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To
My Father

Only a well-designed channel performs its functions best.
A blind inert force necessitates intelligent control.

MAHABHARATA
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Preface

This third edition of Flow in Open Channels marks the silver jubilee of the book
which first appeared in a different format of two volumes in 1982. A revised first edi-
tion combining the two volumes into a single volume was released in 1986. The
second edition of the book which came out in 1997 had substantial improvement of
the material from that of the first revised edition and was very well received as
reflected in more than 25 reprints of that edition. This third edition is being brought
out by incorporating advances in the subject matter, changes in the technology and
related practices. Further, certain topics in the earlier edition that could be considered
to be irrelevant or of marginal value due to advancement of knowledge of the subject
and technology have been deleted.

In this third edition, the scope of the book is defined to provide source material in
the form of a textbook that would meet all the requirements of the undergraduate
course and most of the requirements of a post-graduate course in open-channel
hydraulics as taught in a typical Indian university. Towards this, the following proce-
dures have been adopted:

« Careful pruning of the material dealing with obsolete practices from the earlier
edition of the book
 Addition of specific topics/ recent significant developments in the subject matter
of some chapters to bring the chapter contents up to date. This has resulted in
inclusion of detailed coverage on
= Flow through culverts
= Discharge estimation in compound channels
= Scour at bridge constrictions
« Further, many existing sections have been revised through more precise and
better presentations. These include substantive improvement to Section 10.6
which deals with negative surges in rapidly varied unsteady flow and Section
5.7.4 dealing with backwater curves in natural channels.
» Additional worked examples and additional figures at appropriate locations
have been provided for easy comprehension of the subject matter.
» Major deletions from the previous edition for reasons of being of marginal value
include
= Pruning of Tables 2A.2 at the end of Chapter 2, Table 3A-1 at the end of
Chapter 3 and Table 5A-1 of Chapter 5
= Section 5.3 dealing with a procedure for estimation of N and M for a trape-
zoidal channel, and Section 5.9 dealing with graphical methods of GVF
computations
= Computer Program PROFIL-94 at the end of Chapter 5

The book in the present form contains eleven chapters. Chapters 1 and 2 contain the
introduction to the basic principles and energy-depth relationships in open-channel
flow. Various aspects of critical flow, its computation and use in analysis of transitions
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are dealt in detail in Chapter 2. Uniform flow resistance and computations are dealt in
great detail in Chapter 3. This chapter also includes several aspects relating to com-
pound channels. Gradually varied flow theory and computations of varied flow profiles
are discussed in ample detail in chapters 4 and 5 with sufficient coverage of control
points and backwater curve computations in natural channels.

Hydraulic jump phenomenon in channels of different shapes is dealt in substantial
detail in Chapter 6. Chapter 7 contains thorough treatment of some important rapidly
varied flow situations which include flow-measuring devices, spillways and culverts.
Spatially varied flow theory with specific reference to side channel spillways, side
weirs and bottom-rack devices is covered in Chapter 8. A brief description of the tran-
sitions in supercritical flows is presented in Chapter 9. An introduction to the impor-
tant flow situation of unsteady flow in open channels is provided in Chapter 10. The
last chapter provides a brief introduction to the hydraulics of mobile bed channels.

The contents of the book, which cover essentially all the important normally
accepted basic areas of open-channel flow, are presented in simple, lucid style. A
basic knowledge of fluid mechanics is assumed and the mathematics is kept at the
minimal level. Details of advanced numerical methods and their computational pro-
cedures are intentionally not included with the belief that the interested reader will
source the background and details in appropriate specialized literature on the subject.
Each chapter includes a set of worked examples, a list of problems for practice and a
set of objective questions for clear comprehension of the subject matter. The Table of
problems distribution given at the beginning of problems set in each chapter will be
of particular use to teachers to select problems for class work, assignments, quizzes
and examinations. The problems are designed to further the student’s capabilities of
analysis and application. A total of 314 problems and 240 objective questions, with
answers to the above, provided at the end of the book will be of immense use to teach-
ers and students alike.

The Online Learning Center of the book can be accessed at http://www.mhhe.
com/subramanya/foc3e. It contains the following material:

For Instructors
¢ Solution Manual
» Power Point Lecture Slides

For Students
« Web links for additional reading
« Interactive Objective Questions

A typical undergraduate course in Open-Channel Flow includes major portions of
chapters 1 through 6 and selected portions of chapters 7, 10 and 11. In this selection,
a few sections, such as Sec.1.8, Sec.3.16, Sec. 3.17, Sec. 5.5, Sec. 5.6, Sec. 5.7.3, and
Sec. 5.7.4, Sec. 5.8, Sec. 5.9, Sec. 6.4, Sec. 6.5 and Sec. 6.8 could be excluded to
achieve a simple introductory course. A typical post-graduate course would include
all the eleven chapters with more emphasis on advanced portions of each chapter and
supplemented by additional appropriate reference material.

In addition to students taking formal courses in Open-Channel Flow offered in
University engineering colleges, the book is useful to students appearing for AMIE
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examinations. Candidates taking competitive examinations like Central Engineering
Services examinations and Central Civil Services examinations will find this book
useful in their preparations related to the topic of water-resources engineering. Prac-
ticing engineers in the domain of water-resources engineering will find this book a
useful reference source. Further, the book is self-sufficient to be used in self-study of
the subject of open-channel flow.

I am grateful to the American Society of Civil Engineers, USA, for permission to
reproduce several figures and tables from their publications; the Indian Journal of
Technology, New Delhi, for permission to reproduce three figures; Mr M Bos of the
International Institute of Land Reclamation and Improvement, Wageningen, The
Netherlands, for photographs of the hydraulic jump and weir flow; the US Depart-
ment of Interior, Water and Power Resources Service, USA, for the photograph of
the side-channel spillway of the Hoover Dam; Dr Chandra Nalluri, of the University
of New Castle-upon — Tyne, England, for the tables of Keifer and Chu functions and
The Citizen, Gloucester, England, for the photograph of Severn Bore.

I would like express my sincere thanks to all those who have directly and indi-
rectly helped me in bringing out this revised edition, especially the reviewers who
gave noteworthy suggestions.

They are

Suman Sharma TRUBA College of Engineering and Technology
Indore, Madhya Pradesh

Achintya Muzaffarpur Institute of Technology
Muzaffarpur, Bihar

Anima Gupta Government Women’s Polytechnic
Patna, Bihar

D R Pachpande JT Mahajan College of Engineering

Jalgaon, Maharashtra

V Subramania Bharathi  Bannari Amman Institute of Technology
Anna University, Coimbatore, Tamil Nadu

KV Jaya Kumar National Institute of Technology
Warangal, Andhra Pradesh

Comments and suggestions for further improvement of the book would be greatly
appreciated. | could be contacted at the following e-mail address: subramanyakl@
gmail.com

K SUBRAMANYA
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tions so that the subject matter is
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problems in the book. Solutions
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comprehension of the subject
matter. Answers are provided for
all the problem sets at the end of
the book.
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Introduction l

1.1 INTRODUCTION

An open channel is a conduit in which a liquid flows with a free surface. The free
surface is actually an interface between the moving liquid and an overlying fluid
medium and will have constant pressure. In civil engineering applications; water is
the most common liquid with air at atmospheric pressure as the overlying fluid. As
such, our attention will be chiefly focused on the flow of water with a free surface.
The prime motivating force for open channel flow is gravity.

In engineering practice, activities for utilization of water resources involve open
channels of varying magnitudes in one way or the other. Flows in natural rivers,
streams and rivulets; artificial, i.e. man-made canals for transmitting water from a
source to a place of need, such as for irrigation, water supply and hydropower genera-
tion; sewers that carry domestic or industrial waste waters; navigation channels—are
all examples of open channels in their diverse roles. It is evident that the size, shape
and roughness of open channels vary over a sizeable range, covering a few orders of
magnitude. Thus the flow in a road side gutter, flow of water in an irrigation canal and
flows in the mighty rivers, such as the Ganga and the Brahmaputra, all have a free sur-
face and as such are open channels, governed by the same general laws of fluid
mechanics. Basically, all open channels have a bottom slope and the mechanism of
flow is akin to the movement of a mass down an inclined plane due to gravity. The
component of the weight of the liquid along the slope acts as the driving force. The
boundary resistance at the perimeter acts as the resisting force. Water flow in open
channels is largely in the turbulent regime with negligible surface tention effects. In
addition, the fact that water behaves as an incompressible fluid leads one of appreciate
the importance of the force due to gravity as the major force and the Froude number as
the prime non-dimensional number governing the flow phenomenon in open channels.

1.2 TYPES OF CHANNELS
1.2.1 Prismatic and Non-prismatic Channels
A channel in which the cross-sectional shape and size and also the bottom slope are

constant is termed as a prismatic channel. Most of the man-made (artificial) chan-
nels are prismatic channels over long stretches. The rectangle, trapezoid, triangle
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and circle are some of the commonly used shapes in manmade channels. All natural
channels generally have varying cross-sections and consequently are non-prismatic.

1.2.2 Rigid and Mobile Boundary Channels

On the basis of the nature of the boundary open channels can be broadly classified
into two types: (i) rigid channels, and (ii) mobile boundary channels.

Rigid channels are those in which the boundary is not deformable in the sense that
the shape, planiform and roughness magnitudes are not functions of the flow param-
eters. Typical examples include lined canals, sewers and non-erodible unlined canals.
The flow velocity and shear-stress distribution will be such that no major scour, ero-
sion or deposition takes place in the channel and the channel geometry and roughness
are essentially constant with respect to time. The rigid channels can be considered to
have only one degree of freedom; for a given channel geometry the only change that
may take place is the depth of flow which may vary with space and time depending
upon the nature of the flow. This book is concerned essentially with the study of rigid
boundary channels.

In contrast to the above, we have many unlined channels in alluvium—both man-
made channels and natural rivers—in which the boundaries undergo deformation due
to the continuous process of erosion and deposition due to the flow. The boundary of
the channel is mobile in such cases and the flow carries considerable amounts of sed-
iment through suspension and in contact with the bed. Such channels are classified as
mobile-boundary channels. The resistance to flow, quantity of sediment transported,
channel geometry and planiform, all depend on the interaction of the flow with
the channel boundaries. A general mobile-boundary channel can be considered to
have four degrees of freedom. For a given channel not only the depth of flow but also
the bed width, longitudinal slope and planiform (or layout) of the channel may
undergo changes with space and time depending on the type of flow. Mobile-boundary
channels, usually treated under the topic of sediment transport or sediment engineer-
ing,*? attract considerable attention of the hydraulic engineer and their study consti-
tutes a major area of multi-disciplinary interest.

Mobile-boundary channels are dealt briefly in Chapter 11. The discussion in rest
of the book is confined to rigid-boundary open channels only. Unless specifically
stated, the term channel is used in this book to mean the rigid—boundary channels.

1.3 CLASSIFICATION OF FLOWS
1.3.1 Steady and Unsteady Flows

A steady flow occurs when the flow properties, such as the depth or discharge at a
section do not change with time. As a corollary, if the depth or discharge changes
with time the flow is termed unsteady.

In practical applications, due to the turbulent nature of the flow and also due to the
interaction of various forces, such as wind, surface tension, etc., at the surface there
will always be some fluctuations of the flow properties with respect to time. To
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account for these, the definition of steady flow is somewhat generalised and the clas-
sification is done on the basis of gross characteristics of the flow. Thus, for example,
if there are ripples resulting in small fluctuations of depth in a canal due to wind
blowing over the free surface and if the nature of the water-surface profile due to the
action of an obstruction is to be studied, the flow is not termed unsteady. In this case,
a time average of depth taken over a sufficiently long time interval would indicate a
constant depth at a section and as such for the study of gross characteristics the flow
would be taken as steady. However, if the characteristics of the ripples were to be
studied, certainly an unsteady wave movement at the surface is warranted. Similarly,
a depth or discharge slowly varying with respect to time may be approximated for
certain calculations to be steady over short time intervals.

Flood flows in rivers and rapidly varying surges in canals are some examples of
unsteady flows. Unsteady flows are considerably more difficult to analyse than steady
flows. Fortunately, a large number of open channel problems encountered in practice
can be treated as steady-state situations to obtain meaningful results. A substantial
portion of this book deals with steady-state flows and only a few relatively simple
cases of unsteady flow problems are presented in Chapter 10.

1.3.2 Uniform and Non-uniform Flows

If the flow properties, say the depth of flow, in an open channel remain constant along
the length of the channel, the flow is said to be uniform. As a corollary of this, a flow
in which the flow properties vary along the channel is termed as non-uniform flow
or varied flow.

A prismatic channel carrying a certain discharge with a constant velocity is an
example of uniform flow [Fig. 1.1(a)]. In this case the depth of flow will be constant
along the channel length and hence the free surface will be parallel to the bed. It is
easy to see that an unsteady uniform flow is practically impossible, and hence the
term uniform flow is used for steady uniform flow.

Flow in a non-prismatic channel and flow with varying velocities in a prismatic
channel are examples of varied flow. Varied flow can be either steady or unsteady.

1.3.3 Gradually Varied and Rapidly Varied Flows

If the change of depth in a varied flow is gradual so that the curvature of streamlines
is not excessive, such a flow is said to be a gradually varied flow (GVF). Frictional
resistance plays an important role in these flows. The backing up of water in a stream
due to a dam or drooping of the water surface due to a sudden drop in a canal bed are
examples of steady GVF. The passage of a flood wave in a river is a case of unsteady
GVF [Fig. 1.1(b)].

If the curvature in a varied flow is large and the depth changes appreciably over
short lengths, such a phenomenon is termed as rapidly varied flow (RVF). The fric-
tional resistance is relatively insignificant in such cases and it is usual to regard RVF
as a local phenomenon. A hydraulic jump occurring below a spillway or a sluice gate
is an example of steady RVF. A surge moving up a canal [Fig. 1.1(c)] and a bore trav-
eling up a river are examples of unsteady RVF.
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Fig. 1.1 Various types of open channel flows: (a) Uniform flow, (b) Gradually varied flow
(c) Rapidly varied flow and (d) Side Weir: Spatially varied flow
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1.3.4 Spatially Varied Flow

Varied flow classified as GVF and RVF assumes that no flow is externally added to
or taken out of the canal system. The volume of water in a known time interval is
conserved in the channel system. In steady-varied flow the discharge is constant at all
sections. However, if some flow is added to or abstracted from the system the result-
ing varied flow is known as a spatially varied flow (SVF).

SVF can be steady or unsteady. In the steady SVF the discharge while being
steady-varies along the channel length. The flow over a side weir is an example
of steady SVF [Fig. 1.1(d)]. The production of surface runoff due to rainfall, known
as overland flow, is a typical example of unsteady SVF.

Classification. Thus open channel flows are classified for purposes of identification
and analysis as follows:
Figure 1.1(a) to (d) shows some typical examples of the above types of flows

—— Uniform

I———— Gradually-varied  (GVF)

Steady
Open ——— Rapidly-varied (RVF)
Channel- ———— Spatially-varied (SVF)
Flow

Unsteady Gradually-varied  (GVUF)

——— Rapidly-varied (RVUF)
L Spatially-varied (SVUF)

1.4 VELOCITY DISTRIBUTION

The presence of corners and boundaries in an open channel causes the velocity vec-
tors of the flow to have components not only in the longitudinal and lateral direc-
tion but also in normal direction to the flow. In a macro-analysis, one is concerned
only with the major component, viz., the longitudinal component, v . The other two
components being small are ignored and v, is designated as v. The distribution of v
in a channel is dependent on the geometry of the channel. Figure 1.2(a) and (b) show
isovels (contours of equal velocity) of v for a natural and rectangular channel respec-
tively. The influence of the channel geometry is apparent. The velocity v is zero at
the solid boundaries and gradually increases with distance from the boundary. The
maximum velocity of the cross-section occurs at a certain distance below the free
surface. This dip of the maximum velocity point, giving surface velocities which
are less than the maximum velocity, is due to secondary currents and is a function
of the aspect ratio (ratio of depth to width) of the channel. Thus for a deep narrow
channel, the location of the maximum velocity point will be much lower from the
water surface than for a wider channel of the same depth. This characteristic location



6 Flow in Open Channels

0.84 v 0.82
o o
233
0.80
4
NRER-Y
N
(@)
y
Vg V
= Vp.2
0.53 S g S
. >
Vv ;‘ o
o T O
1
o ©
>
0.52 _
0.50 Yo V0.6 = Vav
@, 045 o
(«) 1Z0X:)

(b) (c)

Fig. 1.2 Velocity distribution in open channels: (a) Natural channel (b) Rectangular channel

and (c) Typical velocity profile

of the maximum velocity point below the surface has nothing to do with the wind
shear on the free surface.

A typical velocity profile at a section in a plane normal to the direction of flow is
presented in Fig. 1.2(c). The profile can be roughly described by a logarithmic distri-
bution or a power-law distribution up to the maximum velocity point (Section 3.7).
Field observations in rivers and canals have shown that the average velocity at any
vertical v, , occurs at a level of 0.6 y, from the free surface, where y, = depth of flow.

Further, it is found that
_ Voo +Vos (1.1)
av 2

in which v, , = velocity at a depth of 0.2 y, from the free surface, and v, , = velocity
at a depth of 0.8 y, from the free surface. This property of the velocity distribution is
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commonly used in stream-gauging practice to determine the discharge using the
area-velocity method. The surface velocity v_is related to the average velocity v, as

v, = kv, 1.2)

where, k = a coefficient with a value between 0.8 and 0.95. The proper value of k
depends on the channel section and has to be determined by field calibrations. Know-
ing k, one can estimate the average velocity in an open channel by using floats and
other surface velocity measuring devices.

1.5 ONE-DIMENSIONAL METHOD OF FLOW ANALYSIS

Flow properties, such as velocity and pressure gradient in a general open channel
flow situation can be expected to have components in the longitudinal as well as
in the normal directions. The analysis of such a three-dimensional problem is very
complex. However, for the purpose of obtaining engineering solutions, a majority of
open channel flow problems are analysed by one-dimensional analysis where only
the mean or representative properties of a cross section are considered and their
variations in the longitudinal direction is analysed. This method when properly used
not only simplifies the problem but also gives meaningful results.

