominant taxa and with five taxonomic groups. To judge the strength of the ordi-
nation, the eigenvalues of the first four axes were used. Both measures illustrate the vari-
ance in the data that is explained by the ordination axes. The first measure includes all 
variation, the second one only the variation that is explained by the environmental vari-
ables. Forward selection was used to compare the order of importance of the resulting envi-
ronmental variables between the results using the different datasets. The conditional effects 
of the variables were used. This means that first the most important variable was chosen, 
followed by the second variable that explains most of the remaining variation, and so on.

Results and discussion 

Patterning sites using the SOM 

Channels

Using the data matrix of channels to train the SOM of 40 output units (5 x 8 map), we ob-
tained the distribution pattern of the channel communities. Clustering the 40 units of the 
SOM with the help of the dendrogram with Ward’s algorithm resulted in 23 clusters, which 
are illustrated in Fig. 4.5.1.
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Figure 4.5.1 Classification of the SOM map for channels. Cells with the same number be-
long to the same cluster. The numbers of these clusters refer to Table 4.5.2. Different gray 
scales were used to indicate differences of clusters.

After training the SOM with community data, the mean values of the environmental 
variables were visualised on the trained SOM map. This technique is useful to identify the 
associations between environmental variables and communities. On the SOM map, a clear 
gradient in the distribution of a variable represents a high contribution to the classification 
(Fig. 4.5.2). The results of the SOM for channel data show that some variables have a very 
restricted distribution over the map (only few cells are darkly coloured) while others had 
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more similar values over all the cells of the SOM (these variables are lightly coloured in 
many cells). In the right upper part of the SOM map the brackish channels occur. These 
channels have high chloride levels and high conductivity. Most of them are situated along 
the coast and their soil mainly consists of clay. In these channels emergent vegetation is 
dominant. Most of the channels that are wide and deep also occur in the right upper part of 
the SOM map.
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Figure 4.5.2 The distribution of environmental variables over the SOM map for channels, 
the level of the variables is indicated by a grey scale, ranging from light grey for low values 
to black for the highest values. (cond.=specific conductivity, v.=vegetation cover). 

Eutrophication appeared to be the most important degradation factor. The nutrient levels 
(TN, TP, NO3

- and NH4
+) are high in the upper right part of the map. In the left lower part 

of the SOM map, nutrient concentrations are lower. The soil of channels that are situated in 
nature reserves mostly consisted of sand, but natural channels on peat also occurred. Clay 
channels were in most cases influenced by high nutrient or chloride levels. The vegetation 
types did not show a clear pattern except for the emergent vegetation that was correlated 
with the brackish channels. Submerged vegetation had the highest percentage coverage in 
the lower part of the map, but floating vegetation and algae did not show any gradient. In-
termittent channels were characteristic for the middle unit in the upper line in which very 
shallow channels occur. 

For some groups the indications given by the characteristic taxa (Table 4.5.2) were 
clearly linked to the extent of the values for the related environmental variables (Fig. 4.5.2). 
For example, the brackish channels (high chloride level and high specific conductivity) 
were inhabited by typical brackish water species. The group with submerged vegetation had 
species that live in vegetation. The left upper group was characterised by Tubificidae, indi-
cating organic pollution, which corresponds with the distribution of the environmental vari-
ables. However, differences between groups in the middle of the map and differences be-
tween neighbouring groups were often less clear and only small. These are the channels that 
have no extreme characteristics and a more overlapping species composition. The indicator 
species are common species that can occur in many channel types and are not indicative of 
a specific environment. Some species indicated slowly flowing water, e.g., in groups 9 and 
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5, but this variable was not included in the channel data and therefore not illustrated on the 
SOM map (Fig. 4.5.2). 

Table 4.5.2 Characterisation of the communities in the 23 channel groups identified by the 
SOM.

Group Characteristic taxa Characterisation
1 Chironomus sp., Gammarus duebeni, Sigara lateralis slightly brackish 
2 Gammarus zaddachi, Palaemonetes varians, Nereis diversicolor Brackish
3 Dytiscus circumcinctus, Culex sp., Lestes viridis Temporary
4 Ilyodrilus templetoni, Dero digitata, Spirosperma ferox sand, no vegetation 
5 Limnodrilus claparedeianus, Macropelopia sp., Gammarus 

roeselii
organic soil, slowly flow-
ing water 

6 Tubificidae juvenile with hairchaetae, Tubificidae juvenile with-
out hairchaetae, Psectrotanypus varius

Saprobic

7 Limnephilus lunatus, Arrenurus virens, Zavrelimyia sp. dense vegetation 
8 Arrenurus securiformis, Gyrinus marinus, Ablabesmyia monilis Peat
9 Pisidium sp. Clanotanypus nervosus, Caenis horaria sand, slowly flowing wa-

ter
10 Sialis lutaria, Tanytarsus sp., Polypedilum nubeculosum vegetation, organic soil 
11 Sphaerium corneum, Athripsodes aterrimus, Hygrotus versicolor vegetation, oxygen rich 
12 Trianodes bicolor, Holocentropus picicornis, Limnesia maculata vegetation, oxygen rich 
13 Piscicola geometra, Rhantus frontalis, Cricotopus gr. intersectus Wide
14 Unionicola crassipes, Hydrovatus cuspidatus, Ablabesmyia long-

istyla
wide, eutrophic 

15 Planobarius corneus, Musculium lacustre, Haliplus heydeni hypertrophic, filamentous 
algae, vegetation 

16 Polycelis sp., Xenopelopia sp, Laccophilus hyalinus wide with organic soil 
17 Asellus aquaticus, Bithynia tentaculata, Planorbis planorbis eutrophied, low oxygen 

level
18 Stagnicola palustris, Ceratopogonidae, Lymnaea stagnalis oxygen poor, covered by 

Lemna sp.
19 Gyraulus albus, Arrenurus crassicaudatus, Haliplus immacula-

tus
vegetation, low oxygen 
level

20 Arrenurus globator, Haliplus sp., Ilyocoris cimicoides vegetation, nutrient rich, 
organic pollution 

21 Ischnura elegans, Arrenurus latus, Arrenurus sinuator vegetation, moderately 
polluted

22 Theromyzon tessulatum, Glossiphonia heteroclita, Noterus clavi-
cornis

large channels, moder-
ately polluted, open, few 
vegetation

23 Cricotopus gr. sylvestris, Radix peregra, Sigara striata hypertrophic channels 

Streams

Using the data matrix of streams to train the SOM of 40 output units, i.e. 5x8 map, we ob-
tained the distribution pattern of the stream communities. Clustering the 40 units of the 
SOM with the help of the dendrogram with Ward’s algorithm resulted in 19 clusters, which 
are illustrated in Fig. 4.5.3. When mean values of the environmental variables were visual-
ised on the SOM map trained with community data of streams, three gradients appeared to 
be important (Fig. 4.5.4), a dimensional gradient, a nutrient/organic pollution gradient and a 
morphological alteration gradient. Wide and deep streams are situated in the right upper 
part of the SOM map versus small shallow streams at the lower and left part of the map. 
Many of the smaller streams were still in a natural state, meandering, having a natural pro-
file and being situated in nature reserves (often forests). On the contrary, streams in the up-
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per part of the SOM map were influenced by human impact, they were normalised and ca-
nalised. The deeper and wider streams often contained weirs, current velocity was low and 
silt had deposited. Organic pollution played a role in the left part of the SOM map (N-
Kjeldahl, total phosphorus (TP), and NH4

+ contents were high). The nitrate (NO3
-) concen-

tration was high in the lower units of the map. The oxygen content was high in the smaller 
streams with high current velocities.
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Figure 4.5.3 Classification of the SOM map for streams. Cells with the same number be-
long to the same cluster. The numbers of these clusters refer to Table 4.5.3. 
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The ecological indications of the characteristic taxa mainly confirmed the distribution of 
the environmental variables over the SOM for streams (Table 4.5.3). In the lower part of 
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the map the species of fast flowing upper courses occurred and in the upper part species 
that indicate normalised and often larger streams were found. However, sometimes the spe-
cies indicated a different environment that could be interpreted from the SOM. For exam-
ple, the species of groups 9 and 10 indicate middle-lower courses and upper courses, re-
spectively. From the map, it appears that the dimensions should be the other way around. 
Probably, other variables played a role, such as normalisation. Another example is group 
16, which seems to be polluted, considering the indicator species. This is not shown by the 
nutrient concentrations on the SOM, only chloride concentration and conductivity are high. 
Variables, such as the presence of vegetation, are indicated by the species but were not in-
cluded in the data analyses. This sometimes explains the differences between interpretation 
from the species and interpretation from the environmental variables.

Table 4.5.3 Characterisation of the communities in the 19 stream groups identified by the 
SOM.

Group Characteristic species Characterisation
1 Gammarus fossarum, Baetis vernus, Hydropsyche 

angustipennis
upper-middle course, fast flowing 

2 Gammarus pulex, Sericostoma personatum, Velia 
caprai

undisturbed small upper course 

3 Anabolia nervosa, Gammarus roeselii, Mystacides 
nigra

normalised lower course, with vege-
tation 

4 Hygrobates nigromaculatus, Platambus macula-
tus, Lebertia inaequalis 

undisturbed upper course 

5 Nemoura cinerea, Glphpell, Zavrelimyia sp. intermittent small upper course 
6 Elodes minuta, Plectrocnemia conspersa, Brillia 

modesta
Springbrook

7 Micropsectra sp., Conchapelopia sp., Prodiamesa 
olivacea

undisturbed, slowly flowing small 
upper course 

8 Tubificidae juvenile with hairchaetae, Tubificidae 
juvenile without hairchaetae, Limnodrilus hoff-
meisteri

stream with organic pollution

9 Limnodrilus claparedeianus, Cryptochironomus 
sp., Neumania deltoides 

normalised, slowly flowing middle-
lower course 

10 Stylaria lacustris, Limnesia koenikei, Armiger 
crista

normalised upper course 

11 Micronecta sp., Caenis luctuosa, Cyrnus trimacu-
latus

normalised middle course 

12 Mideopsis orbicularis, Caenis horaria, Ischnura 
elegans

sand with silt, slowly flowing 

13 Procladius sp., Pisidium sp., Cricotopus gr. Syl-
vestris

slowly flowing hypertrophic upper-
middle course 

14 Chironomus sp., Psectrotanypus varians, Radix 
ovata

polluted slowly flowing stream with 
vegetation 

15 Asellus aquaticus, Helobdella stagnalis, Cloeon 
dipterum

normalised lower course 

16 Anisus vortex, Bithynia tentaculata, Sigara striata slowly flowing, polluted, low oxygen 
level 

17 Laccophilus hyalinus, Hygrotus versicolor, 
Bithynia leachi 

slowly flowing, polluted, moderate 
oxygen level 

18 Arrenurus globator, Haliplus immaculata, Limne-
sia undulata 

middle-lower course, vegetation, very 
low current velocity 

19 Arrenurus crassicaudatus, Limnesia maculata, 
Molanna angustata

normalised middle-lower course with 
vegetation 
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Comparison between SOM and NHC classifications 

Distribution of the sites over the clusters 

The distribution of the sites over the clusters strongly differed between the SOM and the 
FLEXLCUS classification with the same number of clusters (Table 4.5.4). About half of 
the sites were put in different clusters. This goes for the classification in 40 clusters as well 
as for the classification in 19/23 clusters (23 channel clusters and 19 stream clusters found 
on the SOM map). This result was not found by Aguilera et al. (2001) who compared the 
Kohonen Neural Network classification of coastal waters in four groups with numerical 
classification. Probably the small number of groups and the fact that both of their classifica-
tions were based on Euclidean distance caused the results to be quite similar. Chon et al. 
(1996) observed that classification with the Kohonen Network and classification with clus-
tering based on average linkage between groups (Norusis 1986), showed similar results. 
However, this was done for a small very distinct data set with 10 sampling sites and 8 tree 
species. Apparently, if larger complex data sets are used, the results of different techniques 
are less similar. 

Table 4.5.4 Comparison of the site distribution over the clusters using SOM and NHC. 

 Streams 
40 clusters 
(% of sites) 

Channels
40 clusters 
(% of sites) 

Streams
19 clusters 
(% of sites) 

Channels
23 clusters 
(% of sites) 

type a deviation* 43 44 37 48
type b deviation** 52 53 48 53
* % of sites that was in one group using SOM, but put in different groups using NHC. 
** % of sites that originates from different groups using SOM and is included in the same 
group using NHC. 

Table 4.5.5 Cluster characteristics for the SOM classification and the NHC classification 
for 2 water types: STR, stream and CH, channel (all calculations were done excluding clus-
ters of 1 site). 

   Homogeneity Resemblance Isolation No. of sites
Water
type

Tech-
nique

No.
of

Clus-
ters

min mean max min mean max min mean max min max

STR NHC 40 0.41 0.50 0.66 0.27 0.52 0.76 0.70 1.03 2.41 1 71 
STR SOM 40 0.22 0.42 0.60 0.51 0.69 0.87 0.32 0.61 0.93 2 45 
STR NHC 19 0.32 0.47 0.60 0.27 0.46 0.57 0.73 1.07 1.98 1 100 
STR SOM 19 0.25 0.44 0.58 0.57 0.71 0.87 0.41 0.61 0.83 8 71 
CH NHC 40 0.39 0.53 0.63 0.36 0.53 0.72 0.70 1.01 1.59 1 79 
CH SOM 40 0.25 0.46 0.58 0.38 0.70 0.82 0.46 0.66 1.41 3 23 
CH NHC 23 0.39 0.52 0.63 0.29 0.52 0.69 0.71 1.03 1.58 1 96 
CH SOM 23 0.30 0.46 0.58 0.41 0.73 0.86 0.48 0.64 1.23 3 39 

Cluster characteristics 

Using the SOM, a less uneven distribution of the sites over the 40 clusters was resulted (the 
maximum number of sites in a cluster was 45 for streams and 23 for channels, Table 4.5.5). 
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The classification in 40 clusters resulting from NHC had a much higher maximum number 
of sites within a cluster, 71 and 79 sites for streams and channels, respectively. Using SOM 
there were no clusters composed of a single site. Using NHC there were 10 clusters consist-
ing of one site for streams as well as for channels. Classification in 19/23 clusters resulted 
in higher maximum numbers of sites within the clusters. Again, using SOM the sites were 
more evenly distributed over the clusters.
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Figure 4.5.5 The average number of taxa per site (a) and the total number of taxa per clus-
ter (b) for stream and channel clusters (19/23 clusters) using SOM and NHC. 

Isolation values were similar for stream and channel data. Both, using 40 or 19/23 clus-
ters, minimum, maximum, and mean isolation were lower for the SOM classification com-
pared to NHC classification. This was due to lower homogeneity and higher resemblance 
for the SOM classification. Thus, NHC resulted in a classification of more distinct clusters. 
This could partly be explained by the fact that there were fewer clusters using NHC if the 
single sites were not included and that one or two very large clusters were made. To opti-
mise the comparison, the classification in 40 clusters using NHC was repeated for streams, 
thereby deleting the 10 single sites from the data set. Again ”single-site clusters” were 
formed. The isolation values for the complete classification were similar. This confirmed 
that the excluded sites were not outliers, otherwise the isolation value would have im-
proved. Apparently, NHC always finds sites that are more different from all the others than 
the differences between groups of sites. Another explanation for the higher isolation values 
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for the NHC is that the isolation is calculated using the similarity ratio which is also used to 
cluster the sites with this technique. It is therefore recommended to develop an evaluation 
measure for the SOM and then test SOM and NHC with this measure.

The average number of taxa per sample and the total number of taxa in the clusters were 
higher in the SOM classification compared to the NHC classification (Fig. 4.5.5a, b) using 
19/23 as well as 40 (results not shown) clusters. In NHC, the “single site clusters” had very 
low numbers of taxa, which was probably the reason for the separation of these sites. The 
SOM classification shows a steeper line for the average number of taxa per sample, which 
means that this technique uses taxa richness to cluster the sites more than NHC does. This 
can explain the many successful applications of the SOM in combination with the multi-
layer perceptron and the backpropagation algorithm for the prediction of taxon richness and 
diversity (e.g., Park et al. 2003a). The fact that the SOM clusters contained larger numbers 
of taxa could be an explanation for the lower isolation values compared to NHC results.

In four stream clusters and in three channel clusters the number of species was higher in 
the NHC classification compared to the SOM classification. These were the clusters with a 
high number of sites. Because the other clusters had fewer sites than most of the SOM clus-
ters, the number of species in the other clusters was lower. Again, the distribution of the 
numbers of sites over the clusters seems to be important in evaluation of cluster characteris-
tics. Apparently, NHC made one or two large clusters which included sites with high num-
bers of taxa. The remaining clusters were small and consisted of samples in which the taxa 
that occurred in the large clusters were lacking.

Using 40 clusters the pattern was the same, only the differences between NHC and SOM 
were slightly smaller. Using NHC the average number of taxa per cluster was 125 for chan-
nels and 127 for streams. With SOM the average values were 171 and 168 for channels and 
streams, respectively. In both classifications the number of taxa increased by using only 
19/23 groups. This indicates that sites that included partly different taxa were put together. 
This is possible if a number of dominant taxa have high densities and therefore the similar-
ity between the clusters is high.

Fig. 4.5.5a also shows that the average number of taxa in the samples in both classifica-
tions is higher in the channel data compared to the stream data, although the total number of 
taxa in the clusters was less for channel data (Fig. 4.5.5b) and the overall number of taxa 
was less in channels (695 taxa) than in streams (767 taxa). This indicates that many taxa in 
channels are more widespread. In streams, taxa are more restricted to certain sites, which 
results in a lower number of taxa in the samples, but a higher total number of taxa. How-
ever, this was not reflected in higher isolation values for the stream clusters (Table 4.5.5). 

The choice of the classification technique and the options within the technique are im-
portant and strongly influence the results. Mangiameli et al. (1996) concluded that the SOM 
was superior to seven hierarchical clustering algorithms tested. They observed that the 
SOM classification is robust across all kind of data with different imperfections, such as 
outliers. In our study isolation values were higher for the NHC classification. However, it is 
not possible to state that one technique is better than the other because they focus on differ-
ent characteristics of the data. The suitability of the classification depends directly on the 
application goal. The SOM technique results in a more uniform distribution of the sites over 
the clusters. This results in higher resemblance and thus lower isolation values. But, on the 
other hand, uniform distribution of the sites over the clusters can be a great advantage in the 
development of models for prediction of communities. The skew distribution of the NHC 
results is probably closer to reality. In the data sets there are large groups of sites that are 
quite similar and originate from eutrophied channels or normalised streams, while more ex-
treme or undisturbed situations occurred less frequently and therefore made smaller clus-
ters. But, the separation of single sites is a problem in this technique, especially if the sites 
are not real outliers, but just the endpoints of large gradients. 
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It is hard to choose the right number of clusters within a technique. Probably there is not 
just one best option. Both, using 40 and 19/23 clusters resulted in similar isolation values, 
meaning that the classifications were evenly distinct. Therefore, one should clearly keep the 
application of the classification in mind, and decide on the number of clusters using cluster 
tables in which the grouping of the sites is visualised.

Table 4.5.6 Number of sites in which indicator species occur and average abundance for 
three groups of indicator species, (1) only indicative in NHC, (2) only indicative in SOM, 
and (3) indicative in both techniques (stream data divided into 40 clusters). 

NHC SOM SOM and NHC
No.  of 
sites

Average
abundance

No. of 
sites

Average
abundance

No. of 
sites

Average
abundance

average 28 15 41 21 50 34 
minimum 1 1 2 1 3 1.5 
maximum 185 268 185 203 171 690 
10 percentile 3 1.5 7 1.9 13 2.8 
90 percentile 70 45 107 34 98 55 

Typifying taxa 

The number of highly typifying taxa was higher in the NHC classification using 40 clusters, 
(235 for streams and 289 for channels) than using SOM (217 in streams and 214 in chan-
nels). About half of the highly typifying taxa overlapped between NHC and SOM results 
(126 for streams and 148 for channels). Using 19/23 clusters the numbers of highly typify-
ing taxa decreased for both techniques and both data sets. Probably, the fusion of the sites 
into fewer clusters made the number of taxa per cluster increase and fewer taxa became 
characteristic for a cluster. SOM classification had the same number of typifying taxa as the 
NHC classification for the channels and a higher number for the streams (131 for SOM and 
91 for NHC). Thus, there was no general trend either for the number of typifying taxa re-
sulting from a classification technique or for the number of typifying taxa in relation to wa-
ter type (streams or channels). Using 19/23 clusters only 40 taxa overlapped between both 
techniques for streams and 36 taxa for channels. The results were thus similar between 
streams and channels. The number of overlapping typifying taxa was small. This means that 
the classifications were based on different assemblages of taxa and sites confirming the re-
sults mentioned earlier in this paragraph. Typifying taxa which occurred in both classifica-
tions were taxa with high abundances and occurrence in many sites (Table 4.5.6). Taxa that 
were only typifying in the SOM classification also had relatively high frequency and abun-
dance, while the ones that were highly typifying in the NHC classification were less abun-
dant and less frequent. This also means that NHC classifies on less widely distributed taxa 
than SOM does.  

Classification with reduced taxa data 

Distribution of the sites over the clusters 

Using only part of the taxa data resulted in differences in site distribution over the 40 as 
well as the 19/23 output units for both stream and channel data. Using the SOM with indi-
cator taxa the results were quite similar to those using all species, the deviation was 20% 
for streams and 12% or 13% for channels using 23 groups or 40 output units, respectively 
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(Table 4.5.7). This was expected because the indicator taxa were those taxa with a high 
maximum probability in the initial SOM including all taxa.

Table 4.5.7 Comparison of the distribution of the sites over the 40 and 19/23 clusters using 
different parts of the taxa data. 

Data set Deviation Streams Channels

  40 output units 19 groups 40 output units 23 groups

SOM
type a * 20 20 13 12 Indicator taxa 
type b ** 20 21 13 12 
type a 44 37 33 31 Dominant taxa 
type b  44 40 35 29 
type a 54 45 52 52 5 taxonomic groups 
type b  55 49 57 56 

NHC
type a 16 15 15 17 Indicator taxa 
type b  15 20 19 25 
type a 17 12 19 17 Dominant taxa 
type b  15 13 17 30 
type a 25 24 31 25 5 taxonomic groups 
type b  27 22 34 38 

* % of sites that was in one group using all taxa, but put in different groups using the re-
duced taxa data. 
** % of sites that originates from different groups using all taxa and is included in the same 
group using reduced taxa data. 

For dominant species the errors were about 30%. Using 5 taxonomic groups, the distri-
bution of the sites over the groups was very different from using the complete data set for 
streams as well as for channels, although the number of taxa in these data sets was higher 
than for dominant taxa. In most cases more than half of the sites were put in a different 
group. This means that using part of the data including rare as well as common dominant 
species gives worse results than using part of the data in which only dominant taxa occur. 
This is explained to some extent by the fact that most of the indicator taxa, which were of 
importance for the SOM classification were also dominant (148 and 207 taxa overlapped 
between indicator and dominant taxa for streams and channels respectively). The overlap 
between dominant or indicator taxa and the taxa of the 5 taxonomic groups was smaller. 
Thus, dominance plays a role in SOM classification, but not a large role, otherwise the er-
rors for using only dominant taxa would have been smaller. Using larger groups by cluster-
ing the 40 output units into 19 and 23 groups for streams and channels respectively, the de-
viation, if using reduced taxon data, was similar. Using NHC type a as well as type b, 
deviations were both smaller in all cases than they were in the SOM results (Table 4.5.7). 
Only the NHC classification with the indicator taxa resulted in larger type a as well as type 
b deviations in comparison to the SOM results. This could be explained by the fact that the 
indicator taxa were chosen from the first SOM training and not from the NHC results. Us-
ing 5 taxonomic groups in the channel data resulted in the largest deviations of 34% and 
38% for type a and type b deviations, respectively. This was similar to the SOM results. 
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Because the errors were lower for dominant taxa, the NHC seems to cluster sites with simi-
lar abundances of dominant taxa.
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Figure 4.5.6 Minimum, mean and maximum isolation values for the classification in 40 
and 23 site groups using SOM (a) and NHC (b) for channel data.

Cluster characteristics 

Although the distribution of the sites over the clusters differed strongly between complete 
and reduced data using the SOM, the isolation values of the resulting classification for 
channels changed only slightly (Fig. 4.5.6a). This means the classification results were not 
worse, they were only different. Also the reduction of the number of clusters from 40 to 
19/23 did not result in different isolation values. Similar results were found for streams, iso-
lation values varying between 0.61-0.68. Other researchers have reduced the number of 
taxa before analysis. Chon et al. (2000a), for example, summed the species density into 7 
selected taxa of high taxonomic level to avoid noise, caused by species with low densities. 
They assumed that this might contribute to stabilising the process. However, we did not ob-
serve a change of the isolation values of the clusters, which indicates that reducing the 
number of taxa did not improve nor worsen the classification. Probably, this was caused by 
the fact that in our study taxa were deleted from the data. Chon et al. (2000a) put many taxa 
into one by adding their densities. In addition, they used taxon richness within the seven 
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taxa and density of the taxa as input variables. This leads to a small but distinct data set 
with large gradients in densities and number of taxa.

Similar results were retrieved from the NHC classification of channel sites (Fig. 4.5.6b). 
For this technique, the results were less surprising, because the changes in distribution of 
sites over the clusters were much smaller than for the SOM results. The NHC classification 
had higher isolation values as was already observed in paragraph 3.2. Also the NHC classi-
fication kept similar isolation values for the resulting clusters if another number of clusters 
was made or if reduced taxon data were used. Thus, a different classification of the samples 
did not result in higher or lower isolation values. Similar results were observed for the 
stream data: isolation values ranged from 1.03 to 1.18. 

In conclusion, for SOM only indicator taxa give similar results compared with using all 
taxa, and for NHC indicator taxa as well as dominant taxa were useful. Indicator taxa are to 
be selected after a first classification analysis and are therefore not useful to reduce sam-
pling and sorting costs. Dominant taxa could be useful if NHC is used. Excluding the rare 
taxa from data analyses could save costs but still there is a difference of 12% to 25% with 
the classification that included all taxa. Using only 5 taxonomic groups resulted in a com-
pletely different classification compared to using all taxa. Still, the question remains 
whether the community is better or worse described by using all species data or only a se-
lection. Schleiter et al. (1999) concluded that dimension-reducing pre-processing of the data 
in which the most indicative species are selected caused an increase of the generalisation 
performance of ANNs and a considerable reduction of the calculation effort. Many rare 
species are unlikely to be detected by sampling and, even when detected, the estimated 
abundances of such species are unreliable (Manté et al. 1995). However, this was not con-
firmed by our study because the isolation values were not lower if all or a selection of taxa 
was used. Moreover, rare species appeared to be indicative for unimpacted sites and spe-
cific habitats (Nijboer and Schmidt-Kloiber 2004).

Comparison between SOM and CCA 

Comparing the SOM and CCA results for channels, Figs. 4.5.2, 4.5.7, and 4.5.8 show that 
the main gradients were similar for both techniques. The ordination diagram (Fig. 4.5.7) 
shows that chloride and conductivity explained the largest part of the variation in the data 
(these variables have the longest arrows). On the SOM, the distribution of these variables is 
restricted to limited areas but the differences between these areas and the others are large 
(Fig. 4.5.2). Figure 4.5.8 summarises the distribution of environmental variables on the 
community data set used to train the SOM in Figures 4.5.2 and 4.5.4. 

The other variables that are restricted to limited areas on the SOM are: intermittency, 
NH4

+ and NO3
-. In the ordination diagram these variables have shorter arrows than chloride 

and conductivity, thus they were of less importance. The arrow for intermittency is short, 
probably because it concerned only few sites and thus these variables had less influence on 
the total analysis. However, in SOM this variable was of more importance, but only in a 
limited number of output units. The same goes for emergent vegetation, which was of no 
importance in CCA but characteristic in a small area on the SOM.

Total phosphorus and width are also restricted to a limited area on the SOM map, but the 
number of sites in this area was higher, which explains the longer arrows in the ordination 
diagram. The gradient of these variables was longer. The variables that are widely spread 
on the SOM map have only moderately sized arrows in the ordination diagram. These vari-
ables had a smaller gradient, the differences between the sites were smaller. This is visible 
in the results of both techniques. 
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Figure 4.5.7 Ordination diagram resulting from Canonical Correspondence Analysis for 
channels.

Channels Streams 
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termittent, NH4
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NO3
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Figure 4.5.8 Characteristics of the environmental variables according to their distribution 
on the SOM. Variables in one group have a similar distribution pattern on the SOM. 

For streams, the patterns were even more similar (Figs. 4.5.4, 4.5.8, 4.5.9). The variables 
NH4

+, N-Kjeldahl, and total phosphorus are positioned together in the ordination diagram, 
represented by long arrows, correlated with the second axis, and also in one group, re-
stricted to a limited area on the SOM map. The second group, consisting of silt, presence of 
dams, depth, and width is also recognisable as a group in the ordination diagram. These 
variables explained most of the variation on the first axis. They are distributed over a larger 
area on the SOM map than the first group but from the ordination diagram, it appears that 
they had long gradients in the data and were therefore important. The last group of vari-
ables that are widely spread over the SOM show very small arrows on the ordination dia-
gram. This means that these variables had values that did not differ much between sites. 
Their influence was only small. The middle group in Fig. 4.5.9 included variables that have 
long arrows in the ordination diagram, but pointing towards the left lower part of the dia-
gram. These variables were important in about half of the SOM map. The ordination dia-
gram shows that they represent large gradients. 

distribution on the SOM re-
stricted to limited areas 

widely spread over the SOM 
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Figure 4.5.9 Ordination diagram resulting from the Canonical Correspondence Analysis for 
streams.

Although linking environmental variables to the SOM is an indirect technique and ana-
lysing the relationships between environment and species data in the CCA is a direct tech-
nique, both techniques showed similar results concerning the main gradients in the data. 
However, this should be tested with data sets including only smaller gradients. The CCA 
focused more on the length and the direction of gradients while the SOM focused more on 
the distribution of variables over the clusters. Giraudel and Lek (2001) also concluded that 
it is not possible to control the direction of the gradients with the SOM. Many researchers 
used ordination in combination with classification to relate communities to environmental 
variables (e.g., Verdonschot 1990). But, the availability of both, classification and relating 
environmental variables to the clusters within one technique could be an advantage, espe-
cially, if a model to predict communities from environmental variables is going to be the 
next step.

Ordination with reduced taxon data 

The sum of the eigenvalues of the first four axes decreased if only parts of the taxon data 
were used. This means that the gradient in the data became smaller. This trend was ob-
served for streams as well as for channels (Table 4.5.8). This result was expected because 
as more taxa were excluded from the data, variation decreased. The results confirm that 
with deleting taxa, information is deleted that is not represented by other taxa. For channels, 
the deviation in the sum of eigenvalues was small for indicator taxa, larger for dominant 
taxa and largest for taxa from five taxonomic groups. In streams, dominant taxa showed the 
smallest deviation followed by indicator taxa and taxa from five taxonomic groups. This 
indicates that dominant species are more important in the stream data than they are in the 
channel data, although the stream data set with only dominant taxa is the stream dataset 
with the lowest number of taxa.

The effect on the order of importance of the environmental variables, as resulting from 
forward selection, appeared to be small (Table 4.5.9). The results did vary between data 
sets but only for the variables of minor importance (all variables were significant, but the 
amount of variation in the data they explained differed). The most important variables were 
the same ones or were only exchanged with the next or previous variable in order of impor-
tance. Using only dominant taxa in stream data resulted in an exchange of shade (the fourth 
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variable) with nitrate (the eleventh variable). Probably, the taxa that were deleted were re-
lated to shaded waters. However, this change in major variables, using dominant taxa did 
result in the smallest deviation of eigenvalues compared to the other partial data sets (Table 
4.5.8).

The deviation of the order of environmental variables, compared to when all taxon data 
were used, was highest when only 5 taxonomic groups were used, followed by the use of 
dominant species in both stream and channel data (Table 4.5.9). Using indicator species re-
sulted in the most similar order of importance of the environmental variables. For streams 
this order differed from the order of the extent of deviation of the eigenvalues. This can be 
explained by the fact that using only dominant taxa, another variable becomes more impor-
tant while the extent of variation in the data remains similar.

Conclusions

Analysing community patterns appeared to be difficult and not objective. There are many 
techniques that could be used and the two examples in this study showed that different re-
sults are obtained with these techniques. A large percentage (50%) of the sites was clus-
tered with other sites if non-hierarchical clustering was used instead of a SOM or the other 
way around.

The differences depend on the community characteristics on which the technique fo-
cuses. One technique is not always better than the other, the most appropriate technique 
should be chosen depending on the goal of the study and the application of the classifica-
tion. The SOM appeared to cluster sites with similar numbers of taxa and similar densities 
for the most dominant taxa. The NHC clustered on the similarity between all species, which 
the abundance plays a major role. The number of taxa was of minor importance. Stream and 
channel data showed similar results, although the number of taxa per site was higher for 
channels, while the total number of taxa was lower.

The number of clusters that should be included in the classification can be chosen within 
the classification techniques. However, it is very hard to interpret which number of clusters 
is the most appropriate. It is useful to try classifications with different numbers of clusters 
and compare the isolation values but this will not automatically lead to the best solution. In 
this study the mean isolation value of the clusters appeared to be quite similar between the 
classifications of 40 and of 19/23 clusters. Therefore, it might be better to relate the number 
of clusters to the application goal of the classification.

Table 4.5.8 Eigenvalues of first, second, third and fourth ordination axes and sum of these 
four eigenvalues for complete and partial data sets as a result from Canonical Correspon-
dence Analysis.

data set 1st axis 2nd axis 3rd axis 4th axis sum of axes 1-4 
streams all taxa 0.344 0.133 0.082 0.074 0.633 
streams indicator taxa 0.339 0.130 0.076 0.064 0.609 
streams dominant taxa 0.349 0.134 0.074 0.072 0.629 
streams 5 tax groups 0.284 0.126 0.085 0.060 0.555 
channels all taxa 0.257 0.146 0.085 0.068 0.556 
channels indicator taxa 0.255 0.144 0.082 0.066 0.547 
channels dominant taxa 0.250 0.134 0.071 0.061 0.516 
channels 5 tax groups 0.260 0.090 0.070 0.062 0.482 
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Table 4.5.9 Results of forward selection in Canonical Correspondence Analysis. The col-
umns with ‘all taxa’ show the order of importance of the environmental variables from high 
importance to low importance. The columns of the other data sets show the deviation, 
caused by using all taxa, in the number of positions in order of importance (a positive num-
ber means the variable has become higher in order of importance, a negative number indi-
cates a lower importance). The total deviance is the total number of exchanged positions. 

Channels Streams 
all taxa indicator

taxa
dominant

taxa
5 tax. 

groups
all taxa indica-

tor taxa
dominant

taxa 
5 tax. 

groups
Chloride 0 0 0 depth 0 0 0 
Conductivity 0 0 0 natural profile 0 0 0 
Width 0 0 0 NH4

+ 0 0 0 
Sand 0 0 0 shade 0 -6 0 
NH4

+ 0 0 0 width 0 0 0
pH 0 0 -1 oxygen 0 0 -6
natural area 0 0 +1 current speed 0 0 -4 
floating vegetation 0 0 0 chloride 0 -1 0 
water inlet -1 0 -2 permanent 0 +1 -1 
Peat +1 0 -8 pH -1 -1 +1
Depth 0 0 -2 NO3- +1 +7 +4
Total phosphate 0 -1 +3 conductivity 0 0 +6 
NO3

- 0 +1 +3 silt 0 0 0
Clay -1 -1 +2 natural area 0 0 -1
Submerged vegetation +1 +1 -1 meandering 0 -1 -1 
Shade 0 0 -3 sand 0 +1 +2
Emergent vegetation 0 0 +2 total phosphate 0 0 -1 
Intermittent -2 -4 +4 N Kjeldahl -1 0 +1 
Groundwater seepage +1 +1 +2 dams +1 0 0 
Filamentous algae +1 +1 -1     
Total nitrogen 0 +1 +1     
Oxygen 0 +1 0     
Total deviation 4 6 18 total deviation 2 9 14 

Reducing the taxon data resulted, with both techniques, in another distribution of the 
sites over the clusters for both streams and channels. For the SOM the classification 
changed more than for the NHC, thus the results again depended on the technique that was 
used. The classifications had similar values for isolation, thus they were not worse than if 
the complete data were used. If reduction of the data is desirable one should at least com-
pare the differences with the classification of the complete data to evaluate the suitability of 
using reduced taxon data. Therefore, it does not yet add to cost effectiveness in water 
management. The relations with the environmental variables were quite comparable 
between SOM and CCA. Both techniques could be used together to get the most informa-
tion out of the data. The main gradients were the same. The advantage of the SOM is that 
the environmental variables can be related to the clusters on the SOM. The CCA however, 
is more suitable for showing the length and direction of the gradients. Reducing taxon data 
reduced the amount of variation in the data but this reduction was only represented by less 
important environmental variables.
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4.6 Prediction of macroinvertebrate diversity of 
freshwater bodies by adaptive learning algorithms*

Park YS†, Verdonschot PFM, Chon TS, Gevrey M, Lek S 

Introduction

The natural distribution of organisms is determined primarily by their environmental re-
quirements (Huntley 1999). Thus, understanding community patterns is important to man-
age target ecosystems. Especially in aquatic ecosystems, communities of benthic macroin-
vertebrates are important to monitor changes of the target system. Benthic 
macroinvertebrates constitute a heterogeneous assemblage of animal phyla and conse-
quently it is probable that some members will respond to stresses placed upon them (Hynes 
1960, Hawkes 1979). Many are sedentary, which assists in detecting the precise location of 
pollutant sources, and some have relatively long life histories. They provide both a facility 
for examining temporal changes and integrating the effects of prolonged exposure to inter-
mittent discharges or variable concentrations of pollutants (Hellawell 1986). Therefore, it is 
promising to characterize the changes occurring in communities to assess target ecosystems 
exposed to environmental disturbances.

Species richness is an integrative descriptor of the community (Lenat 1988), as it is in-
fluenced by a large number of natural environmental factors as well as anthropogenic dis-
turbances (Cummins 1979, Rosenberg and Resh 1993). The disturbances of environmental 
factors may lead to spatial discontinuities of predictable gradients and losses of taxa (Ward 
and Stanford 1979). Species richness is known to be sensitive to environment changes in 
stream ecosystems (Resh and Jackson 1993), and is used as a biological indicator of distur-
bance. As with species richness, diversity indices decrease under increasing disturbance and 
stress on the ecosystem. The Shannon-Weaver diversity index (Shannon and Weaver 1949) 
is commonly used to describe the diversity of a particular community. The index is a func-
tion of both the number of species in a sample and the distribution of individuals among 
those species (Klemm et al. 1990). The diversity index is often used as an ecological indica-
tor for the assessments of ecosystems (Bahls et al. 1992). 

Development of methods for patterning spatial and/or temporal changes in communities 
has currently become an important issue in ecosystem management. The River Invertebrate 
Prediction And Classification System (RIVPACS) was developed to assess water quality. 
The RIVPACS and its derivates belong to the first integrated ecological assessment analy-
sis techniques (Wright et al. 1993b, Norris 1995). The models are based on a stepwise pro-
gression of multivariate and univariate analyses (Barbour et al. 1999). With nonlinear and 
complex ecological data, however, nonlinear analysing methods should be preferred (Blayo 
and Demartines 1991). An artificial neural network is a versatile tool for dealing with prob-
lems to extract information out of complex, nonlinear data, and could be effectively appli-
cable to classification and association (Lek and Guégan 2000, Recknagel 2003).

* This work was supported by the EU project PAEQANN (EVK1-CT1999-00026). 
† Corresponding: park@cict.fr
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In ecological modelling, artificial neural networks are more and more used for data or-
ganization and classifying groups (Chon et al. 1996, Park et al. 2001a), patterning complex 
relationships between variables (Lek et al. 1996a, Scardi 2000), and predicting population 
development (Tan and Smeins 1996, Stankovski et al. 1998). Most of these models used 
two popular artificial neural networks: a multiplayer perceptron using backpropagation al-
gorithm (Rumelhart et al. 1986b) and a Kohonen’s Self-Organizing Map (Kohonen 1982). 
In the study of the benthic macroinvertebrates, in particular, a SOM has been used for pat-
terning communities (Chon et al. 1996, 2000a, Park et al. 2001a, 2003a), for water quality 
assessments (Walley et al. 2000, Aguilera et al. 2001), and for prediction of population and 
communities (Céréghino et al. 2001, Obach et al. 2001). In addition, the MLP has been ap-
plied to the prediction of community parameters and species composition (Chon et al. 2001, 
Park et al. 2001a, 2003a), and bioassessment of water quality (Schleiter et al. 1999). The 
networks are mainly used to predict target values or to classify input vectors in a model. It 
is not easy to conduct both classification and prediction in such networks at the same time. 
However, patterning and predicting could effectively be carried out in a network. One ex-
ample is a counterpropagation network (Hecht-Nielsen 1987), which consists of unsuper-
vised and supervised learning algorithms. It classifies input vectors and predicts output val-
ues. This study aims to apply a counterpropagation network for patterning and for 
predicting the ecological data consisting of benthic macroinvertebrate communities and en-
vironmental variables. It could be a useful tool in managing aquatic ecosystems according 
to the EU Water Framework Directive (European Parliament 2000). 

Materials and methods 

Ecological data 

To implement the CPN, benthic macroinvertebrate communities and the corresponding en-
vironmental variables were used. The data sets were extracted from the EKOO database in 
the Netherlands (Verdonschot and Nijboer 2000). The data were collected at 664 sites (Fig. 
4.6.1) of 23 different water types (Table 4.6.1) in the province Overijssel, The Netherlands. 
The EKOO studied the relative abundances of macroinvertebrates at given sites according 
to the characteristics of the environmental variables. At each sampling site, the major habi-
tats were selected over a 10- to 30-m long stretch of the water body and were sampled with 
the same sampling effort. The sampling effort was thus standardised for each site. A total of 
854 species were recorded, Chironomidae, Coleoptera, and Oligochaeta being the most 
abundant taxa in the dataset. From the community matrix, two community indices; species 
richness (SR; number of species at each sampling site) and diversity index of Shannon-
Weaver (SH) were extracted to evaluate the benthic macroinvertebrate community structure 
at each sampling site. The mean species richness was 54.46 (±0.94 SE) ranging from 2 to 
132, and mean diversity index was 5.29 (±0.03 SE) ranging from 0.49 to 6.77. 

Ninety environmental variables (34 quantitative variables in Table 4.6.2 and 56 qualita-
tive variables in Table 4.6.3) were also measured at sampling sites. Qualitative variables 
were evaluated 0 or 1 according to their characteristics in the sampling areas. We used two 
different data sets based on quantitative and qualitative environmental variables. They were 
separately used to predict species richness (SR) and Shannon diversity index (SH) of 
macroinvertebrate communities. The prediction abilities of each data set were compared. 
Out of 664 data sets 500 were used to train the network, while the remaining sets (164) 
were applied to test the feasibility of the trained network in each data set.
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Table 4.6.1 Water types of sampling sites and number of samples collected in each habitat. 

Acronym Water type No samples 
BB Lower courses 24
BK Springs sources 21 
BO Upper courses 63
BP Remaining stream pools 17
BR Springs 22
BV Spring ponds 1
DW Temporary water 25 
KA Canals 35
KB Regulated small rivers 34 
KO Deep ponds 27
LS Peat ditches 29
ML Middle courses 29 
MM Small lakes 24
PE Peat pits 26
PO Shallow pools 24
RM Large lakes  10
RR Rivers  33
SB Regulated streams  24
SG Spring gutter  1
SL Ditches  97
VA Peat canals 42
VE Moorland pools 32 
ZW Sand and clay pits  24

N

5 7

53

52

51
Belgium

The Netherlands

Germany

60km0

Figure 4.6.1 Study area in the province of Overijssel, The Netherlands.

The qualitative variables were coded in 0 (absence) and 1 (presence) and used in the 
model without any transformation. However, the input data – both quantitative environ-
mental variables and biological attributes (SR and SH) – were proportionally scaled be-
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tween 0 and 1 in the range of the minimum and maximum values. Environmental variables 
showing high variations were log-transformed before normalization to delimitate variations. 
In log-transformation, value 1 was added to avoid the problem of log of zero. In the model-
ling process, sampling sites were classified using environmental variables in the SOM 
layer, and then the network was applied to predict SR and SH in the Grossberg layer ac-
cording to the output signal of the SOM. 

Modelling procedure 

The CPN proposed by Hecht-Nielsen (1987), is a combined network of the two ANN: the 
Kohonen SOM (Kohonen 1982) and the Grossberg outstar (Grossberg 1982). The name 
counterpropagation is derived from the initial presentation of this network as a five-layered 
network with data flowing inward from both sides. There is literally a counterflow of data 
through the network (Fig. 4.6.2). The network is designed to approximate a continuous 
function f:A Rm B Rn defined on a dataset A, and serves as a statistically optimal self-
programming lookup-table (Hecht-Nielsen 1987).

Kohonen SOM – Grossberg network

Kohonen SOM – Grossberg network

Kohonen SOM – Grossberg network

Kohonen SOM – Grossberg network
(input) x

(output) x’

y’ (output)

y (input)

Figure 4.6.2 A Schematic diagram of full counterpropagation network. 

The full network works best if the inverse function f -1 exists and is continuous. It is as-
sumed that the x and y vectors are drawn from A and B, respectively. During the training, 
(x,y) of f (where y=f(x)) are presented to the network from both sides. These x and y vec-
tors then propagate through the network in a counterflow manner to yield output vectors x’
and y’ which are intended to be approximations of x and y, respectively (Hecht-Nielsen 
1987, Lin and Lee 1996). Recently, these characteristics were successfully applied for pat-
terning hierarchical relationships among taxonomic groups of benthic macroinvertebrate 
communities (Park et al. 2001b). However, the structure of the five-layer network is com-
plex, and can be considerably simplified without loss of accuracy (Hecht-Nielsen 1987, 
1990, Lin and Lee 1996). In this study we used a forward-only CPN composed of three lay-
ers which is a specific type of CPN without counterflow, only flowing from input to desired 
output (Fig. 4.6.3).

In the modelling process, initially the data vectors x (explanatory variables) and y (de-
pendent variables) are sent to the SOM and the Grossberg layers, respectively. Then, the 
weights are updated for a given set of data vectors x and y. For the CPN this occurs in two 
phases. First, the SOM layer is trained. It works like a hidden layer of a multiplayer percep-
tron. At the SOM layer, when the input vector x is sent through the network, each neuron k
of the network computes the distance between the weight vector v and the input vector x.
Among all N output neurons in two dimensions, the best matching unit (BMU) of minimum 
distance becomes the winner (e.g., neuron q). The BMU and its neighbouring neurons are 
allowed to learn by changing their weights so as to further reduce the distance between 
weight and input vectors as follows: 

kjkjjkjk ztvxttvtv ))()(()()1(                             (4.6.1) 
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where vjk is the weight between neuron j of the input layer and neuron k of the SOM layer,
zk is assigned 1 for the winning (and its neighbouring) neuron(s) while it is assigned 0 for 
the other neurons, and (t) denotes the fractional increment of the correction (0 < (t) < 1). 
The radius that defines the neighbourhood is usually set to a larger value early in the learn-
ing process, and is gradually reduced as convergence is reached. This results in training the 
layer to classify the input vectors by the weight vector v they are closest to.

Table 4.6.2 Thirty-four quantitative environmental variables used in the model. The groups 
(A-I) are based on the similarity of distribution patterns of each variable on the trained 
SOM map in Fig. 4.6.4. 

Variables Acronyms Unit Mean (SE) Groups
Percentage cover emergent vegetation BOVE% % 6.77 (0.54) A 
Percentage cover floating vegetation DRIJ% % 11.67 (0.89) A 
Percentage cover floating algae FLAL% % 3.82 (0.56) D 
Percentage sampled habitat: emergent vegetation MMBO% % 16.16 (0.86) I 
Percentage sampled habitat: detritus MMDE% % 9.01 (0.69) H 
Percentage sampled habitat: floating vegetation MMDR% % 12.96 (0.79) I 
Percentage sampled habitat: gravel MMGR% % 1.36 (0.20) H 
Percentage sampled habitat: clay MMKL% % 0.51 (0.14) I 
Percentage sampled habitat: bank MMOE% % 18.24 (0.91) I 
Percentage sampled habitat: submerged vegetation MMON% % 12.05 (0.76) D 
Percentage sampled habitat: silt MMSL% % 15.67 (0.73) F 
Percentage sampled habitat: stones MMST% % 0.72 (0.13) H 
Percentage sampled habitat: peat MMVE% % 2.20 (0.26) D 
Percentage sampled habitat: sand MMZA% % 10.51 (0.65) H 
Dissolved oxygen percent saturation O2% % 90.70 (1.66) G 
Percentage cover bank vegetation OEVE% % 6.10 (0.57) I 
Percentage cover submerged vegetation ONDE% % 11.23 (0.92) D 
Percentage cover all vegetation TOTB% % 33.14 (1.38) A 
Width of stream WIDTH m 64.24 (18.16) E 
Ratio width/depth WD/DP 28.51 (4.54) C 
Calcium Ca++ mg/l 51.21 (1.01) B
Chloride Cl- mg/l 52.79 (1.98) B
Depth DEPTH m 1.13 (0.06) E
Silt thickness DSAPR m 0.11 (0.01) I 
Electric conductivity ECOND uS/cm 427.95 (9.18) B 
Ammonium NH4+ mgN/l 1.46 (0.14) F 
Nitrate NO3- mgN/l 3.87 (0.32) H 
Oxygen concentration  O2 mg/l 9.71 (0.16) G 
Ortho-phosphate O-P mgP/l 0.29 (0.03) F 
Acidity pH 7.13 (0.04) B 
Flow velocity VELOC m/s 0.07 (0.01) H 
Water temperature TEMP C 13.26 (0.24) C
Total-phosphate T-P mgP/l 0.51 (0.05) F 
Slope VERVA m/km 5.91 (0.81) H 

Once the SOM layer is trained, the Grossberg layer (Grossberg 1969), the output layer 
of the CPN, can be trained. This is done in supervised mode according to the following 
procedure. An input vector x is applied to the CPN, the output of the SOM layer is estab-
lished, and the Grossberg layer outputs are calculated. In this process, the Grossberg layer 
receives z vector signals from the SOM layer. If the difference between the desired output 
and the calculated output of the Grossberg layer is greater than the acceptable error, the 
weights are updated using the following Grossberg outstar learning rule: 
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kikiikik zwyww )(    (4.6.2) 
where wik is weight between neuron k of the SOM layer and neuron i of the Grossberg 
layer,  is the learning rate, and zk is assigned to 1 for neuron q (BMU) while set to 0 for all 
other neurons of the SOM layer. The weights correspond to the averages of the desired out-
puts y associated to the inputs x according to the equiprobability of the winning neurons of 
the SOM layer. By repeating this process until the weight differences become sufficiently 
small, the relationship of the two variable sets is preserved in the weights of the network. 
Finally the trained CPN actually functions as a statistically optimal self-programming look-
up table.

Input

SOM
layer

x1
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xm

y’1

y’i

y’n

Output
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output
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v11
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vmN

w11

wki

wNn

...
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Figure 4.6.3 Schematic diagram of a forward-only counterpropagation network. 

The SOM layer of the CPN works as a hidden layer in a multiplayer perceptron. Accord-
ingly, a number of neurons of the SOM layer affect a predictability of the CPN. Therefore, 
to find the optimum neuron size of the SOM layer we trained the network with different 
map sizes, and chose 63 (9  7) and 56 (8  7) neurons for the SOM layer on the 2D hex-
agonal lattice for quantitative dataset and qualitative dataset, respectively. After training the 
CPN in this study, a unified-matrix algorithm (U-matrix, Ultsch 1993) was applied to detect 
the cluster boundaries on the map of the SOM layer. The algorithm is commonly used to 
show clusters on the SOM showing distances between neurons. High values of the U-
matrix indicate cluster boundaries. 

Relationships between biological and environmental variables 

The weight vectors of the SOM layer tend to approximate the probability density function 
of the input vector (Kohonen 2001). The visualization of these vectors according to differ-
ent input variables is an efficient way to understand the contribution of each input variable 
to the clusters on the trained SOM map. Therefore, the values calculated for each input 
variable during the learning process were visualized on the trained SOM map with a grey 
scale to represent the relationships between the input variables and the clusters of the 
trained SOM. 

Furthermore, to understand the relationships between input (environmental) variables 
and output (biological) variables, mean values of output variables were calculated in corre-
sponding units of the trained SOM map. If the output neuron is not occupied with any input 
vectors, the vacant neurons are replaced by the mean value of the neighbouring neurons. 
These mean values of environmental variables assigned to the SOM map were visualised on 
the grey scale, and then compared with maps of sampling sites as well as with biological at-
tributes. Furthermore, to compare the relationships between environmental variables, they 
were classified into several groups based on their distribution patterns on the trained SOM 
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map with weight vectors of the trained SOM. In addition, correlation coefficients were cal-
culated within each group using the weight vectors. 

Multiplayer perceptron with backpropagation algorithm (BP) 

The multiplayer perceptron with backpropagation algorithm was also applied to the EKOO 
database to predict species richness and diversity index with quantitative environmental 
variables, and then the performance of the models was compared with those of the CPN. 
The BP is most popular and used more than other neural network types in various fields of 
investigation. It is an interactive algorithm designed to minimize the mean square error be-
tween the computed output of the network and the desired output. The network normally 
consists of three layers: input, hidden, and output layers. It requires input vectors in the in-
put layer, as well as target (or desired) values in the output layer corresponding to each in-
put vector. In this study the network consists of 34 neurons in the input layer, 10 neurons in 
the hidden layer, and two neurons in the output layer. The learning algorithm of the BP is 
very popular and common, and the detailed description will not be given here. Procedures 
of the learning rules can be found in Rumelhart et al. (1986b), Kung (1993), and Lek and 
Guégan (2000). After the learning process, the datasets not included in the training process 
were applied to test the reliability of the trained BP, and then the prediction power was 
compared with that of the CPN. 

Results

Quantitative environmental data set 

Patterning samples with environmental variables 

The CPN patterned the input vectors in the SOM layer, and a U-matrix method clustered 
the trained SOM map. The results showed five clusters (I-V) of sampling sites grouped ac-
cording to environmental gradients, and two subclusters Va and Vb were observed in clus-
ter V (Fig. 4.6.4). Each cluster was mainly associated with the characteristics of the water 
types. For instance, cluster I mainly consisted of sites of moorland pools (VE), cluster II of 
ditches (SL), cluster III of stagnant water bodies (VA, PE, PO, and KA), cluster IV of large 
rivers and lakes (RR, RM, KA, and ZW) and ditches (SL). Finally, clusters Va and Vb were 
characterized respectively by springs and upper watercourses (BK, BO and BR), and by in-
termittent or regulated streams (BP, DW and SB). These distribution patterns show the 
characteristics of natural key conditions. The sampling sites located on the left areas of the 
SOM map were mainly from unregulated water systems, whereas sites on the right were 
from regulated areas (Fig. 4.6.4). The water types are listed in Table 4.6.1, and their 
characteristics are described by Verdonschot (1990). 

Fig. 4.6.5 displays the contribution of each input variable for the classification of sam-
pling sites on the trained SOM map. Dark areas represent high values, while light ones dis-
play low values. Acronyms of environmental variables are shown in Table 4.6.2. Each vari-
able displayed a high gradient distribution on the trained SOM map. Nine groups were 
observed among the input variables according to their distribution similarities: the first 
eight groups (A-H) showed high correlations among environmental variables within each 
group (mean correlation coefficient r=0.74 ( 0.06 SE) ~ 0.93 ( 0.06 SE)), whereas the last 
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group (I), which does not belong to any other group, showed relatively low correlations 
(mean correlation coefficient r=0.34 ( 0.04 SE)) among variables within the group.
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Figure 4.6.4 Classification of sampling sites with quantitative environmental variables us-
ing the SOM. The U-matrix algorithm was applied to cluster the SOM map. The Latin 
numbers (I-V) represent different clusters. The acronyms in the hexagonal neurons repre-
sent different habitats, and are shown in Table 4.6.1. The size of the acronym font is pro-
portional to the number of sampling sites in the same habitats in the range of 1-18 sampling 
unites.

The groups of variables show different aspects of the environment. For example, group 
B was related to electric conductivity and group F was characterised by inorganic nutrients 
(NH4

+, T-P, and O-P). The groups also showed different local habitat characteristics. 
Groups A and D were concerned with the percentages of vegetation cover, whereas group 
H typically represents the characteristics of upper water course habitats showing high 
percentages of detritus, stones, sand, and gravel with high current velocities and strong 
slopes. The morphological characters of streams (width and depth) were grouped together 
in the group E. 

The next step is to compare the relationship between clusters of sampling sites and 
groups of environmental variables. Clusters I and II were related to low values of group B 
and high values of group D, and cluster III was represented by high values of groups D and 
G, and low values of group H (Fig. 4.6.4). Similarly, cluster IV displayed high values of 
groups B and E and variables MMBO%, MMKL%, and MMOE% of group I, and sub-
clusters Va and Vb were strongly related with high values of groups H and F, respectively. 
Furthermore, the sampling sites in the left areas of the SOM map (Clusters I, II, Va) mainly 
display natural water systems, while the sites in the right areas (Cluster III, IV, Vb) reveal 
either natural or anthropogenically disturbed aquatic systems. Overall, the Fig. shows that 
sites of clusters I and II in the lower areas of the SOM map are not disturbed and contain 
well developed vegetation, whereas the sites of cluster Vb in the upper area are disturbed 
by regulation and nutrients (e.g., nitrate, ammonium, ortho-phosphate, and total phosphate) 
which are presumably due to increased amounts of dissolved ions entering the water 
through agricultural activities.

Relationship between environmental variables and community indices 

To evaluate the relationships between environmental variables and diversity indices (SR 
and SH), the mean values of SR and SH were visualized on the trained SOM map in grey 
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scale (Fig. 4.6.6). The results showed that SH and SR were higher in the lower right areas 
of the SOM map than in the upper left areas. The low values were characterised by group H 
representing high percentages of stone, gravel, sand, and detritus in substrates and water 
types of springs and upper courses (cluster Va), and by group F showing high concentration 
of nutrients or sites representing intermittent and regulated water systems (cluster Vb). SR 
and SH were also related to dissolved oxygen (group G).

Figure 4.6.5 Component planes displaying the contribution of each quantitative environ-
mental variable to classification of sampling sites. Based on the distribution pattern on the 
SOM map, nine groups (A-I) were identified. The names of the environmental variables are 
given in Table 4.6.2. Dark represents high values, whereas light is for low values. 

Predicting community indices 

The trained CPN serves as a ‘look-up table’ for finding the corresponding values between 
the input and output variables. The Grossberg layer of the trained network showed high 
predictability in the learning process (Fig. 4.6.7a, b). Correlation coefficients between ob-
served and estimated values were 0.90 (P<0.01) for both SH and SR. In both cases over-
estimations were observed at low values, while under-estimations were observed at high 
values. This is caused by the structural characteristics of the data. There are few cases with 
low values in both SH and SR. The residuals between observed and estimated values aver-
aged 0.000 for both SH and SR, and their standard deviations were 0.044 and 0.065 for SH 
and SR, respectively. The distribution of error values showed that most error values lie 
around zero. The data not used in the learning process were applied to test the feasibility of 
the trained network.
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Figure 4.6.6 Distribution of Shannon’s diversity index (SH) and species richness (SR) on 
the SOM map trained with quantitative environmental variables. Dark represents high val-
ues, whereas light displays low values. 
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Figure 4.6.7 The results of the model to predict diversity index (SH) and species richness 
(SR) with 34 quantitative environmental variables. Learning results of the model for SH (a) 
and SR (b) and results of the model tested by the data set not used in the learning process (c 
and d for SH and SR, respectively). SH (e) and SR (f) were also predicted by with the mul-
tiplayer perceptron with quantitative environmental variables. 

The results showed a high predictability of the network. The correlation coefficients be-
tween observed and predicted values were 0.70 and 0.67 for SH and SR, respectively 
(P<0.001) (Figs. 4.6.7c, d). The residuals between observed and predicted values were lo-
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cated around zero showing averages of 0.009 ( 0.059 SD) and 0.014 ( 0.103 SD) for SH 
and SR, respectively. A majority of frequencies of the error terms also appeared around 
zero. Thus, the results showed that the trained CPN corresponded well to the reality of SH 
and SR.

Qualitative environmental data 

Patterning samples with environmental variables 

The CPN was also applied to predict SH and SR with qualitative environmental data. At the 
first step the SOM layer classified sampling sites into three major clusters (I, II and III) ac-
cording to the gradient of environmental variables (Fig. 4.6.8). The SOM effectively classi-
fied different water types. Cluster I was characterized by the streams BK, BO and BR 
which are water types of springs and/or upper water courses, and related to cluster Va of the 
quantitative dataset (Fig. 4.6.4). Cluster II represents water types of ponds, pools, and/or 
lakes characterized by the KO, MM, and VE, and cluster III represents those of ditches 
and/or canals characterized by LS, SL and VA.
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Figure 4.6.8 Classification of sampling sites with qualitative environmental variables using 
the SOM. The U-matrix algorithm was applied to cluster the SOM map. The Latin numbers 
(I-III) represent different clusters. The acronyms are explained in Fig. 4.6.4. The size of the 
acronyms font is proportional to the number of sampling sites in the same habitats in the 
range of 1-20 sampling unites.

These clusters were explained by the distribution of each component (environmental 
variable). Fig. 4.6.9 shows the distribution of environmental variables calculated on the 
trained SOM map. The darker the intensity, the higher the probability of each variable. En-
vironmental variables showed eight groups according to their distribution patterns on the 
map. In groups they showed high correlation between variables, although they were qualita-
tive (presence/absence) data. The qualitative dataset given to the SOM as input is converted 
into a quantitative dataset as a probability of occurrence at each sampling site (or units of 
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the SOM) through the learning process of the SOM. The component map displays the prob-
ability of occurrence of each variable in each SOM map unit. Based on this component 
plane, cluster I was effectively explained by high values of groups A and B, and low values 
of group L, cluster II by group H, and cluster III was characterised by high values of groups 
E, J, and F, and low values of groups A, B, H, I and J. Fig. 4.6.9 also shows some variables 
such as groups A, B, E, and H are very specifically related to water types. 

In considering environmental status, the upper areas of the SOM map concern environ-
ments disturbed and modified by physical and chemical factors, whereas the lower areas 
concerned relatively less disturbed and near natural environments. These characteristics 
also agree with the clusters of sampling sites. The acronyms of environmental variables are 
shown in Table 4.6.3. Cluster I on the lower left areas of the SOM map is concerned with 
springs and upper courses representing relatively clean and unmodified environments, 
whereas cluster II on the upper areas results mainly from ditches and canals polluted and 
impacted by human activities.
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Figure 4.6.9 Component planes displaying the contribution of each qualitative environ-
mental variable to classification of sampling sites. Based on the distribution pattern on the 
SOM map, 12 groups (A-L) were identified. The names of the environmental variables are 
given in Table 4.6.3. Dark represents high values, whereas light is for low values. 
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Figure 4.6.10 Distribution of Shannon’s diversity index (SH) and species richness (SR) on 
the SOM map trained with qualitative environmental variables. Dark represents high val-
ues, whereas light displays low values. 

SH and SR could also be explained by the relationships with clusters and environmental 
variables. Their mean values in each unit were visualized on the trained SOM (Fig. 4.6.10). 
Dark represents high values, whereas light is for low values. Both SH and SR showed high 
values in the upper areas and in the right areas of the SOM map which belong to clusters II 
and III, while the values were relatively low in the lower left areas which are assigned to 
cluster I. Cluster I is characterized by the water types of springs and upper watercourses. 
The low values of SH and SR were related to high probabilities of colourless water, very ir-
regular shape of sampling area, substrate course with material, detritus, leaves, and peat, 
seepage, and winter in group A, and irregular linear shape of sampling areas, strong mean-
dering, substrate course with detritus and leaves in group B (Fig. 4.6.9, Table 4.6.3). 
Groups A and B are mainly represented by a high frequency of irregular shapes of sampling 
areas, substrate course with detritus and leaves, and season winter. And the low species 
richness and diversity index are also related to low probability of yellow colour of water 
and soil type of sand and peat in the group L (Fig. 4.6.9, Table 4.6.3). These characteristics 
are mainly observed in the upper watercourses.

Predicting community indices 

The Grossberg layer showed high predictability of SH and SR4 with qualitative environ-
mental variables (r=0.90, P<0.001 for both SH and SR) (Fig. 4.6.11a, b) like that of quanti-
tative data. Here again, overestimations were observed at low values, while underestima-
tions occurred at high values. However, the new data sets not used in the learning process 
showed very low correlations between observed and predicted values (Figs. 4.6.11c, d). 
Therefore, this model was not successful.

In results of learning process, the residuals between observed and predicted values were 
centred near zero showing averages of 0.000 ( 0.045) and 0.000 ( 0.067) for SH and SR 
respectively. However, the distribution of the residuals did not show normality (P<0.05). 
The results of the testing phase also displayed similar patterns compared with those of the 
learning process. 



202      Park YS , Verdonschot PFM, Chon TS, Gevrey M, Lek S 

Table 4.6.3 Fifty-six qualitative environmental variables used in the model. The groups (A-
L) are based on the similarity of distribution patterns of each variable on the trained SOM 
map in Fig. 4.6.8. 

Variables Acronyms Groups Variables Acronym Groups
Autumn NAJAAR K Profile slope: irregular TALHONR I 
Bank type: Field OEVERAKK E Regular shape VORMRE H 
Bank type: Forest OEVERBOS I Seepage KWEL B 
Bank type: Heathland OEVERHEI H Shadow SCHADU I 
Bank type: Pasture OEVERWEI G Shape very irregular VORMZO A 
Bank type: Reeds OEVERRIE F Smell GEUR E 
Bank type: Urban OEVERSTE D Soil type: clay BODEMKL F 
Bank type: Wooded 
bank

OEVERHOU I Soil type: peat BODEMLV F 

Color of the water grey-
black

KLGRZW E Soil type: peat in fenland BODEMHV H 

Colour brown KLBRUIN G Soil type: sand BODEMZA M 
Colour green KLGROEN F Soil type: sand/peat BODEMZV L 
Colour yellow KLGEEL L Spring VOORJAAR E
Colourless KLLOOS A Strong canalisation NORMALST J 

Irregular shape VORMON H Substrate coarse 
detritus/leaves

SBGDB B 

Isolation ISOL H Substrate coarse 
detritus/leaves/silt

SBGDBSL C 

Linear shape irregular VORMLIJO B Substrate coarse material SBGM C 

Linear shape regular VORMLIJR J Substrate coarse mate-
rial/detritus/leaves/peat

SBGMDBDV A 

Maintenance ONDERH G Substrate fine detritus/peat SBFDV I 

Meandering none MEANDERN L Substrate fine detri-
tus/peat/silt

SBFDVSL F 

Meandering strong MEANDERS B Substrate sand SBKAZA C 
Meandering weak MEANDERZ C Substrate silt SBSL G 
No canalisation NORMALNT I Summer ZOMER H 
Pollution VERONT D Temporary PERMNIET M 
Profile consolidation BESCH E Transparency: clear HELDERH I 
Profile slope: 0 – 30 
degrees

TALHZWGL H Transparency: slightly 
turbid

HELDERM G 

Profile slope: 30 - 45 
degrees

TALHMAGL G Transparency: turbid HELDERTR D 

Profile slope: 45 - 75 
degrees

TALHSTGL D Water level fluctuation WATW K 

Profile slope: 75 - 90 
degrees

TALHLOOD F Winter WINTER A
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Figure 4.6.11 The results of the model to predict diversity index (SH) and species richness 
(SR) with 56 qualitative environmental variables. Learning results of the model for SH (a) 
and SR (b) and results of the model tested by the data set not used in the learning process (c 
and d for SH and SR, respectively). 

Comparison with a multiplayer perceptron 

The multiplyer perceptron with the backpropagation algorithm was also trained to predict 
SH and SR with quantitative environmental variables. The trained results showed high cor-
relation coefficients between observed values and values estimated by the model (r=0.87 
and 89 for SH and SR, respectively, P<0.01). And the test results with new datasets not 
used in the training phase showed SH and SR were well predicted with high correlation co-
efficients between desired values and predicted values by the model (r=0.75 and 0.72 for 
SH and SR, respectively, P<0.01) (Figs. 4.6.7e, f). The residuals between observed and 
predicted values were centred near zero showing averages of 0.015 ( 0.079) and 0.011 
( 0.050) for SH and SR respectively. 

Discussion and conclusion 

The CPN was implemented to pattern sampling sites and to predict SH and SR with the en-
vironmental variables available in this study. In the first step, the network classified sam-
pling sites into five clusters based on environmental variables using the SOM algorithm, 
and afterwards the diversity indices (SR and SH) were predicted in the output layer of the 
network. Thus, the CPN proves to be a general approach to explain the variation of ecologi-
cal data in two steps: ordination methods to summarize the variability of the data as a first 
step, and exploration for possible relationships between biological and environmental vari-
ables as a second step (Jongman et al. 1995).
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The CPN shows different performance to predict SH and SR with quantitative environ-
mental variables and qualitative variables. In both cases, the sampling sites were effectively 
classified according to environmental gradients. The clusters were mainly related to the wa-
ter types of the sampling sites, and the coincidence also observed between clusters of the 
quantitative dataset and the qualitative dataset representing the classification of sampling 
sites was similar in overall terms. However, in considering the predictability of SH and SR, 
two models for quantitative dataset and qualitative datasets showed different performances. 
In both the quantitative dataset and the qualitative dataset, the training results showed high 
predictabilities with correlation coefficients higher than 0.90. However, the testing results 
showed differences between each other: displaying the model of the quantitative dataset has 
higher performance than that of the qualitative dataset. These results demonstrate that quan-
titative variables are preferred in CPN modeling. . These characteristics are commonly ob-
served in ecological studies. A quantitative dataset has much more information than a bi-
nary dataset. Therefore, it can represent its system more reasonably. However, it is very 
difficult to explore these datasets if quantitative variables have hig levels of background 
noise or if there are many variables showing very low occurrence frequency and/or very 
low values. Although qualitative variables did not show high predictability, they may be 
important factors in the modelling techniques, depending on the model structure

The SOM layer showed the ability to produce a classification of input vectors as well as 
visualization of relationships among input variables in their contribution to the classifica-
tion. The analysis using visualization of component planes is comparable to principal com-
ponent analysis (PCA), but more directly describes the discriminatory power of the input 
variables in the mapping procedure (Kohonen 2001). The clear distribution of a variable 
along a gradient represents a high contribution to the classification of input vectors. In this 
study, the sampling sites were classified into five clusters, and input variables were divided 
into nine groups. Each cluster was explained very well by environmental groups (Figs. 
4.6.4, 4.6.5, 4.6.9, 4.6.10). Furthermore, by overlapping the distribution of both input vari-
ables and mean values of diversity indices on the SOM map, the relationships between ex-
planatory (input) variables and dependent (output) variables could be analysed. When there 
are strong relationships between input variables and output variables, the component planes 
show clear gradients and similar patterns of their distribution on the trained SOM map. In 
this study, this approach showed that species richness and diversity indices were strongly 
related to the concentrations of nutrients, dissolved oxygen, and percentages of vegetation 
cover in quantitative datasets (Figs. 4.6.5, 4.6.6), and the shape of sampling areas, substrate 
types, and sampling time in qualitative datasets (Figs. 4.6.8, 4.6.9). Similarly, the composi-
tion of the communities was also influenced by different water types. The diversity indices 
were lower in springs and upper courses and disturbed aquatic systems, whereas they were 
higher in natural areas (Figs. 4.6.4-6, 4.6.8, 4.6.9). These characteristics, low biodiversity in 
springs and upper courses, are generally observed in stream ecosystems, and follow the 
river continuum concept (Vannote et al. 1980). However, it is necessary to quantify the dis-
tribution gradient of each variable as well as the relationships between biological and envi-
ronmental variables.

The structure of the CPN is similar to a combination of two networks; SOM and multi-
player perceptron with BP. Especially when prediction output values are considered, the 
CPN is related to the BP. The BP generally presents some advantages in handling more 
classes and complex data, although there is still debate on this point (Ruiz and Srinivasan 
1997, Ellingsen 1994). In contrast, the counterpropagation network is more effective in 
noise sensitivity, can handle more data per class, and performs well without being influ-
enced by the increase in data size. When comparing the prediction power between the CPN 
and the BP, the BP showed relatively higher predictability for SH and SR than the CPN in 
this study. This agrees with Ruiz and Srinivasan (1997). However, it is difficult to decide 
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which algorithm should be better suited for patterning communities at the present time, be-
cause information extraction and noise sensitivity are equally important in adaptive learning 
processes with ecological data (Ruiz and Srinivasan 1997, Park et al. 2001b). The rare spe-
cies are generally considered as noise in most quantitative ecological analysis. However, if 
the model is too sensitive to noise, it cannot manage variables showing low occurrence 
and/or low values. For example, in this case, the rare species which are important as good 
water quality indicators are considered as noise, so important information for the assess-
ment of the water quality is lost. Therefore, the level of noise sensitivity should be adjusted 
according to the objectives of the model.

In patterning community dynamics using the CPN, Park et al. (2001b) reported that pre-
dicted values of the CPN showed an averaging effect in that dominant taxonomic groups 
appeared more consistently while groups with low densities tended to disappear. The aver-
aging effect would be advantageous in some cases. In the ecological community, for exam-
ple, if rare species are accidentally introduced at low densities, they would be considered as 
noise in the data sets. Then the averaging effect in the patterning would be more effective, 
and not mislead the assessment of the water quality due to the presence of accidental taxa.

In ecological modelling, the CPN can be applied from two points of view based on its 
structure. First, we can consider the possibility of a full counterpropagation structure. In 
this case the network uses counterflow of information in both directions. Thus, we can pre-
dict both input and output variables from each other i.e. we can predict biological attributes 
from environmental variables, and we can also predict environmental variables from bio-
logical attributes.

Another possibility is the use of a simplified forward-only network. Here, we can use 
the characteristics of the network which combines unsupervised and supervised learning al-
gorithms. Thus, the network can pattern sampling sites, interpret relationships among envi-
ronmental variables, biological attributes and sampling sites as well as relationships among 
input variables, and predict biological attributes for the assessment of target ecosystems in a 
network. Thus, the CPN can be used as a tool for assessing ecological status and predicting 
the water quality of target ecosystems. 

The structure of the normal community may be changed by perturbations in the envi-
ronment and the degree of change in community structure may be used to assess the inten-
sity of the environmental stress (Hellawell 1986). Species richness is a function of the sta-
bility of the environment (Legendre and Legendre 1998). A stable environment contains 
more species and more niches, because a more stable environment involves a higher degree 
of organization and complexity of the food web (Margalef 1958). The niche of a species is 
the set of environmental conditions that the species does not share with any other sympatric 
species, so species richness is related to the number of niches (Hutchinson 1957). The di-
versity index further accommodates the evenness concepts in addition to the taxon richness, 
and represents heterogeneity of species composition, characterizing the ecological status of 
communities at a given site and a given time (Hellawell 1986). Based on these facts, spe-
cies richness and diversity indices are frequently used as biological indicators of target eco-
systems in combination. It is worth predicting these indices with their explanatory vari-
ables, and they can be used as a tool for the assessment of disturbances in a given 
ecosystem. In conclusion, the CPN was successfully implemented for patterning and pre-
dicting ecological data showing its applicability as a tool for assessing the ecological status 
and for predicting the water quality of target ecosystems. 
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4.7 Hierarchical patterning of benthic macroinvertebrate 
communities using unsupervised artificial neural 
networks*

Park YS†, Kwak IS, Lek S, Chon TS 

Introduction

Patterning communities is essential to reveal the ecological states of the target ecosystem 
effectively and consistently. Especially in aquatic ecosystems, the composition of residen-
tial communities rapidly varies in response to various impacts of natural and anthropogenic 
perturbations such as flooding and pollution (Hawkes 1979, Hellawell 1986, Spellerberg 
1991). Particular attention has been recently focussed on properly assessing changes in wa-
ter quality through community patterning. As well documented, field community data are 
nonlinear and complex because they involve many species, fluctuating greatly depending 
upon numerous effects of endogenous (e.g., physiological development, life cycle, etc.) and 
exogenous factors (e.g., precipitation, pollution, etc.) (Jongman et al. 1995, Legendre and 
Legendre 1998). A complex system like the responses of communities to their environ-
ments usually develops a hierarchical structure (Allen and Starr 1982, O'Neill et al. 1986); 
in particular, benthic macroinvertebrates in streams clearly develop taxonomic and func-
tional hierarchies that are essential to establish organization in communities (Cummins et 
al. 1973, Cummins 1974). Additionally, habitats of benthic macroinvertebrates in streams 
are also classified hierarchically, taking into account the fact that variables are revealed dif-
ferently across different space and time scales on which a system is viewed (Frissell et al. 
1986, Minshall 1988). Since a hierarchical nature is an essential part of stream ecosystems, 
the determination of the appropriate methods of examination has been a key concept in in-
vestigating aquatic ecosystems (Minshall 1993). Consequently, the hierarchical classifica-
tion approaches could provide in-depth and comprehensive understanding of community 
organization and water quality in the target ecosystem.

Assessment of water quality and prediction of community dynamics in streams are es-
sential for diagnosing ecosystem health and for providing policies of sustainable manage-
ment of stream ecosystems. Especially benthic macroinvertebrate communities are effective 
in indicating water quality and could effectively reveal ecological states of the target 
aquatic ecosystem. They constitute a heterogeneous assemblage of animal phyla, and con-
sequently it is probable that some members will always respond to stresses placed upon 
them (Hynes 1960, Hawkes 1979, Hellawell 1986). Communities have been analyzed by 
conventional multivariate statistical methods (Ludwig and Reynolds 1988, Jongman et al. 
1995, Legendre and Legendre 1998), however they are limited in extracting information ef-
fectively out of complex data. As an alternative tool to deal with this problem of complex-
ity in ecological data, artificial neural networks (ANNs) have been utilized for patterning 

* Part of grant from the Korea Science & Engineering Foundation (N° R01-2001-000-
00087-0) and the EU PAEQANN project (N° EVK1-CT1999-00026). 

