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To
My Father

Only a well-designed channel performs its functions best.
A blind inert force necessitates intelligent control.

MAHABHARATA
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Preface

This third edition of Flow in Open Channels marks the silver jubilee of the book 
which fi rst appeared in a different format of two volumes in 1982. A revised fi rst edi-
tion combining the two volumes into a single volume was released in 1986. The 
second edition of the book which came out in 1997 had substantial improvement of 
the material from that of the fi rst revised edition  and was very well received as 
refl ected in more than 25 reprints of that edition. This third edition is being brought 
out by incorporating advances in the subject matter, changes in the technology and 
related practices. Further, certain topics in the earlier edition that could be considered 
to be irrelevant or of marginal value due to advancement of knowledge of the subject 
and technology have been deleted.

 In this third edition, the scope of the book is defi ned to provide source material in 
the form of a textbook that would meet all the requirements of the undergraduate 
course and most of the requirements of a post-graduate course in open-channel 
hydraulics as taught in a typical Indian university. Towards this, the following proce-
dures have been adopted:

•  Careful pruning of the material dealing with obsolete practices from the earlier 
edition of the book

•  Addition of specifi c topics/ recent signifi cant developments in the subject matter 
of some chapters to bring the chapter contents up to date. This has resulted in 
inclusion of  detailed coverage on

 Flow through culverts
 Discharge estimation in compound channels
  Scour at bridge constrictions

•  Further, many existing sections have been revised through more precise and 
better presentations. These include substantive improvement to Section 10.6 
which deals with negative surges in rapidly varied unsteady fl ow and Section 
5.7.4 dealing with backwater curves in natural channels.

•  Additional worked examples and additional fi gures at appropriate locations 
have been provided for easy comprehension of the subject matter. 

•  Major deletions from the previous edition for reasons of being of marginal value 
include

  Pruning of Tables 2A.2 at the end of Chapter 2, Table 3A-1 at the end of 
Chapter 3 and Table 5A-1 of Chapter 5

  Section 5.3 dealing with a procedure for estimation of N and M for a trape-
zoidal channel, and Section 5.9 dealing with graphical methods of GVF 
computations

  Computer Program PROFIL-94 at the end of Chapter 5

The book in the present form contains eleven chapters. Chapters 1 and 2 contain the 
introduction to the basic principles and energy-depth relationships in open-channel 
fl ow. Various aspects of critical fl ow, its computation and use in analysis of transitions 

prelims.indd   xiprelims.indd   xi 2/24/2010   3:11:33 PM2/24/2010   3:11:33 PM



are dealt in detail in Chapter 2.  Uniform fl ow resistance and computations are dealt in 
great detail in Chapter 3. This chapter also includes several aspects relating to com-
pound channels. Gradually varied fl ow theory and computations of varied fl ow profi les 
are discussed in ample detail in chapters 4 and 5 with suffi cient coverage of control 
points and backwater curve computations in natural channels. 

Hydraulic jump phenomenon in channels of different shapes is dealt in substantial 
detail in Chapter 6. Chapter 7 contains thorough treatment of some important rapidly 
varied fl ow situations which include fl ow-measuring devices, spillways and culverts. 
Spatially varied fl ow theory with specifi c reference to side channel spillways, side 
weirs and bottom-rack devices is covered in Chapter 8. A brief description of the tran-
sitions in supercritical fl ows is presented in Chapter 9. An introduction to the impor-
tant fl ow situation of unsteady fl ow in open channels is provided in Chapter 10. The 
last chapter provides a brief introduction to the hydraulics of mobile bed channels. 

The contents of the book, which cover essentially all the important normally 
accepted basic areas of open-channel fl ow, are presented in simple, lucid style. A 
basic knowledge of fl uid mechanics is assumed and the mathematics is kept at the 
minimal level. Details of advanced numerical methods and their computational pro-
cedures are intentionally not included with the belief that the interested reader will 
source the background and details in appropriate specialized literature on the subject. 
Each chapter includes a set of worked examples, a list of problems for practice and a 
set of objective questions for clear comprehension of the subject matter. The Table of 
problems distribution given at the beginning of problems set in each chapter will be 
of particular use to teachers to select problems for class work, assignments, quizzes 
and examinations. The problems are designed to further the student’s capabilities of 
analysis and application. A total of 314 problems and 240 objective questions, with 
answers to the above, provided at the end of the book will be of immense use to teach-
ers and students alike.

The Online Learning Center of the book can be accessed at http://www.mhhe.
com/subramanya/foc3e. It contains the following material:

For Instructors
•  Solution Manual
•  Power Point Lecture Slides

For Students
•  Web links for additional reading
•  Interactive Objective Questions

A typical undergraduate course in Open-Channel Flow includes major portions of 
chapters 1 through 6 and selected portions of chapters 7, 10 and 11. In this selection, 
a few sections, such as Sec.1.8, Sec.3.16, Sec. 3.17, Sec. 5.5, Sec. 5.6, Sec. 5.7.3, and 
Sec. 5.7.4, Sec. 5.8, Sec. 5.9, Sec. 6.4, Sec. 6.5 and Sec. 6.8 could be excluded to 
achieve a simple introductory course. A typical post-graduate course would include 
all the eleven chapters with more emphasis on advanced portions of each chapter and 
supplemented by additional appropriate reference material.

In addition to students taking formal courses in Open-Channel Flow offered in 
University engineering colleges, the book is useful to students appearing for AMIE 

xii Preface
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Preface xiii 

examinations. Candidates taking competitive examinations like Central Engineering 
Services examinations and Central Civil Services examinations will fi nd this book 
useful in their preparations related to the topic of water-resources engineering. Prac-
ticing engineers in the domain of water-resources engineering will fi nd this book a 
useful reference source. Further, the book is self-suffi cient to be used in self-study of 
the subject of open-channel fl ow. 

I am grateful to the American Society of Civil Engineers, USA, for permission to 
reproduce several fi gures and tables from their publications; the Indian Journal of 
Technology, New Delhi, for permission to reproduce three fi gures; Mr M Bos of the 
International Institute of Land Reclamation and Improvement, Wageningen, The 
Netherlands, for photographs of the hydraulic jump and weir fl ow;  the  US  Depart-
ment of Interior, Water and Power Resources Service, USA,  for the photograph of 
the side-channel spillway of the Hoover Dam; Dr Chandra Nalluri, of the University 
of New Castle-upon – Tyne, England, for the tables of Keifer and Chu functions and 
The Citizen, Gloucester, England, for the photograph of Severn Bore.

I would like express my sincere thanks to all those who have directly and indi-
rectly helped me in bringing out this revised edition, especially the reviewers who 
gave noteworthy suggestions. 

They are

Suman Sharma TRUBA College of Engineering and Technology 
 Indore, Madhya Pradesh

Achintya Muzaffarpur Institute of Technology
 Muzaffarpur, Bihar

Anima Gupta Government Women’s Polytechnic
 Patna, Bihar

D R Pachpande JT Mahajan College of Engineering
 Jalgaon, Maharashtra

V Subramania Bharathi Bannari Amman Institute of Technology
 Anna University, Coimbatore, Tamil Nadu

K V Jaya Kumar National Institute of Technology
 Warangal, Andhra Pradesh

Comments and suggestions for further improvement of the book would be greatly 
appreciated. I could be contacted at the following e-mail address: subramanyak1@
gmail.com

K SUBRAMANYA
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Each chapter begins with an 
Introduction that gives a brief 
summary of the background 
and contents of the chapter.

Each chapter has been neatly 
 divided into sections and sub-sec-
tions so that the subject matter is 
studied in a logical progression of 
ideas and concepts.
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Photographs of important fl ow 
phenomenon are presented at 
appropriate locations.

Worked Examples, totaling to 
122, are  provided in suffi cient 
number in each chapter and at 
appropriate locations to aid in 
understanding of the text mate-
rial.
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Illustrations are essential tools 
in books on Engineering sub-
jects. Ample illustrations are 
provided in each chapter to 
illustrate the concepts, func-
tional relationships and to 
provide defi nition sketches for 
mathematical models. 

A table of Problem Distribution is 
provided at the top of each set of 
Problems. These are very help-
ful to teachers in setting class 
work, assignments, quizzes and 
examinations.
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Each chapter contains a set of 
practice problems, totaling to 314 
problems in the book. Solutions 
to these require not only appli-
cation of the material covered 
in the book but also enables the 
student to strive towards good 
comprehension of the subject 
matter. Answers are provided for 
all the problem sets at the end of 
the book.

Each chapter contains a set of 
Objective Questions, totaling to 
240 questions in the book. This en-
ables the user to obtain clear com-
prehension of the subject matter. 
Answers to all the Objective Ques-
tion sets are provided at the end of 
the book.
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At the end of each chapter, 
a comprehensive list of ref-
erences are provided.

To effectively use the internet re-
sources, references to relevant 
web addresses are provided in the 
text and a list of useful websites 
related to Open Channel Hydrau-
lics is provided at the end of the 
book.
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1.1 INTRODUCTION

An open channel is a conduit in which a liquid fl ows with a free surface. The free 
surface is actually an interface between the moving liquid and an overlying fl uid 
medium and will have constant pressure. In civil engineering applications; water is 
the most common liquid with air at atmospheric pressure as the overlying fl uid. As 
such, our attention will be chiefl y focused on the fl ow of water with a free surface. 
The prime motivating force for open channel fl ow is gravity.

In engineering practice, activities for utilization of water resources involve open 
channels of varying magnitudes in one way or the other. Flows in natural rivers, 
streams and rivulets; artifi cial, i.e. man-made canals for transmitting water from a 
source to a place of need, such as for irrigation, water supply and hydropower genera-
tion; sewers that carry domestic or industrial waste waters; navigation channels—are 
all examples of open channels in their diverse roles. It is evident that the size, shape 
and roughness of open channels vary over a sizeable range, covering a few orders of 
magnitude. Thus the fl ow in a road side gutter, fl ow of water in an irrigation canal and 
fl ows in the mighty rivers, such as the Ganga and the Brahmaputra, all have a free sur-
face and as such are open channels, governed by the same general laws of fl uid 
mechanics. Basically, all open channels have a bottom slope and the mechanism of 
fl ow is akin to the movement of a mass down an inclined plane due to gravity. The 
component of the weight of the liquid along the slope acts as the driving force. The 
boundary resistance at the perimeter acts as the resisting force. Water fl ow in open 
channels is largely in the turbulent regime with negligible surface tention effects. In 
addition, the fact that water behaves as an incompressible fl uid leads one of appreciate 
the importance of the force due to gravity as the major force and the Froude number as 
the prime non-dimensional number governing the fl ow phenomenon in open channels.

1.2 TYPES OF CHANNELS

1.2.1 Prismatic and Non-prismatic Channels

A channel in which the cross-sectional shape and size and also the bottom slope are 
constant is termed as a prismatic channel. Most of the man-made (artifi cial) chan-
nels are prismatic channels over long stretches. The rectangle, trapezoid, triangle 
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2 Flow in Open Channels

and circle are some of the commonly used shapes in manmade channels. All natural 
channels generally have varying cross-sections and consequently are non-prismatic.

1.2.2 Rigid and Mobile Boundary Channels

On the basis of the nature of the boundary open channels can be broadly classifi ed 
into two types: (i) rigid channels, and (ii) mobile boundary channels.

Rigid channels are those in which the boundary is not deformable in the sense that 
the shape, planiform and roughness magnitudes are not functions of the fl ow param-
eters. Typical examples include lined canals, sewers and non-erodible unlined canals. 
The fl ow velocity and shear-stress distribution will be such that no major scour, ero-
sion or deposition takes place in the channel and the channel geometry and roughness 
are essentially constant with respect to time. The rigid channels can be considered to 
have only one degree of freedom; for a given channel geometry the only change that 
may take place is the depth of fl ow which may vary with space and time depending 
upon the nature of the fl ow. This book is concerned essentially with the study of rigid 
boundary channels.

In contrast to the above, we have many unlined channels in alluvium—both man-
made channels and natural rivers—in which the boundaries undergo deformation due 
to the continuous process of erosion and deposition due to the fl ow. The boundary of 
the channel is mobile in such cases and the fl ow carries considerable amounts of sed-
iment through suspension and in contact with the bed. Such channels are classifi ed as 
mobile-boundary channels. The resistance to fl ow, quantity of sediment transported, 
channel geometry and planiform, all depend on the interaction of the fl ow with 
the channel boundaries. A general mobile-boundary channel can be considered to 
have four degrees of freedom. For a given channel not only the depth of fl ow but also 
the bed width, longitudinal slope and planiform (or layout) of the channel may 
undergo changes with space and time depending on the type of fl ow. Mobile-boundary 
channels, usually treated under the topic of sediment transport or sediment engineer-
ing,1,2 attract considerable attention of the hydraulic engineer and their study consti-
tutes a major area of multi-disciplinary interest.

Mobile-boundary channels are dealt briefl y in Chapter 11. The discussion in rest 
of the book is confi ned to rigid-boundary open channels only. Unless specifi cally 
stated, the term channel is used in this book to mean the rigid–boundary channels.

1.3  CLASSIFICATION OF FLOWS

1.3.1 Steady and Unsteady Flows

A steady fl ow occurs when the fl ow properties, such as the depth or discharge at a 
section do not change with time. As a corollary, if the depth or discharge changes 
with time the fl ow is termed unsteady.

In practical applications, due to the turbulent nature of the fl ow and also due to the 
interaction of various forces, such as wind, surface tension, etc., at the surface there 
will always be some fl uctuations of the fl ow properties with respect to time. To 
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Introduction 3 

account for these, the defi nition of steady fl ow is somewhat generalised and the clas-
sifi cation is done on the basis of gross characteristics of the fl ow. Thus, for example, 
if there are ripples resulting in small fl uctuations of depth in a canal due to wind 
blowing over the free surface and if the nature of the water-surface profi le due to the 
action of an obstruction is to be studied, the fl ow is not termed unsteady. In this case, 
a time average of depth taken over a suffi ciently long time interval would indicate a 
constant depth at a section and as such for the study of gross characteristics the fl ow 
would be taken as steady. However, if the characteristics of the ripples were to be 
studied, certainly an unsteady wave movement at the surface is warranted. Similarly, 
a depth or discharge slowly varying with respect to time may be approximated for 
certain calculations to be steady over short time intervals.

Flood fl ows in rivers and rapidly varying surges in canals are some examples of 
unsteady fl ows. Unsteady fl ows are considerably more diffi cult to analyse than steady 
fl ows. Fortunately, a large number of open channel problems encountered in practice 
can be treated as steady-state situations to obtain meaningful results. A substantial 
portion of this book deals with steady-state fl ows and only a few relatively simple 
cases of unsteady fl ow problems are presented in Chapter 10.

1.3.2 Uniform and Non-uniform Flows

If the fl ow properties, say the depth of fl ow, in an open channel remain constant along 
the length of the channel, the fl ow is said to be uniform. As a corollary of this, a fl ow 
in which the fl ow properties vary along the channel is termed as non-uniform fl ow 
or varied fl ow.

A prismatic channel carrying a certain discharge with a constant velocity is an 
example of uniform fl ow [Fig. 1.1(a)]. In this case the depth of fl ow will be constant 
along the channel length and hence the free surface will be parallel to the bed. It is 
easy to see that an unsteady uniform fl ow is practically impossible, and hence the 
term uniform fl ow is used for steady uniform fl ow.

Flow in a non-prismatic channel and fl ow with varying velocities in a prismatic 
channel are examples of varied fl ow. Varied fl ow can be either steady or unsteady.

1.3.3 Gradually Varied and Rapidly Varied Flows

If the change of depth in a varied fl ow is gradual so that the curvature of streamlines 
is not excessive, such a fl ow is said to be a gradually varied fl ow (GVF). Frictional 
resistance plays an important role in these fl ows. The backing up of water in a stream 
due to a dam or drooping of the water surface due to a sudden drop in a canal bed are 
examples of steady GVF. The passage of a fl ood wave in a river is a case of unsteady 
GVF [Fig. 1.1(b)].

If the curvature in a varied fl ow is large and the depth changes appreciably over 
short lengths, such a phenomenon is termed as rapidly varied fl ow (RVF). The fric-
tional resistance is relatively insignifi cant in such cases and it is usual to regard RVF 
as a local phenomenon. A hydraulic jump occurring below a spillway or a sluice gate 
is an example of steady RVF. A surge moving up a canal [Fig. 1.1(c)] and a bore trav-
eling up a river are examples of unsteady RVF.
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4 Flow in Open Channels

Fig. 1.1  Various types of open channel fl ows: (a) Uniform fl ow, (b) Gradually varied fl ow 

(c) Rapidly varied fl ow and (d) Side Weir: Spatially varied fl ow
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Introduction 5 

1.3.4 Spatially Varied Flow

Varied fl ow classifi ed as GVF and RVF assumes that no fl ow is externally added to 
or taken out of the canal system. The volume of water in a known time interval is 
conserved in the channel system. In steady-varied fl ow the discharge is constant at all 
sections. However, if some fl ow is added to or abstracted from the system the result-
ing varied fl ow is known as a spatially varied fl ow (SVF).

SVF can be steady or unsteady. In the steady SVF the discharge while being 
steady-varies along the channel length. The fl ow over a side weir is an example 
of steady SVF [Fig. 1.1(d)]. The production of surface runoff due to rainfall, known 
as overland fl ow, is a typical example of unsteady SVF.

Classifi cation. Thus open channel fl ows are classifi ed for purposes of identifi cation 
and analysis as follows:

Figure 1.1(a) to (d) shows some typical examples of the above types of fl ows

1.4 VELOCITY DISTRIBUTION

The presence of corners and boundaries in an open channel causes the velocity vec-
tors of the fl ow to have components not only in the longitudinal and lateral direc-
tion but also in normal direction to the fl ow. In a macro-analysis, one is concerned 
only with the major component, viz., the longitudinal component, v

x
.
 
The other two 

components being small are ignored and v
x
 is designated as v. The distribution of v 

in a channel is dependent on the geometry of the channel. Figure 1.2(a) and (b) show 
isovels (contours of equal velocity) of v for a natural and rectangular channel respec-
tively. The infl uence of the channel geometry is apparent. The velocity v is zero at 
the solid boundaries and gradually increases with distance from the boundary. The 
maximum velocity of the cross-section occurs at a certain distance below the free 
surface. This dip of the maximum velocity point, giving surface velocities which 
are less than the maximum velocity, is due to secondary currents and is a function 
of the aspect ratio (ratio of depth to width) of the channel. Thus for a deep narrow 
channel, the location of the maximum velocity point will be much lower from the 
water surface than for a wider channel of the same depth. This characteristic location 

Open
Channel-
Flow

Steady

Unsteady

Uniform

Gradually-varied

Gradually-varied

Rapidly-varied

Spatially-varied

Rapidly-varied

Spatially-varied

(GVF)

(GVUF)

(RVF)

(RVUF)

(SVF)

(SVUF)
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6 Flow in Open Channels

of the maximum velocity point below the surface has nothing to do with the wind 
shear on the free surface.

A typical velocity profi le at a section in a plane normal to the direction of fl ow is 
presented in Fig. 1.2(c). The profi le can be roughly described by a logarithmic distri-
bution or a power-law distribution up to the maximum velocity point (Section 3.7). 
Field observations in rivers and canals have shown that the average velocity at any 
vertical v

av
, occurs at a level of 0.6 y

0
 from the free surface, where y

0
 = depth of fl ow. 

Further, it is found that

 
v

v v
av =

+0 2 0 8

2
. .

 
(1.1)

in which v
0.2

 = velocity at a depth of 0.2 y
0
 from the free surface, and v

0.8
 = velocity 

at a depth of 0.8 y
0 
from the free surface. This property of the velocity distribution is 

Fig. 1.2  Velocity distribution in open channels: (a) Natural channel (b) Rectangular channel 

and (c) Typical velocity profi le
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∇
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Introduction 7 

commonly used in stream-gauging practice to determine the discharge using the 
area-velocity method. The surface velocity v

s
 is related to the average velocity v

av
 as

 v
av

 = kv
s
 (1.2)

where, k = a coeffi cient with a value between 0.8 and 0.95. The proper value of k 
depends on the channel section and has to be determined by fi eld calibrations. Know-
ing k, one can estimate the average velocity in an open channel by using fl oats and 
other surface velocity measuring devices.

1.5 ONE-DIMENSIONAL METHOD OF FLOW ANALYSIS

Flow properties, such as velocity and pressure gradient in a general open channel 
fl ow situation can be expected to have components in the longitudinal as well as 
in the normal directions. The analysis of such a three-dimensional problem is very 
complex. However, for the purpose of obtaining engineering solutions, a majority of 
open channel fl ow problems are analysed by one-dimensional analysis where only 
the mean or representative properties of a cross section are considered and their 
variations in the longitudinal direction is analysed. This method when properly used 
not only simplifi es the problem but also gives meaningful results.

Regarding velocity, a mean velocity V for the entire cross-section is defi ned on the 
basis of the longitudinal component of the velocity v as

 

V
A

v dA
A

= ∫
1

 

(1.3)

This velocity V is used as a representative velocity at a cross-section. The dis-
charge past a section can then be expressed as

 
Q v dA VA= =∫  

(1.4)

The following important features specifi c to one dimensional open channel fl ow are 
to be noted:

• A single elevation represents the water surface perpendicular to the fl ow.
• Velocities in directions other than the direction of the main axis of fl ow are 

not considered.

Kinetic Energy The fl ux of the kinetic energy fl owing past a section can also be 
expressed in terms of V. But in this case, a correction factor α will be needed as the 
kinetic energy per unit weight V 2/2g will not be the same as v 2/2g averaged over the 
cross-section area. An expression for α can be obtained as follows:

For an elemental area dA, the fl ux of kinetic energy through it is equal to

 

mass

time

KE

mass

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ = ( )ρv dA

v2

2  
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8 Flow in Open Channels

For the total area, the kinetic energy fl ux

 

= =∫
ρ

α
ρ

2 2
3 3

A

v dA V A

 

(1.5)

from which

 
α =

∫ v dA

V A

3

3
 

(1.6)

or for discrete values of v,

 
α =

Σ Δv A

V A

3

3
 

(1.7)

α  is known as the kinetic energy correction factor and is equal to or greater than 
unity.

The kinetic energy per unit weight of fl uid can then be written as α
V 2

2g
.

Momentum Similarly, the fl ux of momentum at a section is also expressed in 
terms of V and a correction factor β. Considering an elemental area dA, the fl ux of 
momentum in the longitudinal direction through this elemental area

 
= ×

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ = ( )( )mass

time
velocity ρv dA v

 
For the total area, the momentum fl ux

 
= =∫ ρ βρv dA V A2 2

 
(1.8)

which gives

 
β = =

∫ v dA

V A

v A

V A
A

2

2

2

2

Σ Δ

 
(1.9)

β is known as the momentum correction factor and is equal to or greater than unity.

Values of α and β The coeffi cients α and β are both unity in the case of uniform 
velocity distribution. For any other velocity distribution α > β > 1.0. The higher the 
non-uniformity of velocity distribution, the greater will be the values of the coef-
fi cients. Generally, large and deep channels of regular cross sections and with fairly 
straight alignments exhibit lower values of the coeffi cients. Conversely, small chan-
nels with irregular cross sections contribute to larger values of α and β. A few mea-
sured values of α and β are reported by King3. It appears that for straight prismatic 
channels, α and β are of the order of 1.10 and 1.05 respectively. In compound chan-
nels, i.e. channels with one or two fl ood banks, α and β may, in certain cases reach 
very high values, of the order of 2.0 (see Compound channels in Sec. 5.7.3).
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Introduction 9 

Generally, one can assume α = β 1.0 when the channels are straight, prismatic 
and uniform fl ow or GVF takes place. In local phenomenon, it is desirable to 
include estimated values of these coeffi cients in the analysis. For natural channels, 
the following values of α and β are suggested for practical use7:

Channels Values of  α Values of   β
Range Average Range Average

Natural channels and torrents 1.15 – 1.50 1.30 1.05 – 1.17 1.10

River valleys, overfl ooded 1.50 – 2.00 1.75 1.17 – 1.33 1.25

It is usual practice to assume α = β = 1.0 when no other specifi c information about 
the coeffi cients are available.

Example 1.1  The velocity distribution in a rectangular channel of width B and 

depth of fl ow y
0
 was approximated as v k y= 1  in which k

1
 = a constant. Calculate 

the average velocity for the cross section and correction coeffi cients α and β.

Solution Area of cross section A = By
0

Average velocity  V
By

v B dy
y

= ( )∫
1

0
0

0

 

                   = =∫
1 2

30
1 1 0

0

0

y
k ydy k y

y

Kinetic energy correction factor 

 

α =
( )

=
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

=
∫ ∫v B dy

V B y

k y B dy

k y B y

y y
3

0
3

0

1
3 3 2

0

1 0

3

0

0 0

2

3

1 35

/

.

 

Momentum correction factor 

 

β =
( )

=
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

=
∫ ∫v B dy

V B y

k y B dy

k y B y

y y
2

0
2

0

1
2

0

1 0

2

0

0 0

2

3

1 125.

 

Example 1.2  The velocity distribution in an open channel could be approxi-
mated as in Fig. 1.3. Determine the kinetic energy correction factor α and momen-
tum correction factor β for this velocity profi le.
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10 Flow in Open Channels

Solution From Fig. 1.3 VD u a D= −( )1

  
V a u= −( )1

u dy

V D

u D aD

u a D a
aD

D

= =
−( )

−( )
=

−( )

∫
1

1

1

3

3

3

3 3 2
α

  

u dy

V
aD

D

=
∫ 2

β
22

2

2 2

1

1

1

1D

u D a

u a D a
=

−( )
−( )

=
−( )

Pressure In some curvilinear fl ows, the piezometric pressure head may have non-
linear variations with depth. The piezometric head h

p
 at any depth y from the free 

surface can be expressed as

 h Z y h y hp = + + −( )+0 1 Δ  

 h Z h hp = + +0 1 Δ  
(1.10)

in which Z
0 
= elevation of the bed, h

1
 pressure head at the bed if linear variation of 

pressure with depth existed and Δh = deviation from the linear pressure head varia-
tion at any depth y. For one-dimensional analysis, a representative piezometric head 
for the section called effective piezometric head, h

ep.
 is defi ned as

 
h Z h

h
h dyep

h

= + + ( )∫0 1
1 0

1 1

Δ
 (1.11)

 Z h h= + +0 1 Δ  (1.11a)

Usually hydrostatic pressure variation is considered as the reference linear variation.

1.6 PRESSURE DISTRIBUTION

The intensity of pressure for a liquid at its free surface is equal to that of the surround-
ing atmosphere. Since the atmospheric pressure is commonly taken as a reference 
and of value equal to zero, the free surface of the liquid is thus a surface of zero pressure. 
The distribution of pressure in an open channel fl ow is governed by the acceleration due 
to gravity g and other accelerations and is given by the Euler’s equation as below:
In any arbitrary direction s,

 
−

∂ +( )
∂

=
p Z

s
as

γ
ρ

 
(1.12)

and in the direction normal to s direction, i.e., in the n direction,

D

aD

u

u

uy

Fig. 1.3  Velocity distribution of 

Example 1.2

Chapter 1.indd   10Chapter 1.indd   10 2/24/2010   2:42:18 PM2/24/2010   2:42:18 PM



Introduction 11 

 
−

∂
∂

+( ) =
n

p Z anγ ρ
 

(1.13)

in which p = pressure, a
s
 = acceleration component in the s direction, a

n
 = accelera-

tion in the n direction and Z = elevation measured above a datum.
Consider the s direction along the streamline and the n direction across it. The 

direction of the normal towards the centre of curvature is considered as positive. We 
are interested in studying the pressure distribution in the n-direction. The normal 
acceleration of any streamline at a section is given by

 
a

v

rn =
2

 
(1.14)

where v = velocity of fl ow along the streamline of radius of curvature r.
Hydrostatic Pressure Distribution The normal acceleration a

n
 will be zero

 (i) if v = 0, i.e., when there is no motion, or
(ii) if r → ∞, i.e., when the streamlines are straight lines.

Consider the case of no motion, i.e. the still water case (Fig. 1.4(a)). From Eq. 1.13, 
since a

n
 = 0, taking n in the Z direction and integrating

 

p
Z C

γ
+ = =constant

 
(1.15)

At the free surface [point 1 in Fig. 1.3(a)] p
1
/γ = 0 and Z = Z

1
, giving C = Z

1
. At 

any point A at a depth y below the free surface,

p
Z Z yA

Aγ
= −( ) =1

i.e.  p
A
 = γ y (1.16)

This linear variation of pressure with 
depth having the constant of propor-
tionality equal to the unit weight of the 
liquid is known as hydrostatic-pressure 
distribution.
Channels with Small Slope Let us 
consider a channel with a very small 
value of the longitudinal slope θ. Let θ 
~ sin θ ~ 1/1000. For such channels the 
vertical section is practically the same 

as the normal section. If a fl ow takes place in this channel with the water surface 
parallel to the bed, i.e. uniform fl ow, the streamlines will be straight lines and as such 
in a vertical direction [Section 0–1 in Fig. 1.4(b)] the normal acceleration a

n
 = 0.

Following the argument of the previous paragraph, the pressure distribution at the 
Section 0 – 1 will be hydrostatic. At any point A at a depth y below the water surface,

y
h

Z

Z

γh

γy
A

1

Datum

Δ

Fig. 1.4(a) Pressure distribution in still water
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12 Flow in Open Channels

p
y

p
Z Z

γ γ
= + =

=

and

Elevation of water surface

1

Thus the piezometric head at any 
point in the channel will be equal to 
the water-surface elevation. The 
hydraulic grade line will therefore 
lie essentially on the water surface.

Channels with Large Slope Figure 1.5 shows a uniform free-surface fl ow in a 
channel with a large value of inclination θ. The fl ow is uniform, i.e. the water surface 
is parallel to the bed. An element of length Δ L and unit width is considered at the 
Section 0 –1.

Fig. 1.5 Pressure distribution in a channel with large slope

L

1
1′

Α
Α′

y

h

d

0
0

z
z0

Datum
θ

θ

γy cos θ

γh cos θ

Δ

∇

At any point A at a depth y measured normal to the water surface, the weight of 
column A1 1′A′ = γΔLy and acts vertically downwards. The pressure at AA′ supports 
the normal component of the column A1 1′A′. Thus

         p
A
ΔL = γ y ΔL cos θ (1.17)

i.e.        p yA = γ θcos  (1.18)

or pA / cosγ γ θ=  (1.18a)

The pressure p
A
 varies linearly with the depth y but the constant of proportionality is 

γ cos θ. If h = normal depth of fl ow, the pressure on the bed at point 0, p
0
= γ h cos θ.

If d = vertical depth to water surface measured at the point O, then h = d cos θ 
and the pressure head at point O, on the bed is given by

 
p

h d0 2

γ
θ θ= =cos cos  (1.19)

y
h

z

Datum

0

1

A

∇ ∇ ∇

γy

γh
θ

Fig. 1.4(b)  Pressure distribution in a channel 

with small slope
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Introduction 13 

The piezometric height at any point A = Z + y cos θ = Z
0
 + h cos θ. Thus for 

channels with large values of the slope, the conventionally defi ned hydraulic gradient 
line does not lie on the water surface.

Channels of large slopes are encountered rarely in practice except, typically in 
spillways and chutes. On the other hand, most of the canals, streams and rivers with 
which a hydraulic engineer is commonly associated will have slopes (sin θ) smaller 
than 1/100. For such cases cos θ ≈ 1.0. As such, in further sections of this book the 
term cos θ in the expression for the pressure will be omitted with the knowledge that 
it has to be used as in Eq. 1.18 if θ is large.

1.7 PRESSURE DISTRIBUTION IN CURVILINEAR FLOWS

Figure 1.6(a) shows a curvilinear fl ow in a vertical plane on an upward convex sur-
face. For simplicity consider a Section 01A2 in which the r direction and Z direction 
coincide. Replacing the n direction in Eq. 1.13 by (−r) direction,

 
∂
∂

+
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =

r

p
Z

a

g
n

γ
 (1.20)

2

A

C

B

O

1

h
y

Z r

Datum
(a)

2

y

h
A

1

r2 − r1 = h

Hydrostatic

h1 −
an
g

y − 
g

g
an y

an y

(b)

γ

γ

g

γh

θ

γ

 γan h

Δ
Δ

Fig. 1.6 Convex curvilinear fl ow

Let us assume a simple case in which a
n
 = constant. Then, the integration of Eq. 1.20 

yields

 p
Z

a

g
r Cn

γ
+ = +  (1.21)

in which C = constant. With the boundary condition that at point 2 which lies on the 
free surface, r = r

2
 and p/γ = 0 and Z = Z

2
,

 
p

Z Z
a

g
r rn

γ
= −( )− −( )2 2  (1.22)
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14 Flow in Open Channels

Let Z
2
 − Z = depth below the free surface of any point A in the Section 01A2 = y. 

Then for point A,

 
r r y Z Z2 2−( ) = = −( )  

and

 p
y

a

g
yn

γ
= −  (1.23)

Equation 1.23 shows that the pressure is less than the pressure obtained by the 
hydrostatic distribution [Fig. 1.6(b)].

For any normal direction OBC in Fig. 1.6(a), at point C, ( p/γ)
c 
= 0, r

c
 = r

2
, and for 

any point at a radial distance r from the origin O, by Eq. 1.22

 

p
Z Z

a

g
r rc

n

γ
= −( )− −( )2

 

But

 
Z Z r rc − = −( )2 cos ,θ

 

giving

 p
r r

a

g
r rn

γ
θ= −( ) − −( )2 2cos  (1.24)

It may be noted that when a
n
 = 0, Eq. 1.24 is the same as Eq. 1.18a, for the fl ow 

down a steep slope.
If the curvature is convex downwards, (i.e. r direction is opposite to Z direction) 

following the argument as above, for constant a
n
, the pressure at any point A at a depth 

y below the free surface in a vertical Section 01A2 [Fig. 1.7(a)] can be shown to be

 p
y

a

g
yn

γ
= +  (1.25)

The pressure distribution in a vertical section is as shown in Fig. 1.7(b).
Thus it is seen that for a curvilinear fl ow in a vertical plane, an additional pressure 

will be imposed on the hydrostatic pressure distribution. The extra pressure will be 
additive if the curvature is convex downwards and subtractive if it is convex 
upwards.

Normal Acceleration In the previous discussion on curvilinear fl ows, the normal 
acceleration a

n
 was assumed to be constant. However, it is known that at any point 

in a curvilinear fl ow, a
n
 = 

v

r

2

, where v = velocity and r = radius of curvature of the 

streamline at that point.
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In general, one can write v = f (r) and the pressure distribution can then be expressed by

 p
Z

v

gr
dr

γ
+

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ = +∫

2

Const  (1.26)

This expression can be evaluated if v = f (r) is known. For simple analysis, the fol-
lowing functional forms are used in appropriate circumstances:

   (i) v = constant = V = mean velocity of fl ow
 (ii) v = c/r, (free-vortex model)
(iii) v = cr, (forced-vortex model)
 (iv) a

n
 = constant = V 2/R, where R = radius of curvature at mid-depth.

Example 1.3  At a section in a rectangular channel, the pressure distribu-
tion was recorded as shown in Fig. 1.8. Determine the effective piezometric head 

for this section. Take the hydro-
static pressure distribution as the 
reference.

Solution Z
0
 = elevation of the 

bed of channel above the datum
h

1
 = depth of fl ow at the section 

OB
Let h

p
 = piezometric head at 

point A, depth y below the free 
surface
Then h

p
 = Z

0
 + ky2 + (h

1
 – y) 

Putting h
p
 = Z

0
 + h

1
 + Δh

Δh = ky2 – y

Fig. 1.7 Concave curvilinear fl ow
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γ

Fig.1.8 Example 1.3
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∇
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16 Flow in Open Channels

Effective piezometric head, by Eq. 1.11 is

 

h Z h
h

h dy

Z h
h

ky y dy

h Z
h k

ep

h

h

ep

= + + ( )

= + + −( )

= + +

∫

∫

0 1
1

0

0 1
1

2

0

0
1

1

1

2

1

1

Δ

hh1
2

2  

Example 1.4  A spillway bucket has a radius of curvature R as shown in Fig. 1.9. 
(a) Obtain an expression for the pressure distribution at a radial section of inclina-
tion θ to the vertical. Assume the velocity at any radial section to be uniform and the 
depth of fl ow h to be constant. (b) What is the effective piezometric head for the above 
pressure distribution?

Solution (a) Consider the Section 012. Velocity = V = constant across 12. Depth of 
fl ow = h. From Eq. 1.26, since the curvature is convex downwards

Fig. 1.9 Example 1.4

Δ

0

2

1
h

A

Z
r

R

ν

θ

Datum

 

p
Z

v

gr
dr

γ
+

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ = +∫

2

Const
 

 p
Z

V

g
r C

γ
+ = +

2

ln  (1.27)

At the point 1,                             p/γ = 0, Z = Z
1
, r = R – h

             
C Z

V

g
R h= − −( )1

2

ln
 

At any point A, at radial distance r from O

 
p

Z Z
V

g

r

R hγ
= −( )

−

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟1

2

ln  (1.28)

But (Z
1 
– Z) = (r – R + h) cos θ

Chapter 1.indd   16Chapter 1.indd   16 2/24/2010   2:42:20 PM2/24/2010   2:42:20 PM



Introduction 17 

 
p

r R h
V

g

r

R hγ
θ= − +( ) +

−

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟cos ln

2

 (1.29)

Equation 1.29 represents the pressure distribution at any point (r, θ). At point 2, r = R, 
p = p

2
.

(b) Effective piezometric head, h
ep

:
From Eq. 1.28 the piezometric head h

p
 at A is

 

h
p

Z Z
V

g

r

R hp

A

= +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ = +

−

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟γ 1

2

ln

 

Noting that Z
1
 = Z

2
 + h cos θ and expressing h

p
 in the form of Eq. 1.10

          h
p
 = Z

2
 + h cos θ + Δh

Where

 
Δh

V

g

r

R h
=

−

2

ln
 

The effective piezometric head h
ep.

 from Eq. 1.11 is

 
h Z h

h

V

g

r

R h
drep

R h

R

= + +
−−∫2

21
cos

cos
lnθ

θ  

on integration,

h Z h
V

gh
h R

R

R hep = + + − +
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥2

2

cos
cos

θ
θ

ln
 

= + +
− +

−
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

Z h

V
h

R h R

gR
h

R

2

2 1

1
cos

ln
/

cos

θ
θ

 (1.30)

It may be noted that when R → ∞ and h /R → 0, h
ep

 → Z
2
 + h cos θ

1.8 FLOWS WITH SMALL WATER-SURFACE CURVATURE

Consider a free-surface fl ow with a convex upward water surface over a horizontal 
bed (Fig. 1.10). For this water surface, d 2h / dx2 is negative. The radius of curvature 
of the free surface is given by

 1

1
1

2

2

2 3 2

2

2r

d h

dx

dh

dx

d h

dx
=

+
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

≈  (1.31)
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18 Flow in Open Channels

Assuming linear variation of the 
curvature with depth, at any point A at 
a depth y below the free surface, the 
radius of curvature r is given by

1 2

2r

d h

dx

h y

h
=

−⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

 (1.32)

If the velocity at any depth is 
assumed to be constant and equal to 
the mean velocity V in the section, the 
normal acceleration a

n
 at point A is 

given by

 a
V

r

V h y

h

d h

dx
K h yn = =

−( )
= −( )

2 2 2

2
 (1.33)

where K = (V 2/h)d 2h/dx2. Taking the channel bed as the datum, the piezometric head 
h

p
 at point A is then by Eq. 1.26

 
h

p
Z

K

g
h y dyp = +

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ = −( ) +∫γ

Const
 

i.e.

 h
K

g
hy

y
Cp = −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
+

2

2
 (1.34)

Using the boundary condition; at y = 0,  p/γ = 0,  Z = h and h
p
 = h,  leads to C = h,

 h h
K

g
hy

y
p = + −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2

2
 (1.35)

Equation 1.35 gives the variation of the piezometric head with the depth y below the 
free surface. Designing h

p
 = h + Δh

 
Δh

K

g
hy

y
= −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2

2  

The mean value of Δh

 

Δ Δh
h

hdy

K

gh
hy y dy

Kh

g

A

A

=

= −( ) =

∫

∫

1

2
3

0

2
2

0
 

Fig. 1.10  Defi nition sketch of fl ow with 

small water-surface curvature

1

Datum

2

y

h
A

Z
Z

∇
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Introduction 19 

The effective piezometric head h
ep

 at the section with the channel bed as the datum 
can now be expressed as

 h h
Kh

gep = +
2

3
 (1.36)

It may be noted that d 2h / dx2 and hence K is negative for convex upward curvature 
and positive for concave upward curvature. Substituting for K, Eq. 1.36 reads as

 h h
V h

g

d h

dxep = +
1

3

2 2

2
 (1.37)

This equation, attributed to Boussinesq4 fi nds application in solving problems with 
small departures from the hydrostatic pressure distribution due to the curvature of 
the water surface.

1.9 EQUATION OF CONTINUITY

The continuity equation is a statement of the law of conservation of matter. In open-
channel fl ows, since we deal with incompressible fl uids, this equvation is relatively 
simple and much more for the cases of steady fl ow.

Steady Flow In a steady fl ow the volumetric rate of fl ow (discharge in m3/s) past 
various section must be the same. Thus in a varied fl ow, if Q = discharge, V = mean 
velocity and A = area of cross-section with suffi xes representing the sections to 
which they refer

 Q = VA = V
1
A

1
 = V

 2 
A

2
 = … (1.38)

If the velocity distribution is given, the discharge is obtained by integration as in 
Eq. 1.4. It should be kept in mind that the area element and the velocity through this 
area element must be perpendicular to each other.

In a steady spatially-varied fl ow, the discharge at various sections will not be 
the same. A budgeting of infl ows and outfl ows of a reach is necessary. Consider, 
for example, an SVF with increasing discharge as in Fig. 1.11. The rate of addi-
tion of discharge = dQ/dx = q

*
. The discharge at any section at a distance x from 

Section 1

 
= = + ∫Q Q q dx

x

1
0

*
 (1.39)

If q
*
 = constant, Q = Q

1
 + q

*
x and Q

2
 = Q

1
 + q

*
L

Unsteady Flow In the unsteady fl ow of incompressible fl uids, if we consider a 
reach of the channel, the continuity equation states that the net discharge going out 
of all the boudary surfaces of the reach is equal to the rate of depletion of the storage 
within it.
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20 Flow in Open Channels

In Fig. 1.12, if Q
2
 > Q

1
, 

more fl ow goes out than 
what is coming into Sec-
tion 1. The excess volume 
of outfl ow in a time Δt is 
made good by the deple-
tion of storage within the 
reach bounded by Sec-
tions 1 and 2. As a result 
of this the water surface 
will start falling. If Δt = 
distance between Sections 
1 and 2,

 
Q Q

Q

x
x2 1− =

∂
∂

Δ
 

The excess volume rate of fl ow in a time Δt = (∂Q/∂x) Δ xΔ t. If the top width of the 
canal at any depth y is T, ∂A/∂y = T. The storage volume at depth y = A.Δ x. The rate 

of decrease of storage = −
∂
∂

∂
∂

= −
∂
∂

Δ Δx
A

y

y

t
T x

y

t
. The decrease in storage in time 

Δ Δ Δt T x
y

t
t= −

∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ . By continuity

∂
∂

= −
∂
∂

Q

x
x t T

y

t
x tΔ Δ Δ Δ .

or 
∂
∂

+
∂
∂

=
Q

x
T

y

t
0  (1.40)

Equation 1.40 is the basic equation of continuity for unsteady, open-channel fl ow.

Fig. 1.11 Spatially varied fl ow

1 2

1 2

Q
Q1

Q2

L

X

q = dQ
dx*

Fig. 1.12 Defi nition sketch of unsteady fl ow

T
Δ

Δ

Water surface elevation
at instant t

y

Δx

t + Δt

Q1

Q2

At instant

1 2

Area A

dA = T dy

y

dy

Example 1.5  The velocity distribution in the plane of a vertical sluice gate dis-
charging free is shown in Fig. 1.13. Calculate the discharge per unit width of 
the gate.
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Location 1 2 3 4 5 6 7

Velocity (m/s) 2.3 2.5 2.6 2.6 2.5 2.1 0.0
θ(degrees) 5 10 15 20 25 30 –
y(m) 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Solution The component of velocity normal 
to the y-axis is calculated as V

n
=V cos θ. The 

discharge per unit width q = ∑V
n
Δy. The 

velocity is zero at the boundaries, i.e., at end 
sections 0 and 7 and this should be noted in 
calculating average velocities relating to the 
end sections. The calculations are done in tab-
ular form as shown below. In the table Δq = 
discharge in the element between two sections 
= Col 5 × Col 6.
The total discharge per unit width is
0.690 m3/s/m.Fig. 1.13 Example 1.5

y

V

7
6
5
4
3
2
1

θ

∇

Example 1.6  While measuring the discharge in a small stream it was found that 
the depth of fl ow increases at the ratio of 0.10 m/h. If the discharge at that section 
was 25 m3/s and the surface width of the stream was 20m, estimate the discharge at 
a section 1 km upstream.

Solution This is a case of unsteady fl ow and the continuity equation Eq. 1.40 will 
be used.

 
T

y

t

∂
∂

=
×
×

=
20 0 10

60 60
0 000556

.
.

 

1 2 3 4 5 6 7

Section
V = Velocity 

(m/s)
θ 0 V

n
 = V cos θ 

(m/s)
Average V

n 
 

(m/s)
Δ y (m)

Δ q
3 

(m3/s/m)

0 0 0 0.000 0 0
1 2.3 5 2.291 1.146 0.05 0.057
2 2.5 10 2.462 2.377 0.05 0.119
3 2.6 15 2.511 2.487 0.05 0.124
4 2.6 20 2.443 2.477 0.05 0.124
5 2.5 25 2.266 2.354 0.05 0.118
6 2.1 30 1.819 2.042 0.05 0.102
7 0 0 0.000 0.090 0.05 0.045

Total Discharge = q = 0.690
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22 Flow in Open Channels

Fig.1.14 Defi nition sketch for the energy equation

Datum

Z1 
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Energy line
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2g

V
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α
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V
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2
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Δ
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By Eq. 1.36,

 

Q Q

x

Q

x
T

y

t
Q

Q

2 1

1

2

−
=

∂
∂

= −
∂
∂

=

=

Δ
discharge at the upstream section

++
∂
∂

= + ×

=

T
y

t
xΔ 25 0 1000 0 000556

25 556

. .

 / m s3.  

1.10 ENERGY EQUATION

In the one-dimensional analysis of steady open-channel fl ow, the energy equation in 
the form of the Bernoulli equation is used. According to this equation, the total energy 
at a downstream section differs from the total energy at the upstream section by an 
amount equal to the loss of energy between the sections.

Figure 1.14 shows a steady varied fl ow in a channel. If the effect of the curvature 
on the pressure distribution is neglected, the total energy head (in N.m/newton of 
fl uid) at any point A at a depth d below the water surface is

 
H Z d

V

gA= + +cosθ α
2

2  

(1.41)

This total energy will be constant for all values of d from zero to y at a normal section 
through point A (i.e. Section OAB), where y = depth of fl ow measured normal to the bed. 
Thus the total energy at any section whose bed is at an elevation Z above the datum is

 H = Z + y cos θ + αV 2/2g (1.42)
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In Fig. 1.14, the total energy at a point on the bed is plotted along the vertical 
through that point. Thus the elevation of energy line on the line 1–1 represents the 
total energy at any point on the normal section through point 1. The total energies at 
normal sections through 1 and 2 are therefore

 

H Z y
V

g

H Z y
V

g

1 1 1 1
1
2

2 2 2 2
2
2

2

2

= + +

= + +

cos

cos

θ α

θ α
 

respectively. The term (Z + y cos θ) = h represents the elevation of the hydraulic 
grade line above the datum.

If the slope of the channel θ is small, cos θ ≈ 1.0, the normal section is practically 
the same as the vertical section and the total energy at any section can be written as

 H Z y
V

g
= + +α 2

2
 (1.43)

Since most of the channels in practice happen to have small values of θ (θ < 10º), 
the term cos θ is usually neglected. Thus the energy equation is written as Eq. 1.40 in 
subsequent sections of this book, with the realisation that the slope term will be 
included if cos θ is appreciably different from unity.

Due to energy losses between Sections 1 and 2, the energy head H
1
 will be larger 

than H
2
 and H

1
 − H

2
 = h

L 
= head loss. Normally, the head loss (h

L 
) can be considered 

to be made up of frictional losses (h
f
 ) and eddy or form loss (h

e
) such that h

L
 = h

f
 + 

h
e
. For prismatic channels, h

e
 = 0. One can observe that for channels of small slope 

the piezometric head line essentially coincides with the free surface. The energy line 
which is a plot of H vs x is a dropping line in the longitudinal (x) direction. The dif-
ference of the ordinates between the energy line and free surface represents the 
velocity head at that section. In general, the bottom profi le, water-surface and energy 
line will have distinct slopes at a given section. The bed slope is a geometric parame-
ter of the channel. The slope of the energy line depends on the resistance characteris-
tics of the channel and is discussed in Chapter 3. Discussions on the water-surface 
profi les are presented in chapter 4 and 5.

In designating the total energy by Eq. 1.41 or 1.42, hydrostatic pressure distribution was 
assumed. However, if the curvature effects in a vertical plane are appreciable, the pressure 
distribution at a section may have a non-linear variation with the depth d. In such cases the 
effective piezometric head h

ep
 as defi ned in Eq. 1.11 will be used to represent the total 

energy at a section as

 H h
V

gep= +α
2

2
 (1.44)

Example 1.7  The width of a horizontal rectangular channel is reduced from 
3.5 m to 2.5 m and the fl oor is raised by 0.25 m in elevation at a given section. At 
the upstream section, the depth of fl ow is 2.0 m and the kinetic energy cor rection 
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24 Flow in Open Channels

factor α is 1.15. If the drop in the water 
surface elevation at the contraction is 
0.20 m, calculate the discharge if (a) 
the energy loss is neglected, and (b) 
the energy loss is one-tenth of the 
upstream velocity head. [The kin etic 
energy correction factor at the con-
tracted section may be assumed to be 
unity].

Solution Referring to Fig. 1.15,
 y

1
 = 2.0 m

y
2
 = 2.0 − 0.25 − 0.20 = 1.55 m

By continuity

 

B y V B y V

V V V

1 1 1 2 2 2

1 2 2

2 5 1 55

3 5 2 0
0 5536

=

=
×
×

=
. .

. .
.

 

(a) When there is no energy loss
By energy equation applied to Sections 1 and 2,

 

Z y
V

g
Z Z y

V

g

V

1 1 1
1
2

1 2 2
2
2

1 2

2
2

2 2

1 15 1 0

1 15

+ + = +( )+ +

= =

−

α α

α α

Δ

. .

.
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VV

g
y y Z

1
2

1 22

( )
= − −Δ

 

                  

V

g
2
2

2

2
1 1 15 0 5536 2 00 1 55 0 25−( )( )⎡
⎣⎢

⎤
⎦⎥
= − −. . . . .

 

0 6476
2 9 81

0 2

2 462

2
2

2

.
.

.

.

V

V
×

=

=  m/s  

 Discharge Q = × × =2 5 1 55 2 462 9 54. . . . / m s3

(b) When there is an energy loss

 

H
V

g

V

gL =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =0 1

2
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21
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Fig. 1.15 Example 1.7

B1 = 3.5m B2 = 2.5m

PLAN1
2

Δ
Δ

L-SECTION

y2

0.20m

0.25m

Energy line

y1 = 2.0m
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By energy equation,

Z y
V

g
Z Z y

V

g
H

V

g

V

g
H

L

L

1 1 1
1
2

1 2 2
2
2

2
2
2

1
1
2

2 2

2 2

+ + = +( )+ + +

− +
⎡

⎣
⎢
⎢

⎤

α α

α α

Δ

⎦⎦
⎥
⎥ = − −y y Z1 2 Δ

Substituting α
2
 = 1.0, α

1
 = 1.15 and H

V

gL = 0 115
2

1
2

.

 

V

g

V

g

V

g
2
2

1
2

1
2

2
1 15

2
0 115

2
2 00 1 55 0 25− − = − −. . . . .

 

Since  V
1
 = 0.5536V

 2

    

V

g
2
2

2

2
1 0 9 1 15 0 5536 0 2−( )( )( )⎡
⎣⎢

⎤
⎦⎥
=. . . .

      

0 6826

2 9 81
0 22

2.

.
.

V

×
=

 

V
 2
 = 2.397 m/s and discharge Q = × × =2 5 1 55 2 397 9 289. . . . / m s3

Example 1.8  A sluice gate in a 2.0-m wide horizontal rectangular channel is 
discharging freely as shown in Fig. 1.16. If the depths a small distance upstream ( y

1  
) 

and downstream ( y
2  
) are 2.5 m and 0.20 m respectively, estimate the discharge in the 

channel (i) by neglecting energy losses at the gate, and (ii) by assuming the energy 
loss at the gate to be 10% of the upstream depth y

1
.

Solution Referring to Fig. 1.16, y
1
 = 

2.5 m and y
2 
= 0.20 m

    B y V B y V1 1 2 2=

    
V

y

y
V V2

1

2
1 1

2 5

0 20
12 5= = × =

.

.
. V1

(i) When there is no energy loss

    
Z y

V

g
Z y

V

g1 1
1
2

2 2
2
2

2 2
+ + = + +

Since the channel is horizontal, Z
1 
= Z

2
 and

  

V

g

V

g
y y2

2
1
2

1 22 2
− = −( )

Fig. 1.16 Free fl ow from a sluice gate – Example 1.8

1 2

y2

y1
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26 Flow in Open Channels

  

V

g
1
2

2

2
12 5 1 2 50 0 20 2 30( . ) . . .−⎡
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.

.
. .and  m/s.

Discharge Q = By
1
V

1
 = 2.0×2.5×0.539 = 2.696 m3/s. 

(ii) When there is energy loss
H

L 
= Energy loss = 0.10 y

1
 = 0.25 m

y
V

g
y

V

g
HL1

1
2

2
2
2

2 2
+ = + +

V

g

V

g
y y HL

2
2

1
2

1 22 2
− = − −( )

V

g
1
2

2

2
12 5 1 2 50 0 20 0 25 2 05. . . . .( ) −⎡

⎣⎢
⎤
⎦⎥
== − − =

V

g
V1

2

12

2 05

155 25
0 0132 0 509= = =

.

.
. .  and   m/s

Discharge Q By V= = × × =1 1 2 0 2 5 0 509 2 545. . . . / m s.3

1.11 MOMENTUM EQUATION

Steady Flow Momentum is a vector quantity. The momentum equation com-
monly used in most of the open channel fl ow problems is the linear-momentum 
equation. This equation states that the algebraic sum of all external forces, acting 
in a given direction on a fl uid mass equals the time rate of change of linear-
momentum of the fl uid mass in the direction. In a steady fl ow the rate of change 
of momentum in a given direction will be equal to the net fl ux of momentum in 
that direction.

Figure 1.17 shows a control volume (a volume fi xed in space) bounded by Sec-
tions 1 and 2, the boundary and a surface lying above the free surface. The various 
forces acting on the control volume in the longitudinal direction are as follows:

 (i) Pressure forces acting on the control surfaces, F
1
 and F

2
.

(ii) Tangential force on the bed, F
3
,

(iii)  Body force, i.e., the component of the weight of the fl uid in the longitudinal 
direction, F

4
.

By the linear-momentum equation in the longitudinal direction for a steady-fl ow 
discharge of Q,
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ΣF
1
 = F

1
 − F

2
 − F

3
 + F

4
 = M

2
 − M

1
 (1.45)

in which M
1
 = β

1 ρQV
1
 = momentum fl ux entering the control volume, M

2
 = β

2 
ρQV

 2
 = 

momentum fl ux leaving the control volume.
In practical applications of the momentum equation, the proper identifica-

tion of the geometry of the control volume and the various forces acting on it 
are very important. The momentum equation is a particularly useful tool in 
analysing rapidly varied flow (RVF) situations where energy losses are com-
plex and cannot be easily estimated. It is also very helpful in estimating forces 
on a fluid mass. Detailed information on the basis of the momentum equation 
and selection of the control volume are available in books dealing with the 
mechanics of fluids.5.6

Example 1.9  Estimate the force, on a sluice gate shown in Fig. 1.18.

Fig.1.17 Defi nition sketch for the momentum equation
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Flow
Q
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F4

W

Control volume
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        of body force
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2
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θ

θ
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Fig. 1.18 Forces in a sluice gate glow-Example 1.9
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28 Flow in Open Channels

Solution Consider a unit width of the channel. The force exerted on the fl uid by the 
gate is F, as shown in the fi gure. This is equal and opposite to the force exerted 
by the fl uid on the gate, F ′.

Consider the control volume as shown by dotted lines in the fi gure. Section 1 is 
suffi ciently far away from the effl ux section and hydrostatic pressure distribution can 
be assumed. The frictional force on the bed between Sections 1 and 2 is neglected. 
Also assumed are β

1
 = β

2 
= 1.0. Section 2 is at the vena contracta of the jet where 

the streamlines are parallel to the bed. The forces acting on the control volume in the 
longitudinal direction are

F
1
 = pressure force on the control surface at Section 11

1

2 1
2' = γ y

F
2 
=  pressure force on the control surface at Section 22

1

2 2
2= γ y'  acting in a 

direction opposing F
1
.

F = reaction force of the gate on the Section 33′.
By the momentum equation, Eq. 1.45,

 

1

2

1

21
2

2
2

2 1γ γ ρy y F q V V− − = −( )
 

(1.46)

in which q = discharge per unit width = V
1 
y

1
 = V

 2 
y

2
. Simplifying Eq. 1.46,

 F
y y

y y
y y y y

q

g
s=

−( )
+( )−

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1

2

21 2

1 2
1 2 1 2

2

γ  (1.47)

If the loss of energy between Sections 1 and 2 is assumed to be negligible, by the 
energy equation with      α

1
 = α

2
 = 1.0

 y
V

g
y

V

g1
1
2

2
2
2

2 2
+ = +  (1.48)

Substituting

 
V

q

y
V

q

y1
1

2
2

= =and
 

 

q

g

y y

y y

2
1
2

2
2

1 2

2
=

+( )
 

and by Eq. 1.43,

 F
y y

y y
=

−
+

1

2
1 2

3

1 2

γ
( )

( )
 (1.49)

The force on the gate F′ would be equal and opposite to F.
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Example 1.10  Figure 1.19 shows a hydraulic jump in a horizontal apron aided 
by a two dimensional block on the apron. Obtain an expression for the drag force per 
unit length of the block.

Solution Consider a control volume surrounding the block as shown in Fig. 1.19. 
A unit width of apron is considered. The drag force on the block would have a reac-
tion force = F

D
 on the control surface, acting in the upstream direction as shown in 

Fig. 1.19.  Assume, a frictionless, horizontal channel and hydrostatic pressure distri-
bution at Sections 1 and 2. 

Fig. 1.19 Example 1.10

1 2

CV

P1

P2

V1

V2

y1

y2

FD

By momentum equation, Eq. 1.45, in the direction of the fl ow

 P
1
 − F

D
 − P

2
 = M

2
 − M

1 

 

1

2

1

21
2

2
2

2 2 1 1γ γ ρ β βy F y q V VD− − = −( )
 

where q = discharge per unit width of apron = y
1
 V

1
 = y

2
 V

 2
.

Assuming β
1
 = β

2
 = 1.0

F y y q
y y

y y
q

g

y y

D = − = −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= − +
−

1

2

1

2

1 1

2

1
2

2
2 2

2 1

1
2

2
2

2
2 1

γ γ ρ

γ
yy y1 2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥   

Unsteady Flow In unsteady fl ow, the linear-momentum equation will have an addi-
tional term over and above that of the steady fl ow equation to include the rate of change 
of momentum in the control volume. The momentum equation would then state that in an 
unsteady fl ow the algebraic sum of all external forces in a given direction on a fl uid mass 
equals the net change of the linear-momentum fl ux of the fl uid mass in that direction plus 
the time rate of increase of momentum in that direction within the control volume. An 
application of the momentum equation in unsteady fl ows is given in Chapter 10. For 
details on the momentum equation in unsteady fl ow consult References 5 and 6.
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30 Flow in Open Channels

Specifi c Force The steady-state momentum equation (Eq. 1.45) takes a simple 
form if the tangential force F

3
 and body force F

4
 are both zero. In that case

F
1
 − F

2
 = M

2
 − M

1 

or F
1
 + M

1
 = F

2
 + M

2 

Denoting 1

γ
F M Ps+( ) =

 (P
s
)

1
 = (P

s
)

2
 (1.50)

The term P
s
 is known as the specifi c force and represents the sum of the pressure 

force and momentum fl ux per unit weight of the fl uid at a section. Equation (1.50) 
states that the specifi c force is constant in a horizontal, frictionless channel. This fact 
can be advantageously used to solve some fl ow situations. An application of the spe-
cifi c force relationship to obtain an expression for the depth at the end of a hydraulic 
jump is given in Section 6.4. In a majority of applications the force F is taken as due 

to hydrostatic pressure distribution and hence is given by,  F Ay= γ   where y  is the 

depth of the centre of gravity of the fl ow area.
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PROBLEMS 

Problem Distribution

Topic Problems

Classifi cation 1.1

α and β 1.2 – 1.6

Pressure distribution 1.7 – 1.14

Continuity equation 1.15 – 1.17

Energy equation 1.18 – 1.22

Momentum equation 1.23 – 1.31

1.1 Classify the following open-channel fl ow situations:
( a) Flow from a sluice gate
(b) Flow in a main irrigation canal
( c) A river during fl ood
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Introduction 31 

(d) Breaking of a dam
(e) Flow over a spillway
(f ) Sudden opening of a sluice gate
(g) Spreading of irrigation water on a fi eld
(h) Flow in a sewer

1.2  The Velocity distributions along the vertical in an open channel are as shown in 
Fig. 1.20. Determine the kinetic energy correction factor α and momentum correction 
factor β for both the velocity profi les.

D

y

u

um∇

Fig. 1.20 Problem 1.2

1.3  The velocity distribution along a vertical in a channel can be expressed as v/v
max

 = 
(y/y

0
)1/n where y

0
 = depth of fl ow, v = velocity at any height y above the bed and n = a 

constant. Find the values of α and β.
1.4 For the velocity distribution given in Fig. 1.21, fi nd α and β.

∇

0.20 m/s

120 m

0.80 m

0.05 m
1.30 m/s

Fig. 1.21 Problem 1.4

1.5  The velocity distribution in a channel is given by u = u(y). By representing u = V + δu, 
where V = mean velocity and δu = deviation from the mean, show that

 α η β η≈ + ≈ +1 3 1and

where η δ= ( )∫
1

2

2

AV
u dA

A

1.6  A rectangular channel curved in the vertical plane is 2.0 m wide and has a centreline radius 
of 5.0 m. The velocity distribution at a radial section can be considered to be an irrota-
tional vortex, i.e. v = C/r. The depth of fl ow is 1.50 m and is constant along the channel.
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32 Flow in Open Channels

For a discharge of 6.0 m2/s, fi nd (a) the velocity distribution, (b) the average velocity, 
and (c) the correction factors α and β.

 1.7 For the following two pressure distributions [Fig 1.22 (a) and (b)] in an open channel 
fl ow, calculate the effective piezometric head. Take the hydrostatic pressure distribution 
as the reference.

Fig. 1.22 Problem 1.7

h1

y

kγy

kγh1Elev. Z0

Pressure

∇

(a)

h1

y

kγh1

kγh1

kγh1Elev. Z0

Pressure

∇

(b)

 1.8 A rectangular channel has a convex curvature in a vertical plane on its bed. At a section 
the bed has an inclination of 30° to the horizontal and the depth measured normal to the 
fl ow is 0.75 m. A certain fl ow produces a normal acceleration of 0.4 g which can be 
assumed to be constant throughout the depth. Determine the pressure distribution and 
compare it with the hydrostatic distribution.

 1.9 For the situation detailed in Problem 1.8, determine the pressure distribution if the 
boundary has a concave curvature to the fl ow and the rest of the data remain same.

1.10 In a fl ow over a certain spillway crest the normal acceleration a
n
 can be assumed to be 

constant. Show that the pressure on the crest is atmospheric when a
n
 = g cos θ, where 

θ = inclination of the normal to the surface with the vertical.
1.11 Assuming the fl ow in the spillway bucket of Example 1.3 to be an irrotational vortex 

(v = C/r) at a constant depth h in the curved portion, show that

p
h

v v

g
2 1

2
2
2

2γ
θ= +

−
cos

1.12 If the fl ow Problem 1.11 is assumed to be a forced vortex (v = Cr), show that

p
h

v v

g
2 2

2
1
2

2γ
θ= +

−
cos

1.13 A spillway crest having a circular arc of radius 6.0 m is shown in Fig. 1.23. Estimate the 
pressure at point 1 when the discharge intensity is 5.0 m3/s per metre width by 
assuming:

 (a) Velocity is constant across 1–2
 (b) Velocity varies linearly with the radius ( v = Cr)
 (c ) Velocity is inversely proportional to the radius (v = C/r)
 (d)  Normal acceleration is constant at a value corresponding to average values of veloc-

ity and radius
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1.14 At a free overfl ow in a wide horizontal rectangular channel the depth at the brink was 
found to be 0.86 m. At a section that is 5 m upstream of the brink, the depth was noted 
as 1.20 m. The discharge per unit width of the channel is estimated as 4.12 m3/s per m 
width. Assuming the water surface profi le between the above two sections to be given by 
y = Ax2 + B, where x is measured from the upstream section, determine the

 (a) pressure distribution at a 2.5 m upstream section of the brink, and
 (b) effective piezometric head at (i) x = 1.0 m, and (ii) x = 2.5 m.
1.15 In the moving-boat method of discharge measurement of rivers the magnitude and direc-

tion of the velocity of a stream relative to the moving boat (V
R
 and θ) are measured. The 

depth of the stream is also simultaneously recorded. Estimate the discharge in a river 
(Fig. 1.24) using the following moving-boat data. Assume the velocity to be uniform in 
a vertical section.

Fig. 1.23 Problem 1.13

∇

∇

2

1

0

q = 5.0 m3/s/m

r 
=

 6
.0

 m
30

˚

r

1.50 m

Section V
R
 (m/s) θ (degrees) Depth (m)

1 1.75 55 1.8

2 1.84 57 2.5

3 2.00 60 3.5

4 2.28 64 4.0

5 2.28 64 4.0

6 2.20 63 4.0

7 2.00 60 3.0

8 1.84 57 2.5

9 1.70 54 2.0

Fig. 1.24 Problem 1.15

Flow

10

8

6

4

2
75 m

θ

Flow

Distance between
sections = 75 m

Boat VR

0 Right bank
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34 Flow in Open Channels

1.16 In a rectangular channel, the fl ow has a free overfall. The velocity measurement at the 
end section where the fl ow was curvilinear is indicated in Fig. 1.25. Estimate the dis-
charge per unit width of the channel.

Fig. 1.25 Problem 1.16

∇
15°

12°

8°

4°

10 cm

10 cm

10 cm

10 cm

0.85 m/s
0.90 m/s1.00 m/s1.20 m/s

1.17 Figure 1.26 shows the velocity distribution in a submerged sluice-gate fl ow. Estimate the 
discharge per unit width of the gate.

1.18 A skijump spillway has an exit angle of 40° (Fig. 1.27). If the fl ow over it has a velocity 
of 20 m/s, neglecting all losses, estimate the maximum elevation of the outfl ow 
trajectory.

Fig. 1.27 Problem 1.18

20 m/s

40˚

Fig. 1.26 Problem 1.17

y (cm)

−0.50

−0.25
115

105

0.5

1.0

1.5

1.7

1.9

2.0

90

75

60

45

30

15
5
0 v (m/s)
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1.19 Figure 1.28 shows a sluice gate in a rectangular channel. Fill the missing data in the fol-
lowing table:

Case y
1
 

(m)
y

2

(m)
q 

(m2/s/m)
Losses

(a) - 0.30 2.5 neglect

(b) 4.0 - 2.0 neglect

(c) 4.0 - 2.0 0.1 V
 2

2/2g

(d) 3.0 0.25 - neglect

Fig. 1.28 Problem 1.19

y1

y2

∇

∇

1 2

1.20 A transition in a cross drainage canal works consists of a rectangular canal 2.0-m wide 
changing into a trapezoidal canal section of 3.0 m bottom width and side slopes 1.5 hori-
zontal: 1 vertical. The depths of fl ow of 1.5 m in the rectangular section and 1.0 m in the 
trapezoidal section for a discharge of 10.0 m2/s is envisaged. If a loss of energy = (0.2 x 
difference of velocity heads) is to be included, calculate the difference in water surface 
and bed elevations of the two end sections of the transition. Sketch the longitudinal sec-
tion of the transition, showing the water-surface elevations and the energy line.

 1.21 Gradually varied fl ow is found to occur in a channel having an inclination of 10 ° with 
the horizontal. At the normal Section A, the elevation of the bed is 15.00 m, the elevation 
of the water surface is 16.30 m and the velocity of fl ow is 3.0 m/s. At the normal Section 
B, the elevation of the bed is 14.60 m and the water surface elevation is 15.80 m. Calcu-
late the elevations of total energy and hydraulic grade lines at normal Sections A and B. 
Assume the values of the kinetic energy correction factor at A and B as 1.03 and 1.02, 
respectively.

1.22 An expansion in a horizontal rectangular channel takes place from a width of 2.0 m to 
3.0 m. The depths of fl ow for a discharge of 7.20 m3/s are 1.20 m and 1.40 m in the nar-
rower and wider sections respectively. Estimate the energy loss in the transition. Assume 
the kinetic energy correction coeffi cient α to have values of 1.05 and 1.15 at the inlet and 
outlet of the transition, respectively.

1.23 Figure 1.29 shows the fl ow over a spillway. The depths of water are h
1
 and h

2
 and V

1
 is 

the upstream approach velocity. Estimate the horizontal force on the spillway structure. 
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36 Flow in Open Channels

Is the data enough to calculate the vertical component of the force on the spillway also? 
If not, what additional information is needed?

Fig. 1.29 Problem 1.23

∇

∇

V1 h1

Z1 Z2

h2

Datum

1.24 Affl ux is the net differential water-surface elevation between the upstream and down-
stream sections of a constriction to the fl ow. A 15 m wide rectangular canal, has a two-
span bridge at a section. The bridge pier is 0.80 m wide and its coeffi cient of drag C

D
 is 

estimated as 2.0. If the depth of fl ow downstream of the bridge is 2.0 m for a discharge 
of 80 m3/s in the canal, estimate the affl ux due to the bridge.

 (Hint: The drag force on the bridge pier = C
D
 a ρV

1
2/2, where a = projected area of the 

pier offered to the fl ow.)
1.25 A high-velocity fl ow from a hydraulic structure has a velocity of 6.0 m/s and a depth 

of 0.40 m. It is defl ected upwards at the end of a horizontal apron through an angle of 
45° into the atmosphere as a jet by an end sill. Calculate the force on the sill per unit 
width.

1.26 In Problem 1.19 (a, b, c and d), determine the force per m width of the sluice gate.
1.27 Analyse the force on a sluice gate (Example 1.7) when it is discharging under submerged 

conditions. What additional assumptions are required?
1.28 Figure 1.30 shows a submerged fl ow over a sharp-crested weir in a rectangular channel. 

If the discharge per unit width is 1.8 m3/s/m, estimate the energy loss due to the weir. 
What is the force on the weir plate?

Fig. 1.30 Problem 1.28

0.80 m

1.30 m

1.80 m

1.29 A hydraulic jump assisted by a two-dimensional block is formed on a horizontal apron as 
shown in Fig. 1.31. Estimate the force F

D
 in kN/m width on the block when a discharge 

of 6.64 m3/s per m width enters the apron at a depth of 0.5 m and leaves it at a depth 
of 3.6 m.
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1.30 Figure 1.32 shows a free overfall in a horizontal frictionless rectangular channel. Assum-
ing the fl ow to be horizontal at Section 1 and the pressure at the brink of Section 2 to be 
atmospheric throughout the depth, show that

 

y

y

F

F
e

0

0
2

0
2

2

2 1
=

+( )

 where F
q

g y0
2

2

0
3

=  and q = discharge per unit width.

Fig. 1.31 Problem 1.29

2-D Block

FD

3.6 m

q = 6.64 m3/s/m

y1 = 0.5 m

1.31 Figure 1.33 shows a free overfall at the end of a horizontal, rectangular and frictionless 
prismatic channel. The space below the lower nappe is fully ventilated. It can be assumed 
that the water leaves the brink horizontally at a brink depth of y

e
. Considering the control 

volume shown in the fi gure, show that the back-up depth of water y
1
 below the nappe is 

given by

 

y

y
F

y

ye

1

2

2

2
2 21 2 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ = + −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 where F
q

y gy
2

2 2

=  and q = discharge per unit width of the channel.

Fig. 1.32 Problem 1.30

21

y1
ye

q

∇
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38 Flow in Open Channels

 OBJECTIVE QUESTIONS

1.1 Steady fl ow in an open channel exists when the
(a) fl ow is uniform   ( c)  channel is frictionless
(b) depth does not change with time (d)  channel bed is not curved

1.2 In a steady spatially-varied fl ow in a prismatic open channel, the
(a) depth does not change along the channel length
(b) discharge is constant along its length
(c ) discharge varies along the length of channel
(d) discharge varies with respect to time

1.3  A fl ood wave while passing down a river section protected by embankments, spills over 
the embankment at certain locations. The fl ow is classifi ed as
(a) steady GVF  (c )  steady SVF
(b) unsteady RVF  (d)  unsteady SVF

1.4 In the uniform fl ow in a channel of small bed slope, the hydraulic grade line
(a) coincides with the bed
(b) is considerably below the free surface
(c ) is considerably above the free surface
(d) essentially coincides with the free surface

1.5 A uniform fl ow takes place in a steep channel of large slope. The hydraulic gradient line
(a) coincides with the bed
(b) essentially coincides with the free surface
(c ) is above the free surface
(d) is below the free surface

1.6 One-dimensional method of fl ow analysis means
(a) uniform fl ow
(b) steady uniform fl ow
(c ) neglecting the variations in the transverse directions
(d) neglecting the variations in the longitudinal direction

1.7  At a section in a channel expansion, the velocity over a quarter of the cross-section is zero 
and is uniform over the remaining three-fourths of the area. The kinetic energy correction 
factor α is

21

∇

∇

O

y1

y2

yeq

q

CV

Air at
atmospheric
pressure

Fig. 1.33 Problem 1.31
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 (a) 1.78   (b) 1.33   (c) 1.67   (d) 2.00
 1.8 The velocity distribution in a vertical in a channel gives a rectangular plot when the 

velocity as abscissa is plotted against height above the bed as ordinate. The kinetic 
energy correction for this distribution is

 (a) greater than zero but less than unity (c )  equal to unity
 (b) less than zero   (d)  greater than unity
 1.9 The momentum correction factor β is given by β

 (a) 
1
3

3

V A
v dA∫  (c)  

1
2

2

V A
v dA∫

 (b) 
1

VA
v dA∫  (d)  

1
3

2

V A
v dA∫

 [In the above, V = average velocity = ∫
1

A
v dA ]

1.10  For Question 1.7 above, the momentum correction factor β is
 (a) 2.33   (b) 1.33   (c) 1.67   (d) 1.78
1.11 A steep chute is inclined at 45° to the horizontal and carries a fl ow at a depth of 0.75 m. 

The pressure at the bed of the chute in N/m2 is
 (a) 7358   (b) 3679   (c) 5203   (d) 10401
1.12 A steep channel has a depth of fl ow, measured normal to the bed, of h. If the inclination 

of the channel to the horizontal is θ, the overturning moment of a side wall is

 (a) 
1

6
3 4γ θh cos  (c)  

1

6
3γ θh cos

 (b) 
1

6
3 2γ θh cos  (d)  

1

6
3γ θh / cos

1.13 In an inclined channel the pressure at a depth y is calculated as γ y. If this value is to be 
accurate within 2 per cent of the true value, the maximum inclination of the channel is

 (a) 78° 30′   (b) 11° 29′   (c) 11° 22′   (d) 8° 8′
1.14 Flow takes place over a spillway crest, which can be assumed to be an arc of a circle, at 

a depth of y
0
. The pressure at any point located on the crest will be

 (a) = γ y
0
 cos θ  (c )  always zero

 (b) < γ y
0
 cos θ  (d)  always below atmospheric pressure.

1.15 A channel with very small value of longitudinal slope S
0
 has its water surface paral-

lel to its bed. With the channel bed as the datum, the variation of the piezometric 
head H

p
 with distance above the bed y in this channel can be represented by the 

following:

Fig. 1.34 Objective Question 1.15

HpHpHp Hp

y0 y0 y0
y0y

y y y

∇ ∇ ∇

(a) (b) (c) (d)
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40 Flow in Open Channels

1.16 A curvilinear fl ow in a vertical plane has a depth of fl ow of h and the pressure is found 
to be uniform at h throughout. The effective piezometric head measured with respect to 
the bed as the datum is

 (a) 1/2 h   (b) 1/3 h   (c) 2/3 h   (d) 3/2 h
1.17 The velocity and depth of fl ow in a 3.0 m wide rectangular channel are 2.0 m/s and 2.5 

m, respectively. If the channel has its width enlarged to 3.5 m at a section, the discharge 
past that section is

 (a) 10.0 m3/s   (b) 20.0 m3/s   (c) 15.0 m3/s   (d) 17.5 m3/s
1.18  Figure 1.35 shows the velocity distribution at two Sections A and B in a canal. The canal 

is rectangular in cross section and has widths of 2.0 m at A and 3.5 m at B. Section A is 
upstream of B. From the data one can infer that

 (a) the discharge in the canal is constant in the reach AB.
 (b) Certain amount of fl ow is being added into the canal in the reach AB.
 (c ) Some amount of fl ow is being extracted out of the canal in the reach AB.
 (d) The discharge per unit width of the canal is constant in the reach AB.

Fig. 1.35 Objective Question 1.18

∇
∇1.25 m/s

2.0 m

1.25 m/s
A B

2.4 m

1.4 m/s

0.4 m

0.4 m/s

1.19  A sluice gate in a small pond discharges a fl ow having 10.0 m2 fl ow area and a velocity 
of 4.0 m/s. If the pond has a surface area of 1.0 hectare, the rate at which the water sur-
face falls in the pond is

 (a) 0.25 m/s   (b) 4 cm/s   (c) 4 mm/s   (d) 4.0 m/s
1.20  For an open channel fl ow to take place between two sections,
 (a) the channel bed must always slope in the direction of the fl ow
 (b) the upstream depth must be larger than the downstream depth
 (c ) the upstream momentum must be larger than the downstream momentum
 (d) the total energy at the upstream end must be larger than the total energy at the down-

stream section
1.21 A steep rectangular channel has a slope of 30° with the horizontal. At a section the bed 

is 1.20 m above the datum, the depth of fl ow is 0.70 m the discharge is 3.10 m3/s per 
metre width. The total energy head at that section by assuming α = 1.10 is

 (a) 3.00 m   (b) 2.91 m   (c) 1.90 m   (d) 3.10 m
1.22 The width of a rectangular channel is reduced from 3.5 m to 2.5 m at a transition structure. 

The depth  of fl ow upstream of the contraction is 1.5 m. The change in the bottom eleva-
tion required to cause zero change in the water surface elevation is

 (a) −2.1 m    (b) −0.6 m    (c) +0.6 m   (d) −0.2 m
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1.23 The total energy head for an open channel fl ow is written with usual notation as 
H = z + y + V 2/2g. In this each of the terms represent

 (a) energy in kg m/kg mass of fl uid
 (b) energy in N m/N of fl uid
 (c ) power in kW/kg mass of fl uid
 (d) energy in N m/  mass of fl uid
1.24 Piezometric head is the sum of
 (a) pressure head, datum head and velocity head
 (b) datum head and velocity head
 (c ) pressure head and velocity head
 (d) pressure head and datum head
1.25 The difference between total head line and piezometric head line represents
 (a) the velocity head
 (b) the pressure head
 (c ) the elevation of the bed of the channel
 (d) the depth of fl ow
1.26 The momentum equation in x-direction as ΣF

x 
=ρQ

1
(V

x 2 
– V

x 1
) has the assumption that 

the fl ow is
 (a) steady  (c )  uniform
 (b) unsteady  (d)  frictionless
1.27 Normally in a stream the ratio of the surface velocity at a location to the average velocity 

in the vertical through that location
 (a) is greater than 1.0
 (b) will be between 0.8 and 0.95
 (c ) is less than or greater than unity depending on the type of fl ow
 (d) is equal to 0.6
1.28 The specifi c force is constant
 (a) in all frictionless channels irrespective of the magnitude of the longitudinal slope
 (b) in horizontal, frictionless channels of any shape
 (c ) in all horizontal channels of any shape
 (d) in any open channel
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2.1 SPECIFIC ENERGY

The total energy of a channel fl ow referred to a datum is given by Eq.1.39 as

 
H Z y

V

g
= + +cosθ α

2

2  

If the datum coincides with the channel bed at the section, the resulting expression 
is know as specifi c energy and is denoted by E. Thus

 E y
V

g
= +cosθ α

2

2
 (2.1)

When cos θ = 1.0 and α = 1.0,

 E y
V

g
= +

2

2
 (2.2)

The concept of specifi c energy, introduced by Bakhmeteff, is very useful in 
defi ning critical depth and in the analysis of fl ow problems. It may be noted that 
while the total energy in a real fl uid fl ow always decreases in the downstream 
 direction, the specifi c energy is constant for a uniform fl ow and can either decrease 
or increase in a varied fl ow, since the elevation of the bed of the channel relative to 
the elevation of the total energy line, determines the specifi c energy. If the fric-
tional resistance of the fl ow can be neglected, the total energy in non-uniform fl ow 
will be constant at all sections while the specifi c energy for such fl ows, however, will be 
constant only for a horizontal bed channel and in all other cases the specifi c energy 
will vary.

To simplify the expressions it will be assumed, for use in all further analysis, that 
the specifi c energy is given by Eq. 2.2, i.e., cos θ = 1.0 and α = 1.0. This is with the 
knowledge that cos θ and α can be appended to y and (V 2/2g) terms respectively, 
without diffi culty if warranted.

Energy–Depth 

Relationships 2
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2.2 CRITICAL DEPTH

Constant Discharge Situation Since the specifi c energy 

 E y
V

g
y

Q

gA
= + = +

2 2

22 2
 (2.2a)

for a channel of know geometry, E = f ( y, Q) keeping Q = constant = Q
1
 the 

variation of E with y is represented by a cubic parabola Fig. 2.1. It is seen that 
there are two positive roots for the equation of E indicating that any seen that there 
are two positive roots for the equation of E indicating that any particular 
discharge Q

1
 can be passed in a given channel at two depths and still maintain 

the same specifi c energy E. In Fig. 2.1 the ordinate PP' represents the condition 
for a specifi c energy of E

1
. The depths of fl ow can be either PR = y

1
 or PR' = y'

1
. 

These two possible depths having the same specifi c energy are know as alternate 
depths. In Fig. 2.1, a line (OS ) drawn such that E = y (i.e. at 45º to the abscissa) 
is the asymptote of the upper limb of the specifi c energy curve. It may be noticed 
that the intercept P'R' or P'R represents the velocity head. Of the two alternate 
depths, one (PR = y

1
) is smaller and has a large velocity head while the other 

(PR' = y'
1
) has a larger depth and consequently a smaller velocity head. For a 

given Q
1
 as the specifi c energy is increased the difference between the two 

alternate depths increases. On the other hand, if E is decreased, the difference 
( y'

1
 − y

1
) will decrease and at a certain value E = E

c 
, the two depths will merge 

with each other (point C in Fig. 2.1). No value for y can be obtained when E < E
c
, 

denoting that the fl ow under the given conditions is not possible in this region. The 
condition of minimum specifi c energy is known as the critical-fl ow condition and 
the corresponding depth y

c
 is known as the critical depth.

Fig. 2.1  Defi nition sketch of specifi c energy

1

D
ep

th
 y

yc

0

S

Q = Q1

Subcritical
P ′

P

R (y1)
C

45˚
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E1 Specific energy E = y +
V 2

2g

T

A

dy

y
dA = Tdy

Supercritical

R ′ (y )′
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44 Flow in Open Channels

At critical depth, the specifi c energy is minimum. Thus differentiating Eq. 2.2a 
with respect to y (keeping Q constant) and equating to zero,

 
dE

dy

Q

gA

dA

dy
= − =1 0

2

3
 (2.3)

But 
dA

dy
T= = top width, i.e. width of the channel at the water surface.

Designating the critical-fl ow conditions by the suffi x ‘c’,

 
Q T

gA
c

c

2

3
1=  (2.4)

or       Q

g

A

T
c

c

2 3

=   (2.4a)

If an α value other than unity is to be used, Eq. 2.4 will become 

    
α Q T

gA
c

c

2

3
1 0= .  (2.5)

Equation 2.4 or 2.5 is the basic equation governing the critical-fl ow conditions in 
a channel. It may be noted that the critical-fl ow condition is governed solely by the 
channel geometry and discharge (and α). Other channel properties such as the bed 
slope and roughness do not infl uence the critical-fl ow condition for any given Q. If 
the Froude number of the fl ow is defi ne as

 F V gA T= ( )/  (2.6)

it is easy to see that by using F in Eq. 2.4, at the critical fl ow y = y
c
 and F = F

c
 = 1.0. 

We thus get an important result that the critical fl ow corresponds to the minimum 
specifi c energy and at this condition the Froude number of the fl ow is unity. For a 
channel with large longitudinal slope θ and having a fl ow with an energy correction 
factor of α, the Froude number F will be defi ned as 

 F V g
A

T
=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

1

α
cosθ  (2.6a)

Referring to Fig. 2.1, considering any specifi c energy other than E
c
, (say ordinate PP' 

at E = E
1
) the Froude number of the fl ow corresponding to both the alternate depths 

will be different from unity as y
1
 or y'

1
 ≠ y

c
. At the lower limb, CR of the specifi c-

energy curve, the depth y
1
 < y

c
. As such, V'

1
 > V

c
 and F

1
 > 1.0. This region is called 

the supercritical fl ow region. In the upper limb CR', y'
1
 > y

c
. As such V'

1
 < V

c
 and F'

1
 

< 1.0. This denotes the subcritical fl ow region. 
Discharge as a Variable In the above section the critical-fl ow condition was 
derived by keeping the discharge constant. The specifi c-energy diagram can be plotted 
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for different discharges Q = Q
1
 = constant (i = 1, 2, 3 …), as in Fig. 2.2. In this fi gure, 

Q
1
 < Q

2
 < Q

3
 < … and is constant along the respective E vs y plots. Consider a section 

PP' in this plot. It is seen that for the ordinate PP', E = E
1
 = constant. Different Q 

curves give different intercepts. The difference between the alternate depths decreases 
as the Q value increases. It is possible to imagine a value of Q = Q

m
 at a point C at 

which the corresponding specifi c-energy curve would be just tangential to the ordinate 
PP'. The dotted line in Fig. 2.2 indicating Q = Q

m
 represents the maximum value of 

discharge that can be passed in the channel while maintaining the specifi c energy at a 
constant value (E

1
). Any specifi c energy curve of higher Q value (i.e Q > Q

m
) will have 

no intercept with the ordinate PP' and hence there will be no depth at which such a dis-
charge can be passed in the channel with the given specifi c energy.
Since by Eq. 2.2a

 
E y

Q

gA
= +

2

22  

        Q A g E y= −( )2  (2.7)

The condition for maximum discharge can be obtained by differentiating Eq. 2.7 
with respect to y and equating it to zero while keeping E = constant.

Thus  
dQ

dy
g E y

dA

dy

gA

g E y
= −( ) −

−( )
=2

2
0

By putting 
dA

dy
T=  and 

Q

A
g E y= −( )2  yields

Fig. 2.2 Specifi c energy for varying discharges
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46 Flow in Open Channels

 
Q T

gA

2

3
1 0= .   (2.8)

This is same as Eq. 2.4 and hence represents the critical-fl ow conditions. Hence, 
the critical-fl ow condition also corresponds to the condition for maximum discharge 
in a channel for a fi xed specifi c energy.

Example 2.1  A 2.5-m wide rectangular channel has a specifi c energy of 1.50 m 
when carrying a discharge of 6.48 m3/s. Calculate the alternate depths and corre-
sponding Froude numbers.

Solution From Eq. 2.2a

  
E y

V

g
y

Q

gB y
= + = +

2 2

2 22 2

 
1 5

6 48

2 9 81 2 5

2

2 2
.

( . )

. ( . )
= +

× ×
y

y

      
= +y

y

0 34243
2

.

Solving this equation by trial and error, the alternate depths y
1
 and y

2
 are obtained as 

y
1
 = 1.296 m and y

2
 = 0.625 m.

Froude number  F
V

gy y y y
= = =

6 48

2 5 9 81

0 82756
3 2

.

( . ) .

.
/

 ,

At y
1
 = 1.296 m, F

1
 = 0.561; and 

at   y
2
 = 0.625 m, F

2
  = 1.675

The depth y
1
 = 1.296 m is in the subcritical fl ow region and the depth y = 0.625 m 

is in the supercritical fl ow region.

Example 2.2  A fl ow of 5.0 m3/s is passing at a depth of 1.5 m through a rectan-
gular channel of 2.5 m width. The kinetic energy correction factor α is found to be 
1.20. What is the specifi c energy of the fl ow? What is the value of the depth alternate 
to the existing depth if α = 1.0 is assumed for the alternate fl ow?

Solution V
Q

A1
1

5 0

2 5 1 5
1 33= =

( )
=

.

. .
.

×
 m/s

α1
1
2 2

2
1 20

1 33

2 9 81
0 1087

V

g
=

( )
=.

.

.
.×

×
 m
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Specifi c energy   E y
V

g1 1 1
1
2

2
1 5 0 1087= + = +α . .

 = 1.6087 m

For the alternate depth y
2
,

y
y2

2

2
2

5 0

2
1 6087+ =

( . )
.

× 9.81 (2.5 )
… (since α2 1 0= . )

i.e.                  y
y2

2
2

0 2039
1 6087+ =

.
.   

By trial and error,   y
2
  = 0.413 m

2.3 CALCULATION OF  THE CRITICAL DEPTH

Using Eq. 2.4, expressions for the critical depth in channels of various geometric 
shapes can be obtained as follows:

Rectangular Section For a rectangular section, A = By and T = B (Fig. 2.3). 
Hence by Eq. 2.4

 

Q T

gA

V

g y
c

c

c

c

2

3

2

1= =
 

or 
V

g
yc

c

2

2

1

2
=  (2.9)

Specifi c energy at critical depth E y
V

g
yc c

c
c= + =

2

2

3

2
 (2.10)

Note that Eq. 2.10 is independent of the width of the channel.
Also, if q = discharge per unit width = Q/B,

 
q

g
yc

2
3=

i.e. y
q

gc =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2 1 3/

 (2.11)

Since A/T = y, from Eq. 2.6, the Froude number for a rectangular channel will be 
defi ned as

Fig. 2.3 Rectangular channel

∇

B

y

T = B
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48 Flow in Open Channels

 F
V

gy
=   (2.12)

Triangular Channel For a triangular channel having a side slope of m horizontal: 
1 vertical (Fig. 2.4),  A = my2 and T = 2my.
By Eq. 2.4a,

Q

g

A

T

m y

my

m yc

c

c

c

c
2 3 3 6 2 5

2 2
= = =  (2.13)

Hence  y
Q

gmc =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2 2

2

1 5/

  (2.14)

The specifi c energy at critical depth E y
V

gc c
c= +

2

2

= + = +y
Q

gA
y

m y

m yc

c

c
c

c

2

2

2 5

2 42 4

i.e. Ec = 1.25y
c
  (2.15)

It is noted that Eq. 2.15 is independent of the side slope m of the channel. Since 
A / T = y/2, the Froude number for a triangular channel is defi ned by using Eq. 2.6 as

F
V

gy
=

2
  (2.16)

Circular Channel Let D be the diameter of a circular channel (Fig. 2.5) and 2θ 
be the angle in radians subtended by the water surface at the centre.
A = area of the fl ow section

    =  area of the sector + area of the triangu -
lar portion

= + ⋅ − −
1

2
2

1

2
20

2
0 0r r rθ π θ π θsin ( ) cos( )

= −
1

2
2 20

2
0

2( sin )r rθ θ

A
D

= −
2

8
2 2( sin )θ θ

Top width  T = D sin θ

and 2θ  = 2 cos−1 1
2

−
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ =

y

D
f y D( )

Fig. 2.4 Triangular channel

∇

y

m

2my

θ

1

Fig. 2.5 Circular channel

∇

T

y 2θ

D  = 2 r0
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Substituting these in Eq. 2.4a yields

 Q

g

D

D

c c

c

2

2 3

8
2 2

=
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥( sin )

sin

θ θ

θ
 (2.17)

Since explicit solutions for y
c
 cannot be obtained from Eq. 2.17, a non-dimensional 

representation of Eq. 2.17 is obtained as

Q

gD
f y Dc c

c

c

2

5

3 2

1 2

0 044194 2 2
=

−
=

. ( sin )

(sin )
( )

θ θ
θ

 (2.18)

This function is evaluated and is given in Table 2A.1 of Appendix 2A at the end
of this chapter as an aid for the estimation of y

c
.

Since A T fn
y

D
=

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ , the Froude number for a given Q at any depth y will be 

F
V

g A T

Q

g A T
fn y D= = =

( ) ( )
( )

3

The following are two empirical equations that have been proposed for quick and 
accuarate estimation of critical depth in circular channels:

Trapezoidal Channel For a trapezoidal channel having a bottom width of B and 
side slopes of m horizontal: 1 vertical (Fig. 2.6)
Area  A   = (B + my)y
and Top width  T = (B + 2my)

Sl.No Equation Details

1 y

D
F

F
Q

D gD

Z

D

c
D

D

= +⎡
⎣⎢

⎤
⎦⎥

= =

− −
0 77 1 06 0 085

2 2 5

. .
.

.
where

Swamee P K (1993)(Ref. 4).

2

y
D

Q

g

for
y

D

c

c

=
⎛

⎝
⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

< ≤

1 01

0 02 0 85

0 265

0 506

.

. .

.

. Straub W O (1978)(Ref. 5).

Empirical relationships for critical depth in circular channels
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At the critical fl ow

Q

g

A

T

B my y

B my
c

c

c c

c

2 3 3 3

2
= =

+
+

( )

( )
 (2.19)

Here also an explicit expression for the 
critical depth y

c
 is not possible. The non-

dimensional representation of Eq. 2.19 facili-
tates the solution of y

c
 by the aid of tables or 

graphs. Rewriting the right-hand side of Eq. 2.19 as

( )B my y

B my

B
my

B
y

B
my

B

c c

c

c
c

c

+
+

=
+

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

+
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟

3 3
3

3

3

2

1

1
2

⎟⎟⎟

=
+
+

B

m
c c

c

5

3

3 31

1 2

( )

( )

ζ ζ
ζ

 where ζc
cm y

B
=

gives  
Q m

gB
c c

c

2 3

5

3 31

1 2
=

+
+

( )

( )

ζ ζ
ζ

  (2.20)

or Qm

gB
c c

c

3 2

5 2

3 2 3 2

1 2

1

1 2

/

/

/ /

/

( )

( )
= =

+
+

ψ
ζ ζ

ζ
  (2.20a)

Equation 2.20a can easily be evaluated for various value of ζ
c
 and plotted as ψ vs ζ

c
. 

It may be noted that if α > 1, ψ can be defi ned as

 ψ
α

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

Q m

gB

2 3

5

1 2

 (2.21)

Table 2A - 2 which gives values of ψ for different values of ζ
c
 is provided at the end 

of this chapter. This table is very useful in quick solution of problems related to criti-
cal depth in trapezoidal channels.

Since A T
B my y

B my

my

B
y

my

B

=
+
+

=
+

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

+
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

( )

( )2

1

1 2

 the Froude number at any depth y is

F
V

gA T

Q A

gA T
fn my B= = = ( ) for a given discharge Q.

Fig. 2.6 Trapezoidal channel

∇

y

B

m

1
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Further the specifi c energy at critical depth, E
c
 is a function of (my

c
 / B) and it can 

be shown that (Problem 2.7)

E

y
c

c

c

c

=
+
+

1

2

3 5

1 2

( )

( )

ζ
ζ

where                       ζ c
cmy

B
=

2.4 SECTION FACTOR  Z

The expression A A T  is a function of the depth y for a given channel geometry 
and is known as the section factor Z.

Thus Z A A T=  (2.22)

At the critical-fl ow condition,  y = y
c
 and

 Z A A T Q gc c c c= =   (2.23)

which is a convenient parameter for analysing the role of the critical depth in a fl ow 
problem.

As a corollary of Eq. 2.23, if Z is the section factor for any depth of fl ow y, then

 Q g Zc =   (2.24)

where Q
c
 represents the discharge that would make the depth y critical and is known 

as the critical discharge.
Note that the left-hand side of Eq. 2.18 is a non-dimensional form of the section 

factor (as Z/D 2.5) for circular channels.

2.5 FIRST HYDRAULIC EXPONENT  M

In many computations involving a wide range of depths in a channel, such as in the 
GVF computations, it is convenient to express the variation of Z with y in an expo-
nential form.
The (Z – y) relationship

 Z C yM2
1=  (2.25)

is found to be very advantageous. In this equation C
1
 = a coeffi cient and M = an expo-

nent called the fi rst hydraulic exponent. It is found that generally M is a slowly-varying 
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52 Flow in Open Channels

function of the aspect ratio for most of the channel shapes. The variation of M and 

ζ =
my

B
 for a trapezoidal channel is indicated in Fig. 2.7.

The value of M for a given channel can be determined by preparing a plot of Z vs 
y on a log-log scale. If M is constant between two points (Z

1
, y

1
) and (Z

2
, y

2
) in this 

plot, the value of M is determined as

M
Z Z

y y
=

( )
( )

2 2 1

2 1

log

log
 (2.26)

Fig. 2.7 Variation of fi rst hydraulic exponent M in a trapezoidal channel

∇

m
B

y 1

Rectangular M  = 3.0
Tr iangular M  = 5.0

Hydraul ic Exponent M

2.5 3.0 3.5 4.0 4.5 5.0

4.0

2.0

1.0

0.8

0.6

0.4

0.20

0.10

0.08

0.06

0.04

ζ 
=

 m
y

/B

In Eq. 2.26, instead of Z, a non-dimensionalised Z value can also be used. For a 
trapezoidal channel, Eq. 2.20a represents a non-dimensionalised value of Z, if the 
suffi x ‘c’ is removed. Hence the slope of ψ vs my/B on a log-log plot, such as in
Fig. 2.7, can be used to obtain the value of M at any value of ζ. It may be noted that 
M for a trapezoidal channel is a unique function of my/B and will have a value in 
the range 3.0 to 5.0.
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An estimate of M can also be obtained by the relation

M
y

A
T

A

T

dT

dy
= −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟3  (2.27)

Example 2.3  Obtain the value of the fi rst hydraulic exponent M for (a) rectangu-
lar channel, and (b) an exponential channel where the area A is given as A = K

1 
y a

Solution (a) For a rectangular channel A = By and T = B

By Eq. 2.25, z
A

T
B y C yM2

2
2 3

1= = =

By equating the exponents on both sides, M = 3.0
[Note: The above value of M can also be obtained directly by using Eq. 2.27]

(b) A K ya= 1  

T
dA

dy
K ay a= = −( )

1
1

By Eq.  2.27,    M
y

A
T

A

T

dT

dy
= −( )3

M
y

K y
K ay

K y

K ay
K a a y

a

a
a

a

a= − −{ }
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−( )
−

−( )

1

1
1 1

1
1 1

23 1
( )

( )

= − + = +3 1 2 1a a a

Example 2.4  It is required to have a channel in which the Froude number F 
remains constant at all depths. If the specifi c energy E is kept constant, show that for 

such a channel 
T

B

E

E y

F

=
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎛

⎝
⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
1

2

2

where T and B are the top width and bottom width 

of the channel respectively.

Solution E y
V

g
y

Q

gA
y

F A

T
= + = + = +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

2 2

2

2

2 2 2
 

E y
AF

T
− =

2

2
 (2.28)
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Differentiating with respect to y and noting that F is constant,

 

dE

dx

F
T

dA

dy
A

dT

dy

T
− =

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥⎥

1
2

2

2

 

Since E is constant,
dE

dy
 = 0. Also 

dA

dy
 = T

Hence,          
F A

T

dT

dy

2

22
1 1−

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ = −  

            

AF

T T

dT

dy

F2 2

2

1
1

2
= +

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

 

Substituting for 
AF

T

2

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

 from Eq. 2.28, ( )E y
T

dT

dy

F
−

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ = +

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1
1

2

2

 

dT

T

F dy

E y
= +

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ −( )

1
2

2

 

On integration 1n T
F

E y C= +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

− − +1
2

1
2

( ( ) )n

At y = 0, T = B and hence C = 1n B
F

+ +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1
2

2

1n E

∴      1n 
T

B

F E

E y
= +

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟1

2
1

2

n  

or 
T

B

E

E Y

F

=
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎛

⎝
⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
1

2

2

 

2.6 COMPUTATIONS

The problems concerning critical depth involve the following parameters: geom-
etry of the channel, Q or E or y

c
. For rectangular and triangular channel sections, 

most of the problems involve explicit relationships for the variable and a few 
problems involve trial and error solutions. However, for trapezoidal, circular and 
most other regular geometrical shapes of channel sections, many of the problems 
have to be solved by trial and error procedure. Tables 2A.1 and 2A.2 are helpful 
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in problems connected with circular and trapezoidal channels respectively. 
Examples 2.5 to 2.8 illustrate some of the typical problems and the approach 
to their solutions. The graphical solutions and monographs which were in use 
some decades back are obsolete now. With the general availability of computers, 
a large number of elegant numerical methods are available to solve non-linear 
algebraic equations and the solutions of critical depth and related critical fl ow 
problems in channels of all shapes, including natural channels, is no longer 
diffi cult.

Example 2.5  Calculate the critical depth and the corresponding specifi c 
energy for a discharge of 5.0 m3/s in the following channels:

(a) Rectangular channel, B = 2.0 m
(b) Triangular channel, m = 0.5
(c ) Trapezoidal channel, B = 2.0 m, m = 1.5
(d) Circular channel, D = 2.0 m

Solution (a) Rectangular Channel 

  
q Q B= = =

5 0

2 0
2 5 3.

.
. m /s/m

 

             

y q gc = ( ) =
( )⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=2 1 3
2 1 3

2 5

9 81
0 860

.

.
.

/

m

 

Since for a rectangular channel 
E

y
c

c

=1 5. ,  Ec =1 290. m

(b) Triangular Channel

From Eq. 2.14 y
Q

gmc =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2 2

2

1 5

 

                                      =
( )
( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
2 5

9 81 0 5
1 828

2

2

1 5

×

×. .
. m  

Since for a triangular channel 
E

y
Ec

c

c= =1 25 2 284. , . m

(c) Trapezoidal Channel 

 Ψ = =
( )

=
Qm

gB

3 2

5 2

3 2

5 2

5 0 1 5

9 81 2 0
0 51843

. ( . )

. .
.

/×
×
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56 Flow in Open Channels

Using Table 2A.2 the corresponding value of 

ζc
cmy

B
= = 0 536.

yc = 0 715. m

Ac = +( ) =2 0 1 5 0 715 0 715 2 197 2. . . . .× × m

Vc = =5 0 2 197 2 276. / . . m /s

  V gc
2 2 0 265= . m

E y
V

gc c
c= + = + =
2

2
0 715 0 264 0 979. . . m

(d) Circular Channel

Z
Q

g

Z

D

c

c

= = =

=
( )

=

5 0

9 81
1 5964

1 5964

2 0
0 2822

2 5 2 5

.

.
.

.

.
.

. .

From Table 2A.1 showing the relationship of 
Z

D2 5.
 with y/D, the value of y

c 
/D 

corresponding to
Z

D
c
2 5.

 = 0.2822 is found by suitable linear interpolation as y
c 
/D = 

0.537 and hence y
c
 = 1.074 m.

Determination of y
c
 by empirical equations

1. By Swamee’s equation

F
Q

D gD

y

D
F

D

c
D

= =
( )

=

= +⎡
⎣⎢

⎤
⎦⎥

− −

2 2

6 0

5 0

2 0 9 81 2 0
0 2822

0 77 1 0

.

. . .
.

. .
.

×
0085

6 0 085

2 0
0 77 0 2822 1 0 0 5363

1 072

y

y

c

c

.
. . . .

.

.

= ( ) +⎡
⎣⎢

⎤
⎦⎥

=

=

− −

m

2. By Straub’s equation

y
D

Q

g
c =

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
1 01

0 265

0 506

.
.

.
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yc =
( )

1 01

2 0

5 0

9 81
0 265

.

.

.

.
.

⎛⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ =

0 506

1 065
.

. m

Example 2.6  A trapezoidal channel with a bed width of 4.0 m and side slopes 
of 1.5 H: I V carries a certain discharge. (a) Based on observations, if the critical 
depth of the fl ow is estimated as 1.70 m, calculate the discharge in the channel. (b) If 
this discharge is observed to be fl owing at a depth of 2.50 m in a reach, estimate the 
Froude number of the fl ow in that reach.

Solution (a) At critical depth, area  A
c
 = (B + my

c
) y

c

= [4.0 + (1.5 × 1.70)] × 1.70 = 11.135 m2

Top width     T
c
 = (B + 2 m y

c
)

= [4.0 + (2 × 1.5 × 1.70)] = 9.10 m

At critical fl ow, by Eq. 2.4a 
Q

g

A

T
c

c

2 3 311 135

9 10
151 715= = =

( . )

.
.

Discharge Q = 38.579 m3/s

(b) When the depth of fl ow y = 2.50 m
Area  A = (B + my) y = [4.0 + (1.5 × 2.50)] × 2.50 = 19.375 m2

Top width  T = (B + 2 my) = [4.0 + (2 × 1.5 ×2.50)] = 11.5 m
 A/T = 19.375/11.50 = 1.685 m

 V
Q

A
= = =

38 579

19 375
1 991

.

.
.  m /s

Froude number F
V

g
A

T

= = =

( )

.

. .
.

1 991

9 81 1 685
0 490

×

Example 2.7  Calculate the bottom width of a channel required to carry a dis-
charge of 15.0 m3/s as a critical fl ow at a depth of 1.2 m, if the channel section is 
(a) rectangular, and (b) trapezoidal with side slope 1.5 horizontal: 1 vertical.

Solution (a) Rectangular Section
The solution here is straightforward.

y
q

gc =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2 1 3

 i.e. q gyc= 3

  q = ( ) =9 81 1 2 4 117
3

. . . m /s/m3
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B = bottom width = 
15 0

4 117
3 643

.

.
.= m

(b) Trapezoidal Channel
The solution in this case is by trial-and-error.

A B B

T B B

Q

g

c

c

= + = +( )
= +( ) = +( )

=

( . . ) . . .

.

1 5 1 2 1 2 1 8 1 2

2 3 6
2

× × ×

×1.5×1.2

AA

T

B

B

B

B

c

c

3

3 3 2

3

1 8 1 2

3 6

15

9 81

1 8

3 6
13 2

+( ) ( )
+( )

=
( )

+( )
+( )

=

. .

. .

.

.
.

×

773

By  trial-and-error     B = 2 535. m

Example 2.8  Find the critical depth for a specifi c energy head of 1.5 m in the 
following channels:

(a) Rectangular channel, B = 2.0 m
(b) Triangular channel,  m = 1.5
(c) Trapezoidal channel, B = 2.0 m and m = 1.0
(d) Circular channel,  D = 1.50 m

Solution (a) Rectangular Channel

By Eq. 2.10   E yc c= =
3

2
1 50.  m

  yc = =
1 50 2

3
1 00

.
.

×
m

(b) Triangular Channel

By Eq. 2.15 E yc c= =1 25 1 50. . m

  yc = =
1 50

1 25
1 20

.

.
. m

(c) Trapezoidal Channel

  
E y

V

g
y

Q

gAc c
c

c

c

= + = +
2 2

22 2
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Since by Eq. 2.4a   
Q

g
A T E y

A

Tc c c c
c

c

2
3

2
= = +,

     
1 5

2 0

2 2 0 2
.

.

.
= +

+( )
+( )

y
y y

yc
c c

c

Solving by trial-and-error, yc =1 095. m.

(d) Circular Channel

E y
A

Tc c
c

c

= +
2

By non-dimensionalising with respect to the diameter D.

y

D

A D

T D

E

D
c c

c

c+
( )

( )
= = =

2

2

1 5

1 5
1 0

.

.
.

From Table 2A.1, values of (A
c
 / D2) and (T

c
 / D) for a chosen (y

c
 / D) are read and a 

trial-and-error procedure is adopted to solve for y Dc / . It is found that 
y

D
c = 0 69.  

and y
c
 = 0.69 × 1.50 = 1.035 m

Example 2.9  Water is fl owing a critical depth at a section in a Δ shaped 
channel, with side slope of 0.5 H: I V. (Fig. 2.8). If the critical depth is 1.6 m, 
estimate the discharge in the channel and the specifi c energy at the critical depth 
section.

Solution (i) Here m = −0.5

Tc = −( ) =3 0 2 0 5 1 6 1 40. . . .× × m

Ac =
+( )

=
3 0 1 4

2
1 60 3 52

. .
. .× m2

Q

g

A

T
c

c

2 3 3
3 52

1 40
31 153= =

( )
=

.

.
.

Discharge Q = 17.48 m3/s 

(ii)  V
Q

Ac

c

= = =
17 48

3 52
4 966

.

.
. m/s

V

g
c
2 2

2

4 966

2 9 81
1 257=

( )
=

.

.
.

×
mFig. 2.8 Example 2.9

3.0 m

1

0.5

1.6 m

∇
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E y
V

gc c
c= + = + =
2

2
1 60 1 257 2 857. . .  m

2.7 TRANSITIONS

The concepts of specifi c energy and critical depth are extremely useful in the analysis 
of problems connected with transitions. To illustrate the various aspects, a few simple 
transitions in rectangular channels are presented here. The principles are neverthe-
less equally applicable to channels of any shape and other types of transitions.

2.7.1 Channel with a Hump

(a) Subcritical Flow Consider a horizontal, frictionless rectangular channel of 
width B carrying Q at a depth y

1
.

Let the fl ow be subcritical. At Section 2 (Fig. 2.9), a smooth hump of height Δ Z is 
built on the fl oor, since there are no energy losses between Sections 1 and 2, and con-
struction of a hump causes the specifi c energy at Section 2 to decrease by Δ Z. Thus 
the specifi c energies at Sections 1 and 2 are given by

E y
V

g1 1
1
2

2
= +

and E E Z2 1= −Δ  (2.29)

Since the fl ow is sub-
critical, the water surface 
will drop due to a decrease 
in the specifi c energy. In 
Fig. 2.10, the water surface 
which was at P at Section 1 
will come down to point R 
at Section 2. the depth y

2
 

will be given by

 E y
V

g
y

Q

g B y2 2
2
2

2

2

2
2
22 2

= + = +   (2.30)

It is easy to see from Fig. 2.10 that as the value of Δ Z is increased, the depth at Section 2, 
i.e. y

2
, will decrease. The minimum depth is reached when the point R coincides with C, 

the critical  depth point. At this point the hump height will be maximum, say = Δ Z 
m
, 

y
2
 = y

c
 = critical depth and E

2
 = E

c
. Then condition at Δ Z 

m
 is given by the relation

 E Z E E y
Q

g B ym c c

c

1 2

2

2 22
− = = = +Δ  (2.31)

Fig. 2.9 Channel transition with a hump

1 2

Energy line

Horizontal

Hump

E1

E2
y1 y2yc
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The question naturally 
arises as to what happens 
when Δ Z > Δ Z

m
 From 

Fig. 2.10 it is seen that 
the fl ow is not possible 
with the given condit ions, 
viz. with the given spe-
cifi c energy. The upstr-
eam depth has to increase 
to cause an increase in 
the specifi c energy at Sec-
tion 1. If this modifi ed 
depth is represented by 
y′

1 
, then

 E y
Q

gB y
1 1

2

2
1

22
'

'
= +'  {with E E1 1

' >  and y y1 1' > }  (2.32)

At Section 2 the fl ow will continue at the minimum specifi c energy level, i.e., at the 
critical condition. At this condition, y

2
 = y

c
 and

  E Z E E y
Q

g B yc c

c

1 2

2

2 22
' − = = = +Δ    (2.33)

Recollecting the various sequences, when 0 < Δ Z < Δ Z
m
 the upstream water level 

remains stationary at y
1
 while the depth of fl ow at Section 2 decreases with Δ Z reach-

ing a minimum value of y
c
 at Δ Z = Δ Z

m
 (Fig. 2.11). With further increase in the value 

of Δ Z, i.e. for Δ Z >Δ Z
m 
, y

1
 will change to y'

1
 while y

2
 will continue to remain at y

c
.

The variation of y
1
 and y

2
 with Δ Z in the subcritical regime can be clearly noticed 

in Fig. 2.11.

Minimum Size of Hump for 
Critical Flow
(i) Frictionless situation Consider a 
smo oth, frictionless, streamlined hump 
of height Δ Z placed at a section in a 
rectangular channel carrying subcritical 
fl ow. The relationship between the spe-
cifi c energies at a section upstream of 
the hump (E

1
) and at section on the hump 

(E
2
) is given as

E E Z1 2= +Δ   (2.34)

Fig. 2.10 Specifi c-energy diagram for Fig. 2.9

E2

E1

y2

y1

yc

D
ep

th
 y

Specific
energy

P

R

Q = const.

C

2
1

Fig. 2.11  Variation of y
1
 and y

2
 in subcritical 

fl ow over a hump

Subcritical flow

Depth y2

y 1
 a

nd
  y

2

Depth y1

yc

Δ Zm   Δ Z
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62 Flow in Open Channels

Let Δ Z
m
 be the height of the hump that would cause critical fl ow to occur over the 

hump (i.e., at Section 2) without changing the upstream specifi c energy. Any value of 
Δ Z > Δ Z

m
 would cause critical fl ow over the hump but the upsteam specifi c energy 

would change to a value greater than E
1
. Thus Δ Z

m
 could also be called as the mini-

mum height of a streamlined, frictionless hump that has to be provided to cause criti-
cal fl ow over the hump. An expression for the value of Δ Z

m
 is obtained as below:

Since at Δ ΔZ Z E E ym c c= = =, 2

3

2
and Eq. 2.28 would now read as

      E
1
 = E

c
 + ΔZ

m

 
ΔZ E ym c= −1

3

2

ΔZ

y

E

y

y

y

F q

g y
m c

1

1

1 1

1
2 2 1 3

1

3

2
1

2

3

2

1
= − = + −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

ΔZ

y

F
Fm

1

1
2

1
2 31

2

3

2
= + −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
  (2.35)

(ii) When there is energy loss due to the hump Let h
L
= energy loss in the transition 

due to the hump. The energy Eq. 2.34 will now be written as

E
1
 = E

2
 + Δ Z + h

L
 (2.36)

Following the same procedure as in the frictionless case and noting that E
2
 = E

c
, 

Eq. 2.35 will be modifi ed as

ΔZ

y

h

y

F
Fm L

1 1

1
2

1
2 31

2

3

2
+

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= + −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

 (2.37)

Comparing Eq. 2.37 with Eq. 
2.35, it may be noted that the
effect of energy loss in the transi-
tion due to shape and friction is 
equivalent to that of a hump placed 
in the downstream section.

(b) Supercritical Flow If y
1
 

is in the supercritical fl ow regime, 
Fig. 2.12 shows that the depth of 
fl ow increases due to the reduc-
tion of specifi c energy. In Fig. 2.10 
point P' corresponds to y

1
 and 

Fig. 2.12  Variation of y
1
 and y

2
 in supercritical 

fl ow over a hump

ycDepth y1

Depth y2

y
1
 a

n
d

 y
2
 

Supercr i t ical  f low

ΔZΔZm
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point R' to depth at the Section 2. Up to the critical depth, y
2
 increases to reach y

c
 at 

Δ Z = Δ Z
m
. For Δ Z > Δ Z

m
, the depth over the hump y

2
 = y

c
 will remain constant and 

the upstream depth y
1
 will change. It will decrease to have a higher specifi c energy 

E'
1
. The variation of the depths y

1
 and y

2
 with Δ Z in the supercritical fl ow is shown 

in Fig. 2.12.

Example 2.10  A rectangular channel has a width of 2.0 m and carriers a dis-
charge of 4.80 m3/s with a depth of 1.60 m. at a certain section a small, smooth hump 
with a fl at top and of height 0.10 m is proposed to be built. Calculate the likely change 
in the water surface. Neglect the energy loss.

Solution Let the suffi xes 1 and 2 refer to the upstream and downstream sections 
respectively as in Fig. 2.9.

 q = =
4 80

2 0
2 40

.

.
. m3/s/m

V
V

g1
1
22 40

1 6
1 50

2
0 115= = =

.

.
. , .m s m

F V g y1 1 1 0 379= = . , hence the upstream fl ow is subcritical and the hump will 
cause a drop in the water surface elevation.

E
1
 = 1.60 + 0.115 = 1.715 m

At Section 2,

E
2
 = E

1
 − Δ Z = 1.715 − 0.10 = 1.615 m

yc =
( )⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
=

2 4

9 81
0 837

2 1 3

.

.
. m

E
c
 = 1.5 y

c
 = 1.256 m

The minimum specifi c energy at Section 2, E
c2

 is less then E
2 
, the available specifi c 

energy at that section. Hence y
2
 > y

c
 and the upstream depth y

1
 will remain unchanged. 

The depth y
2
 is calculated by solving the specifi c energy relation

y
V

g
E2

2
2

22
+ =

i.e. y
y2

2

2
2

2 4

2 9 81
1 615+ =

( . )

.
.

× ×

Solving by trial-and-error, y
2
 =1.481 m.
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64 Flow in Open Channels

Fig. 2.13 Example 2.11

Energy line after the placement of the hump

Energy line without the hump

Water surface

Flow

Hump

1 2

y2 = yc2 = 1.256 m

E1 y1  = 1.648 m

E 1 = 1.756 m

ΔZ

Δ

Δ

Example 2.11  (a) In example 2.10, if the height of the hump is 0.5 m, estimate 
the water surface elevation on the hump and at a section upstream of the hump. 
(b) Estimate the minimum size of the hump to cause critical fl ow over the hump. 

Solution (a) From Example 2.10: F
1
 = 0.379, E

1
 = 1.715 m and y

c
 = y

c2
 = 0.837 m.

Available specifi c energy at Section 2 = E
2
 = E

1
 − Δ Z 

E
2 
=1.715 − 0.500=1.215 m

E  
2 
=1.5 y

c2
 = 1.256 m.

The minimum specifi c energy at the Section 2 is greater than E
2
, the available

specifi c energy at that section. Hence, the depth at Section 2 will be at the critical 
depth. Thus y

2
 = y

c2
 = 1.256 m. The upstream depth y

1
 will increase to a depth y' , 

such that the new specifi c energy at the upstream Section 1 is 

     E '
1
 = E

c2
 + ΔZ

Thus       E y
V

g
E Zc1 1

1
2

2

2
'

'
= + = +Δ'

y
q

g y
'

'
. . .1

2

1
22

1 256 0 500 1 756+ = + =

y
y

'
.

. '
.1

2

1
2

2 4

2 981
1 756+

( )
× ×

=

 

y
y

'
.

'
.1

1
2

0 2936
1 756+ =

Solving by trial-and-error and selecting the positive root which gives y'
1
 > y

2
, 

y'
1
 = 1.648 m

The nature of the water surface is shown in Fig. 2.13.

1
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(b) Here, F
1
 = 0.379 and y

1
 = 1.6 m. By use of Eq. 2.35

ΔZ

y

F
Fm

1

1
2

1
2 31

2

3

2
= + −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

ΔZm

1 6
1

0 379

2

3

2
0 379 0 2866

2
2 3

.

( . )
( . ) .= + −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=

ΔZm  = 0.459 m

Alternatively, ΔZ
m
 = E

1
 − E

c
 = 1.715 − 1.256 = 0.459 m

Example 2.12  A 2.5-m wide rectangular channel carries 6.0 m3/s of fl ow at a 
depth of 0.50 m. Calculate the minimum height of a streamlined, fl at–topped hump 
required to be placed at a section to cause critical fl ow over the hump. The energy 
loss over the hump can be taken as 10% of the upstream velocity head.

Solution Discharge intensity q = 6.0/2.5 = 2.40 m3/s/m

V
1
 = 2.4/0.5 = 4.8 m/s, 

V

g
1
2

2
1 174= . m

Energy loss, h
V

gL = × =0 1
2

0 11741
2

. .

Froude number, F
V

g y
1

1

1

4 8

9 81 0 5
2 167= =

×
=

.

. .
.

By Eq. (2.37) ( )
ΔZ

y

h

y

F
Fm L

1 1

1
2

1
2 31

2

3

2
+ = + −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

(
.

. )
( . )

( . )
ΔZm

0 5
0 1174 1

2 167

2

3

2
2 167

2
2 3+ = + −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

ΔZm

0 5
0 6017

.
.= and ΔZm = 0.301 m

Alternatively, ΔZ
m
 = E

1
 − E

c
 − h

L

E y
q

gc c= = ×
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1 5 1 5
2 1 3

. .

= ×
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=1 5
2 4

9 81
1 256

2 1 3

.
( . )

.
. m
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66 Flow in Open Channels

hL = 0 1174. m and E y
V

g1 1
1
2

2
0 5 1 174 1 674= + = + =. . . m

 Δ Z
m
 = 1.674 − 1.256 − 0.1174 = 0.301 m

2.7.2 Transition with a Change in Width

(a) Subcritical fl ow in a Width Constriction Consider a frictionless horizontal 
channel of width B

1 
carrying a discharge Q at a depth y

1
 as in Fig. 2.14. At the Section 2 

the channel width has been constricted to B
2
 by a smooth transition. Since there are 

no losses involved and since the bed elevations at Sections 1 and 2 are same, the spe-
cifi c energy at Section 1 is equal to the specifi c energy at the Section 2.

E y
V

g
y

Q

gB y1 1
1
2

1

2

1
2

1
22 2

= + = +

Fig. 2.14 Transition with width constriction

B1 B2

Energy line

E1 y1

y2 yc

Horizontal
L-Section

21

Δ

Δ

and E y
V

g
y

Q

gB y2 2
2
2

2

2

2
2

2
22 2

= + = +

It is convenient to analyse the fl ow in terms of the discharge intensity q = Q/B. At 
Section 1, q

1
 = Q/B

1
 and at Section 2, q

2
 = Q/ B

2
. Since B

2
 < B

1
, q

2
 > q

1
. In the spe-

cifi c energy diagram (Fig. 2.15) drawn with the discharge intensity as the third 
parameter, point P on the curve q

1
 corresponds to depth y

1
 and specifi c energy E

1
. 

since at Section 2, E
2
 = E

1
 and q = q

2
 , the point P will move vertically downward 

to point R on the curve q
2
 to reach the depth y

2
. Thus, in subcritical fl ow the depth 
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y
2
 < y

1
. If B

2
 is made smaller, then q

2
 will increase and y

2
 will decrease. The limit of 

the contracted width B
2
 = B

2 m
 is obviously reached when corresponding to E

1
, the 

discharge intensity q
2
 = q

m
, i.e., the maximum discharge intensity for a given specifi c 

energy (critical-fl ow condition) will prevail. At this minimum width, y
2
 = critical 

depth at Section 2, y
cm

 and

Fig. 2.15 Specifi c energy diagram for transition of Fig. 2.14

R

C

P

S

y

P ′

R ′

E ′1

qm for E ′ 1

qm for E ′1

q2 > q1

q1

E1

y1
y2

yc

0
45°

Specific Energy E

Supercritical flow

Subcritical flow

E E y
Q

g B ycm cm

m cm

1

2

2
2 22

= = +
( )

 (2.38)

For a rectangular channel, at critical fl ow y Ec c=
2

3
 

Since E Ecm1 =

y y E Ecm cm2 1

2

3

2

3
= = =  (2.39)

and y
Q

B gc

m

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2

2
2

1 3

 or B
Q

g ym

cm

2

2

3
=

i.e. B
Q

gEm2

2

1
3

27

8
=   (2.40)

If B
2
 < B

2m
, the discharge intensity q

2
 will be larger than q

m
 the maximum dis-

charge intensity consistent with E
1
. The fl ow will not, therefore, be possible with the 
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68 Flow in Open Channels

given upstream conditions. The upstream depth will have to increase to y
1
 so that a 

new specifi c energy E y
Q

g B y
' '

' )1 1

2

1
2

1
22

= +
(

is formed which will just be suffi cient to 

cause critical fl ow at Section 2. It may be noted that the new critical depth at Section 2 
for a rectangular channel is 

Fig. 2.16 Variation of y
1 
and y

2
 in subcritical fl ow in a width constriction

Subcritical Flow

Specific energy

Depth y1

Depth y2

y1

ycm

yc2 = y2

E1

E ′1

y 1
, y

2 
an

d 
E

 

0

1.0
B2/B1

B2m

B1

y
Q

B g
q gc2

2

2
2

1 3

2
2 1 3

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ = ( )

and E y
V

yc c
c

c2 2
2
2

22
1 5= + =

g
.

Since B
2
 < B

2m 
, y

c2
 will be larger than y

cm
. Futher, E'

1
 = E

c2
 = 1.5 y

c2
. Thus even 

though critical fl ow prevails for all B
2
 < B

2 m
, the depth at Section 2 is not constant as 

in the hump case but increases as y'
1
 and hence E'

1
 rises. The variation of y

1
, y

2
 and E 

with B
2  
/  B

1
 is shown schematically in Fig. 2.16.

(b) Supercritical Flow in a Width Constriction If the upstream depth y
1
 is 

in the supercritical fl ow regime, a reduction of the fl ow width and hence an increase 
in the discharge intensity causes a rise in depth y

2
. In Fig. 2.15, point P' corresponds 

to y
1
 and point R' to y

2
. As the width B

2
 is decreased, R' moves up till it becomes criti-

cal at B
2
 = B

2m
. Any further reduction in B

2
 causes the upstream depth to decrease to 

y'
1 
so that E

1
 rises to E'

1
. At Section 2, critical depth y'

c
 corresponding to the new spe-

cifi c energy E'
1
 will prevail. The variation of y

1
, y

2
 and E with B

2 
/ B

1
 in supercritical 

fl ow regime is indicated in Fig. 2.17.
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Choking In the case of 
channel with a hump, and 
also in the case of a width 
constriction, it is observed 
that the upstream water-
surface ele vation is not 
affected by the conditions 
at Section 2 till a critical 
stage is fi rst ach ieved. Thus 
in the case of a hump for 
all Δ Z > Δ Z

m
, the upstream 

water depth is constant and 
for all Δ Z > Δ Z

m
 the upstr-

eam depth is different from 
y

1
. Similarly, in the case 

of the width constriction, 
for B

2
 ≥ B

2m
, the upstream 

depth y
1
 is constant; while 

for all B
2
 < B

2m
, the ups-

tream depth undergoes a change. This onset of critical condition at Section 2 is a 
prereq uisite to choking. Thus all cases with Δ Z > Δ Z

m
 or B

2
 < B

2 m
 are known as 

choked con ditions. Obviously, choked conditions are undesirable and need to be 
watched in the design of culverts and other surface-drainage features involving chan-
nel transitions.

Example 2.13  A rectangular channel is 3.5 m wide and conveys a discharge of 
15. 0 m3/s at a depth of 2.0 m. It is proposed to reduce the width of the channel at a 
hydraulic structure. Assuming the transition to be horizontal and the fl ow to be fric-
tionless determine the water surface elevations upstream and downstream of the con-
striction when the constricted width is (a) 2.50 m, and (b) 2.20 m.