Regarding velocity, a mean velocity V for the entire cross-section is defined on the
basis of the longitudinal component of the velocity v as

1
Vv :Z{vdA (1.3)

This velocity V is used as a representative velocity at a cross-section. The dis-
charge past a section can then be expressed as

Q= [vdA=VA (1.4)

The following important features specific to one dimensional open channel flow are
to be noted:

e Asingle elevation represents the water surface perpendicular to the flow.
o \elocities in directions other than the direction of the main axis of flow are
not considered.

Kinetic Energy The flux of the kinetic energy flowing past a section can also be
expressed in terms of V. But in this case, a correction factor « will be needed as the
Kinetic energy per unit weight V2/2g will not be the same as v%/2g averaged over the
cross-section area. An expression for o can be obtained as follows:

For an elemental area dA, the flux of kinetic energy through it is equal to

2
[mass} KE J_<deA)V_
time J{ mass 2
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For the total area, the kinetic energy flux

:fﬁ vdA=alvia (1.5)
2 2
from which
vidA
ol 3 (L6)
VA
or for discrete values of v,
3
o= ZV3AA (17)
V° A

a is known as the kinetic energy correction factor and is equal to or greater than
unity.

2
The Kkinetic energy per unit weight of fluid can then be written as a\é_ .

g
Momentum Similarly, the flux of momentum at a section is also expressed in
terms of V and a correction factor 5. Considering an elemental area dA, the flux of
momentum in the longitudinal direction through this elemental area

mass .
= [% X veIoutyJ =(pvdA)(v)

For the total area, the momentum flux
= [ov*dA= BV A (18)

which gives

f VoA _ DVEAA

B=-A

VZA  VIA (19)

[ is known as the momentum correction factor and is equal to or greater than unity.

Values of ocand 3 The coefficients o and 3 are both unity in the case of uniform
velocity distribution. For any other velocity distribution oo > 5 > 1.0. The higher the
non-uniformity of velocity distribution, the greater will be the values of the coef-
ficients. Generally, large and deep channels of regular cross sections and with fairly
straight alignments exhibit lower values of the coefficients. Conversely, small chan-
nels with irregular cross sections contribute to larger values of o and 3. A few mea-
sured values of a and (3 are reported by King?®. It appears that for straight prismatic
channels, o and ( are of the order of 1.10 and 1.05 respectively. In compound chan-
nels, i.e. channels with one or two flood banks, « and 3 may, in certain cases reach
very high values, of the order of 2.0 (see Compound channels in Sec. 5.7.3).
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Generally, one can assume « = 5 1.0 when the channels are straight, prismatic
and uniform flow or GVF takes place. In local phenomenon, it is desirable to
include estimated values of these coefficients in the analysis. For natural channels,
the following values of « and (3 are suggested for practical use’:

Channels Values of o Values of 3
Range Average Range Average
Natural channels and torrents 1.15-1.50 1.30 1.05-1.17 1.10
River valleys, overflooded 1.50 -2.00 1.75 1.17-1.33 1.25

It is usual practice to assume o = 3 = 1.0 when no other specific information about
the coefficients are available.

Example 1.1 | 1y yelocity distribution in a rectangular channel of width B and

depth of flow y, was approximated as vV =k;/y in which k, = a constant. Calculate
the average velocity for the cross section and correction coefficients « and 3.

Solution Area of cross section A = By,

Average velocity vt yUv(de)

_B_yoo

1 Yo 2
:y_oj; klvydy:§k1 Yo
Kinetic energy correction factor

Yo o3 Yo 3. 312
fo V(de):fo ky**Bdy

= 5 5 =1.35
V'BY, 2
§k1 yo B yo
Momentum correction factor
Yo 2 Yo 2
v°(Bdy k’yBdy
— J, (B - ), ¥ —1.125

V°BYy,

2 2
[Skl\/yio] B Yo

Example 1.2 The velocity distribution in an open channel could be approxi-

mated as in Fig. 1.3. Determine the kinetic energy correction factor o and momen-
tum correction factor g for this velocity profile.
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Y 4 Solution From Fig. 1.3 VD =u(1—a)D
. V=(1-a)u
D u
u® dy
y u *(D-aDb 1
t aD o= aD — u ( 3 ):

VD @(1-a)’D (1-a)

Fig. 1.3 Velocity distribution of
Example 1.2 f )
u-ay

g _ u’D(l-a) 1

VD @(1-afD (1-3)
Pressure In some curvilinear flows, the piezometric pressure head may have non-
linear variations with depth. The piezometric head hp at any depth y from the free
surface can be expressed as

h,=Z,+y+(h—y)+Ah
h,=Z,+h +Ah (1.10)

in which Z, = elevation of the bed, h, pressure head at the bed if linear variation of
pressure with depth existed and Ah = deviation from the linear pressure head varia-
tion at any depth y. For one-dimensional analysis, a representative piezometric head
for the section called effective piezometric head, hep_ is defined as

hy
1
h, =2, +hl+Ef(Ah)dy
0 (1.11)
=Z,+h+Ah (1.11a)
Usually hydrostatic pressure variation is considered as the reference linear variation.

1.6 PRESSURE DISTRIBUTION

The intensity of pressure for a liquid at its free surface is equal to that of the surround-
ing atmosphere. Since the atmospheric pressure is commonly taken as a reference
and of value equal to zero, the free surface of the liquid is thus a surface of zero pressure.
The distribution of pressure in an open channel flow is governed by the acceleration due
to gravity g and other accelerations and is given by the Euler’s equation as below:

In any arbitrary direction s,

_0(p+12) _ oA, (112)
0s

and in the direction normal to s direction, i.e., in the n direction,
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0

o (P1Z)=p3, (1.13)
in which p = pressure, a, = acceleration component in the s direction, a, = accelera-
tion in the n direction and Z = elevation measured above a datum.

Consider the s direction along the streamline and the n direction across it. The
direction of the normal towards the centre of curvature is considered as positive. We
are interested in studying the pressure distribution in the n-direction. The normal
acceleration of any streamline at a section is given by

a - (1.14)

where v = velocity of flow along the streamline of radius of curvature r.
Hydrostatic Pressure Distribution  The normal acceleration a_ will be zero
(i) ifv=0, i.e., when there is no motion, or
(i) if r — oo, i.e., when the streamlines are straight lines.

Consider the case of no motion, i.e. the still water case (Fig. 1.4(a)). From Eq. 1.13,
since 8, = 0, taking n in the Z direction and integrating

P +Z =constant =C (1.15)

v

At the free surface [point 1 in Fig. 1.3(a)] p,/y=0and Z = Z,, giving C = Z . At
any point A at a depth y below the free surface,

%:(zl—zA)zy

i.e. P, =Y (1.16)

This linear variation of pressure with
T depth having the constant of propor-
Y' tionality equal to the unit weight of the
x h liquid is known as hydrostatic-pressure
W | distribution.
Channels with Small Slope Let us
‘«—'yh~>{ z consider a channel with a very small
l value of the longitudinal slope 6. Let ¢
Datum .
~ sin 6 ~ 1/1000. For such channels the
vertical section is practically the same
as the normal section. If a flow takes place in this channel with the water surface
parallel to the bed, i.e. uniform flow, the streamlines will be straight lines and as such
in a vertical direction [Section 0-1 in Fig. 1.4(b)] the normal acceleration a, = 0.
Following the argument of the previous paragraph, the pressure distribution at the
Section 0 — 1 will be hydrostatic. At any point A at a depth y below the water surface,

,_\
~|||<|

Fig. 1.4(a) Pressure distribution in still water
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v 1 v v p p
T?f = = —=y and —+Z=2
y v Y
Jh _f 2 — = Elevation of water surface
vy
i 7777 Thus the piezometric head at any
| o (t’ e vh —] point in the channel will be equal to
atum

the water-surface elevation. The
hydraulic grade line will therefore
lie essentially on the water surface.

Fig. 1.4(b) Pressure distribution in a channel
with small slope

Channels with Large Slope Figure 1.5 shows a uniform free-surface flow in a
channel with a large value of inclination 6. The flow is uniform, i.e. the water surface

is parallel to the bed. An element of length AL and unit width is considered at the
Section 0-1.

T~

1

Ve

d
A
>>>>>>>> 70/
_b(?>
z vy cos 0
Zp
\ I~
7/7 Co / 0
Datum Se

Fig. 1.5 Pressure distribution in a channel with large slope

At any point A at a depth y measured normal to the water surface, the weight of

column Al 1’A’ = vALy and acts vertically downwards. The pressure at AA’ supports
the normal component of the column Al 1’A’. Thus

p, AL = vy AL cos6 (1.17)
i.e. p, =ycosd (1.18)
or p, /7y =~cosé (1.18a)

The pressure p, varies linearly with the depth y but the constant of proportionality is
7 cos . If h = normal depth of flow, the pressure on the bed at point 0, p,= ~h cos 6.

If d = vertical depth to water surface measured at the point O, then h = d cos 6
and the pressure head at point O, on the bed is given by

Po _ heoso=dcos?e (1.19)

5
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The piezometric height at any point A = Z +y cos 6 = Z, + h cos 6. Thus for
channels with large values of the slope, the conventionally defined hydraulic gradient
line does not lie on the water surface.

Channels of large slopes are encountered rarely in practice except, typically in
spillways and chutes. On the other hand, most of the canals, streams and rivers with
which a hydraulic engineer is commonly associated will have slopes (sin 8) smaller
than 1/100. For such cases cos ¢ ~ 1.0. As such, in further sections of this book the
term cos @ in the expression for the pressure will be omitted with the knowledge that
it has to be used as in Eq. 1.18 if  is large.

1.7 PRESSURE DISTRIBUTION IN CURVILINEAR FLOWS

Figure 1.6(a) shows a curvilinear flow in a vertical plane on an upward convex sur-
face. For simplicity consider a Section 01A2 in which the r direction and Z direction
coincide. Replacing the n direction in Eq. 1.13 by (-r) direction,

9
or

7= (1.20)
g

§ \ \" r,—ry=h
AN
Hydrostatic
y — aLy
z I
v\ ogh
g
4—"/ __n
g
Datum

(a) (b)
Fig. 1.6 Convex curvi]inearﬁow

Let us assume a simple case in which a_ = constant. Then, the integration of Eq. 1.20
yields

Pz %, ¢ (1.22)
v g

in which C = constant. With the boundary condition that at point 2 which lies on the
free surface, r =r,and p/y=0and Z = Z,

B:Z_Z_ﬂ — 1.22
N (z,-2) g(rz r) (1.22)
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Let Z, - Z = depth below the free surface of any point A in the Section 01A2 = y.
Then for point A,

(h-1)=y=(z,-2)
and

a
P_y &y (1.23)
g g

Equation 1.23 shows that the pressure is less than the pressure obtained by the
hydrostatic distribution [Fig. 1.6(b)].

For any normal direction OBC in Fig. 1.6(a), at point C, (p/v),= 0, r,=r,, and for
any point at a radial distance r from the origin O, by Eq. 1.22

P=(z-2)-2n-1)
But
Z,—Z =(r,—r)cosb,
giving
gz(rz—r)cose—%(rz—r) (1.24)

It may be noted that when a_ = 0, Eq. 1.24 is the same as Eq. 1.18a, for the flow
down a steep slope.

If the curvature is convex downwards, (i.e. r direction is opposite to Z direction)
following the argument as above, for constant a , the pressure at any point A at a depth
y below the free surface in a vertical Section 01A2 [Fig. 1.7(a)] can be shown to be

Py &y (1.25)
g g

The pressure distribution in a vertical section is as shown in Fig. 1.7(b).

Thus it is seen that for a curvilinear flow in a vertical plane, an additional pressure
will be imposed on the hydrostatic pressure distribution. The extra pressure will be
additive if the curvature is convex downwards and subtractive if it is convex
upwards.

Normal Acceleration In the previous discussion on curvilinear flows, the normal

acceleration a was assumed to be constant. However, it is known that at any point
2

. - v . .
in a curvilinear flow, a, = —, where v = velocity and r = radius of curvature of the
r

streamline at that point.
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o 1

r,—ry=h

Hydrostatic

y
h
%
A W

| ~h i<_7

(b)

Fig. 1.7 Concave curvi]inearﬂow

In general, one can write v = f(r) and the pressure distribution can then be expressed by

2

[E—i—ZJ_fv—dquConst (1.26)
vy gr

This expression can be evaluated if v = f(r) is known. For simple analysis, the fol-
lowing functional forms are used in appropriate circumstances:

(i) v = constant =V = mean velocity of flow
(if) v = cfr, (free-vortex model)
(iii) v = cr, (forced-vortex model)
(iv) a = constant = V?/R, where R = radius of curvature at mid-depth.

Example 1.3 | p 4 section in a rectangular channel, the pressure distribu-

tion was recorded as shown in Fig. 1.8. Determine the effective piezometric head
for this section. Take the hydro-
static pressure distribution as the

é reference.
K _ _
Solution Z, = elevation of the
y bed of channel above the datum
h h, = depth of flow at the section
1
p K~ y2 OB _
— Let h = piezometric head at
point A, depth y below the free
Elev. Z, B surface
| ; | Then h =Z,+ky* + (h,-Y)
! Kyh ! Putting’  h =Z +h, + Ah
Fig.1.8 Example 1.3 Ah =ky?-y



16  Flow in Open Channels

Effective piezometric head, by Eq. 1.11 is
1 ph
Ny =Zo+h o+ [, (An)dy

:ZO+Q+%f0hl(ky2—y)dy

k 2

Example 1.4 Aspillway bucket has a radius of curvature R as shown in Fig. 1.9.

(a) Obtain an expression for the pressure distribution at a radial section of inclina-
tion 4 to the vertical. Assume the velocity at any radial section to be uniform and the
depth of flow h to be constant. (b) What is the effective piezometric head for the above
pressure distribution?

Solution (a) Consider the Section 012. Velocity = V = constant across 12. Depth of
flow = h. From Eq. 1.26, since the curvature is convex downwards

z
Datum
Fig. 1.9 Example 1.4
2
[£+Z]—fv—dr+Const
Y gr
2
Prz-YVnrsc (127)
Y g
At the point 1, ply=0,Z=Z,r=R-h
2
c=z,- Y In(R-n)
g
At any point A, at radial distance r from O
2
P(z-z) |t (1.28)
~ g R—h

But(Z,—2) = (r-R+h)cos ¢



p V2 r
—=(r—R+h)cosf@+—1In
gl ( ) " g [R h]
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(1.29)

Equation 1.29 represents the pressure distribution at any point (r, 6). At point 2, r =R,

pP=p,
(b) Effective piezometric head, hep:
From Eq. 1.28 the piezometric head hp atAis

2
hp:[£+z] _21+V—|n[ r ]
Y A g R—h

Noting that Z, = Z, + h cos ¢ and expressing hp in the form of Eq. 1.10

hp:22+hc030+Ah

Where

2
Ah=Y"in_'
g R-—h

The effective piezometric head h_ | from Eq. 1.11 is

1 R V? r
h,=Z,+hcosf+ —In dr
w0 hcos@fR—h g R-—h

on integration,
2

h, =Z,+hcosé+
w0 ghcosé

=Z,+hcosf+

It may be noted that when R — oo and h/R — 0, hep —Z,+hcos?

1.8 FLOWS WITH SMALL WATER-SURFACE CURVATURE

(1.30)

Consider a free-surface flow with a convex upward water surface over a horizontal
bed (Fig. 1.10). For this water surface, d*h/dx? is negative. The radius of curvature

of the free surface is given by

(1.31)
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Assuming linear variation of the
curvature with depth, at any point A at
a depth y below the free surface, the
radius of curvature r is given by

1_d’h(h—y (132)

r dx*| h
If the velocity at any depth is
5 assumed to be constant and equal to
Fig. 1.10 Definition sketch of flow with the mean velocity V in the section, the
small water-surface curvature normal acceleration a_ at point A is

given by
vz Vi(h—y)d?h
" r h dx? (h=y)

where K = (V#h)d2h/dx2. Taking the channel bed as the datum, the piezometric head
h, at point A is then by Eq. 1.26

h, _[3+z]_f§(hy)dy + Const

2

K y
h =—=|lhy—2-|+C 1.34
) g[y 2]+ (1.34)

Using the boundary condition; aty =0, p/y=0, Z=handh =h, leadsto C =h,

h, =
g

p

hy — yg] (1.35)

Equation 1.35 gives the variation of the piezometric head with the depth y below the
free surface. Designing h, = h + Ah

The mean value of Ah

R 1 A
Ah :Ej; Ahdy

K pa Kh?
:%‘f" (hy—y*/2)dy = 39
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The effective piezometric head hep at the section with the channel bed as the datum
can now be expressed as

2
h, —ht

1.36
ep Sg ( )

It may be noted that d2h/dx? and hence K is negative for convex upward curvature
and positive for concave upward curvature. Substituting for K, Eq. 1.36 reads as
1V?hd°h

h =h+=Z—— (1.37)
e" 3 g dx

This equation, attributed to Boussinesq* finds application in solving problems with
small departures from the hydrostatic pressure distribution due to the curvature of
the water surface.

1.9 EQUATION OF CONTINUITY

The continuity equation is a statement of the law of conservation of matter. In open-
channel flows, since we deal with incompressible fluids, this equvation is relatively
simple and much more for the cases of steady flow.

Steady Flow In a steady flow the volumetric rate of flow (discharge in m?/s) past
various section must be the same. Thus in a varied flow, if Q = discharge, V = mean
velocity and A = area of cross-section with suffixes representing the sections to
which they refer

Q=VA=VA =VA = .. (1.38)

If the velocity distribution is given, the discharge is obtained by integration as in
Eg. 1.4. It should be kept in mind that the area element and the velocity through this
area element must be perpendicular to each other.