† Corresponding: park@cict.fr 
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communities. The ANNs are well known for their ability to extract information from 
nonlinear and complex systems, and have been well applied to the study of secosystems 
(Lek and Guégan 2000, Recknagel 2003). Among the ANN techniques, Kohonen’s Self-
Organizing Map (SOM) (Kohonen 1982, 1989, 2001) is the most popular unsupervised 
learning algorithm. In aquatic ecosystems, the SOM has been used for classifying commu-
nities (Chon et al. 1996, Foody 1999, Park et al. 2001a, 2003a), for water quality assess-
ments (Walley et al. 2000, Aguilera et al. 2001), and for population and community predic-
tions (Céréghino et al. 2001, Obach et al. 2001). The classification by the SOM, however, 
has the problem of objectivity in finding similarities among the map units (Chon et al. 
1996). When the groups are located far apart on the map, it is difficult to judge to what ex-
tent they are similar. Furthermore, due to randomness in iterative calculations and variabil-
ity in determining parameters in the learning process of the network, the grouping presents 
a slightly different conformation after each training task.

Thus, to effectively define clusters among units of the SOM map, differentiation in the 
degree of clustering per se is additionally required. To divide the map into certain sub-
areas, the unified-matrix algorithm (Ultsch and Siemon 1990, Ultsch 1993) is currently the 
most often used. However, it is not an easy task to efficiently reveal different degrees of 
clustering based on this distance matrix. In this study, we propose a combinational method 
for successively clustering communities through self-organization. The model developed 
was further evaluated with new data sets to detect the effect of sub-groupings on commu-
nity development. 

Materials and methods

Ecological data 

The data of benthic macroinvertebrate communities were obtained from the database of the 
Laboratory of Ecology and Behavior System, Pusan National University, Korea. The com-
munities were seasonally sampled at the study sites in the Suyong (SY), Cheolma (CM), 
Hoedong (HD), and Soktae (ST) streams in the Suyong River in Korea (Fig. 4.7.1) in Octo-
ber, 1989, and in January, May, and August, 1990. The Suyong River is a forth order river, 
28.5 km in length with a catchment area of 199.5 km2, passing through Pusan city, which 
has a population of more than four million people. Two tributaries CM and SY flow 
through agricultural areas down to the Hoedong reservoir. The HD, which is located in the 
lower area of the reservoir, is characterized by abundant filamentous algae and low current 
velocity, but has a great variation in discharge rates due to the water drained from the reser-
voir. The ST runs through the populated residential area, being disturbed with heavy pollu-
tion caused by organic matter in domestic sewage (Kwon and Chon 1991, Kang et al. 
1995).

The benthic macroinvertebrates were collected using a Surber sampler. The dataset con-
sisted of 76 samples from 19 sites in four seasons. In the study sites, 84 species were re-
corded and the communities collected were dominated by Chironomidae, Tubificidae, Er-
pobdellidae, Hydropsychidae and Baetidae. The dominant families occurred differently 
according to the impact of environment at the sampling sites (Kwon and Chon 1991, 1993, 
Kang et al. 1995). A wide range of levels of organic pollution was observed in the study 
area (Table 4.7.1). The enrichment states ranged from oligosaprobity to polysaprobity go-
ing downstream. The general characteristics of communities and ecological assessment on 
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the Suyong River has been reported in Kwon and Chon (1991, 1993), Kang et al. (1995) 
and Chon et al. (2000a, b, c).
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Figure 4.7.1 Study sites. Water quality of sampling sites is given in Table 4.7.1. 

The densities of 84 species in total were provided as input to the network (number of 
computation units in the input layer: 84). The input data were transformed by natural loga-
rithm in order to reduce variations in densities. To avoid any problems of logarithm zeros, 
the number one was added to the density of each species. Subsequently the transformed 
data were scaled proportionally between 0 and 1 in the range of the minimum and maxi-
mum density for each species to give same weights (or importance) to each species. After 
the learning processes of the SOM and the ART, a new dataset, which was seasonally sam-
pled at SY2 from 1993 to 1995, was provided to the network to test the trained model. 

Modelling process 

In order to pattern community data at different scales, the two-step classification process 
using artificial neural networks was applied (Fig. 4.7.2). First, the densities in different taxa 
collected from benthic macroinvertebrate communities were fed into the SOM (Kohonen 
2001). Weight vectors (i.e., connection intensities) of the SOM, containing the conforma-
tional characteristics of grouping in communities, were subsequently fed into another type 
of SOM network, the ART (Carpenter and Grossberg 1987), to find clusters in the units of 
the SOM map. By setting different levels of dissimilarity threshold for grouping, the clus-
tering was further conducted in the hierarchical patterns by the ART (Lin and Lee 1996). 

The SOM approximates the probability density function of input data through 
an unsupervised learning algorithm, and is an effective method for clustering, 
visualization and abstraction of complex data (Kohonen 2001). In the learning 
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process, initially the weight vectors, which are connectivity intensities between 
input and output layers, are randomly assigned small values (Fig. 4.7.3). When the 
input vector x is sent through the network, the distance between the weight vector 
w and the input vector x is calculated by Euclidean distance ||x-w||. The output 
layer consisted of N output neurons (i.e. computational units) on a 2D hexagonal 
lattice (Kohonen 2001). Among all N output neurons, the best matching unit 
(BMU), which has the minimum distance between weight and input vectors, be-
comes the winner. The weight, ijw , of the network is updated as follows:

)]()[,()()()1( twxrtNrttwtw ijjijij
                              (4.7.1) 

where (t) denotes the fractional increment of the correction, and Nr(t, r) is a predefined 
neighbourhood function determining the radius from the BMU in the map. The neighbour-
hood radius is usually set to a larger value early in the learning process, and is gradually re-
duced as convergence is reached. This results in training the network to classify the input 
vectors according to changes in the weight vectors they are closest to. The detailed algo-
rithm of the SOM can be found in Kohonen (2001) for theoretical considerations, and Chon 
et al. (1996), Giraudel and Lek (2001), and Park et al. (2003a) for ecological applications. 

Table 4.7.1 Mean BOD and overall saprobity status of sampling sites. Saprobity was 
evaluated based on the BOD and biotic indices (Trent biotic index, Biotic score, and Shan-
non diversity index).

Sampling site BOD (ppm) Saprobity
Suyong SY1 2.7 ( 1.4) -mesosaprobity
 SY2 2.5 ( 1.5) Oligosaprobity 
 SY3 2.3 ( 1.1) Oligosaprobity 
 SY4 1.6 ( 0.3) Oligosaprobity 
 SY5 2.6 ( 2.9) Oligosaprobity 
Cheolma CM1 2.6 ( 1.6) Oligosaprobity 
 CM2 1.8 ( 1.3) Oligosaprobity 
 CM3 2.1 ( 1.6) Oligosaprobity 
 CM4 1.9 ( 0.8) Oligosaprobity 
 CM5 2.0 ( 1.5) Oligosaprobity 
Hoedong HD1 4.4 ( 1.0) Oligosaprobity 
 HD2 3.9 ( 1.3) Oligosaprobity 
 HD3 8.1 ( 3.7) Oligo- -mesosaprobity
 HD4 8.3 ( 1.6) -mesosaprobity
 HD5 9.2 ( 1.7) -mesosaprobity
Soktae ST1 2.6 ( 1.2) Oligosaprobity 
 ST2 17.8 (11.7) -mesosaprobity
 ST3 40.9 (29.2) Polysaprobity 
 ST4 55.5 (23.4) Polysaprobity 

Self-organizing map (SOM) 

The size (number of output units) of the SOM map is important to detect the deviation of 
the data. If the map size is too small, it might not explain some important differences that 
should be detected. Conversely, if the map is too big, the differences are too small (Wilppu 
1997). The map size is especially important to accommomodate hierarchical levels in 
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community grouping. Thus, we trained the SOM with different map sizes, and chose the 
optimum map size based on the minimum values of quantization and topographic errors. 
The quantization error is the average distance between each input vector and its BMU and 
is used to measure map resolution (Kohonen 2001). The topographic error represents the 
accuracy of the mapping in preserving topology, because the error value is calculated from 
the proportion of all data vectors for which first and second BMUs are not adjacent for 
measuring topology preservation (Kiviluoto 1996).

Modeling procedure

Gradient analysis with sampling units and 
species

Classification of sampling units

Self-organizing map (SOM)

Gradient analysis with sampling units and 
species

Classification of sampling units

Self-organizing map (SOM)

SOM outputSOM output

Set similarity threshold at different levelsSet similarity threshold at different levels

Hierarchical clustering of SOM units

Adaptive resonance theory (ART)

Hierarchical clustering of SOM units

Adaptive resonance theory (ART) Repeat at 
different 
similarity levels

Repeat at 
different 
similarity levels

Patterning communities in a hierarchyPatterning communities in a hierarchy

New 
field 
data

New 
field 
data

Field dataField data

Figure 4.7.2 Flowchart of the modelling procedure in hierarchical patterning of community 
data by the combined use of artificial neural networks. The solid lines represent the learning 
process of the network, whereas the dotted lines indicate the evaluation process for new 
field data not used in the learning process. 

Adaptive resonance theory (ART)

The ART is able to carry out stable self-organization of datasets for an arbitrary number of 
input vectors (Carpenter and Grossberg 1987). The fundamental characteristic of the ART 
lies in its ability to dynamically self-adjust its output size depending on the complexity of 
the network (Baraldi and Alpaydin 1998). The algorithm selects the first input as the exem-
plar for the first cluster, and the new input is clustered with the first if the distance to the 
first is less than a given threshold. Otherwise it is the exemplar for a new cluster. As the 
threshold value increases, the group size accordingly increases. This provides a basis for 
organizing the input data in a hierarchical manner correspondingly to the threshold level. In 
this study the weight vectors produced from the SOM were then fed into the ART (Figs. 
4.7.2, 4.7.3).

A modified algorithm in ART (Pao 1989) was used in this study. Bottom up weights 
bjk(1) between input neuron j and output neuron k are initialized with some small numbers. 
After the input value yj, which is the weight of each output neuron of the SOM, has been 
fed into the network, the distance dk(t) is measured for the degree of dissimilarity between 
input and weight values for each output neuron k, and used as a criterion for grouping input 
data through training by ART.
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As each new input vector is sent into the network, the distance is calculated and the out-
put neuron k which is closest is selected as k*. If dk*(t) is smaller than , which is a thresh-
old parameter for determining vigilance, the input vector is assigned to output neuron k*. 
The weight of neuron k*, bk*j(t), is then updated as follows:

jjkjk y
c

tb
c

ctb
1

1)(
1

)1( **
                       (4.7.2)

where c is the number of sample units classified to node k*. If dk*j(t) is larger than the input 
is assigned to new output neuron. This means that the input vector entered is ‘patterned’ (or 
classified) as a new pattern (or cluster), not belonging to one of the previously existing pat-
terns. Then, its weight bk*j(t) is newly assigned with the input vector. These weights pro-
duced by the ART preserve the conformational characteristics of the input data for group-
ing, and hence the associations among the communities were projected into the space 
defined in the ART (Zurada 1992). For hierarchical clustering in this study, initially the 
learning process was begun with whole map sizes. When clusters were found, these input 
vectors were replaced with their corresponding weights from the ART (Fig. 4.7.2).

SU1         0  . . .   0  . . .   0
  |             |   . . .   |   . . .   |
SUp         0  . . .   0  . . .   0

Sample
units       X1  . . . Xj  . . . Xn

Clusters 1    . . .   k      . . .

Field community data Weights of the SOM

Input
layers

Output
layers

Self-organizing map (SOM)

Number of units : N

Adaptive resonance theory (ART)

 U1          0  . . .   0  . . .  0
  |            |  . . .   |   . . .   |
 UN          0  . . .   0  . . .  0

SOM
units       y1  . . . yj  . . . yn

i
. . .

wjiw1i wni
bjkb1k bnk

. . .

Figure 4.7.3 A schematic diagram of the Self-Organizing Map (SOM) and adaptive reso-
nance theory (ART). The reference (weight) vectors of the SOM are given to the ART as 
input vectors. The number of output neurons (clusters) is not fixed in the learning process. 
The number of clusters increased according to the decrease of dissimilarity threshold val-
ues.

Results

Classifying communities 

We chose 63 (9 × 7) output units of the SOM on the 2-D hexagonal lattice based on two 
different indices (quantization and topographic errors) for determining map size (Table 
4.7.2), showing lower errors in both indices. The errors for quantization and topography 
were 1.256 and <0.00, respectively. The topographic error indicated that the first and sec-
ond BMUs of all input vectors were adjacent hexagons showing smooth training in the 
SOM in terms of topology.
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The trained SOM classified samples according to the gradient of community composi-
tion (Fig. 4.7.4). The acronyms in each unit of the SOM map stand for samples. The first 
three letters in the acronyms indicate the study sites (Fig. 4.7.1) while the last three repre-
sent the sampling season: SPR; spring, SUM; summer, AUT; autumn, and WIN; winter. 
(e.g., ST1SPR; samples at ST1 in spring). The grouping was firstly arranged according to 
the geographical distribution of the sample sites, e.g., ST, HD, CM, and SY. For example, 
samples collected from CM are mostly located in the lower areas of the SOM, while those 
belonging to HD are more concentrated in the upper right areas. Furthermore, temporal 
variations in different seasons were also observed locally. For instance, samples in summer 
at SY1-5 were grouped together in the same unit or were located near each other.

Table 4.7.2 Changes of quantization error and topographic errors at different SOM map 
sizes.

Map size 10 20 30 40 54 63 70 80 
Quantization error 1.561 1.476 1.382 1.355 1.290 1.256 1.242 1.234 
Topographic error 0.000 0.013 0.000 0.000 0.000 0.000 0.001 0.000 
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Figure 4.7.4 Classification of sampling units by the trained SOM. Acronyms in units stand 
for samples: the first three letters represent sampling sites (see Fig. 4.7.1), and the last three 
indicate the sampling season: SPR; spring, SUM; summer, AUT; autumn, and WIN; winter.

The grouping on the map also revealed the impact of pollution, and was comparable to 
the pollution states of the sampling sites displayed in Table 4.7.1. The upper areas of the 
trained map represented polluted sampling sites, whereas the lower areas showed relatively 
clean sites. For example, sites ST2-4 were strongly concentrated in the upper left corner of 
the SOM (e.g., nodes (1,1), (2,1) and (2,3)). The sites were heavily polluted from domestic 
sewage, showing polysaprobity (Table 4.7.1). Moreover, the samples from the less polluted 
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site, ST1, with oligosaprobity, were not grouped with sites ST2-4 and were more widely 
scattered in the upper left area of the map (Table 4.7.1). Similarly, sites HD4-5 were heav-
ily affected by domestic and industrial waste and were located close to the nodes of ST2-4 
in the upper left areas of the SOM map, whereas the less-polluted sites HD1-2 were placed 
more loosely in the upper right area of the map. Site HD3 was relatively clean but occa-
sionally disturbed by domestic waste. The samples of HD3 fell on the boundary between 
the areas of HD4-5 and HD1-2. The clean sites from CM with oligosaprobity (Table 4.7.1) 
were mostly located in the lower areas of the SOM. The sampling sites of SY were rela-
tively clean ranging from oligosaprobity to ß-mesosaprobity (Table 4.7.1), and communi-
ties from these sample sites were diverse. Correspondingly, the samples occupied a wide 
range in the middle areas of the map.
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Figure 4.7.5 Relationships between number of clusters in the SOM units and dissimilarity 
thresholds in the ART. The network was trained at different dissimilarity threshold levels to 
find clusters of the SOM units.

Overall, the groups of communities on the SOM map efficiently revealed the impact of 
natural and anthropogenic factors. The samples were grouped according to the streams. At 
the same time, they were also arranged by different levels of pollution: the lower areas of 
the map had the less polluted sites while the upper left areas had the highly polluted sites 
(Fig. 4.7.4). The results of the SOM also generally confirmed the groupings revealed by 
previous studies: the communities were classified based on the streams and degree of pollu-
tion (e.g., Chon et al. 1996, 2000a, b).

Hierarchical classification of SOM units 

Although the samples were grouped on the SOM map, it is still difficult to recognize the 
differences in similarities among the units of the SOM map. In this study we produced ad-
ditional clusters in hierarchical levels by implementing the ART as mentioned previously. 
For this purpose, the weights of the trained SOM were given to the ART as input and the 
units of the SOM map were further grouped in different scales by adjusting dissimilarity 
threshold levels in the ART. The number of input neurons was 84; each neuron correspond-
ing to one species used in the SOM.
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As the dissimilarity threshold was increased, the number of groups decreased corre-
spondingly (Fig. 4.7.5), revealing higher levels in the hierarchy. The optimal number of 
clusters can be determined based on the relationships between the number of clusters (c) 
and the threshold values ( ): the decrease in the number of clusters was stabilized (i.e., 
dc/d =0 and c 1) at various points of the dissimilarity threshold values as they were gradu-
ally increased. In this study three stabilized levels of dissimilarity were mainly observed in 
higher ranges (Fig. 4.7.5): fourteen subclusters in the range 0.79~0.87 of similarity thresh-
old, eight medium-sized clusters in the range 0.91~0.95, and four large clusters in the high-
est level in the range 0.99~1.11. Small groupings with 26 and 56 clusters were also ob-
served at lower similarity thresholds (Fig. 4.7.5), however the groups at these low levels 
were too numerous to be differentiated in the present study and are not considered here. 
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Figure 4.7.6 Hierarchical clustering of the trained SOM map by the ART and clustering by 
the U-matrix. The different clusters are displayed with characters. From four large clusters 
(a), the clusters were divided into subclusters based on the corresponding similarity levels 
(b, c). The symbols represent the classification directions of each cluster. I-IV stand for the 
four large clusters (a), a-d is in the eight medium-sized clusters (b), and 1-3 is in the 14 
small clusters (c). The clusters determined by the U-matrix are indicated with white dotted 
lines based on the grey scale of U-matrix distance (d).

Fig. 4.7.6 shows the hierarchical clustering projected on the SOM map. With the low 
number of clusters at the higher dissimilarity level (Fig. 4.7.6a), the samples fell into four 
clusters (I - IV): the groups of ST-HD-SY (cluster I), CM (cluster II), HD (cluster III), and 
SY (cluster IV) (Fig. 4.7.6a). The groupings generally reflected the differences in streams 
and pollution. The ST-HD-SY group (cluster I) accommodated a wide range of the sample 
sites with the polluted sites in the upper left areas and the intermediately polluted sites SY 
in the middle area of the SOM. The communities in SY especially were diverse, and were 
divided into two groups with different levels of pollution, SY (cluster IV) and ST-HD-SY 
(cluster I). The sample sites in HD also showed different levels of pollution. Sites HD4-5 
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were located in cluster I (ST-HD-SY group), showing -mesosaprobity, while the less-
polluted sites HD1-3 below the Heodong reservoir joined cluster III in -mesosaprobity.
This indicated that communities collected from different sample sites in HD were diverse. 
The relatively clean sites from CM (cluster II) occupied the lower areas of the SOM map. 

The eight medium-sized clusters (Ia-IV) in the lower hierarchical level were also classi-
fied based on the pollution status and the morphology of the streams (Fig. 4.7.6b). Large 
cluster I was divided into four subgroups Ia, Ib, Ic and Id according to pollution levels. 
Cluster Ia showed groups of the highly polluted sites, including ST3-4 with polysaprobity. 
Cluster Ic mostly accommodated HD4-5 with -mesosaprobity, and the remaining groups 
showed relatively lower levels of saprobity. Unlike cluster I, the communities collected 
from the same stream in cluster II were separated based on the stream gradient: upstream 
CM1-2 (cluster IIb) and downstream CM4-5 (cluster IIa). Clusters III and IV, which had 
smaller areas in the SOM, were not divided in this case (Fig. 4.7.6b). 

At the lowest hierarchical level with fourteen clusters (Fig. 4.7.6c), the sample sites 
were further divided based on various factors including location of sample sites, season and 
environmental impact. For example, the communities in cluster Id in the middle areas of the 
map were further sub-subgrouped according to the locations of SY1-2 and SY4, whereas 
some communities in subcluster Ic were separated based on season (e.g., Ic3). The sample 
sites in cluster III were divided into two sub-subclusters III1 and III2. Sub-subcluster III1 
included the samples collected in spring and the samples collected in HD3 more selectively. 
The samples in cluster IV were not sub-subgrouped at the lowest hierarchical level. 

Comparison with U-matrix method 

The unified-matrix algorithm (U-matrix) was applied to the same results of the SOM to be 
compared with the performance of grouping by the ART (Fig. 4.7.6d). The U-matrix calcu-
lates distances between neighbouring map units, and displays the cluster structures of the 
map as mentioned before. High values of the U-matrix indicate cluster boundaries, while 
low values reveal clusters themselves, which can be visualised using grey shades. A dark 
shade reveals large differences between the map units, whereas a light shade represents 
map units similar in relative terms. Through the U-matrix the units of the SOM map were 
also grouped similarly to the clustering by the ART at the highest hierarchical level in gen-
eral (Fig. 4.7.6a). The boundary at the lower area between cluster I and clusters II-IV oc-
curred on the U-matrix, and the boundary between cluster I and cluster III at the upper right 
area of the map was also observed on the U-matrix. In the upper left areas, however, the 
border line was additionally formed in the U-matrix (Fig. 4.7.6d) while, in the correspond-
ing areas in cluster I on the ART (Fig. 4.7.6a), the border line was not observed at the high-
est hierarchical level. At the subcluster level (Fig. 4.7.6b), however, cluster Ic was matched 
to the boundary appearing in the U-matrix. However, clusters were frequently not apparent 
on the U-matrix. For example, the sample sites of ST were not clearly differentiated from 
those of SY on the U-matrix (Fig. 4.7.6d), although community compositions were differ-
ent between ST and SY as mentioned above. The ART showed distinctive clusters between 
ST and SY at the sub- and sub-sub-grouping levels (Fig. 4.7.6b, c). This indicated that the 
boundaries defined by the ART could differentially contribute to those formed from the U-
matrix. Further investigation is required to determine the extent to which the boundary for-
mation could be defined in the hierarchical concept in relation to groupings in the U-matrix. 
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Figure 4.7.7 Box plots of Trent Biotic Index (TBI) to assess water quality at different clus-
ters of different hierarchical similarity levels. a) four clusters, b) eight clusters, and c) 14 
clusters. Cluster numbers correspond to the clusters defined in Fig. 4.7.4. The same charac-
ters on the box-plot indicate no significant difference at the 5% level of confidence by using 
Tukey's multiple comparison test.

Variations of biotic index in different clusters 

The values of the Trent biotic index (TBI) were calculated and compared among the com-
munities in different clusters on the SOM map (Fig. 4.7.7). The hierarchical grouping 
clearly corresponded to the pollution levels at the sampling sites. The different characters 
on the abscissa give a significant representation of different groups based on Tukey’s mul-
tiple comparison test with a 0.05 significance level. Changes in water quality index were ef-
fectively reflected in the hierarchical classification. As the communities were grouped at 
finer levels, local variations existed in BOD values. When the clusters showed high varia-
tions, they were divided into subclusters, representing different levels of pollution with 
highly polluted cluster (Ia) and moderately polluted clusters (Ib, Ic and Id) (Fig. 4.7.7b). In 
a similar manner cluster II was divided into subclusters showing moderately polluted (IIa) 
and relatively clean (IIb) clusters, whereas clusters III and IV, which showed homogeneity 
in water quality, were not subclustered at this hierarchical level (Fig. 4.7.7b). This process 
of cluster division according to pollution level was further observed in sub-sub-clusters 
(Fig. 4.7.7c). For instance, sub-subcluster Ic1 was differently grouped from Ic3. This was 
due to different levels of pollution: the samples in Ic1 reflected high pollution while those 
in Ic3 represented a lower level of pollution (Table 4.7.1). These results showed how effec-
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tively the hierarchical grouping system would contribute to investigating water quality in 
relation to community composition.

Evaluating new samples and seasonal patterns 

Once the networks have been trained with input data, new data not used in the learning 
process could be recognized on the SOM; they may be classified either as one of the al-
ready determined patterns or as a new pattern at the corresponding hierarchical levels. The 
patterns of new data were then determined by the trained network. Through recognition of a 
series of input data on the hierarchical map, diagnostics of community changes were possi-
ble. Fig. 4.7.8 shows an example of detecting changes in community development in differ-
ent seasons. The data were seasonally collected at SY2 for two years from November 1993 
to November 1995. The numbers (1-9) in the units of the SOM map stand for sampling sea-
son of collection from autumn 1993 to autumn 1995 sequentially (e.g., 1 for autumn in 
1993, 2 for winter in 1993, etc.). The tracks of the recognized samples represented devel-
opment of communities in different seasons. In the highest hierarchical level on the SOM 
(Fig. 4.7.8a), all the samples belonged to cluster I. Consequently community changes were 
not clearly distinguished in the highest level.
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Figure 4.7.8 Evaluation of new communities not used in the learning process at different 
similarity levels. The data were seasonally collected at SY2 on the Suyong stream for two 
years from November 1993 to November 1995. The numbers stand for samples from au-
tumn 1993 to autumn 1995 sequentially. a) four clusters, b) eight clusters, and c) 14 clus-
ters.

In contrast, the tracks crossed between clusters Ib and Id1 in the next high level of hier-
archy (Fig. 4.7.8b). The changes in the clusters were shown between ‘2 and other samples 
of 1 and 3-7’ and again between ‘3-7 and 8-9’. This indicated that communities in cluster Ib 
jumped from to cluster Id1 in winter 1993 and changed back to cluster Id1 in summer 1995 
(Fig. 4.7.8b). This demonstrated that the map could detect different degrees of changes in 
community development as time progressed. Correspondingly, the change in clusters re-
flected different water quality. This change was in accord with field observations. The mo-
torway construction and the restoration project of the river initiated in the early 1990s were 
completed sometime early in 1995, and water quality was correspondingly improved. How-
ever, the jump in the community development was not further detected with the 14 sub-
clusters (Fig. 4.7.8c).
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Discussion and conclusion 

The effectiveness in classification of communities using artificial neural networks (ANNs) 
has been discussed by Chon et al. (1996) and Park et al. (2003a). ANNs efficiently extract 
information from complex and nonlinear ecological data, and consequently provide a com-
prehensive understanding of multivariate datasets in a reduced dimension. In this study dif-
ferent degrees of groupings were further elucidated by combinational implementation of the 
SOM and the ART.

Through the SOM, communities were classified mainly based on the sampling sites in 
different streams and environmental impacts (Fig. 4.7.4). When the ART was further ap-
plied to the groupings in the SOM, hierarchical clusters were formed at different dissimilar-
ity levels (Fig. 4.7.6a-c). The large clusters were successively divided into subclusters, dif-
ferentially revealing characteristics of topography, environmental disturbances and 
temporal variations in the samples collected. 

Through these hierarchical classification processes, samples were effectively assessed in 
different levels of association. For instance, the upstream (HD1-2) and downstream (HD4-
5) samples in HD were grouped differently: in cluster III and in cluster I respectively at the 
highest hierarchical level (Fig. 4.7.6a), indicating that the communities of these two areas 
were very different although they are located close to each other in the same stream. This 
difference of grouping was caused by organic pollution. Sites HD4-5 were heavily polluted, 
being affected by domestic sewage and waste from a junkyard located near the sampling 
areas, whereas sites HD1-2 were relatively clean. These characteristics were further dis-
played in the community composition. For example, Asellus hilgendorfi and Cardina 
dentriculata were exclusively collected at sites HD1-2. Asellus is an indicator species of ß-
mesosaprobity and habitats in a moderately enriched region of rich alga growth (Wieder-
holm 1984, Kwon and Chon 1991). Furthermore, macrophytes Hydrilla verticillata and Po-
tamagetum criptus and the filamentous algae Oedogonium were abundant, serving as a ma-
jor energy source for the macroinvertebrates. At sites HD4-5, in contrast, species richness 
was low while the species tolerant to pollution were dominant, including Limnodrilus hoff-
meisteri and Chironomus sp. In this case domestic organic waste was the main food supply 
for the tolerant species. Samples in HD3 were mostly located at boundary areas between 
HD1-2 and HD4-5 on the SOM (Fig. 4.7.4). The field data also confirmed this: community 
compositions were intermediate between HD1-2 and HD4-5 sites. The BOD values also lay 
in the middle range although the saprobity level of HD3 was similar to that for HD1-2 (Ta-
ble 4.7.1).

The benthic communities in two streams, SY and CM, were patterned differently on the 
hierarchical SOM, although their BOD values were similar (2.35 ppm and 2.06 ppm in SY 
and CM, respectively, t-test, P>0.05). Community composition showed large differences 
between these streams. Kwon and Chon (1991) reported that variations in community com-
position were diverse and Chironomidae occurred more abundantly in SY than in CM. 
These characteristics of the streams SY and CM were also clearly identified in the hierar-
chical patterning of communities on the SOM map: communities in SY and CM occupied 
different regions and the conformations of the groups were different at different hierarchi-
cal levels (Fig. 4.7.6a-c). These results demonstrate that community grouping could reveal 
an extra dimension of ecological assessment of polluted communities, which chemical 
measurements such as BOD can not convey sufficiently.

It is helpful to understand communities in the aspect of hierarchical organization. A 
complex system like a community usually develops hierarchical organization (Allen and 
Starr 1982, O'Neill et al. 1986, Urban et al. 1987, Allan and Hoekstra 1992). Benthic 
macroinvertebrate communities in streams usually have clear taxonomic and functional hi-
erarchies, and these are essential to verify organizational characteristics in communities 
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(Cummins et al. 1973, Cummins 1974). The study of complex systems emphasizes the im-
portance of scale (O’Neill 1989, Levin 1992), and developments in hierarchy theory dem-
onstrate how processes and constraints change across the scales (Allen and Starr 1982, 
O’Neill et al. 1986). The hierarchical aspects were effectively revealed by combinational 
implementation of ANNs in unsupervised learning as demonstrated in this study. To obtain 
more detailed information on hierarchical grouping in communities, however, grouping of 
‘taxa’, in addition to grouping of ‘communities’, would also be required. For the present 
study, however, we only showed grouping in communities. Hierarchical grouping of taxa 
has many additional points to be covered (e.g., functional groups, taxonomic differentia-
tion, etc.). 

To cluster the units of the SOM map, the U-matrix algorithm is conventionally used 
these days. The matrix gives a picture of the topology of the unit-layer and therefore also of 
the topology of the input space (Ultsch 1993). Sometimes, however, it is not an easy task to 
detect clear boundaries on the grey-scale map of the U-matrix, although there are distinct 
differences in ecology and in environmental impact as shown in this study. Vesanto and 
Alhoniemi (2000) demonstrated that the U-matrix did not present clusters in their dataset, 
while an agglomerative clustering method showed clear clusters. In ecological studies, a 
fuzzy c-means clustering method (FCM; Giraudel et al. 2000) and a k-means algorithm 
(Park et al. 2003a) have also been used to cluster the units of the trained SOM map. Differ-
ent methods to group the map have both strengths and weaknesses according to their clus-
tering algorithms (Jongman et al. 1995, Legendre and Legendre 1998, Vesanto and Alho-
niemi 2000). In this study we propose a model using two artificial neural networks. 
However, it is a difficult task to compare the various methods with respect to their grouping 
efficiency. For the present study we initially proposed the model and showed its efficiency 
in comparison with the U-matrix. In the further study, the results should be compared with 
results from other methods.

Chon et al. (2000a), in their implementation of the SOM and the ART for grouping of 
communities, used the ART initially before the SOM to train the similar datasets, reporting 
that the ART appeared to group the community data more efficiently with a low level of 
noise. They used only seven taxa at the family and class levels; the species and genus data 
were summed and consequently there were relatively few zeros in the densities. In this 
study, however, densities of 84 species were directly used as input data and consequently 
included many zeros (i.e., high level of noise) in the community data. As discussed in Chon 
et al. (2000a) the SOM appeared to be slightly more efficient in grouping as the data have a 
relatively high level of noise while the ART appeared to be more sensitive to noise in this 
type of ecological data. Additionally, the visual graphics of the two-dimensional map ob-
tained by the SOM were needed as a basic framework for accommodating hierarchical clus-
tering visually. Based on this reasoning we used the SOM initially before the ART in this 
study.

The SOM is an effective learning algorithm for the visualization and abstraction of high-
dimensional data in low dimensions. It converts the nonlinear statistical relationships be-
tween high-dimensional data into simple geometric relationships of their virtual units on a 
low-dimensional display, usually a two-dimensional lattice (Kohonen 2001). However, the 
visualization of the trained SOM only reveals qualitative information. By implementing 
two-level classifications, the distances between the groups in the SOM map can be effi-
ciently defined through hierarchical levels as shown in this study. 

In conclusion, the combined use of unsupervised learning algorithms with the SOM and 
the ART efficiently assesses groupings in a hierarchical pattern in community data and re-
veals differential effects of community composition and environmental factors such as pol-
lution and season. This hierarchical patterning could extract community features to lead to a 
comprehensive understanding of community variations in spatial and time domains. Ac-
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cordingly, hierarchical clustering would be a helpful approach for understanding complex 
ecological data as well as for providing information for management of polluted aquatic 
ecosystems on different scales. 
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4.8 Species spatial distribution and richness of stream 
insects in south-western France using artificial neural 
networks with potential use for biosurveillance*

Compin A†, Park YS, Lek S, Céréghino R 

Introduction

The major goal of the PAEQANN European project is to provide tools to aquatic ecosystem 
managers, by using aquatic communities as ecological indicators and ANNs as modelling 
techniques. In lotic ecosystems the species composition of benthic communities depends on 
the diversity and stability of the stream habitats (Cummins 1979, Ward and Stanford 1979) 
which provide the possibilities of development (Malmqvist and Otto 1987). Therefore, ben-
thic invertebrates are widely used as indicators of short- and long-term environmental 
changes in running waters (Hellawell 1978, Lenat 1988, Smith et al. 1999, Hawkins et al. 
2000). Because they are ubiquitous, basically sedentary, with a large number of species, 
and strongly influenced by many natural and/or anthropogenic disturbances, aquatic inver-
tebrates are by far the most commonly used indicators for the assessment of freshwater eco-
system quality (Rosenberg and Resh 1993). However, the very high diversity of aquatic in-
vertebrates – 70% of the overall animal species recorded in European continental waters 
(Illies 1978) – and the difficulty to obtain specific identifications make quantitative ap-
proaches using macroinvertebrates unsuitable for the assessment of long term or large-scale 
changes in water quality. In the Adour-Garonne drainage basin (SW France) these quantita-
tive studies have often been restricted to a single valley or range of mountains (Décamps 
1968, Vinçon and Thomas 1987, Vinçon and Clergue 1988, Giudicelli et al. 2000), and 
were usually based on a single taxonomic group (e.g., one insect order).

An important development for water management is the generation of practical tools 
which provide accurate biological assessments of river conditions without requiring a high 
level of expertise, effort and time for their users. These “rapid assessment” aproaches are 
designed to fulfil two objectives (Resh and Jackson 1993). First, reducing the effort (and 
cost) in sampling, sorting, and identification procedures. This can be achieved for exemple 
by considering only a fraction of the macroinvertebrates collected. A second objective is to 
summarize the results of site surveys by using single-score measures that can be understood 
by non-specialists. 

Species richness is such a measure, and is commonly used as an integrative descriptor of 
the community (Lenat 1988). It is influenced by a large number of environmental factors 
which can determine gradients in stream species richness (Vannote et al. 1980, Minshall et 
al. 1985) and it is also strongly influenced by natural and/or anthropogenic disturbances 
(Rosenberg and Resh 1993), which may lead to spatial discontinuities of these predictable 
gradients (Ward and Stanford 1979, 1983) and losses of taxa (Brittain and Saltveit 1989). 

* Funded by the EU PAEQANN project (EVK1-CT1999-00026). The authors thank also to 
the French Water Agency (AEAG) for supporting the database construction. 

† Corresponding: compin@cict.fr 
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Resh and Jackson (1993) observed that species richness measures were sensitive to the im-
pact of human activities on stream ecosystems, and this was particularly true of some 
aquatic insects, e.g., Ephemeroptera, Plecoptera or Trichoptera (EPT), which can be con-
sidered as good biological indicators of disturbance in streams. Thus, the species richness 
of a restricted number of selected taxonomic groups is a good descriptor of the influence of 
disturbance upon the biota (Lenat 1988). 

An a priori framework for developing biological indicators is a stream classification 
based on macroinvertebrates, to characterize how ecosystems differ in terms of species as-
semblage. An interest of such classifications is that the stability of species assemblages may 
be used to define representative and/or reference sites for biological surveillance (Hughes et 
al. 1986), as any structural change in population features can indicate environmental 
changes in streams from a given region or a longitudinal section. At a large geographic 
scale, such stream classifications detecting several sub-regions associated to their character-
istic macroinvertebrate assemblages are basically necessary to calibrate biological indicator 
measures.

Using macroinvertebrates, we deal with ecological data that are bulky, nonlinear and 
complex, showing noise, redundancy, internal relations and outliers (Gauch 1982, Jongman 
et al. 1995). Great changes can also appear in variables, and complex interactions can occur 
between explanatory and response variables (Jongman et al. 1995). Traditionally, conven-
tional multivariate analyses have been applied to solve these problems (Bunn et al. 1986, 
Ludwig and Reynolds 1988, Legendre and Legendre 1998). With these nonlinear and com-
plex ecological data, however, nonlinear analysing methods should be preferred (Blayo and 
Demartines 1991). One of these methods is artificial neural networks (ANNs), which are 
versatile tools to extract information out of complex data, and which could be effectively 
applicable to classification and association.

This paper describes how ANN methods can be used: i) to contribute to the understand-
ing of large-scale geographic patterns in aquatic macroinvertebrate assemblages; ii) to ob-
tain taxa richness predictions, with simple environmental attributes as input variables; iii) to 
replace or complement existing tools for water quality biosurveillance and management 
(Fig. 4.8.1). The results of recent studies, which focused on macroinvertebrates from four 
orders of aquatic insects (EPTC) in the Adour-Garonne stream system (South-Western 
France) are used to highlight the concepts. 

Methods

Field data 

The Adour-Garonne stream system (South-Western France) has a 116 000 km² drainage ba-
sin. It contains 120 000 km of permanent running waters flowing from the Pyrénées moun-
tains and Massif Central mountains to the Atlantic Ocean. This basin has a large human 
population (6 million inhabitants) distributed in urban and agricultural areas, and is poten-
tially and effectively affected by anthropogenic disturbances. From our laboratory database, 
we selected sampling sites ranging from 10 to 2500 m a.s.l. (Fig. 4.8.2), representing high 
mountain to plain or coastal areas. Samples were taken from 1988 to 1998. Each site was 
sampled at two periods (summer and winter). The species lists (detailed in Céréghino et al. 
2001) were used to model the species’ distributions and characteristic species assemblages, 
and the species richness was calculated as the sum of recorded species among the two peri-
ods. Samples were taken from the various substratum types: sand (< 2 mm), gravel (2-20 
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mm), pebbles (20-200 mm) and cobbles (>200 mm), using a standard Surber sampler (sam-
pling area 0.1 m², mesh size 0.3mm). They were distributed in proportion to the relative 
abundance of these substrata. Depending on the heterogeneity (or homogeneity) of bed-
paving substrate, 5 – 8 sample-units were thus taken from the various substratum types. All 
samples were taken in the part of the channel that is always covered by water.

sampling sites

EPTC species list

EPTC species
 composition

EPTC species 
richness

Abiotic variables

SOM1 SOM3 SOM2 BP algorithm

determining regions 
and their 
characteristic eptc
species assemblages
in the drainage basin

clustering clustering

determining subsets of
sites according to
gradients of EPTC 
species richness and
environmental variables

predicting 
EPTC
species
richness

existing 
water 
quality 
score

potential tools for
biosurveillance

DATA

ANN
TOOLS

AIMS

clustering

Figure 4.8.1 Overview of the aims, material and methods of the study. ANN = Artificial 
Neural Networks; EPTC = Ephemeroptera, Plecoptera, Trichoptera, Coleoptera; SOM = 
Self-Organizing Map; BP = Back Propagation. 

We focused on EPTC species, aquatic insects commonly identified to the species level 
in freshwater studies, and thus we added Coleoptera to the standard EPT index. Indeed, 
Coleoptera are major components of stream invertebrate communities (Cayrou et al. 2000), 
and contain sensitive taxa particularly in the family Elmidae (this family being taken into 
account in the calculation of the IBGN water quality index in French rivers). Barbour et al. 
(1996) found that both the number of Coleoptera and EPT taxa decreased with increasing 
disturbance, and we thus suggest that considering the four insect orders should enhance the 
accuracy of water quality assessments. Each site was characterised by abiotic variables: 
elevation, stream order, slope, distance from the source, and maximum water temperature. 
These variables were chosen for two reasons: i) they relate the location of sampling sites 
within the stream system without a priori consideration of any disturbance, and ii) they are 
easy to collect using a map and a min-max thermometer.

Models processing 

The two datasets and ANN methods we used in the different studies presented in this paper 
are grouped in the Table 4.8.1. The data were first processed using Self-Organizing Maps 
(SOM), an unsupervised neural network algorithm (Kohonen 1982). Three different SOMs 
were calculated in order to summarize the variability of the data and to cluster the sampling 
sites according to different input variables: EPTC species (SOM1); E, P, T, and C species 
richness (SOM2) and environmental variables (SOM3). The SOM performs a non-linear 
projection of the data space onto a two-dimensional space. A detailed description of the 
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SOM methodology was given in Céréghino et al. (2001). This network consists of two lay-
ers of neurons: the input layer is composed of neurons connected to the sampling sites (one 
per sampling site), the output layer is made up of neurons organized on an array with rows 
and columns laid out on a hexagonal lattice. In the output layer, the neurons act as virtual 
sites and approximate the probability density function of the input data. The training was 
broken down into two phases with a specific number of iterations: first ordering with a 
large neibourhood radius and then fine tuning with a small radius. The input variables and 
characteristics of the datasets are given in the Table 4.8.1. A k-means algorithm or the uni-
fied-matrix (U-matrix) approach was then applied to detect the cluster boundaries on the 
trained maps. With the k-means algorithm method, the retained number of clusters was jus-
tified according to the minimum Davies-Bouldin index (Ultsch 1993). Correlation coeffi-
cients between E, P, T, and C richnesses were assessed for observed data (field) and pre-
dicted data (i.e. weights of output neurons of the trained SOM), in order to establish 
relationships among biotic variables. 
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Figure 4.8.2 Map of the Adour-Garonne stream system, and location of the sampling sites. 

As a second step, a multi-layer perceptron (MLP) using the backpropagation (BP) algo-
rithm (Rumelhart et al. 1986b) was used to predict the EPTC richness (output variable) 
from environmental data (four input variables, see Table 4.8.1). To find the optimum num-
ber of hidden neurons of the MLP model, we trained models with different numbers of 
hidden neurons (from 3 to 10), and finally chose five neurons in the hidden layer as 
showing the best performance. Therefore, we used a 4-5-1 structure for the MLP model. 
The learning and momentum coefficients were 0.75 and 0.95, respectively. Out of 155 
sampling sites, 130 were randomly selected and used to train the network, whereas the 
remaining 25 sites were used to test the trained MLP. During the learning process, the 
values of the error between estimated and observed values were calculated and the training 
was stopped when error values gradually increased for several learning iterations, to avoid 
overfitting. After the learning process, correlation coefficients between observed and 
estimated values were calculated for both learning and testing datasets to verify the 
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calculated for both learning and testing datasets to verify the predictability of the network. 
A sensitivity analysis, i.e., a method to study the behaviour of a model (Scardi and Harding 
1999), was conducted to determine the contribution of each input variable on the values of 
the output variable of the model. 

Table 4.8.1 Characteristics of the two datasets and ANN methods used in the studies pre-
sented in this paper. E=Ephemeroptera, P=Plecoptera, T=Trichoptera, C=Coleoptera. 

Aim of the study Representing and clustering the distributions of 
EPTC sampling sites according to the input vari-
ables

Predicting
EPTC Richness 

Number of sampling 
sites

252
Dataset 1 

155 155
Dataset 2 

155

Input variables  
283 EPTC 
species

Elevation 
Stream order 
Distance from 
source
Maximum water 
temperature

E sr* 
P sr* 
T sr* 
C sr* 

Elevation
Stream order 
Distance from 
source
Maximum water 
temperature

ANN method SOM (SOM1) SOM (SOM2) SOM (SOM3) MLP 
Number of nodes in the 
input layer 

283 4 4  

Number of iterations 
Ordering/Tuning

2000/75000 3000/7000 3000/7000  

Number of units in out-
put layer 
(Rows/Columns)

150
(10/15)

140
(14/10)

140
(14/10)

Clustering method U-Matrix K-means K-means  
* species richness 

Results

Spatial distribution patterns of EPTC species 

The non-linear projection of presence – absence data in a two dimensional space (Fig. 
4.8.3) allowed us to cluster our sites according to the similarity of their species composi-
tion. Four major clusters (i.e. “regions” 1, 2, 3 and 4, see Fig. 4.8.3) could be identified on 
the SOM (SOM 1, see Table 4.8.1). 

Regions 1 and 2 were formed of 2 and 5 sub-regions respectively. Then, these regions 
were plotted on a geographic map of the Adour-Garonne drainage basin, in order to make 
interpretations (Fig. 4.8.4). Region 1 encompassed sites from the Massif Central Mountains 
(eastern part of the drainage basin) above 500 m a.s.l., with 2 sub-regions corresponding to 
the River Lot (1a) and the River Tarn (1b) stream systems respectively. All sites from re-
gion 2 belonged to the Pyrenees mountains (South part of the drainage basin), and were 
partitioned into 5 sub-groups. Three sub-groups corresponded to catchment areas of large 
rivers: Rivers Lez and Garonne from 800 to 500 m a.s.l. (2a and 2e), Gave d'Ossau (2b), 
Neste d'Aure (2c).
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Figure 4.8.3 Distribution of the sampling sites on the Self-Organizing Map (SOM1). Num-
bers correspond to the code of the 252 sampling sites. In order to lighten the Fig., hidden 
points are not represented. 1a – 4 (bold) are the regions or clusters of the map (see text). 

Dordogne

Garonne

Tarn
Aveyron

Gave d'Ossau

Truyère

Lot

1a
1b

2a
2b

2c
2d

2e 3 4

N

100 km

Figure 4.8.4 Distribution of sampling sites in the Adour- Garonne stream system and corre-
spondence with their position on the Kohonen map. The legend is explained in the text. 

All sites from sub-group 2d were Pyrenean springs. Sites from singular stream environ-
ments were clearly segregated by the SOM algorithm, e.g., sites 170 – 172 belonged to a 
watercress bed (Fig. 4.8.4), and were not considered in the interpretation of the map. Re-
gion 3 clearly represented piedmont zones from the Adour-Garonne drainage basin, and in-
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cluded sites from both Massif Central and Pyrenees rivers. Finally, region 4 corresponded 
to the Toulouse city agglomeration. The distribution of each of the 283 species (one map 
per species) was visualised in the Kohonen map (Fig. 4.8.5).

To summarise EPTC assemblages characterising each region, we recorded the presence 
of each species in a table, where we also indicated the probabilities of occurrence, calcu-
lated as [number of sites where the species was recorded / total number of sites defining the 
region]. EPTC richness (Fig. 4.8.6a) ranged from 45 to 159 species according to the region 
considered. Richness values were the lowest in springs (2d), in the agricultural Garonne re-
gion (2e), and in the urbanised Toulouse region (4).
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Figure 4.8.5 Example of the representation of a species distribution on the Kohonen map 
(Agapetus fuscipes, Trichoptera). The darkness of shading indicates the relative influence of 
the species considered upon the classification of sites. 
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Figure 4.8.6 Species richness patterns derived from the SOM analysis. (a) number of spe-
cies per identified regions; and (b) number of species occuring in 1-9 regions. 

Higher richness was observed in both piedmont and mountain regions. We also plotted 
the number of species occurring in 1 to 9 regions (Fig. 4.8.6b). Most species occurred in 
only one (121 species) or two (63 species) regions. They therefore had the strongest influ-
ence upon the stream classification, and should require particular attention as indicator spe-
cies. 31 and 34 species appeared respectively in 3 and 4 regions, and 4 to 10 species ap-
peared in 5 to 8 regions. Finally, only one species – Baetis rhodani (Ephemeroptera) - 
occurred in all regions. Three main spatial distribution patterns could be identified: i) local 
distribution, i.e. species occuring in a restricted geographic and/or altitudinal area (e.g., 
Baetis buceratus), ii) longitudinal zonation, i.e. species occuring in different geographic ar-
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eas, but within a characteristic altitudinal range (e.g., Brachyptera seticornis), and iii) re-
gional distribution, i.e. widespread species (e.g., Baetis rhodani). Any species associations 
can also be pointed out by overlapping the representations of several species distributions 
on the Kohonen map. 

Distribution of sampling sites according to EPTC richness and 
environmental variables 

After training the SOM with environmental variables (SOM2, Table 4.8.1), the k-means al-
gorithm helped to derive four clear clusters (A, B, C and D) based on the minimum Davies-
Bouldin index (DBI = 0.91) (Table 4.8.2). Thus, sampling sites were clustered into four 
subsets (Fig. 4.8.7) according to a gradient of stream order and elevation. The abscissa on 
the SOM was explained by the gradient of elevation (from low (left) to high (right)), 
whereas the ordinate of the map represented the stream order and the distance from source 
(from low (top) to high (bottom)). Stream order was significantly correlated with the dis-
tance from source (r= 0.82, p<0.01), and elevation was correlated negatively to the maxi-
mum water temperature (r= -0.80, p<0.01). Sites in cluster A were at low elevations (< 400 
m) and high stream order (5th-7th), sites in cluster C were at low stream order (1st-2nd) and 
low elevations (< 500 m), and sites in cluster D were at low stream order (1st-2nd) and high 
elevations (> 1300 m), whereas sites in cluster B were at intermediate stream order (3rd-4th)
and elevations (500-1200 m). Thus, we can consider that clusters reflected the longitudinal 
location of sampling sites, chiefly with respect to stream order and elevation. 
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Figure 4.8.7 (a) Distribution of sampling sites on the Self-Organising-Map according to the 
four environmental variables (SOM2), and clustering of the trained SOM. Codes corre-
spond to sampling sites (e.g., 765, see also Fig. 4.8.1). Grey shades were used to visualize 
clusters A – D derived from the k-means algorithm. Sites which are neighbours within clus-
ters are expected to have similar features. (b) Gradient analysis of each environmental vari-
able on the trained SOM, with visualization in grey scale. The mean value of each variable 
was calculated in each output neuron of the above-trained SOM, dark represents high val-
ues while light is low. (Altitude: m a.s.l., maximum water temperature: °C, distance from 
the source: km). 

The SOM trained with EPTC richness (SOM3, Table 4.8.1) was also divided into four 
subsets based on the minimum Davies-Bouldin index (DBI = 0.91) (Table 4.8.2). Thus, 
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sampling sites were distributed into four clusters (I, II, III and IV) according to a gradient 
of EPTC species richness (Fig. 4.8.8). Moreover, the comparison of distributions of sites in 
Figs. 4.8.7 and 4.8.8 helped to relate EPTC richness to environmental conditions within the 
stream system. Bottom areas of the SOM had the highest EPTC richness, whereas top areas 
showed low richness.

Table 4.8.2 Davies-Bouldin index (DBI) of k-means clustering at different numbers of 
clusters on the trained Self-Organizing Maps for environmental (SOM2) and biological 
(SOM3) data sets. The retained number of clusters was justified according to the minimum 
DBI.

 Number of clusters 
Input data set 2 3 4 5 6 7 
Environmental variables (SOM2)  1.07 0.97 0.91 1.09 1.01 1.02 
EPTC Richness (SOM3) 0.97 1.10 0.91 1.31 1.10 1.14 
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Figure 4.8.8 (a) Distribution of sampling sites on the Self-Organizing Map according to 
EPTC species richness (SOM3), and clustering of the trained SOM. Codes in each unit of 
the map represent sampling sites (Fig. 4.8.1), grey shades were used to isolate clusters I – 
IV derived from the k-means algorithm. (b) Gradient analysis of species richness for each 
insect order on the trained SOM, with visualization in grey scale. Dark represents high 
richness values, while light means low richness values. 

Clusters I and IV were mainly classified by the overall EPTC richness. Sites in cluster I 
had high EPTC richness, and chiefly belonged to 3rd – 4th order streams: 70% were also 
associated to cluster B in Fig. 4.8.7. Most sites (80%) in cluster IV were previously associ-
ated to clusters C (40%) and B (40%). They had the lowest EPTC species richness and were 
primarily located at low stream order (1st – 2nd) Clusters II and III were separated by the 
richness of Plecoptera. Sites in cluster II had high Plecoptera richness with moderate rich-
ness for other insects (Ossau valley in the Pyrenees, stream order 1-2, 70% of these sites 
thus belonged to cluster D). Sites in cluster III had low numbers of Plecoptera species, 
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along with moderate richness for other taxa. They were located in the intermediate part of 
the altitudinal gradient (piedmont zones). Indeed, they were chiefly assigned to clusters B 
(45%) and C (30%) in Fig. 4.8.7. Thus, the overall EPTC richness gradient identified from 
Fig. 4.8.5 resulted from different richness distribution patterns, which were characteristic 
for each insect order. When the distribution of species richness was examined for each in-
sect order on the trained SOM (Fig. 4.8.8), the map units on the bottom of the SOM showed 
highest richness values for Ephemeroptera, Trichoptera and Coleoptera. The units on the 
left bottom corner showed the highest richness for Plecoptera, whereas the units on the right 
top corner corresponded to the lowest richness values. 

There was a high coincidence between observed (i.e. field data) and predicted (i.e. from 
the output neurons of the SOM) species richness in each taxonomic group (Fig. 4.8.9). Bar 
charts represent the histograms of observed and predicted values of each taxonomic group, 
and the correlation coefficient were highly significant (r>0.74, p<0.01) except for Coleop-
tera (r=0.45, p>0.1). The scattergrams on the right upper corner of Fig. 4.8.9 show the rela-
tionships among taxonomic groups in observed data, while the charts on the left bottom 
corner show the relationships for predicted data. Correlation coefficients were higher in 
predicted than in observed data. Species richness relationships were highly significant for 
both observed and predicted data among Ephemeroptera, Trichoptera and Coleoptera, but 
the correlation was relatively low when Plecoptera were plotted against other insect orders.
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Figure 4.8.9 Observed (black bars) and predicted (grey bars) frequencies of species rich-
ness in each insect order (panels on the downward diagonal line), and species richness rela-
tionships between insect orders in observed (black dots) and predicted (grey dots) data. E= 
Ephemeroptera, P= Plecoptera, T= Trichoptera, C= Coleoptera; SR= Species Richness. 
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Relationships between biological and environmental variables 

The SOM has shown its high performance for visualization and abstraction for our nonlin-
ear and complex ecological data. However, it was not easy to include environmental vari-
ables in the SOM trained with biological variables. Thus, we suggest a method to introduce 
(or include) environmental variables into the SOM map trained with biological variables 
(SOM3), in order to understand their effects on biological variables and on the classifica-
tion of sampling sites in the trained SOM. To this end, the mean value of each environ-
mental variable was calculated in each output neuron of the trained SOM, then each vari-
able was visualized on the trained SOM map (Fig. 4.8.10). Dark represents high values, 
while light represents low values. The areas with the highest values were marked with a 
circle for each variable. Environmental variables showed gradient distributions on the SOM 
map. Stream order increased from the left to the right side of the map. Elevation was the 
highest in the upper left area, and showed the clearest gradient among environmental vari-
ables. Distance from the source was lower in left areas, and higher in right areas of the 
SOM map. Maximum water temperature did not show a clear gradient in its distribution on 
the map. These results revealed that elevation was the most important factor in patterning 
sampling sites according to EPTC richness, while the effect of the maximum water tem-
perature was the lowest. 

At this point, we have three types of parameters (sampling sites, biological and envi-
ronmental data) on the trained SOM map. Using these data, we superimposed each parame-
ter on the same SOM map (Fig. 4.8.11). We can compare the relationships among clusters 
(and/or sampling sites), EPTC richness, and environmental variables. Sampling sites on the 
lower area of the SOM map have the highest species richness (Fig. 4.8.10).
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Figure 4.8.10 Visualization of environmental variables and overall EPTC richness on the 
trained SOM map (SOM3). The mean value of each variable was calculated in each output 
neuron of the trained SOM. Dark represents a high value, while light is low. The areas with 
the highest values are marked with a dotted circle. 
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Figure 4.8.11 Comparison of relationships among clusters (and/or sampling sites), EPTC 
richness, and environmental variables. Each parameter from Figs. 4.8.7 and 4.8.9 is over-
laid on the trained SOM map. COLE = Coleoptera, EPHE = Ephemeroptera, PLEC = Ple-
coptera, and TRIC = Trichoptera.
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Figure 4.8.12 Scatter plots of correlations between observed and estimated (or predicted) 
values by the trained BP. The diagonal lines represent perfect prediction values (predicted 
and observed values). a) learning, b) testing.

Prediction of the taxonomic richness 

The MLP was applied to predict EPTC richness as an output variable, using the four envi-
ronmental variables as input. The convergence of the learning process was generally 
reached after 3,000 iterations under mean error terms of 0.01. The trained BP showed accu-
racy in predicting the overall EPTC richness on the basis of the environmental variables 
(r²=0.83, p<0.001 and r²=0.37, p<0.01 for training and test data sets, respectively) (Fig. 



4 Macroinvertebrate community assemblages      233 

4.8.12). There was, however, an underestimation of some high EPTC richness and an over-
estimation of around 30 EPTC richness values.
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Figure 4.8.13 Relationships between residuals and estimated values (a), and histogram of 
residuals (b). 

The residuals were well distributed near the horizontal line representing the residual 
mean (r=-0.01, p>0.5) (Fig. 4.8.13a). The histogram of residuals revealed that most values 
were centred near zero. To test the normality of model residuals, the statistical test of Lillie-
fors (1967) was applied. The test did not reject the null hypothesis that the residuals are 
normally distributed (p=0.2) (Fig. 4.8.13b). The relationships showed no obvious sign of 
dependence of residuals, showing that the BP fitted the data with no bias. 
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Figure 4.8.14 Sensitivity analysis of the BP. Mean square error values were measured at 
different levels of perturbation of the input variables. 

Sensitivity analysis was carried out to evaluate the effect of small changes in each input 
on the neural network output. This was achieved by adding a random variation to each in-
put variable of the network (Scardi and Harding 1999). To measure a response in output 
values, mean square errors were calculated at different levels of the perturbation of input 
variables (from 20% to 100% of the input range). The sensitivity analysis showed that ele-
vation and stream order provided the highest contributions among the four input variables 
when predicting EPTC richness, whereas maximum water temperature provided the lowest 
contribution (Fig. 4.8.14). This is in agreement with the results of the ordination based on 
the trained SOM (Figs. 4.8.8, 4.8.10, 4.8.11). 
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Discussion

Stream classifications and modelling techniques 

Whatever the modelling technique, stream ecologists use classification and ordination to 
characterise how ecosystems differ in terms of biotic (e.g., species assemblages, species 
richness) and/or abiotic (environmental variables) attributes (e.g., Giudicelli et al. 2000, van 
Sickle and Hughes 2000, Dethier and Castella 2002). By knowing what the ecosystem 
should be like in a given geographic zone, they also can determine the degree to which hu-
man activity has altered it (Hawkins et al. 2000). During the last decade, such approaches to 
river bioassessment using macroinvertebrates were thus developed in Europe (e.g., 
RIVPACS system), Australia (AUSRIVAS system), and North-America (BEAST system) 
(reviewed in Wright et al. 2000). Most of these techniques are based on multivariate analy-
ses, and basically use classifications of reference sites from rivers of high biological quality 
to provide site-specific predictions of the macroinvertebrate fauna to be expected under un-
disturbed conditions, using a small set of environmental characteristics. In this context, our 
study is an attempt to use artificial intelligence techniques for biota prediction in river bio-
assessment.

Ordination and cluster analyses are frequently used in the early exploratory phase of 
ecological investigations as their results may suggest relationships that should be studied in 
more detail in subsequent research (Jongman et al. 1995), whereas regression analyses may 
be helpful to study more specific questions in the later phases of research. This analysis 
procedure (ordination and/or cluster analysis first, then regression analysis) was used in this 
study. During the learning process of the SOM, neurons that are topographically close in 
the array will activate each other to learn something from the same input vector. This re-
sults in a smoothing effect on the weight vectors of neurons (Kohonen 2001). Thus, these 
weight vectors tend to approximate the probability density function of the input vector. 
Therefore, the visualization of elements of these vectors for different input variables is con-
venient to understand the contribution of each input variable with respect to the clusters on 
the trained SOM. Although the SOM visualization is an indirect gradient analysis like a 
Principal Component Analysis (Kohonen 2001), SOM can be used as an analysis tool to 
bring out relationships between sampling sites, environmental variables, and biological 
variables. Thus, this approach is much more practical to analyse the relationships between 
variables than general indirect gradient analysis. Giraudel and Lek (2001) compared the 
SOM algorithm to conventional ordination techniques for ecological community ordination, 
and concluded that the SOM is fully usable in ecology and can complement classical tech-
niques by offering a non-linear approach to modelling and a method for visualising data 
and for achieving community ordination.

Species assemblages 

We visualised the spatial distribution of each of the 283 species considered, and we could 
therefore derive negative or positive species association. Numerous site-specific data (i.e. 
local scale biodiversity) were compiled in order to derive spatial distribution patterns of 
stream macroinvertebrates at the regional scale. As a first step before further investigations, 
our analysis revealed several EPTC geographical zones. Such a regional classification of 
stream ecosystems provides a useful framework for studying and managing streams in dif-
ferent geographic areas (Witthier et al. 1988). The number of species characterising each 
region ranged from 43 to 147, underlining the expected longitudinal (e.g., high or low 
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mountain, piedmont) and geographical (Pyrenees, Massif Central) differences (Culp and 
Davies 1982). These results also support the idea that biodiversity depends on the environ-
mental heterogeneity (Ward and Stanford 1983), and is both reduced by environmental con-
stancy (e.g., springs) and under severely fluctuating conditions (e.g., severe flow fluctua-
tions due to hydropower generation). In these conditions, SOM may help to identify 
disturbed sites at the regional scale. Any modification of the species composition will cre-
ate a faunal discontinuity that will be visualised in the self-organised map by the unex-
pected position of the considered site regarding to its geographical position. In our map, the 
most striking example of such a faunal discontinuity could be the segregation of the Tou-
louse City neighbourhoods. 

Finally, this study and similar works (e.g., Frissel et al. 1986, Hughes et al. 1986, 
Omernik 1987) provide an explicit scheme of the implicit knowledge that stream ecologists 
already have. Biotic features of streams within the same region and/or longitudinal section 
tend to be similar, and those characteristics tend to differ when streams belong to more dis-
tinct areas. Any tool able to provide a stream classification is therefore of obvious value to 
both resource managers and researchers to assess spatial and temporal variability. 

EPTC species richness

E, P, T, and C occurred in all the streams considered. Ephemeroptera, Trichoptera and Col-
eoptera were widespread from mountain to plain areas, and species richness relationships 
between these three insect orders were highly significant, for both observed and predicted 
data. Plecoptera were rather located in the upper mountainous sections of the stream sys-
tem, and species richness relationships between Plecoptera and Ephemeroptera, Trichoptera 
or Coleoptera were non-significant. According to Gaston (1996), concordant spatial pat-
terns in species richness among different taxa may result from: i) random mechanisms; ii) 
biotic interactions among different taxa; iii) common environmental determinants; or iv) 
spatial covariance in different environmental factors that independently account for diver-
sity variation in different taxa. If local systems were compared, it is likely that a high de-
gree of concordance would be generated through biotic factors (Paszkowski and Tonn 
2000). However, at broader spatial scales such as the Adour-Garonne stream system, sig-
nificant correlations among aquatic insect species richness is almost certainly due to similar 
responses by different taxa to environmental conditions rather than to biotic interactions 
(Heino 2002). 

Stream classifications: species composition or species richness? 

We derived a classification of streams from the Adour-Garonne drainage basin, using the 
similarity of their species compositions. The biogeographic model obtained thus referred to 
a regional-specific fauna. The stream classification based on species richness referred to 
stream order, elevation, and distance from the source (and to a lesser degree to water tem-
perature), i.e. the downstream location of sampling sites within a stream system, which 
rather fitted with a broader typological approach. Thus, it was not surprising that SOMs 
with species compositions and species richness provided different stream classifications. 
The former clearly segregated different geological areas (Pyrenees in the Southern part of 
the drainage basin, Massif Central Mountains in the Eastern part, and alluvial plain areas), 
whereas the latter provided a model of longitudinal gradients in species richness (two 
communities from different geographic areas could differ in terms of species composition, 
but they could have similar number of EPTC species when sites were located at comparable 
elevations and stream orders). The sensitivity analysis of the BP algorithm showed that ele-
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vation and stream order made the largest contributions to the predictive model. Although 
many criteria have been proposed for classifying running waters, few typological systems 
have had more than local acceptance (Pennak 1971). Therefore, our results support the idea 
that the most "universal" classification systems remain those proposed i) by Illies (1961) 
and Illies and Botosaneanu (1963) which recognise eight zones within a single drainage 
system, ranging from zone I (springs or "eucrenon") to zone VIII (brackish zone or "hy-
popotamon"), and ii) by Vannote et al. (1980), i.e. the River Continuum Concept which im-
plies a classification based on stream size and location within a stream system. Despite 
geographic differences in species assemblages, these two models have the broadest validity 
to describe spatial patterns of community organisation and diversity. Of course, the fauna of 
a stream system must be investigated before it can be categorised within the expected 
zones, and this is always a time- and money-consuming process. However, scientific stud-
ies and large-scale surveys of stream ecosystems have led to the development of extensive 
databases, particularly in Europe and in the United States. These data can be used to derive 
a [sites x species] matrix, then data may be analysed using a-posteriori inductive ap-
proaches (Whittier et al. 1988, Cayrou et al. 2000). 
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Figure 4.8.15 EPTC richness distributions for brooks, streams and large river clusters at 
unstressed and stressed sites. The table is derived from the Fig. and indicates the values of 
the five water quality classifications for streams and large rivers. Upper classes were de-
fined as species richness values above the median species richness at unstressed sites, and 
lower classes were defined as species richness values below the median species richness at 
stressed sites. The other classes (Good, Good-Fair and Fair) were then defined by dividing 
the remaining species richness ranges into three equal groupings. 

Predicting the species richness 

Using MLP, EPTC richness was predicted with environmental variables, and we evaluated 
the importance of each variable to estimate the richness. It is recognized that MLP is able to 
make better predictions than regression models (Lek et al. 1996b, Paruelo and Tomasel 
1997), and a sensitivity analysis is applied to explain the contribution of input variables to 
output variables. Recently, Gevrey et al. (2003) reviewed several methods proposed for the 
sensitivity analysis of ANN in ecological applications. However, sometimes it is not suffi-
cient to explain the relationships between explanatory and response variables in terms of 
causality. In this case the ordination approach could be helpful to explain the relationships 
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between input and output variables. Predicting the species composition of the EPTC com-
munity with environmental variables as input data remained an impossible task for us, 
when about 300 species had to be dealt with. However, the final objective of such studies is 
to provide methods for rapid assessments of water quality and for water framework direc-
tives, and species richness of aquatic insects is commonly recognised as a good biological 
indicator of disturbance in streams (Rosenberg and Resh 1993). Thus, if we can predict 
what the richness should be like under undisturbed conditions in a given area, we can pro-
vide explicit spatial distribution schemes which may be useful for further studies, and in 
stream management. 

A potential application in biosurveillance 

We recently calibrated for the Adour-Garonne basin a water quality score, based on EPTC 
species richness measures (Compin and Cereghino 2003). Principal Components Analysis 
(PCA) was performed for five abiotic variables (elevation, stream order, slope, distance 
from the source, and maximum water temperature) recorded at 113 unstressed sites. The co-
ordinates of the sites on the most significant axes of the PCA were then used to classify 
sites into three clusters corresponding to brooks, streams and large rivers using an agglom-
erative clustering technique. Significant differences in EPTC species richness distribution 
between the clusters and between stressed and unstressed sampling sites for each cluster 
were tested using Mann and Whitney non-parametric tests. 
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Figure 4.8.16 Synthesis of the ANN tools cited in this chapter and examples of their poten-
tial application to water quality assessment. 

The clusters grouped sampling sites having significantly comparable richness, whereas 
between-regions differences in species richness distributions were significantly different. 
Therefore, species richness to disturbance relationships was assessed differently according 
to the region considered. For each region, five richness classes were determined, using box-
plots of species richness distribution among disturbed and undisturbed sampling sites (Fig. 
4.8.15). As we were able to provide quite good prediction of the species richness expected 
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under natural conditions in a given area, we may provide a valuable tool for the design of 
management actions.

Conclusion

Two different neural networks have been applied to suggest practical approaches for under-
standing ecological data (Fig. 4.8.16). The SOM showed high performance for visualization 
and abstraction of ecological data. The trained SOM efficiently classified sampling sites ac-
cording to different input variables, and displayed a distribution of each component (input 
variable). The component planes helped to interpret the contribution of each component to 
the classification. Additionally, by introducing new variables (i.e. environmental variables) 
not used in its training phase, the SOM showed high performance in analyzing the relation-
ships among sampling sites, biological variables and environmental variables. This method 
could be used to extract relationships between sampling sites, communities, and environ-
mental variables, although the algorithm is theoretically an indirect gradient analysis. How-
ever, it remains necessary to quantify the relationships among variables.

After understanding the relationships between biological and environmental variables 
using the SOM, the BP, used as a nonlinear predictor, showed accuracy in predicting EPTC 
richness on the basis of a set of four environmental variables. Thus, this prediction could be 
valuable in the assessment of disturbances in given areas. 

Finally, approaches using two different ANNs (first understanding data sets using visu-
alization and abstraction methods with SOM and second prediction for target variables with 
BP) showed that they could take into account the variability of ecological data efficiently. 
Therefore, this procedure could be chosen when ecological modelling is applied to nonlin-
ear and complex ecological data. 
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4.9 Patterning community changes in benthic 
macroinvertebrates in a polluted stream by using artificial 
neural networks*

Kwak IS, Song MY, Park YS, Liu G, Kim SH, Cho HD, Cha EY, Chon TS†

Introduction

Data for community dynamics are complex and difficult to analyze, since communities 
consist of many species varying in a non-linear fashion in spatial and temporal domains. 
However, investigation of community changes in disturbed aquatic ecosystems is critical 
for diagnosing temporal community responses to stressful sources and for establishing sus-
tainable management policies to solve the problems of polluted aquatic systems. Although 
there have been numerous accounts of conventional multivariate analyses on community 
patterning through clustering and ordination (e.g., Bunn et al. 1986, Legendre and Legendre 
1987, Ludwig and Reynolds 1988, Quinn et al. 1991) or on community-environment rela-
tionships (e.g., van Dobben and ter Braak 1998), the conventional statistical methods are 
limited in the sense that they are mainly applicable to linear data and are less flexible for 
handling ecological data with missing values, noise, etc. Additionally, the studies have 
mostly been carried out on static community patterns from single samplings. 

Artificial neural networks (ANNs) are an alternative tool for solving the problem of 
complexity residing in community data. They are problem oriented and are adaptively 
flexible for applications (Lippmann 1987, Zurada 1992, Haykin 1994). The multi-layer per-
ceptron has been extensively used in prediction of communities by revealing complex rela-
tionships between communities and environmental factors, such as algal bloom (e.g., Reck-
nagel et al. 1997) and establishment of grasslands (e.g., Tan and Smeins 1996). 
Additionally, temporal networks have been developed to predict community dynamics in a 
time-delayed manner. The partially and fully connected recurrent ANNs have been utilized 
to predict short-term community changes (Chon et al. 2000c, 2001). In this case, however, 
the models were only used for predicting the occurrence of communities. Grouping of 
community changes has rarely been conducted using artificial neural networks.

Recently, however, patterning of community changes has been focused on ecological 
water quality assessment. Successful management of aquatic ecosystems requires better un-
derstanding of the patterns of community development, i.e., either progression of pollution 
or recovery from the stressful agents. In conventional methods, however, not many studies 
have focused on grouping of community changes in the temporal domain per se. Mostly 
communities were clustered in static terms. Since Legendre et al. (1985) and Legendre 
(1987) discussed chronological clustering in multivariate datasets to represent the succes-
sion of species within a community by using ordination and segmentation techniques, spe-
cific results concentrating on either the methods for clustering community changes or 
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groupings from field data have not been reported. Similarly, in ANNs, not many studies 
have been carried out on grouping of the temporal development of communities. By im-
plementing the Self-Organizing Map (SOM) (Kohonen 1989), groupings on communities 
have been conducted for clustering and ordination on static community patterns (e.g., Chon 
et al. 1996, Foody 1999, Kwak et al. 2000). Grouping of community changes is not an easy 
task since patterning of temporal developments has the problem of the unlimited increase in 
the number of variables as the sampling periods are increased. Chon et al. (2000a) recently 
grouped community changes by the combined use of unsupervised ANNs, the Adaptive 
Resonance Theory (ART) plus the SOM. In this case, however, only noise was filtered 
through the ART, and dimension reduction from the original datasets was not carried out. 
Additionally, community changes were grouped in a relatively short period of less than six 
months. In this study, we further address the feasibility of the SOMs in dimension reduction 
of sequential datasets of community changes and grouping of community changes over a 
longer period. The proposed model could be used for detecting community changes com-
monly-occurring in the survey area. 

Methods

Implementation of the SOM 

Since communities consist of multiple taxa, the dimension would be greatly increased if 
community changes were patterned sequentially in a given period. In order to solve this 
problem of increase in dimension, the SOMs were carried out in two processes in this 
study: i) initial training of the SOM with the one-time (1-month in this case) samples, and 
ii) secondary training of the SOM with coordinates of the 1-month SOM for a longer period 
(e.g., 3 months, 12 months, etc.; Fig. 4.9.1). 

In the SOM, M neurons are used for the output layer, which could be empirically deter-
mined based on efficiency of convergence and discrimination capability among the pat-
terned nodes. In this study, 81 (9x9) nodes were used on the two-dimensional array. The 
weights between node j of the output layer and node i of the input layer in the SOM were 
represented as wij(t) at iteration t. When the input data xi (densities in taxa i) with N taxa 
were sent through the network, each output neuron, j, computed the Euclidean distance be-
tween input vector and weights. The neuron with the weight vector which has the shortest 
distance to the input vector was chosen to be the winning neuron. The winning neuron (and 
possibly its neighbouring neurons) was allowed to learn by changing the weights in the 
manner to further reduce the distance between the weight and the input vector as shown be-
low:

 Ztwxttwtw jijiijij ))()(()()1(                             (4.9.1) 

where Zj is assigned 1 for the winning and its neighbour neuron(s) while it is assigned 0 for 
the rest neurons, and (t) (e.g., 0.1) denotes the fractional increment of the correction. For 
details of the algorithm in the SOM, see Kohonen (1989), Chon et al. (1996), and Park et al. 
(2003a).

After initial training of the SOM with the 1-month samples, the coordinate data (i.e., lo-
cations of the nodes) on the SOM were provided as new input data to the SOM for a longer 
period (Fig. 4.9.1). Since 1-month sampling data was accordingly extracted from the coor-
dinate data on the SOM, we assumed that the tracks of the x, y coordinates of the patterned 
nodes on the SOM would convey information on community changes. In other words, the 
tracks of the nodes following the months progressively (e.g., April, May, etc) would solely 
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represent temporal changes in communities during the specified period (Chon et al. 1996). 
If the one-month coordinate data could be appended for a longer period in a sequence (i.e., 
the tracking of nodes on the SOM), the merged data would represent changes in community 
patterns. In this study, the sequence of coordinates on the  x- and y-axis served as input data 
for training with the SOM (Fig. 4.9.1). For each sample unit, Tx2 (x and y locations) coor-
dinates were used for an input period of T (i.e., months). As T=12 (i.e., 12 months), for in-
stance, 24 (=12x2) variables were provided to the SOM for each sample unit in total. Since 
the number of taxa, N, was not required as input nodes for training the SOM in this study, 
substantial reduction in dimensions was achieved as the coordinate data were sequentially 
merged in different periods. 

1st SOM: Ordination of one-month sampling 
units

Extraction of coordinates (x, y) from the 1st 
SOM

Building sequential data of coordinates for T
months

2st SOM: Ordination of temporal community 
changes

Extraction of community change patterns

Community data: Monthly densities of  
macroinvertebrates in different taxa

Figure 4.9.1 Schematic diagram of combinational implementation of the SOMs for group-
ing community changes. 

Grouping of community changes was conducted with the specified sampling periods 
starting with different months. For the seasonal and yearly groupings, the season or the year 
to which the starting month belonged was used for naming the sampling period for training. 
If April 1996 is the beginning of the sampling period, for instance, it was considered as 
‘Spring’ for the three-month samples and ’96 for the 12-month samples. In other words, the 
community changes sampled were named based on the starting months.

Field data 

For four years from 1996 to 1999, benthic macroinvertebrates were collected monthly at 11 
sample sites located at different habitats within 200m of the Yangjae stream, a tributary of 
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the Han River, Korea (Fig. 4.9.2), which was heavily polluted with organic matter from the 
Seoul metropolitan area. The Yangjae stream, however, has slightly recovered due to the 
restoration efforts by the local government. For instance, Baetis sp. (Ephemeroptera), an 
indicator taxa for partial water recovery (Hellawell 1986), was seldom observed in the early 
part of the survey period, but has been collected since June 1997. 

Figure 4.9.2 Location of the sample sites for collecting benthic macroinvertebrates at the 
Hakyeoul Reach in the Yangjae Stream, Han River, Korea. 