Solution Let suffi xes 1 and 2 denote sections upstream and downstream of the tran-
sition respectively. Discharge Q = B

1 
y

1
V

1

V1

15 0

3 5 2 0
2 143=

×
=

.

. .
. m/s

F
1
 = Froude number = 

V

g y
1

1

2 143

9 81 2 0
0 484=

×
=

.

. .
.

The upstream fl ow is subcritical and the transition will cause a drop in the water 
surface.

E y
V

g1 1
1
2 2

2
2 0

2 143

2 9 81
2 234= + = +

( )
×

=.
.

.
. m

Fig. 2.17  Variation of y
1
 and y

2
 in supercritical fl ow in 

a width constriction

ycm

yc2 = y2

B2m

B1 B1B2
1.0

y1

E1

Depth y1

Depth y2

Specific energy

Supercritical Flow

E′1

y 1
,y

2 
an

d 
E

0
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Let B
2m 

= minimum width at Section 2 which does not cause choking.

Then  E Ecm = =1 2 234. m

 y Ecm cm= = × =
2

3

2

3
2 234 1 489. . m

Since  y
Q

gBcm

m

3
2

2
2

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

B
Q

g ym

c

2

2

2
3

1 2
2

3

1 2
15 0

9 81 1 489
2 636=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =

×

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =

( . )

. ( . )
. m

(a) When B
1
 = 2.50 m

B
2
 < B

2m
 and hence choking conditions prevail. The depth at the Section 2 = y

2
 = y

c2
. 

The upstream depth y
1
 will increase to y'.

Actually   q2

15 0

2 0
6 0= =

.

.
. m3/s/m

 y
q

gc2
2
2 1 3 2 1 3

6 0

9 81
=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( . )

.
 = 1.542 m

E yc c2 21 5 1 5 1 542 2 3136= = × =. . . . m

At the upstream Section 1:
E '

1
 = Ec

2
 = 2.3136 with new upstream depth of y

1
 such that 

q
1
 = y

1 
V 

1
 = 15/3.5 = 4.2857 m3/s/m.

Hence  y
V

g
'

'
.1

1
2

2
2 3136= =

  

y
y

1

2

1
2

4 2857

2 9 81
2 3136'

( . )

. '
.+

× ×
=

  

y
y1

1
2

0 9362
2 3136'

.
.+ =

'

Solving by the trial and error and selecting a root that gives subcritical fl ow,

y'
1
 = 2.102 m

(b) When B
2
 = 2.20 m

As B
2
 < B

2m
 choking conditions prevail.

Depth at Section 2 = y
2
 = y

c2

q2

15 0

2 20
6 8182= =

.

.
.  m2/s/m
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yc2

2 1 3
6 8182

9 81
1 6797=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =

( . )

.
. m

E yc c2 21 5 2 5195= =. .  m

At upstream Section 1: New upstream depth = y'
1
 and 

E '
1 = Ec2 = 2.5195 m 

q1  = V '
1

y '1 = 15/3.5 = 4.2857 m3/s/m

Hence y
V

g y
1

1
2

12
2 5195'

'

'
.= =  

 
y

y
1

2

1
2

4 2857

2 9 81
2 5195'

( . )

. '
.+

× ×
=

  

y
y1

1
2

0 9362
2 5195' .

.+ =
'

Solving by trial and error, the appropriate depth to give subcritical fl ow is 

y'
1
 = 2.350 m

[Note that for the same discharge when B
2
 < B

2m
 (i.e., under choking conditions) the 

depth at the critical section will be different from y
cm

 and depends on the value of B
2
].

2.7.3 General Transition

A transition in its general form may have a change of channel shape, provision of a 
hump or a depression´ and contraction or expansion of channel width, in any combi-
nation. In addition, there may be various degrees of loss of energy at various compo-
nents. However, the basic dependence of the depths of fl ow on the channel geometry 
and specifi c energy of fl ow will remain the same. Many complicated transition situa-
tions can be analysed by using the principles of specifi c energy and critical depth.

In subcritical fl ow transitions the emphasis is essentially to provide smooth and 
gradual changes in the boundary to prevent fl ow separation and consequent energy 
losses. Details about subcritical fl ow transitions are available in Ref. 1, 2 and 3. The 
transitions in supercritical fl ow, however, are different and involve suppression of 
shock waves related disturbances and are explained in Chapter 9.

Example 2.14  A discharge of 16.0 m3/s fl ows with a depth of 2.0 m in a 4.0 m 
wide rectangular channel. At a downstream section the width is reduced to 3.5 m and 
the channel bed is raised by Δ Z. Analyse the water-surface elevation in the transi-
tions when (a) Δ Z = 0.02 m, and (b) Δ Z = 0.35 m.
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Solution Let the suffi xes 1 and 2 refer to the upstream and downstream sections 
respectively.

At the upstream section, V1

16

4 2
2 0=

×
= .  m /s

F
1
 = Froude number = 

V

g y
1

1

2 0

9 81 2 0
0 452=

×
=

.

. .
.

The upstream fl ow is subcritical and the transition will cause a drop in the water sur-
face elevation.

V
1
2/2g = 0.204 m

E
1
 = 2.0 + 0.204 = 2.204 m

q
2
 = discharge intensity at the downstream section

= = =
Q

B2

16 0

3 5
4 571

.

.
. m3/s/m

y
c2

 = critical depth corresponding to q
2

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =

q

g
2
2 1 3 2 1 3

4 571

9 81
1 287

( . )

.
. m

E yc c2 2

3

2
1 930= = . m

(a) When  ΔZ  = 0.20 m
E

2
   = available specifi c energy at Section 2
  = E

1
 − ΔZ = 2.204 − 0.20 = 2.004 m > E

c2

Hence the depth y
2
 > y

c2
 and the upstream depth will remain unchanged at y

1
.

y
V

g
Z E2

2
2

12
+ + =Δ

y
y2

2

2
2

4 571

2 9 81
2 204 0 20+

× ×
= −

( . )

.
. .

y
y2

2
2

1 065
2 004+ =

.
.

Solving by trial and error, y
2
 = 1.575 m.

Hence when Δ Z = 0.20 m, y
1
 = 2.00 m and y

2
 = 1.575 m 

(b) When Δ Z = 0.35,
E

2
 = available specifi c energy at Section 2
= 2.204 – 0.350 = 1.854 m < E

c2
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Hence the contraction will be working under choked conditions. The upstream depth 
must rise to create a higher total head. The depth of fl ow at Section 2 will be critical 
with y

2
 = y

c2
 = 1.287 m. 

If the new upstream depth is y'
1

y
Q

gB y
E Zc1

2

1
2

1
2 22

1 930 0 350' . .+ = + = +Δ

y
y

1

2

2
1

2

16

2 9 81 4 0
2 28' ( )

. ( . ) '
.+

× × ×
=

i.e.   y
y

1

1
2

0 8155
2 280' .

'
.+ =

By trial-and-error,   y1 2 094' .= m.

The upstream depth will therefore rise by 0.094 m due to the choked condition at 
the constriction. Hence, when Δ Z = 0.35 m

y
1
 = 2.094 m and y

2
 = y

c2
= 1.287 m.
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Specifi c energy and alternate depths
Minimum specifi c energy and critical depth
Computations involving critical depth
First hydraulic exponent, M
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1. with hump/ drop
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Miscellaneous concepts

2.1 – 2.7
2.8 – 2.16
2.17 – 2.27; 2.29
2.30 – 2.32

2.33 – 2.35
2.36 – 2.38
2.39 – 2.44
2.28
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2.1  In a rectangular channel F
1
 and F

2
 are the Froude numbers corresponding to the alternate 

depths of a certain discharge. Show that

F

F

F

F
2

1

2 3

2
2

1
2

2

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ =

+
+

2.2  Show that in a triangular channel, the Froude number corresponding to alternate depths 
are given by 

F

F

F

F
1

2

1
2 5 2

2
2 5 2

4

4
=

+
+

( )

( )

2.3  A 5.0 m wide rectangular channel carries 20 m3/s of discharge at a depth of 2.0 m.The 
width beyond a certain section is to be changed to 3.5 m. If it is desired to keep the water-
surface elevation unaffected by this change, what modifi cations are needed to the bottom 
elevation?

2.4  Find the alternate depths corresponding to a specifi c head of 2.0 m and a discharge of 
6.0 m3/s in (a) a trapezoidal channel, B = 0.9 m, m = 1.0, (b) triangular channel, m = 1.5, 
(c) circular channel, D = 2.50 m. (Use the trial and error method. For Part (c) use Table 
2A.1) 

2.5  If y
1
 and y

2
 are alternate depths in a rectangular channel show that

2 1
2

2
2

1 2

3y y

y y
yc( )+

=

and hence the specifi c energy, E
y y y y

y y
=

+ +
+

1
2

1 2 2
2

1 2( )

2.6  If y
1
and y

2
 are the alternate depths in a triangular channel show that 

4 1
4

2
4

1
2

2
2

1 2

5y y

y y y y
yc+( ) +( )

=

where y
c
= critical depth. Show further that the specifi c energy E is given by 

E

y1

4 3 2

21 1
=

+ + +
+( ) +( )

η η η η
η η

+1

where η = y
2
/y

1

2.7  A trapezoidal channel has a bottom width of 6.0 m and side slopes of 1: 1. The depth of 
fl ow is 1.5 m at a discharge of 15 m3/s. Determine the specifi c energy and alternate 
depth.

2.8  Show that for a trapezoidal channel the minimum specifi c energy E
c
 is related to the criti-

cal depth y
c
 as

E
y

c
c c

c

=
+
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥2

3 5

1 2

ζ
ζ

     where ζc
cmy

B
=

2.9  Prove that the alternate depths in an exponential channel (A = k
1
ya) are given by

2 1
2

2
2

1 2

1
2

2
2

2 1ay y y y

y y
y

a a

a a c
a( )

( )

−
−

= +
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2.10 Show that in an exponential channel (A = k
1
y a) the minimum specifi c energy E

c
 and the 

critical depth y
c
 are related as

E

y a
c

c

= +1
1

2

2.11 A parabolic channel has its profi le given by x2 = 4ay. Obtain an expression for the rela-
tive specifi c energy at the critical fl ow, E

c
 / y

c
 for this channel.

2.12 Show that for a horizontal frictionless channel the minimum specifi c force for a specifi ed 
discharge is obtained at the critical depth.

2.13 A channel in which the area is related to the depth as (A = k
1 
y a) in which k

1
 and a are 

constants is called an exponential channel.  Show that the critical depth for an exponen-
tial channel is given by

y
Q

g

a

kc

a

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

+2

1
2

1 2 1( )

2.14 An exponential channel (A = k
1 
y a) carries a fl ow with a Froude number F

0
 at a depth of 

fl ow of y
0
. Show  that the critical depth y

c
 is given by

y

y
Fc x

0
0=        where x = 2/(2a+1)

2.15 If it is desired to have a channel in which the fl ow is critical at all stages, show that the 
cross section of such a channel is given by.

T h
Q

g
2 2

3

8
=

 in which T = top width and h = depth of the water surface below the energy line.

2.16 Show that in a parabolic channel x c y=( )  the area can be expressed in terms of the 

top width T as

A =
2

3
Ty

 Further, show that the critical depth in such a parabolic channel is given by

y
Q

gT

Q

gcc

c

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

27

8

27

32

2

2

1 3
2

2

1 4

2.17 A channel has a cross section given by the relationship A y= 2 5. . For a critical depth of 
0.5 m in this channel, estimate the (i) discharge and (ii) specifi c energy.

2.18 A  triangular  channel  has  an  apex angle of 60o and carries a fl ow with a  velocity of  
2.0 m/s  and depth of 1.25 m. (a) Is the  fl ow subcritical or  super-critical? (b) What  is  
the  critical  depth? (c) What  is  the  specifi c  energy? (d) What is the alternate depth pos-
sible for this specifi c energy?

2.19 Fill the missing data in the following table connected with critical depth computations in 
rectangular channels:
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Case Q
(m3/s)

B
(m)

y
c

(m)
E

c
(m)

(a)
(b)
(c)
(d)

–
5.60
7.50

–

3.0
–

2.5
2.0

0.50
0.80

–
–

–
–
–

0.60

2.20 Fill in the missing data in the following table connected with critical depth computation 
in triangular channels:

Case Q
(m3/s)

Side
Slope = m

y
c

(m)
E

c

(m)

  (i)
 (ii)
(iii)

1.50
–
–

1.25
1.50
1.00

–
0.30

–

–
–

0.60

2.21 Fill in the missing data in the following table relating critical depth in trapezoidal 
channels:

Case m B
(m)

y
c

(m)
Q

(m3/s)
E

c
(m)

(a)
(b)
(c)
(d)

1.5
2.0
1.5
2.0

3.5
2.0
–

4.0

–
0.30
0.40

–

5.0
–

2.641
–

–
–
–

1.111

2.22 Calculate the discharges and specifi c energies corresponding to the following cri-
tical depths in circular channels: (a) y

c
 = 0.375 m, D = 1.50 m, and (b) y

c
 = 0.40 m, 

D = 2.0 m.
2.23 What is the critical depth corresponding to a discharge of 5.0 m3/s in (a) a trapezoidal 

channel of  B = 0.80 m and m = 1.5, and (b) a circular channel of D = 1.50 m?
2.24 In a circular channel of diameter D = 1.50 m, the critical depth y

c
 is known to occur at a 

specifi c energy of 1.80 m. Estimate the value of y
c
.

2.25 A circular channel is to carry a discharge of 558 litres/s. Find the diameter of the conduit 
such that the fl ow is critical when the conduit is running quarter full.

2.26 A circular culvert of 1.20-m diameter is fl owing half full and the fl ow is in critical state.  
Estimate the discharge and the specifi c energy.

2.27 A brick-lined sewer has a semicircular bottom and vertical side walls 0.60 m apart.  If the 
depth of fl ow at a section where the fl ow is known to be at a critical state is 0.60 m,
estimate the discharge in the sewer.

2.28 A rectangular channel section is to have critical fl ow and at the same time the wetted 
perimeter is to be minimum. Show that for these two conditions to occur simultane-
ously, the width of the channel must be equal to 8/9 times the minimum specifi c-
energy head.
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2.29 Water fl ows in a Δ shaped channel shown in Fig 2.18. Critical depth is known to occur 
at a section in this canal. Estimate the discharge and specifi c energy corresponding to an 
observed critical depth of 1.40 m.

Fig. 2.18 Problem 2.29

∇

2.4 m

0.5

1yc = 1.4 m

2.30 For an exponential channel (A = k
1 
y a) obtain explicit expressions for the (i) critical 

depth, (ii) Froude number, (iii) Hydraulic exponent M.
2.31 Derive the approximate expression for the fi rst hydraulic exponent M given by Eq. (2.27) as

M
y

A
T

A

T

dT

dy
= −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟3

2.32 Estimate the value of the fi rst hydraulic exponent M for the following cases:
  (i)  Trapezoidal channel with B = 4.0 m, m = 2.0 and y = 0.20; 1.0; 2.0; and 4.0 m. 

[Hint: Use Eq. (2.27)].
 (ii)  Circular channel of diameter D = 2.0 m with y = 0.20; 0.8; and 1.6 m. [Hint: Use 

Eq. (2.27) and Table 2A.1]
2.33 A 5.0-m wide rectangular channel carries a discharge of 6.40 m3/s at a depth of 0.8 m. At 

a section there is a smooth drop of 0.22 m in the bed. What is the water surface elevation 
downstream of the drop?

2.34 A rectangular channel is 4.0 m wide and carries a discharge of 20 m3/s at a depth of 2.0 m. 
At a certain section it is proposed to build a hump. Calculate the water surface elevations 
at upstream of the hump and over the hump if the hump height is (a) 0.33 m and (b) 0.20 m. 
(Assume no loss of energy at the hump.)

2.35 A uniform fl ow of 12.0 m3/s occurs in a long rectangular channel of 5.0 m width and 
depth of fl ow of 1.50 m. A fl at hump is to be built at a certain section. Assuming a loss 
of head equal to the upstream velocity head, compute the minimum height of the hump 
to provide critical fl ow. What will happen (a) if the height of the hump is higher than the 
computed value and (b) if the energy loss is less than the assumed value?

2.36 A rectangular channel is 3.0 m wide and carries a fl ow of 1.85 m3/s at a depth of 0.50 m.  
A contraction of the channel width is required at a certain section.  Find the greatest 
allowable contraction in the width for the upstream fl ow to be possible as specifi ed.

2.37 A rectangular channel is 2.5 m wide and conveys a discharge of 2.75 m3/s at a depth of 
0.90 m. A contraction of width is proposed at a section in this canal. Calculate the water 
surface elevations in the contracted section as well as in an upstream 2.5 m wide section 
when the width of the proposed contraction is (a) 2.0 m and (b) 1.5 m. (Neglect energy 
losses in the transition).
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2.38 A 3.0-m wide horizontal rectangular channel is narrowed to a width of 1.5 m to cause 
critical fl ow in the contracted section.  If the depth in the contracted section is 0.8 m, 
calculate the discharge in the channel and the possible depths of fl ow and corres-
ponding Froude numbers in the 3.0 m wide section. Neglect energy losses in the 
transition.

2.39 A rectangular channel is 3.0 m wide and carries a discharge of 15.0 m3/s at a depth of 2.0 m.  
At a certain section of the channel it is proposed to reduce the width to 2.0 m and to alter 
the bed elevation by Δ Z to obtain critical fl ow at the contracted section without altering 
the upstream depth.  What should be the value of Δ Z ?

2.40 Water fl ows at a velocity of 1.0 m/s and a depth of 2.0 m in an open channel of rectangular 
cross section and bed-width of 3.0 m.  At certain section the width is reduced to 1.80 m 
and the bed is raised by 0.65 m. Will the upstream depth be affected and if so, to what 
extent?

2.41 A 3-m wide rectangular channel carries 3 m3/s of water at a depth of 1.0 m.  If the width 
is to be reduced to 2.0 m and bed raised by 10 cm, what would be the depth of fl ow in the 
contracted section? Neglect the loss of energy in transition.  What maximum rise in the 
bed level of the contracted section is possible without affecting the depth of fl ow
upstream of the transition?

2.42 Water fl ows in a 3.0-m wide rectangular channel at a velocity of 2.5 m/s and a depth of 
1.8 m. If at a section there is a smooth upward step of 0.30 m, what width is needed at 
that section to enable the critical fl ow to occur on the hump without any change in the 
upstream depth?

2.43 A 3.0-m wide rectangular channel carries a fl ow at 1.25 m depth.  At a certain section the 
width is reduced to 2.5 m and the channel bed raised by 0.20 m through a streamlined 
hump. (a) Estimate the discharge in the channel when the water surface drops by 0.15 m 
over the hump. (b) What change in the bed elevation at the contracted section would 
make the water surface have the same elevation upstream and downstream of the con-
traction? (The energy losses in the contraction can be neglected).

2.44 A 1.5-m wide rectangular channel carries a discharge of 5.0 m3/s at a depth of 1.5 m. At 
a section the channel undergoes transition to a triangular section of side slopes 2 horizon-
tal:  1 vertical.  If the fl ow in the triangular section is to be critical without changing the 
upstream water surface, fi nd the location of the vertex of the triangular section relative
to the bed of the rectangular channel.  What is the drop/rise in the water surface at the 
transition? Assume zero energy loss at the transition.

 OBJECTIVE QUESTIONS

2.1 The term alternate depths is used in open channel fl ow to denote the depths 
(a) having the same kinetic energy for a given discharge
(b) having the same specifi c force for a given discharge
(c ) having the same specifi c energy for a given discharge
(d) having the same total energy for a given discharge

2.2  The two alternate depths in a 4.0 m wide rectangular channel are 3.86 m and 1.0 m respec-
tively. The discharge in the channel in m3/s is
(a) 15   (b) 1.5   (c) 7.76   (d) 31.0

2.3  In a rectangular channel, the alternate depths are 1.0 m and 2.0 m respectively. The spe-
cifi c energy head in m is 
(a) 3.38   (b) 1.33   (c) 2.33   (d) 3.0
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 2.4  A rectangular channel carries a certain fl ow for which the alternate depths are found to 
be 3.0 m and 1.0 m. The critical depth in m for this fl ow is
(a) 2.65  (b) 1.65  (c) 0.65  (d) 1.33

 2.5  The critical fl ow condition in a channel is given by

(a) 
αQT

gA

2

3
1=    (b) 

αQ T

gA

2 2

3
1=

(c) 
αQ T

gA

2

3
1=     (d) 

αQT

gA3
1=

 2.6  In defi ning a Froude number applicable to open channels of any shape, the length param-
eter used is the
(a) ratio of area to top width      (c) depth of fl ow 
(b) ratio of area to wetted perimeter  (d) square root of the area

 2.7  For a triangular channel of side slopes m horizontal : 1 vertical, the Froude number is 
given by F =

(a) 
m

g y
   (b) V

g y2
   (c) 

V

g y

2
   (d) V

g y

 2.8  A triangular channel has a vertex angle of 90° and carries a discharge of 1.90 m3/s at a 
depth of 0.8 m. The Froude number of the fl ow is 
(a) 0.68   (b) 1.06   (c) 0.75   (d) 1.50

 2.9  A triangular channel of apex angle of 120°carries a discharge of 1573 l/s. The critical 
depth in m is 
(a) 0.600   (b) 0.700   (c) 0.800   (d) 0.632

2.10  A triangular channel of apex angle of 60° has a critical depth of 0.25 m. The discharge in 
l/s is
(a) 60   (b) 640   (c) 160   (d) 40

2.11  At critical depth
(a) the discharge is minimum for a given specifi c energy
(b) the discharge is maximum for a given specifi c force
(c ) the discharge is maximum for a given specifi c energy 
(d) the discharge is minimum for a given specifi c force

2.12  For a given open channel carrying a certain discharge the critical depth depends on
(a) the geometry of the channel (c) the roughness of the channel 
(b) the viscosity of water (d) the longitudinal slope of the channel

2.13  In a triangular channel the value of E
c
 / y

c
 is

(a) 1.25   (b) 2.5   (c) 3.33   (d) 1.5

2.14  In a parabolic channel x ay2 4=( ) the value of E
c
 / y

c
 is

(a) 1.5   (b) 2.0   (c) 3.33   (d) 1.25
2.15  In an exponential channel (Area A = k y a) the ratio of specifi c energy at critical depth E

c
 

to the critical depth y
c
 is

(a) 
2 1

2

a

a

+⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
   (b) 2a   (c) 

a

a

+1
   (d) 3

2
a

2.16  In a rectangular channel carrying uniform fl ow with a specifi c energy E and depth of fl ow = y
0
 

the ratio E / y
c
 is equal to
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(a) 
y

y y yc c

0

2

0

2

1
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⎜⎜⎜⎜
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    (b) 

y
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y

y
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⎠
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(c) 2
1

20 0

2

y

y y y
c

c

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟+
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    (d) 

y
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0

0

2

1

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟+

( )

2.17  If F
0
 = Froude number of fl ow in rectangular channel at a depth of fl ow = y

0
 then 

y
c
 / y

0
 =

(a) F0    (b) F0
2 3    (c) F0

1 3    (d) F0
3 2

2.18  Supercritical fl ow at Froude number of F
0 
= 2.0

 
occurs at a depth of 0.63 m in a rectan-

gular channel. The critical depth in m is
(a) 0.857   (b) 0.735   (c) 1.000   (d) 0.500

2.19  The Froude number of a fl ow in a rectangular channel is 0.73. If the depth of fl ow is 1.50 m, 
the specifi c energy in metres is
(a) 1.90   (b) 1.50   (c) 1.73   (d) 0.73

2.20  A trapezoidal channel of bed width of 3.5 m and side slope of 1.5 H: 1 V carries a fl ow 
of 9.0 m3/s with a depth of 2.0 m. The Froude number of fl ow is
(a) 0.156   (b) 0.189   (c) 0.013   (d) 0.506

2.21  For a triangular channel the fi rst hydraulic exponent M is 
(a) 2.0   (b) 3.0   (c) 5.0   (d) 5.33

2.22  For a trapezoidal canal section with side slope of m horizontal : 1 vertical the value of the 
fi rst hydraulic exponent M is
(a) a constant at all stages
(b) a function of S

0
 and Manning’s coeffi cient n

(c ) a function my/B
(d) a function of y/B only

2.23  In a rectangular channel with subcritical fl ow the height of a hump to be built to cause 
subcritical fl ow over it was calculated by neglecting energy losses. If, after building the 
hump, it is found that the energy losses in the transition are appreciable, the effect of this 
hump on the fl ow will be
(a) to make the fl ow over the hump subcritical
(b) to make the fl ow over the hump supercritical 
(c ) to cause the depth of fl ow upstream of the hump to raise
(d) to lower the upstream water surface

2.24  For an exponential channel (A = ky a) the fi rst hydraulic exponent M is 
(a) (a + 1)   (b) (2a)   (c) (2a + 1)   (d) a2

2.25  The fl ow in a rectangular channel is subcritical. If the width is expanded at a certain sec-
tion, the water surface
(a) at a downstream section will drop
(b) at the downstream section will rise
(c ) at the upstream section will rise
(d) at the upstream section will drop

2.26  A bottom rack in a channel is used to withdraw a part of the discharge fl owing in a canal. 
If the fl ow is subcritical throughout, this will cause
(a) a rise in the water surface on the rack
(b) a drop in the water surface over the rack
(c ) a jump over the rack
(d) a lowering of the water surface upstream of the rack.
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2.27  The fl ow in a channel is at critical depth. If at a section M a small hump of height ΔZ is 
built on the bed of the channel, the fl ow will be 
(a) critical upstream of M (b) critical at M
(c ) subcritical at M (d) supercritical at M

 APPENDIX 2A

Two tables which are useful in various open channel fl ow computations are presented 
here.
1.  Table 2A.1 contains the geometric elements of a circular channel in a non -dimensional 

fashion. The column (Z /D2.5) = f ( y/D) is useful in calculating critical depths by using 
Eq. (2.18). At critical depth, y = y

c
 and 

( / ) ( / ).. .Z D Q gD2 5 2 5=
  

The last column, AR2/3 / D8/3, will be useful in the calculation of normal depths as will be 
explained in Chapter 3 (Eq. (3.29)). At normal depth,

φ( / )y D
AR

D

Qn

S D
0

2 3

8 3

0
8 3

= =

2.  Table 2A.2 contains the values of ψ = f (ζ
c
) for computation of critical depth in trapezoidal 

channels. At the critical depth y
c
'

ψ =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
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Table 2A.1 Elements of Circular Channels*

y / D 2θ(radians) A/D2 P/D T/D Z / D2.5 AR 2/3/D 8/3

0.01 0.40067 E+00 0.13293 E−02 0.20033 E+00 0.19900 E+00 0.10865 E−03 0.46941 E−04

0.02 0.56759 E+00 0.37485 E−02 0.28379 E+00 0.28000 E+00 0.43372 E−03 0.20946 E−03

0.03 0.69633 E+00 0.68655 E−02 0.34817 E+00 0.34117 E+00 0.97392 E−03 0.50111 E−03

0.04 0.80543 E+00 0.10538 E−01 0.40272 E+00 0.39192 E+00 0.17279 E−02 0.92878 E−03

0.05 0.90205 E+00 0.14681 E−01 0.45103 E+00 0.43589 E+00 0.26944 E−02 0.14967 E−02

0.06 0.98987 E+00 0.19239 E−01 0.49493 E+00 0.47497 E+00 0.38721 E−02 0.22078 E−02

0.07 0.10711 E+01 0.24168 E−01 0.53553 E+00 0.51029 E+00 0.52597 E−02 0.30636 E−02

0.08 0.11470 E+01 0.29435 E−01 0.57351 E+00 0.54259 E+00 0.68559 E−02 0.40652 E−02

0.09 0.12188 E+01 0.35012 E−01 0.60939 E+00 0.57236 E+00 0.86594 E−02 0.52131 E−02

0.10 0.12870 E+01 0.40875 E−01 0.64350 E+00 0.60000 E+00 0.10669 E−01 0.65073 E−02

0.11 0.13523 E+01 0.47006 E−01 0.67613 E+00 0.62578 E+00 0.12883 E−01 0.79475 E−02

0.12 0.14150 E+01 0.53385 E−01 0.70748 E+00 0.64992 E+00 0.15300 E−01 0.95329 E−02

0.13 0.14755 E+01 0.59999 E−01 0.73773 E+00 0.67261 E+00 0.17920 E−01 0.11263 E−01

0.14 0.15340 E+01 0.66833 E−01 0.76699 E+00 0.69397 E+00 0.20740 E−01 0.13136 E−01

0.15 0.15908 E+01 0.73875 E−01 0.79540 E+00 0.71414 E+00 0.23760 E−01 0.15151 E−01

0.16 1.64607 0.08111 0.82303 0.73321 0.02698 0.01731

0.17 1.69996 0.08854 0.84998 0.75127 0.03039 0.01960

0.18 1.75260 0.09613 0.87630 0.76837 0.03400 0.02203
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0.19 1.80411 0.10390 0.90205 0.78460 0.03781 0.02460

0.20 1.85459 0.11182 0.92730 0.80000 0.04181 0.02729

0.21 1.90414 0.11990 0.95207 0.81462 0.04600 0.03012

0.22 1.95282 0.12811 0.97641 0.82849 0.05038 0.03308

0.23 2.00072 0.13647 1.00036 0.84167 0.05495 0.03616

0.24 2.04789 0.14494 1.02395 0.85417 0.05971 0.03937

0.25 2.09440 0.15355 1.04720 0.86603 0.06465 0.04270

0.26 2.14028 0.16226 1.07014 0.87727 0.06979 0.04614

0.27 2.18560 0.17109 1.09280 0.88792 0.07510 0.04970

0.28 2.23040 0.18002 1.11520 0.89800 0.08060 0.05337

0.29 2.27470 0.18905 1.13735 0.90752 0.08628 0.05715

0.30 2.31856 0.19817 1.15928 0.91652 0.09215 0.06104

0.31 2.36200 0.20738 1.18100 0.92499 0.09819 0.06503

0.32 2.40506 0.21667 1.20253 0.93295 0.10441 0.06912

0.33 2.44776 0.22603 1.22388 0.94043 0.11081 0.07330

0.34 2.49013 0.23547 1.24507 0.94742 0.11739 0.07758

0.35 2.53221 0.24498 1.26610 0.95394 0.12415 0.08195

0.36 2.57400 0.25455 1.28700 0.96000 0.13108 0.08641

0.37 2.61555 0.26418 1.30777 0.96561 0.13818 0.09095

0.38 2.65686 0.27386 1.32843 0.97077 0.14546 0.09557

0.39 2.69796 0.28359 1.34898 0.97550 0.15291 0.10027

0.40 2.73888 0.29337 1.36944 0.97980 0.16053 0.10503

0.41 2.77962 0.30319 1.38981 0.98367 0.16832 0.10987

0.42 2.82021 0.31304 1.41011 0.98712 0.17629 0.11477

0.43 2.86067 0.32293 1.43033 0.99015 0.18442 0.11973

0.44 2.90101 0.33284 1.45051 0.99277 0.19272 0.12475

0.45 2.94126 0.34278 1.47063 0.99499 0.20120 0.12983

0.46 2.98142 0.35274 1.49071 0.99679 0.20984 0.13495

0.47 3.02152 0.36272 1.51076 0.99820 0.21865 0.14011

0.48 3.06157 0.37270 1.53079 0.99920 0.22763 0.14532

0.49 3.10159 0.38270 1.55080 0.99980 0.23677 0.15057

0.50 3.14159 0.39270 1.57080 1.00000 0.24609 0.15584

0.51 3.18160 0.40270 1.59080 0.99980 0.25557 0.16115

0.52 3.22161 0.41269 1.61081 0.99920 0.26523 0.16648

0.53 3.26166 0.42268 1.63083 0.99820 0.27505 0.17182

0.54 3.30176 0.43266 1.65088 0.99679 0.28504 0.17719

0.55 3.34193 0.44262 1.67096 0.99499 0.29521 0.18256

0.56 3.38217 0.45255 1.69109 0.99277 0.30555 0.18794

0.57 3.42252 0.46247 1.71126 0.99015 0.31606 0.19331

0.58 3.46297 0.47236 1.73149 0.98712 0.32675 0.19869

0.59 3.50357 0.48221 1.75178 0.98367 0.33762 0.20405

0.60 3.54431 0.49203 1.77215 0.97980 0.34867 0.20940

0.61 3.58522 0.50181 1.79261 0.97550 0.35991 0.21473

0.62 3.62632 0.51154 1.81316 0.97077 0.37133 0.22004

0.63 3.66764 0.52122 1.83382 0.96561 0.38294 0.22532

y/D 2θ(radians) A/D2 P/D T/D Z / D2.5 AR2/3/D8/3

Table 2A.1 (Continued)
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0.64 3.70918 0.53085 1.85459 0.96000 0.39475 0.23056

0.65 3.75098 0.54042 1.87549 0.95394 0.40676 0.23576

0.66 3.79305 0.54992 1.89653 0.94742 0.41897 0.24092

0.67 3.83543 0.55936 1.91771 0.94043 0.43140 0.24602

0.68 3.87813 0.56873 1.93906 0.93295 0.44405 0.25106

0.69 3.92119 0.57802 1.96059 0.92499 0.45693 0.25604

0.70 3.96463 0.58723 1.98231 0.91652 0.47005 0.26095

0.71 4.00848 0.59635 2.00424 0.90752 0.48342 0.26579

0.72 4.05279 0.60538 2.02639 0.89800 0.49705 0.27054

0.73 4.09758 0.61431 2.04879 0.88702 0.51097 0.27520

0.74 4.14290 0.62313 2.07145 0.87727 0.52518 0.27976

0.75 4.18879 0.63185 2.09440 0.86603 0.53971 0.28422

0.76 4.23529 0.64045 2.11765 0.85417 0.55457 0.28856

0.77 4.28247 0.64893 2.14123 0.84167 0.56981 0.29279

0.78 4.33036 0.65728 2.16518 0.82849 0.58544 0.29689

0.79 4.37905 0.66550 2.18953 0.81462 0.60151 0.30085

0.80 4.42859 0.67357 2.21430 0.80000 0.61806 0.30466

0.81 4.47908 0.68150 2.23954 0.78460 0.63514 0.30832

0.82 4.53059 0.68926 2.26529 0.76837 0.65282 0.31181

0.83 4.58323 0.69686 2.29162 0.75127 0.67116 0.31513

0.84 4.63712 0.70429 2.31856 0.73321 0.69025 0.31825

0.85 4.69239 0.71152 2.34619 0.71414 0.71022 0.32117

0.86 4.74920 0.71856 2.37460 0.69397 0.73119 0.32388

0.87 4.80773 0.72540 2.40387 0.67261 0.75333 0.32635

0.88 4.86822 0.73201 2.43411 0.64992 0.77687 0.32858

0.89 4.93092 0.73839 2.46546 0.62578 0.80208 0.33053

0.90 4.99618 0.74452 2.49809 0.60000 0.82936 0.33219

0.91 5.06441 0.75039 2.53221 0.57236 0.85919 0.33354

0.92 5.13616 0.75596 2.56808 0.54259 0.89231 0.33453

0.93 5.21213 0.76123 2.60607 0.51029 0.92974 0.33512

0.94 5.29332 0.76616 2.64666 0.47497 0.97307 0.33527

0.95 5.38113 0.77072 2.69057 0.43589 1.02483 0.33491

0.96 5.47775 0.77486 2.73888 0.39192 1.08953 0.33393

0.97 5.58685 0.77853 2.79343 0.34117 1.17605 0.33218

0.98 5.71560 0.78165 2.85780 0.28000 1.30599 0.32936

0.99 5.88252 0.78407 2.94126 0.19900 1.55635 0.32476

1.00 6.28319 0.78540 3.14159 0.00000 0.31169

y/D 2θ(radians) A/D2 P/D T/D Z / D2.5 AR2/3/D8/3

* The notations ‘E + a’ represents 10a and ‘E − a’ represents 10−a. Thus for example 

0.13523E+01 = 1.3523
0.47006E−01 = 0.047006
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84 Flow in Open Channels

Table 2A. 2 Values of ψ for computation of critical depth in trapezioidal channels

ξ ψ ξ ψ ξ ψ ξ ψ ξ ψ

0.100 0.0333042 0.330 0.2256807 0.560 0.5607910 0.790 1.0469124 1.020 1.6962526

0.105 0.0359281 0.335 0.2314360 0.565 0.5697107 0.795 1.0592476 1.025 1.7122746

0.110 0.0386272 0.340 0.2372580 0.570 0.5787019 0.800 1.0716601 1.030 1.7283798

0.115 0.0414006 0.345 0.2431469 0.575 0.5877645 0.805 1.0841500 1.035 1.7445682

0.120 0.0442474 0.350 0.2491026 0.580 0.5968989 0.810 1.0967174 1.040 1.7608400

0.125 0.0471671 0.355 0.2551252 0.585 0.6061050 0.815 1.1093625 1.045 1.7771953

0.130 0.0501588 0.360 0.2612149 0.590 0.6153829 0.820 1.1220854 1.050 1.7936343

0.135 0.0532222 0.365 0.2673716 0.595 0.6247330 0.825 1.1348861 1.055 1.8101570

0.140 0.0563565 0.370 0.2735954 0.600 0.6341551 0.830 1.1477649 1.060 1.8267635

0.145 0.0595615 0.375 0.2798865 0.605 0.6436496 0.835 1.1607219 1.065 1.8434541

0.150 0.0628365 0.380 0.2862449 0.610 0.6532164 0.840 1.1737572 1.070 1.8602288

0.155 0.0661812 0.385 0.2926706 0.615 0.6628558 0.845 1.1868709 1.075 1.8770877

0.160 0.0695953 0.390 0.2991638 0.620 0.6725678 0.850 1.2000631 1.080 1.8940310

0.165 0.0730784 0.395 0.3057246 0.625 0.6823525 0.855 1.2133341 1.085 1.9110589

0.170 0.0766302 0.400 0.3123531 0.630 0.6922102 0.860 1.2266838 1.090 1.9281713

0.175 0.0802504 0.405 0.3190493 0.635 0.7021409 0.865 1.2401125 1.095 1.9453685

0.180 0.0839387 0.410 0.3258133 0.640 0.7121448 0.870 1.2536203 1.100 1.9626506

0.185 0.0876950 0.415 0.3326452 0.645 0.7222220 0.875 1.2672072 1.105 1.9800176

0.190 0.0915190 0.420 0.3395452 0.650 0.7323725 0.880 1.2808735 1.110 1.9974698

0.195 0.0954105 0.425 0.3465132 0.655 0.7425966 0.885 1.2946192 1.115 2.0150072

0.200 0.0993694 0.430 0.3535495 0.660 0.7528944 0.890 1.3084445 1.120 2.0326299

0.205 0.1033955 0.435 0.3606541 0.665 0.7632659 0.895 1.3223496 1.125 2.0503382

0.210 0.1074887 0.440 0.3678272 0.670 0.7737114 0.900 1.3363344 1.130 2.0681321

0.215 0.1116488 0.445 0.3750688 0.675 0.7842309 0.905 1.3503992 1.135 2.0860117

0.220 0.1158757 0.450 0.3823789 0.680 0.7948246 0.910 1.3645441 1.140 2.1039771

0.225 0.1201694 0.455 0.3897579 0.685 0.8054926 0.915 1.3787693 1.145 2.1220286

0.230 0.1245297 0.460 0.3972056 0.690 0.8162350 0.920 1.3930747 1.150 2.1401661

0.235 0.1289566 0.465 0.4047224 0.695 0.8270520 0.925 1.4074607 1.155 2.1583899

0.240 0.1334500 0.470 0.4123082 0.700 0.8379437 0.930 1.4219272 1.160 2.1767000

0.245 0.13890098 0.475 0.4199631 0.705 0.8489102 0.935 1.4364745 1.165 2.1950965

0.250 0.1426361 0.480 0.4276873 0.710 0.8599516 0.940 1.4511026 1.170 2.2135797

0.255 0.1473287 0.485 0.4354810 0.715 0.8710681 0.945 1.4658118 1.175 2.2321496

0.260 0.1520877 0.490 0.4433441 0.720 0.8822598 0.950 1.4806020 1.180 2.2508063

0.265 0.1569130 0.495 0.4512768 0.725 0.8935269 0.955 1.4954734 1.185 2.2695499

0.270 0.1618046 0.500 0.4592793 0.730 0.9048694 0.960 1.5104263 1.190 2.2883806

0.275 0.1667625 0.505 0.4673517 0.735 0.9162875 0.965 1.5254606 1.195 2.3072986

0.280 0.1717868 0.510 0.4754940 0.740 0.9277813 0.970 1.5405765 1.200 2.3263038

0.285 0.1768773 0.515 0.4837063 0.745 0.9393510 0.975 1.5557742 1.205 2.3453965

0.290 0.1820342 0.520 0.4919889 0.750 0.9509966 0.980 1.5710537 1.210 2.3645767

0.295 0.1872575 0.525 0.5003418 0.755 0.9627183 0.985 1.5864153 1.215 2.3838447

0.300 0.1925471 0.530 0.5087651 0.760 0.9745163 0.990 1.6018590 1.220 2.4032004

0.305 0.1979031 0.535 0.5172590 0.765 0.9863907 0.995 1.6173849 1.225 2.4226440

0.310 0.2033256 0.540 0.5258236 0.770 0.9983415 1.000 1.6329932 1.230 2.4421757

0.315 0.2088145 0.545 0.5344589 0.775 1.0103690 1.005 1.6486840 1.235 2.4617956

0.320 0.2143700 0.550 0.5431652 0.780 1.0224732 1.010 1.6644574 1.240 2.4815037

0.325 0.2199920 0.555 0.5519425 0.785 1.0346543 1.015 1.6803135 1.245 2.5013003

0.330 0.2256807 0.560 0.5607910 0.790 1.0469124 1.020 1.6962526 1.250 2.5211853

In Table 2A. 2 ξ
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3.1 INTRODUCTION

A fl ow is said to be uniform if its properties remain constant with respect to distance. 
As mentioned earlier, the term uniform fl ow in open channels is understood to mean 
steady uniform fl ow. The depth of fl ow remains constant at all sections in a uniform 
fl ow (Fig. 3.1). Considering two Sections 1 and 2, the depths

y
1
 = y

2
 = y

0

and hence  A
1  
  = A

2
 = A

0 

Since Q = AV = constant, it follows that in uniform fl ow V
1
 = V

2 
=

 
V. Thus in 

a uniform fl ow, the depth of fl ow, area of cross-section and velocity of fl ow 
remain con stant along the channel. It is obvious, therefore, that uniform fl ow is 
possible only in prismatic channels. The trace of the water surface and channel 
bottom slope are parallel in uniform fl ow (Fig. 3.1). Further, since V = constant, 
the energy line will be at a constant elevation above the water surface. As such, 
the slope of the energy line S

f  
, slope of the water surface S

w 
and

 
bottom slope S

0
 

will all be equal to each other.

3.2 CHEZY EQUATION

By defi nition there is no acceleration in uniform fl ow. By applying the momentum 
equation to a control volume encompassing Sections 1 and 2, distance L apart, as 
shown in Fig. 3.1,

 P
1
 − W sin θ − F

f
 − P

2
= M

2
 − M

1 
(3.1)

where P
1
 and P

2
 are the pressure forces and M

1
 and M

2
 are the momentum fl uxes at 

Sections 1 and 2 respectively W = weight to fl uid in the control volume and F
f
 = 

shear force at the boundary.
Since the fl ow is uniform,

 P
1
  = P

2
   and M

1 
= M

2

Also, W  = γ AL and F
f
 = τ

0
 PL

Uniform Flow 3
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86 Flow in Open Channels

where τ
0
 = average shear stress on the wetted perimeter of length P and γ = unit 

weight of water. Replacing sin θ by S
0 
(= bottom slope), Eq. 3.1 can be written as

γ ALS
0
 = τ

0
 PL

or

 τ
0
 = γ 

A

P
 S

0
= γ RS

0 
 (3.2)

where R = A/P is defi ned as the hydraulic radius. R is a length parameter accounting 
for the shape of the channel. It plays a very important role in developing fl ow equa-
tions which are common to all shapes of channels.

Expressing the average shear stress τ
0
 as τ

0
 = kρ V 2, where k = a coeffi cient which 

depends on the nature of the surface and fl ow parameters, Eq. 3.2 is written as

 kρ V 2 = γ RS
0 

leading to             V = C RS0  (3.3)

where C = γ
ρ

1

k
= a coeffi cient which depends on the nature of the surface and the 

fl ow. Equation 3.3 is known as the Chezy formula after the French engineer Antoine 
Chezy, who is credited with developing this basic simple relationship in 1769. The 
dimensions of C are [L1/2 T  −1] and it can be made dimensionless by dividing it by g . 
The coeffi cient C is known as the Chezy coeffi cient. 

3.3 DARCY–WEISBACH FRICTION FACTOR  f

Incompressible, turbulent fl ow over plates, in pipes and ducts have been extensively 
studied in the fl uid mechanics discipline. From the time of Prandtl (1875–1953) and 

Fig. 3.1 Uniform fl ow
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Uniform Flow 87 

Von Karman (1881–1963) research by numerous eminent investigators has enabled 
considerable understanding of turbulent fl ow and associated useful practical applica-
tions. The basics of velocity distribution and shear resistance in a turbulent fl ow are 
available in any good text on fl uid mechanics1,2.

Only relevant information necessary for our study in summed up in this section.

Pipe Flow A surface can be termed hydraulically smooth, rough or in transition 
depending on the relative thickness of the roughness magnitude to the thickness of 
the laminar sub-layer. The classifi cation is as follows:

ε ν
ν
s ∗  < 4  — hydraulically-smooth wall

 4 < 
ε ν

ν
s ∗  < 60  — transitional regime 

  
ε ν

ν
s ∗  < 60 — full rough fl ow 

where ε
s
 = equivalent sand grain roughness, ν τ ρ* /= 0  = gRS0  = shear veloc-

ity and 
v = kinematic viscosity.
For pipe fl ow, the Darcy–Weisbach equation is

 h f
L

D

V

gf =
2

2
 (3.4)

where h
f
 = head loss due to friction in a pipe of diameter D and length L; f = Darcy–

Weisbach friction factor. For smooth pipes, f is found to be a function of the

Reynolds number Re =
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

VD

v
 only. For rough turbulent fl ows, f is a function of the 

relative roughness (εs 
/D ) and type of roughness and is independent of the Reynolds 

number. In the transition regime, both the Reynolds number and relative roughness 
play important roles. The roughness magnitudes for commercial pipes are expressed 
as equivalent sand-grain roughness εs

. The extensive experimental investigations of 
pipe fl ow have yielded the following generally accepted relations for the variation of 
f in various regimes of fl ow:

1. For smooth walls and Re < 105

       f = 
0 316

1 4

.
/Re

      (Blasius formula)  (3.5)

2. For smooth walls and Re > 105

   
1

f
 = 2.0 log Re f  − 0.8     (Karman–Prandtl equation) (3.6)
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88 Flow in Open Channels

3. For rough boundaries and Re > 105

    
1

f
 = − 2 log 

εs

D
 + 1.14   (Karman–Prandtl equation) (3.7)

4. For the transition zone  

1

f
 + 2 log 

εs

D
 = 1.14 – 2 log 1 9 35+

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
.

/
 

D

f
sε

Re

                     (Colebrook–White equation) (3.8)

It is usual to show the variation of f with Re and 
εs

D
 by a three-parameter graph 

known as the Moody chart.
Studies on non-circular conduits, such as rectangular, oval and triangular shapes 

have shown that by introducing the hydraulic radius R, the formulae developed for 
pipes are applicable for non-circular ducts also. Since for a circular shape R = D/4, 
by replacing D by 4R, Eqs 3.5 to 3.8 can be used for any duct shape provided the 
conduit areas are close enough to the area of a circumscribing circle or 
semicircle.

Open Channels For purposes of fl ow resistance which essentially takes place in 
a thin layer adjacent to the wall, an open channel can be considered to be a conduit 
cut into two. The hydraulic radius would then be the appropriate length parameter 
and prediction of friction factor f can be done by using Eqs 3.5 to 3.8. It should be 

remembered that Re = 
4RV

ν
 and the relative roughness is (ε

s 
/4R).

Equation 3.4 can then be written for an open channel fl ow as

 
h f

L

R

V

gf   =
4 2

2

 
which on rearranging gives

 V
g

f
R h Lf=

8
   . /  (3.9)

Noting that for uniform fl ow in an open channel h
f  
/L  = slope of the energy line = 

S
f
 = S

0 
, it may be seen that Eq. 3.9 is the same as Eq. 3.3 (Chezy formula) with

 C = 8 g / f   (3.10)

For convenience of use, Eq. 3.10 along with Eqs 3.5 to 3.8 can be used to prepare 
a modifi ed Moody chart showing the variation of C with

 Re =
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

4RV

v
 and 

4R

εs

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟  
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Uniform Flow 89 

If f is to be calculated by using one of the Eqs 3.5 to 3.8, Eqs 3.6 to 3.8 are incon-
venient to use as f is involved on both sides of the equations. Simplifi ed empirical 
forms of Eqs 3.6 and 3.8, which are accurate enough for all practical purposes, are 
given by Jain3 as follows:

 
1

f
 = 1.80 log Re – 1.5146      (in lieu of Eq. (3.6)) (3.6a)

and 
1

f
 = 1.14 – 2.0 log 

εs

R4

21 25
0 9

 + 
.

.Re

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟    (in lieu of Eq. (3.8))     (3.8a)

Equation (3.8a) is valid for 5000 ≤ Re ≤ 108 and 10–6 < 
εs

R4
 < 10–2.

These two equations are very useful for obtaining explicit solutions of many fl ow-
resistance problems.

Generally, the open channels that are encountered in the fi eld are very large in 
size and also in the magnitude of roughness elements. Consequently, high Reyn-
olds numbers and large relative roughnesses are operative with the result that most 
of the open channels have rough turbulent-fl ow regimes. Due to paucity of reliable 
experimental or fi eld data on channels covering a wide range of parameters, values 
of εs are not available to the same degree of confi dence as for pipe materials. How-
ever, Table 3.1 can be used to estimate the values of εs for some common open 
channel surfaces.

Table 3.1 Values of ε
s
  for some Common Channel Surfaces

Sl. No. Surface Equivalent Roughness ε
s
 in mm

1 Glass 3 × 10−4

2 Very smooth concrete surface 0.15–0.30
3 Glazed sewer pipe 0.60
4 Gunite (smooth) 0.50–1.5
5 Rough concrete 3.0–4.5
6 Earth channels (straight, uniform) 3.0
7 Rubble masonry 6.0
8 Untreated gunite 3.0–10.0

3.4 MANNING’S FORMULA

A resistance formula proposed by Robert Manning, an Irish engineer, for uniform 
fl ow in open channels, is

 V =
n

1 2 3

0

1 2  R S/ /
  (3.11)
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90 Flow in Open Channels

where n = a roughness coeffi cient known as Manning’s n. This coeffi cient is essen-
tially a function of the nature of boundary surface. It may be noted that the dimen-
sions of n are [L–1 / 3 T ]. Equation 3.11 is popularly known as the Manning’s formula. 
Owing to its simplicity and acceptable degree of accuracy in a variety of practical 
applications, the Manning’s formula is probably the most widely used uniform fl ow 
formula in the world.
Comparing Eq. 3.11 with the Chezy formula, Eq. 3.3, we have

 C
n

R=
1 1 6 /  (3.12)

From Eq. 3.10, C
g

f n
=

8 1 1 6 =  R /  

i.e.   f
n

R
g=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2

1 3/
 (8 )  (3.13)

Since Eq. 3.13 does not contain velocity term (and hence the Reynolds number), 
we can compare Eq. 3.13 with Eq. 3.7, i.e., the Prandtl–Karman relationship for 

rough turbulent fl ow. If Eq. 3.7 is plotted as f vs. 
4R

sε
 on a log-log paper, a smooth 

curve that can be approximated to a straight line with a slope of −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

1

3
 is obtained 

(Fig 3.2). From this the term f can be expressed as 

f
R

s

  ∝ 4
1 3

ε

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

− /

 or f
R

s  ∝
ε⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1 3/

Slope = −1/3

Eq. (3.7)

0.10

0.01

0.006

f

10 102 103 1044R/εs

Fig. 3.2 Variation of f in fully rough fl ow
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Since from Eq. 3.13, f
n

R
∝

2

1 3/
, it follows that n ∝ ε

s
1/6. Conversely, if n ∝ ε

s
1/6, 

the Manning’s formula and Darcy–Weisbach formula both represent rough trubulent 

fl ow 
ε

ν
sv* >

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

60 .

3.5 OTHER RESISTANCE FORMULAE

Several forms of expressions for the Chezy coeffi cient C have been proposed by dif-
ferent investigators in the past. Many of these are archaic and are of historic interest 
only. A few selected ones are listed below:

1. Pavlovski formula

  C
n

Rx=
1

  (3.14)

 in which x = 2.5 n  − 0.13 − 0.75 R  ( n  − 0.10) and n = Manning’s coeffi cient.
This formula appears to be in use in Russia.

2. Ganguillet and Kutter Formula

 C
n S

S

n

R

=
+ +

+ +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

23
1 0 00155

1 23
0 00155

0

0

  

 

.

.
 (3.15)

in which n = Manning’s coeffi cient.

3. Bazin’s formula

 C
M R

=
+

87 0

1

.

/
 (3.16)

 in which M = a coeffi cient dependent on the surface roughness.

3.6 VELOCITY DISTRIBUTION

(a) Wide Channels

(i) Velocity-defect Law In channels with large aspect ratio B/y
0 
, as for example 

in rivers and very large canals, the fl ow can be considered to be essentially two 
dimensional. The fully developed velocity distributions are similar to the logarithmic 
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92 Flow in Open Channels

form of velocity-defect law found in turbulent fl ow in pipes. The maximum velocity 
u

m
 occurs essentially at the water surface, (Fig. 3.3). The velocity u at a height y 

above the bed in a channel having uniform fl ow at a depth y
0
 is given by the velocity-

defect law for y/y
0
 > 0.15 as

     

u u

u k

y

y
m −

=
∗

1

0

1n 
 

            =
2 3

10 0 log  ( y / y )
.

k
−  (3.17)

where u∗ = shear velocity = τ ρ0 /  = gRS0 , R = hydraulic radius, S
0
 = longitu-

dinal slope, and k = Karman constant = 0.41 for open channel fl ows5.
This equation is applicable to both rough and smooth boundaries alike. Assuming 

the velocity distribution of Eq. 3.17 is applicable to the entire depth y
0
, the velocity u 

can be expressed in terms of the average velocity

 V
y

u
y

 =  dy 
1

0
0

0

∫   as 

   u = V + 
u

k
ln

y

y
∗ +

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1
0

 (3.18)

From Eq. 3.18, it follows that

 V = u
m
 −

 

u

k
∗

 
(3.19)

(ii) Law of the Wall For smooth boundaries, the law of the wall as

 
u

u k

yu

v s

∗

∗ =  ln  + A  
1

 (3.20)

Fig. 3.3 Velocity profi le in a wide open channel
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is found applicable in the inner wall region (y/y
0
 < 0.20). The values of the constants 

are found to be k = 0.41 and A
s
 = 5.29 regardless of the Froude number and Reynolds 

number of the fl ow5. Further, there is an overlap zone between the law of the wall 
region and the velocity-defect law region.

For completely rough turbulent fl ows, the velocity distribution in the wall region 
( y / y

0
 < 0.20) is given by

 
u

u k

y
A

s

r

*

ln= +
1

ε
  (3.21)

where ε
s
 = equivalent sand grain roughness. It has been found that k is a universal 

constant irrespective of the roughness size5. Values of k = 0.41 and A
r
 = 8.5 are 

appropriate.
For further details of the velocity distributions Ref. [5] can be consulted.

(b) Channels with Small Aspect Ratio In channels which are not wide 
enough to have two dimensional fl ow, the resistance of the sides will be signifi cant 
to alter the two-dimensional nature of the velocity distribution given by Eq. 3.17. 
The most important feature of the velocity distributions in such channels is the 
occurrence of velocity-dip, where the maximum velocity occurs not at the free 
surface but rather some distance below it, (Fig. 3.4) Various investigations have 
inferred the secondary currents as responsible for this velocity-dip phenomenon4. 
The critical ratio of B/y

0
 above which the velocity-dip becomes insignifi cant has 

been found to be about 5.0. Based on this the channels with B/y
0
 ≤ 5 can be 

classifi ed as narrow channels.

Typical velocity distributions in rectangular channels with B/y
0
 = 1.0 and 6.0 are 

shown in Figures 3.5(a) and (b) respectively.

Fig. 3.4 Velocity profi le in a narrow channel
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94 Flow in Open Channels

3.7 SHEAR STRESS DISTRIBUTION

The average shear stress τ
0
 on the boundary of a channel is, by Eq. 3.2, given as 

τ
0
 = γ RS

0
. However, this shear stress is not uniformly distributed over the boundary. It

is zero at the intersection of the water surface with the boundary and also at the corners in 
the boundary. As such, the boundary shear stress τ

0
 will have certain local maxima on the 

side as well as on the bed. The turbulence of the fl ow and the presence of secondary cur-

Fig. 3.5(a) Typical velocity distribution in a narrow channel, B/y
0
 = 1.0. (Ref. 4)
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Fig. 3.5(b) Typical velocity distribution in a rectangular channel with B/y
0
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Fig. 3.7 Variation of maximum shear stress on bed and sides of smooth channels
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Fig. 3.6 Variation of boundary shear stress in a trapezoidal channel with B/y
0
 = 4 and m = 1.5

rents in the channel also contribute to the non-uniformity of the shear stress distribution. 
A knowledge of the shear stress distribution in a channel is of interest not only in the 
understanding of the mechanics of fl ow but also in certain problems involving sediment 
transport and design of stable channels in non-cohesive material (Chapter 11).

Preston tube5 is a very convenient device for the boundary shear stress measurements 
in a laboratory channel. Distributions of boundary shear stress by using Preston tube in 
rectangular, trapezoidal and compound channels have been reported6,7. Isaacs and Macin-
tosh8 report the use of a modifi ed Preston tube to measure shear stress in open channels. 

Lane9 obtained the shear stress distributions on the sides and bed of trapezoidal 
and rectangular channels by the use of membrane analogy. A typical distribution of 
the boundary shear stress on the side (τ

s
) and bed (τ

b
) in a trapezoidal channel of B/y

0
 

= 4.0 and side slope m = 1.5 obtained by Lane is shown in Fig 3.6. The variation of 
the maximum shear stress on the bed τ

bm
 and on the sides τ

sm
 in rectangular and trap-

ezoidal channels is shown in Fig. 3.7. It is noted from the fi gure that for trapezoidal 
sections approximately τ

sm
 �  0.76 γ y

0 
S

0
 and τ

bm
 �  γ y

0 
S

0
 when B/y

0
 � 6.0.
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96 Flow in Open Channels

3.8 RESISTANCE FORMULA FOR PRACTICAL USE

Since a majority of the open channel fl ow are in the rough turbulent range, the Man-
ning’s formula (Eq. 3.11) is the most convenient one for practical use. Since, it is 
simple in form and is also backed by considerable amount of experience, it is the 
most preferred choice of hydraulic engineers. However, it has a limitation in that it 
cannot adequately represent the resistance in situations where the Reynolds number 
effect is predominant and this must be borne in mind. In the book, the Manning’s 
formula is used as the resistance equation.

The Darcy–weisbach coeffi cient f used with the Chezy formula is also an equally effec-
tive way of representing the resistance in uniform fl ow. However, fi eld engineers generally 
do not prefer this approach, partly because of the inadequate information to assist in the 
estimation of ε

s
 and partly because it is not suffi ciently backed by experimental or fi eld 

observational data. It should be realized that for open channel fl ows with hydrodynamically 
smooth boundaries, it is perhaps the only approach available to estimate the resistance.

3.9 MANNING’S ROUGHNESS COEFFICIENT n

In the Manning’s formula, all the terms except n are capable of direct measurement. 
The roughness coeffi cient, being a parameter representing the integrated effects of 
the channel cross-sectional resistance, is to be estimated. The selection of a value for 
n is subjective, based on one’s own experience and engineering judgement. How-
ever, a few aids are available which reduce to a certain extent the subjectiveness in 
the selection of an appropriate value of n for a given channel. These include:

1.  Photographs of selected typical reaches of canals, their description and mea-
sured values of n10,11. These act as type values and by comparing the channel 
under question with a fi gure and description set that resembles it most, one can 
estimate the value of n fairly well. Movies, stereoscopic colour photographs 
and video recordings of selected typical reaches are other possible effective 
aids under the category.

2.  A comprehensive list of various types of channels, their descriptions with the 
associates range of values of n. Some typical values of n for various normally 
encountered channel surfaces prepared from information gathered from vari-
ous sources10,11,12,13 are presented in Table 3.2.

Estimation of correct n-value of natural channels is of utmost importance in  practical 
problems associated with backwater computations, fl ood fl ow estimation, routing 
and management. The photographs of man-made and natural channels with corre-
sponding values of n given by Chow10, Barnes11 and Arcemont and Schnieder14 are 
very useful in obtaining a fi rst estimate of roughness coeffi cient in such situations.

Cowan15 has developed a procedure to estimate the value of roughness factor n of 
natural channels in a systematic way by giving weightages to various important fac-
tors that affect the roughness coeffi cient. According to Cowan.

n  = (n
b
 + n

1
 + n

2
 +n

3
 +n

4
) m
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Table 3.2 Values of Roughness Coeffi  cient n

Sl. No. Surface Characteristics Range of n

(a) Lined channels with straight alignment
1   Concerete  (a) formed, no fi nish 0.013–0.017

        (b) Trowel fi nish 0.011–0.015
        (c) Float fi nish 0.013–0.015
        (d) Gunite, good section 0.016–0.019
        (e) Gunite, wavy section 0.018–0.022

2   Concrete bottom, fl oat fi nish, sides as indicated
        (a) Dressed stone in mortar 0.015–0.017
        (b) Random stone in mortar 0.017–0.020
        (c) Cement rubble masonry 0.020–0.025
        (d) Cement-rubble masonry, plastered 0.016–0.020
        (e) Dry rubble (rip-rap) 0.020–0.030

3   Tile 0.016–0.018
4   Brick 0.014–0.017
5   Sewers (concrete, A.C., vitrifi ed-clay pipes) 0.012–0.015
6   Asphalt    (i) Smooth 0.013

        (ii) Rough 0.016
7   Concrete lined, excavated rock

         (i) good section 0.017–0.020
        (ii) irregular section 0.022–0.027

8    Laboratory fl umes-smooth metal bed and glass or perspex sides 0.009–0.010
(b) Unlined, non-erodible channels
1   Earth, straight and uniform

          (i) clean, recently completed 0.016–0.020
         (ii) clean, after weathering 0.018–0.025
        (iii) gravel, uniform section, clean 0.022–0.030
         (iv) with short grass, few weeds 0.022–0.033

2   Channels with weeds and brush, uncut
          (i) dense weeds, high as fl ow depth 0.05–0.12
          (ii) clean bottom, brush on sides 0.04–0.08
        (iii) dense weeds or aquatic plants in deep channels 0.03–0.035
          (iv) grass, some weeds 0.025–0.033

3   Rock 0.025–0.045
(c) Natural channels
1   Smooth natural earth channel, free from growth, little curvature 0.020
2   Earth channels, considerably covered with small growth 0.035
3    Mountain streams in clean loose cobbles, rivers with variable 

section with some vegetation on the banks
0.04–0.05

4    Rivers with fairly straight alignment, obstructed by small trees, 
very little under brush

0.06–0.075

5    Rivers with irregular alignment and cross-section, covered 
with growth of virgin timber and occasional patches of bushes 
and small trees

0.125
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Where n
b
 =  a base value of n for a straight uniform smooth channel in natural 

material
   n

1
 = correction for surface irregularities

   n
2
 = correction for variation in shape and size of the cross section

   n
3
 = correction for obstructions

   n
4
 = correction for vegetation and fl ow conditions

   m = correction for meandering of the channel
Values of the n

b
 and the other fi ve correction factors are given in Chow10 and in Ref. (14).

Example 3.1  A 2.0-m wide rectangular channel carries water at 20°C at a 
depth of 0.5 m. The channel is laid on a slope of 0.0004. Find the hydrodynamic 
nature of the surface if the channel is made of (a) very smooth concrete and (b) rough 
concrete.

Solution Hydraulic radius  R =
×

+ ×
=

2 0 5

2

.

( )2 0.5
0.333m

            τ
0
 = γ RS

0
 = (9.81 × 103) × 0.333 × 0.0004

             = 1.308 N/m2

      v 
*
 = shear velocity = 

τ
ρ

0

3

1 308

10
= ⎛

⎝⎜
⎞
⎠⎟

=
.

0.03617 m/s

(a) For a smooth concrete surface
From Table 3.1 ε

s
 = 0.25 mm = 0.00025 m

    v at 20°C = 10–6m2/s

               

ε ν
ν
s ∗

−=
×

=
0 00025

10 6

. 0.03617
9.04

Since this value is slightly greater than 4.0, the boundary is hydrodynamically in 
the early transition from smooth to rough surface
(b) For a rough concrete surface
From Table 3.1, ε

s
 = 3.5 mm = 0.0035

       
ε ν
ν
s ∗  = 126.6

Since this value is greater than 60, the boundary is hydrodynamically rough.

Example 3.2  For the two cases in Example 3.1, estimate the discharge in the 
channel using (i) the Chezy formula with Dancy–Weisbach f, and (ii) the, Manning’s 
formula.

Solution Case (a): Smooth concrete channel

(i) ε
s
 = 0.25 mm and 

εs

R4

0 25

4 103

4=
× ×

= × −.

0.33
1.894 10
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Since the boundary is in the transitional stage, Eq. 3.8a would be used.

     

1

4

21 25
0 9

f R
s = 1.14 2.0 log  + 

.
.

ε
Re

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟−

Here, Re is not known to start with and hence a trial and error method has to be 
adopted. By trial 

 f = 0.0145

C = 8g f/  = 73.6

V = C RS0 = 73.6 × ×   0.00040 333.  = 0.850 m/s
Q = AV = 0.850 m3/s

(ii) Referring to Table 3.2, the value of n for smooth trowel-fi nished concrete can 
be taken as 0.012, By Manning’s formula (Eq. 3.11),

V = 
1

0 012
2 3 1 2

.
/ /× × (0.333)  (0.0004)  

 = 0.801 m/s
Q = AV = 0.801 m3/s

Case (b): Rough concrete channel

(i) ε
s
 = 3.5 mm  and  

εs

R4
2 625 3= × −.  10

Since the fl ow is in the rough-turbulent state, by Eq. 3.7,

1

f
 = 1.14 – 2 log (2.625 × 10-3)

   f = 0.025

   C = 8 9 81

0 025

×⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

.

.
 = 56.0

   V = 56 × 0 333 0 0004. .×  = 0.647 m/s 
  Q = AV = 0.647 m3/s

(ii) By the Manning’s Formula
From Table 3.2, for rough concrete, n = 0.015 is appropriate

 V = 
1

0 015
0 00042 3 1 2

.
( . )/ /  (0.333)  × ×

    = 0.641 m3/s
Q = 0.641 m3/s

[The following may be noted:
1. The subjectiveness involved in selecting proper value of ε

s 
and n.

2. The ease of calculations by using Manning’s formula.
3.  Reasonably accurate results can be obtained by the Manning’s formula in 

rough-turbulent fl ows.]
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100 Flow in Open Channels

Empirical Formulae for n Many empirical formulae have been presented for 
estimating Manning’s coeffi cient n in natural streams. These relate n to the bed-
particle size. The most popular form under this type is the Strickler formula:

 n = 
d50

1 6

21 1

/

.
 (3.22)

Where d
50

 is in metres and represents the particle size in which 50 per cent of the bed 
material is fi ner. For mixtures of bed materials with considerable coarse-grained 
sizes, Eq. 3.17 has been modifi ed by Meyer et al. as

 n
d

= 90
1 6

26

/

 (3.23)

Where d
90

 = size in metres in which 90 per cent of the particles are fi ner than d
90

. 
This

 
equation is reported to be useful in predicting n in mountain streams paved with 

coarse gravel and cobbles.

Factors Aff ecting n The Manning’s n is essentially a coeffi cient representing
the integrated effect of a large number of factors contributing to the energy loss in a 
reach. Some important factors are: (a) Surface roughness, (b) vegetation, (c) cross-
section irregularity and (d) irregular alignment of channel. The chief among these 
are the characteristics of the surface. The dependence of the value of n on the surface 
roughness in indicated in Tables 3.1 and 3.2. Since n is proportional to (ε

s
)1/6, a large 

variation in the absolute roughness magnitude of a surface causes correspondingly 
a small change in the value of n. The importance of other factors are indicated in 
Cowan’s method of estimation of n, as mentioned earlier.

The vegetation on the channel perimeter acts as a fl exible roughness element. 
At low velocities and small depths vegetations, such as grass and weeds, can act 
as a rigid roughness element which bends and deforms at higher velocities and 
depths of fl ow to yield lower resistance. For grass-covered channels, the value of 
n is known to decrease as the product VR increases. The type of grass and density 
of coverage also infl uence the value of n. For other types of vegetation, such as 
brush, trees in fl ood plains, etc. the only recourse is to account for their presence 
by suitably increasing the values of n given in Table 3.2, which of course is
highly subjective.

Channel irregularities and curvature, especially in natural streams, produce energy 
losses which are diffi cult to evaluate separately. As such, they are combined with the 
boundary resistance by suitably increasing the value of n. The procedure is some-
times also applied to account for other types of form losses, such as obstructions that 
may occur in a reach of channel. 

An interesting feature of the roughness coeffi cient is observed in some large 
rivers, where values of n at high stages have been found to be smaller when com-
pared to the values of n at low stages. Typically, n can change from a value, such as 
0.05 at low stages to 0.02 at high stages. No satisfactory explanation is available for 
this phenomenon. Another instance of similar, but possibly unrelated, variation of n 
with the stage is found in the fl ow through circular channels, such as sewers and tile 
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Uniform Flow 101 

drains. In this case the largest value of n is found to occur when the depth of fl ow 
y

0 
= 0.25 D and the least value at y

0
 = D, where D = diameter of the channel. The 

range of variation of n is about 30 per cent.
The resistance to fl ow in alluvial channels is complex owing to the interaction of 

the fl ow, fl uid and boundary. Detailed information on this is available in standard 
treatises on sediment transport (Section 11.3).

3.10 EQUIVALENT ROUGHNESS

In some channels different parts of the channel perimeter may have different rough-
nesses. Canals in which only the sides are lined, laboratory fl umes with glass side 
walls and rough bed, natural rivers with sandy bed and sides with vegetation, fl ood 
plains with different land uses are some typical examples. For such channels it is 
necessary to determine an equivalent roughness coeffi cient that can be applied to the 
entire cross-sectional perimeter for use in Manning’s formula. This equivalent rough-
ness, also called the composite roughness, represents a weighted average value for 
the roughness coeffi cient.

A large number of formulae, proposed by various investigators for calculating 
equivalent roughness of multi-roughness channel are available in literature. All of 
them are based on some assumptions and are approximately effective to the same 
degree. One of the commonly used method due to Horton (1933) and Einstein 
(1934) is described below. Table 3.3 lists several proposed formulae for equivalent 
roughness. For calculating subareas the dividing lines can be vertical lines or bisec-
tor of angles at the break in the geometry of the roughness element.

3.10.1 Horton’s Method of Equivalent Roughness Estimation:

Consider a channel having its perimeter composed of N types of roughness, P
1
, P

2
, …, P

i
, 

…, P
N
 are the lengths of these N parts and n

1
, n

2
, …, n

i
 …, n

N
 are the respective roughness 

coeffi cients (Fig. 3.8). Let each part P
i
 be associated with a partial area A

i
 such that

 A A A A A Ai i N
i

N

= + + + + + = =
=

∑ 1 2
1

... ...  total area

Δ

PN

Pi

P2 A, P, n

P1

n1

n2

ni

nN

Fig. 3.8 Multi-roughness type perimeter
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102 Flow in Open Channels

It is assumed that the mean velocity in each partial area is the mean velocity V for 
the entire area of fl ow, i.e.,

V
1
 = V

2
= … = V

i
 = … V

N
 = V

By the Manning’s formula

S
V n

R

V n

R

V n

R

V n

R
i i

i

N N

N

0
1 2 1 1

1
2 3

2 2

2
2 3 2 3 2 3

/

/ / / /
= = = = = =... ...

   = 
Vn

R2 3/   (3.24)

Where n = equivalent roughness

From Eq. 3.24        
A

A

n P

nP
i i i

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ =

2 3 2 3

2 3

/ /

/

     A A
n P

n Pi
i i=  
3 2

3 2

/

/
 (3.25)

             
  A A A

n P

n Pi

i i= = ∑∑
( )/

/

3 2

3 2

i.e.         n
n P

P

i i
=

( )∑ 3 2 2 3

2 3

/ /

/
  (3.26)

This equation affords a means of estimating the equivalent roughness of a channel 
having multiple roughness types in its perimeter. This formula was independently 
developed by Horton in 1933 and by Einstein in 1934. However, Eq. 3.26 is popu-
larly known as Horton’s formula

If the Darcy–Weisbach friction formula is used under the same assumption of 
(i) Velocity being equal in all the partial areas, and (ii) slope S

0
 is common to all par-

tial areas, then

  
h L S

f V

gR

f V P

gAf / = 0

2 2

8 8
 = = 

Hence     
V

gS

A

Pf

A

P f
i

i i

2

08
= =

Thus        A
i 
/A = 

P f

P f
i i  and on summation  A A

P f

Pfi
i

N i i
i

N

/∑
∑

= =1
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i.e.      P fi i∑  = Pf

or          f = 
P f

P
i i∑  

  (3.27)

Table 3.3 lists some of the equations proposed for estimation of equivalent 
roughness. This list is extracted from Ref. 16 which contains a list of 17 equations for 
composite roughness calculation.

Table 3.3 Equations for Equivalent Roughness Coeffi  cient (Ref.10,16)

Sl. No Investigator n
e

Concept

1 Horton (1933); Einstein
(1934) =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∑1 3 2

2 3

P
n Pi i( )/

/ Mean Velocity is constant
in all subareas.

2 Pavlovskii (1931)
Muhlhofer (1933)
Einstein and Banks (1950)

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∑1 2

1 2

P
n Pi i( )

/ Total resistance force F is
sum of subarea resistance
forces, Fi∑

3 Lotter (1932)
=

∑

PR

PR

n
i i

i

5 3

5 3

/

/

Total discharge is sum of
subarea discharges

4 Felkel (1960)
=

∑
P

P

n
i

i

Total discharge is sum of
subarea discharges

5 Krishnamurthy and 
Christensen (1972) =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

∑
∑

exp
ln/

/

Ph n

Ph
i i i

i i

3 2

3 2

Logarithmic velocity
distribution over depth h
for wide channel

6 Yen (1991)
 = 

( )n P

P

i i∑ Total shear velocity is
weighted sum of subarea
shear velocity

Example 3.3  An earthen trapezoidal channel (n = 0.025) has a bottom width 
of 5.0 m, side slopes of 1.5 horizontal: 1 vertical and a uniform fl ow depth of 1.1 m. 
In an economic study to remedy excessive seepage from the canal two proposals, viz 
(a) to line the sides only, and (b) to line the bed only are considered. If the lining is 
of smooth concrete (n = 0.012), determine the equivalent roughness in the above two 
cases by using (i) Horton’s formula, and by (ii) Pavlovskii formula.

Solution Case (a) Lining of the sides only
Here for the bed: n

1
= 0.025, and P

1
 = 5.0 m.

For the sides: n
2
 = n

3
 = 0.012, and P

2
 = P

3
 = 1.10 × + 1 1 5 2( . ) = 1.983 m

Chapter 3.indd   103Chapter 3.indd   103 2/24/2010   4:22:00 PM2/24/2010   4:22:00 PM



104 Flow in Open Channels

(i) Equivalent roughness n
e
 by Horton’s formula: n

e
 = 1 3 2

2 3

P
n Pi i( )/

/

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

n
e 
=

5 0 0 025 1 983 0 012 1 983 0 012

5 0

3 2 3 2 3 2. ( . ) . ( . ) . ( . )

[ .

/ / /× + × + ×⎡
⎣⎢

⎤
⎦⎥

++ +
= =

1 983 1 983

0 085448

4 315842 3

2 3

. . ]

.

./

/

0.0198

(ii) Equivalent roughness n
e
 by Pavlovskii formula: n

e
 =

1 2

1 2

P
n Pi i( )

/

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

n
e
 = 

5 0 0 025 1 983 0 012 1 983 0 012

5 0 1 983

2 2 2. ( . ) . ( . ) . ( . )

[ . .

× + × + ×⎡
⎣⎢

⎤
⎦⎥

+ ++
= =

1 983

0 060796

2 994331 2

1 2

. ]

.

./

/

  0.0203

Case (b) Lining of the bed only
Here for the bed: n

1
= 0.012 and P

1
= 5.0 m.

For the sides: n
2
 = n

3
 = 0.025, and P

2 
= P

3 
= 1.10 × =  + 1 1 5 2. ) 1.983 m

(i) Equivalent roughness n
e
 by Horton’s formula: n

e
 = 

1 3 2

2 3

P
n Pi i( )/

/

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

n
e
=

 

5 0 0 012 1 983 0 025 1 983 0 025

5 0

3 2 3 2 3 2. ( . ) . ( . ) . ( . )

[ .

/ / /× + × + ×⎡
⎣⎢

⎤
⎦⎥

++ +
= =

1 983 1 983

0 079107

4 315842 3

2 3

. . ]

.

./

/

0.01833

(ii) Equivalent roughness n
e
 by Pavlovskii formula: n

e
 = 

1 2

1 2

P
n Pi i( )

/

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

n
e 
= 

5 0 0 012 1 983 0 025 1 983 0 025

5 0 1 983

2 2 2. ( . ) . ( . ) . ( . )

[ . .

× + × + ×⎡
⎣⎢

⎤
⎦⎥

+ ++
= =

1 983

0 05656

2 994331 2

1 2

. ]

.

./

/

 0.01889

3.11 UNIFORM FLOW COMPUTATIONS

The Manning’s formula (Eq. 3.11) and the continuity equation, Q = AV form the 
basic equations for uniform-fl ow computations. The discharge Q is then given by

 Q = 
1 2 3

0
1 2

n
AR S/ /   (3.28)

              = K S0    (3.28a)

where, K = 
1

n
 AR2/3 is called the conveyance of the channel and expresses the dis-

charge capacity of the channel per unit longitudinal slope. The term nK = AR2/3 is 
sometimes called the section factor for uniform-fl ow computations.
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For a given channel, AR2/3 is a function of the depth of fl ow. For example, consider 
a trapezoidal section of bottom width = B and side slope m horizontal: 1 vertical. 
Then,

A = (B + my)y

P = (B + 2y m2 1+ )

R
B my y

B y m
=

+

+ +

( )

( )2 12 

 AR
B my y

B y m

2 3
5 3 5 3

2 2 32 1

/
/ /

/

( )

( )
=

+

+ + 
 =  f (B, m, y) (3.29)

For a given channel, B and m are fi xed and AR2/3 = f ( y). Figure 3.9 shows the rela-

tionship of Eq. 3.29 in a non-dimensional manner by plotting φ=
AR

B

2 3

8 3

/

/  vs y/B for 

different values of m. It may be seen that for m ≥ 0, there is only one value y/B for each 
value of φ, indicating that for m ≥ 0, AR2/3 is a single-valued function of y. This is also 
true for any other shape of channel provided that the top width is either constant or 
increases with depth. We shall denote these channels as channels of the fi rst kind.

Since AR2/3 = 
Qn

S0

 and if n and S
0
 are fi xed for a channel, the channels of the fi rst 

kind have a unique depth in uniform fl ow associated with each discharge. This depth 
is called the normal depth. Thus the normal depth is defi ned as the depth of fl ow at 
which a given discharge fl ows as uniform fl ow in a given channel. The normal depth 

4
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2
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0.7
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Y
 / 

B

1

m

m = 0 (Rectangular)

m = 1.0

m = 1.5

y

B

φ = AR 2/3 / B8/3

Δ

Fig. 3.9 Variation of φ with y/B in trapezoidal channels
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106 Flow in Open Channels

is designated as y
0
, the suffi x ‘0’ being usually used to indicate uniform-fl ow condi-

tions. The channels of the fi rst kind thus have one normal depth only.
While a majority of the channels belong to the fi rst kind, sometimes one encoun-

ters channels with closing top width. Circular and ovoid sewers are typical examples 
of this category, Channels with a closing top-width can be designated as channels of 
the second kind.

The variation of AR2/3 with depth of fl ow in two geometries of channels of second 
kind is shown in Fig. 3.10. It may be seen that in some ranges of depth, AR2/3 is not a 
single valued function of depth. For example

 (i)  for circular channels the range 
y

D
> 0 82.  has two values of y for a given

value of AR2/3.
(ii)  for Δ shaped channels the following ranges of y/B, which depend on the

value of side slope m, have two depths for a given value of AR2/3:

   • for m = − 0.25, the range 
y

B
 > 0.71

   • for m = − 0.50, the range y

B
 > 1.30

Fig. 3.10 Variation of AR2/3 in channels of the second kind
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As can be seen form Fig. 3.10, the channels of the second kind will have a fi nite depth 
of fl ow at which AR2/3, and hence the discharge for a given channel is maximum.

Types of Problems Uniform fl ow computation problems are relatively simple. 
The available relations are

1. Manning’s formula 
2. Continuity equation
3. Geometry of the cross section

The basic variables in uniform fl ow situations can be the discharge Q, velocity of 
fl ow V, normal depth y

0
, roughness coeffi cient n, channel slope S

0
 and the geometric 

elements (e, g., B and m for a trapezoidal channel), There can be many other derived 
variables accompanied by corresponding relationships. From among the above, the 
following fi ve types of basic problems are recognized.

Problem type Given Required

1 y
0 
, n, S

0 
, Geometric elements Q and V

2 Q , y
0 
, n, Geometric elements S

0

3 Q, y
0 
, S

0 
, Geometric elements n

4 Q, n, S
0 
, Geometric elements y

0

5 Q, y
0 
, n, S

0 
, Geometry Geometric elements

Problems of the types 1, 2 and 3 normally have explicit solutions and hence do not 
present any diffi culty in their calculations. Problems of the types 4 and 5 usually do 
not have explicit solutions and as such may involve trial-and-error solutions proce-
dures. A typical example for each type of problem is given below.

Example 3.4  A trapezoidal channel is 10.0 m wide and has a side slope of 1.5 
horizontal: 1 vertical. The bed slope is 0.0003. The channel is lined with smooth concrete 
of n = 0.012. Compute the mean velocity and discharge for a depth of fl ow of 3.0 m.

10 m

1.5

1

y0

Δ

Fig. 3.11 Example 3.4

Solution Let    y
0
 = uniform fl ow depth

     Here  B = 10.0 m and side slope m = 1.5
     Area     A = (B + my) y
         = (10.0 + 1.5 × 3.0) 3.0 = 43.50 m2

Wetted perimeter       P = B +2y m2 1+
                = 10.0 + 2 2 25 1 3 0 20 817. . .+ × =  m
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Hydraulic radius        R = 
A

P
= 2.090 m

Mean velocity         V = 
1 2 3

0
1 2

n
R S / /

                = 
1

0 012
2 09 0 00032 3 1 2

.
( . ) ( . ). /× ×

                = 2.36 m/s
Discharge           Q = AV = 102.63 m3/s

Example 3.5  In the channel of Example 3.4, fi nd the bottom slope necessary to 
carry only 50 m3/s of the discharge at a depth of 3.0 m.

Solution A = 43.50 m2

    P = 20.817 m
    R = 2.09 m

    
S

Q n

A R0

2 2

2 4 3

2 2

2 4 3

50 0 0 012

43 5 2 09
= =

×
×/ /

( . ) ( . )

( . ) ( . )

    = 0.0000712

Example 3.6  A triangular channel with an apex angle of 75º carries a fl ow of 
1.2 m3/s at a depth of 0.80 m. If the bed slope is 0.009, fi nd the roughness coeffi cient 
of the channel.

Solution y
0
 = normal depth = 0.80 m

y0

75°

Δ

Fig. 3.12 Example 3.6

Referring to Fig. 3.12

Area      A = 
1

2
0 80 2 0 8

75

2
× × ×

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟. . tan

            = 0.491 m2
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Wetted perimeter    P = 2 × 0.8 × sec 37.5o = 2.0168 m
           R = A/P = 0.243 m

            n = AR S

Q

2 3
0
1 2 2 3 1 20 491 0 243 0 009

1 20

/ / / /( . ) ( . ) ( . )

.
=

× ×

            n = 0.0151

Example 3.7  A 5.0-m wide trapezoidal channel having a side slope of 1.5 hori-
zontal: 1 vertical is laid on a slope of 0.00035. The roughness coeffi cient n = 0.015. Find 
the normal depth for a discharge of 20 m3/s through this channel.

Solution Let         
y

0
 = normal depth

   Area          A = (5.0 + 1.5 y
0
) y

0

   Wetted perimeter  P = 5.0 + 2 3 25.  y
0

                     
    = 5.0 + 3.606 y

0

                      
R = A/P = ( . . )

( . . )

5 0 1 5

5 0 3 606
0 0

0

+
+

y y

y

   The section factor  AR2/3 = 
Qn

S0

        

( . . )

( . . )

.

( . )

/ /

/ /

5 0 1 5

5 0 3 606

20 0 015

0 00035
10

5 3
0
5 3

0
2 3 1 2

+
+

=
×

=
y y

y
66 036.

Algebraically, y
0
 can be found from the above equation by the trial-and-error 

method. The normal depth is found to be 1.820 m

Example 3.8  A concrete-lined trapezoidal channel (n = 0.015) is to have a 
side slope of 1.0 horizontal: 1 vertical. The bottom slope is to be 0.0004. Find the 
bottom width of the channel necessary to carry 100 m3/s of discharge at a normal 
depth of 2.50 m.

Solution Let B = bottom width. Here, y
0 
= normal depth = 2.50 m, m = 1.0

   Area       A = (B + 2.5) × 2.5

   Wetted perimeter  P = ( B + ×2 2 2 5. ) = B + 7.071

            
Qn

S0

100 0 015

0 0004
=

×
= =

.

.
75 AR2/3

       
[( . ) . ]

( . )

/

/

B

B

+ ×
+
2 5 2 5

7 071

5 3

2 3
= 75.0

By trial-and-error   B = 16.33 m.
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110 Flow in Open Channels

3.11.1 Computation of  Normal Depth

It is evident from Example 3.7 that the calculation of normal depth for a trapezoidal 
channel involves a trial-and-error solution. This is true for many other channel shapes 
also. Since practically all open channel problems involve normal depth, special attention 
towards providing aids for quicker calculations of normal depth is warranted. A few 
aids for computing normal depth in some common channel sections are given below.

3.11.2 Rectangular Channel

(a) Wide Rectangular Channel For a rectangular channel, (Fig. 3.13)

Area    A = By
0

Wetter perimeter P = B + 2y
0

Hydraulic radius

R = 
By

B y

y

y B
0

0

0

02 1 2+
=

+ /

As y
0
 /B, the aspect ratio of the channel decreases, R → y

0
. Such channels with large 

bed-widths as compared to their respective depths are known as wide rectangular chan-
nels. In these channels, the hydraulic radius approximates to the depth of fl ow.

Considering a unit width of a wide rectangular channel,

    A = y
0
, R = y

0
 and B = 1.0

      
Q

B
 = q = discharge per unit width = 

1

n
y S0

5 3
0
1 2/ / 

       y
qn

S
0

0

3 5

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

/

 (3.30)

This approximation of a wide rectangular channel is found applicable to rectangular 
channels with y

0
/B < 0.02.

(b) Rectangular Channels with y
0
/B ≥ 0.02    For these channels    

Qn

S0

 = AR2/3 

  AR2/3 = 
( )

( )

( / )

( / )

/

/

/

/

By

B y

y B

y B
0

5 3

0
2 3

0
5 3

0
2 32 1 2+

=
+

 B8/3

 
Qn

S B

AR

B
0

8 3

2 3

8 3
0

5 3

0
2 3 01 2/

/

/

/

/

( )

( )
( )= =

+
=

η
η

φ η   (3.31)

Where   η0  = 
y

B
0

B

Y0

Δ

Fig. 3.13 Rectangular channel
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Tables of φ (η
0
) vs η

0
 will provide a non-dimensional graphical solution aid for 

general application. Since φ = Qn

S B0
8 3/

, one can easily fi nd y
0 
/B from this table for 

any combination of Q, n, S
0
 and B in a rectangular channel.

3.11.3 Trapezoidal Channel

Following a procedure similar to the above, for a trapezoidal section of side slope 
m : 1, (Fig. 3.14)

Fig. 3.14 Trapezoidal channel

B

y0

m

1

Δ

Area A = (B + my
0
) y

0

Wetter perimeter  P = (B + 2 m2 1+ y
0
)

Hydraulic radius  R = A/P = 
( )

( )

B my y

B m y

+

+ +
0 0

2
02 1 

Qn

S
AR

B my y

B m y0

2 3 0
5 3

0
5 3

2
0

2 32 1
= =

+

+ +
/

/ /

/

( )

( ) 

Non-dimensionalising the variables,

 
AR

B

Qn

S B

m

m

2 3

8 3

0
8 3

0
5 3

0
5 3

2
0

2 3 0

1

1 2 1

/

/ /

/ /

/

( ) ( )

( )
,= =

+

+ +
=

η η

η
φ η

 
 ( mm)  (3.32)

Where  η
0
 = y

0
/B

Equation 3.32 could be represented as curves or Tables of φ vs η
0
 with m as the third 

parameter to provide a general normal depth solution aid. It may be noted that m = 0 is 
the case of a rectangular channel. Table 3A.1 given in Appendix 3A at the end 
of this chapter gives values of φ for η

0
 in the range 0.1 to 1.70 and m in the range 0 

to 2.5. Values of η
0 

are close enough for linear interpolation between successive 
values. This table will be useful in quick solution of a variety of uniform fl ow prob-
lems in rectangular and trapezoidal channels. Similar table of φ vs η

0
 for any desired 

m values and ranges of η
0
 can be prepared very easily by using a spread sheet such as 

MS Excel.
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112 Flow in Open Channels

Example 3.9  A trapezoidal channel with a bed width of 5.0 m and side slopes 
of 1.5 H: 1 V is laid on a slope of 0.0004. Find the normal depth corresponding to 
discharges of (i) 10.0 m3/s, and (ii) 20.0 m3/s in this channel. Use Table 3A.1 and take 
n = 0.015 for both cases.

Solution For Q = 10.0 m3/s

 

φ = =
×

×
=

Qn

S B0
8 3 1 2 8 3

10 0 0 015

0 0004 5 0
0 1026

/ / /

. .

( . ) ( . )
.

Looking up in Table 3A.1 under m = 1.5
φ = 0.10211  for η

0
 = 0.240

φ = 0.10597  for η
0
 = 0.245

By linear interpolation η
0
 = 0.24063 for φ = 0.1026.

Thus normal depth y
0
 = 0.24063 × 5.0 = 1.203 m

For Q = 20.0 m3/s.

 0.2052φ = =
×

×
=

Qn

S B0
8 3 1 2 8 3

20 0 0 015

0 0004 5 0/ / /

. .

( . ) ( . )

Looking up in Table 3 A.1 under m = 1.5
φ = 0.20382  for η

0
 = 0.350

φ = 0.20930  for η
0
 = 0.355

By linear interpolation  η
0
 = 0.3513 for φ = 0.2052.

Thus normal depth y
0
 = 0.3513 × 5.0 = 1.756 m

3.11.4 Circular Channel

Let D be diameter of a circular channel (Fig 3.15) and 2θ be the angle in radians 
subtended by the water surface at the centre.

A = area of the fl ow section
 = area of the sector OMN – area of the triangle OMN

A = −
1

2
2

1

2
20

2
0 0  sin   cos  r r rθ θ θ. .

      
= −

1

2
20

2
0
2  sin 2( )r rθ θ

     = 
D2

8
 (2 2 )θ θ−sin  (3.33)

      P = wetted perimeter

      = 2r
0
 θ = Dθ (3.34)

Fig. 3.15 Circular channel

O
r0

2θ

D

M N

y0

Δ
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Also cos θ = r y

r

y

D
0 0

0

01
2−

= −
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

Hence  θ = f ( y
0
/D)

Q = 
1 2 3

0
1 2

n
AR S/ /

Assuming n = constant for all depths

Qn

S

A

P

D

D
0

5 3

2 3

10 3

5 3

5 3

2 38

2 2
= =

−/

/

/

/

/

/

( sin )

( )
 

θ θ

θ

Non-dimensionalising both sides

Qn

S D

AR

D
0

8 3

2 3

8 3

5 3

2 3

1

32

2
/

/

/

/

/

( sin )
= =

−
 

θ θ
θ

= φ ( y
0  
/D) (3.35)

The functional relationship of Eq. 3.35 has been evaluated for various values of 
y

0
/D and is given in Table 2A.1 in Appendix 2A. Besides AR2/3/D8/3, other geomet-

ric elements of a circular channel are also given in the table which is very handy in 
solving problems related to circular channels. Using this table, with linear interpo-
lations wherever necessary, the normal depth for a given D, Q, n and S

0
 in a circular 

channel can be determined easily. The graphical plot of Eq. 3.35 is also shown in 
Fig. 3.10.

As noted earlier, for depths of fl ow greater than 0.82D, there will be two normal 
depths in a circular channel. In practice, it is usual to restrict the depth of fl ow to a 
value of 0.8 D to avoid the region of two normal depths. In the region y/D > 0.82, a 
small disturbance in the water surface may lead the water surface to seek alternate 
normal depths, thus contributing to the instability of the water surface.

Example 3.10  A trunk sewer pipe of 2.0-m diameter is laid on a slope of 0.0004. 
Find the depth of fl ow when the discharge is 2.0 m3/s. (Assume n = 0.014.)

Solution  
AR

D

Qn

S D

2 3

8 3

0
8 3 8 3

2 0 0 014

0 0004 2 0

/

/ / /

. .

. ( . )
= =

×

×

= 0.22049

From Table 2A. 2,    
AR

D

2 3

8 3

/

/
= 0.22004 at 

y

D
0  = 0.62

 = 0.22532 at y
0
/D = 0.63

By interpolation, for   AR2/3/D8/3 = 0.22049, y
0
/D = 0.621

The normal depth of fl ow  y
0
 = 1.242 m

[Note: The advantage of using Table 2A.1 in calculating the normal depth in 
circular channels can be appreciated if one tries to solve this problem by trial 
and error]
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114 Flow in Open Channels

3.12 STANDARD LINED CANAL SECTIONS

Canals are very often lined to reduce seepage losses and related problems. Exposed 
hard surface lining using materials such as cement concrete, brick tiles, asphaltic 
concrete and stone masonry form one of the important category of canal lining and 
especially so for canals with large discharges. For such hard surface lined canals 
the cross-section recommended by Indian Standards (IS: 4745 – 1968)12 consists of 
a trapezoidal cross-section with corners rounded off with a radius equal to the full 
supply depth, (Fig. 3.16). For discharges less than 55 m3/s, a triangular lined section 
with bottom portion rounded off with a radius equal to full supply depth, (Fig. 3.17), 
is recommended by the Central Water Commission. (CWC), India. For convenience 
and ease of identifi cation, the above two channel sections are termed standard lined 
canal sections and, in particular, as standard lined trapezoidal section and standard 
lined triangular section respectively. Note that the standard lined triangular section 
is the limiting case of the standard lined trapezoidal section with B = 0. These stan-
dard lined sections have interesting geometrical properties which are benefi cial in the 
solution of some uniform fl ow problems.

Fig. 3.16 Standard lined trapezoidal channel section for Q > 55 m3/s

r = y0 

r r

r = y0 y0

θθ
θ

θ

θ

m

1

B

m = cot θ  

Δ

Standard Lined Trapezoidal Section Referring to Fig. 3.16, the full supply depth 
= normal depth at design discharge = y

0
. At normal depth

Area  A = By
0
 + my

0
2 + y

0
2 θ

= (B + y
0
ε) y

0  
(3.36)

Where  ε = m + θ = m
m

+
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

−tan 1 1
 (3.37)

Wetter perimeter  P = B + 2my
0
 + 2 y

0
 θ = B + 2y

0
ε (3.38)

Hydraulic radius  R = A/P = 
( )B y y

B y

+  

 +2
0 0ε

ε
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By Manning’s formula

Q
n

B y y

B y
S=

+
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

2
0

5 3
0
5 3

0
2 3 0

1 2( )

( )

/ /

/

/ε
ε

Non-dimensionalising the variables,

 
Qn

S B

ε
φ η

η η

η

5 3

0
1 2 8 3 1 0

0
5 3 5 3

0
2 3

1

1 2
0

/

/ /

/ /

/

( )

( )
= =

+

+
 ( )    (3.39)

Where η
ε

0
0=

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

y

B

From Eq. 3.39 the function φ1 
can be easily evaluated for various values of η

0
. 

A table of φ1  vs η
0
 or a curve of φ1 vs η

0
 affords a quick method for the solution of 

many types of problems associated with lined trapezoidal channels.

Standard Lined Triangular Section Referring to Fig. 3. 17, at normal depth y
0
,

Area  A = 2
2

0
2

0
2

0
2  +  

my
y y

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=θ ε  (3.40)

Where as before  ε θ= + = +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

−m m
m

tan 1 1

Wetted perimeter  P = 2y
0
ε (3.41)

and hydraulic radius   R = A/P = y
0
/2 (3.42)

By Manning’s formula  Q = 
1

20
2

0
2 3

0
1 2

n
y S( )( / ) / /εy

or   φ
εT

Qn

S y
= =

0
1 2

0
8 3

0 63
/ /

.  (3.43)

By using Eq. 3.43 elements of standard lined triangular channels in uniform fl ow 
can be easily determined.

Fig. 3.17 Standard lined triangular channel section for Q ≤ 55 m3/s

θ
2θ

θ

θ

l

m
m = cot θ 

r =
 y 0

r = y
0

y0

ΔΔ
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116 Flow in Open Channels

Example 3.11  A standard lined trapezoidal canal section is to be designed to 
convey 100 m3/s of fl ow. The side slopes are to be 1.5 horizontal: 1 vertical and Man-
ning’s n = 0.016. The longitudinal slope of the bed is 1 in 5000. If a bed width of 10.0 
m is preferred what would be the normal depth?

Solution Referring to Fig. 3.16, m = side slope = 1.5

ε = + = + =− −m
m

tan . tan ( / . ) .1 11
1 5 1 1 5 2 088

Further, here Q = 100.0 m3/s, n = 0.016, S
0
 = 0.0002, B = 10.0 m

φ
ε

1

5 3

0
1 2 8 3

5 3

8 3

100 0 016 2 088

0 0002 10 0
= =

× ×
×

=
Qn

S B

/

/ /

/

/

. ( . )

( . ) ( . )
00.8314

By Eq.(3.39) φ
η η

η1
0

5 3
0
5 3

0
2 3

1

1 2
=

+
+

( )

( )

/ /

/
= 0.8314

On Simplifying,  
( )

( )

/ /

/

1

1 2
0

5 3
0
5 3

0
2 5

+
+
η η

η
= 0.8951

On solving by trial and error   η
ε

0
0=

y

B
 = 0.74

The normal depth   y0

0 74 10 0

2 088
3 544=

×
=

. .

.
. m

Example 3.12  Show that for a standard lined trapezoidal canal section with side 
slopes of m horizontal: 1 vertical, and carrying a discharge of Q with a velocity V

s 
,

η0

1

2
1 1

4

4
= − + +

−

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥M

Where η
0 
= 

y

B
0ε

; ε = m + tan−1 1

m
; M = 

QS

V ns

0
3 2

4 3

/

ε
 and n is Manning’s coeffi cient. 

Also examine the situation when (i) M → 4 and (ii) M < 4.

Solution For a standard lined trapezoidal canal section (Fig.3.16)
Area A = (B+ y

0
ε) y

0
 = Q/V

s
 (3.44)

Perimeter P = (B+2 y
0
ε)

Hydraulic radius R = A/R = 
Q

V Ps

 (3.45)

From Manning’s formula   Vs = 
1 2 3

0
1 2

n
R S/ /

i.e  R2 = 
V n

S
s
3 3

0
3 2/  (3.46)
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Substituting for R in Eq. 3.45 Q

V P

V n

Ss

s
2

2 2

3 3

0
3 2

=
/

Hence  P 2 = 
Q S

V P
B

y

Bs

2
0
3 2

5 3

2 0

2

1
2/

= +
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

ε
  (3.47)

Putting  η0 = 
y

B
0ε

from Eq. 3.44          B2 = ε
η η

Q

Vs

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ +

1

1 0 0( )

Substituting for B2 in Eq. 3.47  
( ) /1 2 0

2

0
2

0

2
0
3 2

5 3

+
+

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

η
η η ε

Q S

V n

V

Qs

s

=  
QS

V ns

0
3 2

4 3

/

 = M

Hence  1 + 4 η0
2
 + 4η0 = M η0

2  + Mη0

(M – 4) η0
2 + (M – 4) η0 – 1 = 0

On solving  η0 =
1

2
1 1

4

4
−

−

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

+ +
M

 (i)  When M → 4, η
0
 =

y

B
0ε

→ ∞ , since y
0
 and ε are fi nite values this corresponds 

to B → 0.Thus M = 4, corresponds to the case of standard lined triangular 
channel section.

(ii)  When M < 4, η
0
 is imaginary and hence this is not physically realisable 

proposition.

[Note: The expression for η
0
 in terms of M derived as above is very useful in solv-

ing some uniform fl ow problems relating to standard lined trapezoidal sections 
where V

s
 is known, (for e.g. Problem 3.28)].

3.13 MAXIMUM DISCHARGE OF A CHANNEL OF  THE SECOND KIND

It was shown in Section 3.11 that the channels of the second kind have two nor-
mal depths in a certain range and there exists a fi nite depth at which these sec-
tions carry maximum discharge. The condition for maximum discharge can be 
expressed as

 
dQ

dy
= 0  (3.48)
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Assuming n = constant at all depths, for a constant S
0 
, Eq. 3.48 can be rewrit-

ten as

 
d

dy
AR( )/2 3 0=  (3.49)

i.e. 
d

dy
A P( / )5 2 0=  (3.49a)

Knowing AR2/3 = f ( y) for a given channel, Eq. 3.49 can be used to evaluate the 
depth for maximum discharge.

Example 3.13  Analyse the maximum discharge in a circular channel.

Solution Referring to Fig. 3.15, from Eq. 3.33

A
D

= −
2

8
2 2( sin )θ θ

and from Eq. 3.34   P = Dθ
For the maximum discharge, from Eq. 3.49a

d

d
A P

θ
 ( / )5 2 0=

i.e. 5 2 0P
dA

d
A

dP

dθ θ
− = 

5Dθ 
D2

8
(2 – 2 cos 2θ) – 2

D2

8
(2θ – sin 2θ) D = 0

3θ – 5θ cos 2θ + sin 2θ = 0
The solution of this equation is obtained as   θ = 150º11′,

y
0
/D = 

1

2

−cosθ
 = 0.938

Hence the depth of fl ow for maximum discharge y
0
 = 0.938 D

At y
0
/D = 0.935,  

AR

D

2 3

8 3

/

/

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟  = 0.3353

Also when y
0
/D = 1.0,  

AR

D

2 3

8 3

/

/

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

 = 0.3117

Hence if Q
f
 = discharge with y

0
 = D, i.e. the pipe running just full, and Q

m 
= maxi-

mum discharge then

Q

Q
m

f

= =
0 3353

0 3117
1 0757

.

.
.
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Thus the maximum discharge will be 7.6 per cent more than the pipe full discharge.

[Note that if chezy formula with a constant C is used, Eq. 3.49 would become 
d

dy
 (AR1/2) = 0. The solution would correspondingly change. The depth for maxi-

mum discharge would be y
0
 = 0.95D.]

3.14 HYDRAULICALLY EFFICIENT CHANNEL SECTION

The conveyance of a channel section of a given area increases with a decrease in its 
perimeter. Hence a channel section having the minimum perimeter for a given area 
of fl ow provides the maximum value of the conveyance. With the slope, roughness 
coeffi cient and area of fl ow fi xed, a minimum perimeter section will represent the 
hydraulically effi cient section as it conveys the maximum discharge. This channel 
section is also called the best section.

Of all the various possible open channel sections, the semicircular shape has the 
least amount of perimeter for a given area. However, for any other selected geometri-
cal shape, the relationship between the various geometric elements to form an effi -
cient section can be obtained as follows.

(a) Rectangular Section Bottom width = B and depth of fl ow = y
Area of fl ow A  = By = constant
Wetted perimeter P = B + 2y

  = 
A

y
 + 2y 

If P is to be minimum with A 
= constant,

   

dP

dy

A

y
=

2
2 0+ =−

Which gives A = 2 ye
2

i.e. y
e
 = B

e 
/2, B

e
 = 2y

e
 and R

e
 = 

ye

2
 (3.50)

The suffi x ‘e’ denotes the geometric elements of a hydraulically effi cient section. 
Thus it is seen that for a rectangular channel when the depth of fl ow is equal to half 
the bottom width, i.e., when the channel section is a half-square, a hydraulically effi -
cient section is obtained (Fig. 3.18).

(b) Trapezoidal Section Bottom width = B, side slope = m horizontal: 1 vertical
Area A = (B + my) y = constant

 B
A

y
=  – my (3.51)

Fig. 3.18 Hydraulically effi  cient rectangular channel

Be

ye = Be
2

Δ
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Wetter perimeter        B y m+ +2 12  

=
A

y
my y m− + +2 12     (3.52)

Keeping A and m as fi xed, for a hydraulically effi cient section,

dP

dy

A

y
m m= − − + + =

2

22 1 0

i.e. A m m ye= + −( )2 1 2 2  (3.53)

Substituting in eqs 3.51 and 3.52

B y m me e= + −( )2 1 2  (3.54)

P y m me e= + −( )2 2 1 2  (3.55)

R
m m y

m m y
ye

e

e

e=
+ −( )
+ −( )

=
2 1

2 2 1
2

2 2

2
/  (3.56)

A hydraulically effi cient trapezoidal section having the proportions given by Eqs 
3.53 to 3.56 is indicated in Fig. 3.19. Let O be centre of the water surface. OS and OT 
are perpendiculars drawn to the bed and sides respectively.

OS = y
e

OT = OR sinθ =
OR

m2 1+

OR = 
1

2
B mye e+ .

Substituting for B
e
 from 

Eq. 3.50,

OR = y me 1 2+

OT = OS = y
e

Thus the proportions of a 
hydraulically effi cient trape-
zoidal section will be such 
that a semicircle can be insc-
ribed in it.

In the above analysis, the side slope m was held constant. However, if m is allowed 
to vary, the optimum value of m to make Pe most effi cient is obtained by putting 
dP

dm
e = 0, from Eqs 3.55 and 3.53

Fig. 3.19 Hydraulically effi  cient trapezoidal channel

ye

Be

S

L
e T

R

θ θ

m

1

0 Δ
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 P A m me = + −2 2 1 2( )  (3.57)

Setting 
dp

dm
e  = 0 in Eq. 3.57 gives

 
mem = =

1

3
cot θ

θ
em

= 60º

Where the suffi x ‘em’ denotes the most effi cient section, Further.

p y yem em em= + −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ =2 2 1 1 3

1

3
2 3/  (3.58a)

B y yem em em= + −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ =2 2 1 1 3

1

3

2

3
/  (3.58b)

A yem em= + −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ =2 1 1 3

1

3
32 2/ y  (3.58c)

If L = length of the inclined side of the canal, it is easily seen that

L y Bem em em= =
2

3

Thus the hydraulically most effi cient trapezoidal section is one-half of a regular 
hexagon.

Using the above approach, the relationship between the various geometrical ele-
ments to make different channel shapes hydraulically effi cient can be determined. 
Table 3.4 contains the geometrical relation of some most effi cient sections.

3.14.1 Uniform f low in Most Effi  cient Channels

It is seen from Table 3.4 that the area A and hydraulic radius R of a most effi cient 
hydraulic section can be represented as

A
em 

= k
1 yem

2  and R = K
2
 y

em 
where K

1
 and K

2
 are constants which depend upon the 

channel shape. Thus the discharge in uniform fl ow through a most effi cient channel 
section can be represented as

Q
n

K y K y Sem em= × ×
1

1
2

2
2 3

0
1 2( ) ( ) ( )/ /

Qn

y S
K

em

em8 3
0
1 2/ /

=  (3.59)

where K
em

 = K
1
K

2
2/3 = is a constant unique to each channel shape. Thus for rectangu-

lar shape, from Table 3.4, K
1
 = 2 and K

2
 = ½ and hence K

em
 = 1.260. simila rly, values 
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of K
em

 for other channel shapes are calculated and shown in Col. 8 of Table 3.4. The 
use of K

em
 in calculating parameters of uniform fl ow in most effi cient channel sec-

tions is shown in Example 3.15 and 3.16.

Example 3.14   A slightly rough brick-lined ( n = 0.017) trapezoidal channel 
carrying a discharge of 25.0 m3/s is to have a longitudinal slope of 0.0004. Analyse 
the proportions of an effi cient trapezoidal channel section having a side slope of 1.5 
horizontal: 1 vertical.

Solution For an effi cient trapezoidal section having a side slope of m, by Eq. 3.53

A
e
 = 2 1 2 1 1 5 1 52 2 2 2× + −( ) = × + −( )m m y ye e( . ) .

R
e
 = y

e
/2 and Q = 25.0 m3/s

Substituting a Manning’s formula,

25.0 = 
1

0 017
2 1056 2 0 00042 2 3 1 2

.
( . ) ( / ) ( . )/ /× × ×y ye e

y
e
 = 2.830 m

By Eq. (3.54), B
e
 = 2 1 2 2 830 1 1 5 1 5 1 7142 2y m me ( ) . ( ( . ) ( . )) .+ − = × × + − =  m

Example 3.15  When the normal depth of fl ow in most effi cient circular con-
crete (n = 0.014) section laid on a bed slope of 0.005 is 0.50 m, estimate the 
discharge.

Table 3.4 Proportions of Some Most Effi  cient Sections

Sl.
No

Channel
Shape

Area
(A

em  
)

Wetted
Perimeter

(P
em  

)

Width
(B

em  
)

Hydraulic
Radius
(R

em  
)

Top
width
(T

em  
)

Qn

y Sem
8 3

0
1 2/ /

= K
em

1 Rectangle
(Half square) 2 yem

2 4 y
em

2 y
em

yem

2
2 y

em
1.260

2 Trapezoidal (Half 
regular hexagon, 

m=
1

3
)

3 2yem 2 3yem

2

3
yem

yem

2
 
4

3

yem
1.091

3 Circular (semi-
circular)

π
2

2 y em πy
em

D = 
2y

em

yem

2
2 y

em
  0.9895

4 Triangle (Vertex 
angle = 90º. yem

2 2 3yem –
yem

2 2
2 y

em
0.500 
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Solutions For the most effi cient circular section

From Table 3.4, 
Qn

y Sem
8 3

0
1 2/ /  = 0.9895. In the present case y

em
= 0.5 and S

0
 = 0.005.

Hence Q =
0 9895

0 014
0 5 0 005 0 7878 3 1 2.

.
( . ) ( . ) ./ /× × = m3/s.

Example 3.16  Determine the normal depth, bed width and sides slopes of a 
most effi cient trapezoidal channel section to carry a discharge of 25 m3/s. The longi-
tudinal slope of the channel is to be 0.0009 and Manning’s n can be taken as 0.015.

Solution For the most effi cient trapezoidal section

From Table 3.4,
Qn

y Sem
8 3

0
1 2/ /

= 1.091. In the present case Q = 25.0 m3/s and S
0
 = 0.0009.

Hence yem
− =

×
×

=8 3
1 21 091 0 0009

25 0 0 015
0 08728/

/. ( . )

. .
.

 
y

em
 = 2.50 m

Also, from Table 3.4, B
em

 = 
2

3

2

3
2 50 2 887yem = × =. . m

Sides slope of most effi cient trapezoidal channel section, m = 
1

3
= 0.57735

3.15  THE SECOND HYDRAULIC EXPONENT N

The conveyance of a channel is in general a function of the depth of fl ow. In cal-
culations involving gradually varied fl ow, for purposes of integration, Bakhmeteff 
introduced the following assumption

 K 2= C
2 
y N (3.60)

Where C
2
= a coeffi cient and N = an exponent called here as the second hydraulic 

exponent to distinguish it from the fi rst hydraulic exponent M associated with the 
critical depth. It is found that the second hydraulic exponent N is essentially constant 
for a channel over a wide range of depths. Alternatively, N is usually a slowly varying 
function of the aspect ratio of the channel.

To determine N for any channel, a plot of log K vs log y is prepared. If N is con-
stant between two points (K

1 
, y

1
) and (K

2
, y

2
) in this plot, it is determined as

N
K K

y y
= 2 1 2

1 2

 
log ( / )

log ( / )
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For a trapezoidal channel, if φ =
AR

B

2 3

8 3

/

/
 given in Table 3A.1 is plotted against η = 

y/B on a log paper, from the slope of the curve at any η, the value of N at that point can 
be estimated. Figure 3.20 shows the variation of N for trapezoidal channels. The values 
of N in this curve have been generated based on the slope of the log K – log y relation 
using a computer. Figure 3.20 is useful in the quick estimation of N. It is seen from this 
fi gure that N is a slowly-varying function of y/B. For a trapezoidal section, the mini-
mum value of N = 2.0 is obtained for a deep rectangular channel and a maximum value 
of N = 5.33 is obtained for a triangular channel. It may be noted that if the Chezy for-
mula with C = constant is used, values of N different from the above would result.

Example 3.17  Obtain the value N for (a) a wide rectangular channel, and 
(b) a triangular channel.

Solution (a) For a Wide Rectangular Channel
Considering unit width, A = y

R = y

K
n

y y C yN2

2

2 4 3
2

1
= =( )/

Fig. 3.20 Variation of the second hydraulic exponent N in trapezoidal channels

m
1

m = 0

R
ectangular

Third parameter = m 

1.
0

1.
5

m
 =

 2
.0

y

B

4.0

2.0

1.0

y 
/B

 

0.4

0.3

0.2

0.1

0.04
2.0 2.5 3.0 3.5 4.0 4.5 5.0

N

Δ
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By equating the exponents of y on both sides; N = 3.33
(b) For a Triangular Channel of Side Slope m Horizontal: 1 Vertical

 A = my 2, P y m= +2 12

 

R
m

m
y=

+2 12

K
n

my
m

m
y C yN2

2

2 2

2

4 3

2

1

2 1
=

+

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
=( )

/

By equating the exponents of y on both sides, N = 5.33.

3.16 COMPOUND CHANNELS

A compound channel is a channel section composed of a main deep portion and 
one or two fl ood plains that carry high-water fl ows. The main channel carries 
the dry weather fl ow and during wet season, the fl ow may spillover the banks
of the main channel to the adjacent fl ood plains. A majority of natural rivers
have compound sections. A compound section is also known as two-stage chan-
nel. The hydraulic conditions of the main channel and the fl ood plain differ
considerably, especially in the channel geometry and in its roughness. The
fl ood plains generally have considerably larger and varied roughness elements. 
(Fig. 3.21).

Fig. 3.21 Schematic sketch of a compound channel

Right Flood PlainMain ChannelLeft Flood Plain

nL

nB

nR

Δ

The fl ow in the compound channel when the water is fl owing in both the main 
and fl ood plains is indeed complicated. The velocity of fl ow in the fl ood plain is 
lower than in the main channel due to relative smaller water depth and higher bed 
roughness. The main channel fl ow will have interaction with the fl ow in the fl ood 
plains leading to severe momentum exchange at the interface. Further, there will 
be complicated interaction with the boundaries at the junction which give rise to 
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126 Flow in Open Channels

several sets of vortices leading to turbulence generation. The interactions of the 
main channel fl ow and the fl ood plain fl ows are indeed very complex. Figure 
3.22, due to Knight and Shinno17, shows a conceptual model of this interaction 
scenario. Various prominent fl ow features at the junction of the main and fl ood 
bank fl ows are depicted in this fi gure. The following salient features are 
signifi cant:

•  At the junction of the main channel with the fl ood plain a set of vortex structures 
having vertical axis extending up to the water surface exist. This vortex set is 
believed to be responsible for momentum exchange between the main and shal-
low water fl ows.

•  Presence of helical secondary fl ows in the longitudinal stream direction at vari-
ous corners of the channel section as shown in Fig. 3.22. These secondary fl ows 
have different directions at different corners and have infl uence in modifying 
the boundary shear stress.

Field observations have indicated that in the overbank fl ow situation, the mean veloc-
ity of fl ow for the whole cross section decreases as the depth of fl ow increases, 
reaches a minimum and then onwards begins to increase with the depth.

In one-dimensional analysis, Manning’s formula is applied to the compound 
channel by considering a common conveyance K and a common energy slope S

f
 for 

Fig. 3.22 Conceptual model of interaction of fl ows in fl ood bank and main channel (Ref. 17)
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U
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the entire section to obtain the discharge as Q = K S f . However, to account for 

the different hydraulic conditions of the main and fl ood plain sections, the channel 

is considered to be divided into subsections with each subsection having its own 
conveyance, K

i
. The sum of the conveyances will give the total channel convey-

ance (ΣK
i
 = K) for use in discharge computation. Various methods for defi ning the 

boundaries of the sub-sections are proposed by different researchers leading to a 
host of proposed methods. However, the overall method of considering the channel 
as a composite of sub sections is well accepted and the method is known as Divided 
Channel method (DCM). Currently DCM is widely used and many well-known 
software packages, including HEC-RAS (2006), adopt this method in dealing with 
compound channels.

3.16.1 Divided Channel Method (DCM)

A large number of methods of defi ning the sub-sections in the divided channel
method are available in literature. These include vertical interface, diagonal inter-
face; horizontal interface, curved interface and variable interface to divide the sub-
sections. However, the following two methods are popular, been well studied and 
have been found to give reasonably good results:

1. Vertical Interface Method In this method the fl ood banks are separated from 
the main channel by means of vertical interface, (as shown in Fig. 3.24). This inter-
face is considered as a surface of zero shear where in no transfer of momentum takes 
place. As such, the length of the vertical interface is not included in the calculation of 
the wetted perimeter of either the over bank fl ow or the main channel fl ow.

2. Diagonal Interface Method In this method, a diagonal interface (as in Fig. 
3.23) is considered from the top of the main channel bank to the centerline of the 
water surface. This interface is considered to be a surface of zero shear stress and as 
such the length of the diagonal interfaces are not included in the calculation of the 
wetted perimeters of the over bank and main channel fl ows. If the over bank portion 
has signifi cant roughness discontinuities equivalent roughness (as indicated Sec. 
3.10) for over bank region can be adopted.

While there is no general agreement to choose a particular method, it is generally 
believed that the vertical interface method or the diagonal interface method seem to 
give the best results. HEC-RAS uses vertical interface procedure. In the procedure 
adopted by HEC-RAS, the fl ow in the over bank areas are subdivided using the n-
values break points (locations where n-values change signifi cantly) as the basis.
Main channel is not normally subdivided. Conveyance is calculated for each sub 
division by considering vertical interface. It is known the DCM over estimates the 
discharge to some extent and due to extreme complexity of the hydraulics of the 
problem, a high degree of accuracy in the discharge estimation should not be expected 
in any of the procedures connected with compound channels. Example 3.18 illus-
trates the use of these two DCM procedures.
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128 Flow in Open Channels

 An improvement of the DCM is the Weighted Divided Channel Method (WDCM) 
due to Lambert and Myers. In this method, improved mean velocities in the main 
channel and fl ood plain areas are obtained by using a defi ned weighing factor to 
the velocities in the stream sections predicted by vertical interface method and hori-
zontal interface method. In horizontal interface method the channel is considered to 
be divided in to two parts by a horizontal interface at the level of the banks of the 
main channel. The top portion is considered as shallow overland fl ow and the bottom 
deep portion is the main channel the depth of fl ow being only up to the top of the 
banks as restricted by the horizontal interface. This interface is considered as a sur-
face of zero shear and as such, the length of the horizontal interface is not included 
in the calculation of the wetted perimeter of either the over bank fl ow or the main 
channel fl ow.

3.16.2 Other Methods

In addition to the DCM, there have been many other approaches to the study of com-
pound channel discharge distribution problem. Ref. (18, 19.) contain brief reviews of 
these methods and also results of important studies. Briefl y, salient approaches other 
than DCM are:

Empirical Methods Several empirical methods have been developed for esti-
mating the discharge division between the main channel and the fl ood channel. Out 
of these methods the Coherence method of Ackers (1993) and the φ-index method of 
Wormleaton and Merrit (1990) are prominent.

Numerical Methods Computation procedures of solving governing equations by 
using various turbulence models have been used by various researchers.

Exchange Discharge Model(EDM) This model proposed by Bousmar and 
Zech(1999) focuses on exchange of discharges and momentum transfers through a 
computation procedures.

Example 3.18  A compound channel is symmetrical in cross section and has the 
following geometric properties.
Main channel: Trapezoidal cross section, Bottom width = 15.0 m, Side slopes = 
1.5 H : 1V, Bank full depth = 3.0 m, Manning’s coeffi cient = 0.03, Longitudinal 
slope = 0.0009 Flood plains: Width = 75 m, Side slope = 1.5 H : 1V, Manning’s 
coeffi  cient = 0.05, Longitudinal slope = 0.0009. Compute the uniform fl ow dis-
charge for a fl ow with total depth of 4.2 m by using DCM with (i) diagonal inter-
face, and (ii) vertical interface procedures.

Solution The schematic representation of the channel is shown in Fig. 3.23. Figure 3.24 
and 3.25 are the defi nition sketches of diagonal interface and vertical interface meth-
ods, respectively.
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(i) Diagonal Interface Procedure The channel section is considered divided 
into three subsections A

1
, A

2
 and A

3
, by means of two diagonal interface as shown in 

Fig. 3.23. The calculation of area and wetted perimeters of each of the three sub-
areas is given below:
By symmetry, Sub-area A

1
 = Sub-area A

3
. The diagonal interfaces are as indicated in 

Fig. 3.23. As per the rules of this computation procedure, the interfaces are treated as 

Table of Computation of Geometrical Properties – Diagonal Interfaces:

Sub-

area

Area 

Ele-

ment

Area (m2) Wetted Perimeter (m)

Hyd. 

Radius 

(m)

A
1

A
11

[0.5 × 1.2 × (1.5 × 1.2)]   1.08 1.2 × (1+1.5)2)0.5   2.163

A
12

75 × 1.2 90 75 75

A
13

[(0.5 × 15) + (1.5 × 3)] × 0.5 × 

1.2

  7.2 0 0

Totals 98.28 77.16 1.274

A
2

A
21

[15 + (1.5 × 3.0)] × 3.0 58.5 15 + 2 × 3.0 × [1+(1.5)2]0.5 25.82

A
22

[15 + (2 × 1.5 × 3)] × 0.5 × 1. 2

14.4

0 0

Totals 72.9 25.82 2.824

Fig. 3.24 Schematic representation of compound channel of Example-3.18
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Fig. 3.23 Channel cross-sectional area division for diagonal interface procedure-Example-3.18
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surfaces of zero shear stress and hence are not included in the calculation of the 
wetted perimeter.
Discharge by Manning’s formula:

Sub-Area A Q1 1
2 3 1 21

0 05
98 28 1 274 0 0009 69 287            = × × × =

.
. ( . ) ( . ) ./ / mm /s3

Sub-Area A Q2 2
2 3 1 21

0 03
72 90 2 824 0 0009           145.640= × × × =

.
. ( . ) ( . )/ /   m /s3

Sub-Area    m /s3A Q Q3 3 1
2 3 1 21

0 05
98 28 1 274 0 0009 69 287= = × × × =

.
. ( . ) ( . ) ./ /

Total discharge Q = Q
1
 + Q

2
 + Q

3
 = 284.21 m3/s

(ii) Vertical Interface Procedure The channel section is considered divided 
into three subsections, A

1
, A

2
, and A

3
, by means of two vertical interfaces which 

start at the intersection of the fl ood plains and the main channel as shown in 
Fig. 3.25. The calculation of area wetted perimeters of each of the three sub-areas 
is given below:

By symmetry, sub-area A
1
 = sub-area A

3
. The vertical interfaces are as indicated in 

Fig. 3.25. As per the rules of this computation procedure, the interfaces are treated as 
surfaces of zero shear stress and hence are not included in the calculation of the wetted 
perimeter.

Fig. 3.25 Channel cross-sectional area division for vertical interface procedure — Example-3.18

Ve rtical
interf ace

A32

A31

A22

A21

A12

A11

Sub-area A1

Sub-area A2

Sub-area A3

Sub-
area

Area 
Ele

ment
Area (m2) Wetted Perimeter (m)

Hyd. 
Radius 

(m)

A
1

A
11

[0.5 × 1.2 × (1.5 × 1.2]   1.08 1.2 × (1 + (1.5)2)0.5   2.163

A
12

75 × 1.2 90 75 75

Totals 91.08 77.163 1.180

A
2

A
21

[15 + (1.5 × 3.0)] × 3.0 58.5 15 + 2 × 3.0 × [1+(1.5)2]0.5 25.817

A
22

[15 + (2 × 1.5 × 3)] × 1.2 28.8 0 0

Totals 87.3 25.817 3.382

Table of Computation of Geometrical properties M – Vertical Interfaces
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Discharge by Manning’s formula:

Sub-Area A Q1 1
2 3 1 21

0 05
91 08 1 180 0 0009 61 035            = × × × =

.
. ( . ) ( . ) ./ / mm /s3

Sub-Area A Q2 2
2 3 1 21

0 03
87 3 3 382 0 0009           196.697 = × × × =

.
. ( . ) ( . )/ / mm /s3

Sub-Area    m /s3A Q Q3 3 1
2 3 1 21

0 05
91 08 1 180 0 0009 61 035= = × × × =

.
. ( . ) ( . ) ./ /

Total discharge Q = Q
1
 + Q

2
 + Q

3
 = 318.77 m3/s

3.17 CRITICAL SLOPE

Critical slope is the slope of a specifi ed channel necessary to have uniform fl ow of a 
given discharge with critical depth as the normal depth. Thus the normal discharge 
formula

Q
n

AR S=
1 2 3 1 2/ / would become

Q
n

A R Sc c c=
1 2 3 1 2/ /   (3.61)

Where A
c  
= area of the channel at critical depth y

c

R
c
 = hydraulic radius of the channel at critical depth y

c
 and

S
c
  = critical slope

From Eq. 3.61  S
c
 = 

n Q

A Rc c

2 2

2 4 3/

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟   (3.62)

Since the critical depth is a function of the channel geometry and the discharge, the 
critical slope S

c
 for a give channel is a function of the discharge. If the critical slope 

S
c
 is larger than the channel slope S

0 
the normal depth of fl ow will be larger than the 

critical depth and the fl ow is subcritical and the channel is called mild slope channel. 
Similarly, if the critical slope S

c
 is smaller than the channel slope S

0
 the normal depth 

of fl ow will be smaller than the critical depth and the fl ow is supercritical and the 
channel is called steep slope channel. Further, if the critical slope S

c
 is equal to 

the channel slope S
0 
the normal depth of fl ow is equal to the critical depth and the 

fl ow is critical and the channel is called as Critical slope channel. Further details 
about the channel classifi cation are given in Chapter 4. Thus the critical slope of a 
channel is a conceptual slope value which depends on the discharge in the channel. 
Its relative value with respect to the actual slope of the channel determines the nature 
of fl ow of the discharge in the channel.
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Consider a wide rectangular channel. The expression for the critical slope S
c
 given in 

Eq. 3.62 becomes,

 S
n

g yc

c

=
2

1 3 /
  (3.62a)

Substituting the value of critical depth as y
c
 = (q2 / g)1/3, 

S
n g

qc =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2 10 9

2 9

/

/  (3.63)

This Eq. 3.63 indicates that S
c
 decreases with increase in q and asymptotically reaches 

a value of zero for q→∞. However for a rectangular channel of fi nite aspect ratio, the 
behavior is slightly different, the wide rectangular channel being the limiting case.