In a steady spatially-varied flow, the discharge at various sections will not be
the same. A budgeting of inflows and outflows of a reach is necessary. Consider,
for example, an SVF with increasing discharge as in Fig. 1.11. The rate of addi-
tion of discharge = dQ/dx = q,. The discharge at any section at a distance x from
Section 1

—0= “o.d
Q Q1+j;q X (1.39)

If g, = constant, Q = Q, +g.xand Q,=Q, +q.L

Unsteady Flow In the unsteady flow of incompressible fluids, if we consider a
reach of the channel, the continuity equation states that the net discharge going out
of all the boudary surfaces of the reach is equal to the rate of depletion of the storage
within it.
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a0 _dQ InFig. 1.12,ifQ,>Q,,
1 dx 2 more flow goes out than
L2 S S B what is coming into Sec-
tion 1. The excess volume
I — of outflow in a time At is
Q1 I made good by the deple-
. Q T tionof storage within the
Q2 reach bounded by Sec-
X tions 1 and 2. As a result
- ‘#‘ of this the water surface
1 2 will start falling. If At =
Fig. 1.11 Spatially varied flow distance between Sections
1and 2,
9Q
—Q, =—Ax
Q-G OX

The excess volume rate of flow in atime At = (0Q/0x) AxAt. If the top width of the
canal at any depth y is T, 0A/0y = T. The storage volume at depth y = A.Ax. The rate
0ROy oy

of decrease of storage = —Ax—— = -TAx— . The decrease in storage in time
oy ot ot
At = —TAx@ At . By continuitya—QAxAt =-T @AxAt.
ot OX ot
0Q Loy
or —+T—=0 1.40
OX ot (1.40)

Equation 1.40 is the basic equation of continuity for unsteady, open-channel flow.

Water surface elevation
at instant t

Atinstant_ [t

Q1

Fig. 1.12 Definition sketch of unsteady flow

Example 1.5 | 10 yelocity distribution in the plane of a vertical sluice gate dis-
charging free is shown in Fig. 1.13. Calculate the discharge per unit width of

the gate.



Introduction 21

Location 1 2 3 4 5 6 7
\elocity (m/s) 2.3 25 2.6 2.6 25 2.1 0.0
0(degrees) 5 10 15 20 25 30 -
y(m) 0.05 0.10 0.15 0.20 0.25 0.30 0.35

!

//{Z |

1

Solution The component of velocity normal
to the y-axis is calculated as V =V cos 0. The
discharge per unit width g = >V Ay. The
velocity is zero at the boundaries, i.e., at end

sections 0 and 7 and this should be noted in

calculating average velocities relating to the

end sections. The calculations are done in tab-

ular form as shown below. In the table Aq =
discharge in the element between two sections
= Col 5 x Col 6.

777777777777 7777777777777

The total discharge per unit width is

Fig. 1.13 Example 1.5 0.690 m?/s/m.

1 2 3 4 5 6 7

. V = \elocity o V,=Vcosf AverageV, Adq,
Section (mls) 0 () (mls) Ay yeim)

0 0 0 0.000 0 0
1 2.3 5 2.291 1.146 0.05 0.057
2 2.5 10 2.462 2.377 0.05 0.119
3 2.6 15 2511 2.487 0.05 0.124
4 2.6 20 2.443 2.477 0.05 0.124
5 25 25 2.266 2.354 0.05 0.118
6 2.1 30 1.819 2.042 0.05 0.102
7 0 0 0.000 0.090 0.05 0.045
Total Discharge =q = 0.690

Example 1.6 | \ypije measuring the discharge in a small stream it was found that

the depth of flow increases at the ratio of 0.10 m/h. If the discharge at that section
was 25 m?/s and the surface width of the stream was 20m, estimate the discharge at

a section 1 km upstream.

Solution This is a case of unsteady flow and the continuity equation Eq. 1.40 will

be used.

19y _ 20x0.10

ot 60x60

0.000556
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By Eqg. 1.36,
Q-0 _0_ oy

AX Ox ot
Q, = discharge at the upstream section

Q4T % Ax = 25.0+10000.000556

= 25.556 m®/s

1.10 ENERGY EQUATION

In the one-dimensional analysis of steady open-channel flow, the energy equation in
the form of the Bernoulli equation is used. According to this equation, the total energy
at a downstream section differs from the total energy at the upstream section by an
amount equal to the loss of energy between the sections.

Figure 1.14 shows a steady varied flow in a channel. If the effect of the curvature
on the pressure distribution is neglected, the total energy head (in N.m/newton of
fluid) at any point A at a depth d below the water surface is

2

H :ZA+dcose+a\2/— (1.41)
g

2 T - = - &p ?
o \g M~ Wi |h=he+he
\g\ V2 ~ - l
Water 3
surface _T_\
2
o Y2
y; cos 0 29
N%\
1 Y>
Zy
0
Datum Z2

Fig.1.14 Definition sketch for the energy equation

This total energy will be constant for all values of d from zero to y at a normal section
through point A (i.e. Section OAB), where y = depth of flow measured normal to the bed.
Thus the total energy at any section whose bed is at an elevation Z above the datum is

H=Z-+ycos -+ aV¥2g (1.42)
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In Fig. 1.14, the total energy at a point on the bed is plotted along the vertical
through that point. Thus the elevation of energy line on the line 1-1 represents the
total energy at any point on the normal section through point 1. The total energies at
normal sections through 1 and 2 are therefore

%
H, = Zl+y1c050+a1£

H,=2Z,+vy,cos0+ V—22
= o
2 2 y2 2 2 g

respectively. The term (Z + y cos 6) = h represents the elevation of the hydraulic
grade line above the datum.

If the slope of the channel 4 is small, cos 8 ~ 1.0, the normal section is practically
the same as the vertical section and the total energy at any section can be written as

V.
H=Z+y+a % 1.4
Yoo, (1.43)

Since most of the channels in practice happen to have small values of 0 (6 < 10°),
the term cos @ is usually neglected. Thus the energy equation is written as Eq. 1.40 in
subsequent sections of this book, with the realisation that the slope term will be
included if cos 0 is appreciably different from unity.

Due to energy losses between Sections 1 and 2, the energy head H, will be larger
than H, and H, — H, = h = head loss. Normally, the head loss (h,) can be considered
to be made up of frictional losses (h,) and eddy or form loss (h,) such thath, = h +
h,. For prismatic channels, h, = 0. One can observe that for channels of small slope
the piezometric head line essentially coincides with the free surface. The energy line
which is a plot of H vs x is a dropping line in the longitudinal (x) direction. The dif-
ference of the ordinates between the energy line and free surface represents the
velocity head at that section. In general, the bottom profile, water-surface and energy
line will have distinct slopes at a given section. The bed slope is a geometric parame-
ter of the channel. The slope of the energy line depends on the resistance characteris-
tics of the channel and is discussed in Chapter 3. Discussions on the water-surface
profiles are presented in chapter 4 and 5.

In designating the total energy by Eq. 1.41 or 1.42, hydrostatic pressure distribution was
assumed. However, if the curvature effects in a vertical plane are appreciable, the pressure
distribution at a section may have a non-linear variation with the depth d. In such cases the
effective piezometric head hep as defined in Eq. 1.11 will be used to represent the total
energy at a section as

VZ
H=h +a— 1.44
ep azg ( )

Example 1.7 | e width of a horizontal rectangular channel is reduced from

3.5 mto 2.5 m and the floor is raised by 0.25 m in elevation at a given section. At
the upstream section, the depth of flow is 2.0 m and the kinetic energy correction
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| T

B; =3.5m B, =2.5m
@ @  pLaN
Energy line

L-SECTION
Fig. 1.15 Example 1.7

y,=2.0-025-020=15m

By continuity

Bl y1V1 = Bz yzvz

 25x155

1 35x20

(a) When there is no energy loss

factor a is 1.15. If the drop in the water
surface elevation at the contraction is
0.20 m, calculate the discharge if (a)
the energy loss is neglected, and (b)
the energy loss is one-tenth of the
upstream velocity head. [The kinetic
energy correction factor at the con-
tracted section may be assumed to be
unity].

Solution Referring to Fig. 1.15,
y,=2.0m

V, = 0.5536V,

By energy equation applied to Sections 1 and 2,

2

V. V
Zi+y +O‘1$:(21 +AZ)+y2 +0‘2£

2

oy =1.15and a, =1.0

V; —(1.15v7)

29 =N—Y.— AZ
V22 2
2—[1—(1.15)(0.5536) |=200-155-025
g
2
064762 —02
2x9.81
V, =2.462 m/s

Discharge Q = 2.5x1.55% 2.462 = 9.54 m%/s

(b) When there is an energy loss

H, =01

2
1
Q

g

7

2
0115
29



By energy equation,
2 2

V. V.
Z+Y, +O‘1$:<21+AZ>+3/2 +O‘2£+HL

ViV
\azi_oﬁg_" H =y —Yy,—AZ
VZ
Substituting a, = 1.0, ¢, = 1.15and H_= 0.1152L
g
2 2 2
Vi _115¥ _0115%C —200-155-025
29 29 29
Since V, = 05536V,
VZ
2—2{1— (0.9)(1.15)(0.5536)°| = 0.2
9
2
0.6826V; _
2%9.81

V, = 2.397 m/s and discharge Q = 2.5x1.55x 2.397 = 9.289 m*/s

Example 1.8 | 5 qjice gate in a 2.0-m wide horizontal rectangular channel is
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discharging freely as shown in Fig. 1.16. If the depths a small distance upstream (y, )
and downstream (ly, ) are 2.5 m and 0.20 m respectively, estimate the discharge in the
channel (i) by neglecting energy losses at the gate, and (ii) by assuming the energy

loss at the gate to be 10% of the upstream depth y,.

Solution  Referring to Fig. 1.16,y, =

Y1

—_— V:L—

2

Y

™ Y2

*2

Fig. 1.16 Free flow from a sluice gate — Example 1.8

Since the channel is horizontal, Z, = Z, and
Vz2 _Vlz B

2 2

ByV, =By,

X 25mandy,=0.20m

%le =125V,

(i) When there is no energy loss

V. A
Zl+y1+Lg=ZZ+yz+—zg
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V2
-1-[(12.5)* —1]| = 2.50-0.20 = 2.30
29
2
Ve - 230 401481 and V, = 0.539 m/s.
29 15525

Discharge Q = By,V, = 2.0x2.5x0.539 = 2.696 m%s.

(ii) When there is energy loss
H, = Energy loss =0.10y, = 0.25m

Vl2 sz

e S 22 4+ H
y1+29 y2+zg+ L
V2 V2
29 2 VT

2
\i[(lz.s)2 ~1|==250-0.20-025~2.05
29

V205
29 155.25

Discharge Q = By,V, = 2.0x2.5x0.509 = 2.545 m*/s.

=0.0132 and V, =0.509 m/s

1.11 MOMENTUM EQUATION

Steady Flow Momentum is a vector quantity. The momentum equation com-
monly used in most of the open channel flow problems is the linear-momentum
equation. This equation states that the algebraic sum of all external forces, acting
in a given direction on a fluid mass equals the time rate of change of linear-
momentum of the fluid mass in the direction. In a steady flow the rate of change
of momentum in a given direction will be equal to the net flux of momentum in
that direction.

Figure 1.17 shows a control volume (a volume fixed in space) bounded by Sec-
tions 1 and 2, the boundary and a surface lying above the free surface. The various
forces acting on the control volume in the longitudinal direction are as follows:

(i) Pressure forces acting on the control surfaces, F, and F,.

(if) Tangential force on the bed, F,,

(iii) Body force, i.e., the component of the weight of the fluid in the longitudinal
direction, F,.

By the linear-momentum equation in the longitudinal direction for a steady-flow
discharge of Q,
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Control volume

I |
| |
] |
N
Flow ' =
—_— Q

Fs=Wsind
= component
of body force

Fig.1.17 Definition sketch for the momentum equation

SF,=F —F,—-F,+F,=M,— M, (1.45)
in which M, = 3 pQV, = momentum flux entering the control volume, M, = 3,pQV, =
momentum flux leaving the control volume.

In practical applications of the momentum equation, the proper identifica-
tion of the geometry of the control volume and the various forces acting on it
are very important. The momentum equation is a particularly useful tool in
analysing rapidly varied flow (RVF) situations where energy losses are com-
plex and cannot be easily estimated. It is also very helpful in estimating forces
on a fluid mass. Detailed information on the basis of the momentum equation
and selection of the control volume are available in books dealing with the
mechanics of fluids.5®

Example 1.9 | £qimate the force, on a sluice gate shown in Fig. 1.18.

-— F ---»F’

Fig. 1.18 Forces in a sluice gate glow-Example 1.9
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Solution  Consider a unit width of the channel. The force exerted on the fluid by the
gate is F, as shown in the figure. This is equal and opposite to the force exerted
by the fluid on the gate, F".

Consider the control volume as shown by dotted lines in the figure. Section 1 is
sufficiently far away from the efflux section and hydrostatic pressure distribution can
be assumed. The frictional force on the bed between Sections 1 and 2 is neglected.
Also assumed are 3, = 3,= 1.0. Section 2 is at the vena contracta of the jet where
the streamlines are parallel to the bed. The forces acting on the control volume in the
longitudinal direction are

. o1
F, = pressure force on the control surface at Section 11 = Zy;
2

o1
F,= pressure force on the control surface at Section 22 257)’5 acting in a

direction opposing F,.

F = reaction force of the gate on the Section 33'.
By the momentum equation, Eq. 1.45,

1 1
57 y12 _57 y22 -F :pq(vz _Vl) (1'46)

in which q = discharge per unit width = V,y, = V., y,. Simplifying Eq. 1.46,

(y1 - yz)

172

1 2q”
F=>1 ylyz(y1+y2)—% (1.47)

2

If the loss of energy between Sections 1 and 2 is assumed to be negligible, by the
energy equation with o, = o, = 1.0

V2 V2
— Yo 1.48
Y, + 29 Yy, + 29 (1.48)

Substituting

and by Eq. 1.43,

1 (,—Y,)°
F—= 1= Yo 1.49
27 (y,+,) (49

The force on the gate F” would be equal and opposite to F.
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Example 1.10 || Figure 1.19 shows a hydraulic jump in a horizontal apron aided
by a two dimensional block on the apron. Obtain an expression for the drag force per
unit length of the block.

Solution  Consider a control volume surrounding the block as shown in Fig. 1.19.
A unit width of apron is considered. The drag force on the block would have a reac-
tion force = F_ on the control surface, acting in the upstream direction as shown in
Fig. 1.19. Assume, a frictionless, horizontal channel and hydrostatic pressure distri-
bution at Sections 1 and 2.

Fig. 1.19 Example 1.10

By momentum equation, Eq. 1.45, in the direction of the flow

P,—F,—P,=M,— M,

1 1
E'Yylz -F 7§7y22 = pq(ﬁzvz 7ﬂ1V1)

where g = discharge per unit width of apron =y, V, =y, V..
Assuming B, =p8,=10

1 1 1 1
Fo==av2 oy = o] — =
D 27)/1 Z’sz P4 v, yl]
2 —
_2 ylz_y;ﬂ_[uJ
g9 %Y,

Unsteady Flow In unsteady flow, the linear-momentum equation will have an addi-
tional term over and above that of the steady flow equation to include the rate of change
of momentum in the control volume. The momentum equation would then state that in an
unsteady flow the algebraic sum of all external forces in a given direction on a fluid mass
equals the net change of the linear-momentum flux of the fluid mass in that direction plus
the time rate of increase of momentum in that direction within the control volume. An
application of the momentum equation in unsteady flows is given in Chapter 10. For
details on the momentum equation in unsteady flow consult References 5 and 6.
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Specific Force The steady-state momentum equation (Eq. 1.45) takes a simple
form if the tangential force F, and body force F, are both zero. In that case

F,—F,=M,—M,

or F,+M=F+M,

Denoting E(F 4 M)
~

PS

P), =Py, (1.50)

The term P_ is known as the specific force and represents the sum of the pressure
force and momentum flux per unit weight of the fluid at a section. Equation (1.50)
states that the specific force is constant in a horizontal, frictionless channel. This fact
can be advantageously used to solve some flow situations. An application of the spe-
cific force relationship to obtain an expression for the depth at the end of a hydraulic
jump is given in Section 6.4. In a majority of applications the force F is taken as due

to hydrostatic pressure distribution and hence is given by, F =~ Ay where y isthe
depth of the centre of gravity of the flow area.
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~ PROBLEMS

Problem Distribution

Topic Problems
Classification 1.1

aand @ 12-16
Pressure distribution 1.7-1.14
Continuity equation 1.15-1.17
Energy equation 1.18-1.22
Momentum equation 123-131

1.1 Classify the following open-channel flow situations:
(a) Flow from asluice gate
(b) Flow in a main irrigation canal
(c) Ariver during flood



Introduction 31
(d) Breaking of a dam
(e) Flow over a spillway
(f) Sudden opening of a sluice gate
(9) Spreading of irrigation water on a field
(h) Flow in a sewer
1.2 The Velocity distributions along the vertical in an open channel are as shown in

Fig. 1.20. Determine the kinetic energy correction factor o and momentum correction
factor 3 for both the velocity profiles.

Um

||‘<1

Fig. 1.20 Problem 1.2

1.3 The velocity distribution along a vertical in a channel can be expressed as viv, =

(yly,)"" where y, = depth of flow, v = velocity at any height y above the bed and n = a
constant. Find the values of « and (.

1.4 For the velocity distribution given in Fig. 1.21, find o and .

0.20 m/s

|

1|

120 m

0.80 m

1.30 m/s l

0.05m
7 77777 77777 //////*
Fig. 1.21 Problem 1.4

1.5 The velocity distribution in a channel is given by u = u(y). By representing u =V + éu,
where V = mean velocity and su = deviation from the mean, show that

a~1+43n and [B=l+n

where n= A\1/2 fA(6U)2 dA

1.6 A rectangular channel curved in the vertical plane is 2.0 m wide and has a centreline radius
of 5.0 m. The velocity distribution at a radial section can be considered to be an irrota-
tional vortex, i.e. v = C/r. The depth of flow is 1.50 m and is constant along the channel.
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For a discharge of 6.0 m?/s, find (a) the velocity distribution, (b) the average velocity,
and (c) the correction factors « and .

1.7 For the following two pressure distributions [Fig 1.22 (a) and (b)] in an open channel

flow, calculate the effective piezometric head. Take the hydrostatic pressure distribution
as the reference.

kyh,

< >
ik
ik

kW —_— k'yhl

Elev. Zg kyhy Elev. Zy | kvhy
W

— Pressure

— Pressure
(b)
(@)
Fig. 1.22 Problem 1.7

1.8 A rectangular channel has a convex curvature in a vertical plane on its bed. At a section
the bed has an inclination of 30° to the horizontal and the depth measured normal to the
flow is 0.75 m. A certain flow produces a normal acceleration of 0.4 g which can be
assumed to be constant throughout the depth. Determine the pressure distribution and
compare it with the hydrostatic distribution.

1.9 For the situation detailed in Problem 1.8, determine the pressure distribution if the
boundary has a concave curvature to the flow and the rest of the data remain same.