The surveyed area mainly consisted of two sections (Fig. 4.9.2): the upstream straight 
section with larger substrate size and the downstream curved section at the bottom right 
corner with smaller substrate size. Three to four replicates were collected at each sample 
site. During the survey period, 3 phyla, 4 Classes, 10 orders, 26 families and 39 species 
were collected. However, only a few taxa were highly dominant at the surveyed area during 
the study period. Chironomidae, dominant with Chironumus sp., and Oligochaeta, mostly 
consisting of Limnodrilus hoffmeisteri (Tubificidae), were extremely abundant at the sam-
pling sites. This was in accordance with the previous reports that only a limited number of 
tolerant taxa (e.g., Chironomus sp., Tubificidae, etc.) are strongly dominant in aquatic sys-
tems polluted with organic matter (e.g., James and Evison 1979, Hellawell 1986, Rosenberg 
and Resh 1993). Other taxa except Chironumus sp. and Tubificidae were mostly collected 
at very low densities with a few exceptions. Considering the limited number of abundant 
taxa, we used three representative taxa, the two dominant Chironomous sp. and Oli-
gochaeta, and an indicator of slight water recovery, Baetis sp., as input data for training 
with the SOM in this study. In general, densities of benthic macroinvertebrates were greatly 
affected by flooding and low temperature at the survey area. In the monsoon climate in Ko-
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rea, flooding with extremely high precipitation regularly occurs in early summer, while 
drought and severely low temperatures occur in winter.
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Figure 4.9.3 The map trained by the SOM for grouping 1-month community data. The let-
ters in the Fig. indicate the name of the sample sites (Fig. 4.9.2). The sample sites B and G 
in bold characters were used for validation. The numbers following the letters indicate the 
starting month of the sampling period. For instance, 1, 13, 25, and 37 represent April 
in ’96, ’97, ’98, and ’99 respectively. The increment of the number represents the following 
months (e.g., 2; May, 3; June, 4; July, etc)). (a) grouping of communities, (b) seasonal 
grouping, and (c) yearly grouping. 

For training with the models, the input datasets (densities of the selected taxa) were 
transformed by natural logarithm to achieve normal distribution and to emphasize the dif-
ferences in low densities. Subsequently, the transformed data were proportionally normal-
ized between 0.01 and 0.99 in the range of the maximum and minimum densities for each 
taxon collected during the survey period. Coordinates (x, y) defined in the first SOM were 
also proportionally rescaled between 0.01 and 0.99 in the range of the maximum and mini-
mum values for training with the secondary SOM. The data collected from the 9 sampling 
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sites for 4 years were used for training, while the data collected at the other two sites, B and 
G, were used for validation.

Results

Grouping of one-month samples

Overall, grouping of 1-month samples by the SOM reflected temporal and spatial variation 
of communities. This was generally in accordance with patterns observed in the previous 
results on community grouping (Chon et al. 1996, 2002, Kwak et. al. 2000). Fig. 4.9.3a 
shows grouping of communities based on 1-month field data. Temporal patterns were ob-
servable (Figs. 4.9.3b, c). By counting the nodes grouped with more than six samples, sea-
sonal groupings appeared strongly. In accordance with low temperatures in winter, commu-
nities were grouped on 4 nodes (e.g., (2 (column), 3 (row)) and (4,3)) (Fig. 4.9.3b). 
Additionally, communities affected by flooding in summer were placed on 3 nodes (e.g., 
(0,1) and (8,7)). Community grouping in spring was also observable on 2 nodes (e.g., (3,6) 
and (8,5)), while grouping in autumn was found only on 1 node (e.g., (2,2)).

Additionally, communities were also grouped on a yearly basis (Fig. 4.9.3c). Two-year 
groupings for the year of 1996-1997 abundantly appeared on 7 nodes (e.g., (0,5) and (4,8)), 
and groupings for 1997-1998 and 1998-1999 were also observed on different nodes (Fig. 
4.9.3c). However, the other two-year combinations were not clearly observed. For instance, 
the group of 1997-1999 was only observed on 1 node (5,6). The three-year and four-year 
groupings were also occasionally observed on the SOM, but they were not abundant on the 
map compared with the two-year groups. In the three- or four-year groups, communities 
mostly show low densities, reflecting flooding effects in August in summer (e.g., node 
(0,1), Fig. 4.9.3a).

The sample sites were also spatially grouped according to the curved and straight sec-
tions of the sampling sites (Fig. 4.9.3a). Communities sampled in the curved section were 
grouped on 4 nodes (e.g., (0,8) and (8,7)), while communities collected at the straight sec-
tion appeared on 7 nodes (e.g., (4,3) and (8,2)). In the curved section (e.g., E, F and G) (Fig. 
4.9.2), sediments were strongly collected and the burrowing type of organisms such as Oli-
gochaeta and Chironomus sp. occurred abundantly. In the straight section (e.g., U, A and 
B), in contrast, the amount of sediments was low, and diverse communities including Baetis 
sp. were collected more abundantly. However, spatial grouping was, in general, weaker 
than temporal grouping (Figs. 4.9.3b,c). 

The data from sites (B and G) used for validation were located on the nodes with similar 
community compositions as shown in Fig. 4.9.3a (e.g., communities shown in bold charac-
ters on the map; nodes (0,8), (4,3) and (8,7)). For the purpose of overall comprehension on 
community dynamics at the surveyed area, they were presented with the trained sample 
sites on the same figure. 

Community changes in three months 

For patterning temporal changes in communities, the 3-month SOM was obtained through 
training with the coordinate data by the secondary SOM (Fig. 4.9.1). Similar to the case of 
the 1-month SOM (Fig. 4.9.3), changes of communities were accordingly grouped spatially 
and temporally (Fig. 4.9.4). The validation data for sample sites B and G were in general 
matched to the nodes grouped with similar community compositions (e.g., the communities 
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shown in bold characters on nodes (0,0) and (7,8) in Fig. 4.9.4a). Compared with the 1-
month SOM (Fig. 4.9.3), however, differences were also observed in the 3-month SOM. 
Seasonal groupings were more apparent with a larger number of communities in groups: 
spring on 3 nodes (e.g., (0,8) and (1,6)), summer on 7 nodes (e.g., (0,0) and (8,4)), autumn 
on 3 nodes (e.g., (1,4) and (2,5)), and winter on 4 nodes (e.g., (0,6) and (3,2)) (Fig. 4.9.4b). 
Groups in summer were more strongly observed compared with the 1-month SOM, reflect-
ing flooding effects on benthic communities. The increase in groupings in the 3-month 
SOM is understandable, since four seasons appear clearly in Korea and community changes 
in 3 months are consequently well matched to seasonal variation.
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Figure 4.9.4 The map trained by the SOM for grouping community changes based on co-
ordinate data for 3 months. The coordinate data were extracted from the SOM map trained 
with community density data as shown in Fig. 4.9.3. Descriptions of symbols are explained 
in Fig. 4.9.3. (a) grouping of communities, (b) seasonal grouping, and (c) yearly grouping. 

Yearly groupings were also observed on the 3-month coordinate SOM (Fig. 4.9.4c). The 
two-year groupings were prevalent on the SOM as shown on the 1-month SOM (Fig. 
4.9.3b), being similarly dominated by 1997-1998 and 1998-1999. The three-year groupings 
(nodes (0,2) and (0,5)) were additionally observed (Fig. 4.9.4c). However, the three- and 
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four-year groupings were not strongly observed on the SOM based on the 3-month coordi-
nate data.

Spatial groupings tended to be stronger in the 3-month SOM (Fig. 4.9.4a) compared 
with the results from the 1-month SOM (Fig. 4.9.3a): the straight section on 7 nodes (e.g., 
(0,0), (1,7) and (3,2)) and the curved section on 6 nodes (e.g., (1,5), (2,6) and (5,8)). Com-
munities shown in groups were in general similar to those shown in the 1-month SOM (Fig. 
4.9.3a).

The SOM results based on the coordinate data (Fig. 4.9.4a) were compared with the 
SOM based on the 3-month density data (Fig. 4.9.5a). The general conformation was simi-
lar to the SOM trained with the coordinate data in temporal and spatial domains. The field 
data from sites B and G for the validation were also accordingly recognized on the nodes 
with similar community compositions (e.g., communities shown in bold characters on the 
nodes (3,0) and (4,7) in Fig. 4.9.5a). Similar to groupings observed on the SOM based on 3-
month coordinate data (Fig. 4.9.4b), seasonal groupings were apparent on the SOM based 
on the 3-month field data (Fig. 4.9.5b): summer flooding on 4 nodes (e.g., (0,8) and (8,6)), 
cold temperature in winter on 3 nodes (e.g., (4,1) and (5,6)), spring on 4 nodes (e.g., (0,0) 
and (3,2)), and autumn on 2 nodes (e.g., (2,8) and (4,0)). Yearly groupings (Fig. 4.9.5c) 
were also similar to the SOM based on the 3-month coordinate data (Fig. 4.9.4c), being 
dominated with the 2-year groupings (1996-1997 and 1998-1999), and occasionally with 
the 3-year groupings. 

Community changes in 12 months 

The grouping was further carried out over a longer duration of 12 months (Fig. 4.9.6a). 
Over the 12-month period, community groupings were also formed accordingly. The pat-
terns of community changes were characterized with density decrease occurring in the 
flooding period in summer. The number of patterned groups, however, decreased in 
general. In summer 5 nodes (e.g., node (1,8)) were grouped, while 4 nodes (e.g., node (4,5)) 
were patterned in winter (Fig. 4.9.6b). As stated above, grouping with community changes 
was conducted in specified sampling periods starting with different months. For the yearly 
grouping, the year to which the starting month belonged was used for indicating the name 
of the samples of community changes. For patterning ‘seasonal’ variation in the yearly 
grouping, for instance, the season of the starting month in the sampling period was used for 
representing the sampled data, although the yearly sampling period covered the entire four 
seasons. If April 1996 is the beginning of the sampling period for the yearly data, for in-
stance, it was considered as ‘spring’ in the seasonal grouping as stated above. 

Yearly grouping was also observed (Fig. 4.9.6c), however grouping was not clearly 
formed compared with the 3-month SOM (Fig. 4.9.5c). The communities were grouped in 
1998, 1996 and 1997, while communities in 1999 did not form strong groups. While 1998 
groups were placed at the left edge of map, 1996 groups occurred at the right edge of the 
map. Two-year groups, however, were observed only in a few cases. This indicated that 
yearly groupings were not frequently observable in the 12-month SOM compared with the 
3-month SOM (Fig. 4.9.5c). 

Although weaker than temporal groupings, spatial groupings were also observed in the 
12-month SOM (Fig. 4.9.6a). The samples sites in the straight section (e.g., U and A) were 
grouped on nodes (1,4), (4,5) and (8,8), while the curved sites (e.g., E and F) occurred on 
nodes (1,0), (6,3), (8,5) and (8,6). This implies that community changes at different habitats 
could be identified on a yearly basis. We also checked the SOM trained with the 12-month 
field data (Fig. 4.9.7) to evaluate the results from the SOM based on the coordinate data 
(Fig. 4.9.6). Community groupings appeared similarly according to temporal and spatial 
variations in both the coordinate data and the field data for 12 months. The number of 
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groups in winter was slightly increased to 8 nodes (e.g., (5,0) and (8,0)), while the number 
of groups in autumn was slightly decreased to 4 nodes (e.g., (1,1) and (6,2)) (Fig. 4.9.7b) on 
the SOM based on field data. The number of groups in spring and summer were the same in 
both SOMs (Figs. 4.9.6b and 4.9.7b). Yearly grouping was also similar to the SOM based 
on coordinate data, appearing abundantly in 1998 and 1996.
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Figure 4.9.5 The map trained by the SOM for grouping community changes based on field 
data for 3 months. Community density data were used as input data. Descriptions of sym-
bols are explained in Fig. 4.9.3. (a) grouping of communities, (b) seasonal grouping, and (c) 
yearly grouping. 
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Figure 4.9.6 The map trained by the SOM for grouping community changes based on co-
ordinate data for 12 months. The coordinate data were extracted from the SOM map trained 
with community density data as shown in Fig. 4.9.3. Descriptions of symbols are explained 
in Fig. 4.9.3. (a) grouping of communities, (b) seasonal grouping, and (c) yearly grouping. 
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Figure 4.9.7 The map trained by the SOM for grouping community changes based on field 
data for 12 months. Community density data were used as input data. Descriptions of sym-
bols are explained in Fig. 4.9.3. (a) grouping of communities, (b) seasonal grouping, and (c) 
yearly grouping. 

Patterns in community changes 

By combinational application of the SOMs, it was possible to identify the most commonly 
observed community changes in the surveyed area. In the groups of the 3-month SOM 
based on the coordinate data, for instance, a typical community change after flooding was 
observed on node (8,1) in Fig. 4.9.4a. Actual data for community changes corresponding to 
node (8.1) are shown in Fig. 4.9.8a. The densities in Chironomus, Baetis and Oligochaeta 
were initially high but rapidly dropped in the third month. The abrupt decrease in densities 
was frequently observed after strong flooding in streams in Korea in summer. Similar 
community changes were also observed on the SOM based on 3-month field data (Fig. 
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4.9.8b). Other grouping patterns in community changes over 3-months were observable on 
the SOM, and they mostly occurred also on the SOM based on field data correspondingly. 

Typical community changes were also identifiable on the 12-month SOM. For instance, 
a strong one-year group starting from August was observed on the SOM in Fig. 4.9.9, both 
from the coordinate data (node (2,8), Fig. 4.9.9a) and from the field data (node (0,8), Fig. 
4.9.9b). In this group, densities in Oligochaeta were initially low, but gradually increased in 
the later period. Densities in Chironomus sp., however, were in the intermediate range with 
some fluctuation. Additionally, Baetis densities were initially low but increased qtrongly in 
the last part of the 12-month period. This grouping characteristically represented the pattern 
of community dynamics that would be frequently expected in the survey area.
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Figure 4.9.8 A pattern of community changes for 3 months. The name of the sample sites 
indicates “year (two digits)”-“month (two digits)”-“sample site”. (a) community changes 
appearing on node (8,1) of the SOM in Fig. 4.9.4a defined with coordinate data, and (b) 
community changes on node (0,7) of the SOM in Fig. 4.9.5a defined with field data. 
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Figure 4.9.9 A pattern of community changes for 12 months. The symbols for the sample 
sites are explained in Fig. 4.9.8. (a) community changes on node (2, 8) of the SOM in Fig. 
4.9.6a defined with coordinate data, and (b) community changes on node (0, 8) of the SOM 
in Fig. 4.9.7a defined with field data. 
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Discussion and conclusion 

In this study the combinational use of the SOM was applied to grouping community 
changes. We demonstrated that the model developed was capable of identifying community 
changes commonly occurring in the survey area. Dimension reduction was achieved by us-
ing the coordinate data from the SOM, and datasets for up to a one-year period were effi-
ciently grouped. Grouping of community changes on a large scale is useful for acquiring a 
comprehensive view of the progressive or regressive development of aquatic ecosystems in 
stressful situations and is also urgently required for establishing policies for sustainable 
management of aquatic ecosystems. The model proposed could be used a a novel tool to de-
tect the representative community changes observed in the survey area.

Although there have been numerous accounts concerning the classification of communi-
ties through conventional multivariate analyses in ecology as stated above (e.g., Bunn et al. 
1986, Legendre and Legendre 1987, Ludwig and Reynolds 1988, Quin et al. 1991), not 
many studies have been focused on grouping of community changes per se. Similarly 
grouping in community changes has been rarely reported in artificial neural networks 
(Chon et al. 2000a, b), although there have been many studies on prediction of community 
dynamics using ANNs. In classification, communities were mostly grouped in static terms, 
not in dynamic terms in ANNs, although the data might have been collected sequentially 
(see Lek and Guegan (2000) and Recknagel (2003) for implementation of ANNs).

Dimension reduction is a major requirement especially when the data consist of a higher 
dimension than that tolerated. Generally ecological community data consists of many spe-
cies at numerous sampling sites over a long period. Dimension reduction is frequently con-
sidered as a preprocessing step for data analysis in ecology. This study demonstrated that 
dimension reduction could be efficiently carried out with the combinational use of the 
SOMs. This advantage would be more appreciated if the sampling period was lengthened. 

A combination of the ART plus the SOM has been used for grouping community 
changes (Chon et al. 2000a). In this case the number of input nodes was dependent upon the 
number of taxa times the input period. In this study, in contrast, the number of input nodes 
was constant with 2 (i.e., x, y coordinate) times input period, while the number of taxa is 
included in input data for the model of the ART plus the SOM (Chon et al. 2000a). The 
model developed in this study shows an advantage of dimension reduction. In this case, 
however, only three taxa were used for revealing the impact of pollution more strongly in 
community response and for the simplicity of modeling. Since non-linearity would be more 
complex and difficult for analysis as the number of variables is increased, further investiga-
tion would be necessary into its application to the datasets with a higher number of taxa, for 
instance, community changes in clean aquatic ecosystems. Additionally, since the secon-
dary SOM is heavily dependent upon the initial coordinate data obtained by the first SOM 
(Fig. 4.9.1), it is important to have the appropriate coordinate datasets from the first SOM, 
and it is desirable to conduct a sufficient number of training sessions with the first SOM to 
get the most representative community groupings collected at the survey area. 

In summary, the combinational execution of the SOMs was demonstrated in grouping 
community changes in periods of up to 12 months through dimension reduction of input 
data. It was possible to find seasonal and yearly community changes that are typically ex-
pected in polluted streams in Korea. The combinational use of the SOM could be useful for 
mining large-scale time series data to find representative community changes occurring in 
the survey area.
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4.10 Patterning, predicting stream macroinvertebrate 
assemblages in Victoria (Australia) using artificial neural 
networks and genetic algorithms*

Horrigan N†, Bobbin J, Recknagel F, Metzeling L

Introduction

Macroinvertebrate assemblages are widely used for biomonitoring of stream ecosystems. 
Several modern assessment concepts and approaches have been desribed. The so-called ref-
erential approach (Parsons and Norris 1996, Marchant et al. 1999, Smith et al. 1999) is 
based on the comparison of macroinvertebrate communities between potentially impacted 
sites and reference sites considered to be pristine. Knowing the relationships between envi-
ronmental variables and macroinvertebrate occurrence at reference sites, it is possible to 
predict species or taxa, which should occur at the remaining sites in the absence of anthro-
pogenic stress. The ratio of observed/expected (O/E) families is used as a measure for site-
specific ecological conditions.

Statistical and computational techniques have been successfully integrated into the ref-
erential approach facilitating stream site classification and prediction of macroinvertebrate 
assemblages. Classification or grouping of macroinvertebrates into assemblages is some-
times criticized as an arbitrary procedure as they are usually distributed in continuous gra-
dients rather than well defined separate groups (Chessman 1999). However in order to deal 
with large numbers of macroinvertebrate taxa it is often crucial to consider groups instead 
of individual taxa provided appropriate classification techniques are available.

Widely used statistical methods for data classification and ordination are cluster and 
principal component analysis. Both methods have shortcomings in coping with heterogene-
ous and nonlinear data, and results can be confounded by outliers and missing data. Artifi-
cial neural network (ANN) based classification techniques such as Kohonen or Self-
Organizing Maps (SOM) may help to overcome these shortcomings. A number of ecologi-
cal case studies have shown that SOM are an efficient classification tool (Chon et al. 1996,
2003, Cereghino et al. 2001, Park et al. 2001a, 2003a, Brosse et al. 2001, Giraudel and Lek 
2001).

ANN as well as genetic algorithms (GA) prove to be appropriate for the prediction of 
macroinvertebrate and fish assemblages in streams. Multi-layer perceptron ANN were suc-
cessfully applied to predict the occurrence of stream macroinvertebrates from environ-
mental variables (Walley and Fontama 1998, Schleiter et al. 1999, Pudmenzky et al. 1998, 
Hoang et al. 2001). GA were used to predict fish distribution from physical characteristics 
of streams (d'Angelo et al. 1995) and to select input variables of classification tree models 
predicting benthic macroinvertebrate communities in Belgian watercourses (Goethals et al. 
2003).

* The authors are grateful to the EPA Victoria for providing the database. 
† Corresponding: nelli.horrigan@adelaide.edu.au 
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Even though ANN have clearly demonstrated their potential for ecological applications 
in terms of classification and prediction they store learned models in a highly distributed 
manner by means of connection weights, which bear little resemblance to human under-
standing of rules or concepts. By contrast, GA can be used for knowledge discovery by de-
riving predictive models or rule sets, which can easily be understood (Recknagel 2001). 
Recknagel et al. (2002) compared applications of ANN and GA in terms of forecasting and 
understanding of algal blooms in Lake Kasumigaura (Japan). It was demonstrated that 
models explicitly synthesized by GA not only performed better in seven-days-ahead predic-
tions of algal blooms than ANN models, but provided more transparency for explanation as 
well. The present paper demonstrates the use of both ANN and GA for the classification 
and prediction of macroinvertebrate spatial assemblages in the stream system of Victoria 
(Australia). The stream database contains abundances of macroinvertebrates in conjunction 
with environmental and stream habitat characteristics. Both ANN and GA are applied in 
order to best compromise: (i) the discovery and explanation of patterns of macroinverte-
brate occurrence within the Victorian landscape, and (ii) the prediction of these patterns 
from environmental variables. The predictive and explanatory performance of both ANN 
and GA will also be compared.

Material and methods 

Data

The stream database for this study was provided by the Victorian Environment Protection 
Authority, Australia. It contained abundances of 128 macroinvertebrate families sampled at 
407 stream sites between March 1990 and November 1998. The sampling sites were chosen 
in order to represent the main types of rivers in each of the 25 drainage basins defined by 
the Australian Water Resources Council (AWRC). Most sites were sampled on four occa-
sions in spring and autumn over the two consecutive years and seasonal habitat data for 
single sites were combined (Marchant et al. 1999). At each site, two habitats were sampled 
separately: the main-channel (often a riffle) and the bank or edge of the channel. In order to 
simplify clustering, only the database including edge habitats was used for this study. A 
sample consisted of a macroinvertebrate collection over a 10m transect for each habitat us-
ing a D-frame hand net (0.25 mm mesh), followed by 30 minutes picking of live specimens. 
Macroinvertebrates were preserved in 70% ethanol and identified to family level. Speci-
mens of Oligochaeta, Hydracarina, and Nematoda were not identified further (Marchant et 
al. 1999). Only environmental variables presumably not affected by human activity (natural 
variables) were used for this study. The variables distance from source, slope, altitude, 
catchment area, width, alkalinity, macrophyte taxa and macrophyte abundance category 
were log-transformed.

Modelling techniques 

Three modeling techniques (SOM, MLP and GA) were applied in order to pattern, predict 
and explain occurrences of macroinvertebrate assemblages based on 19 environmental vari-
ables utilising all environmental and macroinvertebrate data of the 407 stream sites. The 
conceptual framework for this study is shown on Fig. 4.10.1. Neural Solutions 4.0 and Mat-
lab 5.3 software with the SOM Toolbox developed by The Laboratory of Computer and In-
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formation Science (CIS) at Helsinki University of Technology was used for this study. The 
underlying GA was designed and implemented in C++. 

6 spatial clusters with similar 
macroinvertebrate assemblages 

Comparison 

Clustering of 407 sites on the base 
of similarity of macroinvertebrate 
assemblages 

Method: SOM,  k-means clustering 
of SOM U-matrix 

Prediction of spatial clusters from 
19 environmental variables 

Method: MLP 

Prediction of spatial clusters from 
19 environmental variables 

Method: GA 

Figure 4.10.1 The conceptual framework for the study 

Patterning of macroinvertebrate assemblages by SOM

The abundance pattern of 128 macroinvertebrate taxa was examined using a SOM with a 
9x11 topology. The resulting U-matrix was partitioned by k-means algorithm into 6 clus-
ters, which were used for the further analysis. In order to relate environmental variables to 
the above mentioned clusters, we built another SOM with 19 environmental variables and 
the number of the cluster as a separate variable 20 variables in total, all data normalized be-
tween 1 and 0. We used component planes for this analysis, which visualise continuous 
values of each variable used for building SOM on the same spatial scale as all the other 
contributing variables. Comparison of component planes allows the identification of com-
mon trends and correlations between variables, which might not be easily detectable by sta-
tistical methods. Although SOMs have been widely applied for the analysis of various eco-
logical problems, analysis of component planes has not been extensively studied so far. 
Park et al. (2003c) applied it to study the contribution of each environmental variable to the 
classification of sampling sites from different water bodies in The Netherlands.

Prediction of the assemblage types by ANN

In order to predict the types of macroinvertebrate assemblages by means of a multilayer 
perceptron, a 25x407 data matrix was created. It considered the 19 environmental variables 
as inputs and the 6 spatial groups derived from SOM for each of the sites as outputs. All 
these data were normalized into the range between 0 and 1. The MLP contained 19 neurons 
in the input layer, 10 neurons in the hidden layer and 6 neurons in the output layer. The 
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sigmoid function was used as transfer. The database was randomly subdivided into a train-
ing subset (65% of the data), a cross-validation subset (10%) and a testing subset (25%). 
The accuracy of MLP reported in this paper is obtained from the simulation on the testing 
subset which was not used for training purposes. The optimum training error was achieved 
by 1500 iterations.

Figure 4.10.2 Structure of an evolved rule tree 

Prediction of the assemblage types by GA 

A GA consists of a population of individuals where each individual represents a model. In-
dividuals are modified by mutation and crossover and the best individuals are selected to 
form a new population. Each new population is called a generation. In the context of the 
present paper a GA is used to evolve associations between physical and chemical properties 
of streams (attributes) and spatial clusters derived from partitioning of SOM U-matrix (out-
puts) based on similarities of macroinvertebrate assemblages. Attributes are associated with 
outputs by means of a classifier or rule.

Rules are combined to the rule sets by using a ripple-down structure shown in Fig. 
4.10.2. When a rule is true any consecutive horizontal rule is immediately tested. If a rule is 
not true then the consecutive vertical rule is tested. Horizontal arrows in Fig. 4.10.2 repre-
sent exceptions to the rule to their left, and vertical arrows point to the rule to be tested if 
the current rule is not true. The last rule found to be true has its action implemented. If no 
true rule is found then the evolved default action is performed. Rule D in Fig. 4.10.2 would 
have its action performed if and only if rule A is true, rule B is not true and rule D is true. 
The approach used by the GA facilitates gradual evolution of the model by allowing muta-
tion processes to slightly modify the model behaviour with exceptions to current rules. In-
formation contained in the rules is represented symbolically, where the symbols are associ-
ated with values in a parameter vector that is co-evolved alongside the rulesets. Each 
individual in the population is a complete ruleset. During each generation the structure of 
the ruleset is evolved by means of discrete operators (addition, subtraction and modification 
of the rules), and the parameters which define the values on the rules are modified by 
means of a self adaptive evolutionary algorithm (Schwefel 1995, Baeck 1996). 

Rule Rule Rule

Rule

Rule Rule

Rule

If Not

Except If 
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Results

Patterning of macroinvertebrate assemblages by SOM

The resulting SOM U-matrix of this data is shown in Fig. 4.10.3a and the six clusters or 
groups resulting from partitioning by K-means algorithm in Fig. 4.10.3b. The six clusters or 
groups roughly correspond to the five ecological zones defined by the EPA Victoria (Fig. 
4.10.4). Group 1 corresponds to Forest A, Group 2 to Cleared Hills and Coastal Plains, 
Groups 3 and 4 to Forest B, Group 5 to Highlands and Group 6 to Murray and Western 
Plains.

Figure 4.10.3 SOM outputs: (a) U-matrix, (b) Partitioning into 6 clusters by the K-means 
algorithm.

Fig. 4.10.5a shows a distribution of 6 groups or clusters on SOM grid (see Vesanto et al. 
2000 for explanation of hit diagrams). Fig. 4.10.5b shows selected component planes which 
appear to have some patterns corresponding to the distribution of 6 groups on the same 
scale. Alkalinity is particularly low in the area corresponding to group 1, and particularly 
high in groups 6 and 3. The number of macrophyte taxa is comparatively low at groups 1 
and 2, and comparatively high at all other groups. The distribution of the macrophyte cate-
gory amongst clusters is quite patchy, but distinctively different at groups 1 and 6. Distribu-
tion of values for vegetation category does not follow horizontal gradient characteristic for 
distribution of clusters at first sight, but it might be an important variable to distinguish be-
tween groups 1 and 6, and to some extent between groups 3 and 4. Sites belonging to 
groups 1 and 6 clearly differ in relation to slope, with high values for this variable at group 
1 and low values at group 6. Group 1 can also be characterized by relatively high altitude, 
although for other groups altitude does not seem to fall into any distinctive pattern. Other 
variables do not appear to have any distinctive pattern corresponding to the distribution of 
clusters (groups) and will not be considered here.

Prediction of the assemblage groups by ANN and GA 

The average percentage of correct predictions by the ANN of the six assemblage groups of 
macroinvertebrates as discovered by the SOM was 88.56% while the average percentage of 
correct predictions by GA was 77.1%. The mean squared error (MSE) and the percentage 

a b
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of correct predictions (PCP) for each group by the MLP and the GA is shown in Table 
4.10.1.

Figure 4.10.4 a) Distribution of macroinvertebrate groups resulting from SOM (sites be-
longing to the same group have the same marker) b) biological regions in Victoria based on 
benthic macroinvertebrates (Metzeling et al. 2001). 

Table 4.10.1 Mean square error (MSE) and percentage of correct predictions (PCP) by ap-
plications of ANN and GA for each of 6 groups.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 
MSE (ANN) 0.069 0.132 0.054 0.15 0.11 0.03 
PCP (ANN) % 91.17 82.35 94.11 83.33 84.31 96.07 
PCP (GA) % 93.42 96.97 84.44 89.47 53.17 80.90 

GA rules 

For the sake of space we consider here ruleset for group 1 only (Table 4.10.2). All the val-
ues considered by the GA ruleset fall into the minimum and maximum range within SOM 
cluster (group). However, taking into consideration that group 1 is heterogeneous and spa-
tially scattered (Fig. 4.10.4) the range and averaged values for the predictor variables can 
give only a very approximate and rough idea about combinations of variables contributing 
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to the occurrence of this particular macroinvertebrate assemblage. On the contrary, rules re-
sulting from application of GA give more detailed and directional descriptions of the physi-
cal variables, allowing for spatial heterogeneity. For example, the average value of the vari-
able latitude is –37.52. In the ruleset it takes two directions: latitude is not between -38.2 
and -37.4 (latitude >-38.25) and latitude is between -37.4 and -36.4. This is the case for the 
other variables as well. Vegetation category has average value of 3.52, in the ruleset its two 
directions are: vegetation category >2.07 and vegetation category < 2.07. The same stands 
for shade and alkalinity. Variables altitude and macrophyte category have only one direc-
tion each in agreement with averaged values for the cluster.

Group 1
Group 2
Group 3
Group 4
Group 5
Group 6

Alkalinity Macrophyte taxa Macrophyte category

Vegetation category Slope Altitude

Figure 4.10.5 a) SOM hit diagram showing distribution of 6 groups (clusters) on SOM grid 
b) selected SOM component planes for environmental variables (all data normalized be-
tween 0 and 1, darker shades correspond to higher values). 

Discussion and conclusion 

In this study we applied and compared three machine learning methods: Self-Organizing 
Maps neural network, Multilayer Perceptron neural network and Genetic Algorithm. The 
SOM neural network with K-means algorithm applied has been able to produce a meaning-
ful clustering largely in accordance with previously defined bioregions of the state of Victo-

a

b
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ria. Traditionally in ecological applications neural network models are used for the predic-
tion of taxa occurrence or abundance from a set of environmental variables.

Table 4.10.2 Characterisation of the macroinvertebrate assemblage group 1 by means of 
environmental variables in terms of descriptive statistics and ruleset from GA.
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VARIABLE

LATITUDE

LONGITUDE

REACH PHI
SUBSTRATE
HETEROGENITY
VEGETATION
CATEGORY
SHADE
DISTANCE
FROM SOURCE
SLOPE
ALTITUDE

CATCHMENT
AREA

MEAN (MIN/MAX)

-37.52  (-39.072/  -
36.36)
146.25 (143.28/148.47)

-3.10 (-7.22 / 4.03 )
 2.68 (1.25 / 5.00)

 3.52 ( 2.00 / 4.00)

 3.07 ( 1.00 / 5.00)
 0.89 ( -0.70/ 2.00)

 1.19 ( -0.30/ 2.52)
 2.63 ( 1.30/ 3.23)

 1.51 ( -0.10 / 3.23)

VARIABLE

WIDTH
BEDROCK%
BOULDER %
COBBLE %
PEBBLE %

GRAVEL %
ALKALINITY
MACROPHYTE
TAXA
MACROPHYTE
CATEGORY

MEAN (MIN/MAX)

0.61 (-0.20/ 1.48)
4.95 ( 0.00 / 60.00)
13.81 ( 0.00 / 65.00)
26.70 ( 0.00 /70.00)
12.07 ( 0.00 /

50.00)
11.47 ( 0.00 / 42.50)
0.96 ( 0.57/ 1.71)
0.25 ( 0.00 / 0.88)

0.06 ( 0.00 / 0.60)
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IF 0.51 < CATCHMENT AREA < 1.02
OR IF MACROPHYTE CATEGORY < 0.13
                                       AND VEGETATION CATEGORY > 2.07
                                       AND ALTITUDE > 1.88

AND SHADE < 0.323 OR SHADE > 1.17
AND LATITUDE > -38.2 OR LAT <  -37.4

OR IF MACROPHYTE CATEGORY < 0.13
                                       AND VEGETATION CATEGORY < 2.07
                                       AND LATITUDE > -38.25

AND ALTITUDE > 1.88 AND ALKALINITY < 1.08
AND -37.4 < LATITUDE < -36.4

OR IF MACROPHYTE CATEGORY < 0.13
                                       AND VEGETATION CATEGORY > 2.07
                                       AND ALTITUDE  > 1.88

AND 0.323 > SHADE > 1.17 AND  -37.4  < LATITUDE< -36.4
AND 1.09 < ALKALINITY < 1.39

OR IF ALKALINITY > 1.087 AND VEGETATION CATEGORY > 2.07
                                      AND -3.38 < REACH PHI < -2.01
THAN ASSEMBLAGE 1 ELSE ASSEMBLAGES 2 TO 6

In this study we explored the question of whether it is possible to predict occurrence of 
a unit larger than the separate taxa, in our case defined as the pattern in abundance and co-
occurrence of all taxa recorded. Although, separating these patterns as distinct clusters or 
groups might be artificial, it appears that both MLP and GA are well capable of predicting 
these groups from the set of environmental variables. Contrary to the previous findings of 
Recknagel et al. (2002) showing that in time-series, the case predictive power of GA was 
higher that that of ANN, in our case ANN outperformed GA by approximately 10%, al-
though both methods were able to meet the commonly acceptable 70% threshold of correct 
predictions.

The sites used for the analysis were reference sites, presumably least affected by agricul-
tural practices or urban developments. We assume that in this case it should be easy to ex-
plain patterns in abundance and co-occurence of various macroinvertebrate families to-
gether, by a range of environmental variables. We tried to do this by examining SOM 
component planes and GA rulesets for the environmental variables likely to be important in 
distinguishing group 1 from the other groups. In terms of explanatory power GA is com-
monly considered as offering more transparency by the generation of rules providing the di-
rectional explanation for environmental heterogeneity, while neural networks are consid-
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ered to be a “black” or “grey” box technique. SOM component planes provided an easy and 
highly visual way to assess relationships between variables and to suggest which ones are 
likely to be of importance in shaping macroinvertebrate assemblages within each group. Al-
though this approach can be criticized as being, to a certain extent, qualitative and intuitive, 
we suggest that it still can be valuable when quick and visual assessment of data is needed. 
GA rules provide a qualitative approach but are not easy to follow and understand, it might 
be useful where more in-depth assessment is needed. 

The prediction of defined macroinvertebrate assemblages instead of separate taxa can be 
used as an extention of the referential approach outlined in the introduction. If the type of 
macroinvertebrate assemblage predicted under particular environmental conditions does not 
match that actually found, it might be then compared against other possible assemblages 
indicative for various stresses such as increased salinity and others.

In conclusion, this study demonstrated that ANN and GA provide different approaches 
to the problem and neither of them were clearly favored in the context. Both methods were 
able to predict spatial groups of macroinvenvertebrates from environmental variables with 
high efficiency and provide an explanation from slightly different angles. We recommend 
the use of the both methods in combination for achieving the most accurate predictions and 
the highest explanatory power.



5 Diatom and other algal assemblages 

Editor: Descy JP*

5.1 Introduction 

From low-order streams to lowland rivers, micro-algae are at the basis of the food web and 
are key elements in ecological and biogeochemical processes. Modelling the composition 
of algal assemblages in river systems has been a challenge rarely addressed by freshwater 
ecologists. Indeed, most algal models – essentially phytoplankton models – have been de-
signed to simulate total algal biomass, which seems sufficient to take into account the func-
tional role of micro-algae in ecosystems. However, micro-algae form high diversity assem-
blages, which are sensitive to disturbance and stresses, and therefore can be excellent 
indicators of environmental change, at different scales in space and time. Moreover, some 
key ecological processes which are species- or class-specific cannot be represented satisfac-
torily by chlorophyll a models: for instance simulating variations of silicon in lowland riv-
ers obviously involves modelling planktonic diatom growth and losses. As all diatoms do 
not respond in the same way to environmental conditions, have different growth rates and 
have different settling rate and sensitivity to grazing, predicting Si concentration may 
quickly become challenging and certainly require modelling different diatom species or 
categories. Furthermore, simulating phytoplankton dynamics in the extremely variable en-
vironment of lowland rivers involves development of non stationary models which take into 
account variations of the forcing variables (light, discharge) in time and space. Not surpris-
ingly, few research teams have developed such complex models (Billen et al. 1994, Bor-
mans and Webster 1999, Thébaut and Qotbi 1999, Everbecq et al. 2001, Schöl et al. 2002, 
Descy et al. 2003). 

However, process-based, dynamic simulation model clearly have limits. For instance, 
they can deal with only a few functional groups (see e.g. Eliott et al. 1999), and certainly 
not with a high number of species. This capacity is further limited by the lack of knowledge 
on eco-physiological data for most phytoplankton species, and when it comes to benthic 
micro-algae, eco-physiological data are almost totally missing.  

Therefore, there is a need for an alternative approach for predicting the composition of 
algal assemblages at the species level, and it may be provided by the use of data-based 
models using machine-learning techniques. In this area a great deal of pioneer work has 
been carried out by Recknagel et co-authors in a series of applications dealing with the pre-
diction of cyanobacteria blooms, mostly in lakes (Recknagel et al. 1997, Recknagel 2003). 
These applications have demonstrated the ability of Artificial Neural Networks (ANN) and 
related algorithms to predict abundance of single algal species in freshwaters, even if eco-
physiological knowledge is scarce. Sensitivity analyses of the models may help identifying 
key variables which determine species distribution, and new techniques which allow for ad-
aptation of taxa, can be used for allowing flexibility of the species response to environ-
mental factors. 

In the following chapter, we present applications of machine-learning techniques used 
for classification and prediction of mostly riverine micro-algal assemblages. Two papers 

* Correspondence: jpdescy@fundp.ac.be 
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are devoted to prediction of planktonic cyanobacteria. First, an application of CBR (Case-
Based Reasoning) is developed for prediction of chlorophyll a and Microcystis blooms in 
Lake Kasumigaura. The author (P.A. Whigham) explores in great detail the possibilities of 
this machine learning technique when trained on time series ecological data sets. The sec-
ond paper, by G.-J. Joo and K.-S. Jeong, investigates the potential of SOM (Self Organising 
Maps) for understanding the changes in the communities of cyanobacteria which form 
blooms in conditions of low discharge in the heavily regulated Nakdong River, Korea. This 
analysis nicely shows the effects of environmental variables on the changes of dominance 
among several genera of cyanobacteria. 

The following papers all address modeling and prediction of benthic diatom assem-
blages in rivers, at different scales, with two main objectives: classification of these assem-
blages as related to environmental gradients, and prediction of community structure. All 
studies were carried out in the framework of the EC-5thFP PAEQANN project, devoted to 
the use of ANN for predicting aquatic communities in fresh waters. In several of the papers 
presented here, diatoms are identified and key elements of the river benthos, useful for 
stream classification and for assessment of ecological status of rivers. All studies involved 
careful collection of environmental data and biological data in France, Belgium, Luxem-
burg and Austria, structured into partial or global data bases (Gosselain et al. 2004). The 
data were processed with different techniques, in different river basins or across several ba-
sins, in order to identify diatom assemblages which may correspond to reference and al-
tered conditions in these basins. Indeed, benthic diatoms are known to respond to water 
quality changes driven by natural factors such as those depending of geochemistry, as well 
as to alterations from anthropogenic pressures. Hopefully, the papers presented here are 
significant contributions to stream classification, and will be useful in water quality man-
agement. Moreover, the results have also contributed to identify possible taxonomic confu-
sions and to assess their consequences, but the main fundamental input may be in im-
provements to the knowledge in benthic diatoms ecology. Indeed, the results have allowed 
confirming the auto-ecology of many species, have provided clues to the auto-ecology of 
less well-known diatoms, and have enabled characterization of assemblages across several 
river basins of the European continent.   
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5.2 Applying case-based reasoning to explore freshwater 
phytoplankton dynamics*

Whigham PA†

Introduction

The prediction and explanation of algal abundance and succession is of major interest to 
freshwater ecologists. Freshwater data often exhibit characteristics such as non-linearity, a 
non-normal distribution, complex relationships, sampling and scale dependence, noise and 
non-independence of observations (Gillman and Hails 1997, Mastrorillo et al. 1997b) that 
make analysis and modelling difficult. In practice these issues are often ignored and classi-
cal statistical analyses are relied upon despite their underlying assumptions being violated 
(Fielding 1999). Recent work has focussed on the use of neural networks, recurrent neural 
networks, rule-based induction systems, and evolutionary techniques to produce models 
that predict the value of various freshwater variables. Within the machine learning field, ar-
tificial neural networks have received much attention (Lek et al. 1996b, Tan and Smeins 
1996, Mastrorillo et al. 1997b, Brosse et al. 1999b, Scardi 2001, Wilson and Recknagel 
2001), though genetic algorithms (d'Angelo et al. 1995, Bobbin and Recknagel 1999, 
Whigham and Recknagel 2001a), classification and decision trees (Stankovski et al. 1998, 
Whigham 2000) and cellular automata (Silverton et al. 1992, Dunkerley 1997, Dunkerley 
1999) have also been used to examine ecological systems. However, there are few studies 
employing case-based reasoning (CBR) in an ecological context (van Den Brink et al. 2002, 
Szabados et al. 2003), although they have been demonstrated to perform well in compara-
tive studies with other machine learning techniques (MacGillivray 2000). 

This paper will examine the use of CBR in the domain of time-series ecological models, 
using a freshwater algal system as a case study. The contribution of this work is to demon-
strate that a time-series interpretation of CBR can be used to consider similar sequences of 
behaviour (Nakhaeizadeh 1993), and that identifying these sequences offers different in-
formation from standard methods of model construction. The paper is organised as follows:  
The next section introduces case-based reasoning as a predictive technique; the following 
section applies a tim pwhigham@infoscience.otago.ac.nz e-series based CBR system to the 
prediction of chlorophyll-a and Microcystis based on a set of water quality variables, that 
highlight the issues and limitations involved in applying CBR to time-series data. The dis-
cussion is on future research directions. 

* The author would like to thank Mr. Alec Holt for discussions and background information on case-
based reasoning, the anonymous reviewers for clear and useful directions, and Egbert Van Nes for 
supplying supporting literature. 

† Correspondence: pwhigham@infoscience.otago.ac.nz 
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Case-based reasoning 

Case-based reasoning (CBR) is a concept matching technique that was developed in the late 
seventies (Schank and Abelson 1977). CBR uses previous experience, represented as a set 
of cases, to predict the result of new, unlabelled, cases that are presented. A fundamental 
notion with CBR is the concept of similarity, which is used to select from the case base the 
most appropriate case to match against the current new observation. 

The retrieval and adaptation of old cases and the retention of new cases require a process 
(Klolodner 1993, Watson 1997). This process is defined as the CBR cycle and has four 
main components: 
1. Retrieve the most similar case(s): When the CBR system is given a new problem, the 

case base is searched for similar cases, defined by a some metric that determines the 
‘distance’ between the new problem and each case from the case base. The solution is 
based on the most similar (nearest neighbour) case, or some weighted combination of a 
set of similar cases. Typical metrics are the Euclidean and absolute distance between 
cases, where each attribute is treated as an orthogonal axis in n-dimensional space.  

2. Reuse the information and knowledge in that case(s) to solve the problem: Use the solu-
tion of these similar case(s) as the solution to the current problem or as a guide to creat-
ing a new solution. 

3. Revise the proposed solution as necessary: Since the new problem may differ from those 
retrieved from the case base, the facility is available for the adaptation of the retrieved 
solution based upon other information sources (i.e. user experience, literature, other 
model results) to suit the current problem. The suggested solutions can therefore be 
modified if desired by the user. 

4. Retain the new solution as part of a new case: Any new problem/solution pair can be a 
new case. This new case is stored in the case base and is available for future problems.  
This allows the case base to grow with use, and effectively to learn from its experiences. 

In the context of this study, the revision and retention of new cases is not considered, 
however a method (see below) for generating new case values, based on a weighted inter-
polation procedure, indicates some possible directions for future research. 

A key component of CBR is the method of computing similarity between objects.  
There are many different ways of computing similarity, including (Bridge 1998):  

the feature-based approach, where the similarity is based on feature commonality and 
difference;
the geometric approach, where each case is represented by n features, defining a loca-
tion in n-dimensional space. Similarity is then based on the distance between objects in 
this space; and 
the structural approach, where objects are represented by a graph structure (nodes, 
links), and similarity is based on the difference between these graph structures. 

The flexibility of CBR is based on the fact that objects may be complex, have mixed at-
tribute types, and not necessarily fit within a standard format. Hence, there are few CBR 
applications in standard time-series modelling since this domain is well covered by other 
statistical and machine learning techniques. The purpose of this paper is to explore the 
properties of CBR in an ecological time-series context and to consider what different types 
of information can be obtained from the use of CBR compared with other common meth-
ods. The hypothesis is that CBR should be considered as an additional tool for the study of 
freshwater dynamics and the analysis of complex ecosystems. 
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Time series CBR 

CBR has been successful in domains where there are independent cases, and where an ap-
propriate result from the CBR matching is to give a list of similar cases, ordered by the 
similarity metric. Of course, in a time-series domain there will be many cases that require 
matching, and a single time-series solution would seem an appropriate response. Previous 
research in CBR with temporal data include weather prediction (Roydhouse and Jone 
1995), process control (Brann et al. 1995), robotics and planning (Ram and Santamaria 
1997), however the application of CBR to multivariate time series systems has been little 
used, probably because there are many other techniques that can be applied to this type of 
data, and CBR is most often applied where there are mixed data types, and it is difficult to 
formulate a model.   

Reasoning about dynamic systems is difficult because the context of any event needs to 
be taken into account when assessing similarity. This is particularly difficult with CBR 
where typically each individual case is registered in the system, without a context of other 
cases. Additionally, the concept of similarity between time series is a complex problem that 
is often computationally expensive. Some open issues when applying CBR in the temporal 
domain have been identified as (Ram and Santamaria 1997): 

How should continuous cases be represented? 
When do cases start and end (in the temporal sense)? 
When are two experiences different enough to warrant consideration as independent 
cases?
What is the scope of a single case? 
Additionally, in the scope of modelling freshwater systems, the issues include: 
How are predicted models to be presented? 
What can be learned regarding the behaviour of the system through case similarity? 

Case study example 

The dataset used for this study is a weekly-interpolated time series of water quality vari-
ables, zooplankton and cholorophyll-a for Lake Kasumigaura, in South-Eastern Japan (Ta-
ble 5.2.1). The data has been studied previously with some success, based on using neural 
networks (Recknagel et al. 1998), genetic programming equation and rule models (Bobbin 
and Recknagel 1999, Whigham and Recknagel 1999), and optimised difference equations 
(Whigham and Recknagel 2001a). The CBR approach will be applied to the modelling and 
understanding of chlorophyll-a dynamics for this system. 

Data characteristics of Lake Kasumigaura 

Lake Kasumigaura is a large, shallow water body where no thermal stratification occurs.  
The lake has high external and internal nutrient loadings and therefore primary productivity 
is high. Algal succession changes species abundance year by year, therefore making it very 
difficult to predict algal blooms or develop causal models of algal behaviour. Kasumigaura 
is dominated by harmful blue-green algal species such as Microcystis spp, Oscillatoria and 
Anabaena flos aquae.
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Predicting Chl-a concentration 

The CBR system used for this study is one component of a time series toolbox, TSToolBox 
(Keukelaar 2002). The CBR component was created for this study since available commer-
cial CBR systems would not easily integrate the time-series nature of the data, nor would 
they give explicit and appropriate feedback for the modelling (i.e. time-series plots) auto-
matically. The initial similarity measure used between any two cases was based on the 
geometric distance in n-dimensional space, based on the selected independent variables. 
Since each variable has a different range of values, those variables with a larger absolute 
value will dominate the distance measure. 

Table 5.2.1. Factors measured in Lake Kasumigaura with the weekly time series data. 

Measured Factor Average (  SD) Units
Orthophosphate 14.14 (  25) µg/l
Nitrate 520.56 (  503) g/l
Secchi depth  85.43 (  44) Cm
Dissolved oxygen  11.2 (  2) mg/l
pH 8.74 (  0.5) -
Water temperature 16.36 (  7) C
Rotifera 229.2 (  293) ind/l
Cladocera 169.9 (  221) ind/l
Copepoda 156.4 (  83) ind/l
Chlorophyll-a 74.43 (  42) g/l
Microcystis 38563 (  95202) cells/ml

All variables were therefore normalised between a range of 0 and 1 to ensure that the 
range of values did not distort the relative contribution of each variable when measuring 
similarity between cases. Each variable was also given a weighting between 0 and 1, al-
though initially these were all set to 1. The weights are used to indicate the significance of 
each variable. Later sections will explore optimising these weights as a method to investi-
gate the significance of each variable in prediction. The root mean square error (RMSE) 
was used to measure the accuracy of the resulting time series predictions. Hence, for n in-
dependent variables, each with weight Wn, the similarity distance measure Dij between two 
cases, i and j, with values for each independent variable n of Vin and Vjn , is 

2

n in jn
n

ij

W V V
D

n                   (5.2.1) 

Examining the chlorophyll-a concentration for the 10 years (Fig. 5.2.1) it is clear that 
the years 1984-86 were significantly more productive than later years. Note that CBR can-
not extrapolate values, since the current case set is used to give the value of the predicted, 
most similar, unknown case. Therefore, if the previous time series does not have examples 
of the extremes of the dataset then these values cannot be predicted.  

Performance when no temporal relationships are considered 

To illustrate the CBR performance, the case based was set to 1984-1985, and the system 
used to predict the chlorophyll-a behaviour for 1987-1988, using nearest neighbour similar-
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ity to match the cases for each weekly value. All water quality and zooplankton variables 
were used for the similarity match, with equal weighting. The resulting prediction had a 
RMSE of 0.122 with the predicted values shown in Figure 5.2.2.  

The main points to illustrate with Figure 5.2.2 are that the prediction is ragged, fairly in-
accurate and uses very few cases to match the two years of data. However, the overall 
behaviour, in terms of the rise and fall of the chlorophyll-a, is represented to some extent. 
The first improvement to this prediction is to allow the system to automatically optimise the 
weights for each independent variable to minimise the error of the predicted concentration.  

Fig. 5.2.1. Chlorophyll-a concentration in Lake Kasumigaura for 1984-1993. 

Fig. 5.2.2. Initial prediction of chlorophyll-a (expressed as a fraction of the measured maximal concen-
tration) in Lake Kasumigaura for 1987-88, based on 1984-85 cases – RMSE = 0.12. 

The TSToolBox uses an evolutionary algorithm, based on a simple Genetic Algorithm 
(GA) (Goldberg and Holland 1988) to find the most suitable weights (Jarmulak et al. 2000), 
although other optimisation techniques, such as Simplex and Powell, could also have been 
used.

The parameters were set at a population size of 100, for 50 generations, using a mutation 
probability of 5% and crossover probability of 90%. A generational population was used, 
with 5-member tournament selection to select parent individuals for the next generation. 
This optimisation of the weights for each variable can be interpreted as indicating the inde-
pendent variables that are most important in selecting the case conditions. The resulting 
prediction after optimisation (Fig. 5.2.3) had a RMSE of 0.073, and overall the dominant 
variables were orthophosphate (0.97), Secchi depth (0.78), Rotifera (0.6) and pH (0.52). 
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This implies that the phosphate and turbidity levels are major factors in the production of 
chlorophyll-a, and that Rotifera levels are correlated with chlorophyll-a levels.

Fig. 5.2.3. Best prediction of chlorophyll-a (expressed as a fraction of the measured maximal concen-
tration) in Lake Kasumigaura using evolved weights – RMSE = 0.07. 

A second technique for improvement is possible with this simple, non-temporal ap-
proach to CBR. Since the predicted values are numeric, a weighted distance interpolation 
for the predicted value can be used. In this approach, the value of the N nearest neighbours 
using the similarity distance neighbourhood can be averaged, where the distance from the 
predicted point is used to inversely weight the contribution of the final predicted value. 
This approach is the same as an inverse distance weighting interpolation procedure, com-
monly used to interpolate spatial data (Burrough and McDonnell 1998). Using equal 
weights for all independent variables, and a neighbourhood of 5 (i.e. 5 nearest matches are 
interpolated) the resulting RMSE for 1987-88 is 0.11, and with optimised weights, based on 
the previous settings, the RMSE is 0.06. This optimised weight prediction is shown in Fig-
ure 5.4, and demonstrates that the interpolation has a smoother and more realistic interpre-
tation of the cases. The dominant weighted variables were Secchi depth (0.77), pH (0.64), 
Rotifera (0.43) and orthophosphate (0.37). Although the ordering of significance is differ-
ent from the previous experiment, the first 4 variables are the same. The accuracy of this 
prediction is significantly better than multivariate linear regression and evolved equations 
using the TSToolBox evolutionary equation discovery system, although due to the method 
of training for the weighted variables it is difficult to give a direct comparison. 

Fig. 5.2.4. Nearest Neighbour interpolation (5) for prediction of chlorophyll-a (expressed as a fraction 
of the measured maximal concentration) in Lake Kasumigaura for 1987-88 with RMSE = 0.06. 
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Introduction of temporal relationships to case matching 

The previous examples treat each case selection independently from one time step to the 
next, and therefore do not incorporate the temporal shape of the cases or the temporal corre-
lations that exist in the data. The first extension to the previous approach is to extend the 
similarity measure to use matching sequences of the independent data. The simplest ap-
proach is to search for a sequence length of p points that best match the current point, by 
extending Equation (5.2.1) to give a sequence similarity instance between two sequences. 
Given Dt

ij is the distance metric between two cases i and j at time t, the sequence similarity 
distance for p points at time t, St

p is defined as: 

0

p
t t x
p ij

x
S D

                         (5.2.2) 

This sequence matching allows the case context to be incorporated into the selection of 
the most appropriate situation, and should therefore help to select an appropriate case match 
if the time scale and processes described by the data have a temporal context. A study of 
the improvement or otherwise of the prediction as p increases for St

p should support an un-
derstanding of the temporal context of the system. Note, however, that a lack of improve-
ment in prediction as p increases does not necessarily imply that the behaviour is best de-
scribed without temporal context.  

Using a sequence of length 1 (i.e. current plus previous point) for matching, the RMSE 
was higher than the non-temporal measure (although not significantly), and the dominant 
variables were orthophosphate (1.0), Secchi depth (0.74), pH (0.68) and dissolved oxygen
(0.56) (Fig. 5.2.5). Extending this to a sequence length of 2 (i.e. current day plus matching 
sequence 2 weeks in past) the RMSE = 0.092, and the dominant variables were pH (1.0),
Secchi depth (0.85), Rotifera (0.84) and orthophosphate (0.77). Although the predicted ac-
curacy was less this result further supports the basic variables of pH, Secchi depth and or-
thophosphate are drivers of the system. Additionally, there is some support to suggest that 
Rotifera could be used as an indicator for bloom conditions. Extending the temporal se-
quence matching to 3 weeks in the past further reduced the accuracy of the model (RMSE = 
0.096), indicating that information from 3 weeks previously does not help understand the 
current context. This is supported by the correlation coefficient, that is approx. 0.9 for 1 
week in the past for chlorophyll-a, but has dropped to approximately 0.7 by 3 weeks. 

Fig. 5.2.5. Prediction of chlorophyll-a (expressed as a fraction of the measured maximal concentration) 
in Lake Kasumigaura. Sequence matching using 1 time step in the past. RMSE = 0.07. 
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Fig. 5.2.6. Changes in cell concentration of Microcystis in Lake Kasumigaura from 1984-1993. 

What conditions lead to increased Microcystis? 

Extracting and describing the general conditions that cause an increase in Microcystis is a 
more difficult example to demonstrate the utility of a CBR approach. The prediction of 
Microcystis from this dataset (Fig. 5.2.6) has been previously studied (Recknagel et al. 
2002) where the timing and magnitude of the bloom in 1986 and the non-occurrence in 
1993 were successfully explained by only one complex rule-based model. Since this is a 
difficult problem it is informative to use CBR to explore why the non-occurrence of 
Microcystis occurred in 1993. Using equal weights for all variables, nearest neighbour for 
similarity and the cases from 1984-85 to predict 1986, the RMSE is 0.12, as shown in 
Figure 5.2.7. This result could not be improved using a sequence match between 1 and 5 
weeks, and in fact the best sequence match occurred with 3 weeks and a RMSE of 0.16.  

When the weights of each variable were optimised the dominant variables were Secchi
depth (0.98) and water temperature (0.97). Using 1984-85 to predict 1993, the system pre-
dicted a Microcystis bloom that was not recorded, although the peak was the least of all 
years predicted. Clearly conditions for the non-bloom were different from these early years. 
Using all years until 1993 as the case base and optimising the weights for the variable se-
lection, the result was only a small bloom prediction that was essentially matched with the 
year 1990 and had a RMSE of 0.018. 

This result, shown in Figure 5.2.8, had dominant variables of dissolved oxygen (1.0), Ro-
tifera (0.99), Cladocera (0.97) and Secchi depth (0.96). By examining the data for this pe-
riod the lack of a Microcystis bloom can be accounted for by relatively high turbidity and 
relatively low dissolved oxygen. The zooplankton numbers were consistent for each of the 
years in the 1990’s and therefore do not indicate a dominant influence on algal cell counts. 

This paper will endeavour to address these issues through a case study, commencing 
with a simple application of CBR that does not take the temporal nature of the data into ac-
count, and by systematic additions to the system to demonstrate the use of CBR in the do-
main of multivariate time series models. 
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Fig. 5.2.7. Prediction of Microcystis cell abundance (expressed as a fraction of the measured maxi-
mum) in Lake Kasumigaura using optimised nearest neighbour, RMSE = 0.08. 

Fig. 5.2.8. Prediction of Microcystis cell abundance (expressed as a fraction of the measured maxi-
mum) in Lake Kasumigaura for 1993 – note case selection from 1990. 

Discussion and conclusion 

The previous examples have demonstrated that CBR approaches to ecological time-series 
warrant further research. Although CBR does not construct an explicit model, various char-
acteristics of the system being examined can be extracted from the optimisation of weights 
and the use of sequences to determine time behaviour. Additionally, CBR allows mixed 
variable types and can incrementally use new observations without having to relearn a 
model. A criticism of the work described here is that the described relationships between 
the variables driving chlorophyll-a production were neither new nor unexpected – of course 
they confirmed previous understanding of freshwater system dynamics but did not present 
any new insight to the process. This is true, however a number of descriptions from the 
CBR system are different from other methods, and offer additional information regarding 
system behaviour. For example, being able to find analogous past time sequences to current 
situations is a powerful method of comparing possible management options (What did we 
do in the past? What were the results? What other times were similar? What range of re-
sponses has the system demonstrated in similar previous situations?). This type of relation-
ship has been examined in this paper. Extending this concept, the notion of prototypical se-
quences could be developed. These prototypes would describe the common patterns 
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exhibited by the system under certain conditions. The use of prototype descriptions has 
been previously studied in the medical domain (Schmidt and Gierl 2000), where these pro-
totypes describe short, medium and long term trends. These prototypes were used to guide 
the retrieval process and to decrease the amount of stored cases, by removing redundant 
cases. For our purposes, a prototype would describe the basic independent variable time-
series patterns that represent conditions that describe the majority of the systems behaviour. 
These prototypes could then be used as explanatory models. Current research is focussed on 
how to construct these prototypes for the generalised behaviour of various temporal condi-
tions of freshwater systems.  

A second criticism of CBR is the problem of extrapolation beyond the currently ob-
served set of conditions and responses. For conditions such as global warming it is desir-
able to be able to examine the response of the system as conditions move outside of the 
range of observed variations. This is clearly one area where the basic case-based approach 
is weak, and would need to be supplemented with some form of hybrid model. One possi-
bility would be to use the CBR system as a gating algorithm to switch between different 
models that have been trained for various ‘states’ of the ecosystem. These states would 
probably have been identified previously as prototypes. This approach would be similar to 
methods such as the mixture of expert’s model framework, while still maintaining some de-
sirable properties of the CBR system. 

A recent successful use of CBR in an ecological context has been demonstrated with the 
Perpest model (van Den Brink et al. 2002). This work differs from that described here since 
the Perpest model does not explicitly use the context of time in the measurement of similar-
ity. However, the work showed in detail how CBR can be used to produce complex descrip-
tions of ecological response. The work described here further supports the utility of CBR 
for ecological problems, and argues that the explicit representation of time within the simi-
larity framework will allow other useful descriptions and models to be produced. 

Other extensions to the current work include exploring similarity measures based on 
previous research in time modelling (Bollabas et al. 1997) that allow more accurate similar-
ity matches between cases, and between sequences. Additionally, since the number of cases 
with time series data is large, and research is required to determine appropriate indexing 
structures to allow fast matching between cases and sequences. 

CBR clearly has a role to play in understanding the dynamics of freshwater systems, 
both in terms of prediction and as a model that allows direct comparisons with behaviour 
from the past. CBR is not a replacement for other models such as regression and artificial 
neural networks, however it has different properties that should be viewed as a complement 
to other time-based ecological descriptions and models. 
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5.3 Modelling community changes of cyanobacteria in a 
flow regulated river (the lower Nakdong River, S. Korea) 
by means of a Self-Organizing Map (SOM)*

Joo GJ, Jeong KS†

Introduction

The study of ecosystem dynamics requires a comprehensive approach that can generalize 
and synthesize hypotheses and existing knowledge. It is not possible to deal with the eco-
systems in a simplistic fashion (Wallace et al. 1991), because they contain some properties 
that cannot be seen from each individual scale (Odum 1983). This may prevent researchers 
from readily gathering fruitful information within experimental or survey datasets. Analyz-
ing and modelling ecological systems must also take into consideration the multi-modality 
of data, non-linearity, many zeros, multi-colinearity, and other factors (Fielding 1999). 
Mechanistic models have played a particular important role in helping to synthesize results 
of ecosystem research and make predictions about future ecosystem behavior. 

One focal area for research and modelling in freshwater ecosystems has been the blue-
green algae (cyanobacteria). They have been studied for several decades, and have both an 
interesting ecology and implications for water quality management (Shapiro 1984). The ac-
celerated eutrophication of aquatic ecosystems is recognized as a global problem leading to 
recurrent harmful algal blooms in lakes and rivers. Diverse experimental approaches have 
been used in an attempt to reveal the proximal cause of blooms. 

Cyanobacterial blooms have caused serious problems for natural ecosystems and the 
human society. Toxicity of water as well as malfunction of water purification systems are 
typical problems for drinking water (Jang 2002). Cyanobacteria have competitive advan-
tages that enable them to dominate the final phase of phytoplankton succession in lakes 
(Reynolds 1984). Shapiro (1990) explained these advantages over other phytoplankton 
from the perspective of various limnological attributes. 

Blue-green algal blooms in real systems appear to be the consequence of complex 
synchronization among various environmental parameters. Blue-green proliferation in river 
ecosystems has been well documented in Paerl and Bowles (1987), Köhler (1993) and 
Sherman et al. (1998). Due to the elongated retention time and accelerated eutrophication 
caused by regulation of water flow, severe bloom events can be observed in rivers with 
dams and other restrictions to water flow (Ha et al. 1998). There are various examples of 
phytoplankton models that take into consideration the blue-greens (Kamp-Nielson 1978, 
Reynolds 1984, Sommer et al. 1986, Kromcamp and Walsby 1990). These early models are 
somewhat successful in accounting for algal dynamics, but do not explain all observed 
variations. In recent, more sophisticated techniques, Machine Learning (ML) such as Arti-

* Authors are grateful to Dr. Karl E. Havens for critical revision of English and ecological logic and to Prof. 
Friedrich A. Recknagel for his warm and continuous attention and comments. This study is granted from 
the Institute of Environmental Technology and Industry (Project No. R12-1996-015-00035-0). 

† Correspondence: pow0606@hanafos.com 
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ficial Neural Networks (ANNs) have been used to improve the predictive understanding of 
bloom dynamics (Lek et al. 1996b, Chon et al. 1996, Recknagel et al. 1997). 

Artificial Neural Network is known as a good pattern recognizer as well as predictor 
(Chon et al. 2000c, Recknagel and Wilson 2000, Jeong et al. 2001). This computerized al-
gorithm can satisfy the necessity for dealing with the non-linear nature of ecological data-
sets, due to the model’s characteristics of architecture (Lin and Lee 1996, Lek et al. 2000). 
Pascual and Ellner (2000) suggested neural network as ecological model of linking envi-
ronments and biological characters, and Roadknight et al. (1997) showed the ability of neu-
ral network for environmental data interpretation. Other researches have encouraged the 
application of neural networks to ecological modelling (e.g. Karul et al. 1998, Wen and Lee 
1998, Moatar et al. 1999, Özesmi and Özesmi 1999, Spitz and Lek 1999, Schleiter et al. 
1999, Scardi 2001). The complicated patterns of blue-green community change can be ef-
fectively dealt with by data-driven inductive models, such as Self-Organizing Maps 
(SOMs). Furthermore, water flow regulation, which gives rise to the unusual physical-
chemical conditions favoring blooms in regulated rivers, can be considered in the model al-
gorithm, which is more difficult in mechanistic models. Self-Organizing Maps have previ-
ously been used to predict community-level changes of macro-invertebrates and fish in 
stream ecosystems (Chon et al. 1996, Giraudel et al. 2000). 

The lower Nakdong River is a good example of regulated river (a river-reservoir hybrid) 
that experiences blue-green algal blooms. Eutrophication has rapidly progressed since the 
construction of an estuarine dam in 1987 (Joo et al. 1997). The river has reservoir-like eco-
logical patterns, and plankton dynamics are different from those of natural rivers (Ha et al. 
1998, Ha et al. 1999, Kim et al. 1998, Kim et al. 2001). There have been previous efforts to 
model water quality (Song et al. 1993, Cho et al. 1996, Shin et al. 1998), but ecological at-
tributes are not as well known. In one of the rare ecological modelling studies, Jeong et al. 
(2003a, b) derived population-based time-series ecological models by means of recurrent 
neural networks for two bloom-forming algal species. Even though their results were prom-
ising, the only cyanobacterial taxon considered was Microcystis aeruginosa; changes in the 
composition of the phytoplankton community during blooms were not considered. 

In this study, community changes of cyanobacteria in the lower Nakdong River were 
modelled using the SOM algorithm. It involves a non-linear clustering method that can 
suitably reflect the nature of ecological data in the system. The environmental variables 
which are associated with groups identified by the SOM plane can be assumed as preferred 
conditions for the algal species dynamics. By considering the results in the context of in-
formation from Jeong et al. (2001, 2003a), the characteristics of blue-green community dy-
namics in flow-regulated systems can be recognized. 

Materials and methods 

Description of the study site 

The Korean Peninsula is situated in the far-eastern part of Asia, and the Nakdong River ba-
sin lies in the southeastern part of South Korea (35o ~ 37o N, 127o ~ 129o E) (Fig. 5.3.1). 
South Korea experiences four distinct seasons, with a hot summer (June to August) and a 
cold winter (December to February). A short rainy season with concentrated precipitation in 
summer is one of important climate characters of S. Korea. A monsoon (late June to late 
July) and several typhoons typically occur in the summer, and > 60% of total annual rain-
fall (ca. 1,200 mm) is concentrated in this season (Park 1998). The rainfall also is differ-
ently distributed across the basin. The annual mean water temperature at the study site was 
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13.7ºC. The mean water temperature was 2.2ºC during the coldest month (January), and 
25.9ºC in the warmest (August). 

The main channel of the river is 526 km long, and the catchment area occupies about 
25% (23,817 km2) of the whole country. The study site (Mulgum) is situated on 27.4 km 
upstream of the estuarine dam at the river mouth, and has a maximum water depth of ca. 11 
m; mean water depth is ca. 4 m; river width is 250-300 m. The average retention time was 
about 3 days at the study site (Song et al. 1993, Jeong et al. 2001), and it varied from 6 
hours to 10 days according to the rainfall frequency (concentrated rainfall events caused 
shorter retention time while dry winter to spring it marked longer one). The discharge 
ranges from about 200 to 10,000 m3 s-1.

The Nakdong River is a representative flow-regulated river ecosystem (Joo et al. 1997), 
and the phytoplankton succession is similar to that of lakes and reservoirs. There is even a 
“clear water phase” attributed to a sharp increase of zooplankton grazing during spring and 
autumn (Kim et al. 1998). 

Over 10 million people depend on the river for their drinking, agricultural, and industrial 
water supply. The Nakdong River has 4 multi-purpose dams and an estuarine dam. Physical 
alterations of the river, industrialization, and urbanization have accelerated eutrophication 
of the lower part of the river (Kim et al. 1998). 

Data collection and analysis 

Limnological parameters were collected over a five-year period (1994-1998). Precipitation 
data were obtained from 5 representative meteorological stations within the Nakdong River 
basin (Andong, Taegu, Hapchun, Jinju, and Miryang). River flow data were obtained from 
the Flood Control Center. Data for irradiance, wind velocity, and evaporation were col-
lected from the Busan Local Meteorological Station, which is closest to the study site. 
Three-day-averaged (discharge, wind velocity) or summed (irradiance, evaporation and 
rainfall) values of those parameters were used, in association with the limnological sam-
pling dates.  

River water samples were weekly collected at a depth of 0.5 m at the study site around 
at noon. The previous study reported that the cyanobacterial community almost evenly dis-
tributed during the daytime, whereas they tended to be accumulated at the surface layer dur-
ing night when wind velocity was low (Ha et al. 2000). The following water quality pa-
rameters were measured: water temperature, Secchi transparency, pH, turbidity, 
concentrations of dissolved oxygen (DO), nitrate (NO3

--N), ammonia (NH4
+-N), phosphate 

(PO4
3--P), dissolved silica (SiO2), chlorophyll a (chl. a), phytoplankton biovolume, and 

zooplankton abundance. Water temperature and DO (dissolved oxygen) were determined 
with an YSI DO meter (Model 58); transparencies were determined using a 20-cm Secchi 
disc; pH was measured with an Orion pH meter (Model 250A); turbidity (NTU) was meas-
ured with a Turbidimeter (Model 11052). Water samples were filtered through Whatman 
GF/C filters to determine the soluble nutrient concentrations, and the filtrates were frozen 
and analyzed by a QuikChem Automated Ion Analyzer (NO3

--N, No. 10-107-04-1-O; 
NH4

+-N, No. 10-107-06-1-B; PO4
3--P, No. 10-115-01-1-B; SiO2, No. 10-114-27-1-A). 

Chlorophyll a concentration was measured with a spectrophotometer (using filtrates on 
pore size 0.45  MFS membrane filter), using extraction methods described by Wetzel and 
Likens (1991). 

Identification of phytoplankton species was conducted with a Nikon light microscope (
1,000), following Foged (1978), Cassie (1989) and Round et al. (1990). Phytoplankton 

samples were preserved with Lugol’s solution when collected, and enumerated using an in-
verted microscope (ZEISS, 400) by the Utermöhl sedimentation method (1958). Bio-



276      Joo GJ, Jeong KS 

volumes of individual species were estimated from mean cell dimensions and the cellular 
shape of each species as described in Wetzel and Likens (1991). Mean cell biovolumes 
were based on individual cell volume calculations of 10 to 25 cells. 

Fig. 5.3.1. Map of the Nakdong River and the long term rainfall regime. In the map of the river basin 
(A): representative meteorological stations (grey droplets), the sampling station (Mulgum) (black cir-
cle) and multipurpose dams (grey bars) are shown. The long term rainfall regime in two representative 
stations is shown in B (arrows indicate dry years). 

Zooplankton was collected from a depth of 0.5 m using a 3.2 L Van Dorn water sampler 
until a total of 8 L of water was obtained. Water samples were filtered through a 35- m-
mesh net, and the retained zooplankton was preserved with 10% formaldehyde (final con-
centration: 4%). Meso- to macro-zooplankton (almost exclusively Cladocera and Cope-
poda, respectively) were counted with an inverted microscope at 25-50 magnification. 
Micro-zooplankton (mostly Rotifera) were enumerated with the inverted microscope at 
100-400 magnification. Zooplankton taxa were identified to the genus or species level (ex-
cept for juvenile Copepoda) using Koste (1978), Smirnov and Timms (1983), and Einsle 
(1993).
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Self-Organizing Map for blue-greens

A Self-Organizing Map (SOM; Kohonen 1982) is capable of reducing data dimensionality 
(Lin and Lee 1996). It is a competitive network system in which neurons (processing ele-
ments) in Euclidean map space compete with each other. To identify pattern as well as to 
cluster the blue-green algal dynamics, a two-dimensional Kohonen network was adapted. 

A characteristic property of SOM distinguished from other clustering methods (e.g. 
Principal Component Analysis, Correspondence Analysis, Cluster Analysis etc) is that it is 
possible to use various distance metric for similarity. It is known that Euclidean distance is 
sometimes not satisfactory for species data due to double-zero problems (Legendre and 
Legendre 1998). Giraudel and Lek (2001) summarized the possibility of using different dis-
tance metric. They argued when SOM used another distance metric to avoid this problem, 
the learning equation had to be adapted in order to be compatible with the chosen distance. 
In addition, Walley and O’Connor (2001) argued that SOM based on Euclidean distance 
can cause problems on biological and environmental data on “ordinal scale” (usual data 
scale of biological species is ratio or interval scale). Even though this point is important, 
many of ecological applications of SOM were successful on the basis of Euclidean distance 
for macroinvertebrates (Chon et al. 1996, Obach et al. 2001), fish assemblages (Brosse et 
al. 2001) and so on. Ecological modelling approach to select the best fitting distance metric 
to phytoplankton community dynamics should be addressed. 

In this study, a Kohonen network was prepared with M2 artificial neurons (Fig. 5.3.2). 
Input for the network was data on cyanobacteria genus biovolumes i, xi identified during 
the study period. All the input data were expressed in vector and input layers consisting of 
those species. Every node, j, of the output layer was connected to each node, i, in the input 
layer. A hexagonal array of neurons was selected. The weight vector, w(t), represented the 
connection between input and output layers. As training preceded, each weight value, wij

(t),
was adaptively changed at each iteration t. In initial stage, w(t) was randomly and uniformly 
distributed in the network architecture. As the input signal entered the network, each neuron 
computed the summed distance between the weight and input through the following equa-
tion:

*ˆ ˆmin   i ji
x w x w

                  (5.3.1) 

The neuron that exhibited a maximum response to the given input data was selected as a 
“winning” neuron, whose weight vector had the minimum distance to the input vector. 

The winning neuron and its neighbors “learned” by changing their weights in a manner 
that reduced the distance between the weight and input vectors. The following equation was 
used for this purpose: 

( 1) ( ) ( ) ( ) ( )t t t t t
ij ij j ij jw w x w Z

         (5.3.2) 

where Zj had a value of 1 for the winner and its neighbors, whereas a value of 0 was as-
signed to the remaining neurons. The learning rate ( ) dynamically changed during the 
training steps. The radius value, r(t), was initially defined between 1 and m, where m is the 
integer of (M-1)/2. Radius gradually was reduced to zero as convergence was achieved. 
Further information on this modelling approach can be found in Hecht-Nielsen (1987), and 
Lin and Lee (1996), and the methodology of applying SOM to ecosystems is explained in 
Chon et al. (1996). 
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Fig. 5.3.2. Basic architecture of SOM training. 

Training of the SOM was done using a series of limnological data from the study site. A 
total of 266 cases (sampling dates) of three algal species were gathered, and 80% (212 data) 
were used in the training procedure. The training data were randomly selected from the full 
dataset. The map quality was evaluated by two types of error values: i.e. quantization error 
and topographic error. The former is the average distance between each data vector and its 
best matching unit (BMU; the node which has the smallest of the Euclidean distances), and 
usually used as measuring map resolution. The latter is the proportion of all data vectors for 
which first and second BMUs are not adjacent units. This is for the topology preservation. 

After training, data were clustered according to the calculated U-matrix which was a 
discrimination method for one SOM node to others according to the non-linearly calculated 
dissimilarity. This graphic displaying method was developed by Ultsch and Siemon (1989). 
It uses the average distances between neighboring nodes through shades in a gray scale. For 
instance, if the average distance of neighboring nodes is small, a light shade is used; and 
vice versa, dark shades represent large distances. Therefore a “cluster landscape” was 
formed over the SOM and then we could clearly visualize the classifications (Kohonen 
1982).

The biovolume data were compared with each other. Limnological variables were 
statistically evaluated to define the important parameters. Since this neural network model 
of SOM is primarily intended to cluster the species data and does not include environmental 
variables directly into the model, sensitivity analysis was not applied on the relationship be-
tween environments and algal data. Instead of the sensitivity analysis, one-way ANOVA 
and Duncan’s post-hoc test were utilized. From the result of statistical analysis, it was pos-
sible to clarify the parameters which are statistically significant to the changes of cyanobac-
terial species among the clusters. For developing the SOM model, Matlab 5.3 (MathWorks 
1999) and SOM Toolbox for Matlab (Alhoniemi et al. 1999) were used. SPSS for Windows 
11.0 (SPSS 2001) was used for statistical evaluations. For the details about SOM algo-
rithms, readers may consult Kohonen (1982). 
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Results

Limnological variability and cyanobacterial dynamics 

For certain limnological variables, distinct seasonal and inter-annual variations could be 
observed (Fig. 5.3.3). All the sampled parameters for five years from the lower Nakdong 
River indicated hyper-eutrophic condition. As previously observed, rainfall was concen-
trated during summer, and limnological seasonality seemed to be influenced by the seasonal 
rainfall distribution (Fig. 5.3.3A). 
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Fig. 5.3.3. Time-series limnological dynamics in the lower Nakdong River during the study period. A, 
rainfall and discharge; B, turbidity and conductivity; C, DO and water temperature; D, chlorophyll a 
concentration and pH; E, nitrate and ammonia concentrations; F, phosphate concentrations. 
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Peaks of discharge were observed during the rainy season. High summer discharge be-
tween 1994 and 1996 was not distinctive, but in 1997 and 1998, the summer season experi-
enced high floods (Fig. 5.3.3A). Figure 5.3.3B displayed the changes of turbidity and con-
ductivity. High turbidity was marked mostly during the summer rainy seasons. However, in 
the summer of 1994 which was a very dry year, also a sharp increase of turbidity could be 
measured due to the increase of phytoplankton biomass (compared with Fig. 5.3.3D). A 
high level of conductivity was observed in dry years, whereas lower values occurred in 
rainy years. High dissolved oxygen could be observed during winter and summer. This 
would be due to the increase of phytoplankton biomass and photosynthetic activity (Fig. 
5.3.3C). In the case of winter, despite water temperature was low, DO frequently reached 
very high levels (over 200% of saturation) during the winter Stephanodiscus bloom. The 
river did not freeze during the study period. 