3.17.1 Critical Depth for Rectangular Channel of Finite Aspect Ratio

Consider a rectangular channel of width B. By Eq. 3.62 

S
c
 = 

n Q

A RC c

2 2

2 4 3/

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

For critical fl ow condition in the channel, 
Q

g

A

T
c

c

2 3

= . Also R
By

B yc
c

c

=
+( )2

.

Substituting for A
c
 and R

c
 in Eq. 3.62 and after simplifying 

S
gn

B

y

B
y

B

c

c

c

=
+

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

2

1 3

4 3

1
2

/

/

S
S B

gnc
c

*

/ /

/

( )
= =

+1 3

2

4 3

1 3

1 2η
η

 (3.64)

where η = y
c
/B.

The variation of the non-dimensional term S
S B

gnc
c

*

/

=
1 3

2
with η is shown in Fig. 3.26. 

It is seen that the parameter S
*c

 and hence S
c
 has a minimum value at a value of η = η

min
 

and increase on either side of this η
min

 value. Thus there is a minimum value of critical 
slope for a rectangular channel. The minimum value of critical slope is known as Limit 
slope and is designated as S

L
. By differentiating Eq. 3.64 with respect to η and equating 

the derivative to zero, the minimum value of η = η
min

 = y
c
/B is found to be 1/6. The

corresponding value of minimum S
*c 

is 8/3. Hence for a rectangular channel the limit 
slope is described by

 S
gn

BL =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

8

3

2

1 3/
 (3.65)

and this slope occurs at η
min

 = y
c 
/B = 1/6.
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From Fig. 3.26 it can be observed that the channel slope is mild for all areas lying to 
the left of the critical slope curve and the it is steep for all areas lying to the right of 
the critical slope curve. From Eq. 3.65 it can be observed that the limit slope decrease 
with increase in the value of B and as such for very large values of B, the limit slope 
S

L
 ≈ 0. Non-existence of limit slope for a wide rectangular channel is also seen from 

the behavior of critical slope for such channels as given by Eq. 3.63. The ratio S
c
/S

L
 

is given by

 S S Sc L c/
( ) /

/ *=
+

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

3

8

1 2 3

8

4 3

1 3

η
η

 (3.65a)

Thus the abscissa of Fig. 3.26 also represents S
c
/S

L
; a unit of x-axis being 2.667 

units of S
c 
/S

L
. If the actual bed slope of the channel S

0
 is less than S

L
, the channel 

slope remains mild for all values of depth. However, for any S
c
>S

L
, there is a range

of depths y
c1

 and y
c 2

 between which the slope will be steep and outside this range the 
slope will behave as mild. Further, for a given depth, there is only one critical slope 
and for a given slope greater than S

L
 there will be two depths at which the slope will 

behave as critical slope.
These aspects of critical slope and limit slope are made clear in the following 

Example 3.19.

Fig. 3.26 Variation of critical slope in rectangular channels

Limit Slope
(8/3, 1/6)

Steep Slope

Mild Slope

A

B

C

S *C
[X-axis also represents (2.667 x (SC / SL)]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
0.01

0.1

1

10

η 
=

 y
c
/B

Example 3.19  A concrete lined (n = 0.013) rectangular channel of bottom 
width 2.5 m is laid on a slope of 0.006. (i) For this channel, estimate the critical slope 
which will have a normal depth of fl ow of 1.50 m. What will be the discharge at this 
state? (ii) What is the limit slope of this channel? (iii) Identify the regions of steep 
and mild slopes, if any, for variation of normal depth from 0.50 m to 6.0 m in this 
channel.
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Solution (i) η = y
c 
/B = 1.5/2.5 = 0.60

S
S B

gnc
c

*

/ /

/

( )
= =

+1 3

2

4 3

1 3

1 2η
η

Sc ×
×

=
+ ×( . )

. ( . )

( . )

( . )

/ /

/

2 5

9 81 0 013

1 2 0 60

0 60

1 3

2

4 3

1 3

818.635 S
c
 = 3.3924

S
c
 = 0.004144

Since the normal depth = y
c
 = critical depth,

Discharge Q B gyc= = × × =3 32 5 9 81 1 5 14 385. . ( . ) . m /s3

(ii) Limit slope S
gn

BL =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= ×
×

=
8

3

8

3

9 81 0 013

2 5
0 003257

2

1 3

2

1 3/ /

. ( . )

( . )
. 445

(iii) The actual slope of the channel S
0
 = 0.006. Since S

0
 > S

L 
, fl ow in both steep and 

mild slope categories is possible. From Fig. 3.26 it is seen that there will be two 
depths y

c1
 and y

c2
, at which the fl ow will be critical. Further, within the range of y

c1
 

and y
c2

,
 
the channel slope will be steep. Outside the range of these two depths, the 

channel slope will be mild. Setting S
c
 = 0.006,

S
S B

gnc
c

*

/ /. ( . )

. ( . )
.= =

×
×

=
11 3

2

3

2

0 006 2 5

9 81 0 013
4 9118

And by Eq. (3.60), 
( )

.
/

/

1 2
4 9118

4 3

1 3

+
=

η
η

There are two positive roots of η and the values of these have to be determined by 
trial and error. Fig. 3.26, which is drawn to scale, affords a fi rst trial. By trial and 
error, the two values of η are found to be as below:
η

1
 = y

c1
/B = 0.03823 given y

c1
 = 2.5 × 0.03823 = 0.9558 m

η
1
 = y

c2
/B = 0.5464 giving y

c2
 = 2.5 × 0.5464 = 1.366 m

Hence, for any normal depth y
0
, the regions with mild and steep slopes are as 

follows:

  (i) For y
0
 < 0.9558 m, the channel slope is mild,

 (ii) For 1.366 m > y
0
 > 0.9558 m, the channel slope is steep, and

(iii) For y
0
 > 1.366 m, the channel slope is mild.

3.18 GENERALISED FLOW RELATION

Since the Froude number of the fl ow in a channel if F
V

gA T
=

/

 
Q

g

F A

T

2 2 3

=  (3.66)
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If the discharge Q occurs as a uniform fl ow, the slope S
0
 required to sustain this dis-

charge is, by Manning’s formula,

 S
Q n

A R0

2 2

2 4 3
=

/
 (3.67)

Substituting Eq. 3.66 in Eq. 3.67 and simplifying

S
F g n P

TA0

2 2 4 3

1 3
=

/

/

or  
S

F gn

P

TA
f y0

2 2

4 3

1 3
= =

/

/
( )   (3.68)

For a trapezoidal channel of side slope m,

 
S

F gn

B m y

B my B my y
0

2 2

2
4 3

0 0
1 3

2 1

2
=

+ +( )
+ +

/

/( )[( ) ]
 (3.69)

Non-dimensionalising both sides, through multiplication by B1/3,

 S
S B

F gn

m

m m*

/ /

/

( )

( )( ) (
=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
+ +

+ +
0

1 3

2 2

2 4 3

1 3

1 2 1

1 2 1

 η
η η ηη) /1 3

 (3.70)

in which η = y
0
/B. Designating 

S B

F gn
S0

1 3

2 2

/

*

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= = generalized slope

 S
*
 = f (m, η) (3.71)

Equation 3.70 represents the relationship between the various elements of uni-
form fl ow in a trapezoidal channel in a generalised manner. The functional relation-
ship of Eq. 3.70 is plotted in Fig. 3.26. This fi gure can be used to fi nd, for a given 
trapezoidal channel, (a) the bed slope required to carry a uniform fl ow at a known 
depth and Froude number and (b) the depth of fl ow necessary for generating a uni-
form fl ow of a given Froude number in a channel of known bed slope.
For a rectangular channel, m = 0 and hence Eq. (3.70) becomes

 S*

/

/

( )
=

+1 2 4 3

1 3

η
η

 (3.72)

For a triangular channel, B = 0 and hence Eq. (3.70) cannot be used. However, by 
redefi ning the generalised slope for triangular channels, by Eq. 3.69

 
S y

F gn
S

m

mt
0

1 3

2

1 3
2

2

2 3

2
1/

*
/

/

( )
2

= =
+⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

 (3.73)
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Roots and Limit Values of S. for Trapezoidal Channels Equation 3.70 can be 
written as

 S
m

m m* ( ) ( )
3

2
4

3

1 2 1

1 2 1
=

+ +( )
+ +

η

η η η
 (3.74)

This is a fi fth-degree equation in η, except for m = 0 when it reduces to a fourth-
degree equation. Out of its fi ve roots it can be shown that (a) at least one root shall be 
real and positive and (b) two roots are always imaginary. Thus depending upon the 
value of m and S

*
, there may be one, two or three roots. The limiting values of S

*
 are 

obtained by putting, 
dS

d
*

η
= 0 , which results in

8 1 1 1 2 1 2 12 2η η η η+ + + − + +m m m m( )( ) ( )  ( )1 10 10 02 2+ + =m mη η  (3.75)

Solving Eq. 3.75 the following signifi cant results are obtained.20

1.  For rectangular channels (m = 0), a single limiting value with S
*
 = 8/3 and 

η
L
 = 1/6 is obtained.

2.  Between m = 0 and m = 0.46635 there are two limiting values.
3.  At m = 0.46635, the two limit values merge into one at S

*
 = 2.1545 and 

η = 0.7849.
4.  For m > 0.46635, there are no limiting points.

For rectangular channels, an interesting extension of result (1) noted above is 
as follows: At the limiting state, for given B, S

0
 and η, the Froude number can be consid-

ered as the maximum uniform fl ow Froude number (F
max

) in the given channel. Thus 

 
S

S B

F gnL*

/

max

= =0
1 3

2 2

8

3

And by Eq. 3.65 
S

S
F

L

0 2= max

Thus  S F SL0
2= max  (3.76)

Equation 3.76 represents the channel slope required to have uniform fl ow Froude 
number in the given channel which is equal to or less than the pre assigned F

max
, for 

all discharges. It is interesting to observe in Fig. 3.27 that for m = 0.46635, S
*
 is 

essentially constant at a value of 2.15 over a range of values of η extending from 0.5 
to 1.5 and S

*
 varies very slowly with η in the rest of the plot. Thus a trapezoidal sec-

tion with m = 0.46635 would give a channel in which the Froude number of the fl ow 
is essentially constant over a suffi ciently large range of depths.

3.18.1 Critical Slope and Limit Slope

The slope of a channel which carries a given discharge as a uniform fl ow at the criti-
cal depth is called the critical slope, S

c
. The condition governing the critical slope in 

any channel can be easily obtained from Eq. 3.70 by putting F = 1.0. For trapezoidal 
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channels, by denoting the generalised critical slope, 
S B

gn
Sc

c

1 3

2

/

*=  and 
y

B
c

c= η , the 

behaviour of S
*c

 can be studied using Fig. 3.27. All the conclusions derived in the 
pervious section for S

*
 will also apply to the S

*c
 – η

c
 relationship.

For a channel of given shape and roughness S
c
 will have a least value under condi-

tions corresponding to a limit value of S
*c

. The least value of S
c
 is called the limit 

slope, S
L
. Keeping the critical slope and limit slope in mind, Fig. 3.27 can be studied 

to yield the following points:

1.  For a trapezoidal channel of given geometry and roughness, a given depth of 
critical fl ow can be maintained by one and only one critical slope. However,
for a given critical slope there can be more than one critical depth.

2.  For channels of the second kind (m is negative) and for rectangular channels 
(m = 0), only one limit slope exists. Slopes fl atter than this cannot be critical 
and the slopes steeper than this can be critical at two different depths. For a 
rectangular channel, the limit value of S

*c 
is 8/3 at η

c
 = 1/6.

3.  When m ≥ 0.46635, any slope can be critical and for each slope there will be 
only one critical depth. There are no limit slopes in this range. For m = 0.46635, 
the limit value of S

*c
 is 2.15446 at η

c
 = 0.7849.

4.  For 0 < m < 0.46635, there are two values of limit slopes, S
L1

 and S
L2

 with S
L1

< S
L2

 (a) For S
L2

 > S
c
 > S

L1
, there are three critical depths for each value of S

c
; 

the largest of these, however, may be impracticably large. (b) For S
c
 = S

L1
 or 

S
c
 = S

L2
 there are two critical depths. (c) For S

c
 > S

L2
 or S

c
 < S

L1
, there is only 

one critical depth for each value of the slope.

Fig. 3.27 Generalised fl ow relation [Ref. 20]

∇
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138 Flow in Open Channels

Example 3.20  A rectangular channel is 4.0 m wide and has n = 0.015.

(a) Determine the bed slope required to maintain uniform fl ow in this channel with
a fl ow depth of 1.25 m and a uniform fl ow Froude number of (i) 2.0, (ii) 1.0, and 
(iii) 0.50. Also, fi nd the limit slope and the corresponding critical discharge.

(b) Find the longitudinal slope required to ensure that the uniform fl ow Froude 
number in this channel is equal to or less than 0.50 for all discharges.

Solution (a) Recalling Eq. 3.72,

S
S B

gn F n*

/ /

/

( )
= =

+0
1 3

2 2

4 3

1 3

1 2η

Substituting η = =
1 25

4 0
0 3125

.

.
.  in the right-hand side of the above equation,

S
S

F*

/

.
( . )

( . )( . ) ( )
= =2 81528

4 0

9 81 0 015
0

1 3

2 2

Thus,

  (i) For F = 2.0, S
0
 = 0.015658

 (ii) F = 1.0, S
0
 = S

c
 = 0.003915

(iii) F = 0.5, S
0
 = 0.0009787

At the limit slope, F = 1.0, and limit S
*c

, = 8/3 and η
c
 = 1/6

SL =
×

=
2 667 9 81 0 015

4
0 003708

2

1 3

. ( . )( . )

( )
.

/

y Lc = =
4 0

6
0 667

.
. m

(b) Here F = F
max

 = 0.50

By Eq. (3.72) S F SL0
2= max

and S
L
 = 0.003708 as calculated in part (a) above.

Hence required S
0
 = (0.50)2 × 0.003708 = 0.000927

Example 3.21  A trapezoidal channel section with m = 0.25, B = 3.0 m, and 
n = 0.015, has to carry a uniform fl ow with a Froude number of 0.5.
(a) If the bed slope of S

0
 = 0.001052 is to be used, at what depths would this fl ow be 

possible?
(b) Within what range of S

0
 would the above feature of three possible depths be 

feasible?

Solution (a) S
S B

gn F*

/ /( . )( . )

( . )( . ) ( . )
.= = =0

1 3

2 2

1 3

2 2

0 001052 3 0

9 81 0 015 0 5
2 75
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From Fig. (3.27), for m = 0.25.
η

1
 = 0.75 giving y

1
 = 2.25 m

η
2
 = 1.00 giving y

2
 = 3.00 m

and from Eq. (3.70) by trial and error, η
3
 = 18.70 giving y

3
 = 56.10 m.

(b) From Fig. (3.27), the limit values of S
*
 are 2.40 and 3.25. As such, the slope S

0
 

has to lie between 2.40 × gn2/B1/3 and 3.25 × gn2/B1/3, i.e. between S
0
 = 9.181 × 10−1 

and 1.243 × 10–3

3.19 DESIGN OF IRRIGATION CANALS

For a uniform fl ow in a canal,

Q
n

AR S=
1 2 3

0
1 2/ /

where A and R are in general functions of the geometric elements of the canal. If the 
canal is of trapezoidal cross-section.

 Q f n y S B m= ( , , , , )0 0   (3.77)

Equation 3.77 has six variables out of which one is a dependent variable and the 
rest fi ve are independent ones. Similarly, for other channel shapes, the number of 
variables depend upon the channel geometry. In a channel design problem, the inde-
pendent variables are known either explicitly or implicitly, or as inequalities, mostly 
in terms of empirical relationships.

In this section the canal-design practice adopted by the Irrigation Engineering pro-
fession in India is given. This practice may have application in other fi elds also. The 
guidelines given below are meant only for rigid-boundary channels, i.e. for lined and 
unlined non-erodible channels. The design considerations for unlined alluvial channels 
follow different principles governed by sediment transport and related aspects. The 
wide variety of soil and topographical features of the country led different states and 
agencies, in the past, to adopt their own design practices. Reference 21 indicates the 
effort of the Central Water Commissions (CWC), India, towards standardisation and 
general guidelines applicable to the whole country. Relevant Indian standards for irri-
gation canal design are found in IS: 4745–1968, IS: 7112–197312,13.

Canal Section Normally, a trapezoidal section is adopted. Rectangular cross-sec-
tions are also in use in special situations, such as in rock cuts, steep chutes and in 
cross-drainage works.

The side slope, expressed as m horizontal: 1 vertical, depends on the type of canal, 
i.e. lined or unlined, nature and type of soil through which the canal is laid. The 
slopes are designed to withstand seepage forces under critical conditions, such as 
(i) a canal running full with banks saturated due to rainfall, and (ii) the sudden draw-
down of canal supply. Usually the slopes are steeper in cutting than in fi lling. For 
lined canals, the slopes roughly correspond to the angle of repose of the natural soil 
and the values of m range from 1.0 to 1.5 and rarely up to 2.0. The slopes recom-
mended by CWC21 for unlined canals in cutting are given in Table 3.5.
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Longitudinal Slope The longitudinal slope is fi xed on the basis of topography to 
command as much area as possible with the limiting velocities acting as constraints. 
Usually the slopes are of the order of 0.0001. For lined canals a velocity of about 
2.0 m/s is usually recommended.

Roughness Procedure for selecting n is discussed in Section 3.9. Values on n can 
be taken from Table 3.2.

Permissible Velocities Since the cost for a given length of canal depends upon 
its size, if the available slope permits, it is economical to use highest safe veloci-
ties. High velocities may cause scour and erosion of the boundaries. As such, in 
unlined channels the maximum permissible velocities refer to the velocities that 
can be safely allowed in the channel without causing scour or erosion of the chan-
nel material.

In lined canals, where the material of lining can withstand very high velocities,
the maximum permissible velocity is determined by the stability and durability of the 
lining and also on the erosive action of any abrasive material that may be carried in 
the stream. The permissible maximum velocities normally adopted for a few soil 
types and lining materials are indicated in Table. 3.6.

Table 3.5 Side Slopes for Unlined Canals in Cutting

Sl. No. Type of Soil m

1 Very light loose sand to average sandy soil 1.5 to 2.0

2 Sandy loam, Black cotton soil 1.0 to 1.5

3 Sandy to gravely soil 1.0 to 2.0

4 Marum, hard soil 0.75 to 1.5

5 Rock 0.25 to 0.5

Table 3.6 Permissible Maximum Velocities

Sl. No. Nature of boundary Permissible maximum
velocity (m/s)

1 Sandy soil 0.30–0.60
2 Black cotton soil 0.60–0.90
3 Muram and Hard soil 0.90–1.10
4 Firm clay and loam 0.90–1.15
5 Gravel 1.20
6 Disintegrated rock 1.50
7 Hard rock 4.0
8 Brick masonry with cement pointing 2.5
9 Brick masonry with cement plaster 4.0

10 Concrete 6.0
11 Steel lining 10.0

In addition to the maximum velocities mentioned above, a minimum velocity in 
the channel is also an important constraint in the canal design.
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Too low a velocity would cause deposition of suspended matter, like silt, which 
can not only impair the carrying capacity but also increase the maintenance costs. 
Also, in unlined canals, too low a velocity may encourage weed growth. The mini-
mum velocity in irrigation channels is of the order of 0.30 m/s.

Free Board Free board for lined canals is the vertical distance between the full 
supply level to the top of the lining (Fig. 3.28). For unlined canals, it is the vertical 
distance from the full supply level to the level of the top of the bank.

Fig. 3.28 Typical section of a lined irrigation canal

y0

Bed

Lining

FSL

Free board
Bank
width

Rounding off of corner

Drain

Drain GL

Δ

This distance should be suffi cient to prevent over-topping of the canal lining or 
banks due to waves. The amount of free board provided depends on the canal size, 
location, velocity and depth of fl ow. The relevant Indian standards12,13 suggest the 
minimum free board to be as below:

Discharge Free board (m)

(m3/s) Unlined Lined

(a) Q < 10.0 0.50 0.60

(b) Q < 10.0 0.75 0.75

However, the current practice of providing free board seems to be as follows:

Q(m3/s) < 0.15 0.15–0.75 0.75–1.50 1.50–9.00 > 9.00

Free board (m) 0.30 0.45 0.60 0.75 0.09

Width-to-Depth Ratio The relationship between width and depth varies widely 
depending upon the design practice. If the hydraulically most-effi cient channel sec-

tion is adopted (Section 3.14), m B
y

y
B

y
= = = =

1

3

2

3
1 155 1 15470

0
0

, . , . .i.e . If any 

other value of m is used, the corresponding value of B/y
0
 for the effi cient section 

would be, from Eq. 3.54
B

y
m m

0

22 1= + −( )
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However, in practice it is usual to adopt a shallower section, i.e. a value of B/y
0
 

larger than that suggested by Eq. 3.54. The CWC recommendation21 for B/y
0
 as a 

function of discharge is as follows:

Q(m3/s) 0.30 3.0  14.0 28.0 140 285

B/y
0 

2.0 4.0  6.0 7.5 14.0 18.0

In large canals it is necessary to limit the depth to avoid dangers of bank failure. 
Usually depths higher than about 4.0 m are adopted only when it is absolutely 
necessary.

For selection of width and depth, the usual procedure is to adopt a recommended 

value of B/y
0
 and to fi nd the corresponding 

Qn

S B0
8 3/

 using Table 3A.1. Knowing Q, n 

and S
0
, the values of B and y

0
 are found. The bottom width is usually adopted to the 

nearest 25 cm or 10 cm and the depth adjusted accordingly. The resulting velocity is 
then checked to see that permissible velocity constraints are not exceeded. The typi-
cal cross-section of a lined irrigation canal is shown in Fig. 3.28.

Super elevation The free board normally provided in design of channels of 
straight alignment does not account for super elevation of water surface in curved 
channel ali gnments. Flow around a curve causes water surface to be higher at the 
outer curved edge than the normal water surface of straight alignment. This would 
necessitate extra free board and additional lining height to guard against overtopping 
and erosion respectively. In subcritical fl ow, the following formulae by SCS are
useful in estimating the super elevation requirement.

For rectangular channels: E
V B

g r
=

3

4

2

 
 (3.78)

For Trapezoidal channels: E
V B my

g r mV
=

+
−

2
0
2

2

2 2

( )

( ) 
 (3.79)

where E   = Maximum height of water surface above the depth of fl ow y
0

 
y

0
 = Normal depth of fl ow for straight alignment at entrance to the curve

B  = Bottom width
r   = Radius of channel centerline
V  = Average velocity of fl ow cross section at entrance to the curve.
m  = Side slope

Example 3.22  A trapezoidal channel is to carry a discharge of 50 m3/s. 
The maximum slope that can be used is 0.004. The soil is hard. Design the 
channel as (a) a lined canal with concrete lining and (b) an unlined non-erod-
ible channel.
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Solution (a) Lined Canal
Adopt side slope of 1 : 1, i.e., m = 1.0 (from Table 3.4)
n for concrete = 0.013 (from Table 3.2)
Recommended B/y

0
 for Q = 50 m3/s is about 8.0.

For B/y
0
 = 8.0 (i.e. y

0
/B = 0.125), from Table 3A.1

φ = =
Qn

S B0
8 3

0 03108
/

.

Substituting Q = 50.0, n = 0.013, S
0
 = 0.0004 in the above

B = 13.5605 m. Adopt B = 13.50 m. Then actual

φ =
×

×
=

50 0 013

0 0004 31 5
0 03145

8 3

.

. ( . )
.

/

Corresponding y
0
/B = 0.12588 giving y

0
 = 1.700 m

A = (13.5 + 1.700) x 1.700 = 25.840
V = 1.935 m/s

This value is greater than the minimum velocity of 0.3 m/s; is of the order of 2.0 m/s; 
and further is less than the maximum permissible velocity of 6.0 m/s for concrete. 
Hence the selection of B and y

0
 are all right. The recommended geometric parameters 

of the canal are therefore
B = 13.50 m, m = 1.0, S

0
 = 0.0004

Adopt a free board of 0.75 m. The normal depth for n = 0.013 will be 1.70 m.

(b) Unlined Canal
From Table 3.4, a side slope of 1 : 1 is adopted. From Table 3.2, take n for hard

soil surface as 0.020.
Recommended B/y

0
 for Q = 50 m3/s is about 8.0. From Table 3A.1.

For 
B

y

Qn

S B0 0
8 3

8 0 0 03108= = =. , .
/

φ

Substituting Q = 50.0, n = 0.020 and S
0
 = 0.0004 in the above, B = 15.998 m, hence 

adopt B = 16.00 m. Actual φ = 0.030760 and the corresponding y
0
/B = 0.12422. 

Then y
0
 = 0.12422 × 16 = 1.988 m.

A = (16.00 + 1.988) × 1.988 = 35.76 m2

V = 50/35.76 = 1.398 m/s
But this velocity is larger than the permissible velocity of 0.90–1.10 m/s for hard 

soil (Table 3.5). In this case, therefore, the maximum permissible velocity will con-
trol the channel dimensions.
Adopt  V = 1.10 m/s

 
A

my

B

y

B
B= = = +

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

50 0

1 10
45 455 12 0 0 2.

.
. m

For  B/y
0
 = 8.0, B = 17.978 m

Adopt  B = 18.0 m
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From A = (B + my
0
) y

0
, substituting A = 45.455

 B = 18.0, m = 1.0, y
0
 = 2.245 m

P = + + × =18 0 2 1 1 2 245 24 35. . . m

 R = A/P = .867 m
Substituting in the general discharge equation

 
50

1

0 02
45 455 1 867 2 3

0
1 2= × ×

.
. ( . ) / /S

S
0
 = 0.0002106

Hence, the recommended parameters of the canal are B = 18.0 m, m = 1.0 and 
S

0
 = 0.0002106. Adopt a free board of 0.75 m. The normal depth for n = 0.020 will 

be 2.245 m.
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PROBLEMS 

Problem Distribution

Topic Problems

Darcy–Weisbach friction factor 3.1 – 3.3

Velocity distribution 3.4

Boundary shear stress 3.1, 3.22, 3.24, 3.32

Equivalent roughness 3.5 – 3.8

Uniform fl ow computation 3.9 – 3.33

Computation of normal depth 3.10, 3.12; 3.26 – 3.28; 3.31, 3.32

Standard lined canal sections 3.28 – 3.33, 3.45

Maximum discharge 3.34 – 3.38

Hydraulically effi cient sections 3.39 – 3.50

Second hydraulic exponent, N 3.51 – 3.54

Compound sections 3.55 – 3.57

Generalised fl ow relation 3.58 – 3.60

Critical slope and limit slope 3.61 – 3.69

Design of irrigation canal section 3.70

 3.1  A trapezoidal channel has a bottom width of 2.50 m and depth of fl ow of 0.80 m. The side 
slopes are 1.5 horizontal: 1 vertical. The channel is lined with bricks (ε

s
 = 3.0 mm). If 

the longitudinal slope of the channel is 0.0003, estimate (a) the average shear stress, (b) 
the hydrodynamic nature of the surface, (c) Chezy C by using f, (d) Manning’s n, (e) the 
uniform-fl ow discharge for cases (c) and (d).

 3.2  The cross-section of a stream could be approximated to a rectangular section of
6.0-m bottom width. The stream is in a mountainous region and is formed by cobbles
(d

90
 = 300 mm). Estimate the discharge if the depth of fl ow is 1.5 m and the bed slope

is 0.001.
 3.3   Using Moody diagram fi nd the friction factor f, Manning’s n and Chezy C for a fl ow of 

7.0 m3/s in a 3.0-m wide rectangular channel at a depth of 1.75 m. Assume the size of 
roughness magnitude as 2.0 mm and the temperature of water to be 20°C.

 3.4  Assuming the velocity defect law in the logarithmic from to be applicable to the entire 
depth of fl ow y

0
 in a wide channel, show that the average velocity in a vertical occurs at 

0.632 y
0
 below the water surface.
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 3.5  A channel has multiple-roughness types in its perimeter. Assuming that the total dis-
charge in the channel is equal to the sum of discharges in the partial areas, show that the 
equivalent roughness is given by 

n
PR

P R

n
i i

i

N
=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟∑

5 3

5 3

1

/

/

 3.6  A trapezoidal channel of 4.0-m bed-width and side slopes 1.5 horizontal: I vertical has
a sand bed (n

1
 = 0.025). At a certain reach, the sides are lined by smooth concrete 

(n
2
 = 0.012). Calculate the equivalent roughness of this reach if the depth of fl ow is 1.50 m. 

(use Horton’s formula).
 3.7  A 3.6-m wide rectangular channel had badly damaged surfaces and had a Manning’s 

n = 0.030. As a fi rst phase of repair, its bed was lined with concrete (n = 0.015). If the 
depth of fl ow remains same at 1.2 m before and after the repair, what is the increase of 
discharge obtained as a result of repair?

 3.8  For the channel shown in Fig. 3.24 (Example 3.18) calculate the equivalent roughness by 
Horton’s formula.

 3.9  Find the discharge in the following channels with a bed slope of 0.0006 and n = 0.016:
(a ) Rectangular, B = 3.0 m, y

0
 = 1.20 m

(b) Trapezoidal, B = 3.0 m, m = 1.5 and y
0
 = 1.10 m

(c  ) Triangular, m = 1.5, y
0
 = 1.50 m.

3.10  A concrete lined trapezoidal channel (η = 0.015) is 8.0 m wide and has a side slope of 
2H: IV. The longitudinal slope is 0.006. Estimate the normal depth in this channel for a 
discharge of 40 m3/s.

3.11  A trapezoidal channel of 10.0-m bed-width and m = 1.5 carries a discharge of 15.0 m3/s 
at a depth of 1.30 m. Calculate the bed slope required (a) if the channel is lined with 
smooth concrete and (b) if the channel is an unlined, clean, earthen channel.

3.12  A circular channel, 2.50 m in diameter, is made of concrete (n = 0.014) and is laid on a 
slope of 1 in 200.
(a) Calculate the discharge if the normal depth is 1.50 m.
(b) Calculate the depth of fl ow for a discharge of 15.0 m3/s.

3.13  Calculate the quantity of water that will be discharged at uniform fl ow depth of 0.9 m in 
a 1.2-m diameter pipe which is laid at a slope of 1 in 1000. Manning’s coeffi cient can be 
assumed to be 0.015.

3.14  A rectangular channel is to be laid on a slope of 0.0005. The sides will be of smooth con-
crete (n = 0.013). What width of channel is necessary to carry a discharge of 9.0 m3/s with 
a normal depth of 1.60 m?

[Note: A trial-and-error method using Table 3A.1 is recommended.]
3.15  An old rectangular canal having a width of 5.0 m and a slope of 0.0001 was gauged to 

determine its roughness coeffi cient. If a discharge of 18.0 m3/s was indicated when the 
depth of uniform fl ow was 2.0 m, estimate the value of Manning’s n.

3.16  What size of concrete pipe (n = 0.015) is required to carry a fl ow of 2.0 m3/s at a depth of 
0.9-m diameter, when laid on a slope of 0.0002 ?

3.17  A trapezoidal channel of 3.0-m bed width and side slope of 1.5 horizontal: 1 vertical carries 
a full supply of 10.0 m3/s at a depth of 1.50 m. What would be the discharge at half of full 
supply depth (i.e. at 0.75 m)? What would be the depth at half of full supply discharge?

3.18  A trapezoidal channel having a side slope of 1.5 horizontal: 1 vertical carries a  discharges 
of 100 m3/s with a depth of fl ow equal to 0.75 width. If S

0
 = 0.0006 and n = 0.015 fi nd 

the bed width and depth of fl ow.
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3.19  A rectangular channel (n = 0.020) carries a fl ow of 25.0 m3/s with the depth of fl ow equal 
to the width of the channel. If S

0
 = 0.0004 fi nd the Froude number of the fl ow.

3.20  A concrete storm water drain (n = 0.012) is 0.75 m in diameter and is to discharge 
0.10 m3/s. What is the minimum slope that has to be employed if the depth of fl ow should 
not exceed 0.8-m diameter?

3.21  A triangular channel of apex angle 90° and a rectangular channel of the same material 
have the same bed slope. If the rectangular channel has the depth of fl ow equal to the 
width and the fl ow areas in both channels are the same, fi nd the ratio of discharges in the 
rectangular and triangular channels respectively.

3.22  A circular channel of diameter = 2.5 m carries a uniform fl ow of 1.5 m3/s at a depth of 
2.0 m. If Manning’s n = 0.014, estimate the average boundary shear stress per unit length 
of this channel.

3.23  A fl ow of 10.0 m3/s is to be passed in a rectangular channel with the depth of fl ow equal 
to one-third the width. The channel is lined with smooth concrete (n = 0.014). Calculate 
the channel dimensions and its longitudinal slope necessary to carry the above discharge 
with a mean velocity of 2.5 m/s.

3.24  A 2.6-m wide rectangular channel is lined with rough concrete (n = 0.015). The bed slope 
of the channel is 0.0004. If the normal depth of fl ow is 1.25 m, calculate the (i) convey-
ance of the channel, (ii) discharge, (iii) Froude number of the fl ow, and (iv) the average 
bed shear stress.

3.25  The specifi c energy in a 2.0-m wide rectangular channel is not to exceed 1.2 m. What 
maximum discharge can be carried in such a channel? What longitudinal slope is required 
to sustain such a fl ow? Assume Manning’s n = 0.015.

3.26  A brick-lined (n = 0.017) trapezoidal channel has B = 6.0 m, m = 1.5 and S
0
 = 0.004. Find 

the normal depth of fl ow for a discharge of (a) 10.0 m3/s, (b) 16.0 m3/s, and (c) 25.0 m3/s.
3.27  Show that the normal depth in a triangular channel of side slopes m horizontal: 1 vertical, 

is given by 

y
Qn

S

m

m0

0

3 8
2

5

1 8

1 1892
1

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥.

/ /

3.28  Determine the bottom width and full supply depth of a standard lined trapezoidal section 
(Fig. 3.29) to carry 180 m3/s of fl ow with a velocity of 2.0 m/s when laid on a slope of 
1 in 4500. The side slopes are to be 1.25 horizontal: 1 vertical Manning’s n can be 
assumed to be 0.014.

Fig. 3.29 Problem 3.28 and 3.29

r = y0 r = y0

θ

θ

θ

θ
θ

B

1.5

1
y0

Δ

3.29  A standard lined trapezoidal section (Fig. 3.29) is to carry a discharge of 100 m3/s at a 
slope of 1 in 1000. The side slopes are to be 1.5 H : 1V and the Manning’s n can be taken 
as 0.015. What bottom width in needed to have a full supply depth of 2.00 m?
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3.30  Estimate the discharge in a standard lined trapezoidal canal section with B = 35 m, 
S

0
 = 1/5000, Manning’s coeffi cient n = 0.016, normal depth y

0
 = 3.5 m. The side slopes 

are 1.5 horizontal : 1 vertical.
3.31  A standard lined triangular canal section has a side slope of 1.75 H : 1V and is laid on a 

longitudinal slope of 0.0004. The Manning’s n is found to be 0.016. If the channel is 
designed to convey the fully supply discharge at a velocity of 1.5 m/s, estimate (a) the
full supply discharge, and (b) full supply depth.

3.32  A standard lined triangular canal section (Fig. 3.30) is to carry a discharge of 25 m3/s when 
laid on a slope of 1 in 1000. The side slopes are 1.25 H : 1V. Calculate the depth of fl ow 
needed. What is the average boundary shear stress in this channel? (Assume n = 0.015)

Fig. 3.30 Problem 3.32

1

1.25

r = y
0 r =

 y 0

y0

θ

θθ

θ

3.33  A standard lined triangular channel is designed to carry the full supply discharge at a 
depth of 2.5 m when laid on a slope of 0.0004. The side slope of the channel is 1.25 H : 1V and 
Manning’s n = 0.015. Determine the full supply discharge in the canal.

3.34  Show that the maximum velocity in a circular channel occurs when y/D = 0.81.
3.35  By using the Chezy formula with constant coeffi cient C, show that the condition for 

maximum discharge in a circular channel occurs when y/D = 0.95.
3.36  A square conduit of side s, placed with its diagonal vertical, acts as an open channel. 

Show that the channel carries maximum discharge when y = 1.259 s.
3.37  A triangular duct (Fig. 3.31) resting on a side is carrying water with a free surface. 

Obtain the condition for maximum discharge when (a) m = 0.5, (b) m = 0.25 and
(c) m = 0.10.

Fig. 3.31 Problem 3.37

−m :1

B

y

−m

1Δ

3.38  Water fl ows in a channel of the shape of an isosceles triangle of bed width a and sides 
making an angle of 45° with the bed. Determine the relation between the depth of fl ow d 
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and the bed width a for maximum velocity condition and for maximum discharge condi-
tion. Use Manning’s formula and note that d is less than 0.5 a.

3.39  Determine the dimensions of a concrete-lined (n = 0.015) trapezoidal channel of effi -
cient proportions to carry a discharge of 7.0 m3/s. The bed slope of the channel is 0.0006 
and m = 1.25.

3.40  A trapezoidal channel is 5.0-m wide and has a side slope of 0.5 horizontal: 1 vertical. 
Find the depth of fl ow which can make the channel an effi cient section. If S

0
 = 0.0002 

and n = 0.02, fi nd the corresponding discharge.
3.41  A rectangular channel is to carry a certain discharge at critical depth. If the section is to 

have a minimum perimeter, show that y
c
 = 3B/4.

3.42  A rectangular channel (n = 0.020) is to be 3.0 m wide. If a discharge of 3.00 m3/s is to be 
passed with the channel having an effi cient section, what longitudinal slope is to be 
provided?

3.43  Show that a hydraulically effi cient triangular channel section has R
y

e
e=

2 2
.

3.44  A trapezoidal channel of effi cient section is to have an area of 60.0 m2. The side slope is 
1.5 horizontal: 1 vertical. Find the bottom width and depth of fl ow.

3.45  Show that a standard lined triangular canal section is hydraulically effi cient for any real 
side slope m.

3.46  A trapezoidal channel with one side vertical and the other sloping at 2H : 1V carries a 
discharge of 28 m3/s. Determine the longitudinal slope and cross-sectional dimensions 
for best hydraulic effi ciency if Manning’s n 0.014.

3.47  A trapezoidal channel has side slopes of 1H : 1V and is required to discharge 14 m3/s 
with a bed slope of 1 in 1000. If unlined the value of Chezy C = 45. If lined with con-
crete its value is 65. If the cost of excavation per m3 is nine times the cost per m2 of 
lining, determine whether the lined or unlined channel would be chapter? Assume a 
free board of 0.75 m in both cases. The section can be assumed to be hydraulically 
effi cient.

3.48  A lined channel (n = 0.014) is of a trapezoidal section with one side vertical and other 
side on a slope of 1 H : 1V. If the canal has to deliver 5 m3/s when laid on a slope of 
0.0001. Calculate the dimensions of the dimensions of the effi cient section which requires 
minimum of lining.

3.49  Show that a hydraulically eff icient parabolic section ( )T K y=  will have the 

fol lowing relationships between the hydraulic radius R
e
 top width T

e
 and the 

depth y P T y Te : /Take  = +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

8

3
2

 R
y

e
e=

2
 and T ye e= 8  

3.50  Show that a triangular channel should have a vartex angle of 78°77′47′′ to satisfy simul-
tancously the conditions of critical state of fl ow and minimum wetted perimeter.

3.51  Show that the second hydraulic exponent N could be calculated approximately as

N
y T

A P

dP

dy
= −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

3
5

2

3.52  Show that for a deep, narrow rectangular channel as B/y →0. N → 2.0.
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3.53  Plot the conveyance K = f (y) for a trapezoidal channel: B = 3.0 m, m = 1.0, and 
n = 0.015, on a log-log paper. By using this plot f ind the value of the hydraulic 
exponent N in the range y = 0.6 to 2.3 m.

3.54  Using Fig. 3.20, estimate the value of the second hydraulic exponent N for the following 
cases:
m = 1.0, y/B = 0.5, 1.0, 2.0
m = 2.0, y/B = 0.5, 1.0, 2.0

3.55  For the compound channel shown below (Fig. 3.32) estimate the discharge for a depth of 
fl ow of (i) 1.20 m, and (ii) 1.6 m, by using DCM with vertical interface procedure.

Fig. 3.32 Compound channel of Problem 3.55

17.0

7.0

0.9

3.0

y

n2 = 0.02

n1 = 0.030 n3 = 0.035

7.0

S0 = 0.0002

Distances are in meters

Δ

3.56  Solve Problem (3.55) by using diagonal interfaces,
3.57  A compound channel is trapezoidal in cross section and consists of identical fl ood banks 

on the left and right of the main channel. The following are the salient geometric proper-
ties of the compound section
Main channel: Bottom width = 5.0 m, Side slopes = 1.5 H : 1V, Bank full depth = 2.0 m, 
Manning’s coeffi cient = 0.025, Longitudinal slope = 0.001
Flood plains: Width = 25 m, Side slope = 2.0 H : 1V, Manning’s coeffi cient = 0.06, Lon-
gitudinal slope = 0.001. Compute the uniform fl ow discharge for a fl ow with total depth of 
2.5 m by using DCM with (i) diagonal interface, and (ii) vertical interface procedures.

3.58  Develop the generalised fl ow relation (similar to Eq. (3.64)) relating the generalised 
slope and depth in a trapezoidal channel by using the Chezy formula with a constant 
coeffi cient C. Show from this expression that, (a) for a triangular channel, the critical 
slope is independent of depth and (b) for a rectangular channel there is no limit slope.

3.59  A 5.0-m wide rectangular channel is laid on a slope of 0.001. If a uniform fl ow with 
Froude number = 0.5 is desired, at what depths would this be possible?

3.60  A 25.-m wide rectangular channel has Manning’s n = 0.016. If the longitudinal slope of 
the channel is 0.0004, calculate (a) the maximum uniform fl ow Froude number possible 
in this channel and (b) the corresponding discharge.

3.61  A brick-lined rectangular channel (n = 0.017) of 6.0-m bottom width is laid on a slope 
of 0.003. (i) For this channel, estimate the critical slope which will have a normal depth 
of fl ow of 2.0 m. (ii) Identify the regions of steep and mild slopes, if any, for variation of 
normal depth from 0.10 m to 4.0 m in this channel

3.62  A rectangular channel (n = 0.015) has a width of 2.50 m and it is desired to have Froude 
number at uniform fl ow to be equal to or less than 0.4 for all discharges in this channel. 
Determine the channel slope necessary to achieve these criteria.

3.63  A triangular channel (n = 0.018) has a bed slope of 0.016 and a side slope of 1.5 H : 1V. 
Estimate the uniform fl ow Froude number for a normal depth of 0.5 m.

3.64  For a rectangular channel of bottom width B, bed slope S
0
 and Manning’s Coeffi-

cient n, show that (i) the maximum uniform flow Froude number occurs at the 
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normal depth y
0
 =B/6, and (ii) the discharge corresponding to the maximum 

Froude number is

Q
B S

n
=

8 3
0

24

/

3.65  For a trapezoidal section B = 3.0 m, m = 1.5 and n = 0.02, fi nd the (a) bed slope required 
to have a uniform m fl ow at a Froude number of 0.2 and depth of fl ow = 2.5 m, (b) criti-
cal slope for the same depth of fl ow of 2.5 m, and (c) depth of fl ow with a bed slope of 
0.0009 to cause a uniform fl ow Froude number of 0.5.

3.66  For a triangular channel with apex angle = 90°, determine the critical slope for a critical 
depth of 1.35 m. If the channel is laid at this slope, what would be the Froude number of 
the uniform fl ow for a depth of fl ow of 2.0 m? (Assume n= 0.02).

3.67  A 1.2-m wide rectangular channel is lined with smooth concrete (n = 0.013). Determine 
the limit slope and the corresponding discharge and critical depth.

3.68  Obtain an expression for the critical slope in a circular channel as S
*c

 = f (η
c
) where 

S
S D

gnc
c

*

/

=
1 3

2
 and η

c
 = y

c
/D. Show that the limit slope occurs at y

c
/D = 0.316.

3.69  Show that for a parabolic channel T K y= , the limit slope is given by 
S K

gn
Lc

2 3

2
3 36

/

.=  

and this limit value occurs at 
y

K
c =

1

2 2
.

Assume P Ky
y

K
= +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 2
3 28

3
/

/

3.70  Design a trapezoidal channel to carry 75 m3/s of fl ow. The maximum permissible slope 
is 0.0005. It is proposed to adopt a brick-in-cement mortar lining. The soil is classifi ed 
as average sandy soil.

 OBJECTIVE QUESTIONS

 3.1 In a non-prismatic channel 
 (a) unsteady fl ow is not possible (c) uniform fl ow is not possible
 (b) the fl ow is always uniform (d) the fl ow is not possible
 3.2 In a uniform open channel fl ow
 (a)  the total energy remains constant along the channel
 (b)  the total energy line either rises or falls along the channel depending on the state of 

the fl ow
 (c)  the specifi c energy decreases along the channel
 (d)  the line representing the total energy is parallel to the bed of the channel
 3.3  Uniform fl ow in an open channel exists when the fl ow is steady and the channel is
 (a)  prismatic
 (b)  non-prismatic and the depth of the fl ow is constant along the channel
 (c)  prismatic and the depth of the fl ow is constant along the channel
 (d)  fricionless
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152 Flow in Open Channels

 3.4  In uniform fl ow there is a balance between
 (a)  gravity and frictional forces (b)  gravity and inertial forces
 (c)  intertial and frictional forces (d)  inertial and viscous forces
 3.5  Uniform fl ow is not possible if the
 (a)  friction is large  (b)  fl uid is an oil
 (c)  S

0
 ≤ 0    (d)  S

0
 > 0

 3.6  A rectangular channel of longitudinal slope 0.002 has a width of 0.80 m and carries an 
oil (rel. density = 0.80) at a depth of 0.40 m in uniform fl ow mode. The average shear 
stress on the channel boundary in pascals is

 (a)  3.14 × 10–3  (b)  6.28 × 10–3

 (c)  3.93 × 10–3  (d)  0.01256
 3.7  A triangular channel with a side slope of 1.5 horizontal: 1 vertical is laid on slope of 

0.005. The shear stress in N/m2 on the boundary for a depth of fl ow of 1.5 m is
 (a)  3.12    (b)  10.8   (c)  30.6    (d   548
 3.8  The dimensions of the Chezy coeffi cient C are
 (a)  L2 T −1    (b)  L T −1/2    (c)  M 0L 0T 0   (d)  L1/2 T −1

 3.9  The dimensions of Manning’s n are
 (a)  L1/6    (b)  L1/2 T −1

 (c)   L−1/3 T    (d)  L−1/3 T −1

3.10  The dimensions of the Darcy–Weisbach coeffi cient f are 
 (a)  L1/6    (b) L T −1   (c)  L1/2 T −4   (d)  M 0L0T 0

3.11  A channel fl ow is found to have a shear Reynolds number 
u

v
s*ε = 25 , where ε

s
 = sand 

grain roughness, u
*
 = shear velocity and v = kinematic viscosity. The channel boundary 

can be classifi ed as hydrodynamically
 (a)  rough    (b)  in transition regime
 (c)  smooth    (d)  undular
3.12  If the bed particle size d

50
 of a natural stream is 2.0 mm, then by Strickler formula, the 

Manning’s n for the channel is about
 (a)  0.017    (b)  0.023
 (c)  0.013   (d)  0.044
3.13  In using the Moody chart for fi nding f for open-channel fl ows, the pipe diameter D is to 

be replaced by
 (a)  R   (b)  D/2
 (c)  P   (d)  4R
3.14  The Manning’s n for a smooth, clean, unlined, suffi ciently weathered earthen channel is 

about
 (a)  0.012   (b)  0.20
 (c)  0.02   (d)  0.002
3.15  The Manning’s n is related to the equivalent sand grain roughness, ε

s
 as 

 (a)  n s∝ ε−1 6/    (b)  n s∝ ε1 6/    (c)  n s∝ ε1 3/    (d) n
R
s=

ε
4

3.16  The Darcy–Weisbach f is related to Manning’s n as 

 (a)  f
g n

R
=

8 2

1 3

 
/    (b)  f

n

R
=

8

8

2

1 3

 
/

 (c)  f
R

g n
=

1 3

28

/

 
   (d)  f

ng

R
=

64
1 3/
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3.17  The Manning’s n for a straight concrete sewer is about
 (a)  0.025   (b)  0.014   (c)  0.30   (d)  0.14
3.18  An open channel carries water with a velocity of 0.605 m/s. If the average bed shear 

stress is 1.0 N/m2, the Chezy coeffi cient C is equal to
 (a)  500   (b)  60   (c)  6.0   (d)  30
3.19  The conveyance of a triangular channel with side slope of 1 horizontal: 1 vertical is 

expressed as K = C y8/3; where C is equal to

 (a)  28/3    (b)  1/n   (c)  1/2n   (d)  2 2 / n
3.20  In a wide rectangular channel if the normal depth is increased by 20 per cent, the dis-

charge would increase by
 (a)  20%    (b)  15.5%   (c)  35.5%   (d)  41.3%
3.21  In a uniform fl ow taking place in a wide rectangular channel at a depth of 1.2 m, the 

velocity is found to be 1.5 m/s. If a change in the discharge causes a uniform fl ow at a 
depth of 0.88 m in this channel, the corresponding velocity of fl ow would be

 (a)  0.89 m/s   (b)  1.22 m/s   (c)  1.10 m/s   (d)  1.50 m/s
3.22  It is expected that due to extreme cold weather the entire top surface of a canal carrying 

water will be covered with ice for some days. If the discharge in the canal were to remain 
unaltered, this would cause

 (a)  no change in the depth
 (b)  increase in the depth of fl ow
 (c)  decrease in the depth of fl ow
 (d)  an undular surface exhibiting increase and decrease in depths
3.23  By using Manning’s formula the depth of fl ow corresponding to the condition of maxi-

mum discharge in a circular channel of diameter D is
 (a)  0.94 D   (b)  0.99 D   (c)  0.86 D    (d)  0.82 D
3.24  In a circular channel the ratio of the maximum discharge to the pipe full discharge is about
 (a)  1.50    (b)  0.94   (c)  1.08    (d)  1.00
3.25  For a circular channel of diameter D the maximum depth below which only one normal 

depth is assured
 (a)  0.5 D   (b)  0.62 D   (c)  0.82 D    (d)  0.94 D
3.26  A trapezoidal channel had a 10 per cent increase in the roughness coeffi cient over years 

of use. This would represent, corresponding to the same stage as at the beginning, a 
change in discharge of

 (a)  +10%    (b)  –10%   (c)  11%    (d)  +9.1 %
3.27  For a hydraulically-effi cient rectangular section, B/y

0
 is equal to 

 (a)  1.0   (b)  2.0   (c)  0.5   (d)  1 3/
3.28  A triangular section is hydraulically-effi cient when the vertex angle θ is
 (a)  90°    (b)  120°   (c)  60°   (d)  30°
3.29  For a hydraulically effi cient triangular channel with a depth of fl ow y, the hydraulic 

radius R is equal to

 (a)  2 2y    (b)  y/2   (c)  2y     (d)  y / 2 2
3.30  A hydraulically-effi cient trapezoidal channel has m = 2.0. B/y

0 
for this channel is

 (a)  1.236    (b)  0.838   (c)  0.472    (d)  2.236
3.31  In a hydraulically most effi cient trapezoidal channel section the ratio of the bed width to 

depth is
 (a)  1.155   (b)  0.867   (c)  0.707   (d)  0.50
3.32  In a hydraulically effi cient circular channel fl ow, the ratio of the hydraulic radius to the 

diameter of the pipe is
 (a)  1.0    (b)  0.5   (c)  2.0   (d)  0.25
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3.33  For a wide rectangular channel the value of the fi rst hydraulic exponent N is 
 (a)  3.0   (b)  4.0   (c)  3.33   (d)  5.33
3.34  If the Chezy formula with C = constant is used, the value of N for a wide rectangular 

channel will be 
 (a)  2.0   (b)  3.0   (c)  3.33   (d)  5.33

3.35  For a trapezoidal channel of most-effi cient proportions Qn B S/ ( )/ /8 3
0
1 2⎡

⎣⎢
⎤
⎦⎥ = =φ

 (a)  1 3/    (b)  0.7435 (c)  0.8428   (d)  1.486
3.36  In a given rectangular channel the maximum value of uniform-fl ow Froude number 

occurs when
 (a)  y = B/6    (b)  R = y/2   (c)  y = B/2    (d)  y

0
 = y

c

3.37  The limit slope of a rectangular channel 10 m wide and n = 0.015 is
 (a)  0.000423   (b)  0.00372   (c)  0.00273   (d)  0.0732
3.38  In a rectangular channel 10 m wide and n = 0.015, the critical depth corresponding to the 

limit slope is
 (a)  1.333 m   (b)  0.667 m   (c)  2.667 m    (d)  1.667 m
3.39  A rectangular channel B = 4.0 m, n = 0.015 is to carry a uniform discharge at a depth of 

1.0 m and Froude number = 0.5. The required bottom slope is
 (a)  0.0035   (b)  0.00505   (c)  0.00095   (d)  0.00045
3.40  A trapezoidal channel with 0 < m < 0.46 will have x number of limit slopes where x is
 (a)  1   (b)  2   (c)  3   (d)  0

 APPENDIX 3A

Table 3A.1 gives the variation of φ = f(η
0
, m) as represented by Eq. (3.32) and provides a con-

venient aid to determine the normal depth in rectangular and trapezoidal channels. At the 
normal depth

φ =
nQ

S B0
8 3/

 and η0
0=

y

B
.

Note that the column m = 0 corresponds to a rectangular channel

Table 3A-1 Values of φ for Trapezoidal Channels

η0 Value of φ η
0

Value of φ

m = 0 m = 1.0 m = 1.5 m = 2.0 m = 2.5 m = 0 m = 1.0 m = 1.5 m = 2.0 m = 2.5

0.100 0.01908 0.02139 0.02215 0.02282 0.02345 0.155 0.03736 0.04463 0.04713 0.04938 0.05151

0.105 0.02058 0.02321 0.02407 0.02484 0.02556 0.160 0.03919 0.04708 0.04982 0.05227 0.05459

0.110 0.02212 0.02509 0.02607 0.02694 0.02776 0.165 0.04104 0.04960 0.05257 0.05523 0.05777

0.115 0.02369 0.02702 0.02814 0.02912 0.03005 0.170 0.04292 0.05217 0.05539 0.05828 0.06104

0.120 0.02529 0.02902 0.03027 0.03138 0.03243 0.175 0.04482 0.05479 0.05828 0.06141 0.06439

0.125 0.02693 0.03108 0.03247 0.03371 0.03489 0.180 0.04675 0.05747 0.06123 0.06462 0.06785

0.130 0.02860 0.03319 0.03475 0.03613 0.03744 0.185 0.04869 0.06021 0.06426 0.06791 0.07139

0.135 0.03029 0.03537 0.03709 0.03862 0.04007 0.190 0.05066 0.06300 0.06735 0.07128 0.07503

0.140 0.03202 0.03760 0.03949 0.04119 0.04280 0.195 0.05265 0.06584 0.07052 0.07474 0.07876

0.145 0.03377 0.03988 0.04197 0.04384 0.04561 0.200 0.05466 0.06874 0.07375 0.07827 0.08259

0.150 0.03555 0.04223 0.04452 0.04657 0.04852
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η0 Value of φ η0 Value of φ

m = 0 m = 1.0 m = 1.5 m = 2.0 m = 2.5 m = 0 m = 1.0 m = 1.5 m = 2.0 m = 2.5

0.205 0.05668 0.07170 0.07705 0.08189 0.08651 0.455 0.17485 0.28970 0.33534 0.37756 0.41811

0.210 0.05873 0.07471 0.08042 0.08559 0.09053 0.460 0.17744 0.29550 0.34249 0.38597 0.42774

0.215 0.06079 0.07777 0.08386 0.08938 0.09464 0.465 0.18005 0.30136 0.34972 0.39448 0.43749

0.220 0.06287 0.08089 0.08737 0.09325 0.09885 0.470 0.18265 0.30728 0.35703 0.40310 0.44736

0.225 0.06497 0.08406 0.09095 0.09720 0.10316 0.475 0.18527 0.31326 0.36443 0.41183 0.45737

0.230 0.06709 0.08729 0.09460 0.10124 0.10757 0.480 0.18789 0.31929 0.37191 0.42066 0.46751

0.235 0.06922 0.09057 0.09832 0.10536 0.11208 0.485 0.19051 0.32538 0.37947 0.42960 0.47778

0.240 0.07137 0.09391 0.10211 0.10957 0.11669 0.490 0.19314 0.33154 0.38712 0.43865 0.48818

0.245 0.07353 0.09730 0.10597 0.11386 0.12139 0.495 0.19578 0.33775 0.39486 0.44781 0.49871

0.250 0.07571 0.10075 0.10991 0.11824 0.12620 0.500 0.19843 0.34402 0.40267 0.45708 0.50937

0.255 0.07791 0.10425 0.11391 0.12271 0.13111 0.510 0.20373 0.35674 0.41857 0.47594 0.53110

0.260 0.08012 0.10781 0.11799 0.12726 0.13612 0.520 0.20905 0.36970 0.43480 0.49524 0.55336

0.265 0.08234 0.11142 0.12213 0.13190 0.14124 0.530 0.21440 0.38291 0.45138 0.51499 0.57616

0.270 0.08458 0.11508 0.12635 0.13663 0.14646 0.540 0.21976 0.39635 0.46831 0.53519 0.59952

0.275 0.08683 0.11880 0.13064 0.14145 0.15178 0.550 0.22514 0.41004 0.48559 0.55584 0.62342

0.280 0.08909 0.12257 0.13500 0.14635 0.15721 0.560 0.23055 0.42397 0.50322 0.57694 0.64788

0.285 0.09137 0.12640 0.13944 0.15135 0.16274 0.570 0.23597 0.43815 0.52120 0.59850 0.67289

0.290 0.09366 0.13028 0.14395 0.15643 0.16838 0.580 0.24140 0.45257 0.53955 0.62053 0.69848

0.295 0.09596 0.13422 0.14853 0.16161 0.17413 0.590 0.24686 0.46724 0.55825 0.64302 0.72463

0.300 0.09828 0.13822 0.15318 0.16687 0.17998 0.600 0.25233 0.48216 0.57731 0.66599 0.75136

0.305 0.10060 0.14226 0.15791 0.17223 0.18594 0.610 0.25782 0.49733 0.59674 0.68943 0.77867

0.310 0.10294 0.14637 0.16271 0.17768 0.19201 0.620 0.26332 0.51275 0.61654 0.71334 0.80657

0.315 0.10529 0.15052 0.16759 0.18322 0.19819 0.630 0.26884 0.52843 0.63670 0.73773 0.83505

0.320 0.10765 0.15474 0.17254 0.18885 0.20448 0.640 0.27437 0.54436 0.65724 0.76261 0.86412

0.325 0.11002 0.15901 0.17756 0.19458 0.21088 0.650 0.27992 0.56054 0.67815 0.78798 0.89380

0.330 0.11240 0.16333 0.18266 0.20040 0.21739 0.660 0.28548 0.57698 0.69943 0.81384 0.92408

0.335 0.11480 0.16771 0.18784 0.20631 0.22401 0.670 0.29106 0.59367 0.72110 0.84019 0.95496

0.340 0.11720 0.17214 0.19309 0.21232 0.23074 0.680 0.29665 0.61063 0.74314 0.86704 0.98646

0.345 0.11961 0.17663 0.19842 0.21842 0.23759 0.690 0.30225 0.62785 0.76557 0.89439 1.01857

0.350 0.12203 0.18118 0.20382 0.22462 0.24455 0.700 0.30786 0.64532 0.78839 0.92225 1.05131

0.350 0.122034 0.181179 0.203818 0.224617 0.244552 0.710 0.31349 0.66306 0.81159 0.95061 1.08467

0.355 0.12447 0.18578 0.20930  0.23091 0.25163 0.720 0.31913 0.68107 0.83518 0.97949 1.11866

0.360 0.12691 0.19044 0.21485  0.2373 0.25882 0.730 0.32477 0.69933 0.85917 1.00888 1.15328

0.365 0.12936 0.19515 0.22048  0.24378 0.26612 0.740 0.33043 0.71787 0.88355 1.03879 1.18855

0.370 0.13182 0.19992 0.22619  0.25037 0.27355 0.750 0.33611 0.73667 0.90832 1.06923 1.22446

0.375 0.13428 0.20475 0.23198  0.25705 0.28108 0.760 0.34179 0.75574 0.93350 1.10019 1.26101

0.380 0.13676 0.20963 0.23784  0.26382 0.28874 0.770 0.34748 0.77508 0.95908 1.13167 1.29822

0.385 0.13925 0.21457 0.24379  0.2707 0.29652 0.780 0.35318 0.79469 0.98506 1.16369 1.33609

0.390 0.14174 0.21956 0.24981  0.27768 0.30441 0.790 0.35889 0.81458 1.01145 1.19625 1.37462

0.395 0.14424 0.22462 0.25591  0.28475 0.31242 0.800 0.36461 0.83474 1.03825 1.22934 1.41381

0.400 0.14675 0.22972 0.26209  0.29192 0.32056

0.405 0.14927 0.23489 0.26834 0.29920 0.32881 0.810 0.37035 0.85517 1.06546 1.26298 1.45367

0.410 0.15180 0.24011 0.27468 0.30657 0.33718 0.820 0.37609 0.87588 1.09308 1.29716 1.49421

0.415 0.15433 0.24539 0.28110 0.31405 0.34568 0.830 0.38183 0.89686 1.12112 1.33190 1.53543

0.420 0.15687 0.25073 0.28759 0.32163 0.35430 0.840 0.38759 0.91813 1.14958 1.36718 1.57733

0.425 0.15942 0.25612 0.29417 0.32931 0.36304 0.850 0.39336 0.93967 1.17846 1.40302 1.61992

0.430 0.16197 0.26158 0.30083 0.33709 0.37191 0.860 0.39913 0.96150 1.20776 1.43942 1.66320

0.435 0.16453 0.26709 0.30757 0.34498 0.38090 0.870 0.40492 0.98361 1.23748 1.47638 1.70718

0.440 0.16710 0.27265 0.31439 0.35297 0.39001 0.880 0.41071 1.00600 1.26763 1.51391 1.75186

0.445 0.16968 0.27828 0.32129 0.36106 0.39925 0.890 0.41650 1.02868 1.29821 1.55201 1.79725

0.450 0.17226 0.28396 0.32827 0.36926 0.40862 0.900 0.42231 1.05164 1.32923 1.59067 1.84334

Table 3A-1 (Continued)

(Continued )
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η0 Value of φ η0 Value of φ

m = 0 m = 1.0 m = 1.5 m = 2.0 m = 2.5 m = 0 m = 1.0 m = 1.5 m = 2.0 m = 2.5

0.910 0.42812 1.07489 1.36067 1.62992 1.89015 1.31 0.66524 2.25468 2.99960 3.70806 4.39526

0.920 0.43394 1.09843 1.39256 1.66974 1.93767 1.32 0.67126 2.29076 3.05072 3.77362 4.47486

0.930 0.43977 1.12226 1.42488 1.71015 1.98592 1.33 0.67728 2.32719 3.10236 3.83988 4.55536

0.940 0.44561 1.14638 1.45764 1.75114 2.03489 1.34 0.68330 2.36395 3.15453 3.90684 4.63673

0.950 0.45145 1.17080 1.49084 1.79271 2.08460 1.35 0.68932 2.40106 3.20723 3.97452 4.71900

0.960 0.45730 1.19550 1.52449 1.83488 2.13503 1.36 0.69535 2.43850 3.26046 4.04292 4.80217

0.970 0.46315 1.22050 1.55859 1.87765 2.18621 1.37 0.70138 2.47629 3.31422 4.11203 4.88623

0.980 0.46901 1.24580 1.59314 1.92101 2.23813 1.38 0.70741 2.51442 3.36851 4.18186 4.97120

0.990 0.47488 1.27140 1.62814 1.96498 2.29080 1.39 0.71345 2.55290 3.42335 4.25242 5.05707

1.000 0.48075 1.29729 1.66359 2.00954 2.34422 1.40 0.71949 2.59173 3.47872 4.32370 5.14385

1.010 0.48663 1.32348 1.69950 2.05472 2.39840 1.41 0.72553 2.63090 3.53463 4.39571 5.23155

0.020 0.49251 1.34997 1.73586 2.10051 2.45333 1.42 0.73158 2.67042 3.59109 4.46845 5.32016

1.030 0.49840 1.37677 1.77269 2.14691 2.50903 1.43 0.73762 2.71029 3.64809 4.54193 5.40970

1.040 0.50430 1.40387 1.80998 2.19393 2.56550 1.44 0.74367 2.75052 3.70563 4.61615 5.50016

1.050 0.51020 1.43127 1.84773 2.24157 2.62274 1.45 0.74973 2.79109 3.76373 4.69111 5.59155

1.060 0.51611 1.45898 1.88596 2.28983 2.68076 1.46 0.75578 2.83202 3.82237 4.76681 5.68387

1.070 0.52202 1.48700 1.92465 2.33872 2.73955 1.47 0.76184 2.87330 3.88157 4.84326 5.77713

1.080 0.52794 1.51533 1.96381 2.38823 2.79913 1.48 0.76790 2.91494 3.94133 4.92045 5.87133

1.090 0.53386 1.54396 2.00345 2.43839 2.85950 1.49 0.77397 2.95694 4.00164 4.99841 5.96647

1.100 0.53979 1.57291 2.04356 2.48917 2.92067 1.50 0.78003 2.99929 4.06251 5.07711 6.06256

1.110 0.54572 1.60216 2.08415 2.54060 2.98262 1.51 0.78610 3.04200 4.12394 5.15657 6.15960

1.120 0.55165 1.63173 2.12522 2.59267 3.04538 1.52 0.79217 3.08508 4.18594 5.23680 6.25760

1.130 0.55760 1.66162 2.16677 2.64538 3.10895 1.53 0.79824 3.12851 4.24850 5.31779 6.35655

1.140 0.56354 1.69182 2.20881 2.69874 3.17332 1.54 0.80432 3.17231 4.31163 5.39954 6.45647

1.150 0.56949 1.72234 2.25133 2.75276 3.23851 1.55 0.81040 3.21647 4.37532 5.48207 6.55736

1.160 0.57545 1.75317 2.29434 2.80743 3.30451 1.56 0.81647 3.26100 4.43959 5.56536 6.65921

1.170 0.58141 1.78433 2.33784 2.86275 3.37133 1.57 0.82256 3.30589 4.50443 5.64944 6.76204

1.180 0.58737 1.81580 2.38184 2.91874 3.43898 1.58 0.82864 3.35115 4.56984 5.73429 6.86584

1.190 0.59334 1.84760 2.42633 2.97539 3.50746 1.59 0.83473 3.39678 4.63584 5.81992 6.97063

1.200 0.59931 1.87972 2.47132 3.03271 3.57677 1.60 0.84081 3.44278 4.70241 5.90633 7.07640

1.21 0.60528 1.91216 2.51681 3.09069 3.64692 1.61 0.84691 3.48914 4.76956 5.99354 7.18316

1.22 0.61126 1.94493 2.56279 3.14935 3.71790 1.62 0.85300 3.53588 4.83729 6.08153 7.29091

1.23 0.61725 1.97802 2.60929 3.20869 3.78973 1.63 0.85909 3.58300 4.90561 6.17031 7.39965

1.24 0.62323 2.01145 2.65628 3.26870 3.86241 1.64 0.86519 3.63048 4.97452 6.25989 7.50940

1.25 0.62922 2.04520 2.70379 3.32940 3.93595 1.65 0.87129 3.67834 5.04402 6.35026 7.62015

1.26 0.63522 2.07928 2.75181 3.39078 4.01033 1.66 0.87739 3.72658 5.11410 6.44144 7.73190

1.27 0.64122 2.11369 2.80033 3.45285 4.08558 1.67 0.88349 3.77520 5.18478 6.53342 7.84466

1.28 0.64722 2.14844 2.84937 3.51561 4.16170 1.68 0.88959 3.82419 5.25605 6.62620 7.95844

1.29 0.65322 2.18351 2.89893 3.57906 4.23868 1.69 0.89570 3.87357 5.32792 6.71980 8.07323

1.30 0.65923 2.21893 2.94901 3.64321 4.31653 1.70 0.90181 3.92332 5.40039 6.81420 8.18905

Table 3A-1 (Continued)
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4.1 INTRODUCTION

A steady non-uniform fl ow in a prismatic channel with gradual changes in its water 
surface elevation is termed as gradually varied fl ow (GVF). The backwater produced 
by a dam or weir across a river and the drawdown produced at a sudden drop in a chan-
nel are few typical examples of GVF. In a GVF, the velocity varies along the channel 
and consequently the bed slope, water surface slope, and energy slope will all differ 
from each other. Regions of high curvature are excluded in the analysis of this fl ow.

The two basic assumptions involved in the analysis of GVF are the following:

1.  The pressure distribution at any section is assumed to be hydrostatic. This 
follows from the defi nition of the fl ow to have a gradually-varied water sur-
face. As gradual changes in the surface curvature give rise to negligible normal 
accelerations, the departure from the hydrostatic pressure distribution is negli-
gible. The exclusion of the region of high curvature from the analysis of GVF, 
as indicated earlier, is only to meet this requirement.

2.  The resistance to fl ow at any depth is assumed to be given by the correspond-
ing uniform fl ow equation, such as the Manning’s formula, with the condition 
that the slope term to be used in the equation is the energy slope and not the 
bed slope. Thus, if in a GVF the depth of fl ow at any section is y, the energy 
slope S

f
 is given by

 S
n V

Rf =
2 2

4 3/  (4.1)

where R = hydraulic radius of the section at depth y.

4.2 DIFFERENTIAL EQUATION OF GVF

Consider the total energy H of a gradually varied fl ow in a channel of small slope and 
α = 1.0 as

 H Z E Z y
V

g
= + = + +

2

2
 (4.2)

where E = specifi c energy.

Gradually Varied 
Flow Theory 4

Chapter 4.indd   157Chapter 4.indd   157 2/24/2010   3:42:58 PM2/24/2010   3:42:58 PM



158 Flow in Open Channels

A schematic sketch of a gradually varied fl ow is shown in Fig. 4.1. Since the water 
surface, in general, varies in the longitudinal (x) direction, the depth of fl ow and total 
energy are functions of x. Differentiating Eq. 4.2 with respect to x

 dH

dx

dZ

dx

dE

dx
= +  (4.3)

i.e.

 

dH

dx

dZ

dx

dy

dx

d

dx

V

g
= + +

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2

2
 

(4.4)

∇

Slope Sf

V2/2g

yE

Z

Energy line

Datum
S0

χθ

Water surface

Fig. 4.1 Schematic sketch of GVF

In equation 4.4, the meaning of each term is as follows:

1.  dH

dx
 represents the energy slope. Since the total energy of the fl ow always 

decreases in the direction of motion, it is common to consider the slope of the 
decreasing energy line as positive. Denoting it by S

f
 , we have

 dH

dx
S f= −  (4.5)

2.  dZ

dx
denotes the bottom slope. It is common to consider the channel slope with 

bed elevations decreasing in the downstream direction as positive. Denoting it 
as S

0
, we have

 

dZ

dx
S= − 0  

(4.6)

3. dy

dx
represents the water surface slope relative to the bottom of the channel.

4. d

dx

V

g

d

dy

Q

gA

dy

dx

2 2

22 2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
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Gradually Varied Flow Theory 159 

 = −
Q

gA

dA

dy

dy

dx

2

3  

Since dA/dy = T,

                                       

d

dx

V

g

Q T

gA

dy

dx

2 2

32

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= −
 

(4.7)

Equation 4.4 can now be rewritten as

    

− =− + −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

S S
dy

dx

Q T

gA

dy

dxf 0

2

3

 

Re-arranging

                                               

dy

dx

S S

Q T

gA

f=
−

−

0

2

3
1

 

(4.8)

This forms the basic differential equation of GVF and is also known as the dynamic 
equation of GVF. If a value of the kinetic-energy correction factor α greater than 
unity is to be used, Eq. 4.8 would then read as

                                               

dy

dx

S S

Q T

gA

f=
−

−

0

2

3
1

α

 

(4.8a)

Other Forms of Eq. 4.8 (a) If K = conveyance at any depth y and K
0
 = convey-

ance corresponding to the normal depth y
0
, then

                             
K Q S f=

 
(By assumption 2 of GVF) (4.9)

and
                                         

K Q S0 0=
  
(Uniform fl ow) 

                                           
S S K Kf 0 0

2 2=
 

(4.10)

Similarly, if Z = section factor at depth y and Z
c
 = section factor at the critical 

depth y
c 
,

                                               Z A T2 3=  

and

     
Z

A

T

Q

gc
c

c

2
3 2

= =
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160 Flow in Open Channels

Hence, Q T

gA

Z

Z
c

2

3

2

2
=  (4.11)

Using Eqs 4.10 and 4.11, Eq. 4.8 can now be written as

                

dy

dx
S

S

S

Q T

g

f

=
−

−
0

0
2

3

1

1
Α  

                        =
−

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

S

K

K

Z

Z
c

0

0

2

2

1

1

 (4.12)

This equation is useful in developing direct integration techniques.
(b) If Q

n
 represents the normal discharge at a depth y and Q

c
 denotes the critical 

discharge at the same depth y,

        
Q K Sn = 0  

(4.13)

and
       Q Z gc =  

(4.14)

Using these defi nitions, Eq. 4.8 can be written as

                       

dy

dx
S

Q Q

Q Q
n

c

=
−
−0

2

2

1

1

( / )

( / )  

(4.15)

(c)  Another form of Eq. 4.8 is Eq. 4.3 and can be written as

         
dE

dx
S S f= −0  (4.16)

This equation is called the differential-energy equation of GVF to distinguish it 
from the GVF differential equations (Eqs (4.8), (4.12) and (4.15)). This energy 
equation is very useful in developing numerical techniques for the GVF profi le 
computation.

4.3 CLASSIFICATION OF FLOW PROFILES

In a given channel, y
0
 and y

c
 are two fi xed depths if Q, n and S

0
 are fi xed. Also, 

there are three possible relations between y
0
 and y

c
 as (i) y

0
 > y

c
, (ii) y

0 
< y

c
 and 

(iii) y
0
 = y

c
. Further, there are two cases where y

0
 does not exist, i.e. when (a) the 

channel bed is horizontal, (S
0
 = 0), (b) when the channel has an adverse slope, 
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Gradually Varied Flow Theory 161 

(S
0
 is –ve). Based on the above, the channels are classifi ed into fi ve categories as 

indicated in Table 4.1.
For each of the fi ve categories of channels, lines representing the critical depth 

and normal depth (if it exists) can be drawn in the longitudinal section. These would 
divide the whole fl ow space into three regions as:

Region 1: Space above the top most line
Region 2: Space between top line and the next lower line
Region 3: Space between the second line and the bed

Figure 4.2 shows these regions in the various categories of channels.

Table 4. 1 Classifi cation of Channels

Sl. 
No

Channel 
category

Symbol Characteristic 
condition

Remark

1 Mild slope M y
0
 > y

c
Subcritical fl ow at normal depth

2 Steep slope S y
c
 > y

0
Supercritical fl ow at normal depth

3 Critical slope C y
c
 = y

0 
Critical fl ow at normal depth

4 Horizontal bed H S
0
 = 0 Cannot sustain uniform fl ow

5 Adverse slope A S
0
 < 0 Cannot sustain uniform fl ow

Fig. 4.2 Regions of fl ow profi les

1

2

3 NDL

CDL

Region

y0

yc

Steep slope

(ii)
S0 = + ve

CDL = Critical depth line
NDL = Normal depth line

(vi)

2

3

CDLRegion

yc

S0 = 0

(iv)

Horizontal bed

1

2

3

NDL

CDL

Mild slope
S0 = + ve

Region

y0

yc

(i)

1

3 NDL

CDL

Region
 y0 = yc

S0 = + ve

(iii)

Critical slope

2

3

CDL
Region

yc

Adverse slope

(v)
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162 Flow in Open Channels

Depending upon the channel category and region of fl ow, the water surface pro-
fi les will have characteristic shapes. Whether a given GVF profi le will have an 
increasing or decreasing water depth in the direction of fl ow will depend upon the 
term dy/dx in Eq. 4.8 being positive or negative.

It can be seen from Eq. 4.12 that dy

dx
 is positive

   (i) if the numerator > 0 and the denominator > 0
or  (ii) if the numerator < 0 and the denominator < 0.

i.e. dy

dx
 is positive if (i) K > K

0 
and Z > Z

c
 or

 (ii) K < K
0 
and Z > Z

c

For channels of the fi rst kind, K is a single-valued function of y, and hence 

 dy

dx
 > 0 if (i) y > y

0
 and y > y

c 
or

 (ii) y < y
0
 and y < y

c

Similarly, dy

dx
 < 0 if (i) y

c
 > y > y

0
 or

 (ii) y
0
 > y > y

c

Further, to assist in the determination of fl ow profi les in various regions, the 
behaviour of dy/dx at certain key depths is noted by studying Eq. 4.8 as follows:

1.  As y y
dy

dx
→ →0 0, ,  i.e. the water surface approaches the normal depth line 

asymptotically.

2.  As y y
dy

dxc→ →∞, ,   i.e. the water surface meets the critical depth line verti-

cally. This information is useful only as indicative of the trend of the profi le. In 
reality, high curvatures at critical depth zones violate the assumption of gradu-
ally-varied nature of the fl ow and as such the GVF computations have to end 
or commence a short distance away from the critical-depth location.

3.  y
dy

dx
S→ ∞ →, 0 , i.e. the water surface meets a very large depth as a horizon-

tal asymptote.

Based on this information, the various possible gradually varied fl ow profi les are 
grouped into twelve types (Table 4.2). The characteristic shapes and end conditions 
of all these profi les are indicated in Fig. 4.3.
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Gradually Varied Flow Theory 163 

In Fig. 4.3, an exaggerated vertical scale is adopted to depict the nature of cur-
vature. In reality the GVF profi les, especially M

1
, M

2
 and H

2
 profi les, are very fl at.

The longitudinal distances are one to two orders of magnitude larger than the depths. 
It is evident from Fig. 4.3 that all the curves in region 1 have positive slopes; these 

Table 4.2 Types of GVF Profi les

Channel Region Condition Type

Mild slope

1

2

3

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪

y y y

y y y

y y y

c

c

c

> >
> >
> >

0

0

0

M

M

M

1

2

3

Steep slope

1

2

3

⎧

⎨
⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

y y y

y y y

y y y

c

c

c

> >
> >
> >

0

0

0

S

S

S

1

2

3

Critical slope
1

3

⎧
⎨
⎪⎪
⎩⎪

y y y

y y y
c

c

> =
< =

0

0

C

C
1

3

Horizontal bed
2

3
⎧
⎨⎪
⎩⎪

y y

y y
c

c

>
<

H

H
2

3

Adverse slope
2

3

⎧
⎨⎪
⎩⎪

y y

y y
c

c

>
<

A

A
2

3

M2

M1

M3

Mild slope(a)

y0

yc

Horizontal
asymptote

CDL

NDL

Fig. 4.3 Various GVF Profi les (Contd)
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164 Flow in Open Channels

C1

C3
NDLCDL

Horizontal
asymptote

∇

∇

Critical slope(c)

CDL

∇

∇

H2

H3

Horizontal

yc

(d) Horizontal bed

CDL

∇

∇Horizontal

yc

A2

A3

(e) Adverse slope

∇

∇

∇

Horizontal
asymptote

Steep slope(b)

S3

S2

S1

CDL

NDL

Fig. 4.3 Various GVF profi les
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Gradually Varied Flow Theory 165 

are commonly known as backwater curves. Similarly, all the curves in region 2 have 
negative slopes and are referred to as drawdown curves. At critical depth the curves 
are indicated by dashed lines to remind that the GVF equation is strictly not applica-
ble in that neighbourhood.

Example 4.1  A rectangular channel with a bottom width of 4.0 m and a bottom 
slope of 0.0008 has a discharge of 1.50 m3/s. In a gradually varied fl ow in this chan-
nel, the depth at a certain location is found to be 0.30 m. Assuming n = 0.016, deter-
mine the type of GVF profi le.

Solution (a) To fi nd the normal depth y
0

 

φ = =
×

×
=

Qn

S B0
8 3 8 3

1 50 0 016

0 0008 4 0
0 021046

/ /

. .

. ( . )
.

 

Referring to Table 3A:1, the value of y
0
 /B for this value of φ, by interpolation, is 

 
y

B
0 0 1065= .  

   y0 0 426= . m  

(b) Critical depth y
c

 
q Q B= = =/ m /s/m31 5

4 0
0 375

.

.
.

 

           
y q gc =

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=( )
( . )

.
./

/

2 1 3
2 1 3

0 375

9 81
0 243/ = m

 

(c) Type of profi le

Since y
0
> y

c  
, the channel is a mild-slope channel. Also, given y = 0.30 m is such 

that

 y y yc0 > > .  

As such the profi le is of the M
2 
type (Table 4.2).

Alternative method
Instead of calculating normal depth through use of tables, the critical slope is calcu-
lated. By using Eq. (3.64).

 
S

S B

gnc
c

∗ = =
+1 3

2

4 3

1 3

1 2/ /

/

( )η
η  
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S

gn

Bc =
+( )2

1 3

4 3

1 3

1 2
/

/

/

η

η  

(4.17)

Here η = = =y Bc / 0 243 4 0 0 06075. / . . . Substituting in Eq. 4.17

 

Sc =
9 81 0 016

4 0

1 2 0 06075

0 06075
0

2

1 3

4 3

1 3

. .

.

.

.
.

/

/

/

×( )
( )

×
+ ×( )( )

( )
= 0004689

 

Since S
0
 is less than S

c
 the channel slope is mild. Since given depth y = 0.30 m is 

less than y
c
 = 0.243 m, it follows that y

0 
 > y > 

 
y

c
 . As such the GVF profi le is of 

M
2
 type.

4.4 SOME FEATURES OF FLOW PROFILES

(a) Type-M Profi les The most common of all GVF profi les is the M
1
 type, 

which is a subcritical fl ow condition. Obstructions to fl ow, such as weirs, dams, 
control structures and natural features, such as bends, produce M

1
 backwater curves 

Fig. 4.4 (a). These extend to several kilometres upstream before merging with the 
normal depth.

M2

Pool

Drop

NDL

CDL

Mild slop

∇
∇

Fig. 4.4(b) M
2
 profi le

NDL

CDL

M1

Horiz.

Mild slope

RVF

∇

θ

Fig. 4.4 (a) M
1
 profi le

The M2 profi les occur at a sudden drop in the bed of the channel, at constriction 
type of transitions and at the canal outlet into pools Fig. 4.4 (b).
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Gradually Varied Flow Theory 167 

Where a supercritical stream enters a mild-slope channel, the M
3
 type of profi le 

occurs. The fl ow leading from a spillway or a sluice gate to a mild slope forms a typical 
example (Fig. 4.4(c)). The beginning of the M

3
 curve is usually followed by a small 

stretch of rapidly-varied fl ow and the down stream is generally terminated by a hydrau-
lic jump. Compared to M

1
 and M

2
 profi les, M

3
 curves are of relatively short length.

(b) Type-S Profi les The S
1
 profi le is produced when the fl ow from a steep 

channel is terminated by a deep pool created by an obstruction, such as a weir or 
dam (Fig. 4.4 (d)). At the beginning of the curve, the fl ow changes from the normal 
depth (supercritical fl ow) to subcritical fl ow through a hydraulic jump. The profi les 
extend downstream with a positive water surface slope to reach a horizontal asymp-
tote at the pool elevation.

Sluice gate

Jump

NDL

CDL
M3

RVF

Vena contracta Mild slope

∇

∇

Fig. 4.4 (c) M
3
 profi le

NDL

CDL

Steep slope θ

S1

Weir
Jump

∇

Fig. 4.4(d) S
1
 profi le

Profi les of the S
2
 type occur at the entrance region of a steep channel leading from 

a reservoir and at a break of grade from mild slopes to steep slope (Fig. 4.4(e)). Gen-
erally S

2
 profi les are of short length.

Free fl ow from a sluice gate with a steep slope on its downstream is of the S
3
 

type (Fig. 4.4(f )). The S
3
 curve also results when a fl ow exists from a steeper slope 

to a less steep slope (Fig. 4.4.(g)).
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Fig. 4.4(f ) S
3
 profi le

S3 CDL

NDL

Steep slope

CDL

CDL

NDL

NDL

S3

Steep slope

Steeper slope

Fig. 4.4(g) S
4
 profi le

yc

S2

CDL
NDL

∇

Fig. 4.4(e) S
2
 profi le

(c) Type C Profi les C
1
and C

3
 profi les are very rare and are highly unstable.

(d) Type H Profi les A horizontal channel can be considered as the lower limit 
reached by a mild slope as its bed slope becomes fl atter. It is obvious that there is no 
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region 1 for a horizontal channel as y
0 
= ∞. The H

2
 and H

3
 profi les are similar to 

M
2
and M

3
 profi les respectively [Fig. 4.4(h)]. However, the H

2 
 curve has a horizontal 

asymptote.

yc

Jump

Sluice gate

H2

H2

CDL

Drop
Horizontal bed

∇

∇

∇

Fig. 4.4(h) H
2
 and H

3
 profi les

(e) Type A Profi les Adverse slopes are rather rare and A
2
 and A

3
 curves are similar 

to H
2
 and H

3
 curves respectively (Fig. 4.4 (i)). These profi les are of very short length.

A2

θ

CDL

Pool

Adverse slope

–S0

∇

∇

Fig. 4.4(i) A
2
 profi le

4.5 CONTROL SECTIONS

A control section is defi ned as a section in which a fi xed relationship exists between 
the discharge and depth of fl ow. Weirs, spillways sluice gates are some typical exam-
ples of structures which give rise to control sections. The critical depth is also a 
control point. However, it is effective in a fl ow profi le which changes from subcriti-
cal to supercritical fl ow. In the reverse case of transition from supercritical fl ow to 
subcritical fl ow, a hydraulic jump is usually formed by passing the critical depth as a 
control point. Any GVF profi le will have at least one control section.
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M1
Control

Control

M3

CDL

Jump

NDL

(b)

y0

y0

NDL

CDL

Control

(a)

M1

Reservoir

H2

Control

yc

Horizontal bed

(c)

S3

S1

Control

Control

NDL

CDL

Jump

(d)

∇

∇

∇

∇

Fig. 4.5 (contd)
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In the synthesis of GVF profi les occurring in serially connected channel ele-
ments, the control sections provide a key to the identifi cation of proper profi le 
shapes. A few typical control sections are indicated in Fig. 4.5 (a-d). It may be 
noted that subcritical fl ows have controls in the downstream end while supercrit-
ical fl ows are governed by control sections existing at the upstream end of the 
channel section. In Figs 4.5(a) and (b) for the M

1
 profi le, the control section 

(indicated by a dark dot in the fi gures) is just upstream of the spillway and sluice 
gate respectively. In Figs 4.5(b) and (d) for M

3 
and S

3
 profi les respectively, the 

control point is at the vena contracta of the sluice-gate fl ow. In subcritical-fl ow 
reservoir offtakes Fig. 4.5(c), even though the discharge is governed by the res-
ervoir elevation, the channel entry section is not strictly a control section. The 
water-surface elevation in the channel will be lower than the reservoir elevation 
by an amount equivalent to (1+K )V 2/2g where K is the entrance-loss coeffi cient. 
The true control section will be at a downstream location in the channel. For 
the situation shown in Fig. 4.5(c) the critical depth at the free overfl ow at the 

Control

S2

NDL

Reservoir

(e)

= Control

4

2

3

1

B

NDL

Pool

Drop(f)

M1

M2

CDL

∇

∇

∇

∇

∇

∇

∇

Fig. 4.5 Examples of controls in GVF
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channel end acts as the downstream control. For a sudden drop (free overfl ow) 
due to curvature of the streamlines the critical depth actually occurs at distance 
of about 4.0 y

c
 upstream of the drop. This distance, being small compared to GVF 

lengths, is neglected and it is usual to perform calculations by assuming y
c
 to 

occur at the drop.
For a supercritical canal intake Fig. 4.5(e)., the reservoir water surface falls to the 

critical depth at the head of the canal and then onwards the water surface follows the 
S

2
 curve. The critical depth occurring at the upstream end of the canal is the control 

for this fl ow.
A mild-slope channel discharging into a pool of variable surface elevation is indi-

cated in Fig. 4.5(f ). Four cases are shown. In case 1, the pool elevation is higher than 
the elevation of the normal-depth line at B. This gives rise to a drowning of the chan-
nel end. A profi le of the M

1
 type is produced with the pool level at B as control. The 

velocity head of the channel fl ow is lost in turbulence at the exit and there is no 
recovery in terms of the change in surface elevation. In case 2, the pool elevation is 
lower than the elevation of the normal-depth line but higher than the critical-depth 
line at B. The pool elevation acts as a control for the M

2 
 curve. In case 3, the pool 

elevation has dropped down to that of the critical-depth line at B and the control is 
still at the pool elevation. In case 4, the pool elevation has dropped lower than the 
elevation of the critical-depth line at B. The water surface cannot pass through a criti-
cal depth at any location other than B and hence a sudden drop in the water surface 
at B is observed. The critical depth at B is the control for this fl ow.

4.6 ANALYSIS OF FLOW PROFILE

The process of identifi cation of possible fl ow profi les as a prelude to quantitative 
computations is known as analysis of fl ow profi le. It is essentially a synthesis of the 
information about the GVF profi les and control sections discussed in the previous 
section.

A channel carrying a gradually varied fl ow can in general contain different pris-
moidal-channel sections of varying hydraulic properties. There can be a number 
of control sections of varying locations. To determine the resulting water-surface 
profi le in a given case, one should be in a position to analyse the effects of various 
channel sections and controls connected in series. Simple cases are illustrated to 
provide information and experience to handle more complex cases.

Break in Grade Simple situations of a series combination of two channel sec-
tions with differing bed slopes are considered. In Fig. 4.6(a), a break in grade from 
a mild channel to a milder channel is s hown. It is necessary to fi rst draw the critical-
depth line (CDL) and the normal-depth line (NDL) for both slopes. Since y

c
 does 

not depend upon the slope (as Q = constant), the CDL is at a constant height above 
the channel bed in both slopes. The normal depth y

01
 for the mild slope is lower 

than that of the milder slope ( y
02 

). In this case, y
02

 acts as a control, similar to the 
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weir or spillway case and an M
1
 backwater curve is produced in the mild-slope 

channel.
Various combinations of slopes and the resulting GVF profi les are presented in 

Fig. 4.6(a-h). It may be noted that in some situations there can be more than one pos-
sible profi les. For example, in Fig. 4.6(e), a jump and S

1
 profi le or an M

3
 profi le and 

a jump are possible. The particular curve in this case depends on the channel and its 
properties.

y02y01

NDL

M1NDL

NDL

NDL

NDL

CDL

CDL

CDL

CDL

CDL

CDL

CDL

Mild

Milder(a)

S2

Steep Steeper(b)

M2

S3

Milder
Mild

(c)

Steep

Steeper

(d)

CDL

NDL

NDL

NDL

Fig. 4.6 (Contd)
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(f)

(g)
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NDL
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Steep
Horizontal

Fig. 4.6 GVT profi les at break in grades
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In the examples indicated in Fig. 4.6, the section where the grade changes acts as 
a control section and this can be classifi ed as a natural control. It should be noted 
that even though the bed slope is considered as the only variable in the above exam-
ples, the same type of analysis would hold good for channel sections in which there 
is a marked change in the roughness characteristics with or without a change in the 
bed slope. A long reach of unlined canal followed by a lined reach serves as a typical 
example for the same. The junction provides a natural control of the kind discussed 
above. A change in the channel geometry (say, the bed width or side slope) beyond 
a section while retaining the prismoidal nature in each reach also leads to a natural 
control section.

Serial Combination of Channel Sections To analyse a general problem of 
many channel sections and controls, the following steps are to be adopted:

1. Draw the longitudinal section of the systems.
2.  Calculate the critical depth and normal depths of various reaches and mark the 

CDL and NDL in all the reaches.
3. Mark all the controls−both the imposed as well as natural controls.
4. Identify the possible profi les.

Example 4.2  A rectangular channel of 4.0-m width has a Manning’s coeffi -
cient of 0.025. For a discharge of 6.0 m3/s in this channel, identify the possible GVF 
profi les produced in the following break in grades.

a) S
01

 = 0.0004 to S
02

 = 0.015
b) S

01 = 0.005 to S
02

 = 0.0004

Solution q = =6 0 4 0 1 50 3. / . . m /s/m  

                                      

y
q

gc =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
( )⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
2

1

3
2 1 3

1 5

9 81
0 612

.

.
. .

/

m

 

For normal depth calculation: φ =
×

=
×

×
=

Qn

S B S S0
8 3

0
8 3

0

6 0 0 025

4 0

0 00372
/ /

. .

( . )

.

Using this relation, the normal depth for various cases are calculated as below.

S
0

φ y
0  
/B from 

Table 3A-1
y

0 

(m)

0.0004 0.1860 0.4764 1.906

0.015 0.0303 0.1350 0.540

0.005 0.0526 0.1950 0.780
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Depending upon the relative values of y
01

, y
c
 and y

02 
,
 
the type of grade changes are 

identifi ed as below:

Case y01

(m)

y02

(m)

yc

(m)

Type of grade change Possible Types of 
Profi les

a) 1.906 0.540 0.612 Mild to Steep M
2
 and S

2

b) 0.780 1.906 0.612 Mild to Milder mild M
1

Various possible GVF profi les in these two cases are shown in Fig. 4.7 (a) and 4.7(b).

(Alternative method)
Instead of calculating normal depth through use of tables, the critical slope is calcu-
lated. By using Eq. (3.64).

     
S

S B

gnc
c

*

/ /

/
= =

+( )1 3

2

4 3

1 3

1 2η

η  

 
S

gn

Bc =
+( )2

1 3

4 3

1 3

1 2
/

/

/

η

η  

(4.17)

Here, η = y
c 
/ B = 0.612/4.0 = 0.153. Substituting in Eq. 4.17

 
Sc =

×
×

+ ×
=

9 81 0 025

4 0

1 2 0 153

0 153
0 0103

2

1 3

4 3

1 3

. ( . )

( . )

( ( . ))

( . )
.

/

/

/

 

Classifi cation of Channels based on value of slope relative to S
c
 = 0.013

Case S
01

Type S
02

Type Type of grade change

a) 0.0004  Mild 0.015 Steep Mild to Steep

b) 0.005  Mild 0.0004  Mild Mild to Milder mild

y01 = 1.906

S01 = 0.0004

S02 = 0.015

S2 Curve

M2 Curve

NDL

NDL

CDL

y02 = 0.540
yC = 0.612

CDL

Fig. 4.7(a) M
2
 and S

2
 curves-Example 4.2 (a)
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Example 4.3  Identify and sketch the GVF profi les in three mild slopes which 
could be described as mild, steeper mild and milder. The three slopes are in series. 
The last slope has a sluice gate in the middle of the reach and the downstream end of 
the channel has a free overfall.

Solution The longitudinal section of the channel, critical-depth line and normal-
depth lines for the various reaches are shown in Fig. 4.8. The free overfall at E is 
oviously a control. The vena contracta downstream of the sluice gate at D is another 
control. Since for subcritical fl ow the control is at the downstream end of the chan-
nel, the higher of the two normal depths at C acts as a control for the reach CB, 
giving rise to an M

1
 profi le over CB. At B, the normal depth of the channel CB acts 

as a control giving rise to an M
2 
profi le over AB. The controls are marked distinctly 

in Fig. 4.8. With these controls the possible fl ow profi les are: an M
2
 profi le on chan-

nel AB, M
1 
profi le on channel BC, M

3
 profi le and M

2
 profi le connected through a 

jump on the stretch DC. All these possible types are marked in Fig. 4.8. The details 
of computation of the various profi les and the location of the jump is discussed in 
the next chapter.

Example 4.4  A trapezoidal channel has three reaches A, B and C connected in 
series with the following properties:

Reach Bed width B Side slope m Bed slope S
0

n

A 4.0 m 1.0 0.0004 0.015

B 4.0 m 1.0         0.009 0.012

C 4.0 m 1.0         0.004 0.015

Solution For a discharge of 22.5 m3/s through this channel, sketch the resulting 
water-surface profi les. The length of the reaches can be assumed to be suffi ciently 
long for the GVF profi les to develop fully.

The normal depth and critical depths in the reaches AB and BC are calculated by 
using Tables 3A.2 and 2A.2. respectively as follows:

y01 = 0.780

S01 = 0.005

S02 = 0.004

y02 = 1.906

yc = 0.612

CDL

CDL
NDL

NDL M1 curve

Fig 4.7(b) M
1
 curve – Example 4.2 (b)
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Reach A is a mild-slope channel as y
0
 > y

c
 and reaches B and C are steep slope 

channels. Reach B is steeper than reach C. The various reaches are schematically 
shown in Fig. 4.9. The CDL is drawn at a height of 1.316 m above the bed level and 
the NDLs are drawn at the appropriate y

0
 values.

The controls are marked in the fi gure. Reach A will have an M
2
 drawdown curve, 

reach B and S
2
 drawdown curve and reach C and S

3
 rising curve as shown in the fi gure. 

It may be noted that the resulting profi le as above is a serial combination of Fig. 4.6(d) 
and (f  ).

M2

NDL

NDL

NDL

CDL

CDL

M2

M1

M3

A

B

C
D

Mild

Steeper mild

Milder mild

Jump

Drop

E

∇ ∇

∇

Fig. 4.8 GVF profi le for Example 4.3

YOC

M2

S2

S3

YOA = 2.264 m

YC = 1.316 m

YC = 1.316 m

YOB = 0.812 m

CDL

Mild B
A

C
D

Steeper

Steep

NDL

NDL

NDL
CDL

∇

Fig. 4.9 GVF profi le for Example 4.4

Reach φ =
Qn

S B0
8 3/

y

B
0 y

m
0

( )
Qm

Bg

1 5

2 5

.

.

my

B
c yc

( )m
Classifi cation of 

the reach

A 0.4186 0.566 2.264 0.2245 0.329 1.316 Mild slope

B 0.0706 0.203 0.812 0.2245 0.329 1.316 Steep slope

C 0.1324 0.296 1.172 0.2245 0.329 1.316 Steep slope
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Example 4.5  In a rectangular channel, two reaches M and N are in series, with 
reach M being upstream of reach N. These channel reaches have the following 
characteristics:

Reach Width (m) Discharge (m3/s) Slope n

M 5.0 15.0 0.0004 0.025

N 4.0 15.0 0.0003 0.015

Sketch the resulting GVF profi le due to the change in the channel characteristics as 
above.

Solution q y
q

gm cm
= = =

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
( )⎡

⎣

⎢15 0 5 0 3 00
3 0

9 81
3

2 1 3 2

. / . .
.

.

/

m /s/m ⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

1 3

0 9717

/

. m

 

q y
q

gn cn= = =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
( )⎡

⎣
15 0 4 0 3 75

3 75

9 81
3

2 1 3 2

. / . .
.

.

/

m /s/m ⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

1 3

1 1275

/

. m

Normal depth calculations:

Reach
φ =

nQ

S B 0
8 3/

η  from Table 3Α.1 Normal depth y
0 
(m)

M 0.256496 0.6071 3.036 m

N         0.32220 0.7254 2.902 m

Reach y
0
 (m) y

0
(m) Slop 

classifi cation
Nature of 

break in grade
Nature of GVF due 
to break in grade

M 3.3036 0.9717 Mild Mild to M
2
curve in Reach

N  2.902 1.1275 Mild Steeper mild M

The channel slope changes from Mild Slope to Steeper mild slope and an M2 curve 
is formed in the reach M. The curve has the upstream asymptote of y

0m
 = 3.3036 m 

and ends at a depth of 2.902 m at the junction of the two reaches. The nature of the 
GVF profi le is shown schematically in Fig. 4.10.

Chapter 4.indd   179Chapter 4.indd   179 2/24/2010   3:43:08 PM2/24/2010   3:43:08 PM



180 Flow in Open Channels

4.7  TRANSITIONAL DEPTH

The transitional depth is defi ned as the depth at which the normal discharge Q
n
 is 

equal to the critical discharge Q
c
 and the slope of the gradually varied fl ow profi le is 

horizontal. For such a situation,

 

dy

dx
S= 0

 
(4.18)

Since in a GVF from Eq. (4.15)

  

dy

dx
S

Q Q

Q Q

n

c

=
−

−( )
0

2

2

1

1

( / )

/  

at the transitional depth

       

Q

Q

Q

Q
or

K

K

Z

Zn c

c= =0

 

(4.19)

i.e

                                     

Q S

n
AR

Q g

A A T

/ /

//

0

2 31
=

 

or

                                           

S

n g

A

T R

P

TA
0

2 4 3

4 3

1 3

1
= =

/

/

/

 

(4.20)

Equation 4.20 is the same as the generalized-fl ow relation (Eq. (3.69)) with F = 1.0. 
For a trapezoidal channel, the non-dimensionalised form of Eq. 4.20 will be

  
S

S B

n g

m

m mc

t

t t t

∗ = =
+ +( )

+ +0
0

1 3

2

2
4 3

1 3 1 3

1 2 1

1 2 1

/

/

/ /( )( )

η

η η η  

(4.21)

Fig. 4.10 GVF profi le of Example 4.5
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where η
t
 = y

t
 = transitional depth. It may be noted that S

*0c 
 is similar to S

*c
 (Section 3.16) 

but with the bed slope S
0
 being used in place of S

c
.

In a given problem, normally S
0
, B, n are fi xed and the value of η

t
 is required. It is 

important to note that in the gradually-varied fl ow calculations, Q
n
 and Q

c 
 are fi ctitious 

discharges and are different from the actual discharge Q. As such, at a transitional depth 
y

t
, the actual fl ow Froude number is not unity (Example 4.4). Since Eq. (4.20) is the 

same as Eq. (3.50) of the generalized-fl ow relationship, the behaviour of the transi-
tional depth in trapezoidal, rectangular and triangular channels is exactly the same as 
the behaviour of the critical depth with critical slope (discussed in Section 3.16). 
The generalised-fl ow diagram (Fig. 3.11) can be used for the solution of Eq. (4.21) to 
determine the transitional depth.

It may be seen from Eq. (4.20) that the transitional depth depends only on the 
channel geometry, roughness and slope and is independent of the actual discharge. 
In general, there can be one, two or three transitional depths depending upon 
the fl ow and channel geometry. However, situations with more than one transitional 
depth in a profi le are rare. In gradually varied fl ow computations, the transitional depth 
is useful to locate sections where the water surface may have a point of infl exion 
with respect to the horizontal. In spatially-varied fl ows, the transitional depth pro-
vides a very effective way of determining the control points.

Example 4.5  A 2.0-m wide rectangular channel (n = 0.015), carries a dis-
charge of 4.0 m3/s. The channel is laid on slope of 0.0162. A downstream sluice 
gate raises the water surface to 7.0 m immediately behind it. Find the transit-
ional depth.

Solution From Section 3.17, the limit value of S
S B

gnc
Lc

*

/

.= =
1 3

2
2 667

Limit slope SLc = =
2 667 9 81 0 015

2 0
0 004672

2

1 3

. ( . )( . )

( . )
.

/
 

Since the actual slope S
0
 > S

LC  
, transitional depth is possible.

The normal depth y
0
, for given S

0 
, n, B and Q is found by using Table 3A.1.

                                  

φ =
×

×
=

4 0 0 015

0 0162 2 0
0 07424

8 3

. .

. ( . )
.

/

 

                      y B y0 00 2466 0 493/ . , .= = m

Critical depth yc =
×

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ =

16

4 9 81
0 742

1 3

.
.

/

m
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Since y
0
 < y

c 
<

  
y, the channel is a steep-slope channel and the GVF profi le is an 

S
1
curve. At the transitional depth, from Eq. (4.21),

 

S
S B

gnc*

/ /. ( . )

( . ) ( . )
.0

0
1 3

2

1 3

2

0 0162 2 0

9 81 0 015
9 247= =

×
×

=
 

      

=
+( ) /

/

1 2 4 3

1 3

η
η

t

t  

By using trial-and-error method the two transitional depths are found as 

 ηt ty1 12 985 5 970= =. , . m  

   ηt ty2 20 00125 0 0025= =. , . m  

The second transitional depth, y
t 2

 is not of any signifi cance in this problem.
The S

1 
curve starting after a jump from the normal depth will continue to rise till 

y = y
t
 = 5.970 m at which point it will become horizontal. Beyond y

t
, The Froude 

number at y = y
t
 is

  
Ft =

×( )
×

=
4 0 2 0 5 97

9 81 5 97
0 0438

. / . .

. .
.

 

S1 Curve

Jump

S0 = 0.0162

n = 0.015

Y0 = 0.49 m

y = 0.742 m

y1 = 5.97 m

 CDL
 NDL

 Horizontal

 T

7.00 m

∇ ∇

c

Fig. 4.11 Example 4.6
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PROBLEMS 

Problem Distribution

Topic Problems

GVF equation 4.1,4.2

Classifi cation of GVF profi les 4.3, 4.5–4.7

Water surface slope 4.4

GVF profi les at break in grade 4.8, 4.11

Profi le analysis 4.9, 4.10, 4.12 – 4.15

4.1 (i)  Show that the differential equation of gradually varied fl ow in a rectangular channel of 
variable width B can be expressed as

dy

dx

S S
Q y

gA

dB

dx

Q B

gA

f

=
− +

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−

0

2

3

2

3
1

 

(ii)  Further, show that for horizontal, frictionless rectangular channel of varying 
width B, the above relation reduces to

1 02 2−( ) −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ =F

dy

dx
F

y

B

dB

dx  

where F = Froude number.
4.2   Using the basic differential equation of GVF, show that dy/dx is positive for S

1
, M

3
 and S

3
 

profi les
4.3   Show that for a wide rectangular channel the slope is mild or steep according to S

0
 being 

less than or greater than

 

n g

q

2 10 9

2 9

/

/

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

 

4.4   A 3.0-m wide rectangular channel has a longitudinal slope of 150 mm/kmh and Manning’s 
n = 0.02. When the discharge in the channel is 0.85m3/s, estimate the slope of the water sur-
face in the channel (relative to the horizontal) at a point where the depth of fl ow is 0.75 m.

4.5  In a very long, wide rectangular channel the discharge intensity is 3.0 m3/s/metre width. 
The bed slope of the channel is 0.004 and Manning’s n = 0.015. At a certain section in this 
channel, the depth of fl ow is observed to be 0.90 m. What type of GVF profi le occurs in 
the neighbourhood of this section?

4.6   In a 4.0-m wide rectangular channel (n = 0.017) the bed slope is 0.0006. When the channel is 
conveying 10.0 m3/s of fl ow, estimate the nature of GVF profi les at two far away sections P 
and R in this channel where the depth of fl ow is measure as 1.6 m and 2.1 m respectively.
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184 Flow in Open Channels

 4.7  A circular channel having a 2.0-m diameter (n = 0.015) is laid on a slope of 0.005. When 
a certain discharge is fl owing in this channel at a normal depth of 1.0 m, GVF was found to 
occur at a certain reach of channel. If a depth of 0.70 m was observed at a section in this 
GVF reach, what type of GVF profi le was occurring in the neighborhood of this section?

 4.8  In a very long trapezoidal channel with bed width B = 3.0 m, side slope m = 1.5, 
Manning’s n = 0.016, Longitudinal slope S

0
 = 0.0004, the normal depth is measured 

as 1.20 m. Determine the type of GVF profi le existing at a section X. in this channel 
when the depth of fl ow at X is (i) 0.5 m, (ii) 0.8 m and (iii) 1.50 m.

 4.9  A long and wide rectangular channel (n = 0.016) has a discharge intensity of 4.0 m3/s per 
metre width. If the bed slope changes from 0.008 to 0.012 at a section, sketch the possi-
ble GVF profi les due to this break in grade.

4.10  Analyse the fl ow profi le in a 4.0-m wide rectangular channel (n = 0.015), carrying a dis-
charge of 15.0 m3/s. The bed slope of the channel is 0.02 and a 1.5 m high weir (C

d
 = 

0.70) is built on the downstream end of the channel.
4.11  At a certain section in a rectangular channel, a constriction of the channel produces a 

choking condition. Sketch the GVF profi le produced on the upstream as a result of this, 
if the channel is on (a) mild slope and (b) steep slope.

4.12  A 4.0-m wide rectangular channel has a Manning’s coeffi cient of 0.025. For a discharge 
of 6.0 m3/s, identify the possible types of GVF profi les produced in the following break 
in grades:

 ( ) .a S01 0 0004=   to     S02 0 005= .  

                                        ( ) .b S01 0 015=     to          S02 0 0004= .  

4.13  Sketch the possible GVF profi les in the following serial arrangement of channels and 
control. The fl ow is from left to right:
(a) steep – horizontal – mild slope
(b)  mild – sluice gate – steep – horizontal – sudden drop
(c) steep – steeper–mild – milder slope
(d)  free intake – steep – sluice gate – mild slope
(e) steep – mild – sluice gate – mild – sudden drop
(f ) sluice gate – adverse – horizontal – steep slope

4.14  Sketch the GVF profi les produced on the upstream and downstream of a sluice gate 
introduced in a 
(a) steep slope, (b) mild slope, and (c) horizontal-bed channel.

4.15  A rectangular channel has two reaches A and B in series with characteristics as below:

Reach Width(m) Discharge(m3/s) Slope n

A 4.80 7.40 0.0005 0.015

B 4.80 5.00 0.0005 0.015

The decrease in discharge at B is due to the withdrawal of some fl ow at the junc-
tion and can be considered to be a local phenomenon. Sketch the GVF profi les 
produced in the channels if (a) the channel is continuous and without any 
obstruction at the junction, and (b) a sluice gate is provided at the junction.

4.16  In a rectangular channel two reaches A and B in series, with reach A being upstream of 
Reach B, have the following characteristics:
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Reach Width (m) Discharge 
(m3/s)

Slope n

A 3.5 10.0 0.0004 0.020

B 3.0 10.0 0.0160 0.015

Sketch the resulting GVF profi les due to change in the channel characteristics as above.
4.17  For the channel arrangement shown in Fig 4.11, sketch and label the possible types of 

GVF profi les.

4.18  For the channel arrangement shown in Fig. 4.12, sketch and label the possible types of 
GVF profi les.

Fig. 4.11 Problem 4.17

Reservoir

Reservoir
NDL

CDL

Horizontal

Fig. 4.12 Problem 4.18

CDL

CDL

NDL

NDL

Sluice Gate

OBJECTIVE QUESTIONS

4.1  In terms of conveyances and section factors, the basic differential equation of GVF can 
written as dy/dx = 

(a) S
K K

Z Zc

0
0

2

2

1

1

−( )
−( )

/

/
 (b) S

K K

Z Zc

0
0

2

2

1

1

−( )
−( )

/

/

(c) S
K K

Z Zc

0
0

2

2

1

1

−( )
−( )

/

/
 (d) S

K K

Z Zc

0
0

2

2

1

1

−( )
−( )

/

/
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186 Flow in Open Channels

4.2 In GVF profi les as the depth y→ y
c
 ,

(a) dy

dx
→ 0  (b) dy

dx
→ ∞

(c) dy

dx
S→ 0

 (d) dy

dx
→  a fi nite value

4.3  For a wide rectangular channel, if the Manning’s formula is used, the differential equation 
of GVF becomes dy/dx =

(a) S
y y

y yc

0
0

3 33

3 33

1

1

−( )
−( )

/

/

.

.
 (b) S

y y

y yc

0
0

3 33

3

1

1

−( )
−( )

/

/

.

(c) S
y y

y yc

0
0

3 33

3

1

1

−( )
−( )

/

/

.

 (d) S
y y

y yc

0
0

3

0

3 33

1

1

−( )
−( )

/

/
.

4.4  For a very wide rectangular channel, if Chezy formula is used, the defferential equation of 
GVF is given by dy/dx =

(a) S
y y

y yc

0
0

3 33

3 33

1

1

−( )
−( )

/

/

.

.
 (b) S

y y

y yc

0
0

3

3

1

1

−( )
−( )

/

/

(c) S
y y

y yc

0
0

3

3 33

1

1

−( )
−( )

/

/
.

 (d) S
y y

y yc

0
0

3 33

3

1

1

−( )
−( )

/

/

.

4.5  Uniform fl ow is taking place in a rectangular channel having a longitudinal slope of 0.004 
and Manning’s n = 0.013. The discharge per unit width in the channel is measured as 
1.2 m3 / s /m. The slope of the channel is classifi ed in GVF analysis as
(a) mild (b) critical
(c) steep (d) very steep

4.6  In a GVF, dy/dx is positive if

(a) K > K
0
 and Z > Z

c
 (b) K > K

0 
 and Z< Z

c

(c) K
0
 > K

c
 and Z

0
 > Z

c
 (d) Z > K and Z

c 
> K

0 

4.7  A 2.0-m wide rectangular channel has normal depth of 1.25 m when the discharge is 
8.75 m3/s. The slope of the channel is classifi ed as
(a) steep (b) mild
(c) critical (d) essentially horizontal

4.8  Identify the incorrect statement:
The possible GVF profi les in
(a) mild slope channels are M

1
, M

2
 and M

3

(b) adverse slope channels are A
2
 and A

3

(c) horizontal channels are H
1 
and H

3

(d) critical slope channels are C
1
 and C

3

4.9  The following types of GVF profi les do not exist:
(a) C

2
, H

2
, A

1 
(b) A

2
, H

1
, C

2

(c) H
1
, A

1
, C

2 
(d) C

1
,
 
A

1
, H

1
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4.10 The total number of possible types of GVF profi les are
(a) 9 (b) 11
(c) 12 (d) 15

4.11 dy/dx is negative in the following GVF profi les:
(a) M

1
, S

2
, A

2
 (b) M

2
, A

2
, S

3

(c) A
3
, A

2
, M

2 
(c) M

2
, A

2
, H

2
, A

2

4.12 If in a GVF dy/dx is positive, then dE/dx is:
(a) always positive (b) negative for an adverse slope
(c) negative if y > y

c
 (d) positive if y > y

c
4.13 In a channel the gradient of the specifi c energy dE/dx is equal to

(a) S
0
 − S

f
 (b) S

f
 − S

0 

(c) S
0
 − S

f 

dy

dx
−  (d) S

0
 (1 − F 2

 
)

4.14 In a wide river the depth of fl ow at a section is 3.0 m, S
0
 = 1 in 5000 and q = 3.0 m3/s 

per metre width. If the Chezy formula with C = 70 is used, the water surface slope rela-
tive to the bed at the section is
(a) −2.732×10

−4
 (b) 1.366×10

−4

(c) 1.211×10
−5

  (d) −6.234×10
−4

4.15 The M
3
 profi le is indicated by the following inequality between the various depths:

(a) y
0 
> y

c 
> y (b) y > y

0 
> y

c

(c) y
c 
> y

0 
> y (d) y > y

c
 > y

0

4.16  A long prismatic channel ends in an abrupt drop. If the fl ow in the channel far upstream 
of the drop is subcritical, the resulting GVF profi le
(a) starts from the critical depth at the drop and joins the normal depth asymptotically
(b) lies wholly below the critical depth line
(c) lies wholly above the normal depth line
(d)   lies partly below and partly above the critical depth line

4.17 When there is a break in grade due to a mild slope A changing into a mider slope B, the 
GVF profi le produced is
(a) M

3 
curve on B (b) M

2
 curve on B

(c) M
1
 curve on B (d) M

1
 curve on A

4.18  In a channel the bed slope changes from a mild slope to a steep slope. The resulting GVF 
profi les are
(a) (M

1
, S

2
 ) (b) (M

1
, S

3
 )

(c) (M
2
, S

2
 ) (d) (M

2
, S

1
 )

4.19 A rectangular channel has B = 20 m, n = 0.020 and S
0
 = 0.0004. If the normal depth is 

1.0 m, a depth of 0.8m in a GVF in this channel is a part of
(a) M

1
 (b) M

2

(c) M
3
 (d) S

2
 

4.20 A rectangular channel has uniform fl ow at a normal depth of 0.50 m. The discharge 
intensity in the channel is estimated as 1.40 m3/s/m. If an abrupt drop is provided at the 
downstream end of this channel, it will cause
(a) M

2 
type of GVF profi le

(b) S
2
 type of GVF profi le

(c) No GVF profi le upstream of the drop
(d) M

1
 type of profi le

4.21  The fl ow will be in the supercritical state in the following types of GVF profi les:
(a) All S curves (b) M

2

(c) A
3
, M

3
, S

2
 (d) S

2
, M

2
, S

3
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188 Flow in Open Channels

4.22 At the transitional depth

(a) 
dy

dx
= ∞

(b) the slope of the GVF profi le is zero
(c) dy/dx = −S

0

(d) the slope of GVF profi le is horizontal
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5.1 INTRODUCTION

Almost all major hydraulic-engineering activities in free-surface fl ow involve the 
computation of GVF profi les. Considerable computational effort is involved in the 
analysis of problems, such as (a) determination of the effect of a hydraulic struct ure 
on the fl ow pattern in the channels, (b) inundation of lands due to a dam or weir con-
struction, and (c) estimation of the fl ood zone. Because of its practical importance the 
computation of GVF has been a topic of continued interest to hydraulic engineers for 
the last 150 years. Dupuit (1848) was perhaps the fi rst to attempt the integration of the 
differential equation of GVF [Eq. (4.8)]. In the early periods the effort was to integrate 
[Eq. (4.8)] through the use of a simple resistance equation (such a Chezy equation 
with constant C ) and through other simplifi cations in the channel geometry (wide 
rectangular channel, parabolic channel, etc.). Bakhmeteff 1 developed a fairly satis-
factory method involving the use of varied-fl ow functions applicable to a wide range 
of channels. This method has undergone successive refi nements, through various correc-
tions, from time to time by subsequent research workers in this fi eld and fi nally in 1955 
Chow 2 evolved a fairly comprehensive method using only one varied-fl ow function.

Simultaneously, with the development of direct integration as above, to meet the 
practical needs, various solution procedures involving graphical and numerical meth-
ods were evolved for use by professional engineers. The advent of high-speed com-
puters has given rise to general programmes utilizing sophisticated numerical 
techniques for solving GVF in natural channels. The various available procedures for 
computing GVF profi les can be classifi ed as:

1. Direct integration
2. Numerical method
3. Graphical method

Out of these the graphical method is practically obsolete and is seldom used. Fur-
ther, the numerical method is the most extensively used technique. In the form of a 
host of available comprehensive softwares, it is the only method available to solve 
practical problems in natural channels. The direct integration technique is essentially 
of academic interest. This chapter describes the theory of GVF computations and a 
few well established procedures and specifi c methods which have possibilities of 
wider applications.

Gradually Varied 

Flow Computations 5
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190 Flow in Open Channels

5.2 DIRECT INTEGRATION OF GVF DIFFERENTIAL EQUATION

The differential equation of GVF for the prismoidal channel, from Eq. 4.12, given by

 

dy

dx
S

K K

Z Z
F y

c

=
−( )
−( )

= ( )0

0
2 2

2 2

1

1

/

/  

is a non-linear, fi rst order, ordinary differential equation. This can be integrated by 
analytical methods to get closed from solutions only under certain very restricted 
conditions. A methods due to Chow2, which is based on certain assumptions but 
applicable with a fair degree of accuracy to a wide range of fi eld conditions, is 
presented here.

Let it be required to fi nd y = f (x) in the depth range y
1
 to y

2
. The following two 

assumptions are made:

1. The conveyance at any depth y is given by

 K 2 = C
2 
y N  (5.1)

and at the depth y
0
 by

 K
0
2 = C

2 
y

0
 N (5.2)

This implies that in the depth range which includes y
1
, y

2
 and y

0
, the coeffi cient 

C
2
 and the second hydraulic exponent N are constants.

2. The section factor Z at any depth y is given by

 Z
2
 = C

1 
y M (5.3)

and at the critical depth y
0
 by 

 Z
c
2 = C

1 
y

c
M (5.4)

implying that in the depth range which includes y
1
, y

2
 and y

c 
, the coeffi cient C

1
 and 

the fi rst hydraulic exponent M are constants. 

Substituting the relationships given by Eqs 5.1 through 5.4 in Eq. 4.12,

 

dy

dx
S

y y

y y

N

c

M
=

−( )
−( )

0
01

1

/

/  

(5.5)

Putting u = y/y
0 
,
 
dy = y

0 
 du and Eq. 5.5 simplifi es to

 

du

dx

S

y

u

y y
u

N

c
M M

M

=
−

−( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

0

0
0

1 1

1
1
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i.e. dx
y

S u

y

y

u

u
du

N
c

M N M

N
= −

−
+

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−
0

0 0

1
1

1 1
 

Integrating

 x
y

S
u

du

u

y

y

u

u
du

N
c

M N M

N

uu

= −
−

+
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

∫∫0

0 0
00 1 1

++ Const. (5.6)

Calling 
du

u
F u N

N

u

10 −
= ( )∫ ,  

the second integral can be simplifi ed as follows:

Put v uN J=  where J
N

N M
=

− +( )1
 

to get dv
N

J
u du

N

J=
−1

 

= (N – M + 1) uN−M du

∴  
u

u
du

N M

dv

v

N M

N

u

J

v−

−
=

− +( ) −∫ ∫1

1

1 10 0  

     = ( )J

N
F v J,  (5.8)

It may be noted that F(v, J) is the same function as F(u, N) with u and N replaced 
by v and J respectively.
Eq. 5.6 can now be written as

 
x

y

S
u F u N

y

y

J

N
F v Jc

M

= − ( )+
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ ( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0

0 0

, ,
 

(5.9)

Using Eq. 5.9 between two sections (x
1
, y

1
) and (x

2
, y

2
) yields

 
x x

y

S
u u F u N F u N2 1

0

0
2 1 2 1−( ) = −( )⎡

⎣ − ( ){ − ( )}, ,
 

 +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ ( )− ( )}{ ⎤

⎦⎥
y

y

J

M
F v J F v Jc

M

0
2 1, ,  (5.10)

The function F(u, N ) is known as the varied-fl ow function. Extensive tables of 
F(u, N) are readily available1,2,3 and a table showing F(u, N ) for a few values of N is 
presented in Table 5A.1 in Appendix 5A at the end of this chapter.

A method of obtaining the exact analytical solutions of 
du

uN

u

10 −∫  for integral 

and non-integral values of N is given by Gill4. Numberical integration of 
du

uN

u

10 −∫  
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can be performed easily on a computer to obtain tables of varied-fl ow functions. 
Bakhmeteff gives a procedure for this in the appendix of his treatise1.

In practical applications, since the exponents N and M are likely to depend on the 
depth of fl ow, though to a smaller extent, average values of the exponents applicable 
to the ranges of values of depths involved must be selected. Thus the appropriate 
range of depths for N includes y

1
, y

2
, and y

0 
; and for M it includes y

1
, y

2
, and y

0
. In 

computing water-surface profi les that approach their limits asymptotically (e.g. y → y
0  
), 

the computations are usually terminated at y values which are within 1 per cent of 
their limit values.

Example 5.1  A trapezoidal channel has a bed width B = 5.0 m, S
0
 = 0.0004, 

side slope m = 2 horizontal : 1 vertical and n = 0.02. The normal depth of fl ow y
0
 = 

3.0 m. If the channel empties into a pool at the downstream end and the pool elevation 
is 1.25 m higher than the canal bed elevation at the downstream end, calculate and plot 
the resulting GVF profi le. Assume α = 1.0. 

Solution For uniform fl ow: y
0
 = 3.0 m

                                         A
0 
= (5 + 2 × 3.0) × 3.0 = 33.0 m2

         P0
25 2 1 2 3 0 18 41= + + × =. . m 

                                        R
0
 = 33.0 /18.41 = 1.793 m

                                         Q Q= = × ( )( ) =0

2 31

0 02
33 0 1 793 0 0004 48 70

.
. . . . m3/s

For critical-depth calculation:

φ = =
( ) ×

×( )
=

m Q

g B

1 5

2 5

1 5

2 5

2 0 48 70

9 81 5 0
0 7867

.

.

.

.
.

. .

. .
.

From Table 2A.2.                            ζ
c
 = my

B
c = 0.676

 Critical depth y
c
 = 1.690 m. 

Since y
0 
> y

c
 , the channel slope is mild. Also, since the downstream pool elevation is 

1.25 m above the channel bed while y
c 
=1.69 m, the downstream control will be the crit_

ical depth. The water-surface profi le will be an M
2
 curve extending from y

c
= 1.69 m 

at the downstream end to y → y
0
 = 3.0 m at the upstream end.

In the fl ow profi le the following ranges of parameters are involved:
depth y = 3.00 m to 1.69 m

y/B = 0.60 to 0.338

 N = 4.17 to 3.88 (From Fig. 3.8)

 M = 3.94 to 3.60 (From Fig. 2.8)
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For computation purposes, average constant values of N = 4.0 and M = 3.75 are 
selected.

For use in Eq. 5.9,

u = y/3.00, and       J = 
N

N M− +1
  = 

4 0

1 25

.

.
 = 3.2

  
y

S
0

0

 = 7500

v = uN/J = u1.25, 
y

y
c

M

0

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

J

N
=

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ =

1 69

3 00

3 2

4 0
0 093

3 75
.

.

.

.
.

.

 

Equation 5.9 for calculation of the distance x reduces to 

           x = 7500 [u – F(u, 4.0) + 0.093 F(v, 3.2)] + Const.

The calculations are performed in the manner shown in Table 5.1.
The calculations commence from the downstream control depth of y

c
 = 1.69 m and 

are terminated at y = 2.97 m, i.e. at a value of depth which is l per cent less than y
0
. 

N = 4.0 M = 3.75 J = 3.2 u = y/3.0 v = u1.25

y(m) u v F(u, 4.0) F(v, 3.2 ) x
(m)

Δx
(m)

L
(m)

  1.69  0.563  0.488   0.575    0.501       259        0        0

  1.80  0.600  0.528   0.617    0.547       254        5        5

  1.89  0.630  0.561   0.652    0.585       243      11      16

  2.01  0.670  0.606   0.701    0.639       213      30      46

  2.13  0.710  0.652   0.752    0.699       173      40      86

  2.25  0.750  0.698   0.808    0.763         97      76    162

  2.37  0.790  0.745   0.870    0.836       –17    114    276

  2.49  0.830  0.792   0.940    0.918     –185   168    444

  2.61  0.870  0.840   1.025    1.019     –452   267     711

  2.73  0.910  0.889   1.133    1.152     –869    417  1128

  2.82  0.940  0.926   1.246    1.293   –1393    524  1652

  2.91  0.970  0.967   1.431    1.562   –2368    975  2627

  2.94  0.980  0.975   1.536    1.649   –3020    652  3279

  2.97  0.990  0.988   1.714    1.889   –4112  1092  4371

Table 5.1 Computation of GVF Profi le: Example 5.1
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194 Flow in Open Channels

In nominating the depths in the fi rst column, it is advantageous if u values are fi xed at 
values which do not involve interpolation in the use of tables of varied-fl ow functions 
and the corresponding y values entered in the fi rst column. If the value of u or v is 
not explicity given in the varied-fl ow function tables, it will have to be interpolated 
between two appropriate neighbouring values, e.g. to fi nd F(v, J ) = F((0.698, 3.2),
Table 5A. l is used to give F(0.69, 3.2) = 0.751 and F(0.70, 3.2) = 0.766. By linear 
interpolation between these two values, F (0.698, 3.2) is taken as 0.763.