1.10 In a flow over a certain spillway crest the normal acceleration a_ can be assumed to be
constant. Show that the pressure on the crest is atmospheric when a, = g cos 6, where
0 = inclination of the normal to the surface with the vertical.
1.11 Assuming the flow in the spillway bucket of Example 1.3 to be an irrotational vortex
(v = CIr) at a constant depth h in the curved portion, show that
2 2
P _ hcos6 + NV
Y 29

1.12 If the flow Problem 1.11 is assumed to be a forced vortex (v = Cr), show that

22
L hcos@%—u
Y 29

1.13 A spillway crest having a circular arc of radius 6.0 m is shown in Fig. 1.23. Estimate the

pressure at point 1 when the discharge intensity is 5.0 m3s per metre width by
assuming:

(a) Velocity is constant across 1-2
(b) Velocity varies linearly with the radius (v = Cr)
(c) Velocity is inversely proportional to the radius (v = C/r)

(d) Normal acceleration is constant at a value corresponding to average values of veloc-
ity and radius
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g =5.0 m3/s/m

—_—

Fig. 1.23 Problem 1.13

1.14 At a free overflow in a wide horizontal rectangular channel the depth at the brink was
found to be 0.86 m. At a section that is 5 m upstream of the brink, the depth was noted
as 1.20 m. The discharge per unit width of the channel is estimated as 4.12 m3/s per m
width. Assuming the water surface profile between the above two sections to be given by
y = Ax? + B, where x is measured from the upstream section, determine the
(a) pressure distribution at a 2.5 m upstream section of the brink, and
(b) effective piezometric head at (i) x = 1.0 m, and (ii) x = 2.5 m.

1.15 In the moving-boat method of discharge measurement of rivers the magnitude and direc-
tion of the velocity of a stream relative to the moving boat (V, and ¢) are measured. The
depth of the stream is also simultaneously recorded. Estimate the discharge in a river
(Fig. 1.24) using the following moving-boat data. Assume the velocity to be uniform in
a vertical section.

L4 4200 ptt ALl 2y

1 Boat Vg
gl
T 0
61
Flow T Flow
4 ]

1 L Distance between
21 75m  gections=75m

TTTT 7T T
0  Right bank
Fig. 1.24 Problem 1.15

Section V, (m/s) 6 (degrees) Depth (m)
1 1.75 55 1.8
2 1.84 57 25
3 2.00 60 35
4 2.28 64 4.0
5 2.28 64 4.0
6 2.20 63 4.0
7 2.00 60 3.0
8 1.84 57 25
9 1.70 54 2.0
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1.16 In a rectangular channel, the flow has a free overfall. The velocity measurement at the
end section where the flow was curvilinear is indicated in Fig. 1.25. Estimate the dis-
charge per unit width of the channel.

.|I

10 cm \
. T12° 0

10 cm

10cm__ -_40\>ng/8
10 cm — Oy
1.2007

Vs

Fig. 1.25 Problem 1.16

1.17 Figure 1.26 shows the velocity distribution in a submerged sluice-gate flow. Estimate the
discharge per unit width of the gate.

y (cm)

—-0.50
115

-0.25
? 105
0.5

90
75

60
45

30
15

5
0 v (m/s)
Fig. 1.26 Problem 1.17

1.18 A skijump spillway has an exit angle of 40° (Fig. 1.27). If the flow over it has a velocity
of 20 m/s, neglecting all losses, estimate the maximum elevation of the outflow
trajectory.

20 m/s

Fig. 1.27 Problem 1.18
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1.19 Figure 1.28 shows a sluice gate in a rectangular channel. Fill the missing data in the fol-

lowing table:
Case A Y, q Losses
(m) (m) (m2/s/m)
@) - 0.30 25 neglect
(b) 4.0 - 2.0 neglect
(c) 4.0 - 2.0 0.1V 2429
(d) 3.0 0.25 - neglect
v
Y1

Fig. 1.28 Problem 1.19

1.20 A transition in a cross drainage canal works consists of a rectangular canal 2.0-m wide
changing into a trapezoidal canal section of 3.0 m bottom width and side slopes 1.5 hori-
zontal: 1 vertical. The depths of flow of 1.5 m in the rectangular section and 1.0 m in the
trapezoidal section for a discharge of 10.0 m%/s is envisaged. If a loss of energy = (0.2 x
difference of velocity heads) is to be included, calculate the difference in water surface
and bed elevations of the two end sections of the transition. Sketch the longitudinal sec-
tion of the transition, showing the water-surface elevations and the energy line.

1.21 Gradually varied flow is found to occur in a channel having an inclination of 10 ° with
the horizontal. At the normal Section A, the elevation of the bed is 15.00 m, the elevation
of the water surface is 16.30 m and the velocity of flow is 3.0 m/s. At the normal Section
B, the elevation of the bed is 14.60 m and the water surface elevation is 15.80 m. Calcu-
late the elevations of total energy and hydraulic grade lines at normal Sections A and B.
Assume the values of the kinetic energy correction factor at A and B as 1.03 and 1.02,
respectively.

1.22 An expansion in a horizontal rectangular channel takes place from a width of 2.0 m to
3.0 m. The depths of flow for a discharge of 7.20 m¥s are 1.20 m and 1.40 m in the nar-
rower and wider sections respectively. Estimate the energy loss in the transition. Assume
the kinetic energy correction coefficient « to have values of 1.05 and 1.15 at the inlet and
outlet of the transition, respectively.

1.23 Figure 1.29 shows the flow over a spillway. The depths of water are h, and h, and V, is
the upstream approach velocity. Estimate the horizontal force on the spillway structure.
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Is the data enough to calculate the vertical component of the force on the spillway also?
If not, what additional information is needed?

—_—
Tz

Z t " Datum

Fig. 1.29 Problem 1.23

1.24 Afflux is the net differential water-surface elevation between the upstream and down-
stream sections of a constriction to the flow. A 15 m wide rectangular canal, has a two-
span bridge at a section. The bridge pier is 0.80 m wide and its coefficient of drag C_ is
estimated as 2.0. If the depth of flow downstream of the bridge is 2.0 m for a discharge
of 80 m¥/s in the canal, estimate the afflux due to the bridge.

(Hint: The drag force on the bridge pier = C_ a pV,%2, where a = projected area of the
pier offered to the flow.)

1.25 A high-velocity flow from a hydraulic structure has a velocity of 6.0 m/s and a depth
of 0.40 m. It is deflected upwards at the end of a horizontal apron through an angle of
45" into the atmosphere as a jet by an end sill. Calculate the force on the sill per unit
width.

1.26 In Problem 1.19 (a, b, ¢ and d), determine the force per m width of the sluice gate.

1.27 Analyse the force on a sluice gate (Example 1.7) when it is discharging under submerged
conditions. What additional assumptions are required?

1.28 Figure 1.30 shows a submerged flow over a sharp-crested weir in a rectangular channel.
If the discharge per unit width is 1.8 m3/s/m, estimate the energy loss due to the weir.
What is the force on the weir plate?

1.80m

) "

Fig. 1.30 Problem 1.28

1.29 A hydraulic jump assisted by a two-dimensional block is formed on a horizontal apron as
shown in Fig. 1.31. Estimate the force F_ in KN/m width on the block when a discharge
of 6.64 m®s per m width enters the apron at a depth of 0.5 m and leaves it at a depth
of 3.6 m.
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36m| —

\ 2-D Block
Fig. 1.31 Problem 1.29

1.30 Figure 1.32 shows a free overfall in a horizontal frictionless rectangular channel. Assum-
ing the flow to be horizontal at Section 1 and the pressure at the brink of Section 2 to be
atmospheric throughout the depth, show that

ye _ 2 FO2

Yo (2R +1)

2

where F? = g — and q = discharge per unit width.

9 Yo

Ye \

Fig. 1.32 Problem 1.30

1.31 Figure 1.33 shows a free overfall at the end of a horizontal, rectangular and frictionless
prismatic channel. The space below the lower nappe is fully ventilated. It can be assumed
that the water leaves the brink horizontally at a brink depth of y . Considering the control
volume shown in the figure, show that the back-up depth of water y, below the nappe is
given by

2
\L] :1+2|:22\ Y
Y2

e

where F, = . and g = discharge per unit width of the channel.

N
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Air at
atmospheric
pressure

Fig. 1.33 Problem 1.31

“ OBJECTIVE QUESTIONS

1.1 Steady flow in an open channel exists when the
(@) flow is uniform (c) channel is frictionless
(b) depth does not change with time (d) channel bed is not curved
1.2 In a steady spatially-varied flow in a prismatic open channel, the
(a) depth does not change along the channel length
(b) discharge is constant along its length
(c) discharge varies along the length of channel
(d) discharge varies with respect to time
1.3 A flood wave while passing down a river section protected by embankments, spills over
the embankment at certain locations. The flow is classified as
(a) steady GVF (c) steady SVF
(b) unsteady RVF (d) unsteady SVF
1.4 In the uniform flow in a channel of small bed slope, the hydraulic grade line
(a) coincides with the bed
(b) is considerably below the free surface
(c) is considerably above the free surface
(d) essentially coincides with the free surface
1.5 A uniform flow takes place in a steep channel of large slope. The hydraulic gradient line
(a) coincides with the bed
(b) essentially coincides with the free surface
(c) is above the free surface
(d) is below the free surface
1.6 One-dimensional method of flow analysis means
(a) uniform flow
(b) steady uniform flow
(c) neglecting the variations in the transverse directions
(d) neglecting the variations in the longitudinal direction
1.7 Atasection in a channel expansion, the velocity over a quarter of the cross-section is zero
and is uniform over the remaining three-fourths of the area. The kinetic energy correction
factor a is
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1.9

1.10

111

1.12

1.13

1.14

1.15
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(@) 1.78 (b) 1.33 (c) 1.67 (d) 2.00

The velocity distribution in a vertical in a channel gives a rectangular plot when the
velocity as abscissa is plotted against height above the bed as ordinate. The Kinetic
energy correction for this distribution is

(a) greater than zero but less than unity ~ (c) equal to unity

(b) less than zero (d) greater than unity

The momentum correction factor 3 is given by 3

1 3 1 2
(@ V3Afv dA (o) VZAIV dA

1 1 2
(b) W\fvdA (d) v3AfV dA

[In the above, V = average velocity = %fv dA]

For Question 1.7 above, the momentum correction factor 3 is

(@) 2.33 (b) 1.33 (c) 1.67 (d) 1.78

A steep chute is inclined at 45° to the horizontal and carries a flow at a depth of 0.75 m.
The pressure at the bed of the chute in N/m? is

(a) 7358 (b) 3679 (c) 5203 (d) 10401

A steep channel has a depth of flow, measured normal to the bed, of h. If the inclination
of the channel to the horizontal is 6, the overturning moment of a side wall is

1
(a) Eyhs cos* 6 (©) %'yhs cosf

1
(b) E’yh3 cos’ @ (d) %7h3 / cosd

In an inclined channel the pressure at a depth y is calculated as ~y. If this value is to be
accurate within 2 per cent of the true value, the maximum inclination of the channel is
(a) 78° 30 (b) 11° 29/ (c) 11° 22/ (d)yg° g

Flow takes place over a spillway crest, which can be assumed to be an arc of a circle, at
a depth of y,. The pressure at any point located on the crest will be

(@ =~y,cosé (c) always zero
(b) <~y,cosé (d) always below atmospheric pressure.
A channel with very small value of longitudinal slope S, has its water surface paral-

lel to its bed. With the channel bed as the datum, the variation of the piezometric
head H, with distance above the bed y in this channel can be represented by the
following:

|||<l
illiq

=

<

@ " o " © " @ "
Fig. 1.34 Objective Question 1.15
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1.16 A curvilinear flow in a vertical plane has a depth of flow of h and the pressure is found
to be uniform at h throughout. The effective piezometric head measured with respect to
the bed as the datum is
(@ 1/2h (b) 1/3h (c) 2/3h (d) 3/2h

1.17 The velocity and depth of flow in a 3.0 m wide rectangular channel are 2.0 m/s and 2.5
m, respectively. If the channel has its width enlarged to 3.5 m at a section, the discharge
past that section is
(@) 10.0 m¥s (b) 20.0 m¥/s (c) 15.0m¥s (d) 17.5mds

1.18 Figure 1.35 shows the velocity distribution at two Sections A and B in a canal. The canal
is rectangular in cross section and has widths of 2.0 m at A and 3.5 m at B. Section A is
upstream of B. From the data one can infer that
(a) the discharge in the canal is constant in the reach AB.

(b) Certain amount of flow is being added into the canal in the reach AB.
(c) Some amount of flow is being extracted out of the canal in the reach AB.
(d) The discharge per unit width of the canal is constant in the reach AB.

——— 0.4 m/s
fe—
4

04m

[+— 1.25 m/s —

i

il
|

<— 1.25m/s —

1.4 m/s

Fig. 1.35 Objective Question 1.18

1.19 A sluice gate in a small pond discharges a flow having 10.0 m? flow area and a velocity
of 4.0 m/s. If the pond has a surface area of 1.0 hectare, the rate at which the water sur-
face falls in the pond is
(@) 0.25m/s (b) 4 cm/s (c) 4 mm/s (d) 4.0 m/s

1.20 For an open channel flow to take place between two sections,

() the channel bed must always slope in the direction of the flow

(b) the upstream depth must be larger than the downstream depth

(c) the upstream momentum must be larger than the downstream momentum

(d) the total energy at the upstream end must be larger than the total energy at the down-
stream section

1.21 A steep rectangular channel has a slope of 30° with the horizontal. At a section the bed
is 1.20 m above the datum, the depth of flow is 0.70 m the discharge is 3.10 m%/s per
metre width. The total energy head at that section by assuming v = 1.10 is
(@ 3.00m (b) 291m (c)1.90m (d) 3.10m

1.22 The width of a rectangular channel is reduced from 3.5 m to 2.5 m at a transition structure.
The depth of flow upstream of the contraction is 1.5 m. The change in the bottom eleva-
tion required to cause zero change in the water surface elevation is
(@ —21m (o) —0.6m (c) +0.6m (d) —0.2m



1.23

1.24

1.25

1.26

1.27

1.28

Introduction 41

The total energy head for an open channel flow is written with usual notation as
H =z +y 4 V22g. In this each of the terms represent

(@) energy in kg m/kg mass of fluid

(b) energy in N m/N of fluid

(c) power in kW/kg mass of fluid

(d) energy in N m/ mass of fluid

Piezometric head is the sum of

(@) pressure head, datum head and velocity head

(b) datum head and velocity head

(c) pressure head and velocity head

(d) pressure head and datum head

The difference between total head line and piezometric head line represents

(@) the velocity head

(b) the pressure head

(c) the elevation of the bed of the channel

(d) the depth of flow

The momentum equation in x-direction as ¥F =pQ,(V,,- V,,) has the assumption that
the flow is

(a) steady (c) uniform

(b) unsteady (d) frictionless

Normally in a stream the ratio of the surface velocity at a location to the average velocity
in the vertical through that location

(a) is greater than 1.0

(b) will be between 0.8 and 0.95

(c) is less than or greater than unity depending on the type of flow

(d) isequal to 0.6

The specific force is constant

(@) in all frictionless channels irrespective of the magnitude of the longitudinal slope
(b) in horizontal, frictionless channels of any shape

(c) inall horizontal channels of any shape

(d) inany open channel
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2.1 SPECIFIC ENERGY
The total energy of a channel flow referred to a datum is given by Eq.1.39 as

2

H=Z +ycos€+av—
29

If the datum coincides with the channel bed at the section, the resulting expression
is know as specific energy and is denoted by E. Thus

2

E:yc039+av— (2.1)
29

When cos § = 1.0and a = 1.0,

2
E—yt+ 2.2)
29

The concept of specific energy, introduced by Bakhmeteff, is very useful in
defining critical depth and in the analysis of flow problems. It may be noted that
while the total energy in a real fluid flow always decreases in the downstream
direction, the specific energy is constant for a uniform flow and can either decrease
or increase in a varied flow, since the elevation of the bed of the channel relative to
the elevation of the total energy line, determines the specific energy. If the fric-
tional resistance of the flow can be neglected, the total energy in non-uniform flow
will be constant at all sections while the specific energy for such flows, however, will be
constant only for a horizontal bed channel and in all other cases the specific energy
will vary.

To simplify the expressions it will be assumed, for use in all further analysis, that
the specific energy is given by Eq. 2.2, i.e., cos § = 1.0 and o = 1.0. This is with the
knowledge that cos 6 and « can be appended to y and (V°/2g) terms respectively,
without difficulty if warranted.
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2.2 CRITICAL DEPTH

Constant Discharge Situation Since the specific energy

Vi, Q 2.2
E y+zg y+zglAz (2.22)
for a channel of know geometry, E = f (y, Q) keeping Q = constant = Q, the
variation of E with y is represented by a cubic parabola Fig. 2.1. It is seen that
there are two positive roots for the equation of E indicating that any seen that there
are two positive roots for the equation of E indicating that any particular
discharge Q, can be passed in a given channel at two depths and still maintain
the same specific energy E. In Fig. 2.1 the ordinate PP' represents the condition
for a specific energy of E,. The depths of flow can be either PR =y, or PR' =y’ .
These two possible depths having the same specific energy are know as alternate
depths. In Fig. 2.1, a line (OS) drawn such that E =y (i.e. at 45° to the abscissa)
is the asymptote of the upper limb of the specific energy curve. It may be noticed
that the intercept P'R' or P'R represents the velocity head. Of the two alternate
depths, one (PR =y,) is smaller and has a large velocity head while the other
(PR" =y') has a larger depth and consequently a smaller velocity head. For a
given Q, as the specific energy is increased the difference between the two
alternate depths increases. On the other hand, if E is decreased, the difference
(y', —y,) will decrease and at a certain value E = E_, the two depths will merge
with each other (point C in Fig. 2.1). No value for y can be obtained when E <E,
denoting that the flow under the given conditions is not possible in this region. The
condition of minimum specific energy is known as the critical-flow condition and
the corresponding depth y. is known as the critical depth.

i Q=0Q;
Subcritical

y ]

R (yy)

o
<

dA = Tdy
R (yy) /— Superecritical 4L

P

l— 5 — Depthy ——
O

o

- V2
E; Specific energy E=y + Z - >

Fig. 2.1 Definition sketch of specific energy
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At critical depth, the specific energy is minimum. Thus differentiating Eq. 2.2a
with respect to y (keeping Q constant) and equating to zero,

2
dE_, QdA_,

gy B, S, 2.3
dy gA® dy @3)
But Z—A =T =top width, i.e. width of the channel at the water surface.
Yy
Designating the critical-flow conditions by the suffix ‘c’,
2
S (24)
oA
2 3
or QL = i (2.4a)
g Tc
If an « value other than unity is to be used, Eq. 2.4 will become
2
C&} =1.0 (2.5
9A

Equation 2.4 or 2.5 is the basic equation governing the critical-flow conditions in
a channel. It may be noted that the critical-flow condition is governed solely by the
channel geometry and discharge (and «). Other channel properties such as the bed
slope and roughness do not influence the critical-flow condition for any given Q. If
the Froude number of the flow is define as

F :V/(\/QAT) (2.6)

it is easy to see that by using F in Eq. 2.4, at the critical flowy =y and F = F_= 1.0.
We thus get an important result that the critical flow corresponds to the minimum
specific energy and at this condition the Froude number of the flow is unity. For a
channel with large longitudinal slope ¢ and having a flow with an energy correction
factor of «, the Froude number F will be defined as

FV/ /1gAcose] (2.6a)
a” T

Referring to Fig. 2.1, considering any specific energy other than E_, (say ordinate PP'
at E = E,) the Froude number of the flow corresponding to both the alternate depths
will be different from unity as y, or y', = y_. At the lower limb, CR of the specific-
energy curve, the depth y, <y_. Assuch, V', >V_and F > 1.0. This region is called
the supercritical flow region. In the upper limb CR', y', >y_. Assuch V', <V_and F',
< 1.0. This denotes the subcritical flow region.