Chlorophyll a concentration had complicated changes during the study period (Fig. 
5.3.3D). A sharp increase in chl. a concentration was observed during summer, and high 
level of biomass was also detected in winter, except for 1998. Another small increase could 
be measured during spring when discharge was low. The pH variations did not exhibit a 
clear seasonality, but the changing pattern was similar to chl. a (Fig. 5.3.3D). Nitrate and 
ammonia concentrations had weak seasonality, and generally during winter those parame-
ters increased (Fig. 5.3.3E). Phosphate varied in a complex manner, but during the rainy pe-
riod of 1997 to 1998, the concentration increased considerably (Fig. 5.3.3F). 
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Fig. 5.3.4. Cyanobacteria proliferations in the lower Nakdong River during the study period. 

Cyanobacterial communities showed inter-annual variations of dominance during the 
study period. In dry years, summer phytoplankton was dominated by Microcystis spp. (Fig. 
5.3.4). However in several years, these species did not increase as much as in the extreme 
year (e.g. 1994). The observed species were listed in Table 5.3.1. In most cases Anabaena
tended to increase slightly before the Microcystis blooms, and Oscillatoria had relatively 
lower biovolume. In 1994 and 1997, severe blooms of Microcystis occurred. In 1995, Mi-
crocystis did not proliferate, and instead, there was a large increase of Anabaena. In 1998, 
when heavy rainfall occurred, neither Anabaena nor Microcystis bloomed, and Oscillatoria
became dominant. 

Self-Organizing Map clustering 

The SOM algorithm had 8 clusters on the map plane, and three species of cyanobacteria 
were separated into each cluster (Table 5.3.2). The map quality was reasonably high, with 
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0.4049 of quantization error and 0.0047 of topographic error. The clusters consisted of 
Anabaena and Oscillatoria (Cluster 1), Anabaena only (Cluster 2), Oscillatoria only (Clus-
ter 3), Oscillatoria and Microcystis (Cluster 4), Microcystis only (Cluster 5), Microcystis
and Anabaena (Cluster 6), all genera (Cluster 7), and no genus (Cluster 8). 

Table 5.3.1. List of the observed cyanobacterial species during the study period. The asterisk indicates 
that the species was dominant within the genus. 

Microcystis Anabaena Oscillatoria 
M. aeruginosa* A. flos-aquae* O. acutissima*

M. ichthyoblabe A. menderi O. agardhii 
M. incerta A. spiroides O. angustissima 
M. wesenbergii Anabaena sp. O. limnetica 
  O. limosa

Division of clusters was based on the U-matrix, and each cluster had different abun-
dance of phytoplankton in biovolume. The clusters contained many “0” values depending 
on the large seasonal variations. Even though there were differences in the number of sam-
ple units, assumptions about possible causality of presence or absence of the species could 
be examined through the cluster composition. 

The clusters on the SOM plane were related to seasonality of cyanobacteria (Fig. 5.3.5). 
Seasons of moderate temperature (Cluster 1 to 3) and hot summer to autumn (Cluster 4 to 
7) were well-separated. SOM Cluster 8 had had data mainly from spring and winter. The 
distribution of biovolume data in the clusters varied according to genus, except in Cluster 7 
(Fig. 5.3.6). 

When Anabaena distribution was compared with Microcystis, Clusters 1 and 2 did not 
have Microcystis, and Anabaena did not occur in Cluster 4. Oscillatoria shared most of 
nodes with both Anabaena and Microcystis, but it occurred alone in Cluster 3. 

Table 5.3.2. Species composition in each cluster. Check marks indicate the existence of genus in the 
cluster.

 n Anabaena Microcystis Oscillatoria 
Cluster 1 16
Cluster 2 8
Cluster 3 49
Cluster 4 17
Cluster 5 7
Cluster 6 7
Cluster 7 37
Cluster 8 71
Comparing biovolume distributions with clustering results (Fig. 5.3.5) indicated the sea-

sonal preferences of each algal genus. Anabaena mainly occurred in spring to summer, with 
lesser amounts in autumn. Microcystis had a similar seasonality to Anabaena, but high bio-
volume also were observed during summer and autumn. Oscillatoria occurred in all sea-
sons, and it could be observed during winter. 
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Table 5.3.3. Important factors for the cyanobacteria species composition according to clustering of 
SOM (� = 0.05). ( ), cluster numbers; –,clusters gathered by Duncan test; /, clusters separated by Dun-
can test. 

Significant parameters 
Cases

Names F p Duncan test 

Microcystis
to all 

Mic (5) 
Mic & Osc (4) 
All genera (7) 

Irradiance 
Evaporation
Water temp. 

4.693
11.953
36.431

0.000
0.000
0.000

5-4 / 7 
5-4 / 7 
4-5 / 7 

Ana (2) 
Ana & Osc (1) 
All genera (7) 

Evaproation
Water temp. 
Alkalinity

4.952
39.139
6.442

0.010
0.000
0.003

2-1 / 7 
2 / 1 / 7 
1 / 7-2 Anabaena

to all Ana (2) 
Ana & Mic (6) 
All genera (7) 

Water temp. 
Phosphate

31.514
3.409

0.000
0.041

2 / 6-7 
2 / 7-6 

Osc (3) 
Osc & Mic (4) 
All genera (7) 

Irradiance 
Evaporation
pH
Water temp. 
Nitrate

19.340
23.979
7.189
40.464
13.685

0.000
0.000
0.001
0.000
0.000

3-4 / 7 
3-4 / 7 
3-4 / 7 
3-4 / 7 
3-4 / 7 Oscillatoria

to all 
Osc (3) 
Osc & Ana (1) 
All genera (7) 

Irradiance 
Evaporation
pH
Water temp. 
Alkalinity
Nitrate

16.494
20.893
7.008
41.280
4.584
13.312

0.000
0.000
0.001
0.000
0.012
0.000

3 / 1 / 7 
3 / 1 / 7 
3-1 / 7 
3 / 1 / 7 
1-3 / 7 
7 / 1 / 3 

Table 5.3.4. Mean and standard deviation of each limnological parameter. Values from data clustered 
according to SOM clustering. 

Mean SD
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 

Anabaena 1.64 0.76 0.46 0 0 0 2.89 2.19 3.12 3.37 0
Microcystis 0 0 0 0.47 0.81 1.35 58.88 16.93 0
Oscillatoria 0.55 0.85 0 0.71 1.05 0.42 0.59 0 0 0.75 1.01 0
Irradiance 45.5 11.6 44.6 35.7 14.5 35.0 10.2 32.2 40.4 18.3 53.8 15.6 32.6 12.9
Wind veloc-
i

4.1 1.0 3.9 1.2 3.9 1.0 4.1 1.3 3.0 0.6 3.9 1.4 3.6 0.9 3.9 1.1
Discharge 461 198 369 85 840 1086 461 243 433 131 538 271 515 430 471 390 
Evaporation 11.1 3.3 10.3 2.2 8.8 3.3 9.3 2.4 9.2 2.9 12.7 3.7 13.9 4.1 8.2 2.9
Rainfall 10.7 18.6 4.6 7.7 18.5 40.7 4.0 7.5 4.5 6.2 9.9 20.8 9.6 13.7 7.5 15.7
Secchi depth 77 14 79 19 75 28 79 15 86 19 84 37 78 21 69 23
DO 8.3 2.3 11.7 3.9 9.8 4.4 10.0 2.5 9.4 3.0 9.1 2.4 10.0 2.8 12.5 4.5
pH 8.1 0.8 8.9 0.8 8.0 0.8 8.5 0.7 8.2 0.7 8.8 0.6 8.7 0.8 8.4 0.8
Turbidity 7.0 2.8 5.9 2.2 28.5 96.5 6.4 3.1 4.6 1.5 26.0 31.9 20.3 65.5 12.8 30.9
Water temp. 21.8 3.0 14.6 7.7 15.7 8.2 18.5 4.9 20.0 4.9 27.3 3.4 28.1 3.5 9.4 6.6
Conductivity 301 67 347 102 326 146 324 107 362 92 358 84 329 110 385 126 
Alkalinity 50.4 9.9 61.2 7.6 51.7 19.2 59.3 16.6 63.7 9.9 65.7 12.4 60.9 10.2 58.0 16.0
Nitrate 2.3 0.7 2.9 1.1 2.8 0.8 2.7 0.8 2.0 0.5 2.3 1.3 1.9 0.9 3.1 0.9
Ammonia 0.3 0.2 0.3 0.3 0.6 0.7 0.3 0.3 0.4 0.3 0.2 0.2 0.3 0.3 0.6 0.6
Phosphate 34.7 24.7 13.6 9.1 45.6 27.4 37.1 25.6 21.2 38.6 20.2 34.0 23.3 28.4 23.1
Silica 2.8 2.0 2.8 1.5 5.8 4.6 4.2 4.1 2.8 3.4 3.0 2.8 3.8 2.5 3.9 3.5
Rotifera 2816 1143 1796 2809 697 738 731 1334 2112 1101
Cladocera 351 872 72 141 45 93 36 52 14 16 103 165 182 290 20 52
Copepoda 103 88 122 191 48 75 17 18 17 9 75 115 94 173 47 187
Chlorophyll 50.2 52.0 47.3 33.0 41.7 34.5 22.3 31.9 134.2 50.8 84.9 61.8 71.2

The results of ANOVA indicated that heat energy variables and pH/alkalinity were im-
portant for determining genus composition of the phytoplankton (Table 5.3.4). Water tem-
perature tended to increase from 15 to near 30o C as more genera were included in the 
model. Irradiance and evaporation displayed similar patterns of increase (to over 50 MJ m-2

and 13 mm, respectively). Results were of particular interest for pH and alkalinity. In the 
case “Oscillatoria to all”, the clusters with increased pH consisted of all of three genera, 
and also alkalinity was higher in these clusters. 
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Discussion

Cyanobacteria composition in the lower Nakdong River 

Cyanobacteria rarely dominate in lotic ecosystems, at any point in the seasonal change of 
phytoplankton. Reynolds (1992) has summarized conditions which generally prevent 
cyanobacteria developments in rivers. Firstly, the higher flow rate relative to lakes prevents 
the cyanobacteria from proliferating near the water surface (i.e., high flow rate no
blooms). Lower growth rates than many eukaryotic algae, especially under conditions of 
frequent light fluctuations could be another reason: most cyanobacteria would be unable to 
accommodate the low retention times. In addition, Descy (1993) suggested that dilution 
process as well as continuous turbulence due to the water flow could have a role of control-
ling phytoplankton growth in river systems. In lentic ecosystems such as lakes and reser-
voirs, algal succession patterns are usually governed by solar irradiance and total nutrient 
conditions (Harris 1986). Reynolds (1992) suggested that diatoms dominate the algal suc-
cession in river ecosystems, whereas cyanobacteria could be observed only in pool-like re-
gions where the river flow is slowed. Thus it has been thought that cyanobacteria are not 
important in river ecology; however, physical alterations which let the river systems be-
come reservoir-like cause very different results. 

A key point in this study is that the flow did not have a significant effect on the changes 
of cyanobacterial species in the lower Nakdong River. This would be due to the high vari-
ability of discharge in the river caused by the intensive water regulation and the unpredict-
able rainfall regime in summer. Many studies argued that discharge is determining the 
phytoplankton assemblage as well as biomass in river systems (e.g. Lack 1971, Holmes and 
Whitton 1981, Descy 1987). However, high regulation of river flow has become a popular 
practice for water resources management, and the changes of flow regime have influenced 
the dynamics ecological components in the regulated rivers (e.g. Gehrke et al. 1999, 
Growns and Growns 2001, Stanley and Doyle 2003). In the case of Nakdong River, estua-
rine barrage and multi-purpose dams resulted in the eutrophication and phytoplankton pro-
liferation (Joo et al. 1997). In addition, even though concentrated rainfall and abrupt 
changes of discharge decreased the number of cyanobacterial cells in the river, they recov-
ered easily and proliferated again in the lower part of the river where discharge is strongly 
controlled. The increased level of discharge during the monsoon and typhoon events lasted 
for about 3 to 5 days and the blooms are re-formed within 7 to 9 days (Ha et al. 2000, Park 
et al. 2002). In the early phase of bloom formation, the water column is quickly stabilized 
and allows high light penetration. 

Although our analysis showed that the hydrological variables did not have significance, 
the stable river flow regime may still be a key factor for the massive proliferation of cyano-
bacteria. In low flow periods, elongated retention time due to the lack of concentrated rain-
fall became a trigger of proliferation. Whenever the conditions of stable low flow were met, 
cyanobacteria established large populations and other factors than hydrology governed their 
variations of abundance. 

In the lower Nakdong River, recent studies focused on the river hydrology (Joo et al. 
1997, Ha et al. 1998) and reported that abrupt changes in discharge govern the growth of 
cyanobacteria in summer. Ha et al. (1998, 1999) stressed that the magnitude of cyanobacte-
rial blooms in the lower part of this river maintained a higher level than in other flow-
regulated rivers in the world. However, in the Nakdong River, cyanobacteria increased in 
the lower part, not in the middle of the river (Ha et al. 2002). This is due to the background 
of elongated retention time as well as to nutrient enrichment. Neural network models of 
Jeong et al. (2001) and Jeong et al. (2003a) have stressed the importance of heat energy and 
pH dynamics for M. aeruginosa blooms in this river, instead of the hydrological parameters 
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(i.e. rainfall and discharge). Therefore, in this eutrophic regulated river system, some envi-
ronmental parameters related with heat energy and pH seemed to control the changes of 
cyanobacterial species during the summer. 

Some hypotheses have been suggested for explaining the succession of cyanobacteria in 
lentic ecosystems. Takamura et al. (1992) documented the importance of nutrient 
conditions for inter-annual variability of Microcystis and Anabaena in Lake Kasumigaura, 
Japan. Recknagel (1997) suggested that underwater irradiance was of particular importance, 
and developed a neural network model based on this hypothesis. Other factors are 
considered to be important in affecting the succession of cyanobacteria. In the lower 
Nakdong River, those factors seemed to have synergic effect while the species composition 
of cyanobacteria changed. Generally the increase of heat energy (water temperature) led to 
a complex species composition. More than 2 genera occurred when temperature was over 
20°C. Evaporation and irradiance are directly related to water temperature, and they can 
explain this phenomenon.  

Nitrate concentration had slight difference among clusters (approximately 2.5 mg N L-1)
on average, where only one genus was contained in the clusters. Lower values of nitrate 
(2.0 mg N L-1) occurred when two or more genera were joined. Nitrate is important for 
phytoplankton growth, but also is known that concentrations over 1 mg N L-1 can allow 
maximum growth. Even though statistically nitrate concentrations differed from each clus-
ter, the overall values were not much sensitive to the changes of cyanobacterial community. 
The only possibility for the decline of concentration might be from the extensive uptake by 
those species. Ammonia and phosphate were not statistically significant, and the N:P ratio 
among clusters did not have distinguishable differences. 

In the case of pH and alkalinity, higher values were detected as increasing the number of 
genera. The pH values were around 8 to 9, which is known to favor cyanobacteria (Moss 
1973; Reynolds 1986). Higher alkalinity means the increased buffer capacity in the water 
body, and the extent of CO2 decline is larger at the same pH variation degree in water of 
higher alkalinity (Talling 1985). During summer, in the lower Nakdong River, the primary 
factor for the increase of alkalinity could be the floods caused by concentrated rainfall with 
loaded nutrients (Park et al. 2002). Therefore it can be assumed that once high alkalinity 
conditions are maintained after the rainfall in the summer, photosynthesis by algae causes 
much CO2 depletion in the river. At that time, higher water temperature as well as abundant 
nutrients also generates favorable conditions for cyanobacterial dominance. As pH is in-
creasing, the algal species which are less limited to CO2 (i.e. cyanobacteria) are able to in-
crease easily (Shapiro 1990). 

SOM applicability 

In this study, a SOM algorithm exhibited good applicability to a time-series of phytoplank-
ton abundance. Applications of SOM to river phytoplankton communities as well as cyano-
bacterial dynamics are still scarce, even though there were many scientific studies that dealt 
with phytoplankton through ANN algorithms (e.g. Recknagel 1997, Maier et al. 1998, 
Maier et al. 2001, Jeong et al. 2003a). Some scientific papers using SOM for addressing to-
tal phytoplankton biomass changes in lakes can be found (e.g. Chen and Mynett 2003). The 
SOM model in this study was successful not only for clustering complicated dataset of 
cyanobacterial blooms and species changes, but also finding the influencing parameters on 
their dynamics. 

Usually the SOM algorithm has been used for clustering spatial data (e.g. Oberdorff et 
al. 1999), while examples with time series data are less common (e.g. Chon et al. 1996). 
Phytoplankton dynamics are affected by various factors, whose relative importance can 
change rapidly (e.g., after a rainfall flush). Park and Park (2002) suggested this in their lin-
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ear models for predicting water temperature profiles in Korean peninsular systems receiv-
ing high variations of water input due to monsoon climate and summer concentrated rain-
fall. Thus a modelling algorithm that can rapidly adapt to a complex temporal dataset is 
necessary. Linear models have historically been used for algal dynamics (e.g. Dillon and 
Rigler 1974, Whitehead and Hornberger 1984), however, non-linear models such as neural 
networks can help us to investigate complex ecosystem behavior (Recknagel 1997, Jeong et 
al. 2003a). 

The advantage of SOM application to ecological data was figured in Chon et al. (1996). 
They insisted that the application of SOM to stream macroinvertebrates was more fruitful 
than the traditional statistical approaches (e.g. cluster analysis). The latter usually uses the 
averaged similarity among data, and rearranges data on one-dimensional display. However, 
SOM uses more than two dimensions (if necessary, three dimensional arrangement could be 
adapted; see Kohonen 1982), and more of unseen relationships are possibly observed. In 
other studies, the evidence of the adequateness of machine learning techniques including 
SOM to ecological data are easily seen (e.g. Jeong et al. 2003b). 

There have been great efforts for developing deterministic models for phytoplankton 
dynamics which could predict time-series changes and classifying data. These studies con-
tributed better understanding of ecosystem dynamics (e.g. Drago et al. 2001; Lewis et al. 
2002, Håkanson and Boulion 2003, James et al. 2003). Recknagel (1997) summarized the 
advantages of ANN models against these types of deterministic models (i.e. non-linear data 
processing, elucidation of unseen information), and the research of Brosse et al. (2001) en-
courages the use of SOM for the ecological data for clustering. Further, Whigham and 
Recknagel (2001b) and Jeong et al. (2003b) show the implication of other machine learning 
techniques such as evolutionary computations to the dynamics of phytoplankton in lotic as 
well as lentic ecosystems. As suggested by Pascual and Ellner (2000), the problems associ-
ated with complicated environmental and biological dataset in ecosystems through empiri-
cal computerizations (see Medsker 1996) could be solved by means of ANN models. 

Compared with general ANNs that adopt commonly Multi-Layer Perceptrons (MLPs) 
with Backpropagation (BP) training, SOM also has advantage on data clustering. Artificial 
Neural Networks are able to find important patterns after training with given data, and this 
is similar to SOM. But the primary difference between MLP and SOM is the method of 
training. The former can consult data for finding errors while training (i.e. supervised train-
ing), but SOM does not need this training data (i.e. unsupervised training) (Lin and Lee 
1996). Therefore, even though ANNs including MLPs are useful to dynamic systems, the 
developed model does not react accurately with unseen data patterns if the system has high 
uncertainty. From this point of view, SOM is more pliable to ecological dataset with high 
complexity.

Ecological models for river systems are developed and calibrated for free-flowing condi-
tions. These models may not be useful for river-reservoir hybrids (Jeong et al. 2001). Lake-
like phenomena, such as cyanobacterial blooms, often occur in flow-regulated rivers, and it 
is necessary to focus model ability on the way that this is facilitated by flow control. Com-
putational algorithms, including SOM, are flexible for a variety of data conditions, and are 
useful for river-reservoir hybrids. 

Another advantage of SOM is that it can be used to test hypotheses using field data (al-
though ultimate causality only can be determined with controlled experiments). For the 
cyanobacteria blooms, some hypotheses were summarized by Shapiro (1990), and they 
were tested in experimental approaches as well as field survey. The test of hypotheses is 
one of the major objectives of ecological modelling. The cyanobacterial blooms in this 
point of view could be found in some examples of using non-linear models (e.g. Recknagel 
1997, Jeong et al. 2003a). When pH was the major cause for cyanobacterial blooms (which 
was insisted by Shapiro (1990)), the result of this study could find that cyanobacterial 
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blooms in a regulated river were closely related to the pH variations. Possibly the increased 
pH led the species to proliferate. Potentially photosynthesis by any abundant phytoplankton 
could deplete CO2 and they used bicarbonate, which created the conditions for superior 
competitors to become dominant. Consequently, it seemed that pH was a driving force for 
the increase of cyanobacteria. Furthermore, the model results could suggest another hy-
pothesis about the species changes within the cyanobacterial community: i.e. higher pH re-
lated with high alkalinity may cause that the community structure of cyanobacteria be-
comes more complicated (i.e. more species are assembled). This should be evaluated 
through further experimental studies.  

Neural networks including SOM have the ability to synthesize information, and help us 
to develop a better predictive understanding of the ecosystem. This study is an example of 
non-linear model use by means of a field dataset. Usually the researches to find causality on 
a certain ecological dynamic requires controlled experiments under very restricted condi-
tions. The control of experimental environments generally causes lack of unseen, but im-
portant, information for the changes of ecosystem. Non-linear models can fill this gap be-
tween field data and experiments.  
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5.4 Use of artificial intelligence (MIR-max) and chemical 
index to define type diatom assemblages in Rhône basin 
and Mediterranean region*

Rimet F†, Cauchie HM, Tudesque L, Ector L 

Introduction

Benthic diatoms are unicellular brown algae that constitute a major part of the biomass in 
rivers. These key organisms cannot be ignored in any attempt to fully understand freshwa-
ter river ecosystems. Diatom diversity is very high and their distribution is determined by 
many environmental factors acting at different spatial scales (Stevenson 1997, Snyder et al. 
2002). These parameters, varying at different scales in time and space, can affect diatom as-
semblages differently. Anthropogenic disturbances have no longer been known to be 
amongst the parameters controlling diatom assemblages for a long time (e.g. Butcher 1947, 
Fjerdingstad 1950). This observation led some authors to develop methods based on the 
ecology of benthic algae to assess water pollution in rivers (e.g. Patrick and Strawbridge 
1963, Fjerdingstad 1964). 

In France, Coste developed diatom-based stream quality assessment (Coste and Leynaud 
1974, Coste 1976, Cemagref 1982), and water agencies started to use it extensively in the 
1990’s (Prygiel et al. 1999). A diatom index, the Biological Diatom Index (BDI) was stan-
dardised (AFNOR 2000, Prygiel and Coste 2000) in order to use it routinely in all the 
French territory. European standards for diatom sampling, identification and enumeration 
are under development or under approval (European Committee for Standardization 
2002a,b).

Understanding the importance of the structuring effect of environmental parameters is a 
challenge in diatom ecology, their study at different spatial scales is necessary; the conclu-
sions ensuing should show different results. This will be helpful in the choice of an 
appropriate strategy to develop new tools for the assessment of river quality based on 
diatoms. Until recently, few studies examining diatom taxa repartition and diatom 
assemblage structure at a large scale exist in France. The Rhône basin and Mediterranean 
region are grouped in a hydrographical basin managed by the same Water Agency (Agence 
de l’Eau Rhône-Méditerranée-Corse). Benthic diatoms have been sampled since 1995 for 
bioindication. This region is characterised by very different climates (from alpine to 
Mediterranean and continental), geologies and anthropogenic disturbances. The benthic 
diatom samplings carried out in this region appeared to be a good case study to explore the 
structure of the assemblages and to define the most important parameters affecting the 
structure of benthic diatom assemblages. 

* This work is part of the PAEQANN project (EU 5th Framework Programme, contract n°: EVK1-
CT1999-00026). We thank the “Rhône-Mediterranée-Corse” Water Agency, the “Directions 
Régionales de l’Environnement” Bourgogne, Rhône-Alpes, Provence-Alpes-Côte d’Azur, 
Languedoc-Roussillon, and the “Conseil Général des Alpes-Maritimes” for their important 
collaboration. Authors are grateful to Mr C. Bouillon for his technical support. 

† Correspondence: rimet@crpgl.lu 
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The identification of type assemblages for benthic diatoms in unpolluted rivers is an im-
portant step in the establishment of a diatom-based stream classification. Therefore, non-
impacted groups of samples were selected to propose type assemblages of benthic diatoms 
that could characterize different regions of the studied area. The second aim was to relate 
these unpolluted groups of samples to particular environmental conditions. This led to the 
construction of a database in this region, gathering diatom listings from several public ser-
vices. On the other hand, the existing information was reinforced by new samplings in riv-
ers of underrepresented zones. These samplings were realised in the framework of the 
European PAEQANN project (http://aquaeco.ups-tlse.fr/) that aims to predict biological 
communities in watercourses with environmental parameters using advanced modelling 
techniques.

An artificial intelligence technique, MIR-max (Walley and O’Connor 2001, 
www.cies.staffs.ac.uk) was used to cluster the samples on the basis of their diatom assem-
blages and to represent them according to their assemblages on a two dimensional graph; 
these two properties (clustering and projection) are not available with a unique analysis for 
multivariate analysis. The results of this new technique were compared to those obtained 
with a Twinspan analysis (Hill 1979b) a very often-used technique in biotypology. A for-
ward selection was computed with Canoco 4.0 (ter Braak 1988) to find the most important 
environmental descriptors affecting diatom assemblages; correlation coefficients were cal-
culated between the environmental parameters of the sampling sites. The organic pollution 
index IPO (Leclercq and Maquet 1987a,b) was used to select groups of samples with no or-
ganic pollution. The typology of the groups was characterised using the class boundaries of 
the European typological system A (European Parliament and The Council of the European 
Union 2000). 

Materials and methods 

Study area 

The Rhône basin and the Mediterranean region (including Corsica) are situated in the 
southeastern part of France (Fig. 5.4.1). These regions encompass several hydrographical 
basins (area: 130,000 km2) coordinated for water quality control by the “Rhône-
Méditerranée-Corse” Water Agency. The study region contains a wide variety of land-
scapes, geologies and climates (alpine, continental, and Mediterranean). It is composed of 
high mountains (the Alps in the eastern part, the East Pyrenees in the southwestern part) 
and mountains of lower altitudes (e.g. the Jura in the northeastern part and the Massif Cen-
tral in the western part). The two main rivers, the Rhône and its main tributary the Saône 
can be considered as lowland watercourses in the studied area. The Rhône flows into the 
Mediterranean Sea. The southern part of the region is characterised by a Mediterranean 
climate. Corsica, southeast of the French coast, is a large island characterised by a Mediter-
ranean and mountainous climate and is included in the monitoring area of the “Rhône-
Méditerranée-Corse” Water Agency. 

Diatom sampling, preparation, identification and counting 

207 benthic diatom samples were taken in the Rhône basin and the Mediterranean region by 
several public services (Directions Régionales de l’Environnement, Conseil Général des 
Alpes-Maritimes, Centre de Recherche Public - Gabriel Lippmann) from 1995 to 2001 for 
water quality monitoring according to the French standard of the Biological Diatom Index 
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BDI (Lenoir and Coste 1996, AFNOR 2000, Prygiel and Coste 2000) and also in the 
framework of the EU funded project PAEQANN to reinforce the existing database in 
underrepresented river types. These samples cover a large range of environmental 
conditions in these regions and allow the definition of type assemblages in relation to these 
conditions.
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Fig. 5.4.1. Situation of the Rhône-Méditerranée-Corse basin in Europe and France. The main rivers 
(Saône and Rhône) and massifs are mentioned. The sampling sites are located with white spots. 

In order to obtain comparable results, the French standard of the BDI was used by all the 
public services involved in this study. Benthic diatoms were collected from lotic parts of 
the sampled sites on several stones (minimum five), which cannot be moved under normal 
hydrological conditions. The upper surface of the stone was sampled with a clean 
toothbrush. The samples were fixed in 4% formaldehyde (Prygiel and Coste 2000). The dia-
tom valves were cleaned with 40% hydrogen peroxide to eliminate organic matter and with 
hydrochloric acid to dissolve calcium carbonates. Clean diatom frustules were mounted in 
Naphrax©. Up to 400 valves were counted in each sample (Iserentant et al. 1999) with a 
1000  magnification. The entire slide was investigated with a 400  magnification to check 
for rare taxa. The Süßwasserflora von Mitteleuropa (Krammer and Lange-Bertalot 1986, 
1988, 1991a,b) was used as the basis for identification and supported by more recent books 
such as Krammer (2000) and Lange-Bertalot (2001) among others. Different people carried 
out the determinations. Therefore before gathering all the diatom counts in the same data-
base, all the identifications were checked by the authors by looking at the permanent slides 
to homogenise the dataset from a taxonomical point of view. 

Physical and chemical analyses 

Water temperature, dissolved oxygen, conductivity and pH were measured every month by 
the different public services. Water samples were collected in each site and analysed in the 
laboratory following standard procedures (APHA 1995) for NO3

-, NO2
-, NH4

+, total phos-
phorus, PO4

3-, HCO3
-, Na+, Cl-, K+, SO4

2-, Ca2+, biological oxygen demand and chemical 
oxygen demand. In order to integrate the physical and chemical variations at each site, av-
erage values of the parameters during 3 months preceding the diatom sampling were calcu-
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lated for each sample. When the data were not available, annual averages were calculated. 
For each site sampled, geology, altitude, slope, catchment area and distance from the source 
were determined using 1:20,000 topographical maps and on geographical information sys-
tems (BD-Carthage hydrographical database, BRGM geological map, IGN topographical 
maps).

Data analysis 

The method used to explore the diatom database is an artificial intelligence technique called 
MIR-max (Walley and O’Connor 2001). This technique has a visualisation system similar 
to the self-organizing-map (Kohonen 1982), but the algorithm is considerably different. The 
MIR-max technique is based on two separated processes. Firstly, the samples are clustered 
by a pattern recognition technique based on information theory. An algorithm maximises 
the mutual information between the clusters and the attributes of the data (MI-max algo-
rithm), the numbers of the groups are defined in this algorithm. Secondly, the clusters are 
sorted in a two-dimensional output space. In the end of these two processes, the clusters 
numbers of the map are not ranked in an ordered way since among other processes a ran-
dom exchange procedure of the clusters intervene in the map construction algorithm. The 
diatom assemblages were used as input database for this technique. The 250 most abundant 
taxa were retained for the analysis and their absolute relative abundances were transformed 
to percentages in each sample.  

A Twinspan analysis (Hill 1979b) was carried out using the diatom data (the same 250 
most abundant taxa were used) to define clusters (pseudospecies cut level: 0, 2, 5, 10, 20, 
the same weights were given to all the pseudospecies). The results obtained with Twinspan 
and with MIR-max were compared by representing the Twinspan clusters on MIR-max 
maps; the percentages of each Twinspan cluster were calculated in each MIR-max cell and 
were represented on MIR-max maps. 

A forward selection performed with a Monte-Carlo test on the environmental variables 
and the diatom counts was computed with Canoco v. 4.0 (ter Braak 1988). This analysis is 
generally carried out to select the most important environmental variables before computing 
a canonical correspondence analysis. The effect of each environmental variable for diatom 
assemblages was assessed with the conditional effects and their significance was estimated 
with the Monte-Carlo test. Correlation coefficients were calculated between the environ-
mental variables measured for each sampling site; the coefficients were tested. These corre-
lation coefficients were used to facilitate the understanding of the environmental gradients 
observed on the MIR-max map. 

The organic pollution index IPO (Leclercq and Maquet 1987a,b) is an index giving a 
global value of organic pollution in rivers. It was used in this study to summarize the or-
ganic pollution information and was calculated for each MIR-max group. This index takes 
into account the concentrations of NH4

+, NO2
-, PO4

3- and the biological oxygen demand. 
IPO has a value between 1 and 5, representing a water quality from very highly polluted to 
unpolluted respectively. This index was used to select the sites with a very low level of or-
ganic pollution: MIR-max groups with IPO values of 4.5 or greater were selected. The dia-
tom assemblages of these selected groups were proposed as type assemblages for the stud-
ied rivers.  

The Water Framework Directive (European Parliament and The Council of the Euro-
pean Union 2000) suggests choosing between two typological systems for the rivers, Sys-
tem A or System B. System A is simple to apply and uses 4 environmental descriptors with 
classes already defined: ecoregions (Alps, Pyrenees, Western highlands, Western plains for 
the Rhône-Méditerranée-Corse region), altitudes (lowland < 200 m, 200  mid-altitude 
800, 800 < high), catchment area (10 < small  100 km2, 100 < medium  1000, 1000 < 



292      Rimet F , Cauchie HM, Tudesque L, Ector L 

large  10000, 10000 < very large), geologies (calcareous, siliceous, organic). In order to 
characterise the sites composing the MIR-max groups, the class boundaries of altitude and 
catchment area of the system A were used. 

Results

Distribution of taxa in the studied area 

497 taxa were identified. Some taxa such as Fragilaria arcus, well known to occur in cold 
waters with high current velocity and a low anthropogenic pollution (Krammer and Lange-
Bertalot 1991a), had a regional distribution pattern. 

Fig. 5.4.2. Location and abundance of Fragilaria arcus and Navicula cryptotenella in the Rhône-
Méditerranée-Corse basin. Scale bars on the photos correspond to 10 mm. 

Fig. 5.4.3. Location and abundance of Cocconeis placentula var. lineata and Mayamaea atomus var. 
permitis in the Rhône-Méditerranée-Corse basin. Scale bars on the photos correspond to 10 mm. 
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Fig. 5.4.4. MIR-max map computed on the basis of the diatom assemblages; 80 groups of diatom 
samplings were defined and represented on a hexagonal map.

The location of Fragilaria arcus (Fig. 5.4.2a) near the Italian boundary in the eastern 
part of the region corresponded to the high Alps and confirmed this ecology. On the con-
trary, the cosmopolitan taxon Navicula cryptotenella (Lange-Bertalot 2001) was principally 
located in lowland rivers, such as in the Saône and the Rhône rivers (Fig. 5.4.2b). 

Other taxa such as Cocconeis placentula var. lineata were not confined to a particular 
region but were present throughout the study area (Fig. 5.4.3a). Cocconeis placentula var.
lineata is considered as a cosmopolitan epiphytic and epilithic taxon (Krammer and Lange-
Bertalot 1991b). The eutraphentic and -meso-polysaprobous taxon Mayamaea atomus var. 
permitis (van Dam et al. 1994) did not show a regional distribution pattern (Fig. 5.4.3b); its 
distribution corresponded to sites that are always impacted by human activities. 

Exploration of the diatom database structure with MIR-max software 

80 groups or “clusters” were computed using the MIR-max software; these were arranged 
on a hexagonal output space with 127 discrete locations (Fig. 5.4.4). The MIR-max map 
was numbered from 1 to 80, corresponding to the 80 groups of samples. Samples with simi-
lar diatom assemblages were placed in the same group or in neighbouring groups on the 
map, whereas samples with very different assemblages were placed in distant groups. 
Achnanthidium minutissimum (Fig. 5.4.5b) appeared in most of the MIR-max groups, it is 
often the dominant diatom in upland oligo/mesotrophic rivers (see e.g. Kelly and Whitton 
1995), and was also the dominant taxon in the rivers of the studied region.  

The MIR-max map (Fig. 5.4.4) showed that a lot of groups were contiguous with only a 
few of them isolated. In the bottom part of the map were found contiguous groups domi-
nated by taxa as Achnanthidium biasolettianum (Fig. 5.4.5a), Fragilaria arcus (Fig. 5.4.5f) 
or Gomphonema pumilum (Fig. 5.4.5g). On the upper left part were found pollution resis-
tant taxa such as Fistulifera saprophila (Fig. 5.4.5e). The upper right part was dominated 
by -mesosaprobous taxa such as Amphora pediculus (Fig. 5.4.5c) or Navicula cryptoten-
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ella (Fig. 5.4.5h) (van Dam et al. 1994).MIR-max algorithms isolated groups with assem-
blages very different from each other. Group 5 is the most isolated (estuary of the Durance 
canal in “l’Etang de Berre”) its assemblage was characterised by taxa occurring in slightly 
brackish environments (Fragilaria fasciculata, Nitzschia filiformis, Gomphonemopsis ob-
scurum): these taxa were unusual in the database. Groups 57 and 49 were also isolated from 
the rest of the groups. 
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Fig. 5.4.5. Abundance of 8 taxa on the MIR-max map. Percentages are represented in grey 
scale.

They were both characterised by high abundances (20 and 22% respectively) of the in-
vasive Nitzschia cf. tropica (Coste and Ector 2000) that is only abundant in these two 
groups, situated in the Massif Central and in the left bank of the Rhône near the Mediterra-
nean sea. Some taxa as Cocconeis placentula var. lineata did not show any clear gradient 
on the MIR-max map (Fig. 5.4.5d). 
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Influence of environmental factors on diatom assemblages 

Each MIR-max group can be characterised by physical and chemical parameters. Average 
values for different variables were overlaid on the MIR-max map with grey scale (Fig. 
5.4.6). The range of each environmental parameter is given in Table 5.4.1 to show the ex-
tent of the environmental conditions observed in this study. The altitude showed a continu-
ous gradient from the upper part to the bottom of the MIR-max map (Fig. 5.4.6a). 

Altitude
0 <100 m

100 <200 m
200 <500 m
500 <1000 m

1000 m

Source distance
1 <10 km

10 <30 km
30 <50 km
50 <100 km

100 km

IPO
4.5 <5 no organic pollution

4 <4.5 low organic pollution
3 <-4 moderate organic pollution
2 <3 high organic pollution
1 <2 very high organic pollution

NH4
+

0.01 <0.05 mg NH4
+/l

0.05 <0.10 mg NH4
+/l

0.10 <0.20 mg NH4
+/l

0.20 mg NH4
+/l

BOD
0.5 <1 mg.l-1

1 <2 mg.l-1

2 <3 mg.l-1

3 <4 mg.l-1

5 <6 mg.l-1

6 mg.l-1

Conductivity
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Fig. 5.4.6. Characterisation of the MIR-max groups; average values of the 6 significant physical and 
chemical parameters (Table 5.4.1) and of the Index of Organic Pollution IPO are overlaid on the MIR-
max map. 

High altitude sites (over 1000 meters) are mainly located in the bottom of the map, and 
low altitude sites in the upper part. The gradient of “altitude” was inversely correlated to 
the gradient of “distance from source” (Fig. 5.4.6b); this can be explained by the fact that 
headwaters were in the bottom left hand corner of the map, and sites near the estuaries were 
in the upper part. Tests of the correlation coefficient calculated between these two variables 
and slope confirmed this observation (Table 5.4.2). The forward selection showed that the 
altitude was the most important factor affecting the structure of diatom assemblages (Table 
5.4.1). Organic pollution indicators as biological oxygen demand and ammonium as well as 
conductivity and pH also had important and significant effects (Table 5.4.1). 

These pollution indicators were also overlaid to the MIR-max map (Fig. 5.4.6e, f). They 
showed a gradient from high concentrations in the upper left hand corner to low concentra-



296      Rimet F , Cauchie HM, Tudesque L, Ector L 

tions in the bottom right hand corner of the map. All the pollution indicators (NO3
-, NO2

-,
NH4

+, PO4
3-, biological oxygen demand) were positively and significantly correlated (Table 

5.4.2). Parameters expressing saprobity of rivers appeared to have a significant effect on 
diatom assemblages. NO3

-, did not show any significant effect. 
The results of the forward selection showed the importance of parameters related to ty-

pology (altitude, source distance). This showed the necessity to use a typological system to 
better understand the groups defined by the MIR-max algorithms. The characterisation of 
each group was also important to enable to assign some groups to precise typological levels 
and particular regions. In this study the class boundaries of two descriptors of the system A 
(European Parliament and The Council of the European Union 2000) were used (altitude 
and catchment area) in order to characterize the sites composing each group with IPO val-
ues of 4.5/5 or greater. 

Numbers of samples in each class (altitude and catchment area) are presented in Table 
5.6. This Table 5.4.3 shows that some groups are well characterized such as groups 55, 66 
(class of high altitude, small and medium catchment area respectively), or group 39 (mid al-
titude, medium catchment). Other groups such as 1, 12, 42 or 50 were difficult to 
characterize because their samples belonged to several different classes of altitudes and/or 
catchment area. 

All the taxa with abundances over 10% in the groups of table 5.6 were pollution sensi-
tive according to Cemagref (1982) (Table 5.4.4). The saprobity classes of van Dam et al. 
(1994) consider these taxa as oligosaprobous or -mesosaprobous taxa and the saprobity 
classes of Rott et al. (1997) consider these taxa as sensitive to tolerant to saprobity (Table 
5.4.4). On the other hand the trophy classes of these taxa (Table 5.4.4), are varying from 
mesotraphentic to eutraphentic according to van Dam et al. (1994) and from oligotraphentic 
to eutraphentic according to Rott et al. (1999). 

Table 5.4.1. Forward selection performed with 14 environmental variables and the 250 most abundant 
taxa (ter Braak 1988). The conditional effect is the variance of the species matrix explained by a new 
environmental variable added to the model, given the variance already explained by the environmental 
variables selected by the model; a Monte-Carlo test was calculated for each variable to test its signifi-
cance (P value). The marginal effect is the explained variance of the species matrix using only one en-
vironmental variable at a time. Cumulative percentage variance of species-environment relation: axis 
1: 28.0%, axis 2: 14.7%. The last column “Parameters values” gives the minimum, the average and the 
maximum values of each parameter measured in the 207 sampling sites. 

 Conditional effects Marginal
effects Parameter values 

 Environmental
 Variables 

Additional vari-
ance explained 

Monte-Carlo test 
(significant if 

P 0.05)

Explained vari-
ance Min. Ave-

rage Max.

 Altitude (m) 0.39 0.005 0.39 1 547 2660 
 BOD* (mg l-1) 0.26 0.005 0.30 0.5 2.1 18.4 
 Conductivity 0.18 0.005 0.26 25 415 1800 
 pH 0.15 0.005 0.16 6.2 8.1 9.2 
 Distance to source (m) 0.14 0.010 0.21 0.0 53.1 437.1 
 NH4

+.(mg NH4
+ l-1) 0.13 0.040 0.25 0.01 0.31 15.56 

 PO4
3- (mg PO4

3- l-1) 0.12 0.060 0.28 0.01 0.33 8.06 
 Na+(mg l-1) 0.11 0.110 0.24 0.2 14.6 265.0 
 Cl-(mg l-1) 0.07 0.380 0.22 0.1 21.48 380.0 
 Slope (‰) 0.07 0.370 0.15 0 10 133 
 NO3

- (mg NO3
- l-1) 0.07 0.210 0.31 0.02 4.39 34.00 

 Ca2+(mg l-1) 0.06 0.400 0.20 0.5 69.6 269.0 
 Dissolved oxygen 0.05 0.835 0.09 2.2 9.5 15.6 
 NO2

-(mg NO2
-l-1) 0.05 0.430 0.17 0.01 0.21 3.90 

 *: BOD: Biological Oxygen Demand 
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Table 5.4.2. Correlation coefficient (Pearson product moment) calculated with the environmental pa-
rameters measured in the 207 sampling sites. Cell contents: correlation coefficient, P value: ns: not sig-
nificant, significant: 0.05 *<0.01, highly significant: 0.01 **<0.001, very highly significant: 
0.001 ***.
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Fig. 5.4.7. Comparison of the results obtained with Twinspan and MIR-max. 4 clusters were defined 
with Twinspan and were represented on MIR-max maps, the Twinspan indicator species of each cluster 
are given (ADBI: Achnanthidium biasolettianum, APED: Amphora pediculus, CAFF: Cymbella affinis, 
EOMI: Eolimna minima, ESBM: E. subminuscula, FARC: Fragilaria arcus, FSAP: Fistulifera sapro-
phila, NCTE: Navicula cryptotenella, NPAL: Nitzcchia palea, PTLA: Planothidium lanceolatum).
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Table 5.4.3. Presentation of the 17 groups with an IPO of 4.5/5 or greater. Numbers of samples for 
each altitude and catchment area classes are given, their taxa with abundances over 5% are mentioned. 
Codes for geology: 1: limestone, 2: mudstone-schist-schale, 3: granitic, 4: mixed, 5: quaternary sedi-
ment, 6: other. The classes boundaries follow the system A of the Water Framework Directive (Euro-
pean Parliament and The Council of the European Union 2000): altitude in meters (class 1: lowland 
200, class 2: 200 < medium  800, class 3: 800 < high), catchment area in km2 (class 1: 10 < small 
100, class 2: 100 < medium  1000, class 3: 1000 < large  10000, class 4: 10000 < very large). Codes 
signification of the taxa: ADMI : Achnanthidium minutissimum, ADBI : A. biasolettianum, ADLA : A.
latecephalum, APED : Amphora pediculus, CAFF : Cymbella affinis, CPED : Cocconeis pediculus,
CPLI : C. placentula var. lineata, CPPL : C. placentula var. pseudolineata, DMES : Diatoma mesodon,
DVUL : D. vulgaris, ENCM : Encyonopsis microcephala, ENMI : Encyonema minutum, EOCO : Eo-
limna comperei, EOMI : E. minima, FCAP : Fragilaria capucina, FCVA : F. capucina var. vauche-
riae, FDEL : F. delicatissima, FSAP : Fistulifera saprophila, GPAR : Gomphonema parvulum,
GPUM : G. pumilum, GTER : G. tergestinum, NCTE : Navicula cryptotenella, NDIS : Nitzschia dissi-
pata, NFON : N. fonticola, NPAE : N. paleacea, NTPT : Navicula tripunctata, RSIN : Reimeria sinu-
ata, UULN : Ulnaria ulna. 

Altitude
classes

Catchment
area classes 

Taxa present in the group, 
mentioned by decreasing abundance order
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100%<Abundance 10
% 10% < Abundance  5%

1 1,2,2,5 3 1  1 1 1  4* CPLI, ADMI, GPUM CPPL 

3 2,3  1 1 1 1   2 ADMI, FCAP GPAR, EOMI, FCVA 

7 2 1       1 ADMI NCTE, UULN 

12 1,1,1,2,3  3 2 2 2   5* ADBI, ADMI, ENMI GPUM 

14 1,1 2   2    2 NCTE, ADMI NTPT

25 3 1    1   1 CAFF, ADMI DVUL, CPLI, NPAE 

26 1,4,4 1  2  2   3* ADMI, APED, CPLI NTPT 

31 2  1   1   1 ADMI ADBI, NDIS, NCTE, NFON 

33 1,1,1,1,4  3 2 1 4   5 ADMI, ADBI, GPUM GTER 

34 1,1 2    1 1  2 CAFF, ADMI, NFON ADLA, EOCO 

39 1,1,5  3   2 1  3 ADMI, GTER, ADBI  

42 1,3,4  2 1 1 2   3 ADMI, ADBI GPUM, RSIN, DMES 

50 1,1,1 1 2   1 1 1 3 ADMI, CPLI ADBI, CAFF 

55 1,3,3,3,4,
4

 1 5 1 5   6 ADMI, GPUM, ADBI RSIN, FSAP, CAFF 

60 1,3 2     1  2* ADMI, CPED, NCTE, CPLI  

61 1,1,6 1 2   1 2  3 ADMI, ADBI, FDEL ENCM, CAFF 

66 1,1,3,3,3   5 3 2   5 ADBI, ADMI, GPUM, CAFF  

*: catchment area was not defined for one sample in these groups 

Representation of Twinspan clusters on MIR-max map 

Twinspan clusters 4-5 were present in the upper part of the MIR-max map whereas clusters 
6-7 were in the lower part of the map (Fig. 5.4.7). A difference between clusters 4 and 5 
was observed since the former was in the left part of the map; similar observations were 
done for 6 (right part of the map) and 7 (left part of the map). Indicator species of the upper 
left part were pollution tolerant (Fig. 5.4.5e: Fistulifera saprophila and Eolimna subminus-
cula), those of the upper right part are -mesosaprobous (Fig. 5.4.5c: Amphora pediculus, 
Fig. 5.4.5h: Navicula cryptotenella). Indicator taxa of the bottom right hand corner are pol-
lution sensitive (Fig. 5.4.5a: Achnanthidium biasolettianum, Figure 5.4.5g: Gomphonema 
pumilum), Fragilaria arcus (Fig. 5.4.5f) and Planothidium lanceolatum are indicative taxa 
of the bottom left hand corner. 
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Table 5.4.4. Sensitivity and indicator values according to Cemagref (1982), saprobic and trophic in-
dexes according to van Dam et al. (1994) and Rott et al. (1997, 1999) for the most abundant taxa of 
Table 5.4.3 (abundance over 10%). For Cemagref (1982) S is ranging from 5 (pollution sensitive taxa) 
to 1 (taxa tolerant to pollution) and V (indicator value of the taxa) is ranging from 3 (stenoecy) to 1 
(euryecy). For van Dam et al. (1994) saprobity: 1: oligosaprobous, 2: -mesosaprobous, to 5: polysap-
robous; trophy: 1: oligotraphentic, 2: oligo-mesotraphentic, 3: mesotraphentic, 4: meso-eutraphentic, 5: 
eutraphentic, 6: hypereutraphentic, 7: indifferent. For Rott et al. (1997) saprobity: sensitive to saprobity 
< 1.3, tolerant to saprobity < 2.1, saprophilic < 2.6, saprobiontic  2.6. For trophy Rott et al. (1999): 
oligotraphentic < 1.4, mesotraphentic < 1.9, eutraphentic < 2.7, eutraphentic to polytraphentic  2.7, V 
(indicator value) is ranging from 5 (stenoecy) to 0 (euryecy). The taxa codes are given in Table 5.4.3.   

 Cemagref (1982) van Dam et al. (1994) Rott et al. (1997) Rott et al. (1999) 

 S V Saprobity Trophy Saprobity V Trophy V 
ADBI 5 2 - 3 1.4 3 1.3 1 
ADMI 5 1 2 7 1.7 1 1.2 1 
APED 4 1 2 5 2.1 2 2.8 2 
CAFF 4 2 2 5 1.2 4 0.7 4 
CPED 4 2 2 5 2 3 2.6 2 
CPLI 5 1 2 5 - - 2.3 2 
ENMI 4.8 2 - - 1.6 2 2.0 1 
FCAP 4.5 1 2 3 - - 1.8 2 
FDEL 4 1 - 3 1 5 1.4 2 
GPUM 5 1 - 7 1.6 3 1.1 1 
GTER 4 3 1 2 1.9 4 1.4 1 
NCTE 4 1 2 7 1.5 2 2.3 1 
NFON 3.5 1 2 4 2.1 4 1.9 0 

Discussion

Comparison of results obtained with Twinspan and MIR-max 

Results obtained with these two techniques presented large similarities. Each Twinspan 
cluster (clusters 4, 5, 6, 7) mostly corresponds to each corner of the MIR-max map. This 
comparison shows that results obtained with a classical technique (Twinspan) are similar 
with those obtained with MIR-max. The use of the indicator species given by Twinspan can 
give further understanding for the MIR-max map structure. However, MIR-max remains 
more effective to visualize the clusters and their species composition than classic clustering 
techniques.

Type assemblages in unpolluted rivers of Rhône basin and Mediterranean 
region

In our data set, nitrate did not seem to have any significant effect on diatom assemblages 
(Table 5.4.1), and the classes of trophy for the taxa composing the type assemblages were 
rather heterogeneous (Table 5.4.4): from oligo-mesotraphentic to eutraphentic or indifferent 
(van Dam et al. 1994), and from oligotraphentic to eutraphentic (Rott et al. 1999). Never-
theless parameters characterising the saprobity of the rivers had a significant effect on dia-
tom assemblages (Table 5.4.1). The taxa composing the type assemblages presented in Ta-
ble 5.4.3 are pollution sensitive (Cemagref 1982) and most of them are sensitive to 
saprobity (van Dam et al. 1994, Rott et al. 1999, Table 5.4.4). Our work is in agreement 
with these studies already done in the field of classification of algal assemblages and the 
type assemblages proposed for the Rhône basin and Mediterranean region seem to be con-
sistent.
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In the groups proposed as unpolluted (Table 5.4.3), some as groups 1 and 60 were char-
acterised by taxa considered as epiphyte (Cocconeis pediculus, C. placentula var. euglypta, 
var. lineata, var. pseudolineata). Their geographical distribution and their typology are not 
clear and these groups were probably characterized by the occurrence of filamentous algae 
(Cladophora) in the sampling sites. 

On the contrary, group 55 was well characterized for its altitude and catchment area 
classes (Table 5.4.3), corresponding to high altitude rivers (770 to 1300 m) with high cur-
rent velocity, relatively low conductivities (from 108 to 443 S.cm-1) and low temperature 
(from 8.2 to 14.4 during summer and early autumn). Most of the samples of this group were 
located in upstream sites of the Alps. The typical assemblage in this group was composed 
of small species, Achnanthidium minutissimum, A. biasolettianum, Gomphonema pumilum 
and Reimeria sinuata. These taxa are equipped with anchoring systems: Achnanthidium are
attached to substrata by a mucilage stalk formed at one end of the raphe valve (Round et al.
1990), Reimeria has apical pore field at each end on the ventral mantle and Gomphonema 
has a basal pore field; these pore fields are involved in the secretion of mucilage for the at-
tachment to substrata (Round et al. 1990, Hoagland et al. 1982). This attachment property 
and their small sizes are important characteristics, enabling resistance to high speed current 
and waters with a high concentration of suspended solids. Group 66 had a very similar as-
semblage, and also corresponded to upstream sites in the Alps. Group 12 is also rather near 
groups 66 and 55 but of lower altitude. 

Groups 14 and 7 were composed of low altitude sites (Bourbonne river at Montbellet, al-
titude: 200 m, Golo at Volpajola in Corsica: 90 m). Their assemblages (Table 5.4.3) were 
typified by alkaliphilous taxa: N. cryptotenella, N. tripunctata and Ulnaria ulna (van Dam 
et al. 1994). These diatom assemblages are uncommon in the Rhône-Méditerranée-Corse 
database since many lowland rivers are impacted by human activities and have assemblages 
dominated by polysaprobous taxa. Similarly, rivers with low conductivities and weak 
slopes were composing group 3; taxa as Achnanthidium minutissimum and Fragilaria 
capucina are present in high abundance in these unpolluted watercourses (Eyrieux river and 
Saone river at 8 km from the sources). 

Another example is provided by group 39 (Table 5.4.3). It corresponded to Alpine rivers 
of medium altitude (230-780 m), with a river catchment dominated by limestone (Dranse at 
Thonon, Leysse at Le Bourget and Durance at Embrun). The conductivity of this group was 
relatively high: from 394 to 438 S.cm-1. Taxa such as Achnanthidium minutissimum, A.
biasolettianum and Gomphonema tergestinum were abundant in this group. Gomphonema 
tergestinum is well known to occur in unpolluted rivers with high concentrations of electro-
lytes in limestone Alps (Krammer and Lange-Bertalot 1986). 

Groups 25 and 34 corresponded to lowland rivers (altitude: 47-100 m) of the western 
part of the basin (Ardèche river in Massif Central mountains). They were characterised by 
ubiquitous species like Achnanthidium minutissimum, Cymbella affinis and Nitzschia fonti-
cola. Moreover group 34 had some peculiar taxa such as Achnanthidium latecephalum or 
Eolimna comperei (Coste and Ector 2000). Achnanthidium latecephalum has never been 
found previously in Europe; it was described only in rivers with low level of pollution in 
Japan (Kobayasi and Ishida 1996). Achnanthidium latecephalum occurred only in group 34 
as a dominant species: Ardèche and Chassezac rivers in Massif Central, Tavignano river in 
Corsica. Eolimna comperei also had a local repartition in Europe and was until now known 
to be present only in the Adour, the Garonne, and the Rhône basins (Coste and Ector 2000, 
Peres et al. 2003).  

This last example suggests not only that environmental parameters are structuring dia-
tom assemblages, but also that historical processes of species dispersal can play an impor-
tant role (Potapova and Charles 2002). Recent studies showed that about 15 diatom taxa 
(e.g. Eolimna comperei, Gomphoneis minuta, Encyonema triangulum, Diadesmis conferva-
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cea) can be considered as invasive taxa in France (Coste and Ector 2000, Peres et al. 2003). 
This raises the question of whether such invasive species should rather be included in type 
assemblages of unpolluted rivers or should be considered as indicators of environmental 
modifications.

Influence of environmental factors on diatoms in the Rhône basin and 
Mediterranean region 

According to Stevenson and Pan (1999), knowledge of the hierarchical organization of the 
relevant factors can help to make diatom indicators more precise. The most important pa-
rameters structuring diatom assemblages in Rhône basin and French Mediterranean region 
is altitude, and also, at a lower level, distance from the source. In this study, altitude, slope 
and source distance are correlated all together (Table 5.4.2), and are also often correlated to 
current velocity. Current velocity has been demonstrated to be a significant selective factor 
for species composition of diatom assemblages in Mediterranean springs (Roca 1990, Sa-
bater and Roca 1990), in rivers (Biggs and Gerbeaux 1993, Lamb and Lowe 1987), and also 
in indoor lotic microcosms (McIntire 1966, Steinman and McIntire 1986). Temperature that 
has an effect on periphyton and diatom metabolism (Denicola 1996, Berges et al. 2002) is 
also related to altitude. 

Conductivity and pH (Fig. 5.4.6c, d) were less important but significant parameters ac-
cording to the Monte-Carlo test computed in the forward selection (Table 5.4.1). They can 
be linked to the geological substrate (Biggs 1995), which has been shown to be an impor-
tant parameter affecting the structure of diatom assemblages in lotic (Rimet et al. 2004) and 
lentic systems (Vyverman et al. 1996). Geology is very complex in the study area, espe-
cially in the Alps; it could be reasonably expected to be an important parameter affecting 
the structure of diatom assemblages but was difficult to identify here. A denser sampling 
should be carried out to more accurately assess geology impact on diatom assemblages.  

Organic pollution, measured on the basis of biological oxygen demand and NH4
+, was 

also shown to have important and significant impacts on diatom assemblages, but was less 
influential than altitude. Numerous studies have related water quality and diatom assem-
blages (Stoermer and Smol 1999) and several authors developed biotic indexes to assess 
biological water quality of European running waters: Descy (1979), Cemagref (1982), 
Sláde ek (1986), Leclercq and Maquet (1987a,b), Descy and Coste (1990, 1991), Schiefele 
and Kohmann (1993), Hofmann (1994), Kelly and Whitton (1995), Lenoir and Coste 
(1996), Prygiel and Coste (1998, 2000), Kelly (1998b), Coring et al. (1999), Dell’Uomo 
(1999), Harding and Kelly (1999), Rott et al. (1997, 1999), Rott and Pipp (1999). These bi-
otic indices are now routinely used in many countries, for instance in France, Belgium, 
Luxembourg and Spain, and are standardised or are about to be (Kelly et al. 1998, AFNOR 
2000, European Committee for Standardization 2002a, 2002b). Several kinds of pollution 
parameters and their influence on diatom taxa selection can be separated in different cate-
gories such as saprobity and trophy (Hofmann 1994, van Dam et al. 1994, Rott et al. 1997, 
1999). In our study most of the parameters indicating pollution were correlated with each 
other (Table 5.4.2). On the MIR-max maps, these parameters had similar gradients. Pa-
rameters characterising the saprobity level of the rivers appeared to be the most important 
factors structuring the diatom assemblages (Table 5.4.1).  

Even if most of the pollution parameters were inversely correlated with altitude (Table 
5.4.2), moderate organic pollution occurred in several high altitude sites such as those in 
groups 56 and 4 with altitudes varying from 1245 m to 2660 m and IPO of 3.75 for both 
groups. Diatoma mesodon and Fragilaria arcus were present with important abundances in 
these two groups. Diatoma mesodon is considered as oligosaprobous and mesotraphentic, 
and, Fragilaria arcus as -mesosaprobous and oligo-mesotraphentic according to van Dam 
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et al. (1994). Both are oligotraphentic and tolerant to saprobity according to Rott et al.
(1997, 1999); these species may characterise high altitude sites with moderate organic pol-
lution. High altitude sites moderately impacted were quite rare in the databases; impacted 
sites were much more likely to be found in lowland rivers (groups in the upper left part of 
the MIR-max in Fig. 5.4.4). Lowland polluted sites had assemblages dominated by pollu-
tion resistant taxa such as Fistulifera saprophila or Mayamaea atomus var. permitis. On the 
other hand, despite their scarcity, weakly impacted lowland sites could be found in the 
study area, such as those in group 14, characterised by a dominance of Navicula cryptoten-
ella. The effects of pollution factors are generally more complex to understand when asso-
ciated to gradients of altitude, distance from source and slope (Potapova and Charles 2002). 

Typology and diatoms 

The results of the MIR-max map and of the forward selection (Canoco v 4.0) are compara-
ble and both show the importance of a “downstream” gradient. This complex gradient 
summarizes parameters such as altitude, distance to source, slope and current speed. This 
gradient can be related to the typology and must be taken into account to understand diatom 
assemblages. The concept of typology has existed for a long time in hydrobiology. Illies 
and Botosaneanu (1963) defined a zonation system with three typological levels on the ba-
sis of fish fauna. More recently Vannote et al. (1980) introduced the “River Continuum 
Concept”, which states that the change in the benthic community structure along a stream is 
predictable.

Concerning diatom assemblages, few studies (Descy and Coste 1991) clearly suggest the 
existence of a continuum or a biotypology along rivers. Studies in the United States showed 
the importance of this “downstream” gradient at a larger scale (Potapova and Charles 
2002). These authors emphasized that this gradient is difficult to understand because many 
factors such as slope, elevation, concentration of nutrients, land-use and temperature 
intervene simultaneously. Similar observations about the importance of topography 
(mountain, high plateau, low plateau, valley) on diatom assemblage structure were done in 
the Mid-Atlantic Highlands streams in USA (Pan et al. 2000). 

The limits of the River Continuum Concept were reviewed in France by Wasson (1989) 
who indicated that macroinvertebrate continua are different depending on the region con-
sidered. A regional or ecoregional approach must also be taken into account for the defini-
tion of the type communities for macroinvertebrates, diatoms and fishes that occur in 
streams. This work has already been undertaken in several countries as Spain (Munné and 
Prat 2000) and France (Wasson et al. 2001). The results of this study also show that a re-
gional approach should be considred for benthic diatoms since groups corresponding to un-
polluted rivers can be related to regions and to particular altitude ranges. 

Conclusion and perspectives 

This study is a first attempt to identify the parameters structuring diatoms and to define 
type assemblages of benthic diatoms in unpolluted rivers of France using artificial intelli-
gence in combination to chemical index and multivariate analyses. It shows the importance 
of the downstream gradient and the regional factors for benthic diatom assemblages. Rela-
tions with a more detailed classification of geology should be also checked and compari-
sons of these results should be made with results from a wider spatial scale (for instance, at 
a European level) and with other studies realised in similar (see Tison et al. # 5.5) or in 
smaller areas (see Rimet et al. in # 5.7).  
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In order to define more precisely all the type assemblages for unpolluted rivers in Rhône 
basin, French Mediterranean region and high European mountains, a denser sampling espe-
cially in underrepresented river types and a more global approach should be envisaged. As 
the REFCOND European working group (2002) proposed, a selection of non-impacted ba-
sins or sites should be done first. New samplings should then be collected in non-impacted 
sites to reinforce the existing database. Comparisons of the results presented in our study 
with the reference conditions established following the REFCOND guidance could be car-
ried out in the future. 
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5.5 Classification of stream diatom communities using a 
self-organizing map*

Tison J†, Giraudel JL, Park YS, Coste M, Delmas F 

Introduction

One of the major axes of the new E.U. Water Framework Directive is to assess the devia-
tion of an ecosystem with respect to the highest ecological quality awaited (non-perturbed 
or reference conditions), thanks to the responses of aquatic communities. By comparing 
diatom communities in natural and disturbed sites, indicators for different types of anthro-
pogenic disturbance can be found. But, since diatom species composition varies among 
streams due to natural as well as anthropogenic factors, we should be able to increase the 
accuracy of assessing anthropogenic impact by first accounting for natural variability 
among sites. Kociolek (2000) argue that the proportion of geographically restricted diatom 
species is high and spatial distribution patterns of species are still poorly understood. Al-
though many studies have focused on the effect of human pressure on diatom communities 
(Pan et al. 1999, Licursi and Gomez 2002, Winter and Duthie 2000, Potapova and Charles 
2002, Soininen 2002), the number of studies attempting to characterise the natural patterns 
and the relative weights of environmental parameters influencing this natural variability is 
limited (Descy 1984, Leclercq and Depiereux 1987, Sabater and Roca 1992, Stevenson 
1997, Pan et al. 2000). 

Ordination techniques are a useful way to explore the characteristics of datasets and to 
find relationships between variables. Diverse linear ordination methods have been used to 
simplify the data including polar ordination, principal components analysis (PCA), corre-
spondence analysis (CA) (Pearson 1901, Hill and Gauch 1980, Beals 1984, Jongman et al. 
1995). The limitations are well-known, e.g. all of them present strong distortions with non-
linear species abundance relations (Kenkel and Orloci 1986); horseshoe effects due to uni-
modal species response curves in PCA and arch effects, outliers, missing data, disjointed 
data matrix in CA (Giraudel and Lek 2001). Recently, as an alternative tool to deal with 
this problem of complexity in ecological data, artificial neural networks (ANNs) have been 
utilized for patterning communities in various ecosystems (i.e., aquatic, forest, agriculture, 
etc.) (Lek and Guégan 2000, Recknagel 2003). Among the ANN techniques, Kohonen’s 
self-organizing map (SOM) (Kohonen 1982, 2001) is the most popular unsupervised learn-
ing algorithm, allowing the classification of data without prior knowledge and the visualisa-
tion of species assemblages in a two-dimensional space (Giraudel and Lek 2001). The SOM 
has been used for the classification of communities (Chon et al. 1996, Foody 1999, Park et 
al. 2001a, 2003a), for water quality assessment (Walley et al. 2000, Aguilera et al. 2001), 
and for prediction of populations and communities (Céréghino et al. 2001, Obach et al. 

* Our work has been funded through the EU 5th Framework Research Programme named PAEQANN. 
We wish to thank the Adour-Garonne Water Agency for providing us with the physical and chemical 
characteristics of the sampling sites. We also thank J.G. Wasson and his colleagues from Cemagref 
Lyon for their helpful information concerning Adour-Garonne hydro-ecoregions. 

† Correspondence: juliette.tison@bordeaux.cemagref.fr 
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2001). The ability of the SOM for classification and ordination in ecology has also been 
compared with conventional multivariate analysis (Chon et al. 1996, Foody 1999). In par-
ticular, Giraudel and Lek (2001) compared the SOM with several different multivariate 
analysis methods including PCA and CA, and concluded that the SOM seems fully usable 
in ecology and can be a perfect complement to classic techniques for exploring data and for 
achieving community ordination. Nijboer et al. (see # 4.5) also compared the SOM with a 
canonical correspondence analysis and cluster analysis for the ordination and classification 
of macroinvertebrate communities, showing that each method has its own strengths and 
weakness depending on the objectives of the study.  

Our study, run on a pilot dataset (Adour-Garonne stream system, South-West of France), 
was the first attempt to highlight the natural spatial distribution scheme of benthic diatoms 
on a regional scale, and explored the performance of the SOM in diatom community stud-
ies. The main purpose is to give a practical application of unsupervised neural networks for 
patterning diatom community structure in reference situations, sustaining the WFD imple-
mentation. In this study, we developed an innovative methodological approach to establish 
a first diatom-based bio-typology of an Adour-Garonne basin stream system which makes 
clear headway in ecoregional zoning.

The research was carried out in the framework of the European Research Program 
PAEQANN (Predicting Aquatic Ecosystem Quality using Artificial Neural Networks – 5th

PCRD), aiming to develop general methods, based on advanced modelling techniques, for 
predicting the structure and diversity of key aquatic communities under natural conditions 
and subjected to man-made disturbances.  

Material and methods 

Studied area and dataset 

The Adour-Garonne hydrographic network (up to 120 000 km of streams and rivers for a 
total watershed of 116 000 km2), is composed of 7 main sub-catchments (Charente river, 
Dordogne river, Lot river, Tarn-Aveyron rivers, Garonne river, Adour river, and coastal 
streams), covering a large range of altitudes (high mountains to plains and coastal areas) 
and geological substrates (calcareous, sedimentary, sandstone, crystalline and volcanic). 

The database consisted of 49 reference sites in the basin where data was collected from 
1994 to 2001 by the Cemagref (Table 5.5.1, Figure 5.5.1). "Reference sites" here represent 
sites with a very low level of disturbance, often located in upstream parts of the rivers 
above significant human activities. The IPS (Indice de Pollusensibilité Spécifique; Coste in 
Cemagref 1982) of the stations was always over 15 on a scale of 20, confirming their good 
quality status. We studied only reference sites so as to highlight natural variability, and ac-
curately characterise the species composition expected in the least impacted streams (ex-
pected conditions for different types of habitat).  

All samples were collected during summer and according to a standardised method 
(NFT 90-354 (AFNOR 2000)), in order to limit variability due to the season and to local 
factors like shadow or substrate. 

Diatom species were identified at a 1000  magnification (Leitz DMRD light micro-
scope) according to Krammer and Lange-Bertalot (1986, 1988, 1991a,b), by examining 
permanent slides of cleaned diatom frustules, digested in boiling H2O2 (30%) and HCl 
(35%) and mounted in a high refractive index medium (Naphrax, Northern Biological Sup-
plies Ltd, UK; RI = 1.74). The biological data matrix then established, expressed in pres-
ence or absence of species, is composed of 399 species  49 sites.  
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Table 5.5.1. Sampling sites and their environmental conditions 

Code River Altitude
(m)

Slope
(%o) pH Conductivity

(µS/cm) 
HCO3
(mg/l)

1 ADOUR 500 19 7.95 140.00 85.00 
2 ARIEGE 187 5 7.15 94.50 46.50 
3 CORREZE  180 24 7.00 60.00 20.65 
4 DADOU  190 3 7.30 137.00 34.50 
5 DORDOGNE     270 6 7.10 55.50 22.00 
6 DORDOGNE  150 6 7.05 57.50 21.85 
7 GARONNE 480 11 8.20 97.50 59.50 
8 GARONNE 340 6 8.25 114.50 69.00 
9 GAVE-DE-PAU 360 6 7.55 267.00 83.00 
10 GAVE-DE-PAU 330 12 7.65 142.00 83.50 
11 GAVE-DE-PAU 225 22 8.05 167.50 84.50 
12 SALAT 280 6 7.90 161.00 92.00 
13 SALAT 280 6 8.10 158.00 85.00 
14 TARN 350 20 8.30 369.00 224.00 
15 TRUYERE  230 10 7.50 68.50 39.50 
16 GAVE-DE-PAU 150 8 8.10 319.00 128.00 
17 PALUE 5 0 6.60 105.00 23.60 
18 GAVE-D'OLORON 37 10 7.90 334.00 179.50 
19 GAVE-D'OSSAU 400 40 7.95 252.00 142.00 
20 NASSEY  20 1 6.20 158.00 30.00 
21 LEYRE 20 1 6.50 126.00 25.00 
22 NIVE 300 13 7.30 227.00 120.00 
23 GAVE D'ASPE 420 12 8.30 221.00 395.00 
24 NESTE 651 8 7.60 126.00 50.00 
25 LE LEZ 1080 13 8.10 184.00 100.00 
26 SALAT 665 45 7.90 163.00 90.00 
27 ORIEGE 920 25 7.80 86.00 50.00 
28 ARNETTE 480 10 7.40 533.00 20.00 
29 DOURBIE 820 25 7.50 31.00 20.00 
30 SERRE 668 6 8.10 474.00 305.00 
31 SEYE 190 11.7 8.01 603.00 330.00 
32 ANTENNE 55 3 7.50 686.00 365.00 
33 AUME 80 1.5 7.80 651.00 355.00 
34 DRONNE 140 2.4 7.50 89.00 40.00 
35 VEZERE 690 6 7.10 95.00 25.00 
36 DORDOGNE 1000 40 7.30 43.00 25.00 
37 MARONNE 610 10 7.40 78.00 50.00 
38 CERE 750 17 7.50 101.00 50.00 
39 CELE 250 5 7.40 98.00 45.00 
40 GOURGUE 20 1 6.20 161.00 30.00 
41 ARREILLET 20 1 6.50 163.00 30.00 
42 CIRON 110 25 6.90 123.00 25.00 
43 GAVE DE PAU 420 15 6.10 117.00 65.00 
44 COLAGNE 1220 22 6.11 150.00 20.00 
45 VALAT DES CLOUTASSES 1250 10 6.12 18.60 10.00 
46 VALAT DE LA LATTE 1250 10 6.13 18.60 10.00 
47 VALAT DE LA SAPINE 1250 10 6.14 16.80 10.00 
48 ALIGNON 1020 14 6.15 18.60 10.00 
49 GOUDECHE  1020 10 6.16 28.60 10.00 

Physical and chemical environmental variables of sampling sites measured between 
1994 and 1998 were provided by the Water Agency. Mean values of each variable were 
calculated from 2 months' data: the sampling month and the previous one. As the new ref-
erence sites sampled in 2001 were located out of the institutional sampling station network, 
the physical and chemical descriptors of water quality were determined at the sampling 
dates in two litres of water collected in a free flowing area near the middle of the stream, 
preserved at 4°C then analysed by the Cemagref laboratory within 24h, according to stan-
dardised AFNOR protocols. 
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Fig. 5.5.1. Sampling site distribution over the Adour-Garonne stream system. 

Modelling techniques 

The SOM algorithm was used for patterning samples in the multi-dimensional database ac-
cording to similarities of their species compositions and to visualise the contribution of spe-
cies to the patterns. The SOM is an unsupervised neural network composed of an input 
layer with input neurons (computational units) (399 species in this study), and an output 
layer with output neurons in a two-dimensional hexagonal lattice. There are no strict rules 
to choose the number of output neurons (map size). To choose suitable map size, we trained 
the SOM with different map sizes, and following the results obtained, we chose 24 (= 4 
6) neurons as output neurons based on advice from our ecological experts on diatom ecol-
ogy and on the study areas. Output neurons act as virtual sites 241 kkVS  with species assem-
blages 1 399,1 24ik i k

w  to be computed (k for sites and i for species). During the learning proc-
ess of the SOM, virtual sites are modified in order to approximate the probability density 
function of the input data.  

The learning process of the SOM algorithm can be summarised as follows: 
Virtual sites are initialised with random samples drawn from the input data set. 
Virtual sites are updated iteratively: 
o A sample site is randomly chosen as an input. 
o The Euclidean distance between the new input and every virtual site is com-

puted.
o The virtual site closest to the input is selected as the ‘best matching unit’ 

(BMU).
o The species assemblage of the BMU and its neighbours are changed such that 

the virtual sites progressively approach the input data. 
In this study, training was broken down into two parts (Giraudel and Lek 2001): 

Ordering phase (the first 2,000 steps): when this first phase takes place, the compo-
sition of the virtual sites is highly modified in a wide neighbourhood of the BMU. 
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Tuning phase (12,000 steps: 500 times the number of neurons in the Kohonen 
(SOM) map): during this phase, only the virtual sites adjacent to the BMU are 
slightly modified. 

At the end of training, species assemblages are known for each virtual site. The BMU is 
determined for each site, and each real site is set in the corresponding SOM map hexagon. 
Neighbouring clusters of sites are expected to be represented by neighbouring hexagons on 
the map, and in the same way sites very different from each other (according to species as-
semblages) are expected to be distant in the feature space. 

After the learning process of the SOM, the input components (i.e. species occurrence) of 
each virtual site (preserved in 241 kikw ) were visualised on the SOM map in grey scales to 
show the contribution of each species in the structure of the map. Light indicates low fre-
quency of occurrence, whereas dark for high values (Kohonen 2001, Park et al. 2003a). 
These component planes can be considered as a “sliced” version of the SOM and provide a 
powerful tool to analyse the community structure. However, with this method, 399 different 
maps (i.e., for 399 species) have to be considered. To quantify the species contribution in 
the SOM map, we used a Structuring Index (SI) (Park et al. 2004) in chapter 6 of this book. 
The SI allowed the determination of the most relevant variables for structuring the SOM 
map obtained. The SI was computed for each species i (SIi) as follows: 

24

1

1

1k

k

j kj

ikij
i rr

ww
SI

 (5.5) 

where kj rr
is the Euclidean distance between the virtual sites VSj and VSk on the SOM 

map. The index considers the distribution gradients of each species on the SOM map. 
Therefore, species showing high distribution gradients display high SI values, whereas spe-
cies showing low gradients have a low SI value. Thus, the higher the value of the SI, the 
more relevant the variable is. For details of the SI, refer to Park et al. (2004) in chapter 6 of 
this book. The computation of the SOM and the SI were carried out under MATLAB® on a 
PC with an Intel Pentium® PIII-500 and a program written by the authors. 