The last column indicates the distance from the downstream end to the various 
sections. It can easily be appreciated that the necessary interpolations in the use of 
the varied-fl ow function table not only make the calculations laborious but are also 
sources of possible errors. Another source of error is the fi xing of constant values of 
N and M for the whole reach. The computed profi le is plotted in Fig. 5.1 (note the 
highly-exaggerated vertical scale to show details).

If the distance between two sections of known depth is required, the evaluation of 
the varied-fl ow functions at intermediate steps is not needed.

ya = 3.0 m

CDLyb = 1.69 m NDL

POOL
0.75 m

1.50 m

0 0

2.25 m

3.00 m

4500 m 3000 m 1500 m

S0 = 0.0004

Δ

Fig. 5.1 GVF profi le for Example 5.1

Section y
(m)

u v F ( u,  4) F (v, 3.2)

A
B

1.80
2.25

0.60
0.75

0.528
0.698

0.617
0.808

0.547
0.763

Difference 0.15 0.191 0.216

Example 5.2
 Find the distance between two Sections A and B of Example 5.1, 

given y
A
 =1.80 m and y

B 
= 2.25 m.

Solution Referring to the basic calculations performed in Example 5.1, the follow-
ing u, v and F values are evaluated:
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The distance between A and B is calculated by using Eq. (5.10) as
L = x

B
 – x

A
 = 7500 (0.15 – 0.191 + 0.093 (0.216))

                   = 157 m (the –ve sign is not signifi cant)
If it is required to fi nd the depth y

2
 at a section distance Δ

 
 x from a given section 

where the depth is y 
1 , 

one has to calculate the distances to a few selected depths and 
determine the required depth by interpolation.

Example 5.3
 Given y

1
 = 2.25 m in Example 5.1, fi nd the depth at a distance of 

1300 m upstream of this section.

Solution At y
1 
= 2.25 m, u

1
 = 0.75. Select a set of two u values (and hence two 

depths) as a trial. The calculations are as follows:

Section y
(m)

u v F(u, 4.0) F(v, 3.2) x
(m)

Δ x
(m)

L
(m)

1 2.25 0.75 0.698 0.808 0.763      97    0       0

2 2.73 0.91 0.889 1.133 1.152   –869 966   966

3 2.82 0.94 0.926 1.246 1.293 –1393 524 1490

By interpolation between Sections 2 and 3, the depth at a distance of 1300 m from 
the Section 1 is

 
y = +

−
−

× −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =2 73

2 82 2 73

1490 946
1300 966 2 787.

( . . )

( )
( ) . m

 

5.3 BRESSE’S SOLUTION

For a wide rectangular channel, if the Chezy formula with C = constant is used the 
hydraulic exponents take the value M = 3.0 and N = 3.0. By putting these values of 
M = 3.0 and N = 3.0 in Eq. (5.9) the GVF profi le would be

 x
y

S
u

y

y
F uc= − −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0

0 0

3

1 3, ++  a constant (5.11)

And from Eq. (5.7)

 
F u

du

u

u

,3
1 30

( ) =
−∫

 

The function F(u, 3) was fi rst evaluated by Bresse in 1860 in a closed form as

F u,3
1

6
1( ) = n u u

u

2

2

1

1

1

3

+ +

−( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
− arctan 3

2 1u +

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥
+ a constant (5.12)
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196 Flow in Open Channels

F (u, 3) is known as Bresse’s function.  Apart from historical interest, values of 
Bresse’s function being based on an exact solution are useful in comparing the rela-
tive accuracies of various numerical schemes of computation.

[Note: Table 5A–1 has a constant of value 0.6042 added to all values of F(u, N ).

Bresse’s solution is useful in estimating approximately the length of GVF profi les 
between two known depths. The length of M

1
 profi le from 150% of normal depth 

downstream to 101% of normal depth upstream can be shown to be given by

             LS

y
F0

0

21 654 1 164= −. .   (5.13)

where F is the Froude number of the normal fl ow in the channel.
In general the length of the GVF profi le between two feasible depths are given by

 LS

y
A BF0

0

2= +  (5.14)

where values of A and B for some ranges are as given below:

Value
of A

Value of
B

Range of percentage 
of y/y

0
 values

Typical case

  0.599 – 0.869 97% to 70% M
2
 curve

  0.074 – 0.474 70% to 30% M
2
 curve

  1.654 – 1.164 101% to 150% M
1
 curve

  1.173 – 0.173 150% to 250% M
1
 curve

–1.654    1.164 150% to 101% S
2
 curve

Example 5.4  A 50-m wide river has an average bed slope of 1 in 10000. Com-
pute  the backwater curve produced by a weir which raises the water surface imme-
diately upstream of it by 3.0 m when the discharge over the weir is 62.5 m3/s.  What 
will be the raise in water level at a point that is 35 km upstream of the weir? Use 
Chezy’s resistance equation with C = 45 and use Bresse’s backwater functions.

Solution Here, Q = 62 5. m3/s and q = 62.5/50 = 1.25 m3/s/m width

By Chezy formula          q Cy S= 0
3 2

0  

 1 25 45 0 00010
3 2. .= × y

 
        y

0 
= 1.976 m

Critical depth y
c
 is given by y

q

gc =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
( )⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
=

2 1 3 2 1 3

1 25

9 81
0 542

.

.
. m
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y

y

y

S
c

0

0

0

0 274 19760= =. ,  and u y= 1 976.  

Bresse’s backwater equation for wide rectangular channels is

 x
y

S
u

y

y
F uc= − −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

+0

0 0

3

1 3[ ( , )]  Constant

 u F u= − −{ }×19760 1 0 9794 3[ . ( , )] + Constant 

                  x u F u= − −{ }×19760 1 0 9794 3[ . ( , )] + Constant (5.15)

Using this equation the backwater curve is calculated as in the following Table. The 
calculations are continued up to 1.01 times the normal depth.
y

1
 = 3.0 + 1.976 = 4.976 m

By linear interpolation between sections at distances 33750 and 42946 m the depth 
at the section that is 35 km upstream of the weir is 2.331 m.
Rise in the water level at this section = 2.331 – 1.976 = 0.355 m.

Example 5.5  (a) Integrate the differential equation of GVF for a horizontal 
channel to get the profi le equation as

x
y

S

y y

N M

y y

N
c

c

c

N M

c

N

=
( )

− +
−

( )
+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+

− + +1 1

1 1
constant

where S
c
 = critical slope.

Depth
y (m)

u F(u,3) x from
Eq (i)

x
(m)

Distance 
from The weir 

L (m)

4.976 2.518 0.082 48173.1      0

4.347 2.200 0.017      43143 5030 5030

3.952 2.000 0.132 36965.5 6178 11208

3.557 1.800 0.166 32355.5 4610 15818

3.162 1.600 0.218 27397.2 4958 20776

2.766 1.400 0.304 21780.9 5616 26392

2.371 1.200 0.48 14422.9 7358 33750

2.075 1.050 0.802     5227.53 9195 42946

2.016 1.020 1.191   –2893.29 8121 51066

1.996 1.010 1.419   –7503.19 4610 55676

Table 5.2 GVF Profi le Computations – Example 5.4
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198 Flow in Open Channels

(b) Using the result of part (a) above develop an equation for GVF profi le in a 
wide, rectangular, horizontal channel.

Solution    dy

dx

S S

Q T

gA

f=
−

−

0

2

3
1

  (5.16)

For a horizontal channel S
0
 = 0

Also,  S
Q

K

K S

K

y

y
Sf

c c c

N

c= = =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2

2

2

2
 

Further,                              
Q

g
Zc

2
2=  and 

A

T
Z

3
2=

Thus                                Q T

gA

y

y
c

M2

3
=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

Equation 5.16 is now written as  dy

dx

y

y
S

y

y

c

N

c

c

M
=

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟1

                                        

− = −( )⎡
⎣⎢

⎤
⎦⎥ ( )

dx S y y
y y

dyc c

M

c

N
. 1

1

                                                           

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−
y

y

y

y
dy

c

N

c

N M

                                                ∴ − =
( )

+
−

( )
− +

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+

+ − +

S x y
y y

N

y y

N Mc c
c

N

c

N M1 1

1 1
Constant

                                                   ∴ =
( )

− +
−

( )
+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+

− + +

x
y

S

y y

N M

y y

N
c

c

c

N M

c

N1 1

1 1
Constant

(b) For a wide rectangular channel, by Eq. 3.62 (a) S
n g

yc

c

=
2

1 3
,

Noting that N = 10/3 and M = 3,
Substituting for S

c
, N and M in the result of Part (a), viz., that for a horizontal rect-

angular channel,

∴ =
( )

− +
−

( )
+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+

− + +

x
y

S

y y

N M

y y

N
c

c

c

N M

c

N1 1

1 1
Constant, 

we get for a wide rectangular, horizontal channel, the GVF profi le as
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 ∴ = ( ) − ( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+x

y

n g
y y y yc

c c

4 3

2

4 3 13 33

4

3

13
constant   

5.4  CHANNELS WITH CONSIDERABLE  VARIATION IN
HYDRAULIC EXPONENTS

There are many channel shapes which have appreciable variation of the hydraulic 
exponents with the depth of fl ow.  A circular channel is a typical example of such 
channels with the variation of the hydraulic exponents with y/D being as shown in 
Fig. 5.2. In such channels

 K C yN2
2=  and K C yN

0
2

20
0=  (5.17)

where the suffi x ‘0’ refers to normal-depth conditions.
Similarly,

 Z C yM2
1=  and Z C yc c

Mc2
1=  (5.18)

in which the suffi x ‘c’ refers to critical-fl ow conditions.  Substituting Eqs 5.17 and 
5.18 in the differential equation of GVF [Eq. (4.12)]

 dy

dx
S

C

C

y

y

C

C

N

N

c

=

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−
⎛

⎝
⎜⎜⎜⎜

⎞0

20

2

0

1

1

1

1

0

⎠⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

y

y
c

Mc

M

  (5.19)

M

N

y/
D

1.00

0.10

0.02

2.0 3.0 4.0 5.0

Fig. 5.2 Variation of N and M for a circular channel [6]

When there is considerable variation in the values of hydraulic exponents with the depth,

N N M Mc≠ ≠0 ,  and as such C C20 2≠  and C Cc1 1≠ .
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Obviously, Eq. (5.9) cannot be used as a solution of Eq. 5.19
Assuming C C20 2=  and C Cc1 1=  Chow3 has obtained the solution of Eq. 5.19 as

       x
y

S
u F u N

y

y

J

N
F v

N N
c

Mc M

N N

M

= − ( )+
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

0

0 0

0

0
, , JJ( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 a constant (5.20)

In which u y y N N= 0
0 . However, it has been shown6 that this assumption is not valid 

and Eq. 5.20 may give considerable errors. A generalised procedure for direct integration 
of Eq. 5.19 using the varied-fl ow function is given by Subramanya and Ramamurthy5.

5.5 DIRECT INTEGRATION FOR CIRCULAR CHANNELS 

5.5.1 Keifer and Chu’s method

The direct integration of the differential equation of GVF by Chow’s method is very 
inconvenient to use in the computation of GVF profi les in circular channels.

A different approach of integration of the differential equation of GVF for circular 
channels, developed by Keifer and Chu6, simplifi es the calculation procedure 
considerably.

Let Q be the actual discharge in a circular channel of diameter D and bed slope S
0
.

Then

 Q K S f=  (5.21)

and  Q K S= 0 0
 (5.22)

where K and K
0
 are the conveyance at depths y and y

0
 respectively, y

0 
= normal depth, 

S
f
 = energy slope at depth y. Let Q

D 
= a hypothetical discharge corresponding to 

uniform fl ow with the channel fl owing full.
Then

 Q K SD D= 0  (5.23)

where K
D
 = conveyance at depth D.

i.e.             K
n

D DD = ( ) ( )1
4 42 2 3

π  

 

K

K

K

K

K

KD

D0

2

0

2 2⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ =

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟  

But                            K

K

D D

AR
f y DD

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ =

( )( )⎡

⎣

⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥⎥
=

2 2 2 3

2 3 1

4 4π
( )  
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and      
K

K

Q

Q
Q

D D

r
0

2 2
2⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= ( )  (5.24)

∴       
K

K
Q f y Dr

0

2

2
1

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ = ( )  (5.25)

The differential equation of GVF, Eq. 4.12, becomes

                                               

dy

dx
S

Q f y D

Q T gA
r=

− ( )
−0

2
1

2 3

1

1  

Noting that                     
Q T

gA

Q

g D

T D

A D

Q

gD
f y D

2

3

2

5 3 6

2

5 2

1
=

( )
= ( ) (5.26)

and putting                          y D = η  

 

d

dx

S

D

Q f

Q

gD
f

rη η

η
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− ( )
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⎢
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D

S

d
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Q

gD

f d

Q fr r

=
− ( )

−
( )

− ( )

⎡

⎣
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⎢
⎢

⎤
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Integrating,

 x
D

S

d

Q f

Q

gD

f d

Q fr r

=
− ( )

−
( )

− ( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+∫∫

0
2

1

2

5

2

2
1

00 1 1

η
η

η η

η

ηη
 Const. (5.27)

∴  x
D

S
I

Q

gD
I= −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ +

0
1

2

5 2 Const. (5.28)

where  I
d

Q f
I Q

r

r1 2
1

1
0 1

=
− ( )

= ( )∫
η

η
η

η
,  

and  I
f d

Q f
I Q

r

r2
2

2
1

2
0 1

=
( )

− ( )
= ( )∫

η η

η
η

η
,  

Functions I
1
 and I

2
 are known as Keifer and Chu functions and are available in 

slightly different forms in References 3, 6 and 7. The computation of GVF profi les in 
circular channels is considerably simplifi ed by the use of these functions. Since 
y D f= = −( ) = ( )η θ θ1 2 1 cos  where 2θ =  angle subtended by the water surface 

at the centre of the section the functions I
1 
and 

 
I

2 
 can also be represented as I

1 
(Q

r
, θ ),

 

and I
2 
(Q

r
, θ). Tables 5A.2(a) and  5A.2(b) in Appendix 5A show the functions I

1 
and 
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I
2 
 respectively, expressed as functions of Q

r
 and θ π . Reference 7 gives details of 

evaluating the integrals to get  I
1 
and 

 
I

2
. Example  5.6 illustrates the use of Keifer and 

Chu method [Eq. 5.28] for circular channels.
It may be noted that the functions I

1 
and 

 
I

2 
 are applicable to circular channels 

only. However, a similar procedure of non-dimensionalising can be adopted to any 
other channel geometry, e.g. oval and elliptic shapes, and functions similar to I

1 
and 

 

I
2 
 can be developed. Applications of the above procedure for use in rectangular chan-

nels is available in literature8.

Example 5.6  A 2.0-m diameter circular concrete drainage pipe (n = 0.015) is 
laid on a slope of 0.001 and carries a discharge of 3.0 m3/s. If the channel ends in a 
free overfall, compute the resulting GVF profi le.

Solution Q = 3.0 m3/s

               QD = × ×
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ×

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ × =

1

0 015 4
2

2 0

4
0 001 4 172

2 3

.

.
. .

π  m3/s 

For normal depth,
Qn

S D0
8 3

0 2241= . , and

from Table 2.A1, y D0 0 628/ .= , giving y
0
 = 1.256 m, and ( / ) .2 2 0 5820θ π = .

For critical depth, 
Q

g D

1
0 1693

2 5.
.=  and 

from Table 2A.1, y Dc / .= 0 411, giving y
c 
= 0.822 m, and ( / ) .2 2 0 443θ π c = .

 Q
r
 = Q/Q

D
 = 0.719 

                                            Q2/gD5 = 0.0287 

Since y
0 
> y

c 
, the channel is on a mild slope. The downstream control will be the 

critical depth y 
c
 = 0.822 m. The GVF profi le is an M

2
 curve extending from the criti-

cal depth upwards to the normal depth.
The calculations are performed by using the Keifer and Chu method. Equation 5.28 

reduces to

 x = 2000 [I 
1
 – 0.0287 I

2
] + Const. 

Values of (2θ/2π) in the range 0.443 to 0.582 are selected and by referring
to Tables 5A.2(a) and 5A.2(b), values of I

1  
and I

2
 corresponding to a known θ and 

Q
r
 = 0.719 are found by interpolation. For a given value of (2θ /2π) the value of 

y/D is found by the relation y/D = 
1

2
 (1 – cos θ). The values of x and Δ x between 
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A plot of y vs L gives the requisite profi le.
Some errors in the interpolation of  I

1 
and I

2
 functions are usually involved in the 

use of the tables. For greater accuracy, detailed tables of I
1
and I

2 
at closer intervals of 

Q
r
 and θ/π have to be generated and used.

5.6 SIMPLE NUMERICAL SOLUTIONS OF GVF PROBLEMS

The numerical solution procedures to solve GVF problems can be broadly classifi ed 
into two categories as:

(a) Simple Numerical Methods These were developed primarily for hand 
computation. They usually attempt to solve the energy equation either in the form of 
the differential energy equation of GVF or in the form of the Bernoulli equation.

(b) Advanced Numerical Methods These are normally suitable for use in digi-
tal computers as they involve a large number of repeated calculations. They attempt 
to solve the differential equation of GVF [Eq. (4.8)].

The above classifi cation is a broad one as the general availability of personal com-
puters (PCs) have made many methods under category (b) available for desk-top cal-
culations. Two commonly used simple numerical methods to solve GVF problems, viz. 
(i) Direct-step method and (ii) Standard-step method are described in this section.

5.6.1 Direct-Step Method

This method is possibly the simplest and is suitable for use in prismatic channels. 
Consider the differential-energy equation of GVF [Eq. (4.16)].

Q
r
 = 0.719 D = 2.0 m

x = 2000 (I
1 
– 0.0287 I

2  
) + Const.

2

2

θ
π

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ y/D y (m) I

1
I

2

 
  x
(m)

Δx
(m)

L
(m)

0.443
0.460
0.500
0.530
0.550
0.570

0.411
0.437
0.500
0.547
0.578
0.609

0.822
0.875
1.000
1.094
1.156
1.218

0.0245
0.0346
0.0762
0.1418
0.2296
0.4983

3.4470
3.7551
4.6263
5.5188
6.4334
8.6787

 –149
 –146
 –113
   –33
  +90
+498

    0
    3
  33
  80
123
408

    0
    3
  36
116
329
647

Table 5.3 GVF Profi le Computation – Example 5.6

two successive values of y are found by using Eq. (5.28). The calculations are 
performed in the following tabular form:
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dE

dx
S S f= −0  

Writing this in the fi nite-difference form

 
Δ
Δ

E

x
S S f= −0  (5.29)

Where S f   
= average-friction slope in the reach Δx

∴  Δ
Δ

x
E

S S f

=
−0

 (5.30)

and between two Sections 1 and 2

 
( )

( )

( )
x x x

E E

S S Sf f

2 1
2 1

0 1 2

1

2

− = =
−

− +
Δ

 (5.31)

Equation (5.30) is used as indicated below to calculate the GVF profi le.

Procedure Referring to Fig. 5.3, let it be required to fi nd the water-surface profi le 
between two Sections 1 and (N + 1) where the depths are y

1
 and y

N+1
 respectively. The 

channel reach is now divided into N parts of known depths, i.e., values of y
i 

i =1, N are known. It is required to fi nd the distance Δx
i
 between y

i
 and y

i+1
. Now, 

between the two Sections i and i + 1, 

Energy line

Water surface

Slope S0

Flow

2 1
Δxi

i
i + 1

N
N + 1

yi

yiyi + 1
yN + 1

Vi
2

2g

Fig. 5.3 Direct step method
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 Δ Δ ΔE y
V

g
y

Q

g A
= +

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2 2

22 2
 

 ΔE E E y
Q

gA
y

Q

gAi i i

i

i

i

= − = +
⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥
− +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥+ +

+
1 1

2

1
2

2

22 2
 (5.32)

and S S Sf fi fi= +( )+
1

2
1 = +

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥+ +

n Q

A R A Ri i i i

2 2

2
1 1

4 3 2 4 32

1 1
/ /  

(5.33)

From Eq. (5.30), Δ x
i =

−

−
+E E

S S
i i

f

1

0

.Using Eqs (5.32) and (5.33), Δx
i
 can be

 
evaluated 

in the above expression. The sequential evaluation of Δ x
i
 starting from i = 1 to N, 

will give the distances between the N sections and thus the GVF profi le. The process 
is explicit and is best done in a tabular manner if hand computations are used. Use of 
spread sheet such as MS Excel is extremely convenient.

Example 5.7  For the channel section and fl ow conditions indicated in 
Example 5.1, (a) calculate the GVF profi le from the section having critical depth 
up to a section having a depth of  2.96 m by direct step method. (b) Further, cal-
culate the distance between two sections having depths of 2.30 m and 2.80 m 
respectively.

Solution The flow profile is an M
2 
curve with y

c
 = 1.69 m as the control at the 

downstream end. The calculations start at the control and are carried in the 
upstream direction. The depth range is from 1.60 m to 2.69 m and this is divided 
in to 17 reaches. Calculations are performed on a spread sheet and Table 5.4 
shows the details. Note that non uniform depth increments are adopted; the 
depth increment in a reach is larger if the reach is part of the profile where the 
curvature is high and smaller depth increments are adopted where the curve is 
flatter. This is a procedure commonly adopted in hand computation and there is 
no apparent benefit while computations are carried through the use of a spread 
sheet.

Col. 2 has the normal depth. Cols. 3 through 7 have the area A, wetted perimeter P, 
hydraulic radius R, velocity V and specifi c energy E respectively. Col.8 has the dif-
ference in specifi c energy ΔE of two successive values of E. The friction slope 

S
n V

Rf =
2 2

4 3
 and is indicated in Col.9. The average of two successive S

f
 values is S f  

and is entered in Col. 10.entered Col. 12 contains Δx calculated by using Eq. (5.30), 

i.e., Col

Col

.

.

8

11
. The last column contains cumulative distances from the starting point. 

The negative sign of x does not have any signifi cance other than the location of the 
origin and hence not considered in the last column.
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(b) From Table 5.4 distance between two sections having depths of 2.30 m and 
2.80 m respectively is Δx = 1433.6 – 197.7 = 1235.9 m

Useful hints

•  The calculations must proceed upstream in sub-critical fl ow and downstream 
in supercritical fl ow to keep the errors minimum.

•  The steps need not have the same increment in depth. The calculations are 
terminated at y = (1 ± 0.01) y

0
•  The accuracy would depend upon the number of steps chosen and also upon 

the distribution of step sizes.
•  When calculations are done through use of a hand calculator, care must be 

taken in evaluating ΔE which is a small difference of two large numbers.

Example 5.8  A river 100 m wide and 3.0 m deep has an average bed slope of 
0.0005. Estimate the length of GVF profi le produced by a low dam which raises the 
water surface just upstream if it by 1.50 m. Assume n = 0.035.

B = 5.0 m m = 2.0 S
0 
= 0.0004 Q = 48.70m3/s n = 0.02

1 2 3 4 5 6 7 8 9 10 11 12 13

Sl.

No

y(m) A(m2) P(m) R(m) V(m/s) E (m) ΔE (m) S
f

S
–

f
S

o
-S
–

f
Δx (m) x (m)

 1 1.69 14.162 12.558 1.12775 3.439 2.293 0.00403       0.0

 2 1.80 15.480 13.050 1.18622 3.146 2.304 0.0118 0.00315. 0.00359 -0.00319     -3.7       3.7

 3 2.00 18.000 13.944 1.29085 2.706 2.373 0.0686 0.00208 0.00262 -0.00222   -30.9     34.6

 4 2.10 19.320 14.391 1.34246 2.521 2.424 0.0508 0.00172 0.00190 -0.00150   -33.8     68.5

 5 2.20 20.680 14.839 1.39365 2.355 2.483 0.0588 0.00142 0.00142 -0.00102   -57.4   126

 6 2.30 22.080 15.286 1.44447 2.206 2.548 0.0653 0.00119 0.00131 -0.00091   -71.9   198

 7 2.40 23.520 15.733 1.49493 2.071 2.619 0.0706 0.00100 0.00110 -0.00070 -101.2   299

 8 2.50 25.000 16.180 1.54508 1.948 2.693 0.0749 0.00085 0.00093 -0.00053 -142.2   441

 9 2.60 26.520 16.628 1.59494 1.836 2.772 0.0785 0.00072 0.00079 -0.00039 -202.9   644

10 2.65 27.295 16.851 1.61977 1.784 2.812 0.0404 0.00067 0.00070 -0.00030 -136.1   780

11 2.70 28.080 17.075 1.64453 1.734 2.853 0.0411 0.00062 0.00064 -0.00024 -167.8   948

12 2.75 28.875 17.298 1.66923 1.687 2.895 0.0417 0.00057 0.00060 -0.00020 -211.3 1159

13 2.80 29.680 17.522 1.69387 1.641 2.937 0.0422 0.00053 0.00055 -0.00015 -274.3 1434

14 2.85 30.495 17.746 1.71846 1.597 2.980 0.0428 0.00050 0.00051 -0.00011 -373.5 1807

15 2.88 30.989 17.880 1.73318 1.572 3.006 0.0259 0.00047 0.00049 -0.00009 -304.4 2111

16 2.91 31.486 18.014 1.74788 1.547 3.032 0.0261 0.00045 0.00046 -0.00006 -403.9 2515

17 2.94 31.987 18.148 1.76257 1.522 3.058 0.0262 0.00044 0.00044 -0.00004 -582.6 3098

18 2.96 32.323 18.238 1.77235 1.507 3.076 0.0176 0.00042 0.00043 -0.00003 -596.9 3695

Table 5.4 Computation of Flow Profi le by Direct Step Method (Example 5.7) (Through Use 

of Spread Sheet)
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Wide Rectangular Channel S
0
 = 0.0005 n = 0.035 q = 3.987m3/s/m

  1 2 3 4 5 6 7 8 9 10

Sl. 

No.

y (m) V (m/s) E (m) ΔE (m) S
f

S
–

f
S

0
 - S

–
f

Δx (m) x (m)

  1 4.5 0.886 4.5400 0.0001294      0

  2 4.3 0.927 4.3438 -0.196192 0.0001506 0.0001400 0.000360     -545.015   545

  3 4.1 0.972 4.1482 -0.195621 0.0001765 0.0001636 0.000336     -581.464 1126

  4 3.9 1.078 3.7592 -0.194930 0.0002086 0.0001925 0.000307     -634.001 2475

  5 3.7 1.022 3.9533 -0.194086 0.0002486 0.0002286 0.000271     -715.005 2475

  6 3.5 1.139 3.5661 -0.193043 0.0002991 0.0002738 0.000226     -853.589 3329

  7 3.3 1.208 3.3744 -0.191740 0.0003640 0.0003315 0.000168 -1138.23 4467

  8 3.2 1.246 3.2791 -0.095277 0.0004033 0.0003836 0.000116     -818.624 5286

  9 3.1 1.286 3.1843 -0.094813 0.0004483 0.0004258 7.42E-05 -1277.43 6563

10   3.05 1.307 3.1371 -0.047213 0.0004733 0.0004608 3.92E-05 -1203.54 7767

11   3.03 1.316 3.1182 -0.018846 0.0004837 0.0004785 2.15E-05     -876.666 8644

Table 5.5 Computation of Flow Profi le by Direct Step Method (Example 5.8)

Solution Considering the river as a wide rectangular channel, the discharge per unit 
width is

 
q

n
y S= =

1 1

0 035
3 0 0 00050

5 3
0
1 2 5 3 1 2/ / / /

.
( . ) ( . )

 

          = 3.987 m3/s/m 

The critical depth y
q

gc =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
2 1 3 2 1 3

3 987

9 81
1 175

( . )

.
. m

Since y > y
0
 > y

c 
,
 
the GVF profi le is an M

1
 curve with depth of y = 4.50 m at the low 

dam as the control. The direct step method with 10 steps is used to estimate the length 
of the backwater profi le. The calculations are performed through use of a spread 
sheet and the details are shown in Table 5.5. The calculations are terminated at 3.03 m. 
The length of the profi le is found to be 8644 m.

5.6.2 Standard-step Method

While the direct-step method is suitable for use in prismatic channels, and hence 
applicable to artifi cial channels, there are some basic diffi culties in applying it 
to natural channels. As already indicated, in natural channels the cross-sectional 
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shapes are likely to vary from section to section and also the cross-section infor-
mation is known only at a few locations along the channel. Thus, the problem 
of computation of the GVF profi le for a natural channel can be stated as: Given 
the cross-sectional information at two adjacent sections and the discharge and 
stage at one section, it is required to determine the stage at the other section. The 
sequential determination of the stage as a solution of the above problem will lead 
to the GVF profi le.

The solution of the above problem is obtained by a trial-and-error solution of 
the basic-energy equation. Consider Fig. 5.4 which shows two Sections 1 and 2 
in a natural channel. Section 1 is downstream of Section 2 at a distance Δx. Cal-
culation are assumed to proceed upstream. Equating the total energies at Sections 
1 and 2,

 Z y
V

g
Z y

V

g
h hf e2 2 2

2
2

1 1 1
1
2

2 2
+ + = + + + +α α   (5.34)

where h
f
  = friction loss and h

c 
= eddy loss. The frictional loss h

f
 can be estimated as 

           
h S x S Sf f f f= = +( )Δ

1

2 1 2

 

where S
n V

R

n Q

A Rf = =
2 2

4 3

2 2

2 4 3
 (5.35)

2 1

Energy line

Water surface

he = eddy loss

hf = friction loss

Slope S0

y1

Z1

Datum

Z2

y2

α2
V2

2

2g

α1
V1

2

2g

Δx

∇

Fig. 5.4 Defi nition sketch for the Standard-Step method
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There is no rational method for estimating the eddy loss but it is usually expressed as,

 h C
V V

ge e=
−α α1 1

2
2 2

2

2
 (5.36)

where C
e
 is a coeffi cient having the values as below9.

Nature of Transition Value of Coeffi cient C

Expansion Contraction

1. No transition (Prismatic channel) 0.0 0.0

2. Gradual transition 0.3 0.1

3. Abrupt transition 0.8 0.6

An alternative practice of accounting for eddy losses is to increase the Manning’s n 
by a suitable small amount. This procedure simplifi es calculations in some cases.

Denoting the stage = Z + y = h and the total energy by H, and using the suffi xes 
1 and 2 to refer the parameters to appropriate sections,

 H h
V

g
= +α

2

2
 and Eq. (5.34) becomes

    H H h hf e2 1= + +  (5.37)

The problem can now be stated as: Knowing H
1
 and the geometry of the channel 

at Sections 1 and 2 it is required to fi nd h
2
. This is achieved in the standard-step 

method by the trial-and-error procedure outlined below.

Procedure Select a trial value of h
2
 and calculated H

2
, h

f
 and h

e
 and check whether 

Eq. (5.37) is satisfi ed. If there is a difference, improve the assumed value of h
2
 and 

repeat calculations till the two sides of Eq. (5.37) match to an acceptable degree of 
tolerance. 

On the basis of the i th trial, the (i  + 1) th trial value of h
2
 can be found by the 

following procedure suggested by Henderson11. Het H
E
 be the difference between the 

left-hand side and right-hand side of Eq. (5.37) in the i th trial, i.e. 

 H H H h hE f e= − + +( )⎡
⎣⎢

⎤
⎦⎥2 1  in the i th trial. 

The object is to make H
E
 vanish by changing the depth y

2
.

Hence  
dH

dy

d

dy
y Z

V

g
Z y

V

g
E

2 2
2 2 2

2
2

1 1 1
1
2

2 2
= + + − − −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥α α  

         − + − −
⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

1

2 2 21 2
1 1

2
2 2

2

Δx S S C
V

g

V

gf f e( )
α α  
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Since y
1
, Z

1
, Z

2
 and V

1
 are constants,

        
dH

dy

d

dy
y C

V

g
x SE

e f

2 2
2

2 2
2

21
2

1

2
= + + −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥( )

α
Δ  

 = − + −1 1
1

22
2 2

2

( ) .C F x
dS

dye

fΔ  (5.38)

Where  F
Q T

gA2
2 2

2
2

2
3

=
α

 

For a wide rectangular channel,

     

dS

dy

d

dy

n q

y
S yf

f=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
2 2

10 3
3 33.

 

Hence       dS

dy

S

y

S

R
f f f2

2

2

2

2

2

3 33 3 33
� − = −

. . , leading to

               
dH

dy
C F

S x

R
E

e

f

2
2
2 2

2

1 1
1 67

= − − +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥( )

. .Δ  

If  dH

dy

H

dy
E E

2 2

=
Δ  and Δ y

2
 is chosen such that ΔH HE E= ’ 

 Δ
Δ

y H C F
S x

RE e
f

2 2
2 2

2

1 1
1 67

= − − + +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥( )

.
  (5.39)

The negative sign denotes that Δ y
2
 is of opposite sign to that of H

E
. It may be 

noted that if the calculations are performed in the downward direction, as in super-
critical fl ow, the third term in the denominator will be negative. The procedure is 
illustrated in the following example. Spread sheets, such as MS Excel, are extremely 
convenient to calculate GVF profi le through the use of the standard step method.

Example 5.9  A small stream has a cross section which can be approximated by 
a trapezoid. The cross-sectional properties at three sections are as follows:

Section Distance up the 
River (km)

Bed Elevation (m) Bed Width (m) Side Slope

A 100.00   100.000 14.0 1.5 :1

B 102.00   100.800 12.5 1.5 :1

C 103.50   101.400 10.0 1.5 :1
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Section A is the downstream-most section. For a discharge of 100.0 m3/s in the 
stream, water surface elevation at A was 104.500 m. Estimate the water-surface eleva-
tion at the upstream Sections B and C. Assume n = 0.02 and α = 1.0 at all sections.

Solution The calculations are performed in Table 5.6. In this
Total head H  (Column 7) = Column 4 + Column 6
h

f
 (Column 12) = S

f

–
  
× L =(Column 10) × (Column 11)

h
e
 = C

v

g
Ce eΔ

2

2
0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =with  for expansion.

The first row in the table is based on known information. The second row is 
based on an assumed stage of 105. 200 m (i.e. a depth of 4.400 m) at Section B. 
Column 14 is obtained as {(Column 7 of previous section) + (Column 12 + 
Column 13) of the present section}. It represnts the right-hand side of the Eq. (5.35), 
while column 7 represents the left-hand side of the same equation. It is seen 
that the first trial is not successful as Column 7 ≠ Column 14. For this trial, 
H

E
 =105.272 – 104.797 =0.475 m. Substituting in Eq. (5.39) with C

e
 = 0.3,

F
v

gy
S xf≈ ≈

×
= = × =−2 0 072

4 40
0 0327 1 3308 10 20002

2
2

2 2
4.

.
. , . , Δ  m, R

2
 = 2.963, leads 

to Δy
2
 = – 0.429 m.

The next trial stage is therefore taken as = 105.200 − 0.429 =104.771 m, with a 
depth of fl ow of 3.971 m.

It may, be seen from the third row in Table 5.6 that in the second trial of the stage 
B = 104.771 m, Column 7 and Column 14 agree. It is usual to score out the unsuc-
cessful trials after a better one has been obtained to avoid confusion.

The procedure is repeated for Section C, by applying the energy equation bet-
ween Sections B and C. In the fi rst trial for C, H

E
 = – 0.293 m. The correction Δy

2
 by 

Eq. (5.39) is + 0.244 m. It may be seen that two trials are needed in this section to 
get the correct water-surface elevation.

5.6.3 Standard-step Method for Compound Sections 

A majority of natural channels are compound channels (Fig. 5.5). Since the fl ow 
in fl oodbanks (areas 2 and 3 in Fig. 5.5) is normally at a lower velocity than in the 
main channel, the energy lines corresponding to various sub-areas will be at different 
elevations above the water surface. A convenient method of handling this situation 
is to consider a mean velocity V

–
 for the entire section and to assume the energy line 

to be at a height α
V

g

2

2
above the water surface. Also, a common friction slope S

f
 is 

assumed.
The kinetic-energy correction factor α for the whole section is obtained as 

below:
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If there are N partial areas such that

 A Ai

N

1
∑ = =  total area, 

                       α =
( )

=
( )

⎛

⎝
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⎞

⎠
⎟⎟⎟⎟ ( )

∑
∑

∑

∑ ∑

V A

V A

Q A

Q A

i

N

i

i i

N

i

N

i

1
3

1
3

3 2

1
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3
2

 (5.40)

Since a common friction slope S
f
 is assumed , if K

i
 = conveyance of the i th 

sub-area

 Q K Si i f= and Q Q K Si
i

N

i
i

N

f= =
⎛

⎝
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⎝
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2
 (5.41)

Replacing Q
i
 in Eq. (5.40) by K Si f ,

 
α =

( )
⎛

⎝
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K A
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i i
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2
 

(5.42)

If α
i
 are the kinetic-energy correction factors for the partial areas A

i
, Eq. (5.42) 

becomes

 α
α

=
( )

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
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∑

i i i
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 (5.42-a)
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Fig. 5.5 Flow in compound sections
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214 Flow in Open Channels

Knowing S
f
 and α from Eqs (5.41) and (5.43), the standard-step method can now be 

used.
In calculating the geometrical parameters of the sub-areas, the interface between 

two sub-areas can be considered either as a vertical interface (as indicated by dotted 
lines in Fig. 5.5) or as a diagonal interface or by any other appropriate method indi-
cated in Sec. 3.16.

For a given compound channel section, the value of the kinetic energy correction 
factor α as calculated by Eq. (5.42) varies quite rapidly in the region immediately 
above the overbank level. Fig. 5.6 shows the variation of α with depth y for symmetri-
cal compound section. Note the large values of the gradient dα /dy in  a small region of 
the depth. This gradient dα /dy has serious implications on the defi nition and computa-
tion of critical

 
depth in compound channels as discussed below.
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Fig. 5.6 Variation of α with depth in a symmetric compound channel

[B
m
 = 1.0 m, B

f
 = 3.0 m, y

m
 = 1.0 m, n

m
 = 0.013 and n

f
 = 0.0144 ].

Critical Depth in Compound Channels When a channel has a compound sec-
tion the discharge is usually computed by the method of partial areas using one of 
the two methods outlined in the above section. The kinetic energy correction factor 

α is calculated by Eq. (5.42). The specifi c energy E y
V

g
= +α

2

2
 may have more than 

one local minima or maxima under some combination of discharge and geometry. In 
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such cases the Froude number needs to be properly defi ned so that the condition of 
minimum specifi c energy would correspond to the critical depth.

Several investigators 12. 13. 14 have analytically confi rmed the existence of more 
than one critical depth for compound sections. Blalock and Sturm11 have analyti-
cally and experimentally demonstrated the existence of more than one critical 
depth in a compound channel. Proper identifi cation  of these depths is necessary 
in steady and unsteady  GVF computations, as the critical depth is an important 
control point. Further, numerical instabilities can be expected in neighbourhood  
of the critical depth.

Figure 5.7 shows a typical plot of the specifi c energy E for the compound channel 
section shown in Fig. 5.8. Three possible types of E vs y plots, shown as Cases 1, 2 
and 3 in Fig. 5.7, depending upon the discharge are possible. In Case 2, the specifi c 
energy has two minima and local maxima.

Blalock and Sturm11 have shown that the Froude number must be defined for 
a compound channel to take care of the variation of the kinetic energy correc-
tion factor α , estimated by Eq. (5.42), with depth adequately so that the Froude 
number will be unity at the local minima or maxima of the specific energy, E . 
Thus as

 E y
Q

gA
= +α

2

22  

at a local minima or maxima of E,

 

dE

dy

Q

gA

dA

dy

Q

gA

d

dy
= − + =1

2
0

2

2

2

2

α α
 

(5.43)

Noting that dA/dy = T

 
α αQ T

gA
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d

dy
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1− =

 

or 
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d
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3 2
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α
−
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⎣
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⎤

⎦
⎥
⎥ =  (5.44)

The Froude number F
c
 for a compound channel section is now defi ned as

 F
Q T

gA

Q

gA

d

dyc = −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

α α2

3

2

2

1 2

2
 (5.45)

The term d

dy

α  in Eq. (5.44) is determined  as

 d

dy

A

K

AT

K

A

K

α σ
σ σ= + −

⎛

⎝
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⎞

⎠
⎟⎟⎟⎟

2
1

3 2 3

2

4 3

2  (5.46)
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in which     σ1

3

3 2=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

∑
K

A
T R

dP

dy
i

i

i i
i

i

 (5.47)

                                           σ2

3

2
=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟∑

K

A
i

ii

 (5.48) 

 σ3 5 2=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

∑
K

A
T R

dP

dy
i

i

i i
i

i

 (5.49)

                                      R
i 
= A

i 
/P

i
 = hydraulic radius of the i th sub-section. 

         T
i 
= top width of i th sub-section. 

Using the above expression for dα/dy, the Eq. (5.45) for F
c
 can be simplifi ed as

 F
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The term dP
i 
/dy in Eqs (5.47) and (5.49) for each sub-section is to be evaluated by 

considering the appropriate boundaries of the sub-section. 
The depth which products F

c
 = 1 is taken as the critical depth. For a compound 

channel section as in Fig. 5.8, if y
m 

= depth of overbank level above the main channel 
bed, usually one critical depth [ point C

1
 in Fig. 5.7] occurs at a depth less than y

m
, i.e. 

y
c1

 < y
m
. Another critical depth [ point C

3
 in Fig. (5.7)] occurs at a depth larger than y

m 
, 

i.e. y
cm

 > y
m
.Between these two depths y

c1
 and y

c3 
between points C

1
 and C

3
 in Fig. 5.7, 

the specifi c energy reaches a local maxima [point C
2
 in Fig. 5.7]. The depth at this con-

dition, y
c2

, could also be considered as a kind of critical depth. Usually y
c2

 is slightly 
larger than y

m
.

For a symmetrical compound channel as in Fig. 5.8 depending upon the magni-
tude of discharge  three distinct cases of occurrence of critical depths can be 
identifi ed.

Case 1.  Only y
c1

 exists. The corresponding E – y plot is shown in Fig. (5.7 – Case 1 ) : Let 
the discharge be called Q

1
.

Case 2.  Only y
c3

 exists. Also y
c3

 > y
m
, Fig (5.7– Case 3 ) shows the corresponding E-y 

plot. Let the discharge be called Q
3
.

Case 3.  All the three critical depths y
c1

, y
c2

 and y
c3

 exist. Also, y
c1

< y
c2

 < y
c3

.

The discharge Q
2
 for Case 2 will be such that Q

1 
< Q

2
 < Q

3
.

As an example, for the symmetrical compound channel section of Fig. 5.8 with B
m
 = 

1.0 m, B
f
 = 3.0 m, y

m
 = 1.0 m, n

f
 = 0.0144 and n

m 
= 0.0130, a discharge Q

2 
= 2.5 m3/s 

belongs to Case 2 with y
c1

 = 0.860 m, y
cz
 = 1.003 m and y

c3
 = 1.130 m. Further, dis-

charge Q = 1.60 m3/s and 3.5 m3/s in the same channel would give Case 1 and Case 
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3 respectively. The range of discharges Q
2
 within which the Case 2 occurs, depends 

upon the geometry of the channel. 
Choudhary and Murthy Bhallamudi13 used a one-dimensional momentum equa-

tion and continuity equation for unsteady fl ows (St. Venant’s equations) to derive the 
Froude number in terms of the momentum correction factor β as

 F
V

g
A

T
V

A

T

d

dy

cm =

+ − −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

β

β β
β2 2

  (5.51)
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The condition at critical fl ow is obtained by putting F
cm

 = 1 as

  g
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T A
d

dy

A2 3
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 (5.52)

where β =
( )∑ K A

K A

i i
i

2

2

/

/
 (5.53)

It appears that for GVF fl ows in compound channel sections Eq. 5.50 which uses 
the specifi c energy criteria and for unsteady fl ows Eq. 5.52 which is based on the 
momentum criteria are appropriate choices for the defi nition of Froude number and 
hence in the calculation of the critical depths. Usually, the values of the critical depths 
calculated by using the two methods do not differ appreciably.

It should be noted that the existence of multiple critical depths would be noticed 
only when the compound section is considered to be made up of sub-areas and the 
total discharge is calculated as the sum of the partial area discharges. If the com-
pound section is treated as one whole unit for discharge calculation the occurrence of 
multiple critical depths does not arise.

5.6.4 Backwater Curves in Natural channels

Methodology Computation of Backwater curves due to construction of dams, bar-
rages and weirs across natural channels is one of the basic procedures in the planning 
and design of these structures. The basic issues are to know the extent of fl ooding, 
areal as well as length of the reach affected by the construction of the structure. 
For large dams the computations are done for various fl ood frequencies such as 
25, 50, 100, 1000 years and for PMF. In addition to computation of the GVF profi le, 
the sedimentation aspects of the dam and river complex for various time horizons are 
also computed. The GVF profi les are computed for pre-dam and post dam scenarios. 
In the post dam situation GVF without siltation and with siltation are estimated.

The basic methodology used is the Standard – Step method. The computations are 
carried out using well tried out softwares like HEC-RAS and MIKE 21. HEC-RAS 
has been developed by US Army Corps of Engineers and replaces the widely used 
HEC-2 of the same organization. HEC-RAS has been developed to perform one 
dimensional hydraulic analysis for natural as well as man-made channel networks. It 
is a very versatile program capable of handling very large varieties of water surface 
computation problems in rigid bed as well as in mobile bed environment. HEC-RAS is 
available along with user’s manual (http:// www.hec.usace.army.mill/software/ hec-1) 
for download by individuals free of charge. MIKE-11 is a commercial software of 
the company DHI and is an industry standard for simulating fl ow and water levels, 
water quality and sediment transport in rivers, fl ood plains, irrigation canals, reser-
voirs and other inland water bodies. Details of MIKE-11 are available in the web 
site (http://www.dhigroup.com/Software/WaterResources/MIKE11.aspx).
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Basic Assumptions of GVF Computations Before embarking on the compu-
tations of GVF profi les of a natural channel, it is advisable to recollect the basic 
assumptions involved in the computation procedure and to ensure that the fi eld data 
used in the computations do not violate these constraints: The basic assumptions of 
the standard step method are:

1. Steady fl ow 
2. Gradually varied water surface (Hydrostatic pressure distribution)
3. One-dimensional analysis
4. Small channel slope
5. Rigid boundary
6. Constant (averaged) friction slope between adjacent sections

Basic Data requirement

( i )   Complete cross-sectional properties at the cross sections under study includ-
ing the stage discharge information at the sections. The number of sections 
and intervals between the sections depend upon the site conditions and the 
purpose of the study. Concurrent water surface elevations (and hence dis-
charges) at a set of stations at various discharges (preferably at high fl ows) 
are necessary for calibration and validation of the model.

(ii)   Various discharges selected for the study, viz., 5-year fl ood, 25-year fl ood, 
100-year fl ood and PMF etc. obtained by appropriate hydrologic studies.

(iii)     Channel roughness coeffi cient: These haves to be carefully selected on the 
basis of fi eld survey, study of the photographs and all other relevant details. 
It has been found that smaller the value of Manning’s n the longer will be the 
profi le and vice verse3. Hence the smallest possible n value should be selected 
when the longest length of backwater curve, as in the case of submergence 
studies related to construction of reservoirs, is needed.

(iv)    (a )   The accuracy of computations, especially in standard-step method, will 
have to be pre-decided. HEC-RAS adopts an accuracy of 0.003 m for the 
elevation as default 

(b)  The termination depth of the computations: Since the GVF profi les 
approach the normal depth asymptotically, the estimation of the backwater 
curve will have to be terminated at a fi nite depth to achieve meaningful 
accuracy. This is usually done up to a depth 1% excess/short of the normal 
depth, depending upon the nature of the profi le. Thus M

1
 curves are 

assumed to stop at a depth of 1.01 times normal depth and M
2
 curves are 

assumed to start from a depth of 0.99 times normal depth. In studies related 
to backwater effect of a dam, the place where the incremental rise in water 
surface begins to cause damage is defi ned as the end-point of a backwater 
curve3. For practical purposes, this end point is taken as the termination 
depth referred above, namely 1.01 times the normal depth.

Procedure

(i) Division of Sub-sections The cross-sectional data has to be analyzed to establish 
the method of analysis, i.e., whether single channel method or divided channel 
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220 Flow in Open Channels

method (DCM) of analysis is to be adopted. Compound sections are very common 
in natural rivers. HEC-RAS adopts the DCM with vertical sections to accommo-
date the fl ood plain effect. The composite roughness is calculated by Horton’s 
method. The following procedure is adopted by HEC-RAS to identify regions for 
adopting composite roughness and divided channel sections:

(a)  Normally, the main channel is not sub divided, except when there is a perceptible 
change in the roughness coeffi cient along the perimeter of the main channel

(b)  If the main channel portion side slopes are steeper than 5H:1V and the main 
channel has more than one n-value, a composite roughness n

c
 (calculated by 

Horton’s method) is adopted for the main channel. Otherwise, for fl at side 
slope cases the main channel also has to be sub-divided appropriately 

(c)  The composite roughness is calculated separately for the left and right fl ood 
banks.

(ii)    Calibration and Validation When all the necessary data for the computation of 
backwater curves in a natural channel has been assembled, the controls identifi ed 
and the software to be adopted is selected and other details fi nalised, the next step 
is to do the calibration of the model.

Model calibration and validation provides an assessment of the model’s ability 
to accurately reproduce known results. Calibration is performed by running the 
model at the high fl ow rate with the estimated n-values. A set of stations where con-
current water surface elevations (and hence discharges) are known are selected. 
Water surface elevations at these sections are computed for a given set of data. The 
computed water surface profi le covering this set of stations is compared to the mea-
sured profi le and optimization parameters P and D are determined; where

 P E Ei cii N
= −( )( )=∑ 2

1

1 2

,

/
 (5.54)

and

 D
E E

N
i ci

i N

=
−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟=

∑
( )

,

/2 1 2

1

 (5.55)

in which E is the measured water surface elevation, E
c
 is the computed water 

surface elevation at each cross-section i and N is the total number of sections. It 
may be noted that D represents the root mean square of the deviation of the water 
surface and provides a measure of the accuracy of the model.

The standard calibration procedure is to adjust the value of roughness factor n  
such that P and D are minimized. The program is then reproducing the known results 
to its best capability and can be expected to reproduce the other ranges also to the 
same degree of accuracy. Before application to the data points of the problem, the 
calibrated program (with calibrated values of n) is run on another set of data with 
known concurrent water surface elevations to verify that the program would indeed 
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reproduce known results within acceptable degree of error. The data used in the veri-
fi cation stage should be different from the data set used in calibration stage.

The model is now ready for the computation of the desired GVF profi les.

5.7 ADVANCED NUMERICAL METHODS

The basic differential equation of GVF [Eq. (4.8)] can be expressed as

 
dy

dx
F y= ( )  (5.56)

in which F y
S S

Q T gA

f( ) =
−

−( )
0

2 31
 and is a function of y only for a given S 

0
, n, Q and 

channel geometry. Equation 5.56 is non-linear and a class of methods which is par-
ticularly suitable for numerical solution of the above equation is the Runge–Kutta 
method. There are different types of Runge–Kutta methods and all of them evaluate 
y at (x + Δ x) given y at x. Using the notation y

i
 = y(x

i 
) and x

i
 + Δ x = x

i+1
 and hence 

y
i
 + 

1
 = y(x

i + 1 
), the various numerical methods for the solution of Eq. 5.56 are as 

follows:

(a) Standard Fourth Order Runge–Kutta Methods (SRK)

        y y K K K Ki i+ = + + + +1 1 2 3 4

1

6
2 2( )  (5.57)

where                                   K
1
 = Δ x F (  y

i 
) 

                                           K x F y
K

i2
1

2
= +

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟Δ  

                                           K x F y
K

i3
2

2
= +

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟Δ  

                                           K x F y Ki4 3= +( )Δ  

(b) Kutta–Merson Method (KM)15

 y y K K Ki i+ = + + +1 1 4 5

1

2
4( )  (5.58)

where                                  K x F yi1

1

3
= Δ ( )  

                                           K x F y Ki2 1

1

3
= +Δ ( )  

 K x F y
K K

i3
1 21

3 2 2
= + +

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟Δ  
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                                            K x F y K Ki4 1 3

1

3

3

8

9

8
= + +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟Δ

K x F y K K Ki5 1 3 4

1

3

3

2

9

2
6= + − +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟Δ

An estimate of the truncation error in Eq. 5.58 is given by 

 ε = − + −0 2 0 9 0 8 0 11 3 4 5. . . .K K K K  (5.59)

In using the above methods, the channel is divided into N  parts of known length inter-
val Δ x. Starting from the known depth, the depths at other sections are systematically 
evaluated. For a known y

i
 and Δ x, the coeffi cients K

1
, K

2
 , …, etc. are determined by 

repeated calculations and then by substitution in the appropriate main equation [Eq. 5.57 
or Eq. 5.58], the value of y

i+1
 is found. The SRK method involves the determination of 

F(  y) four times while the KM method involves F(  y) to be evaluated fi ve times for each 
depth determination. These two methods are direct methods and no iteration is involved. 
The KM method possesses an important advantage in the direct estimate of its truncation 
error, which can be used to provide automatic interval and accuracy control in the 
computations17.

(c) Trapezoidal Method (TRAP) This is an iteration procedure with

 y y x F y F yi i i i+ += + +{ }1 1

1

2
Δ ( ) ( )  (5.60)

The calculation starts with the assumption of F(  y
i+1

) = F (  y
i 
) in the right hand 

side of Eq. 5.60. The value of y
i+1

 is evaluated from Eq. 5.60 and substituted in 
Eq. 5.56 to get F(  y

i+1 
). This revised F(  y

i+1 
) is then substituted in Eq. 5.60. The pro-

cess is repeated. Thus the r th iteration will have 

 y y x F y F yi
r

i i i
r

+ +
−= + +{ }1 1

11

2
( ) ( )( ) ( )Δ  (5.61)

The iteration proceeds till two successive values of F(  y
i+1 

) or y
i+1

 agree to a desir-
able tolerance.

Comparison of        Various Methods Studies have been reported by Apelt15 and Hum-
pridge and Moss16 on the SRK method; by Apelt17 on the KM and TRAP methods and by 
Prasad17 on the TRAP method. It has been found that all these three methods are capable 
of direct determination of the GVF profi le in both upstream and downstream directions 
irrespective of the nature of fl ow, i.e., whether the fl ow is subcritical or supercritical. 
Apelt17 in his comparative study of the three methods has observed that the SRK and 
KM methods possess better stability characteristics and require less computational 
effort than the TRAP method. Also, while the SRK method is slightly more effi cient 
than the KM method, the possibility of providing automatic control of the step size and 
accuracy in the KM process makes it a strong contender for any choice.

All the three methods are well-suited for computer applications and can easily be 
adopted to GVF calculations in natural channels. In these three methods when the 
calculations involve critical depth, care should be taken to avoid dy/dx = ∞ at y = y

c 

by terminating the calculations at a depth slightly different from y
c
.
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5.8 FLOW PROFILES IN DIVIDED CHANNELS

Divided channels, also known as island-type fl ow, occur when the discharge is 
divided into two or more separate channel as it fl ows round one or more islands. 
Typical simple island type and multi-island type fl ows are shown in Figs 5.9 and 
5.10 respectively. While the divided channels occur frequently in natural channels 
they can also occur in storm water systems. In analysing the divided fl ow, it is 
advantageous to represent the fl ow situation by net work of nodes and links, e.g., 
Fig. 5.11 is such a representation of Fig. 5.9

1 2 3 4M N

R

QL

QR

Fig. 5.11 Schematic representation of Fig. 5.9

ISLANDQ

R

QR

QL

L

Q

3 42
1

Fig. 5.9 Simple-island-type fl ow

Fig. 5.10 Multi-island-type fl ow

Q1

Q 2

Q3
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224 Flow in Open Channels

Simple-island-Type Flow The usual problem in this category is the determina-
tion of the division of discharge Q for a given downstream water-surface elevation. 
Referring to Fig. 5.9 and 5.11, the geometry of the main channel as well as the chan-
nels L and R  are known. For a Known stage at Section 4, it is required to fi nd the 
division of the discharge Q into Q

L
 and Q

R
 in the channels L and R respectively. The 

fl ow is assumed to be subcritical, as it is the most usual case. In the solution of this 
problem the continuity equation at each node and the energy equation for various 
paths are employed. Thus in Fig. 5.11, the total discharge Q is divided into Q

L
 and Q

R
 

at node 2 and is recombined at node 3. By the energy equation, the drop of the total 
energy between nodes 2 and 3 in path L must be the same as the drop between these 
nodes in the path R.

The solution to the problem is achieved through a trial-and-error procedure. 
First a trial division of Q

L
 and Q

R 
 is assumed such that  Q

L
 + Q

R
 = Q. Starting from 

a known stage at 4, the water-surface elevations at the various nodes are calculated 
by GVF computations as below:

Step From-to Path Find Elevation Discharge
at Node Used

(a)

(b)

(c)

4−3

3−2

3−2

N

L

R

3

2

2

Q

Q
L

Q
R

The elevation at Node 2 calculated in steps (b) and (c) must be the same for a cor-
rect division of fl ow. However, since an arbitrary division was assumed, the two 
values would differ by an amount Δ H. If the calculations are repeated for different 
assumed values of Q

L
, in the successive iterations the experience of the previous cal-

culations are used to guide better selections of Q
L
 values. If Δ H = {elevation at 2 by 

step (b) — Elevation at 2 by step (c)}, the correct value of Q
L
 to give zero value of 

Δ H is obtained by interpolation (Fig. 5.12).

Correct QL 

1
Trial

3

4

2

QL
(Assumed)

ΔH

Fig. 5.12 Interpolations of ΔH to get Q
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Multi-island-Type Flows The trial-and-error type of solution, used in the simple-
island type fl ow, will become extremely tedious if it is to be successfully applied to 
multi-island type fl ows. Considering the problem as analogous to that of the pipe 
network problem, Wylie18 and Vreugdenhil19 have developed iterative numerical pro-
cedures for solving the general multi-island system. An effi cient algorithm for the 
solution of parallel channel network is available in Ref. (20).

5.9 ROLE OF END CONDITIONS

The channel end conditions, being the boundary conditions for GVF computations 
play a very important role. Some common end conditions and few cases of interac-
tion of end conditions on the fl ow are discussed in this section.

Outlet An ideal outfl ow of a canal into a lake is shown in Fig. 5.13(a). The kinetic 
energy of the stream is recovered as potential energy and as such the lake water is 

higher than the channel water surface at the outlet by an amount Δh
V

g
=

α 2

2
. In real-

ity, there will be energy losses at the outfl ow and one can safely assume that all the 
kinetic energy of the outfl ow is lost in shear. Hence, the outfl ow situation for mild 
slope channels is adopted as follows:

If y
L
 = depth of water in the lake and y

d
 = depth of fl ow in the canal at the outlet, 

both measured above the channel bed
1. If  y

L
 > y

c
, y

d
 = y

L
 [Fig. 5.13 (b)]

2.  If  y
L
 = y

c
, y

d
 = y

c
 [Fig. 5.13 (c)]

3.  If  y
L
 < y

c
, y

d
 = y

c
 [Fig. 5.13 (d)]

Fig. 5.13 (Contd)

CDL

CDL

yLyd

yd

Δh

(a)

(b)

yL

yL > yC

Δ

Δ

Δ
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226 Flow in Open Channels

In supercritical fl ow the control is on the upstream of the channel and as such 
y

d
 = y

L
.

Inlet Figure 5.14 shows a free inlet from a reservoir to a mild-slope channel. 
There will be a certain amount of energy loss at the entrance. Initially the fl ow 
will be non-uniform which soon adjusts to uniform fl ow. At the end of the entrance 
zone, for uniform fl ow,

 H Z y
V

g
h Hf L+ = + + +Δ Δ0

0
2

2
α  (5.62)

CDL

yL = yC

yL < yC

(c)

yd yL

yL

(d)

CDL

Δ

Δ

Δ

Δ

Fig. 5.13 End conditions

Fig. 5.14 Mild-slope channel inlet

Uniform
flow

Entrance length = Le

ΔZ

H

Reservoir

y0
α

V0
2

2g

ΔHL

hf = S0.Le

NDL

 Energy line

Δ

Δ
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where h
f
 = ΔZ = head loss due to friction at the rate of  S

0
 and ΔH

L
 = entrance loss 

= K
V

g
0

2

2
 in which K = a coeffi cient whose value may range from 0.1 to 0.25 for a 

well-rounded entrance. Thus at the lake entrance for a mild channel 

 H y K
V

g
= + +0

0
2

2
( )α  (5.63)

If the channel has a steep slope, the critical depth control exists at the channel inlet 
and the fl ow will be established through an S

2
 curve [Fig. 4.5(e)].

Interaction of Exit and Inlet Conditions Consider the case of a canal 
connecting two lakes. Let us assume the canal to be of short length so that both 
the reservoirs are spanned by the GVF profi le generated. Let the inlet depth y

1
 be 

constant and the outlet-pool depth y
L
 be a variable (Fig. 5.15). The interaction of 

the downstream pool elevation with the upstream  lake, through a GVF profi le, 
is refl ected by the change in the discharge of the canal. The discharge carried by 
a canal under conditions of varied fl ow was termed by Bakhmeteff  1 as delivery 
of a canal.

Delivery in Mild Channels Under Varying Downstream Pool Elevation 
Referring to Fig. 5.15, y

L
 = downstream-pool depth measured from the channel 

bottom at the outlet. The value of y
2
 is assumed to vary while y

1
 is assumed to 

remain constant. Let L = length of the channel and S
0
 = bed slope. When y

L 
=

 
y

Lm
 

= y
1
 + LS

0
, i.e. when am is a horizontal line, the discharge in the channel is zero. 

If y
L 

= y
0 
, i.e. when the water surface ap is parallel to the bed and uniform fl ow 

prevails, the uniform-fl ow discharge is Q
0
. For any y

Lm 
> y

L 
> y

0 
, the discharge Q 

will be less than Q
0 
,  the resulting GVF profi le will be of M

1
 type. The decrease 

in the discharge (Q < Q
0
) takes place because of the interaction of the M

1 
curve 

causing a drowning effect at the inlet. The variation of the
 
discharge Q with y

L
 in 

this zone is shown in Fig. 5.15.

Fig. 5.15 Delivery in a mild-slope channel
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228 Flow in Open Channels

When y
c 
< y

L
 < y

0
, the M

2
 profi le occurs and causes a drawdown effect at the inlet 

resulting in an enhanced discharge Q > Q
0
. The maximum value of Q = Q

m
 occurs at 

y
L 
= y

c
. Further decrease in the value of y

L
 does not cause any change in M

2
 profi le, 

excepting for a hydraulic drop to occur (rs in Fig. 5.15).

Q0
Q0

y0

S0

yL

yc

y1
n1

M1

M2

n2

Q0

p

r
s

t

m
a

b CDL

NDL

Δ Δ
Δ

Δ
Δ

Fig. 5.16 Delivery in a long channel

A channel of this kind, where Q
m
 > Q

0
, i.e. where the GVF curves reach up to the 

intake and affect the discharge is called a short  channel. Conversely, a long channel is 
one where the intake is so far away from the outlet that none of the M

2
 curves reach the 

intake. In a long channel some M
1
 curves may also not reach the intake. Figure 5.16 

indicates the delivery in a long channel. It may be noted that in a long channel, 
Q

m
 = Q

0
 and Q

0
 can also occur for y

L 
> y

0
.

Delivery in Mild Channels Under Varying Upstream Reservoir Elevations 
In this case the downstream pool elevation is kept constant and the upstream reservoir 
depth y

1
 is varied (Fig. 5.17). The length of the channel is L and S

0
 is its bed slope. 

When y
1
 = y

1m
 = ( y

L 
 – LS

0
), i.e. line ms is horizontal, there is no fl ow in the canal. 

When y
1
 < ( y

L 
– LS

0
), the fl ow is to the reservoir, i.e. in the negative direction and is 

not considered here.

Fig. 5.17 Delivery under varying upstream reservoir level
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Uniform fl ow takes place when y
1
 = y

1n
, i.e. line ns is parallel to the bed and the 

delivery is Q
0
. For y

1n 
,
 
< y

1 
< y

1m
, the discharge is less than Q

0
 and the water surface 

profi le is an M
1
 curve. For values of y

1
 > y

1n
, the water surface profi le is an M

2
 curve 

and the delivery is Q > Q
0
. The maximum discharge Q

m
 compatible with y

L
 = constant 

occurs when the depth y
L
 = critical depth (line cs in Fig. 5.17). Any further increase 

in the upstream depth y
1
 would no doubt increase the delivery Q, but the downstream 

water depth will be a critical depth y
c 
> y

L
 followed by a hydraulic drop (lined cr in 

Fig. 5.17), Which is strictly not compatible with the condition y
L
 = constant.

An extensive analysis of delivery problems is reported in literature1.

Example 5.10  A wide rectangular channel of slope 0.0004 and n = 0.02 con-
nects two reservoirs 1.5 km apart. The upstream reservoir level is constant at an 
elevation of 104.00 m and the elevation of the canal invert at the intake is 101.00 
m. The intake is free and the loss of energy at the intake can be neglected. (a) What 
should be the downstream reservoir level to cause uniform fl ow in the entire length 
of the channel? (b) If the downstream reservoir level is 103.40 m, will it affect the 
uniform fl ow discharge? 

Solution (a) Refer to Fig. 5.18(a). Neglecting losses at the entry

 H y
V

g
= +0

0
2

2
 

As the channel is wide                   V
n

y S0 0
2 3

0
1 21

=

                   y H
g n

y S0 0
2 3

0
1 2 21

2

1
= − [ ]/ /

 

                                            y y0 2 0
4 33 0

1

2 9 81

1

0 02
0 0004= −

×
×.

.
[
( . )

. ]/  

Solving by trial and error,               y
0
 = 2.80 m

Bed level at downstream end of the channel, i.e., at the Section B

                 = 101.00 – (0.0004 × 1500) = 100.40 m

Downstream pool elevation = 100.40 + 2.80 = 103.20 m

B
0.0004

101.00

104.00

H y0

A

V0
2
/2g

Δ

Fig. 5.18(a) Defi nition sketch of Example 5.10(a)
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(b) Flow when the downstream pool elevation is at 103.40 m:
Assume the fl ow at the inlet is not affected by the downstream lake elevation. 

        y
0
 = 2.80 m

        q
0
 = normal discharge = =

1

0 02
2 80 0 0004 5 5475 3 1 2

.
( . ) ( . ) . m3/s/m

Critical depth y
c
 for this discharge =

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
q

g

2 1 3 2 1 3
5 547

9 81
1 464

( . )

.
.  m < y

0

 

The fl ow is thus subcritical, the channel is a mild slope channel and an M
1
 curve 

will result with downstream lake elevation at 103.40 m. (See Fig. 5.18(b)).

( i )   If this curve, calculated with discharge = q
0
, extends beyond the inlet A, then 

the inlet is drowned and the discharge in the channel will be less than q
0
.

(ii)   If the length of this M
1
 curve is less than 1500 m, the inlet is free and uniform 

fl ow will prevail in the upper reaches of the channel un affected by backwater 
of downstream lake. The canal discharge will therefore be q

0
.

The M
1
 profi le is calculated by Direct step method starting from the downstream 

end B. The calculations are shown in Table 5.6. It is seen that the M
1
 curve for 

q
0
 = 5.547 m3/s/m extends beyond the inlet A. Hence the uniform fl ow discharge is 

affected by the downstream pool elevation of 103.40 m.

103.40
103.20

M1 curve
H

104.00

101.00 A

y0

V0
2
/2g

0.0004
B 100.40

Fig. 5.18(b) Defi nition sketch of Example 5.10(b)

Wide Rectangular channel n = 0.02 S
0
 = 0.0004 q = 

5.547 m3/s/m

1 2 3  4 5 6 7 8 9 10

Sl.
No.

y (m) V (m/s) E (m) Δ E (m) S
f

S
f

–
S

0 
– S

f

– Δ x (m) x (m)

1 3.00 1.849 3.174 0.000316       0

2 2.95 1.880 3.130 −0.0440 0.000334 0.000325 7.48E-05   −589   589

3 2.90 1.913 3.086 −0.0437 0.000354 0.000344 5.59E-05   −782 1371

4 2.85 1.946 3.043 −0.0434 0.000375 0.000364 3.56E-05 −1220 2591

Table 5.6 Computation of Flow Profi le by Direct Step Method (Example 5.10)
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Example 5.11  A rectangular channel, B = 3.0 m and n = 0.015, takes off from 
a reservoir. The channel slope is 0.017. At the intake the bed of the channel is at an 
elevation of 100.00 m. If the reservoir water surface is at 102.00 m and the entrance 
losses are equal to 0.2 times the velocity head at the intake, calculate the discharge in 
the channel. At what distance from the intake would the uniform fl ow commence?

Solution First it is necessary to fi nd whether the slope is mild or steep. By Eq. (3.65) 

limit slope S
gn

BL =
8

3

2

1 3
. Here, B = 3.0 m, S

0
 = 0.017 and n = 0.015

SL = ×
×

=
8

3

9 81 0 015

3 0
0 004

2

1 3

( . ) ( . )

( . )
.

Since S
0
 > S

L
, the channel slope is steep. An S

2
 curve is formed at the inlet to reach the 

normal depth asymptotically, (Fig 5.19). Here H = 102.00 – 100.00 = 2.00 m.

At the inlet, y
V

g

V

gc
c c+ + =

2 2

2
0 2

2
2 0. . . Since in a rectangular channel 

V

g
yc

c

2

2
0 5= .

1.5y
c
 + 0.1y

c
 = 2.0

Hence y
c
 = 1.25 m and 

V

g
c

2

2
0 625= .  m.

V
c
 = 3.502 m/s, q = (3.502 × 1.25) = 4.377 m3/s/m and Q = 4.377 × 3.0 = 13.13 m3/s.

To fi nd normal depth: φ =
×

×
=

13 13 0 015

3 0 017
0 0807

8 3

. .

( ) .
.  From Table 3A.1, 

y

B
0 0 260= .  

and y
0 
= 0.780 m. The S

2
 profi le at the inlet is calculated by direct step method and 

details shown in Table 5.7. it is seen from this table that the normal depth would 
occur at a distance of about 127 m from the inlet.

Rectangular Channel,
B = 3.0 m

S
0
 = 0.017                 n = 0.015 q = 4.377 m3/s/m

1 2 3 4 5 6 7 8 9 10 11

Sl. 
No.

y 
(m)

V 
(m/s)

E (m) ΔE 
(m)

R (m) S
f

S
f

–
S

0 
– S

f

–
 

Δx 
(m)

x 
(m)

1 1.25 3.502 1.875 0.682 0.00460      0

2 1.10 3.979 1.907 0.0321 0.635 0.00653 0.00556 0.01144   2.8      3

3 0.95 4.607 2.032 0.1250 0.582 0.00984 0.00818 0.00882 14.2    17

4 0.85 5.149 2.202 0.1696 0.543 0.01348 0.01166 0.00534 31.8    49

5 0.79 5.541 2.355 0.1531 0.517 0.01663 0.01505 0.00195 78.7 127

Table 5.7 Computation of Flow Profi le by Direct Step Method (Example 5.11)
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 PROBLEMS

Problem Distribution

Sl. 
No.

Topic Problems

1. Direct integration of GVF – Special cases 5.1 to 5.4

2. Computation of GVF

 -by Varied Flow Function 5.5

 -by Bresse’s function 5.11, 5.12, 5.12

 -by Keifer and Chu method 5.15

 -Direct step method 5.6, 5.9, 5.13, 5.17, 5.20, 5.22

 -Standard step method 5.16

3. Simple island fl ow 5.14

4. Flow at free inlet 5.22 to 5.66

5.1  Prove that the GVF profi le for a horizontal channel can be expressed as 

x
C

Q N
y

C y

gC N M
N

N M

= −
+

+
− +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
− +

1
2

1 2
1

11 1( ) ( )
 + Constant 

Where C
1
 and C

2
 are coeffi cients associated with the hydraulic exponents M and N 

respectively.
5.2  Show that for a horizontal channel, by assuming Chezy C = constant, the GVF profi le is 

given by

 x
C

g
y

y

yc

= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 4

34
+ Constant 

5.3  Establish that the GVF profi le in a frictionless rectangular channel is given by

     x
y

S

y

y
c= +

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0

0

3

1
1

2
+ Constant 

5.4  Show that in a wide rectangular critical slope channel the gradually varied fl ow profi les 
calculated by using Chezy formula with C = constant are horizontal lines.
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 5.5  A trapezoidal channel having B = 6.0 m, side slope m = 2.0, S
0
 = 0.0016, Manning’s 

n = 0.02 carries a discharge of 12.0 m3/s. Compute and plot the backwater produced due 
to operation of a sluice gate at a downstream section which backs up the water to a depth 
of 4.0 m immediately behind it. Use Varied fl ow functions.

 5.6  Calculate the backwater curve of Problem 5.5 by direct-step method.
 5.7  A trapezoidal channel B = 5.0 m and m = 2.0 is laid on a slope of 0.0004. If the normal 

depth of fl ow is 3.10 m, compute: (a) the profi le of an M
1
 curve in this channel lying 

between depths of 5.0 m and 3.15 m, and (b) the profi le of an M
3
 curve lying between 

depths of 0.5 m and 1.2 m. Assume Manning’s n = 0.02.
 5.8  A rectangular brick-lined channel (n = 0.016) of 4.0-m width is laid on a bottom slope 

of 0.0009. It carries a discharge of 15 m3/s and the fl ow is non-uniform. If the depth at a 
Section A is 2.6 m, calculate the depth at section B, 500 m downstream of A, by using (a) 
only one step, and (b) two steps.

 5.9  A sluice gate discharges a stream of 0.59 m depth with a velocity of 15 m/s in a wide 
rectangular channel. The channel is laid on an adverse slope of S

0
 = – 0.002 and ends 

with an abrupt drop at a distance of 100 m from the gate. Assuming n = 0.02, calculate 
and plot the resulting GVF profi le.

5.10  Figure 5.5 shows the section of a stream with fl ow in the fl ood plain. Idealise the section 
as shown in the fi gure into three parts with side slopes of 2 : 1 and bottom width and 
depth for parts 1, 2 and 3 as 15.0 m, 5.0 m; 10.0 m, 1.50 m; 15.0 m and 2.5 m respec-
tively. Determine the value of the overall kinetic-energy correction factors α and the 
friction slope for a discharge of 200 m3/s. The values of the kinetic-energy correction 
factors for the three subsections can be assumed as α

1 
= 1.20, α

2
 = 1.05 and α

3
 = 1.15. 

Assume n = 0.035 for all the boundaries.
5.11   A stream which could be considered as a wide rectangular channel has a slope of 0.0003 

and Chezy C = 40. Calculate the backwater profi le produced by a weir on the stream 
which raises the water surface immediately upstream of it by 4.0 m when the discharge 
over the weir is 3.0 m3/s/m. Use Bresse’s back water functions.

5.12  Derive Equation (5.13) and verify the values of the coeffi cients given in the table accom-
panying the equation.

5.13  A 3-m wide rectangular channel laid on a slope of 0.005 carries a fl ow at a normal depth 
of 1.20 m. A sharp-crested rectangular suppressed weir (C

d
 = 0.62) is located with its 

crest at 2.0 m above the channel bottom at the downstream end of the channel. Compute 
and plot the water surface profi le. Assume n = 0.02.

Path Width Slope Length N

Left
Right

15.0 m
10.0 m

0.0009
0.0010

2000 m
1800 m

0.025
0.030

5.14  A small stream is of rectangular cross section. At a certain section it divides itself, 
encloses an island and then rejoins to form a single channel again. The properties of the 
two paths past the island are as follows:
At a short distance downstream of the confl uence the discharge is found to be 160 m3/s 
and depth of fl ow of 4.0 m. Find the discharge in each channel and the depth of fl ow at 
the point of division. Neglect the energy loss at the division and at the confl uence.

5.15  A concrete circular channel (n = 0.015) of diameter = 2.0 m is laid on a slope of 0.05. 
This channel is used for emptying a pond. The fl ow enters the channel as a free inlet from 
the pond. Compute and plot the water-surface profi le for a discharge of 8.00 m3/s. 
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5.16  A stream has the following cross-sectional data:
For a discharge of 150 m3/s, the depth of fl ow of the downstream-most Section 1 is 5.10 m. 
Assume n = 0.025. Using the standard-step method, compute the water-surface eleva-
tions at Sections 2, 3 and 4. (Assume gradual transition).

5.17  A trapezoidal channel, B = 4.5 m, m = 0.5 and n = 0.020, has S
0
 = 0.01. There is a break 

in grade to the horizontal at a section. The depth of fl ow at the junction is 3.0 m when the 
discharge is 30.0 m3/s. Sketch the resulting water-surface profi le on the sloping channel.

5.18  A rectangular channel of 6.0 m width carries a discharge of 8.40 m3/s. The channel slope 
is 0.0004 and the Manning’s n = 0.015. At the head of the channel the fl ow emanates 
from the sluice gate. The depth of fl ow at the vena contracta is 0.15 m. If the hydraulic 
jump is formed at a depth of 0.25 m, fi nd the distance between the toe of the jump and 
the vena contracta.

5.19  A trapezoidal channel B = 4.50 m, m = 1.0, n = 0.03 has a bed slope of S
0
= 0.003. The 

channel ends in a sudden drop. Calculate the GVF profi le for a discharge of 25.0 m3/s.
5.20  A trapezoidal channel B = 7.5 m, m = 1.5 and n = 0.025 is laid on a slope of 0.0004. 

When the discharge is 20.0 m3/s, a low weir at a downstream location creates a pool of 
depth 3.00 m just upstream of it. Calculate the length of the backwater and also the depth 
at a section 1.0 km upstream of the weir.

5.21   A wide rectangular channel of slope 0.0005 connects two reservoirs 20 km apart. The 
upstream reservoir level can be considered to be constant and the downstream reservoir 
elevation is variable. The elevation of the canal invert at the intake is 200.00 m. The intake 
is free and the normal depth and the uniform fl ow discharge intensity in the canal are 2.00 m 
and 4.0 m3/s/m width respectively. If the downstream reservoir level reaches 192.40 m, will 
it affect the uniform fl ow discharge in the channel? (Use Bresse’s function).

5.22  A wide rectangular channel with a bed slope of 0.015 takes off from a reservoir. The inlet 
to the channel is free and the discharge intensity is 3.00 m3/s/m. Calculate the GVF pro-
fi le from the inlet to the section where the depth is 1% excess of the normal depth. 
Assume Manning’s coeffi cient n = 0.015.

5.23  A rectangular channel, B = 4.0 m and n = 0.015, is laid on a slope of 0.0004. The channel 
is 500-m long and connects two reservoirs. The bed of the channel at the intake is at an ele-
vation of 120.0 m. The intake is free and has a loss coeffi cient of 0.2 (a). If uniform fl ow 
takes place at a depth of 2.0 m, what are the elevations of the upstream and downstream 
reservoirs? (b) If the elevation of the upstream reservoir is held constant and the down-
stream reservoir elevation is lowered by 1.0 m, what is the delivery of the channel?

5.24  A 6.0-m wide rectangular channel has n = 0.012 and S
0 
= 0.006. The canal takes off from 

a reservoir through an uncontrolled smooth inlet. If the elevation of the water surface is 
2.10 m above the channel bed, estimate the discharge in the channel and the minimum 

Station Distance up the 
Stream

Elevation of the 
Stream Bed (m)

Cross-section

1

2

3

4

50.0 m

52.0 km

54.0 km

56.0 km

100.0

101.0

102.0

103.0

  trapezoid: B = 15.0 m
         m = 1.5

  trapezoid: B = 14.0 m
         m = 1.5

    trapezoid: B = 14.00 m
          m = 1.25

    trapezoid: B = 13.00 m
          m = 1.25
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distance from the inlet at which the fl ow can be considered to be uniform. Neglect energy 
losses at the entrance to the channel.

5.25  Write an algorithm for computing the discharge in a trapezoidal channel taking off from 
a reservoir, given S

0
, n, B, m and H, where H = reservoir elevation above the channel 

invert at the upstream end. The channel-entrance losses can be neglected. 
5.26  A trapezoidal channel B = 3.0 m, m = 1.50, n = 0.025 and S

0 
= 0.00050 takes off from 

a reservoir with free inlet. The reservoir elevation is 7.0 m above the channel bed at the 
inlet. Calculate the discharge in the channel by neglecting entrance losses.

 OBJECTIVE QUESTIONS

5.1 Bresse’s backwater function corresponds to the indicated set of (M, N ) values:

(a)  (3,2) (b) 3
1

3
3

1

3
,

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

(c)  3 3
1

3
,

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟  (d) (3,3)

5.2 The solution of the differential equation of GVF by Chow’s method, involves the use of 
varied fl ow function F (u, N) =

(a) 
du

uN

u

1
0

+∫  (b) 1
0

−( )∫ u duN
u

(c) udu

uN

u

1
0

−∫  (d) du

uN

u

1
0

−∫
5.3 The Keifer and Chu varied-fl ow functions are useful for GVF computations in 

(a) all types of channels  (b) channels with closing top
(c) circular channels only (d) rectangular channels only

5.4 The Kutta-Merson method of solving the GVF differential equation involves 
(a) evaluation of the function four times for each step
(b) evaluation of the function fi ve times for each step
(c) three evaluations of the function per step
(d) iteration procedure

5.5 The standard-step method aims to solve
(a) the differential equation of GVF
(b) the differential-energy equation of GVF
(c) the Bernoulli equation
(d) the momentum equation

5.6 The trapezoidal method (TRAP) of numerical integration of GVF involves
(a) direct solution involving evaluation of the function four times   
(b) iterative procedure 
(c) Simpson’s rule
(d) Graphical procedure

5.7 Bresse’s backwater function is applicable to
(a) Circular channels
(b) Trapezoidal channels
(c) Any shape of channel
(d) Wide rectangular channel

5.8 The direct-step method of calculating the GVF profi le uses the relation
(a) Δ E = Δ x (S

0
 − S

f  
) (b) Δ x = Δ E/(S

0
 − S

f 

– 
)

(c) Δ x = Δ E (S
0
 − S

f 

–  
) (d) Δ y = Δ x (S

0
 − S

f  
) /(1 − F 2  )
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 5.9 In the direct-step method and standard-step methods, the calculations
(a) must proceed upstream in subcritical fl ow
(b) must end on a control section
(c) must always proceed upstream
(d) must proceed upstream in supercritical fl ow

5.10 The direct-step method
(a) is best-suited for natural channels
(b) is accurate for all step sizes
(c) is most accurate for calculating supercritical fl ow profi les
(d) is none of these

5.11 The standard-step method is 
(a) an unguided trial-and-error method
(b) a rapidly-converging iterative procedure 
(c) not applicable to natural channels
(d) not applicable to artifi cial channels

5.11 In a compound section the slope of the common energy line S
f
 is 

(a) Q

K Ai

2

2 2Σ /
 (b) Q

Ki

2

2
Σ( )

(c) Σ
Σ

Q

K A
i

i

2

2 2/
 (d) 

Σ

Σ

K A

K A

i i

i

3 2

3 2

/

/

( )
( )

5.12 The standard Runge-Kutta method for solving GVF profi les is
(a) an iterative procedure
(b) not rapidly converging 
(c) dependent on the nature of the profi le
(d) independent of the direction of computation

5.14 In a simple island-type divided channel of rectangular cross-section, the discharge 
division

 (a) is judged by common sense
 (b) is inversely proportional to Manning’s n
 (c) is to be found by iterative GVF calculations
 (d) has no fi xed value
5.15 For an uncontrolled canal inlet at a reservoir, the discharge drawn
 (a) is fi xed by the critical depth that occurs at the inlet
 (b) is determined by a control on the downstream end
 (c) depends on whether the channel is steep or otherwise
 (d) is a constant
5.16 A mind channel connecting two reservoirs is called a short channel if 
 (a) the discharge varies with the downstream-pool elevation
 (b) the channel is on a steep slope
 (c) the channel is frictionless
 (d) some M

2
 curves extend all the way up to the reservoir

5.17 A mild slope channel enters a lake with a sudden drop in its bed. If the depth of water in 
the lake measured above the channel bed at its outlet y

L 
is greater than the critical depth, 

then the depth of fl ow in the canal at the outlet y
d

 
(a) = y

L
 (b) = y

c

 (c) = normal depth = y
0
 (d) < y

0

5.18 A compound section as in Fig. 5.19 may have a maximum of 
(a) one critical depth (c) three critical depths
(b) two critical depths (d) four critical depths
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 APPENDIX 5A

This appendix contains the varied-fl ow functions and the Keifer and Chu functions.

1.  Tables 5A.1 contains the varied-fl ow functions F(u ,N) =
−∫
du

uN

u

10
 for a few values of N. 

This table is reproduced by permission of the American Society of Civil Engineers and 
contains material from Chow, V T, ‘Integrating the equations of gradually varied-fl ow’ 
Proc. ASCE, Vol. 81, Paper No. 838, pp. 1–32, Nov. 1955.

2.  Tables 5A.2(a) and 5A.2(b) contain the Keifer and Chu functions I
1
(Q

r
, θ/π) and I

2
(Q

r
, θ/π) 

respectively. These functions are for the use of GVF computations in circular channels 
through the use of Eq. (5.28). In these tables 2θ = angle subtended by the water surface 
at the centre of the channel and θ is related to the depth y by the relation

 y D/ cos= −( )1

2
1 θ  

Values of 2θ for different y/D values are available in Table 2A.1.
Q

r
 is the discharge ratio given by Eq. (5.24). Tables 5A.2(a) and 5A.2(b) are the adopted 

versions of original tables supplied to the author for publication through the courtesy 
of Dr Chandra Nalluri, University of New Castle-upon-Tyne, New Castle-upon Tyne, 
England. The step lines in the tables indicate the barriers for interpolation representing 
the location of normal depth.

nf nfnm

Bf
ym

Bm

Bf

y

Δ

Fig. 5.19 Symmetrical compound section
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Appendix – 5A
Table 5A.1 Varied Flow Function F (u, N)

u\N 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.6 5.0

0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.02 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020

0.04 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040

0.06 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060

0.08 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080

0.10 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100

0.12 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120

0.14 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140

0.16 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160

0.18 0.181 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180

0.20 0.201 0.200 0.200 0.201 0.200 0.200 0.200 0.200 0.200 0.200 0.200

0.22 0.221 0.221 0.221 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220

0.24 0.242 0.241 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240

0.26 0.262 0.262 0.261 0.261 0.261 0.260 0.260 0.260 0.260 0.260 0.260

0.28 0.283 0.282 0.282 0.281 0.281 0.281 0.280 0.280 0.280 0.280 0.280

0.30 0.304 0.303 0.302 0.302 0.301 0.301 0.300 0.300 0.300 0.300 0.300

0.32 0.325 0.324 0.323 0.322 0.322 0.321 0.321 0.321 0.321 0.320 0.320

0.34 0.346 0.344 0.343 0.343 0.342 0.342 0.341 0.341 0.341 0.340 0.340

0.36 0.367 0.366 0.364 0.363 0.363 0.362 0.362 0.361 0.361 0.361 0.360

0.38 0.389 0.387 0.385 0.384 0.383 0.383 0.382 0.382 0.381 0.381 0.381

0.40 0.411 0.408 0.407 0.405 0.404 0.403 0.403 0.402 0.402 0.401 0.401

0.42 0.433 0.430 0.428 0.426 0.425 0.424 0.423 0.423 0.422 0.421 0.421

0.44 0.456 0.452 0.450 0.448 0.446 0.445 0.444 0.443 0.443 0.442 0.441

0.46 0.479 0.475 0.472 0.470 0.468 0.466 0.465 0.464 0.463 0.462 0.462

0.48 0.502 0.497 0.494 0.492 0.489 0.488 0.486 0.485 0.484 0.483 0.482

0.50 0.525 0.521 0.517 0.514 0.511 0.509 0.508 0.506 0.505 0.504 0.503

0.52 0.550 0.544 0.540 0.536 0.534 0.531 0.529 0.528 0.527 0.525 0.523

0.54 0.574 0.568 0.563 0.559 0.556 0.554 0.551 0.550 0.548 0.546 0.544

0.56 0.599 0.593 0.587 0.583 0.579 0.576 0.574 0.572 0.570 0.567 0.565

0.58 0.626 0.618 0.612 0.607 0.603 0.599 0.596 0.594 0.592 0.589 0.587

0.60 0.653 0.644 0.637 0.631 0.627 0.623 0.620 0.617 0.614 0.611 0.608

0.61 0.667 0.657 0.650 0.644 0.639 0.635 0.631 0.628 0.626 0.622 0.619

0.62 0.680 0.671 0.663 0.657 0.651 0.647 0.643 0.640 0.637 0.633 0.630

0.63 0.694 0.684 0.676 0.669 0.664 0.659 0.655 0.652 0.649 0.644 0.641

0.64 0.709 0.693 0.690 0.683 0.677 0.672 0.667 0.664 0.661 0.656 0.652

0.65 0.724 0.712 0.703 0.696 0.689 0.684 0.680 0.676 0.673 0.667 0.663

0.66 0.738 0.727 0.717 0.709 0.703 0.697 0.692 0.688 0.685 0.679 0.675

0.67 0.754 0.742 0.731 0.723 0.716 0.710 0.705 0.701 0.697 0.691 0.686

0.68 0.769 0.757 0.746 0.737 0.729 0.723 0.718 0.713 0.709 0.703 0.698

0.69 0.785 0.772 0.761 0.751 0.743 0.737 0.731 0.726 0.722 0.715 0.710

0.70 0.802 0.787 0.776 0.766 0.757 0.750 0.744 0.739 0.735 0.727 0.722

0.71 0.819 0.804 0.791 0.781 0.772 0.764 0.758 0.752 0.748 0.740 0.734

0.72 0.836 0.820 0.807 0.796 0.786 0.779 0.772 0.766 0.761 0.752 0.746

0.73 0.854 0.837 0.823 0.811 0.802 0.793 0.786 0.780 0.774 0.765 0.759

0.74 0.868 0.854 0.840 0.827 0.817 0.808 0.800 0.794 0.788 0.779 0.771

(Continued)
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240 Flow in Open Channels

1.03 1.340 1.186 1.060 0.955 0.866 0.790 0.725 0.668 0.618 0.535 0.469

1.04 1.232 1.086 0.967 0.868 0.785 0.714 0.653 0.600 0.554 0.477 0.415

1.05 1.150 1.010 0.896 0.802 0.723 0.656 0.598 0.548 0.504 0.432 0.374

1.06 1.082 0.948 0.838 0.748 0.672 0.608 0.553 0.506 0.464 0.396 0.342

1.07 1.026 0.896 0.790 0.703 0.630 0.569 0.516 0.471 0.431 0.366 0.315

1.08 0.978 0.851 0.749 0.665 0.595 0.535 0.485 0.441 0.403 0.341 0.292

1.09 0.935 0.812 0.713 0.631 0.563 0.506 0.457 0.415 0.379 0.319 0.272

1.10 0.897 0.777 0.681 0.601 0.536 0.480 0.433 0.392 0.357 0.299 0.254

1.11 0.864 0.746 0.652 0.575 0.511 0.457 0.411 0.372 0.338 0.282 0.239

1.12 0.883 0.718 0.626 0.551 0.488 0.436 0.392 0.354 0.321 0.267 0.225

1.13 0.805 0.692 0.602 0.529 0.468 0.417 0.374 0.337 0.305 0.253 0.212

1.14 0.780 0.669 0.581 0.509 0.450 0.400 0.358 0.322 0.291 0.240 0.201

1.15 0.756 0.647 0.561 0.490 0.432 0.384 0.343 0.308 0.278 0.229 0.291

1.16 0.734 0.627 0.542 0.473 0.417 0.369 0.329 0.295 0.266 0.218 0.181

1.17 0.713 0.608 0.525 0.458 0.402 0.356 0.317 0.283 0.255 0.208 0.173

u\N 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.6 5.0

0.75 0.890 0.872 0.857 0.844 0.833 0.823 0.815 0.808 0.802 0.792 0.784

0.76 0.909 0.890 0.874 0.861 0.849 0.839 0.830 0.823 0.817 0.806 0.798

0.77 0.930 0.909 0.892 0.878 0.866 0.855 0.846 0.838 0.831 0.820 0.811

0.78 0.950 0.929 0.911 0.896 0.883 0.872 0.862 0.854 0.847 0.834 0.825

0.79 0.971 0.949 0.930 0.914 0.901 0.889 0.879 0.870 0.862 0.849 0.839

0.80 0.994 0.970 0.950 0.934 0.919 0.907 0.896 0.887 0.878 0.865 0.854

0.81 1.017 0.992 0.971 0.954 0.938 0.925 0.914 0.904 0.895 0.881 0.869

0.82 1.041 1.015 0.993 0.974 0.958 0.945 0.932 0.922 0.913 0.897 0.885

0.83 1.067 1.039 1.016 0.996 0.979 0.965 0.952 0.940 0.931 0.914 0.901

0.84 1.094 1.064 1.040 1.019 1.001 0.985 0.972 0.960 0.949 0.932 0.918

0.85 1.121 1.091 1.065 1.043 1.024 1.007 0.993 0.980 0.969 0.950 0.935

0.86 1.153 1.119 1.092 1.068 1.048 1.031 1.015 1.002 0.990 0.970 0.954

0.87 1.182 1.149 1.120 1.095 1.074 1.055 1.039 1.025 1.012 0.990 0.973

0.88 1.228 1.181 1.151 1.124 1.101 1.081 1.064 1.049 1.035 1.012 0.994

0.89 1.255 1.216 1.183 1.155 1.131 1.110 1.091 1.075 1.060 1.035 1.015

0.90 1.294 1.253 1.218 1.189 1.163 1.140 1.120 1.103 1.087 1.060 1.039

0.91 1.338 1.294 1.257 1.225 1.197 1.173 1.152 1.133 1.116 1.088 1.064

0.92 1.351 1.340 1.300 1.266 1.236 1.210 1.187 1.166 1.148 1.117 1.092

0.93 1.435 1.391 1.348 1.311 1.279 1.251 1.226 1.204 1.184 1.151 1.123

0.94 1.504 1.449 1.403 1.363 1.328 1.297 1.270 1.246 1.225 1.188 1.158

0.950 1.582 1.518 1.467 1.423 1.385 1.352 1.322 1.296 1.272 1.232 1.199

0.960 1.665 1.601 1.545 1.497 1.454 1.417 1.385 1.355 1.329 1.285 1.248

0.970 1.780 1.707 1.644 1.590 1.543 1.501 1.464 1.431 1.402 1.351 1.310

0.975 1.853 1.773 1.707 1.649 1.598 1.554 1.514 1.479 1.447 1.393 1.348

0.980 1.946 1.855 1.783 1.720 1.666 1.617 1.575 1.536 1.502 1.443 1.395

0.985 2.056 1.959 1.880 1.812 1.752 1.699 1.652 1.610 1.573 1.508 1.454

0.990 2.212 2.106 2.017 1.940 1.973 1.814 1.761 1.714 1.671 1.598 1.537

0.995 2.478 2.355 2.250 2.159 2.079 2.008 1.945 1.889 1.838 1.751 1.678

0.999 3.097 2.931 2.788 2.663 2.554 2.457 2.370 2.293 2.223 2.102 2.002

1.000 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

1.001 2.640 2.399 2.184 2.008 1.856 1.725 1.610 1.508 1.417 1.264 1.138

1.005 2.022 1.818 1.649 1.506 1.384 1.279 1.188 1.107 1.036 0.915 0.817

1.010 1.757 1.572 1.419 1.291 1.182 1.089 1.007 0.936 0.873 0.766 0.681

1.015 1.602 1.428 1.286 1.166 1.065 0.978 0.902 0.836 0.778 0.680 0.602

1.020 1.493 1.327 1.191 1.078 0.982 0.900 0.828 0.766 0.711 0.620 0.546

Table 5A.1 Varied Flow Function F (u, N)
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Gradually    Varied Flow Computations 241 

1.90 0.242 0.188 0.147 0.117 0.094 0.076 0.062 0.050 0.041 0.028 0.020

1.95 0.231 0.178 0.139 0.110 0.088 0.070 0.057 0.046 0.038 0.026 0.018

2.00 0.221 0.169 0.132 0.104 0.082 0.066 0.053 0.043 0.035 0.023 0.016

2.10 0.202 0.154 0.119 0.092 0.073 0.058 0.046 0.037 0.030 0.019 0.013

2.20 0.186 0.141 0.107 0.083 0.065 0.051 0.040 0.032 0.025 0.016 0.011

2.3 0.173 0.129 0.098 0.075 0.058 0.045 0.035 0.028 0.022 0.014 0.009

2.4 0.160 0.119 0.089 0.068 0.052 0.040 0.031 0.024 0.019 0.012 0.008

2.5 0.150 0.110 0.082 0.062 0.047 0.036 0.028 0.022 0.017 0.010 0.006

2.6 0.140 0.102 0.076 0.057 0.043 0.033 0.025 0.019 0.015 0.009 0.005

2.7 0.131 0.095 0.070 0.052 0.039 0.029 0.022 0.017 0.013 0.008 0.005

2.8 0.124 0.089 0.065 0.048 0.036 0.027 0.020 0.015 0.012 0.007 0.004

2.9 0.117 0.083 0.060 0.044 0.033 0.024 0.018 0.014 0.010 0.006 0.004

3.0 0.110 0.078 0.056 0.041 0.030 0.022 0.017 0.012 0.009 0.005 0.003

3.5 0.085 0.059 0.041 0.029 0.021 0.015 0.011 0.008 0.006 0.003 0.002

4.0 0.069 0.046 0.031 0.022 0.015 0.010 0.007 0.005 0.004 0.002 0.001

4.5 0.057 0.037 0.025 0.017 0.011 0.008 0.005 0.004 0.003 0.001 0.001

5.0 0.048 0.031 0.020 0.013 0.009 0.006 0.004 0.003 0.002 0.001 0.000

6.0 0.036 0.022 0.014 0.009 0.006 0.004 0.002 0.002 0.001 0.000 0.000

7.0 0.028 0.017 0.010 0.006 0.004 0.002 0.002 0.001 0.001 0.000 0.000

8.0 0.022 0.013 0.008 0.005 0.003 0.002 0.001 0.001 0.000 0.000 0.000

9.0 0.019 0.011 0.006 0.004 0.002 0.001 0.001 0.000 0.000 0.000 0.000

10.0 0.016 0.009 0.005 0.003 0.002 0.001 0.001 0.000 0.000 0.000 0.000

20.0 0.011 0.006 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

u\N 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.6 5.0

1.18 0.694 0.591 0.509 0.443 0.388 0.343 0.305 0.272 0.244 0.199 0.165

1.19 0.676 0.574 0.494 0.429 0.375 0.331 0.294 0.262 0.235 0.191 0.157

1.20 0.659 0.559 0.480 0.416 0.363 0.320 0.283 0.252 0.226 0.183 0.150

1.22 0.6 28 0.531 0.454 0.392 0.341 0.299 0.264 0.235 0.209 0.168 0.138

1.24 0.600 0.505 0.431 0.371 0.322 0.281 0.248 0.219 0.195 0.156 0.127

1.26 0.574 0.482 0.410 0.351 0.304 0.265 0.233 0.205 0.182 0.145 0.117

1.28 0.551 0.461 0.391 0.334 0.288 0.250 0.219 0.193 0.170 0.135 0.108

1.30 0.530 0.442 0.373 0.318 0.274 0.237 0.207 0.181 0.160 0.126 0.100

1.32 0.510 0.424 0.357 0.304 0.260 0.225 0.196 0.171 0.150 0.118 0.093

1.34 0.492 0.408 0.342 0.290 0.248 0.214 0.185 0.162 0.142 0.110 0.087

1.36 0.475 0.393 0.329 0.278 0.237 0.204 0.176 0.153 0.134 0.103 0.081

1.38 0.459 0.378 0.316 0.266 0.226 0.194 0.167 0.145 0.127 0.097 0.076

1.40 0.444 0.365 0.304 0.256 0.217 0.185 0.159 0.138 0.120 0.092 0.071

1.42 0.431 0.353 0.293 0.246 0.208 0.177 0.152 0.131 0.114 0.087 0.067

1.44 0.417 0.341 0.282 0.236 0.199 0.169 0.145 0.125 0.108 0.082 0.063

1.46 0.405 0.330 0.273 0.227 0.191 0.162 0.139 0.119 0.103 0.077 0.059

1.48 0.394 0.320 0.263 0.219 0.184 0.156 0.133 0.113 0.098 0.073 0.056

1.50 0.383 0.310 0.255 0.211 0.177 0.149 0.127 0.108 0.093 0.069 0.053

1.55 0.358 0.288 0.235 0.194 0.161 0.135 0.114 0.097 0.083 0.061 0.046

1.60 0.335 0.269 0.218 0.179 0.148 0.123 0.103 0.087 0.074 0.054 0.040

1.65 0.316 0.251 0.203 0.165 0.136 0.113 0.094 0.079 0.067 0.048 0.035

1.70 0.298 0.236 0.189 0.153 0.125 0.103 0.086 0.072 0.060 0.043 0.031

1.75 0.282 0.222 0.177 0.143 0.116 0.095 0.079 0.065 0.054 0.038 0.027

1.80 0.267 0.209 0.166 0.133 0.108 0.088 0.072 0.060 0.049 0.034 0.024

1.85 0.254 0.198 0.156 0.125 0.100 0.082 0.067 0.055 0.045 0.031 0.022

Table 5A.1 Varied Flow Function F (u, N)
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242 Flow in Open Channels
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6.1 INTRODUCTION

Hydraulic jump is one subject which has extensively been studied in the fi eld of 
hydraulic engineering. It is an intriguing and interesting phenomenon that has caught 
the imagination of many research workers since its fi rst description by Leonardo 
da Vinci. The Italian engineer Bidone (1818) is credited with the fi rst experimental 
investigation of this phenomenon. Since then considerable research effort has gone 
into the study of this subject. The literature on this topic is vast and ever-expanding. 
The main reason for such continued interest in this topic is its immense practical 
utility in hydraulic engineering and allied fi elds. A hydraulic jump primarily serves 
as an energy dissipator to dissipate the excess energy of fl owing water downstream 
of hydraulic structures, such as spillways and sluice gates. Some of the other uses 
are: (a) effi cient operation of fl ow-measurement fl umes, (b) mixing of chemicals, 
(c) to aid intense mixing and gas transfer in chemical processes, (d) in the desalination 
of sea water, and (e) in the aeration of streams which are polluted by bio-degradable 
wastes.

A hydraulic jump occurs when a supercritical stream meets a subcritical stream of 
suffi cient depth. The supercritical stream jumps up to meet its alternate depth. While 
doing so it generates considerable disturbances in the form of large-scale eddies and 
a reverse fl ow roller with the result that the jump falls short of its alternate depth. 
Figure 6.1 is a schematic sketch of a typical hydraulic jump in a horizontal channel. 
Section 1, where the incoming supercritical stream undergoes an abrupt rise in the 
depth forming the commencement of the jump, is called the toe of the jump. The jump 
proper consists of a steep change in the water-surface elevation with a reverse fl ow 
roller on the major part. The roller entrains considerable quantity of air and the sur-
face has white, frothy and choppy appearance. The jump, while essentially steady, 
will normally oscillate about a mean position in the longitudinal direction and the 
surface will be uneven. Section 2, which lies beyond the roller and with an essen-
tially level water surface is called the end of the jump and the distance between 
Sections 1 and 2 is the length of the jump,  L

j
. The initial depth of the supercritical 

stream is y
1
 and y

2
 is the fi nal depth, after the jump, of the subcritical stream. As indi-

cated earlier, y
2
 will be smaller than the depth alternate to y

1
. The two depths y

1.
 and 

y
2
 at the ends of the jump are called sequent depths. Due to high turbulence and shear 

action of the roller, there is considerable loss of energy in the jump between Sections 
1 and 2. In view of the high energy loss, the nature of which is diffi cult to estimate, 

Rapidly Varied Flow-1

—Hydraulic Jump 6
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Rapidly-Varied Flow-1–Hydraulic Jump 249 

the energy equation cannot be applied to Sections 1 and 2 to relate the various fl ow 
parameters. In such situations, the use of the momentum equation with suitable 
assumptions is advocated. In fact, the hydraulic jump is a typical example where a 
judicious use of the momentum equation yields meaningful results.

6.2 THE MOMENTUM EQUATION FORMULATION FOR THE JUMP

The defi nition sketch of a hydraulic jump in a prismatic channel of arbitrary shape is 
presented in Fig. 6.2. The channel is inclined to the horizontal at an angle θ. Sections 
1 and 2 refer to the beginning and end of the jump respectively.

Fig. 6.1 Defi nition sketch of a hydraulic jump 
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Fig. 6. 2 Defi nition sketch for the general momentum equation
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250 Flow in Open Channels

A control volume enclosing the jump as shown by dashed lines in the fi gure, is 
selected. The fl ow is considered to be steady.

Applying the linear momentum equation in the longitudinal direction to the con-
trol volume,

 P
1 
−

 
P

2 
−

 
F

s 
+ W sin θ = M

2 
−

 
M

1
 (6.1)

where P
1
 =  pressure force at the control surface at Section 1 1 1=γ θA y cos  by 

assuming hydrostatic pressure distribution, where y1 = depth of the 
centroid of the area below the water surface.

 P
2
 =  pressure force at the control surface at Section 2 2 2=γ θA y cos  if 

hydrostatic pressure distribution is assumed.
   (Note that P A y� γ  if θ is small.)
 F

s
 = shear force on the control surface adjacent to the channel boundary.

 W sin θ =  longitudinal component of the weight of water contained in the control 
volume.

 M
2
 =  momentum fl ux in the longitudinal direction going out through the 

control surface = β ρ2 2QV .
 M

1
 =  momentum fl ux in the longitudinal direction going in through the con-

trol surface = β ρ1 1QV .
The hydraulic jump is a rapidly-varied fl ow phenomenon and the length of the 

jump is relatively small compared to GVF profi les. Thus frictional force F
s
 is usu-

ally neglected as it is of secondary importance. Alternatively, for smaller values of θ, 
(W sin θ−F

s
) can be considered to be very small and hence is neglected.

For a horizontal channel, θ = 0  and  W sin θ = 0.

6.3 HYDRAULIC JUMP IN A HORIZONTAL RECTANGULAR
 CHANNEL

(a) Sequent Depth Ratio Consider a horizontal, frictionless and rectangular 
channel. Considering unit width of the channel, the momentum equation, Eq. 6.1, 
can be written in the form

 
1

2

1

21
2

2
2

2 2 1 1γ γ β ρ β ρy y qV qV− = −  (6.2)

Taking  β
2 
= β

1 
= 1.0 and noting that by continuity

q = discharge per unit width =  V
1 
y

1 
= V

2 
y

2

y y
q

g y y2
2

1
2

2

1 2

2 1 1
−( ) = −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

i.e.,  y y y y
q

g
yc1 2 1 2

2
32

2+( ) = =  (6.3)

On non-dimensionalising,
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Rapidly-Varied Flow-1–Hydraulic Jump 251 

 
1

2
12

1

2

1

2

1
3 1

2y

y

y

y

q

g y
F+

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= =  (6.3a)

where F
1 
= Froude number of the approach fl ow =V g y1 1/

Solving for ( y
2 
/ y

1
) yields

 
y

y
F2

1
1
21

2
1 1 8= − + +( )  (6.4)

This equation which relates the ratio of the sequent depths (  y
2
/y

1
) to the initial 

Froude number F
1
 in a horizontal, frictionless, rectangular channel is known as the 

Belanger momentum equation. For high values of F
1
, say F

1 
> 8.0, Eq. 6.4 can be 

approximated for purposes of quick estimation of the sequent depth ratio as

 y
2
 / y

1 
≈ 1.41F

1  
(6.4a) 

Equation 6.4 can also be expressed in terms of F V g y2 2 2=  = the subcritical 
Froude number on the downstream of the jump as

 
y

y
F1

2
2
21

2
1 1 8= − + +( )  (6.5)

(b) Energy Loss The energy loss E
L
 in the jump is obtained by the energy equation 

applied to Sections 1 and 2 as

               E
L
 = E

1
−E

2
         (as the channel is horizontal, Fig. 6.1)

 

= +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
− +

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

y
q

g y
y

q

g y1

2

1
2 2

2

2
22 2

 

 
= −( )+

−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

y y
q

g

y y

y y1 2

2
2
2

1
2

1
2

2
2

1

2  

Substituting for q2/g from Eq. 6.3 and simplifying

 E
y y

y yL =
−( )2 1

3

1 24
 (6.6)

or 
E

y

y

y

y

y

L

1

2

1

3

2

1

1

4

=

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

 (6.6a)

The relative energy loss 
E

E

E

y

E

y
L L

1

1=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1 1
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252 Flow in Open Channels

But 
E

y

F1

1

1
2

1
2

= +

 

E

E

y

y

y

y

F
L

1

2

1

3

2

1

1
2

1

4 1
2

=

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

+
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

 

Substituting for ( y
2
/y

1
) from Eq. 6.4 and simplifying,

 
E

E

F

F F

L

1

1
2

3

1
2

1
2

3 1 8

8 2 1 1 8
=

− + +( )
+( ) − + +( )

 (6.7)

Equation 6.7 gives the fraction of the initial energy lost in the hydraulic jump. The 
variation of  E

L 
/ E

1 
with  F

1
 is shown in Fig. 6.3 which highlights the enorm ous energy 

dissipating characteristic of the jump. At  F
1
 = 5, about 50 per cent of the initial ene-

rgy in the supercritical stream is lost and at F
1
 = 20, E

L 
/ E

1
 is about 86 per cent. 

Figure 6.3 also serves as a yardstick for comparing the effi ciencies of other types of 
jumps and energy-dissipating devices.

0 2 4 6 8 12 14 1810 16 20

100

80

60

40

20

10
0 

E
L 

/ E
1

Horizontal rectangular
channel

F1 = V1

gy1

Fig. 6.3 Relative energy loss in a jump

Experimental studies by many research workers and specifi cally the compre-
hensive work of Bradley and Peterka1 which covered a range of Froude numbers 
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Rapidly-Varied Flow-1–Hydraulic Jump 253 

up to 20, have shown that Eqs 6.4 and 6.6 adequately represent the sequent-depth 
ratio and energy loss respectively in a hydraulic jump formed on a horizontal 
fl oor.

(c) Classsifi cation of Jumps As a result of extensive studies of Bradley 
and Peterka1 the hydraulic jumps in horizontal rectangular channels are classifi ed 
into fi ve categories based on the Froude number F

1
 of the supercritical fl ow, as 

follows:

(i) Undular Jump 1.0 < F
1
 ≤ 1.7 The water surface is undulating with a very 

small ripple on the surface. The sequent-depth ratio is very small and  E
L 

/ E
1
 is 

practically zero. A typical undular jump is shown in Fig: 6.4 (a).

(ii) Weak Jump 1.7 < F
1
 ≤ 2.5 The surface roller makes its appearance at F

1
 ≈ 

1.7 and gradually increases in intensity towards the end of this range, i.e. F
1
 ≈ 2.5. 

The energy dissipation is very small, is E
 L
/ E

1
 about 5 per cent at F

1
 = 1.7 and 18 per 

cent at  F
1
 = 2.5. The water surface is smooth after the jump (Fig. 6.4 (b)).

(iii) Oscillating Jump 2.5 < F
1
 ≤ 4.5 This category of jump is characterised 

by an instability of the high-velocity flow in the jump which oscillates in a 
random manner between the bed and the surface. These oscillations  produce 
large surface waves that travel considerable distances downstream [Fig. 6.4(c)]. 

Roller

∇ ∇

∇

y2

y1

Oscillating jet

(b) Weak jump, 1.7 < F1 ≤ 2.5(a) Undular jump, 1.0 < F1 ≤ 1.7

(c) Oscillating jump, 2.5 < F1≤ 4.5

Fig. 6.4 (Continued )
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254 Flow in Open Channels

(d) 'Steady' jump, 4.5 < F1 ≤ 9.0

(e) Strong or Choppy jump F1 > 9.0

Fig. 6.4 Classifi cation of jumps (1)

Special care is needed to suppress the waves in stilling basins having this kind 
of jump. Energy dissipation is moderate in this range; E

L
 / E

1
= 45 per cent at 

F
1
 = 4.5.

(iv) ‘Steady’ Jump 4.5 < F
1
 ≤ 9.0 In this range of Froude numbers, the jump is 

well-established, the roller and jump action is fully developed to cause appreciable 
energy loss (Fig. 6.4 (d)). The relative energy loss E

L
 / E

1
 ranges from 45 per cent to 

70 per cent in this, class of jump. The ‘steady jump’ is least sensitive in terms of the 
toe-position to small fl uctuations in the tailwater elevation.

(v) Strong or Choppy Jump F
1
 >9.0 In this class of jump the water surface is very 

rough and choppy. The water surface downstream of the jump is also rough and wavy 
(Fig. 6.4(e)). The sequent-depth ratio is large and the energy dissipation is very effi cient 
with E

L
 / E

1
values greater than 70 per cent.

It is of course obvious that the above classifi cation is based on a purely subjective 
consideration of certain gross physical characteristics. As such, the range of Froude 
numbers indicated must not be taken too rigidly. Local factors in stilling basin design 
can cause overlaps in the range of Froude numbers.  Figure 6.5 (Plate 1) shows four 
typical hydraulic jumps in a rectangular laboratory fl ume.

An interesting and useful relationship involving F
1
 and a non-dimensional param-

eter made up of E
L
 and q is obtained as below:

Using Eq. (6.6a) and Eq. (6.4)

E

y

F

F

L

1

1
2

3

1
2

1

16

3 1 8

1 1 8
=

− + +( )
− + +( )

Since  F
q

g y1
2

2

1
3

= ,  y
q

g F1

2 3

1 3
1
2 3

=
/

/ /
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Substituting for y
1
 in the expression for 

E

y
L

1

 given above,

 
16 3 1 8

1 1 8

1 3

2 3

1
2

3

1

2 3

1
2

1

g E

q

F

F F
f FL

/

/ /
=

− + +( )
( ) − + +( )

= ( )  (6.8)

A common problem encountered in the hydraulic design of stilling basins for  barrages 
is to estimate the elements of the hydraulic jump when discharge intensity (q) and 
energy loss  (E

L
) are the only known parameters of the jump.  Equation 6.8 is very 

Fig. 6.5 Hydraulic jumps at diff erent froude numbers (Courtesy: M G Bos)

[Note: The fl ow is right to left]
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256 Flow in Open Channels

useful in this context. A trial and error solution procedure is used to solve Eq. 6.8 to 
obtain  F

1
 for known q and  E

L
. Knowing F

1
, other parameters of the jump are then 

found by direct use of the relevant equations. Example 6.4 illustrates the above use 
of Eq. 6.8. A good description of the above problem and an exact solution for 
 determination of sequent depths when q and  E

L
 are the only known parameters of the 

jump is given by Swamee and Rathie2.

(d) Characteristics of Jump in a Rectangular Channel

(i) Length of the Jump The length of the jump L
j
 is an important parameter affecting 

the size of a stilling basin in which the jump is used. There have been many defi nitions 
of the length of the jump resulting in some confusion in comparing various studies. 
It is now usual to take the length of the jump as the horizontal distance between the 
toe of the jump to a section where the water surface levels off after reaching the 
maximum depth (Fig. 6.1). Because the water-surface profi le is very fl at towards 
the end of the jump, large personal errors are introduced in the determination of the 
length L

j
.

Experimentally, it is found that L
j
 / y

2 
=

 
f (F

1
).The variation of L

j 
/ y

2
with F

1
 obtained 

by Bradley and Peterika1 is shown in Fig. 6.6. This curve is usually recommended for 
general use. It is evident from Fig. 6.6 that while  L

j
 / y

2
 depends on F

1
 for small val-

ues of the inlet Froude number, at higher values (i.e. F
1
 > 5.0) the relative jump 

length L
j
 / y

2 
is practically constant beyond a Froude number value of 6.1.  Elevatorski3 

has shown that the data of reference 1 can be expressed as 

 L
j 
=

 
6.9 (y

 2 
− y 

1
)  (6.9)

Fig. 6.6 Length of the hydraulic jump on a horizontal fl oor
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(ii) Pressure Distribution The pressures at the toe of the jump and at the end of 
the jump follow hydrostatic pressure distribution. However, inside the body of the 
jump, the strong curvatures of the streamlines cause the pressures to deviate from 
the hydrostatic distribution. Observations by Rajaratnam4 have shown that in the 
initial portions of the jump the pressures in the jump body will be less than the 
hydrostatic pressure. The defi cit from the hydrostatic pressure increases with an 
increase in the initial Froude number F

1
. However, at the bottom of the channel 

and in a narrow region close to the bed, the pressures are essentially hydrostatic. 
Thus the pressure-head profi le on the bed is the same as the mean water-surface 
profi le.

(iii) Water-Surface Profi le A knowledge of the surface profi le of the jump is useful 
in the effi cient design of side walls and the fl oor of a stilling basin. Consider 
the coordinate system shown in Fig. 6.7. The coordinates of the  profi le are (x, h) 
with the boundary condition that at x = 0, h = 0, and at x = L

j
, h = ( y

2
–y

1
). In 

general, h = f (x, F
1
).

Based on an analysis of a large number of jump profi les and bed-pressure profi les 
obtained by various investigators, Subramanya5 and Rajaratnam and Subramanya6 
have shown that the jump profi le can be expressed in a non-dimensional manner as

  η = f (λ) (6.10)

in which   η =
−( )

h

y y0 75 2 1.

Fig. 6.7 Defi nition sketch for the jump profi le (6)

y2

(y2 − y1)

∇

h

h

0.75 (y2 − y1)

X
x x

Lj

y1

and λ = x / X, where X = a length scale def ined as the value of x at which 
h = 0.75( y

2 
− y

1
). The variation of η with λ is given in Table 6.1.
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It may be noted that in the η
 
−λ relationship the Froude number does not appear 

explicitly. In Eq. 6.10, X is the length scale and is given by 5, 6

 
X

y
F

1
15 08 7 82= −. .  (6.11)

Equation 6.11 together with Table 6.1 enables one to adequately predict the jump 
profi le.

Since the profi le approaches h = ( y
2 
− y

1
) at x = L

j
 asymptotically, the coordinates 

calculated from Table 6.1 may not exactly match the requirement of the end of the 
jump. For practical purposes it is suggested that the coordinates  (η, λ) be used to plot 
the profi le up to λ ≈ 1.80 and then to smoothly fi nish the curve by joining the profi le 
to the end of the jump at x = L

j 
.

(iv) Velocity profi le When the 
supercritical stream at the toe 
enters the jump body, it under-
goes shearing action at the top 
as well as at the solid boundar-
ies. The top surface of the high-
velocity flow will have high 
relative velocities with respect 
to the fl uid mass that overlays 
it. The intense shear at the sur-
face generates a free shear layer 
which entrains the fl uid from 
the overlying mass of fl uid. The 
boundary shear at the bed causes 
a retardation of the velocity in a 
boundary layer. As a result of 
these actions the velocity distri-
bution in a section at a distance 
x from the toe will be as shown 
in Fig. 6.8. It is seen that the 
velocity profi le has two distinct 

Table 6.1 Coordinates of the Non-dimensional Jump Profi le. 5, 6

λ η λ η λ η 

0.00 0.000 0.60 0.655 1.30 1.140
0.05 0.185 0.70 0.736 1.40 1.180
0.10 0.245 0.80 0.820 1.50 1.215
0.15 0.280 0.90 0.920 1.60 1.245
0.20 0.320 1.00 1.000 1.80 1.290
0.30 0.405 1.10 1.060 2.00 1.320
0.40 0.485 1.20 1.105 2.20 1.333
0.50 0.570         2.40 1.333

Fig. 6.8 Velocity distribution in a jump
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portions—a forward fl ow in the lower main body and a negative velocity region 
at the top. In the forward fl ow, the total volumetric rate of fl ow will be in excess 
of the discharge Q entering the jump at the toe. This is due to the fl ow entrain-
ment at the shear layer. To maintain continuity, i.e. to account for the excess for-
ward fl ow, a reverse fl ow exists at the top. This situation results in the formation 
of the roller.

The forward velocity profi le has zero velocity at the bed, maximum velocity at a 
distance δ and then gradually decreases to zero at a height y

f
 above the bed. The 

region  0 < y < δ can be called the boundary layer part and the region δ < y < y
f
 the 

free-mixing zone. This velocity confi guration indicates that the motion of the  forward 
fl ow is similar to a wall jet except that the pressure gradient is adverse. The velocity 
profi le and shear stress can be studied by following the methods of analysis similar 
to those used in the study of wall jets.

The velocity u at a distance y from the bed in the boundary layer portion (0 < y < δ ) 
can be expressed by a velocity-defect law

 
u u

u
f ym−

=
*

( / )δ  (6.12)

where u* = =τ ρ0 shear velocity and u
m
 = maximum velocity at y = δ. In the free-

mixing zone the velocity profi le is found to be self-similar and can be expressed as3

 
u

u
f y

m

= ( )δ1   for
y

δ1

0 16>
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

.  (6.13)

where δ
1 
= value of y at which u

um=
2

. The maximum velocity u
m
 occurs at y = δ ≈ 0.16δ

1
.  

It may be noted that the non-dimensionalised velocity profi le is explicitly indepen-
dent of F

1
 and x. The scales of the above relationship are u

m
 and δ

1 
which are given 

by

 
u

V
f x ym

1
1= ( )  (6.14)

and  
δ1

1
1y

f x y= ( )  (6.15)

Both Eq. 6.14 and Eq. 6.15 are found 4 to be independent of the initial Froude number F
1
.

(v) Other Characteristics In addition to characteristics mentioned above, information 
about shear stress and turbulent characteristics enhance one’s understanding of the 
jump phenomenon. It has been found that the initial boundary-layer thickness and 
relative roughness of the bed play a major role in these aspects. Useful information 
on these topics are available in literature4, 7.

(e) Computations Computations related to hydraulic jumps in rectangular channels 
are relatively simple. While most of the problem types are amenable to direct solution, 
a few types require trial and error solution procedure. The available relations are
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260 Flow in Open Channels

  (i) Continuity equation
 (ii) Momentum equation for sequent depths and
(iii) Energy equation for energy loss in the jump.

The basic variables can be discharge intensity q; sequent depths  y
1
 and y

2
; and energy 

loss E
L
. There can be many other derived variables and corresponding relationships. 

Based on the above there can be a variety of problem types and a few common ones 
are illustrated in the following examples.

Example 6.1  In a hydraulic jump occurring in a rectangular channel of 3.0-m, 
width, the discharge is 7.8 m3/s and the depth before the jump is 0.28 m. Estimate 
(i) sequent depth, and (ii) the energy loss in the jump.

Solution (i) V1

7 8

3 0 28
9 286=

×( )
=

.

.
. /m s

F
V

g y
1

1

1

9 286

9 81 0 28
5 603= =

×
=

.

. .
.

The sequent depth ratio is given by Eq. (6.4) as

y

y
F2

1
1
2 21

2
1 1 8

1

2
1 1 8 5 603 7 424= − + +⎡

⎣⎢
⎤
⎦⎥
= − + + ×⎡

⎣⎢
⎤
⎦⎥
=( . ) .

Sequent depth = y2 0 28 7 424 2 08= × =. . . m
(ii) The energy loss E

L
 is given by Eq. 6.6 as

E
L
 = 

( ) ( . . )

. .
.

y y

y y
2 1

1 2

3 3

4

2 08 0 28

4 0 28 2 08
2 503

−
=

−
× ×

= m

Example 6.2
  A rectangular channel carrying a supercritical stream is to be 

provided with a hydraulic jump type of energy dissipater. It is desired to have an 
energy loss of 5.0 m in the hydraulic jump when the inlet Froude number is 8.5. What 
are the sequent depths of this jump?

Solution Given F
1
 = 8.5 and E

L
 = 5.0 m

By Eq. 6.4   
y

y
F2

1
1
2 21

2
1 1 8

1

2
1 1 8 8 5 11 53= − + +⎡

⎣⎢
⎤
⎦⎥
= − + + ×⎡

⎣⎢
⎤
⎦⎥
=( . ) .

By Eq. 6.7 
E

y

y

y

y

y

L

1

2

1

3

2

1

1

4

=

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

Chapter 6.indd   260Chapter 6.indd   260 2/24/2010   3:00:10 PM2/24/2010   3:00:10 PM



Rapidly-Varied Flow-1–Hydraulic Jump 261 

5 0 11 53 1

4 11 53
25 32

1

3. ( . )

.
.

y
=

−
×

=

y
1
 = 5.0/25.32 = 0.198 m

and   y
2
 = 0.198 × 11.53 = 2.277 m

Example 6.3  A hydraulic jump takes place in a rectangular channel with 
sequent depths of 0.25 m and 1.50 m at the beginning and end of the jump respec-
tively. Estimate the (i) discharge per unit width of the channel and (ii) energy loss.

Solution (i) By Eq. 6.4  
y

y
F2

1
1
21

2
1 1 8= − + +[ ]

1 50

0 25

1

2
1 1 8 1

2.

.
[ ]= − + + F

 

Thus, F
1
2 = 21 and F

1 
= 4.583 m.

V1 4 583 9 81 0 25 7 177= × × =. . . . m/s

Discharge per unit width = q = V
1 
y

1 
= 7.177 × 0.25 = 1.794 m3/s/m width

    (ii) The energy loss  E
L
 is given by Eq. 6.6 as

E
y y

y yL =
−( )

=
−( )

× ×
=2 1

3

1 2

3

4

1 50 0 25

4 0 25 1 50
1 302

. .

. .
. m

Example 6.4  In a hydraulic jump taking place in a horizontal apron below an 
Ogee shaped weir the discharge per unit width is 0.25 m3/s/m and the energy loss is 
2.75 m. Estimate the depths at the toe and heel of the jump.

Solution This kind of problem needs a trial and error solution procedure. Eq. 6.8 is 
used for easy trial and error solution.

Here q = 0.25 m3/s/m and  E
L
 = 2.75 m.

16 16 9 81 2 75

2 5
51 135

1 3

2 3

1 3

2 3

g E

q
L

/

/

/

/

. .

.
.=

×( ) ×

( )
=

By Eq. 6.8,  f F
F

F F
1

1
2

3

1

2 3

1
2

3 1 8

1 1 8
51 135( ) =

− + +( )
( ) − + +( )

=
/

.  (6.16)
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262 Flow in Open Channels

Equation 6.16 is solved for  F
1
 by a trial and error procedure. Table E-6.4 given 

below indicates the various trials in a typical solution procedure: Use of Spread sheet 
(such as MS Excel) greatly facilitates the procedure.

Trial Assumed  
F

1 
Value

Numerator 
of f(F

1 
) 

Denominator 
of f(F

1 
)

f(F
1 
) Remarks

1 5.0 1396.46 38.53 36.24 Increase the value of F
1
 in the next 

trial
2 6.0 2744.00 52.83 51.94 Decrease F

1
 by a small amount

3 5.9 2581.31 51.32 50.30 Increase F
1 
by a very small 

amount
4 5.95 2661.82 52.07 52.12 Value of F

1
 can be accepted

Table E-6.4 Trial and Error Procedure – Example 6.4 

Hence, F
1
=5.95. Using Eq. 6.4

   
y

y
F2

1
1
2 21

2
1 1 8

1

2
1 1 8 5 95 7 929= − + +( ) = − + + ×( )⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ =. .

By Eq. 6.6a E

y

y

y

y

y

L

1

2

1

3

2

1

3
1

4

7 929 1

4 7 92
=

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
−( . )

( . 99
10 490

)
.=

y
1 
= 2.75/(10.49) = 0.262 m

y
2 
= 0.262 × 7.929 = 2.079 m

Example 6.5  An overfl ow spillway (Fig. 6.9) is 40.0 m high. At the design 
energy head of 2.5 m over the spillway fi nd the sequent depths and energy loss in a 
hydraulic jump formed on a horizontal apron at the toe of the spillway. Neglect 
energy loss due to fl ow over the spillway face. (Assume C

d
 = 0.738). 