Discharge as a Variable In the above section the critical-flow condition was
derived by keeping the discharge constant. The specific-energy diagram can be plotted
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Depthy

45°

|
By Specific energy E ——

Fig. 2.2 Specific energy for varying discharges

for different discharges Q = Q, = constant (i =1, 2, 3 ...), as in Fig. 2.2. In this figure,
Q,<Q,<Q,<...and is constant along the respective E vs y plots. Consider a section
PP" in this plot. It is seen that for the ordinate PP, E = E, = constant. Different Q
curves give different intercepts. The difference between the alternate depths decreases
as the Q value increases. It is possible to imagine a value of Q = Q_at a point C at
which the corresponding specific-energy curve would be just tangential to the ordinate
PP'. The dotted line in Fig. 2.2 indicating Q = Q,_ represents the maximum value of
discharge that can be passed in the channel while maintaining the specific energy at a
constant value (E,). Any specific energy curve of higher Q value (i.e Q > Q_) will have
no intercept with the ordinate PP' and hence there will be no depth at which such a dis-
charge can be passed in the channel with the given specific energy.

Since by Eq. 2.2a

QZ
2gA°

Q:AJZg(E—y) (2.7

The condition for maximum discharge can be obtained by differentiating Eq. 2.7
with respect to y and equating it to zero while keeping E = constant.

E=y+

Thus — =./2¢
dy ng E-v)
. dA Q .
By puttin — =T and —=,/29(E— ields
y putting ry A= V29(E-Y)y
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2
QT _10 2.8)
gA

This is same as Eq. 2.4 and hence represents the critical-flow conditions. Hence,
the critical-flow condition also corresponds to the condition for maximum discharge
in a channel for a fixed specific energy.

Example 2.1 | 55 5_m wide rectangular channel has a specific energy of 1.50 m

when carrying a discharge of 6.48 m%s. Calculate the alternate depths and corre-
sponding Froude numbers.

Solution From Eq. 2.2a

VZ QZ
Y 29 Y 2gB%y?
48)°
15=y+ (6.48) o)
2x9.81x(2.5)°y
0.34243
:y+ 3

Solving this equation by trial and error, the alternate depths y, and y, are obtained as
y,=1296 mandy,=0.625m.

V. 648 082756
Joy (25y)81y ¥

Aty = 1296 m, F, = 0.561; and
at y,=0.625m, F, = 1.675

The depth'y, = 1.296 m is in the subcritical flow region and the depth y = 0.625 m
is in the supercritical flow region.

Froude number F=

Example 2.2 A flow of 5.0 m¥/s is passing at a depth of 1.5 m through a rectan-

gular channel of 2.5 m width. The kinetic energy correction factor « is found to be
1.20. What is the specific energy of the flow? What is the value of the depth alternate
to the existing depth if o« = 1.0 is assumed for the alternate flow?

Solution V, = Q__50 _ 1.33m/s
A (25x15)
V7o (1.33) °

a, - =1.20x =0.1087 m
29 2x9.81
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2

V,
Specific energy Ei=Yy+o g =1.5+0.1087

= 1.6087 m
For the alternate depth y,,

(5.0) .
Y, + ————— =16087... (sincea, =1.0)
2x9.81(2.5y,)
i.e. y, + 0'2239 =1.6087
2
By trial and error, y, =0.413m

2.3 CALCULATION OF THE CRITICAL DEPTH

Using Eq. 2.4, expressions for the critical depth in channels of various geometric
shapes can be obtained as follows:

Rectangular Section For a rectangular section, A = By and T = B (Fig. 2.3).
Hence by Eq. 2.4

[ T=8B |
QZTC _ VCZ _1
i T 9A gy,
Y VZ o1
toor =y, (2.9)
: B | 29 2
Fig. 2.3 Rectangular channel
. iy V?: 3
Specific energy at critical depth E, =y, +Z =3 A (2.10)

Note that Eq. 2.10 is independent of the width of the channel.
Also, if q = discharge per unit width = Q/B,

Loy
g
2 1/3
ie. y, = [Q_] (2.11)
g

Since A/IT =y, from Eq. 2.6, the Froude number for a rectangular channel will be
defined as
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Fo Yt 2.12)

Triangular Channel For atriangular channel having a side slope of m horizontal:
1 vertical (Fig. 2.4), A=my2and T = 2my.

By Eq. 2.4a,
— 2my —> Q> A’ my’ miy’° 2.13)
! ! g B T, - 2my, 2 '
T 2 2 1/5
‘ 1y Hence y, = Q2 (2.14)
gm
m
VAR i} ) v
Fig. 24 Triangular channel The specific energy at critical depth E, =y, +£
2 m2 5
:yc+Q2:yc+ zyc4
20A 4am-y;
i.e. E, = 1.25y (2.15)

It is noted that Eq. 2.15 is independent of the side slope m of the channel. Since
A/T = y/2, the Froude number for a triangular channel is defined by using Eq. 2.6 as

_vy2
Joy

F (2.16)

Circular Channel Let D be the diameter of a circular channel (Fig. 2.5) and 26

be the angle in radians subtended by the water surface at the centre.

A = area of the flow section

= area of the sector + area of the triangu-
lar portion

:%ro2 29+%-2rosin(7r—9)r0 cos (m —6)

= %(ro2 20 —r,? sin 20)

2

A= D?(Ze—sin 20)

Fig. 2.5 Circular channel

Topwidth T =Dsind

and 20 =2 cos™ [12_DyJ f(y/D)
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Substituting these in Eq. 2.4a yields

2

\DZ(ZHc —sin 200)]
_L8 2.17)

g Dsing,

Since explicit solutions for y_cannot be obtained from Eg. 2.17, a non-dimensional
representation of Eq. 2.17 is obtained as

Q®  0.044194 (26, —sin 26,)%*

This function is evaluated and is given in Table 2A.1 of Appendix 2A at the end
of this chapter as an aid for the estimation of y .

Since A/T = fn[%] , the Froude number for a given Q at any depth y will be

4 Q

F= - — fn(y/D
JIAT)  Jo(A/T) (v/P)

The following are two empirical equations that have been proposed for quick and
accuarate estimation of critical depth in circular channels:

Empirical relationships for critical depth in circular channels

SI.No Equation Details
1 y 5 Swamee P K (1993)(Ref. 4).
2 =[0.77F,° +1.0]
D
Q z
where F, = =—=
D Dz /gD D25
2 0,506 Straub W O (1978)(Ref. 5).
101 Q
Yo = DO%5 ﬁ

for 0.02 < Y= <0.85

v}

Trapezoidal Channel For a trapezoidal channel having a bottom width of B and
side slopes of m horizontal: 1 vertical (Fig. 2.6)

Area A= (B +my)y

and Top width T= (B +2my)
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\ At the critical flow

QA (B+my)y; (2.19)

g T. (B+2my)

||| Kl

f— < —
[

Here also an explicit expression for the
= B ! critical depth y_is not possible. The non-
Fig. 2.6 Trapezoidal channel dimensional representation of Eq. 2.19 facili-
tates the solution of y, by the aid of tables or

graphs. Rewriting the right-hand side of Eq. 2.19 as

3
SR

(B+my,)y; _ B
B +2my, B[l+ 2my,
B
5 3#3
:B_(l—’_Cc) Cc Where Cc :%
m® (1+2C)
213 3,3
gives Q n; = @+G)G (2.20)
gB 1+2¢,)
or Qm3/2 _ w _ (1+<C)3/2<C3/2 (220a)
\/EBS/Z (1_,’_ 2(0)1/2

Equation 2.20a can easily be evaluated for various value of ¢_and plotted as v vs .
It may be noted that if o > 1, « can be defined as

1/2
aQ2m3

gB°

v = (2.21)

Table 2A - 2 which gives values of 1 for different values of ¢_is provided at the end
of this chapter. This table is very useful in quick solution of problems related to criti-
cal depth in trapezoidal channels.

)
Since A/T = (B+my)y = B the Froude number at any depth y is
(B +2my) [1 my]
+2—2>
B
\Y% Q/A

= fn (my/B) for a given discharge Q.

F = =
JOAT  JoAT
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Further the specific energy at critical depth, E_is a function of (my_/ B) and it can
be shown that (Problem 2.7)

E, 1(3+5()

y, 2(1+2¢)

where (o =—+

2.4 SECTION FACTOR Z

The expression A/ A/T is a function of the depth y for a given channel geometry
and is known as the section factor Z.

Thus Z=AJAT (2.22)

At the critical-flow condition, y =y_and

z,=AJA /T, =Q/\o (2.23)

which is a convenient parameter for analysing the role of the critical depth in a flow
problem.
As a corollary of Eq. 2.23, if Z is the section factor for any depth of flow y, then

Q=+oz (2.24)

where Q_ represents the discharge that would make the depth y critical and is known
as the critical discharge.

Note that the left-hand side of Eq. 2.18 is a non-dimensional form of the section
factor (as Z/D2®) for circular channels.

2.5 FIRST HYDRAULIC EXPONENT M

In many computations involving a wide range of depths in a channel, such as in the
GVF computations, it is convenient to express the variation of Z with y in an expo-
nential form.

The (Z - y) relationship

Z? =Cy" (2.25)

is found to be very advantageous. In this equation C, = a coefficient and M = an expo-
nent called the first hydraulic exponent. It is found that generally M is a slowly-varying



52 Flow in Open Channels

function of the aspect ratio for most of the channel shapes. The variation of M and
(= % for a trapezoidal channel is indicated in Fig. 2.7.

The value of M for a given channel can be determined by preparing a plot of Z vs
y on a log-log scale. If M is constant between two points (Z,, y,) and (Z,, y,) in this
plot, the value of M is determined as

) |0g<ZZ/Zl)

2.26
log(y,/y,) 229

4.0 e

1.0
0.8

0.6

0.4}

¢ =my/B

0.20

0.10—
0.08

0.06 Rectangular M = 53

Triangular M =

0.04 Ly ! | ! | ! | !
2.5 3.0 3.5 4.0 4.5 5.0

Hydraulic Exponent M

Fig. 2.7 Variation of first hydraulic exponent M in a trapezoidal channel

In Eq. 2.26, instead of Z, a non-dimensionalised Z value can also be used. For a
trapezoidal channel, Eq. 2.20a represents a non-dimensionalised value of Z, if the
suffix ‘c’ is removed. Hence the slope of ¢ vs my/B on a log-log plot, such as in
Fig. 2.7, can be used to obtain the value of M at any value of ¢. It may be noted that
M for a trapezoidal channel is a unique function of my/B and will have a value in
the range 3.0 to 5.0.



Energy—Depth Relationships 53
An estimate of M can also be obtained by the relation

y AdT
M==3T ——— 2.27
A[ T dy] ( )

Example 2.3 Obtain the value of the first hydraulic exponent M for (a) rectangu-
lar channel, and (b) an exponential channel where the area A is given asA = K y?

Solution (a) For a rectangular channel A=Byand T=1B
2

By Eq. 2.25, z° = ?_— =B’y =C,y"

By equating the exponents on both sides, M = 3.0
[Note: The above value of M can also be obtained directly by using Eq. 2.27]

(b) A=Ky*
T= aA _ K,ay®™
dy

y AdT

ByEq. 227, M=2@3T 2"
y Eq A( T dy)
M =—Y_|3Kay*Y LSV {Kla(a—l)y(a’z)}
Ky Kay®™

=3a—-a+l=2a+1

Example 2.4 | 4 s required to have a channel in which the Froude number F
remains constant at all depths. If the specific energy E is kept constant, show that for

FZ
4
2

where T and B are the top width and bottom width

E

such a channel TE =

of the channel respectively.

V2 QZ B FZ[A]
T

Solution E=y+—=y+ —y4+-—
y 29 y 2gA? 73

_ AF?

- (2.28)

E-y
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Differentiating with respect to y and noting that F is constant,

dA dT
- A—
dE F2|l dy dy
= 1=— -
dx 2 T
Since E is constant, d—E = 0. Also % =T
d dy
2
Hence, Ll 1,A d_T -
2 T? dy

AFZL1dT [, F*
2T Tdy 2

2

I AF 1dT F?
Substituting f from Eq. 2.28, (E—y)|=—|=|1+—
ubstituting for [ oT rom Eq ( y)[T dy] [ 2]

2
d_T: 1+F_ dy
T 2 (E—y)

2
On integration 1n T = [1+F7](—1H(E -y)+C

2
Aty =0,T =B and hence C = 1n B+[1+F7]1nE

2

1In — = 1+—1n[ E ]

E-y

T E 'y

or R P
B |E-Y

2.6  COMPUTATIONS

The problems concerning critical depth involve the following parameters: geom-
etry of the channel, Q or E or y_. For rectangular and triangular channel sections,
most of the problems involve explicit relationships for the variable and a few
problems involve trial and error solutions. However, for trapezoidal, circular and
most other regular geometrical shapes of channel sections, many of the problems
have to be solved by trial and error procedure. Tables 2A.1 and 2A.2 are helpful
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in problems connected with circular and trapezoidal channels respectively.
Examples 2.5 to 2.8 illustrate some of the typical problems and the approach
to their solutions. The graphical solutions and monographs which were in use
some decades back are obsolete now. With the general availability of computers,
a large number of elegant numerical methods are available to solve non-linear
algebraic equations and the solutions of critical depth and related critical flow
problems in channels of all shapes, including natural channels, is no longer
difficult.

Example 2.5 | 10 jate the critical depth and the corresponding specific
energy for a discharge of 5.0 m¥s in the following channels:

(a) Rectangular channel, B =2.0m

(b) Triangular channel, m =0.5

(c) Trapezoidal channel, B =2.0m,m =1.5
(d) Circular channel, D =2.0m

Solution (a) Rectangular Channel

q:Q/Bzg—'gzz.s m®/s/m

1/3

=0.860 m

(2.5)

Y. =(a?/0)" = SoL

. E
Since for a rectangular channel — =15, E, =1.290 m

c

(b) Triangular Channel

202"
From Eq. 2.14 y, = 5
gm
1/5
2x(s)’
=|——"—| =1828m
9.81x(0.5)
Since for a triangular channel E =1.25E =2284m
Ye
(c) Trapezoidal Channel
32 3/2
g QM SOXAST ) 5ig3

~ JoB”?  J9.81x(2.0)"
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Using Table 2A.2 the corresponding value of
¢ = _0536
B
y, =0.715m

A =(2.0+15x0.715)x0.715 = 2.197m?
V, =5.0/2.197 = 2.276m/s

V?/2g =0.265m

2

V.
E, =¥, +==0715+0.264 = 0979m
g

(d) Circular Channel

2, -2 50 _ 5064
Jg o el
;;5 = (253% —0.2822

From Table 2A.1 showing the relationship of % with y/D, the value of y /D

. z . . . . .
corresponding to szs = 0.2822 is found by suitable linear interpolation asy /D =

0.537 and hence y, = 1.074 m.
Determination of y_by empirical equations

1. By Swamee’s equation

Q 5.0

° D%JgD  (2.0)9.81x 20
Ye =[0.77F;° +1.0]
D

Y —[0.77(0.2822) * +1.0]7°'°85 — 05363
2.0

y, =1.072m

2. By Straub’s equation

101

c .21
Do 65

&JO.SOG
Jo
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0.506
1.01 ( 5.0
(2.0 [\/9.81]

Example 2.6 | ) yane0idal channel with a bed width of 4.0 m and side slopes

of 1.5 H: IV carries a certain discharge. (a) Based on observations, if the critical
depth of the flow is estimated as 1.70 m, calculate the discharge in the channel. (b) If
this discharge is observed to be flowing at a depth of 2.50 m in a reach, estimate the
Froude number of the flow in that reach.

Solution (a) At critical depth, area A = (B +my )y,
= [4.0 + (1.5 x 1.70)] x 1.70 = 11.135 m?
Top width T.=(B+2my)
=[40+ (2 x 15x 1.70)] =9.10 m

2 3 3
At critical flow, by Eq. 2.4a Q@ _A _ QLIS
g T 9.10

C

=151.715

Discharge Q = 38.579 m¥/s

(b) When the depth of flowy = 2.50 m
Area A=B+my)y=[4.0+ (15 x 2.50)] x 2.50 = 19.375 m?
Top width T=B+2my)=[40+(2 x 1.5 x250)] =11.5m
A/T =19.375/11.50 = 1.685m
Q 38579

A 19.375

=1.991 m/s

\ 1.991

Froude number F = = =
A, +/9.81x1.685
9(?)

0.490

Example 2.7 | cylate the bottom width of a channel required to carry a dis-

charge of 15.0 m¥sas a critical flow at a depth of 1.2 m, if the channel section is
(a) rectangular, and (b) trapezoidal with side slope 1.5 horizontal: 1 vertical.

Solution (a) Rectangular Section
The solution here is straightforward.