Relationships between communities and environmental variables 

According to the literature, broad scale patterns in benthic algae among streams over quite
large geographic areas and between years largely reflect patterns in geology, climate and 
human activity (Lowe 1974, Biggs 1995, Leland 1995, Stevenson 1997, Pan et al. 2000). 
Human activity impacts were avoided in our dataset of reference stations, and climate was 
relatively homogeneous throughout the watershed. Therefore, we characterised each station 
with three environmental parameters (pH, bicarbonate alkalinity and conductivity) directly 
related to geology. To do this, sampling sites were classified using three environmental 
variables through a hierarchical cluster analysis with Ward’s linkage method and then these 
clusters were presented on the SOM map obtained with diatom communities. In order to 
validate the geochemical-based groups, multivariate analysis of variance (MANOVA) was 
conducted with three environmental variables and then multiple comparison tests with un-
equal N HSD were also carried out for each variable using the statistical software 
STATISTICA (StatSoft 2001).  
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Ecological profiles of species 

After the learning process of the SOM, virtual communities are produced in each SOM out-
put unit (i.e. virtual unit), showing distribution gradients according to their environmental 
characteristics. Therefore, we can compare their distribution patterns on the SOM map with 
environmental patterns. We compared these distribution patterns of species according to 
environmental gradient in the SOM map with a classic species profile method proposed by 
Daget and Godron (1982). In the classic method, environmental gradients (conductivity 
gradients in this study) were arranged into 7 classes and the occurrence probability of each 
species was calculated along those 7 classes. The sum of the probabilities over the 7 classes 
is 1. 

Results

The SOM was trained with diatom communities with presence/absence of species, and re-
sulted in classifying sampling sites according to their diatom community similarities (Fig-
ure 5.5.2). 

Stream typology 

Sampling sites were classified with three environmental variables (pH, conductivity and bi-
carbonate alkalinity) into 4 different groups through the hierarchical cluster analysis (Fig. 
5.5.3). The number of clusters was chosen at the linkage distance showing the highest dis-
tance (between 0.6 - 1.0): 

group I: quite mineralised sites mostly from the Pyrenees mountains  
group II: sites from volcanic and crystalline substrates, with low conductivities 
(mostly Massif Central). 
group III: stations from calcareous zones with high pH and carbonate levels. 
group IV: sandy substrates and crystalline rocks : stations with very low pH and 
conductivities (Landes, Cévennes). 

Fig. 5.5.2. Ordination of sampling sites on the SOM map. 
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Fig. 5.5.3. Classification of sampling sites with three environmental parameters (pH, conductivity, 
HCO3-). The Ward linkage method was used with Euclidean distances. The sampling site numbers are 
given in Fig. 5.5.1 and Table 5.5.1. 

The differences of three environmental variables at different clusters are presented in 
Table 5.5.2. These 4 groups were significantly different from each other (MANOVA, 
p<0.001). Wilks’ Lambda calculated in the MANOVA was 0.0712, showing that the groups 
can be easily distinguished with their environmental variables. Wilks' Lambda can range 
from 0 to 1, with 1 indicating no relationship of predictors (i.e., environmental variables) to 
responses (i.e., groups) and 0 indicating a perfect relationship of predictors to responses. 
Now, it is interesting to see the differences of each variable between groups. To do so, a 
multiple comparison test was carried out for each variable. Group III showed the highest 
values in all three variables and was thereby distinguished from other groups. Meanwhile, 
groups II and IV were not significantly different for three variables, although they were 
grouped differently in the cluster analysis. This is due to the differences of methods. Cluster 
analysis and MANOVA are multivariate analysis techniques concerning several variables 
in the calculation, while the multiple comparison test is a univariate analysis treating one 
variable in one calculation. 

Table 5.5.2. Differences of three environmental variables between the 4 groups defined by the cluster 
analysis.

Group pH Conductivity (µS/cm) HCO3
- (mg/l) 

I 7.94 (0.06)* a** 185.88 (30.25) b 117.08 (23.46) b 
II 7.23 (0.06) b 123.60 (30.98) b 32.33 ( 3.02) c 
III 7.77 (0.13) a 495.83 (75.42) a 259.92 (54.37) a 
IV 6.40 (0.08) b 117.17 (50.49) b 18.86 ( 3.03) c 

Overall 7.39 (0.09) 190.74 (25.77) 88.58 (15.25) 
* Standard error  
** Multiple comparison test. The same characters in each column indicate no significant difference at 
the 5% level of confidence according to the unequal N HSD multiple comparison test.  

Classification of sampling sites with environmental variables was visualized on the 
SOM obtained with diatom communities (Fig. 5.5.4). The classification was also well dis-
tributed on the SOM. In the multiple comparison test, group III was strictly isolated from 
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other clusters, and groups II and IV were quite similar compared with other groups. These 
characteristics were also present in the SOM map obtained with diatom communities. 
Group III was isolated in the lower right areas and groups II and IV were in the left areas. 
These facts indicate that sampling sites were classified according to the characteristics of 
their environment and were well presented by their diatom communities in the SOM. 

I

IV

II

III

IV

Fig. 5.5.4. The 4 geochemical-based regions (I-IV) on the SOM map. The cluster was 
defined based on the three environmental parameters (pH, conductivity, HCO3-) in Fig. 
5.5.3.

Evaluation of the structuring power of species 

Figure 5.5.5 shows some example species displaying different distribution gradients on the 
SOM map according to their environmental preferences. Dark represents a high occurrence 
probability of each species, whereas light is a low value. According to the map, we can see 
that some species can be found only in limited areas based on their environment, and some 
species can be found in most places. In other words, the species which have a narrow eco-
logical amplitude can be found only in map areas characterised by typical environmental 
gradients and so are very important for eco-regional zonation. Such species are called 
“structuring species” (examples: Achnanthes oblongella strup (AOBG), Diatoma vulgare
Bory (DVUL), Navicula angusta Grunow (NAAN), Gomphonema olivaceum (Hornemann) 
Brébisson (GOLI), Navicula rhynchocephala Kützing (NRHY), Navicula capitatoradiata
Germain (NCPR)).  

In contrast, other types of species distribution show several clusters of dark grey 
hexagons indicating they can be found equally in several regions. This type of distribution 
does not characterise any particular environmental conditions. Such species do not provide 
enough explicit information about regional characteristics and so do not participate in map 
structuring ("non-structuring species"). These are generally ubiquitous species, like Ach-
nanthidium minutissimum Kützing (ADMI). The most structuring species of the dataset 
studied, having the highest SI values, are listed with their corresponding cluster(s) in Table 
5.5.3.

The conductivity gradient was ordered into 7 classes in the classic profiles (Fig. 5.5.7e), 
whereas mean values of conductivity in each SOM unit were calculated to visualize the 
gradient on the SOM map in the SOM profile (Fig. 5.5.7f). Both species gradient profiles 
showed clear gradients and agreed well with their conductivity gradients. The species 
Eunotia subacicularis Alles, Nörpel and  Lange-Bertalot (ESUB) is typical from group IV 
(very low conductivity) defined in Figs. 5.5.4 and 5.5.5, which corresponds well to the first 
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class of conductivity as defined in Daget and Godron's method. According to the SOM pro-
files, Achnanthes oblongella Østrup (AOBG) is found in low conductivity areas (groups II 
and IV). This result is also validated by the classic profiles (optimum in class 3). The distri-
bution of Gomphonema pumilum (Grunow) Reichardt and  Lange-Bertalot (GPUM) on the 
map avoids very low conductivity levels and its optimum with the classic profiles concerns 
the middle class of conductivity (class 4). Finally Navicula tripunctata (O.F.Müller) Bory 
(NTPT) characterises zones on the map with high conductivities and prefers the high class 
of conductivity. This is also observed in the classic profiles (class 5). 

Achnanthes oblongella Østrup Diatoma vulgare Bory 

Navicula angusta Grunow Gomphonema olivaceum
(Hornemann) Brébisson 

Navicula rhynchocephala Kützing Navicula capitatoradiata Germain 

Achnanthidium minutissimum Kützing Nitzschia linearis var. subtilis
(Grunow) Hustedt 

Fig. 5.5.5. Examples of SOM-based ecological profiles. Dark represents high abundance of each spe-
cies, whereas light is for low values. 
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Table 5.5.3. List of the first 50 structuring species with their corresponding cluster(s). 

Species SI value Cluster
Navicula gregaria Donkin  49.45 2 
Gomphonema minutum (Ag.) Agardh f. minutum  47.72 1-3 
Fragilaria arcus (Ehrenberg) Cleve var. arcus  46.76 1 
Planothidium lanceolatum (Breb.) Round & Bukhtiyarova  45.93 2 
Navicula lanceolata (Agardh) Ehrenberg  45.62 2 
Navicula cryptocephala Kutzing  45.36 2-4 
Tabellaria flocculosa (Roth) Kutzing  45.31 2-4 
Melosira varians Agardh  44.30 2 
Rhoicosphenia abbreviata (C.Agardh) Lange-Bertalot  43.69 2-3 
Diatoma mesodon (Ehrenberg) Kutzing  43.62 1 
Amphora pediculus (Kutzing) Grunow  43.54 3 
Cymbella affinis Kutzing  43.45 1-3 
Navicula tripunctata (O.F.Müller) Bory  43.39 1-3 
Fragilaria capucina Desmazieres var.capucina  43.33 2 
Nitzschia archibaldii Lange-Bertalot  43.14 1 
Reimeria sinuata (Gregory) Kociolek & Stoermer  43.12 1 
Fragilaria gracilis Østrup  42.99 2-4 
Achnanthidium subatomus (Hustedt) Lange-Bertalot  42.98 1 
Achnanthes oblongella Oestrup  42.95 4 
Achnanthidium biasolettianum (Grunow in Cl. & Grun.) Round & Bukhtiyarov 42.68 1 
Cocconeis placentula Ehrenberg var.lineata (Ehr.) Van Heurck  42.64 1-2-3 
Navicula cryptotenella Lange-Bertalot  42.56 1-2-3 
Diatoma vulgaris Bory 1824  42.54 1 
Nitzschia fonticola Grunow in Cleve et Möller  42.41 1 
Navicula cryptotenelloides Lange-Bertalot  41.99 3 
Psammothidium subatomoides (Hustedt) Bukhtiyarova & Round  41.92 2 
Gomphonema pumilum (Grunow) Reichardt & Lange-Bertalot  41.59 1-3 
Eolimna minima (Grunow) Lange-Bertalot  41.41 2-3 
Nitzschia palea (Kutzing) W.Smith  40.32 1-2-3 
Planothidium frequentissimum (Lange-Bertalot) Round & Bukhtiyarova  40.23 2 
Navicula angusta Grunow  40.02 2-4 
Encyonema mesianum (Cholnoky) D.G. Mann  39.93 1 
Nitzschia paleacea (Grunow) Grunow in van Heurck  39.64 1 
Nitzschia acidoclinata Lange-Bertalot  39.45 1 
Eunotia exigua (Brebisson ex Kützing) Rabenhorst  39.41 4 
Gomphonema gracile Ehrenberg  38.69 2 
Cocconeis pediculus Ehrenberg  38.46 1-3 
Psammothidium bioretii (Germain) Bukhtiyarova & Round  37.98 2 
Navicula reichardtiana Lange-Bertalot var. reichardtiana  37.92 1-3 
Surirella roba Leclercq  37.89 2-4 
Gomphonema exilissimum (Grun.) Lange-Bertalot & Reichardt  37.63 2 
Nitzschia hantzschiana Rabenhorst  37.11 1-2 
Navicula rhynchocephala Kutzing  36.91 2 
Nitzschia dissipata (Kutzing) Grunow var.dissipata  36.53 1-2-3 
Eunotia subarcuatoides Alles Nörpel & Lange-Bertalot  35.70 4 
Nitzschia recta Hantzsch in Rabenhorst  35.56 2 
Achnanthes curtissima Carter  35.27 1 
Navicula exilis Kutzing  34.82 2 
Cocconeis placentula Ehrenberg var.euglypta (Ehr.) Grunow  34.02 1 
Eunotia minor (Kutzing) Grunow in Van Heurck 33.61 2-4 
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Discussion and conclusion 

As diatoms are primarily autotrophic, they occupy a key position in aquatic ecosystems at 
the interface of the chemical-physical and biotic components of the food web. This critical 
link can influence the rest of the aquatic community (Lowe and Pan 1996) and is thus par-
ticularly interesting for the study of stream ecoregional zoning. In this study we used pres-
ence and absence data of diatoms instead of abundance data in order to take into account 
the influence of rare species, actually playing an important role in aquatic ecology (Snoeijs 
et al. 2002, Wunsam et al. 2002, Potapova and Charles 2002). Rare diatom species have 
large cells and, cell size placing heavy constraints on growth rate, they are usually much 
less abundant than species having smaller cells. Moreover, species quite rare at the water-
shed scale can be dominant in a small number of specific sites. 

In this study we present a classification of streams based on the diatom communities us-
ing the SOM, an unsupervised adaptive learning algorithm. We defined 4 river types based 
on environmental conditions. 

Our results indicate that diatom assemblages are in quite good coherence with geo-
chemical parameters (pH, conductivity and HCO3

-). Group I gathers sites with quite high 
conductivity, sites in group II are from volcanic and crystalline substrates with low conduc-
tivity, sites in group III are from calcareous zones with high pH and bicarbonate alkalinity. 
The sites in group IV are characterised by sandy substrates and crystalline rocks with very 
low pH and conductivity. The groupings also generally agreed with the geographical distri-
bution of sampling sites. It would now be interesting to verify this relation on a larger scale: 
the French hydrographic network for example has already been classified into hydro-
ecoregions by Wasson et al. (2002) (the hydro-ecoregion system is a physical classification 
of streams based on geology, altitude and climate, the basic principle being to minimize in-
tra-regional variability and maximize inter-regional differences). 

Our next study could then consist in using the SOM algorithm for patterning samples on 
a nationwide scale, observing the possible superimposition of this diatom-based classifica-
tion with hydro-ecoregions. For each of these regions, expected conditions correspond to 
typical assemblages in reference sites, and the assemblages can be obtained by observing 
structuring species profiles on the SOM: the shape of the profile corresponds to the re-
gion(s) the species belong to. Species were classified in this way in our pilot dataset (Table 
5.5.3), and on a national scale this step would be necessary to implement the Water Frame-
work Directive. 

On the other hand, diatom taxonomic diversity being very broad and complex, defining 
a list of species by hydro-ecoregions should be interesting for non-experts in charge of ap-
plying diatom-based indices: researchers always try to find compromises between effi-
ciency and applicability, in order to promote correct use of diatoms for routine water qual-
ity assessment. One possible solution could be the application of genus-level identifications 
(Chessman et al. 1999, Hill et al. 2000), but Round (1991) cautioned that it would be "dan-
gerous to compare streams simply on the genera recorded and using generic identifications 
in water quality studies is even more dubious". Another solution could consist in matching 
morphologically similar species (i.e. difficult to distinguish by non-experts), even if they 
differ from one another in ecological preferences (Lenoir and Coste 1996), but this solution 
introduces an important bias in stream condition assessment. 
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Fig. 5.5.7. Comparison of ecological profiles of 4 species between a classic method (a – e) and SOM 
method (f – j) based on the conductivity gradient. a) and f) Eunotia subacicularis, b) and g) Achnan-
thes oblongella, c) and h) Gomphonema pumilum, d) and i) Navicula tripunctata, e) and j) conductivity 
gradients for the classic method and the SOM, respectively. Dark in f) – i) represents high occurrence 
probability of each species over the range of 0-1, whereas light is low probability. Gray scale in j) indi-
cates mean conductivity value calculated from field data of sampling sites assigned to each SOM unit.   

We classified sampling sites according to their environmental gradients, each group cor-
responding to specific diatom communities. Distribution patterns in the SOM map give a 
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representation of their ecological amplitude as well as their preferences. According to the 
cluster analysis results, species distributed in the left lower areas of the SOM map are aci-
dobiontic, whereas species in the lower right areas are alkalophilous (Table 5.5.2 and Fig. 
5.5.5). The distribution patterns of species reveal how species behave along environmental 
gradients. Those results are in good correspondence with generally accepted ecological 
preferences (van Dam et al. 1994, Hoffman 1994, Rott 1998). We compared distribution 
gradients of species according to the conductivity gradients. Species distribution agreed 
well with the environmental gradient. These species profiles in the SOM were also compa-
rable with classic ecological profiles presenting a species occurrence gradient according to 
the environmental gradient (Fig. 5.5.7).  

The SOM combined with the SI can be considered as an alternative method to evaluate 
the importance of species in communities, keeping species-level identification and avoiding 
the loss of information caused by matching taxa. The idea is to select relevant species 
which we call "structuring species", i.e. species holding the most relevant ecological infor-
mation (the highest SI values) needed for ecoregional zoning and which we hope in the next 
step will be suitable for alteration detection. For each hydrographic basin, a list of structur-
ing species could be established as we did here for the Adour-Garonne basin. With the pro-
duction of regional guides of taxonomical identification, water managers could learn how to 
clearly recognise a limited number of relevant species instead of more than one thousand.  

In conclusion, our results show that in the parts of the Adour-Garonne basin with little 
human-related disturbance, spatial patterns of diatom assemblages are well discriminated 
by environmental factors mainly related to geology (pH, conductivity, bicarbonate alcalin-
ity). As the Adour-Garonne watershed is probably one of the most complex on a regional 
scale in France, due to its large range of environmental conditions from mountain to plain 
and littoral zones, and from acidic to calcareous geological substrates, we hope that this 
study will help in i) learning relationships between diatom communities and their environ-
ment on a national or European scale, ii) defining a biological typology of reference sta-
tions and then iii) increasing the accuracy of anthropogenic impact assessment. 
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5.6 Diatom typology of low-impacted conditions at a 
multi-regional scale: combined results of multivariate 
analyses and SOM*

Gosselain V†, Campeau S, Gevrey M, Coste M, Ector L, Rimet F, Tison J, Delmas F, Park 
YS, Lek S, Descy J-P 

Introduction

Some principal characteristics qualify algae as excellent indicators of the ecological status 
of water bodies: (1) algae are the basis of many food webs and (2) are among the first or-
ganisms to respond to environmental changes (Lowe and Laliberte 1996, McCormick and 
Stevenson 1998), (3) they are very rich in species compare to other communities, and auto-
ecology of species is well documented (Lowe and Laliberte 1996), and (4) most species are 
widely distributed among ecosystems and geographic areas (McCormick and Cairns 1994). 

Intensive work has been carried out since the last century in order to recognize, describe 
and classify benthic diatom assemblages. In Europe, the first classification of benthic dia-
tom assemblages, using the methods of phytosociology, has been established for the Ar-
dennes (Belgium) and surrounding regions by Symoens (1957), who defined three water-
course types characterized by specific algal “associations”. Then, most studies dealing with 
diatom communities were conducted in the framework of water quality monitoring pro-
grams (Descy 1976a, b, c 1979, Coste 1976, 1978). Following those investigations, some 
regional biotypologies were defined (Descy 1980, Fabri and Leclercq 1984, 1986, Symoens 
et al. 1988, Ector et al. 1997), and methods based on the global sensitivity of diatoms to 
pollution were developed (Prygiel and Coste 1996, 1999). In the US, variation of diatom 
composition along various gradients, at a continental scale, has also been studied (e.g. Pan 
et al. 1996, 2000, Potapova and Charles 2002). Those studies, however, considered both 
low-impacted and disturbed conditions at the same time. 

Research on diatom communities along river gradients, either at a local, regional or con-
tinental scale, has shown the prevalence of (1) downstream gradients (from fast-flowing 
oligotrophic highland rivers to eutrophic rivers of low-elevation plains; e.g. Symoens et al. 
1988, Leland and Porter 2000, Potapova and Charles 2002), (2) chemical factors related to 
catchment geology, mostly alkalinity and pH (e.g. Descy 1980, Symoens et al. 1988, Fabri 
and Leclercq 1984, Pan et al. 1996, Potapova and Charles 2002), and (3) latitudinal and al-
titudinal variation of temperature (Potapova and Charles 2002). 

These studies represent more than 30 years of investigations and have contributed to 
significant progress in the knowledge of benthic diatom auto-ecology and to the develop-
ment of monitoring methods using these algae. However, there have been few studies deal-
ing with natural or near-natural diatom assemblages and with the natural factors that deter-
mine community composition and structure, all carried out at a local or regional scale 
(Sabater and Roca 1992, Aboal et al. 1996, Pan et al. 2000, Cantonati et al. 2001), and 

* The authors are grateful to F. Darchambeau for its help in improving the final version of the manu-
script. PAEQANN project has been supported by the EU 5th Framework Programme. 

† Correspondence: veronique.gosselain@fundp.ac.be 
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never at a large multi-regional scale. In a context of increasing environmental change, there 
is a need to better distinguish community changes due to natural factors from those driven 
by changes from human activities. 

In order to set up a typology of benthic diatom assemblages in rivers from several re-
gions of Western Europe, 467 diatom records from streams with minimal human impact 
were examined in relation to water chemistry, watershed characteristics, geology, and 
stream habitat. Ordination techniques were used to determine the major variation in species 
composition data and to explore relationships between diatom taxa distributions and meas-
ured environmental variables. Artificial neural networks (self-organizing maps and multi-
layer perceptron with back-propagation algorithm) were computed to define and predict 
diatom assemblages using environmental parameters. Several methods were used: results of 
multivariate analyses, artificial neural networks, indicator species analysis and expert 
knowledge were combined to define the benthic diatom typology at a multi-regional scale 
in Western Europe and are presented in this paper. 

Material and methods 

Cases and taxa selection 

During the EC-funded PAEQANN project (EVK1-CT1999-00026, http://aquaeco.ups-
tlse.fr/), a database was built, with the objective of structuring the records of stream benthic 
diatoms and corresponding environmental data (Gosselain et al. 2004). Part of these records 
and data were already available from previous studies carried out in several regions of Bel-
gium, France, Luxembourg, and Austria. Another part was obtained by sampling new river 
sites, mostly located in regions which were not, or incompletely, investigated in the past. 
Diatom sampling, slide preparation, and counts under the light microscope followed stan-
dard procedures (Prygiel et al. 1996, AFNOR 2000, European standard 2001, 2002). Only 
diatom samples collected on rocks, usually from a lotic reach of the river sites, were con-
sidered for analyses. Harmonisation of taxonomy and identification level were carried out 
at the scale of the entire database; this led, in some cases, to the grouping of some taxa to-
gether prior to analysis, when they presented similar ecology (Gosselain et al. 2004). Dia-
tom identifications were based mainly on the Süßwasserflora von Mitteleuropa (Krammer 
and Lange-Bertalot 1986, 1988, 1991a, 1991b) and nomenclature followed recent updates 
of diatom taxonomy (e.g. Round et al. 1990) compiled from recent journals like Diatom 
Research, Diatom Monographs, or taxonomic listings (Kusber and Jahn 2003), as provided 
in the OMNIDIA software (Lecointe et al. 1999). 

On a database comprising nearly 3000 diatom records (Gosselain et al. 2004) from both 
undisturbed and disturbed environments, potential near-natural condition cases were se-
lected. We defined a case as a single observation in a given river site, containing a diatom 
record and associated environmental variables. Cases were selected on the basis of the dia-
tom index PSI (Polluo-Sensitivity Index; Coste in CEMAGREF 1982). PSI is a water qual-
ity index, which is calculated from relative abundances of benthic diatoms collected in a 
given site. In the PSI system, a large number of stream diatoms have an indicator score, ac-
cording to their sensitivity to pollution and ecological amplitude. PSI has been tested sev-
eral times in different countries as Luxembourg (Descy and Ector 1999), Finland (Eloranta 
1999), Germany (Coring 1999), Poland (Kawecka et al. 1999), Portugal (Almeida et al. 
1999), and is usually considered as a reference method for water quality assessment using 
diatoms (Descy and Coste 1991). It was calculated using the OMNIDIA software (Lecointe et 
al. 1993, 1999). Records with a PSI value of 16/20 and higher were retained, as correspond-
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ing to a good ecological status. This limit has been chosen, instead of the boundary limit 
between good and very good status (PSI of 17/20), in order to give more autonomy to our 
models to detect groups of near-natural conditions. Additionally, we considered only re-
cords with at least 380 objects counted (single diatom valves, entire frustules [2 valves], or 
indifferently single valves and frustules).  

Table 5.6.1. Cases used as potential near-natural conditions and their distribution according to country, 
river basin district, and river basin system flowing to the sea (“Fluvial” basin). 

Country River basin district "Fluvial" basin Number of cases 
Austria Danube 33 
Belgium Scheldt 2 

Meuse 58 
Rhine 1 

France Adour-Garonne Adour 9 
Charente 2 
Dordogne 9 
Garonne 17 
Gourgue 1 
Nassey 1 
Seudre 1 

Artois-Picardie Authie 2 
Canche 1 
Escaut (Scheldt) 1 

Loire-Bretagne Allier 4 
Loire 58 
Sèvre niortaise 2 

Rhin-Meuse Rhine 5 
Rhône-Méditérrannée-Corse Agly 1 

Arc 1 
Argens 1 
Artuby 5 
Cians 5 
Fium'Orbo 1 
Golo 1 
Hérault 3 
Loup 2 
Orb 1 
Rhône 76 
Roya 9 
Siagne 2 
Tech 1 
Tinée 3 
Var 6 
Vésubie 2 

Seine-Normandie Seine 26 
Touques 1 

Luxembourg  Meuse 2 
Rhine 111 

TOTAL 467 

In order to keep only significant taxa for the analysis, a selection was carried out. First, 
planktonic taxa were not included, as they are not part of the attached diatom assemblages, 
characteristic of specific spatial conditions. Furthermore, a taxon was considered when its 
frequency of occurrence reached a minimum of 2.5 %, which corresponded to the presence 
of the taxon in a minimum of 12 records in the final data matrix, and if its mean abundance 
was  0.1%. Finally, records for which selected taxa did not represent at least 75 % of the 
total abundance of the record were removed from the data matrix. 
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The data matrix finally comprised 123 taxa and 467 cases. Those cases covered four 
countries and 35 river basin systems (“fluvial” basins; Table 5.6.1). 

Table 5.6.2. List of environmental variables collected and transformation applied prior to analyses. 

Var. Description (units) Transformation Remarks 

Quantitative variables 

ALT Altitude (m) (Alt + 1)1/2

SLOPE Slope (m km-1) Log10 (Slope + 1) 
DIST Distance from source (km) Log10 (Dist +1) 

CAreaS Catchment surface area up to the 
site (km2) Log10 (CAreaS + 1) 

ALK Alkalinity (meq. l-1) Log10 (Alk + 1) still bi-modal! 
pH Water pH None
COND Conductivity (µS cm-1) (Cond + 1)1/2

TEMP Water temperature (°C) None
DO Dissolved oxygen (mg l-1) None 
DOC Dissolved organic carbon (mg l-1) Log10 (DOC + 1) 
NO3 Nitrate (mg N-NO3

- l-1) Log10 (NO3 + 1) 
NO2 Nitrite (mg N-NO2

- l-1) Log10 ((NO2 + 0.001)·1000) several detection limits! 
NH4 Ammonium (mg N-NH4

+ l-1) Log10 ((NH4 + 0.001)·1000) several detection limits! 
PO4 Phosphate (mg P-PO4

3- l-1) Log10 ((PO4 + 0.001)·1000) several detection limits! 
Semi-qualitative or qualitative variables 

SP, SA, SW Season Coded as 2 dummy 
variables

SP = spring, SA = autumn, 
SW = winter 

Geol Geology Coded as 5 dummy 
variables

mudstone, limestone, sand-
stone, granitic, quaternary, 
mixed and other 

Morph River morphology  
1=natural
2=partly channelized 
3=totally channelized 

WLev Water level 1 = lowest water levels, 2 = mid 
levels, 3 = flood levels 

Shad Shading at the sampling site  1=closed, 2=mid, 3=opened 

Hydrpwr Hydropower installation within 10 
km upstream the sampling site  Yes or no

RedF
Reduction of flow installation 
within 10 km upstream the sampling 
site

 Yes or no

Facies Facies of the sampling point  L = lentic; R = lotic; 
S = semi-lotic 

Vel Water velocity  
1: < 0.2 m s-1;
2: 0.2 – 0.5 m s-1;
3: > 0.5 m s-1

NB: Ranges of the main variables can be seen on the box-plots on Fig. 5.6.17.

A total of 23 environmental variables were initially considered (Table 5.6.2). Quantita-
tive variables were temperature, pH, dissolved oxygen [DO], slope, distance from source 
[Dist], catchment area [CAreaS], alkalinity [Alk], conductivity [Cond], dissolved organic 
carbon DOC], nitrate NO3

-], nitrite [NO2
-], ammonium [NH4

+], ortho-phosphate [PO4
3-],

and altitude [Alt]. Semi-quantitative variables were coded in three categories : water veloc-
ity (Vel; < 0.2 m s-1, 0.2 - 0.5 m s-1, > 0.5 m s-1), water level (WLev; lowest water levels, 
mid levels, flood levels), river morphology (Morph: natural, partly canalised, and totally 
canalised), shading (Shad; closed, mid-opened, opened), and facies (Facies; lentic, lotic, 
semi-lotic). Geology was coded as dummy variables (mudstone, limestone, sandstone, gran-
itic, quaternary; mixed and other geology constituted the multiple zero category), as well as 
season, with spring [SP] defined from March till end of July, and autumn [SA] from August 
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till end of October; double zeros were winter samples. Presence or absence of hydropower 
plants [Hydrpwr] or of other source of reduction of flow [RedF] within 10 km upstream the 
sampling site were both coded 1 (presence) or 0 (absence). 

Data processing 

In order to extract the structure of diatom and environmental data and to define a biotypol-
ogy, two types of methods were used  multivariate analyses and artificial neural networks.  

Principal components analysis (PCA) and detrended correspondence analysis (DCA) 
were performed to describe environmental and diatom data, respectively. Canonical corre-
spondence analysis (CCA) was used for a first exploration of the relationship between dia-
toms and environmental variables. 

Unsupervised neural network, the Kohonen’s self-organizing map algorithm (SOM; Ko-
honen 1982), was used as an ordination method to define a diatom typology of near-natural 
conditions. Classification was performed through a go and back process using classification 
techniques applied on SOM results, relevance of key taxa for the groups –what we will call 
the diatom types in the following–, and range and contribution of environmental variables 
to the SOM groups. 

Multivariate analyses  

Normality of environmental variables was checked using Systat 10 (SPSS 2000); data 
transformations were applied when needed prior to analyses (Table 5.6.2).  

As species abundance values often display a skewed distribution, taxon data were [Ln 
(10 x +1)] transformed prior to multivariate analyses.  

Prior to multivariate analyses, a Pearson correlation matrix was generated on the envi-
ronmental data (Statistica 5.5; StatSoft 2001), in order to detect highly correlated variables.  

Multivariate analyses were carried out using Canoco version 4.0 (ter Braak and Smilauer 
1998). Detrended correspondence analysis (DCA) was performed on diatom data to sum-
marize the pattern of diatom variation among data. Principal components analysis (PCA) 
was performed on environmental data (centred and reduced) in order to summarize major 
variation patterns within environmental data, and to examine relationships among environ-
mental data and cases. Those analyses allowed checking the quality of our reference situa-
tion data set, by showing length and distribution of gradients. 

CCA is a multivariate direct gradient analytical technique as it uses taxa, cases and envi-
ronmental data in a single integrated analysis (ter Braak 1994). CCA was used to (1) iden-
tify environmental variables that accounted for significant parts of the variation observed in 
the diatom data, and (2) quantify the variance explained by each of these significant envi-
ronmental variables. As a general rule, the selection procedure of variables in the CCA was 
as follows. Samples were deleted if they had environmental variables with extreme (> 10 x) 
influence. In order to avoid redundancy, variables with high variance inflation factors 
(> 10) were removed successively, after running new CCA. Each CCA was tested using the 
Monte Carlo permutation test with 199 unrestricted permutations (p  0.05) and non-
significant variables were progressively removed through forward selection. Geology types 
were not included as such in the analysis but alkalinity at the sampling site was used in-
stead. NH4+ and NO2- were removed as poorly influencing the ordination and presenting 
several thresholds in the normality curve, corresponding to different detection limits. 
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Kohonen Self-Organizing Map 

The non-supervised artificial neural network Kohonen’s self-organizing map (SOM) algo-
rithm (Kohonen 1982, 2001) performs a non-linear projection of the data space on a two-
dimensional space. The SOM has been computed using functions implemented in the SOM 
toolbox (Alhoniemi et al. 1999) for Matlab (The Mathworks 1998) developed by the Labo-
ratory of Information and Computer Science in the Helsinki University of Technology. The 
functions can be implemented easily by any ecologists and the software library is available 
at http://www.cis.hut.fi/projects/somtoolbox. 

The SOM consists of two layers: input and output layers. Each layer consists of neurons 
that are computing units in the algorithm. The input layer is composed of the sample units 
(467 cases in this study), each represented by a vector of the input data (123 taxa, each con-
stituting a node); the output layer forms a rectangular grid. In this case, 108 neurons were 
organised on an array with 12 rows and 9 columns laid out on a hexagonal lattice. In the 
output layer, each neuron acts as a virtual unit (VU) and approximates the probability 
density function of the input data. During the learning process, taxon abundance 
assemblage is computed for each VU. The aim of the SOM is to illustrate in a two-
dimensional space the case distribution by way of the VU distribution. Each neuron is 
connected to its nearest neighbours on the grid, and stores a set of connection intensities. 
VUs, which are neighbours on the grid, are expected to represent neighbouring clusters of 
cases. During the learning process, the algorithm allocates the samples, i.e. the cases, on the 
two dimensional space by minimizing the error terms between virtual units and samples. To 
achieve this, the algorithm finds the best matching unit by calculating distances between 
VU and cases. In this study, as occasional taxa were removed prior to analysis (see above), 
Bray and Curtis distance (Legendre and Legendre 1998) was used in order to allow a 
similar contribution of differences between abundant and rare species. 

At the end of the training process, each case is set in the corresponding hexagon of the 
Kohonen map, and the taxon relative abundances are known for each VU. The taxon com-
position of each VU can be displayed in the component planes of the SOM (taxon distribu-
tion maps). As the SOM approximates probability density function of input data through an 
unsupervised learning process, the weight vectors of the SOM could be considered as ap-
proximating probabilities of taxa to be at their maximal dominances in a given site (Park et 
al. 2003a). 

Contribution of environmental variables 

In order to determine the contribution of environmental variables to the defined types, pre-
dictions were carried out using multi-layer feed-forward neural network with back-
propagation algorithm (BPN; Rumelhart et al. 1986a). The BPN is based on a supervised 
learning, i.e. the network constructs a model based on examples of data with known out-
puts. It has to build the model up solely from the examples presented, which are together 
assumed to implicitly contain the information necessary to establish the relation. In this 
case, 20 environmental variables were used as input data, and output data were the number 
of groups defined through the SOM. As many models as defined groups were built and 
their performance were determined using a hold-out crossvalidation procedure. The influ-
ence of environmental variables on the different biotypes was then evaluated using a sensi-
tivity analysis by means of a partial derivative algorithm (PaD; Dimopoulos et al. 1999, 
Gevrey et al. 2003). 
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Indicator value index 

The indicator value index (IndVal; Dufrêne and Legendre 1997) was calculated for each 
taxon, on the relative abundances, for each group defined by the SOM (PC-ORD 4.01; 
McCune and Mefford 1999). The indicator value is the product of two values: one measur-
ing the specificity of the taxon, i.e. the mean abundance across the cases pertaining to the 
cluster versus the sum of the mean abundance within the various clusters, whereas the other 
one measures the fidelity of the taxon to this cluster. The indicator value of a taxon j (Ind-
Valj) is commonly understood as the largest value of IndValkj observed over all clusters k.
A Monte Carlo test was performed to test the significance of the maximum indicator value 
for a taxon. It is to be remembered that this indicator value index is based only on within-
taxon abundance and occurrence comparison, and its value is thus not influenced by the 
abundance of other taxa.  
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Fig. 5.6.1. Principal component analysis (PCA) on near-natural condition cases, including 467 cases 
and 23 environmental variables. Environmental variable ordinations: only descriptor contributions 
above the circle of equilibrium descriptor contribution are shown; bold arrows indicate a major contri-
bution for the descriptor in that plane of the ordination, while dashed arrows indicate minor contribu-
tion for the descriptor. See Table 5.6.2 for the meaning of acronyms. 

Classification procedure 

Once the SOM set, Ward cluster (Legendre and Legendre 1998) and U-matrix (Ultsch 
1993) were applied as clustering methods. The U-matrix is a map obtained after the SOM. 
Hexagons are inserted between original hexagons of the SOM and coloured in a grey scale 
according to the distance between virtual units. 

Key taxa were listed for each group according to (1) the distribution maps returned by 
the SOM, i.e. taxa presenting their maximum probability to be at their optimum -at their 
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maximum abundance-, exclusively in this group, (2) the indicator value of the taxa (Ind-
Val), and (3) the expert knowledge. Finally, ranges and contribution of environmental vari-
ables to diatom typology were determined through canonical correspondence analysis 
(CCA), environmental variables distribution (box-plots), and sensitivity analysis using par-
tial derivative algorithm, carried out on the defined groups. 

Results

Description of the data set 

The PCA (Fig. 5.6.1) showed existing gradients among environmental variables. The first 
axis showed a upstream-downstream gradient with distance from source/catchment area, 
altitude, slope, as well as temperature and DOC, being the main contributors to this axis. 
The second axis was related to chemistry depending on geology (alkalinity, pH, 
conductivity). Altitude also contributed significantly to this axis, which is to be related to 
numerous alkaline lowland river sites in the database. Those alkaline rivers are mainly 
located in agricultural areas, thus enriched in nitrate. Axis 3 corresponded to the seasonal 
gradient. The variables linked to water enrichment were located in the right part of the 
ordination (axis 1), corresponding to high distance from source. Distance from source was 
not positioned perfectly at the opposite of altitude, which is to be related to the origin of 
rivers both at high and lowland elevation. 

Some variables as Morph, RedF, Hydrpwr, Facies, WLev and Vel poorly explained the 
ordination. The cumulative percentage of variance within the environmental data explained 
by the first three axes of the PCA was 40.1 %. 

According to expert knowledge, axis 1 of the DCA (Fig. 5.6.2) clearly showed an acid-
alkaline gradient among diatom taxa. Nevertheless, as the cases covered the whole gradient, 
taxa were found all along this gradient and it was difficult at this stage to identify diatom 
groups. Groups (biotypes) identified through the SOM (see below) are also shown on the 
DCA ordinations on Fig 5.6.2. 

Table 5.6.3. Summary of the forward selection carried out on the canonical correspondence analysis 
(CCA) using CANOCO (ter Braak and Smilauer 1998). The table shows the variables in the order of 
their inclusion in the model, together with the additional variance each variable explains (lambda-A) 
and the significance of the variable (P-value) together with its test statistics (F-value). See Table 5.6.2 
for the meaning of acronyms. 

Conditional Effects   
Variable Lambda-A P F 

ALK 0.27 0.005 32.02 
NO3 0.12 0.005 14.76 
pH 0.11 0.005 13.65

DIST 0.09 0.005 12.47 
DOC 0.06 0.005 7.56 

TEMP 0.04 0.005 5.96 
Morph 0.05 0.005 5.75 
ALT 0.04 0.005 5.30 
SP 0.02 0.005 3.37 

PO4 0.02 0.005 3.24 
SLOPE 0.03 0.005 3.17 
COND 0.01 0.005 2.36 

DO 0.02 0.005 2.24 
SA 0.01 0.020 1.58 

Hydrpwr 0.01 0.045 1.47 
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Fig. 5.6.2. Detrended correspondance analysis (DCA) on near-natural condition cases, including 467 
cases and 123 diatom taxa: a. Taxon ordination; b. Case ordination. 

The CCA (Figs 5.6.3, 5.6.4, Table 5.6.3) showed a major influence of water chemistry 
on diatom assemblages, mainly driven by alkalinity, conductivity and pH (axis 1). The sec-
ond axis corresponded to nutrient and organic enrichment, with on one hand NO3

-, and on 
the other hand DOC (see graph showing axes 2 and 3; Fig. 5.6.3a). The second axis also 
showed the gradient of temperature and the seasonal component (see graph showing axes 1 
and 2; Fig. 5.6.3a). Distance from source was driven by both axes 2 and 3. Axis 3 clearly 
showed the gradient Altitude-Slope-Distance from source. Variables indicating nutrient en-
richment and increased productivity (DOC, NO3

- and PO4
3-), as well as temperature, were 

associated to high distance from source (see graph showing axes 1 and 2; Fig. 5.6.3a). Mor-
phology was in the middle of the three axes. 

Cases were more numerous on the alkaline side of the chemistry axis (axis 1; 
Fig. 5.6.3b), indicating a poorer representation of acid river sites in our data set. Cases were 
well distributed on the other axes. The first three axes of the CCA accounted for 14.5 % of 
the cumulative variance of the diatom data. The cumulative percentage of variance of the 
species-environment relationship explained by the first three axes was 66.8 %. 

Cases classification 

Clustering of the virtual units of the Kohonen map was carried out first by considering to-
gether the Ward cluster and the U-matrix (Fig. 5.6.5b, c). Final decision on the level of 
clustering was based on taxon distribution maps and ranges of environmental conditions. 
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Fig. 5.6.3. Canonical correspondance analysis (CCA) on near-natural condition cases, including 467 
cases, 15 environmental variables and 123 diatom taxa: a. Environmental variables ordination; percent-
age of variance of taxon-environment relationship shown on axes; b. Case ordination. See Table 5.6.2 
for legends of variables. See Fig. 5.6.1 for legends of dots (biotypes). 

Ten groups could be identified as follows (Fig. 5.6.5).  The first clustering level sepa-
rated cases according to a geochemistry gradient, expressed by alkalinity, conductivity and 
pH. This corresponded to the first axis of the CCA (Fig. 5.6.3a,b) and can be seen on the 
box-plots (Fig. 5.6.18): three groups (1, 2 and 3) were characterised by high pH (around 8), 
and high alkalinity (mean between 2,86 and 4,39 meq l-1) and conductivity (mean between 
330 and 560 µS cm-1), while others presented low to medium alkalinity/conductivity (mean 
between 0.23 and 1.36 meq l-1, and 62 and 263 µS cm-1, respectively). The second cluster-
ing level corresponded both to altitudinal and enrichment gradients. It separated group 1 
from groups 2 and 3, in the high alkalinity part of the map, and groups 5, 6, 8, 9 from 
groups 4, 7, and 10 in its low alkalinity part. This corresponded to axis 3 on the CCA (Fig. 
5.6.3a,b) and was also shown by the box-plots (Fig. 5.6.18). Then distinction between en-
richment type divided further some groups: 2 and 3; 7 from 4 and 10. Again, this is clearly 
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revealed by the CCA (Fig. 5.6.3a,b), as well as the box-plots (Fig. 5.6.18). Distinction be-
tween groups 4 and 10 was not so clear from the CCA (Figs 5.6.3a,b) and the environ-
mental variable ranges (Fig. 5.6.18), neither from the taxa distribution maps. It was never-
theless retained, as linkage distance of group 10 on the Ward cluster was high (Fig. 5.6.5c). 
Expert also recognised taxa and cases corresponding to specific conditions (see discussion). 
Group 5 could easily be distinguished from group 6 as the latter clearly corresponded to 
very acid conditions, with a median value lower than 4.5. Groups 9 and 8 then followed on 
a pH gradient, which is well shown on the CCA (Fig. 5.6.3a,b), better than on the SOM. 
From this clustering, we could already suspect the types corresponding to very good eco-
logical status to be groups 1, 5, 6, 8 and 9. 
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cases, 15 environmental variables and 123 diatom taxa: c. taxa ordination, with taxa grouped according 
to the defined biotypes. Only taxa with acronyms in larger font were retained as key taxa of biotypes. 
See Figs. 5.6.7- 5.6.17 for the meaning of taxon acronyms. 
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Fig. 5.6.6. Situation of near-natural condition cases and classification according to group defined from 
the SOM. Black bold lines show political borders. 

From the individual taxon distribution maps, taxa that were present and dominant in 
each 10 groups were identified (Fig. 5.6.8-5.6.17). Key taxa according to distribution maps 
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were listed for each group. Those taxa are also indicator species according to the IndVal in-
dex (numbers between brackets in Figures 5.6.7 to 5.6.16 with significant values for 
p < 0.05 in bold). The biotypes, as well as their driven environmental variables, as deter-
mined through sensitivity analyses, are discussed in the following section. 

The distribution of sites per group in the studied area is shown on Fig 5.6.6. 
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Fig. 5.6.7. Distribution maps of taxa presenting peculiar patterns 

Discussion

Until recently, few studies have specifically addressed the definition of natural benthic dia-
tom assemblages in rivers (Sabater and Roca 1992, Aboal et al. 1996, Pan et al. 2000, Can-
tonati et al. 2001, Rimet et al. 2003, Tison et al. 2004). In this study, the combination of 
multivariate analysis and ANN-based methods on a large data set of streams with good to 
high ecological status allowed the determination of several diatom ecological groups – or 
“biotypes” - in Western Europe. Although all regions of Europe were not represented, the 
environmental gradients covered a wide range of conditions and stream types. With the 
help of SOM, up to 10 groups were characterised by key taxa and environmental condi-
tions, as shown in Figures 5.6.8 to 5.6.17. 
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Fig. 5.6.8. Distribution maps of taxa presenting high probability of being at their maximal abundances 
in group 1. The grey scale used on the map indicates the probabilities of the taxon to occur in a given 
virtual site (VU); minimum and maximum vary according to the taxon, depending on its relative abun-
dance and occurrence. IndVal value of taxa for this group is noted between brackets: bold indicates 
significant value (p < 0.05), italic indicates value that does not correspond to the maximum (not statis-
tically tested). Framed taxa are retained as key taxa for the group. Sensitivity analysis on environ-
mental variables for the group is presented on the graph (EV contribution %). 

Bias and shortcomings about ecological patterns of diatom taxa 

Several bias and shortcomings may hamper correct classification of taxa into biotypes and 
prevent obtaining clear ecological pattern, in particular when considering their distribution 
maps obtained from the SOM. Among the 123 diatom taxa retained for the analysis, a sig-
nificant number could not be classified in the biotypes as they presented low occurrence in 
the database ( 33 cases), combined with a low relative abundance (< 1 %). This was the 
case for Diadesmis contenta, Gomphonema clavatum, Nitzschia frustulum, Nitzschia pura,
and Psammothidium sacculum (Fig. 5.6.7). Others, like Diatoma problematica, presented a 
doubtful taxonomy in addition to occasional occurrence in low numbers. Another reason for 
taxa to occur in low numbers in most records is their large cell size, as it is the case for sev-
eral species of Cymbella, Nitzschia, Navicula, etc. On the other hand, however, some taxa 
with an occurrence 20, i.e. equal or below 4 % of the cases, showed very clear distribu-
tion on taxon distribution maps and could be considered as good indicators of ecological 
conditions (Brachysira brebissonii, B. neoexilis, Diploneis marginestriata, D. oblongella,
Eunotia subarcuatoides, Navicula angusta, N. lenzii, N. sublucidula, N. splendicula). In the 
case of B. neoxilis (Fig. 5.6.11), its distribution map and indicator value agreed with each 
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other while CCA did not. Actually, this taxon was present in low relative abundances 
(< 1 %) and in only a few records that, all but one, belonged to other groups than group 5; 
this single record, from the Landes region, comprised 12 % of B. neoxilis. By contrast, 
other taxa were typically frequent and abundant in the database, which was reflected by 
presence in all hexagons of the taxon distribution maps. 
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Fig. 5.6.9. As in Fig. 5.6.8, for group 2. 

Examples of this ecological pattern were given by Achnanthidium minutissimum (Fig. 
5.6.7), a small species usually abundant in fast-flowing, well-oxygenated waters, or by 
preferentially epiphytic taxa, like Cocconeis placentula (Fig. 5.6.7), which are attached on 
hydrophytes and filamentous algae. Abundant epiphyton in a record may also reflect sam-
pling practice, i.e. diatom collection from stones colonised by macroscopic algae. 

Unclear pattern occurred in several cases: distribution maps with two distant density 
spots may result from the existence of ecotypes within the same species – which could be 
suspected for taxa easy to identify – or, more probably, from misidentification of closely re-
lated forms. Several such cases could be detected on our data, as for Cymbella affinis (Fig. 
5.6.8 and 5.6.9) showing high occurrence in both groups 1 and 2, both on distribution maps 
and through indicator values (35 and 34, respectively), and Gomphonema truncatum (Fig. 
5.6.14) in both groups 8 and 2. Both taxa have been now divided in several new species 
(Krammer 2003, Reichardt 2001), while recorded as one species each in our database. In 
the case of Encyonema minutum (Fig. 5.6.14), this taxon may have been confused with 
Encyonema silesiacum (Fig. 5.6.17) by one or more observers. 
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Fig. 5.6.10. As in Fig. 5.6.8, for group 3. 

Another related problem occurred with the existence of several varieties within a same spe-
cies, which were not distinguished in routine diatom counts for water quality monitoring. 
For instance, the aggregation of varieties in Gomphonema pumilum (Fig. 5.6.8) may ex-
plain the pattern of its distribution maps and its high indicator values for several groups (for 
the different varieties of G. pumilum, see Reichardt 1997). 
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Fig. 5.6.11. As in Fig. 5.6.8, for group 5. 
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Fig. 5.6.12. As in Fig. 5.6.8, for group 9. 

Similarly, Navicula cryptotenelloides has been grouped with Navicula cryptotenella
(Fig. 5.6.9) in our database despite it is probably a different taxon: its distribution map 
showed a widespread pattern across groups 2, 3 and 7, in agreement with high indicator 
values in those groups (33, 17 and 26, respectively). Other examples of aggregation – often 
made for simplifying identification in monitoring studies, or for harmonisation of taxonomy 
of our database - which may have an influence on the pattern of the taxon distribution maps 
could be detected in our results. 
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Fig. 5.6.13. As in Fig. 5.6.8, for group 6. 

For example, several varieties of the Fragilaria capucina (Fig. 5.6.12) complex have 
been joined under the type variety. In Group 9 (Fig. 5.6.12), the varieties associated to pris-
tine conditions, such as Fragilaria capucina var. rumpens and var. gracilis (Synedra rum-
pens sensu Hustedt) were probably dominant. 

Finally, interesting complementarity of techniques can be seen for example for Amphora
ovalis (Fig. 5.6.9). The distribution map as well as the indicator value assigned this taxon to 
group 2. Experts nevertheless did not agree considering it as a key taxa of group 2. The 
CCA actually showed how this taxon probably corresponded to more enriched conditions 
(Figs. 5.6.3a and 5.6.4, graphs showing axes 2 and 3). 

Some of those problems would obviously be solved by further increasing the number of 
records in the database, but this would also require acquisition of new data with carefully 
applying sampling standards and with slide examination by skilled diatomists aware of all 
taxonomical problems. This kind of shortcomings is not exclusive to diatoms: all aquatic 
organisms but fish are liable to similar errors when working at the species level. Further, a 
common question is whether diatomists should express counts in terms of relative abun-
dance or of relative biomass, which would give more weight to large diatom species, and 
less importance to the small taxa, which potentially have greater rates of population in-
crease.
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Diatom typology 

Despite the biases mentioned above, we were able to define several “biotypes” from the 
SOM results. Hereafter we discuss the significance of these groups characterised by the key 
taxa, as presented in Figures 5.6.8 to 5.6.17. Our criteria for interpretation have been based 
on the ecological affinities of the key taxa, according to literature on diatom ecology (e.g. 
van Dam et al. 1994, Krammer and Lange-Bertalot 1986, 1988, 1991a,b, Lange-Bertalot 
1996, 1999, Fabri and Leclerq 1984), and on sensitivity analyses on environmental vari-
ables, as well as on CCA and box-plots showing the range of these variables in the corre-
sponding sites. 
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Fig. 5.6.14. As in Fig. 5.6.8, for group 8. 

One should be aware, however, that some environmental variables are not unambiguous. 
For instance, high altitude, which was relevant to group 1 (sensitivity analysis on 
Fig. 5.6.8), may actually be a proxy for average low water temperature. Indeed, most key 
taxa defining group 1 are better known from cold water than from streams at high elevation. 
Moreover, high elevation streams have typically steep slopes and fast-flowing water, which 
are conditions that can prevail locally in rivers of lower altitude. 

Therefore, group 1, despite it comprised some sites exhibiting relatively high nitrate 
concentration, could be considered as a very good reference group. It was mainly located in 
French and Austrian Alps (Fig. 5.6.8). 
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Three groups were characteristic of high alkalinity/conductivity and high pH, with an 
increasing gradient in alkalinity/conductivity and NO3

-, and a decreasing gradient in alti-
tude/slope, from group 1 to 3 (Fig. 5.6.18). Some taxa showed distribution map patterns 
corresponding to a wide ecological amplitude in alkaline conditions, as it is the case for 
Denticula tenuis (Figs. 5.6.8 and 5.6.9). 
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Fig. 5.6.15. As in Fig. 5.6.8, for group 4. 

Group 1 presented the lower alkalinity/conductivity of the three groups, with a mean al-
kalinity around 3 meq l-1. It was typical of high altitude and/or low temperature (Figs. 5.6.8 
and 5.6.18) with phosphate and DOC in a low range, indicating good water quality accord-
ing to most standards. Some taxa presented a narrow ecological amplitude and were quite 
restricted to this group (framed taxa distribution maps on Fig. 5.6.8). 

Groups 2 and 3 were relatively close from each other, as shown on the cluster 
(Fig. 5.6.4c). There was no clear boundary between the distribution map patterns of several 
taxa, as for Navicula tripunctata, Gyrosigma nodiferum and Fallacia subhamulata (Figs. 
5.6.9, 5.6.10). Those taxa presented a maximum, and significant, indicator value in group 2, 
and a high value for group 3 (not tested for significance). The intermediate position of those 
taxa was also shown on the CCA (axes 1 and 2; Fig. 5.6.3a). Some taxa, as Navicula sublu-
cidula and N. lenzii, presented clear distribution pattern but low and non-significant indica-
tor value. CCA and expert knowledge nevertheless confirmed that those taxa belong to 
group 3 (Fig. 5.6.10). 
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Low altitude was a key factor determining both groups. The range of temperature, how-
ever, was lower for group 3 (Fig. 5.6.18). The influence of temperature was pointed out by 
sensitivity analyses, and partial derivatives (not shown) confirmed the distinction between 
both groups based on their response to temperature. Group 3 was also characterised by 
higher nitrate and phosphate concentrations (Fig. 5.6.18), and comprised a majority of 
semi-canalised rivers. Nitrate concentration seemed to be less relevant for diatom typology, 
as this form of nitrogen was systematically above 1 mg N l-1 in streams located in calcare-
ous basins where agriculture has been well developed. It did not seem, however, to affect 
the composition of diatom assemblages, probably because algae were never N-limited in 
most streams of our data set. Clearly, despite most taxa of those groups were sensitive to 
pollution, physical and chemical conditions indicated that they should not be classified as 
corresponding to pristine conditions. Nevertheless, group 2 may correspond to good eco-
logical status for low altitude calcareous streams and be used as the reference condition of 
lowland alkaline rivers. By contrast, PO4

3- concentration range indicated slightly degraded 
conditions associated with group 3. 

A good example as far as the effect of altitude was concerned was the Traun river, in 
Austria, where a transition from group 1 to group 2 was observed as going downstream, oc-
curring at an elevation of about 400 m. Nevertheless, group 1 could also be observed in 
other areas at lower elevation, with, depending on the season, shifts to group 2 in a same 
site.

Therefore, we propose to consider, on the basis of our data, group 1 as representing 
near-natural conditions in alkaline rivers at high elevation or low temperature, and group 2 
at lower elevation (< 500 m) or higher temperature alkaline streams. All other groups de-
limited on the SOM, 4 to 10, are in the low alkalinity (mean < 1 meq l-1) and low conduc-
tivity (mean < 150 S cm-1) range. 

Group 5 (Fig. 5.6.11) comprised taxa typical of very acid waters such as Eunotia exigua,
E. bilunaris, E. incisa and Pinnularia subcapitata. Frustulia saxonica, as well as varieties 
or varieties recently raised to the species level, like Frustulia crassinervia (associated with
Frustulia rhomboides (Ehrenberg) De Toni in the PAEQANN database), were not in the se-
lected species because of very low occurrence and relative abundance in the database; it 
could nevertheless be added to the list of typical species of group 5. These diatoms are 
highly sensitive to pollution. As expected, pH was the most important variable for deter-
mining the group (Fig. 5.6.11). Members of group 5 have been previously described from 
unpolluted stations with acid waters in Belgium by Symoens (1957) and Descy (1979). 
Both authors described an assemblage dominated by Eunotia exigua, Peronia heribaudii
(P. fibula (Breb.ex Kutz.) Ross) and Brachysira brebissonii (Anomoeoneis serians var.
brachysira), associated to water with a pH around 4, with very low mineral content. 

A second acidophilic biotype was identified by Descy (1979), associated to rivers with a 
pH between 4 and 6 and mineral content slightly higher than for group 5. This community 
was composed of Eunotia incisa, E. bilunaris (E. lunaris), Eunotia exigua var. tenella (E.
tenella), Tabellaria flocculosa and Surirella linearis. Some taxa of this biotype are actually 
included in group 5, as Eunotia exigua var. tenella, for instance, which has been aggregated 
with Eunotia exigua in the PAEQANN database. However, Tabellaria flocculosa have been 
associated to group 9 (Fig. 5.6.12), which is a transitional group to circumneutral waters. 
The environmental conditions associated with group 9 were low alkalinity and conductiv-
ity, short distance to source, low nitrate and phosphate, DOC variable (with probably humic 
compounds), and pH between all other groups and group 5. Both groups 5 and 9 were very 
close to source (  20 km). Typically, group 5 was found in small streams running from peat 
bogs with an eodevonian geological substrate in the river Meuse basin in southern Belgium 
and in the French Landes, while group 9 was found in headwaters both in the Loire and Ga-
ronne basins (Fig. 5.6.6). 
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At higher pH, group 6 was found in conditions covering a rather wide range of alkalinity 
and conductivity values (mean: 1.25 meq l-1 and 160 S cm-1, respectively), and mostly in 
altitude (400-1300 m for 75% of the cases). The sensitivity analysis showed that nitrate was 
a key condition for this group (Fig. 5.6.13), in this case low concentration (mean: < 0.5 mg 
N l-1; Fig. 5.6.18). Low phosphate and DOC were also typical, showing minor anthropo-
genic influence. The auto-ecology of the key taxa (Fig. 5.6.13) also indicated that group 6 
corresponded to unpolluted, low alkalinity and cold-water streams, mostly found at medium 
to high elevation. It is interesting to note that Symoens (1957) described a benthic diatom 
association comprising Diatoma mesodon and Meridion circulare in rivers of the Ardennes. 
However, as shown by its distribution map (Fig. 5.6.13), Meridion has rather wide ecologi-
cal amplitude and was not identified as a key taxon in our study. 
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Fig. 5.6.16. As in Fig. 5.6.8, for group 10. 

Close to group 6 was group 8 (Fig. 5.6.14), which occurred at lower pH and lower alka-
linity (mean: 0.39 meq l-1; Fig. 5.6.18), and higher temperature. Here, the key taxa seemed 
sensitive to phosphate (Fig. 5.6.13). These two groups appeared to correspond to near-
natural conditions for circumneutral waters, which would follow group 9 in a pH / alkalin-
ity gradient. This is well shown on the CCA. Group 9 could however also have been con-
sidered as a subgroup of group 8. Group 6 was mainly located in the Pyrenees and Alps 
mountains in southern France, while group 8 was found in the volcanic Central Massif and 
Cévennes in France and the Ardennes in Belgium and Luxembourg (Fig. 5.6.6). 
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Fig. 5.6.17. As in Fig. 5.6.8, for group 7. 

Group 4 (Fig. 5.6.15) was characterised by medium alkalinity (mean: 0.69 meq l-1; Fig. 
5.6.18) but with pH in the range 6.8 – 7.75 (mean: 7.35; Fig. 5.6.18), and low altitude (gen-
erally < 500 m; Fig. 5.6.18). Most taxa of this group show some degree of tolerance to pol-
lution and are alkaliphilous to neutrophilous. They have rather wide ecological amplitude 
from springs to brackish rivers. Nevertheless, some taxa of this group are sensitive to pollu-
tion (Cavinula cocconeiformis, Nitzschia perminuta, and Achnanthes kranzii) and are usu-
ally found in relatively low conductivity waters (Krammer and Lange-Bertalot 1986-1991a, 
b).

The sensitivity analysis pointed out nitrate as a determining variable (Fig. 5.6.15). It 
seems clear that this group appeared in significantly degraded streams of which near-
natural conditions would be group 8 or 6. As an example, a shift was observed in the 
Alagnon river (France) close to its source (altitude: 950 m), from group 6 in spring to group 
4 in autumn; this shift was associated with an increase in nitrate (0.3 to 0.5 mg N l-1) and a 
slight increase in alkalinity and pH. On the other hand, the most typical taxa of the group, 
Navicula gregaria and N. lanceolata, aretypical of spring conditions, and 66 % of the cases 
actually corresponded to the spring season. A seasonal effect could thus also have influ-
enced the composition of group 4. 

Group 10 (Fig. 5.6.16) was found nearly exclusively in headwater streams of northern 
Luxembourg (Fig. 5.6.6), thus very close to source and at low altitude (generally < 500 m; 
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Fig. 5.6.18). The geology of the north of this country is dominated by schists, which can 
account for the low conductivity of the waters (200 µS cm-1 as median value). DOC was 
lower than in group 4. NO3

- was relatively high (above 2 mg N l-1 and reaching more than 5 
mg N l-1 in some cases), and PO4

3- was generally low (below 0,03 mg P l-1). Most of the 
samples associated to this group were collected from semi-lotic facies in headwater streams 
(stream order from 1 to 3) while all the other samples of the data matrix were from running 
waters.

All indicator taxa of this group are highly polluosensitive, except Planothidium frequen-
tissimum. On the other hand, Psammothidium daonense, Geissleria acceptata and Gom-
phonema olivaceum var. minutissimum are generally considered as representative of good 
ecological status. Psammothidium daonense, Gomphonema var. minutissimum, Adlafia cf.
suchlandtii and Geissleria acceptata were mainly found in headwater streams of northern 
Luxembourg (Rimet et al. 2004). These four taxa have the maximum PSI polluosensitivity 
values and a medium indicator value. Psammothidium daonense is in the red list of Lange-
Bertalot (Lange-Bertalot and Steindorf 1996, Lange-Bertalot and Genkal 1999) and is 
considered as an endangered species. 

Finally, group 7 (Fig. 5.6.17) comprised essentially several invasive taxa such as Ach-
nanthes cf. subhudsonis, Gomphoneis minuta and Nitzschia cf. tropica (Coste and Ector 
2000). The ecology of these taxa is poorly known in Europe: for instance, Gomphoneis
minuta was found in abundance by Coste (Coste et al. 1992) downstream of water treatment 
plants. This taxon was also found in high numbers in upstream river reaches. The occur-
rence of this taxon in altitude can be seen both on the CCA (Fig. 5.6.5c) and its distribution 
map (Fig. 5.6.17). The records associated to this group met our selection criteria probably 
due to the fact that taxa such as Achnanthes cf. subhudsonis and Encyonema silesiacum are 
considered as very sensitive to pollution. However, in the PAEQANN database, Encyo-
nema silesiacum is certainly a complex of several taxa. Achnanthes cf. subhudsonis is in-
vading many rivers in France and Spain, especially in the granitic regions of Massif Central 
and in Galice (Coste and Ector 2000). It has apparently a wide ecological amplitude and its 
sensitivity index may have been overestimated. Group 7 was in the same range of pH and
alkalinity/conductivity as group 4 but presented higher temperature and relatively high 
DOC (mean above 5 mg l-1) and PO4

3- (90th percentile reaching 0,14 mg P l-1), higher than 
expected for near-natural conditions or even very good ecological status, thus indicating a 
significant degree of water quality alteration. The cases associated with this group were 
mainly located in the Loire basin (Fig. 5.6.6). 

Benthic diatom typologies were described previously in Europe, at a local or regional 
scale (Symoens 1957, Descy 1980, Symoens et al. 1988, Fabri and Leclercq 1984, 1986, 
Ector et al. 1997), and in the US (Pan et al. 1996, 2000, Potapova and Charles 2002). In all 
of these studies, the water chemistry, and more particularly pH, alkalinity and conductivity, 
depending on bedrock and geology, were pointed out as important variables driving diatom 
community composition. Our analysis covered a wide range of geology, altitude and stream 
orders and several eco-regions (4 sensu Illies 1978); we considered 23 environmental vari-
ables and 467 cases, corresponding to 375 stream sites in 255 rivers and 35 fluvial basins. 
Pan et al. (1999), in a study of Mid Atlantic streams, proposed that factors determining ben-
thic algal species composition could be distinguished at the watershed or regional scale 
(climate geology, land use), and at the local scale (pH, DOC, nutrients, …). 
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Fig. 5.6.18. Box-plots of environmental conditions, according to SOM groups (median; 10th, 25th, 
75th, and 90th percentiles as vertical boxes with error bars; 5th/95th percentiles as dots). Pattern indi-
cates the ecological status of the group as defined in conclusion of this study:  very good; 
good;  medium;  lower. 

From our study based on river sites of good to very good biological quality, it appears 
that this distinction between scales is not always straightforward: particularly, alkalinity, 
conductivity and pH are related to geology and rock type, so that we consider them as fac-
tors acting at the regional scale, clearly depending on natural properties of the watershed 
which have not been altered by human activities. Therefore, these factors (particularly alka-
linity, which is the least affected by land use) could be used as predictors for assemblages 
of benthic diatoms in near-natural conditions. We have shown (PCA on Fig 5.6.1), how-
ever, that geology-related factors and land use are not independent: indeed, agriculture is 
better developed on calcareous soils at medium and low elevation, so that the nutrient load-
ing (particularly for N) of these lowland streams is always larger than that of streams lo-
cated on siliceous substrate. Again, on the North-American continent, a similar approach 
was used by Hill et al. (2000) who tested the effects of 47 variables on the attributes of dia-
tom assemblages from 199 streams in the Mid-Appalachian area. In their study, a canonical 
correlation analysis showed that environmental determinants were basically the same as the 
ones we identified in our multi-regional study in Western Europe: pH, specific conduc-
tance, acid neutralizing capacity (= alkalinity). Percentage of agriculture in the catchment 
and total N were correlated with the proportion of eutraphentic species –terminology ac-
cording to Rott et al. (1999)-, and the proportion of pollution-tolerant taxa correlated with 
total P. Potapova and Charles (2003), analysing a data set of more than 3000 benthic dia-
tom samples from more than 1000 river sites throughout the USA, also pointed out the ma-
jor influence of conductivity and major ions such as HCO3

-+CO3
2- (= alkalinity) in the 

variation of diatom assemblage composition. Those conclusions remarkably confirm the 
importance of factors which were pointed out systematically in our sensitivity analyses, and 
prove the consistency of an approach based on diatom auto-ecology across continents. As a 
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corollary, it seems that the eco-regional approach to the determination of diatoms assem-
blages is less relevant, except if there is a close correspondence between eco-regions and 
geology and, to some extent, elevation. As pointed out by Pan et al. (2000), this allows the 
establishment of a precise reference system without varying metrics among regions.  

Conclusion

Our analysis of benthic diatom records of the PAEQANN database, selected according to a 
high value of the PSI diatom index, enabled us to define several “groups” of indicator taxa, 
which could be organised along a gradient of alkalinity and pH. Several of these groups 
correspond to natural or near-natural conditions, as verified by the values of nutrients and 
DOC and by the auto-ecology of the taxa themselves. Moreover, in a given range of water 
chemistry, temperature and altitude can be discriminating factors generating distinct assem-
blages characterised by key taxa with a well-defined optimum. This suggests that a diatom 
reference system could be defined at a multi-regional or even at a continental level, rather 
than at the scale of eco-regions. 

In this study, ANN-based techniques were combined with multivariate analyses to de-
termine a biotypology of near-natural conditions at a multi-regional scale in Western 
Europe. In particular, SOM allowed giving information and an easy-to-use representation of 
taxa auto-ecology. Sensitivity analyses allowed identifying the variables contributing the 
most of to the determination of biotypes. 

In order to be used for water management, this biotypology should be validated for ac-
tual diatom records and level of confidence should be defined. Then, ecological quality ra-
tios (EQR; ratios between observed and reference biological values) could be calculated in 
order to estimate the distance between actual biological status and the reference, for both 
undisturbed and disturbed sites. This will ultimately allow providing a sound scientific ba-
sis for water restoration as commended in the European Water Framework Directive. 
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5.7 Prediction with artificial neural networks of diatom 
assemblages in headwater streams of Luxembourg*

Rimet F†, Ector L, Hoffmann L, Gevrey M, Giraudel JL, Park YS, Lek S 

Introduction

In rivers benthic diatom assemblages are controlled by many environmental variables, such 
as climate, geology or nutrients (Stevenson 1997, Snyder et al. 2002). It is therefore often 
difficult to understand the relationships between the different diatom taxa and the environ-
mental parameters. Classically, multivariate analyses, such as principal component analysis, 
are used to project the abundance of diatom data on a two dimensional graph. The first two 
axes are in general used, but they represent only a part of the explained variability. Cluster 
analysis based on Bray-Curtis distances (Bray and Curtis 1957) or Twinspan ordinations 
(Hill 1979b) are also very often used techniques to sort samples of diatom assemblages into 
groups of homogeneous composition.  

The Self Organizing Maps (SOM; Kohonen 1982) are able to cluster the sites and to 
summarise a database on a two dimensional graph. The projection is made in a non-linear 
way with an artificial neural network onto a map composed of hexagons (Fig. 5.7.1), the 
Kohonen map. In contrast to multivariate analysis, the Kohonen map represents all the ex-
plained variability of the dataset. The projection is made thanks to an artificial neural net-
work composed of two layers: the first one (input layer) is connected to the samples, the 
second one (output layer) to the hexagons of the map. The projection is made respecting the 
similarities between the samples. Samples with homogeneous assemblages are placed in a 
same hexagon or in neighbouring hexagons and samples with very different assemblages 
are placed in distant hexagons. Artificial Neural Networks (ANN), are models that function 
somewhat like a human brain as they have a learning ability. They establish links between 
information and solutions. Only a few studies have already used this kind of techniques and 
have demonstrated their clustering properties for biological communities (Chon et al. 1996, 
Foody 1999, Giraudel and Lek 2001). 

Artificial Neural Networks using backpropagation algorithms (ANN-BP) are models 
that can be used for predicting one or several variables using other, predictive, variables. 
This kind of model is composed of processing elements called “neurons” which are ar-
ranged in three layers (Fig. 5.7.2). The first layer, the “input layer”, is corresponding to the 
input variables, as, for instance, environmental parameters. The last layer, the “output 
layer”, is composed of neurons providing a prediction for the expected variables. The layer 
between both, the “hidden layer”, is composed of neurons composed of a non-linear func-
tion. These neurons receive information from the input neurons, transform it with the non-
linear function (log sigmoid for instance), and send this new information to the output neu-
rons.

* This research was financed by the EU project PAEQANN (N° EVK1-CT1999-00026). We thank Dr. 
H.M. Cauchie for his useful comments on the manuscript. 

† Correspondence: rimet@crpgl.lu 
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Fig. 5.7.1. The database composed of sites char-
acterised by taxa abundances is projected in a 
non-linear way by means of ANN on the Koho-
nen map (a). A SOM with 12 hexagons was 
used to define 12 groups of samples with homo-
geneous diatom assemblages (b).  

Connections between neurons are weighted in order to modulate the importance of the 
information fluxes. Output neurons collect the information and give a prediction. The net-
work is trained with a part of the database. Predictions are given and compared with the re-
ality. The aim of the training is to find the best weights for the connections in order to get a 
minimal error between predictions and observations. The other part of the database, which 
is not used for the learning phase, is used to test the network with fixed weights (validation 
procedure).

Several studies have already shown the ability of ANN-BP to predict the structure of 
macro-invertebrate or fish communities in rivers (Brosse and Lek 2000a, Chon et al. 2000c 
among others), density (Chon et al. 2000c) or species richness (Park et al. 2003a) of macro-
invertebrate in rivers, Pacific sardine biomass (Cisneros-Mata et al. 2000) or fish species 
abundance in the Seine basin in France using stream order, slope, width, water quality, 
habitat quality and the ecoregion as input parameters (Boët and Fuhs 2000). Several studies 
showed that ANN-BP gives better results than other techniques such as multiple regressions 
(Lek et al. 1995, Brosse and Lek 2000b, Scardi 2000). This can be partly explained by the 
ability of artificial neural networks “to take into account the non-linear relationships be-
tween dependent variables and each independent variable” (Lek et al. 1995). Few applica-
tions exist for algal communities, besides prediction of blue-green algae blooms in rivers 
(Recknagel 1997) or in lakes (French and Recknagel 1994). Scardi (2000) used ANN to 
predict phytoplankton productivity in the Gulf of Napoli from temperature, irradiance, geo-
graphical coordinates and the day of the year as predictive variables. 
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Fig. 5.7.2. Architecture of the three-layers ANN-BP used. 19 input neurons corresponding to 19 phys-
ico-chemical parameters, 13 hidden neurons and 2 output neurons to predict the coordinates of the 12 
groups on the SOM, are used. Abbreviations meaning: SD: source distance, Slop: slope, W: river 
width, Temp: temperature, pH, O2: dissolved oxygen, Alk: alkalinity, TH: total hardness, Cond: con-
ductivity, NO3

-, NO2
-, NH4

+, PO4
3-, Cl-, Na+, BOD5: biological organic demand during 5 days, Ptot: to-

tal phosphorus, SO4
2-, K+.

The structure of benthic diatom assemblages is potentially determined by many envi-
ronmental factors acting at different spatial scales (Stevenson 1997, Snyder et al. 2002). 
Several studies established correlations between diatoms and physico-chemical variables 
(Stoermer and Smol 1999), and, among other applications, these observations led to the de-
velopment of biotic indices to assess the water quality. These biotic indices are generally 
calculated with species sensitivity to pollution, their indicator value and their relative abun-
dance. They are now routinely used in Europe (Prygiel et al. 1999) and some of them are 
standardized (Kelly et al. 1998, AFNOR 2000). 

Recently, the European Parliament (2000) required to develop new assessment tools for 
inland waters, which must comply to the Water Framework Directive (WFD). This direc-
tive aims to restore surface and underground waters to a good ecological status, which im-
plies to define typologies and reference conditions for several water bodies. The WFD 
specifies that the ecoregional setting has to be taken into account. Ecoregions (Omernik 
1987, 1995, Wasson in Cemagref 2001) classify landscapes on the basis of climates, geol-
ogy, soil topography and potential vegetation. River typology can be defined for instance 
on the basis of distance to the source, river width, slope and maximal annual temperature 
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(Verneaux and Leynaud 1974). The reference conditions should be defined in each river 
type in each ecoregion, and this can be done using modelling techniques.  

The first aim of this study was to explore benthic diatom assemblages in headwater 
streams of Luxembourg in order to propose type assemblages for unpolluted rivers of this 
typological level. The interest to work on a spatially reduced region and on homogeneous 
typological levels lies in the homogeneity of diatom and environmental data and in the pre-
cision of the classification developed. A priori, such an approach should provide more de-
tail than studies carried out at a wider scale using data coming from very different regions 
and river types. Different assemblages were defined using SOM (Kohonen 1982) and could 
be related to distinct regions of Luxembourg.  

The second objective was to test whether diatom assemblages of the headwater streams 
of Luxembourg can be accurately predicted by using environmental parameters, in order to 
assess the use predictive models for defining the reference conditions as required by the 
WFD. ANN-BP was used to predict the groups of samples formerly defined by SOM. 
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Fig. 5.7.3. Location of the Grand-Duchy of Luxembourg (a) and presentation of its geology (b). 

Materials and methods 

Study area 

The Grand-Duchy of Luxembourg is situated between France, Germany and Belgium (Fig. 
5.7.3a). The country is separated into two regions (Fig. 5.7.3b). In the northern part, the 
“Oesling” has a geology composed of schists and slates (Devonian), the landscape is cut by 
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deep valleys (mean altitude around 500 m). The south part, the “Gutland”, is characterised 
by sandstones and limestones (Triassic and Jurassic); it is flatter than the northern part and 
also drier (average rainfall is 782 mm for the south and up to 1050 mm for the north). 

Until now, apart a study by Weckering (1953) very few data exist about the diatom flora 
of Luxembourg. Diatoms were also used several times to assess water quality in rivers in 
Luxembourg (Leclercq and Vandevenne 1987, Descy and Coste 1990, Back et al. 1994, 
Descy and Ector 1999). 

Physical and chemical data 

Water temperature, dissolved oxygen, conductivity and pH were measured in the field at 
the same moment as the diatom samplings. Water samples of each site were also collected 
and analysed in the laboratory following standard procedures (APHA 1995) for NO3-, 
NO2-, NH4+, total phosphorus, PO43-, Na+, Cl-, K+, SO42-, biological oxygen demand, 
total hardness and alkalinity. For each site sampled, altitude, slope, stream order and dis-
tance from the source were determined on 1/20000 topographical maps. 

Diatom sampling, preparation, identification and counting 

For this study the headwater streams (stream orders 1 to 3 according to Strahler 1963 and 
Leopold et al. 1964) of Luxembourg were selected. A total of 145 sites were chosen in the 
17 sub-basins composing the entire territory. In each sub-basin, streams with minimal an-
thropic disturbances were selected. The samplings were carried out from 1994 to 1997. 
Each site was sampled once in late summer and autumn (from the end of August to Octo-
ber) and again in spring (from the end of March to June).  

In order to obtain comparable results, samplings were realised according to the French 
standard (AFNOR 2000). Benthic diatoms were collected from fast-flowing parts of the 
sites on several stones (generally five). The upper surface of the stone was sampled with a 
toothbrush. Samples were fixed in formol 4% (Prygiel and Coste 2000). Diatom valves 
were cleaned with hydrogen peroxide (40%) to eliminate organic matter and with hydro-
chloric acid (37%) to dissolve calcium carbonates. Clean diatom frustules were mounted in 
a synthetic resin (Naphrax) and counted with a light microscope (up to 400 valves in each 
sample, Iserentant et al. 1999) with a 1000  magnification. The entire slide was scanned 
with a 400  magnification to check for rare taxa. Krammer and Lange-Bertalot (1986, 
1988, 1991a,b) as well as Lange-Bertalot (1993) were used for diatom identifications. In 
addition Reichardt (1999) was used for the identification of Gomphonema C.G. Ehrenberg, 
Lange-Bertalot and Krammer (1989) for Achnanthes J.B.M. Bory de Saint Vincent, and 
Lange-Bertalot (2001) for Naviculaceae. 

Data analysis 

The first step of the analysis consisted in defining groups of samples with similar diatom 
assemblages. The physical and chemical characteristics and the geographical location in the 
country of these groups were identified. The second step was to predict these groups using 
physical chemical parameters as predictive variables; the accuracy of the prediction was as-
sessed with the correlation coefficients of the ANN-BP. 