Solution The discharge per meter width of the spillway is

q C g Hd d=

= × × × ×( )

=

2

3
2

2

3
0 738 2 9 81 2 5

8 614

3 2

3 2
. . .

.

/

m /s/m3
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By the energy equation 

P H y
V

gd+ = +1
1
2

2

(Energy loss over the spillway is neglected) 

y
g y1

2

1
2

8 614

2
42 5+

( )
=

.
.

 

By trial-and-error 

y

V
q

y

F V g y

1

1
1

1 1 1

0 30

8 614

0 3
28 71

28 71 9 81 0 3 16

=

= = =

= = × =

.

.

.
.

/ . / . .

m

m s

..74

By Eq. 6.4,

y2 2

0 30

1

2
1 1 8 16 74 23 18

.
. .= − + + ( )⎡

⎣
⎢
⎢

⎤
⎦
⎥
⎥
=

y
2 
= 6.954 m

Energy loss  E
y y

y yL =
−( )2 1

3

1 24
 (6.6)

  
= (6.954−0.3)

× 0.30 ×  6.954

3

4  
m= 3530.

E
1
= Energy at Section 1 = 42.5 m

Fig. 6.9 Example 6.5
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∇
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Percentage of initial energy lost = 
E

E
L

1

100 83 0× = . %

Example 6.6  A spillway discharges a fl ood fl ow at a rate of 7.75 m3/s per metre 
width. At the downstream horizontal apron the depth of fl ow was found to be 0.50 m. 
What tailwater depth is needed to form a hydraulic jump? If a jump is formed, fi nd its 
(a) type, (b) length, (c) head loss, (d) energy loss as a percentage of the initial energy, 
and (e) profi le.

Solution q = 7.75 m3/s/m, and y
1 
= 0.50 m

V

F

1

1

7 75

0 50
15 50

15 50

9 81 0 50
7 0

= =

=
×

=

.

.
. /

.

. .
.

m s

Sequent-depth By Eq. (6.4)

y

y
2

1

21

2
1 1 8 7 9 41= − + + ×( ) =( ) .

y
2
 = 4.71 m = required tailwater depth.

( a) Type Since F
1
 = 7.0, a ‘steady’ jump will be formed

(b) Since F
1
> 5.0, L

j 
= 6.1 y

2

L
j
 = length of the jump = 6.1×4.71 = 28.7 m

( c) E
L
 = head loss  =

−
= − × ×

=

( )
( . . ) /( . . )

.

y y

y y
2

3

1 2

31

4
4 71 0 50 4 0 5 4 71

7 92 m

(d) E y
V

g1 1
1
2

2
= +    

2

0 5
15 50

2 9 81
12 75= +

×
=.

( . )

.
. m

E

E
L

1

62 1= . %

( e) Profi le By Eq. (6.11)

X

y

X

y y

1

2 1

5 08 7 0 7 82 27 74

13 87

0 75 3 16

= − =

=
− =

. ( . ) . .

.

. ( ) .

m

m

∴ λ =
x

13 87.
 and η =

h

3 16.
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Substituting these for the values of λ and η given in Table 6.1 a relation 
between x and h is obtained. As suggested in Section 6. 4(c), the profi le is  calculated 
up to λ ≈ 1.80, i.e. up to x = 25.0 m  and then is joined by a smooth curve to the 
end of the jump at x = L

j
 = 28.7 m. The change in the depth in this range would 

be 0.0433 × 3.16 = 0.14 m. This being a fl at curve, i.e., a change of 0.14 m in 
3.70 m, the procedure as above is adequate.

6.4 JUMPS IN HORIZONTAL NON-RECTANGULAR CHANNELS

If the side walls of a channel are not vertical, e.g. in the case of a trapezoidal chan-
nel, the fl ow in a jump will involve lateral expansion of the stream in addition to 
increase in depth. The cross-sectional areas are not linear functions of the depth of 
fl ow. This aspect introduces not only computational diffi culties in the calculation 
of the sequent-depth ratio but also structural changes in the jump. A brief introduc-
tion to this wide fi eld of jumps, in non-rectangular channel, is given in this 
section.

(a) Basic Equations Consider a horizontal frictionless channel of any arbitrary 
shape, such as in Fig. 6.2. For a hydraulic jump in this channel, the general momentum 
(Eq. 6.1) with the assumption of β

2
 = β

1
 = 1.0 reduces to:

 P
1
 − P

2
 = M

2
 − M

1
  (6.17)

i.e.   γ γ ρ ρA y A y Q V QV1 1 2 2 2 2 1 1− = −

 = −
ρ ρQ

A

Q

A
2
2

2

1
2

1

 (6.18)

where A = area of cross-section any y  = depth of the centre of gravity of the area 
from the water surface.

Rearranging Eq. 6.17

P
1 
+ M

1 
= P

2 
+ M

2

i.e. P M Ay
Q

gA
+ = +

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=γ
2

Const. (6.19)

i.e. 
P M

P Ay
Q

gAs

+
= = + =

γ

2

Const. (6.19a)

The term P
P M

s =
+⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟γ
 is the specifi c force (Section 1.11 (c)).
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The specifi c force P
s
 is a function of the depth of fl ow, channel geometry and dis-

charge. A parabolic curve with two distinct limbs resembling the specifi c-energy 
curve is obtained for plots of P

s
 vs y for a given Q in a given channel (Fig. 6.10). The 

lower limb represents the supercritical fl ow and the upper limb the subcritical fl ow. 
An ordinate drawn at a given P

s
 cuts the curve at two points A and B where the 

respective depths represent the sequent depths for the given discharge. The point C 
corresponding to the merger of these two depths is obviously the critical depth for the 
given fl ow Q.

The specif ic-force diagram provides a convenient means of f inding 
sequent depths for a given discharge in a given horizontal channel. If suit-
ably non-dimensionalised, it can provide a quick graphical solution aid in 
cases involving a large number of  calculations. For small and isolated cal-
culations, Eq. 6.19a is solved by a trial- and-error procedure to obtain the 
sequent depths. 

The energy loss E
L
 due to a jump in a non-rectanglar horizontal channel is

 E E E y y
Q

g A AL = − = −( )+ −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟1 2 1 2

2

1
2

2
22

1 1
 (6.20)

Fig. 6.10 Specifi c–force diagram for Example 6.7
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Example 6.7  A trapezoidal channel is 2.0 m wide at the bottom and has side 
slope of 1.5 horizontal: 1 vertical. Construct the specifi c-force diagram for a dis-
charge of 13.5 m3/s in this channel. For this discharge fi nd the depth sequent to the 
supercritical depth of 0.5 m.

Solution The channel cross section is shown as an inset in Fig. 6.10.
 A

1
 = (2.0 + 1.5 × 0.5) × 0.5 = 1.375 m2

T
1 
 = 2.0 + 2 × 1.5 × 0.5 = 3.5 m

A

T
1

1

0 393= . m

V1

13 5

1 375
9 818= =

.

.
. m/s

F1

9 818

9 81 0 393
5 00=

×
=

.

. .
.

For a trapezoidal section

Ay By
y

my
y

=
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥2 3

2

= +
y

B my
2

6
3 2( )

Specifi c force P
Q

Ag
Ays = +

2

= +
( . )

.

13 5

9 81

2

A
Ay

P
y y

y
ys =

+
+ +

18 578

2 0 1 5 6
6 3

2.

( . . )
( )

Values of P
s
 were computed using this equation for different y values, ranging 

from y = 0.1 m to y = 6.0 m and is shown plotted in Fig. 6.10.
From Fig. 6.10, the depth sequent to y

1
 = 0.5 m is y

2
 = 2.38 m (point B).

(b) Sequent-depth Ratios Expressions for sequent-depth ratios in channels of 
regular shapes can be obtained by re-arranging the terms in Eq. 6.19a to get equality 
of specifi c forces as
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Q

gA
A y

Q

gA
A y

2

1
1 1

2

2
2 2+ = +

     A y A y
Q

g A A2 2 1 1

2

1 2

1 1
− = −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

 A y
A y

A y

Q

g

A A

A A1 1
2 2

1 1

2
2 1

1 2

1−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

Noting that F
Q T

g A1
2

2
1

1
3

= ,  and on re-arranging

 
A

A

y

y
F

A T

y

A

A
2

1

2

1
1
2 1 1

1

1

2

1 1−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−
⎛

⎝
⎜⎜⎜⎜

⎞/

⎠⎠
⎟⎟⎟⎟  (6.21)

Substituting the expression for A, T and y  pertinent to the given geometry will 
lead to an equation relating the sequent-depth ratio to the inlet Froude number and 
other geometric parameters of the channel. In most non-rectangular channels Eq. 

6.21 contains the sequent-depth ratio y y2 1/  in such a form that it needs a trial-and-

error  procedure to evaluate it. Reference 8 gives useful information of hydraulic 

jumps in all shapes of channels.

(c) Jumps in Exponential Channels Exponential channels represent a class of 
geometric shapes with the area related to the depth as A = k

1 
y a in which k

1
 and a 

are characteristic constants. For example, values of 1.0, 1.5 and 2.0 for a represent 
rectangular, parabolic and triangular channels respectively.

In the case of an exponential channel (Fig. 6.11),

Top width

T
dA

dy
k a ya= = −

1
1

 (6.22)

A

T
y a= ( )/  (6.23)

   y
A

t y h dh
y

= −( )∫
1

0
,  

y

h

dh

T

t

y
CG

A = K1 ya

∇

∗

Fig. 6.11 Exponential channel

where t = top width at any height h.

 
= −( )∫

−1
0 1

1

A
k a  h      y h dh

y a
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Simplifying y y a= +( )/ 1

Substituting for T, (A / T  ) and y in Eq. 6.21

 
y

y

y

y
F

y a

y a

ya

a
2

1

2

1
1
2 1

1

11
1

1.
/

/
−

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
+( )

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
−

aa

ay2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟  (6.24)

i.e. y

y
F

a

a

y

y

a

2

1

1

1
2 1

2

1
1

1
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

− =
+⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

+ aa⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
 (6.25)

Using this equation the ratio y
2
 / y

1
 can be evaluated as a function of F

1
 and a.

The energy loss E
L
 due to a jump in a horizontal exponential channel can be 

expressed by using Eq. 6.20 as

 E

E

a
y

y
F

y

y
L

a

1

2

1
1
2 1

2

2

2 1 1

=

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
+ −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

+( )2 1
2a F

 (6.26)

Experimental studies by Argyropoulus on hydraulic jumps in parabolic channels9 
and triangular channels10 have shown that the sequent-depth ratios calculated by 
Eq. 6.25 agree closely with the experimental data.

Example 6.8  A hydraulic jump takes place in a horizontal triangular channel 
having side slopes of 1.5 H : 1 V. The depths before and after the jump are 0.30 m and 
1.20 m respectively. Estimate the (i) fl ow rate, (ii) Froude number at the beginning 
and end of the jump, and (iii) energy loss in the jump.

Solution  P Ay my
y

M
Q

A

Q

my

= = ( )

= =

γ γ

ρ ρ

2

2 2

2

3

By Eq. (6.19)     P M
my Q

my
+ = + =

γ ρ3 2

23
Const.

   

g m y Q

m y

g m y Q

my

Q

m y y

g m
y y

1
3 2

1
2

2
3 2

2
2

2

1
2

2
2 2

3
1
3

3 3

1 1

3

+ = +

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ = −(( )

Chapter 6.indd   269Chapter 6.indd   269 2/24/2010   3:00:13 PM2/24/2010   3:00:13 PM



270 Flow in Open Channels

Q g
m y y

y y

y y

2
2

2
3

1
3

2
2

1
2

1
2

2
2

3
=

−( )
−( )⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 Q g
m y y

y
2

2
1
3 3 2

1
4

2
1
23

1

1
=

−( )
−( )

η η

η
 where η = y y2 1

 

Q g
m

y2
2

1
5

3 2

23

1

1
=

−( )
−( )

η η

η

Here m y= =1 5 0 31. , . , η = = =
y

y
2

1

1 20

0 3
4 0

.

.
.

   Q g2

2
5

3 2

2

1 5

3
0 3

4 1 4

4 1
0 12247=

( )
( )

−⎡
⎣⎢

⎤
⎦⎥ ( )

−⎡
⎣⎢

⎤
⎦⎥

=
.

. .

Q = 1.096 m3/s 

For a triangular channel, Froude number F
Q

A g A T
=

/

 F
Q T

gA

Q my

gm y
2

2

3

2

3 6

2
= = =

2 2

2 5

Q

g m y

F1
2

2

2 5

2 1 096

9 81 1 5 0 3
44 88=

×( )
×( ) ×( )

=
.

. . .
. ;  F1 6 693= .

F2
2

2

2 5

2 1 096

9 81 1 5 1 2
0 04375=

×( )
×( ) ×( )

=
.

. . .
. ;  F2 0 209= .

Energy loss:  E E EL = −1 2

                      = +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
− +

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

y
V

g
y

V

g1
1
2

2
2
2

2 2

A1

2
1 5 0 3 0 135= ×( ) =. . .  m2; V1

1 096

0 135
8 119= =

.

.
.  m
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A2

2
1 5 1 2 2 160= ×( ) =. . .  m2; V2 = =

1 096

0 16
0 507

.

.
.  m

EL = +
( )

×

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
− +

( )
×

⎛

⎝

⎜
0 3

8 119

2 9 81
1 2

0 507

2 9 81

2 2

.
.

.
.

.

.
⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

= 3.66 – 1.213 = 2.447 m

Example 6.9  A circular culvert of  2.0-m diameter carries a discharge of 3.0 m3/s. 
If the supercritical depth in a hydraulic jump occurring in this channel is 0.55 m 
determine the sequent depth. Assume horizontal frictionless channel.

Solution y
1
 = 0.55 m y

1
/D = 0.55/2 = 0.275

From Table 2A.1  for y
1
/D = 0.275,  A

1
/D2 = 0.17555

Thus  A
1
 = 0.17555×(2.0)2 = 0.7022 m2.

For a circular channel section fl owing part full, the distance of the centre of gravity 
from the centre of the circular section (ẑ in Fig. 6.12) is given by

ẑ = 
( ) /r z

A
−

−2

3

2 2 3 2

Also, from Fig. 6.12 the depth of the centre of gravity from the water surface of the 
fl ow section y– = y − (r + ẑ)
In the present case, z = r − y = 1.0 − 0.55 = 0.45 m 

ẑ
1
 = 

( . ) ( . )

.
.

/2 2 3 2
2 1 0 0 45

3 0 7022
0 6762−

−⎡
⎣⎢

⎤
⎦⎥

×
= − m

Fig. 6.12 Defi nition sketch – Example 6.9

x

y

Z

CG

∇
y

Ẑ
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Trial y
2
(m) y

2 
/D

A
2 
/D 2 

from 
Table 
2A-1

A
2
(m2) Z

2
ẑ

2
y2 P

s 2
Remarks

1 1.50 0.7500 0.63185 2.52740 0.500 0.1713 0.6713 2.0597 Reduce y
2
 

slightly

2 1.20 0.6000 0.49203 1.96812 0.200 0.3186 0.5186 1.4868 Reduce y
2
 

slightly

3 1.18 0.5900 0.48221 1.92884 0.180 0.3290 0.5090 1.4574 Give very 
small incre-
ment to y

2

4 1.185 0.5925 0.48467 1.93866 0.185 0.3264 0.5114 1.4646 Accept

y1 0 55 1 00 0 6762 0 2262= − + =. . . . m

Specifi c force at Section 1  = = +P
Q

gA
A ys1

2

1
1 1

=
( )
×

+ ×( ) =
3 0

9 81 0 7022
0 7022 0 2262 1 4654

2
.

. .
. . .

Equating the specifi c forces before and after the jump, P
s1

 =
 
P

s2 
= 1.4654

Further P
Q

gA
A ys2

2

2
2 2 1 4654= + = .  (6.27)

The value of y
2
 satisfying this equation is obtained by trial and error.

Trial and error solution of Eq. 6.27
The sequent depth y

2 
= 1.185 m

Note: For hydraulic jumps occurring in horizontal, frictionless circular channels 
several empirical equations are available for facilitating quick calculations. 
Following are two such equations:

(1) Straub(1978):

  (i) For 0 02 0 85
1 01

0 265

0 506

. . ,
.

( ) .

.

< ≤ =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

y

D
y

D

Q

g
c

c  (6.28)

(ii) F
y

y
c

1
1

1 93

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

.

 (6.29)
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(iii) (a) For F1 1 7< . ,  
y

y
yc

1

2

2= ( )  (6.30)

       (b) For F1 1 7≥ .  (in SI Units)

y

y
y

y

yc
c2

1

0 07

1

1 73

1 087=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

. ( ) .

.

(2) K. Subramanya(1996): 

 
y

y
F F2

1
1
2

10 01 0 8644 0 3354= − + +. . .  (6.31)

Alternative Methods to Example 6.9

(1) By using Straub’s Equations

y
D

Q

g
c =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 01
0 265

0 506

.

( ) .

.

yc =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =

1 01

2 0

3 0

9 81
0 823

0 265

0 506
.

( . )

.

.
.

.

.

m

y Dc / . / . .= =0 823 2 0 0 412

Hence calculation of y
c
 is OK and y

y
y

y

yc
c2

1

0 07

1

1 73

1 087 2 1534=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=. ( ) ..

.

Sequent depth y
2
 = 1.1844 m.

(2) Alternative Method-2
y

1
 = 0.55 m  y

1 
/D = 0.55 / 2 = 0.275 

From Table 2A.1 for y
1
/D = 0.275, A

1
/D2 = 0.17556 and T

1
/D =0.89296 

Thus  A
1
 = 0.17556×(2.0)2 = 0.7022 m2.

and  T
1
 = 0.89296× 2.0= 1.78596 m

For using Eq. 6.31       V
Q

A1
1

3 0

0 7022
4 272= = =

.

.
. m/s

F
V

g
A

T

1
1

1

1

4 272

9 81
0 7022

1 78596

2 1752= =

×

=
.

.
.

.

.

By Eq. 6.31 
y

y
F F2

1
1
2

10 01 0 8644 0 3354= − + +. . .

y

y
2

1

2
0 01 2 175 0 8644 2 175 0 3354= − ( ) + ( )+. . . . .

= −0.04731 + 1.8803 + 0.3354 = 2.1683 
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Sequent depth  y
2 
= 2.168× 0.55= 1.193 m

(It may be noted that this method is easier and the error is less than 1%)

6.5 JUMPS ON A SLOPING FLOOR

When a hydraulic jump occurs in a channel with a sloping fl oor, the situation is 
described by the general momentum equation, Eq. 6.1. There are too many unkn own 
terms relative to the number of available equations and unless additional information 
is provided the solution of the momentum equation is not possible. Even if the sim-
plifi ed situation of a rectangular frictionless channel is considered, the term W sin θ 
representing the longitudinal component of weight of the water in the jump poses a 
problem as an unknown quantity. This is because W sin θ involves the length and 
profi le of the jump, information about which can be obtained only through experi-
mental observations. As such, even though many attempts have been made to obtain 
the sequent-depth ratio through the momentum equation, no satis factory general 
solution is available so far. An example of a typical simplifi cation of Eq. 6.1 to obtain 
the sequent-depth ratio in a jump on a sloping fl oor is given below.

The defi nition sketch of a jump on a sloping fl oor in a rectangular frictionless 
channel is indicated in Fig. 6.13. The momentum correction  factors β

1
 and β

2
 are 

assumed equal to unity. A unit width of the channel is considered with q = discharge 
per unit width, y

1
 = depth before the jump and y

t
 = depth at the end of the jump. 

Consider a control volume as shown by dashed lines and the momentum equation in 
the longitudinal direction would be, from Eq. 6.1

 P
1
 
 
− P

2
 + W sin θ = M

2 
− M

1
 (6.32)

Fig. 6.13 Defi nition sketch for a jump on a sloping fl oor 

1
2CV

Flow
W sin θ

W

Lj /cos θ

Lj

y1
ytP1

P2

θ

θ

∇

∇
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Assuming hydrostatic pressure distribution at Section 1 and 2,

P y1 1
21

2
= γ θcos

and  P yt2
21

2
= γ θcos

If the water surface were a straight line joining y
1
 and y

t 
, then the area of the jump 

= 
1

2 1( )
cos

y y
L

t

j+
θ

. 

(Note that the length of the jump L
j 
 is defi ned as a horizontal distance between y

1
 

and y
t 
). Introducing a coeffi cient to account for the  curvature of the jump profi le 

and cos θ term,

 W K L y yj t= +
1

2 1γ ( )  (6.33)

The momentum fl ux M
1
 = ρ q2 / y

1
 and  M

2 
= ρ q2 /

 
y

t.

Equation 6.32 can now be re-written as

1

2

1 1
1
2 2

1
2

1

γ θ θ θ ρy y KL y y q
y yt j t

t

cos cos ( )sin− + +⎡
⎣⎢

⎤
⎦⎥ = −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

Re-arranging

y

y

KL

y

y

y

F yt j t t

1

2

1 1

1
2

1 1
2⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

− − +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
tan

cos

θ

θ
//

/

y

y yt

1

1

1−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

where F V gy1 1 1= / .

[Note that F
1
 is not the exact Froude number of the inclined channel fl ow at Sec-

tion  1= F
1s

 but is only a convenient non-dimensional parameter. The Froude 
number of fl ow in channels with large θ is given by Eq. 2.8a. Hence for 

α θ= =1 0 1 1. , cos . / .F V g A Ts ]

i.e.   
y

y

KL

y

y

y

KL

y
t j t j

1

3

1 1

2

1

1
2⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

− + +
tan tanθ θ FF y

y

Ft1
2

1

1
22

0
cos cosθ θ

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
+ =   (6.34)

Equation (6.34) can used to estimate the sequent-depth ratio by a trial-and-error 
procedure if the term  (KL

j 
) is known. In general, (KL

j 
) can be expected to be a func-

tion of F
1
 and θ and its variation can be obtained only through experimental study.

6.5.1 Characteristics of Jumps on a Sloping Floor

Extensive experiments have been conducted by the U.S. Bureau of Reclamation 
resulting in useful information on jumps on a sloping fl oor11. Based on the USBR 
study, the following signifi cant characteristics of sloping-fl oor jumps can be noted.
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276 Flow in Open Channels

(a) Sequent Depth y
t
 Defi ning y

2
 =  equivalent depth corresponding to y

1
 in 

a horizontal fl oor jump = − + +( )y
F1

1
2

2
1 1 8 , the sequent depth y

t
 is found to be 

related to y
2
 as 

y

y
ft

2

= ( )θ

The variation of 
y

y
t

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ with tan θ is shown in Fig. 6.14. By defi nition 

y

y
t

2

= 1.0 

when tan θ = 0 and it is seen from Fig. 6.13 that  y
t   
/y

2
 increases with the slope of the 

channel having typical values of 1.4 and 2.7 at tan θ = 0.10 and 0.30 respectively. 
Thus the sloping-fl oor jumps require more tailwater depths than the corresponding 
horizontal-fl oor jumps.

The best fi t line for the variation of y
t
 / y

2
 with tan θ shown in Fig. 6.14, can be 

expressed as 

 y
t
 / y

2 
=1.0071 exp (3.2386 tan θ) (6.35)

Fig. 6.14 Variation of  y
t
/y

2
 in jumps on a sloping fl oor

0.00
1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

3.00

0.05 0.10 0.15 0.20 0.25 0.30

Eq. (6.35)

Data from Ref.[11]

y2 =
y1

2
[– 1 + 1 + 8F

1

∇
∇

yt

y t
 / 

y
2

y1

θ

tan θ 

2
]
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(b) Length of the Jump L
j
 The length of the jump L

j
 was defi ned in the USBR 

study as the horizontal distance between the commencement of the jump and a point 
on the subcritical fl ow region where the streamlines separate from the fl oor or to 
a point on the level water surface immediately downstream of the roller, whichever 
is longer.

The length of the jump on a sloping fl oor is longer than the corresponding L
j
 of a 

jump on a horizontal fl oor. The variation of L
j 
/ y

2
 with F

1
 for any θ  is similar to the 

variation for θ = 0 case shown in Fig. 6.6. In the range of 4.0 < F
1
 < 13, L

j 
/ y

2
 is 

essentially independent of F
1
 and is a function of θ only. The variation can be approx-

imately expressed as 12

 L
j 
/ y

2 
= 6.1 + 4.0 tan θ (6.36)

in the range of 4.5 < F
1
 < 13.0.

Elevatorski’s3 analysis of the USBR data indicates that the jump length can be 
expressed as

L
j
= m

s
(y

t
–y

1
)         (6.37)

in which m
s
 = f(θ). The varia-

tion of m
s
 with tan θ is shown in 

Fig. 6.15. It may be seen that 
m

s 
= 6.9 for tan θ = 0 and 

decreases with an increase in 
the value of the channel slope. 
Equation 6.37 is based on a 
wider range of values for F

1
 

than in Eq. 6.37.

(c) Energy Loss E
L
 Kno wing 

the sequent depths y
t
 and y

1
 and 

the length of the jump, the energy 
loss E

L
 can be calculated as

E
L 
= H

1 
− H

2

where  H = total energy at a section

E
L 
= (E

1 
+ L

J 
tan θ)−E

2

 = + + − −y
V

g
L y

V

g
t

j1

2

1
1
2

2 2
cos tan cosθ θ θ  (6.38)

where y
t 
= sequent depth in a sloping channel at Section 2. It is found that the 

relative energy loss E
L
/H

1
 decreases with an increase in the value of θ, being 

highest at tan θ = 0. The absolute value of E
L
 is a function of θ, being least when 

θ = 0.

Fig. 6.15 Length of jumps on sloping fl oor

0
0

2

4

6

8

0.1 0.2 0.3 0.4

Data from (3)
Lj = ms (yt – y1)

tan θ

m
s
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Example 6.10  A rectangular channel is laid on a slope of 1 horizontal : 0.15 
vertical. When a discharge of 11.0 m3/s/metre width is passed down the channel at a 
depth of 0.7 m, a hydraulic jump is known to occur at a section. Calculate the sequent 
depth, length of the jump and energy loss in the jump. What would be the energy loss 
if the slope was zero?

Solution q =11.00 m3/s/m

At inlet V1

11 00

0 70
15 714= =

.

.
. m/s

F1

15 714

9 81 0 7
6 0=

×
=

.

. .
.

y
2
 = equivalent sequent depth in a horizontal fl oor jump

= − + +⎡
⎣⎢

⎤
⎦⎥
= − + + ×( )⎡

⎣
⎢
⎢

⎤
⎦
⎥
⎥

y
F1

1
2 2

2
1 1 8

0 70

2
1 1 8 6

.

= 5.6 m
Sequent depth From Eq. 6.35 or from Fig. 6.13, corresponding to a value of tan θ = 0.15

y

y
t

2

1 63= .

y
t
 = sequent depth in the inclined fl oor jump
=1.63 × 5.6 = 9.13 m

Length of the jump
From Fig. 6.14, corresponding to tan θ  = 0.15, m

s
 = 3.8

By Eq. 6.37 L
j 
=

 
3.8 (9.13 − 0.70) = 32.03 m

By Eq. 6.36 L
j 
=

 
5.6(6.1 + 4.0 × 0.15) =37.52 m

An average value of L
j 
= 34.5 m could be taken as the jump length.

Energy loss

Initial specifi c energy E y
V

g1 1
1
2

2
= +cosθ

cos θ = 0.98893

E1

2

0 7 0 98893
15 714

2 9 81
13 278= ×( )+

( )
×

=. .
.

.
. m

(Note the small effect of the cos θ  term on the energy.)

L
j
 tanθ = 34.5 × 0.15 = 5.175 m

H
1
 = total energy at Section 1 with the bed level at 2 as datum

= E
1
+ L

J
 tanθ = 13.278 + 5.175 = 18.453 m
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H E y
V

gt
t

2 2

2

2
= = +cosθ

H2

2

9 24 0 98893
11 0 9 24

2 9 81
= × +

×
( . . )

( . / . )

.

= 9.210 m
The energy loss   E

1 
=

 
H

1 
− H

2

i.e.  E
L 
= (E

1 
+ L

j 
tan θ) − (E

t
)

= 18.453 − 9.210 = 9.243.

Also    E HL /
.

.
. . %1

9 243

18 453
0 501 50 1= = =

For a horizontal fl oor jump:
y

2 
= 5326 m,  y

1
 = 0.70 m

E
y y

y yL =
−

=
−

× ×
=

( ) ( . . )

. .
.2 1

3

1 2

3

4

5 26 0 70

4 0 7 5 6
7 503m

E
1 
= y

1
 + V

1
2 / 2g = 13.286 m

E EL /
.

.
. %1

7 503

13 286
100 56 48= × =

(Note that the relative energy loss in the sloping fl oor jump is referred to the total 
energy H

1
.)

6.6 USE OF THE JUMP AS AN ENERGY DISSIPATOR

The high energy loss that occurs in a hydraulic jump has led to its adoption as a part 
of the energy-dissipator system below a hydraulic structure. The downstream portion 
of the hydraulic structure where the energy dissipation is deliberately allowed to 
occur so that the outgoing stream can safely be conducted to the channel below is 
known as a stilling basin. It is a fully-paved channel section and may have additional 
appurtenances, such as baffl e blocks and sills to aid in the effi cient performance over 
a wide range of operating conditions. Stilling basins are so designed that not only a 
good jump with high energy-dissipation characteristics is formed within the basin 
but it is also stable. For economic considerations the basin must be as small as 
practicable.

Designing a stilling basin for a given hydraulic structure involves considerat-
ions of parameters peculiar to the location of the structure in addition to the 
mechanics of fl ow. This feature makes the engineering design rely rather heavily 
on the experience of the designer. Model studies are usually resorted to arrive at 
an effi cient design. To assist in the preliminary design, type designs are available. 
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The US Bureau of Reclamation has developed a series of type designs13 and Fig. 6.16 
shows details of one such design. This stilling basin is recommended for F

1 
> 4.5 

and V
1 
<18 m/s. Note the chute blocks to assist in splitting and aerating of fl ow; 

baffl e blocks which offer additional resistance to fl ow; and the end sill which 
helps the outgoing stream to be lifted up into a trajectory so that the basin end is 
not subjected to scouring action. The effect of these appurtenances is to shorten 
the stilling basin length to 2.7 y

2
 as against 6.1 y

2
 required for a free unaided 

hydraulic jump. Also, the minimum tailwater depth required is 0.83 y
2
 as against 

y
2
 for an unaided jump. Further details on energy dissipators are available in 

References 13 and 3.

Fig. 6.16 USBR-type III stilling basin (after Bradley and Peterka, paper no. 1403, Reference 13)

Nominal

2H : 1V1H : 1V

L

h4
h3

0.2 h3

h3

h1

h1 /y1 = 1.0

h3 /y1 = 0.60 + F1/6

h4 /y1 = 1.00 + F1/18

S1

S1 = y1

W1 = y1

W3 = 0.75 h3 = S3

S3

W1
W3

0.5 y1

0.2 h3

h4

0.375 h3

0.8 y2

θ

2:1 Slope

Baffle pier

Baffle piers
Chute blocks

End sill

End sill

1:1 Slope

Tailwater depth = 0.83 y2 (min)

= 1.00 y2 (recommended)

y2 /y1 =
1

2
–1 + 1 + 8 F 2

1

F1 > 4.5 and V1 < 18.0 m/s 
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6.7 LOCATION OF THE JUMP

A hydraulic jump is formed whenever the momentum equation (Eq. 6.1) is satisfi ed 
between the supercritical and subcritical parts of a stream, In connection with GVF 
calculations it has already been indicated that the control for supereritical fl ows is at 
the upstream end and for subcritical fl ows the control is at the downstream end. Thus 
if a jump exists in a stretch of a channel, its location will satisfy three requirements, 
viz. (a) the inlet depth y

1
 is part of the upstream GVF profi le, (b) the sequent depth y

2
 

is part of the downstream GVF profi le, and (c) the depths y
1
 and y

2
 satisfy the momen-

tum equation and are separated by a distance L
j
. The procedure for locating the jump 

by satisfying the above requirements is illustrated with the help of an example.
Consider a sluice gate acting as an upstream control (point 4) and the pool eleva-

tion (point P) acting as a downstream control in a mild-slope channel (Fig. 6.17). The 
algorithm for the location of the jump by graphical or numerical computation proce-
dure is as follows:

1.  Starting from point A, compute the GVF profi lc ABC. Point C is the critical depth.
2.  Calculate the sequent-depth CB' A' in which every point B'  is sequent to a 

point B vertically below it on the curve ABC. This curve is obtained by using 
the appropriate form of the general momentum equation (Eq. (6.1). For a rect-
angular channel of very small slope, if depth at B = y

1
,
 
depth at B' = =y2  

( ) − + +⎡
⎣⎢

⎤
⎦⎥

y F1 1
22 1 1 8/ .

3.  Noting that L
j 
/
 
y

2 
= f (F

1  
)

 
, compute L

j
 for each point on the curve CB'A' and 

shift the curve by displacing each point in the downstream direction by respec-
tive L

j
 values. The resulting curve is CDE.

4.  Starting from P, compute the M
2
 profi le, curve PDQ.

5.  The-intersection of the curve PDQ with CDE (point D) gives the downstream end 
of the jump. The toe of the jump, point B, is located by drawing a horizontal line 
from D to cut CB'A' at B' and then a vertical from B' to cut the curve ABC at B.

Fig. 6.17 Location of a hydraulic jump

∇

∇

A ′ E

L j

DQ
B ′

Jump

C

B M3 Curve

M2 Curve

A

P

Pool

θ
Mild slope

CDL

Vertically exaggerated scale
Depth of B = y1

B ′ = y2
Curve A ′ B ′ C = Curve of sequent depths

Curve CDE = Curve A′B ′C displaced
       to the right by distance Lj
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In numerical computations the same principle as above can easily be incor-
porated. Note that this procedure gives direct determination of the end points of 
a jump and the method is general and can be applied in a wide variety of jump 
situations.

In the example described above, the subcritical water surface profi le M
2
 was a 

particular GVF profi le which depended upon the downstream control. Depending on 
the control, it could be an M

1
 profi le also. If instead of a local control, a very long 

channel would have given a friction control which would ensure uniform fl ow with 
the normal depth being controlled by the friction of the channel. The depth down-
stream of a hydraulic structure, such as a sluice gate, controlled by the downstream 
channel or local control is known as tailwater depth.

Tailwater level plays a signifi cant role in the formation of the jump at a particular 
location. Consider a fl ow from a sluice gate of opening a [Fig. 6.18(a)]. The depth at 
the vena contracta is y

a
. Let the depth sequent to y

a
 be y

2
. Let the tailwater level be y

t
. 

Depending upon the relative values of y
2
 and y

t
 two basic types of jumps can be 

identifi ed.
When y

t
 = y

2
, a hydraulic jump will form at the vena contracta. Also if y

t 
<

 
y

2
 , the 

jump is repelled downstream of the vena contracta through an M
3
 curve. The depth at 

the toe of the jump y
1
 will be larger than y

a
 and the sequent depth y

12
 = y

t
 [Fig. 6.l8(b)]. 

Such a jump is known as repelled jump. Jumps with sequent depth equal to or less 
than y

2
 are known as free jumps, indicating that the supercritical stream before the 

jump is not affected by tailwater. The procedure indicated at the beginning of this 
section can be used to locate the position of a free jump.

If however the tailwater is larger than y
2
 [Fig. 6. l8(c)] the supercritical stream is 

submerged and the resulting jump is called submerged or drowned jump. The ratio, 
y y

y
St −

=2

2

 is called submergence factor and infl uences the characteristics of sub-

merged jump considerably3. Generally, the energy dissipation in a submerged jump 
is smaller than that in a corresponding free jump.

Fig. 6.18 (a) Free jump at vena contracta, (y
t
 = y

2 
)

a

A yt = y2

ya

∇

∇
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Example 6.11  A sluice gate in a 3.0-m wide rectangular, horizontal channel 
releases a discharge of 18.0 m3/s. The gate opening is 0.67 m and the coeffi cient of 
contraction can be assumed to be 0.6. Examine the type of hydraulic jump formed 
when the tailwater is (i) 3.60 m (ii) 5.00 m, and (iii) 4.09 m.

Solution Let A be the section of vena contracta (Fig. 6.17).
y

a   
= depth at vena contracta  = 0.67 × 0.6 = 0.40 m

V
a
  = 18.0 / (3.0 × 0.4) =15.0 m /s

Fig. 6.18 (c) Submerged jump, ( y
t
 < y

2 
)

∇

∇

y
ty

2A
a

y
a

A = Vena Contracta
y2 = depth sequent to ya

Fig. 6.18 (b) Free repelled jump, ( y
t
 < y

2 
)

y
1

∇

∇

a

y
2

y
t
 = y

12
A

y
a
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F
a
 = Froude number at vena contracta =

V

g ya

Fa =
×

=
15 0

9 81 0 4
7 573

.

. .
.

If y
2
 = Sequent depth required for a jump at vena contracta

y

y
Fa

2 21

2
1 1 8

a

= − + +⎡
⎣⎢

⎤
⎦⎥

    
= − + + ×⎡

⎣⎢
⎤
⎦⎥
=

1

2
1 1 8 7 573 10 222( . ) .

y
2 
= 10.22 × 0.40 = 4.09 m

1. When the tailwater depth y
t
 = 3.60 m,

Since y
t
 < y

2
, a free, repelled jump will form.

Vt =
×

=
18 0

3 0 3 60
1 667

.

. .
.   m/s

Ft =
×

=
1 667

9 81 3 60
0 281

.

. .
.

The depth at the toe of this repelled jump y
1
 is given by

y

y
F

t

t
1 21

2
1 1 8= − + +⎡

⎣⎢
⎤
⎦⎥

  

y1 2

3 60

1

2
1 1 8 0 281 0 1387

.
( . ) .= − + + ×⎡

⎣⎢
⎤
⎦⎥
=

y
1
 = 0.50 m

An M
3
 curve will extend from Section A ( y

a 
= 0.40 m) to Section 1 ( y

1
 = 0.50 m).

2. When the tailwater depth y
t
 = 5.0 m.

Since y
t > 

y
2
,
 
 a submerged jump will occur.

3. When y
t
 = 4.09, y

t
 = y 

2 
and a free jump will occur at Section 1 with y

t  
= y

a
 = 0.40 m.

Example 6.12  The fl ow in a wide rectangular channel of bed slope S
0
 = 0.0005 

and n = 0.020 is controlled at the upstream end by a sluice gate. At a certain time the 
sluice gate was adjusted to discharge 7.0 m3/s per metre width of the channel with a 
depth of 0.40 m at the vena contracta. Find the location of the jump and the sequent 
depth.

Solution Refer to Fig. 6.19. Sequent depth after the jump = y
2  

= tailwater depth.

y
qn

S
0

0

3 5 3 5
7 0 0 020

0 0005
3=

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
=

×⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ =

/ /
. .

.
.000 m
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y
0
 = y

 2 
= 3.00 m

F
q

y g y
2

2 2

7 0

3 0 9 81 3 0
0 429= =

×
=

.

. . .
.

y

y
F1

2
2
2 21

2
1 1 8

1

2
1 1 8 0 429 0 286= − + +( ) = − + + × ( )⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ =. . m

y
1
 = 0.286 × 3.0 = 0.86 m

Length of the jump = L
j 
= 6.1 × 3.00 = 18.00 m

There will be an M
3
-type GVF profi le from the vena contracta to the toe of the jump 

and this is evaluated by the direct step method.

Fig. 6.19 Schematic sketch of Example 6.12

∇

0.40 m

X
Toe of Jump

y1

Jump

TW = y0 = y2

Lj

Wide Rectangular Channel S
0
 = 0.0005 n = 0.020 q = 7.0 m3/s/m

Sl. 
No.

Depth 
y (m)

Velocity 
V (m/s)

V 2/2g
Specifi c 
Energy 
E (m)

ΔE(m) S
f S

–
f

S
–

f
–S

0

Δx 
(m) x (m)

1 0.40 17.50 15.610 16.01 0.4156  0.0

2 0.50 14.00  9.990 10.49 –5.52 0.1976 0.30660 –0.3061 18.0 18.0

3 0.60 11.67  6.937  7.54 –2.95 0.1076 0.15257 –0.1521 19.4 37.4

4 0.70 10.00  5.097  5.80 –1.74 0.0644 0.08597 –0.0855 20.4 57.8

5 0.80  8.75  3.902  4.70 –1.09 0.0412 0.05280 –0.0523 20.9 78.7

6 0.86  8.14  3.377  4.24 –0.47 0.0324 0.03682 –0.0363 12.8 91.6

Computation of Flow Profi le by Direct Step Method—Example 6.12

The toe of the jump is at a distance of 91.6 m from the vena contracta of the jet issu-
ing from the sluice gate.

Chapter 6.indd   285Chapter 6.indd   285 2/24/2010   3:00:18 PM2/24/2010   3:00:18 PM



286 Flow in Open Channels

REFERENCES

 1.  Bradley, J N and Peterka, A J ‘The Hydraulic Design of Stilling Basins, Hydraulic Jumps 
on a Horizontal Apion’, J. of Hyd. Div., Proc. ASCE, Paper No. 1401, October 1957, 
pp 1401–l–25.

 2.  Swamee, P K and Rathie, P N, ‘Exact Solutions of Sequent Depth Problems’, J. of Irr. and
Drainage Engg., Vol. 130, No. 6, Nov.-Dec. 2004, pp. 520–522.

 3.  Elevatorski, E A, Hydraulic Energy Dissipators, McGraw-Hill, New York, 1959.
 4.  Rajaratnam, N, ‘Hydraulic Jumps’, Chapter in Advances in Hydroscience, ed. Chow, V T 

Vol. 4, Academic Press, New York, 1967, pp 198–280.
 5.  Subramanya, K, ‘Some Studies on Turbulent Wall Jets in Hydraulic Engineering’, Ph. D. 

thesis, Univ. of Alberta, Edmonton, Canada, Oct. 1967.
 6.  Rajaratnam, N and Subramanya, K, ‘Profi le of the Hydraulic Jump’, J. of Hyd. 

Div., Proc. ASCE, Paper No. 5931, May 1968, pp 663–673. 
 7.  Leutheusser, H J and Kartha,V C ‘Effects of Infl ow Condition on Hydraulic Jump’, J. of 

Hyd. Div., Proc. ASCE, Paper No. 9088, Aug 1972, pp 1367–1385.
 8.  Silvester, R, ‘Hydraulic Jumps in all Shapes of Horizontal Channels’, J. of Hyd. Div., 

Proc. ASCE, Jan. 1964, pp 23–55.
 9.  Argyropoulous, P A, ‘Theoretical and Experimental Analysis of the Hydraulic Jump in a 

Sloping Parabolic Flume’, Proc. IAHR, Lisbon, Vol. 2, 1957, pp D. 12–1–20.
10.  Argyropoulous, P A, ‘The Hydraulic Jump and the Effect of Turbulence on Hydraulic 

Structures’, Proc. IAHR, Durbrovnik, Yugoslavia, 1961, pp 173–183.
11.  Bradley, J N and Peterka, A J ‘Hydraulic Design of Stilling Basin: Stilling Basin with 

Sloping Apron (Basin,V)’, J. of Hyd. Div, Proc. ASCE, Paper No. 1405, Oct.1957, 
pp 1405–1–32.

12.  Henderson, F M Open Channel Flow, Macmillan, New York, 1966.
13.  Bradley, J N and Peterka, A J ‘Hydraulic Design of Stilling Basins’ in Symposium on 

Stilling Basins and Energy Dissipators’, ASCE, Proc. Symp. Series No. 5, Paper Nos.1401 
to 1406, June 1961, pp 1401–1 to 1406–17 (also in J. of Hyd, Div., Proc. ASCE, Vol. 83, 
No. HY 5, Oct. 1957).

14.  Forster, J W and Skrinde, R A ‘Control of the Hydraulic Jump by Sills’, Trans. ASCE, 
Vol. 115, 1950, pp 973–1022.

15.  Hsu, E Y, ‘Discussion on: Control of the Hydraulic Jump by Sills’, Trans. ASCE, Vol. 115, 
1950, pp 988–991.

16.  Moore, W L, and Morgan, C W ‘Hydraulic Jump at an Abrupt Drop’. Trans. ASCE, Vol. 124, 
1959, pp 507–524.

17.  Harleman, D R F, ‘Effect of Baffl e Piers on Stilling Basin Performance’, J. of Boston Soc. 
of Civil Engineers, Vol. 42, 1955, pp 84–89.

18.  Koloseus, H J and Ahmad, D ‘Circular Hydraulic Jump’, J. of Hyd. Div., Proc. ASCE, Jan. 
1969, pp 409–422.

19.  Arbhabhirama, A and Wan, W C ‘Characteristics  of a Circular Jump in a Radial Wall Jet’ 
J. of Hyd. Res., IAHR, Vol. 13, No. 3, 1973, pp 239–262.

20.  Lewson, J D and Phillips, B C ‘Circular Hydraulic Jump’, J. of Hyd. Engg., ASCE, 
Vol. 109, No. 4, April, 1983, pp 505–518.

21.  Arbhabhirama, A and Abella, U Hydraulic Jump with a Gradually Expanding Channel’, 
J. of Hyd. Div., Proc ASCE, Jan. 1971, pp 31–42.

22.  Khalifa, A M and McCorquodale, J A ‘Radial Hydraulic Jump’, J. of Hyd. Div., Proc, 
ASCE, Sept. 1979, pp 1065–1078.

Chapter 6.indd   286Chapter 6.indd   286 2/24/2010   3:00:18 PM2/24/2010   3:00:18 PM



Rapidly-Varied Flow-1–Hydraulic Jump 287 

PROBLEMS

Problem Distribution

Topic Problems

 1. Elements of jump in a rectangular channel 6.1–6.10
 2. Jump below a sluice gate 6.11, 6.23, 6.24, 6.31, 6.32
 3. Jump below an overfl ow spillway 6.12–6.14
 4. Jump at an abrupt rise 6.15, 6.30
 5. Jump at a sudden drop 6.16
 6. Jump on a sloping fl oor 6.17, 6.25 , 6.27
 7. Jump in non-rectangular channels 6.18–6.22, 6.26
 8. Location of the jump 6.23, 6.24
 9. Forced hydraulic jump 6.28
10. Circular hydraulic jump 6.29
11. Repelled jump 6.31, 6.32

(Unless otherwise stated the channel is assumed to be frictionless for purposes of hydraulic 
jump calculations.)

6.1  A hydraulic jump occurs in a horizontal rectangular channel with sequent depths of 0.70 m and 
4.2 m. Calculate the rate of fl ow per unit width, energy loss and the initial Froude number.

6.2  A hydraulic jump occurs in a horizontal rectangular channel at an initial Froude number 
of 10.0. What percentage of initial energy is lost in this jump?

6.3  The following table gives some of the possible types of problems associated with a 
hydraulic jump occurring in a rectangular channel. Complete the following table.

(Note that Problem 6.3(c) requires a trial-and-error approach. Assume F
1
, fi nd y

1
, y

2
 and 

check E
L
. Repeat till satisfactory values are obtained.)

Prob. 
No.

V
1 

(m / s)
y

1
 (m) q 

(m   2/s / m)
F

1
y

2 

(m)
V

2
(m/s) F

2
E

L 

(m)
E

L
/E

1
 

(%)

a 0.170 1.84
b 9.00 2.90
c 2.00 1.75
d 1.60 0.90
e 13.50 0.350
f 0.15 8.00

6.4  A hydraulic jump in a rectangular channel has the Froude number at the beginning of the 
jump F

1 
= 5. Find the Froude number F

2
 at the end of the jump.

6.5  Show that the Froude numbers F
1
 and F

2
 in a hydraulic jump occurring in a rectangular 

channel are related by

 (a)  F
F

F
2

2 1
2

1
2

3

8

1 1 8
=

− + +( )
 (b) F

F

F
1
2 2

2

2
2

3

8

1 1 8
=

− + +( )
6.6  A rectangular channel carrying a supercritical stream is to be provided with a hydrau-

lic jump type of energy dissipator. If it is desired to have an energy loss of 5 m in the 
jump when the inlet Froude number is 8.5, determine the sequent depths.

6.7  Show that in a hydraulic jump formed in a horizontal, frictionless, rectangular channel the 
energy loss E

L
 relative to the critical depth y

c
 can be expressed as
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E

y

a

a a
L

c

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
−( )
+( )

3 9

4

1

32 1

 where a = sequent-depth ratio = y
2
/y

1
.

 6.8  In a hydraulic jump occurring in a horizontal, rectangular channel it is desired to have an 
energy head loss equal to 6 times the supercritical fl ow depth. Calculate the Froude 
number of the fl ow necessary to have this jump.

 6.9  In a hydraulic jump taking place in a horizontal, rectangular channel a sequent-depth 
ratio of 10 is desired. What initial Froude number would produce this ratio? What would 
be the Froude number after the jump?

6.10  In a hydraulic jump taking place in a horizontal rectangular channel the discharge inten-
sity and head loss are found to be 4.7 m3/s/m and 6.0 m respectively. Determine the 
sequent depths of the jump.

6.11  Water from a low dam is released through a sluice gate on a horizontal rectangular chan-
nel. The depth of water upstream of the sluice gate is 16.0 m above the channel bed and 
the gate opening is 1.5 m. The sluice gate can be assumed to be sharp-edged. If a free 
hydraulic jump is formed just downstream of the gate, fi nd the sequent depths and the 
percentage of the initial energy lost in the jump.

6.12  An overfl ow spillway has its crest at elevation 125.40 m and a horizontal apron at an eleva-
tion of 95.00 m on the downstream side. Find the tailwater elevation required to form a 
hydraulic jump when the elevation of the energy line is 127.90 m. The C

d
 for the fl ow can 

be assumed as 0.735. The energy loss for the fl ow over the spillway face can be neglected.
6.13  In Problem 6.12 if the tailwater elevation is 102.40 m, what should be the elevation of 

the apron fl oor to cause the jump?
6.14  At the bottom of a spillway the velocity and depth of fl ow are 12.0 m/s and 1.5 m respec-

tively. If the tailwater depth is 5.5 m fi nd the location of the jump with respect to the toe 
of the spillway. What should be the length of the apron to contain this jump? Assume the 
apron to be horizontal and Manning’s n = 0.015.

6.15  A hydraulic jump is formed in a stiliing basin created by a step of height ΔZ in a rec tangular 
horizontal channel as in Fig. 6.20. Assuming hydrostatic pressure distribution at Sections 1, 
2 and 3, and normal hydraulic jump operation between Sections 1 and 2, show that

y

y
F

y

y

Z

y

Z

y
F3

1

2

1
2 1

3 1 1

1 2 1 1 1 8
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= + −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

+
Δ Δ

+ − + 11
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(Note: Reference 14 gives details of this aspect of control of hydraulic jumps.)

∇

∇

y3

1

2 3

y1

y2

ΔZ

Fig. 6.20 Jump at an abrupt rise—Problem 6.15
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6.16  When a hydraulic jump occurs at an abrupt drop in a rectangular channel, depending 
upon the relative step height ΔZ/y

1
, two distinct situations are possible as shown in 

Figs 6.21 and 6.22. Considering the reaction of the step as shown in Figs 6.21 and 6.22 
show that, for the case A:

F

y

y

Z

y

y

y

1
2

2

1 1

2

1

2

1

2 1

=

−
Δ⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

and for the case B:

F

y

y

Z

y

y

y

1
2

2

1

2

1

1

2

1

2 1

=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

− +
Δ⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

2

(Note: This situation has been studied in detail by Hsu15, and Moore and Morgan16.)

Fig. 6.21 Jump at a sudden drop—Problem 6.16, (Case A)

∇

∇

ΔZ

γy2

y2y1

2

1

Case - A

Fig. 6.22 Jump at a sudden drop—Problem 6.16, (Case B)

∇

∇

ΔZ

y2y1

γ(y1 + ΔZ) Case-B

2
1
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6.17  The Rihand dam in U.P., India, has a sloping apron stilling basin with a slope of 0.077. 
If the depth for a fl ood fl ow of 64.0 m3/s per metre width is 1.93 m, estimate the sequent 
depth, length of the jump and energy loss in the hydraulic jump.

6.18  A hydraulic jump occurs in a horizontal 90° triangular channel. If the sequent depths in 
this jump are 0.60 m and 1.20 m, estimate the fl ow rate and the Froude numbers at the 
beginning and end of the jump.

6.19  For a hydraulic jump taking place in a horizontal, frictionless, triangular channel show 
that the sequent depths y

1
 and y

2
 are related to the pre-jump Froude number F

1
 as

F1
2

2 3

2

2 1

3 1
=

−
−

η η
η
( )

( )

 where η = y y2 1/ .
6.20  A horizontal trapezoidal channel of 2.0-m bed width and side slopes 2 horizontal : 1 ver-

tical carries a discharge of 6.225 m3/s at a depth of 0.20 m. If a hydraulic jump takes 
place in this channel, calculate the sequent depth and energy loss.

6.21  A trapezoidal channel of 7.0-m bottom width and side slope 1 horizontal : 1 vertical carries 
a discharge of 20 m3/s. Prepare the specifi c energy and specifi c-force diagrams for this chan-
nel. If the depth after a jump on a horizontal fl oor in this channel for the given discharge is 
known to be 2.25 m, fi nd the sequent depth and energy loss. What are the limitations of the 
plots prepared by you? Can you think of a non-dimensional representation of the specifi c-
force and specifi c-energy diagrams so that they can be used for jump computations in trape-
zoidal channels having a wide range of geometrical parameters and discharges?

6.22  A circular culvert of 1.5-m diameter carries a discharge of 1.0 m3/s. The channel can be 
assumed to be horizontal and frictionless. If the depth at the beginning of a hydraulic 
jump occurring in this channel is 0.30 m, determine sequent depth.

6.23  A sluice gate discharges 10.0 m3/s per meter width in to a wide rectangular channel of 
n = 0.025 and bottom slope S

0
 = 0.0002. The depth of fl ow at the vena contracta is 0.40 

m. If the channel ends in a sudden drop at a distance of 1300 m downstream of the gate, 
locate the position of the jump.

6.24  The fl ow in a wide rectangular channel of bed slope S
0
 = 0.0008 and n = 0.025 is con-

trolled at the upstream end by a sluice gate. The sluice gate is adjusted to discharge 8.0 
m3/s per meter width of the channel, with a depth of 0.50m at the vena contracta Find the 
location of the jump and the sequent depth

6.25  A wide rectangular steep channel (tan θ = 0.20) has a horizontal apron. Find the maxi-
mum tailwater depth that will have a jump completely in a horizontal apron when a dis-
charge of 2.47 m3/s per metre width passes down the steep channel at a depth of 0.30 m. 
What tailwater depth will cause the jump to occur completely on the sloping channel?

6.26  Prepare a plot of E
L 

/ E
1
  vs F

1
 for rectangular, parabolic and triangular horizontal chan-

nels using Eqs (6.23) and (6.24). Observe that the highest relative energy loss occurs in 
a triangular channel.

6.27  (a)  Show that the relative energy loss in a hydraulic jump occurring on a sloping rectan-
gular channel is

E

H

y

y

F y

y
L

t

t

1

1

1
2

1

2

1
2

1

=

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
+ −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦
cosθ ⎥⎥

⎥
⎥
+

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
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+ +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

L

y

y

y

F L

y

y

y

t

t

t

t

1

1
2

12

tan

cos t

θ

θ aan

( , )

θ
θ= f F1
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 where H
1 

= total energy referred to the bed at the end of the jump as datum and 

F V gy1 1 1= / .

 (b)  Analyse E
L
 and show that the magnitude of energy loss is larger in a sloping-channel 

jump as compared to the loss in a corresponding horizontal-channel case.
6.28  Baffl es are provided in stilling basins to introduce an additional drag force on the 

fl ow.
 (a)  Figure 6.23 (a) shows a baffl e wall placed in a horizontal rectangular channel jump. 

The drag force per unit length of the baffl e wall can be expressed as P C
V

hB D=
ρ 1

2

2
 

in which C
D
  = drag coeffi cient. Show that the sequent-depth ratio  y

2  
/ y

1
 for this case 

is related as

2 1
11

2 2

1

2

1

1
2

1

1 2

F
y

y

y

y

C F h y

y y
D− +

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥
=

( )
−( )

/

/

 (b)  Figure 6.23(b) shows a jump assisted by baffl e blocks. Write the momentum equa-
tion to this case. (References 17 and 4 contain information on the role of baffl es in 
the stilling-basin performance).

Fig. 6.23  (a) Jump assisted by a baffl  e wall—Problem 6.28 (a)

(b) Jump assisted by baffl  e blocks—Problem 6.28 (b)

hy
1

y
1

11
22

h

y
2y

2

S
W

BB

  L-Sect ion Horizontal L- Sect ionHorizontal

Plan Plan

(a) (b)

6.29  A vertical jet of water striking a horizontal surface spreads out radially and can 
form a circular hydraulic jump under proper tailwater conditions. Figure 6.24 is a 
definition sketch for such a circular jump. Use momentum and continuity equa-
tions to get
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1
1

3
1

2
12 2 1

2

−⎡
⎣⎢

⎤
⎦⎥ + −( ) + +( ) = −( )RY R Y Y Y

F
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 in which R r r F
V

gy
= =2 1

2
1

2
1

1

, and Y
y

y
= 2

1

 Hint: Consider a small element of the jump of angular width dθ as in Fig. 6.22 and apply 
momentum and continuity equations in the x-direction. The major difference between the 
jump in a prismatic rectangular channel and the present case of circular jump is that in 
the present case the hydrostatic forces on the two walls of the element have a net compo-
nent in the x-direction. To evaluate this, one requires the profi le of the jump. One of the 
common assumptions is to assume the profi le to be linear. In the present case also assume 
the profi le of the jump to be a straight line.

 [Note: References 18, 19 and 20 can be consulted for details on circular hydraulic jumps. 
The same equation applies to a jump in a gradually expanding rectangular channel details 
of which are available in references 21 and 22.]

6.30  A discharge of 6.65 m3/s per metre width from a low spillway enters a horizontal apron 
at a depth of 0.5 m. The tailwater depth is 3.0 m. Determine the depth of depression of 
the stilling basin below the original stream bed necessary to ensure that a hydraulic jump 
will form in the stilling basin.

6.31  Water fl ows from under a sluice gate into a wide rectangular channel having a bed slope of 
0.0001. The gate opening is such that the discharge rate is 6.0 m3/s/metre width. Determine 
whether a free hydraulic jump can occur and if so determine its sequent depths when the 
depth at the vena contracta is (i) 0.50 m and (ii) 0.40 m. Assume Manning’s n = 0.015.

Fig. 6.24 Circular hydraulic jump—Problem 6.29
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6.32  An opening of a reservoir is controlled by a sluice gate. The gate opening is 1.30 m. 
Water surface elevation upstream of the gate is 100.00 m. If the elevation of the bed is 
85.00 m and the tailwater elevation is 91.00 m.

 (a ) What is the discharge per unit width?
 (b) What kind of jump is formed? What are the sequent depths?
 (c )  What is the maximum tailwater depth that could be sustained by a free jump?
 (Assume C

c
 = 0.75 and C

d
 = 0.71 for the sluice gate).

 OBJECTIVE QUESTIONS

 6.1  The hydraulic jump is a phenomenon
(a)  in which the water surface connects the alternate depths 
(b)  which occurs only in frictionless channels
(c )  which occurs only in rectangular channels
(d)  none of these

 6.2  A hydraulic jump occurs when there is a break in grade from a
(a)  mild slope to steep slope   (b)  steep slope to mild slope
(c)  steep slope to steeper slope  (d)  mild slope to milder slope

 6.3  The sequent-depth ratio in a hydraulic jump formed in a horizontal rectangular channel 
is 16.48. The Froude number of the supercritical stream is
(a)  8.0   (b)  4.0   (c)  20   (d)  12.0

 6.4  The Froude number of a subcritical stream at the end of a hydraulic jump in a horizontal 
rectangular channel is 0.22. The sequent-depth ratio of this jump is.
(a)  11.25   (b)  15.25   (c)  8.35   (d)  6.50

 6.5  If the Froude number of a hydraulic jump is 5.50, it can be classifi ed as 
(a)  an oscillating jump   (b)  a weak jump
(c)  a strong jump       (d)  a steady jump

 6.6  The initial depth of a hydraulic jump in a rectangular channel is 0.2 m and the sequent-
depth ratio is 10. The length of the jump is about
(a)  4 m   (b)  6 m   (c)  12 m   (d)  20 m

 6.7  In a hydraulic jump taking place in a horizontal rectangular channel the sequent depths 
are 0.30 m and 1.50 m respectively. The energy loss in this jump is
(a)  1.92 m   (b)  1.50 m   (c)  0.96 m   (d)  1.20 m

 6.8  Seventy per cent of the initial energy is lost in a jump taking place in a horizontal rectan-
gular channel. The Froude number of the fl ow at the toe is
(a)  4.0   (b)  9.0   (c)  20.0   (d)  15.0

 6.9  In a hydraulic jump occurring in a horizontal rectangular channel with an initial Froude 
number of 12, the sequent depth ratio is found to be 13.65. The energy dissipation as a 
percentage of the initial specifi c energy is about
(a)  62%   (b)  50%   (c)  87%   (d)  73%

6.10  The concept of constancy of specifi c force at the beginning and the end of a jump
(a)  assumes horizontal frictionless channel
(b)  is valid for jumps in a rectangular sloping fl oor basin
(c)  is valid for all kinds of channels provided the friction can be assumed to be negligi-

bly small
(d)  assumes constancy of specifi c energy
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6.11  A sluice gate discharges a fl ow with a depth of y
1
 at the vena contracta. y

2 
is the sequent 

depth corresponding to y
1
. If the tailwater depth y

t
 is larger then y

2
 then

(a)  a repelled jump occurs      (b)  a free jump occurs
(c)  a submerged jump takes place   (d)  no jump takes place

6.12  If y
2
 = sequent depth for a rectangular channel obtained by assuming horizontal friction-

less channel in the momentum equation and y
2a

 = corresponding actual sequent depth 
measured in a horizontal rectangular channel having high friction, one should expect
(a)  y

2
 > y

2a
   (b)  y

2
 = y

2a
   (c)  y

2
 < y

2a
   (c)  y

2
 ≤ y

2a

6.13  If the length of the jump in a sloping rectangular channel = L
js
 and the corresponding 

length of the jump in a horizontal rectangular channel having same y
1
 and F

1
 is L

j
, then

(a)  L
j
 >

 
L

js
   (b)  L

js
 > L

j
   (c)  L

j
 = L

js
   (d)  L

j 
/L

js
 = 0.80

6.14  If E
LS

 = energy loss in a jump in a sloping rectangular channel and E
LH

 = energy loss in 
a corresponding jump on a horizontal rectangular channel having the same y

1
 and F

1
, 

then
 (a)  E

LH
 = E

LS
   (b)  E

LH
 > E 

LS
   (c)  E

LH
 < E

LS
   (d)  E 

LH 
/E 

LS 
= 0.80
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7.1 INTRODUCTION

Rapidly varied fl ows (RVP) are a class of fl ows which have high curvatures, a con-
sequence of which is the presence of non-hydrostatic pressure distribution zones in 
a major part of the fl ow. Further, these fl ows are essentially local phenomenon in 
the sense friction plays a minor role. The hydraulic jump studied in Chapter 6 is an 
important RVF phenomenon. In this chapter a few steady, rapidly varied fl ow situa-
tions are discussed. Since a very wide variety of RVF problems occur in practice, an 
exhaustive coverage of all situations is not possible in a book of this nature and hence 
a few basic and important fl ow types are covered. The RVFs covered in this chapter 
are due to (i) sharp-crested weirs, (ii) overfl ow spillways, (iii) broad-crested weirs, 
(iv) end depths, (v) sluice gates, and (vi) culverts. Many of the RVFs studied here are 
used for fl ow measurement purposes.

7.2 SHARP-CRESTED WEIR

A weir is a structure built across a channel to raise the level of water, with the water 
fl owing over it. If the water surface, while passing over the weir, separates at the 
upstream end and the separated surface jumps clear off its thickness, the weir is called 
a sharp-crested weir. It is also known as a notch or a thin plate weir. Sharp-crested 
weirs are extensively used as a fairly precise fl ow-measuring  device in laboratories, 
industries and irrigation practice. The sharp-crested weirs used in practice are usu-
ally vertical metal plates with an accurately-machined upstream edge of thickness 
not exceeding 2.0 mm and a bevel of angle greater than 45° on the downstream face 
edge. The weirs come in many geometric shapes but the rectangular and triangular 
ones are the most commonly used.

7.2.1 Rectangular   Weir

Figure 7.1 shows the defi nition sketch of fl ow over a sharp-crested rectangular weir. 
The water surface of the stream curves rapidly at the upstream of the weir and 
plunges down in a parabolic trajectory on the downstream. This surface is known 
as upper nappe. At the weir crest, the fl ow separates to have a free surface which 

Rapidly Varied 

Flow-2 7
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initially jumps up to a level higher than the weir crest before plunging down. This 
surface is known as lower nappe. If the weir extends to the full width of the chan-
nel, the lower nappe encloses a space having air initially at atmospheric pressure. 
As the flow proceeds for sometime, some of the air from this pocket is entrained by 
the moving water surfaces and the pressure in the air pocket falls below the 
atmospheric pressure. This in turn causes the nappe surfaces to be depressed. 
This change is a progressive phenomenon. A limiting case of the air pocket 
completely evacuated is a clinging nappe shown in Fig. 7.1. To maintain stan-
dardised conditions for flow measurement, the air pocket below the lower 
nappe should be kept at a constant pressure. The atmospheric pressure in this 
pocket is achieved through the provision of air vents. The weir flow as above 
assumes at tailwater level far below the crest and is termed free flow. A detailed 
description of nappe changes and its effects on flow measurement are available 
in literature1. Figures 7.2 and 7.3 show a fully aerated and non-aerated nappe 
respectively. 

7.2.2 Discharge Equation

It is usual to derive the discharge equation for free fl ow over a sharp-crested weir by 
considering an ideal undefl ected jet and to apply a coeffi cient of contraction to 
account for the defl ection due to the action of gravity.

Energy line

H0
H1

P

h
dh

Nappe

Air vent

yp yt

ΔZ

< 2 mm

> 45°
90°

Sharp crest
Clinging nappe

∇

∇

∇

∇

√2gh

Fig. 7.1 Defi nition sketch of a sharp-crested weir
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Thus for a rectangular weir of length L spanning the full width B of a rectangular 
channel (i.e., L = B), the ideal discharge through an elemental strip of thickness dh 
at a depth h below the energy line (Fig. 7.1), is given by

 dQ
i 
= L 2gh dh (7.1)

Thus the ideal discharge Q L g h dhi V

g

H
V

g=
+

∫2
0
2

1
0
2

2

2          (7.2)

Fig. 7.2 Fully-aerated nappe (Courtesy: M G Bos)

Fig. 7.3 Non-aerated nappe (Courtesy: M G Bos)
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and the actual discharge  Q = C
c 
Q

i
 (7.3)

in which C
c
 = coeffi cient of contraction.

Thus        Q C gL H
V

g

V

gc= +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

2

3
2

2 21
0
2 3 2

0
2 3 2/ / ⎤⎤

⎦

⎥
⎥
⎥

 (7.4)

However, since Eq. 7.4 is rather inconvenient to use, the discharge equation is writ -
 ten in terms of H

1
, the depth of fl ow upstream of the weir measured above the weir 

crest, as

           Q C g LHd=
2

3
2 1

3 2/  (7.5)

where C
d
 = coeffi cient of discharge which takes into account the velocity of approach 

V
0
 and is given by

      C C
V

gH

V

gHd c= +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤
1

2 2
0
2

1

3 2

0
2

1

3 2/ /

⎦⎦

⎥
⎥
⎥

 (7.6)

In ideal fl uid fl ow C
d
 = f(H

1  
/P) and this variation has been studied by Stretkoff  2. In 

real fl uid fl ow C
d
 should in general be a function of Reynolds number and Weber 

number, in addition to the weir height factor H
1  
/P. If Reynolds number is suffi ciently 

large and if the head H
1
 is suffi ciently high to make the surface tension effects negli-

gible, the coeffi cient of discharge

 C
d
 = 

 
f(H

1  
/P) 

The variation of C
d
 for rectangular sharp-crested weirs is given by the well-known 

Rehbock formula

 C
H

Pd = +0 611 0 08 1. .  (7.7)

which is valid for H
1 
/P ≤ 5.0.

7.2.3 Sills

For very small values of P relative to H
1
, i.e., for 

H

P
1 20> , the weir acts as a sill 

placed al the end of a horizontal channel and as such is termed sill. Assuming that the 
critical depth y

c
 occurs al the sill

 H P y
Q

gBc1

2

2

1 3

+ = =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

/

 (7.8)
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i.e. Q B g H P C g LHd= +( ) =1

3 2

1
3 22

3
2

/ /  (7.9)

and    L = B,
the value of C

d
 from Eq. (7.9) works out to be

 C
P

Hd = +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1 06 1
1

3 2

.

/

 (7.10)

0.6

0.7

0.8

0.9

1.0

1.10

1.20

0 0.1 0.2 0.3 0.4 0.5 0.6

Eq.(7.10)
Sill

Eq.(7.7)

∇

∇

H1

C
d

P / H1

H1

P

P

Weir

Sill

Fig. 7.4 Variation of C
d  
 for weirs and sills

This relationship for C
d
 has been verifi ed experimentally by Kandaswamy and 

Rouse3. The variation of C
d
 given by Eq. 7.7 for weirs and by Eq. 7.10 for sills is 

shown in Fig. 7.4.
In the intermediate region of weirs and sills (i.e. 20 > H

1 
/P > 5) the C

d
 values 

are expected to have a smooth transition from Eq. 7.7 to Eq. 7.10 as shown in 
Fig. 7.4. 

A review of the effect of liquid properties on C
d
 is available in Ref. 1. Gener-

ally, excepting at very low heads, i.e. H
1
 ∼< 2.0 cm, for the fl ow of water in rect-

angular channels, the effects of Reynolds number and Weber number on the value 
of C

d
 are insignifi cant. Thus for practical purposes, Eq. 7.7 and Eq 7.10 can be 

used for the estimation of discharges. The head H
1
 is to be measured upstream of 
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the weir surface at a distance of about 4.0 H
1
 from the weir crest. If weirs are 

installed for metering purposes, the relevant standard specifi cations (e.g. Interna-
tional Standards: ISO: 1438, 1979, Thin-plate weirs) must be followed in weir 
settings.

7.2.4 Submergence

In free fl ow it was mentioned that the tailwater level is far below the crest 
to affect the free plunging of the nappe. If the tailwater level is above the weir 
crest, the fl ow pattern would be much different from the free-fl ow case (Fig. 7.5). 
Such a flow is called submerged flow. The ratio H

2 
/H

1
 where H

2
 = downstream 

water-surface elevation measured above the weir crest, is called submergence 
ratio. In submerged flow, the discharge over the weir Q

s
 depends upon the sub-

mergence ratio. An estimation of Q
s
 can be made by use of Villemonte 

formula1,4

 Q Q
H

Hs

n

= −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1
2

1

0 385

1

.

 (7.11)

H1 H2

∇

∇

Fig. 7.5 Submerged sharp-crested weir

where Q
1
 = free-flow discharge under head H

1 
, n = exponent of head in the 

head-discharge relationship Q = KHn .For a rectangular weir, n = 1.5.
The minimum value of H

2  
/H

1
 at which the discharge under a given head H

1
 

deviates by 1 per cent from the value determined by the free-fl ow equation is 
termed modular limit or submergence limit. In sharp-crested rectangular weirs 
the modular limit is negative, i.e. the submergence effect is felt even before the 
tailwater reaches the crest elevation. Thus to ensure free-fl ow it is usual to spec-
ify the tailwater surface to be at least 8 cm below the weir crest for small weirs. 
This minimum distance will have to be larger for large weirs to account for fl uc-
tuations of the water level immediately downstream of the weir due to any wave 
action.
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7.2.5 Aeration Need of Rectangular Weir

The need for aeration of rectangular weirs spanning the full width of a channel 
was indicated in Sec. 7.2.1. The rate of air supply (Q

a
 in m3/s) required to completely 

meet the aeration need is given by5

 
Q

Q y H

a

p

=
( )

0 1

1

3 2

.

/
/

 (7.12)

in which Q = water discharge and y
p
 = water-pool depth on the downstream of the 

weir plate (Fig. 7.1). If a submerged hydraulic jump takes place, y
p
 can be estimated 

by the tailwater depth. On the other hand, for the case of a free jump occurring on the 
downstream, y

p
 can be estimated by the following empirical equation5

 y Z
Q

L g Z
p = Δ

Δ( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2

2 3

0 22.

 (7.13)

where ΔZ = difference in elevation between the weir crest and the downstream fl oor 
(Fig. 7.1).

To cause air fl ow into the air pocket through an air vent, a pressure difference 
between the ambient atmosphere and the air pocket is needed. Assuming a maximum 
permissible negative pressure in the pocket (say 2 cm of water column), the size of 
the air vent can be designed by using the usual Darcy-Weisbach pipe fl ow equation.

Example 7.1  A 2.0-m wide rectangular channel has a discharge of 0.350 m3/s. 
Find the height of a rectangular weir spanning the full width of the channel that can 
be used to pass this discharge while maintaining an upstream depth of 0.850 m.

Solution A trial-and-error procedure is required to solve for P. Assuming C
d
 = 

0.640, by Eq. 7.5

    
H1

3 2 0 350
2

3
0 640 19 62 2 0 0 0926/ . . . . .= × × ×

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ =

       H1 0 205= .  m and   P = 0.850 – 0.205 = 0.645m

  H P1 0 318= .  m and C
d
 = 0.611 + (0.08 × 0.318) = 0.636

2nd iteration: Using the above value of C
d 

        H1
3 2/ =

0 0926

0 636
0 640 0 09318

.

.
. .× =

         H
1
 = 0.206 m,  P = 0.644 m,  H

1  
/ P = 0.320

and   C
d
  = 0.637
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Accepting the value of C
d
 the fi nal values are H

1
 = 0.206 m and P = 0.644 m. The 

height of the required weir is therefore P = 0.644 m.

Example 7.2  A 2.5-m wide rectangular channel has a rectangular weir span-
ning the full width of the channel. The weir height is 0.75 m measured from the 
bottom of the channel. What discharge is indicated when this weir is working under 
submerged mode with depths of fl ow, measured above the bed channel, of 1.75 m and 
1.25 m on the upstream and downstream of the weir respectively.

Solution Weir height P = 0.75 m,

  H
1
 = 1.75 – 0.75 = 1.00 m and H

2
 = 1.25 – 0.75 = 0.5 m

 H
1 
/ P = 1.0/0.75 = 1.333 and H

2 
/H

1 
= 0.5/1.0 = 0.50

    C
d
 = 0.611 + 0.08 ( 1.333) = 0.718

Q C gL Hf d= ( ) = × × × ×( ) =
2

3
2

2

3
0 718 19 62 2 5 1 0 5 301

3 2 3 2/ /
. . . . .  m3/s

By Villemonte equation for submerged weir fl ow, and noting that for rectangular 
weir fl ow n =1.5

Q Q
H

Hs f= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ = × ( )⎡

⎣⎢
⎤
⎦⎥

=1 4 24 1 0 5 42

1

1 5

0 385
1 5 0 385

( ) . - ..

.
. .

..48  m3/s.

7.2.6 Contracted Weir

The discharge Eqs 7.4 and 7.5 have been derived for a weir which spans the full 
width of the channel. In such weirs there will be no contraction of the streamlines at the 
ends and as such they are termed uncontracted or suppressed weirs. However, if the 
length of the weir L is smaller than the width of the channel, such weirs are known as 
contracted weirs (Fig. 7.6). In contracted weirs, the fl ow issuing out of the weir open-
ing will undergo contraction at the sides in addition to the contraction caused by upper 

and lower nappes. As a result, the effective 
width of the weir is reduced.

The discharge from contracted weir can be 
obtained by using the effective length L

e
 in the 

Eq. 7.4. The well-known Francis formula 
gives

L
e
 = L – 0.1nH

1
 (7.14)

where n = number of end contractions. For the 
weir shown in Fig.7.6, n = 2, and if m number 
of piers are introduced on a weir crest,  n = 
2m + 2. The discharge equation for the con-
tracted weir is written asFig. 7.6 Weir with end contractions

∇

H1

L

B

P
Le
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 Q C L n H H
V

g

V

gc= −( ) +
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⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2

3
0 1

2 21 1

2 3 2 2

2g 0 0.

33 2⎡

⎣

⎢
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⎢

⎤

⎦

⎥
⎥
⎥

 (7.15)

For L > 3H
1
 and H P1 1 0/ .< , the value of C

c
 is taken as C

c
 = 0.622.

For contracted sharp-crested weirs, Kindsvater and Carter 6 have given a modifi ed 
version of Eq. 7.15, based on their extensive experimental investigation covering a 
wide range of variables, as

 Q C g L Hdc e e=
2

3
2 1

3 2/  (7.16)

where C
dc

 = coeffi cient of discharge for contracted weir, L
e 
= effective length and 

H
le
 = effective head. The effective length and head are obtained as

 L
e
 = L + K

L
 (7.16a)

and  H
1e 

= H
1
 + K

H
 (7.16b)

where K
H
 and K

L
 are additive correction terms to account for several phenomena 

attributed to viscosity and surface tension. Values of recommended K
H
 and K

L
 are 

given in Table 7.1. The discharge coeffi cient C
dc

 is a function of L

B
 and H

1
/P, 

expressed as

 C K K
H

Pdc = +
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟1 2

1   (7.17)

The variation of K
1
 and K

2
 are also shown in Table 7.1.

Table 7. 1 Value s of Parameters for Use in Eq. (7.16)* 6

LIB K
L
 (m) K

H  
(m) K

1
K

2

1.0  – 0.0009

K
H
=

0.
00

1 
m

 =
 C

on
st

.

0.602 +0.0750
0.9    0.0037 0.599 +0.0640
0.8    0.0043 0.597 +0.0450
0.7    0.0041 0.595 +0.0300
0.6    0.0037 0.593 +0.0180
0.5    0.0030 0.592 +0.0110
0.4    0.0027 0.591 +0.0058
0.3    0.0025 0.590 +0.0020
0.2   0.0024 0.589 −0.0018
0.1   0.0024 0.588 −0.0021

*Equation (7.16) is subject to the limitations H
1   
/ P < 2.0, H

1
 
 
> 0.03 m, L  > 0.15 m and P   > 0.10 m.

Example 7.3  A 2.0-m wide rectangular channel has a contracted rectangular 
weir of 1.500-m length and 0.60-m height. What would be the depth of fl ow upstream 
of the weir when the fl ow through the channel is 0.350 m3/s?
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Solution In this case L

B
=

1 50

2 00

.

.
= 0.75. From Table 7.1,

K
L 
= 0.0042, K

H
 = 0.001, K

1 
= 0.596 and K

2
 = 0.0375.

L
e
 = L + K

L 
= 1.50 + 0.0042 = 1.5042 m

As a trial-and-error procedure is needed to calculate H
1
, assume C

dc
 = 0.60 for the 

fi rst trial. From Eq. 7.16

H e1
3 2 0 350

2

3
0 60 19 62 1 5042 0 13133= × × ×

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ =. . . . .

 H
ie
 = 0.2584 m, H

1
 = 0.2584 − 0.001 = 0.2574 m

 H P1

0 2574

0 60
/

.

.
= =0.429 and from Eq. 7.17

C
dc

= 0.596 + (0.0375 × 0.429) = 0.612

2nd iteration: Using the above value of C
dc

H e1
3 2 0 13133

0 612
0 600/ .

.
.= × = 0.128755

  H
1e

= 0.255 m, H
1
= 0.254 m, H

1
/P= 0.4233 and

C
dc

 = 0.612 which is the same as the assumed value.

Hence the fi nal values are H
1
 = 0.254 m and C

dc
  = 0.612.

Upstream depth =H
1
 + P = 0.254  + 0.600 = 0.854 m

The water surface on the upstream will be at a height of 0.854 m above the bed.

7.2.7 Non-Rectangular Weirs

Sharp-crested weirs of various shapes are adopted for meeting specifi c requirements 
based on their accuracy, range and head-discharge relationships. The general form of 
head-discharge relationship for a weir can be expressed as Q = KH

1
n, where K and n 

are coeffi cients. The coeffi cient n depends upon the weir shape and K depends upon 
the weir shape and its setting. The discharge equations for some commonly used weir 
shapes are given in Table 7.2.

A variety of sharp-crested weir shapes have been designed to give specifi c head-
discharge relationships and are described in literature1. A type of weir for which the 
discharge varies linearly with head, known as Sutro Weir fi nds use in fl ow measure
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Table 7.2 Discharge Relationships for some Commonly Used Non-Rectangular 

Thin-Plate Weirs

Shape Discharge

x2 = ky

H1

y

B

B

P

H1

H1

d

P

P

x

∇

∇

∇

Parabolic Q =

Q =

1
1
22g H

4
π Cd

Cd φ d 2.5, φ = f (H1/d ), Cd = f (H1/d )

k

Cd = fn (θ)

Circular

Triangular 2θ Q = 8
15

Cd 2g   tan θ H1
5/2

For 2θ = 90˚,Cd  = 0.58 

L1

H1 H1 H1 tan θ L1+CdQ =

P

∇

θθ

2 2g
3

4
5

3/2
Trapezoidal

ment of small discharges and in automatic control of fl ow, sampling and dosing 
through fl oat operated devices.

The details of some special sharp-crested weirs are given in the next section.

7.3 SPECIAL SHARP-CRESTED WEIRS

7.3.1 Introduction

This section deals with special sharp-crested weirs designed to achieve a desired 
discharge-head relationship. These are also sometimes called proportional weirs 
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(P-weirs). Since the fl ow over a P-weir can be controlled easily by fl oat-regulated 
dosing devices, these are widely used in industry and irrigation.

Given any defi ned shape of weir, the discharge through it can be easily deter-
mined, e.g. in the case of a rectangular weir, the discharge is proportional to h3/2, and 
in the case of a triangular weir (V-notch) the discharge is proportional to h5/2, etc., 
where h is the head causing fl ow. The reverse problem of fi nding the shape of a weir 
to have a known head-discharge relationship constitutes the design of proportional 
weirs. The design of proportional weirs has considerable applications in hydraulic, 
environmental and chemical engineering.

7.3.2 Linear Proportional Weir

The linear proportional weir, with its linear head-discharge characteristic is used as 
a control for fl oat-regulated dosing devices, as a fl ow meter and as an outlet for grit 
chambers (sedimentation tanks). The linear proportional weir was invented by 
Stout (1897). This weir is only of theoretical interest as its width at base is infi nite. 
This was improved by Sutro (1908) to develop a practical linear P-weir and is well-
known as the Sutro weir. Referring to Fig. 7.7, the Sutro weir has a rectangular 
base over which a designed shape is fi tted. It is found that for fl ows above the base 
weir the discharges are proportional to the heads measured above a reference plane 
located at one-third the depth of the base weir. Referring to Fig. 7.7.

 Q b h a= +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

2

3
 (7.18)

where b = the proportionality constant.

∇

dx

x

f (x)

x-
ax

is

y-axis

y = W 1–2π tan–1 x
a

a
2
3

a

Datum

2
3

aHd = h +
H

W

h

Weir Crest

0

Fig. 7.7 Defi nition sketch of linear weir proportional weir
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7.3.3 Shape of the Sutro Weirs

Referring to Fig. 7.7, let the weir have the base on a rectangular weir of width 2W 
and depth a. For convenience, the horizontal and vertical axes at the origin O are 
chosen as y and x-axes respectively. The weir is assumed to be symmetrical about 
the x-axis.

The discharge through the rectangular weir when the depth of fl ow is h above the 
origin is

        q WC g h a hd1
3 2 3 24

3
2= + −[( ) ]/ /  (7.19)

where C
d
 = coeffi cient of discharge.

The discharge through the upper portion above the origin called the complimentary 
weir is

       q C g h x f x dxd

h

2
0

2 2= −∫ ( )  (7.19a)

The total discharge through the weir is

Q = q
1
 + q

2

We wish this discharge to be proportional to the head measured above the refer-

ence plane situated 
a

3
 above the crest of the weir. This reference plane is chosen 

arbitrarily by Sutro for mathematical convenience. Thus

         Q = q
1
 + q

2

= + − + −∫
4

3
2 2 23 2 3 2

0
WC g h a h C g h x f x dxd d

h

[ ]( ) ( )/ /

               = +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ≥b h

a
h

2

3
0for  (7.20)

where b is the proportionality constant.

As there is no fl ow above the base weir when h = 0, we have by substituting h = 0 
in Eq. 7.20

 b = W K a1/2  (7.21) 

where K C gd= 2 2

Substituting this value of b in Eq. 7.20

     
2

3

2

3
3 2 3 2 1 2W h a h h x f x dx Wa h

ah

( ) ( )/ / /+ −⎡
⎣⎢

⎤
⎦⎥ + − = +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟∫0

 (7.22)

Re-arranging,

  
h x f x dx Wa h

a
W h a h

h

− = +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟− + −⎡

⎣⎢
⎤
⎦⎥∫0

1 2 3 2 3 22

3

2

3
( ) ( )/ / /
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= + + − +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

W a a h h a h
2

3

2

3

2

3
3 2 1 2 3 2 3 2/ / / /( )

 = − + − +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− − −2

3

3

8

1

16

3

128
3 2 1 2 2 3 2 3 5 2 4W h a h a h a h/ / / / ...  (7.22a)

It is required to fi nd the function f (x) such that Eq. 7.22a is satisfi ed for all positive 
values of h. This is achieved by expressing f (x) in a series of powers of x and deter-
mining their coeffi cients. A general term x m in f (x) results in a term

h x x dx x h h x h x dxm m
hh

− = − + −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

− −∫∫ 1 2 1 2 3 2 2

0

1

2

1

8
/ / / ...

0

 = Const (h)m + (3/2) (7.23)

so that the fi rst term in Eq. 7.22a can be obtained by a constant term in the series for 
f(x) and the other terms by taking m half an odd integer. Consequently we assume,

  f x y A A x A x A x( ) ...= = + + + +1 2
1 2 3 2

4
5 2

3
 (7.24)

Substituting this in Eq. 7.22a

( )A h x A hx x dx
h

1 2
2

0
− + − +∫ …

= + + + +
2

3 8 16

5

128
1 3 2 2

2
3

3
4

4A
h

A h A h A h/ ...
π π π

= − +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−2

3

3

8
3 2 1 2 2W h a h/ / ...

This leads to

A W1 =

A a W2
1 22

= − −

π
/

A a W3
3 22

3
= −

π
/

and so on.
Substituting these coeffi cients in Eq. 7.24

         

f x W
x

a

x

a

x

a
( ) ...

/

/

/

/

/

/
= − − + −

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎡

⎣
⎢1

2

5

1 2

1 2

3 2

3 2

5 2

5 2π⎢⎢⎢

⎤

⎦
⎥
⎥⎥
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 = −
⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

−W
x

a
1

2 1

π
tan  (7.25)

The discharge equation for the Sutro weir can now be summarised as

 Q b h a b H
a

bHd= +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ = −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟=

2

3 3
 (7.26)

where   b = WKa1/ 2 and  K = 2C
d

2g   
 H =  depth of fl ow in the channel. (It is usual practice to make the crest of the 

base coincide with the bed of the channel)
 h = head measured from the top of the rectangular base weir 
H

d
   = depth of water over the datum.

The sharp edged Sutro weir is found to have an average coeffi cient of discharge 
of 0.62.

A simple weir geometry, called quadrant plate weir, which has the linear head-
discharge relationship is described in Ref. 7. This weir has the advantage of easy fab-
rication and installation under fi eld conditions. Linear proportional weirs having 
non-rectangular base weirs are described in Ref. 8 and 9.

Example 7.4  A Sutro weir has a rectangular base of 30-cm width and 6-cm 
height. The depth of water in the channel is 12 cm. Assuming the coeffi cient of dis-
charge of the weir as 0.62, determine the dischage through the weir. What would be 
the depth of fl ow in the channel when the discharge is doubled? (Assume the crest of 
the base weir to coincide with the bed of the channel).

Solution Given a = 0.06 m, W = 0.30/2 = 0.15 m, H = 0.12 m

       K C gd= = × × × =2 2 2 0 62 2 9 81 5 4925. . .

        b = W K a1/2 = 0.15×5.4925×(0.06)1/2 = 0.2018 

From Eq. 7.26    Q b H
a

= −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟3

       
= −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ =0 2018 0 12

0 06

3
0 02018. .

.
. m /s3

       = 20.18 litres/s 

When the discharge is doubled, Q = × =2 0 02018 0 04036. . m /s3
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From Eq. 7.26, 0 04036 0 2018
0 06

3
. .

.
= −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟H

     H = 0.2 + 0.02 = 0.22 m

      = 22 cm

Example 7.5  Design a Sutro weir for use in a 0.30-m wide rectangular chan-
nel to have linear discharge relationship in the discharge range from 0.25 m to 0.60 
m3/s. The base of the weir will have to span the full width of the channel.
Assume C

d
 = 0.62.

Solution Here 2 W = 0.30 m. and C
d
 = 0.62.

 K  = 2C
d
 2 2 0 62 2 9 81g = × × ×. . = 5.49

 
Q WK amin

/ .= =
2

3
0 253 2

     

2

3
0 15 5 49 0 253 2× × × =. . ./a

 

 a = 0.592 m

 b WK a= = × ×0 15 5 49 0 592. . .  = 0.6337 

 Q b Hd=

For Q = 0.60 m3/s,    H
Q

bd = =
0 60

0 6337

.

.
 = 0.9468 m

  = − = +H
a

h a
3

2

3
 (Refer Fig. 7.7)

H = 1.1444 m and h = 0.0552 m.

Using Eq.7.25, the profi le y = f (x) is calculated as

y f x
x

= ( ) = −
⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

−0 15 1
2

0 592
1. tan

.π .

7.3.4 General Equation for the Weir

Cowgill8 and Banks9 have shown that the curve describing the weir producing a dis-
charge Q = b hm for  m ≥ 1/2 is given by

 y y x
b

C g

m

m
x

d

m= = ⋅
+

−
⋅ −( )

( )

( / )
( )( / )

2 2

1

1 2
3 2

π

Γ
Γ

 (7.27)
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when Q = 2 2
0

C f x g h x dxd

h

( ) ( )−∫

where h = head measured above the crest of the weir
   x, y = coordinates along vertical and horizontal axis respectively
       b = a coeffi cient of proportionality
         C

d  
= coeffi cient of discharge of the weir

        Γ = gamma function.
The relationship between the exponent m and the profi le of the weir is shown in 
Fig. 7.7-A.

X
m

 =
 1

.0

m
 =

 3
/2

m
 =

 2
.0

m =
 5/

2

m = 7/2

Y
O

Fig. 7.7A Weir profi les for diff erent values of exponent m

It is clear from Eq. 7.25 that an attempt to design a weir producing a discharge 
proportional to hm for m < 3/2 inevitably leads to a curve which will be asymptotic at 
the base giving rise to infi nite width, which is physically unrealizable. The linear 
proportional weir (m = 1) is one such case. Sutro overcame this defect by the inge-
neous method of providing a rectangular base. A rational explanation for the selec-
tion of the datum was provided by Keshava Murthy9,12,13 which is enunciated in the 
theorem of slope discharge continuity.

The slope-discharge-continuity theorem states: ‘In any physically realizable weir 
having a fi nite number of fi nite discontinuities in its geometry, the rate of change of 
discharge is continuous at all points of discontinuity.’ Physically this means that the 
curve describing the discharge versus the head for any compound weir cannot have 
more than one slope at any point. This is clear as otherwise it would mean, theoreti-
cally, there could be more than one value for the discharge in the infi nitesimal strip 
in the neighbourhood of the discontinuity which is physically meaningless. The proof 
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312 Flow in Open Channels

of this theorem which is based on the use of the theorem of Laplace transforms is 
beyond the scope of this book.

The P-weir consists of a known base over which a designed complimentary weir 
is fi xed. Each weir is associated with a reference plane or datum which is determined 
by evaluating a new parameter λ called the datum constant by the application of 
slope discharge-continuity theorem. The problem of design of P-weirs is solved by 
the technique of solution of integral equations. This is explained by the design of 
quadratic weirs in the following section.

7.3.5 Quadratic Weir-notch Orifi ce

A quadratic weir is a proportional weir in which the discharge Q is proportional to the 
square root of the head h. This weir has applications in bypass fl ow measurement.

W

a
o

y = f(x)

y-axis

x-
ax

is

∇

h

Base weir
Complimentary weir

Fig. 7.8 Defi nition sketch

It is evident from the general Eq. 7.27 that an attempt to design a weir to pass a 
discharge proportional to hm, for m < 3/2 inevitably leads to a curve having infi nite 
width at the bottom which is physically unrealizable. In order to obviate this, the 
quadratic weir is provided with a base in the form of a rectangular weir of width 2W 
and depth a, over which a designed curve is fi tted (Fig. 7.8).

Referring to Fig. 7.8 the weir is assumed to be sharp-edged and symmetrical over 
the x-axis. When the fl ow is h above the base, the discharge through the rectangular 
weir, below the y-axis, is

 q WK h a h1

3 2 3 22

3
= +( ) −⎡

⎣⎢
⎤
⎦⎥

/ /  (7.28)

where K = 2 2C g Cd d, = the coeffi cient of discharge. The discharge from the 
complementary weir above the origin is

 q K h x f s dx
h

2
0

= −∫ ( )  (7.28a)
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Total discharge Q q q= +1 2

             = 
2

3
3 2 3 2

0
WK h a h K h x f x dx

h

( ) ( )/ /+ −⎡
⎣⎢

⎤
⎦⎥ + −∫  (7.29)

We wish to have the discharge Q b h a= +λ , where b is the proportionality constant 
and λ is the datum constant. In other words, the discharge is proportional to the square 
root of the head measured above a reference plane. The constants b and λ are to be 
evaluated. They are determined by the two conditions of continuity of discharge and 
the requirement of the slope discharge continuity theorem. Rewriting Eq. 7.29

      

Q WK h a h K h x f x dx
h

= + −⎡
⎣⎢

⎤
⎦⎥ + −∫

2

3
3 2 3 2

0
( ) ( )/ /

 

        = +h h aλ        for h ≥ 0   (7.30)

When h = 0, there is no fl ow above the base weir. Hence, substituting h = 0 in Eq. 
7.30

 
2

3
3 2WKa b a/ = λ   (7.31)

Differentiating Eq. 7.30 on both sides by using Leibnitz’s rule for differentiating 
under the integral sign, and re-arranging

 f x

h x
dh

b

K h a
W h a h h

h ( )
−

=
+

− +( ) −⎡
⎣⎢

⎤
⎦⎥
= ( )∫ λ

φ2
1 2 1 2

0

/ /
   

              (7.32)

Applying the slope-discharge-continuity theorem, i.e, putting h = 0 in Eq. 7.32. we have

 
b

K a
Wa

λ
= 2 1 2/  (7.33)

Solving Equations 7.31 and 7.33

 λ =
1

3
 and b WKa=

2

3
 (7.34)

The reference plane for this weir is situated at 
2

3

a
 above the crest of the weir. Equation 

7.32 is in the Abel’s form of integral equation whose solution is9:

y f x
h

x h
dh

h

= ( ) =
( )
−∫

1
0π

φ ’

Substituting for φ'( h)
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    y W
x

a

x a

x

a

= − −
+

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

−1
2 6

1
3

1

π π
tan

/
 (7.35)

The weir profi le drawn to scale is shown in Fig.7.9. Beyond 
x

a
= 2 0. , the weir as an

a
3

a

y −axis

x −
ax

is

a
3

Hd = h + 

Datum

0

y = W
1 − 2

π tan−1
a

a− π
6

a1 + 3

weir crest W

x

x
x

Fig. 7.9 Quadratic weir

orifi ce for all practical purposes. As this weir gives discharges proportional to the 
square root of the head (measured above the reference plane), both while acting as a 
notch as well as an orifi ce, this device is also called a notch-orifi ce.

The discharge equation for the quadratic weir can now be written as

 Q b h
a

b H a b Hd= + = −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
3

2

3
 (7.36)

where b WKa=
2

3
 and K C gd= 2 2

and h = depth of fl ow above the rectangular base
  H

d
 = head above the reference plane

  H = depth of fl ow
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Quadratic weirs having non-rectangular lower portions (base weirs) are described 
in detail in Ref. 14.

The quadratic weir has an average coeffi cient of discharge of 0.62. In a quadratic 
weir the error involved in the discharge calculation for a unit per cent error in head is 
only 0.5 per cent as against 1.5% in a rectangular weir and 2.5% in a V-notch. Hence 
this is more sensitive than the rectangular weir and V-notch.

Example 7.6  A quadratic weir is designed for installation in a rectangular 
channel of 30-cm width. The rectangular base of the weir occupies the full width 
of the channel and is 6 cm in height. The crest of the base weir coincides with the 
channel bed. (a) Determine the discharge through the weir when the depth of fl ow in 
the channel is 15 cm. (b) What would be the depth of fl ow upstream of the weir when 
the discharge in the channel is 25 litres/s? [Assume C

d
 =0.62].

Solution Given: a = 0.06 m, W = 0.30/2 = 0.15 m, H = 0.15 m

      K = 2 C gd 2  = 2 0 62 2 9 81 5 4925× × × =. . .

       b = 
2

3

2

3
0 15 5 4925 0 06W K a = × × ×. . . = 0.05708

From Eq. (7.36), Q b H
a

= −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

2

3

(a) Q = × −
×⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0 05708 0 15

2 0 06

3

1 2

. .
.

/

    = 0.0189 m3/s = 18.93 litres/s

(b) When the discharge Q = 25 litres/s = 0.025 m3/s

From Eq. (7.36),  0 025 0 05708
2 0 06

3

1 2

. .
.

/

= × −
×⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥H

             H = 0.1918 + 0.04 = 0.2318 m

              = 23.18 cm

7.3.6 Modelling of Flow Velocity using Special Weirs

In many hydraulic engineering situations, it is desirable to maintain a constant aver-
age velocity in a channel for a range of fl ows. A typical example of this situation is 
the grit chamber used in waste water treatment. To obtain such a control of the veloc-
ity of fl ow in the channel, proportional weirs can be used at the outlet of the channel. 
The channel cross-section shape, however, will have to be determined. This, in turn, 
depends upon the shape of the outlet weir and the relationship between the upstream 
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head and velocity. Design of such channel shapes controlled by a weir at the outlet is 
described in references 8 and 15. It is interesting to note that a linear proportional 
weir, such as a Sutro weir, fi xed at the end of a rectangular channel ensures constant 
average velocity in the channel irrespective of the fl uctuations of the discharge.

7.4 OGEE SPILLWAY

The ogee spillway, also known as the overfl ow spillway, is a control weir having an 
ogee (S-shaped) overfl ow profi le. It is probably the most extensively used spillway 
to safely pass the fl ood fl ow out of a reservoir.

Fig. 7.10 Typical ogee spillway

Reverse curve at the toe

Straight
face

Crest

Energy line
Energy
head Head

River bed

Vertical
u/s face

∇

∇

Fig. 7.11 Lower nappe as a spillway profi le

∇

= 0.11 Hs1

hd
Hs1

P

Ogee
spillway

Equivalent sharp
crested rectangular
weir

A typical ogee spillway is shown in Fig. 7.10. The crest profi le of the spillway is 
so chosen as to provide a high discharge coeffi cient without causing dangerous cavi-
tation conditions and vibrations. The profi le is usually made to conform to the lower 
nappe emanating from a well-ventilated sharp-crested rectangular weir (Fig. 7.11). 
This idea is believed to have been proposed by Muller in 1908. Such a profi le assures, 
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for the design head, a high discharge coeffi cient, and at the same time, atmospheric 
pressure on the weir. However, heads smaller than the design head cause smaller tra-
jectories and hence result in positive pressures and lower discharge coeffi cients. 
Similarly, for heads higher than the design head, the lower nappe trajectory tends to 
pull away from the spillway surface and hence negative pressure and higher dis-
charge coeffi cients result.

For a high spillway (H
s1

/P) �  0, it is found experimentally that the spillway apex 
is about 0.11 H

s1
 above the equivalent sharp-crested weir crest (Fig. 7.11). The design 

head for the spillway is then h
d 
= 0.89 H

s1
. Considering the discharge equation with 

suffi x ‘s’ for an equivalent sharp-crested weir

 q C gHds s=
2

3
2 1

3 2/      (for the sharp-crested weir)

and q C g hd d=
2

3
21

3 2/       (for the overfl ow spillway)

it is easy to see that C
dV 

=
  
1.19 C

ds
, i.e. the ogee spillway discharge coeffi cients are numeri-

cally about 20 per cent higher than the corresponding sharp-crested weir coeffi cients.

7.4.1 Uncontrolled Ogee Crest

If there are no crest gates over them, such spillways are designated as uncontrolled 
spillways. The crest shapes of uncontrolled ogee spillways have been extensively 
studied by the US Bureau of Reclamation, and accurate data relating to the nappe 
profi les, coeffi cient of discharge and other information pertinent to spillway design 
are available16. Considering a typical overfl ow spillway crest (Fig. 7.12), the profi le 
of the crest downstream of the apex can be expressed as16

 
y

H
K

x

Hd d

n

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟  (7.37)

hd
Hd

P

x

y

Y

O

O =

V 2 /2g

Eq. (7.38)

Origin of coordinates
and apex of crest

Energy line

X

Eq. (7.37)

y

Hd

x

Hd
 = K 

n))

Fig. 7.12 Elements of a spillway crest
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in which x and y are the coordinates of the downstream curve of the spillway with the 
origin of coordinates being located on the apex, H

d
 = design energy head, i.e. design 

head measured above the crest to the energy line. K and n are constants and their 
values depend upon the inclination of the upstream face and on the velocity of 
approach. For low velocities of approach, typical values of K and n are

Upstream face K n

Vertical 0.500 1.850

1 Horizontal : 1/3 vertical 0.517 1.836

1 Horizontal : 1 vertical 0.534 1.776

The crest profi le upstream of the apex is usually given by a series of compound 
curves.

Cassidy17 reported the equation for the upstream portion of a vertical faced spill-
way as

  
y

H

x

H

x

Hd d d

= +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

− +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟0 724 0 270 0 432 0 270

1 85

. . . .

.

⎟⎟⎟⎟
+

0 625

0 126

.

.  (7.38)

This is valid for the region 0 0 270≥ ≥ −
x

Hd

.  and 0 0 126≤ ≤
y

Hd

. . The same co-

ordinate system as for the downstream profi le (Eq. 7.37) is used for Eq. 7.38 also.
Since the hydraulic characteristics of the approach channel vary from one spill-

way to another, it is found desirable to allow explicitly for the effect of the velocity 
of approach in various estimations related to the overfl ow spillway. With this in view, 
the expression for the design discharge Q

d
 over an ogee spillway at the design head 

is written as

 Q C g L Hd d e d=
2

3
20

3 2/  (7.39)

in which H
d
 = design-energy head (i.e., head inclusive of the velocity of approach 

head), C
d 0

 = coeffi cient of discharge at the design head and L
e
 = effective length of 

the spillway. If H
0
 = any energy head over the ogee spillway, the corresponding dis-

charge Q can be expressed as

 Q C g L He=
2

3
20 0

3 2/   (7.40)

where C
0
 = coeffi cient of discharge at the head H

0
. In general, C

0
 will be diffe-

rent from C
d0

. If H
0
 /H

d
 > 1.0 then C

0
 /C

d0 
> 1.0. If on the other hand, H

0  
/H

d
 < 1.0. then 

C
0  
/C

d0 
< 1.0. By defi nition, if H

0  
/H

d 
= 1.0, C

0  
/C

d0 
= 1.0

The discharge coeffi cients C
0
 and C

d 0
 are both functions of P/H

0
 and P/H

d 
 respec-

tively, and of the slope of the upstream face. For a vertical faced ogee spillway, 
the variation of C

d 0
 with P/H

d
 is shown in Fig. 7.13 (Ref. 18). It is seen that for 
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P/H
d  
> 2.0, i.e. for high overfl ow spillways, the coeffi cient C

d 0
 is essentially constant at a 

value of 0.738. For spillways of small heights and high energy heads, i.e. for P/H
d 
 < 1.0, 

the value of C
d 0

 decreases with P/H
d 
 reaching a value of 0.64 at P/H

d
 = 0.10.

The analytical modelling of the spillway flow has been attempted by many 
investigators. Cassidy19 has calculated the coeffi cient of discharge and surface 
profi les for fl ow over standard spillway profi les by using the relaxation technique 
in a complex potential plane. Ikegawa and Washizu20 have studied the spillway 
flow through the fi nite element method (FEM) by making considerable simplifi ca-
tion of the basic problem. Diersch et al.21 have given a generalised FEM solution 
of gravity fl ows of ideal fl uids and have studied the variation of C

0
 with H

0  
/H

d
 for 

a spillway of P/H
d
 = 4.29.

Several experimental data are available on the variation of C
0
. It is found that C

0 
/C

dθ 
is essentially a function of H

0  
/H

d 
 as indicated in Fig. 7.14. It is seen that C

0 
/ C

d0
 

increases continuously with H
0  
/H

d
. Experiments by Rouse and Reid17, Cassidy17, 

Schirmer and Diersch21 and the FEM studies of Diersch have revealed that the dis-
charge coeffi cient ratio C

0  
/ C

d
 continues to increase with H

0  
/H

d 
,as shown in Fig. 7.14 

up to a certain maximum value of head ratio (H
0 
/H

d
)

m
. The increased discharge coef-

fi cient at (H
0  
/ H

d
) > 1.0 is due to the occurrence of negative pressures on the crest. At 

suffi ciently high negative pressures, separation of the boundary layer from the crest 
and consequent decrease in the fl ow effi ciency results. Also, if the minimum negative 
pressures approach the vapour pressure, cavitation can occur. The maximum head 
ratio (H

0 
/H

d
)

m
 thus corresponds to the onset of separation, and its value is known to 

depend to a small extent on P/H
d
. Experimental studies17 have shown that there is no 

possibility of separation and also no pressure fl uctuations of any consequence would 
occur in the overfl ow spillway operation with H

0
/H

d
 ≤  3.0, the inception of cavitation 

is the only problem to be guarded against.

Fig. 7.13 Variation of C
d0

 with P/H
d

∇

Qd =
2

3
Cd0

C
d

0

LeHd2g
3/2

Hd

P / Hd

P

0.76

0.72

0.68

0.64

0.60
0 0.5 1.0 1.5 2.0 2.5 3.0

0.738
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It is seen that the overfl ow spillway, when working at 1< H
0 
/H

d
 < (H

0 
/H

d 
)

m
 , has 

the desirable feature of higher values of the discharge coeffi cient C
0
. This feature can 

be advantageously exploited in the spillway design. As maximum possible fl ood fl ow 
over a spillway is a rare event, the spillway profi le can be designed to correspond to 
a lower value of head such that at the maximum possible fl ood, H

0 
/H

d
 > 1.0. The 

other structural features can of course be designed to safely accommodate the fl ood 
fl ow. This ensures that the spillway will be functioning at a higher average effi ciency 
over its operating range. When the maximum fl ood fl ow occurs, the spillway will 
perform at a head more than the design head, and consequently, with an enhanced 
effi ciency. This practice of designing is called underdesigning of the spillway.

The use of H
0
 and H

d 
,the energy heads, in the discharge equation is not very con-

venient for discharge estimation. Usually, the value of V g0
2 2/  is very small relative 

to the upstream head h
0
, where h

0 
= H V g0 0

2 2−( )/ . For spillways with  h
0
 / P < 0.50, 

the velocity of approach can be assumed to be negligibly small and the relevant head 
over the crest up to the water surface can be used in place of the energy head, i.e. h

0
 

and h
d
 can be used in place of H

0
 and H

d
 respectively.

To approximately estimate the minimum pressure on the spillway P
m'

, for opera-
tions higher than the design head, the experimental data of Cassidy17 in the form

 
P

H

H

H
m

dγ
= − −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1 17 10.  (7.41)

can be used. This equation is valid in the range of H
d  
/P from 0.15 to 0.50.

Example 7.7  An overfl ow spillway is to be designed to pass a discharge of 
2000 m3/s of fl ood fl ow at an upstream water-surface elevation of 200.00 m. The crest 
length is 75.0 m and the elevation of the average stream bed is 165.00 m. Determine 
the design head and profi le of spillway.

Fig. 7.14 Variation of C
0
/C

d0
 with (H

0
/H

d 
)

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0 1.5 2.0 3.0 4.00.15

0.9

1.0

1.2

Schirmer,
Hd

P
= 0.23

Cassidy,
Hd

P
= 0.15

H0 / Hd

C
0 

/ C
d

0

USBR Data18

Data of Cassidy17

and Schrimer21
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Solution A trial-and-error method is adopted to determine the crest elevation.

Discharge per unit width qd = =
2000

75
26 67.  m3/s/m. Assume C

d0
 = 0.736.

By Eq. 7.39 q C g Hd d d= ( )2

3
20

3 2/

   
26 27

2

3
0 736 19 62

3 2
. . .

/
= ( ) ( )Hd

    Hd = 5 32.  m

Velocity of approach V
q

P ha =
+

=
−( )0

26 67

200 00 165 00

.

. .

       = 0.762 m/s

        h
V

ga
a= = ≈
2

2
0 0296 0 03. . m

Elevation of energy line = 200.03 m

Crest elevation      = 200.03 − 5.32 = 195.71m

          P = 195.71 − 165.00 = 30.71m

         P/H
d 
 = 

30 71

5 32
5 77

.

.
.=

For this value of P/H
d
 from Fig. 7.13, C

d 0 
= 0.738. 

2nd iteration

      Hd( ) =
( )( )

3 2 26 67

2 3 0 738 19 62

/ .

/ . .
,  H

d  
= 5.31m

h
a
 ≈ 0.03. Elevation of energy line = 200.03 m

Crest elevation   200.03 − 5.31 = 194.72 m

             P = 194.72 − 165.00 = 29.72 m

P/H
d 
 = 5.60. For this P/H

d 
, from Fig. 7.13,C

d 0 
= 0.738. Hence no more iterations are 

required.

Design energy head H
d  

= 5.31m

and crest elevation = 194.72 m

The downstream profi le of the crest is calculated by Eq. 7.37, which for the present 
case is
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y x

5 31
0 50

5 31

1 85

.
.

.

.

=
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

 

The upstream profi le is calculated by Eq. 7.38 which, for the range 0 1 434≤ − × ≤ . , 
is given as

 

y x x

5 31
0 724

5 31
0 270 0 432

5 31
0 270

1 85

.
.

.
. .

.
.

.

= +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ − +

⎛
⎝
⎜⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ +

0 625

0 126
.

.
 

The apex of the crest at elevation 194.72 m is the origin of coordinates of the above 
two profi le equations.

Example 7.8  In the spillway of Example 7.7 what would be the discharge if the 
water-surface elevation reaches 202.00 m? What would be the minimum pressure on 
the spillway crest under this discharge condition?

Solution h
0 
= 202.00 –194.72 = 7.28 m

   h
0
 + P = 202.00 – 165.00 = 37.00 m 

Assuming the velocity of approach head  h
a
 = 0.05 m, the elevation of the energy 

line = 202.05 m.

 H
0 
= 202.05 – 194.72 = 7.33 m

 

H

Hd

0 7 33

5 31
1 38= =

.

.
.

From Fig. 7.14, corresponding to 
H

Hd

0 = 1.38, 
C

Cd

0

0

1 04= . .

Since C
d 0 

= 0.738

      C
0
 = 0.768

         q = ( )( ) =
2

3
19 62 0 768 7 33 45 00

3 2
. . . .

/
 m3 /s/m

       Va = =
45 00

37 00
1 216

.

.
. m/s, h

V

ga
a= ≈
2

2
0 08. m

2nd iteration

Elevation of the energy line = 202.08

  H
0
 = 202.08 – 194.72 = 7.36  m

H

Hd

0 1 386= .  
C

Cd

0

0

1 04= .  from Fig. 7.14,
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C
0 
 = 0.768

q = ( ) ( ) =
2

3
19 62 0 768 7 36 45 28

3 2
. . . .

/
m /s/m3

V
a
 = 1.224 m and h

a
 ≈  0.08 m which is the same as the assumed value at the 

beginning of this iteration.
Hence

    H
0
 = 7.36 m,  q = 45.28 m3/s/m

  Q = 45.28 × 75 = 3396 m3/s

Minimum pressure
Using Eq. 7.41

Pm

γ
= − ( ) −( )1 17 7 36 1 386 1. . .

 = – 3.32 m
The minimum pressure head over the spillway will be 3.32 m below atmospheric.

Example 7.9
 A spillway with a design height of 30.0 m above the river bed is 

designed for energy head of 4.25 m. If a minimum pressure head of 4.0 m below 
atmospheric pressure head is allowed, estimate the allowable discharge intensity 
over the spillway.

Solution By Eq. 7.41   
P

H

H

H
m

dγ 0

01 17 1= − −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

.

  − = − −
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

4 0
1 17

4 25
1

0

0.
.

.H

H

H H0
2

04 25− . −14.53 = 0

H
0
 = 6.49 m and 

H

Hd

0 =  6.49/4.25 = 1.527

From Fig. 7.15, C

Cd

0

0

= 1.06 and

P

Hd

= =
6 49

4 25

.

.
7.06 > 3.0.

Hence C
d 0

 = 0.738. Thus C
0
 = 1 06 0 738. .× = 0.782

Allowable discharge intensity 

q = × × ×
2

3
0 738 19 62 6 49 3 2. . ( . ) /  = 36.0 m3/s/m.
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7.4.2 Contractions on the Spillway

Very often an overfl ow spillway operates with end contractions. These contractions 
occur due to the presence of abutments and piers on the spillway to carry a bridge. 
Equation 7.40 is used to calculate the discharge at any head H

0
. The effective length 

of the spillway Le
 is estimated by

 L
e
 = L – 2 (NK

p
 + K

a 
) H

0
 (7.42)

in which L = actual length of the spillway, N = number of piers, K
p
= peir 

 contraction coeffi cient and K
a
 = abutment contraction coeffi cient. The values of K

P
 

and K
a
 depend essentially on the geometry of the contraction-causing element in 

relation to the fl ow. For preliminary studies, the following values are usually 
adopted18.

Piers: (i) Square-nosed with rounded corners K
P
 = 0.02

 (ii) round-nosed K
P
 = 0.01

 (iii) pointed-nosed K
P
 = 0.00

Abutments:  (i) Square with sharp corners K
a
 = 0.20

 (ii) round entry corner K
a
 = 0.10

7.4.3 Spillway with Crest Gates

When spillways are provided with crest gates, they have to operate as uncontrolled 
spillway under high fl ood conditions and with partial gate openings at lower fl ows. 
At partial gate openings, the water issues out of the gate opening as an orifi ce fl ow 
and the trajectory is a parabola. If the ogee is shaped by Eq. 7.37 the orifi ce fl ow, 
being of a fl atter trajectory curve, will cause negative pressures on the spillway crest. 
These negative pressures can be minimised if the gate sill is placed downstream of 
the apex of the crest. In this case the orifi ce fl ow will be directed downwards at the 

Fig. 7. 15 Flow under a crest gate

Va
2 / 2g

Energy line

H1 H0 h0

y

X

h1

∇

H0

2

Region of
negative pressure

Spillway face by
Eq. (7.37)

Trajectory y =
4H

x2

H = (H1 + H0)/2
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initial point itself, causing less difference between the ogee profi le and the orifi ce 
trajectory.

If the trajectory of the orifi ce fl ow with the gate sill located at the apex of the 
crest is adopted for the spillway profi le, the coeffi cient of discharge at the full-
gate opening will be less than that of an equivalent uncontrolled overfl ow 
spillway.

The discharge from each bay of a gated ogee spillway is calculated from the fol-
lowing large orifi ce equation.

 Q g C L H Hg b= −( )2

3
2 0

3 2
1
3 2/ /  (7.43)

where C
g
 = coeffi cient of the gated spillway, L

b
= effective length of the bay after 

allowing for two end contractions, H
0
 = energy head above the spillway crest and 

H
1
 = energy head above the bottom edge of the gate (Fig. 7.15). The coeffi cient of 

discharge C
g
 depends upon the geometry of the gate, gate installation, interference of 

adjacent gates and fl ow conditions. For radial gates, an approximate value of the 
coeffi cient of discharge C

g
 can be expressed by using the USBR data18 as

 C
H

Hg = +0 615 0 104 1

0

. .  for 
H

H
1

0

0 83< .  (7.44)

Example 7.10  An overfl ow spillway with a 15-m crest above the stream bed 
level has radial gates fi tted on the crest. During a certain fl ow, the gate opening was 
1.0 m and the water surface upstream of the gate was observed to be 2.5 m above the 
crest. Estimate the discharge from a bay of 15-m length by neglecting end 
contractions

Solution Refer to Fig. 7.15. h
1
 = 1.5 m and h

0
 = 2.5 m.

First trial: Assume h
0 
= H

0
 and h

1
 = H

1
 

By Eq. 7.44 C
g
 = 0.615 + 0.104 ×

1 5

2 5

.

.
 = 0.677

By Eq. 7.43 Q = × × × × ( ) − ( )( )2

3
0 677 15 19 62 2 5 1 5

3 2 3 2
. . . .

/ /
 = 63.445 m3/s

   Velocity of approach Va =
×( )

=
63 445

17 5 15
0 2417

.

.
.  m/s and 

V

g
a
2

2
0 003= . m.

Second trial: H
1
 = 1.50 + 0.003 = 1.503 m

H
0
 = 2.50 + 0.003 = 2.503 m

Cg = + × =0 615 0 104
1 503

2 503
0 677. .

.

.
. . No change from the assumed value.
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Q = × × × × ( ) −( )( )2

3
0 677 15 19 62 2 503 1 503

3 2 3 2
. . . .

/ /

 = 63.49 m3/s

In view of the very small change in the value of Q, no further trials are required.

7.5 BROAD-CRESTED WEIR

Weirs with a fi nite crest width in the direction of fl ow are called broad-crested 
weirs. They are also termed as weirs with fi nite crest width and fi nd extensive 
applications as control structures and fl ow measuring devices. It is practically 
impossible to generalise their behaviour because a wide variety of crest and 
cross-sectional shapes of the weir are used in practice. In this section the salient 
fl ow characteristics of only a simple, rectangular, horizontal broad-crested weir 
are presented.

Figure 7.16 is a defi nition sketch of a free fl ow over a horizontal broad-crested 
weir in a rectangular channel. This weir has a sharp upstream corner which causes 
the fl ow to separate and then reattach enclosing a separation bubble. If the width B

w
 

of the weir is suffi ciently long, the curvature of the stream lines will be small and the 
hydrostatic pressure distribution will prevail over most of its width. The weir will act 
like an inlet with subcritical fl ow upstream of the weir and supercritical fl ow over it. 
A critical-depth control section will occur at the upstream end-probably at a location 
where the bubble thickness is maximum.

Assuming no loss of energy between Sections 1 and 2 (Fig. 7.16), and further 
assuming the depth of fl ow at Section 2 to be critical,

H y
V

g
yc

c
c= + =

2

2

3

2

V gyc c=  and y Hc =
2

3
 

Fig. 7.16 Defi nition sketch of a broad-crested weir

1

2

Energy line
∇

∇

H

P

H1

V0

yc

y1

Bw

V
2
0 /2g

V 2
c /2g

Q
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The ideal discharge per unit width of the weir is

 q V y g H Ht c c= =
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ =

2

3

2

3
1 7053 2 3 2/ /.  (7.45)

To account for the energy losses and the depth at Section 2 being not strictly equal 
to the critical depth, the coeffi cient of discharge C

d1
 is introduced in Eq. 7.45 to get 

an equation for the actual discharge q as

q = C
d1

q
t

 =1 705 1
3 2. /C Hd  (7.46)

and Q = qL, where L = length of the weir.
It may be noted that in connection with broad-crested weirs, L = length of the 

weir measured in a transverse direction to the fl ow and B
w
 = width of the weir mea-

sured in the longitudinal directon. Thus B
w
 is measured at right angles to L. In sup-

pressed weirs L = B = width of the channel. This terminology is apt to be confusing 
and as such warrants a clear understanding of each of these terms.

Since Eq. 7.46 is rather inconvenient to use as it contains the energy head H, an 
alternate form of the discharge equation commonly in use is

  Q C g LHd=
2

3
2 1

3 2/              (7.47)

where H
1
 = height of the water-surface elevation above the weir surface measured 

suffi ciently upstream of the weir face and C
d
 = the coeffi cient of discharge.

If the upstream end is rounded, the separation bubble will not exist and 
instead, a boundary layer will grow over the weir with the critical-depth con-
trol point shifting towards this downstream end. The flow over most part of its 
crest will be subcritical. Considerable flow resistance from the upstream face 
to the critical flow section exists, influencing the value of C

d  
. The round-nosed 

broad-crested weir is not dealt with in this section and the details on it are 
available in Ref. 4.

7.5.1 Classifi cation

Based on the value of H
1
 /B

w
 the fl ow over a broad-crested weir with an upstream 

sharp corner is classifi ed as follows22, 23.

1. H
1
 /B

w
 
�
< 0.1: In this range the critical fl ow control section is at the downstream 

end of the weir and the resistance of the weir surface plays as important role in 
determining the value of C

d
 (Fig. 7.17a).

 This kind of weir, termed as long-crested weir, fi nds limited use as a reliable 
fl ow-measuring device.

2. 0 1 0 351. .
� �
< <H Bw : The critical depth control occurs near the upstream end 

of the weir and the discharge coeffi cient varies slowly with H Bw1
 in this 

range (Fig. 7.17b). This kind can be called a true broad-crested weir.
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Fig. 7.17 (a) Long-crested weir ( . )H Bw1 0 1
�
<

   (b) Broad-crested weir ( . . )0 1 0 35
� �
< <H Bw

    (c) Narrow-crested weir ( . . )0 35 1 51� �
< <H Bw

   (d) Sharp-crested weir ( . )H Bw1 1 5≥

∇∇

Bw Bw

H1

H1

(b)(a)

∇

H1

Bw

(c)

∇

H1

Bw

(d)

b

3.  0 35 1.
� �
< <H Bw  about 1.5: The water-surface profi le will be curvilinear all 

over the weir. The control section will be at the upstream end (Fig. 7.17c). The 
weirs of this kind can be termed as narrow-crested weirs. The upper limit of 
this range depends upon the value of H P1 .

4.  H Bw1 >  about 1.5: The fl ow separates at the upstream corner and jumps clear 
across the weir crest. The fl ow surface is highly curved (Fig. 7.17d), and the 
weir can be classifi ed as sharp-crested.

 7.5.2 Discharge Coeffi  cients, C
d
 and C

d1

From Eqs 7.47 and 7.46 the discharge coeffi cients C
d
 and C

d1
 respectively are given 

as

 C
Q

g LH
d =

2

3
2 1

3 2/

 and C
Q

LHd1 3 21 705
=

. /  (7.48)

A formal dimensional analysis of the fl ow situation will reveal that

 C C f
H

L

H

B

H

P
Re W

k

Hd d

w

s( ) , , , , ,or 1
1 1 1

1

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  (7.49)
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in which Re = Reynolds number, W = Weber number and k
s
 /H

1
 = relative roughness 

of the weir surface. In most of the situations of practical interest with broad crested 
weirs, the parameters Re, W, k

s
 /H

1
 and H

1
 /L have insignifi cant effect on C

d
 (or C

d1
). 

Hence for practical purposes,

 C
d
 (or C

d1
) = f (H

1
 /B

w
 and H

1
 /P) (7.50)

Considerable experimental investigations have been conducted to study the varia-
tion of C

d
 (or C

d 1
) as indicated by Eq. 7.50. Lakshmana Rao1 has given a good bibli-

ography on these studies. Govinda Rao and Muralidhar22 on the basis of extensive 
studies of the weir of fi nite crest in the range 0 2 01≤ ≤H Bw .  and 0 1 01≤ ≤H P . , 
have given the following expressions for the variation of C

d
:

1. For long weirs, H Bw1 0 1≤ .
 C

d
 = 0.561 (H

1
 /B

w
)0.022 (7.51)

2. For broad-crested weirs, 0 1 0 351. .≤ ≤H Bw

     C H Bd w= +0 028 0 5211. ( ) .  (7.52)

3. For narrow-crested weirs, 0 45 1.
�
< <H Bw �

about 1.5

 C H Bd w= +0 120 0 4921. ( ) .  (7.53)

The upper limit of H
1
 /B

w
 in Eq 7.53 depends on H

1
 /P.

Between cases 2 and 3, there exists a small transition range in which Eq. 7.52 pro-
gressively changes into Eq. 7.53. In this transition region Eq. 7.52 can be used up to 
H Bw1 0 40≤ . and Eq. 7.53 for H Bw1 0 40> . . It may be noted that Eq. 7.51 through 
Eq. 7.53 show C

d
 as a function of H Bw1  only and the parameter H P1  has no 

effect on C
d
 in the range of data used in the derivation of these equations. Surya Rao 

and Shukla24 have conclusively demonstrated the dependence of C
d
 on H P1

. As 
such Equations 7.51, 7.52 and 7.53 are limited to the range 0 1 01≤ ≤H P . .

Singer23 has studied the variation of C
d1

 for values of H Bw1 /  up to 1.5 and H P1 /  
up to 1.5. For the range 0.08≤ ≤H Bw1 0 33.  and H P1 /  < 0.54, the value of C

d1
 is 

found to remain constant at a value of 0.848. For higher values of H Bw1  as well as 
H P1 , the coeffi cient C

d1
 is a function of both these parameters.

7.5.3 Submerged Flow

It the tailwater surface elevation measured above the weir crest H y Pt2 = −( )  
(Fig. 7.18) is appreciable, the fl ow over the crest may be entirely subcritical. The 
discharge in such a case will depend upon both H

1
 and H

2
. The submergence (modu-

lar) limit depends upon H Bw1  and in the broad-crested weir fl ow range, it is of the 
order of 65 per cent. At this value, the downstream water surface drowns the critical 
depth on the crest. For submergences larger than the modular limit, the coeffi cient of 
discharge ( Cd

 or Cd1
) decreases with the submergence ratio H H2 1

 at a rapid rate. 
Compared to the sharp-crested weir, the broad-crested weir has very good submer-
gence characteristics.
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Example 7.11  A broad-crested weir with an upstream square corner and span-
ning the full width of a rectangular canal of 2.0-m width is planned. The proposed 
crest length is 2.50 m and the crest elevation is 1.20 m above the bed. Calculate the 
water-surface elevation upstream of the weir when the discharge is (a) 2.0 m3/s and 
(b) 3.50 m3/s.

Solution (a) Q = 2.0 m3/s

Assume the weir to function in the broad-crested weir mode and hence assume 

Cd
 = 0.525 as a fi rst guess. From Eq. 7.47

2 0
2

3
0 525 19 62 2 0 1

3 2. . . . /= × × × × H

H1
3 2 0 645/ .=  and H1 0 747= . m

H

Bw

1 0 299= . . The assumption is OK.

By Eq. 7.52                Cd = + =0 028 0 299 0 521 0 529. ( . ) . .

Substituting this Cd
 value in Eq. 7.47

       H H3 2
10 640 0 743/ . . .= =  m and from Eq. 7.52

C
d  
 = 0.529

Hence the water-surface elevation above the bed=1.943 m.

(b) Q = 3.25 m3/s

Since Q is higher than in case (a), it is likely that H
1 
/B

W
 > 

 
0.35. Hence assuming the 

weir to function in the narrow-crested weir mode, the calculations are started by 
assuming    C

d 
= 0.55.