23
Y, = [q—] ie.  q=4oy;

g9

q=49.81(L2)° = 4.117 m*/s/m
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B = bottom width = & =3.643m
4.117

(b) Trapezoidal Channel
The solution in this case is by trial-and-error.

A = (B+ 1.5><1.2)><l.2:<B +l.8)><1.2
T, = (B+2x1.5x1.2)=(B+3.6)

4

*_A
9 T
(B+18)°x(12)" (15
(B+36) 981
(B+18) 13073
(B+3.6)
By trial-and-error B=2535m

Example 2.8 Find the critical depth for a specific energy head of 1.5 m in the
following channels:

(a) Rectangular channel, B =2.0m

(b) Triangular channel, m =15

(c) Trapezoidal channel, B =20mandm =1.0
(d) Circular channel, D=150m

Solution (a) Rectangular Channel
3
By Eqg. 2.10 E. = 5 y, =150 m

~150x2

C

=1.00m

(b) Triangular Channel

By Eq. 2.15 E, =125y, =1.50m
Y, = 150 _ 1.20m
1.25

(c) Trapezoidal Channel

VZ 2
Ec = yc+L: yc+Q_2
29 20A
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2
Since by Eq. 2.4a % =N/T ,E =Y. +%

(2.04Y,)Y.
15= -
et 20t ay,)

Solving by trial-and-error, y, =1.095m.
(d) Circular Channel

A
E, =V, -+
==Y

By non-dimensionalising with respect to the diameter D.

D 2(TC/D)

Y, +<’*/D2):E:£:1.0
D 15

From Table 2A.1, values of (A / D?) and (T_/ D) for a chosen (y, / D) are read and a

trial-and-error procedure is adopted to solve for y. /D. It is found that y3° =0.69

andy, = 0.69 x 1.50 = 1.035m

Example 2.9 Water is flowing a critical depth at a section in a A shaped

channel, with side slope of 0.5 H: I V. (Fig. 2.8). If the critical depth is 1.6 m,
estimate the discharge in the channel and the specific energy at the critical depth
section.

Solution (i) Herem =-0.5

C

T, =3.0-(2x05x16)=1.40m

0+1.4
A = <30——£)xl.60 =3.52m?

QA (3'52)3 =31.153

g T 140

C

v Discharge Q = 17.48 m¥s
0.5 = T
N Q 17.48
1 i) V=="=""—=4966m/s
LE‘ V. 3.52
| 3.0m | 2 (4.966)
Ve = ( ) =1.257m

Fig. 2.8 Example 2.9 E © 2x9.81
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2

E.=V, +\2/—° =160+1.257=2.857m
g

2.7 TRANSITIONS

The concepts of specific energy and critical depth are extremely useful in the analysis
of problems connected with transitions. To illustrate the various aspects, a few simple
transitions in rectangular channels are presented here. The principles are neverthe-
less equally applicable to channels of any shape and other types of transitions.

2.7.1 Channel with a Hump

(a) Subcritical Flow Consider a horizontal, frictionless rectangular channel of
width B carrying Q at a depth y,.

Let the flow be subcritical. At Section 2 (Fig. 2.9), a smooth hump of height A Z is
built on the floor, since there are no energy losses between Sections 1 and 2, and con-
struction of a hump causes the specific energy at Section 2 to decrease by A Z. Thus
the specific energies at Sections 1 and 2 are given by

2

\'A

E =y + 20
and E,=E —-AZ (2.29)
Energy line Since the flow is sub-
vl Tﬁ_ f critical, the water surface
) T S — T E will drop due to a decrease
B,y 77777 I Yo in the specific energy. In
l l Y l Fig. 2.10, the water surface
AN Hump N\ which was at P at Section 1
_f will come down to point R
@ Horizontal @ at Section 2. the depth vy,

will be given by

Fig. 2.9 Channel transition with a hump

VZ QZ
E,=y,+ 2=y, +—2 2.30
= Vot og=Yet o By (2.30)

Itis easy to see from Fig. 2.10 that as the value of AZ is increased, the depth at Section 2,
i.e. y,, will decrease. The minimum depth is reached when the point R coincides with C,
the critical depth point. At this point the hump height will be maximum, say = AZ
y, =y, = critical depth and E, = E . Then condition at AZ _is given by the relation

+m (2.31)
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@ The question naturally
@ /L Q=const.  arises as to what happens
— when AZ > AZ_ From

P
[ 1 4 Fig. 2.10 it is seen that
- AR the flow is not possible
£ with the given conditions,
g% viz. with the given spe-

Yo — ¢ cific energy. The upstr-

Ye ‘ .R\ p eam depth has to increase
_L ~T— to cause an increase in
the specific energy at Sec-

= Az spoce tion L. IF this modified
-2z~ energy depth is represented by
E1 y’,, then
Fig. 2.10 Specch—energy diagramfor Fig. 2.9
, Q?
E, =V + 2087y {with E, > E, andy; >y, } (2.32)

At Section 2 the flow will continue at the minimum specific energy level, i.e., at the
critical condition. At this condition, y, = y_and

. Q?
E -AZ=E =E = - S (2.33)
1 2 C yc+2g Bzycz

Recollecting the various sequences, when 0 < AZ < AZ_the upstream water level
remains stationary at y, while the depth of flow at Section 2 decreases with A Z reach-
ing a minimum value of y_at AZ = AZ_(Fig. 2.11). With further increase in the value
of AZ,i.e. for AZ>AZ ,y, will change toy', whiley, will continue to remain aty..

The variation of y, and y, with A Z in the subcritical regime can be clearly noticed
in Fig. 2.11.

Depth y; Minimum Size of Hump for

[ s Critical Flow
(i) Frictionless situation Consider a
;N Depth y, smooth, frictionless, streamlined hump
< of height AZ placed at a section in a
= T rectangular channel carrying subcritical
Ye flow. The relationship between the spe-
l Subcritical flow cific energies at a section upstream of
the hump (E,) and at section on the hump

|[~—az, —| Az——  (E)isgivenas
Fig. 2.11 Jariation of)/] andyz in subcritical E,—E, +AZ (2.34)

flow over a hump
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Let AZ_be the height of the hump that would cause critical flow to occur over the
hump (i.e., at Section 2) without changing the upstream specific energy. Any value of
AZ>AZ_ would cause critical flow over the hump but the upsteam specific energy
would change to a value greater than E,. Thus AZ_could also be called as the mini-
mum height of a streamlined, frictionless hump that has to be provided to cause criti-
cal flow over the hump. An expression for the value of AZ s obtained as below:

Sinceat AZ=AZ ,E,=E = g y. and Eq. 2.28 would now read as

E,=E +AZ,
3
AZm:El_Eyc
AZ, _E, 3y, +F_f_§[q_2]“1
Y, % 2V 2 2(g) v
2
AZ, _ 145 3 (2.35)
Yy 2 2

(ii) When there is energy loss due to the hump Let h = energy loss in the transition
due to the hump. The energy Eq. 2.34 will now be written as

E,=E,+AZ+h, (2.36)

Following the same procedure as in the frictionless case and noting that E, = E,
Eqg. 2.35 will be modified as

2
%Jrh—L = 1+F—1—§Ff/3] (2.37)
Y, A 2 2
Depth y, Comparing Eq. 2.37 with Eq.
T / _ 2.35, it may be noted that the
effect of energy loss in the transi-
X tion due to shape and friction is
° / equivalent to that of a hump placed
© Depth y, Ve in the downstream section.
>
N (b) Supercritical Flow Ify,
Supercritical flow is in the supercritical flow regime,
i Fig. 2.12 shows that the depth of
: AZm b Az — flow increases due to the reduc-
Fig. 2.12 Variation of y, and y, in supercritical tion of specific energy. In Fig. 2.10

flow over a hump point P' corresponds to y, and
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point R' to depth at the Section 2. Up to the critical depth, y, increases to reach y_at
AZ=AZ .ForAZ>AZ_,thedepthoverthe humpy,=y_will remain constant and
the upstream depth y, will change. It will decrease to have a higher specific energy
E',. The variation of the depths y, and y, with A Z in the supercritical flow is shown
in Fig. 2.12.

Example 2.10 || A rectangular channel has a width of 2.0 m and carriers a dis-
charge of 4.80 m3/s with a depth of 1.60 m. at a certain section a small, smooth hump
with a flat top and of height 0.10 m is proposed to be built. Calculate the likely change
in the water surface. Neglect the energy loss.

Solution Let the suffixes 1 and 2 refer to the upstream and downstream sections
respectively as in Fig. 2.9.

q= 4'—8;) = 2.40 m¥s/m
2
v, = 2.40 V,

=150m/s, - =0.115m
6 29

F :V1/./g y, = 0.379, hence the upstream flow is subcritical and the hump will
cause a drop in the watersurface elevation.

E,=160+0.115=1715m

At Section 2,
E,=E -AZ=1715-010=1.615m

3

2.4)
(24) —0.837m

9.81

C

E =15y, =1256m

The minimum specific energy at Section 2, E , is less then E,, the available specific
energy at that section. Hencey, >y_and the upstream depth y, will remain unchanged.
The depth y, is calculated by solving the specific energy relation

2
i.e. y, + (24)

,t————=1615
2x9.81xy,

Solving by trial-and-error, y, =1.481 m.
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Example 2.11 || (a) In example 2.10, if the height of the hump is 0.5 m, estimate
the water surface elevation on the hump and at a section upstream of the hump.
(b) Estimate the minimum size of the hump to cause critical flow over the hump.

Solution  (a) From Example 2.10: F, = 0.379, E, = 1.715mandy, =y_, = 0.837 m.

Available specific energy at Section2 =E,=E, - AZ
E,=1.715-0.500=1.215m

E,=15y,= 1256 m.
The minimum specific energy at the Section 2 is greater than E,, the available

specific energy at that section. Hence, the depth at Section 2 will be at the critical
depth. Thus y, =y, = 1.256 m. The upstream depth y, will increase to a depth y;,

such that the new specific energy at the upstream Section 1 is

Ell = Ec2 + AZ
A
Thus E=vt+-—-= Ecz +AZ
29
qz
y',+—— =1.256+0.500 = 1.756
293

, (2.4)°
Y b—— 1756
2x981 xy'?

Y, + 0'2?236 =1.756
y

1

Solving by trial-and-error and selecting the positive root which gives y', > vy.,

y', =1.648m
The nature of the water surface is shown in Fig. 2.13.

/— Energy line after the placement of the hump

nergy line without the hump

_‘L E
= Water surface
E,;=1756m
Ei1 y;, =1.648m Flow v
Yo = Yep =|1.256 M

_—

Fig. 2.13 Example 2.11
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(b) Here, F, =0.379 andy, = 1.6 m. By use of Eq. 2.35

AZ,
2

LB 3
2 2°

AZ, |, (03797 3
16

m > —5(0.379)2/3] = 0.2866

AZ, =0.459m

Alternatively, AZ_ = E - E, = 1.715 - 1.256 = 0.459 m

Example 2.12 || A 2.5-m wide rectangular channel carries 6.0 m¥/s of flow at a
depth of 0.50 m. Calculate the minimum height of a streamlined, flat-topped hump
required to be placed at a section to cause critical flow over the hump. The energy
loss over the hump can be taken as 10% of the upstream velocity head.

Solution Discharge intensity g = 6.0/2.5 = 2.40 m3/s/m
2

V, = 2.4/0.5= 4.8 m/s, \Z/L =1.174m
g

2
Energy loss, h, = O.1><\2/L =0.1174
g

4.8

Vv,
Jay,  /9.81x05

1+F_127§F2/3
2 2!

= 2.167

Froude number, F, =

AZ h
By Eq. (2.37) (—’“+7L) =
1

1

2
AZ [1+ (2.1267) 3

—m 10.1174) = —2(2.167)%
( 05 ) 2( )

AOZSm =0.6017and AZ_=0.301m

Alternatively, AZ =E -E _—-h

¢ )"
E, =15y, —1.5><[—]
g

2 V3
—l.SX[%] =1.256m
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2

h. =0.1174mand E =y, +\2/L =05+1.174=1.674m
9

AZ =1674-1256-0.1174=0.301 m

2.7.2 Transition with a Change in Width

(a) Subcritical flow in aWidth Constriction Consider a frictionless horizontal
channel of width B, carrying a discharge Q at a depthy, as in Fig. 2.14. At the Section 2
the channel width has been constricted to B, by a smooth transition. Since there are
no losses involved and since the bed elevations at Sections 1 and 2 are same, the spe-
cific energy at Section 1 is equal to the specific energy at the Section 2.

VZ QZ
ATy 2By}

@ \ Horizontal @

L-Section

Fig. 2.14 Transition with width constriction

V2 QZ
and E =y, +-2—y 4_—~__
2= g TV agBty?

It is convenient to analyse the flow in terms of the discharge intensity g = Q/B. At
Section 1, g, = Q/B, and at Section 2, q, = Q/ B,. Since B, < B,, g, > g,. In the spe-
cific energy diagram (Fig. 2.15) drawn with the discharge intensity as the third
parameter, point P on the curve g, corresponds to depth y, and specific energy E,.
since at Section 2, E, = E, and q = q, , the point P will move vertically downward
to point R on the curve g, to reach the depth y,. Thus, in subcritical flow the depth
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y, <y,. If B, is made smaller, then g, will increase and y, will decrease. The limit of
the contracted width B, = B, is obviously reached when corresponding to E,, the
discharge intensity g, = q_, i.e., the maximum discharge intensity for a given specific
energy (critical-flow condition) will prevail. At this minimum width, y, = critical
depth at Section 2, y_ and

Subcritical flow

A

Supercritical flow

02> 0x
—_—
d1

—_—

Specific Energy E

E’,

Fig. 2.15 Specycic energy diagramjbr transition ngig. 2.14

Q?
E,=E_= 4+ — 2.38
1 cm ycm ZQ(BZm)Z yczm ( )

o 2
For a rectangular channel, at critical flow  y_ = 3 E

C

Since E, =E_,
2 2
y2 = ycm = § Ecm = § E1 (239)
2 V3 2
and Y. == or By = Q3
Bond 9 Yo
2
i.e. B,, = % (2.40)
89E,

If B, < B,,, the discharge intensity g, will be larger than ¢_ the maximum dis-
charge intensity consistent with E,. The flow will not, therefore, be possible with the
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given upstream conditions. The upstream depth will have to increase to y, so that a
QZ
29(By?)
cause critical flow at Section 2. It may be noted that the new critical depth at Section 2

for a rectangular channel is

new specific energy E, =y, + is formed which will just be sufficient to

Subcritical Flow

Specific energy

m
e

y.Y,andE ——»
=
AN

\/

Ye2=Y2
ycm
0 |
: Bom : 10
B, BB, — >

Fig. 2.16 Vlariation nyl and)/z in subcritical flow in a width constriction

Q[ Vs

_ _(q?

ycz - Bzzg (qz/g)
V2

and ECZ = ch +2ng :1'5y02

Since B, < B, , y,, will be larger than y_. Futher, E', = E, = 1.5y,. Thus even
though critical flow prevails for all B, < B, , the depth at Section 2 is not constant as
in the hump case but increases as y', and hence E', rises. The variation of y,, y, and E
with B,/ B, is shown schematically in Fig. 2.16.

(b) Supercritical Flow in a Width Constriction |f the upstream depthyy, is
in the supercritical flow regime, a reduction of the flow width and hence an increase
in the discharge intensity causes a rise in depth y,. In Fig. 2.15, point P corresponds
toy, and pointR" to y,. As the width B, is decreased, R" moves up till it becomes criti-
cal at B, = B, . Any further reduction in B, causes the upstream depth to decrease to
y',so that E, rises to E',. At Section 2, critical depth y' corresponding to the new spe-
cific energy E', will prevail. The variation of y,, y, and E with B,/ B, in supercritical
flow regime is indicated in Fig. 2.17.
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” Choking In the case of

. Supercritical Flow channel with a hump, and

£, . i also in the case of a width

B ‘\‘ ““““““ T constriction, it is observed

Specific energy that the upstream water-

W ~ surface elevation is _not
2 | affected by the conditions
2 -~ Pepthy; at Section 2 till a critical
= E1  stage is first achieved. Thus
Ver=Va I in the case of a hump for

] AN T all AZ>AZ_, the upstream

Depth y, water depth is constant and

Yem i forall AZ > AZ_the upstr-

0 l l eam depth is different from
i Bom 10 Y, Similarly, in the case
B2/B; — of the width constriction,

Fig. 2.17 Jariation (j‘yl andy_) in supercritica]ﬂow in for 82 > B2m' the upstream
a width constriction depth y, is constant; while

for all B, < B, , the ups-
tream depth undergoes a change. This onset of critical condition at Section 2 is a
prerequisite to choking. Thus all cases with AZ > AZ_or B, < B, are known as
choked conditions. Obviously, choked conditions are undesirable and need to be
watched in the design of culverts and other surface-drainage features involving chan-
nel transitions.

Example 2.13 || A rectangular channel is 3.5 m wide and conveys a discharge of
15. 0 m¥s at a depth of 2.0 m. It is proposed to reduce the width of the channel at a
hydraulic structure. Assuming the transition to be horizontal and the flow to be fric-
tionless determine the water surface elevations upstream and downstream of the con-
striction when the constricted width is (a) 2.50 m, and (b) 2.20 m.

Solution Let suffixes 1 and 2 denote sections upstream and downstream of the tran-
sition respectively. Discharge Q = B y,V,

15.0

= =2.143 m/s
3.5x%x2.0

Vi 2183
Jay, 9.81x20

The upstream flow is subcritical and the transition will cause a drop in the water
surface.

F, = Froude number =

A (2.143)°
E—y +-2-20 —=2.234m
TN 29 T %981
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Let B, = minimum width at Section 2 which does not cause choking.

Then E,,=E =2234m
Y, = 2E, = 2x2.234=1489m
3 3
2
Since P Q2
gBZm
, W2 ) 12
B =2 | =80 _oem
ay., 9.81x(1.489)

(@) When B, =2.50 m

B, < B, and hence choking conditions prevail. The depth at the Section2 =y, =y

The upstream depth y, will increase to y".

_150

Actually a, = 6.0 m¥s/m
2 W3 23
v, =l =GO 1spm
g 9.81

E., =15y, =15x1.542=2.3136m

At the upstream Section 1:

c2"

E', = Ec, = 2.3136 with new upstream depth of y, such that

q, =Y,V, = 15/3.5 = 4.2857 m*/s/m.