Firstly, SOM (Kohonen 1982) were used to explore and cluster diatom assemblages, us-
ing taxa abundance as input and the proximities of the samples on the SOM as output. A to-
tal of 289 samples were collected from 1994 to 1997 and 411 taxa were recorded. Before 
launching the training phase of the SOM, a selection of 71 taxa was made based on the 
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highest values of the ratio: (occurrence of the species in the samples)/(sum of the species 
abundance in all the samples). This selection retains the most abundant taxa and also the 
rare but locally abundant taxa, which can have an important ecological meaning. The other 
311 taxa were removed from the dataset. Taxa percentages were calculated for each sample 
on the basis of these 71 taxa and the SOM was trained with the percentages of these 71 
taxa.
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Fig. 5.7.4. Floristic composition of the 12 groups defined with the SOM. The percentages of the 10 
most abundant taxa for each group are given. These assemblages represent the average of the samples 
assemblages composing each group of the SOM. Abbreviations meaning: ADMI: Achnanthidium
minutissimum (Kützing) Czarnecki, APED: Amphora pediculus (Kützing) Grunow, CPLE: Cocconeis
placentula Ehrenberg var. euglypta (Ehrenberg) Grunow, CPLI: C. placentula Ehrenberg var. lineata
(Ehrenberg) Van Heurck, EOMI: Eolimna minima (Grunow) Lange-Bertalot, ESBM: E. subminuscula
(Manguin) Moser, Lange-Bertalot and Metzeltin, FCVA: Fragilaria capucina Desmazières var. 
vaucheriae (Kützing) Lange-Bertalot, FSAP: Fistulifera saprophila (Lange-Bertalot and Bonik) 
Lange-Bertalot, GOLI: Gomphonema olivaceum (Hornemann) Brébisson, GOMI: G. olivaceum var. 
minutissimum Hustedt, GPAR: G. parvulum Kützing, GPUM: G. pumilum (Grunow) Reichardt and 
Lange-Bertalot, MAPE: Mayamaea atomus (Kützing) Grunow var. permitis (Hustedt) Lange-Bertalot, 
NCTE: Navicula cryptotenella Lange-Bertalot, NDIS: Nitzschia dissipata (Kützing) Grunow, NGRE: 
Navicula gregaria Donkin, NLAN: N. lanceolata (Agardh) Ehrenberg, NPAL: Nitzschia palea (Kütz-
ing) W. Smith, NTPT: Navicula tripunctata (O.F. Müller) Bory, PDAO: Psammothidium daonense
(Lange-Bertalot) Lange-Bertalot, PLFR: Planothidium frequentissimum (Lange-Bertalot) Round and 
Bukhtiyarova, PTLA: P. lanceolatum (Brébisson) Round and Bukhtiyarova, RABB: Rhoicosphenia
abbreviata (C. Agardh) Lange-Bertalot, RSIN: Reimeria sinuata (Gregory) Kociolek and Stoermer. 

The assemblage composition and the values of the environmental variables of each 
group were characterised using descriptive statistics. Secondly, several ANN-BP were 
computed to predict diatom assemblages with environmental variables. In this study back 
propagation algorithms were used with environmental variables as input to predict the 
groups defined with the SOM. Nineteen input variables were used (temperature, slope, 
width, source distance, pH, dissolved oxygen, alkalinity, total hardness, conductivity, NO3

-,
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NO2
-, NH4

+, PO4
3-, total phosphorus, Cl-, Na+, SO4

2-, K+, biological oxygen demand) to 
predict the coordinates of the 12 samples groups on the SOM (Fig. 5.7.2). 

Results

Definition of diatom assemblages with SOM 

After trying several sizes of SOM, a 12 hexagons map was retained because it showed the 
most easily explainable results (Fig. 5.7.1b). The SOM gives 12 groups of samples with 
homogeneous diatom assemblages. The diatom assemblages of each group of the SOM 
(floristic list and abundance of each taxon) were defined by calculating the average assem-
blage of the samples composing each hexagon and are given in Fig. 5.7.4 (the 10 most 
abundant taxa of each assemblage are presented in Fig. 5.7.4). 
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Fig. 5.7.5. Box-whisker plot of physical and chemical characteristics of the 12 groups of samples de-
fined with the SOM. The box is corresponding to 50% of the values, the horizontal bar in the box to the 
median and the vertical bars to the minimum/maximum values. 

The assemblages in Fig. 5.7.4 show clear differences in diatom ecology. Alkaliphilic 
taxa are abundant in the left part of the SOM: Amphora pediculus, Cocconeis placentula
var. lineata, Rhoicosphenia abbreviata, Mayamaea atomus var. permitis and alkalibiontic 
species as Gomphonema olivaceum. On the right part of the SOM are found neutrophilic 
taxa: Achnanthidium minutissimum, Gomphonema olivaceum var. minutissimum, Navicula
gregaria, Fistulifera saprophila, Nitzschia palea, Gomphonema parvulum.

These observations are confirmed by their physical and chemical characteristics given in 
Fig. 5.7.5. The box-plots (Fig. 5.7.5) show that there is a clear gradient of pH, conductivity 
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and alkalinity between the right and the left part of the SOM: the values in groups 1, 2, 5, 6, 
9 and 10 are higher than in groups 3, 4, 7, 8, 11 and 12. 

Fig. 5.7.5 also shows that there is a clear geographical separation of the groups: 1, 2, 5, 
6, 9 and 10 are in the north (cf. latitude) of the country, which is a hilly region. On the other 
hand groups 3, 4, 7, 8, 11 and 12 are in the south, which is a lowland region. There is the 
same tendency for the longitude in groups 1, 2, 5, 6, 9 and 10 which are eastern, and groups 
3, 4, 7, 8, 11 and 12, which are western. Figure 5.7.6 illustrates on geographical maps this 
observation: the sites belonging to groups 1, 2, 5, 6, 9 and 10 are mainly in the Oesling. 
Groups 3, 4, 7, 8, 11 and 12 are mainly in the Gutland. 

A pollution gradient can be observed from the top to the bottom of the map. Groups 1, 2, 
3 and 4 are more polluted than groups 9, 10, 11 and 12 (e.g. biological oxygen demand, 
NO2

- and PO4
3- in Fig. 5.7.5). Diatom assemblages also show this gradient of pollution 

(Fig. 5.7.4) regarding taxa ecology. Fistulifera saprophila, Mayamaea atomus var.
permitis, Eolimna minima, Navicula gregaria are -mesosaprobic to polysaprobic 
eutrophic taxa and are mainly found in groups 1, 2, 3 and 4. On the other hand 
Achnanthidium minutissimum, a -mesosaprobic taxon, is found in high abundance (over 
47%) in groups 9, 10, 11 and 12. 
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Fig. 5.7.6. Location of the SOM groups on the Luxembourgish river network for samplings carried out 
in spring (a) and in autumn (b). Grey scales colours are given to each group of the SOM. The samples 
are plotted according to these colours on the river network. Dotted line separates Gutland and Oesling 
regions.

Fig. 5.7.7 gives examples of 12 maps of probability of taxa presence. The maps are 
sorted by taxa ecology. Achnanthidium biasolettianum, Cocconeis placentula var. lineata,
Pinnularia subcapitata var. elongata, Gomphonema olivaceum var. minutissimum, G. 
pumilum and Neidium alpinum are oligosaprobic to mesosaprobic taxa (Krammer and 
Lange-Bertalot 1991a, b, van Dam et al. 1994) and are abundant in the upper part of the 
maps. On the other hand, Eolimna subminuscula, E. minima, Fistulifera saprophila, Ma-
yamaea atomus var. permitis, Navicula veneta and Nitzschia palea are -mesosaprobic to 
polysaprobic taxa (van Dam et al. 1994) and appear at the bottom of the map. Pinnularia
subcapitata var. elongata and Neidium alpinum are located in the top right hand corner of 
the map; these taxa are known to be oligosaprobic and acidophilic (Krammer and Lange-
Bertalot 1986). 
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Achnanthidium biasolettianum and Cocconeis placentula var. lineata are oligo, -
mesosaprobic and alkaliphilic taxa (van Dam et al. 1994); they are situated in the top left 
hand corner of the map. Fistulifera saprophila and Nitzschia palea are polysaprobic, eutro-
phic species (van Dam et al. 1994) and are also located in the bottom right hand corner of 
the map. The abundance of Eolimna minima is high in many hexagons of the map (Fig. 
5.7.6). This can be explained by its high abundance in headwater streams of Luxembourg. 
Navicula veneta, Mayamaea atomus var. permitis and Eolimna subminuscula are eutrophic 
and -mesosaprobic taxa (van Dam et al. 1994); they are situated in the bottom left hand 
corner of the map. 
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Fig. 5.7.7. Examples of taxa abundance on the SOM. Dark grey hexagons correspond to high probabil-
ity of presence and white ones to low probability of presence. 

Prediction of diatom assemblages with environmental descriptors using 
ANN-BP

The ANN-BP used is composed by three layers (19  13  2) and worked with a back 
propagation algorithm. Nineteen neurons in the input layer, 13 in the hidden layer, and 2 in 
the output layer were used to predict the coordinates (abscissa and ordinate) of the 12 
groups of samples on the SOM (Fig. 5.7.2). This architecture proved to be the best after 
trying several others with different numbers of input and hidden neurons. A “leave-one-
out” cross validation test was computed. The training phase was stopped at 500 iterations 
because an over-learning effect was detected (i.e. the model was becoming too specialised 
for the training dataset after more than 500 iterations). 

The results of the predicted coordinates of the samples, presented on a Kohonen map 
(Fig. 5.7.8), show that the predicted samples of the group 1 fit well in hexagon 1; the same 
is true for group 2 and for other predicted samples. The correlation coefficients were high 
(0.94 for abscises and 0.96 for ordinates). 
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Fig. 5.7.8. Coordinates of the assemblages predicted with the ANN-BP (19-13-2) and plotted on the 
SOM. Numbers correspond to the observed groups defined with the SOM. Correlation coefficients be-
tween predicted and observed groups are: rabscissa = 0.94, rordinate = 0.96. 

Discussion and conclusions 

Diatom assemblages in headwater streams of Luxembourg 

With the SOM run with diatom abundances, 12 diatom assemblages corresponding to dif-
ferent situations found in the headwater streams of Luxembourg were characterised. 

Four assemblages corresponding to streams with low pollution were defined. Group 12 
is mainly located in the north of Luxembourg (Oesling) and group 9 is mainly located in the 
south (Gutland). The main difference between these regions is their geology (schist and 
slate in Oesling, sandstone and limestone in Gutland). This confers to headwater streams a 
different water chemistry: northern streams have lower conductivities than southern ones. 
This difference in water chemistry is well reflected by the difference of diatom ecology of 
the assemblages in groups 9 and 12, even though the most abundant species in these groups 
is Achnanthidium minutissimum, a very common taxon in fast-flowing streams that can be 
considered as opportunistic (Ivorra 2000). Group 9, corresponding to low polluted rivers of 
Gutland, is characterised by alkaliphilic and alkalibiontic taxa. Group 12, corresponding to 
low pollution rivers of Oesling, is characterised by neutrophilic taxa.  

Ecoregions are usually defined on the basis of homogeneous ecosystems, climate, soil, 
geology and potential vegetation (Omernik 1987, 1995, Wasson in Cemagref 2001). The 
two regions of Luxembourg (Oesling in the north and Gutland in the south) have different 
geology, and the physical and chemical characteristics of their headwater streams are dif-
ferent. They correspond to two different climatic regions defined by Lahr (1950): the Ar-
dennes region in the north and the Moselle/Alzette regions in the south. Similarly, Luxem-
bourg is separated into two phytogeographical districts: ‘Ardennais’ in the north and 
‘Lorrain’ in the south (Lambinon et al. 1992) with different plant associations. The same 
pattern is also observed for aquatic bryophytes (Werner 2001) and benthic diatoms as 



5 Diatom and other algal assemblages      353 

shown in this study. Therefore these two regions can be considered as parts of two distinct 
ecoregions also present in the neighbouring countries of Belgium and Germany.  

Other studies also showed patterns for diatom assemblages at a regional scale (Snyder et 
al. 2002) or ecoregional scale (Potapova and Charles 2002). Many taxa in Luxembourg 
have a geographical distribution restricted to the Oesling or the Gutland regions.  

The assemblages of groups 9 and 12 could be proposed as reference assemblages for 
unpolluted headwater streams of order 1 to 3 in the two ecoregions of Luxembourg. Groups 
10 and 11 correspond to streams of intermediate situations for conductivity, pH and alkalin-
ity (Fig. 5.7.5). The assemblages of groups 1 to 8 correspond to situations with different 
degrees of anthropic disturbances in the two ecoregions. This study at local scale shows that 
many diatom taxa can have a narrow ecological distribution (Potapova and Charles 2002), 
even if most of diatom taxa are considered as cosmopolitan. Similar results were already 
observed in over groups of algae as cyanophyceae with cosmopolitan taxa occurring in a 
restricted ecological niche (e.g. Hoffmann 1994, 1996). 

Prediction of diatom assemblages in headwater streams of Luxembourg 

ANN-BP allowed predicting, with high correlation coefficients, diatom assemblages in 
headwater streams of Luxembourg using physical and chemical parameters. The correlation 
coefficient of ordinates showed a good prediction from polluted to unpolluted situations, 
and the correlation coefficient of abscissas showed a good prediction between ecoregions.  

The correlation coefficient of ordinates confirms the results of many studies demonstrat-
ing the importance of the correlations between benthic diatoms assemblages and water 
quality (Stoermer and Smol 1999). This kind of correlation led many authors to develop 
diatom classifications in sytems for water quality assessment: Descy (1979), Coste (in Ce-
magref 1982), Sláde ek (1986), Leclercq and Maquet (1987a), Descy and Coste (1990, 
1991), Schiefele and Kohmann (1993), Dell’Uomo (1999), Lenoir and Coste (1996), Pry-
giel and Coste (1998), Harding and Kelly (1999). These biotic indices are now routinely 
used in many countries (France, Belgium and Luxembourg among others) and are standard-
ised at national and international scale (Kelly et al. 1998, AFNOR 2000). 

The correlation coefficient of abscissas showed that diatom assemblages were predict-
able from an ecoregion to another. Nutrient experiments realised on diatom assemblages in 
different rivers of USA showed that large-scale factors are determinant (Snyder et al. 2002) 
and their integration in models is necessary to predict correctly diatom assemblages. As-
semblages of sites with low level of pollution (groups 9 to 12) showed that the concept of a 
defined type assemblage for an ecoregion is probably a first approximation. Indeed, natural 
algal assemblages in streams vary along a continuum in which taxa composition is gradu-
ally changing with conductivity, pH and alkalinity and other variables. It must be kept in 
mind that type assemblages are groups of taxa varying from an extreme to another. This 
phenomenon resembles the River Continuum Concept (RCC, Vannote et al. 1980) but is 
nevertheless different. The RCC considers that the pattern of the changing benthic commu-
nity structure in the stream size continua is predictable. In our study, this continuum is pre-
dictable in headwater streams from an ecoregion to another by means of physical and 
chemical parameters. Several studies at a large scale showed that diatom assemblages are 
also changing along rivers and showed the importance of the “downstream” gradient (Pan 
et al. 1999, 2000, Potapova and Charles 2002).  

This study showed that these two continuums, between ecoregions and between differ-
ent water qualities, control diatom assemblages. These two imbricate continuums of diatom 
assemblages were highly predictable by use of several environmental variables characteriz-
ing pollution as NO3

-, NO2
-, NH4

+, PO4
2-, BOD5, Ptot, and characterizing the region as alka-

linity, pH, conductivity and slope. This study showed that reference conditions for diatom 
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assemblages can be predicted by means of SOM, ANN-BP and environmental variables in 
headwater streams of Luxembourg. 

Perspectives and further developments 

The typology of assemblages for benthic diatoms is a fundamental goal already studied 
since several years. For instance Descy and Coste (1991) developed a table for determining 
the CEC index. This table gives groups with taxa ranked following their pollution toler-
ance, and subgroups ranked following the natural diatom successions according to Strahler 
order. The European Water Framework Directive (European Parliament and The Council of 
the European Union 2000) formalised this concept of typology and introduced the concept 
of reference condition. It requires the characterisation of different surface water bodies with 
hydromorphological and physical and chemical variables and to define their reference con-
ditions (which correspond to its highest ecological status, i.e. to undisturbed conditions). 
According to the European Parliament (2000) and the REFCOND working group (2002), 
the “reference conditions establishment can be either spatially based or based on modelling 
or a combination of these”.  

Our study shows that it is possible to predict with a high accuracy diatom assemblages 
of headwater streams in different ecoregions and different water qualities using physical 
and chemical variables. Artificial neural networks seem to be, at this stage, good techniques 
to meet the requirements of the European Water Framework Directive. Next developments 
could be the integration of the REFCOND working group requirements (2002) in the 
methodology presented here in order to correctly define reference conditions and then to 
develop new river quality assessment tools. 
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5.8 Use of neural network models to predict diatom 
assemblages in the Loire-Bretagne basin (France)*

Di Dato P†, Rimet F, Tudesque L, Ector L, Scardi M 

Introduction

The aim of our work was to test the accuracy of the artificial neural networks (ANN) as 
predictive tools for benthic diatom taxa presence starting from a set of environmental vari-
ables. The river basin we studied is characterized by a huge complexity both in terms of 
spatial heterogeneity, as far as the environmental information is concerned, and in terms of 
biotic information, because of the large number of taxa that have been identified. In particu-
lar, this study focused on the application of different approaches to the reduction of the 
complexity of the data set and of the ANN models. In the meantime, it was also aimed at 
showing, as already pointed out for other kind of organisms (Scardi et. al. in # 3.8, Di Dato 
et al. in # 4.3), that too frequent or too rare species usually provide trivial information about 
the relationships of environmental variables with their presence or absence, thus affecting 
the accuracy of the models. The taxa that were selected according to the different ap-
proaches we tried including only those that can be actually modelled on the basis of the 
available environmental information. The limits and the perspectives of these species selec-
tion approaches are then thoroughly discussed.  

Materials and methods 

This study was carried out on a data set collected in the Loire-Bretagne (Loire-Bretain) ba-
sin, which is located in western France. In this basin a wide variety of climates and land-
scapes can be found, but for the sake of simplicity, it can be divided into 3 different sec-
tions. The mid and high Loire basin is rather hilly and mountainous with the Massif-Central 
mountains in the south-eastern part. The low Loire basin is characterised by lowland and 
some large rivers. The Bretagne region is a rather flat region, composed by lentic rivers and 
is deeply influenced by the Atlantic Ocean (Fig 5.8.1). 

The diatom database has been assembled collecting 641 samples from 1996 to 2000 in 
the framework of national river survey, organised and funded by the Loire-Bretagne Water 
Agency. For each sampling, physical, chemical and geomorphological descriptors were re-
corded. Among the latter, some were measured in the field (width, shading, sampled sub-
strate and current velocity), others on maps and on Geographical Information Systems (ge-
ology, altitude, distance from source, slope, catchment area, discharge). Average values 
computed over the last 3 months were assumed for physical and chemical descriptors (tem-
perature, pH, dissolved oxygen, dissolved organic carbon, HCO3

-, CO3
2-, NO3

-, NO2
-, NH4

+,

* This work is part of the PAEQANN project supported by the European Commission under the 5th Frame-
work Programme (contract n°: EVK1-CT1999-00026). We thank Mr J. Durocher of the “Loire-Bretagne” 
Water Agency and Ms M. Leitao of the Bi-Eau society for their valuable collaboration. 

† Correspondence: pdidato@mclink.it 
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PO4
2-, Ca2+, Cl-, Na+, biological oxygen demand, chemical oxygen demand, suspended mat-

ter, NKJ, Ptot). The environmental variables that were used to train the models are presented 
in the Table 5.8.1. 

Mid and high
Loire basin

Low
Loire basinBretagne

100 km

N

Loire-Bretagne basin

100 km

N

Mid and high
Loire basin
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Loire basinBretagne

100 km
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Loire basin
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100 km100 km

NN

Loire-Bretagne basin

100 km

N

Loire-Bretagne basin

100 km100 km

NN

Fig. 5.8.1. The study area. Black dots in the map on the left show the sampling sites.

Table 5.8.1. List of the environmental variables measured or assessed for each sampling site. 

Altitude (m) HCO3
- (mg L-1)

Source distance (km) NO3
- (mg L-1)

Slope (m km-1) NO2
- (mg L-1)

Catchment area (km2) NH4
+ (mg L-1)

Electric conductivity 20°C (�S cm-1) PO4
2- (mg L-1)

pH Ca2+ (mg L-1)
Dissolved oxygen (DO) (mg L-1) Cl- (mg L-1)
Dissolved organic carbon (DOC) (mg L-1) Na+ (mg L-1)
Biological Oxygen Demand (BOD) (mg L-1) NKJ (Kejdahl nitrogen) (mg L-1)
Suspended matter (mg L-1) PTOT (mg L-1)
Shading (1:closed - 3:open) Current velocity (1:lotic - 3:semi-lotic) 
Geology (limestone: 1/0) Geology (quaternary sediment: 1/0) 
Geology (sandstone: 1/0) Geology (other:1/0) 
Geology (granitic: 1/0) Geology (mudstone-schiste-schale:1/0) 
Geology (volcanic:1/0) 

The sampling of benthic diatoms was carried out by means of a brush. The epilithon was 
collected by brushing at least 5 stones found in lotic zones of the sampling site. In labora-
tory, the samples were cleaned with hydrogen peroxide and hydrochloric acid to dissolve 
calcium carbonates. Then the cleaned frustules were mounted in a resin (Naphrax).

A total of 930 diatoms taxa were determined. Therefore, the data set included 641 pat-
terns (samples), for 32 predictive environmental variables (input variables) and 930 diatom 
taxa (output variables). Two subsets of taxa were then extracted from this data set. In the 
first subset (A), only taxa that were present in more than 5% and less than 95% of the 641 
samples were included (202 taxa met this condition). In the second subset (B) all the taxa 
that were either present or absent in less than 100 samples were excluded, thus considering 
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only those taxa whose frequency of occurrence ranged from 15% to 85% (91 taxa met this 
condition). The latter subset was also used with two different modelling strategies. The first 
strategy was based on the development of a single model for all the species, i.e. a single 
model with 91 outputs, whereas the second involved developing 91 separate models, each 
one with only one output. In all cases 3-layer feed-forward ANNs were used, i.e. percep-
trons with a single hidden layer. 

In order to evaluate how much information was retained after selecting species subsets, 
we compared the results of a Principal Coordinate Analysis (Gower 1966) based on the 
whole set of species with the ones of Principal Coordinate Analyses based on the species 
subsets (i.e. on 202 and 91 taxa, respectively). The Jaccard’s coefficient (Jaccard 1908) was 
used to compute dissimilarity among samples. This asymmetrical coefficient was selected 
because it only takes into account the presence of species, ignoring absence data, which are 
not always completely reliable. 

The 641 available patterns were randomly distributed among three subsets for training, 
validation and test. The training set included 50% of the available patterns, whereas the 
validation set as well as the test set included 25% of the available patterns. The validation 
set was used to compute the Mean Square Error (MSE) of the ANN outputs after each train-
ing epoch. The test set allowed obtaining unbiased estimates of the accuracy of the trained 
ANN models. 

Floristic information was expressed at the lowest information level, i.e. as binary pres-
ence/absence data. The predictive environmental variables were normalized by rescaling 
their range of variation within the [0,1] interval. 

The optimal structure of the ANN models was defined after empirical tests. In practice, 
the number of nodes in the hidden layer was selected by comparing the MSE for different 
ANNs, with up to 60 nodes in the hidden layer. The ANN structure that provided the best 
performance was the one with 51 hidden nodes for the subset A (202 taxa), whereas 11 hid-
den nodes were used for both subset B (91 taxa) modelling strategies. In the latter case the 
selection of the ANN structure was based on the average MSE. 

During the training procedure only a random subset of training patterns (50% of the 
available patterns) was submitted to the ANN at each epoch in order to prevent overtraining 
due to the memorization of the pattern sequence. In order to better generalize the ANN 
learning, white noise in the [-0.01,0.01] range was also added to each input value (Györgyi 
1990).

In all the nodes of the hidden and output layers of the ANN sigmoid activation functions 
were used. The error back propagation algorithm was selected to adjust the weights during 
the training procedure. In particular, we applied an early stopping procedure based on the 
validation set MSE. The learning rate and the momentum were respectively set to 0.90 and 
0.10 and never modified during the training. 

The continuous outputs values of the ANN were converted to binary using a threshold 
function and then compared with the observed data to obtain the percentage of Correctly 
Classified Instances (CCI). 

For each species subset (A and B) and for each modeling strategy (1 and 2) we analyzed 
the accuracy of the models by testing the independence of the modeled data wit respect to 
observed data. Therefore, we computed the K statistic (Cohen 1960, Kraemer 1982) on the 
basis of contingency tables in which presence and absence data in the model output and in 
the target patterns (i.e. in observed data) were cross-tabulated as shown in Table 5.8.2.  
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Table 5.8.2. Contingency table for K statistics computation. 

Model output

Ta
rg

et

Presence

Absence

Presence Absence

1-1

0-0

1-0

0-1

A B

C D

The K statistic was then obtained as: 

a a

a

O E
N E

K
                              (5.8.1) 

where Oa is the observed count of CCI (Oa = A+D), Ea is the count of CCI that are ex-
pected if the model is independent of the observed data 
(Ea=[A+B][A+C]/N+[C+D][B+D]/N) and  N is total number of cases (N=A+B+C+D).

Results

Reducing the number of species in a floristic data set has a cost in terms of information 
about the overall structure of the species assemblages. In other words, it is not possible to 
preserve the whole amount of information about the relationships among samples when 
only a subset of species is considered. However, a smart selection of the most relevant spe-
cies might reduce the information loss to a minimum. In order to provide a very rough es-
timate of the degree of approximation about the diatom assemblage structure that we ac-
cepted when we decided to reduce the number of species to be modelled, the results of a 
Principal Coordinates Analysis performed on the whole data set and on the two subset of 
species were compared (Fig 5.8.2). 

The two scatter plots show that the distortion of the first Principal Coordinate for each 
sample due to the reduction of the number of species is quite limited both in the case of 
subset A (202 taxa, left) and subset B (91 taxa, right). In fact, in both cases the correlation 
between the Principal Coordinates is very high (Spearman’s r= 0.969 for Subset A and 
r=0.992 for subset B). Of course, the Mantel statistics between the dissimilarity matrices is 
highly significant in both cases, so we rejected the null hypothesis of independence of the 
subsets from the whole data set. These evidences suggest that reducing the number of spe-
cies does not affect significantly the ability to represent the main features of the diatom as-
semblage and to reproduce the relationships among samples. 

The results of the ANN models were evaluated by taking into account the test data set 
only (i.e. 25% of the available patterns). In other words, the accuracy of the predictions was 
estimated on the basis of information that is completely independent of that on which the 
ANN models were developed. This strategy, that is often overlooked when conventional 
statistical models are considered, allows both to obtain unbiased estimates of the modelling 
errors and to effectively compare different modelling approaches. 
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Fig. 5.8.2. First Principal Coordinate of the diatom assemblages: all the species vs. reduced species set. 
Subset A, 202 taxa, on the left (a), and subset B, 91 taxa, on the right (b). 
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Fig. 5.8.3. Percentage of correctly classified instances (CCI) for the subset A (202 taxa). 

The percentage of correctly classified instances (CCI) for the larger subset of species 
(subset A, 202 taxa) was quite high, as the average value was 94.5% (Fig 5.8.3). More than 
10% of the taxa had a percentage of CCI of 100%, whereas almost 20% had a percentage 
higher than 97%. In Figure 5.8.3 the frequency distribution of the CCI percentages is 
shown, and it is very clear that almost 90% of the taxa had CCI values larger than 90%.

Although the model performed very well according to this criterion, the values of the K 
statistic did not confirm that result. In fact, only 5 taxa out of 202 were effectively predicted 
by the model, i.e. in only 5 cases the prediction about species presence or absence was sig-
nificantly different from random according to the K statistics (Fig. 5.8.4a). 
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Fig. 5.8.4. K statistics values with confidence intervals for the different modelling strategies: a) species 
subset A (202 species, 1 ANN model); b) species subset B, strategy 1 (91 species, 1 ANN model); c) 
species subset B, strategy 2 (91 species, 91 ANN models). Solid diamonds indicate significant K val-
ues (i.e. cases in which the lower P=0.95 confidence bar does not intersect the K=0 line). White dia-
monds at K=0 with no bars stand for species that were never predicted by the model. In this case the K 
value was actually undetermined. 
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The disagreement between CCI percentages and K statistics results might seem surpris-
ing at first glance, but it can be easily explained if the errors in model prediction are care-
fully analysed. In fact, most species are present only in a very limited number of samples 
(on the average 6.6 samples out of 125, i.e. slightly more than 5%, in the test set) and it is 
very difficult for the ANN model to correctly predict their presence on the basis of a hand-
ful of known cases. Therefore, when dealing with rare species, ANN models learn to pre-
dict only species absence independently of their inputs, easily attaining low mean square er-
rors and very high CCI percentages. Needless to say, the predictions of those models are 
useless from a practical point of view, and the high CCI percentages they attain are mean-
ingless.

On the contrary, the K statistics is able to provide a reliable estimate of the predictive 
ability of a model, as it takes into account the relative frequency of presence and absence 
records. Of course, predictions about rare species are inherently unreliable because of the 
lack of “examples” about the relationships between species presence and environmental 
variables, but a “false” model cannot obtain an high (and significant) K statistics value if it 
is not able to predict enough instances of presence with respect to the real frequency of the 
species. It is not surprising that the five species that were associated to significant K statis-
tics were more frequently found than the average (21.4 cases out of 125, i.e. 17.1%). 

Reducing the number of species to be modelled by excluding the most rare ones seems 
therefore a sound choice, especially considering that the relationships among samples are 
well described even when rare species are excluded. Therefore using a smaller subset of 
species, selected on the basis of their frequency and excluding the rarest ones, makes defi-
nitely sense and that is the reason why the subset B (91 taxa) was selected. In this case, 
however, two modelling strategies were adopted, respectively involving a single model 
with 91 outputs (strategy 1) and 91 models with a single output (strategy 2). The results for 
the two strategies are shown in Figure 5.8.4b,c as far as the K statistics is concerned. 

The CCI percentages, although not relevant in the light of the evaluation of the predic-
tive capabilities of the models, are lower than in the model for species subset A (on the av-
erage 75.2% and 74.2%, whereas the first model attained 79.9%). In particular, 68 out of 91 
species had significant K statistics values with strategy 1 and 67 out of 91 with strategy 2. 
Thus, the two strategies for the species subset B returned similar results, although the aver-
age K value for strategy 1 was slightly larger than the one for strategy 2 (0.30 and 0.28, re-
spectively).

A more detailed comparison of the K statistics values obtained for strategies 1 and 2 is 
shown in Figure 5.8.5. The unit slope line corresponds to a perfect agreement between 
strategy 1 and strategy 2 K statistics values, and it is evident that the overall agreement be-
tween the two series is rather good (r=0.77). This implies that species that some species are 
intrinsically more predictable than others, as they tend to have high K statistics values in-
dependently of the modelling strategy. 

However, there are also differences in the accuracy of the predictions that depend on the 
modelling strategy. In fact, points below the unit slope line correspond to species that were 
more accurately predicted using strategy 1 (i.e. K1>K2), whereas strategy 2 was a better op-
tion for species represented by points above that line (i.e. K2>K1). Since 50 points are 
located below the unit slope line and only 36 above it, strategy 1 seems more effective than 
strategy 2, but the difference between the two is not dramatic. The K values are exactly the 
same for both strategies in 5 cases. 

Finally, the case of Fragilaria capucina var. vaucheriae, the outlier in the lower right 
corner of the plot, is worth commenting, as it was the only case in which there was a very 
large difference between the K statistics values for the two modelling strategies. In particu-
lar, this taxon was accurately predicted in the strategy 1 model, whereas the strategy 2 
model completely failed. 
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Fig. 5.8.5. K statistics values for the modelling strategy 1 (one model for all the species) are compared 
to those for modelling strategy 2 (a different model for each species). The overall agreement between 
the two strategies (r=0.77) indicates that some species are intrinsically more predictable than others. 
The unit slope line represents the perfect agreement between the two strategies that was observed in 5 
cases. Strategy 1 provided larger K statistics values in 50 cases (points below the unit slope line), while 
strategy 2 was more effective in 36 cases (points above the unit slope line). The outlier in the lower-
right corner represents Fragilaria capucina var. vaucheriae, which was accurately predicted only by 
strategy 1. 

The only likely reason for this difference is that information about species interactions 
(or association) that is implicitly embedded in the strategy 1 model (that predicts all the 
species simultaneously and has as a much more complex structure) may play a role in cases 
in which the relationships between environmental variables and species distribution are so 
weak that the latter cannot be reliably modelled by a single species model (strategy 2). The 
alternate hypothesis, of course, is that strategy 2 modelling failed by chance, and a more ef-
fective model could have been obtained by further iterating the ANN training procedure. 

Another comparison between the two modelling strategies for species subset B was car-
ried out on the basis of the results of Principal Coordinate Analyses performed on Jaccard’s 
dissimilarity matrices. In particular, the first Principal Coordinates for the predicted species 
composition of the samples in the test set were plotted against the first Principal Coordi-
nates for the observed species composition of the same samples for both strategies (Fig. 
5.8.6). The agreement between Principal Coordinates obtained from analyses involving ob-
served and predicted diatom assemblage compositions is a proxy for the agreement between 
predicted and observed dissimilarity matrices, which, in turn, is a proxy for the resemblance 
of the predicted and observed assemblage composition. 

The best strategy, according to this comparison criterion, was the one based on single 
species model, i.e. strategy 2 (see Fig. 5.8.6b). The rank correlation between Principal Co-
ordinates based on predicted and observed data (Spearman’s r=0.726) was higher than in 
that case of strategy 1 (Spearman’s r=0.812), but the difference between the two values of 
the correlation coefficient was not significant (n=148, p=0.070). 
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Fig. 5.8.6. Principal Coordinates obtained from Jaccard’s dissimilarity matrices computed from pre-
dicted data were compared to those obtained from observed data according to the same procedure. Re-
sults based on modelling strategy 1, i.e. one model for all the species is shown on the left (a), whereas 
those based on strategy 2 (a separate model for each species) are shown on the right (b). 

These results are not in agreement with those based on the K statistics, which but in both 
cases the differences between the two modeling strategies were minor. In fact, the Mantel 
test allowed rejecting the null hypothesis of independence between the dissimilarity matri-
ces based on predicted and observed data in the case of both modeling strategies. 

Discussion and conclusions 

This study provided further evidence about the problems in modelling rare species, as well 
as ubiquitous, if any, that has been pointed out elsewhere (e.g. Scardi et. al, this book). In 
fact, even in the case of diatom assemblages such species significantly affect the perform-
ance of ANN models. 

In particular, very high percentages of correctly classified instances (CCI) are often a 
false indication of model accuracy. As CCI only take into account the number of cases in 
which the model predictions match observed data, they are strongly affected by the relative 
frequency of presence and absence records. Therefore they are biased indicators of model 
accuracy when dealing with rare or very common species and other approaches, like the 
one based on K statistics, should be selected. 

Excluding rare species from a data set may cause a significant reduction in the number 
of species, and the ability to correctly represent the complex relationships among samples 
might be seriously impaired. However, if properly selected, even a subset of taxa that repre-
sent a significant part of the assemblage structure may preserve enough information. Our 
results showed that 91 taxa out of 930, selected in a way that excluded the less frequent 
ones, were able to provide an adequate representation of the differences in the diatom as-
semblage structure among many different sites. 

Most of the taxa that were well predicted by the model are found in eutrophic waters: 
Cocconeis placentula var. placentula, Fistulifera saprophila, Gomphonema minutum, Gy-
rosigma attenuatum, Mayamaea atomus var. permitis, Navicula tripunctata according to 
van Dam et al. (1994), Diatoma vulgaris according to Hoffman (1994), Navicula antonii, 
N. capitatoradiata according to Lange-Bertalot (2001). No taxa characterizing oligotrophic 
waters were well predicted by the model. 

The most accurately predicted species, independently of the model, was Navicula tri-
puncata, which is considered as good indicator specie for eutrophic waters with average to 
high electrolyte content (Lange-Bertalot 2001). Navicula antonii is also a species consid-
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ered as good indicator for waters that are often affected by anthropic sources of perturba-
tion (Lange-Bertalot 2001). The high efficiency of the ANN models in predicting the 
above-mentioned species on the basis of physical and chemical variables, including pollu-
tion indicators, supports the hypotheses about an environmental control of their distribu-
tion.

Taxa as Fistulifera saprophila and Mayamaea atomus var. permitis have particular eco-
logical characteristics. In fact, they are found in heavily polluted water and are  meso-
polysaprobic taxa according to van Dam et al. (1994). As environmental variables that are 
linked to pollution parameters play an important role among the models inputs, it is not 
surprising that the models are able to accurately predict the distribution of these species. 

Nitzschia cf. tropica is an invasive species (Coste and Ector 2000) and its presence is as-
sociated to a well-defined area within the studied region, i.e. the upper part of the mid and 
high Loire basin. The accuracy of the ANN models in predicting its presence is probably 
related to the use of geographical predictive variables (e.g. elevation, distance form source) 
that allow recognizing sites within the boundaries of the area where this species can be 
found.

In practice, however, in many cases the model had not enough information to learn the 
taxa response to environmental variables. This is probably the case especially for pollution 
sensitive taxa, since the sampling network of this study is adapted to the assessment of pol-
lution in the Loire-Bretagne basin. The database is composed only by 7% of very good bio-
logical quality samples according to the diatom index SPI (Specific Pollution sensitivity In-
dex; Coste 1982). 

A similar case is the one involving Bacillaria paradoxa, Nitzschia clausii, N. filiformis. 
These taxa, which are uncommon in the Mid and High Loire basin, indicate brackish waters 
(van Dam et al. 1994) even if their abundance in the assemblage is low. Despite this re-
markable stenoecy, ANN models are not able to accurately predict their presence in such 
particular environments because of the relative rarity of the occurrence of brackish waters 
(less than 1% of the samples were collected in waters with conductivity above 1000 

S/cm).
On the other hand, several very common taxa were not well predicted. For instance, this 

was the case of Achnanthidium minutissimum, which is absent in only 9% of the samples 
and is considered as pollution sensitive specie in the diatom indices (Coste 1982, Descy 
1979, Leclercq and Maquet 1987a, b). However, this taxon has also an opportunistic behav-
iour (Ivorra 2000) and develops rapidly in the biofilm when clear space is available (Sa-
bater 2000) and when inter-specific competition has decreased (Rodríguez 1994). As biotic 
factors play a relevant role in controlling the abundance of this taxon, its behaviour is rather 
difficult to predict. Moreover, the lack of an adequate number of records in which this spe-
cies is absent made it even more difficult for the ANN models to predict its distribution. 

In fact, the results improved by reducing the number of taxa and by defining subsets of 
species that accounted for a very large part of the variation within the ecological data set. 
Starting from this reduced set of suitable data, we obtained very similar results with two 
different modeling strategies. However, strategy 1 (a single model predicting all the spe-
cies) can be considered theoretically more effective, because it can take profit of the infor-
mation that is provided by the inter-specific relationships, even though they are not known. 

An alternate approach to the reduction of the number of taxa to be modelled might in-
volve the reduction of the taxonomic resolution to the genus level. Some diatom indices 
based on information at the genus level were developed for bioindication (Coste and Ay-
phassorho 1991). However, this approach is probably not the best one, and it was not in-
cluded in our tests. In fact, pollution tolerant and pollution sensitive taxa often occured in 
the same genus in the dataset of the Loire basin. 
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An interesting perspective for reducing the complexity of diatom databases could be in 
the use of life forms that have been described in several papers (e.g. Hoagland et al. 1982), 
but the applicability of this approach in biomonitoring studies is still to be evaluated. 

In conclusion, our results showed that accurate models for the prediction of diatom as-
semblages on the basis of environmental variables can be developed using ANNs. Unfortu-
nately, these models are not able to predict all the species, because in many cases the in-
formation about the relationships that link species distribution to environmental variables or 
to other species distribution (e.g. via competitive interactions) is not sufficient. Rare species 
and almost ubiquitous ones belong to this category, and the only way to improve the accu-
racy of the predictions about their distribution is to develop models ad hoc, using very fo-
cused data sets. To reduce the complexity of the data, dividing the dataset of the Loire basin 
in sub-datasets by use of an adequate typology should be tested. Then developing models 
for each sub-dataset corresponding to precise river types should improve the efficiency of 
the prediction of diatom species abundances. 

However, even a subset of species can be very effective in reproducing the ecological 
relationships among sampling sites and in pointing out sites in which the diatom assem-
blage structure is impaired because of various types of disturbance. Models that are able to 
predict the main features of the expected diatom assemblages will effectively support the 
detection of ecological perturbations and the evaluation of the environmental quality in 
freshwater ecosystems, and ANNs will certainly play a major role in this scenario. 



6 Development of community assessment 
techniques

Editor: Park YS*

6.1 Introduction 

Data mining is currently an important topic in ecosystem management. It is necessary to 
characterize the sequence of community dynamics in spatial and/or temporal terms if the 
ecosystem needs to be assessed after the impacts of natural or anthropogenic stresses. The 
structures of their assemblages are potentially determined by many environmental factors 
acting at different spatial and time scales (Stevenson 1997, Snyder et al. 2002). However, it 
is not an easy task to find patterns embedded in community datasets because ecological 
communities consist of a large number of species and many sampling sites at different 
times and/or locations. Each species shows spatial-temporal dynamics with different occur-
rences and abundances.  

Several methods exist for quickly producing and visualizing simple summaries of data 
sets (Tukey 1977, Kaski 1997). Several graphical means have been proposed for visualizing 
high-dimensional data items directly by letting each dimension govern some aspect of the 
visualization and then integrating the results into one figure (du Toit et al. 1986, Jain and 
Dubes 1988). These methods can be used to visualize any kind of high dimensional data 
vector: either the data items themselves or vectors formed from descriptors of the data set 
(Tukey 1977). Techniques for dimension reduction including classification methods, pro-
jection methods, and visualization methods were well documented by Kaski (1997) and 
Carreira-Perpinan (2001). 

In this chapter, we present 5 papers concerning techniques for exploratory data analysis 
of aquatic communities:  
1. Evaluation of relevant species in communities: development of structuring indices for 

the classification of communities using a self-organizing map by Park et al. They pro-
pose a computational method to determine the most relevant variables for structuring 
the organization of the self-organising map. It provides a quantitative evaluation of the 
relative importance of input variables in the map patterns. 

2. Projection pursuit with robust indices for the analysis of ecological data by Werner et 
al. The projection pursuit was implemented in the software "Autonomous Projection 
Mapping" (APM). This software enables the user to analyse data interactively and also 
facilitates largely autonomous data analysis without user interaction. The software is 
available from the authors. 

3. A framework for computer-based data analysis and visualisation by pattern recognition 
by O’Connor and Walley. They describe a framework for decision support systems 
based on data analysis and visualisation by pattern recognition. A software system, 
River Pollution Diagnostic System (RPDS) and its generic form (MIR-max) are used 
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as concrete examples to demonstrate how the framework can be used in practice. The 
software is available from the authors. 

4. A rule-based vs. a set-covering implementation of the knowledge system LIMPACT 
and its significance for maintenance and discovery of ecological knowledge by Neu-
mann and Baumeister. They present a new model-based implementation of the existing 
knowledge system LIMPACT, and estimate the pesticide contamination of small low-
land streams within agricultural catchment areas using LIMPACT. The system is 
available over the internet via http://www.limpact.de. 

5. Predicting macro-fauna community types from environmental variables by means of 
support vector machines by Akkermans et al. They applied SVM to the prediction of 
macroinvertebrate community types and compared its performance with that of multi-
nomial logistic regression. Additionally they provide details of SVM algorithms and 
bibliography for further reading. 



6 Development of community assessment techniques      369 

6.2 Evaluation of relevant species in communities: 
development of structuring indices for the classification 
of communities using a self-organizing map*

Park YS, Gevrey M†, Lek S, Giraudel JL 

Introduction

Ecological data are mostly multivariate, characterizing complexity and nonlinearity and 
some information in the data is only interpretable indirectly (Jongman et al. 1995). Eco-
logical interpretation and especially the explanation of the structure of several descriptors 
(i.e., multivariate data) can be carried out following two approaches: direct or indirect com-
parison schemes (Legendre and Legendre 1998) which refer to direct gradient analysis and 
indirect gradient analysis respectively (ter Braak 1987). The former includes principal 
component analysis (PCA) and correspondence analysis, whereas the latter includes ca-
nonical correspondence analysis, redundancy analysis, and canonical correlation analysis. 
However, these conventional multivariate methods are mainly based on the linear data ma-
trix limiting the usages due to strong distortions with nonlinear relations in the dataset 
(Kenkel and Orloci 1986, Bunn et al. 1986, Ludwig and Reynolds 1988, Legendre and 
Legendre 1998).  

Due to the nonlinearity and complexity of ecological data, nonlinear analyzing methods 
are preferred (Blayo and Demartines 1991, Lek and Guegan 2000). One of these methods is 
artificial neural networks (ANNs), which are versatile tools to extract information out of 
complex data, and which could be effectively applicable to classification and association 
(i.e., presentation with fewer space dimensions). Among ANNs, recently a self-organizing 
map (SOM) has become more and more popular in ecological studies. The SOM approxi-
mates the probability density function of the input data, and it is a method for clustering, 
visualization, and abstraction, the idea of which is to show the data set in another, more us-
able, representation (Kohonen 2001). These characteristics have been used efficiently in 
various ecological areas (Lek and Guégan 1999, 2000, Recknagel 2003): classification of 
communities (Chon et al. 1996, Park et al. 2001a, 2003a); identification of community pat-
terns (Brosse et al. 2001), water quality assessments (Walley et al. 2000, Aguilera et al. 
2001), and prediction of population and community structure (Céréghino et al. 2001, Obach 
et al. 2001). Recently Park et al. (2003a) proposed a method to integrate the relationships 
between sampling sites (or clusters), biological attributes, and environmental variables in 
the SOM map. They showed the distribution gradient of each variable on the SOM map, 
presenting the importance of variables concerning communities. However, there are diffi-
culties to quantify the importance of each variable in the patterns defined by the SOM. 
Therefore, in this study we aim to develop a method to quantify the importance of each 
variable in the patterns defined in the SOM map. These quantified values can be used as an 
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index of the relative importance of the variables, and will be helpful for the interpretation of 
ecological data. 

Material and Methods 

Ecological data 

We used the vegetation dataset reported in Jongman et al. (1995). The dataset collected in 
the Dutch island of Terschelling using the Braun-Blanquet method (Batterink and Wijffels 
1983) was recorded according to the ordinal scale of van der Maarel (1979). From 80 sites, 
20 were selected with 30 species (Table 6.2.1), representative of the variation in the com-
plete set of data. Jongman et al (1995) used this extracted dataset to demonstrate the per-
formance of different kinds of ordination and cluster analysis techniques. The dataset is 
very useful to present the characteristics of multivariate analysis methods. Therefore, in this 
study we used this data matrix consisting of 20 sites reporting the abundance of 30 species. 
Species acronyms are given in Table 6.2.1 and hereinafter we will use the acronyms to sim-
plify expression. In the modelling process, abundance data were scaled between 0 and 1 in 
the range of the minimum and maximum values of each species. Furthermore, species pres-
ence and absence data were used to verify the responses of the model developed.  

Modelling procedure 

SOM algorithm The community data (presence/absence or abundance data) were used to 
classify samples through training the SOM. Formally the SOM consists of input and output 
layers connected with weight vectors (connection intensities). The array of neurons (i.e., 
computational units) in the input layer receives the input vectors, whereas the output layer 
consists of a two-dimensional network of neurons (N output neurons; 20=5 4 in this study) 
arranged on a hexagonal lattice. The best arrangement for the output layer is a hexagonal 
lattice, because it does not favour horizontal or vertical directions as much as rectangular or 
triangular arrays (Kohonen 2001). In the learning process of the SOM, when an input vec-
tor x (i.e., a species) is given through the network, each output neuron k of the network 
computes the distance between the weight vector w and the input vector x. Among all N 
output neurons, the best matching unit (BMU), which has the minimum distance between 
weight and input vectors, is the winner. For the BMU and its neighbourhood neurons, the 
weight vectors are updated by the SOM learning rules. This results in training the network 
to classify the input vectors by the weight vectors they are closest to. After the learning 
process of the SOM, we used a hierarchical cluster analysis with the Ward linkage method 
to define the cluster boundaries in the units of the SOM.  

The detailed algorithm of the SOM can be found in Kohonen (2001) for theoretical con-
siderations and Park et al. (2003a) for ecological applications. 

Species distribution planes During the learning process of the SOM, neurons that are 
topographically close in the array of output neurons activate each other to learn something 
from the same input vector. This results in a smoothing effect on the weight vectors of neu-
rons (Kohonen 2001). Thus, these weight vectors tend to approximate the probability den-
sity function of the input vector. The visualization of elements of input vectors is conven-
ient to understand the contribution of each input variable with respect to the clusters in the 
SOM (Park et al. 2003a). Therefore, to present the contribution of input variables (i.e., spe-
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cies) in cluster structures defined in the SOM, calculated values (weights) of each input 
variable (species) during the training process were visualized in each neuron of the SOM on 
a grey scale. Based on these species distribution plans, quantified indices were computed as 
explained in the following sections.

Table 6.2.1. Dataset used in the modelling process. The data were collected in the Dutch is-
land of Terschelling using Braun-Blanquet method and recorded according to the ordinal 
scale of van der Maarel (1979) (data from Jongman et al. (1995) 

Species name Sampling sites 
Acronym 1 2 3 4 5 6 7 8 9 1

0
1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

Achillea millefolium Achmil 1 3 0 0 2 2 2 0 0 4 0 0 0 0 0 0 2 0 0 0 
Agrostis stolonifera Agrsto 0 0 4 8 0 0 0 4 3 0 0 4 5 4 4 7 0 0 0 5 
Aira praecox Airpra 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 0 
Alopecurus geniculatus Alogen 0 2 7 2 0 0 0 5 3 0 0 8 5 0 0 4 0 0 0 0 
Anthoxanthum odoratum Antodo 0 0 0 0 4 3 2 0 0 4 0 0 0 0 0 0 4 0 4 0 
Bellis perennis Belper 0 3 2 2 2 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 
Brachythecium rutabulum Brarut 0 0 2 2 2 6 2 2 2 2 4 4 0 0 4 4 0 6 3 4 
Bromus hordaceus Brohor 0 4 0 3 2 0 2 0 0 4 0 0 0 0 0 0 0 0 0 0 
Calliergonella cuspidata Calcus 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 3 0 0 0 3 
Chenopodium album Chealb 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
Circium arvense Cirarv 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Eleocharis palustris Elepal 0 0 0 0 0 0 0 4 0 0 0 0 0 4 5 8 0 0 0 4 
Elymus repens Elyrep 4 4 4 4 4 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 
Empetrum nigrum Empnig 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 
Hypochaeris radicata Hyprad 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 5 0 
Juncus articulatus Junart 0 0 0 0 0 0 0 4 4 0 0 0 0 0 3 3 0 0 0 4 
Juncus bufonius Junbuf 0 0 0 0 0 0 2 0 4 0 0 4 3 0 0 0 0 0 0 0 
Leontodon autumnalis Leoaut 0 5 2 2 3 3 3 3 2 3 5 2 2 2 2 0 2 5 6 2 
Lolium perenne Lolper 7 5 6 5 2 6 6 4 2 6 7 0 0 0 0 0 0 2 0 0 
Plantago lanceolata Plalan 0 0 0 0 5 5 5 0 0 3 3 0 0 0 0 0 2 3 0 0 
Poa pratensis Poapra 4 4 5 4 2 3 4 4 4 4 4 0 2 0 0 0 1 3 0 0 
Poa trivialis Poatri 2 7 6 5 6 4 5 4 5 4 0 4 9 0 0 2 0 0 0 0 
Potentilla palustris Potpal 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 
Ranunculus flammula Ranfla 0 0 0 0 0 0 0 2 0 0 0 0 2 2 2 2 0 0 0 4 
Rumex acetosa Rumace 0 0 0 0 5 6 3 0 2 0 0 2 0 0 0 0 0 0 0 0 
Sagina procumbens Sagpro 0 0 0 5 0 0 0 2 2 0 2 4 2 0 0 0 0 0 3 0 
Salix repens Salrep 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 5 
Trifolium pratense Tripra 0 0 0 0 2 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Trifolium repens Trirep 0 5 2 1 2 5 2 2 3 6 3 3 1 6 1 0 0 2 2 0 
Vicia lathyroides Viclat 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 1 0 0 

Global structuring index (GSI) The GSI was developed to define species showing the 
strongest influences on the structure of the SOM map organization. In other words, the GSI 
is the value indicating the relative importance of each species in determining the distribu-
tion patterns of the samples in the SOM. Therefore, the index values of each species indi-
cate the relative importance of that species, and in turn the set of species showing high GSI 
can be considered as the indicator species. The GSI is calculated from the sum of the ratios 
of the distances between the weights (i.e., connection intensities) of all species in the SOM 
and the topological distance of two SOM units (Fig. 6.2.1). This results in representing dis-
tribution gradients for each species in the trained SOM. It is expressed in the equation as 
follows:
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where GSIi is a GSI value of species i, wij and wik are the connection weights of species i in 
SOM units j and k respectively, rj and rk are the coordinates of units j and k, and ||rj - rk|| is 
the topological distance between units j and k. S is the total number of SOM output units.  
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Fig. 6.2.1. The data matrix with virtual units (i.e., output units of the SOM) (a) and topo-
logical distance between virtual units (b).

Cluster structuring index (CSI) Each cluster defined in the SOM represents typical com-
munity types with a specific community composition. Therefore, the question is how to de-
fine key species in clusters considering distribution patterns of species in the SOM map. 
The values indicating the distribution patterns of species in each cluster can be considered 
to represent the importance of each species in each cluster. The idea was that a cluster de-
fined in the SOM is an assembly of neighbouring units of the SOM, and that when a species 
is specific to a certain cluster, the difference of weights between SOM units is smaller. We 
named the indicating value as the cluster structuring index. It is implemented in the equa-
tion as follows:   

CSIi jk
j 1

k 1

k 1

S wij wik

rj rk

                                         (6.2.2) 

where CSIi is a CSI value of species i, and jk = -1 if units j and k are in the same cluster and 
jk = 1 if units j and k are not in the same cluster. Other variables are defined in Eq. (6.2.1). 

The CSI of each species was calculated in different clusters.  

Results   

Presence and absence data 

First, the SOM patterned 20 presence and absence data samples according to the 
occurrence similarities of species (Fig. 6.2.2). For instance, samples 6, 7 and 10 
were grouped in the same cell (k). As shown in Table 6.2.1, these three samples 
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have similar species assemblages. In contrast, samples 2 and 20 were assigned re-
spectively to a and t cells far from each other, representing large differences in 
their species assemblages (Table 6.2.1). A hierarchical cluster analysis with the 
Ward linkage method showed 5 clusters (I-V) in the units of the SOM (Fig. 6.2.2). 
Units with similar species assemblages were grouped together in the same cluster.  

Fig. 6.2.2. Classification of samples in the SOM using presence-absence data (a) and hier-
archical clustering of the SOM units (b). The numbers in the SOM units represent the sam-
ples listed in Table 6.2.1. 

Fig. 6.2.3 shows the distribution patterns of each species in the units of the SOM and the 
corresponding GSI. Dark represents a high occurrence probability of each species in sam-
ples assigned to the units of the SOM, whereas light is low. Therefore, it represents the 
relative importance of each species in each unit (and in samples) of the map. Based on this 
distribution map, GSI values were calculated for each species mentioned as acronyms. The 
GSI values ranged from 4.82 to 33.91. Based on the distribution maps and GSI values, we 
defined 4 typical distribution patterns. 

Type A Species showing high GSI. These species have preferences in their distribution 
areas with high occurrence probabilities. For example the species Agrsto showing the 
highest GSI (33.91) displayed a strong gradient of distribution in the map. The highest 
occurrence probability of the species was >0.99 in the lower left areas of the map, 
whereas the lowest value was <0.01 in the upper right areas. Therefore, the species in 
this group strongly contribute to determining the patterns in the SOM. 
Type B Species showing low GSI. These species are limited in their distribution with 
low occurrence probability. For instance, species Chealb has the lowest GSI of 4.82. 
The highest occurrence probability was <0.279. This species was rare and particular to 
few samples. Therefore, the contribution of this species to the patterning in the SOM 
was relatively low.  
Type C Species showing an intermediate value. For example species Rumace displayed 
a mid-range GSI of 15.17. The highest occurrence probability was 0.517 in the upper 
left areas. Normally these species are observed in samples scattered over wide areas of 
the SOM map. 
Type D Species showing low GSI. Type D is distinguished from type B which also have 
a low GSI. Species in type D occur in most samples, therefore they do not play impor-
tant roles in community classifications in the SOM. For example species Brarut showed 
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a GSI of 5.86, although it displayed relatively high occurrence probabilities in most 
units of the map in the range of 0.58 - 0.86. Actually, this was observed in most samples 
as shown in Table 6.2.1.  

Fig. 6.2.3. Distribution patterns of each species in the SOM units based on the presence-
absence data. Species acronyms are given in Table 6.2.1. The values following species ac-
ronyms are the global structuring index (GSI) of the corresponding species. 

The CSI were also calculated for each species in different groups in the presence-
absence data (Table 6.2.3). In Table 6.2.3, the CSI values for each species are given in each 
cluster. The cluster numbers showing the maximum CSI for each species are given in Ro-
man numerals (I-V) defined in Fig. 6.2.2, and are marked in corresponding clusters in grey. 
The mean occurrence probabilities (i.e., mean weights) of each species in each cluster (i.e., 
mean values of weights of each species in each cluster) are also given in Table 6.2.2. The 
clusters displaying the highest occurrence probability were marked in grey, and if the clus-
ter showing the highest CSI had the lowest (or the second lowest) probability, the cluster 
was marked in dark grey to differentiate it from the others. Overall the CSI and the mean 
occurrence probability showed similar results to each other, indicating that the characteris-
tics of occurrence probabilities are well reflected in the CSI. For example, species Airpra
showed the highest CSI and highest mean occurrence probability in cluster I, Achmil in 
cluster II, Belper in cluster III, Alogen in cluster IV, and Elepal in cluster V. However, 
there were also differences in 6 species (Agrsto, Lolper, Poapra, Poatri, Rumace, Trirep,
and Brarut) marked in dark grey scale on the mean values. This was due to the method used 
for calculating the CSI.  
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Table 6.2.2. Global structuring index (GSI) and cluster structuring index (CSI) of each spe-
cies based on the presence-absence data. The CSI was calculated in different clusters (I-V) 
defined in the SOM. The clusters showing the highest CSI are indicated in bold underlined. 
Mean connection intensities were calculated from the SOM weights in each cluster, and 
clusters defined by the SCI were indicated in bold underlined. If the mean weight is not 
maximum in the cluster showing the highest CSI, the clusters are indicated in grey. Based 
on this indication, a + or - sign was attributed to each species. Species acronyms are given 
in Table 6.2.1. 

CSI Connection intensity Species GSI 
I II III IV V 

Clus-
ter* Sign

I II III IV V 
Achmil 27.78 25.24 28.48 19.75 24.88 24.17 II + 0.54 0.94 0.49 0.04 0.06 
Agrsto 33.91 38.38 25.06 23.20 35.23 27.55 I - 0.12 0.09 0.55 0.94 0.78 
Airpra 11.34 15.45 5.40 7.97 7.64 7.47 I + 0.72 0.13 0.03 0.05 0.38 
Alogen 30.20 31.18 16.66 27.56 32.99 20.35 IV + 0.06 0.16 0.71 0.83 0.23 
Antodo 23.01 24.65 19.90 15.58 22.05 16.70 I + 0.70 0.85 0.28 0.04 0.20 
Belper 18.21 14.54 12.44 20.76 13.36 18.63 III + 0.34 0.59 0.73 0.19 0.04 
Brarut 5.86 3.94 2.74 4.88 3.91 3.50 III - 0.64 0.64 0.58 0.75 0.60 
Brohor 19.48 15.01 18.78 18.51 14.42 17.81 II + 0.27 0.75 0.62 0.11 0.01 
Calcus 17.77 13.50 9.29 11.92 11.97 30.71 V + 0.08 0.01 0.02 0.21 0.76
Chealb 4.82 3.68 2.25 2.93 8.67 2.84 IV + 0.01 0.00 0.07 0.56 0.04 
Cirarv 5.30 4.14 2.38 6.75 3.70 3.58 III + 0.04 0.12 0.65 0.33 0.02 
Elepal 25.00 21.01 14.92 18.30 21.07 36.38 V + 0.09 0.01 0.05 0.45 0.81
Elyrep 25.79 20.75 15.40 34.60 16.15 21.78 III + 0.15 0.52 0.88 0.28 0.03 
Empnig 6.84 7.32 3.17 4.61 4.34 5.22 I + 0.58 0.10 0.04 0.07 0.48 
Hyprad 16.40 23.70 7.80 11.36 11.05 10.33 I + 0.70 0.13 0.02 0.04 0.30 
Junart 19.99 19.50 13.57 13.67 18.55 22.18 V + 0.09 0.04 0.25 0.65 0.77
Junbuf 13.85 11.37 6.76 9.93 15.88 12.06 IV + 0.19 0.35 0.52 0.78 0.07 
Leoaut 6.97 4.92 3.23 3.97 4.18 4.90 I + 0.71 0.48 0.68 0.60 0.37 
Lolper 28.91 22.84 21.64 24.56 22.34 36.89 V - 0.64 0.94 0.87 0.40 0.08
Plalan 27.96 33.38 22.28 19.02 24.98 21.12 I + 0.75 0.75 0.23 0.02 0.11 
Poapra 27.92 21.68 18.17 20.56 20.30 39.99 V - 0.77 0.97 0.89 0.55 0.12
Poatri 29.83 29.43 17.49 26.11 20.71 32.03 V - 0.34 0.89 0.97 0.81 0.16
Potpal 11.85 9.16 6.35 8.07 8.35 19.27 V + 0.09 0.01 0.03 0.28 0.80
Ranfla 27.03 24.35 17.15 20.49 26.41 34.90 V + 0.09 0.01 0.07 0.62 0.82
Rumace 15.17 11.77 13.22 12.31 9.83 17.38 V - 0.38 0.93 0.73 0.47 0.05
Sagpro 20.86 14.66 13.66 13.71 23.17 13.85 IV + 0.29 0.05 0.42 0.73 0.15 
Salrep 14.78 15.23 7.96 11.72 10.41 14.83 I + 0.61 0.10 0.03 0.09 0.71 
Tripra 14.42 11.78 17.37 9.78 11.24 11.34 II + 0.36 0.89 0.34 0.02 0.01 
Trirep 11.31 8.88 5.72 9.42 8.05 14.02 V - 0.50 0.68 0.84 0.75 0.14
Viclat 13.48 19.68 8.05 9.33 10.47 8.59 I + 0.71 0.40 0.08 0.01 0.13 
* Cluster showing the highest CSI value for each species. 

The stronger the gradient in the distribution patterns of each species in the SOM units, 
the higher the CSI obtained. Therefore, a high CSI represents a high association with a cor-
responding cluster without considering positive or negative effects on the cluster. A posi-
tive effect means high occurrence frequency (or high density) of species in a cluster, 
whereas a negative one represents low frequency (or low density) of species in a cluster. To 
determine the direction of the effects, we used the differences between CSI and mean prob-
ability marked in dark grey, representing negative effects. Based on the differences, the CSI 
was assigned positive or negative signs as shown in Table 6.2.2. Therefore, a high occur-
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rence frequency for most species played a positive role in determining the cluster in which 
they showed the highest CSI, whereas the low occurrence frequency of 6 species showing 
negative signs were important in determining the characteristics of their clusters. Finally, 
based on the CSI, the relevant species were summarized in each cluster as shown in Table 
6.2.3. The species showing negative effects in clusters are indicated on a grey scale.

Fig. 6.2.4. Classification of samples in the SOM using abundance data (a) and hierarchical 
clustering of the units of the SOM (b). The numbers in the SOM units represent the sam-
ples listed in Table 6.2.1. 

Abundance data 

The SOM patterned the samples of abundance data according to the density differences of 
species (Fig. 6.2.4). Based on hierarchical cluster analysis, we found 4 clusters (I-IV) in the 
units of the SOM. The distribution patterns of samples on the map were similar to those of 
the presence-absence data (Fig. 6.2.2). For example, samples 2, 3, and 4 were classified in 
the same cluster (clusters III from both abundance and presence-absence data), samples 8, 
12, 13 in cluster IV from presence-absence data and in cluster II from abundance data, and 
samples 14, 15, 16, and 20 were in cluster V from presence-absence data and in cluster I 
from abundance data. Samples “5, 6, 7, and 10” and samples “11, 17, 18, and 19” were 
grouped in the same cluster IV from abundance data, and they could be made into sub-
groups based on the cluster analysis dendrogram (Fig. 6.2.4b). Similarly they were grouped 
in cluster II and cluster I from presence-absence data.  

Fig. 6.2.5 shows the distribution patterns of species on the map using weight vectors of 
the SOM. Dark represents a high occurrence probability of each species in samples as-
signed to the units of the SOM, whereas light is low. The weight vectors were calculated 
during the learning process of the SOM. The weight vector is considered as the approxima-
tion of the probability density function. Therefore, the higher the weight value, the higher 
the probability of a species being observed in a cluster (or sample) (with high density for 
abundance data).  

The GSI was calculated for each species based on the SOM weight ranging from 5.80 to 
25.23 (Fig. 6.2.5, Table 6.2.4). The results were very similar to those of the presence-
absence data (Fig. 6.2.2, Table 6.2.2) and their typical patterns are summarized as follows:  

Type A Species showing a high GSI. They are abundant species and have preferences in 
their distribution areas like those of presence-absence data. For example, species Lolper
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showed the highest GSI with 25.23 in abundance data. This species was abundant in 
samples 1-11 and 18 which were allocated in the upper areas of the SOM map, while ab-
sent in other samples. Therefore, the species played an important role in determining 
distribution patterns of samples in the map during the learning process of the SOM and 
their importance was effectively reflected in the GSI.   

Table 6.2.3. Relevant species in each cluster based on the cluster structuring index (CSI) in 
the presence-absence data. Species showing negative effects in clusters are indicated in 
grey. Species acronyms are given in Table 6.2.1. 

Table 6.2.4. Global structuring index (GSI) and cluster structuring index (CSI) of each spe-
cies based on the abundance data (see Table 6.2.2 for detailed legend). 

Species GSI CSI Cluster* Sign Connection intensity 
I II III IV I II III IV 

Achmil 16.83 13.43 20.23 15.23 19.61 II - 0.08 0.06 0.39 0.39 
Agrsto 24.56 17.78 31.07 17.12 36.66 IV - 0.58 0.68 0.35 0.10
Airpra 10.70 8.18 9.66 7.04 10.65 IV + 0.18 0.03 0.02 0.19
Alogen 24.19 16.96 35.32 16.31 29.67 II + 0.17 0.63 0.38 0.07 
Antodo 20.24 13.11 25.36 12.88 30.21 IV + 0.21 0.05 0.26 0.53
Belper 17.41 16.03 16.22 23.28 16.43 III + 0.03 0.12 0.53 0.26 
Brarut 8.30 5.20 6.44 8.55 8.30 III - 0.55 0.51 0.41 0.59 
Brohor 16.78 14.62 16.03 22.25 15.11 III + 0.01 0.08 0.47 0.23 
Calcus 14.90 25.42 12.54 10.43 13.34 I + 0.46 0.10 0.00 0.04 
Chealb 6.57 4.15 11.93 4.19 6.44 II + 0.02 0.17 0.02 0.01 
Cirarv 5.80 4.26 4.59 7.77 5.15 III + 0.00 0.06 0.16 0.02 
Elepal 19.38 26.46 17.94 15.53 19.89 I + 0.54 0.25 0.01 0.05 
Elyrep 21.66 19.11 17.14 27.52 18.77 III + 0.02 0.27 0.61 0.18 
Empnig 5.97 4.57 5.39 3.93 5.94 IV + 0.10 0.02 0.01 0.10
Hyprad 11.99 8.42 11.37 8.02 13.55 IV + 0.18 0.03 0.03 0.24
Junart 18.19 18.22 20.94 14.73 22.38 IV - 0.45 0.38 0.07 0.05
Junbuf 15.83 11.86 26.10 9.71 14.70 II + 0.05 0.43 0.16 0.09 
Leoaut 8.76 6.18 8.26 5.16 10.70 IV + 0.54 0.54 0.60 0.69
Lolper 25.23 29.98 24.31 26.58 24.11 I - 0.08 0.35 0.79 0.60 
Plalan 22.94 15.57 26.55 15.19 35.50 IV + 0.11 0.04 0.26 0.58
Poapra 23.98 31.98 20.65 23.53 21.27 I - 0.14 0.52 0.84 0.64 
Poatri 23.83 27.12 23.17 20.38 21.53 I - 0.14 0.65 0.73 0.38 
Potpal 10.99 17.46 9.19 7.94 10.10 I + 0.33 0.09 0.00 0.03 
Ranfla 19.50 23.94 20.22 16.72 21.77 I + 0.53 0.33 0.02 0.05 
Rumace 10.74 11.78 8.68 6.70 10.50 I - 0.02 0.17 0.20 0.26 
Sagpro 15.07 11.26 22.17 8.82 13.07 II + 0.14 0.48 0.24 0.19 
Salrep 11.13 12.31 11.37 8.60 10.52 I + 0.28 0.03 0.02 0.18 
Tripra 9.46 6.86 9.82 6.85 12.94 IV + 0.01 0.01 0.12 0.21
Trirep 9.04 9.54 7.31 6.85 8.05 I - 0.37 0.47 0.56 0.54 
Viclat 9.42 5.87 10.15 5.82 14.89 IV + 0.04 0.01 0.06 0.23

* Cluster showing the highest CSI value for each species 

Cluster Species 
I Agrsto, Airpra, Antodo, Empnig, Hyprad, Leoaut, Plalan, Salrep, Viclat 
II Achmil, Brohor, Tripra 
III Belper, Cirarv, Elyrep, Brarut 
IV Alogen, Chealb, Junbuf, Sagpro 
V Elepal, Junart, Lolper, Poapra, Poatri, Potpal, Ranfla, Rumace, Trirep, Calcus 
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Type B Species showing low GSI. The rare species belong to type B. For instance, spe-
cies Chealb showed a GSI of 6.57. This species was observed only in sample 13 as-
signed to lower left areas of the map with a very low density.  
Type C Species showing intermediate values of GSI. For example, the mid-range GSI 
of 10.74 for species Rumace. The maximum occurrence probability of this species was 
about 0.81. Normally these species are observed in samples scattered over wide areas of 
the SOM map. 
Type D Species showing low GSI. These species are distinguished from the species in 
type B which also have low GSI. Species in type D occur in most samples. Therefore, 
the effects of these species are not important in patterning communities. For example, 
species Brarut showed a very low GSI of 8.30, being observed in most samples.  

Table 6.2.5. Relevant species in each cluster based on the CSI in the abundance data. Spe-
cies showing negative effects in clusters are indicated in grey. Species acronyms are given 
in Table 6.2.1. 

Cluster Species 
I Elepal, Lolper, Poapra, Poatri, Potpal, Ranfla, Rumace, Salrep, Trirep, Calcus 
II Achmil, Alogen, Chealb, Junbuf, Sagpro 
III Belper, Brohor, Cirarv, Elyrep, Brarut 
IV Agrsto, Airpra, Antodo, Empnig, Hyprad, Junart, Leoaut, Plalan, Tripra, Viclat 

The CSI values were calculated in different clusters for each species (Table 6.2.4). The 
mean occurrence probabilities of each species calculated in the SOM learning process are 
also presented in Table 6.2.4. Overall, the results are similar to those obtained with pres-
ence-absence data (Table 6.2.2). For instance, species Elyrep characterized cluster III, 
showing a high CSI of 27.52. Species Argsto showed the highest CSI in cluster IV followed 
by cluster II. It indicated an importance of this species in cluster IV, but this species was 
present in low density in cluster IV, but abundant in cluster II. Therefore, the low density of 
this species was important in determining cluster IV, whereas the high density in cluster II 
had little importance. Some species such as Chealb and Leoaut showed low CSI values, 
representing relatively less importance in determining classifications in the SOM. Relevant 
species in each cluster are summarized in Table 6.2.5 and species showing negative effects 
in clusters are indicated in grey. 

Discussion and conclusion 

In this study we developed two indices (GSI and CSI) to indicate the relative importance of 
species in determining classifications in the SOM. The GSI can be used as an index for the 
selection of the most relevant species in classifications in the SOM, and the CSI can also be 
a useful indicator to determine the key species assemblages in each cluster defined in the 
SOM. To evaluate the feasibility of species selection based on the GSI, we selected 18 rele-
vant species from the dataset and calculated the correlation coefficient between species 
richness in samples in the original dataset and in the reduced dataset with only the 18 se-
lected species. The correlation coefficient was 0.81, representing a fairly good selection of 
species. Therefore, it showed the possibility of the GSI to be used as an indicator to reduce 
the data matrix size without losing too much information. The structuring index was ap-
plied to benthic diatoms, characterizing typical species assemblages in different ecoregions 
(Tison et al. 2004).  



6 Development of community assessment techniques      379 

0.00

0.29

0.58
Achmil, 16.83

0.01

0.39

0.76
Agrsto, 24.56

0.00

0.18

0.36Airpra, 10.70

0.01

0.40

0.78Alogen, 24.19

0.00

0.31

0.62Antodo, 20.24

0.01

0.35

0.69Belper, 17.41

0.00

0.29

0.59Brohor, 16.78

0.00

0.11

0.23Chealb, 6.57

0.00

0.10

0.20Cirarv, 5.80

0.00

0.34

0.67Elepal, 19.38

0.00

0.38

0.75
Elyrep, 21.66

0.00

0.10

0.20
Empnig, 5.97

0.00

0.2

0.40Hyprad, 11.99

0.00

0.30

0.60Junart, 18.19

0.01

0.28

0.56
Junbuf, 15.83

0.45

0.62

0.79Leoaut, 8.76

0.02

0.43

0.84
Lolper, 25.23

0.00

0.39

0.78
Plalan, 22.94

0.05

0.47

0.89
Poapra, 23.98

0.06

0.43

0.81
Poatri, 23.83

0.00

0.21

0.42Potpal, 10.99

0.00

0.33

0.67Ranfla, 19.50

0.01

0.21

0.42
Rumace, 10.74

0.06

0.33

0.60
Sagpro, 15.07

0.00

0.18

0.36
Salrep, 11.13

0.00

0.18

0.36
Tripra, 9.46

0.34

0.50

0.66
Trirep, 9.04

0.00

0.19

0.37Viclat, 9.42

0.34

0.52

0.70
Brarut, 8.30

0.00

0.31

0.62
Calcus, 14.90

0.00

0.29

0.58
Achmil, 16.83

0.01

0.39

0.76
Agrsto, 24.56

0.00

0.18

0.36Airpra, 10.70

0.01

0.40

0.78Alogen, 24.19

0.00

0.31

0.62Antodo, 20.24

0.01

0.35

0.69Belper, 17.41

0.00

0.29

0.59Brohor, 16.78

0.00

0.11

0.23Chealb, 6.57

0.00

0.10

0.20Cirarv, 5.80

0.00

0.34

0.67Elepal, 19.38

0.00

0.38

0.75
Elyrep, 21.66

0.00

0.10

0.20
Empnig, 5.97

0.00

0.2

0.40Hyprad, 11.99

0.00

0.30

0.60Junart, 18.19

0.01

0.28

0.56
Junbuf, 15.83

0.45

0.62

0.79Leoaut, 8.76

0.02

0.43

0.84
Lolper, 25.23

0.00

0.39

0.78
Plalan, 22.94

0.05

0.47

0.89
Poapra, 23.98

0.06

0.43

0.81
Poatri, 23.83

0.00

0.21

0.42Potpal, 10.99

0.00

0.33

0.67Ranfla, 19.50

0.01

0.21

0.42
Rumace, 10.74

0.06

0.33

0.60
Sagpro, 15.07

0.00

0.18

0.36
Salrep, 11.13

0.00

0.18

0.36
Tripra, 9.46

0.34

0.50

0.66
Trirep, 9.04

0.00

0.19

0.37Viclat, 9.42

0.34

0.52

0.70
Brarut, 8.30

0.00

0.31

0.62
Calcus, 14.90

Fig. 6.2.5. Distribution patterns of each species in the SOM units based on the abundance 
data. Species acronyms are given in Table 6.2.1. The values following species acronyms are 
the global structuring index (GSI) of the corresponding species. 

The calculation procedures of GSI and CSI are based on the weight values of the SOM. 
Due to the characteristics of the mathematical formula of the GSI, the GSI values are de-
pendent on two properties: distribution patterns of species (limited areas or wide areas) and 
degree of occurrence probabilities of each species (high occurrence (or abundance) species 
or rare species). Therefore, the GSI and CSI show high values when species are observed in 
limited samples assigned to the same areas in the SOM with high occurrence (or abun-
dance). They have very low values when observed in many samples in different clusters or 
in low densities (or occurrence frequencies).  

The indices are highly dependent on the training resolution of the SOM. In this study we 
assumed that the SOM was smoothly trained in topology. Another weakness of these indi-
ces comes from the use of the distance between units of the SOM in the computation, be-
cause the SOM does not give strict gradient distribution. Most species show strong gradient 
distributions from one area to other areas in the SOM map. In the simple dataset, the gradi-
ent can be found easily. However, when the complexity of the dataset increases, the distri-
bution gradients of species decrease in the map. Therefore, it is also important to choose 
optimum SOM map size. Another disadvantage of the CSI is its sensitivity to the cluster 
choice as in general analysis. Actually, the number of clusters is chosen by the user, al-
though several different statistical techniques (i.e., U-matrix, hierarchical cluster analysis, 
k-means, etc.) can be used. Different defining boundaries in the SOM units can lead to dif-
ferent results of the CSI. Therefore, prior to calculation of the CSI, clusters should be de-
fined properly based on ecological knowledge. In further studies, the weaknesses of the in-
dices should be investigated before practical application to ecological issues. 
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In conclusion, the global structuring index (GSI) is useful in determining the importance 
of each species for structuring the SOM map, and the cluster structuring index (CSI) de-
fines the most relevant species in each cluster defined in the SOM. The indices worked well 
in both abundance and presence-absence data; therefore, they can be used in most ecologi-
cal studies. Finally the methods proposed here will be useful to quantitatively evaluate the 
importance of input variables in SOM patterns. 
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6.3 Projection pursuit with robust indices for the analysis 
of ecological data*

Werner H†, Rohatsch T, Pöppel G, Obach M, Wagner R 

Introduction 

The aim of projection pursuit (PP) (Friedman and Tukey 1974, Huber 1985, Jones and Sib-
son 1987) is to find low (1-3)-dimensional projections showing the most interesting views 
of high-dimensional data. To reach this goal, many projections are calculated and rated by 
an objective function, a so called projection index I. Dependent on I, this method is able to 
characterise the high-dimensional data from different points of view (Fig. 6.3.1). 