Fig 7.18 Submerged broad-crested weir fl ow

∇
∇

H1
H2

y1
BwP

Chapter 7.indd   330Chapter 7.indd   330 2/24/2010   3:01:39 PM2/24/2010   3:01:39 PM



Rapidly Varied Flow-2 331 

Ist iteration C
d 
= 0.55

From Eq. 7.28, 3.50 = 
2

3
0 55 19 62 2 0 1

3 2× × × ×. . . /H

H1
3 2 1 077/ . ,=  H1 1 05= . m, 

H

Bw

1 0 42= .  

The weir fl ow is in the transition region between the broad-crested and narrow-
crested weir modes. Hence, by Eq. 7.53

C
d 
= 0.120 × (0.42) + 0.492 = 0.534

2nd iteration Using C
d
 = 0.534 in Eq. 7.47

H1
3 2 1 109/ . ,=  H1 1 071= . m, 

H

Bw

1 0 429= .  

From Eq. 7.53, Cd = 0 543.

3rd iteration H
1
3/2 = 1.091, H1 1 060= . m, 

H

Bw

1 0 424= .

Cd = 0 543.

Hence, H
1
 = 1.060 and the water-surface elevation above the bed is 2.260 m.

Example 7.12   Show that for a triangular broad crested weir fl owing free the 
discharge equation can be expressed as

Q C
g

Hd=
16

25

2

51
5 2tan /θ

where H = energy head measured from the vertex of the weir, θ = semi-apex angle 
and C

d1
 = coeffi cient of discharge. 

Solution H y
V

g
yc

c
c= + =

2

2
1 25.

or y Hc =
4

5

A my Hc= =2 216

25
tanθ  where θ = semi vertex angle.

F
V

gyc

= =
2

1 or V
g

H=
2

5
1 2/

Q C VAd= 1

Q C
g

Hd=
16

25

2

51
5 2tan /θ

Chapter 7.indd   331Chapter 7.indd   331 2/24/2010   3:01:40 PM2/24/2010   3:01:40 PM



332 Flow in Open Channels

7.6 CRITICAL-DEPTH FLUMES

Critical-depth fl umes are fl ow-measuring devices in which a control section is 
achieved through the creation of a critical-fl ow section by a predominant width con-
striction. In practice, these are like broad-crested weirs but with a major change that 
these are essentially fl ow-measuring devices and cannot be used for fl ow-regulation 
purposes. A typical critical-depth fl ume consists of a constricted portion called the 
throat and a diverging section. Sometimes a hump is also provided to assist in the 
formation of critical fl ow in the throat (Fig. 7.19).

Fig. 7.19 Standing-wave fl ume

∇

∇

L - Section

Jump

Energy line

H2

H1

Bt

L

P

Plan

Rectangular
throat

7.6.1 Standing-wave Flume 

The critical-depth fl ume shown in Fig. 7.19 is known as a standing-wave fl ume or 
throated fl ume. This fl ume can be fi tted into any shape of the parent channel. The 
throat is prismatic and can be of any convenient shape. Thus for a rectangular parent 
channel, it is convenient to have a rectangular throat, and for a circular sewer, a cir-
cular throat is preferable. A hydraulic jump forms on the downstream of the throat 
and holds back the tailwater. If the throat is submerged by the tailwater. subcritical 
fl ow prevails all over the fl ume. It is usual to operate the fl ume in the free-fl ow mode 
only, i.e. with the throat unsubmerged.

During the operation a critical depth is formed somewhere in the throat and as 
such its discharge equation is similar to that of a broad-crested weir (Eq. 7.46). 
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 However, it is usual to relate the discharge to the upstream depth H
1
 which can be 

typically recorded by an automated fl oat equipment. 
Thus for a rectangular throat section, the discharge is given by

 Q C B Hf t= 1
3 2/  (7.54)

where C
f 
= overall discharge coeffi cient of the fl ume = ( )f H L1 / . For a  well-

designed fl ume, C
f
 is of the order of 1.62. It may be noted that in standing-wave 

fl umes, H
1
 is the difference in the water-surface elevation upstream of the inlet and 

the elevation of the crest at the throat. If the fl ume is submerged and the subcritical 
fl ow prevails all over the fl ume, Eq. 7.54 is not valid and two depth measurements 
are needed to estimate the discharge. Constriction fl umes operating in the subcritical 
fl ow range are called venturi fl umes.

The modular limit H H2 1/( ) of standing wave fl umes is high, being of the order 
of 0.90. It is usual to take it as 0.75 to incorporate a small safety factor and to avoid 
the region of transition from the free to submerged-fl ow mode.

Large varieties of standing-wave fl umes with different types of modifi cations of 
the basic type described above, resulting in different geometric shapes and corre-
sponding fl ow characteristics are in use4,5. However, the basic favourable features of 
all these throated fl umes can be summarised as (i) low energy loss, (ii) rugged con-
struction, (iii) easy passage for fl oating and suspended material load, and (iv) high 
modular limit. These features are responsible for extensive use of throated fl umes as 
fl ow-measuring devices in water-treatment plants and in irrigation practice.

Example 7.13   (a) A standing-wave fl ume without a hump is to be provided in 
a rectangular channel of bottom width = 2.0 m, n = 0.015 and S

0 
= 0.0004. A maxi-

mum discharge of 2.50 m3/s is expected to be passed in this fl ume. If the modular limit 
of the fl ume is 0.75, fi nd the width of the throat. (Assume C

f
 = 1.62.)

Solution φ = =
×( )

( )
=

Qn

S B0
8 3 8 3

2 5 0 015

0 0004 2 0
0 29529

/ /

. .

. .
.

From Table 3A.1, y

B
0  (corresponding to m = 0 ) = 0.656 and normal depth 

y
0
 = 1.312 m. This is the tailwater depth H

2
.

For a modular limit of 0.75, H1

1 312

0 75
= =

.

.
1.749 m

By Eq. 7.54, B
Q

C Ht

f

= =
×( )1

3 2 3 2

2 50

1 62 1 749
/ /

.

. .

= 0.667 m 

Example 7.14   In the Example 7.12 compare the heading up of water surface 
(affl ux) due to the fl ume and also due to a suppressed free fl owing sharp-crested weir.

Solution From Example 7.13 heading up (affl ux) due to fl ume

= H
1
 – H

2 
= 1.749 – 1.312 = 0.47 m.
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Sharp-crested weir
For free-fl ow operation, the crest of the weir should be at least 0.08 m above 
the tailwater elevation. Hence P = 1.312 + 0.080 = 1.392 m.
1st trial: Assume C

d
 = 0.650

By Eq. 7.5 Q C g Lhd=
2

3
2 1

3 2/

h
1
 = head over the crest

h h1
3 2

1

2 50
2

3
0 65 2 0 19 62

0 651 0 751/ .

. . .
. , .=

× × ×
= = m

h

P
1 0 54= .  and by Rehbock equation (Eq. 7.7)

Cd = 0.611 + 0.08(0.54) = 0.654

2nd trial Using C
d 
 = 0.654

h1
3 2/  = 0.651 × 0 650

0 654
0 647

.

.
. ,=  h1 0 748= . m

h P1 0 537/ .=  and Cd
 = 0.654

Hence,  h
1 
= 0.748 m

Affl ux    = 0.748 m + 1.392 – 1.312 = 0.828 m

7.6.2 Parshall Flume

The Parshall fl ume is a type of critical-depth fl ume popular in the USA. This fl ume 
consists of a converging section with a level fl oor, a throat with a downstream slop-
ing fl oor and a diverging section with an adverse slope bed (Fig. 7.20). Unlike in the 
standing-wave fl ume, the head (H

a
) is measured at a specifi ed location in the con-

verging section. The discharge in the fl ume in the free fl ow mode is given by

 Q KHa
n=  (7.55)

where K and n are constants for a given fl ume. The dimensions of various sizes of 
Parshall fl umes are standardised and further details are available in references 4, 5, 
25 and 26.

7.7 END DEPTH IN A FREE OVERFALL

A free overfall is a situation in which there is a sudden drop in the bed causing the fl ow 
to separate from the stream bed and move down the step with a free nappe. The situa-
tion is analogous to the fl ow over a sharp-crested weir of zero height. A free overfall 
causes not only a GVF profi le in the subcritical fl ow, but also offers the possibility of 
being used as a fl ow measuring device in all fl ow regimes.
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A typical free overfall is schematically illustrated in Fig. 7.21. The fl ow in the nappe 
emerging out of the overfall is obviously affected by gravity. With the atmospheric pres-
sure existing above and below the nappe, the water-surface profi le is a parabola. Due to 
the need for continuity of the water-surface profi le, the gravity effect extends a short dis-
tance on the water-surface profi le behind the edge, causing an acceleration of the fl ow. 
Also, at the brink, the pressure should necessarily be atmospheric at points F and F'. 
This causes the pressure distribution at section FF' to depart from the hydrostatic-pres-
sure distribution and assume a pattern as shown in Fig. 7.21. At sections upstream of the 
brink, the water-surface curvature gradually decreases and at a section such as 1, at a 
distance x

1
 from F, the full hydrostatic pressure is re-established. The result of this effect 

of the free overfall is to cause a reduction in the depth from Section 1 in the down stream 
direction with the minimum depth y

e
 occurring at the brink. This depth y

e
 is known as 

the end depth or the brink depth.
In subcritical fl ow a critical section must occur if the fl ow has to pass over to 

supercritical state. The critical depth y
c
 based on hydrostatic pressure distribution 

will occur upstream of the brink. In Fig. 7.21 Section 1 can be taken as the critical 
section with y

1 
= y

c
. Then x

1 
= x

c
. In supercritical fl ow, y1  will be equal to the normal 

depth, y
1
 = y

0
.

7.7.1 Experimental Observations

Rouse27 was probably the fi rst to recognise the interesting feature of the end 
depth at a free fall. His experiments on the end depth for subcritical fl ow in a 

Fig. 7.20 Parshall fl ume

Flow
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horizontal rectangular channel with side walls continuing downstream on either 
side of the free nappe with atmospheric pressure existing on the upper and lower 
sides of the nappe (confi ned nappe) indicated that y

e
=0.715 y

c
. Since then a large 

number of experimental studies have been conducted on a variety of channel 
shapes and boundary conditions. Some of the important studies are summarised 
in Table 7.3.

Table 7.3 Results of Experimental study on End Depth Ratio in Subcritical Flow in Horizontal 

Channels

SI. No Shape End depth ratio 
y

y
e

c

Variation 
(approximate)

Reference

1 Rectangular Channel 
 (Confi ned Nappe)

0.715 ± 2.0% 5,27,31

2 Rectangular Channel 
(Unconfi ned Nappe)

0.705 ± 2.0% 28,31

3 Triangular 0.795 ± 2.0% 28
4 Circular 0.725 ± 3.5% 29
5 Parabolic 0.772 ± 5 0% 28

Fig. 7.21 Defi nition sketch of the end depth

Pressure

E

F

Energy line
y

Vy

Vx

x

ye

x1

y1
V

F ′

ΔZ
1

θ

In Table 7.3, the term unconfi ned nappe means that the side walls terminate at section 
FF' and it is seen that this end constraint has the effect of decreasing y

e  
/ y

c
 values. For 

subcritical fl ow. in horizontal, rectangular channels, y
e  
/ y

c
 = 0.705 for unconfi ned nappe 

as against 0.715 for the confi ned case. It is interesting to note that the channel-roughness 

magnitude does not have any signifi cant infl uence on the value of y ye c/  in the subcritical 
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fl ow range. The possible magnitude of error of the various experimentally determined 
values of y

e 
/ y

c
 is also shown in Table 7.3.

For the supercritical fl ow cases, Delleur et al.23 showed that the relative end depth 
can be expressed as

 
y

y
f

S

S
e

c c

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

0 , channelshape  (7.56)

For a given channel, the variation of y ye c/  can be expressed as a unique function 
of S Sc0 / . The results of some experimental observations on rectangular channels 
are indicated in Fig. 7.22. Similar variations of y ye c/  with S Sc0 /  for triangular, 
parabolic, circular and trapezoidal channels recorded in various experimental studies 
are reported in the literature1. In experimental studies on large values of S

0 
/S

c
, considerable 

scatter of data, of the order ± 10 per cent, is observed.

Experimental studies34 have shown that in subcritical fl ow 
x

y
c

c

 is of the order of 

3.0 to 6.0 and is a function of the Froude number of the fl ow. Further, if the brink 
fl ow is not to be affected by the tailwater level, the drop Δz  (Fig. 7.21) should be 
greater than 0.6 y

c
 (Ref. 5).

7.7.2 Analytical Studies

For the prediction of end depth, several analytical attempts have been made by earlier 
workers. Most of them are based on the application of the momentum  equation with vari-
ous assumptions, especially regarding the velocity and pressure  distributions at the brink 
section. In a typical momentum approach28,29,32 the pressure force at the brink section is 

expressed as P A y Ke e e= γ 1, when K1 =  a pressure-correction factor and ye =  the 
depth of the centre of gravity below the free surface at the brink section. The success of 
the momentum equation to predict  y

e
 depends upon the proper choice of K

1
 (the variation 

of K
1
 with the geometry of the problem has to be  determined experimentally).

Fig. 7.22 End-depth ratio in rectangular channels
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The numerical solution of a two-dimensional ideal fl uid-fl ow at a free overfall has 
been attempted by some investigators through various fi nite difference schemes. An 
excellent review of these studies on potential fl ow in a free overfall and a theory 
describing such a fl ow is presented by Strelkoff et al.35 While it is possible to solve 
the end-depth problem in a wide rectangular channel through advanced numerical 
techniques, such as the fi nite-element method, the solution of the problem in chan-
nels of different shapes have to be tackled by alternative methods.

An elegant method which differs from the above two approaches has been 
reported by Anderson34. Based on Anderson’s work, a generalised energy method 
for the prediction of end-depth in channels of any shape is given by Subramanya36 
and is described below. This method is simple, does not need any coeffi cient and can 
predict the end-depths to a remarkable degree of accuracy in a variety of 
situations.

7.7.3 Generalised Energy Method for End Depth Prediction36

In a free overfall, the water surface is a continuously falling curve. The water surface 
profi le starts in the channel somewhere upstream of the edge, passes through the brink 
and ends up as a trajectory of gravity fall. In deriving the general expression for the 
end-depth, expressions for the curvature of the water surface are separately derived for 
the channel fl ow as well as for the free overfall and matched at the brink.

(a) Curvature of the Channel Flow Consider a channel of any shape having a 
free over fall (Fig. 7.21). The water surface curvature is assumed to be relatively small 
and is assumed to vary linearly from a fi nite value at the surface to zero value at the 
channel bottom. The effective piezometric head is then expressed by the Boussinesq 
equation (Eq. 1–35) The water surface curvature is convex upwards and the specifi c 
energy E at any section is given by Eq. 1.41 as

E h
V

gep= +α
2

2

By using Eq. 1.33 for h
ep

 E y
V

g

V y

g

d y

dx
= + +

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

α
2 2 2

22

1

3
 (7.57)

i.e. E y
Q

gA

Q

gA
y

d y

dx
= + +

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

α
2

2

2

2

2

22

1

3
 (7.58)

Assume the specifi c energy E  to be constant in the neighbourhood of the brink 
and further assume α = 1.0 for simplicity. The conditions at the brink section 
(denoted by the suffi x e ) is expressed, by non-dimensionalising Eq. 7.58 with respect 
to the critical depth y

c
, as

 E

y

y

y

Q

gA y

Q

gA y

y

y

d y y

d x y
e

c

e

c e c e c

e

c

c

c

y ye

= + +
( )

( )
=

2

2

2

2

2

22

1

3
 (7.59)
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Denoting the critical conditions by the suffi x c,

y y
A

A T y
fe c

c

e c c

/ ;= = ( )η η
3

2  and E ye c/ = ε

Remembering that Q g A Tc c
2 3/ /=  Eq. (7.59) can be simplifi ed as

 ε η η η η= + ( )+ ( )
( )

( )
=

1

2

1

3

2

2
f f

d y y

d x y

c

c

y y
e

/

/
 (7.60)

The expression for the curvature of the channel water surface at the brink is from 
Eq. 7.60,

 d y y

d x y f
fc

c

y ye

2

2

3 1

2

/

/

( )
( )

=
( )

− − ( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

η η
ε η η  (7.61)

(b) Overfl ow Trajectory Referring to Fig. 7.21, V
x
 is x – component of the 

velocity in the overfl ow trajectory and is given by

 V Vx e= cosθ  (7.62)

where V
e
 = mean velocity at the brink inclined at an angle θ to the horizontal. For a 

gravity fall

dV

dt
x = 0  and 

dV

dt
gy = −

where V
y
 = y – component of the velocity in the trajectory.

Since 
dy

dx

V

V
y

x

=

 

d y

dx
g V

gA

V A

gA

Q

x
e

e e

e

2

2

2
2

2 2

2

2 2

= − = −
( )

= −

/
cos

cos

θ

θ
 (7.63)

Noting that  Q

g

A

T
c

c

2 3

= ,  Eq. 7.63 can be written as

d y

dx

T A

A y f
c e

c c

2

2

2

3 2 2

1
= − = −

( )cos cosθ η θ

Thus,

 
d y y

d x y f
c

c
y ye

2

2 2

1/

/ cos

( )
( )

= −
( )

=

η θ
 (7.64)
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(c) General Equation for End Depth Ratio For a continuous water surface 
slope at (x = 0, y = y

e
 ) Eq. 7.61 and Eq. 7.64 must be identical and as such

−
( )

=
( )

− − ( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 3 1

22f f
f

η θ η η
ε η η

cos

Simplifying,

 6 2 3 1 3 02 2 2ε θ η θ η θcos cos cos− −( )− ( ) =f  (7.65)

In the usual cases when θ  is small, cos . ,cos .θ θ≈ ≈1 0 1 02  and Eq. 7.65 simplifi es to

  6 4 3 0ε η η− − ( ) =f  (7.66)

This equation is the general equation relating the end-depth ratio η  with the non-dimen-
sionalised specifi c energy at the brink and is based on the assumption of constancy of the 
specifi c energy in the neighbourhood of the brink. To illustrate the use of Eq. 7.66, the 
prediction of end-depth in exponential channels is presented in the following section.

7.7.4 End Depth in Exponential Channels

An exponential channel is defi ned as the one in which the area A is related to the 
depth y as A=Ky a, where K and a are constants. It is easily seen that a =1 0 1 5. , .  and 
2.0 represents rectangular, parabolic and triangular channels respectively.

For exponential channels, T
dA

dy
Ka ya= = −1

 and 
A

T

y

a
=  (7.67)

     f
A

A T y a
y y

a
c

e c c

c e

a

a
η

η
( ) = = ( ) =

3

2

2

2

1 1 1
/  (7.68)

Eq. 7.66 now becomes

 6 4
3 1

0
2

ε η
η

− − =
a a

 (7.69)

The solution of Eq. 7.69 is now obtained for subcritical and supercritical channel 
fl ows separately.

(i) Subcritical Flow If the fl ow upstream of the brink is subcritical, the critical 
depth must occur before the end-depth. Assuming constant specifi c energy E between 
the critical section and end section

ε = =
E

y

E

y
e

c

c

c

Since E y
Q

g A
y

A

Tc c

c

c
c

c

= + = +
2

22 2
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ε = +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1
1

2

1A

T y
c

c c

By substituting Eq. 7.67 for an exponential channel

 ε = +1
1

2a
 (7.70)

Thus,for a given exponential channel shape (i.e. a = constant), ε is constant for sub-
critical fl ow.

Eq. 7.69 now becomes 

6 1
1

2
4

3 1
0

2
+

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟− − =

a a a
η

η

and can be solved for a given value of a . It is seen that for a given value of a , the 
end-depth ratio η is a constant in subcritical fl ow and is independent of the fl ow 
parameters like Froude number.

(ii) Supercritical Flow If the fl ow upstream of the brink is supercritical, the 

normal depth y0  is less than y
c
 and the critical depth does not exist in the profi le 

between y
c
 and y

e
. Considering a section between y

0
 and y

c
 (Fig. 7.23)

ε = = = +
E

y

E

y

y

y

Q

g A y
g

c c c c

0 0
2

0
22

Putting 
y

yc

0 = δ  and, noting that 
Q T

g A
F

2
0

0
3 0

2=

   

ε δ

δ δ

= +

= + ( )

F A

T y

F
f

0
2

0

0 0

0
2

2

2

;

 (7.71)

E

yc y0

Critical depth line

Energy line

ye

∇

Fig. 7.23 Free overfall in supercritical fl ow

Chapter 7.indd   341Chapter 7.indd   341 2/24/2010   3:01:44 PM2/24/2010   3:01:44 PM



342 Flow in Open Channels

where f
A

T yc

δ( ) = 0

0

In an exponential channel f aδ δ( ) = /  (7.72a)

and F
A T

A T

y

y
c

c

c

a a

0
2

3
0

0
3

0

2 1 2 1
1

= =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

+ +

δ
 (7.72b)

or  
y

y Fc
a

0

0
2 2 1

1
= =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+( )
δ

/
 (7.72c)

Thus for an exponential channel having supercritical fl ow upstream of the brink, by 
substituting Equations 7.72a, b and c in Eq. 7.71 it is seen that ε is a function of the 
upstream Froude number F

0
 given by

 ε = +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟+( )

1
1

2
0

2 2 1

0
2

F

F

aa/
 (7.73)

η = fn (a, F
0
) (7.74)

End-depth ratios in Exponential Channels Using Eq. 7.69 along with appropri-
ate expression for ε, [viz. Eq. 7.70 in subcritical fl ow and Eq. 7.73 in supercritical fl ow], 
the value of the end-depth ratio η can be evaluated for a given fl ow situation. Table 7.4 
gives the values of η  for subcritical fl ows in rectangular, parabolic and triangular 
channels evaluated by Eq. 7.69 along with the corresponding results obtained 
experimentally.

Table 7.4 Comparison of End-Depth Ratios of η Obtained by Eq. (7.69)

Channel shape a η =
y

y
e

c

 by Eq.(7.69) Mean experimental 
value ( Table 7.3)

Per cent under 
estimation

Rectangle 1.0 0.694 0.715 ± 3.5% 2.9
Parabola 1.5 0.734 0.722 ± 5.0% 4.9
Triangle 2.0 0.762 0.795 ± 2.5% 4.2

Generally, the predictions are less by about 5% of the mean experimental values, 
probably due to the neglect of frictional effects. Considering the nature of scatter of 
experimental results, the prediction of η by Eq. 7.69 can be taken as satisfactory and 
adequate.

Figure 7.24 shows the variation of the end-depth ratio η with F
0
 for supercritical 

flows, in rectangular, parabolic and triangular channels, obtained by solving 
Eq. 7.69. Detailed experimental data are not available to verify these predictions 
completely. However, available data on triangular channels27 have shown the prediction 
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to be satisfactory. Satisfactory comparison of available data in rectangular channels 
is shown in Fig. 7.22.

7.7.5 End Depth in Other Channel Shapes

The generalised energy method described in the earlier section is a simple and ver-
satile technique to predict the end-depth ratio η in both subcritical and supercritical 
fl ow modes in prismatic channels of any shape. However, Eq. 7.66 and expres-
sions for ε and f (η) may not always be simple expressions and may pose some 
diffi culty in the solution for η. Subramanya and Keshavamurthy37 have used Eq. 

7.66 to estimate the end-depth ratio η as a function of 
my

B
e  for subcritical fl ows in 

trapezoidal channels. The available data substantiate the high degree of accuracy 
of this prediction.
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Fig. 7.24 Variation of the end-depth ratio in supercritical fl ows
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Subramanya and Niraj Kumar38 have used the generalised energy method (Eq. 
7.66) to predict the end-depth in subcritical fl ows in circular channels as η = f ( y

c
 /D). 

It has been shown that η is essentially constant at 0.73 in the entire practical range of 
y

c
 /D viz. 0 < y

c
 /D ≤ 0.8. This compares very well with the value of η = 0.725 ± 3.5% 

obtained by Rajaratnam and Muralidhar29. Niraj Kumar39 has reported extensive use 
of Eq. 7.66 to predict the end-depth ratio η in a variety of channel shapes including 
elliptical sections, inverted trapezoidal sections and standard lined triangular canal 
section.

Numerous applications of the generalized energy method to solve end depth ratio 
in a variety of channel shapes has been reported in literature. Reference 48 gives a 
review (as of 2002) of the research work on the topic of end depth in open channels 
and contains an exhaustive bibliography on the topic

Example 7.15  A channel has its area given by A = ky3 where k = a constant. For 
subcritical fl ow in this channel estimate the ratio of the end-depth to critical depth.

Solution This is an exponential channel with a = 3.0. For subcritical fl ow by Eq. 7.70

ε = + =1
1

2
1 167

a
.

By Eq. 7.68, f
a a

η
η η

( ) = =
1 1

3

1
2 6

The general equation of end depth Eq. 7.66 is 

6 4 3 0ε η η− − ( ) =f

Substituting for ε and   f η η
η

( ) ×( )− − =, .6 1 167 4
3

3

1
0

6

i.e.  
1

4 7 0
6η

η+ − =

Solving by trial and error   η = =y ye c/ . .0 80

Example 7.16  A rectangular channel carries a supercritical fl ow with a Froude 
number of 2.0. Find the end-depth ratio at a free overfall in this channel.

Solution In supercritical fl ow, for an exponential channel, ε = f
n
 (a, F

0
) 

Here  a = 1.0

By Eq. 7.53  ε = +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟+( )

1
1

2
0

2 2 1

0
2

F

F

aa/
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= +
×( )

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
=

+( )

1

2
1

2

2 1
1 89

2 2 1

2

/ .
.

By Eq. 7.68,      f
a a

η
η η

( )− =
1 1

2 2

The general equation of end-depth, Eq. 7.66 is

6 ε – 4η – f(η ) = 0

Substituting for ε and    f η η
η

( ) × − −, .6 1 89 4
3

2

i.e.  4 η3 – 11.34 + 3 = 0

Solving by trial-and-error,  η = y
e 
/ y

c  
= 

 
0.577.

7.7.6 End Depth as a Flow-Measuring Device

The unique relationship for y
e
/y

c 
 for a given channel at a free overfall has given end 

depth the status of a fl ow meter. For fl ow-measurement purposes, the end section 
should be truly level in the lateral direction and must be preceded by a channel of 
length not less than 15y

c
. The overfall must be free and where it is confi ned by side 

walls, the nappe well ventilated. The accuracy of measurement is better if the slope is 
fl at, i.e. as near to being a horizontal bed as possible. The depth should be measured 
at the end section on the channel centreline by means of a precision point gauge. 
In subcritical fl ows for a given channel shape a constant value of y

e 
/ y

c
 as given in 

Table 7.3 (or as obtained by using the general equation for end depth, Eq. 7.66) is 
used to estimate the discharge for a given y

e
. The general accuracy of fl ow-measure-

ment by the end depth method is around 3 per cent in subcritical fl ows.
International organization for Standards, Geneva, Switzerland has brought out 

two standards; ISO 3847 (1977) and ISO 4371 (1984) for end depth method of fl ow 
measurements in rectangular channels and non-rectangular channels respectively. 
The website http://www.lmnoeng.com contains details of ISO 3847 and 4371 proce-
dures and free softwares for calculation of discharge for a known end depth in rect-
angular, triangular and circular channels.

In supercritical fl ows y
e
/y

c
 = fn( F

0  
) and as such two depths y

e
 and y

0
 are needed 

to estimate the discharge. In view of this, the end-depth method is not advantageous 
in supercritical fl ows.

Example 7.17  Estimate the discharges corresponding to the following end-
depth values in the following horizontal channels. [Assume the fl ows to be sub-
critical and use the end depth ratio values given in Table 7.3].
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Channel shape Property   End depth (m)

Rectangular Bed width = 2.5 m 0.70 m, Confi ned 
nappe

Triangular Side slope = 1.5 H : 1 V 0.55 m
Circular Diameter = 0.90 m 0.40 m

Solution (i)  From Table 7.3 for a rectangular channel having a confi ned nappe at 
the free fall,  

y
e 
/ y

c
 = 0.715

y
c
 = 0.70/0.715 = 0.979

q gyc= ⎡
⎣⎢

⎤
⎦⎥ = ×( )⎡

⎣⎢
⎤
⎦⎥

=3 1 2 3 1 2

9 81 0 979 3 034
/ /

. . . m /s/m3

Q = 2.5 × 3.034 = 7.585 m3/s

(ii) For a triangular channel from Table 7.3, 

y
e
 / y

c
= 0.795

y
c
 = .0.55/0.795 = 0.692

Q
gm yc2

2 5 2 5

2

9 81 1 5 0 692

2
1 751= =

( )×( ) ×( )
=

. . .
.

Q = 1.323m3/s 

(iii) For a circular channel from Table 7.3, 

y
e
 / y

c
 = 0.725

y
c
 = 0.40/0.725 = 0.552, y

c 
/ D = 0.552/0.90 = 0.613

From Table 2A-1, 
Q

g D2 5
0 3637

.
.=

Q = 0.875 m3/s

7.8 SLUICE-GATE FLOW

Gates in a variety of shapes and with different operational characteristics are used 
for purposes of fl ow control. For their design information on the head-discharge rela-
tionship, pressure distribution and vibration characteristic is required. In this section 
the head-discharge characteristic of a vertical sluice gate is dealt with in detail.
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7.8.1 Sluice Gate

A sluice gate consists of a vertical sliding gate operating within grooves in the 
sides of the span. An ideal sharp-edged sluice gate in a horizontal rectangular 
channel is indicated in Fig. 7.25 Note the sharp edge with a bevel in the down-
stream. This kind  of gate is used for idealised studies as in laboratories, since 
the sharp upstream edge provides a well-defi ned separation line for the fl ow. As 

the water issues out of the gate open-
ing, the free surface converges rapidly 
till the fast stream attains a minimum 
depth with fl ow lines parallel to the 
bed. This minimum area section, called 
vena contracta, occurs at a distance 
of about a from the plane of the gate, 
where a is the height of the gate open-
ing. If the tailwater is not suffi ciently 
high to submerge the vena contracta, 
the fl ow, being independent of the tail-
water elevation, is designated as free-
fl ow. The fl ow is subcritical upstream 
of the gate and is supercritical immedi-
ately downstream of the gate when the 

gate discharges under free-fl ow conditions. Referring to the vena contracta as 
Section 2, the ratio of the depth y

2
 to the gate opening a is called the coeffi cient 

of contraction C
e
 i.e.,

 y
2
 = C

c
a (7.75)

Assuming that there is no entry loss between Sections 1 and 2 (Fig. 7.25) and 
α

1
 = α

2
 = 1.0.

 H
V

g
y

V

g1
1
2

2
2

2

2 2
+ = +  (7.76)

Since the discharge per unit width q is given by the continuity equation as

q = H
1
V

1
 = y

2
V

2
 = C

c 
a V

2

Equation 7.76 simplifi es to

q
C

a

H
C

a g Hc

c

=

+
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1

2

1

1

i.e. q C a g Hdf= 2 1  (7.77)

y2

H1H0

Energy line

∇

∇

Fig. 7.25 Defi nition sketch of free sluice 

gate fl ow
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where C
df 

= coeffi cient of discharge for free-fl ow given by

 

C
C

a

H
C

df

c

=

+
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1
1  

(7.78)

It may be noted that the term 2 1g H  in Eq. 7.77 which has the dimensions of 
velocity does not represent any real velocity in the system. Only the overall dis-
charge is properly represented and the terms C

df
 and 2 1g H  are hypothetical 

quantities.

Another way of representing the discharge q is to rearrange Eq. 7.76 to get

 q C a g H C a C a g Hd c d= −( ) = Δ2 21
 (7.79)

where ΔH = difference in the depths of fl ow at Sections 1 and 2 and C
d
 =  the coef-

fi cient of discharge given by

 

C
C

C a

H

d
c

c

=

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1
1

2

 

(7.80)

7.8.2 Coeffi  cients C
c
, C

df
 and C

d

The coeffi cient of contraction C
c
 is a function of the geometry of the opening and 

in sluice-gate fl ow C
c
 = f (a/H

1
). As such, both C

df
 and C

d 
 are also functions of 

a/H
1
 Since the gate has a sharp edge, the separation point is fi xed and the Reynolds 

number of the fl ow does not have any effect on C
c 
and hence on C

df
 and C

d
.

The value of C
c
. is determined by the fl ow profi le from the gate to Section 2. The 

ideal-fl uid fl ow theory can be used to study the variation of C
c
. However the fl ow 

being predominantly gravity-infl uenced, considerable mathematical diffi culties are 
encountered. Fangmeir and Strelkoff 40 have studied sluice-gate fl ow by applying 
the complex-function theory. Solutions obtained with such an approach properly 
account for the free surfaces upstream and downstream of the gate and are consid-
erable improvements over the earlier works, e.g. Benjamin41. Larock42 has devel-
oped a theory which covers sluice gates of arbitrary inclinations as well as radial 
gates by assuming the upstream free surface to be a fi xed horizontal boundary. 
McCorquodale and Li43 were probably the fi rst to apply the fi nite-element method 
(FEM) to sluice-gate fl ow. However, they assumed the free surface of the effl ux jet 
to be an ellipse and as such their results are not exact. Isaacs44 presented a numeri-
cal method based on FEM for the analysis of fl ow from a sluice gate of arbitrary 
geometry. A generalised FEM approach to two-dimensional and axi-symmetric 
gravity fl ows of ideal fl uids has been reported by Diersch et al.21 Their method is 
applicable to a wide variety of free-surface fl ow problems, such as sluice-gate fl ow, 
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fl ow over spillways, fl ow under spillway gates, end-depth problems, etc., and is 
capable of calculating C

c
, the discharge coeffi cient and velocity and pressure dis-

tributions. Their calculations for the discharge coeffi cient C
df
 for a vertical sluice 

gate gave excellent agreement with earlier experimentally determined values21 
(Fig. 7.26).

0
0.50

0.52

0.54

0.56

0.58

0.60

0.1 0.2 0.3 0.4 0.5 0.6

Theory
40 Fangmeir & Strelkoff

45 Henry (Expts)
21 Diersch et al.

Ref

a / H1

C
df

Fig. 7.26 Variation of C
df

Experimentally, the variations of C
df
  and C

d
 have been studied by a number of 

research workers. The results of Henry’s experiments45 are generally recognised 
to be accurate enough with a possible error of ± 2 per cent for discharge predic-
tions. The variation of C

df
 with H

1
/a obtained by Henry with data of Rajaratnam 

and Subramanya46 is indicated in Fig. 7.27.

The variation of C
d
 with a1 H

1
, has been studied by Rajaratnam and Subramanya46 

and Franke and Valentin47. The values of C
d
 for various values of a H

1
 are indicated 

in Table 7.5. 

Table 7.5 Variation of C
d
 with a/H

1
 (Rajaratnam and Subramanya)46

a/H1 0.00 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70

C
d

0.61 0.61 0.60 0.605 0.605 0.607 0.620 0.640 0.660

It may be noted that the variation of C
d
 in the range of a / H

1
 from 0 to 0.30 is 

very small and one can adopt a constant value of a/H
1
 within this range. The C

c
 

values over the practical ranges of a / H
1
, from Eq. 7.78 are essentially constant 

at 0.60.
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7.8.3 Submerged Flow 

In free-fl ow, the tailwater level has no effect on the discharge. If the tailwater level 
is increased, while keeping the discharge constant, a hydraulic jump that is formed 
in a downstream section of the canal gradually advances upstream till the toe of 
the jump is at the vena contracta. Any further increase in the tailwater elevation 
causes the jump to be submerged. This would cause the depth at Section 2 to be 
higher than C

c
a and if the discharge is constant, the upstream depth H

1
 will have 

to increase. Such a situation, where the downstream depth H
2
 > C

c
a, is designated 

as submerged fl ow (Fig.7.28). Thus the limit of the free jump is the jump formed at 
the vena contracta. The tailwater corresponding to this limiting case y

tl 
/ a is known 

as modular limit and represents the maximum relative tailwater depth which would 
ensure free-fl ow. Higher values of y

t
/a than the modular limit would cause sub-

merged fl ow.
In submerged fl ow the operating head is Δ = −H H H( )1 2  and the discharge is 

confi ned in the downstream direction at Section 2 to a depth y C av c≈ . Above the 
depth y

v 
, at Section 2 there will be a roller in which the upper layers will have nega-

tive velocity. By applying the energy equation to Sections 1 and 2 and neglecting the 
energy losses, it can be shown that

 q C a g Hds= Δ2  (7.81)

where C
ds

= discharge coeffi cient for submerged fl ow. It has been experimentally45 

establishcd that C
ds 

= C
d
 = f (a/H

1
). For the estimation of discharges in submerged 
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Fig. 7.27 Variation of C
df 

and C
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sluice-gate fl ow, the data in Table 7.5 can be used together with Eq. 7.81. Between 
Sections 2 and 3 (Fig. 7.28) there exists a submerged hydraulic jump which dissipates 
some of the energy. If it is desired to fi nd H

2
 for a known q and y

t
, the momentum 

equation, with due notice that the fl ux of momentum at Section 2 is confi ned, to a 
depth y

v
 only, can be used.

If the discharge in the submerged fl ow is defi ned in a manner analogous to 
Eq. 7.77, as 

 
q C a g HSH= 2 1 

(7.82)

where C
SH

 = a discharge coeffi cient for submerged sluice-gate fl ow proposed by 
Henry45 then by the energy equation between Sections 1 and 2, and by momentum 
equation between Sections 2 and 3, it can be shown that 

 C
SH 

= f(H
1
/a, y

1 
/a) (7.83)

Henry45 has evaluated C
SH  

, experimentally and his results along with some experi-
mental data from Raiaratnam and Subramanya46 are shown in Fig. 7.27. This curve 
can be used for the estimates of discharge in submerged fl ow when H

1
,
   
y

t
 and a are 

known. Because of steep gradients of the C
SH

 curves, considerable errors are likely to 

arise in the estimation of C
SH

 from Fig. 7.27 if 
H

a

y

a
t1 −

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ is small.

7.8.4 Practical Gate Lips

In practical applications the bottoms of the vertical-leaf gates are usually made with 
a bevel on the upstream face, usually with a slope of about 45° and with a narrow 
seat surface on the bottom. This form of gate has considerably higher discharge coef-
fi cients compared to a sharp-edged gate. While the overall functional form of the 
discharge coeffi cients can remain essentially the same as for a sharp-edged gate, the 
actual values which depend on many factors peculiar to the installation have to be 
determined by model studies.

1 2 3

H0 H1

ΔH

a

H2

yt

yv = Cca 

∇

∇
∇

Energy line

Fig. 7.28 Submerged sluicegate fl ow
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7.9 CULVERT HYDRAULICS

A culvert is a conduit provided to transmit the fl ow of a stream past an obstacle such 
as a roadway, railway or any kind of embankment. It entails essentially a constric-
tion of the fl ow path and consequently the hydraulics of the stream fl ow undergoes a 
change in and around this hydraulic structure. While the culverts appear to be simple 
structures its hydraulics is extremely complex. To appreciate the complexity of fl ow 
analysis, consider the following features:

The fl ow through a culvert
  (i)  can be subcritical or supercritical
 (ii)  can be a closed conduit fl ow or an open channel fl ow or both forms may 

exist
(iii)  may have an inlet control or an outlet control
(iv)  may be such that the free surface fl ow in the barrel can have uniform fl ow or 

GVF or RVF or any combination of the above
 (v)  may be such that either the inlet or the outlet or both inlet and outlet may be 

submerged or both may be unsubmerged

In view of the many possible fl ow types in a culvert, the classifi cation of the fl ow 
through a culvert has undergone several changes to achieve clarity. Chow 26 (1956) 
classifi ed the culvert fl ow in to 6 types based on the submergence or otherwise of the 
inlet and outlets. USGS (1976)49 classifi es the fl ow through culvert in to 6 types 
depending upon the nature of the slope and relative headwater and tailwater eleva-
tions. Currently the most widely used classifi cation is that of Federal Highway 
Administration (FHWA) of US Department of Transport as given in their Hydraulic 
Design Series-5 (HDS-5) of 2001 (Revised 2005)50. The HDS-5 system of classifi ca-
tion is described in this section. The following web site of FHWA can be consulted 
for free download of Ref. (50) as well as for free download of related softwares: 
http://www.fhwa.dot.gov/engineering/hydraulics/software.cfm.

The culvert conduit (also called barrel) can be circular, rectangular, elliptical and 
other geometrical shapes composed of circular arcs. However, the circular shape is 
the most commonly adopted shape. Wide choice of materials like concrete, brick and 
stone masonry, conduits made of sheets of steel and aluminum are available for the 
construction of the culvert barrel.

Figure 7.29 is a defi nition sketch of fl ow through a culvert. In this fi gure,

TW

OutletCulvert BarrelS0 = Bed slope

Flow

Roughness coefficient n

HW

Inlet

d = Diameter
GVF water surface

Fig. 7.29 Defi nition sketch of culvert fl ow
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HW = Headwater = head above the invert of the culvert inlet
 TW =  Tailwater = depth of water downstream of the culvert measured from the 

outlet invert
     d = Diameter of the culvert conduit 
    S

0
 = Slope of the conduit 

     n = Manning’s roughness coeffi cient of the conduit

This fi gure shows a type of fl ow in which both the inlet and the outlet of the culvert 
are unsubmerged. In this case the fl ow in to the culvert is in weir fl ow mode. If the 
headwater elevation is suffi ciently above the top edge of the inlet the fl ow in to the 
culvert barrel will be in the orifi ce fl ow mode (with discharge proportional to square 
root of head ) and the inlet is said to be submerged. The limit of submergence depends 

upon the ratio 
HW

d
 and the limiting value is found to be in the range of 1.2 to 1.5. 

HDS-5 adopts 1.2 as the minimum 
HW

d
 ratio marking the onset of submerged fl ow. 

Thus for 
HW

d
>1.2 the inlet is considered to be submerged.

The inlet of a culvert has a very important role in reducing energy losses at the 
entry, especially in closed conduit fl ow conditions. The fl ow entering the culvert 
barrel undergoes contraction of the fl ow area at the inlet and a properly designed inlet 
would increase the coeffi cient of contraction leading to higher effi ciency. Some stan-
dard types of culvert inlets popularly used in USA are (i) Projecting barrel,
(ii) Cast-in – situ concrete headwall and wing walls, (iii) Pre-cast end sections, and 
(iv) Culvert end mitered in to the slope. Additional factors like structural stability, 
aesthetics, erosion control and embankment slope control play a role in the fi nal 
selection.

The outlet is considered to be submerged for all values of tailwater elevation, 
measured above the invert of the outlet, which are greater than the diameter of the 

conduit at the outlet, that is 
TW

d
≥1 0. .  Considering the control of fl ow at the inlet 

and at the outlet, the fl ow in a culvert is classifi ed by HDS-5 in to four types under 
inlet control condition and to fi ve types under outlet-control condition. The different 
types of fl ows are named alphabetically. For clarity sake, prefi xes IC and OC to indi-
cate inlet control and OC outlet control respectively are adopted in this book. Thus 
Type IC-A indicates inlet control, Type–A fl ow and OC-C indicates outlet control 
Type-C fl ow in the culvert. The details of the classifi cation are given below and also 
are shown in Figs 7.30 and 7.31.

Inlet Control (IC) In this type the flow control is at the inlet, viz., the 
upstream end of the culvert and four categories of fl ow are possible as shown in 
Fig. 7.30 -(i to iv).

Type IC-A (Fig.7.31-(i).) Here both the inlet and the outlet are unsubmerged and 
channel is steep. The inlet acts like a weir and critical depth is formed just down-
stream of the inlet edge. The free surface fl ow will be a GVF of S

2
 type in the initial 
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portion with the normal depth occurring in the downstream part depending upon the 
length and other hydraulic characteristics. The tail water level is too low and does not 
infl uence the fl ow at the outlet

Type IC-B (Fig. 7.30-(ii).) This type of fl ow is similar to Type IC-A described 
earlier but with the additional feature of the tailwater causing the submergence 
of the outlet. The fl ow at the inlet is still like a weir with critical depth at the 
upstream end. The S

2
 curve formed will have a hydraulic jump at an appropri-

ate location to cause full conduit pressure fl ow in the downstream part of the 
conduit.

Water surface

Water surface

Water surface

Water surface

HW

Median drain (Vent)

HW

(i) Type IC − A: Outlet unsubmerged

HW

(ii) Type IC − B: Outlet submerged: Inlet unsubmerged  

HW

(iii) Type IC − C: Inlet submerged

(iv) Type IC − D: Outlet submerged

∇

∇

∇

∇

∇

∇

∇

∇

Fig. 7.30 Types of inlet control in culverts (Ref. 50)
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Type IC-C (Fig.7.30-(iii)) In this type the inlet is submerged with HW d>1 2. . The 
tailwater level is too low and a free surface fl ow takes place as in Type IC-A. Critical 
depth at the upstream end section, S

2
 profi le and possibility of occurrence of normal 

depth at the downstream section are the characteristic features of the water surface 
profi le in the conduit.

Type IC-D (Fig. 7.30-(iv).) This type of fl ow is the equivalent of Type IC-B with 
inlet being submerged. The tailwater level is high enough to submerge the outlet and a 

Fig. 7.31 Types of outlet control in culverts (Ref. 50)

HW

∇

∇
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∇
∇
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∇

∇

∇

∇
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hydraulic jump is formed inside the barrel. This type of free surface fl ow inside a barrel 
with its two ends sealed would require a vent to preserve atmospheric pressure in the 
air space. The median drain as indicated in the fi gure would act as the desired vent pipe. 
The control remains at the inlet and the fl ow at the inlet is of the orifi ce type.

Outlet Control (OC) In this type the fl ow control is at the outlet and fi ve 
categories of fl ow are possible as shown in Fig. 7.31-(i to v). 

Type OC-A (Fig. 7.31-i). Here both the inlet and the outlet are submerged. The fl ow 
is that of a pure pipe fl ow (viz. pressure fl ow) throughout the culvert conduit.

Type OC-B (Fig. 7.31-ii). In this type the headwater is low causing the inlet to be 
un-submerged while the tailwater is high to cause submergence of the outlet. The 
fl ow in the culvert conduit is a pressure fl ow.

Type OC-C (Fig. 7.31-iii). This is the limiting case of Type OC-A. The inlet is sub-
merged and the outlet is free. The conduit fl ows full, with free exit, due to high head-
water elevation and consequent high differential head.

Type OC-D (Fig. 7.31-iv). Here, the inlet is submerged but the tailwater is low to 
cause free fl ow at the outlet. The culvert conduit is full in the initial partial length in 
the upstream and free surface fl ow prevails on the downstream portion of the con-
duit. The channel slope is mild.

Type OC-E (Fig. 7.31-v). In this type of fl ow both the inlet and the outlet of the 
culvert are un-submerged and the free surface fl ow prevails over the full length of 
the conduit. The slope is mild, and as such uniform fl ow, M

2
 and M

1
 type of GVF profi les 

are possible depending upon the hydraulic properties and the tailwater elevation.

7.9.1 Factors Aff ecting Culvert Flow

Based on the details of inlet and outlet control types of fl ow described above, the fac-
tors affecting culvert fl ow can be listed as in Table 7.6. Inlet control occurs generally 
in steep, short, culverts with free outlet. Similarly, outlet control can be expected to 
occur in fl at sloped culvert with high tailwater conditions.

Table 7.6 Factors aff ecting Culvert Flow

Factor Inlet control Outlet control

Head water elevation (HW) yes yes

Inlet area yes yes

Inlet edge confi guration yes yes

Inlet shape yes yes

Conduit area No yes

Conduit shape No yes

Conduit length No yes

Conduit  slope Yes, to a small extent yes

Tailwater elevation No yes
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7.9.2 Discharge Equations

Basically the discharge in a culvert is described by the weir fl ow equation or orifi ce 
fl ow equation or pipe fl ow equation depending upon the boundary conditions and 
geometrical confi gurations. Numerous coeffi cients to account for friction, entrance 
losses and other type of losses which depend on the conduit geometry, inlet geometry 
and conduit characteristics are involved. Based on thorough experimental results 
FHWA has identifi ed the various equations and appropriate coeffi cients applicable to 
different types of fl ow situations. Reference 50 can be consulted for details regarding 
discharge estimation in various types of fl ows.

Performance Diagram A plot of the headwater elevation against discharge in a 
culvert installation is known as the performance curve of the culvert and summarises 
various head - discharge relationships that may exist for the culvert. This is an impor-
tant and useful plot in the design process. Further, the performance chart helps in 
understanding the conditions of fl ow at the design headwater elevation and also in 
knowing the sensitivity of the (HW) – Q relation at that point. Thus the performance 
curve enables one to estimate the consequences of fl ow rates higher than the design 
rate at the site and also benefi ts of inlet improvements.

Figure 7.32 shows the typical performance curve of a culvert. It is seen that two 
discharges for the selected design fl ow are possible. For conservative design if Q

1
 is 

Outlet
control

Roadway crest

Inlet control

Culvert plus
overtopping

Design HW

Overall performance
curve

Q1 Q2 Flow rate

H
ea

d 
w

at
er

 e
le

va
tio

n

Top of culvert

Fig. 7.32 Culvert performance curve with roadway overtopping (Ref. 50)
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selected the culvert barrel capacity is higher than what has been designed and this 
can be utilized by inlet improvement.

It is normal practice in India to design culverts for free surface fl ow operation. 
However, in USA the culverts are invariably designed to fl ow full at design dis-
charge. Another aspect to be considered in the design of culverts is the velocity of 
fl ow at the outlet in relation to scour of the bed material of the stream. Generally rip-
rap protection is needed at the outlet and in some cases energy dissipaters also have 
to be provided to prevent serious scours due to high outlet velocities.

7.9.3 Design of Culverts

Reference 50 contains valuable information, worked examples and nomographs 
for the design of culverts under all types of fl ow conditions. FHWA web site 
http://www.fhwa.dot.gov/engineering/hydraulics/software.com contains complete 
information on FHWA Hydraulics Engineering Publications and Software for culvert 
analysis and related topics. Culvert Analysis Program, HY-8 by FHWA is free public 
domain software. Web site http://www.imnoeng.com contains free computation/
design facility and valuable information on all aspects of culvert fl ow. A program 
for design of culverts under inlet/outlet control and for preparation of performance 
chart using HDS-5 methodology is available in this web site. A large number of 
commercial softwares are available for culvert design and details about these can 
be obtained through the internet search.
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 PROBLEMS 

Problem Distribution

SI No Topic Problems

 1 Rectangular weir 7.1 to 7.3, 7.6, 7.7, 7.19

 2 Weirs of various shapes 7.4,

 3 Triangular notch 7.5

 4 Sutro weir 7.8, 7.10

 5 Quadratic weir 7.9, 7.11

 6 Ogee spillway 7.12 to 7.16

 7 Broad crested weir 7.17, 7.18, 7. 19

 8 Critical depth fl ume 7.20, 7.21

 9 End depth 7.22 to 7.27

10 Sluice gate 7.28 to 7.32
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 7.1  A rectangular sharp-crested suppressed weir is 2.0 m long and 0.6 m high. Estimate the 
discharge when the depth of fl ow upstream of the weir is 0.90 m. If the same discharge 
was to pass over an alternative contracted weir of 1.5 m length and 0.60 m height at the 
same location, what would be the change in the water-surface elevation?

 7.2  A sharp-crested suppressed weir is 1.5 m long. Calculate the height of the weir required 
to pass a fl ow of 0.75 m3/s while maintaining an upstream depth of fl ow of 1.50 m.

 7.3  A rectangular sharp-crested suppressed weir is 3.0 m long and 1.2 m high. During a high 
fl ow in the channel, the weir was submerged with the depths of fl ow of 1.93 m and 1.35 m 
at the upstream and downstream of the weir respectively. Estimate the discharge.

 7.4  Develop expressions as given in Table 7.2 for the discharge over triangular, circular, par-
abolic and trapezoidal sharp-crested weirs.

 7.5  A right angled triangular notch discharges under submerged condition. Estimate the discharge 
if the heights of water surface measured above the vertex of the notch on the upstream and 
downstream of the notch plate are 0.30 m and 0.15 m respectively (Assume C

d
= 0.58).

 7.6  A 15-m high sharp-crested weir plate is installed at the end of a 2.0-m wide rectangular 
channel. The channel side walls are 1.0 m high. What maximum discharge can be passed 
in the channel if the prescribed minimum free board is 20 cm?

 7.7  A sharp-crested weir of 0.80-m height and 2.0-m length was fi tted with a point gauge for 
recording the head of fl ow. After some use, the point gauge was found to have a zero 
error; it was reading heads 2 cm too small. Determine the percentage error in the esti-
mated discharges corresponding to an observed head of 50 cm.

 7.8  Design a Sutro weir for use in a 0.30-m wide rectangular channel to have linear dis-
charge relationship in the discharge range from 0.25 m3/s to 0.60 m3/s. The base of the 
weir will have to span the full width of the channel. Assume C

d
 = 0.62.

 7.9  Design a quadratic weir spanning the full width of a 0.50 m rectangular channel at the 
base and capable of passing minimum and maximum discharges of 0.10 m3/s and 0.40 m3/s 
respectively under the desired proportionality relationship. (Assume C

d
 = 0.61.)

7.10  A Sutro weir with a rectangular base is installed in a rectangular channel of width 60 cm. 
The base weir spans the full width of the channel, has its crest coinciding with the chan-
nel bed; and has a height of 12 cm. (i) Estimate the discharge through the channel when 
the depth of fl ow in the channel immediately behind the weir is 25 cm. (ii) What dis-
charge in the channel is indicated when the depth of fl ow is 33 cm? (iii) What depth of 
fl ow in the channel can be expected for a discharge of 0.20 m3/s? [Take C

d
 = 0.61].

7.11  A quadratic weir with rectangular base of 45 cm width and 9 cm height has a depth of 
fl ow of 15 cm in the channel. Estimate (i) the discharge through the weir and (ii) the depth 
of fl ow in the channel corresponding to a discharge of 25 litres/s. [Take C

d 
 = 0.61].

7.12  Find the elevation of the water surface and energy line corresponding to a design discharge of 
500 m3/s passing over a spillway of crest length 42 m and crest height 20 m above the river bed. 
What would be the energy head and minimum pressure head when the discharge is 700 m3/s?

7.13  A spillway with a crest height of 25.0 m above the stream bed is designed for an energy 
head of 3.5 m. If a minimum pressure head of 5.0 m below atmospheric is allowed, what 
is the allowable discharge intensity over the spillway?

7.14  A spillway has a crest height of 30.0 m above the bed and a design energy head of 3.0 m. 
The crest length of the spillway is 50 m. As a part of remodelling of the dam, a three-span 
bridge is proposed over the spillway. The piers will be 1.5 m thick and are round-nosed 
and the abutment corners will be rounded. What will be the change in the water-surface 
elevation for the design-fl ood discharge?

7.15  An overfl ow spillway with its crest 10 m above the river bed level has radial gates fi tted 
on the crest. During a certain fl ow, the water surface upstream of the dam was observed 
to be 2.5 m above the crest and the gate opening was 1.5 m. Estimate the discharge from 
a bay of 10.0 m length. (Neglect end contractions.)
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362 Flow in Open Channels

7.16  An ogee spillway with a vertical face is designed to pass a fl ood fl ow of 250 m3/s. The dis-
tance between the abutments of the spillway is 45.0 m. A three-span bridge is provided over 
the spillway. The bridge piers are 1.20 m wide and are round nosed. If the crest of the spill-
way is 10.0 m above the river bed level, fi nd the elevations of the water surface and energy 
line. Using this discharge as the design discharge, calculate the spillway crest profi le.

7.17  A 2.5-m wide rectangular channel has a broad-crested weir of height 1.0 m and a crest 
width of 1.5 m built at a section. The weir spans the full canal width. If the water-surface 
elevation above the crest is 0.5 m, estimate the discharge passing over the weir. If the 
same discharge passes over another similar weir, but with a crest width of 2.5 m. what 
would be the water-surface elevation upstream of this second weir?

7.18  A broad-crested weir of 2.0-m height and 3.0-m width spans the full width of a rectangu-
lar channel of width 4.0 m. The channel is used as an outlet for excess water from a tank 
of surface area 0.5 hectares at the weir crest level. If the water level in the tank at a cer-
tain time is 0.90 m above the weir crest, what is the discharge over the weir? Estimate the 
time taken to lower the water-surface elevation by 60 cm. (Assume that there is no infl ow 
into the tank and the surface area of the tank is constant in this range.)

7.19  A 2.0-m wide rectangular channel carrying a discharge of 2.5 m3/s is to be fi tted with a 
weir at its downstream end to provide a means of fl ow measurement as well as to cause 
heading-up of the water surface. Two choices, viz. (i) a sharp-crested weir plate of 0.80 m 
height, and (ii) a broad-crested weir block of 0.80–m height and 1.0–m width, both span-
ning the full width of the channel, are considered. Which of these weirs causes a higher 
heading-up and to what extent?

7.20  A standing wave fl ume is used to measure the discharge in a 10.0 m wide rectangular 
channel. A 5-m wide throat section has a hump of 0.5 m height. What is the discharge 
indicated when the upstream depth of fl ow in the channel at the fl ume entrance is 2.10 m? 
Assume an overall coeffi cient of discharge of 1.620 for the fl ume.

7.21  A rectangular throated fl ume is to be used to measure the discharge in a 9.0 m wide chan-
nel. It is known that the submergence limit for the fl ume is 0.80 and the overall discharge 
coeffi cient is 1.535. A throat width of 5.0 m is preferred. What should be the height of the 
hump if the fl ume is to be capable of measuring a discharge of 20.0 m3/s as a free fl ow 
with the tailwater depth at 2.30 m?

7.22  Obtain the end-depth ratio η =
y

y
e

c

 for a triangular channel having (a) subcritical fl ow 

and (b) supercritical fl ow with a Froude number of 2.5.
7.23  Show that for a channel whose area A = k y2.5 the end-depth ratio η for subcritical fl ow 

mode is 0.783. Also, determine the variation of η with Froude number F
0
 for supercritical 

fl ow in the channel.
7.24  A parabolic channel with a profi le x2 = 4ay, where y axis is in the vertical direction, termi-

nates in a free fall. Show that the end-depth ratio η = y
e  
/ y

c
 for supercritical fl ow is given by

2 η 4 – 4η3 + 1 = 0
Determine the relevant root of this equation and compare it with the experimentally 
obtained value of η.

7.25  Find the end depth at a free overfall in a rectangular channel when the upstream fl ow is 
at a Froude number of 3.0 with a normal depth of 0.70 m.

7.26  Estimate the discharges corresponding to the following end-depth values in various 
channels. The channels are horizontal and the fl ow is subcritical in all cases.
  (i) Rectangular channel, B = 2.0 m, y

c 
= 0.6 m

 (ii) Triangular channels, m = 1.0, y
c 
= 0.5 m

(iii) Circular channel, D = 0.90 m, y
c 
= 0.3 m

[Hint: Use the value of y
e
/y

c
 given in Table 7.3.]
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7.27  Write a general mometum equation to the fl ow at the end-depth region in an exponential 
channel (A = kya). Assuming the channel to be horizontal without any friction and the 
pressure force at the brink to be P y A Ke e e= γ 1, show that

K
a

ar
a

r
a

r
a1 1 2

1 1 1

1
= −

+⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

−
++ε
ε

ε
( )

where  ε
r
 = y

e 
 / y

c
.

7.28  A 2.0-m wide rectangular channel has its depth backed-up to a height of 1.2 m by a 
sharp-edged sluice gate. If the gate opening is 0.30 m and the downstream fl ow is free, 
estimate the discharge through the gate and the force on the gate.

7.29  A 2.0-m wide rectangular channel has to pass a fl ow of 2.4 m3/s through a sluice gate 
opening of 0.4 m. If the water depth upstream of the gate is 2.0 m, fi nd the depth of water 
immediately below the gate.

7.30  Apply the momentum equation to the submerged sluice gate fl ow (Fig. 7.28) by making 
suitable assumptions and estimate the depth H

2
 immediately below the sluice gate in 

terms of y
t
, a, C

c 
and H

1

7.31  Obtain an expression for the force on the sluice gate in submerged fl ow for the situation 
in Fig. 7.28.

7.32  Show that the modular limit of the free fl ow in a sluice gate (Fig. 7.28) is given by

y

a

C
Ft c

c= − + +
2

1 1 8 1
1[ ]  where F

C

C

H

a
Cc

d

c

c1
2

2

2
1=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟  and y

t
 = tailwater depth.

 OBJECTIVE QUESTIONS

7.1  The head over a 3.0-cm sharp-crested sill is 96 cm. The discharge coeffi cient C
d
 for use in 

the weir formula is
(a) 0.738   (b) 0.848   (c) 0.611   (d) 1.11

7.2  A suppressed sharp-crested weir is 0.50 m high and carries a fl ow with a head of 2.0 m 
over the weir crest. The discharge coeffi cient C

d 
for the weir is

(a) 1.06   (b) 0.931   (c) 0.738   (d) 0.611
7.3  The discharge Q in a triangular weir varies as

(a) H 0.5   (b) H 1.5   (c) H 2.0   (d) H 2.5

7.4  In a triangular notch there is a +2% error in the observation of the head. The error in the 
computed discharge is
(a) +2%   (b) +5%   (c) – 5%   (d) +2.5%

7.5  A nominal 90° triangular notch was found to have 2% error in the vertex angle. While dis-
charging under a constant head, the error in the estimated discharge is
(a) π %    (b) π / %4    (c) π / %2    (d) 2%

7.6  In submerged fl ow over sharp-crested rectangular weirs the Villemonte equation relates 
Q

s
 / Q

1
 as equal to

(a) 1 2

1

0 385

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

H

H

.

      (b) 1 2

1

0 385 1 5

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

H

H

. .

(c) 1 2

1

1 5 0 385

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

H

H

. .

      (d) 1 2

1

0 385 1 5

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

H

H

. .
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 7.7  In a triangular notch the tailwater head is 50% of the upstream head, both measured 
above the vertex of the notch. If the free fl ow discharge under the same upstream head is 
0.5 m3/s, the submerged fl ow, in m3/s, is
(a) 0.464   (b) 0.411   (c) 0.500   (d) 0.532

 7.8  A parabolic sharp-crested weir has a profi le given by x2 = k y. The discharge in the weir 
is given by Q = K H n where n is
(a) 0.5   (b) 1.5   (c) 2.0   (d) 2.5

 7.9  A separate arrangement for aeration of the nappe is necessary in a
(a) contracted rectangular weir
(b) suppressed rectangular weir
(c) submerged contracted rectangular weir
(d) triangular weir

7.10  In a linear proportional weir with a rectangular base of height a, the discharges are lin-
early proportional to the head h

d
 measured above a datum. The minimum head at which 

the linear head-discharge relation is observed is h
d
 =

(a) a   (b) a/2   (c) a/3   (d) 2a/3
7.11  In a quadratic weir the measured head above the datum was found to have an error of 2%. 

This would mean that the discharges estimated from the weir discharge formula will 
have an error of
(a) 0.5%   (b) 1%   (c) 2%   (d) 4%

7.12  Designing of the spillway profi le to conform to the shape of the nappe of a sharp crested 
weir makes
(a) the pressures on the spillway crest always positive
(b) the pressures to be positive for H

0 
 ≥ H

d

(c) the pressures on the spillway always zero
(d) the pressure on the crest zero for H

0
 = H

d
 only

7.13  If the head H
0
 over an overfl ow spillway is less than the design head H

d’
(a) the pressure on the spillway crest will be negative
(b) the cavitation phenomenon can occur
(c) the separation of the streamlines from the surface can occur
(d) the coeffi cient of discharge C

0
 will be less than the design coeffi cient of discharge C

d 0

7.14  The coeffi cient of discharge C
0
 at any head H

0
 of a spillway is a function of

(a)  
H

P
0

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟only (b)  

H

Hd

0
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

only

(c)  
H

P

H

Hd

0 0,
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟only (d) 

P

Hd

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

only

7.15  A vertical face ogee spillway will have a crest profi le downstream of the apex given by 
(y / H

d
) = 

(a) 0.5 (x / H
d
)1.50 (b) 0.5 (x / H

d
)1.85

(c) 1.85 (x / H
d
)0.517 (d) 2.0 (x / H

d
)2.0

7.16  A broad-crested weir with H
1
/B

w
 = 0.5 and H

1
/P = 1.0 and a sharp-crested weir with 

H
1
/P = 1.0, both span the full width of a canal. If the coeffi cient of discharge C

d
 of the 

weir (= C
dw 

) and C
d
 of the broad-crested weir (= C

db 
) are compared, it will be found that

(a) C
dw

 > C
db

 (b) C
db

 > C
dw

(c) C
dw

 = C
db

 (d) C
dw 

= C
db

 for small H
1
 only.

7.17  A fi nite crest width weir with H
1
/B

w
 = 0.20  is classifi ed as a

(a) long-crested weir (b) broad crested weir
(c) narrow-crested weir (d) sharp-crested weir
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7.18  The modular limit of a sharp-crested weir (M
s 
) broad-crested weir (M

b 
) and standing 

wave fl ume (M
f
) are compared under equivalent conditions. It will be found that

(a) M
S
 > M

b
 > M

f
 (b) M

s
 < M

b
 < M

f

(c) M
s
 > M

b
 < M

f
 (d) M

s
 < M

b
 > M

f

7.19  The overall coeffi cient of discharge of a standing wave fl ume C
f
 = Q / (B

t 
H

1
3/2) is of the order of

(a) 0.61   (b) 0.95   (c) 3.30   (d) 1.62
7.20  The discharge equation of a Parshall fl ume is expressed as Q =

(a) K Ha    (b) K H
a
   (c) K H

a
   (d) K (H

1
3/2 – H 

a 
3/2)

7.21  The end depth ratio y
e 
/ y

c
 in a channel carrying subcritical fl ow is a function of 

(a) shape of the channel only (b) Shape and Manning’s coeffi cient
(c) Normal depth only  (d) Shape and Froude number

7.22  A 2-m wide horizontal rectangular channel carries a discharge 3.0 m3/s. The fl ow is sub-
critical. At a free overfall in this channel the end depth in metres is
(a) 0.438   (b) 0.612   (c) 0.715   (d) 1.488

7.23  A 2.5-m wide rectangular channel is known to be having subcritical fl ow. If the depth at 
a free overfall is 0.5 m, the discharge in this channel in, m3/s, is
(a) 2.56   (b) 4.40   (c) 1.83   (d) 3.50

7.24  Two horizontal channels A and B of identical widths and depths have roughness such that 
(K

s
)

A
 = 2(K

s
)

B
. If the discharges observed by the end-depth method in these two channels 

are denoted as Q
A
 and Q

B
 respectively, then it would be found that

(a) Q
A
 > Q

B
   (b) Q QA B=

1

2
   (c) Q

A 
= Q

B
   (d) Q

A 
 < Q

B

7.25  The effective piezometric head h
ep

 at the brink of a free overfall could be represented as
(a) h

ep
 < y

e
   (b) h

ep
 > y

e
   (c) h

ep
 = y

e
   (d) h

ep
 = y

e

7.26  If a rectangular channel carrying a discharge of 1.85 m3/s/m width shows a brink depth 
of 0.35 m at a free overal, then
(a) the discharge measured is wrong
(b) the end depth is wrongly measured
(c) the fl ow is subcritical regime
(d) the fl ow is in the supercritical regime

7.27  In submerged fl ow through a sluice gate the coeffi cient of discharge C
ds

 =

(a) f
a

H

y

a
t

1

,
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

   (b) C
SH

   (c) C
df
   (d) C

d

7.28  The coeffi cient of discharge C
d
 in free sluice gate is related to C

C
 as

(a) C
C

C a H
c

c

c

=
+1 1

2( / )
 (b) C

C a

H C a H
d

c

c

=
−1 1

21 ( / )

(c) C
C

C a H
d

c

c

=
−1 1

2( / )
 (d) C

C

a

H
C

d
c

c

=

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1
1

7.29  The discharge coeffi cient C
SH

 in submerged sluicegate fl ow is
(a) f (a/H

1
)   (b) f ( y

1  
/ a)   (c) f (a/H

1
, y

1
/a)   (d) = C

d
 

7.30  Sluice gates used in fi eld applications have
(a) a bevel on the upstream face
(b) a bevel on the downstream face
(c) bevels on both upstream and downstream faces
(d) no bevel.
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8.1 INTRODUCTION

A steady spatially varied fl ow represents a gradually-varied fl ow with non-uni-
form discharge. The discharge in the channel varies along the length of the chan-
nel due to lateral addition or withdrawal. Thus, spatially varied fl ow (SVF) can 
be classifi ed into two categories: (i) SVF with increasing discharge and (ii) SVF 
with decreasing discharge. Since there is considerable amount of difference in 
the fl ow and analysis of these two categories, they are dealt with separately in 
this chapter.

8.2 SVF  WITH INCREASING DISCHARGE

SVF with increasing discharge fi nds considerable practical applications. Flows in 
side-channel spillway, wash-water troughs in fi lter plants, roof gutters, highway gut-
ters are some of the typical instances. Figure 8.1 shows a typical side-channel spill-
way causing an SVF in the channel below it. The lateral fl ow enters the channel 
normal to the channel-fl ow direction causing considerable turbulence. It is diffi cult 
to assess the net energy imparted to the fl ow and as such the energy equation is not 
of much use in developing the equation of motion.

Spatially 

Varied Flow 8

Fig. 8.1 Lateral spillway channel fl ow

∇

Reservoir

Spillway

Lateral spillway
channel
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8.2.1 Diff erential Equation of SVF with Increasing Discharges

In applying the momentum equation, the following assumptions are made:

1.  The pressure distribution is assumed to be hydrostatic. This amounts to assum-
ing the water-surface curvatures to be moderate. The regions of high curvature, 
if any, must be delineated and excluded from the analysis. 

2.  The one-dimensional method of analysis is adopted. The momentum correc-
tion factor β is used to adequately represent the effect of non-uniformity of 
velocity distribution.

3.  The frictional losses in SVF are assumed to be adequately represented by a 
uniform fl ow resistance equation, such as Manning’s formula.

4.  The effect of air entrainment on forces involved in the momentum equation is 
neglected.

5.  It is assumed that the lateral fl ow does not contribute any momentum in the 
longitudinal direction.

6.  The fl ow is considered to be steady.
7.  The channel is prismatic and is of small slope.

Consider a control volume formed by two Sections 1 and 2, distance Δ x apart 
(Fig. 8.2). Applying the momentum equation in the longitudinal x direction.

    M
2
 − M

1
 = P

1
 − P

2
 + W sin θ − F

f 
(8.1)

or     ΔM = − ΔP + W sin θ − F
f
          (8.1a)

in which M = momentum fl ux = βρQ2/A

 P = pressure force = γ A y

Fig. 8.2 Defi nition sketch of SVF with lateral infl ow

CV
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(Small)
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FfΔx
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2
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W P2
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y
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q
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∇ ∂y

∂x
Δx

Area = A
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368 Flow in Open Channels

where y  = depth of the centre of gravity of the fl ow cross-section from the water 
surface, W sin θ = component of the weight of the control volume in the x direction 
and F

f
 = frictional force = γAS

f
 Δ x.

Dividing Eq. (8.1a) by Δ x and taking limits as Δ x → 0,

           
dM

dx

dP

dx
AS AS f= − + −γ γ0

             (8.2)

In this          (i) dM

dx

Q

A

dQ

dx

Q

A

dA

dx
= −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

ρβ
2 2

2

                  
= −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

ρβ
2 2

2

Q

A
q

Q T

A

dA

dx*

where q
dQ

dx*
= = discharge per unit length entering the channel.

            (ii)   
dP

dx
A

d y

dx
y

dA

dx
= +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟γ

By taking moments of the areas about the new water surface after a small change dy 
in depth, (Fig. 8.3),

A y dy dA
dy

A dA y d y+ + = + +( ) ( )( )
2

Ady
dAdy

ydA A d y dA d y+ = + +
2

By neglecting second-order small 
quantities,

A d y y dA Ady+ =

Thus       
dP

dx
A

dy

dx
= γ

Hence, Eq. (8.2) simplifi es to

2
2

2

3 0

β βQq

gA

Q T

gA

dy

dx

dy

dx
S S f

* − = − + −( )

or  dy

dx

S S Qq gA

Q T

gA

f
=

− −( )
−

0
2

2

3

2

1

β

β

*               (8.3)

Equation 8.3 is the basic differential equation governing the motion in the SVF with 
increasing discharge. In general, q

*
is a function of x. However, in a lateral spillway 

channel q
*
 is constant. In view of the high non-uniform velocity distribution in the 

channel cross-section, it is necessary to use proper values of the momentum cor-
rection factor β. In lateral spillway channels, values of β as high as 1.60 are not 

Fig. 8.3 Defi nition sketch

∇
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Chapter 8.indd   368Chapter 8.indd   368 2/24/2010   3:03:24 PM2/24/2010   3:03:24 PM



Spatially  Varied Flow 369 

uncommon. It may be noted that if β = 1.0 and q
*

,= 0 Eq. 8.3 will be the same as 
that of the differential equation of gradually varied fl ow (GVF) (Eq. 4.8)

Equation 8.3 is a non-linear equation and is more complex than the GVF equation. 
Closed-form solutions are not possible except in highly-simplifi ed cases. A numerical 
solution of the equation is feasible. Starting from a section where the fl ow properties 
are known (such as a control section), the water-surface profi le can be computed.

8.2.2 Control Point

If the fl ow is subcritical everywhere in the channel, the control of the profi le will be 
located at the downstream end of the channel. However, for all fl ow situations other than 
the above, the determination of the control point is a necessity to start the computations.

In an SVF with increasing discharges, the critical depth line is not a straight line 
parallel to the bed as in GVF but is a curved line. Depending upon the combination of 
the bottom slope, channel roughness and channel geometry, the critical depth of spa-
tially varied fl ow can occur at a location somewhere between the ends of the channel, 
giving rise to a profi le which may be subcritical during the fi rst part and supercritical 
in the subsequent part of the channel. A method of calculation of the critical depth and 
its location based on the concept of equivalent critical depth channel has been pro-
posed by Hinds1. An alternative method based on transitional profi les suggested by 
Smith2, which has advantages like simplicity and less tedious calculations compared 
to Hind’s method, is described below:

Consider Eq. 8.3 written as

 dy

dx
S

S

S

Qq

gA S

Q T

gA

f

=
− −

−
0

0
2

0
2

3

1
2

1

β

β

*

            (8.4)

Defi ning Q K S f= =  actual discharge

      Q K Sn = =0  normal discharge in the channel at a depth y

        Q
gA

Tc = =
3

β
  critical discharge modifi ed by β.

Equation 8.4 reduces to

       

dy

dx
S

K Q

K Q

Q

Q

K q

gA Q

Q Q

n n

c

=

− −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−( )
0

2 2

2 2

2

2

2

2

2

1
2

1

β
*

/

=

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

+
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−( )
S

Q

Q

K

gA

q

Q

Q Q

n

c

0

2 2

2

2

1 1
2

1

β
*

/
 (8.5)
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Redefi ning Q
n1

 = modifi ed normal discharge

=

+

Q

K

gA

q

Q

n

1
2 2

2

β
*

Equation 8.5 is simplifi ed as

dy

dx
S

Q

Q

Q Q

n

c

=

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−( )
0

1

2

2

1

1 /

Equation 8.5a is of the same form as Eq. 4.15, and the location of the transitional 
profi le at a given x would be determined by the condition Q

n1
 = Q

c
. The intersection of 

the transitional profi le with the critical-depth line will satisfy the condition Q = Q
n1

 = Q
c
 and 

hence would locate the control point; i.e. the section at which the actual fl ow would 
pass at critical depth.

At transitional depth, Q
n1

 = Q
c
.

i.e. 
Q

K q

gA Q

gA

T
n

1
2 2

2

3

+

=
β β

*

or                                                   
2

1
2

2

2

3

β βK q

gA Q

Q T

A g
n* = −  (8.6)

Substituting Qn  = K  S0  and simplifying

                    
q

Q

S T

A

gA

K
* = −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1

2
0

2

2β
            (8.7)

which is the equation of the transitional profi le for SVF with increasing discharge.
In a general SVF with increasing discharge,

Q Q q dxi

x
= + ∫ *0

where Q
i
 = channel discharge at x = 0. For the SVF in a lateral spillway channel 

Q
i
 = 0. and q

*
 = Constant, i.e. Q = q

*
 x which simplifi es Eq. 8.7 to

             
1 1

2
0

2

2x

S T

A

gA

Kt

= −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟β             (8.8)

the suffi x t denoting the transitional profi le. It is interesting to note that in an SVF due 
to a side-channel spillway, the transitional profi le is independent of the rate of lateral 
infl ow.

Chapter 8.indd   370Chapter 8.indd   370 2/24/2010   3:03:25 PM2/24/2010   3:03:25 PM



Spatially  Varied Flow 371 

To locate the control point, the critical depth line is fi rst calculated and plotted to 
scale (Fig. 8.4). Note that the critical depth line for SVF with increasing discharge is 

to be calculated by using the relationship Q
gA

Tc =
3

β
. The transitional profi le is 

then calculated by Eq. 8.7 and plotted on the same fi gure and the intersection of the 
critical-depth line with the transitional profi le gives the location of the control sec-
tion at which the actual fl ow passes as a critical depth (Fig. 8.4).

This method is of general use and can be easily incorporated into a numerical-
method algorithm to compute the SVF profi le using a digital computer.

Example 8.1  A horizontal, frictionless, rectangular lateral spillway channel of 
length L has a free overfall. Show that the equation of the fl ow profi le is

dx

dy

x

y

gB y

q

2 2 2 2

2
− = −

*

Show that the solution of the above equation for the condition of critical depth y
c
 

occurring at the outlet is   x

L

y

y

y

yc c

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 3
3

2

1

2

Solution  dy

dx

S S
Q q

gA

Q T gA

f

=
− −

−

0 2

2 3

2

1

*

( / )

S
0
 = 0,  S

f
 = 0,  A = By,  T = B,  q

*
 x = Q

Hence  
dy

dx

q x gB y

q x gB y
= −

−
2

1

2 2 2

2 2 2 3
*

*

/

( / )

Fig. 8.4 Determination of control section through transitional profi le
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1
22 2

2 3
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2 2
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q x
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Put t = x2, then dt = 2x dx. Further, put 
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2
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1 1
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( ) ( )
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2 2 2 2
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*

At the outlet, x = L and y = y
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y

y

y
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⎣
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⎢
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2

Example 8.2  A lateral spillway channel is trapezoidal in section with B = 5.0 m, 
m = 1 and n = 0.015. The bed slope is 0.10. Find the location of the control point and 
the critical depth for a lateral discharge rate of (a) q

*
 = 2.0 m3/s/m, (b) q

*
 = 3.0 m3/s/m. 

Assume β = 1.25.

Solution The computations necessary to plot the critical-depth line and the transi-
tional profi le are done in a tabular form as shown in Table 8.1. Various depth values 
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are assumed and x
t
 and x

c
, the longitudinal coordinates of the transtitional profi le and 

the critical-depth line respectively, are calculated. x
t
 is calculated by using Equation 

8.8 and x
Q

qc
c=
*

 where Q gA Tc = 3 / .β

The transitional profi le and the critical-depth line for a given q
*

are plotted and 
the control point is determined by the intersection of these two lines as:

q m s m y m x mc c*
. / / , . , .= = =3 0 4 0 56 03

  
q m s m y m x mc c*

. / / , . , .= = =2 0 2 65 40 03

Example 8.3  Obtain an expression to determine the critical depth and its loca-
tion for a lateral spillway channel of rectangular section. Use the Chezy formula 
with C = constant.

Solution In a rectangular section B = T. Using the Chezy formula.

K 2 = A 2C  2R

The transitional profi le for the rectangular channel is obtained by using Eq. 8.8. as

1 1

2
0

2x

S

y

g

C Rt

= −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟β

i.e.              x
C Ry

C RS g yt =
−

2 2

2
0

β
β( )

                (8.9)

The equation of the critical-depth line is given by

Q q x gB yc c c= =
*

( / )2 3 β

i.e.              x gB y qc c
2 2 3 2= /

*
β               (8.10)

At the critical-fl ow section, the critical-depth line and the transitional-depth line 
intersect. Hence x

t
 = x

c
, y = y

c
.

gB y

q

C y R

C R S g y
c c c

c c

2 3

2

2 4 2 2

2
0

2

4

β
β

β* ( )
=

−

Simplifying,

            y C S g
y

R

C q

gBc
c

c

β
β2

0

2 3 4 2

2

4
−

⎛

⎝
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⎞

⎠
⎟⎟⎟⎟

= *           (8.11)
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with suffi x c denoting the critical-depth section. Equation 8.11 is the desired expres-
sion for the determination of critical depth. This equation will have to be solved by 
trial and error to get the critical depth. Substitution of this y

c
 in Eq. 8.10, gives the 

location of the critical-fl ow section.

8.2.3 Classifi cation and Solutions

Unlike GVF, SVF with lateral infl ow has not received extensive attention and as such 
the detailed classifi cation and analysis of a general-fl ow situation are not available in 
literature. By assuming zero friction and β = 1.0, Li3 has made a detailed study and 
has classifi ed the fl ow into the following categories:

Type A The fl ow is subcritical throughout the channel and the Froude number 
increases continuously in the downstream direction.

Type B The fl ow is subcritical throughout but the Froude number will fi rst increase, 
reach a maximum value less than unity and then decrease.

Type C The fl ow is subcritical initially, passes through a critical section to become 
supercritical in the downstream portions of the channel and then terminates in a jump 
due to downstream control such as a submerged outlet.

Type D The same as Type C, but the jump is not formed in the channel. The outlet 
is free.

These four types of fl ow can be determined by a study of the transitional profi le 
and the critical-depth line along with the downstream end conditions. In general, 
Type C and D situations can occur in side spillway channel design and Type A and 
B can occur in washwater-trough and gutter-design problems. Li3 has classifi ed the 
above four types of fl ow in frictionless rectangular channels on the basis of param-

eters F
e
 and G = 

S L

ye

0  where F
e
 and y

e
 are Froude number and depth of fl ow at the 

end of the channel respectively. Solutions to subcritical and supercritical SVFs with 

increasing discharge in frictionless rectangular channels are also presented by Li3 as 
dimensionless graphs.

Gill4 has given approximate algebraic solutions to SVF with increasing discharges in 
frictionless rectangular channels based on the method of perturbation. His predictions 
cover a range of subcritical fl ow Froude numbers, the supercritical fl ow, the Type D fl ow 
and compare well with Li’s work. Gill has extended his analytical method to cover the 
case of SVF in a wide rectangular channel with the friction effect duly accounted.

In view of the various assumptions with regard to friction, the channel geometry 
and value of β involved in these studies, one should be cautious in using these results 
in practical situations.
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8.2.4 Profi le Computation

As already indicated, the basic differential equation of SVF with lateral infl ow 
(Eq. 8.3) is non-linear and no closed-form solutions are available to a general prob-
lem. A host of numerical techniques are however, available for its solution. The 
computations proceed from a control point where the fl ow properties are known. 
Regarding the friction formula, in the absence of any other resistance formula exclu-
sively for SVF, a convenient uniform fl ow formula, such as Manning’s formula, is 
used. There is some evidence that the value of the roughness coeffi cient is likely 
to be higher in SVF than in uniform fl ow. Till conclusive results are available, it 
is prudent to use uniform fl ow values. Experimental studies5.6 have shown that the 
assumption of β = 1.0 is unrealistic and a proper selection of β will greatly enhance 
the accuracy of prediction of the SVF profi le.

Numerical Methods The advanced numerical methods (Section 5.8) discussed in 
connection with GVF computations are all eminently suitable for SVF computations 
also.

However, dy

dx
 in Eq. (8.3) is a function of x and y, and can be written as

       
dy

dx

S S Qq gA

Q T

gA

F x y
f

=
− −( )

−
= ( )0

2

2

3

2

1

β

β

*
/

,               (8.3a)

The SRK and KM methods (Section 5.8) will take the following forms to suit 
Eq. 8.3a

(i) Standard Fourth-Order Runge–Kutta Method (SRK) for SVF

            y y K K K Ki i+ = + + + +( )1 1 2 3 4

1

6
2 2       (8.12)

in which            K x F x yi i1 = Δ ⋅ ( ),

 
K x F x x y Ki i2

1

2

1

2
= Δ ⋅ + Δ +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟, 1

   
K x F x x y Ki i3

1

2

1

2
= Δ ⋅ + Δ +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟, 2

    K x F x x y Ki4 1 3= Δ ⋅ +Δ +( ),
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(ii) Kutta–Merson Method (KM) for SVF

         y y K K Ki i+ = + + +( )1 1 4 5

1

2
4                (8.13)

in which      K x F x yi i1

1

3
= Δ ⋅ ( )'

K x F x x y K
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i i

i i
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1
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1
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1
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⎜⎜⎜

⎞
⎠
⎟⎟⎟

= Δ ⋅ + Δ + +

,

,
22

1

3

1

2

3

8

9

8

1

3

2

4 3

5

K

K x F x x y K K

K

i i

⎛
⎝
⎜⎜⎜
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⎠
⎟⎟⎟
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⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟x F x x y K K Ki i,

3

2

9

2
61 3 4

1

1

1

(iii) Trapezoidal Method (TRAP) for SVF

         y y x F x y F x yi i i i  i+ += + Δ ( )+ ( )⎡
⎣⎢

⎤
⎦1 1

1

2
, ,i+1          (8.14)

The details of these methods, their relative accuracy and advantages are the same as 
discussed in Section 5.8 in connection with the GVF computations.

8.3 SVF  WITH DECREASING DISCHARGE

SVF with decreasing discharges occurs in a variety of fi eld situations, typical exam-
ples being side weirs, bottom racks and siphon tube irrigation systems. The abstrac-
tion of water from a canal by using the above means is normally achieved in such a 
manner as to cause minimum obstruction and with consequent little energy losses in 
the parent channel. It is usual to assume that energy loss due to diversion of water is 
zero and the energy equation is used to derive the basic equation of motion.

8.3.1 Diff erential Equation for SVF with Decreasing Discharge

The following assumptions are made:

1. The pressure distribution is hydrostatic
2.  The one-dimensional method of analysis is used (the energy-correction factor 

α is used to adequately represent the non-uniformity of velocity distribution).
3. The friction losses are adequately represented by Manning’s formula.
4.  Withdrawal of water does not a affect the energy content per unit mass of water 

in the channel
5. The fl ow is steady
6.  The channel is prismatic and is of small slope.
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Consider the total energy at a Section x,

               H = Z + y + α V

g

2

2
            (8.15)

Differentiating this with respect to x

           
dH

dx

dZ

dx

dy

dx

d

dx

V

g
= + +

⎛

⎝
⎜⎜⎜⎜
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⎟⎟⎟⎟
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2

2
                 (8.16)

But            
dH

dx
S f= −  and 

dZ

dx
S= − 0
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⎜⎜⎜⎜
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⎜⎜⎜⎜
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⎟⎟⎟⎟
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dA
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⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

            
dA

dy
T=  and 

dQ

dx
q=

*

Equation 8.16 simplifi es to

    
dy

dx

S S
Qq

gA

Q T

gA

f

=
− −

−

0 2

2

3
1

α

α

*

             (8.17)

Equation 8.17 is the basic differential equation governing the motion of SVF with 
decreasing discharges. Note the difference between Eq. 8.17 and Eq. 8.3. When q

*
 = 0, 

Eq. 8.17 will be the same as the differential equation of GVF, Eq. 4.8. Unlike the 
SVF with increasing discharges, in this case q

*
 is not externally controlled but will 

be implicitly governed by the fl ow conditions.

8.3.2 Computations

The determination of the critical-fl ow control point in the SVF with decreasing dis-
charges is diffi cult as q

*
 is not explicitly known. Normally, SVF with lateral out-

fl ow occurs in a relatively small portion of length of canals and the upstream or 
downstream depth, depending upon the fl ow, is known through the characteristics of 
the outfl ow structure and main channel. This forms, the starting point for the SVF 
computations.

It is first necessary to establish a relationship for q
*
 as a function of the rele-

vant flow conditions. The SVF profile is then computed by using a numerical 
procedure, such as SRK, KM or TRAP method discussed in Section 8.2.4. The 
method of approach depends upon the understanding of the particular flow 
phenomenon.
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A few specifi c examples of fl ow situations where SVF with lateral outfl ow occurs, 
are described below.

8.4 SIDE  WEIR

A side weir, also known as a lateral weir, is a free-overfl ow weir set into the side of a 
channel which allows a part of the liquid to spill over the side when the surface of 
the fl ow in the channel rises above the weir crest. Side weirs are extensively used as 
a means of diverting excess storm waters from urban drainage systems and as water-
level control devices in fl ood-control works. In irrigation engineering, side weirs of 
broad crest are used as head regulators of distributaries and escapes.

Figure 8.5 is a defi nition sketch of the fl ow over a side weir. Side weirs are usually 
short structures with L/B ≤ 3.0. It is obvious from specifi c energy considerations 
(Section 2.2) that the longitudinal water surface should increase in the downstream 
direction when the main channel fl ow is subcritical throughout. Similarly, the water-
surface profi le would be a decreasing curve for supercritical fl ow in the channel. The 
possible fl ow profi les can be broadly classifi ed into the following three categories:

Type 1 The channel is on a mild slope and the weir heights s > y
c1

 where y
c1 

is the 
critical depth corresponding to the incoming discharge Q

1
 at Section 1, (Fig. 8.6a). At 

1 2

B

y
s

E 

x

L

Q1

V1

Q2

Qs

y0 y1
y2

yt

V2

Side weir

L - Section

Energy line

Plan

∇

Fig. 8.5 Defi nition sketch of side weir fl ow
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380 Flow in Open Channels

the downstream end the normal depth corresponding to discharge Q
2
 will prevail. Thus 

y
2 
= y

t 
, the tailwater depth. At Section 1, the depth y

1
 will be such that y

c1
 < y

1
 < y

0 
, 

where y
0
 = normal depth for Q

0
 = Q

1
. Along the weir the depth increases from 

y
1
 to y

2
. Upstream of Section 1 there will be an M

2
 curve from y

0
 to y

1
. The control for 

the SVF will be the downstream depth y
2
 = y

t
.

Type 2 The channel is on mild slope ( y
0
 > y

c1
) and with s < y

c1
 (Fig. 8.6b). If the 

weir is long, fl ows below critical depth are possible. At the upstream end of the

Fig. 8.6 Classifi cation of fl ow over side weirs
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weir, the depth y
1
 can be considered to be equal to y

c1
. At the downstream end the 

depth y
2
 will rise to the tailwater depth y

t
 through a jump. Depending upon the tail-

water depth, the jump can also advance into the weir portion. The control for this 
type 2 profi le is at Section 1.

Type 3 The channel is on a steep slope, ( y
0
 < y

c1
) and with s < y

c1
 (Fig. 8.6c). The 

upstream depth y
1
 = y

0
 decreasing depth water profi le will start from Section 1. At 

Section 2 the depth reaches a minimum value and in the downstream channel the 
water surface rises through an S

3
 profi le to meet the tailwater depth y

t
. The control 

for this profi le is y
1
 = y

0
 at Section 1.

8.4.1 De Marchi Equation for Side Weirs

Referring to the defi nition sketch (Fig. 8.5), to derive an equation to the sideweir 
fl ow, the following assumptions are made:

1.  The channel is rectangular and prismatic.
2.  The side weir is of short length and the specifi c energy is taken to be constant 

between Sections 1 and 2. This is equivalent to assuming (S
0
 − S

f 
) = 0 or (S

0
 = 0 

and S
f
 = 0). Experimental studies have shown that this is a reasonable 

assumption.
3.  The side weir is assumed to be sharp-edged weir with proper aeration of the 

nappe and to be discharging freely.
4.  Kinetic energy correction factor α is taken as unity.

The SVF differential equation (Eq. 8.17) with the above assumptions would 
become

dy

dx

Q
dQ

dx
gB y

Q

g y B

=
−

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

−

2 2

2

3 2
1

i.e.               
dy

dx

Qy
dQ

dx

gB y Q
=

−
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

−2 3 2               (8.18)

    The outfl ow rate = discharge over the side weir per unit length

                     = −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ = −

dQ

dx
C g y sM

2

3
2 3 2( ) /        (8.19)

in which C
M
 = a discharge coeffi cient known as the De Marchi coeffi cient. Also, 

since the specifi c energy E is assumed to be constant, the discharge in the channel at 
any cross-section is given by

               Q By g E y= −2 ( )              (8.20)
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From Eqs 8.18, 8.19 and 8.20

        dy

dx

C

B

E y y s

y E
M=

−( ) −( )
−

4

3 3 2

3

              (8.21)

Assuming that C
M
 is independent of x, on integration,

           x =
3

2

B

CM

M.φ ( y, E, s) + Const.             (8.22)

in which

     φM   ( y, E, s) = 
2 3E s

E s

E y

y s

−
−

−
−

− 3sin–1 E y

E s

−
−

Equation 8.22 is known as the De Marchi equation and the function φM ( y, E, s) is 
known as the De Marchi varied fl ow function. Applying Eq. 8.22 to Sections 2 and 1,

         x x L
B

CM

2 1

3

2
− = = φ φM M2 1−( )              (8.23)

knowing L, s, and (Q and y) at either 2 or 1, the discharge over the side weir Q
s
 can 

be computed by Eq. 8.23 and by the continuity equation

            Q
s
 = Q

1
 – Q

2
                        (8.24)

De Marchi Coeffi  cient C
M

 Experimental and theoretical studies by Subramanya 
and Awasthy7 have shown that in subcritical approaching fl ow the major fl ow parameter 
affecting the De Marchi coeffi cient is the Froude number of the approaching fl ow. 
The functional relationship of C

M
 and initial Froude number is shown to be 

        C
F

F
M = −

+( )
0 611 1

3

2
1
2

1
2

.                   (8.25)

        where F
V

g y
1

1

1

=

Equation 8.25 can be simplifi ed as 

       C
F

FM =
−
+

0 864
1

2
1
2

1
2

.                  (8.26)

However, for supercritical approach fl ow the effect of the approach Froude 
number is insignifi cant and the variation of C

M
 for F

1
 > 2.0 is obtained as

          C
M 

= 0.36 − 0.008F
1
                    (8.27)
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There have been numerous studies on the side weirs in rectangular channels since 
last three decades. A majority of these studies are on subcritical approach fl ow condi-
tion as this is the most common situation in practice. Borghi et al 8 have studied the 
effect of parameters, s/y

1
 and L/B, and propose the following experimentally derived 

equation for estimation of the De Marchi coeffi cient C
M
 for subcritical approach 

fl ow:

         C F
s

y

L

BM = − − +0 7 0 48 0 3 0 061
1

. . . .               (8.28)

Olivetto et al 9 have studied the side weir fl ow in rectangular and circular channels 
both through theoretical and experimental means. The studies relate to the case 
of subcritical fl ow in the approach channel with supercritical fl ow along the side 
weirs. Ghodsian 10 has experimentally studied the hydraulic characteristics of sharp 
crested triangular side weirs. For this fl ow situation the De Marchi equation has been 
expressed as 

         C A BF C
s

yM = − −1
1

                  (8.29)

where s = height of the vertex of the triangular weir above the bed of the channel.
The coeffi cients A, B and C are found to be functions of the weir angle θ.

Uyumaz11 has studied the behavior of a rectangular side weir in a triangular chan-
nel and has derived the relevant discharge equation. The channel studied had one side 
vertical and the side weir was located in the vertical side. The coeffi cient of discharge 
C

M 
, given by Eq. 8.25 and 8.27 was found to be adequate for this case also. However, 

if the weir is set in the inclined side of the channel, the coeffi cient C
M
 can be expected 

to be a function of the inclination of the side also.

8.4.2 Computations

The design of a side weir or the calculation of the side-weir discharge can be accom-
plished by use of appropriate Eqs 8.23 through 8.27 along with the selection of the 
proper control depth. In using the De Marchi equation since it is assumed that S

f
 = 

S
0
 = 0, the controls would be y

1
 = y

0
 for fl ows of Type 1 and Type 3. However, for 

Type 2 fl ows the coeffi cient C
M
 is calculated by taking F

1
 = F

0
 and for calculations 

of discharge and depth profi le the depth at Section 1 is assumed as y
1
 = y

c1
. The 

downstream depth y
2
 would, in all types of fl ows, be determined by the condition of 

constancy of specifi c energy, (E = constant).
It is apparent that iterative procedures have to be adopted in the calculation of Q

s
 or L.

Example 8.4  A rectangular channel, B = 2.0 m, n = 0.014, is laid on a slope 
S

0
 = 0.001. A side weir is required at a section such that it comes into operation when 
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384 Flow in Open Channels

the discharge is 0.6 m3/s and diverts 0.15 m3/s when the canal discharge is 0.9 m3/s. 
Design the elements of the side weir.

Solution The normal depths at the two discharges are found by referring to Table 
3A.1 as:

Q
0 φ = nQ S B/ /

0
8 3 y

0
 / B y

0

0.6 0.0418 0.165 0.33 m

0.9 0.0628 0.220 0.44 m

The height of the weir crest     s = 0.33 m.

For a discharge of 0.9 m3/s:

Critical depth yc1

2 1 3

0 9

2 0
9 81=

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
=

.

.
.

/

0.274 m

Since s > y
c1

, and y
0 
> y

c1
, the fl ow is of Type 1.

In the use of the De Marchi equation y
1
 = y

0
 = 0.44 m.

V1

0 9

1 0 44
1 023=

×
=

.

.
. m/s, F1

1 023

9 81 0 44
0 4924=

×
=

.

. .
.

Specifi c energy E E1 20 44
1 023 2

2 9 81
0 4933= +

( )
×

= =.
.

.
. m

Discharge over the side weir Q
S
 = 0.15 m3/s

Discharge at the end of the weir Q
2
 = 0.90 − 0.15 = 0.75 m3/s

At Section 2, E
2
 = 0.4933 = E

1

y
Q

B y g
y

y2
2
2

2 2

2 2

2

2
2

2

0 75

4 2 9 81
+

( )
= +

( )
× × ×

.

.
 = 0.4933

By trial-and-error, y
2
 = 0.46 m

             
F

E

y2
2

2 1 0 38= −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= .

De Marchi varied fl ow function
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φM

E s

E s

E y

y s

E y

E s

E s

E s

=
−
−

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

−
−

−
−
−

−
−

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟

−2 3
3

2 3

1sin

⎟⎟⎟ =
×( )− ×( )

−
= −

= −( )

2 0 4933 3 0 33

0 4933 0 33
0 02082

0 02082
0

1

. .

. .
.

.φM

.. .

. .
sin

. .

. .
.

4933 0 44

0 44 0 33
3

0 4933 0 44

0 3493 0 33
1 8401−

−
−

−
−

= −−

φM 22
10 02082

0 0333

0 13
3

0 0333

0 1633
1 416= −( ) − = −−.

.

.
sin

.

.
.

From Eq. 8.25,

    

CM = −
×( )
+( )

=0 611 1
3 0 4924

2 0 4924
0 502

2

2
.

.

.
.

From Eq. 8.23,

       

L
B

CM

M M= −( )

= × − +( )

=

3

2

3

2

2 0

0 502
1 416 1 840

2 534

2 1φ φ

.

.
. .

. m

Example 8.5  In Example 8.3, if the length of the side weir provided is 4.20 m 
with s = 0.33 m, fi nd the discharge over the side weir and the depth y

2
.

Solution C
M
 = 0.502, E

1
 = E

2
 = 0.4933

       y
1
 = 0.44 m and φM1 1 840= − .

In Eq. 8.23

    

4 20
3

2

2

0 502
1 840

1 1372

2

2

.
.

.

. .

= × +( )

= −

φ

φ

M

M

The value of y
2
 to satisfy φ

M 2
 = − 1.1372 is found by trial-and-error as y

2
 = 0.471 m.

     

Q By g E y2 2 2 2

3

2

2 0 471 2 9 81 0 4933 0 471

0 623

= −( )

= × × × −( )
=

. . . .

. m /s
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386 Flow in Open Channels

      Q
s
 = discharge over the side weir = Q

1
 − Q

2

       = 0.900 − 0.623 = 0.277 m3/s.

8.4.3 Uniformly Discharging Side Weirs

In many applications of side weirs, such as in irrigation systems and in the disposal 
of effl uents, it is sometimes necessary to have side weirs in which the discharge rate 

−
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

dQ

dx
 is constant along its length. From Eq. 8.19 it follows that if 

dQ

dx
q= =

*
 constant, 

(y − s) is constant along the weir. If s is kept constant, the water surface elevation 
will be constant for such weirs. Further, if specifi c energy is assumed to be constant, 
the water surface will be parallel to the energy line; i.e. the velocity of fl ow will be 
constant for a uniformly discharging weir. Hence,

V
1
 = V = V

2

By continuity equation, Q
1
 − q

*
 x = Q

i.e       A
q x

V
A1

1

− =*  and 
q

V

A A

L
*

1

1 2=
−⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

        A
A A

L
x A1

1 2−
−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=                   (8.30)

Thus, the uniformly discharging side weir can be achieved by linear reduction of 
area of fl ow. This can be achieved in two ways: (i) by contouring the channel side 
(Fig. 8.7(a)), and (ii) by contouring the channel bed (Fig. 8.7(b)). Further details on 
uniformly discharging side weirs are available in literature12.

For a uniformly discharging side weir, the lateral outfl ow Q
s
 is therefore,

           Q C gL y ss M= −( )2

3
2

3 2/
               (8.31)

where C
M
 = De Marchi coeffi cient given by Eq. 8.25 or Eq. 8.27 depending on the 

nature of the approaching fl ow. Further, by continuity,

Q
1
− Q

2
 = Q

s

The computations for Type 1, 2 and 3 fl ows follow the same assumptions as indicated 
in the previous section.

Example 8.6  A 1.5-m wide rectangular channel conveys a discharge of 1.7 m3/s 
at a depth of 0.6 m. A uniformly discharging side weir with crest at 0.42 m above the bed 
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at the commencement of the side weir is proposed to divert a fl ow of 0.30 m3/s laterally. 
Design the length of the side weir and other geometry of the channel at the weir.

Solution V
1
 = Q

1 
/ A

1
 = (1.17) / (1.5 × 0.6) = 1.3 m/s

Froude number F
1
= V

1
 / (gy

1
)1/2 = 1.3/(9.81 × 0.6)1/2 = 0.536

The approach fl ow is subcritical.

By Eq. 8.25 C
F

FM =
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0 611 1

3

2
1
2

1
2

. -
( )

Fig. 8.7 Uniformly discharging side weirs
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= −
×

+{ }
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 611 1
3 0 536

0 536 2

2

2
.

( . )

( . )

             = 0.482

Critical depth at Section 1 = = =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥y q gc1

2 1 3
2 1 3

1 17 1 50

9 81
( / )

( . / . )

.
/

/

             = 0.396 m

Height of the weir crest      = s = 0.42 m

Since y
c1

 < s, Type 1 fl ow will prevail and y
1
 = y

0
 = 0.60 m.

Depth of water over the weir = (  y − s) = (0.60 − 0.42) = 0.18 m.

Diverted discharge Q C g L y ss M= −
2

3
2 3 2( ) /

        
0 30

2

3
0 482 19 62 0 18 3 2. . . ( . ) /= × × × ×L

                 = 0.1087 L

Length of the side weir L = 0.30/0.1087 = 2.76 m 
Q

2
 = downstream discharge = 1.17 − 0.30 = 0.87 m3/s 

For a uniformly discharging side weir, V
1
 = V

2
 = V.

Hence V
2 
= 1.3 m/s and A

2
 = Q

2
/V

2
 = 0.87/1.3 = 0.6692 m2.

 (i) If side contouring is adopted, y
1 
= y

2
= y

    Bed width at Section 2 = B
2
 = A

2
/y

2
 = 0.6692 /0.60 = 1.115 m

The bed width varies from 1.50 m at Section 1 to 1.115 m at Section 2, distance 2.76 m 
downstream of Section 1, linearly.
(ii) If bed contouring is adopted, B

1
 = B

2
 = B

   Depth of fl ow at Section 2 = y
2
 = A

2
/B

2
 = 0.6692/1.50

                     = 0.446 m
     Δ  z

2
 = change in the elevation of bed at Section 2

                       = 0.600 − 0.446 = 0.154 m.

The variation of Δ  z is linear with a value of zero at Section 1 and 0.154 m at Section 2.

8.5 BOTTOM RACKS

A bottom rack is a device provided at the bottom of a channel for purposes of divert-
ing a part of the fl ow. The device consists essentially of an opening in the channel 
bottom covered with a metal rack to prevent the transport of unwanted solid material 
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through the opening. Bottom racks fi nd considerable application in hydraulic engi-
neering as intake structure as for example in Trench weir and kerb outlets. Trench 
weirs are used as water intakes in mountain streams and bottom intakes are used in 
them to prevent gravel entry in to the water intake.

Bottom racks can broadly be classifi ed into four categories as:

1.  Longitudinal bar bottom racks, in which the bars are laid parallel to the fl ow 
direction. This is the most widely used type of rack arrangement.

2.  Transverse bar bottom racks, in which the bars are placed transverse to the 
direction of fl ow.

3.  Perforated bottom plates, in which a plate with a uniformly spaced openings 
form the rack.

4.  Bottom slots, the limiting case of transverse bar bottom rack without any 
rack.

Further, the above types can either be horizontal or inclined with reference 
to the approach bed of the canal. The trench weir, which fi nd considerable use as 
intake structure in mountainous streams, especially for mini and micro hydel projects, 

Fig. 8.8 Defi nition sketch of longitudinal bar bottom rack
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contains a sloping longitudinal bar bottom rack made up of round steel bars as its 
chief component. The inclination of the rack, which is of the order of 1 in 10, is 
provided to facilitate easy movement of the bed sediment load of the stream over 
the rack.

Figure 8.8 shows the defi nition sketch of a longitudinal bar bottom rack. The bars 
are usually of circular cross-section and are laid along the direction of fl ow. The fl ow 
over the bottom rack can attain a variety of water surface profi les depending upon the 
nature of the approach fl ow, state of fl ow over the rack and tailwater conditions. Sub-
ramanya and Shukla13 have proposed a classifi cation of the fl ow over bottom racks 
into fi ve types as below:

Table 8.2 Types of Flow Over Bottom Racks

Type Approach Flow Over the rack Downstream state

A1 Subcritical Supercritical May be a jump

A2 Subcritical Partially supercritical Subcritical

A3 Subcritical Subcritical Subcritical

Bl Supercritical Supercritical May be a jump

B2 Supercritical Partially supercritical Subcritical

Figure 8.9 shows the characteristic feature of these fi ve types of fl ow. Out of the 
above, Types Al, A3 and B1 are of common occurrence and also are of signifi cance 
from design considerations.

8.5.1 Mostkow Equations for Bottom Racks

Mostkow12 derived expressions for the water-surface profi le for spatially varied fl ow 
over bottom racks by making the following assumptions:

1. The channel is rectangular and prismatic.
2. Kinetic energy correction factor α = 1.0.
3.  The specifi c energy E is considered constant along the length of the bottom 

rack.
4.  The effective head over the racks causing fl ow depends upon the type of rack, 

such as (i) for racks made of parallel bars, the effective head is equal to the 
specifi c energy, and (ii) for racks made of circular perforations, the effective 
head is equal to the depth of fl ow.

The differential equation of SVF with lateral outfl ow Eq. 8.17 under the assump-
tions (1), (2), and (3) would become

              
dy

dx

Qy
dQ

dx

gB y Q
=

−
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

−2 3 2
            (8.32)
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(a) SVF with Bottom Racks Made of Parallel Bars

Under assumption (4) the outfl ow per unit length of rack, by considering it as an 
orifi ce, is

           −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ =

dQ

dx
C B gE1 2ε             (8.33)

Fig. 8.9 Classifi cation of diff erent types of fl ows over bottom racks
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392 Flow in Open Channels

in  which C
1
, = a defi ned coeffi cient of discharge and ε = void ratio = ratio of the 

opening area to the total rack area. Since the specifi c energy E = constant, the dis-
charge Q at any section is given by:

            Q By g E y= −2 ( )                  (8.34)

Substituting Eqs 8.33 and 8.34 in Eq. 8.32

             dy

dx

C E E y

y E
=

−
−

2

3 2
1ε ( )

                             (8.35)

On integration,

             x
E

C

y

E

y

E
= − − +

ε 1

1 Const.              (8.36)

Putting y/E = η  and using the boundary condition y = y
1
 and x = 0, gives

             x
E

C
= − − −

ε
η η η η

1
1 11 1( )          (8.37)

which is the equation of the SVF profi le. As in the case of the De Marchi equation 
(Section 8.3.3), the control depths for use in Eq. 8.37 which are compatible with the 
assumptions are:

 (i) y
1    

= y
0
 for A3 and B1 type fl ows and 

(ii) y
1
  = y

C1
 for A1 type fl ows.

Note that from Eq. 8.37, dQ

dx

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

 is constant along the rack. Hence the total discharge 

Q
s
 diverted out is,

                 Q C BL gEs = 1 2ε                 (8.38)

(b) SVF Equation for Bottom Racks Made of Perforated Plates

For perforated plate bottom racks the outfl ow discharge per unit length, under 
assumption (4), is

           −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ =

dQ

dx
C B g y2 2ε                             (8.39)

where C
2
 = discharge coeffi cient for perforated plate fl ow. Substituting Eqs 8.39 and 

8.34 in Eq. 8.32, and simplifying

                 
dy

dx

C y E y

y E
=

−
−

2

3 2
2ε ( )

                        (8.40)

Chapter 8.indd   392Chapter 8.indd   392 2/24/2010   3:03:32 PM2/24/2010   3:03:32 PM



Spatially  Varied Flow 393 

Integrating and using the boundary condition y = y
i
 at x = 0, yields the SVF profi le 

for perforated bottom plates as

  x
E

C
= −( )+ −( ) − −( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− −

ε
η η η η η η

2

1 1
1 1 1

1

2

3

2
1 1cos cos       (8.41)

in which η  = y E/  and suffi x 1 refers to Section 1.

8.5.2 Estimation of Discharge Through a Bottom Rack

Longitudinal Bar Bottom Rack For purposes of estimation; the diverted 
discharge Q

d
 is expressed in terms of the specifi c energy E

0
 at the reference approach 

section, in a manner similar to Eq. 8.38 as

             Q C B L gEd d= ε 2 0
               (8.42)

where C
d
 = coeffi cient of discharge of the longitudinal bar bottom rack. As a result 

of experimental studies, Subramanya15,16 has shown that,

         C fn D s Sd L E= [ / , ,η  and (type of fl ow)]         (8.43)

where D = diameter of the rack bar; s = clear spacing of the bars in the rack,

S
L
 = longitudinal slope of the rack and η

E
 = a fl ow parameter = 

V

gE

F

F
0
2

0

0
2

0
22 2

=
+

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ .

The functional relationship for the variation of C
d
 in various types of fl ows are as 

below:

(a) Inclined Racks

Al Type fl ow : C
d
 = 0.53 + 0.4 log (D/s) − 0.61 S

L
 (8.44)

Bl Type fl ow : C
d
 = 0.39 + 0.27 log (D/s) − 0.8 η

E
 − 0.5 log S

L
  (8.45)

(b) Horizontal Racks

Al Type fl ow : C
d
 = 0.601 + 0.2 log (D/s) − 0.247 ηE  (8.46)

A3 Type fl ow : C
d
 = 0.752 + 0.28 log (D/s) − 0.565 ηE  (8.47)

Bl Type fl ow : C
d
 = 1.115 + 0.36 log (D/s) − 1.084 ηE  (8.48)

It has been found15,16 that the energy loss over the rack is signifi cant in Type Al 
and Type Bl fl ows. However, the energy loss over the rack is not signifi cant in Type 
A3 fl ows. This implies that Mustkow’s water surface profi le equation (Eq. 8.41) 
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394 Flow in Open Channels

could be used only in A3 type fl ows. In all other cases, the water surface profi le 
is to be computed by using the basic differential equation of SVF (Eq. 8.22) with 
an estimated value of the energy slope S

e
. Approximate expressions for S

e
 in Type 

A1 and Type B1 fl ows over longitudinal bottom racks are available in Ref. (15) 
and (16).

Brunella et al17 have studied the performance of inclined bottom racks made of 
circular longitudinal bars. Flow features of the channel below the rack is also stud-
ied in detail. Further, this study contains a good review of past studies on bottom 
racks.

Transverse Bar Bottom Racks In these, the rack bars are made of circular 
bars or rectangular shaped fl ats and are kept transverse to the direction of fl ow. 
Field applications of such racks are rather limited. Detailed information on 
the variation of a defi ned coeffi cient of discharge in fl ows through and over a 
bottom rack made of fl ats of rectangular section are presented by Subramanya 
and Sengupta18.

Perforated Bottom Plates Perforated bottom plates fi nd use for diverting bottom 
layer of a fl ow in some industrial applications. Hydraulic characteristics of horizontal 
bottom plates have been studied by Subramanya and Zagade19. Figure 8.10 shows the 
geometry of perforations used in the study. The diverted fl ow discharge is defi ned in 
a manner similar to Mustkow’s Eq. 8.39 as

             Q C B L g yd dp= ε 2 0
                (8.49)

where C
dp

 = defi ned coeffi cient of discharge of perforated bottom

D D

B

s

s

D

L

Flow

Fig. 8.10 Perforated bottom plate–defi nition sketch
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plate, y
0
 = depth of fl ow at reference approach section. The variation of C

dp
 for vari-

ous types of fl ows are 19

(a) A1 Type fl ow:
 For B/L ≥  2.0,

         C
D

s

D

t

B

Ldp = − + +0 292 0 03 0 0083 0 058. . . .               (8.50)

 For B/L < 1.78, C
Dp

 is essentially independent of B/L and

          C D s D tdp = − +0 41 0 03 0 0083. . ( / ) . ( / )                (8.51)

where t = thickness of the plate, and D = diameter of the perforation.

(b) B1 Type fl ows:

                  
C

F
dp

E

0

0 26 0 28= −. . η   (8.52)

where η
E
 = a fl ow parameter = 

V

gE

F

F
0
2

0

0
2

0
22 2

=
+( )

As in longitudinal bar bottom racks, here also the energy loss has been found to 
be signifi cant in A1 and B1 Type fl ows and as such Mustkow’s water surface profi le 
equation (Eq. 8.41) is not valid for these types of fl ows. Approximate expressions for 
the estimation of the energy slope S

e
 in fl ows over perforated bottom plates, for use 

in the basic differential equation of SVF, are available in Ref. (19).

Bottom Slots Bottom slots are the limiting cases of transverse bar bottom racks 
and their practical applications are rather limited. The diverted discharge Q

d
 through 

a slot of length L and spanning the full width of the channel can be expressed as

             Q C BL gEd ds= ε 2 0
                 (8.53)

where E
0
 = specifi c energy of the approach fl ow, and C

ds
 = coeffi cient of discharge 

of the slot.
The variation of C

ds
 has been studied by Nasser et al20 and Ramamurthy et al21.
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 PROBLEMS

SI. No. Topic Problems

1 Lateral spillway channel 8.1 to 8.6

2 Side weir 8.7, 8.8

3 Uniformly discharging side weir 8.9, 8.10

4 Bottom racks 8.11 to 8.13

5 Radial fl ow 8.34

Problem Distribution
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8.1  Show that the following equation is applicable to a control section where critical depth 
occurs in a frictionless lateral spillway channel:

S gA T

q
c c0

2

24
1

β
*

=

8.2  A side channel spillway channel is 100 m long and is rectangular in cross-section with B = 
5.0 m, n = 0.020, β = 1.30 and S

0
 = 0.15. If the lateral infl ow rate is 1.75 m3/s/m, fi nd the 

critical depth and its location.
8.3  A lateral spillway channel is trapezoidal in cross-section with B = 10.0 m, side slope 

m = 0.5 and Manning’s roughness n = 0.018. The bed slope is 0.08. If the lateral infl ow 
rate is 2.5 m3/s/m length, fi nd the critical depth and its location. Assume β = 1.20.

8.4  Show that for a wide rectangular channel having SVF with a constant in fl ow rate of q
*
, 

the critical fl ow section is given by

x
q

g S g Cc =
−
8 2

0
2 3

*
( / )

  when β = 1.0 is assumed and Chezy formula with C = constant is used. What would be 
the corresponding value of y

c
?

8.5  A lateral spillway channel of length L is rectangular in cross-section. If at the channel exit, 
y

e
 = depth of fl ow and F

e
 = Froude number, show by neglecting friction and assuming β  = 

1.0, that the critical depth y
c
 is given by

y

y
F Gc

e

e= 4 2 2/  and is located at x
c
, given by

          
x

y

F

G S
c

e

e=
8 2

2
0

   where G
S L

ye

= 0

8.6  A wide rectangular channel of length L having a uniform lateral infl ow rate has a discharge 
of q

e
 per unit width at the channel exit. If the Darcy–Weisbach friction factor f is used for 

representing friction effects, show that

y
q

gL S f
c

e=
−( )

256

8

2

2
0

2

 and              x
q

gL S f
c

e=
−( )

4096

8

2

2
0

3

8.7  A 3.0-m wide rectangular channel can carry a discharge of 3.60 m3/s at a normal depth of 
1.2 m. Design a side weir so that it will pass all the fl ow in the canal when the discharge 
is 2.00 m3/s and will divert 0.6 m3/s when the canal discharge is 3.60 m3/s.
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398 Flow in Open Channels

 8.8  A rectangular canal of 2.0 m width carries a fl ow with a velocity of 8.75 m/s and depth 
of 1.25 m. A side weir of height 0.75 m and length 1.20 m is provided in one of its walls. 
Find the quantity of fl ow diverted by the side weir.

 8.9  A rectangular channel is 1.5 m wide and conveys a discharge of 2.0 m3/s at a Froude 
number of 0.3. A uniformly discharging side weir having contouring on the sides only is 
set at a height of 0.4 m above the bed with its crest horizontal. If the length of the side 
weir is 1.8 m, estimate the total fl ow diverted by the side weir.

8.10  A rectangular channel is 2.0 m wide and carries a fl ow of 3.00 m3/s at a depth of 0.9 m. 
At a certain location in this channel a uniformly discharging side weir is proposed to 
divert 0.30 m3/s of fl ow laterally. The weir crest is horizontal and is placed at a height of 
0.65 m above the bed at the commencement of the side weir. Calculate the length of the 
side weir and other dimensions of the channel geometry to achieve the objective.

8.11  Show that, by Mustkow’s method of analysis, the minimum length L
m
 of a parallel bar 

bottom rack required to completely divert the initial discharge Q
1
 in a channel is given by

L
Q

C B gE

E

C

y

E

y

Em = = −
⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

1

1 1

1 1

2
1

ε ε

8.12  A mountainous stream is of rectangular cross section and has a width of 10.0 m, depth of 
fl ow of 0.25 m and carries a discharge of 6.0 m3/s. A trench weir type intake made up of 
longitudinal parallel bar rack is proposed at a section to divert the fl ow. The proposed 
rack has a longitudinal slope of 0.01 and is made of circular bars with diameter to spac-
ing ratio of 1.0. Estimate the minimum length of the rack required to completely divert 
the fl ow. The blockage due to debris can be assumed as 50% of rack opening.

8.13  A 2.0-m wide rectangular channel carries a discharge of 3.5 m3/s at a Froude number 
of 0.30. A 2.0-m long parallel longitudinal bar bottom rack having a void ratio (ratio of 
opening to total rack area) of 0.2 is provided at a section. Supercritical fl ow is known to 
occur over the rack. Estimate the discharge diverted out.

8.14  An axisymmetric radial fl ow emanates from a source on to a horizontal plane. Show that 
the basic differential equation of SVF with decreasing discharges can be expressed in 
this case as

dy

dx

V

gr
S

V

g y

f

=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
−

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2

2

1

 OBJECTIVE QUESTIONS

8.1  The basic differential equation of SVF with increasing discharge is based on the
(a) continuity equation (c) energy equation
(b) momentum equation (d) Manning’s equation

8.2  The basic differential equation of SVF with decreasing discharge is based on the
(a) continuity equation (c) energy equation
(b) momentum equation (d) Manning’s equation
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 8.3  The differential equation of SVF with decreasing discharge has one extra term in the 
numerator on the right-hand side when compared to the corresponding GVF equation. 
This term is

(a) − ∗2
2

αQq

gA
  (b) + ∗2

2

αQq

gA

(c) − ∗2
2

β Qq

gA
  (d) − ∗αQq

gA2

 8.4  The transitional profi le in a lateral spillway channel is
(a) independent of the roughness of the channel
(b) independent of rate of lateral fl ow
(c) independent of channel geometry
(d) independent of the bottom slope of the channel

 8.5  The fl ow profi le in a side spillway channel can be determined by using
(a) Standard step method
(b) Standard Runge-Kutta method
(c) De Marchi equation
(d) Mustokow equation

 8.6  A lateral spillway channel is rectangular in cross-section with a bottom width of 4.0 m. 
At a certain fl ow the critical depth was found to be 0.5 m and occurred at a distance of 
5.53 m from the upstream end. The lateral infl ow rate in m3/s/m is 
(a) 0.20  (b) 0.40
(c) 0.80  (d) 1.10

 8.7  The De Marchi varied-fl ow function is
(a) used in SVF over bottom racks
(b) used in SVF in lateral spillway channels
(c) meant for side weirs in frictionless rectangular channels
(d) meant for subcritical fl ows only

 8.8  The De Marchi coeffi cient of discharge C
M
 for a side weir is

(a) independent of the Froude number
(b) same as that of a normal weir
(c) essentially a function of inlet Froude number, F

1

(d) approaches unity as F
l
 → 0

 8.9  A rectangular channel 2.5 m wide has a discharge of 2.0 m3/s at a depth of 0.8 m. The 
coeffi cient of discharge C

M
 of a side weir introduced in a side of this channel with a crest 

height of 0.2 m above the bed is
(a) 0.574  (b) 0.611
(c) 0.286  (d) 0.851

8.10  To achieve uniformly discharging side weirs the area of fl ow A at any section distance x 
from the upstream end of the weir is related as:

(a) A A Mx= −1
  (b) A A Mx= −2

(c) A Mx=    (d) A x= 3 2/

8.11  A side weir is provided in the side of channel. If E = specifi c energy is assumed constant, 
at any section within the length of the side weir, the discharge Q in the channel is given by

(a) Q = constant  (b) Q B E y g= −( )2

(c) Q
By

E y
=

−2
  (d) Q By g E y= −2 ( )
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8.12  In a uniformly discharging side weir provided in the side of a rectangular channel having 
subcritical fl ow, the longitudinal water surface along the weir
(a) increases in the downstream direction
(b) remains parallel to the crest
(c) decreases in the downstream direction
(d) increases linearly in the downstream direction

8.13  In a uniformly discharging side weir in a rectangular channel, if x is the longitudinal dis-
tance from the start of the weir
(a) the area of the fl ow cross-section in the canal decreases linearly with x
(b) the mean velocity of the fl ow varies linearly with x
(c) the depth of fl ow above the weir crest varies linearly with x
(d) the area of fl ow cross-section in the canal remains constant

8.14  A trench weir type intake has as its main component a
(a) side weir (c) transverse, parallel bar bottom rack
(b) longitudinal, parallel bar bottom rack (d) perforated bottom plate
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9.1 INTRODUCTION

The response of a free surface to a small disturbance is markedly different in sub-
critical and supercritical streams. In supercritical streams, even small boundary 
changes can cause disturbances which can be felt at considerable distances down-
stream. The changes in the boundaries required at a supercritical transition are not 
governed merely by simple energy considerations as in the case of subcritical fl ows, 
but the possibilities of surface disturbances make them highly sensitive fl ow situations 
requiring very careful attention to the design. This chapter deals with some important 
aspects of supercritical transitions related to surface disturbances. Much of the basic 
information relating to supercritical fl ows was presented at an ASCE symposium by 
Ippen1, Ippen and Dawson2, Rouse et. al.3 and Knapp4.

9.2 RESPONSE  TO A DISTURBANCE

Consider a stationary pool of water in which a disturbance, say a solid object, is 
moving with a velocity V. Let us assume that the motion of the solid body is trans-
mitted to the water in the form of fi nite impulses at regular intervals. Each impulse 
will cause a small wave on the water surface which will travel in all directions at 
the same relative velocity to the fl uid C from the instantaneous position of the body. 
It is known that for shallow waves (i.e., waves with large wave lengths compared 

with the depth) of very small amplitude, C = gy  and thus the ratio of velocity of 
movement to C represents the Froude number of the fl ow, F = V gy/ .

The pattern of disturbance when V → 0 for a practically stationary disturbance-
causing body is a set of concentric circles each moving with a velocity C [Fig. 9.1(a)]. 
The radii of the two successive circles differ by C Δ t, where Δ t is the interval 
between impulses. The disturbance pattern when 0 < V / C < 1.0 is indicated in Fig. 
9.1(b). This represents a simple disturbance in a subcritical fl ow. A

1
, A

2
, A

3
 and A

4
 

represent the various locations of the body with the circles 1, 2, 3 and 4 denoting var-
ious wave fronts, with reference to the present position of the body. Thus, if A

0
 is the 

present position and A
1
 the position of the body at time (1. Δ t) prior to the present 

position, then A
0   

A
1
 = V Δ t and radius of circle 1 = C Δ t. Similarly, A

0 
A

2
 = 2VΔ t, 

A
0 
A

3
 = 3VΔ t and A

0
 A

4
 = 4VΔ t. Also, the radii of circles 2, 3 and 4 are 2CΔ t, 3CΔ t 

and 4CΔ t respectively. It is easy to see that the wave fronts are always in front of the 

Supercritical-Flow 

Transitions 9
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body. The distribution of wave fronts is however not uniform, the waves being 
crowded in front of the body and sparsely distributed behind it. The crowding of 
the wave fronts in front of the body will depend on the magnitude of V/C. When 
V/C = 1.0, the waves will all have a common tangent at the nose of the body.

Fig. 9.1 Patterns of disturbance spread: (a) Still water ( b) Subcritical fl ow (c) Supercritical fl ow
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In supercritical fl ow, i.e., when V > C, the wave fronts lag behind the body 
[Fig. 9.1 (c)]. However, a pair of common tangents envelops the various waves and 
the half angle between these two common tangents is given by

sin β = = =
A P

A A

C t

V t

C

V
4

0 4

4

4

Δ
Δ

                     = =g y V
F

/
1

              (9.1)

So far, we have considered discrete impulses as the interaction between the solid 
body and the fl uid. On the other hand, if continuous interaction is considered, 
there will be an infi nite number of disturbance circles with the angle PA

0
P ′. The 

lines A
0
P and A

0 
P ′ represent a boundary between two regions, viz. the area within 

the angle PA
0
P ′ represent a boundary between two regions, viz. the area within the 

angle PA
0
P ′ which is affected by the motion of the solid body and the rest of the 

area outside the angle β in which the effect of body motion is not felt. The distur-
bances thus, propogate along the lines A

0
P and A

0
P ′ which are called shock fronts 

or shock waves.
The above situation fi nds an analogy in the compressible fl uid fl ow in gas dynam-

ics in which case C = velocity of propagation of sound and sin β = =
C

V M

1
 

where M = Mach number. The shock waves are also called Mach lines or Mach 

waves in compressible fl uid fl ow.
Summing up, it can be concluded that in subcritical velocities of the body

(0 < V < gy )  the disturbances of any magnitude would be transmitted upstream 
and downstream. In supercritical velocities (V > gy ) the disturbances are confi ned 
to an area in the downstream direction bounded by two shock fronts, each aligned at 
an angle β to the direction of motion.

Now let us consider a situation in which the boundary is stationary and the 
fluid is moving past it. For a small change in the alignment of the vertical 
wall of a channel (Fig. 9.2), the disturbance is the change in the momentum 

Fig. 9.2 Wave pattern at a change in alignment
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404 Flow in Open Channels

caused by the deflection on the boundary by Δ θ at A. In subcritical flow past 
the boundary, the change in momentum will be reflected by a permanent defor-
mation of the stream surface, upstream and downstream of the point A. In 
supercritical flow, however, the boundary change at A cannot affect the flow 
upstream and hence the effect of the disturbance will be confined to a region, 
downstream of A, bounded by the shock wave emanating from A and the boundary. 
The effect of the disturbance will be felt as a change of depth in this area. Since 
the flow is confined between two side boundaries, the shock wave undergoes 
multiple reflections at the boundaries resulting in a highly disturbed water sur-
face in the downstream.