12

Hence y, =+ =23136
29
2
y! +ﬂ =2.3136
2x9.81x Yy’
, 0.9362

Yot =7 = 2.3136

1
Solving by the trial and error and selecting a root that gives subcritical flow,
y, =2.102m

(b) WhenB, =2.20 m
As B, < B, choking conditions prevail.
Depth at Section2 =y, =y

c2

g, = Bo_ 6.8182 m?/s/m
2.20
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1/3

2
= \—(6'8182) =1.6797m

9.81

E., =15y, =25195 m
At upstream Section 1. New upstream depth = y', and
E, = E,,=25195m
0 =V, Yi=15/3.5 = 4.2857 m¥s/m

V,?
Hence y, =—1 - =25195
29y,
2
y! 4 _(42857)° 5 cig5
2x9.81x y/?
09962, 106

1

Solving by trial and error, the appropriate depth to give subcritical flow is
y', =2.350m

[Note that for the same discharge when B, < B, _ (i.e., under choking conditions) the
depth at the critical section will be different fromy_and depends on the value of B,].

2.7.3 General Transition

A transition in its general form may have a change of channel shape, provision of a
hump or a depression” and contraction or expansion of channel width, in any combi-
nation. In addition, there may be various degrees of loss of energy at various compo-
nents. However, the basic dependence of the depths of flow on the channel geometry
and specific energy of flow will remain the same. Many complicated transition situa-
tions can be analysed by using the principles of specific energy and critical depth.

In subcritical flow transitions the emphasis is essentially to provide smooth and
gradual changes in the boundary to prevent flow separation and consequent energy
losses. Details about subcritical flow transitions are available in Ref. 1, 2 and 3. The
transitions in supercritical flow, however, are different and involve suppression of
shock waves related disturbances and are explained in Chapter 9.

Example 2.14 || A discharge of 16.0 m¥/s flows with a depth of 2.0 mina 4.0 m
wide rectangular channel. At a downstream section the width is reduced to 3.5 m and
the channel bed is raised by A Z. Analyse the water-surface elevation in the transi-
tionswhen () AZ =0.02m, and (b) AZ =0.35m.




72 Flow in Open Channels

Solution Let the suffixes 1 and 2 refer to the upstream and downstream sections
respectively.

At the upstream section, V, = % =2.0m/s
X

2.0 0.452

V
F, = Froude number = —= = =0.
! Joy, 9.81x2.0

The upstream flow is subcritical and the transition will cause a drop in the water sur-
face elevation.

V229 = 0.204 m
E,=2.0+0.204 =2.204 m
g, = discharge intensity at the downstream section

— 2 - @ = 4.571m3/s/m

BZ
y,, = critical depth corresponding to g,

2 \¥3 2 |3
_[q—z] \@ —1.287m

9 9.81

E,= g y,, =1.930m

(&) When AZ =0.20m
E, = available specific energy at Section 2
=E -AZ=2204-020=2004m>E,
Hence the depthy, >y , and the upstream depth will remain unchanged at y,.

2

\
y2+£+AZ =E

(4.571)°

, +—————=2204-0.20
2x9.81xYy,

BEL I
y

2

Solving by trial and error, y, = 1.575 m.
Hence when AZ =0.20m,y, =2.00mandy, = 1.575m

(b) When AZ = 0.35,
E, = available specific energy at Section 2
=2.204-0.350 =1.854 m<E,



Energy—Depth Relationships 73

Hence the contraction will be working under choked conditions. The upstream depth
must rise to create a higher total head. The depth of flow at Section 2 will be critical
withy, =y, = 1.287 m.

If the new upstream depth isy',

1 Q2
+———=E_,+AZ=1.930+0.350
" ogEy T
2
)+ 6 =228
2x9.81x (4.0)* x y,?
. 0.8155
ie. y1 + ” =2.280
1
By trial-and-error, y, = 2.094 m.

The upstream depth will therefore rise by 0.094 m due to the choked condition at
the constriction. Hence, when AZ =0.35m

y,=209mandy,=y,= 1287 m.
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2.1 Inarectangular channel F, and F, are the Froude numbers corresponding to the alternate
depths of a certain discharge. Show that

52/3_24_':22
F 24 F?

1

2.2 Show that in a triangular channel, the Froude number corresponding to alternate depths
are given by

E B (4+ F12)5/2

J S, S S
F, (4+F)™

2.3 A 5.0 m wide rectangular channel carries 20 m%/s of discharge at a depth of 2.0 m.The
width beyond a certain section is to be changed to 3.5 m. If it is desired to keep the water-
surface elevation unaffected by this change, what modifications are needed to the bottom
elevation?

2.4 Find the alternate depths corresponding to a specific head of 2.0 m and a discharge of
6.0 m¥s in (a) a trapezoidal channel, B = 0.9 m, m = 1.0, (b) triangular channel, m = 1.5,
(c) circular channel, D = 2.50 m. (Use the trial and error method. For Part (c) use Table
2A.1)

2.5 Ify andy, are alternate depths in a rectangular channel show that

2y12y22 3

c

(Vi +,)

2 2
and hence the specific energy, E = N HNY, Y,
(Y1 +,)

2.6 Ify andy, are the alternate depths in a triangular channel show that

4y,Y, s
(VY +v3)n+y,)

where y = critical depth. Show further that the specific energy E is given by

A (1+7%)(1+n)

E :174+7]3+n2+7]+1

where n =vy,ly,

2.7 A trapezoidal channel has a bottom width of 6.0 m and side slopes of 1: 1. The depth of
flow is 1.5 m at a discharge of 15 m®s. Determine the specific energy and alternate
depth.

2.8 Show that for a trapezoidal channel the minimum specific energy E_is related to the criti-
cal depthy_as

E =2
2

3+5C,
1+42¢,

mye

where { =

2.9 Prove that the alternate depths in an exponential channel (A = k y?) are given by

229,795 (5 —Y) _ yaas
(y12a _ yZZa) c
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Show that in an exponential channel (A = k,y?) the minimum specific energy E_and the
critical depth y_ are related as

E — ]_+ i

Ye 2a

A parabolic channel has its profile given by x? = 4ay. Obtain an expression for the rela-
tive specific energy at the critical flow, E_/y_ for this channel.

Show that for a horizontal frictionless channel the minimum specific force for a specified
discharge is obtained at the critical depth.

A channel in which the area is related to the depth as (A = k,y?) in which k, and a are
constants is called an exponential channel. Show that the critical depth for an exponen-

tial channel is given by
Y(2a+1)
> a
Y. = g 2
9 Kk
An exponential channel (A = k y?) carries a flow with a Froude number F at a depth of

flow of y,. Show that the critical depth y_ is given by

Yo _ R where x = 2/(2a+1)
Yo

If it is desired to have a channel in which the flow is critical at all stages, show that the
cross section of such a channel is given by.
T 2h2 — Q73
89

in which T = top width and h = depth of the water surface below the energy line.
Show that in a parabolic channel (x = c\/y ) the area can be expressed in terms of the
top width T as

2
A=ZT
3 y
Further, show that the critical depth in such a parabolic channel is given by

21 @ [° [2r @]

Ye [8 chZ] T 132 gc?

A channel has a cross section given by the relationship A= y?*° . For a critical depth of
0.5 m in this channel, estimate the (i) discharge and (ii) specific energy.

A triangular channel has an apex angle of 60° and carries a flow with a velocity of
2.0 m/s and depth of 1.25 m. (a) Is the flow subcritical or super-critical? (b) What is
the critical depth? (c) What is the specific energy? (d) What is the alternate depth pos-
sible for this specific energy?

Fill the missing data in the following table connected with critical depth computations in
rectangular channels:
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Case Q B A E,
(m/s) (m) (m) (m)

(a) 3.0 0.50 -

(b) - 0.80 -

(c) 25 - -
(d) 2.0 - 0.60

2.20 Fill in the missing data in the following table connected with critical depth computation
in triangular channels:

Case Side Y, E,
Slope =m (m) (m)

(i) 1.25 = -

(i) 1.50 0.30 -
(iii) 1.00 = 0.60

2.21 Fill in the missing data in the following table relating critical depth in trapezoidal

channels:
Case m B Y, Q E,
(m) (m) (m3s) (m)
(@ 15 35 - 5.0 -
(b) 2.0 2.0 0.30 - -
(©) 15 - 0.40 2.641 -
(d) 2.0 4.0 - - 1.111

2.22 Calculate the discharges and specific energies corresponding to the following cri-
tical depths in circular channels: (a) y, = 0.375 m, D = 1.50 m, and (b) y, = 0.40 m,
D=20m.

2.23 What is the critical depth corresponding to a discharge of 5.0 m%s in (a) a trapezoidal
channel of B =0.80 mand m = 1.5, and (b) a circular channel of D = 1.50 m?

2.24 Inacircular channel of diameter D = 1.50 m, the critical depthy_is known to occur at a
specific energy of 1.80 m. Estimate the value of y_.

2.25 Acircular channel is to carry a discharge of 558 litres/s. Find the diameter of the conduit
such that the flow is critical when the conduit is running quarter full.

2.26 A circular culvert of 1.20-m diameter is flowing half full and the flow is in critical state.
Estimate the discharge and the specific energy.

2.27 A brick-lined sewer has a semicircular bottom and vertical side walls 0.60 m apart. If the
depth of flow at a section where the flow is known to be at a critical state is 0.60 m,
estimate the discharge in the sewer.

2.28 A rectangular channel section is to have critical flow and at the same time the wetted
perimeter is to be minimum. Show that for these two conditions to occur simultane-
ously, the width of the channel must be equal to 8/9 times the minimum specific-
energy head.
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2.29 Water flows in a A shaped channel shown in Fig 2.18. Critical depth is known to occur
at a section in this canal. Estimate the discharge and specific energy corresponding to an
observed critical depth of 1.40 m.

—— 24m ———»
Fig. 2.18 Problem 2.29

2.30 For an exponential channel (A = k y?) obtain explicit expressions for the (i) critical
depth, (ii) Froude number, (iii) Hydraulic exponent M.
2.31 Derive the approximate expression for the first hydraulic exponent M given by Eq. (2.27) as

leg'r,édl
A T dy

2.32 Estimate the value of the first hydraulic exponent M for the following cases:

(i) Trapezoidal channel with B = 4.0 m, m = 2.0 and y = 0.20; 1.0; 2.0; and 4.0 m.
[Hint: Use Eq. (2.27)].

(ii) Circular channel of diameter D = 2.0 m with y = 0.20; 0.8; and 1.6 m. [Hint: Use
Eq. (2.27) and Table 2A.1]

2.33 A 5.0-m wide rectangular channel carries a discharge of 6.40 m¥/s at a depth of 0.8 m. At
a section there is a smooth drop of 0.22 m in the bed. What is the water surface elevation
downstream of the drop?

2.34 A rectangular channel is 4.0 m wide and carries a discharge of 20 m®s at a depth of 2.0 m.
At a certain section it is proposed to build a hump. Calculate the water surface elevations
at upstream of the hump and over the hump if the hump height is (a) 0.33 m and (b) 0.20 m.
(Assume no loss of energy at the hump.)

2.35 A uniform flow of 12.0 m%/s occurs in a long rectangular channel of 5.0 m width and
depth of flow of 1.50 m. A flat hump is to be built at a certain section. Assuming a loss
of head equal to the upstream velocity head, compute the minimum height of the hump
to provide critical flow. What will happen (a) if the height of the hump is higher than the
computed value and (b) if the energy loss is less than the assumed value?

2.36 A rectangular channel is 3.0 m wide and carries a flow of 1.85 m?/s at a depth of 0.50 m.
A contraction of the channel width is required at a certain section. Find the greatest
allowable contraction in the width for the upstream flow to be possible as specified.

2.37 A rectangular channel is 2.5 m wide and conveys a discharge of 2.75 m%/s at a depth of
0.90 m. A contraction of width is proposed at a section in this canal. Calculate the water
surface elevations in the contracted section as well as in an upstream 2.5 m wide section
when the width of the proposed contraction is (a) 2.0 m and (b) 1.5 m. (Neglect energy
losses in the transition).
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2.38 A 3.0-m wide horizontal rectangular channel is narrowed to a width of 1.5 m to cause

2.39

240

241

2.42

critical flow in the contracted section. If the depth in the contracted section is 0.8 m,
calculate the discharge in the channel and the possible depths of flow and corres-
ponding Froude numbers in the 3.0 m wide section. Neglect energy losses in the
transition.

A rectangular channel is 3.0 m wide and carries a discharge of 15.0 m¥/s at a depth of 2.0 m.
At a certain section of the channel it is proposed to reduce the width to 2.0 m and to alter
the bed elevation by A Z to obtain critical flow at the contracted section without altering
the upstream depth. What should be the value of AZ?

Water flows at a velocity of 1.0 m/s and a depth of 2.0 m in an open channel of rectangular
cross section and bed-width of 3.0 m. At certain section the width is reduced to 1.80 m
and the bed is raised by 0.65 m. Will the upstream depth be affected and if so, to what
extent?

A 3-m wide rectangular channel carries 3 m®/s of water at a depth of 1.0 m. If the width
is to be reduced to 2.0 m and bed raised by 10 cm, what would be the depth of flow in the
contracted section? Neglect the loss of energy in transition. What maximum rise in the
bed level of the contracted section is possible without affecting the depth of flow
upstream of the transition?

Water flows in a 3.0-m wide rectangular channel at a velocity of 2.5 m/s and a depth of
1.8 m. If at a section there is a smooth upward step of 0.30 m, what width is needed at
that section to enable the critical flow to occur on the hump without any change in the
upstream depth?

2.43 A 3.0-m wide rectangular channel carries a flow at 1.25 m depth. At a certain section the

width is reduced to 2.5 m and the channel bed raised by 0.20 m through a streamlined
hump. (a) Estimate the discharge in the channel when the water surface drops by 0.15 m
over the hump. (b) What change in the bed elevation at the contracted section would
make the water surface have the same elevation upstream and downstream of the con-
traction? (The energy losses in the contraction can be neglected).

2.44 A 1.5-m wide rectangular channel carries a discharge of 5.0 m¥s at a depth of 1.5 m. At

21

2.2

2.3

a section the channel undergoes transition to a triangular section of side slopes 2 horizon-
tal: 1 vertical. If the flow in the triangular section is to be critical without changing the
upstream water surface, find the location of the vertex of the triangular section relative
to the bed of the rectangular channel. What is the drop/rise in the water surface at the
transition? Assume zero energy loss at the transition.

* OBJECTIVE QUESTIONS

The term alternate depths is used in open channel flow to denote the depths

(a) having the same kinetic energy for a given discharge

(b) having the same specific force for a given discharge

(c) having the same specific energy for a given discharge

(d) having the same total energy for a given discharge

The two alternate depths in a 4.0 m wide rectangular channel are 3.86 m and 1.0 m respec-
tively. The discharge in the channel in m¥s is

(@) 15 (b) 1.5 (c) 7.76 (d) 31.0

In a rectangular channel, the alternate depths are 1.0 m and 2.0 m respectively. The spe-
cific energy head in m is

(@) 3.38 (b) 1.33 (c) 2.33 (d) 3.0
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2.4 A rectangular channel carries a certain flow for which the alternate depths are found to
be 3.0 m and 1.0 m. The critical depth in m for this flow is
(a) 2.65 (b) 1.65 (c) 0.65 (d) 1.33

2.5 The critical flow condition in a channel is given by

@ “;9;2:1 (b) “3,:2:1
aQT aQT
© 3= © 5=t

2.6 Indefining a Froude number applicable to open channels of any shape, the length param-
eter used is the
(a) ratio of area to top width (c) depth of flow
(b) ratio of area to wetted perimeter  (d) square root of the area

2.7 For a triangular channel of side slopes m horizontal : 1 vertical, the Froude number is
givenby F =

m v V2 v
(@ —— (b) — © — (d) —
vay \29Y gy Vay
2.8 A triangular channel has a vertex angle of 90° and carries a discharge of 1.90 m®s at a
depth of 0.8 m. The Froude number of the flow is

(a) 0.68 (b) 1.06 (c) 0.75 (d) 1.50
2.9 A triangular channel of apex angle of 120°carries a discharge of 1573 I/s. The critical
depth in miis
(a) 0.600 (b) 0.700 (c) 0.800 (d) 0.632
2.10 A triangular channel of apex angle of 60° has a critical depth of 0.25 m. The discharge in
I/sis
(a) 60 (b) 640 (c) 160 (d) 40

2.11 At critical depth
(a) the discharge is minimum for a given specific energy
(b) the discharge is maximum for a given specific force
(c) the discharge is maximum for a given specific energy
(d) the discharge is minimum for a given specific force
2.12 For a given open channel carrying a certain discharge the critical depth depends on
(a) the geometry of the channel (c) the roughness of the channel

(b) the viscosity of water (d) the longitudinal slope of the channel
2.13 Inatriangular channel the value of E_/y, is

(@) 1.25 (b) 2.5 (c) 3.33 (d) 15
2.14 In a parabolic channel (x* = 4ay)the value of E, /y, is

(@ 15 () 2.0 (c) 3.33 (d) 1.25

2.15 In an exponential channel (Area A = k y?) the ratio of specific energy at critical depth E_
to the critical depth y, is

a+1

@ (b) 2a © &t @ 3a
a 2

2a +1]
2a

2.16 Inarectangular channel carrying uniform flow with a specific energy E and depth of flow =y,
the ratio E /y_is equal to
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2.17

2.18

Yo ’ 1 Ye yc]z
=2 b) |=|+2|=
® [y] IR A
Y, 1 Y, 1
© 2=t |+——5 (d [0]+2
yU Z(YC/VO) yC z(yo/yc)

If F, = Froude number of flow in rectangular channel at a depth of flow =y, then
Y. /Y, =

@ F (b R © R” (@ R

Supercritical flow at Froude number of F = 2.0 occurs at a depth of 0.63 m in a rectan-
gular channel. The critical depth in m is

(a) 0.857 (b) 0.735 (c) 1.000 (d) 0.500

2.19 The Froude number of a flow in a rectangular channel is 0.73. If the depth of flow is 1.50 m,

the specific energy in metres is
(@ 1.90 (b) 1.50 (c) 1.73 (d) 0.73

2.20 A trapezoidal channel of bed width of 3.5 m and side slope of 1.5 H: 1V carries a flow

221

2.22

2.23

2.24

of 9.0 m¥/s with a depth of 2.0 m. The Froude number of flow is

(a) 0.156 (b) 0.189 (c) 0.013 (d) 0.506

For a triangular channel the first hydraulic exponent M is

@ 20 (b) 3.0 (c) 5.0 (d) 5.33

For a trapezoidal canal section with side slope of m horizontal : 1 vertical the value of the
first hydraulic exponent M is

(a) aconstant at all stages

(b) afunction of S, and Manning’s coefficient n

(c) a function my/B

(d) a function of y/B only

In a rectangular channel with subcritical flow the height of a hump to be built to cause
subcritical flow over it was calculated by neglecting energy losses. If, after building the
hump, it is found that the energy losses in the transition are appreciable, the effect of this
hump on the flow will be

(a) to make the flow over the hump subcritical

(b) to make the flow over the hump supercritical

(c) to cause the depth of flow upstream of the hump to raise

(d) to lower the upstream water surface

For an exponential channel (A = ky?) the first hydraulic exponent M is

() (a+1) (b) (2a) (c) (a+1) (d) a

2.25 The flow in a rectangular channel is subcritical. If the width is expanded at a certain sec-

tion, the water surface

(a) at a downstream section will drop
(b) at the downstream section will rise
(c) at the upstream section will rise
(d) at the upstream section will drop

2.26 A bottom rack in a channel is used to withdraw a part of the discharge flowing in a canal.

If the flow is subcritical throughout, this will cause

(a) arise in the water surface on the rack

(b) adrop in the water surface over the rack

(c) ajump over the rack

(d) a lowering of the water surface upstream of the rack.
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2.27 The flow in a channel is at critical depth. If at a section M a small hump of height AZ is
built on the bed of the channel, the flow will be
(a) critical upstream of M
(c) subcritical at M

@ APPENDIX 2A

(b) critical at M
(d) supercritical at M

Two tables which are useful in various open channel flow computations are presented

here.