To find good projections it is necessary to maximize I. There are several ways to do this: 
Gradient Algorithms (Friedman 1987), Simulated Annealing (Montanari and Guglielmi 
1996) or Genetic Algorithms (Crawford 1991, Guo et al. 2000).   

The application of PP has some advantages over other methods. Although the projec-
tions are linear, the index may be non-linear, facilitating the detection of non-linear connec-
tions in the data. By choosing different and suitable indices, PP is able to provide various 
views of the data. One important feature of the index functions is robustness; this enables 
PP to be insensitive to outliers. Projection vectors from previous analysis can be used to 
view and analyse another data set from the same viewpoint.  

The multivariate analysis method PP can be used to classify data, comparable to super-
vised and unsupervised learning in artificial neural networks, but with reproducible results. 

Fig. 6.3.1. How projection pursuit works: two-dimensional projections are calculated from 
high-dimensional data, and rated by an index function. Dependent on this resulting index-
value, a specific projection can be determined, which shows an "interesting" view of the 
data set. 

In ecological applications we are faced with the problem of small data sets of high di-
mensionality, where statistical confidence is not achievable. Even in this situation PP is a 
suitable tool for data analysis, combining computational power (fast production and pre-
selection of two-dimensional views of the data) with human intuition (detection of regulari-
ties and dependencies in two-dimensional diagrams). PP can generate hypotheses on the 
underlying data and provide insight regarding experimental design for hypotheses testing.  

                                                          
* We thank Dr. Hans-Heinrich Schmidt, Limnologische Fluss-Station Schlitz, for providing 

environmental data.
† Correspondence: heinrich.werner@uni-kassel.de.  
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Methods 

Generally PP indices can be divided into subgroups. Two essential subgroups are 
1. Exploratory Projection Pursuit (EPP) (Friedman, 1987) Indices: This kind of PP-indices 

are characterised by their exploratory characteristics. The aim of these indices is to find 
structured projections without former knowledge of any characteristics of the data. 

2. Projection Pursuit Discriminant Analysis (PPDA) (Posse, 1992) Indices: This group of 
PP indices aims to find projections in which data points belonging to different categories 
are most separated. This task requires knowledge of information for at least one cate-
gory for the data points to be analysed, so this kind of index is also known as a super-
vised index.  
The indices presented here can be applied to both EPP and PPDA.  

Definitions and notation 

Let X be a NxK data matrix, with has N cases and K variables (dimensions). Let A be a KxP
projection matrix. For a linear projection onto P dimension with P<< K the matrix of the 
projected data is calculated. 

Z=XA
For all the following indices let P 2. The length of all column vectors ia of A is normal-

ized to 1 and they are chosen to be orthogonal.  
Some definitions in statistics which are used in robust data analysis. 

Trim Cases in which values for a previously sorted variable are greater or less then k ex-
treme values are deleted from the dataset. k is often based on a percentage of all cases in the 
dataset. With many variables (dimensions), this kind of data manipulation may often result 
in the rejection of a large number of cases, leaving few cases for analysis. 
Winsorise To be robust against outliers, k extreme values of a previously sorted variable 
are changed: the i smallest values are changed to the (i+1) smallest value and the j greatest 
values are changed to the (j+1) greatest value. k is often based on a percentage of all cases 
in the data set. 
Rank Each variable is sorted in ascending order and the position in the sorted list is used 
rather than the actual value of the variable. This softens the effect of outliers, but preserves 
the basically structure of the data. 

Rank Nearest-Neighbour (NN) 

To detect “near-order-constellations” within the data, an index is used which concentrates 
on Nearest-Neighbour distances. The nearer the data points (with the wanted category) and 
the corresponding Nearest Neighbours lie together the higher is the resulting index value. 
To be robust against outliers and to make the calculation of the Nearest-Neighbour distance 
computationally efficient, the data are ranked (Fig. 6.3.2). It should be noted that a category 
could be specified which would make this index either a member of EPP or of PPDA. Here 
as an example, we use the category information to consider only cases with the specified 
category. Without the category information, considering all cases, this index would be a 
member of EPP. This is equally true of all the indices presented here. 
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Fig. 6.3.2. Rank NN-index. Starting from a two-dimensional projection the data is previ-
ously ranked in the x- and y-dimension (rank X,Y), then the sum of the Nearest-Neighbour 
distances is calculated as a measure for this index. 

Let Xc be the matrix of data which contains only Nc cases with the category c. This 
category c is chosen by the user. Let Sc be the matrix containing the ranked values of the 
projected data matrix Zc. dNN is the distance between a data point and its Nearest-
Neighbour, e.g. measured by the Manhattan distance. To be robust against outliers, the dNN

are sorted in ascending order and the extreme distance values (e.g. the greatest 5%) are 
trimmed. As a result, the number of cases Nc also decreases by 5%. The sum of all dNN over 
all Nc cases gives the Nearest-Neighbour distance sum. 

N c

i

NN

iNN dS
1

 (6.3.1) 

The closer all different Nearest-Neighbours, the smaller is this sum. To get a maximiz-
ing index in the interval [0,1] the following transformation is used: 

S
N

NN

cI 2  (6.3.2) 

It is straightforward to generalize this index to k-Nearest-Neighbour. 

Different Distance Distribution (DDD) 

This index uses the difference between the cumulative frequencies of point distances 
(Läuter and Pincus 1989) from previously trimmed projected data compared with a refer-
ence distribution (point distances from a trimmed projected normal distribution). This dif-
ference is measured by the maximum distances of the two distributions (e.g in analogy with 
the Kolmogorov-Smirnov test (Sachs, 1999)) (Fig. 6.3.3). 

Let T be a matrix with N rows and 2 columns, consisting of random data from a normal 
distribution. Let Z be the matrix of the projected original data. Both matrices T and Z are 
trimmed in the x- and y-dimension to be robust against outliers. The point distances can be 
calculated using any metric, here for example the Manhattan distance dM:

yyxxrrd jijijiM
),(  (6.3.3) 

The set of all point distances dP of T (respectively, Z) is given by 
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jirrrrdd jijiMp
,,   |   ),()( TT

jirrrrdd jijiMp
,,   |   ),()( ZZ  (6.3.4) 

Let F(dP(T)) (respectively, F(dP(Z))) be the empirical distribution of the point dis-
tances. The index value is the maximum distance Dmax between the two distributions of the 
point distances. 

)))(())((max(
max

ZT ddD pp
FF

DI
max

. (6.3.5) 

This index could also be easily extended to a member of PPDA. Therefore different ref-
erence distributions could be used e.g. the distances of data points with category A. Calcu-
lating the index value considering only data points with category B for the distance distribu-
tion of the actual projection, projections could be found, in which data points with category 
B are as much different in means of a different distances distribution as possible from data 
points with category A.

Fig. 6.3.3. DDD-index: starting from a two-dimensional projection, which is trimmed in the 
x- and y-dimension, the maximum difference Dmax of the distribution of this point distances 
dx,y from the distribution of point distances of a trimmed reference distribution is calculated 
as an index value. 

Separate handling of projection axes 

To be able to analyse data from different data groups and correlations between them at 
once, two different data matrixes X1, X2 could be used at the same time. X1 is then projected 
onto the x-dimension and X2 onto the y-dimension, of the two-dimensional projection. 

This has some advantages compared to the projection of the same data matrix X for 
both projection dimensions. 

simultaneous projections of different (X1, X2) preprocessed data 
X1 and X2 could consist of different kinds of data and could also have different numbers 
of dimensions 
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inter- and intra-data dependencies (e.g. structure, clusters etc. within the data of one axis 
or between the different data of the two axes) could be analysed at the same time (de-
pendent on the projection index) 

Implementation

PP with the indices presented here (NN and DDD), and some more indices and expansions, 
was implemented in the software-package "Autonomous Projection Mapping" (APM). This 
software enables the user to analyse data interactively and also facilitates a largely autono-
mous data analysis without user interaction (Fig. 6.3.4). APM was realised as a OO-
classpackage using the programming language Delphi. This provides rapid prototyping and 
enables a fast translation to a program. 

Fig. 6.3.4. Main window of the software APM (Autonomous Projection Mapping). 

Data 

Data are from the period 1982 to 1993 and are part of a long-term study of the Limnolo-
gische Fluss-Station Schlitz (Central Germany) on the small mountain stream Breitenbach, 
which was extensively described by Ringe (1974) and Cox (1990). 

Variables are the monthly abundance of adults of the caddis fly Agapetus fuscipes
(Benedetto 1975, Becker 2001) in four emergence traps along a two-km study stretch. The 
environmental parameters are monthly maxima of water temperature and discharge meas-
ured on the Breitenbach and the monthly sum of precipitation (measured at a gauging sta-
tion, 2 km distance) (Wagner et al. 2000a). 

Data were mainly standardised to zero mean and one standard deviation. With stan-
dardization it was possible to compare the standardized values on a comparable numerical 
scale independent of the original data. 
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Results and discussion 

The APM program detects and quantifies regularities, irregularities, and interconnections in 
large high-dimensional data sets to a high degree of certainty; it was originally designed for 
technical applications (Rohatsch et al. 2002). 

In environmental studies we are faced with similar problems, but the amount of data 
available tends to be small. Our goal is to show that APM can also be useful in ecological 
research. With a small number of high dimensional vectors we are always in danger that 
regularities we might detect are accidental and cannot be generalized. We may still use this 
tool to find regularities to generate hypotheses, although at a much lower level of certainty. 
We can also test hypotheses with APM projections and new test-data. The real power of 
this tool lies in the interaction of a fast calculation of two-dimensional projections with the 
human observer who can see and select the most promising results for further investigation. 
We explain this procedure with four examples.  

Example 1. Detection of outliers 

Fig. 6.3.5 is a projection of the monthly discharge maxima (x-axis) and monthly sums of A.
fuscipes (y-axis) from 1982 to 1993. A dense cloud of  data-points and two separate points 
is recognized, a typical situation to get a hint to outliers in the data set.  

The projection vectors in Fig. 6.3.5 show with respect to which of the measured pa-
rameters (months) why 1989 and 1991 behave as outliers and so we have a lead to investi-
gate how this unusual behaviour of data points arises. Typical reasons are measurement er-
rors, wrongly estimated values, failures or unusual climatic conditions, disturbances etc. 
Even though December, January, and February seem to have high relevance for the outliers 
(compare projection vectors), it is not true, since all examples (species abundance) are 0 in 
these months and hence do not contribute anything to the high distance to the cluster. A 
closer analysis has to focus on the remaining months, particulary those having high coeffi-
cients in the projection vectors.

Fig. 6.3.5. Projection of the monthly discharge maxima (x-axis) and monthly sums of A. 
fuscipes (y-axis) from 1982 to 1993 

In this case the outliers promote an interesting interpretation: in 1989 an extreme flood 
occurred in February and very low discharge in April (shift in x-direction). Due to low flow 

Projection vectors ( 10-2)
month x Y 
Jan 5.74 -2.11 
Feb -3.96 -0.68 
Mar 0.25 0.38 
Apr -1.38 -0.62 
May -3.98 0.15 
Jun 3.19 0.22 
Jul 3.52 -2.38 
Aug -2.71 -2.01 
Sep -1.32 -4.71 
Oct -0.15 -4.19 
Nov -1.25 -6.55 
Dec 0.59 -1.45 
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the emergence period of A. fuscipes in 1989 and 1991 was extraordinarily long with large 
specimen numbers from May to September resulting in a y-shift downwards because of the 
negative coefficients. 

Fig. 6.3.6. Projection of the A. fuscipes abundance data from the four  traps just from April 
to November 

Example 2. Dimension reduction 

Fig. 6.3.6 shows a projection of the A. fuscipes abundance data from the four traps just from 
April to November. We observe a simple linear relation between the different data vectors. 
This implies a strong intercorrelation between the measured parameters. The data points 
appear approximately linear, slope 1.9. Hence the combination y-1.9x of the two projection 
vectors is orthogonal to the data set: 

         
month Apr May Jun Jul Aug Sep Oct Nov 

y-1.9 x 6.16 3.058 -5.93 6.521 -0.121 1.399 -0.898 -18.258 

This is very useful in respect to a dimension reduction on the data set. The correlation 
was established mainly without August, September, and October. Since November had 
hardly any values greater than 0, it was almost without effect on the position of any data 
point and thus was ignored. The remaining months, April, May, June, and July, almost ex-
clusively determined the position of the points - a substantial dimension reduction. 

This result is biologically sound but not surprising, since these are the months of maxi-
mum emergence in which similarities and dissimilarities between different environmental 
conditions become greatest. Nevertheless, the method can lead to obvious or concealed in-
terconnections between the data and to substantial dimension reduction. 

Example 3. Detection of functional dependencies 

The projection in Fig. 6.3.7 shows a clear sigmoid functional (S-shape, saturation curve) 
dependency between the temperature (x-axis) and the population (y-axis). The two projec-
tion vectors show which linear combination of temperature presents the input to this sig-

Projection vectors (  10-2)
month x y 

Apr -2.90 0.65 
Mai -1.02 1.12 
Jun 5.70 4.90 
Jul -4.19 -1.44 
Aug -0.41 -0.90 
Sep 0.39 2.14 
Oct 2.52 3.89 
Nov 5.82 -7.20 
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moid function and which linear combination of abundance values is produced by this func-
tion.

Maximum summer water temperature increased from 1989 to 1991, discharge de-
creased. This combination of environmental factors provided optimal conditions for the de-
velopment of large numbers of A. fuscipes in any trap. [remplacer virgules par des points 
dans la fig 367 

Fig. 6.3.7. Temperature (x-axis) and the population (y-axis) of A. fuscipes from 1982 to 
1993

Fig. 6.3.8. Precipitation (x-axis) and the population (y-axis) of A. fuscipes from 1982 to 
1993

Example 4. Clusters and functional dependencies 

Fig. 6.3.8 shows a less clear functional dependency compared with Fig. 6.3.7. However, the 
x-axis (precipitation) shows a clear subdivision into separate intervals each with a particular 
characteristic. The first and the third interval contain dense clusters, hence in this precipita-
tion range the abundance is almost constant. Intervals four and five are singletons and as 

Projection vectors (  10-2)
month x Y 
Jan -0,37 1,17 
Feb 0,19 1,14 
Mar -4,48 -1,92 
Apr -0,54 -0,59 
May 1,52 -2,88 
Jun 0,94 -2,41 
Jul 1,32 -2,82 
Aug 4,68 -0,56 
Sep 1,44 -0,07 
Oct 0,43 4,47 
Nov 2,67 -7,09 
Dec 6,57 0,77 
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such are difficult to interpret. The second interval shows no clear pattern and therefore 
needs further investigation. This projection suggests that it might be sensible not to expend 
too much effort on very precise precipitation measurements, but rather only to consider 
rough ranges. 

As precipitation affects indirectly -via discharge- populations of aquatic insects, and as 
particularly in summer precipitation is not necessarily followed by increased discharge, this 
functional dependency appeared less clear than the direct effects of water temperature or 
discharge. However, the detection of the dependency precipitation – population even 
though small, was a good example for the capability of the method. 

Summary

It is common to all four examples that the number of points in the projections were far too 
small to permit any generalisation. However, we want to stress the fact that PP still pro-
duces meaningful figures, allowing users to generate sound hypotheses about the data. The 
projection vectors give hints how these hypotheses can be verified in further experiments. 
Using the same projections, every new measurement can be tested whether it fits the figure 
produced by the given data points or the underlying hypothesis. The same method com-
bined with new measurements can also serve to verify hypotheses.

Conclusion 

The APM-program based on PP is designed for the visual inspection of data in high-
dimensional spaces by constructing interesting two-dimensional projections.  APM rapidly 
computes large numbers of projections. With a given projection index, it automatically se-
lects the most interesting projections, i.e. those of the highest index values.  

The figures and the corresponding projection vectors can be inspected for the detection 
of exceptional data, clusters, and functional dependencies. Even though it was designed for, 
and has been successfully tested with, very large data sets, APM also produces valuable 
views on small data sets typical for environmental research. These views can help to gener-
ate sound hypotheses and to design experiments for their verification.  
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6.4 A framework for computer-based data analysis and 
visualisation by pattern recognition 

O’Connor MA*, Walley WJ 

Introduction 

Overview 

In a wide variety of situations, masses of data must be analysed and condensed in order to 
extract meaningful information. Computer-based methods of data analysis and visualisation 
offer a means by which such data can be used to its full potential. Research in the domain 
of river water quality monitoring led the authors, together with colleagues, to develop a 
software system for classification and diagnosis of biological samples (Walley et al. 2002). 
The software comprises a ‘training’ element – MIR-max (Walley and O’Connor 2001) - 
and a user-friendly interface for presentation and analysis of results – River Pollution Diag-
nosis System (RPDS) (O’Connor and Walley 2001). Although these systems were devel-
oped for the specific domain of biological river water quality monitoring, they are almost 
entirely data-driven, and thus it is clear that the same methods could be readily adapted to 
many other applications. It would be beneficial for researchers to define a unified frame-
work within which to approach broadly similar problems and to present and compare re-
sults.

Definitions 

Most of the terminology used when describing the proposed framework derives either from 
the original application domain (biological river water quality monitoring) or from standard 
pattern recognition terminology. The following definitions are used throughout: 

An indicator is a variable associated with the application domain. For RPDS, the indica-
tors include abundance levels of various river-dwelling macroinvertebrates (worms, 
leeches, snails, insects, etc), environmental variables such as river width, depth and the na-
ture of the substrate, severity of perceived stresses at the site, and various chemical 
measures (alkalinity, biochemical oxygen demand, ammonia, etc). Indicators may be either 
training or non-training. Training indicators are those that will be used in the initial data 
analysis, whilst non-training indicators are not used in the initial analysis. 

A sample is an instantiation of a set of indicators. For example, in RPDS each sample is 
a vector whose elements are the values of the indicators recorded for a particular river site 
on a particular date.  

An archive sample is one that was used in the initial training process; an input sample is 
one that was not used in training the system and thus has not been previously ‘seen’ by the 
system. Generally, the set of archive samples should have full data coverage for all the 

                                                          
* Correspondence: m.a.oconnor@staffs.ac.uk
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training indicators and good coverage of the non-training indicators, whilst input samples 
are only required to have full coverage of the training indicators. Non-training indicators 
may thus be defined as those for which data are not expected to be routinely available for 
any new samples. 

A cluster is a set of samples that have been grouped together because they exhibit ‘simi-
lar’ characteristics. 

A map is an output space in which clusters are arranged to indicate their relative similar-
ity (i.e. clusters that are considered similar should be positioned close together on the map 
and dissimilar ones far apart). As well as showing the relative positions of the clusters, the 
map may also be colour-coded to show the cluster values for particular indicators: such a 
map is referred to as a feature map, a visualisation technique used in SOM (Kohonen 
2001).

A template is a graphical representation of a set of indicator values for a particular sam-
ple or cluster – a bar chart that displays each sample or cluster as a pattern. The bars must 
be suitably scaled so that each template is directly comparable. A template may also be 
used to compare samples and clusters, by using two bars for each indicator, one for the 
sample and one for the cluster. 

Pattern recognition and clustering 

Modelling an expert 

A computer-based system for data analysis and interpretation should act as an expert assis-
tant to provide decision support. Thus, a good starting point when developing such a system 
is to attempt to model the mental processes of a human expert in the domain. When human 
experts process data, they use two complementary techniques: 

Plausible reasoning, based on scientific knowledge of facts and causal relationships, to-
gether (possibly) with heuristics built up from experience. 
Pattern recognition, based on the expert’s knowledge of past cases, treating the data ho-
listically and using experience of meaningful patterns previously encountered in similar 
data sets. 

The framework described in this paper is based on a pattern recognition approach. How-
ever, researchers at Staffordshire University’s Centre for Intelligent Environmental Systems 
(CIES) are also using Bayesian belief networks (BBN) (Jensen 1996) to model the plausi-
ble reasoning approach to data interpretation by experts (Trigg et al. 2000, Walley et al. 
2002). It is hoped that in future these two approaches, pattern recognition and plausible rea-
soning, may be integrated into a single framework, to provide a model for a ‘true’ expert 
system. 

Automated pattern recognition 

A computer-based pattern recognition process takes a new data sample (e.g. for RPDS, a set 
of abundance data for creatures found at a river site) and attempts to find the ‘best match’ 
between it and one member of a set of clusters derived from analysis of previously known 
data. The sample is then assigned to this best matching cluster. The set of clusters is derived 
from a large set of previously known data (the training data), which is partitioned in such a 
way that samples representing very similar conditions are clustered together. The average 
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values of samples associated with each cluster can be regarded as exemplar patterns; thus, 
each cluster represents a particular type or class of sample. The process is summarized in 
Fig. 6.4.1, where each sample is represented as a template; no information is provided on 
the meaning of each sample (i.e. no labels are given for the axes) so as to focus on the pat-
terns produced by the data, and to emphasise the generic nature of the process. When a new 
sample is assigned to a cluster, previous knowledge of the samples used to construct that 
cluster can be used to draw inferences about the new sample. Thus, the system uses its ex-
perience of past cases to assess new cases, a process analogous to the way human experts 
often work. 

This clustering of the data samples can be achieved by a wide variety of methods, per-
haps the best-known being the partitional methods k-means clustering (MacQueen 1965) 
and ISODATA (Hall and Ball 1965); for environmental applications, hierarchical methods 
such as TWINSPAN (Hill 1979b) are also popular. However, the authors do not recom-
mend the use of hierarchical techniques because they do not classify the data holistically, 
but place greater emphasis on specific features, thus making them more vulnerable to incor-
rect classification. 

Most clustering techniques require that distance or dissimilarity between samples can be 
measured using a well-defined metric (for example, Euclidean distance in multidimensional 
data space or, commonly in ecological applications, Bray-Curtis distance). For RPDS, a 
novel information-theoretic technique developed at CIES, called Mutual Information 
Maximisation (MI-max), is used. MI-max is particularly suited to discrete categorical data 
such as the abundance level data available from Environment Agency biological surveys; it 
does not assume normality on the distribution of the data, and does not require a distance 
metric (which would be difficult to define rigorously since each data sample consists of 
values for a variety of environmental, chemical and biological indicators). However, the 
most appropriate clustering technique for any dataset is dependent upon the nature of the 
data and the application domain. 

In most cases (when using a partitional method), the user will specify the number of 
clusters, based on the number of archive samples available and the application domain. The 
number of clusters can then be revised by ‘trial and error’. It may be possible to determine a 
theoretical optimum number of clusters from an initial statistical analysis of the data set, al-
though a user-defined number of clusters (adapted and refined by experience) should suf-
fice. For RPDS, approximately 6000 river site archive samples are grouped into 250 clus-
ters, giving an average of 24 samples per cluster: this is felt to be sufficient to enable 
‘meaningful’ clusters that can be regarded as exemplar patterns for differing types of sam-
ple, whilst not ‘over-generalising’. 

Data visualisation 

Effective dissemination of information 

An essential feature of any data analysis and decision support system is its ability to convey 
complex multivariate data in a way that is meaningful and informative to a wide variety of 
possible end-users. Software should be as user-friendly as possible, so that all potential in-
terested parties can use it effectively: not just computer specialists, data analysts or statisti-
cians, but also managers, politicians, or those involved in public relations, for example. The 
use of templates (as in Fig. 6.4.1) is a simple way in which individual samples or clusters 
can be compared and contrasted. Clustering the large initial set of data makes it more man-
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ageable whilst retaining, or even enhancing, its information value. However, with a large 
number of clusters (as will be the case in many practical applications) it is still difficult to 
gain an informative overview of the entire data set: it would be impractical, for example, to 
use a large number of templates simultaneously. 

Fig. 6.4.1. The clustering process. A set of samples, here represented as templates (bar 
charts representing the value of each indicator, rescaled so as to be comparable) is arranged 
into groups – clusters – according to some measure of similarity. Labels on the x- and y-
axes have been omitted in order to focus on the patterns represented by the data. The resul-
tant clusters can then be characterized by the average values of each indicator, to provide a 
cluster template or exemplar pattern. 

Feature maps 

The clusters can be arranged in an output space in such a way that those clusters that are 
most similar are positioned close together, whilst those that are very different are far apart. 
For RPDS, this ordering in output space was achieved by a novel algorithm developed by 
the authors, Regression Maximisation (R-max), which together with MI-max forms the in-
tegrated pattern recognition and visualisation package MIR-max (Walley and O’Connor 
2001). R-Max requires that some measure of distance or dissimilarity can be defined be-
tween samples or clusters: however, this is not a restriction in practice (indeed, the concept 
of a map is itself dependent on distance between clusters carrying some meaning) because 
the ordering process is regarded as secondary to the clustering and so only an approxima-
tion is required. Alternative techniques for producing a visualisation of the data in a 2-d 
output space include ordination methods such as PCA (Hotelling 1933), Sammon mapping 
(Sammon Jr. 1969) or a variety of multidimensional scaling (MDS) methods (Kruskal and 
Wish 1978). However, these techniques plot points in a continuous output space, rather 
than feature maps based on the lattice structures used by MIR-max and SOM, making them 
less intuitive to interpret and possibly not so useful in practice. The discrete nature of the 
MIR-max output space produces a powerful and practical visual overview and user-friendly 
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‘point and click’ capabilities for data exploration using a computer interface. There is, how-
ever, no theoretical restriction to rigid lattice structures within the framework. The idea of 
maps based on discrete lattice structures derives from the output of the SOM (Kohonen 
2001), an unsupervised neural network; indeed, SOM was originally used in the early 
stages of development of RPDS (Walley et al. 2000). SOM or related techniques, such as 
generative topographic mapping (GTM) (Bishop et al. 1996), can also be used for both 
clustering and visualisation. However, the fact that these techniques combine the clustering 
and ordering processes into one process is likely to lead to sub-optimal clustering. MIR-
max separates these processes, as it is the authors’ belief that the clustering is of prime im-
portance (O’Connor and Walley 2000). The map produced by the chosen ordering tech-
nique provides an overview of the relationships between the clusters. By colour-coding the 
map, it can be used to represent the average values of any particular indicator. Such feature 
maps can then be compared and contrasted to gain information about the relationships 
between different indicators. 

Fig. 6.4.2. RPDS feature maps for (a) Heptageniidae and (b) Total Oxidized Ni-
trogen 

Fig. 6.4.2 shows two feature maps from RPDS, one for the abundance level of the may-
fly family Heptageniidae (a training indicator) and one for the Total Oxidized Nitrogen 
(TON) level (a non-training indicator). Each cluster is represented by a circle, colour-coded 
(converted to grey-scale for this paper) to show the average value of the indicator for sam-
ples within the cluster. The inverse relationship between these two indicators is clearly 
shown by the feature maps. The map shown in Fig. 6.4.2 is based on a discrete hexagonal 
lattice structure, with a limited number of possible locations for the clusters to occupy. The 
shape and size of the output lattice can be varied according to the user’s needs or the par-
ticular application area, provided there are at least as many possible output locations as 
there are clusters. For example, using a map with more output locations allows for greater 
disaggregation, so that the differences between clusters can be more accurately represented.  

The maps are also useful for analysing individual input samples. When an input sample 
is presented to the system, the cluster to which that sample should be allocated can be high-
lighted. However, the designated cluster may not represent a perfect match. The ‘next best’ 
clusters are implied by the relative locations of clusters on the map (i.e. neighbouring or 
nearby clusters represent similar conditions), but can also be made explicit by colour-
coding the map to show a gradation of possible clusters to which the input sample may be-
long.
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Other visualisation techniques 

Templates, as discussed in section 4.1, are incorporated in the framework. Whilst feature 
maps facilitate visualisation of indicator values in all clusters, templates are an ideal means 
by which to view the underlying pattern within individual clusters, and to compare the pat-
terns with particular samples. The user can select a subset of indicators (in any order) to use 
as a template, and can also produce text reports and a variety of charts and graphs to present 
the data in more detail, although the exact format of such reports is dependent on the appli-
cation domain. The generalised user interface – based on that developed for RPDS – incor-
porates a number of overlapping tabbed panels, such as a panel for displaying templates and 
a panel for displaying text reports, that can be ‘user-defined’ to show more specifically ap-
plication-dependent information, e.g. in RPDS one panel is used to display the location of 
river sample sites on a map of England and Wales. Thus, the system is flexible enough to 
be adapted to a wide variety of applications. 

Fig. 6.4.3. Summary of data analysis and visualisation framework 

The framework 

The framework is summarised in Fig. 6.4.3. Each of the main components – pre-processing, 
clustering, ordering, and visualisation – is described below. Each step is illustrated by ref-
erence to the corresponding component in a prototype generic pattern recognition system, 
MIR-max, developed by the authors, based on the discrete information-theoretic clustering 
(MI-max) and ordering (R-max) algorithms discussed previously. The MIR-max interface 
and visualisation features are based on those used in the RPDS software. 

Data pre-processing 

It is unlikely that ‘raw’ data will be in a form suitable for analysis; for example, the units of 
each indicator may not be comparable, data may consist of textual category information 
(e.g. ‘small’, ‘medium’, ‘large’), or data may be continuous when discrete data is required. 
Some pre-processing of the raw data is almost inevitable. Often the data will need to be re-
scaled and/or normalised so that each indicator is directly comparable, or so that a similar-
ity metric can be defined in the sample space. Continuous data may need to be discretised, 
for example if the discrete information-theoretic clustering technique MI-max is to be used. 

For MIR-max, there are two stages of pre-processing. First the data (having been vali-
dated) must be stored in a standard format. MIR-max accepts delimited text files (for ex-
ample, comma-separated values format) with all indicator values stored numerically that 
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can be read and edited using either a standard text editor or a spreadsheet. The user speci-
fies the precise form of the data (Fig. 6.4.4a). Secondly, because MIR-max uses a clustering 
process based on discrete information theory, the data is discretised by definition of cate-
gory bounds for each indicator (Fig. 6.4.4b). This second stage also allows the user to spec-
ify whether each indicator is to be ‘training’ or ‘non-training’, and to define the units of 
measurement for each indicator. 

Fig. 6.4.4. MIR-max pre-processing: (a) selection of standard file format and (b) definition 
of category bounds 

Clustering and ordering 

As discussed above, a number of possible clustering methods can be used; the choice will 
largely be dependent on the nature of the data under consideration. In most cases, it will be 
necessary to first define the number of clusters to be used. 

Similarly, the specific ordering procedure to be used is not defined. An output space 
will first need to be defined. In the case of, for example, PCA, this is a continuous space. 
However, a discrete output space based on a regular lattice structure (such as would be used 
in SOM or MIR-max, for example) provides advantages in that it is easy to visualise and 
interpret, and enables easy functional user interaction via a ‘point and click’ interface. 

The clustering and ordering could also be combined in a single process such as SOM or 
GTM, but this is not recommended by the authors because it is likely to result in sub-
optimal clustering. In the case of RPDS, the clustering (classification) process was consid-
ered more important, whilst ordering provided a useful and important form of visualisation 
but was considered to be of secondary importance. By separating the two processes priority 
can be given accordingly. The separation of the two processes also allows for easier evalua-
tion of results: for example, there is no clear measure of ‘quality’ for SOM output, whilst 
most dedicated clustering techniques are designed to optimise some objective function (in 
the case of MI-max, the mutual information between indicator values and cluster member-
ship is optimised). The generic MIR-max software thus does not support a combined clus-
tering and ordering procedure; however this is included in the theoretical framework for 
completeness. 
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Fig. 6.4.5. MIR-max analysis: (a) clustering; (b) definition of output space; (c) ordering 

Both clustering and ordering are simple processes using the MIR-max software, with 
much of the technical detail hidden from the end-user. Clustering (using the MI-max algo-
rithm) requires the user first to define the number of output clusters (Fig. 6.4.5a); ordering 
(using the R-max algorithm) first requires definition of an output space (Fig. 6.4.5b,c). All 
the processes in MIR-max produce output files in standard format ready to be used as input 
to the visualisation component; these files can also be viewed and edited easily using a 
spreadsheet if further detailed analysis is required. 

Fig. 6.4.6. MIR-max data visualisation interface 

Visualisation 

An essential part of any computer-based decision support system is its ability to present the 
complex data in a meaningful way, so that it can be readily and effectively used by the va-
riety of personnel involved in the decision-making process – e.g. scientists, managers, and 
politicians. Effective dissemination of complex information requires suitable data visualisa-
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tion techniques – such as the feature maps and templates described above – and a user-
friendly interface. 

The MIR-max system provides a generic interface for visualisation of clustered and or-
dered data, using feature maps and templates together with textual reports and easy data ac-
cess. The interface is based on that developed for RPDS, but is necessarily simplified in or-
der to cope with as wide a variety of data as possible (for example, MIR-max has been used 
to analyse macroinvertebrate and fish communities, forestry data, chemical data, and even 
for optical character recognition). However, to maximise the utility of the software, it will 
normally be useful to define a more application-specific interface. 

Fig. 6.4.7. Allocation of a MIR-max input sample 

Fig. 6.4.6 shows the main interface for presentation of results in MIR-max. At the left of 
the screen is a feature map; the choice of which indicator to display is made using the drop-
down list beneath the map. The Copy button enables the user to view more than one map at 
the same time (in order to make comparisons) using independent windows for each feature 
map under consideration. At the right of the screen are a number of overlapping tabbed 
function panels – Template, Report, Archive Samples, Input Samples, Print and About MIR-
max. In Fig. 6.4.6, the Template panel is selected, showing a template for a chosen cluster 
and archive sample. Clicking the colour-coded circle on the feature map chooses the clus-
ter, whilst archive samples (from the original data file) and input samples (loaded from a 
file in standard format) are selected using the corresponding function panels. In the case of 
input samples, a graded colour scheme represents the degree to which a sample fits within 
each cluster (based on mutual information, but currently displayed on a simple ‘best’ to 
‘worst’ scale; in future, an objective scale, e.g. a percentage for ‘goodness of fit’, will be 
utilised) (Fig. 6.4.7). The Report panel provides a text summary of information regarding 
any cluster. 

The user-friendly RPDS interface (Fig. 6.4.8) is considered a key part of the success of 
the system. The main visualisation features are the same as those provided by MIR-max 
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(although with some increased functionality), but additional features such as graphs of spe-
cific indicator values and a map of site locations (Fig. 6.4.9) are also provided. A detailed 
description of the functions and features of RPDS is given by Walley et al. (2002). 

Conclusions 

A generic framework for decision support systems, based on data analysis and 
visualisation by pattern recognition, is beneficial for a wide range of possible eco-
logical applications, where a large amount of multi-dimensional data needs to be 
analysed and understood. The framework described is currently supported by gen-
eral-purpose data analysis software (MIR-max) and has been demonstrated in a 
full application (RPDS). A generic framework introduces increased potential for 
data sharing, and – if accepted as a ‘standard’ methodology - provides a basis for 
enhanced dissemination of information by using accepted and well-understood 
visualisation and analysis techniques. There is sufficient flexibility within the 
framework to allow for a wide variety of specific pattern recognition (clustering) 
and ordination techniques, but also unifies these by providing a common software 
interface for visualisation and interpretation, thus allowing direct comparison of 
outputs produced by different techniques.  

Fig. 6.4.8. Main RPDS interface, with feature map and template 

The need for advanced visualisation methods to aid data interpretation is 
clear, but currently most analysis is performed on an ‘ad hoc’ basis requiring spe-
cialised knowledge and/or software for each individual scenario. It is hoped that 
the adoption of a common framework will further the acceptance of computer-
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based techniques for analysis and visualisation of ecological data, and allow for 
quicker development and a common basis for presentation of results. RPDS and 
its generic form (MIR-max) have successfully demonstrated the framework in 
practice, although it is acknowledged that a truly generic system (i.e. one that in-
corporates as wide a variety of clustering/classification and ordina-
tion/visualisation methods as possible) is yet to be developed. Additionally, the 
current framework regards each sample as independent, in that there is no spatial 
or temporal reasoning involved. It is also intended to extend the framework to in-
corporate not only pattern recognition processes, but also those based on plausible 
reasoning, to produce a ‘true’ expert system modelling both aspects of human ex-
pert intelligence. It is clear that such a system would have considerable potential 
for use in the interpretation and visualisation of multivariate ecological data. 

Fig. 6.4.9. RPDS interface with map of site locations 



6 Development of community assessment techniques      401 

6.5 A rule-based vs. a set-covering implementation of the 
knowledge system LIMPACT and its significance for 
maintenance and discovery of ecological knowledge*

Neumann M†, Baumeister J

Introduction 

Small streams collectively add up to an enormous length on the landscape level, so that the 
conservation and protection of their aquatic community should be a major concern. In 
catchment areas with agricultural activities, these streams are subject to various stressors. 
During heavy rainfall, runoff from agricultural fields may introduce soil, nutrients, and pes-
ticides and increases discharge (Cooper 1993, Neumann and Dudgeon 2002). It has been 
shown that the impact of pesticides is an important parameter of influence for the aquatic 
fauna (Liess and Schulz 1999, Schulz and Liess 1999). No regular monitoring systems have 
been established for these agricultural non-point sources of pesticides. Because of its short-
term character (Kreuger 1995), only rainfall event-controlled sampling methods can reflect 
such transient pesticide contamination (Liess et al. 1999), which makes its detection via 
chemical analysis costly. 

In this field the use of a biological indicator system brings a number of benefits. The 
main advantage is its easy, cost-efficient application. When used to monitor toxic contami-
nation, it additionally indicates the ecotoxicological effect of the contaminant. A biological 
indicator system also provides information on the long-term effects of contamination, 
whereas information from each chemical measurement applies only to the time the meas-
urement was taken. 

There is a wide range of biological indicator systems to evaluate water-quality parame-
ters. In Great Britain RIVPACS (Wright et al. 1998) predicts the macroinvertebrate fauna to 
be expected at a site in the absence of environmental stress and can be used to evaluate the 
present fauna. In the Netherlands, a similar approach is used for STOWA (Peeters et al. 
1994). In Scotland, the integrated evaluation system SERCON (Boon et al. 1998) and in 
USA the Rapid Bioassessment Protocols (Resh et al. 1995) were developed. In Germany, 
the saprobic index is well established to evaluate the biodegradable organic pollution in 
running waters (Friedrich 1990). Systems to monitor heavy metals (Wachs 1998) and acidi-
fication (Brakke et al. 1994) have been developed. However, no biological indicator system 
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has yet estimated the pesticide contamination of small streams via benthic macroinverte-
brate indicators. 

To fill this gap we developed a biological indicator system that estimates the pesticide 
contamination of small streams. In order to consider the ecological complexity and the un-
certain knowledge in this domain, we implemented a diagnostic knowledge system. The 
advantages are that knowledge systems utilize uncertain expert knowledge and ideally 
come to the same solution as would the expert. The user has full control over the knowl-
edge system, can scrutinize the solution, and interactively change the question trail. The da-
tabase and the development of the rule-based knowledge system LIMPACT (from limnol-
ogy and impact) was presented in (Neumann et al. 2002a, b). 

Here, we present a new implementation of the knowledge base using a set-covering ap-
proach. The new implementation was motivated by the complex maintainability of the rule 
base of the former implementation. Thus, it was difficult to extend the knowledge base by 
rules for new taxa in conjunction with an appropriate scoring of these rules. In contrast to 
the rule-based approach, set-covering models are intended to minimize the knowledge ac-
quisition costs, since models can be built and extended incrementally in a simple manner. 
In this paper a performance comparison of the former rule-based and a new set-covering 
implementation, based on the classification accuracy, the complexity of the knowledge 
base, and knowledge acquisition costs, is presented. Furthermore, with the new set-
covering approach we have been able to extract ecological knowledge about the common 
appearance of the macroinvertebrate biocoenosis in small, pesticide contaminated streams. 

The knowledge system LIMPACT 

We developed the knowledge system LIMPACT using the shell-kit D3 
(http://www.d3web.de), which is applicable for diagnostic tasks, provides a web-based user 
interface (d3web) and offers a visual knowledge acquisition environment for a wide range 
of knowledge types (Puppe 1998, Puppe et al. 2001). The diagnoses of LIMPACT estimate 
the pesticide contamination of small streams. They represent a calculated annual toxic sum 
(for details on types of pesticides see Neumann et al. 2002a) without any specification of 
the chemical agents. Therefore, the vital diagnoses of LIMPACT are four classes of pesti-
cide contamination named: Not Detected (ND), Low (L), Moderate (M) and High (H) pes-
ticide contamination. The required input parameters (observations) of LIMPACT are abun-
dance data for aquatic macroinvertebrate taxa in a stream. We established four time frames 
for which information about abundance is requested. The time frames are T1 
(March/April), T2 (May/June), T3 (July/August), and T4 (September/October). LIMPACT 
allows abundance values to be entered for these four periods of the year for the 39 taxa 
named in Table 6.5.1. Additionally, LIMPACT interprets the increasing or decreasing 
abundance dynamics of each taxon. 

We differentiate between positive indicator (PI) taxa, which indicate contamination by 
high abundance values and positive abundance dynamics, and negative indicator (NI) taxa, 
which exclude contamination and indicate none or low contamination by high abundance 
values and positive abundance dynamics. 

Besides abundance data, LIMPACT evaluates 9 basic water-quality and morphological 
parameters, such as stream size or conductivity of the water, to characterise a given stream. 
For simplification, these parameters are abstracted to qualitative values. These abstractions 
are used for determining the type of stream (for details see Neumann et al., 2002a), because 
LIMPACT only contains knowledge applicable to small lowland streams within agricul-
tural catchments and cannot make a distinction between pesticides and other types of im-
pact. Hence streams affected by any of the latter factors are excluded to ensure that the im-
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pact of pesticide is the main stressor to the aquatic macroinvertebrate fauna. At this stage, 
such interfering factors include industrial waste impact, severe organic contamination, and 
extreme chloride or pH values. Additionally, no highland or large streams are considered.  

Table 6.5.1. The 39 indicator taxa of the knowledge system LIMPACT and the type of in-
dicator (N = negative; P = positive indicator). For the covering relations, taxa with more 
than 30% appearance in the considered class are marked and for the exclusions, taxa which 
activated more than 10% of the sum of the rest of the classes are marked. 

Covering relations Exclusions 
Order Taxon 

Type of 
indica-

tor
ND L M H Not 

ND
Not
L

Not M Not H 

Turbellaria Dugesia gonocephala N X X      X 
Oligochaeta Erpobdella octoculata P X X X X     

Glossiphonia complanata N X X X X     
Glossiphonia heteroclita P X  X X     
Tubificidae P X X X X X    
other Oligochaeta N X       X 

Gastropoda Pisidium sp. N X X X X    X 
Potamopyrgus antipodarum P    X X    
Radix ovata P X X X X     

Amphipoda Gammarus pulex P X X X X     
Isopoda Asellus aquaticus N X X X    X  
Plecoptera Nemoura cinerea N        X 
Coleoptera Dytiscidae N X       X 

Agabus sp. N       X  
Platambus maculatus N         
Elmis sp. N  X X      
Haliplus sp. N         
Helodes sp. N X X X    X X 

Diptera Ceratopogonidae P   X X     
Chironomidae "white" N X  X X    X 
Chironomidae "red" N X X X X   X X 
Limoniidae N  X X     X 
Ptychopteridae N        X 
Simuliidae N X X X     X 
Tipulidae N      X   
Other Diptera N X       X 

Ephemeroptera Baetis vernus N   X     X 
Baetis sp. N   X      
Ephemera danica N        X 

Megaloptera Sialis lutaria N  X X     X 
Trichoptera Hydropsyche angustipennis N         

Anabolia nervosa N   X      
Chaetopteryx villosa N X X      X 
Halesus radiatus/digitatus P         
Ironoquia dubia P X        
Limnephilus lunatus N      X   
Limnephilus extricatus N      X   
Limnephilus rhombicus N         
Plectrocnemia conspersa N         

The potential application of LIMPACT is for annual monitoring of streams and would 
reduce costly chemical analysis to the mandatory cases. Furthermore, it could be used to 
evaluate the success of risk mitigation strategies in the catchment designed to reduce the 
impact of pesticides. The system is available over the internet via http://www.limpact.de.
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Methods of knowledge engineering 

Ontological knowledge about diagnoses, parameters, and abstractions was used when we 
implemented the two versions (rule-based and set-covering) of the diagnostic knowledge. 
In general, diagnostic knowledge states relations between diagnoses and observations and 
describes how to obtain a diagnosis for a given set of observed parameters. For the acquisi-
tion of diagnostic knowledge we have to consider the following aspects and requirements. 

As mentioned in Puppe (1998), developing diagnostic knowledge systems is still a time- 
and cost-intensive task. A variety of knowledge representations have been designed and 
evaluated to build diagnostic systems effectively, but practical maintenance of such systems 
is still a difficult issue. In general, we can emphasize the following requirements for a suc-
cessful knowledge engineering project: 

Understandability of the knowledge representation: The representation is easily and 
quickly understood by the domain specialist (expert). This property enables a quick ini-
tiation of the development project. 
Incremental development characteristics: For a rapid development cycle it is helpful to 
start with extremely simple knowledge, which can be extended incrementally to increase 
the diagnostic quality.  
Maintainability of the implemented knowledge: The implemented knowledge base needs 
to be manageable even if the size of the system increases. 
Explanation facilities: Furthermore, the representation should allow for the generation of 
comprehensive explanations to scrutinise the resulting diagnoses. 

In the following we present the methods of the two knowledge representations we used 
for developing two versions of the LIMPACT knowledge system. We also compare their 
characteristics with respect to their maintainability and reasoning accuracy.  

The former rule-based approach 

For the first development of the LIMPACT system we applied a heuristic rule-based for-
malism called diagnostic scores (Puppe 2000) and implemented the rules with the shell-kit 
D3. Here heuristic classification is based on rules of the following kind:  

IF observation OBSi then give diagnosis D the score Z 

The observations OBSi were clearly defined as the abundances of taxa, whereas the di-
agnoses are the graded amount of pesticide contamination in the stream, i.e. Not Detected
(ND), Low (L), Moderate (M) and High (H). The domain expert estimated certain scores 
(negative or positive) to characterise types of stream contamination on the basis of given 
abundance data or combinations of them. D3 provides a fixed range of seven positive 
(P1=+5% to P7 =+100%) and seven negative (N1=-5% to N7 -100%) scores, which has 
been proven to be useful in various previous applications of D3. Reasoning with scores is 
easy and understandable for the expert: Given a true condition, the corresponding rule fires 
and adds the stated score to the specified diagnosis. The sum of two equal categories is ag-
gregated to the next higher category (e.g. P3+P3=P4). A diagnosis about the pesticide con-
tamination is established (confirmed), if the aggregation of the given scores exceeds the 
category P5. 

For a detailed description of the development and evaluation of the rule-based version of 
LIMPACT we refer to Neumann et al. (2002a, b). The system has been operational since 
February 2001 and can be used via the web (http://www.limpact.de). 
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The new set-covering approach 

It has been shown that model-based representations are more appropriate for developing 
maintainable and explanatory knowledge systems (David et al. 1993). For the development 
of a model-based approach of LIMPACT we applied set-covering models, which allow for 
an incremental development of diagnostic systems (Baumeister and Seipel 2002, Baumeis-
ter et al. 2003). Set-covering models describe relations like 

Diagnosis D typically covers observation OBSi.

These relations are called covering relations and we say that OBSi is covered by diagno-
sis D. As in the former rule-based implementation of LIMPACT, the diagnoses D were de-
fined by the four different contamination classes, whereas the observations OBSi are the 
abundances of taxa. 

After implementing simple covering relations for the most typical diagnosis-parameter 
relations we added weights for parameters to the model. With weights we can emphasize 
that some parameters have a more significant diagnostic importance than other parameters, 
e.g. parameters stating clear positive indicators. During a second improvement phase we 
extended the set-covering model by exclusion conditions, which contain knowledge about a 
categorical exclusion of specific contamination classes (e.g. if we did not find an increasing 
abundance of a negative indicator taxon in a highly contaminated stream). 

Reasoning with set-covering models is very simple: Given a set of observed parameters 
OBS, it uses a simple hypothesize–and–test strategy, which picks a hypothesis H (set of di-
agnoses) in the first step and tests it against the given observations in a second step. The 
test is defined by calculating a quality measure, which expresses the covering degree of the 
hypothesis H with respect to the observed findings OBS. The quality measure q of a hy-
pothesis H is defined as follows 

),(),(
),(),( exp

cov

cov

HOBSHOBS
HOBSOBSHq lunall

, (6.5.1) 

where ),( cov HOBSall is the weighted sum of all covered and observed parameters of hy-

pothesis H and ),(),( covcov HOBSHOBS all is the weighted sum of all covered and cor-
rectly observed parameters of hypothesis H. A parameter is correctly observed if the ob-
served value of the parameter corresponds to the value specified in the covering relation. 

),( exp HOBS lun sums all parameters that are observed but not covered by the hypothesis 

H. Clearly, for a given hypothesis H it holds that lunall OBSOBSOBS exp
cov . A hypothe-

sis is not considered for a given observation if one of its exclusion conditions evaluates 
true.

Besides weights and exclusion conditions, set-covering models can be extended by simi-
larity measures, complex covering relations and constrained covering relations (Baumeister 
and Seipel 2002).  
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Results 

Size and complexity 

For the implementation of LIMPACT we defined 9 variables (see Neumann et al. 2002a) 
describing the stream (i.e. structural parameters) and 39 variables representing abundances 
of different taxa. Each abundance variable can record abundances for the four defined time 
frames. Furthermore, we specified four diagnoses for the contamination classes of a stream 
as well as a diagnosis for detecting unsuitable streams. This ontological knowledge was 
augmented by diagnostic knowledge represented either by heuristic rules (former approach) 
or by set-covering relations (new approach). 

The former rule-based version of LIMPACT contains 921 diagnostic rules (see Table 
6.5.2) with scores to establish or to de–establish a diagnosis. Diagnostic rules are of the fol-
lowing kind: 

IF (Rule Condition C) THEN give diagnosis D score S. 

The complexity of these rules is moderate, which means that the rule condition mostly 
contains between two and four combined single conditions connected by Boolean operators 
(e.g. and, or, not). A single condition evaluates whether a taxon’s abundance is above a 
given threshold, i.e. a single observation. Additionally, for each rule an appropriate diagno-
sis score was defined by the expert. 

For the set-covering knowledge base, we implemented 816 simple covering relations 
(see Table 6.5.2) of the following kind: 

Diagnosis D covers the observation of taxon T with abundance A. 

We can see that these relations are simpler than the implemented rules described above. 
In contrast to the rule-base, we only consider one taxon’s abundance information, disre-
garding other taxa also covered by the same diagnosis. We also do not consider scores for 
diagnoses.

Table 6.5.2. Size of the two implemented rule-based and set-covering knowledge bases for 
each diagnosis. The left side of the table shows the complexity of the rule conditions for the 
rule-based approach in more detail. The last two columns give an overview of the size of 
the rule-based and the set-covering knowledge base. 

Rule-based knowledge base Set-covering 
knowledge base 

Number of evaluatable symptoms in rule 
condition

Contamination

1 2 3 4 5 6 7 
Total Total 

Not detected 0 113 82 39 13 3 1 251 212 
Low 0 85 75 38 7 4 1 210 202 
Moderate 1 105 75 44 5 2 2 234 206 
High 1 112 76 28 8 1 0 226 195 
Sum 3 417 311 153 38 16 11 921 815 

Table 6.5.2 gives the complexities of the implemented knowledge in more detail. 
Whereas the last column shows the number of set-covering relations for each contamination 
class, we extended the presentation for the rule-based version. Thus, we depict the overall 
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number of diagnostic rules besides the number of covering relations, and display more pre-
cisely the number of rules with 1 to 7 single conditions in the first columns of the table. 
Rules with 2-4 conditions dominate the rule-based version. 

Knowledge acquisition costs 

Comparing the size of the two knowledge bases, Table 6.5.2 shows that the number of im-
plemented knowledge elements is comparable. The size of the set-covering knowledge base 
is even a little bit smaller. These characteristics are illustrated by the fact that the expert re-
quired about six weeks to implement the rule-based version of LIMPACT versus two 
weeks for implementing the set-covering counterpart.

Table 6.5.3. Result of the classification of 146 investigations per stream and year using the 
rule-based (RB) and set-covering (SC) implementation of LIMPACT. The measured real 
contamination is given according to the four classes and compared with the percentage of 
cases classified by LIMPACT into the four classes plus not classified. Correct classifica-
tions are indicated by bold values. The number of cases per contamination class is given in 
parentheses.  

Classification result (%) 
Not detected Low Moderate High Not classified 

Real
contamination 

RB SC RB SC RB SC RB SC RB SC
Not detected 90.4 96.2 0 0 1.9 0 0 0 7.7 3.8

(52) (47) (50) (-) (-) (1) (-) (-) (-) (4) (2)
Low 16.7 0 80.0 93.3 0 6.7 0 0 3.3 0

(30) (5) (-) (24) (28) (-) (2) (-) (-) (1) (-)
Moderate 2.5 0 0 2.5 72.5 87.5 7.5 0 17.5 10

(40) (1) (-) (-) (1) (29) (35) (3) (-) (7) (-)
High 0 0 0 4.2 0 12.5 87.5 79.1 12.5 4.2

(24) (-) (-) (-) (1) (-) (3) (21) (19) (3) (1)

Classification results 

The classification result of both rule-based and set-covering implementation was calculated 
with the same cases that were used to develop the system. This was necessary because no 
independently obtained stream investigations, including macroinvertebrate abundance data 
and chemical pesticide measurements, were available. 

A detailed evaluation is presented by Neumann et al. (2002b) for the rule-based (RB in 
Table 6.5.3) implementation. For RB Table 6.5.3 shows that the correct diagnosis of the 
146 cases is established by LIMPACT in 72.5 to 90.4% of the cases, with better results for 
uncontaminated sites. The evaluation showed a very good classification result. Most errors 
occur between ND and Low and on the other hand between Moderate and High contamina-
tion. A high percentage of cases were not classified. Because of our conservative approach, 
LIMPACT established no diagnosis instead of a wrong one for cases with insufficient data 
availability. Possible reasons for classification errors and not classified cases can be related 
to uncertainty in the sampling and identification methods and the number of sampling dates 
within a year. The more data the user provides, the more rules can be activated. Conse-
quently, the chance of a correct classification increases. 

For the set-covering (SC in Table 6.5.3) implementation Table 6.5.3 gives the classifica-
tion result for the same 146 cases as for the rule-based approach. The correct diagnosis is 
found in 79.1 to 96.2 cases, which is a better classification result than for the rule-based 
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implementation. Only the highly contaminated cases show a decline in classification result 
and at the same time an increase in wrong classifications. Additional errors occur between 
the Low and Moderate contamination classes.  

Explanatory characteristics 

The two implementations differ not only in the way the knowledge is represented but also 
in the way new knowledge can be extracted and discovered from the knowledge bases. For 
the rule-based implementation the domain expert found it difficult to gain any new insights. 
The explanatory characteristics are complex because the knowledge is represented in small 
pieces (rules) and is weighted with different scores. In the following, we give only four 
rules as example: 

IF Agabus at T2 in [2; 9] THEN Contamination High P3 
IF Agabus at T2 > 9 THEN Contamination High N4 
IF Anabolia at T1 in [0; 80] THEN Contamination High P2 
IF Anabolia at T1 > 80 THEN Contamination High N3 

The different scores to establish (here: P2 and P3) or to de-establish (here: N3 and N4) a 
diagnosis (here: High) make it difficult to obtain a general overview. To extract from the 
rule-based knowledge base how the aquatic community of an average stream with e.g. High 
pesticide contamination appears, the domain expert has to interpret the rule for and against 
the High diagnosis and has to interpret the different scores. 

The set-covering implementation has a better explanatory characteristic, because of its 
more straightforward design. In the following, we give only two covering relations as ex-
ample: 

Contamination High: Agabus at T2 in [2; 9] 
    Anabolia at T1 in [0; 80] 

Each covering relation represents a characteristic of the considered contamination class 
(here High). The domain expert simply looks at all covering relations of one specific diag-
nosis and gains an overview. The same is true for exclusion conditions. They represent 
those characteristics that are not the case for the considered contamination class. 

Discovery of ecological knowledge 

Using the set-covering implementation we were able to discover the common macroinver-
tebrate community of an average stream. For each of the four diagnosis classes, we ana-
lysed which covering relation and which exclusion was activated most frequently. For the 
covering relation we considered those activated in more than 30% of the cases within the 
contamination class and for the exclusion we considered those activated in more than 10% 
of the sum of the rest of the classes. Table 6.5.1 indicates which taxa activated the most 
covering relations and exclusions. For the sake of simplicity we do not indicate abundance 
values and do not itemise each single covering relation. Generally speaking, the type of the 
indicator specifies whether the taxon is found in higher abundance in more highly contami-
nated streams (positive indicator) or in uncontaminated streams (negative indicator). Bear-
ing in mind all this information, Table 6.5.1 illustrates a theoretical average community in 
the four contamination classes. 

As Table 6.5.2 shows, we implemented only 8% (212 to 195) fewer covering relations 
for the High contamination class vs. the ND class. Table 6.5.1 shows that these covering re-
lations are activated by 35% (17 to 11) fewer common taxa in the High contamination class 
than in the ND class. This indicates that in highly contaminated streams fewer taxa are 
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common. At the same time the large number of exclusions indicates that in this contamina-
tion class 16 taxa cannot be found with high abundances. Most common taxa are found in 
streams classified as Moderate, which may indicate highly variable conditions in this type 
of stream. 

The analysis shows that considering the appearance of the common taxa, the stream 
classes look very similar. Eleven taxa appear at least in three diagnoses classes, separated 
by the abundance only. Four taxa clearly indicate the ND class (e.g. Oligochaeta, Dytisci-
dae), but none the H class. Only a few taxa appear in the ND and/or L classes and exclude 
the H class (e.g. Dugesia gonocephala, Oligochaeta) and only Potamopyrgus antipodarum
indicates the H class and excludes the ND class. Some taxa indicate a specific class by their 
low abundance and exclude the same class by high abundances (e.g. Tubificidae, Pisidium 
sp.). Overall, we found a wide range of common taxa with a tendency towards more taxa in 
less severely contaminated streams. For the exclusion conditions a clear trend, with more 
taxa excluding the more highly contaminated streams, was likewise found. 

Discussion 

Size and complexity The reduction of size and complexity of knowledge bases is the main 
focus of knowledge engineering research. Both aspects are crucial for developing and main-
taining successful knowledge systems. It has been shown that knowledge bases tend to be 
confusing and unmanageable if their size increases and the complexity of the embedded 
knowledge develops excessively. 

Comparison of the knowledge bases presented here shows that the number of covering 
relations in the set-covering approach is only slightly smaller than the number of imple-
mented rules in our rule-based system. Nevertheless, the complexity of the modeled set-
covering knowledge is significantly simpler than the implemented rules-based knowledge. 
When adding rules for taxa to the rule base, we also have to consider the associated diagno-
sis scores. These scores interact with other rules deriving the same diagnosis and therefore 
have to be obtained by thorough analysis. Thus, adding a new rule to the knowledge base 
can demand reconsideration of all rules (and of the associated scores) deriving the same di-
agnosis. In contrast to these interwoven rules, set-covering relations can be viewed as iso-
lated knowledge elements without mutual interdependencies. For a new taxon we only have 
to define relevant covering relations for the four diagnoses, i.e. contamination classes, and 
the new taxon. In general, this means that we have to define the abundance of the new 
taxon for each diagnosis, if we expect the taxon to occur with the given diagnosis. If avail-
able, we can additionally define abundance trends (positive or negative) between the time 
frames T1, T2, T3, T4 for the new taxon and each diagnosis.  
Knowledge acquisition costs The costs of knowledge acquisition often can be measured 
only by the time the domain specialist (expert) or engineer had spent in developing the 
knowledge system. For maintenance purposes we also need to consider the time the devel-
oper needs to change or extend the knowledge base. In our experiences with LIMPACT, the 
modular characteristics of the set-covering relations had a direct impact on knowledge ac-
quisition costs. The expert found the set-covering representation easy to understand and to 
apply to the diagnosis problem. In contrast to the rule-based version of LIMPACT, he did 
not need to consider the interconnections between rules deriving the same diagnosis. This 
experience is emphasized by the time the expert spent to develop the two knowledge bases: 
implementing the rule-based knowledge took about 6 weeks vs. 2 weeks for defining the 
set-covering model.  
Classification results It is obvious that the classification accuracy of a diagnostic system is 
the key factor for its user acceptance. A user is more likely to accept that the system cannot 
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supply a diagnosis for a particular case, but will lose confidence if the system derives 
wrong diagnoses in some cases. For this reason, a system should not only provide a solu-
tion for a given case, but furthermore should deliver a “confidence level” for the diagnosis 
that is obtained. This confidence level can depend on the score of the diagnosis or an over-
all “believability” function defined by the developer of the knowledge base. 

As described in the previous section, the classification accuracies of the rule-based and 
the set-covering system are comparable. Nevertheless, the diagnostic system applying set-
covering knowledge outperforms the rule-based version for contamination classes Not De-
tected, Low, and Moderate. The rule-based implementation only outperforms the set-
covering implementation for highly contaminated streams. One can say the rule-based ver-
sion of LIMPACT has no (high) confidence level for streams with contamination classes 
Low and Moderate, while the set-covering implementation has a lower confidence level for 
the diagnosis of highly contaminated streams. Reasons include the fact that we have not 
implemented any covering relations interpreting the absence or the decreasing abundance 
dynamic, which could indicate highly contaminated streams. For the domain expert the ab-
sence of a taxon or its decreasing abundance is difficult to interpret, because the causal 
connection explicitly to pesticide contamination is uncertain. 
Explanatory characteristics The set-covering knowledge base is much more suitable for 
discovering ecological knowledge than the rule-based implementation. The covering rela-
tion and the exclusions can be easily interpreted as characteristics of the group of streams 
considered. By analysing the frequently used relations we found the common taxa for each 
contamination class. This procedure was simple and fast. For the rule-based knowledge 
base this would have been a time-consuming process, because of the interpretation of the 
rules and the scores. 

Other knowledge representations, such as case-based reasoning, also cause problems in 
finding common and average characteristics of the considered diagnoses classes. For im-
plementation they represent a set of characteristics at the same time and therefore cannot 
activate each characteristic separately. In summary, we can say that the model-based 
knowledge representation using a set-covering interpretation is easy to implement. It out-
performs the rule-based implementation in size, complexity, and maintainability and helped 
the domain expert to discover new ecological knowledge at a higher level. 
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6.6 Predicting macro-fauna community types from 
environmental variables by means of support vector 
machines*

Akkermans W†, Verdonschot P, Nijboer R, Goedhart P, ter Braak C 

Introduction 

This paper compares the performance of two classification methods: Support vector ma-
chines (SVMs) and multinomial logistic regression (MLR). Why classification? Already 
more than a century ago ecologists realized that each distinction into classes is artificial. It 
divides parts in nature which in reality are connected through a number of transitions. Sev-
eral disadvantages of using strict classes have been recognised. Classes have been called 
arbitrary (Maitland 1966) and subjective (Armitage 1961). Macan (1961) argues that a rigid 
framework creates a cage, whereas we need freedom of thought. Since then, many ecolo-
gists must have been aware of the continuum in the surroundings they still tried to classify. 

The main argument for using classes is a need for more explicit and sharp-cut terms. 
Identification and arrangement of ecological classes has furthermore been defended be-
cause it is an intellectual challenge (Hawkes 1975); because it is necessary for understand-
ing, describing and explaining the enormous diversity of the mixed species populations 
(Rietz 1965); because it is helpful in comparing different waters worldwide (Pennak 1971); 
and because it is of practical value, especially with respect to water management (Deusen 
1954, Hawkes 1975). Examples of the practical value are utilitarian applications (the first 
classification schemes were introduced by fish biologists), the prediction of effects of pro-
jected water management policies, and the assessment of water quality and pollution. So al-
though it should be borne in mind that ecological classes are not natural entities and that 
their definition is always influenced by the ecologist's choices, the plea for using and dis-
tinguishing classes, from a practical, water management point of view, is very clear.  

Classification is the process of generating a rule for recognising whether a particular 
object belongs to one of a certain number of predefined classes; and, in a narrower sense, to 
apply this rule to objects (sites) with unknown class membership (see Section 6.3).  

Classical methods for classification rely on distributional assumptions. These methods 
include linear discriminant analysis and (multinomial) logistic regression. The latter is the 
modern standard approach. The term machine learning is sometimes used to refer to more 
recently developed, distribution-free methods such as neural networks. In the tradition of 
machine learning, Support Vector Machines are a relatively new and modern tool. In this 
paper, the performance of SVMs will be compared to Multinomial Logistic Regression.  

These two techniques will be applied to empirical data on Streams in the Netherlands. 
The data are described in Section 6.2. Section 6.3 gives a brief description of Support Vec-
tor Machines and Multinomial Logistic Regression. The emphasis here will be on an intui-
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tive explanation of the methods. A more detailed description of SVMs is given in the Ap-
pendix. Section 6.4 contains the results.  

The data 

Two data sets will be analysed: Streams and Canals. As the main purpose of this paper is to 
demonstrate the usefulness of SVMs, we will only describe the Streams data in detail, and 
mention results on the Canals data in passing.  
Streams data The streams data have been collected by water district managers. In general, 
the samples were taken in different types of streams, but there is a bias towards moderately 
polluted sites. Natural sites and sites in more extreme conditions, like intermittent streams, 
are underrepresented. The small size of several classes therefore does not mean that these 
classes are unimportant. The classification model has to be able to correctly predict the 
smaller classes too.  

The data set consists of 563 sample sites, belonging to the following 6 classes:  
1. 156 hill streams: fast flowing upper to middle course of natural to semi-natural hill 

streams  
2. 270 middle to lower courses: middle to lower courses of lowland streams either semi-

natural to channelised with a developed aquatic vegetation  
3. 32 small natural upper courses: small, neutral to weakly acid, natural to semi-natural 

small upper courses of lowland streams  
4. 29 acid upper courses: acid, sometimes intermittent, small, natural to semi-natural upper 

courses of lowland streams  
5. 60 polluted streams: heavily to moderately polluted upper to middle courses of slow to 

fast running lowland streams  
6. 13 small, natural hill streams; small, almost natural upper courses of hill streams. 

Table 6.6.1. Variables used with streams 

Nr. Name  Unit  Type Transf. Mean Sd 
1 Meandering  - Factor 0/1  -  0.40 0.45 
2 Natural transv. profile -  Factor 0/1  -  0.48 0.47 
3 Land use: natural area  -  Factor 0/1  -  0.44 0.46 
4 Permanency  -  Factor 0/1  -  0.91 0.27 
5 Regulation  -  Factor 0/1  -  0.26 0.40 
6 Spring  -  Factor 0/1  -  0.43 0.48 
7 Winter  -  Factor 0/1  -  0.03 0.16 
8 Shading  %  Percentage  logit  -1.67 2.30 
9 Substrate: silt  %  Percentage  logit  -3.23 2.37 
10 Depth  m  Continuous log  -1.24 1.10 
11 Current velocity  m/s  Continuous log  -2.23 1.25 
12 Width  m  Continuous log  0.92 1.03 
13 Substrate: sand  %  Percentage  logit  -0.99 2.10 
14 Acidity  -  Continuous -  7.19 0.62 
15 Chloride  mg/l  Continuous log  3.65 0.51 
16 Conductivity  µS  Continuous log  6.01 0.55 
17 Ammonium  mgN/l Continuous log  -0.56 1.39 
18 Kjehldal-N  mgN/l Continuous log  0.87 0.83 
19 Oxygen content  mg/l  Continuous log  7.45 2.48 
20 Total phosphorus  mgP/l Continuous log  -1.19 1.10 
21 Nitrate  mgN/l Continuous log  0.68 1.50 

Transf: transformation applied. logit(p)=log[p/(100- p)]  
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The assignment of the sites to these classes is not part of the present research; the classes 
have been formed (Verdonschot 1996) by means of a cluster analysis using the macrofauna 
of the sites and measurements on a large number of environmental variables. Hence the 
species composition of the sites was very important in deriving these clusters, even though 
their names do not directly reflect this fact. 

In the present analysis the class membership of a site is treated as given. The present 
goal is to predict this class membership from only a relatively small subset of the available 
environmental variables.  

This small subset consists of 21 abiotic and biotic variables (Table 6.6.1). Of these, 7 
variables were factors with 2 levels, that is, they are 0/1 variables. The other variables are 
continuous. To decrease the influence of possible outliers and to, hopefully, better meet the 
linearity assumptions in the MLR model, most of the continuous variables were subjected 
to logit (for percentages; see the line below the table) or logarithmic transformations. The 
last two columns of the table contain the mean and standard deviation of the variables. For 
the 2-level factors the mean is the proportion of 1's. Some variables are printed in boldface; 
the reason for this will become clear in Section 6.4.  

Hence, 21 environmental predictor variables are available, to predict the (given) mem-
bership in one of the classes A - F. No species data will be used in the prediction (and no 
distinct species occurrences will be predicted).  
Canals data The Canals data set consists of 408 samples divided over 7 classes, with 25 
predictor variables.  

Methods 

The present section contains a paragraph on the notation used, and a brief explanation of 
classification. Then the general idea of SVMs is presented, with a graphical example. Fi-
nally a description of multinomial logistic regression is given.  

Notation

A sample will be considered consisting of N sampling sites. Boldface type will be used for 
vector-valued variables, ordinary typeface for single-valued variables. Hence, x is a vector 
consisting of the variables x1 . . . xD, where D is the dimension of the input space X . With 
interactions or with categorical predictors, D may be larger than the number of variables ac-
tually measured. Subscripts i and j will be used to refer to the value of x for observations i
and j respectively, so xi and xj contain the measurements for sites i and j. The symbol X will 
denote the design matrix. Class membership will be denoted by y; if there are only two 
classes, y will have values -1 and 1. Estimated values will be denoted by a hat, so ŷ  will be 
the predicted (estimated) class membership. The sample on which the model is fitted will 
be referred to as the training sample. 

Classification 

To derive a classification rule, a training sample of size N is obtained. For this training 
sample both class membership y and a number of explanatory or predictor variables x = (x1,
x2, . . . , xD) are known. The variables x and y are used to generate a classification rule, 
which relates class membership y to x. The classification rule thus obtained can be used to 
predict class membership for new cases, whose y is unknown. For example, the training 
sample might consist of patients with a tumour, the x-es might be tumour characteristics, 
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and y might be the result: patient did or did not die of cancer. In our application the sample 
will consist of water sites, the explanatory variables will consist of physical and chemical 
characteristics such as width, depth and acidity; and y will denote the 'type' of the site (A - 
F), which represents both the macrofauna composition and the environmental characteris-
tics. As often in this kind of research (see e.g. the paper on RIVPACS by Clarke et al. 
2003), in this paper too the type is the result of a previous cluster analysis of macrofauna 
data (Section 6.2).  

Fig. 6.6.1. Example of two separating lines with their margins. The data points exactly on 
the margin border are called support vectors.  

Support vector machines: an intuitive description 

SVMs can be used for classification and regression. Here the emphasis will be on their use 
as a tool for classification. The basic SVM distinguishes two classes, i.e. y has either the 
value 1 or -1. Classification into K > 2 classes is achieved using a combination of several 2-
class SVMs. As an example, consider the fictitious data in Fig. 6.6.1. The black dots repre-
sent sardines, the open circles are herrings, and the two x-variables are size and weight, re-
spectively. The data in this figure are linearly separable, i.e. it is possible to draw a straight 
line, such that all open circles are on one side of the line, and all black dots are on the other 
side. Because of the gap between the two classes it is possible to construct many lines that 
all correctly separate the data. Two of these have been drawn in the figure. With SVMs, the 
criterion to decide on the best separating line is follows. Any separating line can be moved, 
parallel to itself, until it collides with a data point. Doing this in both directions, a 'street' 
appears. This street is known as the margin, and its width as the margin width. The margins 
for the two separating lines in Fig. 6.6.1 have also been drawn. In the SVM context, the 
best separating line is defined as that line that has the widest margin. The best separating 
line and its margin, for the data in Fig. 6.6.1, are depicted in Fig. 6.6.2. The meaning of the 
extra point in this figure is explained below.  
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Fig. 6.6.2. Maximal margin for the points in Fig. 6.6.1. Also: the penalty of a misclassified 
point is proportional to its distance from the margin.  

In real life the data usually are not linearly separable. In the SVM context, two strate-
gies are used to cope with this problem: penalties and kernels.  
Penalties When the data are not linearly separable, every point landing on the wrong side 
of the margin can be given a penalty which is proportional to how far it is from the margin, 
see Fig. 6.6.2; it is denoted as i. The penalty of an object is referred to as its slack. The ob-
jective becomes to simultaneously keep the margin width maximal and the sum of 
(squared) slack minimal. In this optimization process, a parameter R governs the impor-
tance of the margin width relative to the total squared slack; its value has to be set by the 
user. 1/R should be small compared to 1 (see the discussion below Eq. B9 in Appendix B).  
Kernels It would also help if a (nonlinear) transformation could be found, such that the 
transformed data were linearly separable, or at least 'more' linearly separable. In the upper 
part of Fig. 6.6.3, for example, the data cannot be separated by a straight line, so we cannot 
apply the procedure described above. But we can let, for example, z1 = x1 and z2 = 2x1

2 - 
20x1 + 58, and, in the lower part of Fig. 6.6.3, plot z1 and z2 instead of x1 and x2. In the fig-
ure it can be seen that the transformation has made the data linearly separable. 

In this particular example the dimensionality of z = (z1, z2) is equal to the dimensional-
ity of x: both have dimension dim = 2. In practice, however, with SVMs there is no need for 
dim(z) to be equal to dim(x). In fact, it might be useful to have dim(z) > dim(x). To illus-
trate this, consider the data in upper left part of Fig. 6.6.4, with dim(x) = 1. These data are 
not linearly separable in X , the space of the data x. Now consider the function f(x) = x3 - 
20x2 + 124x - 240 (lower left part of Fig. 6.6.4). Then let z1 = x and z2 = f(x), i.e. z2 is some 
cubic function of x, so dim(z) = 2. As can be seen in the lower right part of Fig. 6.6.4, this 
results in linear separability in the 2-dimensional space of z. The space of z is known as the 
feature space F.

Hence, the basic idea of SVMs when the data are not linearly separable is to:  
transform the data to a (possibly high-dimensional) feature space F, where, hopefully, 
they do become 'more', or even completely linearly separable; and then  
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perform an optimal linear separation in the feature space F.

Fig. 6.6.3. Above: Linear separation is not possible in the data space. Below: After suitable 
transformation of x, linear separation becomes possible. 

Upon returning to the lower dimensional data space X , a nonlinear separation will have 
been performed. Fortunately, there is no need to explicitly find a suitable transformation 
that makes the data linearly separable. Suitable transformations can be written as kernels.
Kernel functions are well known in mathematics, they have been studied among others by 
Mercer (1909); we only say that kernels can be interpreted as similarity measures (see Ap-
pendix). Therefore, analyzing a matrix of similarities - instead of analyzing the raw data - 
will implicitly perform the desired transformation. Note that, although every kernel is a 
similarity measure (Legendre and Legendre 1998), not all similarity measures are kernels, 
so the similarity measure should be chosen with care. It can be shown that the Gaussian 
function of the Euclidean distance between data points (Eq. C4 in Appendix C) is a kernel; 
it will be used in this paper. The Gaussian kernel requires a user-specified parameter ,
governing the smoothness of the solution: small values for  will give a solution that 
closely follows the data and hence is highly curved; larger values for  will result in a 
smoother solution. With  small enough, it is usually possible to obtain perfect separation 
of the training data. But when a model thus derived will be applied to new data, the per-
formance will probably be less than perfect. Hence, in choosing a value for  (and so im-
plicitly increasing the number of dimensions), care must be taken to avoid overfitting: usu-
ally it is better to allow some violation of the separability also in F. Values for  may be 
chosen in the range of the distance of the closest points with different classifications (Cris-
tianini and Shawe-Taylor 2000). 

The objective function of the SVM can be written as a convex quadratic programme (see 
the Appendix). This means the optimization function has no isolated local minima, which is 
a great advantage over other modern techniques such as for example artificial neural net-
works. More information on constrained optimization can be found in Lasdon (1970), Beale 
(1988), and Chong and Zak (2001). 
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Fig. 6.6.4. Transforming linearly inseparable data to a space of higher dimensionality than 
dim(x) may result in linear separability. For more explanation see the text.  

Multiple classes An SVM for more than 2 classes, say K, consists of a combination of 2-
class SVMs. One could either construct K SVMs, each of these considering one class 
against all the rest; or )(2

K  = K(K - 1)/2 SVMs, each of these contrasting one class versus 
one other class. In both cases, the assignment of a site to a particular class is made after 
comparing its outputs for all the basic SVMs. Platt et al. (2000) constructed the so-called 
DAGSVM algorithm which makes navigating through the )(2

K  classes very fast. 
Illustration We illustrate the nonlinear separation with SVMs by re-analyzing Fisher's Iris 
data. These are measurements of petal and sepal length and width of 150 Iris flowers, 50 of 
which are of the Setosa variety, 50 Versicolor, and 50 Virginica (Fisher 1936). The data 
were collected by Anderson (1935); they are also available in Splus and Minitab. Only the 
petal measurements will be used here, so that a 2-dimensional graphical representation of 
the data is possible (with more than 2 predictor variables a graphical representation of the 
solution in only 2-d would not be very instructive). The 50 Versicolor flowers will be taken 
as one class, and the Setosa and Virginica flowers will together constitute the second class. 
In Fig. 6.6.5 the Versicolor flowers are indicated by a square, and the other flowers by a 
circle. The squares are all in the centre, and a single straight line would be incapable of 
separating the two classes. Fig. 6.6.5 displays the result, in the data space, of applying an 
SVM with Gaussian kernel to these data. The middle line represents the decision boundary, 
i.e. all future flowers with measurements within the central circle will be classified as Ver-
sicolor. As the Setosa and Virginica varieties have been lumped into one single class for 
this particular analysis, all future flowers with measurements outside the central circle will 
be classified as not Versicolor. The other two lines are the margins: they indicate the region 
where the classifier is relatively unsure of the decision.  