9.3 GRADUAL CHANGE IN  THE BOUNDARY

Consider a supercritical fl ow in a horizontal frictionless rectangular channel (Fig. 9.3) 
with one of the walls defl ected through a small angle Δ θ. The change in the boundary 

Fig. 9.3 Supercritical fl ow past a small change in boundary alignment

y1

V1

V
2

y1, V1

y
2 , V

2

V1

y2Vn1

Vt1 Vt2
Vn1

Vn2

Vn2

(β1 − Δθ) (− Δ Vn)
Δθ

Δθ
β1

β1

A
B

D
C

M

M

S
hock w

ave

Section MM

∇

∇

Chapter 9.indd   404Chapter 9.indd   404 2/24/2010   3:06:05 PM2/24/2010   3:06:05 PM



Supercritical-Flow Transitions 405 

causes a shock wave at an angle β
1
, to the approaching fl ow. The fl ow upstream of 

the shock has a velocity of V
1
 and depth y

1
 and the fl ow after the shock has a velocity 

of V
2
 and depth y

2
. From the vector diagram of the velocities,

              V
n1

 = V
1
 sin β

1

              V
t1
 = V

1
 cos β

1

              V
n2  

= V
2
 sin (β

1
 − Δ θ)

 V
t2
 = V

2
 cos (β

1
 − Δ θ)

where the suffi xes n and t refer to the normal and tangential directions with respect 
to the shock front. Considering the unit width of the shock-wave front, the continuity 
equation can be written as

                     y V y Vn n1 1 2 2=                 (9.2)

In a direction normal to the shock wave, the momentum equation is written as

 
1

2

1

21
2

2
2

2 12

2

1

2γ γ ρ ρy y y V y V
n n

− = −  (9.3)

From Eqs 9.2 and 9.3

 V g y
y

y

y

yn1 1
2

1

2

1

1

2
1= +

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟  (9.4)

For very small disturbances, y
2
 → y

1
 and hence,

V V g yn1 1 1= →sin ,β  and dropping suffi xes

        V V g yn = =sin β  or

 sin β =
g y

V
 (9.5)

which is the same result as in Eq. 9.1.
From the vector triangle ABD,

               
−Δ( )

Δ
=

+ −Δ( )
V Vn

sin sinθ β θ
1

190

i.e.            −Δ =
Δ

+ −Δ( )
V

V
n

1

190

sin

sin

θ
β θ

As Δθ → 0,           − =
dV

d

Vn

θ βcos
 (9.6)
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The momentum equation, Eq. 9.3 can be written as

               P M y
g

V yn+ = + =
1

2
2 2γ

γ
Const.

Differentiating,

γ
γ γ

y d y
g

V y dV
g

V d yn n n+ ( )+ ( ) =2 02

i.e.          1
22

+
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= −
V

g y
y d y

V

g
y dVn n

n

For very small angular changes, from Eq. 9.4, 
V

gy
n
2

1 0= .  and hence,

               −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= =
dy

dV

V

g

V

gn

n sin β
                    (9.7)

By Eqs 9.6 and 9.7,

               −
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= =
dV

d

dy

dV

dy

d

V

g

Vn

nθ θ
β

β
sin

cos

i.e.                  dy

d

V

gθ
β=

2

tan              (9.8)

Assume that there is no energy loss, i.e., the specifi c energy E y
V

g
= + =

2

2constant. Noting that

E y
F

= +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1
2

2

 and sin β =
1

F
, Eq. 9.8 can be written as

                dy

d

E y y

E yθ
=

−( )
−

2

2 3
                  (9.9)

The solution of this equation is given as

        θ =
−

−
−

−− −3
3

2 3

1

3

3

2 3
1 1

1tan tan
y

E y

y

E y
C  (9.10)

in which C
1
 is a constant.

Other forms of Eq. 9.10 are

          θ =
−

−
−

−− −3
3

1

1

1

1

2

1

2 1tan tan
F F

C                (9.11)

or          θ =
−

− − −− −3
1

3
11

2
1 2

2tan tan
F

F C         (9.12)
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The constants C
1
 and C

2
 can be evaluated by using the initial condition, θ = 0 

when F = F
1
.

Equation 9.10 or its other forms give the variation of the Froude number at a 
gradual change in the boundary in a horizontal frictionless channel. Equation 9.12 
is in a form which is analogous to the well-known Prandtl–Meyer function in 
supersonic fl ows. The two constants C

1
 and C

2
 are related by C

1
+ C

2
 = 65.8846°. 

Figure 9.4 is a plot of Eq. 9.11 in the form of (θ + C
1
) against F and is helpful in 

understanding the interdependence of F with θ. Also, it can be used as an aid in 
solving problems concerning supercritical fl ow past curved boundaries.

Engelund and Peterson5 have shown that Eq. 9.5 relating β with F is only true for 
wide rectangular channels. However, for channels with fi nite aspect ratios, the wave 
angle β has been shown to be a function of F and B/y, where B = width of the channel. 
For a single refl ecting wave in a channel of width B (such as in Fig. 9.2) Harrison6 has 
shown that

         sin β = 
1

F
 

tanh / cos

/ cos

π β

π β

y B

y B

( )
          (9.13)

Fig. 9.4 Variation of (θ + C
1
) with F
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408 Flow in Open Channels

Also, Eq. 9.13 can be simplifi ed for small values of (πy / B cos β) = x  as

         sin β = 
1

1
6

2

F

x
−

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟                           (9.14)

The evaluation of Eq. 9.14 indicates that Eq. 9.5 gives values of β within 5 per cent 
error for y/B < 0.15. In view of its simple form, Eq. 9.5 is usually used in channels of 
all aspect ratios to estimate β in preliminary calculations.

Experiments by Ippen and Dawson2 on a curved wall composed of two reverse 
circular curves, each with a central angle of 16°, indicated good agreement with Eq. 
9.11 in the fi rst half of the curve but showed deviations in the second part, probably 
due to the neglect of the effects of friction and the aspect ratio in the theory.

Concave Wall A curved surface can be considered to be made up of a large 
number of straight segments, each with a defl ection angle Δ θ. For a concave 
vertical wall surface (Fig. 9.5), at the fi rst break at A, a disturbance line emanates 
from the boundary at an angle β

1
 to the fl ow. Since Δ θ is positive in this case, it will 

cause a decrease in the Froude number as is evident from Fig. 9.4. Thus F
2
 < F

1
 and 

y
2
 > y

1
. At the second break in the wall, by similar argument, F

3
 < F

2
 and y

3
 > y

2
. 

Thus the Froude number decreases and the depth of fl ow increases in the downstream 

Fig. 9.5 Supercritical fl ow at a concave wall
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direction. Since sin β = 
1

F
, a decrease in F causes an increase in the value of β. The 

water surface profi les will thus have steeper gradients as one moves away from 
the wall. If these disturbance lines coalesce, a jump will occur. This type of disturbance 
caused by a concave wall is known as positive disturbance.

Convex Wall For a convex vertical wall guiding a supercritical stream as in 
Fig. 9.6, the wall surface curves away from the direction of fl ow, and as such Δ θ is 
negative.

As indicated earlier (Fig. 9.4), a decrease in θ causes an increase in the Froude 
number which, in turn, is responsible for the decrease in depth and also for the 
reduction in the value of β. Thus, the effect of a convex wall on a supercritical stream 
is opposite to that of a concave wall. The increase in the value of β causes the distur-
bance lines to diverge, and consequently, the water-surface profi les are fl atter as one 
moves away from the wall. The disturbance produced by a convex wall is termed as 
a negative disturbance.

Fig. 9.6 Supercritical fl ow at a convex curve
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410 Flow in Open Channels

Example 9.1  A supercritical stream with a velocity of 4.34 m/s and a depth of 
fl ow of 0.12 m enters a curved boundary of total defl ection angle of 5°. Calculate the 
Froude number, depth of fl ow and direction of the disturbance line β just after the 
curve, if the boundary is (a) concave, and (b) convex to the fl ow. The channel is 
assumed to be horizontal and frictionless.

Solution F1

4 34

9 81 0 12
4 0=

×
=

.

. .
.

      β1
1 1

4
14 478= = °−sin .

Equation 9.1l or Fig. 9.4 can be used to study the effect of the boundary on the fl ow.

(a) Concave Wall For F
1
 = 4.0, from Fig. (9.4), (θ + C

1
) = 27.26°

                 Δ θ  =  + 5.0°

Hence at the end of the curve, (θ + C
1
) = 27.26 + 5.0 = 32.26°

For this value, from Fig. 9.4, F
2
 = 3.32.

Since the specfi c energy is assumed to be constant in the derivation of Eq. 9.11,

E y
F

y
F

= +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟1

1
2

2
2
2

1
2

1
2

y2

2

2

0 2 1
4

2

1
3 32

2

0 166=
+

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

+
( )⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

=
.

.
. m

              
β2

1 1

3 32
17 53= = °−sin

.
.

(b) Convex Wall For F
1
 = 4.0, as found above, (θ + C

1
) = 27.26°

           Δ θ = −5.0°

Hence at the end of the curve, (θ + C
1
) = 27.26 − 5.0 = 22.26°

For this value, from Fig. 9.4,   F
2
 = 4.96

             y
2
 = 

0 12 1
16

2

1
4 95

2

2

.

.

+
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

+
( )⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= 0.082 m

            β
2
 = sin−1 

1

4 95.
= 11.655°
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9.4 FLOW AT A CORNER

In contrast to the gradual change in the boundary through a series of infi nitesimally 
small angular changes, a sudden change in the boundary orientation by a fi nite angle 
θ is called a corner. The supercritical fl ow past a convex corner can be analysed in 
a manner similar to that of a gradual change, while the fl ow past a concave corner 
needs a different approach.

9.4.1 Convex Corner

In a convex boundary, the disturbance diverges outward. For a convex corner at A 
(Fig. 9.7), the defl ection angle of θ can be considered to be made up of a series of 
small angles Δ θ

1 
, Δ θ

2
, …., etc. Let AB

1
 be the fi rst disturbance corresponding to 

F
1
 defl ected by a small angle Δ θ

1
. The inclination of AB

1
 to the initial fl ow direc-

tion x will be β
1
= sin−1 1

1F
. A disturbance line, such as AB

1
, is a characteristic of 

the incoming fl ow and is called a characteristic or Froude line. Across the Froude 

line AB
1
, the velocity increases from V

1
 to V

2
 and the streamlines are defl ected by 

an angle Δ θ
1
. The next Froude line AB

2
 is due to a further change of the boundary 

direction by Δ θ
2
. The inclination of AB

2
 is β 

2
 = sin−1 

1

2F
 to the fl ow direction 

in B
1
 AB

2
, i.e., its inclination with x direction is ( β

2
 − Δ θ

1
). The velocity is now 

Fig. 9.7 Flow round a convex corner
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increased from V
2
 to V

3
 and the streamlines undergo a further defl ection Δ θ

2
 in 

their direction. This process continues and the velocity vector gradually changes 
direction. Since Δ θ

1
, Δ θ

2
 are arbitrary they can be made infi nitesimally small, 

making the increase in velocity and Froude number gradual. The last Froude line 

will be AB
m
 and its inclination is B

m
 = sin−1 

1

Fm

, where F
m
 is the Froude number 

of the fl ow past the corner. The streamlines after the Froude line AB
m
 will be par-

allel to the downstream boundary, AA
1
. It may be noted that in this fl ow, save for 

friction (which is neglected), there is no change in the energy of the system. Thus 
in a convex corner, the velocity and depth changes are confi ned to a fan-shaped 
region bounded by Froude lines F

1
 and F

m
 at angles β

1 
, and β

m
 respectively. This 

fan-shaped region is known as the Prandtl-Meyer fan. The relationship between F, 
Δ θ and β at any Froude line is governed by Eq. 9.11. The various elements of the 
fl ow can be calculated using Fig. 9.4.

Example 9.2  A fl ow with a Froude number of 3.0 passes round a convex corner 
of defl ection angle 10°. If the initial depth of the fl ow is 0.65 m, fi nd (a) the Froude 
number after the corner, (b) the depth of fl ow in the downstream section, and (c) the 
angular spread of the Prandtl–Meyer fan.

Solution Referring to Fig. 9.7,
F

1
 = 3.0, − Δ θ = 10° and y

1
 = 0.65 m

                   β1
1

1

11 1

3
19 47= = = °− −sin sin .

F

Using Fig. 9.4, for F
1
 = 3.0, θ + C

1
 = 35.0°.

For the downstream sections of the corner,

 (θ + C
1
 − Δ θ) = 35.0 − 10.0 = 25° and corresponding

          F
m
 = 4.4

        βm

mF
= = = °− −sin sin

.
.1 11 1

4 4
13 14

∴ Width of Prandtl-Meyer fan = β
1
 + θ − β

m
 = 16.33°

Since specifi c energy is assumed to be constant,

   E y
F

y
F

m
m= +

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟1

1
2 2

1
2

1
2

∴ =
+
+

=
+

+
=

y

y

F

F
m

m1

1
2

2

2

2

2

2

2 3

2 4 4
0 515

( . )
.

∴ = × =ym 0 515 0 65 0 335. . .  m.
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9.4.2 Concave Corner and Oblique Shock

If a fl ow past a concave corner is analysed by a stepwise treatment as in the 
previous section, it will be found that the fi rst Froude line AB

1
 will be down-

stream of the last Froude line AB
m
 (Fig. 9.8). This would require a reverse fl ow 

and hence the method is not applicable to the situation. The reason for this ana-
malous behaviour is that in a concave corner, the various Froude lines intersect 
and interact causing a rapid change in the water surface and some energy loss. 
When different Froude lines coalesce, a single shock wave inclined at an angle 
β

s
, to x direction takes place. Across this shock, there will be a considerable 

change of depth as in a hydraulic jump. Such a shock wave is called an oblique 
shock wave.

Fig. 9.8 Flow past a concave corner if oblique shock is neglected
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Figure 9.9 shows the geometry of an oblique shock. β
s
 is the inclination of the 

shock wave to the approaching fl ow of velocity V
1
, depth y

1
 and Froude number F

1
. 

After the shock, the depth increases to y
2
 with the velocity and Froude number 

decreasing respectively to V
2
 and F

2
. The components of the velocity normal and 

tangential to the shock wave are

V
n1

 = V
1
 sin β

s
    and    V

n2
 = V

2
 sin (β

s
 − θ)

V
t1
 = V

1
 cos β

s
    and    V

t2
 = V

2
 cos (β

s
 − θ)

Consider a control volume of unit width as shown in Fig. 9.9. By the continuity 
equation

        y
1
V

1
 sin β

s
 = y

2
V

2
 sin (β − θ)                    (9.15)

From the momentum equation in the normal direction to the shock wave, by 
assuming hydrostatic pressure distribution and neglecting friction.

       1

2

1

21
2

2
2

2 2
2 2

1 1
2 2γ γ ρ β θ ρ βy y y V y Vs s− = −( )−sin sin  (9.16)
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Fig. 9.9 Oblique shock geometry
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From the momentum equation in a direction parallel to the shock wave, as there is 
no net force in that direction, it follows that

           V
1
 cos β

s
 = V

2
 cos (β

s
 − θ)                          (9.17)

These three basic relations (Eqs 9.15, 9.16 and 9.17) aid in deriving useful rela-
tionships between the various parameters of the oblique shock.
From Eqs 9.15 and 9.16

                
y

y
F s

2

1
1
2 21

2
1 1 8= − + +( )sin β               (9.18)

It may be noted that F
1
 sin β

s
 = F

n1
 = normal component of the initial Froude 

number of Eq. 9.18 is of the same form as the familiar hydraulic-jump equation 
[Eq. (6.4)], in a rectangular channel. Thus the normal components of the velocities 
satisfy the basic equation of a hydraulic jump and as such an oblique shock wave is 
called an oblique jump.
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From Eqs 9.15 and 9.17

            
y

y
s

s

2

1

=
−

tan

tan ( )

β
β θ

                       (9.19)

Eliminating 
y

y
2

1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟  from Eqs 9.18 and 9.19

           tan
tan sin

tan sin
θ

β β

β β
=

+ −( )
− + +

s s

s s

F

F

1 8 3

2 1 1 8

1
2 2

2
1
2 2

           (9.20)

From Eq. 9.18,

              F F
y

y

y

yn s1 1
2

1

2

1

1

2
1= =

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

+
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

sin β            (9.21)

An expression for F
2
 in terms of F

1
 and (   y

2
 / y

1
) can be obtained as follows:

V V Vn t1
2

1
2

1
2= +

and                     V V Vn t2
2

2
2

2
2= +

But by Eq. 9.17,           V
t1
 = V

t2

         V V V Vn n2
2

1
2

1
2

2
2= − +

From Eq. 9.15,         V V
y

yn s2 1
1

2

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

sin β

        

V V
y

ys2
2

1
2 2 1

2

2

1 1= − −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪sin β
⎭⎭
⎪⎪⎪

i.e.             F F
y

y
F

y

y

y

yn2
2

1
2 1

2

2 1

2

1

2
1

1=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
−

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2

Substituting for F
nl
 from Eq. 9.21 and simplifying

                F
y

y
F

y

y

y

y2
2 1

2
1
2 1

2

2

2

1

2
1=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

+
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 2

1

2
y

y
   (9.22)

Equations 9.15 through 9.22 enable the solution of the various elements of the oblique 
shock wave. Usually a trial-and-error procedure is required for solving oblique-jump 
problems. Equation 9.20 when plotted as β

s
 = f (F

1
, θ) (Fig. 9.10), provides a graphi-

cal aid which together with relevant equations greatly simplifi es the determination of 
oblique-jump elements. Ippen1 has given a four quadrant chart for the graphical solu-
tion of oblique-jump equations.
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In an oblique-jump the energy loss can be estimated by

       E y
V

g
y

V

gL0 1
1
2

2
2
2

2 2
= +

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
− +

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

or               
E

y

F y

y

FL0

1

1
2

2

1

2
2

1
2

1
2

= +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
−

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

+
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

Substituting for F
2
2 from Eq. 9.22 and simplifying,

E

y

y

y

y y
L0

1

2

1

3

2 1

1

4
=

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

( / )

Fig. 9.10 Variation βs in an oblique shock
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or                   E
y y

y yL0
2 1

3

1 24
=

−( )

which is the same as the energy loss in normal hydraulic-jumps (Eq. 8.6). Usually, the 
value  of F

nl
 is  very small and as  such the  energy  loss in an  oblique-jump  is  relatively  small.

Estimation of β
s
 For a given value of F

1
 and θ, the value of β

s
 can be estimated 

by using Fig. 9.10. However, this will only be a rough estimate, because of the scale 
of the fi gure and if accurate value is desired the value obtained from Fig. 9.10 can 
be refi ned by trial and error through use of Eq. 9.23. For quick and fairly accurate 
estimation of values of β

s
 the following correlation equation can be used:

  β
s
 = (1.4679 − 0.2082 F

1
 + 0.0184 F 2) θ + (60.638 F

1
−1.044)             (9.23)

where β
s
 and θ are in degrees. This equation has been derived from Eq. 9.20 for 

values of θ in the range 1.0° to 11.0° and Froude number F
1
 in the range 2.0 to 7.5. 

Equation 9.23 gives results within an error band of ± 2.5%.

Example 9.3  A supercritical stream in a wide rectangular channel has a 
Froude number of 6.0. One of the vertical walls is turned inward at a section with a 
defl ection angle of 10°. Calculate the elements of the oblique-jump formed due to this 
change in direction if the initial depth of fl ow is 0.50 m.

Solution F
1
 = 6.0, θ = 10.0° and y

1
 = 0.50 m

From Fig. 9.10,                β
s
 = 18.5

Using Eq. 9.19,

             
y

y
s

s

2

1

18 5

8 5
2 239=

−
=

°
°

=
tan

tan ( )

tan .

tan .
.

β
β θ

              y2 0 5 2 239 1 119= ×( )=( . ) . . m

Using Eq. 9.22,

     F2
2 21

2 239
6 0

1

2

1

2 239
1 239 3 2=

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟.

( . )
.

( . ) ( . 339 2)
⎡

⎣
⎢
⎢

               = 14.782

              F
2
 = 3.84

               F
n 1

 = F
1
 sin β

s
 = 1.904

              F
n 2

 = F
2
 sin (θ

2 
− θ) = 0.57

  (Note the small values of Froude numbers normal to the shock),
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Energy loss          E
y y

y yL0
2 1

3

1 2

3

4

1 119 0 50

4 1 119 0 5
0 106=

−( )
=

−( )
( )( )

=
. .

. .
. m

            

E y
F

m1 1
1
2

1
2

0 5 1
36

2
9 5= +

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ =. .

Relative energy loss  
E

E
L0

1

0 106

9 5
0 011 1 1= = =

.

.
. .  per cent

  (Note the very small relative energy loss.)

9.5 WAVE INTERACTIONS AND REFLECTIONS

9.5.1 Refl ection of   a Positive  Wave

Consider one of the walls of a rectangular channel being defl ected inwards by 
an angle θ (Fig. 9.11). An oblique shock wave AB inclined at an angle β

A
 to the 

initial direction emanates from A, the magnitude of β
A
 being given by Eq. 9.20. 

As the wave arrives at B, the angle of the wall to the fl ow direction downstream 
of AB is the defl ection angle causing the next shock wave. In the present exam-
ple, the wall at B making an angle θ with the fl ow acts as a concave corner. The 
approach Froude number is F

2
. An oblique shock BC making an angle β

B
 with 

the fl ow direction [i.e., (β
B
−θ) with the wall] will emanate from B. For known 

values of F
2
 and θ, β

B
 is obtained from Eq. 9.20 or Fig. 9.10. Since F

2
 < F

1
, β

B
 

will be greater than β
A
. The successive refl ections are similarly found. It may be 

Fig. 9. l1 Refl ection of a positive wave
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noted that after each refl ection the value of the Froude number decreases and 
the β value increases, ultimately reaching 90° when the downstream fl ow in the 
channel becomes critical.

9.5.2 Interaction of   Two  Oblique  Shocks

Two oblique shocks emanating from either end of an unsymmetric contraction 
in a channel are shown in Fig. 9.12(a). The defl ection angles are θ

1
 at A

1
 and θ

2
 

at A
2
. The shock wave A

1
B, is inclined at β

1
 to the horizontal and A

2
B at β

2
 to 

the horizontal. Downstream of A
1
B

1
 the Froude number is F

3
 while downstream 

of A
2
B, it is F

2
. Downstream of BC

1
 and BC

2
, the fl ow must have the depth and 

direction same all across the section till it is intercepted by a shock wave. As a 
fi rst approximation, the fl ow direction may be taken as inclined at (θ

1
 − θ

2
) = δ 

to the horizontal. Knowing δ, the defl ection angles of shock waves BC
2
 and BC

1 

are calculated using the appropriate Froude numbers. Since F
2
 < F

1
 and F

3
 < F

1
, 

β
3
 > β

2
 and β

4
 > β

1
. It is important to realise that A

1
BC

2
 (and similarly A

2
BC

2
) is 

not a single straight line. If the contraction is symmetrical (θ
1
 = θ

2
), there will 

be symmetry about the centreline which acts as a refl ection surface and the fl ow 
situation is as discussed in Section 9.5.1. A typical cross wave pattern obtained 
as a result of shock wave interaction in a symmetrical contraction is indicated in 
Fig. 9.12(b).

Fig. 9.12 (a) Unsymmetrical contraction (Ref. 1), (b) Symmetrical contraction (Ref. 1)
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9.5.3 Convergence  of   Two  Oblique  Shocks

When two oblique shock waves from two adjacent concave corners coalesce at C 
(Fig. 9.13), CD is a combined shock wave. To calculate the direction b

3
 of the shock 

CD, the Froude number F
1
 and defl ection angle = ( θ

1
+ θ

2  
) may be used as a good 

approximation. This is based on the assumption of zero energy loss.
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420 Flow in Open Channels

9.5.4 Interaction of a Positive and a Negative Shock

Consider a negative wave (Fig. 9.14) intersecting a positive shock wave from an 
upstream location A. At B, the Prandtl–Meyer fan is drawn with a large number of 
Froude lines. The depths at the intersection of these Froude lines with the shock wave 
are obtained by a simple superposition. The shock wave will be defl ected due to a 
change of the Froude number at the intersection points of the Froude lines.

Fig. 9.13 Convergence of two oblique shock waves (Ref. 1)
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D
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Fig. 9.14 Interaction of two kinds of waves (Ref. 1)
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Example 9.4  For the channel contraction shown in Fig. 9.11, the initial Froude 
number F

1
 is 4.00 and the inward defl ection angle θ is 6°. Calculate F

2
, F

3
 and β

A
, β

B
 

and β
C 
.
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Solution (i) For the fi rst wave,

For F
1
 = 4.0 and θ = 6°, by using Fig. 9.10, β

S
 = β

A
 = 19°.

From Eq. 9.19, y

y
2

1

19

13
1 491=

°
°

=
tan

tan
.

From Eq. 9.22, F2
2 21

1 491
4

1

2

1

1 491
1 491 1 1 1=

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟× −( )× +

. .
. .4491 10 04

2( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ = .

         F
2
=3.169

(ii) For the second wave,

For F
1
 = 3.169 and θ = 6°, by using Fig. 9.10, β

S
 = β

B
 = 23.5°.

From Eq. 9.19,  
y

y
2

1

23 5

17 5
1 379=

°
°

=
tan .

tan .
.

From Eq. 9.22.

F3
2 21

1 379
3 179

1

2

1

1 379
1 379 1=

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ( ) −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟× −(

.
.

.
. ))× +( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =1 1 379 6 718

2
. .

F
3
 = 2.592

(iii) For the third wave,

For F
1
 = 2.592 and θ = 6°, by using Fig. 9.10, β

S
 = β

C
 = 26.5°.

From Eq. 9. 19,   y

y
2

1

26 5

20 5
1 334=

°
°

=
tan .

tan .
.

From Eq. 9.22,

F4
2 21

1 334
2 592

1

2

1

1 334
1 334 1=

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ( ) −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟× −(

.
.

.
. ))× +( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =1 1 334 4 525

2
. .

  F
4
 = 2.127

9.6 CONTRACTIONS

In the contraction of a subcritical fl ow channel, the main aim is to smoothly guide 
the fl ow, and the desirable profi le having a short length provides a separation-free 
streamlined transition with the least energy loss. The curvature of the sides does not 
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affect the lateral water-surface profi le, which remains horizontal. If such a curved 
contraction is used in a supercritical fl ow, it is apparent, from the discussion in the 
earlier sections, that numerous positive and negative waves would be generated at 
the boundary. These would undergo interactions and multiple refl ections to produce 
a highly undesirable water surface in the downstream channel.

In complete contrast to the streamlining practice adopted in the subcritical fl ow, it 
is possible to design an acceptable downstream wave-free supercritical contraction 
composed of straight-edge boundaries. Figure 9.15 represents a straight-edge con-
traction in a horizontal frictionless channel. The supercritical fl ow will meet the con-
cave corners at A

1
 and A

2 
,
 
each having a defl ection angle θ. The oblique shock waves 

formed intersect at B. Downstream of A
1
B and A

2
B the streamlines will be parallel to 

the wall and the values of the depth and Froude number attained are y
2
 and F

2
 respec-

tively. If the length of the contraction is too short, the shock waves BC
2
 and BC

1
 

would reach the boundary beyond the corners D
2
 and D

1
 respectively as shown in 

Fig. 9.15. The convex corners D
1
 and D

2
 will each create a fan of negative waves 

which also travel downstream, interacting with various positive waves. The result is 
a highly disturbed downstream water surface due to the presence of cross waves.

If the length of the contraction is too long, the interacted waves BC
2
 and BC

1
 will 

hit the sloping walls of the channel, as in Fig. 9.12(b), and even here there will be 
multiple refl ections and cross waves in the downstream channel.

If, however, the contraction length of the channel is so designed that the interacted 
waves BC

2
 and BC

1
, meet the channel walls exactly on the corners D

2
 and D

1
 respec-

tively (i.e., points D and C coincide), the defl ecting effect of the shock wave and the 
wall will cancel each other. The downstream channel will be free from shock waves 
due to the contraction. The relationship between the various parameters for this ideal 
contraction are obtained as below.

Fig. 9.15 Incorrect contraction
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The plan view of an ideal supercritical fl ow contraction is indicated in Fig. 9.16. 
The fl ow is symmetrical about the centreline. Considering the directions normal to 
the shock fronts A

1 
B and A

2 
B, the depths y

1
 and y

2
 can be related by Eq. 9.18 as

             
y

y
F2

1
1
2 2

1

1

2
1 1 8= − + +( )sin β            (9.24)

in which β
1
 = angle the shock waves A

1
B and A

2
B with respect to the initial fl ow 

direction. Similarly, for the shock waves BC
1
 and BC

2’

                   

y

y
F3

2
2
2 2

2

1

2
1 1 8= − + +( )sin β

              
(9.25)

in which β
2
 = angle of the shock waves BC with respect to the inclined wall. Since 

there is no change in momentum parallel to a shock front, by Eq. 9.19,

               
y

y
2

1

1

1

=
−( )

tan

tan

β
β θ

                    (9.26)

and              y

y
3

2

2

2

=
−( )

tan

tan

β
β θ

                (9.27)

Adopting Eq. 9.22,

         F
y

y
F

y

y

y

y2
2 1

2
1
2 1

2

2

1

1

2
1=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

+
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

y

y
2

1

2

1               (9.28)

and            F
y

y
F

y

y

y

y3
2 2

3
2
2 2

3

3

2

1

2
1=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

+
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

y

y
3

2

2

1            (9.29)

where F
3
 = fi nal Froude number.

Fig. 9.16 Defi nition sketch of an ideal contraction
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424 Flow in Open Channels

By the continuity equation,
(B

1
 y

1
)V

1
 = (B

3 
y

3
) V

3

i.e.                B

B

y

y

F

F
1

3

3

1

3 2

3

1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

/

                  (9.30)

The length of the ideal contraction is obtained by the geometry of the contraction as

                 L
c
 = 

B B1 3

2

−( )
tanθ

                    (9.31)

Design In the design of supercritical fl ow contractions usually F
1
, y

1
, B

1
 and B

3
 

are known and it is required to fi nd the wall defl ection angle θ. Thus when F
1
 and 

B

B
3

1

are given, there are seven unknowns, namely, θ, β
1
, β

2
, F

2
, F

3
, y

2
/y

1
 and y

3
/y

2
. 

While seven equations, Eqs 9.24 through 9.30, are available, the non-linearity of 
the equations precludes a closed-form solution of θ. Harrison6 through the use 
of the Newton–Raphson technique of iteration obtained the design information as 

θ =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

f
B

B
F3

1
1,  and 

y

y
3

1

= f 
B

B
F3

1
1,

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

. Subramanya and Dakshinamoorthy7, used 

Eq. 9.24 through 9.30 to obtain four equations in four unknown θ, F
3
, β

1
 and β

2
 and 

solved them by the least square error minimisation technique. Figure 9.17 is a plot of 

θ =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

f
B

B
F3

1
1,  obtained in the study. Figures 9.17 and 9.10 together with the relevant 

equations from among equations 9.24 through 9.30 enable the determination of all 
the elements of a supercritical fl ow contraction. The curve A in Fig. 9.17 represents 
the condition of F

3
 = 1.0, and thus the choking condition.

Fig. 9.17 Variation of θ in contraction (Ref. 7)
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Supercritical-Flow Transitions 425 

References 1, 2, and 6 contain very useful information pertaining to supercritical 
fl ow contractions. The ideal contraction as above is to be used in preliminary designs 
only and the fi nal design will have to be based on model studies as the friction and 
slope of the channel not considered in the ideal design can modify the shock-wave 
geometry. It should be remembered that the straight-edge supercritical contractions 
are only valid for the design Froude number. For any off-design values of F

1
, the 

refl ected waves do not strike at the corners D
1
 and D

2
.

Example 9.4  A rectangular channel carries a fl ow with a Froude number of 
6.0 in a 5.0-m wide channel with a depth of 0.75 m. It is required to reduce the width 
to 2.5 m. Design a contraction and determine all the elements of the transition. Also, 
determine the energy loss in the transition.

Solution y
1
 = 0.75 m, F

1
 = 6.0  and 

B

B
3

1

 = 0.5

From Fig. 9.17,     θ = 4.25°

Referring to Fig. 9.10 or to Eq. 9.23, for   θ = 4.25° and F = 6.0,

             β
1
 = 13.0˚

Using Eq. 9.26,      
y

y
2

1

1

1

=
−( )

tan

tan

β
β θ

= 
tan

tan .

13

8 75

°
°

=1.50

        y
2
 = 1.12  m

From Eq. 9.28

            F2
2 2 21

1 5
6 0

1

1 5
1 50 1 1 5 1=

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ( ) −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ −( ) +( )

⎡

.
.

.
. .

⎣⎣
⎢
⎢

⎤

⎦
⎥
⎥

               = 23.305

             F
2
 = 4.83

For the shock waves BC
1
 and BC

2
, F

2
 = 4.83 = initial Froude number and θ = 4.25°. 

Using Fig. (9.10) or Eq. 9.23, with θ = 4.25° and F = 4.83,

              β
2
 = 15.5°

From Eq. 9.26,

                
y

y
3

2

2

2

15 5

11 25
=

−( )
=

°
°

tan

tan

tan .

tan .

β
β θ

= 1.394

              
y

y

y

y

y

y
3

1

3

2

2

1

= ⋅  = 1.394 × 1.50 = 2.09

∴           y
3
 = 2.09 × 0.75 = 1.568 m
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From Eq. 9.29

                  F3
2 21

1 394
4 83

1

2

1

1 394
0 394 2 3=

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ( ) −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟( )

.
.

.
. . 994

2( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

              = 16.15

               F
3
 = 4.02

From Eq. 9.31

             L
c
 = 

5 0 2 5

2 4 5

. .

tan .

−
°

 = 15.883 m

  Check: By Eq. 9.30, 
F

F
3

1

=
B B

y y

1 3

3 1

3 2

/

/
/( )

                F
3
 =

6 0 2 0

2 09
3 2

. .

.
/

×

( )
 = 3.97

≈  4.02 with about 1 per cent error.

In view of the possible errors in the use of various plots, this error is acceptable.
Thus the elements of the transition can be summed up as

              y
1
 = 0.75 m       θ = 4.25°   L

c    
 = 15.883 m

               B
l
 = 5.00 m        β

1
 = 13.0°      y

2 
= 1.125 m

              F
1
 = 6.00      β

2
 = 15.5°       y

3 
= 1.568 m

                         F
2
 = 4.83       F

3
= 4.02

Energy loss:

                 E
1 
= y

1
 1

2
1
2

+
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

F
 = 0.75 1

6 0

2

2

+
( )⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

.
=14.25 m

                    E
3
 = y

3
 1

2
3
2

+
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

F = 1.568 1
4 02

2

2

+
( )⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

.
= 14.238 m

              E
L
 = E

1
 – E

3
 = 14.250 − 14.238 = 0.012 m

9.7 SUPERCRITICAL EXPANSIONS

9.7.1 Introduction

The main aim of a supercritical fl ow expansion design is to have the desired chan-
nel-width expansion and to maintain a downstream water surface which is free 

Chapter 9.indd   426Chapter 9.indd   426 2/24/2010   3:06:12 PM2/24/2010   3:06:12 PM



Supercritical-Flow Transitions 427 

from cross waves. Since a supercritical fl ow past a convex boundary creates a grad-
ual change in the water surface, an analysis of the fl ow situation with the help of 
Eq. 9.11 is feasible. It may be noted that in view of the analogy of these expansions 
with supersonic nozzles, the advance techniques available for the design of the latter 
can be advantageously used for the corresponding open-channel fl ow problems. The 
basic principles of the supercritical fl ow expansion design are outlined in the follow-
ing sections.

9.7.2 Design of Expansions

The half plan of an expansion from width B
1
 to B

2
 in a horizontal rectangular 

frictionless channel is indicated in Fig. 9.18. The boundary initially expands in 
a convex curve from a to e. In this process the negative disturbances, i.e. Froude 
lines emanate from the boundary. Five such lines are shown in Fig. 9.18. These 
lines intersect the corresponding lines from the opposite wall at the centre line 
which can be treated as a refl ecting plain wall. The refl ected waves, after interact-
ing with the oncoming lines, fi nally reach the wall. If the wall is turned through the 
same angle as a streamline would be turned by the expansion wave, no refl ection 
occurs and the fl ow is wave-free. The proper wall angles are provided on this basis 
at points a

2
, b

2
, c

2
, d

2
, e

2
. Naturally, a smoother boundary contour can be obtained 

by considering a large number of Froude lines. It may be noted that the initial 
curve abcde is arbitrary and the length and shape of the transition depend upon 
this curve.

Fig. 9.18 Expansion with refl ection free boundary
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428 Flow in Open Channels

For a minimum length design, the points a through e will be coincident, i.e. a sharp 
convex corner at a (Fig. 9.19). A Prandtl-Meyer fan will occur at a and considering a 
suitable number of Froude lines, the transition can be designed as before. Figure 9.19 
is a typical minimum-length expansion.

Graphical methods of designing the expansion as above are available in Ref. 1. 
Numerical computation procedures are generally preferred. A FORTRAN program 
which can easily be converted to the design of supercritical fl ow expansions is given 
by Pond and Love8.

9.7.3 An Empirical Method

Based on an experimental study, Rouse et al3. proposed empirical design curves 
expressed by the equation

                
B

B1

= f 
x

B F

B

B1 1

2

1

,
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
 (9.32)

where B is the width of channel at any section x from the beginning of the expansion, 
the B

1
 and B

2
 are the initial and fi nal widths of the channel respectively. The curves 

consist of an expansion convex curve followed by reverse curves. The expansion 
curve is given by3

                
B

B1

=
1

4 1 1

3 2

x

B F

⎛

⎝
⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

/

+ 1.0                  (9.33)

The coordinates of the reverse curves proposed by Rouse et al.,3 are summarised in 
Table 9.1. All the reverse curves are tangential to the expansion curve given by Eq. 9.33.

Equation 9.33 together with the generalised coordinates of Table 9.1 give the 
boundaries of the supercritical expansion suitable for preliminary studies. Ref. 9 
reports experimental study on the Rouse expansion.

9.7.4 Inclusion of Resistance

Generally, the bottom slope, friction and channel curvature, if any, affect the 
performance of a supercritical fl ow transition and it is the usual practice to test 

Fig. 9.19 Minimum length expansion

B1 / 2
B2 / 2
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Lmm
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Supercritical-Flow Transitions 429 

the preliminary design through model studies for these effects as well as for the 
possibility of separation of streamlines at the boundary.

If the supercritical fl ow in an expansion is considered as a two-dimensional prob-
lem, the basic differential equations of motion together with the continuity equation 
form a system of hyperbolic quasilinear partial-differential equations of the fi rst 
order. The equations can be solved numerically, e.g. by the method of characteris-
tics. It is possible to include the friction effects as ‘friction slopes’ by using a suit-
able resistance formula. A generalised problem of an expansion having curved 
boundaries, with a bottom slope and friction can be analysed through numerical 
methods. Detailed on this kind of analysis is available in litrerature.10,11,12,13.

Example 9.5  A 2.5-m wide rectangular channel carrying a fl ow with a Froude 
number of 2.5 is to be provided with an expansion to a width of 5.0 m. Obtain the 
profi le of the expansion profi le by using Rouse’s curves.

Values of B/B
1

x

B F1 1

B

B
2

1

=

 

1.5 2.0 2.5 3.0 3.5 4.0

1.00 1.200

1.38 1.300 1.400

1.50 1.350 1.425

1.75 1.400 1.550 1.550

2.00 1.450 1.600 1.700

2.25 1.475 1.650 1.750 1.750

2.50 1.485 1.775 1.900 1.900 1.925

2.70 1.500 1.820 2.000 2.100 2.100 2.100

3.00 1.900 2.100 2.200 2.250 2.250

3.50 1.950 2.250 2.400 2.450 2.500

4.00 2.000 2.350 2.550 2.675 2.775

4.50 2.425 2.685 2.825 2.950

5.00 2.500 2.800 3.000 3.150

5.50 2.850 3.150 3.300

6.00 2.925 3.240 3.450

6.50 2.950 3.320 3.550

7.00 3.000 3.400 3.700

7.50 3.425 3.775

8.00 3.475 3.850

8.50 3.485 3.875

9.00 3.500 3.900

9.50 3.930

10.00 3.950

10.50 4.000

Table 9.1 Coordinates of the Reverse Curves in Supercritical Expansions
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430 Flow in Open Channels

Solution Rouse’s expansion curve is given by Eq. 9.33 as

B

B

x

B F1 1 1

3 2
1

4
1 0=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

+
/

.

Here B
1 
= 2.5 m and F

1 
= 2.5.

     

B x

2 5

1

4 2 5 2 5
1 0

3 2

. . .
.

/

=
×

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ +

                          B
x

= +
3 2

25
2 5

/

.                 (9.34)

Reverse Curve From Table 9.1, for B
2 
/B

1
=2.0, the reverse curve starts at 

x

B F1 1

1 38= . ,

i.e., at x = 1.38 × 2.5 × 2.5 = 8.63 m. Also from Table 9.1, for B
2
/B

1
 = 2.0, the length 

of transition is given by
L

B F1 1

= 4.0. Hence L  = 4.0 × 2.5 × 2.5 = 25.0 m. Coordinates 

of the reverse curve corresponding to B
2
/B

1
 = 2.0 are obtained from Table 9.1. Thus for 

0 < x < 8.6 m, B
x

= +
3 2

25
2 5

/

.  and for 8.6 < x < 25.0 m values of B are obtained by 

using Table 9.1. A smooth curve is drawn through the reverse curve coordinates to 
merge with the expansion curve (Eq. 9.34) without kinks.

9.8 STABILITY OF SUPERCRITICAL FLOWS 

A fl ow is said to be stable if a small perturbation in the fl ow does not get amplifi ed. 
From this point of view a subcritical fl ow is inherently stable. However, in supercriti-
cal fl ows under certain favorable conditions a perturbation can grow until the origi-
nally steady fl ow breaks up in to a train of unsteady surges called roll waves. The 
transformation of a steady supercritical fl ow in to an unstable unsteady fl ow situation 
is analogous to the transition from laminar to turbulent fl ow. The roll waves are char-
acterized by a series of shock fronts separated by regions of gradually varied fl ow. 
The wave speed, height and wavelengths of roll waves generally increase as they 
move downstream. The onset of roll-waves is an important constraint in the design
of channels for supercritical fl ow.

The stability analysis14 of the fl ow leads to the criterion for stable fl ows as

             − ≤ ≤1 1Ve                (9.35)

In which V
e
 = Vendernikov number = xF R

dP

dA
1−

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

Where x = 2/3 if Manning’s formula is used for describing the channel resistance and 

    x = 0.5 if Chezy formula is used for describing the channel resistance

F = Froude number of the fl ow,
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R = hydraulic radius,

P = wetted perimeter, and

A = area of cross section of the fl ow.

Thus the onset of instability in a channel depends on the channel geometry and the 
Froude number of the fl ow. Channels having V

e
 = 0 will be stable for all values of 

Froude number and thus constitute channels of absolute stability. Ref. 14 can be con-
sulted for further details on stability.

Example 9.6  Derive the conditions for stable supercritical fl ow in (a) rectan-
gular, and (b) triangular channels. Consider that Manning’s formula is used to 
describe the channel resistance to fl ow.

Solution By Eq. 9.35, for stable supercritical fl ow V F R
dP

dAe = −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ≤

2

3
1 1

(a) Rectangular channel A = By    and P = B+2y

             
dP

dA

dP

dy

dy

dA B
= =

2

      For stable fl ow, 2

3
1

2

2
1F

By

B y B
−

+
⋅

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ ≤

( )

             
2

3 2
1F

B

B y+

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ ≤

               i.e., F
y

B
≤ +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

3

2
3

(b) For triangular channel A my= 2  P y m= +2 1 2

                

dP

dA

dP

dy

dy

dA

m

m

m

m
= =

+
=

+2 1

2

12 2

    For stable fl ow         
2

3
1

2 1

12

2

2

F
my

y m

m

my
−

+

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
+⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
≤1

                   i.e., F

3
1≤  or F ≤ 3
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PROBLEMS

Topic Problems

Response to a disturbance
Gradual change in the boundary
Oblique shock
Convex corner
Contractions
Expansion 
Application of shock principle
Stability

9.1 – 9.2
9.3 – 9.4
9.5 – 9.9
9.7 – 9.9
9.10 – 9.12 – 9.13
9.11 – 9.14 – 9.18
9.15 – 9.17
9.19

Problem Distribution
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Supercritical-Flow Transitions 433 

 9.1  A rectangular channel has a velocity of 5 m/s and a depth of 0.60 m. If a thin obstruction 
such as a vertical pole is present in the midst of the stream, estimate the direction of 
waves produced.

 9.2  When a stone was thrown into a pond waves of amplitude 1 cm and velocity 2 m/s were 
produced. Estimate the depth of water in the pond.

 9.3  A wide rectangular channel carries a fl ow with a depth of 0.15 m and a Froude number 
of 4.5. Calculate and plot the water surface profi le next to a side wall which has (i) a con-
cave curve of 8° central angle, and (ii) a convex curve of 8° central angle. The radius of 
the curved wall is 10 m and the other side wall can be assumed to be too far away to have 
any interference.

 9.4  For a gradual change in the boundary of a supercritical stream, an assumption of constant 
specifi c energy is made in the derivation of Eq. (9.10). Assuming, instead, a constant 
velocity, derive an expression for θ as θ = β + sin β cos β + a constant.

 9.5  A free surface fl ow with a depth of 0.50 m and initial Froude number of 2.0 approaches 
a concave corner of defl ection angle 10° in one of the walls. Determine the inclination of 
the shock wave to the original direction of fl ow and the depth after the shock.

 9.6  A supercritical stream of velocity 10.0 m/s and depth 0.24 m is defl ected by a concave 
corner having a defl ection angle of 20°. Determine the inclination of the shock waves of 
the original direction of fl ow, the depth after the shock and the energy loss.

 9.7  Label the positive and negative shock waves in the cases shown in Fig. 9.20.

Fig. 9.20 Problem 9.7

(c) (d)

(a) (b)

 9.8  If the stream in Problem 9.6 is defl ected by a 9° convex corner, determine the down-
stream fl ow condition and the angular spread of the Prandtl-Meyer fan.

 9.9  Sketch the fl ow past a thin plate kept in a supercritical fl ow as in Fig. 9.21.
9.10  For the channel contraction shown in Fig 9.11, if F

l
 = 3.5 and θ = 5°, calculate F

2
, F

3
,

β
A
 β

B
 and β

C
.
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434 Flow in Open Channels

9.11  A 3.0-m wide horizontal frictionless rectangular channel has an enlarging section as 
shown in Fig. 9.22. Calculate the expansion waves at 0 for an initial Froude number of 
2.0 with a depth of fl ow of 0.50 m. Sketch a few Froude lines and graphically determine 
their refl ections and interactions.

9.12  An unsymmetrical contraction, as in Fig. 9.12, has F
1 
= 4.0, θ

1
 = 5° and θ

2
 = 8°

Calculate F
2
, F

3
, β

1
, β

2
, β

3
 and β

4
 Sketch the shock waves and streamlines.

9.13  Design symmetrical contractions for the following sets of data and fi ll in Table 9.2.

Fig. 9.22 Problem 9.11

3.0 m

A B

D

C O
θ°

Fig. 9.21 Problem 9.9

Thin plate

F1

θ°

SI. 
No.

F
1

y
1

(m)
B

1

(m)
F

3
y

3

(m)
B

3

(m)
F

2
y

2 θ β
1

 β
2

1 5.0 0.70 6.0 – – 3.0 – – – – –

2 6.0 0.50 4.0 – – – – – 5.0° – –

3 4.0 0.60 – – – 2.5 – – 6.0° – –

4 – – – – 1.30 2.0 – – 7.5° 18° –

Table 9.2 Problem 9.13

9.14  For values of F
1
 = 4.0 and B

2
/B

1
 = 2.0, sketch a preliminary design of an expansion.

9.15  If a bridge is to be built across a supercritical stream, from the consideration of mechan-
ics of fl ow, what factors govern the shape of the bridge piers, span and shape of abut-
ments? Which of these factors will be different in subcritical fl ow?
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9.16  The division of supercritical fl ow at a branch channel or a side weir can be solved by 
treating the problem as a particular type of channel transition. Considering a simple 90° 
branch channel, indicate an algorithm for calculating the branch-channel discharge for 
given main channel fl ow properties.

9.17  Curves are usually used in channels to cause a change in the direction of fl ow. In super-
critical fl ow it is possible to create a change in direction with wave-free downstream fl ow 
by employing sharp corners instead of curves. How can this be achieved and what are the 
limitations ?

9.18  A 3.0-m wide rectangular channel carrying a supercritical fl ow having a Froude number 
of 3.0 is to be provided with an expansion to a width of 4.5 m. Obtain the profi le of the 
expansion by using Rouse’s curves.

9.19  Derive the conditions for stable supercritical fl ow in (i) rectangular channels, and (ii) tri-
angular channels, if the resistance in the channels is described by Chezy formula.

OBJECTIVE  QUESTIONS

 9.1  A thin vertical rod placed vertically in a 0.80 m deep channel creates two small distur-
bance waves each making an angle of 30° with the axis of the channel. The velocity of 
fl ow in m/s is

 (a) 5.60 (b) 2.80 
 (c) 1.40 (d) 0.70

 9.2  When a stone was thrown into a pond waves of amplitude 0.80 cm and velocity 2.6 m/s 
were observed. The depth of water in the pond is about

 (a) 6.9 m (b) 0.69 m
 (c) 0.83 m (d) 3.13 m

 9.3  A fl ow with a Froude number of 6.0 in a wide channel undergoes a change in the direc-
tion at a curve. The disturbance at the beginning of the curve makes an angle β .

 (a) = 9.59°
 (b) = 6.35°
 (c) = 16°
 (d) which depends on whether the curve is convex or concave

 9.4  When a supercritical fl ow is guided by a curved convex wall
 (a) the Froude number decreases
 (b) the disturbance lines converge
 (e) the water surface becomes steeper at distances away from the wall
 (d) the depth decreases along the wall

 9.5  A fl ow with F
1
 = 4.0 and y

1
 = 0.9 m moves past a convex corner and attains F

2
 = 5.0 

downstream of the corner. The depth y
2
 in metres is

 (a) 1.35 (b) 0.90
 (c) 0.60 (d) 6.0

 9.6  If a stream with F1  = 5.0 fl ows past a convex corner which produces a Prandtl–Meyer 
fan of angular spread 3° 36’, the Froude number downstream of the corner is

 (a) 3.91 (b) 7.24
 (c) 9.57 (d) 5.02

 9.7  An oblique jump occurs when
 (a) a subcritical fl ow is turned by a convex corner
 (b) a supercritical fl ow is turned by a convex corner
 (c) an obstruction is obliquely placed in a channel
 (d) when a supercritical fl ow is defl ected by a concave corner
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436 Flow in Open Channels

 9.8  In an oblique hydraulic jump having a defl ection angle of 15° with the approaching uni-
form fl ow of Froude number 6.0, the sequent depth ratio is

 (a) 1.75 (b) 17.5
 (c) 0.20 (d) 4.0

 9.9  An oblique hydraulic jump has a defl ection angle of 18.5° with the approaching uniform 
fl ow. The depths before and after the jump are 0.4 m and 0.90 m respectively. The energy 
loss head in the jump is
(a) 0.028 m (b) 0.087 m
(c) 0.500 m (d) 0.274 m

9.10  A supercritical fl ow past a convex corner produces
(a) a positive wave
(b) a Froude line
(c) a drop in water surface accompanied by considerable energy loss
(d) a negative disturbance of fi xed angular width

9.11  In an oblique shock
(a) the fl ow after the shock is always subcritical
(b) the depth of fl ow downstream of the shock is lower than the upstream depth
(c) the fl ow after the shock is always supercritical
(d) none of these

9.12  In a supercritical contraction design
(a) the length of the transition is constant for all Froude numbers
(b) the transition is operative for only one depth
(c) the transition is meant to operate at the design Froude number only
(d) does not give a unique solution for a given F

1
 and B

2
/B

1

9.13  A streamlined transition unit was designed for the expansion of a subcritical fl ow in a 
channel. If this transition unit is introduced in a supercritical fl ow channel
(a) it will function effi ciently if used as a contraction
(b) it will function effi ciently if used as an expansion
(c) fl ow separation occurs if used as a contraction
(d) cross waves will be produced if used as an expansion
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10.1 INTRODUCTION

For a complete understanding of fl ow in open channels, in addition to the study 
of steady fl ow which has been dealt with in the previous chapters, unsteady fl ow 
also deserves attention as it is encountered in one way or other in practice in all 
open channels. However, the complex nature of unsteady fl ows together with their 
diversity in form make the subject matter too diffi cult and extensive to be treated 
in a single chapter. As such, only a brief introduction to unsteady open-chan-
nel fl ow problems and the descriptions of a few simple cases are included here. 
A list of reference for details and for further reading are given at the end of the 
chapter.

Unsteady fl ows, also called transients, occur in an open channel when the dis-
charge or depth or both vary with time at a section. These changes can be due to 
natural causes, planned action or accidental happenings. Depending upon the 
curvature of the water surface, the transients can be broadly classifi ed as (i) grad-
ually-varied unsteady fl ows (GVUF) and (ii) rapidly-varied unsteady fl ows 
(RVUF). The chief characteristics of a GVUF are: (i) the small water-surface 
curvature which enables the pressures to be assumed as hydrostatic and (ii) inclu-
sion of friction in the analysis. Flood fl ow in a stream is a typical example of this 
kind of fl ow. In an RVUF there is appreciable change in the water surface in rela-
tively short distances and the friction plays a minor role in determining the fl ow 
characteristics. The formation and travel of a surge due to the sudden closure of 
a gate is a good example of an RVUF. Some fi eld situations which give rise to 
transients can be listed as:

1.  Heavy rainfall in a catchment, snow melt, breaking of log or ice-jams, etc., 
which give rise to fl oods in rivers, streams and surface-drainage systems.

2.  Operation of control gates in hydraulic structures and navigation locks; 
acceptance and rejection of a sudden load by turbines in a hydroelectric 
installation; sudden starting or tripping of pumps—all leading to the possi-
bility of surges.

3.  Tides in estuaries and tidal rivers causing a surge, usually called a bore, which 
is propagated upstream. The bore on the river Severn, near Gloucester, England 
is a typical example [Fig. 10.1].

Unsteady Flows 10
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438 Flow in Open Channels

Fig. 10. 1 The Severn bore (Courtesy: The Citizen, Gloucester, England)

10.2 GRADUALLY  VARIED UNSTEADY FLOW (GVUF)

As mentioned earlier, the fl ood fl ow in a river is a typical GVUF. In view of the 
importance of fl oods in various phases of human activity, the problem of determin-
ing the modifi cation of fl ood hydrograph in its passage through a river, known as 
fl ood routing, has received considerable attention. Consequently, a large number of 
solution procedures are available. The basic equations of GVUF relevant to the fl ood 
routing are presented in this section.

10.2.1 Equation of Continuity

For an unsteady fl ow in a channel, the continuity equation, as derived in Chapter 1 
(Eq. 1.36), is in the form

     

∂
∂

+
∂
∂

=
Q

x
T

y

t
0  (10.1)

Noting that ∂
∂

=
∂( )

∂
=

Q

x

AV

x
0  
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 A
V

x
V

A

x
T

y

t

∂
∂

+
∂
∂

+
∂
∂

= 0  (10.2)

This equation assumes no lateral infl ow or outfl ow. However, if there is a lateral 
infl ow of q per unit length of channel, Eq. 10.2 will read as

 A
V

x
V

A

x
T

y

t
q

∂
∂

+
∂
∂

+
∂
∂

− = 0  (10.3)

The cross-sectional area, in general, can be a function of depth and can also vary 
from section to section, i.e. A = A(x,  y). The x derivative of area at constant time is 
written as

∂
∂

=
∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ +

∂
∂

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

∂
∂

A

x

A

x

A

y

y

xy x

in which the suffi x denotes the variable to be held constant in addition to time 

in taking the derivative. Since 
∂
∂

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ =

A

y
x

T,

                    
∂
∂

=
∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ +

∂
∂

A

x

A

x
T

y

xy

The fi rst term
∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

A

x y

 represents the rate of change of area with the depth held constant 

and is the gain in the area due to the width change. The second term T
y
x

∂
∂

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ represents 

the gain in the area due to an increase in the depth. The continuity equation in its 
general form is

 A
V

x
VT

y

x

y

t
q V

A

x y

∂
∂

+
∂
∂

+
∂
∂

− +
∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ = 0  (10.4)

For a prismatic channel,
∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ =

A

x y

0, which simplifi es Eq. 10.4 as

 A
V

x
VT

y

x
T

y

t
q

∂
∂

+
∂
∂

+
∂
∂

− = 0  (10.4a)

10.2.2 Equation of Motion

The equation of motion for GVUF in a prismatic channel is derived by the applica-
tion of the momentum equation to a control volume encompassing two sections 
of the fl ow as in Fig. 10.2. Since the fl ow is gradually varied, hydrostatic pressure 
distribution is assumed. The forces acting on the control volume are:
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440 Flow in Open Channels

F
1
 = pressure force at the upstream Section l = γ A y

F
2
 = pressure force at the downstream Section 2

   x y
y

= +
∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ +

∂
∂

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

γ A
A

x x
xΔ Δ

F
3
 = component of the body force in the x direction

     = γA Δ x sin θ and 
  F

s
 = shear force on the perimeter = Pτ

0
 Δ x

where y  = depth of the centroid of the upstream Section 1 and
      τ

0
 = average shear stress acting over the fl ow boundary.

By neglecting the second order small quantities, the net force in the x direction is 
written as

Δx
Fs

F1 F2

W sin θ

W

y

CV1 2

Flow

y +
∂y

∂x
Δx

xθ

∇

dy

y

y

CG

∂A
∂x

Δx = dA

∇

∇

Surface at
section 1

Surface at
section 2

Fig. 10. 2 Defi nition sketch for momentum equation

 F A
y

x
y

A

x
AS

P
xnet = −

∂
∂

−
∂
∂

+ −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
Δγ

τ
γ0

0  

By taking the moments of area about the water surface at Section 2 and neglecting 
the second order small quantities

    A
y

x
y

A

x
A

y

x

∂
∂

+
∂
∂

=
∂
∂  (10.5)

Also,     
Pτ
γ

0 = AS
f
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Hence,  F
net

= −
∂
∂

+ −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟γ A

y

x
AS AS xf0 Δ

 
(10.6)

The momentum equation for an unsteady fl ow states that the net external force on 
the control volume in a given direction is equal to the net rate of the momentum 
effl ux in that direction plus the time rate of increase of momentum in that direction 
in the control volume. Assuming β

1
 = β

2
 = 1.0 and considering the x direction:

1. Momentum infl ux into Section 1 = M
1
 = ρAV  2

2. Momentum effl ux from Section 2 = M AV
x

AV x2
2 2= + ( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ρ
∂

∂
Δ

3. Time rate of increase of x-momentum in the control volume

 ∂
∂

Δ( )
t

AV xρMu =  

By the momentum equation,

      M
2
 – M

1
 + M

u
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Dividing throughout by 
γ
g

xΔ  and simplifying,
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      By Eq. 10.2,
 

∂
∂

+
∂
∂

+
∂
∂

=
A

t
V

A

x
A

V

x
0

and on re-arranging,
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 (10.7)

If there is a lateral infl ow q per unit length into the control volume with negligible 
initial momentum in the longitudinal x direction, the equation of motion will read as

 

∂
∂

+
∂
∂

+
∂
∂

y

x

V

g

V

x g

V

t

1
= −( )−S S

qV

Agf0

  

(10.8)
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The continuity equation, Eq. 10.2 and the equation of motion (Eq. 10.7) of unsteady 
open-channel fl ow are believed to have been fi rst developed by A J C Barré de-Saint 
Venant in 1871 and are commonly known as Saint Venant equations. These are simul-
taneous, quasi-linear, fi rst order, partial differential equations of hyperbolic type and 
are not amenable to a general analytical solution.

The St Venant equations are expressed in a number of ways by choosing different 
dependent variables. Some of the common forms are listed below:

(i) With fl ow rate Q (x, t) and depth y(x, t) as dependent variables The 
velocity V in Eq. 10.7 is replaced by Q/A to get St Venant equations as

Continuity Equation 
∂
∂

+
∂
∂

y

t T

Q

x

1
= 0 (10.9a)

Momentum Equation
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∂
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0  = 0 (10.9b)

From Eq. 10.5      A
∂
∂

=
∂
∂

( )y

x x
Ay . Hence Eq. 10.9(b) can be written as
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This equation is known as momentum equation in conservation form. This form is 
particularly useful in handling steep fronts and shocks such as in a surge due to a dam 
break.

(ii) With fl ow rate Q  (x, t) and Stage h(x, t) as dependent variable If h = 
the elevation of the water surface measured above a datum (i.e. stage), then the water 
depth y = h–h

b
, where h

b
 is the elevation of the bed. Further,
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The St Venant equations are

Continuity Equation                           
∂
∂

+
∂
∂

=
h

t T
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1
0  (10.10a)

Momentum Equation  
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(iii) With fl ow velocity V(x, t) and depth y(x, t) as dependent variables By 
Eq. 10.4 the continuity equation is:
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∂
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∂
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∂
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0  (10.11a)

By Eq. 10.7, the momentum equation is
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Eq. 10.11(b) can be written to refl ect the signifi cance of various terms as

 

Sf = S0 − ∂V
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1
g

− ∂
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2g
+ y
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Non-uniform
[GVF]

Unsteady
Non-uniform
[GVUF]

Steady
uniform

 (10.11c)

Simplifi cations have necessarily to be made in the basic equations to obtain analytical 
solutions and there are many models under this category of simplifi ed equations. One 
simple model, viz., the uniformly progressive wave is described here as an example.

Example 10.1  Show that the momentum equation of St. Venant equations can 
be written with discharge as the primary variable as
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Putting V = Q/A
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∂
∂

=
∂
∂

( ) =
∂
∂

−
∂
∂

V

t t
Q A

A

Q

t

Q

A

A

t2

1
/

  
(10.13)

But by continuity equation
      

∂
∂

= −
∂
∂

A

t

Q

x

Hence Eq. 10.13 becomes 
1 1

2g

V

t Ag

Q

t

Q

A g

Q

x

∂
∂

=
∂
∂

+
∂
∂

 (10.14)

Substituting 10.12 and 10.14 in Eq 10.7

 

1 2
1

2

2
0Ag

Q

t

Q

A g

Q

x
F

y

x
S S f

∂
∂

+
∂
∂

+ −( )∂
∂

= −
 

(10.14a)

10.3 UNIFORMLY PROGRESSIVE  WAVE

A highly simplifi ed concept of a fl ood wave is a uniformly progressive wave in which 
the wave form is assumed to move with its shape unchanged. A particular case of this 
type of wave is a monoclinal wave consisting of only one limb joining two differing 
uniform fl ow water levels upstream and downstream of it. Figure 10.3(a) indicates 
a typical monoclinal wave which is sometimes approximated to the rising limb of a 
fl ood wave. In this the wave front moves with a uniform absolute velocity of V

w 
. For 

an observer who moves along with the wave at a velocity V
w  

,
 
the wave appears to be 

stationary. Hence, this unsteady fl ow situation can be converted into an equivalent 
steady-state fl ow by 

Fig. 10.3 (a) A monoclinal wave (b) Equivalent steady fl ow

y2

y1

V2

V1

VW

Monoclinal
wave

Unsteady flow
(a)

∇

y2

y1

(VW –V2)

(VW –V1)

θ

θ

∇

∇

Steady flow
(b)

superimposing a velocity (−V
w
  ) on the system (Fig. 10.3(b)). The continuity equa-

tion can then be written as

 Q
r
 = A

1
 (V

w
 − V

1
) = A

2
(V

w 
− V

2
) = A(V

w
 − V  )    (10.15)
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The quantity Q
r
 is termed as overrun. Simplifying,

 

V
AV A V

A A

Q

Aw =
−
−

=1 1 2 2

1 2

Δ
Δ

From this it may be seen that the maximum value of V
w
 is obtained as

            V
dQ

dAw m
( ) =  (10.16)

Since,          dA

dy
T=

            V
T

dQ

dyw m
( ) =

1
 (10.17)

For a wide rectangular channel, the normal discharge per unit width is

      q
n

y Sn =
1 5 3

0
1 2/ /

or,    
dq

dy n
y S Vn

n= =
5

3

1 5

3
2 3

0
1 2/ /

             where V
n
 = 

q

y
n =

 
normal velocity.

            Thus (V
w
)

m
 = k

w
 V

n
 (10.18)

where k
w
 = 1.67 for a wide rectangular channel. It can be shown that k

w
 = 1.44 and 

1.33 for wide-parabolic (R ≈ y) and triangular channels respectively. Field observa-
tions have indicated that for small rises in the fl ood stage, the absolute-wave veloci-
ties can be roughly estimated by Eq. 10.18.

Considering the equivalent steady-state fl ow

      

d

dt
V V

x
V V

dx

dt t
V Vw w w−( ) =

∂
∂

−( ) +
∂
∂

−( ) = 0

Since V
dx

dtw = =
 
constant, on simplifi cation,

       

∂
∂

= −
∂
∂

V

t
V

V

xw

Also, since
  

V V
Q

Aw
r= −

     

∂
∂

=
∂
∂

V

x

QT

A

y

x2
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Substituting these in the equation of motion (Eq. 10.7), it can be expressed as 

       
∂
∂

+ −
∂
∂

= −
y

x g
V V

V

x
S Sw f

1
0( )

i.e. 

∂
∂

=
−

−

y

x

S S

Q T

gA

f

r

0

2

3
1  (10.19)

This is the differential equation of a monoclinal rising wave. Note the similarity 
with the differential equation of GVF (Eq. 4.8). The profi le of the wave is obtained 
by integrating this equation. 

Equation 10.19 can be simplifi ed by considering the denominator to be approxi-
mately equal to unity for small velocities (i.e. by neglecting the effect of the velocity 
head) as 

       
∂
∂

= −
y

x
S S f0

                 = −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

S
S

S
S

Q

Q
f

n

0
0

0

2

2
1 1

where Q K Sn = 0  = normal discharge at any depth y and Q = actual discharge at 
that depth. On re-arranging,

      
Q

Q

y x

Sn

= −
∂ ∂

1
0

/
 (10.20)

In a uniformly progressive wave for any point on the wave profi le

         
dy

dt

y

t
V

y

xw=
∂
∂

+
∂
∂

= 0

and hence, 
∂
∂

= −
∂ ∂y

x

y t

Vw

/
 

Substituting in Eq. 10.20 leads to

      
Q

Q

y t

V Sn w

= +
∂ ∂

1
0

/
 (10.21)

This equation indicates that during the rising stages in a fl ood fl ow, the actual dis-
charge is larger than the discharge read by the normal stage-discharge relationship. 
Conversely, during the falling stages in a fl ood fl ow, the actual discharge is lower 
than that indicated by the normal stage-discharge curve. Equation 10.21 is used in 
hydrometry to correct the normal discharges read from a stage-discharge curve when 
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the depth is changing at a rate ( ∂y/∂t ). In using this formula for natural channels it 
is usual to assume V

w
 = 1.4 V

n
 , where V

n
 = Q

n 
/A in cases where V

w
 is not known. 

Also, the energy slope S
f
. is used in place of S

0
.

10.4 NUMERICAL METHODS

10.4.1 Classifi cation

The solution of St Venant equations by analytical methods, as already indicated, has 
been obtained only for simplifi ed and restricted cases. Graphical solutions are in use 
since a long time but are seldom preferred these days. The development of modern 
digital computers during the last three decades has given impetus to the evolvement 
of sophisticated numerical techniques. There are a host of numerical techniques for 
solving St Venant equations, each claiming certain specifi c advantages in terms of 
convergence, stability, accuracy and effi ciency. All such techniques can be broadly 
classifi ed into two categories:

1.  Approximate methods which are essentially based on equations of continuity 
and on a drastically curtailed equation of motion. The storage routing methods 
popularly adopted by hydrologists, Muskingum method, kinematic wave and 
diffusion analogy belong to this category.

2.  Complete numerical methods which aim to solve the basic St Venant equations 
through numerical modelling. Several individual methods under this category 
are available and they can be further classifi ed into sub-classes as in Table 10.1.

In the method of characteristics (MOC), the St Venant equations are converted 
into a set of two pairs of ordinary differential equations (i.e. characteristic forms) 

FEM

Numerical methods for St Venant equation

Approximate methods Complete numerical methods

Storage 

routing 

method

Muskingum 

methods

Kinematic 

wave 

models

Direct method MOC

Characteristics nodes Rectangular grid

Diffusion 

analogy

I E

 I = Implicit method MOC = method of characteristics

E = Explicit method  FEM = fi nite element method

I E
EI

Table 10.1 Classifi cation of Numerical Methods for Solving St Venant Equations
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448 Flow in Open Channels

and then solved by fi nite-difference methods. In the direct method, the partial 
derivatives are replaced by fi nite differences and the resulting algebraic equations 
are then solved. In the fi nite-element method (FEM) the system is divided into a 
number of elements and the partial differential equations are integrated at the nodal 
points of the elements.

The fi nite-difference schemes are further classifi ed into explicit and implicit 
methods. In the explicit method, the fi nite difference algebraic equations are usu-
ally linear and the dependent variables are extracted explicitly at the end of each 
time step. In the implicit method, the resulting algebraic equations are generally 
non-linear and the dependent variables occur implicitly. Each of these two methods 
has different schemes of fi nite differencing.

To start the solution all methods require an initial condition specifying the 
values of all the unknowns at an initial time for every computational section along 
the channel. In the usual subcritical fl ow, the upstream boundary condition is a 
hydrograph of the stage or discharge and the downstream boundary condition is 
normally a stage-discharge relationship. In the absence of a separate resistance 
formula for unsteady fl ows, the friction losses are estimated by using a uniform 
fl ow resistance equation, typically the Manning’s formula is used and in such 
a case,

   S
n V

R

n Q

A R

Q Q

Kf = = =
2 2

4 3

2 2

2 4 3 2/ /

where K = conveyance.

10.4.2 Method of Characteristics

Consider a unit width of a wide rectangular channel having a GVUF without lateral 

infl ow. Using the celerity of a small wave C = gy ,

   ∂
∂

=
∂
∂

y

x

C

g

C

x

2  (10.22 a)

and    
∂
∂

=
∂
∂

y

t

C

g

C

x

2
 (10.22 b)

Substituting these in the equation of continuity (Eq. l0.2) and noting that for a wide 
rectangular channel T = B = 1.0 and A = y = C2/g

 
2 2

0
2CV

g

C

x

C

g

V

x

C

g

C

t

∂
∂

+
∂
∂

+
∂
∂

=  (10.23)

The equation of motion (Eq. 10.7) by a similar substitution becomes,

 

2 1
0

C

g

C

x

V

g

V

x g

V

t
S S f

∂
∂

+
∂
∂

+
∂
∂

= −( )
 

(10.24)
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Dividing Eq. 10.23 by ± C, adding to Eq. 10.24 and re-arranging,

  
2 2 0( ) ( ) ( )C V

C

x

C

t
V C

V

x

V

t
g S S f±

∂
∂

±
∂
∂

+ ±
∂
∂

+
∂
∂

= −

On further simplifi cation,

  
( ) ( ) ( )V C

x t
V C g S S f±

∂
∂

+
∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

± = −2 0

 

(10.25 a, b)

 

If 
dy

dt
V C= ± ,  (10.26 a, b)

Eqs 10.26 a,b reduce to

 
d

dt
V C g S S f( ) ( )± = −2 0  (10.27 a, b)

It may be noted that Eqs 10.27 a, b are satisfi ed only when Eqs 10.26 a, b are satisfi ed. 
Equations 10.26 a, b represent two directions, designated as characteristics, namely

1. dx

dt
V C= + ,

 
called the positive characteristic: (C+ ) direction (Eq. 10.26 a).

2.
 

dx

dt
V C= − ,

 
called the negative characteristic: (C_ ) direction (Eq. 10.26 b).

Equations 10.27 a, b represent a pair of ordinary differential equations each valid 
along the respective characteristic direc-
tions and which can be solved by fi nite dif-
ference methods. Similarly, a set of complete 
equations can be developed for a general 
prismatic channel.

Considering an x-t plane, (Fig 10.4), if 
the depth and velocity are known at two 
points R and S, unknown values of the 
dependent variables can be found at a 
point P which is the intersection of the C

+
 

characteristic from R and C
-
 characteristic 

from S. Thus as a fi rst approximation, 
from Eq. 10.26 along the C

+
 line

 x
P
 − x

R
 = (V

R
 + C

R
) (t

P
 − t

R  
) 

and along the C_ line

 x
P
 − x

S
 = (V

S
 − C

S
) (t

P
 − t

S  
) 

x

t

P

S

R

C+
C–

  Fig. 10.4  Characteristic lines in the 

x-t plane
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450 Flow in Open Channels

Similarly, from Eq. 10.27,
for the C

+
 line

      (V
P
 − V

R
) + 2(C

P
 − C

R
) = g(S

0
 − S

f  R 
)(t

P 
− t

R
)

and for the C
–
 line

      (V
P
 − V

S 
) − 2(C

P
 − C

S 
) = g(S

0
 − S

f S 
)(t

P 
− t

s 
)

In these four equations there are four unknowns (t
P 
, x

P 
, V

P
 and C

P 
) which can be 

solved. The value of y
P
 is 

calculated from the relation 
y = C 2/g. Instead of the 
above simple fi nite differ-
encing, other procedures, 
such as the trapezoidal rule, 
can be adopted for better 
accuracy. This procedure of 
getting P as the intersection 
of two characteristics from 
known points R and S is 
called the characteristics-
grid method. For a complete 
numerical solution one 
boundary condition equation 

is needed at each end of the channel. A complete solution procedure can be built up on 
this basis. Let the information along the channel at time t be known at points 1, 2, 3, ..., i 
spaced Δ x

i
 apart (Fig. 10.5). Starting from any three points-say, 2, 3, 4-points R and S can 

be established. Point P is established by using points R and S and the procedure is repeated 
for the whole x-t plane. The main advantage of this method is that there is no interpolation 
but it also has the disadvantage in that the results are obtained at odd t and x values.

Another method of solving the characteristic equations is to adopt a rectangular grid 
work of known spacings in t and x axes (Fig. 10.6). The coordinates of M, O, N, and P 

are known. Flow information (V 
and C) is initially known at M, O, N 
and the values of V and C at point P 
are needed. If P is the intersection 
of two characteristics C

+
 and C− , 

then R is the intersections of C
+
 

characteristic PR with OM and S is 
the intersection of C− characteristic 
PS with NO. Then, as a fi rst 
approximation

OR

t
V C

Δ
= +0 0

 
and

 

SO

t
V C

Δ
= −0 0

where the suffi x ‘0’ denotes the 
values at point O. By interpolation between O and M, values of V

R
 and C

R
 are deter-

mined. Similarly, by interpolating between N and O, V
S
  and C

S
 are estimated.

1 2 3 4 x

P

SR

t

Fig. 10.5 Characteristic grid

t

x

M R

C+ C–

O

P

NS

Δx

Δt

Fig. 10.6 Rectangular grid
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Now using a fi nite-differencing method, the characteristic Eqs 10.25 a, b and 10.27 
a, b are solved to obtain V

P
 and C

P
 at the point P. The method is repeated for all the 

nodes of the grid. This method is known as the rectangular-grid method.
Basically, four schemes of calculations by MOC arc available. These are the 

implicit and explicit methods applied to each of the characteristic-grid and rectangu-
lar-grid framework (Table 10.1). The details of these various methods and their rela-
tive advantages are presented by Wylie1. Valuable information on MOC is given by 
Price2, Strelkoff 3 and Choudhry4.

The stability of MOC is governed by the Courant condition

 
Δ

Δ
t

x

V C
≤

±  
(10.28)

which puts a constraint on the mesh size. Equation 10.28 is automatically satisfi ed in the 
characteristics-grid method but a strict adherence to this condition is warranted in the 
rectangular-grid method. The time steps must be chosen keeping this constraint in mind.

10.4.3 Direct Numerical Methods

A wide variety of fi nite-difference schemes exist for solving St Venant equations. 
A few of these which are in common use are indicated in Table 10.2, in which the 
fi nite-difference approximations to the partial derivatives in the x-t plane and the 
order of truncation errors, are presented. The substitution of these

Table 10.2 Finite Diff erence Schemes for Solving St Venant Equations

M = f(x, t),  ε =  truncation error,   X = unknown 

•  = known

1. Diffusing scheme

Δx

Δ
t

t

x

j + 1

i + 1i − 1 i
j

∂M

∂t

j
Mi +1

j
Mi +1

j
Mi −1

Mi +1

Mi
 +1

j
Mi −1− 2

1 +

Δt

Δx Δx

∂M

∂x

=

∂M

∂x

j
Mi +1

j
Mi −1

2Δx

−
=

ε = 0 [Δ2]

2. Upstream differencing scheme
t

x

j + 1

i + 1i − 1 i

j

−
Δt

∂M

∂t
=

Δ
t

Δx

ε = 0 [Δ2]

j
Mi 

j
Mi 

j
Mi 

− −
= or

×

×

j

j

(Continued)
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452 Flow in Open Channels

approximations to partial derivatives in the St Venant equations result in algebraic 
equations for the unknowns. In these schemes, Δt and Δx values are fi xed to have a 
rectangular grid in the x-t plane.

(a) Explicit Method In the explicit fi nite-difference scheme, the St Venant equa-
tions are converted into a set of algebraic equations in such a way that the unknown 
terms (V and y) at the end of a time step are expressed by known terms at the begin-
ning of the time step. Consider, for example, the diffusion scheme. In this scheme 
(Fig. 10.7), values of V and y are known at R arid S and the values of V and y at point 

Fig. 10.7 Defi nition sketch for diff using scheme

R

P

S
x

t

ΔxΔx

Δt

j
Mi +1

j
Mi −1

Mi  +1 Mi −1

3. Leap-frog scheme

t

x

j + 1

j − 1

i + 1i − 1 i

j

Δ
t

Δx

ε = 0 [Δ3]

−∂M

∂x
=

2Δx

−∂M

∂t
=

2Δt

×

j j

j
Mi +1

j
Mi +1

Mi  +1

Mi +1

i + 1
Mj +1

i + 1Mj +1

j
Mi 

j
Mi 

4. Four point implicit scheme
t

x

j + 1

i + 1i
j

− −
2Δx
1 +∂M

∂x
=

− −
2Δt
1 +∂M

∂t
=

Δ
t

ε = 0 [Δ3]

Δx
×

j 

j

M = f(x, t),  ε =  truncation error,   X = unknown 
•  = known

Table 10.2 (Continued)
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P are desired. This is done by substituting the fi nite differences for ∂
∂

∂
∂

∂
∂

V

x

V

t

y

x
, , and 

∂
∂

y

t
as per the diffusion scheme in Table 10.2, into the St Venant equations. Thus

∂
∂

=
− +

Δ
y

t

y y y

t

P R S

1

2
( )

            

∂
∂

=
−
Δ

y

x

y y

x
S R( )

2

Similar expressions are obtained for 
∂
∂
V

t
 and 

∂
∂
V

x
 also.

Further,

S S Sf f S f R= +
1

2
( )

Substituting these in equations 10.2 and 10.7 and simplifying

 
V V V

t

x
V V g y y g t SP R S R S R S= + + − + −

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

+
1

2

1

2

1

2
2 2( ) ( ) ( )

Δ
Δ

Δ 00

1

2
− +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( )S Sf R f S

 
 (10.29)

 
y y y

t

x

Q Q

T TP R S
R S

R S

= + +
−
+

1

2
( )

( )

( )

Δ
Δ  

(10.30)

From these two equations the two unknowns V
P
 and y

P
 are solved. The procedure 

is repeated for all the nodes of the x-t plane grid. For stability the step sizes Δt and Δx 
must be so chosen that the Courant condition

 
C V

t

x
+ ≤

Δ
Δ

1
 

(10.31)

is satisfi ed throughout the computation space which in turn puts a limit on the size of 
time steps. Better accuracy than with the diffusion scheme is obtainable by following 
other schemes, such as the Leap-Frog or Lax-Wendroff schemes2. A variation of Lax-
Wendroff scheme, known as McCormack scheme has been widely used in fl ood rout-
ing using explicit scheme4.

(b) Implicit Method In implicit fi nite-difference schemes the partial derivatives 
and the coeffi cients are replaced in terms of values of the variables at known and 
unknown time level of the nodes of an elemental cell of size Δ x and Δ t. The 
unknown variables therefore appear implicitly in the algebraic equations. The set of 
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454 Flow in Open Channels

algebraic equations for the entire grid system will have to be solved simultaneously 
in these methods. Because of the large number of time steps required by an explicit 
method to route a fl ood in a channel, implicit methods which can use large time steps 
without any stability problems are preferred. Several implicit fi nite-difference 
schemes have been proposed for the solution of the St Venant equations. Out of these 
the schemes proposed by Preissmann4,5, Amein6,7, Strelkoff3, Abbot and Ionesq8, 
Beam and Warming9, and Ligget and Woolhiser10 are some of the popular schemes. 
A few essential details of Preissmann scheme, which is by far the most popular of the 
implicit schemes, are given below.

Preissmann Scheme The Preissmann scheme uses a four point weighted method 
at a point P as shown in Fig. 10.8. For a given variable M, such as depth y, stage h, or 
discharge Q, a weighing coeffi cient is used to approximate the derivatives and the 
coeffi cients are as below:

( i )  The time derivatives are

          

∂
∂

+ − +

Δ

+
+
+

+M

t

M M M M

t

i
j

i
j

i
j j

i�
( ) ( )1

1
1

1

2  

(10.32)

(ii) The space derivatives are

    

∂
∂

+
+

− −+
+ +

+M

x

M M

x

M M

x
i
j

i
j

i
j

i
j

�
α α( ) ( ) ( )1

1 1
11

Δ Δ  

(10.33)

Δx

Δx
2

Δx
2

(i + 1, j )

(i + 1, j + 1)

Δt

Δt ′ = αΔt

( i, j)

( i, j + 1)

P

Distance x

T
im

e
 t

Fig. 10.8 Defi nition sketch for Preissmann scheme
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(iii) The value of M as a coeffi cient is

     
M M M M Mi

j
i
j

i
j

i
j�

1

2

1

2
11

1 1
1α α+

+ +
++( )+ −( ) −( )

The value of
 
α =

Δ ′

Δ
t

t  
locates the point P along the time axis in the fi nite differ-

ence grid.
The Preissmann scheme is unconditionally stable for 0.50 ≤ α ≤ 1. For typical 

applications, a value of α in the range 0.55 to 0.70 is recommended in order to avoid 
higher order numerical oscillations.

Consider the St. Venant equations in the form of Eqs 10.10a and 10.10b with the 
discharge Q(x, t) and stage h(x, t) as the dependent variables. With

S
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the St Venant equations are
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(10.10c)

The application of the Preissmann scheme to the derivatives and the coeffi cients 
in the Eqs 10.10a and 10.10c results in
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The coeffi cients A and T are given by —
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Substituting these expressions in Eq. 10.10a and Eq. 10.10c,
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(10.35)

In these two Eqs 10.34 and 10.35 the terms having superscript j are known. The 
unknown terms are those having superscript (    j + 1) and can be expressed in terms of 

Q Q hi
j

i
j

i
j

, , ,
+

+
+ +1
1
1 1

 and hi
j
+
+
1
1
. As the unknowns are raised to the power other than unity, 

these equations are non-linear.

If there are a total of N grid lines at any j value with the upstream boundary as 
i = 1 and the downstream boundary as i = N, there will be (N – 1) grids at which the 
above equations are applicable. Thus there are (2N – 2) equations. Further, there are 
two unknowns at each of N grid points, totaling to 2N unknowns. The two additional 
equations to form the necessary set of equations are supplied by the boundary condi-
tions. In subcritical fl ows, one boundary condition is applied at the upstream end and 
another at the downstream boundary. In supercritical fl ows, however, both the bound-
ary conditions are applied at the upstream end.
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Unsteady Flows 457 

The upstream boundary condition is usually a known infl ow hydrograph, 

Qi
j+1 = f (t  j+1). The downstream boundary condition is usually a known stage-discharge 

relationship (i.e. channel rating curve) given as QN
j+1 = f hN

j+( )1 .The set of non-linear 

algebraic equations are solved by adopting an iterative procedure, such as Newton-
Raphson method.

It is generally recognized that while an implicit method is more diffi cult to pro-
gramme than an explicit method, it has stability, greater accuracy and has economy in 
computing time. Details on various numerical techniques can be had from Ref. [4, 5]. 
Extensive bibliography on unsteady fl ows in open channel fl ows is available in Ref. 
[11, 12].

The use of FEM to route fl oods in channels and natural streams is presented by 
Cooley and Moin,13 and King14. Szymkiewicz15 has presented an FEM algorithm to 
solve St. Venant euations for a channel network. Jie Chen16 has developed an approx-
imate formulation of St. Venant equations for natural channels which through the use 
of FEM can be used effectively to simulate dam break problems and fl ood routing in 
natural channels.

A large number of software are available, for unsteady fl ow simulation in general 
and for fl ood fl ow analysis/forecasting and dam break problem in particular. Among 
these, the HEC-RAS of U.S. Army Corps of Engineers, FLDWAV of U.S. NWS and 
MKE-11 of DIH, Denmark are very popular (2007). Among these, HEC-RAS is 
available along with user’s manual (http://www.hec.usaace.army.mill/software/hec-1  ) 
for download by individuals free of charge. Details of MIKE-11 are available at 
(http://www.dhigroup.com). BOSSDAMBRK (http://www.bossintl.com  ), which is 
commercial software, is an enhanced version of NWS DAMBRK model.

Example10.2  Determine the time derivative and space derivative of the fl ow 
rate Q by using Preisman scheme (α =0.65), when the discharges at various (x, t) 
values are as given below:

x =1000 m x= 1500 m

At t = 3.0h Q= 125.00 m3/s Q=115.00 m3/s

At t = 4.0 h Q= 140.00 m3/s Q= 120.00 m3/s

Solution Here Δt = 1.5 h = 5400 s and Δ x=500 m.

         Qi
j =125 00. m /s3

  
Qi

j
+ =1 115 00. m /s3

      Qi
j+ =1 140 00. m /s3

 
Qi

j
+
+ =1

1 120 00. m /s3
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10.5 RAPIDLY VARIED UNSTEADY FLOW – POSITIVE SURGES

10.5.1 Classifi cation

The rapidly-varied transient phenomenon in an open channel, commonly known 
under the general term surge, occurs wherever there is a sudden change in the 
discharge or depth or both. Such situations occur, for example, during the sudden 
closure of a gate. A surge producing an increase in depth is called positive surge 
and the one which causes a decrease in depth is known as negative surge. Further, 

y2
V2

V1
Vw

∇

∇y1

(d)
Type-4

Negative surge moving
upstream

y2V2

V1Vw
∇

∇

y1

Type-3

(c)

Negative surge moving
downstream

y2

y1

V2

V1

Vw

∇

∇

Type-1
(a)

Positive surge moving
downstream

y2y1

V2

∇

∇
Vw

V1

Type-2

(b)

Positive surge moving
upstream

Fig. 10.9 Types of surges
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a surge can travel either in the upstream or downstream direction, thus giving 
rise to four basic types [Fig. 10.9 (a,b,c,d)]. Positive waves generally have 
steep fronts –sometimes rollers also –and are stable. Consequently they can be 
considered to be uniformly progressive waves. When the height of a positive 
surge is small, it can have an undular front. Negative surges, on the hand, are 
unstable and their form changes with the advance of the surge. Being a rapidly-
varied flow phenomenon, friction is usually neglected in the simple analysis of 
surges.

10.5.2 Positive Surge Moving Downstream

Consider a sluice gate in a horizontal frictionless channel suddenly raised to cause a 
quick change in the depth and hence a positive surge travelling down the channel 
[Fig. 10.10(a)]. Suffi xes 1 and 2 refer to the conditions before and after the passage 
of the surge, respectively. The absolute velocity V

w
 of the surge can be assumed to be 

constant. The unsteady fl ow situation is brought to a relative steady state by applying 
a velocity (–V

w
) to all sections. The resulting fl ow is indcated in Fig. 10.10(b). In 

view of the possible loss of energy between Sections 2 and 1 in the equivalent steady 

Vw

Ny2

y1

V2
V1

∇

∇

M

Horizontal

(a)

Positive surge

1 2
(b)

∇

∇

(Vw − V2)

(Vw − V1)y2
y1

CV

Fig 10.10 (a) Positive surge moving downstream (b) Equivalent steady fl ow
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460 Flow in Open Channels

motion, the linear momentum equation is applied to a control volume enclosing the 
surge to obtain the equation of motion.
By the continuity equation,

   A
2 
(V

w
−V

2  
) = A

1 
(V

w
−V

1  
) (10.36)

The momentum equation, through the assumption of hydrostatic pressure at 
Sections 1 and 2, yields

 
γ γ

γ
A y A y

g
A V V V V V Vw w w1 1 2 2 1 1 2 1− = −( ) −( )− −( )⎡

⎣
⎤
⎦
 

(10.37)

From Eq. 10.36

      
V

A

A
V A A Vw2

1

2
1 1 21= + −( / )

Substituting this relation in Eq. 10.37,

       

( )V V g
A

A A A
A y A yw − =

−( )
−( )1

2 2

1 2 1
2 2 1 1

1

 

(10.38)

               
V V g A A A y A y A Aw = + ( ) −( ) −( )1 2 1 2 2 1 1 2 1/ /

 
(10.38a)

Since the surge is moving downstream, (V
w
 –V

1
) is positive and as such only the 

positive sign of the square root is considered practical.
For a rectangular channel, considering unit width of the channel. The continuity 

Eq. 10.36 is

           y
1
 (V

w
−V

1 
) = y

2
 (V

w
−V

2 
) (10.39)

The momentum equation 10.37 is simplifi ed as
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1

21
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2
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1 1 1 2γ γ
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y y
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y V V V Vw− = − −( )( )  (10.40)

From Eq. 10.39         V
y

y
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Substituting for V
2
 in Eq. 10.40 and on simplifying,

            V V

gy

y

y

y

y
w −( )

= +
⎛

⎝
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⎞

⎠
⎟⎟⎟⎟

1

2

1

2

1

2

1

1

2
1  (10.41)

The equation sets 10.36 and 10.38 and 10.39 and 10.41 contain fi ve variables y
1
, 

y
2
, V

1
, V

2 
and V

w
. If three of them are known, the other two can be evaluated. In most 

of the cases trial and error methods have to be adopted.

Chapter 10.indd   460Chapter 10.indd   460 2/24/2010   3:07:10 PM2/24/2010   3:07:10 PM



Unsteady Flows 461 

Example 10.3  A 3.0-m wide rectangular channel has a fl ow of 3.60 m3/s with a 
velocity of 0.8 m/s. If a sudden release of additional fl ow at the upstream end of the 
channel causes the depth to rise by 50 per cent, determine the absolute velocity of the 
resulting surge and the new fl ow rate.

Solution The fl ow is shown in Fig. 10.11(a). The surge moves in the downstream 
direction and the absolute velocity of the wave V

w
 is positive. By superposing (−V

w
) 

on the system the equivalent steady fl ow is obtained (Fig. 10.11 (b)).

Fig. 10.11 (a) Positive surge moving downstream (b) Simulated steady fl ow

Vw

V1 = 0.8 m/s

V2

y1 = 1.5 m

y2 = 2.25 m
∇
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(b)
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Vw
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y2
(Vw − V2)

(Vw − V1)

Here V
1
= 0.8 m/s, y

y

y1
2

1

3 60

0 8 3 0
1 5 1 5=

×
= =

.

. .
. . ,m,

    y
2
 =1.5×1.5 = 2.25 m Also V

2
 is positive.

For a positive surge moving downstream in a rectangular channel, by Eq. 10.41,

    

V V

g y
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462 Flow in Open Channels

    (V
-
−0.8)2 = 27.591 and by taking the positive root 

      V
w
 = 6.053 m/s

By continuity equation, y
1
 (V

w
−V

1
) = y

2
 (V

w
−V

2
) and

      

V
y
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⎛
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= ×

⎡

⎣
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⎦
⎥
⎥
+ −

⎡
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⎥
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2 25
0 8 1

1 5

2 25
6 053 2 551

.

.
.

.

.
. . m/s

New fl ow rate Q
2
 = B y

2
 V

2
 = 3.0 × 2.25 × 2.551

  =17.22 m3/s

Example 10.4  A rectangular channel carries a fl ow with a velocity of 0.65 m/s 
and depth of 1.40 m. If the discharge is abruptly increased threefold by a sudden lifting 
of a gate on the upstream, estimate the velocity and the height of the resulting surge.

Solution The absolute velocity of the surge is V
w
 along the downstream direction. 

By superimposing a velocity (−V
w
) on the system, a steady fl ow is simulated as 

shown in Fig. 10.12.

Fig. 10.12 Example 10.4
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Here             y
1
= 1.40 m and V

1
 = 0.65 m/s.

         V
2  
y

2
 = 3.0×1.40×0.65 = 2.73 m3/s.

By continuity equation,  y
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 (V
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 (V
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    1.40 (V
w
 − 0.65) = V

w
 y

2
 − 2.73

V
w
 (  y

2
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−( )
1 82

1 402

.

.

For a positive surge moving in the downstream direction, by Eq. 10.41
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By trial and error,      y
2 
= 1.76m. 

Height of surge                                  Δy = y
2
 − y

1
 = 1.76 – 1.40 = 0.36 m. 

                              Vw =
−

1 82

1 76 1 40

.

( . . )
 = 5.06 m/s (in the downstream direction).

10.5.3 Positive Surge Moving Upstream

Figure 10.13(a) shows a positive surge moving upstream. This kind of surge occurs 
on the upstream of a sluice gate when the gate is closed suddenly and in the phenom-
enon of tidal bores, (Fig. 10.1). The unsteady fl ow is converted into an equivalent 
steady fl ow by the superposition of a velocity V

w
 directed downstream [to the left in 

Fig. 10.13(a)]. As before, suffi xes 1 and 2 refer to conditions at sections of the chan-
nel before and after the passage of the surge, respectively.

(V1 + Vw) (V2 + Vw)y1

y2

VwVw

(b)

(a)

∇

∇
y2

y1 V2
V1

Vw

Fig. 10.13 (a) Positive surge moving upstream

(b) Simulated steady fl ow

Consider a unit width of a horizontal, frictionless, rectangular channel. Refferring 
to Fig. 10.13(b), the continuity equation is

 y
1
(V

w
 + V

1
) = y

2
(V

w
 + V

2
)  (10.42)
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It is seen that the equivalent fl ow (Fig. 10.13(b)) is similar to a hydraulic jump 
with initial velocity of (V

w
+V

1
) and initial depth of y

1
 The fi nal velocity is (V

w 
+ V

2
) 

and the depth after the surge is y
2
. By the momentum equation,

 
1

2

1

21
2

2
2

1 1 2 1γ γ
γ

y y
g

y V V V V V Vw w w− = + + − +[ ]( ) ( ) ( )  

     = + −
γ
g

y V V V Vw1 1 2 1( ) ( )  (10.43)

Using Eq. 10.42,                 V
y

y
V

y

y
Vw2

1

2
1

1

2

1= − −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟  

Substituting this relation, Eq. (10.43) is simplifi ed as

 ( )V V

g y

y

y

y

y
w +

= +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1
2

1

2

1

2

1

1

2
1  (10.44)

From Eqs 10.44 and 10.42, two of the fi ve variables y
1
 , y

2 
, V

1
, V

2
 and V

w
 can be 

determined if the three other variables are given. It is to be remembered that in real 
fl ow V

w
 is directed upstream. The velocity V

2
 however may be directed upstream or 

downstream depending on the nature of the bore phenomenon.

10.5.4 Moving Hydraulic Jump

The Type-1 and Type-2 surges viz. positive surges moving downstream and moving 
upstream respectively are often termed moving hydraulic jumps in view of their simi-
larity to a steady state hydraulic jump in horizontal channels described in Chapter 6 
(Sec. 6.2). This will be clear from a study of the simulated steady fl ow situations of 
the above two types of fl ows as depicted in Fig. 10.10 and Fig. 10.13. This similarity 
could be used advantageously to develop short cuts to predict some fl ow parameters 
of the positive surge phenomenon.

If the velocities relative to the wave velocity V
w
 (i.e., the fl ow situation as would 

appear to an observer moving along the surge with a velocity V
w
) are adopted, the 

relative velocity at Section 1 (V
r1

) can be represented as follows:

1. For Type-1 surge (surge moving downstream) V
r1 

= (V
w
–V

1
)

2. For Type-2 surge (surge moving upstream) V
r1 

= (V
w
+V

1
)

With this notation, both Figs 10.10 and 10.13 can be represented by a single 
Fig. 10.14 which is essentially same as that of a steady fl ow hydraulic jump.

Further, the Eqs 10.41 and 10.44 obtained by application of momentum equation 
in Type-1 and Type-2 cases can be expressed by a single equation as below by consid-
ering the two surges as a moving hydraulic jump as depicted in Fig. 10.14.
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V

gy
F

y

y

y

y
r

r
1
2

1
1
2 2

1

2

1

1

2
1= = +

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪
 (10.45)

which is of the same form as Eq. 6.3(b) of steady fl ow hydraulic jump. Using this 

similarity of form, the ratio y

y
2

1

 of the moving hydraulic jump, which is equivalent 

to the sequent depth ratio of a steady state hydraulic jump, is given by

              y

y
Fr

2

1
1
21

2
1 1 8= − + +⎡

⎣⎢
⎤
⎦⎥
 (10.46)

The energy loss in the moving hydraulic jump would, by similarity to steady state 
hydraulic jump, be given by

 E
y y

y yL =
−( )2 1

3

1 24
 (10.47)

which is independent of F
r 1

. Note that Eqs 10.45 and 10.46 are applicable to both 
Type-1 and Type-2 surges when the relative velocity V

r1
 appropriate to the type of 

surge under study is used. That the concept of treating positive surges as moving 
hydraulic jump enables the relationships of some parameters to be expressed in a 
compact form is apparent.

Example 10.5  A 4.0-m wide rectangular channel carries a discharge of 12.0 m3/s 
at a depth of 2.0 m. Calculate the height and velocity of a surge produced when the fl ow 
is suddenly stopped completely by the full closure of a sluice gate at the downstream 
end.

Solution A positive surge with a velocity (–V
w  

) i.e., travelling upstream, will 
be generated as a result of the sudden stopping of the fl ow, (Fig. 10.15(a)). By 
superimposing a velocity V

w
 on the system, a steady fl ow is simulated as shown 

in Fig. 10.15(b).

Vr1

 Vr2

y2

y1

2

1

Fig. 10.14 Moving hydraulic jump
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Here, y 
1
= 2.0 m,        V1

12 0

2 0 4 0
1 5=

×
=

.

. .
. m/s  

V
2 
= 0  and  y

2 
> 2.0

By continuity equation, Eq. 10.42, y
1
(V

w 
+ V

1
) = y

2
(V

w
 + V

2
)

      2.0(1.5 +V
w
) = V

w  
y

2 

 V
yw =

−
3 0

2 02

.

.  

For a positive surge moving in the upstream direction, by Eq. 10.44

 ( )V V

gy

y

y

y

y
w +

= +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1
2

1

2

1

2

1

1

2
1  

                 1 5
3 0

2 0
9 81 2 0

1

2 2 0 22

2

2 2.
.

.
. .

. .
+

−

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

= × × ×
y

y y

00
1+

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟  

            
1 5

2 0
2 4525 2 02

2

2

2 2

.

.
. ( . )

y

y
y y

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ = +

 

Solving by trial and error, y
2
=2.728 m.

Height of the surge Δy = y
2
 – y

1
 = 0.728 m.

Velocity of the surge Vw =
−

=
3 0

2 728 2 0
4 121

.

. .
. m/s  in the simulated fl ow. Hence, 

the surge is of height 0.728 m and moves upstream with a velocity of 4.121 m/s.

y2

y1

(V1 + Vw)

∇

∇

∇

∇

Vw Vw

Vw

y2y1 = 2.0 m
1.5 m/s

V1

V2 = 0

Vw

Gate

Gate
(a) Positive surge moving upstream

(b) Simulated steady flow

Fig. 10.15 Example 10.5
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Example 10.6  In a tidal river the depth and velocity of fl ow are 0.9 m and 1.25 
m/s respectively. Due to tidal action a tidal bore of height 1.2 m is observed to travel 
upstream. Estimate the height and speed of the bore and the speed of fl ow after the 
passage of the bore.

Solution Let V
w
 (directed downstream) be the velocity of the bore. Superimpose a 

velocity (–V
w
) on the system to get simulated fl ow as shown in Fig. 10.16.

Here y
1
 = 0.9 m, V

1
 = 1.25 m/s,

 y
2
 = 0.9 + 1.20 = 2.10 m.

For a positive surge moving in the upstream direction, by Eq. 10.44 

 ( )V V

gy

y

y

y

y
w +

= +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1
2

1

2

1

2

1

1

2
1  

 ( . )
. . .

.

.

.
. .Vw + =

×
× × +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ =1 25

9 81 0 9

2

2 1

0 9

2 1

0 9
1 0 34 3352  

Taking the positive root, V
w
 = 4.61 m/s

∇

∇

y1 = 0.9 m

y2 = 2.10 m
V1 + Vw

V2 + Vw

Vw
Vw

Fig. 10.16 Simulated steady fl ow

By continuity equation, Eq.10.42,  y
2
(V

w
 + V

2
) = y

1
(V

w
 + V

1
)

 2.1 (4.61 + V
2
) = 0.9 (4.61 + 1.25) 

                                            V
2 
= –2.1 m/s

The bore has a velocity of 4.61 m/s and travels upstream. The river has a velocity 
of 2.1 m/s directed upstream after the passage of the bore.

10.6 RAPIDLY VARIED UNSTEADY FLOW – NEGATIVE SURGES

10.6.1 Celerity and Stability of the Surge

The velocity of the surge relative to the initial fl ow velocity in the canal is known as 
the celerity of the surge, C

s
. Thus for the surge moving downstream C

s
=V

w
–V

1
 and 

for the surge moving upstream C
s
=V

w
+V

1.
 From Eqs 10.41 and 10.44 it is seen that 

in both the cases
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 C g
y

y
y ys = +

1

2
2

1
1 2( )  (10.48)

For a wave of very small height y
2
 → y

1
 and dropping suffi xes, C gys = , a result 

which has been used earlier.
Consider a surge moving downstream. If the surge is considered to be made up of 

a large number of elementary surges of very small height piled one over the other, for 
each of these V V gyw = +1 . Consider the top of the surge, (point M in Fig. 10.10(a)). 
This point moves faster than the bottom of the surge, (point N in Fig. 10.10(a)). This 
causes the top to overtake the lower portions and in this process the fl ow tumbles 
down on to the wave front to form a roller of stable shape. Thus the profi le of a posi-
tive surge is stable and its shape is preserved.

In a negative surge, by a similar argument, a point M on the top of the surge moves 
faster than a point on the lower water surface (Fig. 10.17). This results in the stretch-
ing of the wave profi le. The shape of the negative surge at various time intervals will 
be different and as such the analysis used in connection with positive surges will not 
be applicable.

∇

∇

y2

y1

Vw1

Vw1Δ t

Vw2

M

N

Vw

Vw2

At t ime t

At t ime
t  + Δ t

Δ t

Fig. 10.17 Stretching of a negative surge

For channels of small lengths, the simple analysis of a horizontal frictionless chan-
nel gives reasonably good results. However, when the channel length and slope are 
large, friction and slope effects have to be properly accounted for in a suitable way. 
Further, changes in the geometry, such as the cross-sectional shape, break in grade and 
junctions along the channel infl uence the propagation of surges. A good account of the 
effect of these factors is available in literaturer17,18.

10.6.2 Elementary Negative Wave

Since the shape of a negative surge varies with time due to the stretching of the 
profi le by varying values of V

w
 along its height, for purposes of analysis the nega-

tive surge is considered to be composed of a series of elementary negative wavelets 
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of celcrity gy  superimposed on the existing flow. Consider one such elemen-
tary negative wave of height δy as in Fig. 10.18(a). The motion is converted to 
an equivalent steady-state fl ow by the superimposition of a velocity (–V

w 
) on the 

system. The resulting steady fl ow is indicated in Fig. 10.18(b). The continuity and 
momentum equations are applied to a control volume by considering the channel to 
be rectangular, horizontal and frictionless. The continuity equation is

 (V
w
–V

2
) y

2
 = (V

w
–V

1
) y

1 

Putting V
1
 = V, y

1
 = y and V

2
= V– δV and y

2
 = y – δy and simplifying by neg-

lecting the product of small terms.

    δ δV y V V yw= −( )  

Fig. 10.18 (a) Elementary negative wave

(b) Equivalent steady fl ow

∇

∇

∇

∇

Horizontal
frictionless

Horizontal
frictionless

(b)

CV

CV

(a)

2

2

1

1

(Vw − V2)

(Vw − V1)
y1

y1

y2

y2

δy

δy
Vw

V1

V2

Chapter 10.indd   469Chapter 10.indd   469 2/24/2010   3:07:13 PM2/24/2010   3:07:13 PM



470 Flow in Open Channels

or δ
δ
V

y

V V

y
w=

−
 (10.49)

By applying the momentum equation to a control volume enclosing the 
Sections 1 and 2 in the direction of equivalent steady fl ow

 
γ γ
2 21

2
2
2

1 1 2 1y y V V y V V V Vw w w−( ) = −( ) −( )− −( )⎡
⎣

⎤
⎦  

Introducing the notation as above and neglecting the product of small quantities the 
momentum equation simplifi es to

 δ
δ
V

y

g

V Vw

=
−( )

 (10.50)

Combining Eqs 10.47 and 10.46

 (V
w 

– V
 
)2 = C 2 = gy  

or          C gy= ±  (10.51)

in which C = celerity of the elemental at negative wave.
Also from Eq. 10.47

  δ
δ
V

y
g y= ± /  

As δ y → 0,  dV

dy
g y= ± /  (10.52)

Equation 10.52 is the basic differential equation governing a simple negative 
wave which on integration with proper boundary conditions enables the determina-
tion of the characteristics of a negative wave.

10.6.3 Type 3 Negative Wave Moving Downstream

Consider a sluice gate in a wide rectangular channel passing a flow with a 
velocity of V

1
 and a normal depth of flow of y

1
 in the channel downstream of 

the gate. Consider the sluice gate to partially close instantaneously. Let the new 
velocity and depth of flow at the gate be V

0
 and y

0
 respectively. The closure 

action of the gate would cause a negative wave to form on the downstream 
channel (Type 3 wave) and the wave would move in the downstream direction 
as shown in Fig. 10.19. The velocity V and depth y at any position x from the 
gate is obtained by integrating the basic differential equation of a simple nega-
tive wave given by Eq. 10.52.

For the negative wave moving downstream, positive sign in Eq. 10.52 is adopted 
and the resulting basic differential equation is
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dV

dy
gy=  

On integration  V gy= +2 Constant  

Using the boundary condition  V = V
1 
at y = y

1

    V V gy gy= + −1 12 2  (10.53)

Since the wave travels downstream C V V gyw= − =

Hence V V gyw = +  

                       = + −V gy gy1 13 2  (10.53a)

If the gate movement is instantaneous at t = 0, with reference to the co-ordinates 
shown in Fig. 10.19, V

w
 is in the direction of positive x and hence the profi le of the 

negative wave surface is given by V
dx

dtw =

               x = V
w 

t 

                        x V gy gy t= + −( )1 1
3 2  (10.54)

Equation l0.54 is the expression for the profi le of the negative wave in terms of x, 
y and t. This equation is valid for the values of y between y

0
 and y

1
.Substituting in 

Eq. 10.54, the value of gy  obtained from Eq. 10.53,

V2

y2

V1

Vw

y1V
y

∇

Fig. 10.19 Type-3 negative surge moving downstream
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    x
V

V gy t= − + +
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1
12

3

2  

or  V
x

t

V
gy= + −

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2

3 3

2

3
1

1  (10.55)

Equation 10.55 gives the value of velocity in terms of x and t.
Note that the Eqs 10.50, 10.51 and 10.52 can be used for instantaneous complete 
closure also, in which case V

0
= 0 and y

0
 = 0.

Example10.7  A sluice gate in a wide channel controls the fl ow of water. When 
the fl ow in the downstream channel was at a depth of 2.0 m with a velocity of 4.0 m/s, 
the sluice gate was partially closed, instantaneously, to reduce the discharge to 25% 
of its initial value. Estimate the velocity and depth at the gate as well as the surface 
profi le of the negative wave downstream of the gate.

Solution Let suffi x 1 refers to fl ow conditions before the gate closure and suffi x 2 
conditions after the passage of negative wave.
Prior velocity V

1
 = 4.0 m/s

New discharge             q V y=
×

= =
4 0 2 0

4
2 0 1 1

. .
. m /s3  

From Eq. 10.50,  V V gy gy= + −1 12 2  

                 
V y2 24 0 2 9 81 2 9 81 2 0= + − ×. . . .

 

 V y2 26 2642 4 8589= −. .  (10.56)

Also                                   V
2
 y

2
 = 2.0 (10.57)

Solving by trial and error,     V
2
 = 1.781 m/s  and  y

2
 = 1.123 m 

For the profi le substituting for V
1
 and y

1
 in Eq. 10.51

     x V gy gy t= + −( )1 13 2  

                        = + − ×( )4 0 3 9 81 2 9 81 2 0. . . .y t  

                                                x y t= −( )9 396 4 859. .  (10.58)

Equation (c) represents a parabola, concave upwards, and holds good for values of y 
in the range 1.123 m to 2.0 m.
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10.6.4 Type 4 – Negative Surge Moving Upstream

Figure 10.20 shows a negative surge produced by instantaneous raising of a sluice 
gate located at the downstream end of a horizontal, frictionless channel. Type-4 negative 
wave which starts at the gate is shown moving upstream.

Integrating the basic differential equation , Eq. 10.51, the relationship between the 
velocity and depth is obtained as

 V gy= − +2 constant  (10.59)

Using suffi xes 1 and 2 to denote conditions before and after the passage of the wave 
respectively, and using the boundary condition V = V

1
 at y = y

1

  V V gy gy= + −1 12 2  (10.60)

Note that the negative sign of Eq. 10.52 has been used in deriving Eq. 10.59. This is 
done to obtain positive values of V for all relevant values of depth y.
The celerity of the wave C in this case is

 C V V gyw= + =  

or                                              V gy Vw = −  

            = − −3 2 1 1gy gy V  (10.61)

With reference to the co-ordinate system shown in Fig. 10.20, the wave velocity V
w
 is 

negative in major part of the wave and positive in the lower depths. Considering

 V
dx

dtw = −  

the profi le of the negative wave is given by

 ( )− = = − −( )x V t gy gy V tw 3 2 1 1  (10.62)

y1

Vw

V1 
V

x

y

Fig. 10.20 Type – 4 negative surge moving downstream
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10.6.5 Dam Break Problem

A particular case of the above Type-4 negative surge is the situation with V
1
= 0. This 

situation models the propagation of a negative wave on the upstream due to instan-
taneous complete lifting of a control gate at a reservoir. This ideal sudden release of 
fl ow from a reservoir simulates the sudden breaking of a dam holding up a reservoir 
and as such this problem is known as Dam Break problem.

Figure 10.21 shows the fl ow situation due to sudden release of water from an 
impounding structure. This is a special case of Type-4 wave with V

1 
= 0. The co-

ordinate system used is : x = 0 and y = 0 at the bottom of the gate; x is positive in the 
downstream direction from the gate and negative in the upstream direction from the 
gate;, y is positive vertically upwards. By Eq. 10.61

 V gy gyw = −3 2 1  (10.63)

V1 = 0
y1

y

y at x = 0

Gate x = 0

x

V

x
Positive
Surge

Fig. 10.21 Dam break Problem

and by Eq. l0.60 the velocity at any section is

   V gy gy= −2 21  (10.64)

The water surface profi le of the negative wave is

 ( ) ( )− = −x gy gy t3 2 1  (10.65)

The profi le is a concave upwards parabola. The conditions at the gate are interest-
ing. At the gate, x = 0 and using the suffi x 0 to indicate the values at the gate, from 
Eq.10.65

                                                     y y0 1

2

3
=  
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i.e.,                                                   y y0 1

4

9
=  (10.66)

Note that y
0
 is independent of time and as such is constant. The salient features of the 

wave profi le are as follows:

At y = 0   x t gy= 2 1  

At y = y
1
    x t gy= − 1  and

At x = 0    y y=
4

9 1

The velocity at the gate V
0
 by Eq. 10.64 is

 V gy s0 1

2

3
=  (10.67)

The discharge intensity   q V y gy y= =
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟0 0 1 1

2

3

4

9
 

        =
8

27 1
3gy  (10.68)

which is also independent of time t.
Note that the fl ow is being analyzed in a horizontal frictionless channel and as such 

the depth y
1
 with V

1
= 0 represents the specifi c energy, E. At the gate axis (x = 0)

 y y E0 1

2

3

2

3
= = = Critical depth  

Also at x = 0, the Froude number of the fl ow F
V

gy

gy

g y
0

0

0

1

1

2

3

4

9

1 0= =
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

= . . Thus 

the fl ow at the gate axis is critical and the discharge maximum. Further, it is easy to 
see that upstream of the gate the fl ow is subcrtical and on the downstream of the gate 
(for positive values of x) the fl ow is supercritical.

This simple ideal analysis of a sudden release from an impounding structure 
is found to give satisfactory results for a major part of the profi le. However, in real situ-
ation the downstream end is found to have a rounded positive wave instead of the para-
bolic profi le with its vertex on the x-axis. In actual dam break the tapered leading edge 
of the ideal profi le is modifi ed due to action of ground friction to cause a positive surge 
to move downstream. Details about dam break analysis are found in Refs. 4 ,19 & 20.

10.6.6 Partial lifting of Downstream Gate

A variation of the dam break problem is the case of partial instantaneous lifting of the 
downstream gate from initial closed position. A simple case of a sluice gate in a rect-
angular channel of width B is analyzed as follows.
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Consider the sluice gate to be suddenly raised by an amount a from an initial 

closed position. If a y≥
4

9 1 , then it amounts to full raised position as indicated in the 

previous section and the analysis is that of the dam break problem. However, if 

a y<
4

9 1 , then it is partial closure and an analysis for such a case is given below.

Fig. 10.22 Parial lifting of downstream gate

∇

y1

Vw

V1 = 0
V

y

x
h0

Q0

Refer to Fig. 10.22. Before the operation of the gate, the water upstream of the 
gate is at rest at a depth y

l
. The gate is lifted instantaneously, and partially, so that 

h
0
 = drawdown at the gate. A negative wave produced by this action travels 

upstream with a wave velocity V
w
 given by Eq. 10.61 and a forward fl ow velocity 

V is created and is described by Eq. 10.53. Since V
1
 = 0, Eq. 10.61 and 10.60 

become,

 V gy gyw = −3 2 1
 

      V gy gy= − +2 2 1
 

At x = 0  y
0
 = (  y

1
 –h

0 
) and velocity V= V

0

Thus               V gy g y h0 1 1 02 2= − −( )  (10.69)

The discharge Q
0
 = By

0
V

0
 which is constant as V

0
 and y

0
 do not change with time. Q

0 

can be expressed in terms of h
0
 and y

1
 for substituting for y

0
 and V

0
, as

 Q
0 
= B (  y

1
–h

0 
) 2 21 1 0gy g y h− −( )( )  

On simplifi cation, an expression for the discharge can be obtained in non-dimen-
sional form as

 
Q

By gy

h

y

h

y
0

1 1

0

1

0

1

2 1 1 1= −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

− −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 (10.70)
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Wave Profi le: The profi le of the negative wave at any time t is given as

 (− x) = V
w 

t = ( 2 gy1
−3 gy ) t (10.71)

where y = depth of fl ow at any (x, t).

Example 10.8  A reservoir having water to a depth of 40 m undergoes an instan-
taneous, ideal, dam break. Estimate the depth and discharge intensity at the dam site 
and the water surface profi le of the negative wave 3 seconds after the dam break. 

Solution The water surface profi le with positive x in the downstream of the gate 
axis, is by Eq. 10.65 is

 (–x) = 3 2 1gy gy t−( )  

                   (–x) = 3 9 81 2 9 81 401. .× − ×( )y t  

     x = 39.62 t − 9.396 y  

At  x = 0,       y = y
0
 = (39.62/9.396) = 17.78 m.

Velocity at x = 0, V = V
0
 = 

2

3 1gy  = 
2

3
9 18 40. ×  = 13.21 m/s 

Profi le after 3 seconds: x = 39.62 × 3 – 9.396 × 3 y

                               : x = 118.86 – 28.188 y

Example 10.9  A wide rectangular horizontal channel is passing a discharge 
of 1.5 m3/s/m at a depth of 3.0 m. The fl ow is controlled by a sluice gate at the 
downstream end. If the gate is abruptly raised by a certain extent to pass a fl ow of 
3.0 m3/s/m to the downstream, estimate (i) the new depth and velocity of fl ow in the 
channel at a section when the negative surge has passed it, (ii) the maximum wave 
velocity of the negative surge, and (iii) profi le of the negative surge.

Solution This is a case of Type-4 wave, where the negative wave moves upstream. 
Using the suffi x 1 for the conditions before the passage and 2 for conditions after the 
passage of the negative wave and suffi x 0 to the position of the gate,
Velocity at any section

V = V
1
 + 2 gy1 –2 gy . Here y

1
 = 3.0 m and V

1
 = 1.5/3. 0 = 0.5 m/s.

                          V = 0.5 + 2 9 81 3 0. .× − 2 9 81. × y  

 =11.35 − 6.264 y  (10.72)
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478 Flow in Open Channels

After the passage of wave, V
2
 = 3.0/y

2
 and from Eq. 10.72 V

2
 = 11.35−6.264 y

By trial and error, y
2
 = 2.66 m and V

2
= 1.13 m/s.

Velocity of wave, by Eq. 10.61:  V
w
 = 3 gy − 2 gy1 – V

1

  = 3 gy − 2 9 18 3 0. .× − 0.5 = 3 gy −11.35

V
w
 is maximum at y = y

1
 and hence max. V

w
 = 3 9 81 3 0. .× −11.35 = 4.925 m/s

Wave profi le is given by Eq. l0.62 as (−x) = 3 2 1 1gy gy V t− −( )
−x = 3 9 81 2 9 81 3 0 0 5. . . .y t− × −( )  

  x = 11 35 6 264. .−( )y t

(The profi le is in the negative x direction.)
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 PROBLEMS 

Problem Distribution

Topic Problems

1 Equation of motion of GVUF 10.1–10.2

2 Monoclinal wave 10.3

3 Positive surge 10.4–10.13

4 Negative surge 10.14–10.16

10.1  Show that the continuity equation for a GVUF in a non prismatic channel with no lateral 
in fl ow is

 A 
∂
∂
V

x
+VT 

∂
∂

y

x
+ εyV 

∂
∂
T

x
+ T 

∂
∂

y

x
 = 0 

where ε = a coeffi cient which depends on the nature of the non-prismaticity of the chan-
nel with ε = 0.5 and 1.0 for triangular and rectangular channels respectively.

10.2  Derive the equation of motion for GVUF in a channel having a lateral outfl ow q per unit 
length as

∂
∂

y

x
 + 

V

g

∂
∂
V

x
 + 

1

g

∂
∂
V

t
 = S

0
– S

f
 – D

L 

where D
L 
= 0 for bulk lateral outfl ow as over a side spillway, and D

L
=

V u

Ag

−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟  q for lat-

eral infl ow with x component of the infl ow velocity = u;
10.3  Show that by using the Chezy formula with C = constant, the ratio (V

w
)

m 
/V

n
 of a mono-

clinal wave is 1.50 and 1.25 for wide rectangular and triangular channels respectively.
10.4  Show that the celerity of a positive surge in a prismoidal channel can be approximated 

for small surge heights h relative to the area A as

 C ≈ + + +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

g
A

T
h

Th

A

3

2 2

2

≈ + +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟g

A

T
h

3

2
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480 Flow in Open Channels

 10.5  For a positive surge travelling in a horizontal rectangular channel, fi ll in the blanks in 
the following table

Sl. No. y
1 
(m) V

1
 (m/s) y

2
 (m) V

2
 (m/s) V

H 
(m/s)

a 2.00 1.50 4.00 − −

b 1.00 1.75 − − +5.50

c 1.75 0.70 − − −5.00

d – 3.00 1.50 − −3.00

e 0.30 − 0.60 −   3.50

 10.6  At a point in a shallow lake, a boat moving with a speed of 20 km/h is found to create a 
wave which rises 35 cm above the undisturbed water surface. Find the approximate 
depth of the lake at this point.

 10.7  A positive surge is often known as a moving hydraulic jump. Obtain an expression in 
terms of depths y

1
 and y

2
 for the energy loss in a moving hydraulic jump in a horizontal 

rectangular channel. Estimate the energy loss when y
1
 = 0.9 m and y

2
 = 2.10 m.

 10.8  A rectangular channel carries a discharge of 1.50 m3/s per metre width at a depth of 0.75 
m. If the sudden operation of a sluice gate at an upstream section causes the discharge 
to increase by 33 per cent, estimate the height and absolute velocity of the positive 
surge in the channel.

 10.9   The depth and velocity of fl ow in a rectangular channel are 0.9 m/s and 1.5 m/s respec-
tively. If a gate at the downstream end of the channel is abruptly closed, what will be the 
height and absolute velocity of the resulting surge?

10.10  A 2.0 m wide rectangular channel, 2 km long carries a steady fl ow of 4.6 m3/s at a depth 
of 1.15. The sides of the channel are 2.0 m high. If the fl ow is suddenly stopped by the clo-
sure of a gate at the downstream end, will the water spill over the sides of the channel ?
 If there is no spillage, what minimum time interval must elapse before the arrival of the 
surge at the upstream end?

10.11  A trapezoidal canal with B = 5.0 m and side slope 1H : 1V, carries a discharge of 30.0 m3/s 
at a depth of 3.0 m. Calculate the speed and height of a positive surge (i) if the fl ow in 
the canal is suddenly stopped by the operation of a gate at a downstream section, (ii) if 
the discharge is suddenly increased to 45.0 m3/s
(Hint: Use the equation for the celerity given in Problem 10.6 and a trial-and-error 
procedure).

10.12  A wide tidal river has a low water velocity of 1.5 m/s and a depth of fl ow of 2.5 m. 
A tide in the sea causes a bore which travels upstream, (a) If the height of the bore is 
0.90 m, estimate the speed of the bore and the velocity of fl ow after its passage, (b) If 
the bore is observed to cover a distance of 2.5 km in 10 minutes determine its height.

10.13  Show that in a positive surge moving down a rectangular channel with absolute velocity 
V

w 
, the depths before the passage of the surge y

1
 and after the passage are related by a 

function of the Froude number of the relative velocity.
10.14  A wide rectangular channel carries a discharge of 10 m3/s /m at a depth of 3.0 m. Through 

operation of a gate at its upstream end, the discharge is reduced instantaneously to 4.0 m3/s. 
Estimate the height of the negative wave and the velocity of fl ow in the channel downstream 
of the gate after the event.

10.15  A small dam stores 9 m of water in the reservoir created by it. If a wide section of the 
dam collapse instantaneously, using the ideal dam break solution, estimate the dis-
charge, depth of fl ow at the axis of the dam and surface profi le 2 s after the dam break.
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Unsteady Flows 481 

10.16  A negative wave of 0.75-m height is produced in a rectangular channel due to the sudden 
lifting up of a gate. The initial depth upstream of the gate is 3.0 m. (a) Determine the dis-
charge per unit width through the gate and the profi le of the negative wave at 4.0 s after 
the gate is opened. (b) What will be the discharge if the gate is lifted up by 2.0 m?

 OBJECTIVE QUESTIONS

10.1  In a gradually varied unsteady, open-channel fl ow dQ dx/  = 0.10. If the top width of 
the channel is 10.0 m, ∂ ∂A t  is

(a) 0.1         (b) 0.01      (c) –0.1            (d) –0.01
10.2  The equation of motion of GVUF differs from the differential equation of GVF by one 

essential term. This term is

(a) 
1

g

V

t

∂
∂

    (b) 
∂
∂
V

t
    (c) 

1

g

V

t

∂
∂

     (d) 
∂
∂

y

x

10.3  In a uniformly progressive wave the maximum value of the absolute wave velocity V
w
 is 

equal to

(a) 
∂
∂
Q

t
      (b) 

∂
∂
A

t
         (c) 

∂
∂
Q

x
          (d) 

∂
∂
Q

A

10.4  In a fl ood the water surface at a section in a river was found to increase at a rate of 5.6 
cm/h. If the slope of the river is known to be 1/3600 and the velocity of the fl ood wave 
is assumed as 2.0 m/s, the normal discharge for the river stage read from the stage dis-
charge curve Q

n
 is related to the actual discharge Q as Q/ Q

n
 equal to

(a) 1.014        (b) 0.96     (c) 0.822      (d) 1.404
10.5  The stage discharge relation in a river during the passage of a fl ood wave is measured. If 

Q
R
= discharge at a stage when the water surface was rising and Q

F
= discharge at the 

same stage when the water was falling then
(a) Q

F 
= Q

R                      
    (b) Q

R 
> Q

F

(c) Q
R 

< Q
F
                 (d) Q

R 
/ Q

F
= constant for all stages

10.6  In the method of characteristics applied to fl ood routing, the St Venant equations are 
converted into
(a) four differential equations            (c) one ordinary differential equation
(b) two ordinary differential equations      (d) four partial differential equations

10.7  The Courant stability criteria in the method of characteristics requires Δ Δt x/  be

(a) ≤
1

V                     (b) > 1

V C±

(c) ≤ ±V C                (d) ≤
±
1

V C

10.8  In explicit fi nite-difference schemes for solving St Venant equations the Courant condi-
tion to be satisfi ed throughout the computational space is

(a) 
Δ
Δ

x

t
C V+ ≤1            (b) 

Δ
Δ

t

x
C V+ ≤1

(c) 
Δ
Δ

x

t
C V+ ≥1                 (c) 

Δ
Δ

t

x
C V+ ≥1
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 10.9  In fi nite-difference schemes for solving St Venant equations
(a) the explicit schemes are unconditionally stable
(b) the implicit schemes require Courant conditions to be satisfi ed
(c) The implicit schemes are stable for values of the weighing coeffi cient α ≤ 0.5.
(d) None of the above statements is correct.

10.10  A positive surge of height 0.50 m was found to occur in a rectangular channel with a 
depth of 2.0 m. The celerity of the surge is in m/s
(a) ± 4.43      (b) ± 2.25    (c) ± 1.25       (d) ± 5.25

10.11  A trapezoidal channel with B = 0.6 m, m = 1.0 and depth of fl ow = 2.0 m has a positive 
surge of height 0.80 m. The celerity of the surge in m/s
(a) ± 4.43       (b) ± 9.5      (c) ± 3.5          (d) none of these

10.12  A stone thrown into a shallow pond produced a wave of amplitude 2 cm and velocity of 
1.80 m/s. The depth of the pond in m is
(a) 1.80           (b) 0.33       (c) 0.30          (d) 0.02

10.13  A tidal bore is a phenomenon in which
(a) a positive surge travels upstream in a tidal river with the incoming tide
(b) a positive surge travels downstream in a tidal river with the incoming tide.
(c) a positive surge travels downstream in a tidal river with the outgoing tide
(d) a negative surge is associated with an incoming tide

10.14  In a negative surge
(a) the wave velocity V

w
 is constant

(b) the celerity is always negative
(c) the water surface is a uniformly progressive wave
(d) the celerity varies with depth

10.15  A canal has a velocity of 2.5 m/s and a depth of fl ow 1.63 m. A negative wave formed 
due to a decrease in the discharge at an upstream control moves at this depth with a 
celerity of
(a) + 6.5 m/s      (b) – 6.5 m/s     (c) + 1.5 m/s      (d) – 4.0 m/s
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11.1 INTRODUCTION

The previous chapters considered the characteristics of fl ows in rigid bed channels. 
The boundary was considered rigid, the channel slope and geometry fi xed and the 
roughness magnitudes invariant. While these conditions hold good for a wide range 
of man made channels and to some extent to non-erodible natural channels also, 
there exists a class of open channel fl ows in which the boundary is mobile. Unlined 
channels in alluvium—both man made and natural channels—where the boundaries 
are deformable and the channel fl ows carry sediment along with water come under 
this category. The hydraulics of mobile bed channels, which is basic to successful 
engineering solution to a host of sediment problems such as erosion, deposition and 
change in the planform, form the subject matter of the important area of study known 
as Sedimentation Engineering or Sediment Transport. Obviously, a vast topic like 
sediment transport cannot be adequately covered within the confi nes of a single chap-
ter in a book like this. As such, only a brief introduction to the hydraulics of mobile 
bed channels with emphasis on the design of stable unlined canals is attempted in 
this chapter. For further details, the reader should refer to the treatises and other good 
literature on this, topic [Ref. 1 through 7 and 9].

The alluvium or sediment refers to the loose, non-cohesive material (such as sand 
and silt) transported by, suspended in or deposited by water. A channel cut through 
an alluvium and transports water and also, in general, sediment having the same 
characteristics as in the boundary of the channel is termed alluvial channel. Such 
channels invariably have extremely complex interaction with the boundary and as 
such the available knowledge on the subject has a very heavy bias towards experi-
mental observations and empirical corelations.

11.1 INITIATION OF MOTION OF SEDIMENT

When the fl ow of water in a channel having a non-cohesive material (such as sand) 
is carefully observed, it will be found that in some cases the bed may also become 
dynamic with the particles of the bed moving in sliding or rolling or jumping mode. 
Suppose the channel is a laboratory channel where the fl ow parameters can be con-
trolled. If the motion of the bed particles is observed for a wide range of bed shear 
stresses τ

0
 (= γRS

0
), it will be noticed that while for small τ

0
 values there may be 

Hydraulics of Mobile 

Bed Channels 11
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484 Flow in Open Channels

no motion of bed particles at all, the fl ows with large values of τ
0
 will have defi nite 

observable motion. The condition of fl ow at which the bed particles will just begin to 
move is known as the condition of critical motion or incipient motion. The bed shear 
stress corresponding to incipient motion is known as critical shear stress or critical 
tractive force and is designated as τ

c
. It should be realized that the motion of the bed 

particles at τ
0
 = τ

c
 is not a step function at τ

c
 but it only implies that in a statistical 

sense considerable number of bed particles will be set in motion when the critical 
shear stress is reached.

Considering the sediment, fl uid and fl ow properties at the stage of initiation of 
motion, Shields4,5,7,9 proposed two non-dimensional numbers viz. Shear Reynolds 

number R
u d

vc

c

*
*= and Non-dimensional shear stress τ

 *c
 = τ

γ γ
c

s d−( )

where d = diameter of the bed particle and

γ
s
 = ρ

s  
g = unit weight of the sediment particle

γ = ρg = unit weight of water

τ
c
 = critical shear stress

u c
c

* =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ =

τ
ρ

 shear velocity at incipient condition

v = kinematic viscosity of water

At the stage of initiation of motion, Shields obtained through experimental study the 
functional relationship between τ

*c
 and R

*c
 as shown in Fig. 11.1. This curve, known 

as Shields curve, represents the mean line through data points and have been varifi ed 
by numerous investigators. Shields curve is in some sense similar to Moody diagram 
representing the variation of the friction factor f. Here, up to R

*c
 = 2 the fl ow is 

similar to the smooth boundary fl ow, the particles being completely submerged in a 
laminar sublayer, and τ

c
 is not affected by the particle size. In the range 2 < R

*c
< 400, 

the fl ow is in transition stage where both the particle size d and fl uid viscosity v affect 
τ

c
. When R

*c
 > 400, τ

*c
 is not affected by R

*c
 as the curve reaches a limiting value of 

0.056. At this limiting value the critical shear stress τ
c
 is a function of particle size 

only. This is an indication of the boundary becoming completely rough and hence 
the critical stress being independent of the viscosity of the fl uid. Some investigators 
have obtained the constant value of τ

*c
 at high R

*c
 as slightly less than 0.056; It could 

be as low as 0.045, (Ref. 4, 11, 16)
It is to be noted that the minimum value of τ

*c
 is 0.03 and is obtained at R

*c
 = 10. 

Thus for τ
*
 < (τ

*c
)

min
 no motion should ever occur. If in a channel fl ow τ

0
 > τ

c
 the bed 

will be in motion and if τ
0
 < τ

c
 the bed could be taken to be not in motion and hence 

stable. Since in nature the sediments have non-uniform size distribution, it is usual to 
take the median size (d

50
) as a representative size for the sediments.
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For a sediment to relative density 2.65 and water at 20°C in the channel (v = 
1 × 10– 6 m2/s)

τ
*c

 = 0.056 corresponds to u g dc
c s

* .2 0 056 1= = −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

τ
ρ

γ
γ

i.e.  u
*c

 = 0.952 d1/2

Further R
*c

 = 400 corresponds to

u
d

ν d dc*

/.
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = ( ) ×( ) =−0 952 1 10 4001 2 6

i.e. d = 0.0056 m = 5.6 mm; say 6 mm

Designating the particle size in mm as d
mm

, for d
mm

 > 6.0 mm, the critical shear 
stress could be estimated as

τ
c
 = 0.056 ( γ

s
 – γ) d (11.1)

τ
c
 = 0.056×1.65×9790×d

mm 
/ 1000 (11.2)

 = 0.905 d
mm

Thus in a general way for sediments in water, d
mm

 > 6.0 mm would correspond to 

rough boundary with critical shear stress given by τ
c
 = 0.905 d

mm
.

To use the Shields’ curve to estimate the critical shear stress for a given particle 
size d

mm
 < 6 mm one has to adopt a trial and error procedure. This is due to the fact 

1

1

10 100 1000
0.01

0.1

1.0

0.056

ν
R∗c =

u∗c d

τ ∗
c 

=
τ c

(γ
s–

 γ
)d

0.01

0.1

Ripples

Saltation

Suspension

Laminar flow
at bed

Shallow
undulations

The threshold of
movement

Bed undulations shorten
and deepen

Turbulent flow
at bed

Fig. 11.1 Shield’s diagram
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that τ
c
 occurs in both the non-dimensional parameters of the curve. Swamee and 

Mittal8 have expressed the Shields’ curve results in an explicit relationship between 
τ

c
 and d by an empirical non-dimensional formula. For the specifi c case of water at 

20°C (v = 1 ×10–6 m2/s) and sediment of relative density 2.65, the empirical relation-
ship of Swamee and Mittal9 reduces to

                 

τc
mm

mm

d

d
= +

+⎡
⎣⎢

⎤
⎦⎥

0 155
0 409

1 0 177

2

2 1 2
.

.

.
/

 

(11.3)

where d
mm

 is the particle size in mm and τ
c
 is in N/m2.

This equation is based on the limiting value of the Shields curve as 0.06 and is 
very convenient in calculating to an accuracy of about 5% error the values of τ

c
 of 

particle sizes up to about 5.5 mm. For higher sized particles Eq.11.2 is of course 
more convenient to use.

Consider an alluvial channel with R
*c

 > 400 (i.e. having sediment particles of size 
greater than 6.0 mm). Then from Fig. 11.1 for this range

     

τ
γ γ

c

s d−( )
= 0 056.

If d
c
 = size of a particle that will just remain at rest in a channel of bed shear stress 

τ
0
 then

                

dc

s

=
−( )

τ
γ γ
0

0 056.

But for a uniform channel fl ow of hydraulic radius R and bed slope S
0

               τ
0
 = γ R S

0

Thus,            d
RS

c

S

=
−( )

γ
γ γ

0

0 056.
 (11.4)

Taking relative density  γ
s
 / γ = 2.65

     d 
c
 = 10.82 RS

0
 ≈ 11 R S

0 
(11.5)

Equation 11.5 valid for d
mm

 ≥ 6.0 mm provides a quick method for estimating the size 
of a sediment particle that will not be removed from the bed of a channel.

Example 11.1  A wide rectangle channel in alluvium of 3.0-mm median size 
(Relative density = 2.65) has a longitudinal slope of 0.0003. Estimate the depth of 
fl ow in this channel which will cause incipient motion.

Solution Substituting    d
mm

 = 3.0 in Eq. (11.3)
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τc
mm

mm

d

d
= +

+⎡
⎣⎢

⎤
⎦⎥

0 155
0 409

1 0 177

2

2 1 2
.

.

.
/

      

τc = +
+⎡

⎣⎢
⎤
⎦⎥

=0 155
0 409 3

1 0 177 3
2 44

2

2 1 2
.

. ( )

. ( )
.

/
Pa

For fl ow in a wide rectangular channel at depth D, τ
0
 = γD S

0
 and at incipient 

motion τ
0
 = τ

c
.

Hence, 9790 × D × 0.0003 = 2.44
           Depth D = 0.831 m.

Example 11.2  Estimate the minimum size of gravel that will not move in the 
bed of a trapezoidal channel of base width = 3.0 m, side slope = 1.5 H: IV, longitu-
dinal slope = 0.004 and having a depth of fl ow of 1.30 m.

Solution R = hydraulic radius

 

=
+ ×( )×

+ × × ( ) +
⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

3 0 1 5 1 30 1 30

3 0 2 1 30 1 5 1
2

. . . .

. . .

  = 0.837 m

From Eq. (11.5),  d
c
 = 11R S

0

  = 11×0.837×0.004 = 0.0368 m
 d

c
 = 3.7 cm

11.3 BED FORMS

When the shear stress on the bed of an alluvial channel due to fl ow of water is larger 
than the critical shear stress τ

c
 the bed will become dynamic and will have a strong 

interaction with the fl ow. Depending upon the fl ow, sediment and fl uid characteris-
tics, the bed will undergo different levels of deformation and motion. As a result of 
careful observations the following characteristic bed features are recognized:

1. Plane bed with no sediment motion
2. Ripples and dunes
3. Transition (a) Plane bed with sediment motion and
  (b) Standing wave

4. Antidunes

These bed features are called bed forms or bed irregularities. Schematically, these 
bed forms are shown in Fig. 11.2.

The sequence of formation of these bed forms are best understood by considering 
a hypothetical laboratory channel with sediment bed where the slope and discharge 
in the channel can be changed at will. Consider an initial plane bed and a very low 
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velocity of fl ow being admitted into the channel. The following sequence of bed 
forms can be expected in the channel.

(1) Plane Bed with no Sediment Motion This situation corresponds to the 
case when the actual shear stress τ

0
 is less than the critical shear stress τ

c
. There 

will be no motion of the sediment and the bed will remain plane. The friction 
offered to the fl ow is due to the resistance of the grains only.

(2) Ripples and Dunes

(a) Ripples If the shear stress in the channel is increased (by increasing either dis-
charge or slope) so that τ

0
 is moderately greater than τ

c
, the grains in the bed will 

begin to move and very soon the bed will be covered by a saw tooth type of ripple 
pattern (Fig. 11.2). The height of the ripples will be considerably smaller than their 
length. The sediment motion will be essentially in the form of rolling and sliding of 
the particles on the ripple bed. The water surface will remain essentially calm and 
plane. An interesting feature of the ripples is that they are not formed if the sediment 
size is greater than about 0.60 mm. 

(b) Dunes As the shear stress on the bed is gradually increased in our hypotheti-
cal channel, the ripples gradually grow into larger sizes. Then a different bed form 
known as dunes appear with ripples riding over them. At higher shear stress values 
the ripples disappear leaving behind only the dunes pattern on the bed.

Dunes are larger in size than the ripples with small height to length ratios. The 
water surface will be wavy and out of phase with the dunes, (Fig. 11.2). The sediment 
transport will be larger than in ripples and the dunes advance downstream though 
with a velocity much smaller than that of the water fl ow. The fl ow will be in subcriti-
cal range.

The fl ow in a channel with ripples and dunes in the bed is characterised by separa-
tion of the fl ow on the lee side of the bed form. This in turn causes large energy losses 
and particularly so in duned beds. The shedding of the vortices from the separation 
region of the dunes cause ruffl ing of the free water surface. In both the ripples and 
dunes, the bed form gets eroded on the upstream side and some of this material gets 
deposited on the lee side of the bed form in a continuous manner causing the crest of 
the bed wave pattern to move downstream.

While the distinction between the ripples and dunes is clear in a general qualita-
tive sense, it has not been possible to differentiate between them in terms of specifi c 
quantifi able parameters. As such, it is usual to consider the ripples and dunes as one 
class and to distinguish this class of bed form from others.

(3) Transition

(a) Plane bed with sediment motion Further increase of the shear stress after the 
dune bed pattern phase will lead to a transition phase where the bed undulations get 
washed away progressively to achieve ultimately an essentially plane bed surface 
(Fig. 11.2). The sediment transport rate would be considerably larger than in dune 
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(f) Antidune

(e) Standing wave

(d) Plane bed with sediment motion

(c) Washed-out Dunes

(b) Dunes

(a) Ripples

Breaking wave

∇

∇

∇

∇

∇

∇

Fig. 11.2 Bed forms in alluvial channels
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phase. The fl ow, however, will be in subcritical range with the Froude number of the 
fl ow being nearer unity.

(b) Standing wave Further increase in the shear stress beyond the plane bed stage 
bringing the Froude number nearer unity and beyond it, would lead to the formation 
of symmetrical sand waves with associated water surface standing wave, (Fig. 11.2). 
The water surface undulations will be in phase with the sand waves.

The above two bed features viz. plane bed with sediment motion and the standing 
wave stage, are clubbed into one class called transition. The transition phase of bed 
form is very unstable.

(4) Antidunes If the shear stress in our hypothetical channel is further increased 
beyond transition phase, the symmetrical sediment wave and the associated standing 
wave slowly start moving upstream. The waves gradually grow steeper and then break. 
The bed form at this stage is called antidunes. A characteristic feature of the standing 
wave and antidune type of bed forms is that there is no separation of the fl ow at these 
bed forms. As such, the energy loss is mainly due to grain boundary roughness.

It should be noted that while the sand waves move upstream it does so in a relative 
sense due to a rapid exchange of sediment in the bed profi le. The sediment in the lee 
side of the wave gets eroded and some of it gets deposited on the upstream side of the 
bed form to cause the wave crest to move upstream. The general fl ow of water and 
sediment transport will be in the downstream direction. Further, the antidunes appear 
only in water-sediment interface in alluvial channels and have not been noticed in 
air-sediment interface in desert environment. The fl ow at antidune bed form stage 
will be supercritical and the sediment transport rate will be very high.

Bed Form and Resistance  In alluvial channels the different bed forms that can 
occur have a marked impact on the total resistance to fl ow. In a mobile bed channel 
the total resistance to fl ow could be considered to be made up of the resistance due 
to the grains composing the bed and the drag resistance offered by the bed form 
shapes. Thus it is obvious that the same channel may exhibit different resistances 
depending on the bed form present. Figure 11.3 shows schematically the variation 

Plane bed

Ripples & dunes

Transition

Antidunes

0.02
0.001 0.01 0.10 1.0 1.5

0.04

0.06

0.08

0.10

Slope (Percent)

f

Fig. 11.3  Schematic variation of friction factor f with bed forms [Based on data on d = 

0.28 mm, Ref. 7]
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of the Darcy-Weisbach friction factor f with bed forms. This fi gure is based on 
laboratory data of Simons6 for a sand of d = 0.28 mm and is meant only to illustrate 
qualitatively the behaviour of f with bed forms. It can be seen that the friction factor 
f has a sudden increase at the onset of ripples, then onwards the increase is gradual 
in ripples stage and rapid in dunes stage. At the transition phase there is a sudden 
drop in the value of f. In the antidune stage the increase is fairly rapid.

Typical orders of magnitude of Manning’s coeffi cient n, friction factor f and non-
dimensional Chezy coeffi cient C g/  at various bed forms are given Table 11.1. This 
table highlights the impact of the bed forms on the channel resistance and the need 
for proper identifi cation of appropriate bed forms in studies connected with the 
hydraulics of mobile bed channels.

To estimate the resistances due to the grains τ
0
′ and due to bed forms τ

0
″ it is usual 

to consider the total shear stress τ
0
 to be made up of the two components such that

 τ
0
 = τ

0
′ + τ

0
″ (11.6)

Table 11.1 Range of Resistance Factors—Manning’s coeffi  cient n, Friction factor f and Chezy 

coeffi  cient C g/ –at Various Bed Forms

Ref. [7]  [Note: C g f/ /= 8 ]

Bed Form Darcy-Wesbach 
Friction Factor

Manning’s 
Coeffi cient

Non-dimensional 
Darcy Coeffi cient

Plane bed without sediment 
motion

0.020–0.036 0.012–0.016 15–20

Ripples 0.056 – 0.163 0.018 – 0.030 7 – 12

Dunes 0.047 – 0.163 0.020 – 0.040 7 – 13

Plane bed with 
sediment motion

0.020 – 0.040 0.010 – 0.013 16 – 20

Antidunes (Breaking) 0.040 – 0.065 0.012 – 0.018 11 – 16

Assuming the energy slope S
0
 to be the same for both the components and the total 

hydraulic radius of the channel R to be made up of two parts R' and R''

 γ RS
0
 = γ R' S

0
 + γ R"S

0

Hence, R = R'+ R"  (11.7)

where R' = hydraulic radius associate with grain roughness and R" = hydraulic 
radius associated with bed forms. Further, Manning’s formula is used to represent the 
channel resistance. If n = Manning’s roughness coeffi cient of the channel fl ow and n

s
 

= Manning’s roughness coeffi cient corresponding to the grain roughness only, then 
the mean velocity in the channel is

   
V

n
R S=

1 2 3
0
1 2/ /

 
(11.8a)
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Also,

         

V
n

R S
s

= ′1 2 3
0
1 2( ) / /

 

(11.8b)

From Eqs 11.8a and b          ′ =
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟R

n

n
s

3 2/

 

(11.9)

Strickler’s Equation (Eq. 3.22) is used to estimate n
s
 as

n
d

s =
1 6

21 1

/

.

The shear stress due to the grains, which forms an important parameter in the study 
of sediment transport mechanics is given by

 

′ = ′ =
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟τ γ γ0 0

3 2

0R S
n

n
RSs

/

 

(11.10)

Prediction of Bed Forms There have been numerous attempts4,5,6,9 to predict the 
bed forms in terms of fl ow and sediment parameters. Whether analytical or empiri-
cal, all these attempts are at best partially successful. A typical classifi cation due to 

Garde and Rangaraju4 (Fig.11.4) considers the parameters S
S

s

*

( ) /
=

−[ ]
0

γ γ γ
 
 
and R/d 

Fig. 11.4 Prediction of bed forms
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 γ
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/ γ

]
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as signifi cant parameters. The lines demarcating the various bed form phases can be 
expressed as:

For plane bed with no motion  S *≤ 0.05 (R/d)–1 (11.11a)

For ripples and dunes  0.05 (R/d)–l ≤ S * ≤ 0.014 (R/d)–0.46 (11.11b)

For transition              0.014. (R/d)–046 ≤ S * ≤ 0.059 (R/d)–0.54 (11.11c)

For antidunes  S * ≥ 0.059 (R/d)–0.54 (11.11d)

where S
S

S
s

*

[( ) / ]
/ .=

−
=0

0 1 65
γ γ γ

 for sediments with relative density of 2.65.

Fig.11.4 or its equivalent equations 11.11a, b, c, d are useful in the determination 
of bed forms in a given fl ow situation.

Example 11.3  An unlined irrigation channel in an alluvium of median size 
0.30 mm is of trapezoidal section with bed width = 3.0 m, side slope = 1.5 H: 1 V, 
and longitudinal slope = 0.00035. If this channel carries a discharge of 1.5 m3/s at 
a depth of 0.8 m, estimate the (i) nature of the bed form, (ii) shear stress due to the 
grain roughness, and (iii) shear stress due to bed forms.

Solution Area   A = [3.0 + (1.5 × 0.8)] × 0.8 = 3.36 m2

Perimeter
  

P = + × × +⎡
⎣⎢

⎤
⎦⎥
=3 0 2 0 8 1 5 1 5 8842. . ( . ) . m

    R = A/P = 3.36/5.884 = 0.571 m

    R/d = 0.571/(0.0003) = 1903

     0.05 (R/d )–1 = 0.05 (1903)–l = 2.63 × 10–5

   0.014 (R/d )–0.46 = 0.014 (1903)–0.46 = 4.34 × 10–4

                             

S
S

S
s

*

[( ) / ]
/ . . / . .=

−
= = = × −0

0
41 65 0 00035 1 65 2 12 10

γ γ γ

Since 0.05 (R / d)–l ≤ S * ≤ 0.014 (R/d)–0.46, by Eq. 11.11b the bed form is of ripples 
and dunes category.

Manning’s coeffi cient due to grains by Eq.3.22 is

n
s
 = (0.0003)1/6/21.1 = 0.0122

By Manning’s formula,

 
Q

n
AR S=

1 2 3
0
1 2/ /
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1 5
1

3 36 0 571 0 00035
0 04332 3 1 2. ( . )( . ) ( . )
./ /= =

n n

n = Manning’s coeffi cient for the whole channel = 0 0288

By Eq. 11.10, the shear stress due to the grains

′ =
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ =

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ × ×τ γ0

3 2

0

3 2
0 0122

0 0288
9790

n

n
RSs

/ /
.

.
00 571 0 00035. .×

= 0.539 Pa

τ
0
 = Average bed shear stress due to fl ow. = γ R S

0

= 9790 × 0.571 × 0.00035 = 1.957 Pa

τ
0
"

 
= shear stress due to bed forms = τ

0
 – τ'

0

= 1.957 – 0.539 = 1.418 Pa

11.4 SEDIMENT LOAD

In an alluvial channel the sediment particles in the bed will start moving when the 
bed shear stress τ

0
 exceeds the critical shear stress τ

c
 At small values of excess bed 

shear stress (τ
0
 – τ

c
) the particles may roll or slide on the bed. Sediment transported 

in this manner is called contact load. Sometimes the sediment particles may leave 
the boundary to execute a small jump (or hop) to come in contact with the bed again. 
This mode of sediment transport through a large number of small jumps is known as 
saltation load. The saltation of sediment particles in water fl ow takes place essen-
tially in a thin layer, of the order of two grain diameters, next to the bed. In view of 
this, both the contact load and saltation load are considered under one class as bed 
load. Thus all the sediment that will be transported in a thin layer of the order of two 
grain diameters next to the bed is classifi ed as bed load.

At higher shear rates, the fl uid turbulence may pick up the displaced particles and 
keep them in suspension. The sediment transported in suspension mode is known as 
suspended load. Whether a particle will travel as bed load or suspended load depends 
upon the parameter ω/u

*
 where ω = fall velocity of the particle and u* /= =τ ρ0  

shear velocity of the fl ow. The particles of fall velocity ω move in suspension mode 
when ω/u

0
 ≤ 2.0.

The sum of the suspended load and bed load is total load. It should be noted 
that the total load is made up of material emanating from the boundary of the 
channel and as such it is also sometimes called as total bed material load. Some-
times, the suspended material may contain very fi ne material like clay not found 
in the boundary of the channel. This material would have come to a stream, and 
thence to a channel, as a product of erosion during a runoff process. Such sus-
pended material which does not form part of the bed material is known as wash 
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load and its transport characteristics are different from that of bed material sus-
pended load. Unless otherwise specifi cally mentioned as signifi cant, the wash 
load is usually ignored in alluvial geometry design. The term suspended load is 
understood to refer to bed material only.

Bed Load The transport rate of sediments in the bed load (q
B
) is usually referred 

to in units of weight per second per unit width (N/s/m). A very large number of 
empirical and semi-analytical expressions are available to estimate the bed load q

B
 in 

terms of sediment, fl uid and fl ow parameters. Duboys (1879) was the fi rst to propose 
an expression for q

B
 as a function of excess of shear stress τ

0
 over the critical shear 

stress τ
0
, viz.

 q
B
 = α (τ

0
 – τ

c
)  (11.12)

Since then a very large number of empirical formulae involving the parameter 
(τ

0
 – τ

c
 ) have–been proposed by various investigators. Probably the most widely 

used empirical equation for q
B
 is due to Meyer-Peter and Muller4,5 which relates q

B
 

in a dimensionless manner as

 φ
B 

= 8 (τ'
*
 – 0.047)3/2 (11.13)

where        φ
B
 = bed load function

       

= ⋅

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

q

gd
B

s s
γ γ

γ

( ) / /3 1 2 1 2

1

1
 

(11.14)

and       τ'
*
 = dimensionless grain shear stress

       =
−( )

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ −( )

γ
γ γ

γ
γ γ

R S

d

n

n

RS

ds

s

s

0

3 2

0

/

)
  (11.15)

in which q
B
 = bed load in N/s/m

d = mean size of sediment 

R = hydraulic radius of the channel 

     γ = unit weight of water

       γ
s
= unit weight of sediment particles

     n = Manning’s coeffi cient for the whole channel

      n
s
 = Manning’s coeffi cient of particle roughness 

     R' = hydraulic radius corresponding to grain roughness

      S
0
 = longitudinal slope of the channel.

In Eq. 11.13 the term 0.047 corresponds to the asymptotic value in the shields 
diagram.
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Other commonly used methods of bed load estimation are due to Einstein7 and 
Bagnold5, the details of which are available in reference 4, 5, 6, 7 and 9.

Suspended Load Consider a steady channel fl ow of depth D carrying sedi-
ment in suspension. The sediment particles which are lifted up from the bed are 
kept in suspension due to turbulence while the particles try to settle down due to 
their weight. This results in a concentration profi le C =fn(y) with sediment con-
centration C being distributed in a vertical in a manner to achieve equilibrium of 
the forces acting on the particles, (Fig. 11.5).

Fig. 11.5 Suspended load concentration and velocity profi le in a channel

D D

y y

a

Ca

C

Velocity u

u

Suspended load concentration C

∇ ∇

In a steady fl ow, the upward diffusion of the sediment is balanced by the settling 
of the sediment particles and the basic differential equation governing this action is 
given by

 
C

dC

dysω ε+ = 0
 

(11.16)

where C = concentration of sediment, by weight

ω = fall velocity of the sediment particles 

ε
s
 = mass diffusion coeffi cient, generally a function of y.

At any height y above the bed, the shear stress

 
τ τy

D y

D
=

−⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟0

 
(11.17)

By Prandtl’s mixing length theory τ
y
 can also be written as

 
τ ρεy m

du

dy
=

 
(11.18)
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where         ε
m 

= diffusion coeffi cient for momentum.

By considering the logarithmic form of velocity distribution in the channel.

 

du

dy

u

ky
= *

 

(11.19)

where   k = Karman’s constant (≈ 0.4).

Assuming ε
s
 = ε

m
, from Eqs 11.17, 11.18 and 11.19

 

εs ku
y

D
D y= −* ( )

 
(11.20)

Substituting in Eq. 11.16 yields 

C ku
y

D
D y

dC

dy
ω + − =* ( ) 0

 

dC

C

D

ku y D y
dy= −

−
ω

* ( )  

(11.21)

Assuming 
ω

k u
Z

∗

= =  constant, integration of Eq. 11.21 between y = a and y 
yields

 

dC

C

ZD

y D y
dy

a

y

a

y

∫ ∫=
−( )  

 

C

C

D y

y

a

D a

z

=
−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ −

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

a
 

(11.22)

where C
a
 = concentration at any height a above the bed. Equation 11.22 which 

gives the ratio concentration C of suspended material at any height y above the 
bed to the concentration C

a
 at any reference level a is known as Rouse equation. 

Figure (11.6) shows the variation of C/C
a
 with ( y − a)/ (D − a) for a/D = 0.05 with 

Z as the third parameter. It can be seen that the concentration profi le becomes more 
uniform as the parameter Z becomes smaller.

Since Z is proportional to ω, for a given shear stress τ
0
, the smaller the particle 

size, the more uniform would be the sediment concentration profi le. Conversely, for 
large particle sizes (i.e. large ω), the concentration profi le will have high concentra-
tions at the bottom layers.

In the parameter Z, the Karman coeffi cient k is of the order of 0.4. Some experi-
mental observations4,9 have shown that k decreases at high concentrations of 
sediment.
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Fig. 11.6 Rouse’s equation for C/C
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Knowing the concentrations profi le and the velocity profi le in a vertical, (Fig. 11.5), 
the suspended sediment load q

s
 per unit width of channel in a vertical can be esti-

mated as

q Cudys
a

D

= ∫
1

where a
1
 = level corresponding to the edge of the bed load layer ≈ 2d. This method 

requires estimation of C
a1

 by an alternative means. Details of estimating q
s
 are avail-

able in Ref. 5

Example 11.4  In a wide alluvial stream, a suspended load sample taken at a 
height of 0.30 m above the bed indicated a concentration of 1000 ppm of sediment 
by weight. The stream is 5.0 m deep and has a bed slope of 1/4000. The bed material 
can be assumed to be of uniform size with a fall velocity of 2.0 cm/s. Estimate the 
concentration of sediment at mid depth.

Solution By Eq. 11.22

          

C

C

D y

y

a

D aa

z

=
−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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Here a = 0.3 m, D = 5.0 m, y = D/2 = 2.5 m, C
a
 = 1000, ω = 0.02 m/s.

Z =
 

ω
u k*

Since the channel is wide, R = D and

 

u gDS Z
k gDS

* ,= =0

0

ω

Assuming k = 0.4,
        

Z =
× × ×

=
0 02

0 4 9 81 5 1 4000
0 4515

.

. . /
.

By Eq. 11.22 

   
C /

. .

.

.

( . . )
.

.

1000
5 0 2 5

2 5

0 3

5 0 0 3
0 2887

0 4515

=
−( )

×
−

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

=

            C = 2887 ppm by weight.

Total Bed Material Load The sum of the bed load and suspended load form the 
total bed material load. Using expressions derived for estimation of bed load and 
suspended load elaborate procedures for estimation of total bed material load are 
given by Einstein, Colby et al, and Bishop et al, [Ref. 5,7,9]. Numerous empirical 
equations for the estimation of total bed material load have been proposed. One of 
these, a commonly used equation due to Englund and Hansen2,4 which expresses the 
total bed material load per unit width q

T 
 in terms of easily determinable parameters, 

is given below:

 φ
T  

f = 0.4 τ
*
5/2 (11.23)

where φ
T
 = total load function and

 

φ
γ γ

γ

T
T

s s

q

gd
=

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( ) / /3 1 2 1 2

1

1
 

(11.24)

where τ
*
 = non-dimensional shear     

 

=
−⎡

⎣⎢
⎤
⎦⎥

τ

γ γ
0

s
d

 

(11.25)

f = Darcy – Weisbach friction factor 

 

=
8 0

2

gRS

V  (11.26)

q
T
 = total bed material load per unit width of channel in N/s/m

V = mean velocity in the channel 
and other parameters are same as in Eq. 11.13.

Equation (11.23) is based on data pertaining to a wide range of bed forms and grain 
sizes and therefore could be relied on to predict the total load fairly adequately.
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500 Flow in Open Channels

Example 11.5  A wide alluvial channel has a bed material of median size 
0.8 mm. The channel has a longitudinal slope of 5 × 10–4. The depth and velocity in the 
channel were measured as 1.6 m and 0.90 m/s respectively. Estimate the (a) bed load, 
(b) total load, and (c) suspended load per metre width of this channel.

Solution (a) Bed load, q
B
:

Since the channels is wide          R = y
0
 = 1.60 m.

By Manning’s formula           V
n

y S=
1

0
2 3

0
1 2/ /

0 90
1

1 6 5 102 3 4 1 2. ( . ) ( )/ /= × −

n

n = 0.034

By Eq. 3.17,              
  
n

d
s = = =

1 6 1 6

21 1

0 0008

21 1
0 0144

/ /

.

( . )

.
.

By Eq. 11.9, shear stress due to gain  τ γ0

3 2

0 0
′ =

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

n

n
y Ss

/

τ γ γ0

3 2

0 0 0 0

0 0144

0 0340
0 2756′ =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
.

.
.

/

y S y S

τ
τ

γ γ
γ

γ γ0
0 0 00 2756′ =

−
=

−( )

.

( )s sd

y S

d

=
× × ×

×
=

−0 2756 1 6 5 10

1 65 0 0008
0 167

4. .

. .
.

By Eq. 11.4 

               

φ

γ
γ γ

γ

B
B

s
s

q

gd

=
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥( ) /

/

3 1 2

1 2

  
φB

Bq
=

× ×⎡
⎣⎢

⎤
⎦⎥

×
2 65 9790 9 81 0 0008

1

1 653 1 2 1
. . ( . ) ( . )/ /

= 0.4234 q
B

By Meyer–Peter formula 11.13

φB  = 8 (τ'
*
 − 0.047)3/2

0.4234 q
B 

= 8(0.167 − 0.047)3/2

         q
B
 = 0.785 N/s per metre width.
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(b) Total load, q
T

By Eq. 11.24

            

φ

γ
γ γ

γ

T
T

s
s

q

gd

=
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥( ) /

/

3 1 2

1 2

φT
Tq

=
× ×⎡

⎣⎢
⎤
⎦⎥

×
2 65 9790 9 81 0 0008

1

1 653 1 2 1 2
. . ( . ) ( . )/ /

= 0.4234 q
T

The Darcy–Weisbach friction factor f, by Eq. 11.26 is

f
gRS

V
= =

× × × ×
=

−8 8 9 81 1 6 5 10

0 9
0 07750

2

4

2

. .

( . )
.

τ
γ

γ γ* ( )

.

. .
.=

−
=

× ×
×

=
−y S

ds

0 0
41 6 5 10

1 65 0 008
0 6061

By Eq. 11.23 φ
T
 .  f = 0.4 τ

*
5/2

  0.4234 q
T
 × 0.0775 = 0.4 × (0.6061)5/2

  Total load = q
T 
= 3.486 N/s per metre width

(c) Suspended load, q
s

  q
T
 = q

s
+q

B

  q
s
= suspended load = 3.486 − 0.785

  = 2.701 N/s per metre width

11.4.1 Measurement and Estimation of Sediment Load

A stream fl owing in a watershed transports not only the runoff that is produced in the 
catchment but also the erosion products out of the watershed by means of its fl ow. 
The total sediment load is transported out the catchment by the stream in three com-
ponents depending upon their origin as wash load, suspended load and bed load.

In connection with the measurement, the following essential properties of differ-
ent types of sediment loads in a stream are worth noting:

•  Wash load is generally composed of fi ne grained soils of very small fall 
velocity.

•  The suspended load particles move considerably long distances before settling on the 
bed and sides and any measurement of suspended load also includes wash load.
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502 Flow in Open Channels

•  Bed load is the relatively coarse bed material and is moved at the bed surface 
through sliding, rolling, and saltation. In a general sense, bed load forms a small 
part of total load (usually < 25%) and wash load forms comparatively very 
small part of the total load.

Bed load measurement in fi eld is extremely diffi cult. While a large number of 
devises are available for measuring bed load for experimental / special investiga-
tions, no practical devise for routine fi eld measurement of bed load is currently in 
use. For planning and design purposes the bed load of a stream is usually estimated 
either by use of a bed load equation such as those due to Meyer–Peter and Muller 
(Eq. 11.13), Einstein7 and Bagnold5 or is taken as a certain percentage of the meas-
ured suspended load.

The suspended load of a stream is measured by taking the samples of sediment 
laden stream water. The collection of samples is through specially designed sam-
plers that do not alter the fl ow confi guration in front of the sampler and get rep-
resentative samples of the stream water. A variety of samplers from the simple 
ones (for example an ordinary bottle) to highly sophisticated ones are available. 
The sediment from the collected sample of sediment laden water is removed by 
fi ltering and its dry weight determined. It is usual to express suspended load as 
parts per million (ppm) on weight basis as 

       
C

Weight of sen ent in sample

weight of se ent water of the ss =
+
dim

dim( ) aample

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥×106

Thus the sediment transport rate in a stream of discharge Q m3/s is

Q
s
 = (Q × C

s 
× 60 × 60 × 24) /106 = 0.086 QC Tonnes/day

Routine observations of suspended load are being done at many stream gauging 
stations in the country. At these stations in addition to stream fl ow discharge Q the 
suspended sediment concentration and hence the suspended sediment load Q

s
 is also 

noted. The relation between Q
s
 (tones/day) and stream discharge Q (m3/s) is usually 

represented in a log–log plot known as sediment rating curve. The relationship 
between Q

s
 and Q can be represented as

Q
s
 = KQ n

where the exponent is usually around 2.0.
The sediment rating curve in conjunction with the stream fl ow hydrograph can be 

used to estimate the suspended sediment load transport in the stream in a specifi ed 
time interval. A method of estimating the annual sediment yield of a watershed by 
using the sediment rating curve in conjunction with fl ow duration curve is described 
in Ref. 10. For details regarding Sediment problems and relevant measurement tech-
niques Ref.6 and 11 can be consulted.
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11.5  DESIGN OF STABLE CHANNELS CARRYING CLEAR WATER 
[CRITICAL TRACTIVE FORCE APPROACH]

There are two basic types of design procedures used in the design of alluvial chan-
nels. These are

1. Critical tractive force method
2. Regime channel method

The fi rst one, viz., the critical tractive force approach attempts to restrict the shear 
stress anywhere in the channel to a value less than the critical shear stress of the bed 
material. If the channel carries clear water there will be no deposition problem and 
hence the channel will be of stable cross-section. This approach, proposed by Lane is 
the subject matter of this section. On the other hand the regime channel approach 
proposes to design a channel under dynamic equilibrium while the channel is carry-
ing a small amount of sediment. Design of a non-scouring and non-silting channel is 
the object of the regime approach. Details of the regime approach proposed by Lacey 
will be discussed in the next section.

Stability of a Particle on a Side-slope Consider a particle on the side of a 
channel of inclination θ to the horizontal, Fig. 11.7. Let

d = size of the particle so that its effective area a = C
1
d 2 where C

1
 is a coeffi cient.

w
s
 = submerged weight of the particle = C

2
 (γ

s
 – γ) d 3 where C

2
 is a coeffi cient.

The weight w
s
 will have components w

s
 sin θ along the slope and w

s
 cos θ normal 

to the slope. Due to the fl ow a shear stress τ
w
 exists on the particle situated on the 

slope. The drag force on the particle due to shear is

F
DS 

= τ
w 

a

Bed of canal

θ

Side slope

FDs

ws

ws cos θ 

w
s sin θ 

FR

FR = F2
Ds +w2

s sin2θ

Fig.11.7 Stability of a particle on the side slope of canal
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and resultant force tending to move the particle

F F wR DS s= +2 2 2sin θ

Stabilizing force F
s 
= w

s
cos θ

At the condition of incipient motion, F
R
 /F

S 
= tanφ

Where φ = angle of repose of the sediment particles under water.

Thus,

        

F w

w
DS s

s

2 2 2

2 2

2+
=

sin

cos
tan

θ
θ

φ
 

(11.27)

On simplifying,

  

F wDS s= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥cos . tan

tan

tan

/

θ φ
θ
φ

1
2

2

1 2

 (11.28)

From Eq. (11.28), when θ = 0, the drag force on a particle situated on a horizontal 
bed at the time of incipient motion is obtained. Thus if τ

b
= shear stress on the bed of 

a channel, from Eq. (11.28),

F
DS

 = τ
b
 a = w

s
 tan φ (11.29)

Hence,            
F

F
DS

Db

w

b

=
τ
τ  

 

and from Eq. (11.28),

      

τ
τ

θ
θ
φ

w

b

K= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =cos

tan

tan

/

1
2

2

1 2

1  (11.30)

                τ
w 

= K
1
 τ

b
 (11.31)

Design Procedure 

1.  The angle of repose φ of the sediment is determined by laboratory tests. For 
preliminary design Fig. 11.8 giving the variation of φ with the particle size and 
particle shape can be used.

2.  The longitudinal slope of the channel is established from topographical consid-
erations. The side slope of the channel is established from practical and con-
structional aspects. However, θ should be much smaller than φ.

3.  Strickler’s formula (Eq 3.17) is used to estimate Manning’s coeffi cient n for 
the channel as 

n = d 1/6/21.1

4.  Since it is required to have no sediment motion anywhere in the channel, by 
allowing for factor of safety τ

b
 is taken as

 τ
b
 = K

2
 τ

c
 (11.32)

where τ
c
 = critical shear stress and K

2 
= a coeffi cient of value less then unity and 

taken as follows
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Fig.11.8 Variation of the angle of repose φ of particles under water [Ref. 8]
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From Eq. 11.31
τ

w
 = K

1
 K

2
 τ

c
 (11.33)

5.  The critical shear stress of the particle is determined by Shields curve or by the 
appropriate equivalent empirical equation, Eq. 11.2 or 11.3.

6.  Since there will be considerable variation of the magnitude of shear stress on 
the perimeter (Fig. 3.6), the non-erodible channel will have to be designed to 
withstand the maximum shear stress that may occur anywhere in the perimeter 
of the channel. For a conservative design of a trapezoidal section of normal 
depth y

0
 and longitudinal slope S

0
 the maximum shear stress on the sides (τ

w
)

max
 

and bed (τ
b
)

max
 can be safely taken respectively as

             (τ
w
)

max
 = 0.75 γ y

0
S

0
            (11.34)

              (τ
b
)

max
 = γ y

0
S

0
                  (11.35)

Thus for the non-erodibility condition,

τ
w
 ≤ (τ

w
)

max

i.e.                 K
1
K

2
τ

c
 ≤ 0.75 γ y

0
 S

0
 (11.36)
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and                 τ
b
 ≤ (τ

b
)

max

i.e.                     K
2
 τ

c
 ≤ γ y

0
 S

0. 
(11.37)

The lesser of the two values of y
0
 obtained from Eqs 11.36 and 11.37 is adopted. The 

following example illustrates the design procedure well.

Example 11.6  Design a stable non-erodible channel to carry l0 m3/s of clear 
water through a 10–mm bed of rounded gravel. A longitudinal slope of 0.0008 and 
side slope of 2 horizontal: 1 vertical are to be adopted.

Solution From Fig. 11.8 for rounded gravel of d = 10 mm, φ = 32°.

tan φ = 0.6249

Side slope          tan θ = 1/2 = 0.5, cos θ = 0.8944

Sine d
mm

 > 6, by Eq. 11.2, τ
c
 = 0.905 × 10 = 9.05 Pa

For the bed: By considering a straight channel K
2
 = 0.9

         τ
b
 = K

2
 τ

c
 = 0.9 × 9.05 = 8.145 Pa

By making                      τ
b
 = (τ

b 
)

max
 = γ y

0
 S

0

y0

8 145

9790 0 0008
1 04=

×
=

.

.
. m            (11.38)

For the side: By Eq.  11.30, K1

2

2

1 2

1= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥cos

tan

tan

/

θ
θ
φ

 K1

2 1 2

0 8944 1
0 5000

0 6249
0 536= −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=.
.

.
.

/

τ
w
  = K

1
 τ

b
 = 0.536 × 8.145 = 4.366 Pa

Making τ
w
 = (τ

w
 )

max
   = 0.75 g y

0
S

0

y0

4 366

0 75 9790 0 0008
0 743=

× ×
=

.

. .
. m              (11.39)

Adopting the lower of the two values of y
0
 given by 11.38 and 11.39

y
0
 = 0.743 = say 0.740 m

To determine the bed width, B:

Area   A = (B + 2 × 0.74) × 0.74

= (B + 1.48) × 0.74
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Perimeter    P B B= + × × = +( . ) ( . )2 0 74 5 3 3094

By Eq. 3.22, Manning’s coeffi cient n = (d )1/6 / 21.1

 = (0.01)l/6/21.1 = 0.022

By Manning’s formula,         Q
n

AR S=
1 2 3

0
1 2/ /

Hence    Q
B

B
= = ×

+( )
+( )

×10 0
1

0 022

1 48 0 74

3 3094
0 0008

5 3 5 3

2 3

1 2.
.

. ( . )

.
( . )

/

/

/

        (B + 1.48)5/3=12.848 (B + 3.3094)2/3

Solving by trial-and-error, B = 12.4 m.

11.6 REGIME CHANNELS

The term regime is used in connection with alluvial channels to signify a state of 
dynamic equilibrium. Lacey (1930) defi nes a regime channel as one which carries a 
constant discharge under uniform fl ow in an unlimited incoherent alluvium having 
the same characteristics as that transported without changing the bottom slope, shape 
or size of cross-section over a period of time. Thus in a regime channel, in contrast to 
the non-erodible channels discussed in the previous section, there will be suspended 
load, bed load and formation of bed forms. In the initial periods in the life of a chan-
nel, there can be changes in the depth, width and longitudinal slope towards attaining 
the dynamic equilibrium. After the attainment of the regime state, the dimensions of 
the canal including the longitudinal slope will remain essentially constant over time 
so long as the discharge and other fl ow characteristics are not disturbed. The regime 
channel is thus a channel in dynamic state with neither erosion nor deposition.

A rigid bed canal can be said to have one degree of freedom in the sense that for 
a given channel a change in the

.
 discharge would cause a change in depth only. For an 

alluvial man-made canal, on the other hand, a change in discharge can cause changes 
in width, depth and bed slope to achieve a new regime. Thus an alluvial channel has 
three degrees of freedom. In the same way, a natural alluvial river has four degrees 
of freedom as its planform can also alter. The basic philosophy of regime concept 
recognizes the degrees of freedom of an alluvial channel and aims at providing initial 
conditions which are very near the fi nal regime values.

The regime theory of designing stable channels evolved in India during the 
late 19th century and early periods of twentieth century by the British engineers. 
Through keen observations of the behaviour of large number of irrigation canals 
they recognized that in channels that performed satisfactorily the depth and 
velocity were such that the water and sediment discharges were in equilibrium. In 
these canals there were no objectionable scour and deposition and maintenance 
was minimal. These observations have resulted in empirical relations connecting 
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the geometry and flow properties of regime channels. Most of the data for the 
development of regime relations have come from irrigation canals in Indo-
Gangetic plain which had a low sediment load (< 500 ppm by weight). Since the 
regime correlations do not include the sediment load explicitly, these equations 
should be considered applicable only to channels carrying similar concentrations 
of sediment load.

Further, the regime method is based on the hypothesis that channels adjust their 
slope, width and depth until they are in equilibrium with the incoming discharge and 
sediment load. As both discharges and sediment load vary in time in real canals, in 
using the term regime it is understood that sediment deposition and scour are bal-
anced over some suitably long period.

Kennedy Equation Historically, Kennedy (l895) was the fi rst to propose a relation-
ship between the velocity V and depth y

0
 of a stable channel as

V C ya= 0
                        (11. 40)

On the basis of observation on Bari-Doab canal system (now in Pakistan) where 
the channel bed material had a median size of 0.32 mm, Kennedy found the coeffi -
cient C = 0.56 and the exponent a = 0.64. Further, he introduced a coeffi cient m 
(known as critical velocity ratio), to account for the variation of the size of sedi-
ments, so that Eq. 11.40 became

V m y= 0 56 0
0 64. .            (11. 41)

In using Eq. 11.41 for designing a stable channel, Manning’s formula is used to 
describe the channel friction. Tables of recommended values of B/y

0
 = fn (discharge) 

and recommended values of m = fn (sediment size) are other information needed to 
estimate the value of y

0
 and B of a stable channel to convey a discharge Q, in a chan-

nel of bed slope S
0
. It is to be noted that Kennedy’s method of stable channel design 

assumes the slope to be independent. In view of many defi ciencies, the use of Ken-
nedy equation to design stable channels is now obsolete.

Lacey’s Equations Lindley (1919) was the fi rst to recognize the need to have three 
relationships to account for the three degrees of freedom of an alluvial channel. 
He advanced the basic philosophy of regime concept in his statement3 “when an 
artifi cial channel is used to convey silty water, both bed and banks scour or fi ll, 
changing depth, gradient and width until a balance is attained at which the channel 
is said to be in regime”.

Lacey, through systematic analysis of the available stable channel data, perfected 
the regime concept and gave fi nal forms to it through an adequate set of three primary 
equations. It is these equations, with minor modifi cations, that are in general use in 
India and many other parts of the world as regime equations. Basically, there are 
three equations of Lacey to represent the three degrees of freedom of an alluvial 
channel, viz., depth, width and gradient. The role of the sediment size is expressed, 
in an approximate way, by a fourth equation. These equations are:

            P Q= 4 75.                           (11.42)

Chapter 11.indd   508Chapter 11.indd   508 2/24/2010   3:08:16 PM2/24/2010   3:08:16 PM



Hydraulics of Mobile Bed Channels 509 

                 R = 0.48 (Q/f
s
)1/3                                (11.43)

            S
0
 = 0.0003 (  f

s  
)5/3/Q1/6                        (11.44)

in which            f ds mm=1 76.                       (11.45)

where           P = wetted perimeter in m

R = hydraulic radius in m

Q = discharge in the canal in m3/s

S
0
 = longitudinal bed slope

d
mm

 = particle size in mm

f
s
 =  silt factor to account for effect of sediment size on 

regime dimensions

It is of interest to note that the regime channels have been found to attain a side 
slope of 0.5 horizontal: 1 vertical at regime due to gradual deposition of fi ne material. 
This value of 0.5 H: 1 V is attained irrespective of the initial side slope value pro-
vided at the time of construction of the canal. Thus in the design of all regime chan-
nels, the fi nal side slope value of 0.5 H: 1 V is taken in the calculation of area, 
perimeter, etc.

There have been many improvements of the Lacey equations to defi ne the behaviour 
of regime channels, notable amongst them is the work of Blench1 and Simons and Albert-
son2. The regime equations of Blench provide for the effect of sediment concentration 
also on the regime dimension. The Simons and Albertson equations were derived from a 
larger data set than was available to Lacey and as such are more widely applicable. Refer-
ences 1 through 7 and 9 could be consulted for further details on regime channels. Exam-
ple 11.7 illustrates use of Lacey equations to design a regime channel.

Based upon these four independent equations of Lacey, (Eq. 11.42 through 11.45) 
a number of derived relationships between the different parameter have been devel-
oped. For example the velocity of fl ow V can be expressed as

V R S=10 8 2 3
0
1 3. / /  (11.46)

in a manner similar in form to Manning’s formula.

Example 11.7  Design a canal by Lacey’s theory to convey 40 m3/s of water. 
The canal is to be cut in an alluvial soil of median size 0.6 mm.

Solution Silt factor          f
s
 =1 76. dmm

= =1 76 0 6 1 36. . .
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Longitudinal slope                   S
f

Q
s

0

5 3

1 6

0 0003
=

×. /

/

=
× ( )

( )
= × −0 0003 1 36

40
2 72 10

5 3

1 6

4. .
.

/

/

Hydraulic radius       R = 0.48(Q/f
s
)1/3

=
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ =0 48

40

1 36
1 482

1 3

.
.

.
/

m

Wetted perimeter           P Q= 4 75.

 = =4 75 40 30 04. . m

Since the fi nal regime channel will have a side slope of 0.5 horizontal: 1 vertical,

 P B y= + +( ) =( . ) .2 1 0 5 30 04
2

0 m  (11.47)

P = B + 2.236 y
0 
= 30.04 m

B = (30.04 – 2.236 y
0
)

A = (B + 0.5 y
0
) y

0 
= PR = (30.04 × 1.482)

 = 44.52 m2

Substituting for B,

(30.04 − 2.236 y
0
 + 0.5 y

0
) y

0 
= 44.52

1.736 y
0
2 − 30.04 y

0 
+ 44.52 = 0

Solving for y
0

y0

2
30 04 30 04 4 44 52 1 736

2 1 736
=

± ( ) − × ×

×

( . . . .

.

=
±30 04 24 36

3 472

. .

.

=15.66 m and 1.636 m
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Neglecting the higher value of y
0
 as impractical,

 y
0
 = 1.636 m

  B = 30.04 – (2.236 × 1.636) = 26.38 m

Thus,

 B = 26.38 m

 y
0 
= 1.636 m

S
0 
= 2.72 × 10–4

 Side slope = 0.5 H: 1 V.

Example 11.8  A regime Lacey channel having a full supply discharge of 
30 m3/s has a bed material of 0.12-mm median size. What would be the Manning’s 
roughness coeffi cient n for this channel?

Solution        f ds mm= = =1 76 1 76 0 12 0 61. . . .

By Eq. (11.44)        S
f

Q
s

0

5 3

1 6

5 3

1 6

50 0003 0 0003 0 61

30 0
7 46 10= =

( )
( )

= × −. . .

.
.

/

/

/

/

By Eq. (11.46)       n
S

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
×( )

=
−

0
1 6 5 1 6

10 8

7 46 10

10 8
0 019

/
/

.

.

.
.

11.7  SCOUR

Scour is removal of sediment in a stream due to action of fl owing water. In connec-
tion with bridges, scour could be defi ned as the result of erosive action of fl owing 
water excavating and carrying away sediment from the bed and banks of a stream
due to interference of structures such as abutments and bridge piers on the fl ow-
ing water. In an alluvial stream there will be continuous transport of sediment in 
the stream as a geomorphological process. If however there is additional natural or 
man induced causes to upset the sediment supply and removal in a reach, such as 
construction of a barrage or a dam, the stream will have long term changes in the 
stream bed elevation. If there is progressive build up of stream bed in a reach due to 
sediment deposition it is called as aggradation. Conversely, if there is a progressive 
long term lowering of the channel bed due to erosion as a result of defi cit sediment 
supply to the reach it is called as degradation. In connection with a bridge structure, 
three types of scour are recognized:
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1. Degradation scour This is present in the channel at the bridge site due to 
stream degradation phenomenon in the reach generating from certain causes upstream 
of the reach.

2. Contraction scour Due constriction of the width of the stream fl ow at a bridge 
site, the velocities in the stream would increase and cause erosion resulting in removal 
of sediment from the bottom and sides of the river. It is also known as general scour.

3. Local scour Due to the presence of bridge piers and abutments the three 
dimensional fl ow around the obstruction would cause vortices that would scoop the 
sediment in the immediate neighborhood of the abutment and piers and deposit the same 
at some other location. This results in a deep scour hole around the foundation of bridge 
elements and may impair the structural safety of the structure. Further, depending upon 
the sediment movement in the stream, local scour is classifi ed in to two kinds:

(i) Clear-water scour This refers to the situation where there is no sediment 
movement in the bed of the stream and hence no sediment is supplied from upstream 
into the scour zone. Typical clear water scour situation include (i) coarse bed material 
streams, (ii) fl at gradient streams in low fl ow (iii) armored stream beds, and (iv) vegetated 
channels

(ii) Live-bed scour This on the other hand, refers to the situation where sediment 
is continuously being supplied to the scour hole areas. Thus, for example, in a stream 
where there is dune movement, the scour hole depth will be affected by the movement 
of a dune in to or out of the scour hole. After a long time there will be some kind 
equilibrium with the scouring mechanism and bed movement and the equilibrium will 
be reached asymptotically. The depth of scour will oscillate about a mean position.

Total scour The sum of the three types of scour enumerated above, viz., long term 
degradation, contraction scour and local scour are known as the total depth of scour 
at the bridge.

The time development of a scour hole in clear water fl ow and in live bed situation 
is shown in Fig. 11.9. The main difference between the clear water scour and the live 

Fig. 11.9 Time development of scour

Time-averaged equilibrium
scour depth in live bed scour

Live bed scour

Time, t

S
co

ur
 d

ep
th

 d
s

Clear water scour

Equilibrium scour depth
in clear water scour
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bed scour is the time taken to reach equilibrium scour; it takes longer in the live bed 
scour to reach equilibrium. It has been observed in experimental studies that in the 
live bed scour the equilibrium scour depth is only about 10% smaller than in the cor-
responding maximum clear water scour depth. The time development of scour is 
logarithmic in nature.

11.7.1 Local Scour

Scour at a Bridge Pier Scour caused by fl owing water of a stream past a bridge 
pier or abutment has been recognized as a major cause of bridge failure. Considerable 
research attention has been devoted since past several decades to understand the 
scour phenomenon and to design safe and economical bridge structures. A brief 
description of the scour at a bridge founded on an alluvial stream is given in the 
following paragraphs.

Figure l1.10 shows a schematic representation of fl ow around a bridge pier and 
its scour hole. When the fl ow approaches a bridge pier, there is a stagnation point 
at the point of intersection of the fl ow with the pier, thus in an ideal case a vertical 
line of stagnation is obtained. Due to the velocity distribution in the approaching 
fl ow which is zero at the bed and approaches a maximum at or near the surface, a 
pressure gradient from top to the bottom is created. Due to this there is a plunging 
fl ow and its interaction with the separated boundary layer close to the bed and the 
main fl ow results in a set of vortices wrapping most of the upstream part of the 
pier as shown in Fig. 11.10. The plan view of this set of vortex is in the form of a 
horseshoe and as such this vortex structure is known as horseshoe vortex. In addi-
tion to the horse shoe vortex, which is known to be the prime agent responsible 

Fig. 11.10 Schematic sketch of vortex system at circular bridge pier

Wake vortex

Scour hole

Horseshoe vortex
Sediment
bed

Down flow

Surface
roller
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∇
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514 Flow in Open Channels

for scour, there exists a wake containing vertical wake vortices in the separation 
zone in the downstream region of the pier. This system of horseshoe and wake 
vortices causes the sediment to be lifted up of the bed in the scour hole and car-
ries the sediment out of the separation zone to create a scour hole around the 
pier.

The action of horseshoe vertex is to remove the bed material from around the base 
of the pier. When there is live bed condition in the stream, the transport rate of sedi-
ment away from the base region of the pier will be greater than the transport rate of 
sediment in to the region. As the scour hole develops, the strength of the horseshoe 
vertex is reduced, thereby reducing the transport rate of sediment out of the region. 
Eventually, an equilibrium is reached between the bed material infl ow and outfl ow 
and the scour hole development ceases.

In the clear water situation, the scouring action ceases when the shear stress 
caused by the horseshoe vertex equals the critical shear stress of the sediment parti-
cles at the base of the scour hole.

The structure of the vortex has been studied in the laboratory by many investiga-
tors. Reference 12 and Ref. 13 explain the mean fl ow characteristics and turbulent 
structures of the horseshoe vortex respectively.

Study of local scour at bridge piers has been studied very extensively over several 
decades and consequently there has been numerous equations purporting to predict 
the maximum depth of scour. Most of these studies are in the laboratory under simple 
or idealized conditions and the fi eld studies are rather limited. A review of the studies 
on scour at bridge piers is available in Ref. 6, 14, 15 and some recent equations are 
reviewed by Sturm16.

The Federal Highway Administration of US Department of Transportation has 
brought out the Hydraulic Engineering Circular No 18 (HEC-18)17 in 2001 which 
presents the state of knowledge and practice for the design, evaluation and inspection 
of bridges for scour. This document, along with its companion documents HEC-20 
and HEC-23, which represents the current recommended procedure relating to Scour 
for adoption is available in http://isddc.dot.gov.OLPFiles/FHWA/010590.pdf

Figure 11.11(a) gives the defi nition sketch of bridge pier and related scour com-
plex, and Fig. 11.11(b) gives some of the common pier shapes. For the estimation 
of local scour at bridge piers under situation given in Fig. 11.11, HEC-18 adopts 
the Colorado State University (CSU) formula of Richardson, Simons and Julien 
(1990) given by

   
d

b
K K K K

y

b
Fs =

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟2 0 1 2 3 4

1

0 35

1
0 43.

.

.  (11.48)

in which

 d
s  
= Scour depth, (m)

 y
1
 = fl ow depth directly upstream of the pier, (m)

K
1
 = correction factor for pier nose shape, Fig (11.11) and Table (11.2)

K
2
 = correction factor for angle of attack, , Fig (11.11) and Equation 11.49
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Fig. 11.11 (a) Defi nition sketch of a scour hole at a bridge pier
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Fig. 11.11 (b) Common pier shapes
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516 Flow in Open Channels

Table 11.2 Correction Factor K
1
 for 

Pier Nose Shapes

Table 11.3 Correction Factor K
2
  for Angle of 

Attack θ  of the Flow

Shape of Pier Nose K
1

Angle θ L/b = 4 L/b=8 L/b = 12

(a) Square Nose 1.1 0 1.0 1.0 1.0

(b) Round Nose 1.0 15 1.5 2.0 2.5

(c) Circular Cylinder 1.0 30 2.0 2.75 3.5

(d) Group of Cylinders 1.0 45 2.3 3.3 4.3

(e) Sharp Nose 1.9 90 2.5 3.9 5.0

Angle = Skew Angle of Flow, L = length 
of Pier (m)

Table 11.4 Correction Factor K
3 
 for Bed Condition

Bed Condition Dune height (m) k
3

Clear water scour N/A 1.1

Plane bed and Antidune fl ow N/A 1.1

Small Dunes 3 > H ≥ 0.6 1.1

Medium Dunes 9 > H ≥ 3 1.2 to 1.1

Large Dunes H ≥ 9 1.3

K
3  

= correction for bed condition = as in Table 11.4

K
4   

=  correction factor for armoring by bed material of size from Eqs 11.50 to 
11 51a.

b = Pier width (m)

L = length of pier (m)

F
1
= Froude number directly upstream of the pier =

V

gy
1

1

V
1
= mean velocity of fl ow

The correction factor K
2
 for the angle of attack of the fl ow θ is calculated as

K
L

b2

0 65

= +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟cos sin

.

θ θ  (11.49)

In Eq.11.48 L/b is taken as 12.0 even if the actual value exceeds 12.
Armoring is a natural process whereby an erosion resistant layer of relatively large 
particles is formed due to the removal of fi ner particles by stream fl ow. If the bed 
material consists of relatively large proportion of coarse material, in a scouring action 
the fi nes will be eroded fi rst and the larger particles may form an amour coat to resist 
further scouring thus reducing the maximum depth of scour.
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The correction factor K
4
 reduces the scour for materials having D

50 
≥ 2.0 mm and 

D
96

 ≥ 20 mm. The correction K
4
 is given as follows:

• K
4
 = 1.0 for D

50
 < 2.0 mm and D

95
 < 20.0 mm

•  For D
50

 ≥ 2.0 mm and D
96

 ≥ 20 mm, the following relationships are used to 
calculate K

4
:

    K
4
 = 0.4(V

R
)0.15 (11.50)

where                         V
V V

V VR
icD

cD icD

=
−

−
>1 50

50 50

0  (11.50a)

V
icDx

 = approach velocity in m/s required to initiate scour at the pier for the grain size 
D

x
 (m).

         V
D

b
VicDx

x
cDx=

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟0 645

0 053

.
.

  (11.51)

V
cDx

= critical velocity in m/s for incipient motion for the grain size D
x
(m)

                          V y DcDx x= 6 19 1
1 6 1 3. / /  (11.51a)

In the above y
1
 = depth of fl ow just upstream of the pier, excluding local scour, (m).

V
1
= velocity of the approach fl ow just upstream of the pier (m/s)

D
x
= grain size for which x percent of the bed material is fi ner (m)

The minimum value of K
4
 is 0.4.

A study of the above equations reveal the following signifi cant points relating to 
parameters affecting the scour depth:

   (i)  The greater the approach velocity greater will be the scour depth.
  (ii)  Similarly, scour depth is directly related to the positive power of the depth 

of fl ow. 
(iii) The scour depth increases with an increase in the width of the pier.
  (iv)  If the approach fl ow is at an angle to the pier the projected length of the pier 

will come in to play and the scour increases.
   (v)  Shape of the pier plays an important role on the scour depth.
  (vi)  Size and gradation of the bed material do not have an important role on the 

scour depth; the time taken to achieve maximum scour depth depends on the 
grain size.

(vii)  Lodging of debris around a pier can increase the width of pier, change its 
shape and its projected length with consequent increase in the maximum 
depth of scour

Chapter 11.indd   517Chapter 11.indd   517 2/24/2010   3:08:18 PM2/24/2010   3:08:18 PM



518 Flow in Open Channels

11.7.2 Abutment Scour

The mechanism of local scour at an abutment is essentially same as at a bridge pier. 
Fig. 11.12 shows the formation of horseshoe vortex (primary vortex) and wake vortices. 
In view of wide range of shape, layout and fl ow situations possible in abutment scour, the 
problem is rather complex.

Fig. 11.12 Schematic sketch of fl ow fi eld at an abutment (Ref. 18)

Down flow

Bow wave

Abutment Wake vortex

Secondary vortex

Primary vortex

∇

∇

A detailed review of work done on abutment scour up to 2004 and including all 
aspects of the scour problem such as fl ow fi eld, scouring process and scour depth 
estimation formulae are presented in Ref. 18. Further, relevant useful information 
related to abutment scour is available in Ref. 16. Detailed survey of abutment scour 
problem and FHWA recommendations are contained in HEC-18, (Ref. 17)

Constriction Scour When there is a contraction in a mobile bed channel there is 
an increase in the velocity and shear stress in the contracted region which leads to a 
higher transport rate and change in the sediment transport equilibrium. In live bed 
contraction scour maximum scour occurs when the shear stress in the contracted 
portion reduces to a value such that the bed sediment transported in to the section 
is equal to the bed sediment transported out of the contracted section. In clear water 
scour case equilibrium is reached when the shear stress in the contracted section 
reaches the critical shear stress. HEC- 18 contains detailed description of the 
contraction scour and recommends the following formulae for its estimation.
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(i) Live bed contraction scour

          y

y

Q

Q

W

W

k

2

1

2

1

6 7

1

2

1

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

/

 (11.52)

and average scour depth  y
s 
= y

2
−y

0
 (11.53)

where y
1
 = average depth in upstream main channel (m)

y
2
 = average depth in the contracted channel (m)

y
0
 = existing depth in the contracting channel before scour (m)

y
s
 = average scour depth (m)

Q
1
 = fl ow in the upstream channel transporting sediment (m3/s)

Q
2
 = fl ow in the contracted channel (m3/s)

W
1
 =  bottom width of the upstream channel that is transporting bed material 

(m)

W
2
 =  bottom width of the main channel in the contracted section less pier 

widths (m)

K
1
 = Exponent determined as below

V
*
/ω K

1
Mode of bed material transport

<0.50 0.59 Mostly contact bed material discharge

0.50 to 2.0 0.64 Some suspended material discharge

> 2.0 0.69 Mostly suspended material discharge

Where V
*
 = shear velocity in the upstream section (m/s)

= g y S1 1  in which S
1
= slope of the energy grade line in the main channel

ω = fall velocity of the bed material based on D
50

 (m/s)

(ii) Clear water contraction scour

         y
Q

D Wm

2

2

2 3 2

3 7
0 025

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.
/

/

 (11.54)

and average scour depth       y
s
 = y

2
 − y

0  
(11.55)

y
2
 = average equilibrium depth in the contracted section after contraction scour (m)

Q = discharge through the bridge (m)

D
m
 =  diameter of the smallest non-transportable particle in the bed material (taken 

as equal to 1.25 D
50

) (m)
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y
0
 = average existing depth in the contracted section (m)

y
s
 = average scour depth (m)

Degradation Scour Long-term degradation of the stream may be the result of 
some modifi cation of the stream in the upstream regions or in the watershed. The 
stream may be in equilibrium, or aggrading or degrading at the bridge site. Details 
of aggradation and degradation phenomenon may be obtained in any treatise on 
Sediment Transport and is beyond the scope of this book. Details of estimation 
of degradation of stream at a bridge site are given in HEC-18. Procedures for 
estimating long-term aggradation and degradation at a bridge site are available in 
HEC- 20 (Ref. 19).

Total Scour The total scour at a bridge site is the sum of degradation scour, local 
contraction scour and abutment or pier scour. HEC-18 adopts this procedure to get a 
conservative estimate of scour.

Example 11.9  A bridge on an alluvial stream has the following features at the 
design state:

Upstream depth of fl ow = 3.5 m

Discharge intensity = 10.5 m3/s/m

Bed condition = plane bed. Bed material: median size = 1.0 mm

Piers: Round nosed, 12.0 m long and 1.5 m wide.

Estimate the maximum depth of scour at the bridge piers when the angle of attack of 
fl ow with respect to the pier front end is (a) 20º and (b) zero

Solution By Eq. 11.48

d

b
K K K K

y

b
Fs = 2 0 1 2 3 4

1 0 35
1
0 43. ( ) . .

b = 1.5 m, q = 10.5 m3/s/m and y
l
 = 3.5 m

V
1
 = 10.5/3.5 = 3.0 m/s

  

F
V

gy
1

1

1

3 0

9 81 3 5
0 512= =

×
=

.

. .
. m

y
1
/b = 3.5/1.5 =2.333, L  /b = 12.0/1.5= 8.0

     K
1
 = correction factor for pier nose shape from Table (11.2) = 1.0
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(a) θ = 20°

        K
2
 = correction factor for angle of attack from Eq. 11.49

        = (Cos20° + (8.0) Sin 20º )0.65 = 2.33

     K
3
= correction for bed condition from Table 11.4 for plane bed = 1.1

    K
4
 = correction factor for armoring by bed material for D

50 
< 2.00 mm = 1.0

    
d

b
s = × × × × × =2 0 1 0 2 33 1 1 1 0 2 333 0 512 5 1720 35 0 65. . . . . ( . ) ( . ) .. . m

     d
s
 = 5.172 ×1.5 = 7.76 m below average bed level.

(b) For θ = 0°, K
2
 = 1.0

      

d

b
s = × × × × × =2 0 1 0 1 0 1 1 1 0 2 333 0 512 2 220 35 0 65. . . . . ( . ) ( . ) .. .

       d
s
 = 2.22 × 1.5 = 3.33 m below average bed level.

The Indian Practice The current practice followed in India is based on the 
Lacey equation. Two Codal provisions are available. Indian Railways Standards 
(1985) and IRC-5 (1998) and IRC-78 (2000) stipulates that in channels with alluvial 
beds the design scour depth be two times Lacey depth.
The following four Lacey equations are used: 
The hydraulic radius of Lacey Eq. 11.43 is considered as depth and as such Eq. 11.43 
is written as

 D
Q

fLQ

s

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

0 470

1 3

.

/

 (11.56)

 P Q= 4 75.  (11.42)

      f ds mm=1 76.  (11.45)

Here, D
LQ

 = normal scour depth (in meters) below the design fl ood level and is called 
as Lacey regime depth.

Q = design fl ood discharge (m3/s)

f
s
 = lacey silt factor with d

mm
 = median diameter of bed particles in mm.

When Lacey ‘s waterway as given by Eq. 11.42 is not available and restricted water-
way is used IRC recommends that that instead of Eq. 11.56 the following equation be 
used to determine the Lacey depth of scour:

 D
q

fLq

s

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1 34
2 1 3

.

/

 (11.57)
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where q = intensity of discharge under the bridge = Q/W
e

where W
e
 = effective waterway.

Based on the analysis of fi eld data by Inglis, a multiplying factor of 2.0 is used to 
obtain design maximum depth of scour below HFL as

           D
s
 = 2.0 D

LQ
  or  D

s
 = 2.0 D

L q
 as is appropriate. (11.58)

This method, of estimating design scour depth as above, is sometimes known as 
Lacey–Inglis method. It is to be noted that in this method there is no separate provi-
sion for calculation of degradation scour or contraction scour.

Example 11.10  Estimate the maximum depth of scour for design for the follow-
ing data pertaining to a bridge in the Gangetic plain; (Use Lacey – Inglis equations)

Design deischarge = 15,000 m3/s

Effective Water way = 550.0 m

Median size of bed material = d
mm

 = 0.10 mm

Solution By Eq. 11.42, P Q= = =4 75 4 75 15000 581 8. . . m

Since this is greater than We = 550 m, use Eq. (11.53)

   By Eq. 11.44 f ds mm= = =1 76 1 76 0 10 0 556. . . .

           q = 15000/550 = 27.27 m3/s/m

By Eq. 11.57 DLq =
( )⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
=1 34

27 27

0 556
14 76

2 1 3

.
.

.
.

/

m  below HFL

Design scour depth D
s
 = 2.0 D

Lq
 = 2 × 14.76 = 29.52 m below HFL

 REFERENCES

 1. Blench, T, Mobile Bed Fluviology, Univ. of Alberta Press, Edmonton, 1969.
 2. Chang, H H, Fluvial Processes in River Engineering, John Wiley and Sons, USA, 1988.
 3.  Davis, C V, and Sorensen. K E, (Ed), Handbook of Applied Hydraulics, McGraw-Hill 

Book Co., New York, 1965.
 4.  Garde, R J, and Ranga Raju, K G, Mechanics of Sediment Transportation and Alluvial 

Stream Problems, Wiley Eastern Ltd., New Delhi, 2nd Ed., 1985.
 5.  Graf, W H, Hydraulics of Sediment Transport, McGraw-Hill Book Co., New York, 1971.
 6.  Shen, H W, (Ed), River Mechanics, Vol, I, II, Shen, H W, Fort Collins, Colo., USA, 1971.
 7.  Simons, D B, and Senturk F, Sediment Transport Technology, Water Resources Publica-

tion, Fort Collins, Colo., USA, 1977.

Chapter 11.indd   522Chapter 11.indd   522 2/24/2010   3:08:19 PM2/24/2010   3:08:19 PM



Hydraulics of Mobile Bed Channels 523 

 8.  Swamee, P K, and Mittal, M K, An Explicit Equation for Critical Shear Stress in Alluvial 
Streams, J. of Irrigation and Power, CBIP., India, Vol. 33, No. 2, pp. 237–239, April 1976.

 9.  Vanoni, V A, (Ed.), Sedimentation Engineering, Manual No. 54, A.
10.  Subramanya, K, Engineering Hydrology, McGraw-Hill Education (India), 3rd Ed, 2008.
11.  Yang Xiaquing, ‘Manual on Sediment Management and Measurement’, WMO – Opera-

tion Hydrology Report No. 47, Secretariat of WMO, Geneva, Switzerland, 2003.
12.  Muzzamil, M, and Gangadhariah, T, ‘The Mean Characteristics of a Horseshoe Vortex at 

a Cylindrical Pier’, Jour. of Hyd. Research, IAHR, Vol. 41, No.3, 2003, pp. 285–297.
13.  Dey, S, and Raikar, R V, ‘Characteristics of Horseshoe Vortex in Developing Scour holes 

at Piers’, Journal of Hydraulic Engineering, ASCE, Vol. 133, No. 4, 2007, pp. 399–413.
14.  Breusers, H N C, Nicollet, G, and Shen, H W, ‘Local Scour around Cylindrical Piers’ 

J. Hyd Res., IAHR, 15(3), 1977, pp. 211–252.
15.  Dargahi, B, ‘Local Scour at Bridge Piers–A Review of Theory and Practice’, Bull No. 

Trita, VBI-114, Hydr. Lab., Royal Institute of Technology, Stockholm, Sweden, 
1982.

16.  Strum, T W, Open Channel Hydraulics, McGraw-Hill Higher Education, Singapore, 
2001.

17.  Richardson, E V, and Davis, S R, Evaluating Scour at Bridges, Fourth Ed., Report No. 
HEC –18, Federal Highway Administration, US Department of Transportation,  Washington 
DC, May 2001.

18.  Barbhuiya, A K, and Dey, S, ‘Local Scour at Abutments: A Review’, Sadhana, India, 
Vol. 29, Part 5, Oct. 2004, pp. 449–476.

19.  HEC-20, ‘Stream Stability at Highway Structures’, 3rd ed. Report No. HEC–20, Federal 
Highway Administration, US Department of Transportation, Washington DC, 2001.

 PROBLEMS

Problem Distribution

Topic Problems

Initiation of motion and Critical shear stress 11.1 to 11.5

Bed forms and Resistance 11.6 to 11.10

Bed load 11.11, 11.12, 11.16 and 11.24

Suspended load 11.13 to 11.15

Total load 11.16, 11.18

Non- Erodible channel 11.17, 11.18

Lacey Regime channel 11.19 to 11.24

Bridge Pier Scour 11.25, 11.26

11.1  Estimate the critical shear stress for the following sizes of sediment particles in the bed 
of a channel:
(a) 0.1mm     (b) 1.0 mm        (c) 10 mm

11.2  A wide stream has a sediment bed of median size 0.35 mm. The slope of the channel is 
1.5 × 10−4.
(a)  If the depth of fl ow in the channel is 0.25 m, examine whether the bed particles will 

be in motion or not.
(b)  What would be the status of the bed when the depth of fl ow is 0.10 m?
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524 Flow in Open Channels

 11.3  The median size of bed sediment in a wide gravel bed river is 50 mm. The river bed 
experiences threshold conditions when the energy slope of fl ow is 0.005. Estimate the 
depth of fl ow at this stage.

 11.4  A wide alluvial channel has a fl ow which causes incipient motion of the bed particles. 
The temperature of the water is 25° C (v = 0.897 × 10−6 m2 s). It is expected that the 
temperature would drop to 5°C (v = 1.519 × 10−6 m2/s) and all other fl ow parameters 
would remain unaltered. Examine, with the help of Shields diagram, the status of the 
channel bed when the initial shear Reynolds number (u

*
d/v) is (a) 5, (b) 100, and 

(c) 500. [The change in the densities due to temperature change may be neglected].
 11.5  A wide rectangular channel carries clear water at a depth of 1.2 m. The channel bed is 

composed of coarse gravel of d
50

 = 40 mm. Determine the slope of the channel at which 
incipient conditions exists. What is the discharge per unit width at this slope?

 11.6  A wide channel in an alluvium of grain size d
50

 = 0.30.mm has plane bed with no 
motion. The depth of fl ow is 0.25 m and the bed slope is measured as 0.0002. Estimate 
the mean velocity and discharge per metre width in this channel.

 11.7  Two wide alluvial channels A and B have the following features:

Channel A Channel A

Depth of fl ow 1.20 m 1.20 m

Slope 1.65 × 10-3 1.65 × 10-3

Bed material size 1.3 mm 12 mm

 Estimate the nature of the bed form in each of these two channels.
 11.8  A wide alluvial channel has a bed slope of 6 × 10−4 and bed material of median size 

0.5 mm. Estimate the maximum depth of fl ow that can be adopted in this channel while 
maintaining the ripple and dune type of bed form.

 11.9  A mobile bed channel with median grain size of 0.8 mm has a longitudinal slope of 
2 × 10−4 and carries a discharge of 10 m3/s at a depth of 1.5 m. The channel is trapezoi-
dal in section and has a bed width of 10 m and side slopes of 1.5 horizontal : 1 vertical. 
Estimate (a) the Manning’s roughness coeffi cient n, (b) the shear stress at the bed due 
to (i) sediment grains, and (ii) bed forms.

11.10  An irrigation channel is to be excavated on a slope of 0.0001 through a terrain consist-
ing of coarse sand having d

50
 = 0.8 mm and relative density 2.65. The discharge is to be 

1.5 m3/s. If no sediment transport is to be allowed, determine a suitable width for the 
channel by assuming it to be wide rectangular and the banks are protected.

11.11  Calculate the bed load per unit width in a wide stream having the following data:
d

50  
=

  
0.5 mm

S
0    

=
  
0.0004

n     =
  
Manning’s coeffi cient for the channel = 0.025

q     =
  
water discharge per unit width = 3.0 m3/s/m.

11.12  Estimate the bed load for the following canal in coarse alluvium:
d

50
 =

  
12 mm

y
0
   =

  
depth of fl ow = 5.87 m

B   =
  
width = 46.0 m

S
0
   =

  
longitudinal slope = 6.5 × 10−4

n    =
  
Manning’s coeffi cient for the channel = 0.025

The channel may be assumed to be a wide rectangular channel, with sides protected.
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11.13  When a sediment of fall velocity ω  is suspended in water where the mass diffusion 
coeffi cient εs  can be assumed constant, show that the concentration C at a height y 
above the bed is given by

C

C

y a

a s

= −
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥exp

( )ω
ε

where C
a
 = reference concentration at a level a above the bed.

11.14  In a wide channel with a depth of fl ow of 3.0 m suspended load samples at depths of 
2.0 m and 2.5 m below the water surface indicated concentrations of 1200 ppm and 
1800 ppm respectively. Estimate the concentration at a depth of 0.5 m below the water 
surface.

11.15  A wide channel has a slope of 1 in 4500 and a depth of fl ow of 2.0 m. Suspended load 
sampling at a height of 0.4 m above the bed revealed a concentration of 800 ppm by 
weight, consisting of particles having a fall velocity of 0.05 m/s. Estimate the concen-
tration at levels of (a) 0.8 m and (b) 1.2 m above the bed.

11.16  A wide alluvial stream has a bed material of 0.25-mm median size and a longitudi-
nal slope of 2.0 × 10−4. Estimate the bed load and total load per unit width of this 
stream when the depth of fl ow is 2.0 m and the water discharge is 1.2 m3/s per metre 
width.

11.17  A channel which will carry a discharge of 60 m3/s is to be cut on a slope of 0.0005 
through coarse, well-rounded gravel having a median size of 25 mm and relative den-
sity 2.65. Determine the suitable base width and depth of fl ow for a non-erodible chan-
nel of trapezoidal cross section with a side slope of 2H: 1V for the canal.

11.18  A trapezoidal channel of side slopes 2.5 H: 1V is cut in angular gravel of 2.0-mm 
median size. The base width of the channel is 10.0 m. If this channel is to carry clear 
water determine the maximum possible longitudinal slope to have a stable channel at a 
full supply depth of 1.5 m. What is the full supply discharge of this channel at this maxi-
mum slope?

11.19  Using the primary Lacey equations, show that the velocity of fl ow in a regime channel 
is given by

V = 10.8 R2/3 S0
1 2/

11.20  Fill in the following table relating the elements of a Lacey regime channel:

Sl. No. Q 
m3/s

B 
m

y
0
 

m
S

0
V 

m/s
Manning’s 
Coeffi cient

n

Silt 
factor

f
s

(i) 30.0 – – – – – 0.80

(ii) – – – 3.27 × 10−4 – – 1.24

(iii) – 30.0 1.50 – – – –

(iv) 15.0 – – 2.0 × 10−4 – – –

11.21  Design channels by the Lacey theory for the following two cases:
(a) Discharge = 50 m3/s, Median size of alluvium = 0.9 mm
(b) Discharge = 10m3/s, Median size of alluvium = 0.50 mm
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11.22  A regime channel is designed by Lacey theory to carry 20 m3/s of full supply discharge 
in an alluvium of median size 1.2 mm. What would be the Manning’s roughness coeffi -
cient n of this channel?

11.23  Show that the Lacey regime equations would yield the following relationship for the 
Manning’s roughness coeffi cient n applicable to a Lacey regime channel:

n
d

Q
mm=

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪

0 028 5 36

1 36

. /

/

where d
mm

 = sediment size in mm.
11.24  Design a regime channel by Lacey’s equations to convey 15 m3/s of water in an alluvium 

of median size 1.2 mm. What bed load and total load can be expected in this channel?
11.25   The following data pertain to a bridge on an alluvial stream at the design state: 

Upstream depth of fl ow = 4.0 m, Discharge intensity = 12.0 m3/s/m
Bed condition = Small dunes. Bed material: median size = 1.2 mm
Piers: Sharp nosed, 18.0 m long and 1.5 m wide.
Estimate the maximum depth of scour at the bridge piers when the angle of attack of 
fl ow with respect to the pier front end is 5°.

11.26  For the design of a bridge the following data have been collected:
Design fl ood discharge = 600 m3/s; Bed material = 0.08 mm.
Estimate the design scour for use in the design of the bridge piers.
[Use Lacey–Inglis method].

 OBJECTIVE QUESTIONS

 11.1  For a gravel of median size 11 mm, the critical shear stress is about
(a) 3.2 Pa  (b) 10 Pa
(c) 0.62 Pa  (d) 22 Pa

 11.2  For water fl ow in coarse alluvium, the minimum size of the particle at which the critical 
shear stress is independent of the viscosity of water is about
(a) 6 mm  (b) 6 cm
(c) 0.06 mm  (d) 3 mm

 11.3  Shields diagram is a plot of non-dimensional shear stress τ*c
 against

(a) Reynolds number of fl ow
(b) relative depth of grain size, d/R
(c) Shear Reynolds number, u

*c
 d/v

(d) u
*
 R/v, where R = hydraulic radius.

 11.4  In Shields diagram the minimum shear Reynolds number R
u d

vc
c

*
*=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 beyond which 

the critical shear stress is independent of R
*c

 is about
(a) 10  (b) 2000
(c) 2  (d) 400

 11.5  The size d
c
 of a sediment particle that will just remain at rest in the bed of a wide rect-

angular alluvial channel of depth D and slope S
0
 is given by d

c
 equal to

(a) 11 D S
0
  (b) 10.8 D2/3 S

0
1/3

(c) 11 0RS  (d) 
1

11
2 3

0
1 2R S/ /

Chapter 11.indd   526Chapter 11.indd   526 2/24/2010   3:08:20 PM2/24/2010   3:08:20 PM



Hydraulics of Mobile Bed Channels 527 

 11.6  If in an alluvial channel the Manning’s n corresponding to plane bed without sediment 
is 0.016, the same channel with dunes on the bed will have a Manning’s coeffi cient n

d
 

such that
(a) n

d
 < 0.016 (b) n

d
 = 0.016

(c) n
d
 > 0.016 (d) n

d
 = 0.032

 11.7  Indicate the incorrect statement in an alluvial channel
(a)  if the bed form is dunes, then the water surface will be out of phase with the bed 

forms
(b)  if the bed form is antidunes, then the water surface, will be in phase with the bed 

form
(c)  ripples are not formed in sediment of size greater than 0.6 mm
(d)  if the bed form is dunes, then the Froude number of the fl ow is greater than 

unity.

 11.8  In an ideal laboratory channel with alluvial bed the channel fl ow is to be observed at 
various progressively higher shear values. Starting from the plane bed form the follow-
ing sequence of bed forms can be expected:
(a) Ripples and dunes–Transition–Antidunes
(b) Transition–Dunes–Antidunes
(c) Ripples and Dunes–Antidunes–Transition
(d) Antidunes–Ripples and dunes–Transition.

 11.9   The hydraulic radius associated with the grain roughness R′ is related to total hydraulic 
radius R as

(a) ′ =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

R
n

n
Rs

3 2/

  (b) ′ =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

R
n

n
Rs 3 2/

(c) ′ =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

R
n

n
Rs   (d) ′ =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

R
n

n
Rs

2 3/

where n
s
 and n are Manning’s coeffi cient corresponding to grain roughness and total 

channel roughness respectively.

11.10  Bed load is a term used to describe
(a) the combination of contact load and wash load
(b) the combination of contact load and saltation load
(c) the combination of contact load and suspended load near the bed
(d) the bed material load.

11.11  The term wash load refers to
(a) the saltating part of bed material load
(b) suspended load during a fl ood
(c) part of suspended load comprising of particles not available in the bed material
(d) bed load after the fi nes have been washed out.

11.12  An alluvial channel has a bed material of median size 0.9 mm. The Manning’s coeffi -
cient n of this bed when it is plane and without motion of particles is
(a) 0.0009  (b) 0.0123
(c) 0.0273  (d) 0.0147
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11.13  An unlined alluvial channel has trapezoidal section with side slopes of 2.5 horizontal: 
1 vertical. If the angle of repose of the bed material is 35°, the ratio of critical shear 
stress of the sediment particle on the side to that on the bed is
(a) 0.61  (b) 0.93
(c) 0.65  (d) 0.76

11.14  In a trapezoidal channel having a side slope = m horiz : 1 vertical, depth of fl ow = D, 
longitudinal slope = S

0
, the maximum shear stress on the sides is about

(a) γ DS
0
  (b) 0.99 γ DS

0

(c) 0.76 γ DS
0
  (d) 

1
0m

DS
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟γ

11.15  In a regime alluvial channel designed by Lacey’s theory,
(a) the bed load is zero
(b) the suspended load is zero
(c) the bed will have dune type of bed form
(d) the bed form will be of plane bed with sediment motion.

11.16  The Lacey’s equations for a regime channel consists of a set of x independent equations 
relating to the fl ow, where x equal to
(a) 1  (b) 3
(c) 8  (d) 2

11.17  An alluvium with a median size of 0.32 mm has Lacey’s silt factor f of value
(a) 1.76  (b) 1.00
(c) 0.57  (d) 0.80

11.18  A regime canal has a discharge of 100 m3/s. It will have a perimeter of
(a) 4.8 m  (b) 10.0 m
(c) 47.5 m  (d) 22.0 m

11.19  A regime channel has a width of 22.2 m and depth of fl ow of 1.70 m. The discharge in 
the channel is about
(a) 68 m3/s  (b) 3.0 m3/s
(c) 30.0 m3/s  (d) 7.0 m3/s

11.20  When an alluvial channel attains its regime it will have side slopes
(a) of value equal to the angle repose of the alluvium
(b) of value equal to the angle of repose of the alluvium under water
(c) of value 0.5 vertical : 1 horizontal
(d) of value 0.5 horizontal : 1 vertical

11.21  The Lacey regime formulae are in general applicable to alluvial channels with sediment 
concentration in ppm by weight of less than about
(a) 10,000  (b) 1000
(c) 500  (d) 5000

11.22 The mean velocity in a Lacey regime channel is proportional to
(a) R1/3  (b) R1/2

(c) S
0
1/2  (d) S

0
1/3

11.23  A regime channel of longitudinal slope S
0
 will have Manning’s roughness coeffi cient n 

given by n is equal to

(a) 
S0

1 6

10 8

/

.

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥   (b) [S

0
1/6]

(c) 
R1 6

10 8

/

.

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥   (d) 

1
1 6R /

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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 APPENDIX-A

Tem-
pera-
ture. 
°C

Specifi c 
weight 

γ
kN/m3

Density
ρ

kg/m3

Viscosity 
µ × 103. 
N

 
s

 
/m2

Kinematic 
viscosity 
v × 106 

m2/s

Surface 
tension 

σ 
N/m

Vapour 
pressure 

P
v
 

kN/m2

abs

Vapour 
pressure 

head 
P

v 
/γ

m

Bulk modu-
lus of 

elasticity 
K × 10−6 

kN/m2

    0 9.805 999.8 1.781 1.785 0.0756 0.61 0.06 2.02

    5 9.807 1000.0 1.518 1.519 0.0749 0.87 0.09 2.06

  10 9.804 999.7 1.307 1.306 0.0742 1.23 0.12 2.10

  15 9.798 999.1 1.139 1.139 0.0735 1.70 0.17 2.14

  20 9.789 998.2 1.002 1.003 0.0728 2.34 0.25 2.18

  25 9.777 997.0 0.890 0.893 0.0720 3.17 0.33 2.22

  30 9.764 995.7 0.798 0.800 0.0712 4.24 0.44 2.25

  40 9.730 992.2 0.653 0.658 0.0696 7.38 0.76 2.28

  50 9.689 988.0 0.547 0.553 0.0679 12.33 1.26 2.29

  60 9.642 983.2 0.466 0.474 0.0662 19.92 2.03 2.28

  70 9.589 977.8 0.404 0.413 0.0644 31.16 3.20 2.25

  80 9.530 971.8 0.354 0.364 0.0626 47.34 4.96 2.20

  90 9.466 965.3 0.315 0.326 0.0608 70.10 7.18 2.14

100 9.399 958.4 0.282 0.294 0.0589 101.33 10.33 2.07

Table A.1 Physical properties of  Water
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SOME USEFUL WEBSITES RELATED  TO OPEN 
CHANNEL HYDRAULICS

1.  USGS – Surface Water Field Techniques 
http://www.usgs,gov

2.  US Department of Transportation. Federal Highway Administration
http://www.fhwa.dot.gov/engineering/hydraulics/index.cfm

3.  US Bureau of Reclamation, USA 
http://www.usbr.gov/pmts/hydraulics_lab/

4.  Hydrologic Centre, US Army Corps of Engineers 
http://www.hec.usace.army.mil/

5.  W M Keck Laboratory of Hydraulics and Water Resources Technical Reports 
administration. 
http://www.caltechkhr.library:caltech.edu/

6.  Dr. Victor Miguel Ponce – Online Open Channel Hydraulics 
http ://www.victormiguelponce.com 

http://onlinechannel.sdsu.edu/

7.  Fluid Flow Calculations web site of LMNO Engineering Research and 
Software, Ltd. 
http://www.lmnoeng.com
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ANSWERS TO PROBLEMS

CHAPTER 1

 1.2  (a) α = 2.0,  β = 1.33 

    (b) α =
−( )
1

1
2

a
,  β =

−( )
1

1 a

 1.3   a
n

n n
=

+( )
+( )
1

3

3

2
 β =

+( )
+( )

n

n n

1

2

2

 1.4  α = 5.71,  β = 2.374

 1.6 (a) v
r

=
9 9245.

 (b) V=2.0 m/s

 (c) α = 1.023,   β = 1.008

 1.7 (a) h Z
k

hep = +
+( )

0 1

1

2
 (b) h Z

k
hep = +

+( )
0 1

2 1

2

 1.8  p/γ = 0.466 y

 1.9 p/γ = 1.266 y

1.13  (a) 1.046 m  (b) 1.0473 m  (c) 1.0431 m

1.14  (a) At x = 1.0m, h
ep

 = 1.173m (b) At x = 2.5m, h
ep

 = 1.101 m

1.15  Q = 3618 m3/s

1.16  q = 0.3889 m3/s/m

1.17  q = 1.03625 m3/s/m

1.18  h
m
 = 8.424 m

1.19  (a) y
1
 = 3.818 m, (b) y

2
 = 0.232 m

 (c) y
2
 = 0.244 m, (d) q = 1.843 m3/s/m

1.20  Δ z = 0.751 m, ΔW
x
 = 0.251 m

1.21  H
A
 = 16.753 m, h

PA
 = 16.280 m

 H
B
 = 16.331 m, h

PB
 = 15.782 m

1.22  E
L
 = 0.109 m
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532 Flow in Open Channels

1.24  Affl ux = 0.056 m

1.25  F
x
 = 5000 N/m, F

y
 = 10182 N/m width

1.26  (a) 51.86 kN/m (b) 61.97 kN/m

 (c) 62.79 kN/m (d) 33.51 kN/m width

1.28  F = 6.91 kN/m, E
L
 = 0.453 m

1.29  F
D
 = 13.67 kN/m

CHAPTER 2 

 2.3  Δz = −0.857 m

 2.4  (a) 0.736 m. 1.940 m, (b) 0.936 m, 1.943 m  (c) 0.730 m, 1.888 m

 2.7  E = 1.5906 m, y
2
= 0.497 m

2.17  Q = 0.031 m3/s. E = 0.60 m

2.18  (a) Subcritical (b) y
c
 = 1.148 m

 (c) E = 1.454 m (d) y
3
 = 1.08m

2.19  (a) Q = 3.322 m3/s, E
c
 = 0.75 m

 (b) B = 2.5 m, E
c
 = 1.20 m

 (c) y
c
 = 0.972 m, E

c
 = 1.458 m

 (d) Q =1.585 m3/s, y
c
 = 0.40 m

2.20    (i) y
c
 = 0.283 m, E

c
 = 0.978 m

  (ii) Q = 0.164 m3/s, E
c
 = 0.375 m

 (iii) Q = 0.354 m3/s, y
c
 = 0.480 m

2.21  (a) y
c
 = 0.546 m, E

c
 = 0.775 m

 (b) Q = 1.206 m3/s, E
c
 = 0.422 m

 (c) B = 3.0 m, E
c
 = 0.571 m

 (d) y
c
 = 0.80 m, Q = 11.068 m3/s

2.22  (a) Q = 0.558 m3/s, E
c
 = 0.51 m

 (b) Q = 0.741 m3/s,  E
c
 = 0.540 m

2.23  (a) y
c
 = 0.947 m, (b) y

c
 = 1.1644 m

2.24  y
c
 = 1.185 m

2.25  D = 1.50 m

2.26  Q = 1.216 m3/s, E
c
 = 0.836 m

2.27  Q = 0.737 m3/s

2.29  Q = 11.50 m3/s
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2.32  (i) 3.106, 3.500, 3.833 and 4.200 (ii) 3.96, 3.84 and 4.35

2.33  y
2
 = 1.079 m

2.34  (a) y
2
 = 1.366 m, y

1
, = 2.086 m (b) y

2
 = 1.651 m, y

1
 = 2.00 m

2.35  Δz
m
 = 0.244 m

2.36  B
2
 = 2.472 m

2.37  (a) y
2
 = 0.871 m, y

1
 = 0.90 m

    (b) y
2
 = 0.657 m, y

1
 = 0.911 m

2.38  Q = 3.362 m3/s, y
1
 = 1.153 m, F

1
 = 0.289

    y
2
 = 0.261 m, F

2
 = 2.683

2.39  Δz = −0.366 m

2.40  y
1
 = 2.171 m

2.41  y
2
 = 0.744 m, Δz

m
 = 0.133 m

2.42  B
2
 = 3.299 m

2.43  Q = 4.825 m3/s, Δz = – 0.25 m

2.44  Δz = 0.440 m, Δy = 0.011 m

CHAPTER 3

 3.1  (a) τ
0
 = 1.6187 N/m2 (b) rough (c) C = 60.9

   (d) n = 0.014 (e) Q
ch

 = 2.314 m3/s, Q
Ma

 = 2.458 m3/s

 3.2  Q = 9.035 m3/s

 3.3  f = 0.0178, n = 0.0145, C = 66.5

 3.6  n = 0.0181

 3.7  38.9%

 3.8  n = 0.0474

 3.9  (a) 4.206 m3/s, (b) 6.373 m3/s,     (c) 3.773 m3/s,

3.10  y
0
 = 0.944 m

3.11  (a) 1.9446 × 10–4 (b) 3.46 × 10–4

3.12 (a) 12.176 m3/s (b) y
0
 = 1.735 m

3.13  Q = 0.974 m3/s

3.14  B = 3.656 m

3.15  n = 0.0188

3.16  D = 2.00 m

3.17  Q = 2.73 m3/s, y
0
 = 0.093 m
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534 Flow in Open Channels

3.18  B = 4.85 m, y
0
 = 3.638 m

3.19  F
0
 = 0.197

3.20  S
0
 = 7.196 × 10−4

3.21 0.9615

3.22 τ
0
 = 0.2674 N/m2

3.23 B = 3.465 m, y
0
 = 1.155 m, S

0
 = 1.998 × 10−4

3.24 K = 160.5 m3/s, S
0
 = 3.209 m3/s, F

0
 = 0.282, τ

0
 = 2.50 N/m2

3.25 Q = 4.48 m3/s, S
0
 = 5.2 × 10–3

3.26 (a) 1.179 m,  (b) 1.540 m,     (c) 1.957 m

3.28 B = 23.00 m, y
0
 = 3.105 m

3.29 B = 13.09 m

3.30 Q = 271.3 m3/s

3.31 Q = 23.52 m3/s

3.32 y
0
 = 2.352 m, τ

0
 = 11.537 Pa

3.33 Q = 18.61 m3/s

3.37 (a) y = 0.849 B, (b) y = 1.635 B

3.38 (i) d = 0.3382 a, (ii) d = 0.4378 a

3.39 y
e
 = 1.597 m, B

e
 = 1.120 m

3.40 y
e
 = 4.045 m, Q = 32.12 m3/s

3.42 S
0
 = 2.609 × 10–4

3.44 B
e
 = 3.232 m, y

e
 = 5.338 m

3.46 B
e
 = 3.57 m, y

e
 = 2.89 m, S

0
 = 2.7 × 10−4

3.47 Lined canal is 14.7% cheaper.

3.48 y
e
 = 1.934 m, B

e
 = 2.735 m

3.53 N = 3.51

3.54 m y
B  = 0.5 1.0 2.0

 1.0 N = 3.7 4.0 4.4

 1.5 N = 3.9 4.3 4.7

3.55 (i) 2.902 m3/s   (ii) 6.568 m3/s

3.56 (i) 2.631 m3/s   (ii) 6.010 m3/s

3.57 (i) 41.450 m3/s  (ii) 47.99 m3/s

3.59 y
e1

 = 0.250 m, y
e2

 = 2.30 m

3.61 S
c
 = 0.004447, Slope is Mild in the range of depths.
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3.62 S
0
 = 0.0006939

3.63 F
0
 = 0.5

3.64 (a) S
0
 = 1.6036 × 10−4 (b) S

c
 = 4.009 × 10–3 (c) y

0
 = 3.96 m

3.65 (a) S
e
 = 7.1 × 10−3 (b) F = 1.07

3.66 S
Lc

 = 4.166 × 10−3 0= 0.336 m3/s,  y
c
 = 0.2 m

3.67 S
*Lc

 = 2.28

3.68 m = 1.5, n = 0.015, B/y
0
 = 10.0

 B = 18.0 m. y
0
 = 1.821 m, V = 3.618 m/s

CHAPTER 4

 4.4 
dy

dx
S−

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ = − × −

0
41 437 10.

 4.5 S
2
 curve

 4.6 (i) M
2
 curve (ii) M

1
 curve

 4.7 M
3
 curve

 4.8 (i) M
3
 curve, (ii) M

2
 curve, (iii) M

1
 curve

 4.9 S
2
 curve on steeper channel

4.10 Jump and S
1
 curve

4.12 (a) Mild – Steep (b) Mild – Steeper Mild

 (c) Steep – Mild  (d) Mild – Milder Mild

4.13 (a) [H
3
–J–H

2
] or [J–S

1
–H

2
]

 (b) M
1
–M

3
–J–M

2
–S

2
–J-S

1
–H

2
 or

    M
1
–M

3
–J–M

2
–M

2
–S

2
–H

3
–J–H

2

 (c) [S
2
– J–S

1
–M

1 
] or [S

2
–M

3
–J–M

1 
]

 (d) S
2
–J–S

1
–S

3
–M

3
–J

 (e) J–S
1
–M

1
–M

3
–J–M

2
 or 

    M
3
–J–M

1
–M

3
–J–M

2

 (f ) A
3
–J–A

2
–H

2
–S

2

4.14 (a) [J– S
1
] on the upstream and S

1
 on the downstream

 (b) M
1
 on the upstream and (M

3
 – J – M

2 
/M

1
 ) on the downstream

 (c) Horizontal on the upstream and (H
3
 –J–H

2
 ) on the downstream

4.15 (a) M
3
 on A (b) M

1
 on A and (M

3
–.J ) on B

4.16 M
2
 curve on A and S

2
 curve on B

4.17 [S
2
–H

3
– J ] or [S

2
–J –S

1
]

4.18 M
1
– M

3
–J–M

2
–S

2
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536 Flow in Open Channels

CHAPTER 5

 5.5 M
1
 curve; L = 2.28 km

 5.7 (a) 9.16 km (b)130 m

 5.8 (a) 2.87 m (b) 2.873 m

 5.9 y
0 
= 1.074 m

5.10 α =1.195, S
f 
= 9.795×10−6

5.11 L = 24,500 m

5.13 M
1
 profi le, L = 454 m

5.14 Q
2
 = 105 m3/s, Q

R
 = 55 m3/s

5.15 S
2
 curve, L = 70 m

5.16 105.604 m, 106.355 m and 107.313 m.

5.17 S
1
 curve, 69 m

5.18 22.5 m

5.19 M
2
 curve, 222 m

5.20 2.69 m, 6.16 km

5.21 Inlet is submerged

5.22 x = 89 m

5.23 (a) 122.109 m and 121.800 m  (b) 11.3 m3/s

5.24 Q = 31.13 m3/s, L = 222 m

5.25 Q = 178 m3/s

CHAPTER 6

6.1 q = 8.4 m3/s/m; E
L
 = 3.65 m; F

1
 = 4.58

6.2 E
L
/E

1
 = 72.7%

V
1

y
1

q F
1

y
2

V
2

F
2

E
L E

E
L

1

%

(a) 10.33 0.170 1.756 8.00 1.84 0.954 0.225 3.722 66.4

(b) 8.91 0.100 0.891 9.00 1.224 0.728 0.210 2.900 69.9

(c) 8.00 0.250 2.000 5.10 1.683 1.188 0.292 1.750 50.0

(d) 9.54 0.151 1.440 7.84 1.600 0.900 0.227 3.140 65.5

(e) 13.50 0.350 4.725 7.29 3.435 1.375 0.237 6.105 63.3

(f) 13.64 0.068 0.928 16.70 1.574 0.590 0.150 8.00 83.7

6.4 F
2
 = 0.296

6.6 y
1
 = 0.198 m, y

2
 = 2.277 m
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 6.8 F
1
 = 4.82

 6.9 F
1
 = 13.65, F

2
 = 0.235

6.10 y
1
 = 0.348 m, y

2
 = 3.40 m

6.11 y
1
 = 0.90 m, y

2
 = 6.94 m; E

L
/E

1
 = 55%

6.12 101.486 m

6.13 95.973 m

6.14 Repelled jump; y
1
 = 1.674 m, L

j
 = 26.4, H

3
 curve of length = 81.0 m

6.17 y
t
 = 26.21 m, L

j
 = 120 m, E

L
 = 40.77 m

6.18 Q = 1.541 m3/s; F
1
 = 2.494; F

2
 = 0.441

6.20 y
2
 = 1.875 m, E

L
 = 6.880 m

6.21 y
1
 = 0.242 m E

L
 = 4.695 m

6.22 y
2
 = 0.796 m

6.23 Jump at 80 m from the gate, y
1 
= 1.02 m, y

2 
= 3.99 m,

6.24 x = 62.0 m, .y
1
 = 0.96 m, y

2
 = 3.23 m

6.25 y
th
 = 1.892 m, y

ts
 = 3.595 m

6.30 Δz = 0.880 m

6.31 (i) No free jump is possible. Submerged jump occurs

 (ii) free repelled jump, y
1
 = 0.467 m, y

t
 = 3.737 m

6.32 (a) q = 15.31 m3/s/m

 (b) Free – repelled jump, y
1
 = 1.119 m, y

t
 = 6.0 m

 (c) y
tm

 = 6.53 m.

CHAPTER 7

 7.1 0.074 m rise

 7.2 P = 1.088 m

 7.3 3.512 m3/s

 7.5 Q
s
 = 0.0626 m3/s

 7.6 2.965 m3/s

 7.7 6.38%

 7.8 a = 0.592 m, H
d
 
max

 = 1.144 m

 7.9 a = 0.231 m, H
d
 
max

 = 1.386 m

7.10 (i) 0.118 m3/s, (ii) 0.163 m3/s, (iii) 0.396 m

7.11 (i) 38 lit/s, (ii) 9.91 cm
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538 Flow in Open Channels

7.12 23.088 m, 23.102m with river bed as datum, 3.8440 m, −1.069m

7.13 34.243 m3/s/m

7.14 0.150 m

7.15 59.3 m3/s

7.16 11.939 m and 11.950 m above the bed

7.17 0.502 m above the crest

7.18 1240 s

7.19 Broad crested weir; 0.076 m

7.21 16.39 m3/s

7.22 0.785 m

7.23 η = 0.657

7.24 η = 0.7834

7.25 η = 0.733

7.26 0.673 m

7.27 (i) 4.815 m3/s, (ii) 0.695 m3/s, (iii) 0.505 m3/s

7.29 1.624 m3/s; 7580 N

7.30 0.747 m

7.31 0.487 m

CHAPTER 8

 8.2 y
c
 = 3.14 m and x

c
 = 43.7 m

 8.3 y
c
 = 3.3 m and x

c
 = 74.75 m

 8.7 L = 1.353 m, s = 0.79 m

 8.8 Q
s
 = 0.206 m3/s

 8.9 Q
s
 = 0.206 m3/s

8.10 L = 1.729 m, Δz = 0.09 m or B
2
= 1.80 m

8.12 L = 0.767 m

8.13 Q
d
 = 3.17 m3/s

CHAPTER 9

 9.1 β = 29°

 9.2 y
1
 = 0.393 m

 9.5 β
s
 = 42°, y

2
 = 0.72 m

 9.6 β
s
 = 29°, y

2
 = 0.84 m, E

L0
 = 0.268 m

 9.7 (a) Positive (b) Negative (c) Positive (d) Negative
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 9.8 F
m
 = 13.6, β

m
 = 4.217 °, Width of fan = 4.606°

9.10 F
2
 = 2.86, F

3
 = 2.384, β

A
 = 18.3°, β

B
 = 21.87°, β

c
 = 25.96°

9.12 F
2
 = 3.395, F

3
 = 3.30, β

1
 = 18.5°, β

2
 = 21.5°, β

3
 = 25.5°, β

4
 = 22°.

9.13

Sl. 
No.

F
1

y
1 

(m)
B

1
 

(m)
F

3
y

3 

(m)
B

3 

(m)
F

2
y

2 

(m)
θ β

1
β

2

1 5.0 0.7 6.0 3.317 1.450 3.00 4.02 1.038 5.2º 16.5º 19.2º

2 6.0 0.5 4.0 3.795 1.155 1.802 4.649 0.803 5.0º 13.5º 17.0º

3 4.0 0.6 4.71 2.622 1.213 2.5 3.194 0.885 6.0º 19.5º 4.0º

4 5.2 0.48 5.04 2.939 1.30 2.0 3.807 0.841 7.5º 8.0º 22.5º

CHAPTER 10

 10.5 (a) V
2
 = –2.335 m/s, V

w
 = – 6.17 m/s

       or V
2
 = 5.335 m/s, V

w
 = 9.17 m/s

 (b) y
2
 = 1.265 m, V

2
 = 2.535 m/s

 (c) y
2
 = 2.640 m,

 (d) y
1
 = 0.385 m, V

2 
= – 1.459 m/s

 (e) V
1 
= 0.529 m/s, V

2
 = 2.015 m/s

 10.6 y
1
 = 2.60 m

 10.7 = 0.2286 m

 10.8 y
2
 = 0.85 m, V

w
 = 4.95 m/s

10.9 Δy = 0.501 m, V
w
 = 2.695 m/s

10.10 y
2
 = 1.915 m, V

w
 = 3.0 m/s, Time = 11 m 6.6 s

10.11 (i) h = 0.6 m, V
w
 = 4.248 m (directed upstream)

 (ii) h = 0.216 m, V
w
 = 6.208 m

10.12 (a) V
w
 = 4.774 m/s, V

2
 = – 0.160 m/s

 (b) Δy = 0.485 m

10.14 At t = 2.0 s, x y= −37 585 18 792. .

10.15 V
2
 = 2.778 m/s, y

2
 = 1.44 m

10.16 (a) q = 3.27 m3/s/m, (b) q
max

 = 15.103 m3/s/m

CHAPTER 11

11.1 (a) 0.159 Pa, (b) 0.532 Pa, (c) 9.05 Pa

11.2 (a) in motion, (b) not in motion

11.3 y
0
 = 0.925 m

11.4 (a) no motion, (b) motion of bed, (c) incipient conditions
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540 Flow in Open Channels

 11.5 S
0
 =0.0031, q = 2.69 m3/s per m

 11.6 V = 0.456 m/s, q = 0.114 m3/s/m

 11.7 Channel A : Transition; Channel B : Dunes

 11.8 y
0
 = 1.40 m

 11.9 n = 0.0292; τ
0
′ = 0.8086 Pa; τ

0
” = 1.526 Pa

11.10 B = 12.0 m

11.11 q
B
 = 2.131 N/s per m

11.12 Q
B
 = 2091 N/s

11.14 C
3
 = 433.2 ppm

11.15 C
08

 = 125 ppm; C
12

 = 27 ppm

11.16 q
B
 = 0.1494 N/s per m; q

T
 = 0.1.752 N/s per m; q

x
 = 1.603 N/s per metre

11.17 B = 7.10 m; y
0
 = 3.20 m

11.18 S
0
 = 8.5 × 10–5; Q = 9.43 m3/s 

No. Q m 3/s m y
0

S
0

V m/s n f
s

(i) 30.0 21.93 1.83 1.17 × 10−4 0.718 0.020 0.80

(ii) 5.12 8.74 0.90 3.27 × 10−4 0.618 0.243 1.24

(iii) 49.3 30.00 1.50 5.23 × 10−4 1.07 0.0263 2.06

(iv) 15.0 15.40 1.34 2.00 × 10−4 0.695 0.0224 1.03

11.21  (a) S
0
 = 3.674 × 10–4 , B = 29.95 m, y

0
 = 1.627 m

 (b) S
0
 = 2.943 × 10–4 , B = 13.788 m y

0
 = 0.551 m

11.22 n = 0.0265

11.24 Q
B
 = 11.12 N/s;  Q

T
 = 18.86 N/s

11.25 d
s
 = 4.13 m below average bed level.

11.26 D
s
 = 10.00 below HFL
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 ANSWERS TO OBJECTIVE QUESTIONS

Chapter 1

0 1 2 3 4 5 6 7 8 9

1.0 b c d d d c a c c

1.10 b c a c b b d c c c

1.20 d b b b d a a a b

Chapter 2

0 1 2 3 4 5 6 7 8 9

2.0 c d c b c a c d b

2.10 d c a a b a d b c a

2.20 d c c c c a a b

Chapter 3

0 1 2 3 4 5 6 7 8 9

3.00 - c d c a c a c d c

3.10 d b a d c b a b b c

3.20 c b b a c c d b a d

3.30 c a d c b b a

Chapter 4

0 1 2 3 4 5 6 7 8 9

4.0 c b b b c a c c c

4.10 c d d a b a a d c b

4.20 c c d

Chapter 5

0 1 2 3 4 5 6 7 8 9

5.0 - d d c b c b d c a

5.10 d b b d c c d a c

Chapter 6

0 1 2 3 4 5 6 7 8 9

6.0 d b d a d c c b d

6.10 a c a b c
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542 Flow in Open Channels

Chapter 7

0 1 2 3 4 5 6 7 8 9

7.0 - d b d b a c a c b

7.10 d b d d c b a b b c

7.20 c a a b c d d d c c

7.30 a

Chapter 8

0 1 2 3 4 5 6 7 8 9

8.0 b c d b b c c c a

8.10 a d b a b

Chapter 9

0 1 2 3 4 5 6 7 8 9

9.0 a b a d c b d a b

9.10 d d c d

Chapter 10

0 1 2 3 4 5 6 7 8 9

10.0 c c d a b a d b d

10.10 d d c a d a

Chapter 11

0 1 2 3 4 5 6 7 8 9

11.00 - b a c d a c d a a

11.10 b c d d c c c c c c

11.20 d c d a
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A
Abel’s form of integral equation, 313
Abutment Scour, 519
Advanced Numerical Methods, 203
Adverse slope, 161, 169
Aeration, 301
Aeration of the nappe, 364
Affl ux, 36, 333
Aggradation, 512
Air entrainment, 368
Alluvial channels, 139
Alluvium, 2, 484, 508
Alternate depths, 43, 73
Antidunes, 488
Antoine Chezy, 86
Apron fl oor, 288
Armoring, 517

B
Backwater, 157
Backwater curve, 165, 197, 218
Baffl e blocks, 279, 291
Baffl e wall, 291
Baffl es, 291
Bakhmeteff, 42, 123
Base weirs, 315
Bazin’s formula, 91
Bed forms, 488
Bed irregularities, 488
Bed load, 495, 502
Bed shear stresses, 484
Bernoulli equation, 22
Blasius formula, 87
Bore, 438
Bottom rack, 80, 378, 389
Bottom Slots, 396
Boundary layer, 258, 259
Boussinesq equation, 338
Boussinesq, 19
Break in Grade, 172
Bresse’s function, 196
Bresse’s solution, 195, 196
Brink depth, 335
Broad-crested weirs, 295, 326

C
Calibration, 220
Canal-design practice, 139

Cavitation, 316
Celcrity, 469
Central Water Commissions (CWC), 139
Channel, 369
Channel with a Hump, 60
Channels of the fi rst kind, 105
Channels of the second kind, 106
Channels with Large Slope, 12
Channels with Small Slope, 11
Characteristic, 412, 450
Characteristics grid method, 451
Chezy coeffi cient, 86
Chezy formula, 86, 90
Choked conditions, 69, 70, 184
Choppy Jump, 254
Chute blocks, 280
Circular Channel, 56, 112
Circular culvert, 271
Circular hydraulic jump, 291, 292
Circular jump, 291
Clear-water scour, 513
Clinging nappe, 296
Coeffi cient of contraction, 298, 347
Coeffi cient of discharge, 298, 318
Coherence method, 128
Colebrook–White equation, 88
Complimentary weir, 307, 312
Composite roughness, 101
Compound channels, 125
Compound sections, 211
Concave curvilinear fl ow, 15
Concave Wall, 409
Confi ned nappe, 336
Constriction Scour, 519
Contact load, 495
Continuity equation, 19, 30, 347
Contracted Weir, 302
Contraction scour, 513
Contractions, 433
Control point, 169
Control section, 169
Control volume, 26, 28, 29, 85
Convex corner, 433
Convex curvilinear fl ow, 13
Convex Wall, 410
Conveyance, 104, 123
Courant condition, 452
Critical depth, 43, 73

Index
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Critical depth in circular channels, 49
Critical discharge, 51
Critical motion, 485
Critical shear stress, 485
Critical slope, 131, 132, 136, 161
Critical slope channel, 131
Critical tractive force, 485
Critical velocity ratio, 509
Critical-fl ow condition, 43
Cubic parabola, 43
Culvert, 295, 352
Curvilinear fl ow, 13

D
Dam break, 443
Dam Break problem, 475
Darcy–Weisbach equation, 87
Darcy–Weisbach friction factor, 87
Datum constant, 312, 313
De Marchi Coeffi cient CM, 382, 383
De Marchi Equation, 382, 383
De Marchi varied fl ow function, 383
Degradation, 512
Degradation scour, 513
Delivery of, 227
Design head, 317
Design-energy head, 318
Diagonal Interface Method, 127
Differential equation of GVF, 190, 201
Diffusing scheme, 453
Diffusion coeffi cient, 498
Diffusion scheme, 454
Direct integration, 189
Direct Numerical Methods, 452
Direct-Step method, 203
Divided channel, 219
Divided Channel method (DCM), 127
Drowned jump, 282
Dunes, 488
Dynamic equation of GVF, 159

E
Effective length, 318
Effective piezometric head, 10, 16, 17, 19
Empirical formulae, 100
Empirical Methods, 128
End contractions, 324
End depth, 295, 335
End sill, 280
Energy Dissipator, 248, 279
Energy equation, 22, 30

Energy loss in the jump, 260
Equation of continuity, 19
Equivalent roughness, 101, 102, 127
Equivalent sand-grain roughness, 87
Euler’s equation, 10
Exchange Discharge Model, 128
Expansion, 433
Explicit method, 449, 453
Exponential channel, 75

F
FHWA, 358
Finite crest width weir, 364
Finite-difference schemes, 449
Finite-element method, 449
First hydraulic exponent, 51, 73
Fluid, 1
Flood banks, 150
Flood plain, 125
Flood routing, 439
Flood wave, 38
Free Board, 141
Free fl ow, 296, 347
Free jumps, 282
Free overfall, 34, 37, 334
Free repelled jump, 283
Free surface, 1
Free-mixing zone, 259
Free-surface fl ow , 189
Friction slopes, 430
Froude line, 412
Froude number, 44, 47, 48, 49
Full rough fl ow, 87

G
Ganguillet and Kutter Formula, 91
General scour, 513
General Transition, 71
Generalised – fl ow relation, 134, 180
Generalized slope, 150
Gradually varied fl ow, 3, 4, 157
Graphical method, 189
Grit chamber, 315
GVF equation, 183
GVF profi le , 194

H
HDS-5, 352
HEC-18, 20, 23, 515
HEC-RAS, 218
Helical secondary, 126
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Horizontal bed, 161
Horseshoe vortex, 514
Horton’s formula, 102, 103
Hump height, 60
HY-8, 358
Hydraulic drop , 229
Hydraulic exponents, 199
Hydraulic jump, 36, 248
Hydraulic radius, 86
Hydraulically effi cient, 119
Hydraulically effi cient 

trapezoidal, 120
Hydraulically smooth wall, 87
Hydrostatic, 157
Hydrostatic distribution, 14
Hydrostatic pressure, 10
Hydrostatic Pressure 

Distribution, 11

I
Ideal contraction, 424
Implicit method, 449, 454
Inception of cavitation, 319
Incipient motion, 485
Incompressible fl uid, 1
Indian Practice, 522
Initiation of motion, 485
Inlet control, 352
Interface, 125
Irrigation Engineering, 139
Island-type fl ow, 223

J
Jump profi le, 257
Jumps on a Sloping Floor, 274, 275

K
Karman–Prandtl equation, 87
Keifer and Chu’s method, 200
Kennedy Equation, 509
Kerb outlets, 390
Kinetic Energy, 7
Kinetic energy correction factor, 8
Kutta–Merson Method , 221

L
Lacey’s Equations, 509
Lacey–Inglis method, 523
Laminar sublayer, 87, 485
Lateral fl ow, 368

Lateral spillway, 369
Lateral weir, 380
Law of the Wall, 92
Lax-Wendroff schemes, 454
Leap-Frog, 454
Limit slope, 132, 136
Linear Proportional Weir, 306
Linear-momentum equation, 26
Live-bed scour, 513
Local phenomenon, 295
Local scour, 513
Location of the jump, 281
Long-crested weir, 327
Longitudinal Slope, 140
Lower nappe, 296

M
Manning’s formula, 89, 90, 377
Manning’s n, 90
Maximum discharge, 117
Mechanics, 1
Median drain, 356
Median size, 485
Membrane analogy, 95
Method (DCM) , 220
Method of characteristics, 430
MIKE 21, 218
Mild slope, 161
Mild slope channel, 131
Minimum specifi c energy, 73
Mobile bed channels, 484
Mobile boundary channels, 2
Modular limit, 300, 329, 350
Momentum, 8
Momentum correction factor, 8
Momentum equation, 26, 30
Momentum equation in 

conservation form, 443
Momentum exchange, 125
Monoclinal wave, 480
Moody chart, 88
Moody diagram, 145, 485
Most Effi cient Channels, 121
Most effi cient section, 121
Mostkow Equations, 391
Moving Hydraulic Jump, 465
Moving-boat method, 33
Multi-island-type fl ow, 223, 225
Multi-roughness type 

perimeter, 101
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N
Narrow channels, 93
Narrow-crested, 328
Natural channel, 6, 9, 218
Natural streams, 100
Negative disturbance, 410
Negative surge, 459, 468, 480
Negative Wave, 469
Non-prismatic channel, 151
Non-rectangular channel, 265
Non-uniform fl ow, 3
Normal Acceleration, 14
Normal depth, 81, 105, 110,
Notch, 295
Notch-orifi ce, 314
Numerical Method, 128, 189, 448

O
Oblique jump, 415
Oblique shock, 433
Oblique shock wave, 414
Ogee Crest, 317
Ogee spillway, 316
One-dimensional analysis, 7, 126
Open channel, 1, 88
Orifi ce, 314
Oscillating jump, 253, 293
Outlet control, 352
Overfl ow spillways, 295, 262, 316
Overland fl ow, 5
Overrun, 446

P
Parabolic, 305
Parshall Flume, 334
Pavlovski formula, 91, 103
Performance curve, 357
Permissible Velocities, 140
Piezometric head, 12
Plane bed, 488
Positive surge, 459, 480
Prandtl, 86
Prandtl’s mixing length theory, 497
Prandtl-Meyer fan, 413, 429
Prandtl–Meyer function, 408
Preissmann Scheme, 455
Pressure, 10
Pressure distribution, 10, 30
Preston tube, 5, 95
Primary vortex, 519
Prismatic channels, 1, 85, 207

Profi le analysis, 183
Projecting barrel, 353
Proportional weir, 305
P-weirs, 306

Q
Quadrant plate weir, 309
Quadratic weir, 312, 361

R
Rapidly varied fl ows, 3, 4, 295
Rectangular Section, 47
Rectangular Weir, 295
Rectangular-grid method, 452
Regime channel, 504, 508
Rehbock formula, 298
Relative roughness, 87
Repelled jump, 282, 284
Reynolds number, 93, 298
Rigid bed channels, 484
Rigid channels, 2
Ripples, 488
Robert Manning, 89
Roll waves, 431
Roller, 259, 460
Rough turbulent-fl ow, 89
Roughness, 140
Rouse equation, 498
Runge–Kutta methods, 221

S
Saint Venant equations, 443
Saltation load, 495
Scales, 259
Scour, 512
SCS, 142
Second hydraulic exponent, 123
Secondary currents, 5
Section factor, 51
Sediment, 484
Sediment engineering, 2
Sediment load, 495
Sediment rating curve, 503
Sediment transport, 2, 101, 484
Sedimentation Engineering, 484
Self-similar, 259
Separation, 319
Sequent Depth Ratio, 250
Sequent depths, 248
Shallow waves, 402
Sharp-crested weirs, 295
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Shear Reynolds number, 485
Shear stress, 86
Shear velocity, 87, 259, 485
Shear-stress distribution, 2
Shields curve, 485
Shock fronts, 404
Shock wave, 71, 404, 406
Side weir, 380
Side-channel spillway, 367
Sill, 279, 298
Simple-island-Type Flow, 224
Siphon tube irrigation systems, 378
Skijump spillway, 34
Slope-discharge-continuity theorem, 311
Sloping apron, 290
Sluice gate, 25, 295, 347
Spatially varied fl ow, 5, 20, 38, 367
Special Weirs, 315
Specifi c energy, 42, 73
Specifi c Force, 30
Spillway bucket, 16
Spillway crest, 32
St. Venant’s equations, 217
Stability, 431, 433, 468
Stability analysis, 431
Stable fl ows, 431
Stagnation point, 514
Standard lined canal sections, 114
Standard lined trapezoidal section, 114
Standard lined triangular section, 114
Standard-step Method, 203, 207, 211
Standing wave, 491
Standing-wave fl ume, 332
Steady fl ow, 2, 19, 26
Steady jump, 293
Steady uniform fl ow, 3
Steep slope, 161
Steep slope channel, 131
Stilling basin, 279, 280
Straub’s Equations, 273
Streamlined transition, 422
Strickler formula, 100
Strickler’s Equation, 493
Strong jump, 293
Subcritical fl ow, 44, 60
Submerged, 282
Submerged fl ow, 300, 329, 350
Submerged jump, 282, 283
Submerged sluice-gate, 34
Submergence, 300
Submergence factor, 282

Submergence limit, 300
Submergence ratio, 300
Sudden drop, 172
Super elevation, 142
Super critical expansions, 427
Supercritical Flow, 62
Supercritical fl ow region, 44
Supercritical streams, 402
Supersonic fl ows, 408
Supersonic nozzles, 428
Suppressed weirs, 302
Surface of zero shear, 127, 128
Surface of zero shear stress, 127
Surface tension, 1, 298, 303
Surface velocity, 7
Surges, 438, 459
Suspended load, 495, 502
Sutro Weir, 304, 361
SVF with increasing discharge, 367

T
Tailwater depth, 280, 282
Tailwater level, 282
The section factor for uniform-fl ow 

computations, 104
Thin plate weir, 295
Throated f ume, 332
Tidal bores, 464
Top width, 44
Torrents, 9
Total bed material load, 495, 500
Total energy, 42, 151
Total load, 495
Total scour, 513
Transients, 438
Transition, 60, 66, 73, 426
Transitional depth,  180
Transitional profi le, 370, 371, 400
Trapezoidal Channel, 49
Trapezoidal Method , 222
Trench weir, 390
True broad-crested weir, 327
Turbulent fl ows, 87
Turbulent regime, 1
Two-stage channel, 125

U
Unconfi ned nappe, 336
Uncontracted, 302
Underdesigning of the spillway, 320
Undular jump, 253
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