418      Akkermans W , Verdonschot P, Nijboer R, Goedhart P, ter Braak C 

Fig. 6.6.5. Petal length and width of Fisher's Iris Data. A 2-class SVM is used to distinguish 
the Versicolor from the Virginica and Setosa varieties. The lines are the decision boundary 
and its two margins. Support vectors are those irises lying on the wrong side of their mar-
gin; they are indicated by a black dot. 

Fig. 6.6.6 gives the decision lines and margins resulting from separating the 3 varieties 
of Iris in Fisher's Iris data, again using only petal length and width, but now the separation 
was done using 3 1-versus-rest SVMs. The lines in the figure are the decision boundary and 
margins for each of the three separate SVMs. Note that the lines separating Versicolor from 
Setosa and Virginica are the same lines as in Fig. 6.6.5. 
Further reading The founder of SVMs is Vapnik (Vapnik and Chervonenkis 1971, Vapnik 
1982, Boser et al. 1992). An introductory book has been written by Cristianini and Shawe-
Taylor (2000). The book by Hastie et al. (2001) gives an overview of many relatively mod-
ern methods for predicting output from inputs, relates SVMs to more classical methods, and 
identifies SVMs as a penalized regression method. Introductory papers on SVMs have been 
written by Bennett and Campbell (2000) and Burges (1998). Finally, websites with useful 
information are being maintained at http://www.support-vector.net and http://www.kernel-
machines.org.  

Multinomial logistic regression (MLR) 

Let zi = (z1, z2, . . . , zK) be an indicator vector for the class membership of site i, and let the 
conditional probability for site i belonging to class k, given the data, follow a multinomial 
distribution with parameter i = ( i1 . . . iK). With MLR a linear regression model is as-
sumed for each log( i/ K):

)(log i
iK

ik xfE .                                           (6.6.1) 



6 Development of community assessment techniques      419 

In this expression, f(xi) is a linear regression function; and 1

1
1 K

k ikik
. With only 2 

classes, no subscript k is needed, and iK reduces to 1 - .

Fig. 6.6.6. Application of a 1-versus-rest 3-class SVM to Fisher's Iris data (only petal 
length and width). Let the Setosa variety be Class 1, Versicolor Class 2, and Virginica 
Class 3. The continuous lines (--) are the decision boundary and margins for the separation 
of class 1 from classes 2 and 3; the dotted lines (...) separate class 2 from classes 1 and 3; 
and the dash-dotted lines (-.-.) separate class 3 from classes 1 and 2. The support vectors are 
indicated by a black dot. 

Contrary to SVMs and neural networks, which give a hard classification, MLR gives a 
so-called soft classification: for each site i the conditional probability of class membership 
given xi is obtained for all classes. If a hard classification is required, sites may be assigned 
to the class with the highest conditional probability. We have not done so: in the presenta-
tion of our results, the entire distribution is retained. We will return to this point in Sec-
tion 6.6.3. As an aside, note that the dependent variable in Eq. (6.6.1) is continuous, which 
is the reason for this technique to be known as regression rather than classification.  
Further reading More information on MLR can be found in McCullagh and Nelder 
(1990), Hosmer and Lemeshow (1989), and Hastie et al. (2001).  

Model selection 

One important difference between MLR and SVMs is the way in which the model is se-
lected. When the predictors are highly correlated, MLR requires selecting the subset of 
'best' predictor variables X1 . . . XM . For SVMs multicollinearity does not seem to be so 
problematic, so in theory all variables could be used for the prediction, even though they 
might be (highly) correlated. But with SVMs values for the penalty parameter R and the 
kernel width  have to be selected.  
MLR We will start our investigation by selecting a 'best' model for the MLR case. This 
problem will be tackled by first looking for the best subset of 4 explanatory variables, then 



420      Akkermans W , Verdonschot P, Nijboer R, Goedhart P, ter Braak C 

for the best subset of 5 variables and so on; and then finally to choose, from all these best 
subsets, the very best. The decisions on what is 'best' will be based on the results of cross-
validations (Section 6.3). For comparison purposes with the SVM case, it was also decided 
to fit an MLR model on all 21 variables.  
SVM Upon selection of the best MLR model, two Gaussian kernel SVMs of )(2

K  1-vs-1 
nets will be fitted to the data: one using only the subset of best variables selected with 
MLR, and a second one using all 21 variables available.  

Here the parameters  and R have to be chosen by the user. As R must be small relative 
to 1, we will consider R=10, 15 and 25. A possible range for  will be derived from the dis-
tance between the 2 closest points in different classes. The final values for R and  will be 
decided on by comparing results for different combinations of these 2 parameters. The re-
sults for the 'best' combination of R and  will then be compared to an SVM that uses just 
the midpoints of the a priori ranges.  

Finally, the effect, in the SVM case, of standardizing the x-variables will be investi-
gated. For logistic regression this is not necessary as it has no influence of the conditional 
distributions.
Presentation of results As mentioned above, the MLR output for each site is a set of K 
probabilities, summing to 1, indicating the probability that the site belongs to class K. 
These probabilities can be averaged over the sites in a class, yielding a table with average 
classification probabilities. As an example, assume there are 5 sites and 3 classes. Let 2 of 
the sites belong to class A, and let these two sites have conditional distributions (0.80, 0.20, 
0.10) and (0.40, 0.40, 0.20) for membership in classes A, B and C respectively. The num-
bers reported for class A then will be (0.60, 0.30, 0.15).  

Crossvalidation and computation 

After fitting a model on a data set, new data are needed to evaluate the performance of the 
model. Often however, data is scarce. As a second best, one might apply cross validation: 
in a data set consisting of N objects, the model is fitted using only N-1 of these, and used to 
predict the outcome of the N'th. This procedure is repeated N times, with each of the N ob-
jects left out in turn. In the end one has a set of N predictions which may be compared to 
their observed values, to obtain an indication of the goodness of fit. The final model is fit-
ted on all data. 

The calculations for the MLR analysis will be performed using Genstat (Payne 1997); 
for the SVM a collection of MATLAB and C++ routines written by Cawley (2000) is used, 
with some modifications and extensions. Cawley's program uses Platt's Sequential Minimal 
Optimization algorithm (SMO) for performing separation in the feature space (Platt 1999).  

Results 

Variable selection with MLR

The best model found with MLR uses 11 of the 21 variables; these are the variables num-
bered 2 4 8 10 11 12 14 15 17 20 21, which are indicated by boldface in Table 6.6.1. So we 
will investigate SVMs with only these 11 variables, and also with all 21 variables available, 
in either case both with and without standardization of the x-variables.  
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Selection of ranges for R and  with SVM  

With SVMs, values for the parameters R and  have to be decided on. As mentioned be-
fore, values of R = 10, 15 and 25 will be considered. Appropriate values for  lie in the 
range of the minimum distance between points from different classes. For each of the )(6

2 =
15 possible combinations of two classes, the minimum distance between a point from one 
class to a point from the other class was calculated. For the 21 raw variable case these 15 
minima range from 0.79 to 3.14, with a mean of 2.01. Hence the value 2 could be used for 

. As the classes overlap to a considerable extent, however, we will also investigate some 
larger values for . It was decided to consider values in the range of 2 to 5. Our software 
wants the input to be given as 1/(2 2); we will denote this quantity as . A range of 2 to 5 
for  roughly corresponds to 0.10 to 0.02 for .

The mean of the minimum distances between two points from different classes for the 
11 raw variables is 1.80, so here too 2 seems a good value for . The mean of the minimum 
distance for the two standardized sets of variables equals approximately 1, so here some 
smaller 's (larger 's) will also be considered. 

A preliminary investigation showed that larger values for R did not perform better than 
the smaller values 10, 15 and 25; nor did larger 's seem to perform better than  = 0.10. 
Hence, in deciding on  and R, all combinations of  = 0.02, 0.03, 0.05, 0.075, 0.10 and R = 
10, 15, 25 were investigated.  

Model selection for SVMs  

A possible criterion for the evaluation of the results would be the overall percentage of cor-
rect classifications. The variation in class size is rather large, however, and therefore the 
percentage correctly classified in each class was also taken into account.  

For the 11-variable model with raw X-variables,  = 0.02 and R = 25 was one of the 
best for the smaller class sizes, and it also happened to have the best overall performance. 
In Table 6.6.2 it can be seen that the overall performance of this model is 83.5 % correct 
(i.e. 93 out of the 563 sites were incorrectly classified in the crossvalidation). Classes E and 
F were most difficult to learn: only 47 and 46 % correct, respectively. The best combination 
for standardized X-variables was = 0.05 and R = 25, whose performance is more or less 
comparable to that of the raw X-variables (Table 6.6.2, second line). The difference be-
tween 54 and 46 % of the 13 cases in class F constitutes exactly one extra misclassification. 
Of the two models, the raw data model, with  = 0.02 and R = 25, is preferred over the stan-
dard score model as it is slightly better overall, and it performs comparably in the smaller 
classes. However, if one would have a preference for using standardized scores instead of 
raw scores, not much is lost.  

Simply taking the midpoints of the investigated ranges would give  = 0.05 and R = 15. 
The percentages for these midpoint parameter values are also given in the table, and it can 
be seen that although the performance is somewhat less, the differences are not large.  

With all 21 variables in the model, the pattern was more or less similar: for raw X the 
best overall percentage was 79.2; also taking into account the performance in the smaller 
classes gave a model with  = 0.02 and R = 25, having 78.7 % correct overall, which is only 
marginally less than 79.2 For standardized X the difference between the two criteria was 
also small. With the 21 variable model the difference between standardized and raw X is 
larger than for the model with 11 variables: it amounts to 81.5 - 78.8  3 percent overall. 
But seeing that the unstandardized model is better with the 3 small classes C, D and F, our 
preference is for the model with raw X,  = 0.02 and R = 25. Here too, simply choosing the 
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midpoints  = 0.05 and R = 15 would not do very much worse, as can be seen in the lowest 
part of the table.  

Table 6.6.2. Selection of parameters  and R for SVMs: Percentage correct in crossvalida-
tion for Streams. 

A B C D E F Tot Model
#Vars Param.  X R N=159 270 32 29 60 13 563 #Err.

11  Best  Raw  0.02 25 90 93 50 86 47 46 83.5 93 
  Stand. 0.05 25 91 90 50 90 40 54 82.2 100 
 Midpoints Raw  0.05 15 91 90 50 79 47 46 82.1 101 
  Stand. 0.05 15 91 91 47 90 37 46 81.7 103 
21  Best  Raw  0.02 25 86 87 56 76 43 54 78.7 120 
  Stand. 0.075 15 91 91 50 69 45 46 81.5 104 
 Midpoints Raw  0.05 15 87 90 56 52 42 46 79.2 117 
  Stand. 0.05 15 91 90 50 66 45 38 80.6 109 
#Vars: number of variables in model. Param.: parameters used.  
Raw/Stand: model using raw or standardized X.  
A-F: classes of dependent variable. N=159 ...: number of sites per class.  
Tot: first line: total number of sites; next lines: total percentage correct.  
#Err.: Number of incorrectly classified sites.  

Table 6.6.3. Crossvalidation results for Streams: Percent correct per class 

Model with 11 variables  Model with 21 variables   
A B C D E F Ntot A B C D E F  Class

N=159 270 32 29 60 13 N=159 270 32 29 60 13  
MLR Average 75 %  Average - %  

A 80 6 6 1 3 4 159 - - - - - -
B 2 85 2 1 10 0 270 - - - - - -
C 30 8 49 2 10 0 32 - - - - - -
D 1 9 5 82 4 0 29 - - - - - -
E 12 41 5 3 38 2 60 - - - - - -
F 36 0 3 0 0 61 13 - - - - - -

Npred - - - - - - 563 - - - - - -
SVM  Overall 84 %  Overall 79 %

Raw X, = 0.02, 1/R = 25  Raw X, = 0.02, 1/R = 25  
A 90 4 1 0 2 3 159 86 6 4 1 3 2
B 1 93 1 1 3 0 270 2 87 2 1 8 0
C 31 16 50 0 3 0 32 19 13 56 6 6 0
D 0 7 7 86 0 0 29 0 10 10 76 3 0
E 12 40 2 0 47 0 60 8 45 2 2 43 0
F 54 0 0 0 0 46 13 31 0 15 0 0 54

Npred 170 290 25 27 41 10 563 157 277 35 30 54 10
A-F: classes of dependent variable. N=159 ... 13: Class size.  
Ntot: number of sites per class / in entire sample.  
Npred: number of sites predicted per class (middle column: entire sample).  

Full results for the selected models  

Full results for the models decided on, both with 11 and 21 variables, are presented in Table 
6.6.3. The numbers reported for SVMs are percentages correct, i.e. of all 159 sites in class 
A the 11 variable SVM predicted 90 % correctly as A, 4 % incorrectly as B and so on. Mul-
tinomial logistic regression yields, for every site, a set of numbers denoting the probability 
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of belonging to each class. These probabilities have been averaged over all sites in a class 
(Section 6.3). Consequently it is not meaningful to report the 'size' of the predicted classes, 
as is done with SVMs. Although, strictly speaking, the numbers reported for MLR and 
SVM do not have exactly the same meaning, both will be referred to in the text as percent-
age correct. 

Comparing results for MLR and SVM for the 11-variable model, first of all it is clear 
that the overall percentage correct is some 10 percent higher for the SVM (84 versus 75 
percent). The SVM seems to be better in all classes, except class F, which is the smallest 
class. Furthermore, the pattern of misclassification is much the same for both methods: with 
both methods most of the incorrectly classified sites belonging to class C go into class A 
(some 30 %), and the incorrectly classified class E sites go into class B (some 40 %). Class 
F is subsumed for a large part under class A.  

Unfortunately, comparing the 21-variable model for MLR and SVM proved impossible 
as an MLR model with all 21 variables could not be estimated. With MLR, for each class 
more than 20 parameters have to be estimated; but the smallest class only has 13 sites. This 
causes overparametrisation, which prohibited finding a realistic solution. (This situation is 
analogous to fitting a 3rd order polynomial through only 2 data points: no unique solution 
then exists).  

The final comparison now is between the two SVM models. Again the classification 
patterns are much the same, but the 21-variable model does not perform as well as the 11-
variable model. The 21-variable model seems to perform exactly in between the MLR and 
SVM models for 11 variables.  

Interpretation of the results  

The cross validation results for the streams are different in classes A to F. Classes A and B 
are both large. Class A represents 156 sites of fast flowing upper and middle courses of 
streams. This class is quite distinct within the dataset. Class B represents 270 sites, all dis-
turbed either channelised or polluted with organic waste. Beside the number of sites also 
their environmental conditions characterise both classes A and B as quite discrete units. 
Class C, with only 32 sites, is small and the streams in this class are more often intermit-
tent. Intermittent streams can have a rather heterogeneous taxon composition. The hetero-
geneity of a class makes accurate prediction or re-assignment of sites less reliable. Class D 
is composed of only 29 sites, the majority of which is acid. This class is quite explicit and 
homogeneous in taxon composition. The cross-validation results were high. Class E, with 
60 sites, is larger and the sites are more often organically polluted upper courses. The cross 
validation results are low due to the overlap with the large class B, which also contains or-
ganically polluted sites. Class F, with 13 sites, is very small and the sites are all fast flow-
ing, near natural small upper courses of streams, a distinct and reasonably homogeneous 
group of sites. Still there is some overlap with class A which lowers the cross validation re-
sults.

Canals data  

The Canals data are more difficult to classify, because environmental differences among 
streams are much larger than among canals. The best MLR model uses 14 of the 25 predic-
tors. The overall percentage correct obtained with this model is 56. The 14 variable SVM 
has 65 percent correct, and an SVM with all 25 predictors shows 69 percent correct in the 
crossvalidation. Hence, with the Canals data, an SVM model using all available variables 
produces better results than all other models fitted.  
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Computation times  

Estimating one multiclass support vector machine with Gaussian kernels, for one combina-
tion of R and , using the DAGSVM algorithm for predicting class membership, took about 
15 minutes on a 1000 MHz PC, including the crossvalidation, for one combination of R and 

. Carrying out one multinomial logistic regression analysis, including the crossvalidation, 
took about 30 minutes.  

Discussion and conclusion 

SVM seems a promising tool for classification. Especially for ecological data, where the 
'curse of dimensionality' is sometimes heavily felt, a technique that can deal with many 
predictors is very useful. Another advantage of SVMs for ecological data is that they do not 
assume relationships to be linear. With the data sets examined here they give good results, 
the overall correct classification rate is some 10 % higher than with multinomial logistic re-
gression. The performance is also reasonably good in small classes. Multicollinearity does 
not seem to be a large problem: it was possible to find good models without having to go 
through extensive variable selection procedures. With the Canals data set, using all avail-
able 25 variables resulted in better performance than using only the 14 variables that had 
been selected for the best MLR model. This was not so with the Streams data set; here the 
full 21 variable model performed halfway between an MLR and the 'best' SVM. For both 
these data sets the penalized regression approach (SVM with all available variables) 
showed a better performance than the best subset selection approach (multinomial logistic 
regression). Results with standardized X-variables were very similar to results with unstan-
dardized input. This might be explained by the fact that most X-variables already had been 
subject to log- or logit transformations, which can be considered as standardizing transfor-
mations too. Finally it must be mentioned that, on the data sets examined here, simply 
choosing values of and R in the middle of the range that seemed acceptable a priori, 
would have resulted in models performing only marginally less than the ones selected as 
best models.
Generalization The entire SVM methodology is the result of Vapnik's search for classifiers 
with good generalization properties (Vapnik 1998, 2000). Even if a classifier were perfect 
on a training data set, it would be of little practical use if it performs poorly on new data. 
The central concept here is the notion of the so-called VC-dimension (Vapnik and Cher-
vonenkis 1971), which is equal to the number of points the classifier can be guaranteed to 
learn, during training, without error. Vapnik (1982, 1998) has shown that there exists an 
upper bound on the generalization error if the VC-dimension is finite. For infinite VC-
dimension, no such bound has yet been established. It can be shown that the VC-dimension 
of an SVM with Gaussian kernel is infinite, so during training it can correctly learn any 
number of points. In practice, however, the generalization performance of Gaussian SVMs 
is quite often very good.  
Relation to ANNs Just like the SVM, the ANN is a relatively modern tool for classification 
and regression (Bishop 1995, Haykin 1999). The main difference between the two lies in 
the behaviour of the minimizing function. ANNs have many parameters, and more often 
than not, many distinct local minima. SVMs on the other hand, being convex quadratic 
programmes, are guaranteed to have no isolated local minima, which is a very desirable 
property. As the SVM objective function is convex, it will be clear when the minimum has 
been reached. In other words, contrary to many ANNs, the stop criterion is evident and 
unambiguous.
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Fig. 6.6.7. Loss functions for 4 different models: (1) logistic regression (+++); (2) 2-norm 
SVM (…); (3) linear discriminant analysis (--); and (4) 1-norm SVM (- - -). For yf < 1 the 
loss for LDA is equal to the loss for the 2-norm SVM, and for yf > 1 the loss for the 1-norm 
SVM is equal to that for the 2-norm SVM. The functions have been drawn slightly apart to 
show them better. 

In the case of ANNs the user can specify the functional form of the neuron, e.g. sigmoid, 
radial basis (RBF or Gaussian), or hyperbolic tangent (tanh) functions. Analogously, with 
SVMs the user may specify the functional form of the kernel: for example polynomial, 
Gaussian (RBF), or linear. In addition to the above, with ANNs all decisions regarding the 
architecture of the network also have to be taken by the researcher. The mathematical for-
mulation for the prediction of the output of a 2 layer RBF neural network for a new site p is 
given by (see Bishop 1995)  
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number of centres. Comparing this to the classification function for the Gaussian kernel 
SVM in (C5), which is repeated here:  
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We see that, as 0ˆ i only for support vectors (Equation A8 in the appendix), these two 
equations are equivalent, with iiy  playing the role of vj, and xi that of 

j
, that is, the sup-

port vectors have the role of the centres in the ANN. So Gaussian SVMs are radial basis 
ANNs with the following property (Burges 1998):  
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"For the RBF case, the number of centres, the centres themselves, the weights, 
and the thresholds are all produced automatically by the SVM training and give ex-
cellent results compared to classical RBF neural networks (Schölkopf et al. 1997)". 

An SVM analog to a sigmoidal (instead of radial basis) transfer function could be ob-
tained by taking as kernel the function K(p,x) = tanh( pT x - ); however, the kernel matrix 
associated with this function does not appear to be positive definite, so it is not guaranteed 
to have all the desirable SVM properties (Burges 1999).  
Logistic regression and discriminant analysis Hastie et al. (2001) compared SVMs to lo-
gistic regression and linear discriminant analysis by means of their respective loss functions 
for classification into two classes. These loss functions are given by:  
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Fig. 6.6.7 contains the three different loss functions, and also the loss for an SVM with 
1-norm on . It can be seen that the two SVM loss functions have zero loss for yifi > 1, i.e. 
for correctly classified sites. This is in contrast both to the LDA and logistic regression loss, 
where correct classification may still increase the loss.  

Apart from having different loss functions, the MLR and SVM approach also differ in 
their treatment of the 'curse of dimensionality': SVMs inherently are a penalization tech-
nique, and with MLR we adopted a 'best subset selection' approach. For a fairer comparison 
we might have used a ridge (penalized) form of MLR rather than the 'best subset selection' 
approach.  

One definite drawback of SVMs is that decisions regarding the value of  and R are not 
(yet) automatically made. Trying to find good values for these parameters is an elaborate 
process. Also, it would be more elegant if classification into K > 2 classes could be 
achieved in a more direct way than by having to compare the outputs of several 2-class 
SVMs. However, our general conclusion is that SVMs have many desirable properties 
both when compared to ANNs and also when compared to more traditional methods for 
classification. They can deal with many predictors, do not suffer much from multicollinear-
ity, are not restricted to linear relationships, and do not display isolated local minima.  

Appendix  

This appendix contains a somewhat more mathematical description of SVMs.  

A Linear separation of linearly separable data  

In 2-d, a linear separator or decision line S is a straight line, and it might be given, for ex-
ample, by x2 = -2x1 + 3, or equivalently, by 2x1 + x2 - 3 = 0. For the development of the 
SVM it is convenient to consider not only the line 2x1 + x2 - 3 = 0 but the entire function
f(x1, x2) = 2x1 + x2 - 3, or, in general, the function  

,),,(
1

bxwbxwbwxf T
D

d
dd



6 Development of community assessment techniques      427 

where the coefficients w = (w1, w2, ..., wD) are referred to as weights, and the index d runs 
from 1 to D, the dimensionality of x. The superscript T denotes the transpose. The decision 
line or separator S is then given by those x for which f(x) = 0, i.e. S is the solution to f(x) = 
0 for the case of only 2 predictors). Furthermore, f(x) > 0 for all x on one side of S, and f(x)
< 0 for all x the other side of S. Therefore, once suitable values for w and b have been 
found, the function f can be used as a classification function for future observations: letting 
y denote class membership and p be a vector of future observations, then  

;1ˆpredict :0)ˆ(f if yp
.1ˆpredict :0)ˆ(f if yp

So the problem to solve is to find the coefficients w and b of the maximal margin separator 
S.  

Fig. A. The planes f1(x) = 2x1 + x2 - 3 and f2(x) = 4x1 + 2x2 - 6 have the same intersection 
with the x1/x2-plane. Furthermore, if  is the angle between a plane and the x1/x2 plane, then 
tan( ) =||w||, so tan( 1) = 14 and tan( 2) = 416 .

A.1 Identifiability constraint 
In Fig. 6.6.1, the data are in 2 dimensions, but in moving from the formulation x2 = -2x1 + 3 
to f(x) = 2x1 + x2 - 3 an extra dimension has been added: f(x) = 2x1 + x2 - 3 can also be writ-
ten as x3 = 2x1 + x2 - 3. In fact, we have been moving from a 1-d line in the 2-d data space 
to a 2-d plane in a 3-d space. This leads to indeterminacy: there exist, in 3-d, many planes 
having the same intersecting line with the x1/x2 plane. In Fig. A, for example, two of these 
are illustrated:  

1. f(x) = 2x1 + x2 - 3. The intersection with the x1/x2 plane is given by f(x) = 0, which 
gives the separating line defined by x2 = -2x1 + 3; and  

2. f'(x) = 4x 1+2x2-6, whose intersection again follows from f'(x) = 0, which gives the 
same separating line x2 = -2x1 + 3. 

In general: if f(x; w, b) = wT x + b has S as separator, then all functions f(x; w', b'), with 
w' = kw, b' = kb, and k \0, have the same solution S. In what follows, the notation f' will 
be used as a shorthand for f(x; w', b'), so f' = kf, with k \0. For the classification of future 
sites it is of no consequence which of the many planes f' is used; but one has to decide on 
one, because otherwise the problem of finding a maximal margin separator would not be 
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identifiable. An example of an identifiability constraint would be ||w||=1, but with SVMs 
another constraint is used.  

Note that, S being in the middle of the margin, there is exactly one of the functions f', 
say f0, which has function values of 1 and -1 for the support vectors: |f0(SVS)|=1. The plane 
formed by this function is known as the canonical hyperplane for the line S (Cristianini and 
Shawe-Taylor 2000). The weight vector corresponding to the canonical hyperplane will be 
denoted as w0, and be called the canonical weight vector. Given the data, every separator S 
has a unique canonical weight vector wS

0. In the SVM context,  
the identifiability constraint is to choose w=w0,

so that with any particular separator S we will associate only its unique canonical hyper-
plane f0.

A.2 Usefulness of the identifiability constraint w=||w0||
The reason for choosing the identifiability constraint w = w0 may become clear upon noting 
the following. Again consider the two functions f(x) = 2x1 + x2 - 3 and f'(x) = 4x1 + 2x2 - 6 
introduced above, and note that f(0,0) = -3, and f'(0,0) = -6. Hence the plane described by f' 
is steeper than the plane described by f. This is caused by the coefficients of f' being larger 
than those of f. So, loosely speaking:  

a plane with gentler slope has smaller coefficients.  (A1)  
Now again consider Fig. 6.6.1. This figure contains 'just some' separating line S1, which 

is not the line having maximal margin. Let SV1 be the support vectors associated with S1,
and f1

0(x) = f(x; w1
0, b1

0) be the canonical hyperplane for S1, i.e. |f1
0(SV1)|=1. Fig. 6.6.2 

contains another separating line for the same data points, S 2, having support vectors SV2.
The function f2

0(x) = f(x; w2
0, b2

0) describes the canonical hyperplane for S2. Note that the 
separating line S2 in Fig. 6.6.1 has a wider margin than the line S1 in Fig. 6.6.2. Hence, be-
cause both |f1

0(SV1)|=1, and |f2
0(SV2)|=1, the plane f2

0 associated with S2 is less steep than 
f1

0; or, more general:  
The wider the wider margin, 

 The gentler the slope of the canonical hyperplane. (A2) 
Recalling (A1), a wider margin therefore corresponds to smaller canonical weights w0.

The exact relation is given in the following statement: if S is a separator, wS
0 are the 

weights of its canonical hyperplane, and 2ww , then the size of the margin associ-

ated with S equals the inverse of ||wS
0||, i.e.  

0/1 SS w .

This will now be demonstrated for the case of 2-dimensional x.   
Derivation of S = 1 ||wS

0|| Consider the separating line S in Fig. B, given by x2 = -2x1, and 
imagine a plane through S, not necessarily the canonical hyperplane, but for example the 
plane given by f(x) = 2x1 + x2. The line S has b = 0 and hence goes through the origin. For 
the result we are to derive, this transformation can be made without loss of generality and it 
simplifies the presentation. In this section we consider only one line S, so there is no need 
for the cumbersome subscripts on f, on w and on . The weight vector )(2

1  is the normal of 
the plane formed by f. This vector has been drawn in the figure as well. The weight vector 
of any other plane f' through S is a multiple of )(2

1 .
The tangent of the angle  between the plane f and the x1/x2 plane is given by  

www
ww

wwww
w
wf 2

2
2
12

2
2
1

2211)()tan( .                   (A3) 

As a steeper plane means a larger angle and hence a larger tangent, we have: the steeper 
the plane, the larger ||w||. This holds for all possible f'.  
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On the other hand, letting d(SV, S) be the distance of the line S to its associated support 
vectors, the tangent is also given by tan( ) = f(SV )/d(SV, S). But the distance of the support 
vectors to S is the halfwidth of the margin, which is denoted as , so  

.)(
),(

)()tan( SVf
SSVd

SVf   (A4) 

This too holds for all possible f'.  
Now let f be not just some plane, but the canonical hyperplane f0 = f(x; w0). Then in 

(A3) the value w0 has to be inserted for w; and | f0(SV) |= 1, so the numerator of (A4) be-
comes 1 or -1. Combining this yields that ||w0||= 1/ , so for every line S its canonical weight 
vector is inversely proportional to its margin:  

s
Sw 10

Fig. B. The plane f(x) = 2x1 + x2 has the line S given by x2 = -2x1 as intersection with the 
x1/x2 plane. This line and its normal vector w = )(2

1  have been drawn in the figure. The tan-
gent of the angle between the plane f and the x1/x2 plane is given by f(w)/ ||w||. 

A.3 Objective function 
Summarizing the discussion so far we have the following. Let S be the set of all possible 
candidate separators S, and let each S S have an associated margin with half-width S, a 
set of associated support vectors SV S and, given the data, a unique associated canonical 
weight vector wS

0, defining a canonical hyperplane fS
0 = f(x; wS

0, bS
0) with the property that 

|fS
0(SVS)|= 1. Then for every candidate separator S we have S = 1/||wS

0||. Therefore the 
separator S with maximal margin, say this is S*, is the separator that has the smallest ca-
nonical weight vector: 00

* ss ww  for all S S. Hence finding the maximal margin separator 
is equivalent to finding the smallest canonical weight vector. So we have to minimize ||w||, 
subject to w being a canonical weight vector.  

Now when is w a canonical weight vector? The canonical hyperplane associated with S 
has |f0(x)| = 1 for those x that are the support vectors associated with S. It also has |f0(x)|= 1 
for all x on the margins. From now on, we will only consider the canonical hyperplane, and 
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the superscript 0 will be dropped from f0. As the support vectors are, by definition, those 
data points closest to S, the identifiability condition  

1)(f that implies1)SV(f is x
for all xi in the training set. Furthermore, because the training data are separable (linearly 
inseparable data are covered in the next section), all xi with yi = 1 have f(xi) > 1, and all xi
with yi = -1 have f(xi) < -1. So  

.1,1),;(f  toequivalent is1)(f Nibwxyx iii

We are therefore looking for the smallest w having yi f(xi; w, b) > 1, for all i in the train-
ing set. The mathematical formulation of this optimization problem is the following objec-
tive function:

minimize .1,1),;(f subject to,2 Nibwxyw ii
                       (A5) 

The problem in (A5) is a constrained optimisation problem, known in mathematics as a 
convex quadratic programme. Convex quadratic programmes have been extensively studied 
and their properties are well known, see for example Dantzig (1963), Beale (1988), Lasdon 
(1970) or Chong and Zak (2001). One of the most convenient properties of convex quad-
ratic programmes is that they have no isolated local minima, which is a very convenient 
property indeed.  

A.4 Estimation equation 

In (A5), f(xi) = wT x i + b, and 
D

d
dww

1

22 . The Lagrangean for this problem, with La-

grange multipliers 1 . . . N , gives  
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T
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As LP is a convex function subject to only convex constraints, stationarity of LP with re-
spect to w and b, together with three conditions on the constraints, solves (A5):  
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ii                                        (A7) 
The conditions a - e in (A7) are known as the Karush-Kuhn-Tucker (KKT) conditions. 

Condition d is the original inequality constraint. Condition c arises because the condition in 
d is an inequality constraint; if it had been an equality constraint, such as e.g. yif(xi) = 0, the 
unconstrained optimization of the Lagrangian with respect to w, b and  would have suf-
ficed to find the solution to (A5). Condition e is the KKT complementarity condition; it en-
sures that i = 0 when the constraint is inactive, and that the constraint is active when i > 
0. That is, if i > 0 then yif(xi) = 1, so  

i > 0  only for support vectors.   (A8) 
It now follows from (A7a) that the weights of the maximal margin separating hyper-

plane depend only on the support vectors and not on any other data. Therefore the solution 
to the classification problem only depends on those observations in the 2 classes that are 
closest to each other, i.e. that are close to the 'border'. Rerunning the problem with only part 
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of the data will result in exactly the same solution, as long as the data points removed are 
no support vectors. In this sense SVMs are parsimonious models.  

A.5 Dual formulation 
With linearly separable data, maximising the margin can also be achieved in another way. 
This alternative method will prove very useful in the construction of a feature space F.  

Substituting (A7a) and (A7b) back into LP, the resulting function is known as LD, the 
dual Lagrangean. The dual depends only on , and no longer on w and b. As LP is a convex 
function with convex constraints, there is no duality gap and maximizing the dual with re-
spect to , subject to some simple constraints, will also give the solution to the problem in 
(A5), see the literature on constrained optimization mentioned above.  

The dual is most easily obtained by writing both problem (A5) and the primal (A6) in 
matrix notation. Let Y = diag(y) be an N × N diagonal matrix containing the values yi on 
the diagonal (so YT = Y), let 1 be an N-vector of ones, and let 0 be an N-vector or an N × N 
matrix of zeros. The problem then reads:  

minimize ,1)1( subject to,2 bXwYw                    (A9) 

so that the primal Lagrangian can be written as  

].1)1([
2
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                  (A10) 

Equating the derivatives of this function with respect to w and b to 0 gives  
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                 (A11) 

which is the matrix formulation of (A7). Substituting (A11a) into (A10) gives  

,11
2
1 TTTTTTTT YbYYXXYYXX

which using (A11b) reduces to the dual:  
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subject to yi i = 0 and i  > 0, i = 1 . . . N  (A12) 
yields the same function value that is obtained by the KKT conditions in (A7). On the 
whole, maximizing LD is an easier task than minimizing LP. This is mainly so because the 
constraints in (A12) are constraints on the Lagrange multipliers, and these are much easier 
to handle than the constraints c - e in (A7), which are constraints on function values.  

Having found the ˆ that maximizes LD, the estimated hyperplane weights ŵ are ob-
tained upon applying (A7a) or (A11a), and b̂  can be found from any i for which 0ˆ i ,

upon noting in (A7e) that if i  0, then yi(wT xi + b) - 1 = 0. In this last equation b is the 
only unknown.  
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B Linear separation when the data are not linearly separable: soft 
margin approach 

When the data are not linearly separable, a perfectly separating linear hyperplane does not 
exist. In this case a so-called soft margin hyperplane can be found upon relaxing the con-
straints yif(xi) > 1: these constraints are now replaced by  

yif(xi) + i  1, i  0, i = 1 . . . N.         (B1) 
The variables i (one per observation) are known as slack variables; they indicate the 

degree of violation of linear separability. The slack of an observation is the extent to which 
it fails to have a function value > 1 or < -1 on the canonical hyperplane. So  

.00)(1..,1)(
)(10)(1..,1)(

iiiii

iiiiiii

thenxfyifeixfyif
xfythenxfyifeixfyif         (B2) 

Hence,  
i =max[0,1-yif(xi)).                      (B3) 

As the slack is the extent to which a point fails to have function value >1 or <-1, it is 
proportional to the distance of the point from the margin, i.e. proportional to the length of 
the line segment in Fig. 6.6.2. Fig. A may help to see this for the case of 2-dimensional x; 
the constant of proportionality equals the tangent of the angle between f and the x1/x2 plane.  

The amount of slack can be kept minimal by incorporating it in the equation with a pen-
alty term R, so the problem to solve becomes:  

minimize 
N

i
iRw

1

22

subject to yif(xi) + i > 1 and i > 0, i = 1 . . . N.         (B4) 
This equation must be minimized w.r.t. to both w and . The constraint i > 0 is superflu-
ous: if i < 0 then increasing it to 0 will always decrease the value of the objective function; 
and if the first constraint were met by some i < 0, it will still be met by i = 0. Hence it is 
not necessary to explicitly include the constraint i > 0. The primal Lagrangian for linearly 
inseparable data therefore becomes  
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Again the Lagrangean problem is quadratic with only convex constraints so stationarity 
of (B5) with respect to w, b and , together with several conditions arising from the ine-
quality constraints, solves the soft margin problem:  
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Again a dual formulation in  can be developed. Substituting a and c of (B6) into the 
second line of (B5) gives  
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R
YYXX

which, because of (B6b), and again using (B6c), is equal to  

1
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R
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so that the problem in (B2) is solved by maximizing, with respect to 1 …. N , and subject to 
yi i = 0, the following dual:  
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where the symbol ij is the Kronecker  which is 1 if i = j and 0 otherwise. R is the same 
user specified parameter as in (B5). The difference between (B7) and (A12) is in the term 

ij/R: in the soft margin case the diagonal of the N × N matrix XXT is increased by an 
amount 1/R, so that the soft margin SVM with 2-norm on  can be interpreted as a ridge 
technique. The parameter R has to be chosen by the user; Appendix C will give a heuristic 
to help in this choice.  

With non-separable data too, maximizing the dual is easier than minimizing the primal. 
But the dual formulation has another advantage. The data appear in it only in the form of 
inner products xi

T xj. This property makes the dual formulation very attractive for use in the 
feature space, as will become clear in the nexet section.  

C Nonlinear separation: Kernels and feature space 

Recall that nonlinear separation of the data may be achieved by means of linear separation 
in a suitably defined feature space. We now first give a definition:  
Definition If K(a, b) = [ (a)]T (b), with (a) = ( 1(a), 2(a), 2(a),…, M(a)) some func-
tion of a and M usually larger than dim(a), then K(a, b) is a kernel function.

If a kernel function K and associated transformation  have been identified, then of 
course also [ (a)]T (b) = K(a, b). This may seem trivial and of little practical use, but it is 
not. Recall that in the data space X, the dual is given by  
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with ij the Kronecker delta. In the feature space F however we would have  
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If it were possible to find a simple kernel function K(xi, xj), this kernel function could be 
substituted for the inner product [ (xi)]T (xj) in (C1). Instead of having to work in the high 
dimensional feature space F we could then just minimize in ordinary N-dimensional data 
space, with respect to 1, ..., N :
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subject to yi i = 0 and i > 0, i = 1 . . . N.      (C2) 
For the interpretation of a kernel function, note that the inner product xi

T xj can be seen 
as a similarity measure between the two data points xi and xj. Generalizing this, any kernel 
function K(xi, xj) = [ (xi)]T (xj) could be regarded as a similarity measure.  

For suitable kernels the optimization problem in (C2) is still convex, so it still only has a 
single optimum in the feature space F, i.e. there are no local optima. To find the global op-
timum, Platt's Sequential Minimal Optimization or SMO-algorithm (Platt 1999) can be 
used. This algorithm is also described in Section 7.5 of Cristianini and Shawe-Taylor 
(2000).

The question now is how to choose a suitable measure K(xi, xj) for the similarity be-
tween two objects or sampling sites. A good help here is Mercer's theorem, which says 
(Cristianini and Shawe-Taylor 2000) that a symmetric function K(xi, xj) on X is a kernel if 
and only if the matrix K, given by Kij=K(xi, xj) is positive semidefinite for all possible i and 
j. Mercer's theorem implies that similarity measures which may yield negative eigenvalues 
with PCA are not suitable kernels, see e.g. Pielou (1984), Legendre and Gallagher (2001) or 
Legendre and Anderson (1999).  

It can be shown that the Gaussian function 
K(xi, xj) = exp[-||xi- xj||2/ 2]                                         (C3) 

is a kernel, see, e.g. Cristianini and Shawe-Taylor (2000), who give examples of kernels 
and associated transformation functions . The Gaussian kernel is very often used. It is also 
used in the analyses in this paper.  

From (C2), one sees that 1/R has to be small relative to the diagonal values of the kernel 
matrix. With a Gaussian kernel, whose formula is given in (C3), these diagonal values can 
be calculated as K(xi, xi) = exp[-||xi- xi||2/ 2]=1. So when using a Gaussian kernel the value 
1/R should be small relative to 1.  

Unfortunately, there is no once-and-for all best value for 1/R. This can best be seen 
when the objective function in (B4) is divided by R, and hence becomes to  
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The equation is now cast in the formulation of a ridge technique, and the best choice for 
1/R can be seen to depend on the total amount of slack, i.e. on the separability of the data.  

Once the parameters ˆ and b̂ have been estimated, the classification function for a fu-
ture observation p becomes  

bxpKy
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,                                           (C4) 

and p will be classified as class 1 whenever f̂ (p) > 0, and as class -1 whenever f̂ (p) < 0.  
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7.1 Introduction 

The goal of the PAEQANN project was to develop general methodologies, based on ad-
vanced modelling techniques, for predicting structure and diversity of key aquatic commu-
nities under natural and man-made disturbances. This allowed the detection of the signifi-
cance of various environmental variables that structure these aquatic communities. These 
have been shown to reveal predictable changes due to natural variability and human distur-
bances. Natural conditions are described as undisturbed by human activities and man-made 
disturbances are defined as various pollutants, discharge regulation etc. 

Such an approach to the analysis of aquatic communities made it possible to: 
1.  set up robust and sensitive ecosystem evaluation procedures that will work across a large 

range of running water ecosystems throughout Europe;
2. point out the cause and effect relationships between environmental conditions (physical, 

chemical, due to management actions) and certain relevant aquatic communities (dia-
toms, macroinvertebrates, and fish) and subsequently,

to predict biocenosis structures in disturbed ecosystems, taking into account all the 
relevant ecological variables, 

3. test ecosystem sensitivity to disturbances, and
4. explore specific actions to be taken for the restoration of ecosystem integrity. 

The long-term aim of these investigations was therefore to help to define strategies for 
conservation and restoration of ecosystems, compatible with local and regional develop-
ment, and supported by a strong scientific backup. The development of these general meth-
odologies allowed the: 
1. provision of predictive tools that can be easily applied to define the most effective poli-

cies and institutional arrangements for resource management; 
2. application of the most effective and innovative techniques (mainly Artificial Neural 

Networks) to identify problems in ecosystem functioning, resulting from ecosystem deg-
radation from human impact, and to model relevant biological resources; 

3. full exploitation of existing information, reducing the amount of field work (that is both 
expensive and time consuming) needed in order to assess the health of freshwater eco-
systems;

4. exploration of specific actions to be taken for restoration of ecosystem integrity,
5. promotion of collaboration among scientists of different interested countries and re-

search fields, by encouraging collaboration and dissemination of results and techniques. 

This is why the structure of the software developed in the PAEQANN project is pre-
sented here, as well as indications as to how the software is working.

*  Funding for this research was provided by the EU project PAEQANN (N° EVK1-
CT1999-00026).

† Correspondence: park@cict.fr 
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7.2 Software aims 

The main objective of the software is to suggest a set of tools for water management and 
water policies in order to facilitate the assessment of ecological quality and perturbations of 
stream ecosystems. These tools will provide information about running water quality as 
well as community structure, and allow identifying measures which should be taken to re-
store biological integrity in running waters. Hopefully, the study can be considered as a first 
step toward linking the improvement of water quality through specific management meas-
ures (e.g. waste water treatment, habitat restoration, etc.) with the expected improvement in 
ecological and biological value of running water systems. It will also allow scientists and 
ecosystem managers to consult the occurrence patterns of organisms in streams based on 
the database used in the tool, visualise the results of patterning and predicting models with 
existing data, and provide the possibility of testing the new data based on models developed 
with existing data. 

7.3 System requirements 

The program has been implemented for the Microsoft Windows operating system and is 
available as a single compressed archive containing all the files required for installation. It 
is recommended to be operated under Windows XP with 64-plus megabyte memory, high 
resolution graphic video, and at least a Pentium III 500 MHz.

7.4 Installing/Uninstalling 

The installation procedure is based on standard Windows procedure, familiar to most users. 
To install, run setup.exe and follow all steps required to install the software correctly. The 
installation process is automatic and the default path is recommended (c:\Program 
files\paeqann). There is no need to restart the computer, once installation is complete. The 
icon of the program is created in the desktop window.

To uninstall the software, there are two possibilities: 
1. “Start” in the taskbar  “PAEQANN folder”  “uninstall” 
2. “Start” in the taskbar  “Control panel”  “Add or Remove Programs” 

“PAEQANN”

7.5 Models implemented in the tool 

Two different artificial neural networks (ANNs) - self-organizing map (SOM) and multi-
layer perceptron (MLP) with a backpropagation algorithm - were used to develop the mod-
els in the tool. The SOM is the most well known ANN with unsupervised learning rules and 
performs a topology-preserving projection of the data space onto a regular two-dimensional 
space. In the project, the SOM as an ordination method was applied to summarize the vari-
ability of the data. Thus, sampling sites could be arranged on the reduced dimensions, so 
that these arrangements optically summarize the spatial variability of their biological and 
environmental features. The MLP is based on a supervised learning rule, .i.e., the network 
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is built with a dataset where the outputs are known. In the project, the MLP was used to 
predict the biological attributes with environmental variables and to evaluate the influence 
of the environmental variables on communities using a sensitivity analysis with a partial 
derivative algorithm (PaD). Details of the model structures and their results are given in 
chapters 3, 4 and 5. 

Data used in the tool

Three main aquatic taxonomic groups (diatoms, benthic macroinvertebrates, and fish) were 
used to implement the models. Diatom data are available in France, Luxemburg, Belgium, 
and Austria, benthic macroinvertebrates in France, the Netherlands, Luxemburg, and Aus-
tria, and fish in France (nationwide and Garonne basin), Belgium, Luxemburg, and Italy 
(Table 7.1). Diatom data were analysed on a European scale after building one database, 
while macroinvertebrates and fish were analysed nationally for each country.  Details on 
datasets of organisms are given in section 7.7. 

Table 7.1. Data implemented in the tool 

Organisms Country available where available Data type 

Diatoms France, Luxemburg, Belgium, Austria Species

Macroinvertebrates France, Netherlands, Luxemburg,
Austria

Species,
functional feeding group 

Fish France, Luxemburg, Belgium, Austria Species, trophic guild 

Structure and function 

The tool functions basically consist of three parts: community data visualization, commu-
nity data ordination, and prediction of community structure. The latter two functions can 
handle user inputs, whereas the first one only performs a database query based on the 
graphical selection of a sampling site on a scalable map, there are two ways to use the tool: 
by selecting an organism picture. Secondly, by selecting a country, the organisms or the 
country's flags with available data are activated. These two ways are associated. To aid us-
ers, a HELP document, which gives the users direct context-related supports, is written in 
HTML format and available in the tool. Details of the usages are explained in section 7.6. 

Community data visualization can be activated by selecting a sampling site on water 
network systems in the scalable map. The scalable map window will change into an alpha-
numerical window where all the data about environmental data as well as species or 
broader groups of organisms are displayed. By using the function 'zoom in' or 'zoom out', 
users can find more precise locations of sampling sites on the geographical map. With the 
latter, users can choose a sampling site by clicking on it/by pointing the cursor of the 
mouse. On selecting a site, users can recognize the characteristics of sampling sites with 
environmental variables measured and community composition in the corresponding site. 
In case more than a single replicate of the sampling is available at a given site (especially in 
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diatoms), the user will be allowed to select the sample to be visualized using a drop-down 
list box. 

The prediction of community structure function is based on the MLP that has been 
trained in order to predict the presence/absence or the abundance of each species or group 
of organisms on the basis of environmental data. Two options are available after selecting 
the prediction function. In fact, the user can either visualize information about the underly-
ing model or obtain predictions based on his/her data.

Firstly, users can analyse the sensitivity of the model with respect to predictive variables 
based on the PaD and the overall agreement between predicted and observed data for each 
species or group of organisms  However, it is also possible to compare the predicted and 
observed data at each sampling site by selecting them on a scalable map. Users can chose a 
species (or group) using a drop-down list box. By changing the species concerned the rela-
tive contribution of environmental variables and predictability of species are also modified 
correspondingly. Furthermore, it is possible to analyse the response of the species accord-
ing to the changes of a variables in a scatter plot. It is useful to observe the sensitive range 
of the species on the environmental changes.

Secondly users are allowed to predict the community composition (at species or at 
broader group level, depending on the available models) by entering environmental data 
into the fields of a dialog box. In the column to input new environmental variables, mean 
values of each environmental variable are provided as default. The new environmental val-
ues and the results of the prediction can be saved in different files. If users wish to predict 
the communities of several sites, they have access to the environmental data saved in the 
data file in the tool.

The results of the model implemented in the tool do not give perfect predictions of real 
data, although the best results are implemented in the tool. Generally, the results of the 
learning data showed high predictability with greater than 0.9 of correlation coefficients be-
tween observed and estimated values. However, the prediction results with the new datasets 
showed an overall correlation coefficient of 0.6 between observed and predicted values and 
high variations in predictability depending on the datasets with correlation coefficients in 
the range 0.2~0.9. When the species are predicted, normally abundant species show high 
predictabilities, whereas rare ones display low values. 

The community data ordination function relies on the hexagonal lattice of the SOM, 
which is displayed at two different levels of detail as far as the recognition of clusters of 
units is concerned. The clusters of communities are also presented on the geographical map. 
By selecting a group in the SOM map, only corresponding sampling sites are displayed on 
the geographical map. It is always possible to display the structure of each SOM unit as 
well as the correspondence between SOM units and real observations. The structure of the 
SOM units is displayed as a bar chart representing the abundance or the probability of pres-
ence for each species or group of organisms, whereas the correspondence between SOM 
units and sampling sites is represented on a scalable map by colour and hatching coding the 
site symbols. Each environmental variable can be also mapped onto the SOM, where it is 
represented in grey scale. To visualize the environmental variables on the SOM map, the 
mean values of the each variable were calculated from the raw data of each sample assigned 
in each map unit. The users are also allowed to input their community composition data to 
be projected onto the SOM, where the best matching unit will be displayed. The sizes of the 
SOM maps were chosen for convenience of visualization and interpretation. The ordina-
tions of communities with the SOM were in good agreement with those of classical multi-
variate analyses, published in the scientific papers in the PAEQANN project.
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7.6 How to use the software 

Main window 

The main window of the program consists of three parts: selection of organism, selection of 
country, and command (Fig. 7.1). Each part is presented in the following sections. Dataset 
and model consists of different organisms in different countries or regions. Users can visu-
alise the datasets and results of the models from the visualization window. There are two 
ways to access the visualisation window:

1. Select organism  Select country  visualisation window 
2. Select country  Select organism  visualisation window 

Selection of an organism
Three biological organisms are considered:  fish, diatoms and macroinvertebrates. Users 
can choose one by selecting a picture (Fig. 7.1A). 

Selection of a country 
Eight European partners collaborated in the PAEQANN project. The flags of the countries 
are activated if the dataset is available. Users can choose any activated national flag (Fig. 
7.1B).

A

B

C

A

B

C

Fig. 7.1.  Main window of the PAEQANN tool. (A) Selection of an organism, (B) selection 
of a country, and (C) common commands 

Common commands 
Users can cancel the last action or return to the previous screen by pressing the Cancel or
Back button, or access the help file giving them direct context-related support from the 
Help button (Fig. 7.1C). The Info button displays information about PAEQANN's partners, 
programmers and project organizers. Quit is used to exit the program. These command in-
structions are also used in the visualization window. 
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Visualisation window

This window consists of three parts: action, geographical visualization, and common com-
mand (Fig. 7.2). The action and visualization functions are presented here, and the com-
mand function can be seen in the previous section. 

Action

Users can choose different models. The Prediction button visualizes results of predicting 
models developed through MLP and provides a function to predict new values based on the 
existing dataset, whereas the Ordination button displays classification of the datasets de-
fined by the SOM on a geographical map (Fig. 7.2A). They are explained in detail in the 
proceeding sections. 

A

B

A

B

Fig. 7.2. Visualisation window. (A) Selection of models and (B) visualisation of sampling 
sites

Visualisation

Sampling sites are plotted on the geographical map with the water system network (Fig. 
7.2B). To observe a more precise position of the sampling site, the zoom in and zoom out
buttons can be used. The map can be also moved to four directions (left, right, up and 
down) by using the triangle buttons. When users chose a sampling site on the map, the 
sampling site displays its environmental variables and community composition as shown in 
Figure 7.3.
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Prediction window 

Through Prediction, users can visualize the results of predictive models. There are two 
categories: (i) community and (ii) species (Sp), functional feeding group (FFG), species 
richness (SR) or guild according to the availability in the PAEQANN project database. Us-
ers also can predict (or test) their new data (Fig. 7.4).

Fig. 7.3. Example of visualization of environmental parameters and community composi-
tion in a sampling site chosen from the geographical map 

Fig. 7.4. Selection of prediction parameters 

Sp/FFG/SR/Guild/  --> visualising results 

When this category is chosen, predicted results of Sp, FFG, SR, or Guild one of these pa-
rameters according to the availability of the datasets. Figure 7.5 shows an example of visu-
alization of predictive models predicting abundance of fish species in France. Different tar-
get variables (i.e., species in this case) can be chosen in Figure 7.5A. When the target 
variables are changed, corresponding values are also changed. Users can evaluate the con-
tribution (%) of the environmental variables through a sensitivity analysis using a PaD al-
gorithm (Fig. 7.5A); its partial derivatives of the ANN model response with respect to each 



442      Park YS , Lek S 

environmental variable are provided (Fig. 7.5C). Prediction results are given as scatterplots 
between observed and estimated values (Fig. 7.5D). 

A
B

C D

A
B

C D

Fig. 7.5. Example of predictive models predicting abundance of fish species. (A) Contribu-
tion (%) of environmental variables, (B) available environmental variables, (C) partial de-
rivatives of the model response, and (D) prediction results showing a scatterplot between 
observed and estimated values 

Fig. 7.6. Example window to predict abundance of fish species with given environmental 
variables. The predicted value is given in the Result area of the window.  
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Sp/FFG/SR/Guild/... --> Test new data 

New data can be tested with MLP models trained with available PAEQANN datasets. After 
choosing the Sp/FFG/SR/Guild/... to be predicted, the user can enter new values of envi-
ronmental variables in the column "value" by simply clicking on the default value as shown 
in Figure 7.6. 

Community --> Visualising results 

Through these selections, users can compare predicted values with observed values of 
community composition in a given sampling site. Firstly, a sampling site has to be selected 
from the geographical map (Fig. 7.7), and the results are given in a bar chart (Fig. 7.8).

Fig. 7.7. Visualization of sampling sites to present results of prediction models for commu-
nity composition

Community --> Test new data 

Community composition is predicted with new values of environmental variables. The val-
ues of the variables should be given in the column value in the given range of minimum 
and maximum values by a simple click on the default value. The prediction results appear 
in the corresponding frame Result (Fig. 7.9). Through the Create data structure button, us-
ers can create the structure of the input file needed by the program to predict the communi-
ties at several sites. Through the Open input data button, the environmental input saved in a 
file can be also used to predict community composition. Figure 7.10 displays the 
community prediction results of a selected data file. In the Figure, the program displays the 
results of the first sample (i.e., the sample in the first line of the data file). The results of the 
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of the first sample (i.e., the sample in the first line of the data file). The results of the pre-
dicted models can be saved in a file through the Save Result button (Fig. 7.11). 

Fig. 7.8. Comparison of community composition between predicted and observed values 

         A)                                B) 

Fig. 7.9. Example of prediction of community composition with environmental variables 
(A) and results of community predictions at several sampling sites (B) 
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Ordination window 

Visualization of ordination 

Classification of sampling sites is presented on the geographical map (Fig. 7.10) through 
the choice of the Ordination button in the Visualization window. Samples were classified in 
the SOM map through the SOM learning process with community data, and then the SOM 
units were classified into several corresponding groups using hierarchical cluster analysis 
by means of the Ward linkage method. Different colours of SOM units represent different 
clusters and samples assigned to the cluster are presented on the geographical map in the 
same colour. Thus, the sampling sites can be visualised at two different cluster levels. At 
the first level, all units of the SOM map are visualised on the geographical map in different 
colours. At the second level, units of the map are clustered in several groups according to 
their similarities (community similarity) and the groups are visualised on the geographical 
map in different colours. Different SOM units represent different community types. 

To see the position of the sampling site more precisely, the zoom in and zoom out but-
tons can be used, and the position of the map can be adjusted using four moving buttons 
(left, right, up and down). 

Fig. 7.10. Example of an ordination window indicating fish communities in France 

Additionally, sampling sites in each SOM unit or in each cluster can be visualized on the 
geographical map separately, depending on the selection of the visualization level (Fig. 
7.11). To do so, users should select Site which is located in the upper right areas of the 
SOM map part, and choose one concerning an SOM cell or cluster. By choosing the All
Sites button, all sampling sites are displayed on the geographical map. 

Furthermore, typical community types can be visualized in each SOM unit or in each 
cluster (Fig. 7.12). To do so, Community should be chosen instead of Site, and one SOM 
unit or cluster can be chosen. The values in a SOM unit were estimated through the learn-
ing process of the SOM with community data, and the values in a cluster were calculated as 
a mean from values in SOM units in the cluster. 
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Fig. 7.11. Example of visualization of sampling sites assigned in a cluster 

Fig. 7.12. Example of a typical community composition in a cluster 

Visualization of environmental variables 

Differences of environmental variables are presented on the SOM map trained with com-
munities in the grey scale in the range of minimum and maximum values (Fig. 7.10). Dark 
represents high values, and light low values. Visualization of environmental variables can 
be selected variable by variable. The values in each SOM unit were calculated as mean val-
ues from sampling sites assigned in the SOM unit. In the scroll list displayed on the upper 
areas, users can choose between environmental variables. This visualization is efficient to 
find distribution gradients of environmental variables on the SOM map. 
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Test new data

Users can test new community data with trained SOM by presenting corresponding values
in the column Density in the given ranges (Fig. 7.13A). The tested results are indicated on 
the corresponding unit of the SOM map with a black circle (Fig. 7.13B). 

     A)                                                                                B)

Fig. 7.13. Example of testing new community data in ordination. (A) Input values and (B) 
predicted result 

7.7 Organisms used in the PAEQANN software 

Fish

Belgium

The fish database of Belgium is composed of 804 sampling stations in streams. Four differ-
ent institutes sampled these stations: CSP (398 stations), FUNDP (153 stations), RIVO (36 
stations), IBW (217 stations). In the modelling, 47 species and 9 environmental variables 
were used. 

France

The database is a set coming from the database held by the Conseil Supérieur de la Pêche
(Banque Hydrobiologique et Piscicole), covering a 13 year survey period. The database 
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consists of 688 reference sites, which are fairly evenly distributed across French rivers and 
which contain the occurrence of 40 fish species and regional and local environmental fac-
tors. The data were sampled between 1985and 1998 by the Conseil Supérieur de la Pêche
by means of electrofishing during low-flow periods (from August to October). Fish were 
identified to species in the field, and released in the water. In the modelling, 40 species and 
8 environmental variables were used.

Garonne basin in France 

Relatively little work has been carried out to describe fish assemblages in the Garonne river 
compared to other large rivers of France. This database was thus built to pattern fish rich-
ness in the Garonne river basin. The data were collected between 1986 and 1996 by the la-
boratoire d'ingénierie agronomique, ENSAT (mettre en extenso) and University Paul Sabat-
ier in Toulouse. All sites were sampled once by electrofishing, during low-flow periods. 
Fish were identified to species in the field. The database is a set of 239 reference sites fairly 
evenly distributed across the Garonne river basin containing the presence or absence of 44 
fish species in relation to environmental factors. The database constituted of 6 environ-
mental variables, 3 being geographical variables and the other 3 physical variables. The 
presence/absence data of 44 species were used for ordination of samples, whereas 7 trophic 
guilds were used to be predicted. Five environmental variables (altitude, distance from the 
source, catchment area, water temperature, and discharge) were used in both ordination and 
prediction models. 

Italy

The fish database from the provinces of Vicenza and Belluno (NE Italy) includes 264 sam-
pling sites. For each site 21 environmental variables were recorded: elevation in m?, mean 
depth, % of surface for runs, pools and riffles (3 variables), mean width, % of surface with 
boulders, rocks and pebbles, gravel, sand, silt and clay (5 variables), stream velocity (score 
0-5), % of surface with vegetation covering, % of surface with shadow, anthropic distur-
bance (score 0-4), water temperature, pH, conductivity, gradient, distance from headwater 
source, surface of drainage basin. The fish community is represented as the pres-
ence/absence of 36 species. These data were obtained from two small consulting coopera-
tive enterprises (Aquaprogram scrl and Bioprogram scrl), which collected them on behalf 
of the provincial Administration from 1987 to 1994. 

Luxemburg

The Luxemburg fish database is composed of 34 stream-sampling stations. These stations 
were sampled from 1994 to 1996. Diatom and macroinvertebrates were also sampled in 
these sites for the same period. The Water and Forest Administration helped the CRP-GL to 
sample the fishes. They were sampled in the framework of the biocenotic study of the 
rhithral part of Luxemburg streams. 

Physical variables (geographical position, altitude, geology, source distance, slope, river 
width, water level, speed current, shading, temperature) were measured by the Centre de 
Recherche Public-Gabriel Lippmann (CRP-GL) in the field and on maps (1/25000). Some 
chemical variables were also measured in the field by the CRP-GL (pH, oxygen, conductiv-
ity), and in laboratories (PO4

2-). The other variables were measured by the Ministère de 
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l’Environnement (BOD5, NH4
+, NO2

-, NO3
-, carbonate hardness, total hardness, Cl-, Ptot, 

SO4
2-, K+).

Macroinvertebrates

Austria

The Upper Austrian macroinvertebrate database includes 225 sampling sites. All sampling 
sites are within the Danube basin. The samples were taken between 1996 and 1999, once 
per site, synchronously with diatom and ciliata samples. All samples and measurements 
were taken by the Upper Austrian Water Authority (UAWA). Sampling of organisms is 
part of a long-term survey program of the water authority. Due to some geographical differ-
ences, only data from 102 sites can be used for combination with biological data. As a re-
sult of the agreement on data combination within the PAEQANN project only a reduced 
number of sites could be used for further calculation (77). The database includes 536 
macroinvertebrate taxa and 25 chemical and physical variables. 

France

The matrix contains 425 taxa with different levels of identification from 157 running-water 
sites. A total of 5 environmental variables (stream order, elevation, slope, annual maximal 
water temperature, and distance to source) are associated with each sampling site.

Luxemburg

The Luxemburg macroinvertebrate database includes 147 different sampling stations. 
Macroinvertebrate samplings were carried out in the same sampling sites as the diatoms 
samplings, and on the same date.  Each station was sampled twice: the first time in autumn, 
and the second in spring. The samplings were carried out from 1994 to 1997. The Luxem-
burg macroinvertebrate database is composed of 292 records. The determinations are for all 
the taxonomic groups made at a specific level. These records came from the small Luxem-
burg streams and were sampled in the framework of the biocenotic study of the rhithral part 
of these streams. This study has two aims: to establish the most complete faunistic inven-
tory (to a specific level), and to provide a quantitative and qualitative analysis with chemi-
cal and biological indices.

Physical variables (geographical position, altitude, geology, source distance, slope, river 
width, water level, speed current, shading, and temperature) were measured by the Centre
de Recherche Public-Gabriel Lippmann (CRP-GL) in the field and on maps (1/25000). 
Some chemical variables were also measured in the field by the CRP-GL (pH, oxygen, 
conductivity), and in the laboratories (PO4

2-). The other variables were measured by the 
Ministère de l’Environnement (BOD5, NH4

+, NO2
-, NO3

-, carbonate hardness, total hard-
ness, Cl-, Ptot, SO4

2-, K+).

The Netherlands

The Dutch database consists of samples which were collected from 664 sites situated in the 
province of Overijssel (the Netherlands); only 609 sites were visited in one season and 55 
sites in two seasons. The objective was to capture the majority of the species and their rela-
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tive abundances present at a given site. At each site, major habitats were selected over a 10 
to 30 m long stretch of the waterbody and were sampled by means of the same sampling ef-
fort. The sampling effort was thus standardised for each site. 

At shallow sites, vegetation habitats were sampled by sweeping a pond-net (200 mm × 
300 mm, mesh size 0.5 mm) several times through each vegetation type over a length of 
0.5-1 m. Bottom habitats were sampled by vigorously pushing the pond net through the up-
per few centimetres of each bottom type over a length of 0.5 to 1m. The habitat samples 
were then combined for the site to give one sample with a standard area of 1.5 m2 1.2m 2 of 
vegetation & 0.3 m2 of bottom). At sites lacking vegetation, the standard sampling was con-
fined to the bottom habitats. At deeper sites, five samples were taken from the bottom habi-
tats with an Ekman-Birge sampler. These five grabs were equivalent to one 0.5 m pond net 
bottom sample. Vegetation habitats were sampled with a pond net as described above. 
Again the total sampling area was standardised as 1.5 m2. Macroinvertebrate samples were 
taken to the laboratory, sorted without any external aid, counted and identified to species 
level.

The sampling dates were spread over the four seasons as well as over several years 
(1981 up to and including 1985). Season was taken into account by defining sampling peri-
ods as nominal “environmental” variables within the analysis. 

A data sheet was used to note a number of abiotic and some biotic variables in the field. 
Some were measured directly (width, depth, surface area, temperature, transparency, per-
centage of vegetation cover, percentage of sampled habitat), others (such as regulation, sub-
stratum, bank shape) were classified. Field instruments were used to measure oxygen, elec-
trical conductivity, stream velocity and pH. Surface water samples were taken to determine 
chemical variables. Other variables, such as land-use, bottom composition, and distance 
from source, were gathered from additional sources (data from water boards, maps). In to-
tal, 70 abiotic variables were measured at each site. 

Diatoms

Several teams of the PAEQANN network were involved in providing diatom records and 
the corresponding environmental data: CEMAGREF (France), CRPGL (Luxembourg), 
ARCS (Austria) and LFE-URBO-FUNDP (Belgium), coordinator of the “diatom group”. 

The PAEQANN Diatom Database comprises 2847 records in total. To make a list of 
sufficiently representative and/or significant taxa and to guarantee sufficient homogeneity 
among samples, only records comprising at least 380 counted objects, and originating from 
sampling carried out on stony substrates were selected for further analyses. Consequently, 
2147 records were finally available for further analysis, among which 467 were identified 
as reference, according to their IPS‡ value (equal or higher than 16). 1719 different taxa 
names were recorded for the whole database, among which 1255 different taxa could be 
identified. After grouping, 1051 taxa were potentially available for further analysis. A se-
lection of taxa was nevertheless made prior to analysis, in order to remove occasional taxa; 
this led to a list of 123 taxa for the reference data matrix, and 283 for analysis of the 2147 
records constituting the whole database data matrix. 

Finally, it must be mentioned that in order to implement the PAEQANN tool, a simpli-
fied MS Access Diatom database was produced.

‡ IPS = Index of Pollution Sensitivity 
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Scardi M*

Understanding the way community structure is affected by environmental conditions is a 
key issue in modern ecology, especially since the advent of ordination techniques and, in 
particular, of multivariate statistical methods for direct gradient analysis. New statistical 
tools have been developed by ecologists to address this problem more effectively, and they 
have been widely accepted and used in many studies. Canonical Correspondence Analysis 
(ter Braak 1987), which constrains coenocline analysis to physical, chemical and other en-
vironmental variables, is an example of such an ecologically-inspired data analysis proce-
dure.

Although data analysis techniques made it possible to infer relationships between com-
munity structure and environmental variables, they are mainly useful for descriptive pur-
poses or, to a limited extent, to test ecological hypotheses. Of course, some results of data 
analysis procedures can be used as a basis for assessing species' responses to environmental 
variables, but this is only possible to a limited extent and from a strictly qualitative point of 
view.

Therefore, if predictions about community structure are needed, suitable modelling 
techniques have to be used. In particular, statistical methods that directly relate environ-
mental variables to species presence and/or abundance can play a role, ranging from very 
simple regression models to more complex ones (e.g. Partial Least Squares). However, only 
a few applications have proven to be useful, such as those based on logistic regression for 
predicting species presence or absence given adequate environmental data. 

Modelling single species distributions as a function of environmental (mostly abiotic) 
information is certainly an interesting task, but predicting community structure is a more 
complex problem that usually cannot be solved just by assembling single species models 
into a more complex composite model. In fact, in many cases the available information 
about the environmental relationships (both biotic and abiotic) that determine species dis-
tributions is too limited, and it cannot support the development of reliable models. 

Therefore, it is obvious that the efficiency of the modelling approach plays a fundamen-
tal role in predicting community structure in such data-limited situations. This is the reason 
why the number of ecological applications involving Artificial Intelligence (A.I.) tech-
niques and Machine Learning methods has grown significantly during the last ten years. 

These new modelling methods rely on computing power that is now easily available to 
extract as much useful information as possible from the existing - and usually insufficient - 
data. Sometimes these approaches do not provide significant advantages over conventional 
methods, but they are often much more effective than the latter and some applications 
among those that are presented in this book provide clear evidence for their superiority. 

About ten years since the first attempts, ecological applications of A.I. and Machine 
Learning modelling methods are now mature and, in many cases, they are presented with-
out comparisons to conventional counterparts, as their improved performance is accepted. 
Readers who are interested in understanding to what an extent these methods may be bene-
ficial can find complete, yet easy introductions and examples in Fielding (1999) as well as 
in Lek and Guegan (2000). 

A common factor in many applications aimed at modelling freshwater community struc-
ture is that the number of field records is usually limited with respect to the ecological 
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complexity of the problem, thus making it very difficult to reconstruct the causal relation-
ships that link species distribution to environmental variables. However, in such data-poor 
situations other sources of information are often available, although deeply embedded in the 
data sets, and they can be exploited by appropriate modelling methods. 

For instance, many species tend to occur in association with others, while other species 
seldom coexist at the same site. Obviously, this can be due to the biotic interactions that 
make a set of species a community, but in some cases species assemblages are modelled, 
rather than real communities, and therefore the relevance of biotic interactions cannot be 
taken for granted. Nevertheless, relationships between species are still useful from the 
modeller's point of view as they narrow the number of independent combinations of species 
to be predicted. Basically, if two species respond in the same (or in opposite) way to a 
given set of environmental conditions, then the actual dimensionality of the modelling 
problem to be solved is lower than expected and less data are needed to build a good model. 

Moreover, morphodynamic features play a fundamental role in defining the ecological 
characteristics of freshwater ecosystems, specifically in streams and rivers. In other words, 
given a set of physical constraints (e.g. elevation, slope, etc.) only a very limited range of 
ecological conditions is likely to be observed, thus reducing the "degrees of freedom" of 
models aimed at predicting the structure of communities or other biotic assemblages, at 
least within a given ecoregion. 

Such ecological relationships, however, are usually complex, and linear or unimodal re-
sponses that are the basis for most statistical approaches are seldom observed. On the con-
trary, complex non-linear relationships are often involved, and this is probably the more 
important reason for the success of new modelling strategies. In particular, Artificial Neural 
Networks (ANNs) have been successfully applied in many cases, both for predictive model-
ling (usually via supervised methods) and for descriptive modelling, i.e. for revealing un-
derlying patterns in data sets (usually by means of unsupervised methods). The majority of 
the case studies that are presented in this book are based on ANN applications and this is 
clear - although not unbiased - evidence for the role they play in modelling community 
structure.

Independent of the modelling technique, however, there are limits to the predictability of 
species distributions that strictly depend on the intrinsic nature of ecological data sets. In 
fact, different species may occur with very different frequencies in data sets, according to 
their actual density or as a consequence of the sampling strategy or spatial scale. Since spe-
cies presence (as well as abundance) depends on environmental conditions, rare species, as 
well as nearly ubiquitous ones, are usually unpredictable, because in both cases it is virtu-
ally impossible to detect significant correlations between environmental variables and spe-
cies presence (or abundance). 

This limitation cannot be overcome by improving modelling algorithms or by introduc-
ing new techniques. The only viable solution is to modify sampling strategies, making them 
more suited to the modelling needs. As a matter of fact, most attempts at modelling com-
munity structure are usually carried out on the basis of data sets collected for other pur-
poses, e.g. for mapping species distributions via GIS tools or for applying multivariate sta-
tistical methods for indirect gradient analysis. A typical feature in such data sets is a regular 
or random sampling design that is certainly adequate when no prior information is avail-
able, but that often fails to reveal essential information if small scale coenoclines also play 
a role. In these cases, sampling strategies that address variable spatial scales would provide 
much more relevant information, especially when previous data or pilot surveys are avail-
able and the sampling design can be effectively stratified. In this framework, modelling 
community structure, independently of the accuracy of the results obtained in the first at-
tempts, may also induce both a significant optimisation in sampling strategies and a better 
understanding of the factors that control species distributions. 
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New modelling techniques that are able to exploit existing information as efficiently as 
possible (such as ANNs) will certainly catalyze a better ecological understanding of factors 
controlling community structure because of their ability to reproduce complex non-linear 
responses. In particular, sensitivity analysis of such models may provide useful insights into 
the ecological relationships that control species distributions and biotic interactions, thus 
offering clues to improve sampling designs and sampling scales to resolve relevant biotic 
signals. This task is not trivial, of course, and, while several methods have been developed 
(as presented in this book), no well established standards are available at present. However, 
this topic is certainly among the most stimulating and new approaches to sensitivity analy-
sis are emerging. The successful application of methods that elucidate second and possibly 
higher order interactions between abiotic factors in determining species distributions, as 
well as complex interactions among species, will probably be the main goal for the next 
decade in modelling community structure. 

Sensitivity analysis is an example of indirect use of models as tools for stimulating ad-
vances not only in computational methods, but also in the ecological background of the 
modelling applications, thus involving the way data are collected, coded, analyzed, etc. On 
the other hand, ecological issues may play a significant role in improving modelling tech-
niques and especially in adapting them to properly handle the peculiar characteristics of 
ecological data. For instance, using Mean Square Error (MSE) as a measure for goodness of 
fit is a common practice in modelling, and it is certainly adequate for many quantitative 
variables. Therefore, it is usually adopted as a default choice and, in the case of many soft-
ware packages, is the only available option. It is obvious, however, that this way of measur-
ing the distance between observed and modelled data is seldom appropriate when species 
abundance data (not to mention species presence data, i.e. binary data) are taken into ac-
count. The vast amount of similarity and distance coefficient that have been developed for 
measuring differences in community structure are a clear evidence for the inadequacy of 
Euclidean distances and related coefficients from an ecological viewpoint. In particular, 
when community structure is concerned, it is obvious that the role of each species must be 
interpreted in the light of its ecological context. 

A very simple example of this need is in the different weight that should be given to the 
same error in predicting the presence or the abundance of a given species in the case of a 
very simple community (low species richness) and in the case of a more complex one (high 
species richness): MSE obviously fails in this task, because it does not scale the errors with 
respect to the complexity of the community, whereas other coefficients, such as Jaccard or 
Bray-Curtis similarity, do. Thus, significant improvements in community structure model-
ling could be achieved by adapting existing algorithms to their ecological framework, e.g. 
by adopting procedures for measuring modelling errors that are based on appropriate met-
rics. Adaptations of modelling algorithms are probably beyond the capabilities of most 
ecologists, but some are actively working in this field, developing new strategies and meth-
ods for ecological modelling that more closely match their specific needs. 

The need for ecologically sound metrics is not only a problem in predictive modelling, 
of course. As many community ecologists already know, the outcomes of multivariate 
analyses are very deeply influenced by the selected metrics. Not only the results of quanti-
tative analyses often are quite different from those of qualitative ones, but even among the 
results of analyses based on the same type of data there might be significant differences. 
The most obvious example is that the meaning of absence data (zeroes) is not the same in 
all the cases: it can express real absence of a species in a given site, but it can also depend 
on the frequency of its occurrence (i.e. by its density) with respect to the characteristics of 
the sampling design and devices. Thus, the selection of appropriate metrics is a key issue 
even in descriptive models, such as those based on Self-Organizing Maps (see the applica-
tions in this book) as well as those based on conventional ordination techniques. 
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Given the available methods and data, community structure modelling is really feasible 
only in case of "toy" problems or when complexity is somehow reduced. Good results can 
be achieved by focusing on subsets of the whole community (e.g. on assemblages of spe-
cies that are not too complex and that can be sampled in an effective and straightforward 
way, like fish), or by simplifying the way the community structure to be modelled is repre-
sented (e.g. by using a few trophic guilds instead of a complex list of species). In any case, 
the number of successful applications is rapidly increasing, and it is clear that the ability of 
these models to address complex problems is only limited by the availability of adequate 
information, i.e. by the lack of field data, either in general or with respect to the spatial 
scale that is relevant to the distribution of the species to be modelled. Obviously, expecta-
tions for species distribution and community structure modelling are also growing, but po-
tential users have to bear in mind that the reliability of mathematical models depends on the 
adequacy of the data bases that support their development, e.g. no reliable weather forecasts 
would be available if the underlying models were not supported by large meteorological 
observation networks and data bases. 

Despite the difficulties in developing community structure models, the demand for such 
tools in applied ecology is certainly growing, as comparing observed community structure 
with some reference conditions may form the basis for assessing environmental quality. 
This will be the case, for instance, in those European countries that will follow guidelines 
indicated by the EU Water Framework Directive (also known as Directive 2000/60/EC), 
which sets restoration targets and clearly points out that changes in community structure 
with respect to reference conditions are related to changes in the ecological status of a water 
body. However, in many cases natural reference conditions are not available because of the 
lack of genuinely unperturbed water bodies, and only models can provide estimates about 
the expected community structure in such pristine conditions. 

In this rapidly evolving scenario, mathematical models aimed at predicting community 
structure will certainly play a key role in many applied and basic research tasks. Conven-
tional models (e.g. statistical models) will continue to be widely used, but ecological mod-
ellers who want to be on the leading edge will explore new approaches. This book is both a 
showcase of successful applications and a useful reference for those who want to get started 
in this field. 

In this rapidly evolving scenario, mathematical models aimed at predicting community 
structure will certainly play a key role in many applied and basic research tasks. Conven-
tional models (e.g. statistical models) will continue to be widely used, but ecological mod-
ellers who want to be really on the leading edge might want to explore new approaches. 
This book is both a showcase of successful applications and a useful reference for those 
who want to get started in this field. 
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251, 255, 268, 277, 278, 286, 307, 
308, 322, 344, 347, 351, 357, 362, 
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