1. Table 2A.1 contains the geometric elements of a circular channel in a non-dimensional
fashion. The column (Z/D?%) = f(y/D) is useful in calculating critical depths by using
Eq. (2.18). At critical depth, y = y_and

(2/D**)=(Q/\/gD*).

The last column, AR%® / D®:, will be useful in the calculation of normal depths as will be
explained in Chapter 3 (Eq. (3.29)). At normal depth,

¢(Y, /D) =

AR?? On

2. Table 2A.2 contains the values of ) = f(() for computation of critical depth in trapezoidal
channels. At the critical depth y;

a0’ 12 my
w = T and Cc = .
Table 2A.1 Elements of Circular Channels"*

y/D  26(radians) A/D? P/D /D Z/D% ARZ3/D S
0.01  0.40067 E+00 0.13293 E—02 0.20033 E+00 0.19900 E+00 0.10865 E—03 0.46941 E—04
0.02  0.56759 E+00 0.37485 E—02 0.28379 E+00 0.28000 E+00 0.43372 E—03 0.20946 E-03
0.03  0.69633 E+00 0.68655 E—02 0.34817 E+00 0.34117 E+00 0.97392 E-03 0.50111 E-03
0.04  0.80543 E+00 0.10538 E-01 0.40272 E+00 0.39192 E+00 0.17279 E-02 0.92878 E-03
0.05 0.90205 E+00 0.14681 E—-01 0.45103 E+00 0.43589 E+00 0.26944 E—02 0.14967 E—02
0.06  0.98987 E+00 0.19239 E-01 0.49493 E+00 0.47497 E+00 0.38721 E—02 0.22078 E-02
0.07  0.10711 E+01 0.24168 E-01 0.53553 E+00 0.51029 E+00 0.52597 E—02 0.30636 E—02
0.08 0.11470 E+01 0.29435 E-01 0.57351 E+00 0.54259 E+00 0.68559 E—02 0.40652 E-02
0.09 0.12188 E+01 0.35012 E-01 0.60939 E+00 0.57236 E+00 0.86594 E—02 0.52131 E-02
0.10  0.12870 E+01 0.40875 E—-01 0.64350 E+00 0.60000 E+00 0.10669 E—01 0.65073 E—02
0.11 0.13523 E+01 0.47006 E-01 0.67613 E+00 0.62578 E+00 0.12883 E—-01 0.79475 E-02
0.12 0.14150 E+01 0.53385 E—-01 0.70748 E+00 0.64992 E+00 0.15300 E-01 0.95329 E—02
0.13  0.14755 E+01 0.59999 E—01 0.73773 E+00 0.67261 E+00 0.17920 E-01 0.11263 E-01
0.14  0.15340 E+01 0.66833 E—01 0.76699 E+00 0.69397 E+00 0.20740 E—01 0.13136 E-01
0.15 0.15908 E+01 0.73875 E-01 0.79540 E+00 0.71414 E+00 0.23760 E—01 0.15151 E-01
0.16 1.64607 0.08111 0.82303 0.73321 0.02698 0.01731

0.17 1.69996 0.08854 0.84998 0.75127 0.03039 0.01960

0.18 1.75260 0.09613 0.87630 0.76837 0.03400 0.02203
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Table 2A.1 (Continued)

y/D  26(radians) AID? P/ID TID Z/D2s ARZ3/D%
0.19 1.80411 0.10390 0.90205 0.78460 0.03781 0.02460
0.20 1.85459 0.11182 0.92730 0.80000 0.04181 0.02729
0.21 1.90414 0.11990 0.95207 0.81462 0.04600 0.03012
0.22 1.95282 0.12811 0.97641 0.82849 0.05038 0.03308
0.23 2.00072 0.13647 1.00036 0.84167 0.05495 0.03616
0.24 2.04789 0.14494 1.02395 0.85417 0.05971 0.03937
0.25 2.09440 0.15355 1.04720 0.86603 0.06465 0.04270
0.26 2.14028 0.16226 1.07014 0.87727 0.06979 0.04614
0.27 2.18560 0.17109 1.09280 0.88792 0.07510 0.04970
0.28 2.23040 0.18002 1.11520 0.89800 0.08060 0.05337
0.29 2.27470 0.18905 1.13735 0.90752 0.08628 0.05715
0.30 2.31856 0.19817 1.15928 0.91652 0.09215 0.06104
031 2.36200 0.20738 1.18100 0.92499 0.09819 0.06503
0.32 2.40506 0.21667 1.20253 0.93295 0.10441 0.06912
0.33 2.44776 0.22603 1.22388 0.94043 0.11081 0.07330
0.34 2.49013 0.23547 1.24507 0.94742 0.11739 0.07758
0.35 253221 0.24498 1.26610 0.95394 0.12415 0.08195
0.36 2.57400 0.25455 1.28700 0.96000 0.13108 0.08641
0.37 2.61555 0.26418 1.30777 0.96561 0.13818 0.09095
0.38 2.65686 0.27386 1.32843 0.97077 0.14546 0.09557
0.39 2.69796 0.28359 1.34898 0.97550 0.15291 0.10027
0.40 2.73888 0.29337 1.36944 0.97980 0.16053 0.10503
041 2.77962 0.30319 1.38981 0.98367 0.16832 0.10987
0.42 2.82021 0.31304 1.41011 0.98712 0.17629 0.11477
043 2.86067 0.32293 1.43033 0.99015 0.18442 0.11973
0.44 2.90101 0.33284 1.45051 0.99277 0.19272 0.12475
0.45 2.94126 0.34278 1.47063 0.99499 0.20120 0.12983
0.46 2.98142 0.35274 1.49071 0.99679 0.20984 0.13495
047 3.02152 0.36272 151076 0.99820 0.21865 0.14011
0.48 3.06157 0.37270 1.53079 0.99920 0.22763 0.14532
0.49 3.10159 0.38270 1.55080 0.99980 0.23677 0.15057
0.50 3.14159 0.39270 1.57080 1.00000 0.24609 0.15584
051 3.18160 0.40270 1.59080 0.99980 0.25557 0.16115
0.52 3.22161 0.41269 1.61081 0.99920 0.26523 0.16648
053 3.26166 0.42268 1.63083 0.99820 0.27505 0.17182
054 3.30176 0.43266 1.65088 0.99679 0.28504 0.17719
0.55 3.34193 0.44262 1.67096 0.99499 0.29521 0.18256
0.56 3.38217 0.45255 1.69109 0.99277 0.30555 0.18794
057 3.42252 0.46247 1.71126 0.99015 0.31606 0.19331
058 3.46297 0.47236 1.73149 0.98712 0.32675 0.19869
0.59 3.50357 0.48221 1.75178 0.98367 0.33762 0.20405
0.60 3.54431 0.49203 1.77215 0.97980 0.34867 0.20940
0.61 3.58522 0.50181 1.79261 0.97550 0.35991 0.21473
0.62 3.62632 051154 1.81316 0.97077 0.37133 0.22004
0.63 3.66764 052122 1.83382 0.96561 0.38294 0.22532
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y/D  26(radians) AID? P/D TID Z/D?s ARZ/Do
0.64 3.70918 0.53085 1.85459 0.96000 0.39475 0.23056
0.65 3.75098 0.54042 1.87549 0.95394 0.40676 0.23576
0.66 3.79305 0.54992 1.89653 0.94742 0.41897 0.24092
0.67 3.83543 0.55936 1.91771 0.94043 0.43140 0.24602
0.68 3.87813 0.56873 1.93906 0.93295 0.44405 0.25106
0.69 3.92119 0.57802 1.96059 0.92499 0.45693 0.25604
0.70 3.96463 0.58723 1.98231 0.91652 0.47005 0.26095
071 4.00848 0.59635 2.00424 0.90752 0.48342 0.26579
0.72 4.05279 0.60538 2.02639 0.89800 0.49705 0.27054
073 4.09758 0.61431 2.04879 0.88702 051097 0.27520
074 4.14290 0.62313 2.07145 0.87727 052518 0.27976
0.75 4.18879 0.63185 2.09440 0.86603 053971 0.28422
0.76 4.23529 0.64045 2.11765 0.85417 055457 0.28856
0.77 4.28247 0.64893 2.14123 0.84167 056981 0.29279
0.78 4.33036 0.65728 2.16518 0.82849 058544 0.29689
0.79 4.37905 0.66550 2.18953 0.81462 0.60151 0.30085
0.80 4.42859 0.67357 2.21430 0.80000 0.61806 0.30466
0.81 4.47908 0.68150 2.23954 0.78460 0.63514 0.30832
0.82 453059 0.68926 2.26529 0.76837 0.65282 0.31181
0.83 458323 0.69686 2.29162 0.75127 0.67116 0.31513
0.84 4.63712 0.70429 2.31856 0.73321 0.69025 0.31825
0.85 4.69239 0.71152 2.34619 0.71414 0.71022 0.32117
0.86 4.74920 0.71856 2.37460 0.69397 0.73119 0.32388
0.87 4.80773 0.72540 2.40387 0.67261 0.75333 0.32635
0.88 4.86822 0.73201 2.43411 0.64992 0.77687 0.32858
0.89 4.93092 0.73839 2.46546 0.62578 0.80208 0.33053
0.90 4.99618 0.74452 2.49809 0.60000 0.82936 0.33219
091 5.06441 0.75039 253221 057236 0.85919 0.33354
0.92 5.13616 0.75596 2.56808 0.54259 0.89231 0.33453
0.93 521213 0.76123 2.60607 051029 0.92974 0.33512
0.94 529332 0.76616 2.64666 0.47497 0.97307 0.33527
0.95 538113 0.77072 2.69057 0.43589 1.02483 0.33491
0.96 547775 0.77486 2.73888 0.39192 1.08953 0.33393
0.97 558685 0.77853 2.79343 0.34117 1.17605 0.33218
0.98 571560 0.78165 2.85780 0.28000 1.30599 0.32936
0.99 5.88252 0.78407 2.94126 0.19900 1.55635 0.32476
1.00 6.28319 0.78540 3.14159 0.00000 0.31169

“The notations ‘E + a’ represents 10¢ and ‘E - a’ represents 1072, Thus for example

0.13523E+01 = 1.3523

0.47006E-01 = 0.047006
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Table 2A. 2 Values gf ) jbr computation qf critical depth in trapezioidal channels

13 ¥ § ¥ 13 ¥ 13 ¥ 13 ¥
0100 00333042 0330 02256807 0560 05607910 0790 10469124 1020 1.6962526
0105 00359281 0335 02314360 0565 05697107 0795 10592476 1025 17122746
0110 00386272 0340 02372580 0570 05787019 0.800 1.0716601 1.030 1.7283798
0115 00414006 0345 02431469 0575 05877645 0805 10841500 1.035 1.7445682
0120 00442474 0350 02491026 0580 05968989 0.810 10967174 1.040 1.7608400
0125 00471671 0355 02551252 0585 06061050 0815 11093625 1045 17771953
0130 00501588 0360 02612149 0590 0.6153820 0.820 1.1220854 1050 1.7936343
0135 00532222 0365 02673716 0595 06247330 0.825 11348861 1.055 1.8101570
0140 00563565 0370 02735954 0600 06341551 0.830 11477649 1060 1.8267635
0145 00595615 0375 02798865 0.605 0.6436496 0.835 11607219 1065 1.8434541
0150 00628365 0380 02862449 0610 06532164 0840 11737572 1070 1.8602288
0155 00661812 0385 02926706 0.615 0.6628558 0.845 1.1868709 1075 18770877
0160 00695953 0390 02991638 0620 06725678 0.850 1.2000631 1.080 1.8940310
0165 00730784 0395 03057246 0.625 06823525 0.855 12133341 1085 1.9110589
0170 00766302 0400 03123531 0630 06922102 0.860 1.2266838 1.090 1.9281713
0175 00802504 0405 03190493 0.635 07021409 0.865 12401125 1.095 1.9453685
0180 00839387 0410 03258133 0640 07121448 0870 12536203 1.100 1.9626506
0185 00876950 0415 03326452 0645 07222220 0875 12672072 1105 1.9800176
0190 00915190 0420 03395452 0.650 0.7323725 0.880 1.2808735 1.110 1.9974698
0195 00954105 0425 03465132 0655 07425966 0.885 12046192 1115 2.0150072
0200 00993694 0430 03535495 0.660 0.7528944 0.890 1.3084445 1120 2.0326299
0205 01033955 0435 03606541 0.665 0.7632659 0.895 1.3223496 1125 2.0503382
0210 01074887 0440 03678272 0670 07737114 0900 1.3363344 1130 2.0681321
0215 01116488 0445 03750688 0.675 0.7842309 0905 1.3503992 1135 2.0860117
0220 01158757 0450 03823789 0.680 07948246 0910 13645441 1140 2.1039771
0225 01201694 0455 03897579 0.685 08054926 00915 1.3787693 1145 2.1220286
0230 01245297 0460 03972056 0690 08162350 0920 1.3930747 1150 2.1401661
0235 01289566 0465 04047224 0.695 08270520 0925 14074607 1155 2.1583899
0240 01334500 0470 04123082 0700 08379437 0930 14219272 1160 2.1767000
0245 013890098 0475 04199631 0705 08489102 0935 14364745 1165 2.1950965
0250 01426361 0480 04276873 0710 0.8599516 0940 14511026 1.170 2.2135797
0255 01473287 0485 04354810 0715 08710681 0945 14658118 1175 2.2321496
0260 01520877 0490 04433441 0720 08822598 0950 14806020 1.180 2.2508063
0265 01569130 0495 04512768 0725 08935260 0955 14954734 1185 2.2695499
0270 01618046 0500 04592793 0730 09048694 0960 15104263 1.190 2.2883806
0275 01667625 0505 04673517 0735 009162875 0965 15254606 1.195 2.3072986
0280 01717868 0510 04754940 0740 09277813 0970 15405765 1.200 2.3263038
0285 01768773 0515 04837063 0745 09393510 0975 15557742 1.205 2.3453965
0290 0820342 0520 04919889 0.750 0.9509966 0980 15710537 1210 2.3645767
0295 01872575 0525 05003418 0755 009627183 0985 15864153 1215 2.3838447
0300 01925471 0530 05087651 0760 09745163 0990 1.6018500 1.220 2.4032004
0305 01979031 0535 05172590 0765 09863907 0995 16173849 1225 2.4226440
0310 02033256 0540 05258236 0770 009983415 1000 1.6320932 1230 2.4421757
0315 02088145 0545 05344589 0775 10103690 1.005 16486840 1235 2.4617956
0320 02143700 0550 05431652 0780 10224732 1010 16644574 1240 24815037
0325 02199920 0555 05519425 0785 10346543 1015 1.6803135 1245 25013003
0330 02256807 0560 05607910 0790 10469124 1020 16962526 1250 25211853
InTable 2A.2 &= mé’c

aQ®m?




Uniform Flow 3

3.1 INTRODUCTION

A flow is said to be uniform if its properties remain constant with respect to distance.
As mentioned earlier, the term uniform flow in open channels is understood to mean
steady uniform flow. The depth of flow remains constant at all sections in a uniform
flow (Fig. 3.1). Considering two Sections 1 and 2, the depths

Y=Y, =Y,
and hence A =A=A,

Since Q = AV = constant, it follows that in uniform flow V, = V,=V. Thus in
a uniform flow, the depth of flow, area of cross-section and velocity of flow
remain constant along the channel. It is obvious, therefore, that uniform flow is
possible only in prismatic channels. The trace of the water surface and channel
bottom slope are parallel in uniform flow (Fig. 3.1). Further, since V = constant,
the energy line will be at a constant elevation above the water surface. As such,
the slope of the energy line S, slope of the water surface S, and bottom slope S
will all be equal to each other.

3.2 CHEZY EQUATION

By definition there is no acceleration in uniform flow. By applying the momentum
equation to a control volume encompassing Sections 1 and 2, distance L apart, as
shown in Fig. 3.1,

P,—Wsing-F,-P,=M,—M, (3.1)

where P, and P, are the pressure forces and M, and M, are the momentum fluxes at
Sections 1 and 2 respectively W = weight to fluid in the control volume and F, =
shear force at the boundary.

Since the flow is uniform,

P,=P, and M, =M,
Also, W =~AL and F =7 PL
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\%l_\\i
U
/‘\‘\ F X Cross-section

Fig. 3.1 Ung‘formﬂow

where 7, = average shear stress on the wetted perimeter of length P and = unit
weight of water. Replacing sin 6 by S (= bottom slope), Eq. 3.1 can be written as

v ALS, =7, PL
or

A
T, =" B S,= RS, (3.2)

where R = A/P is defined as the hydraulic radius. R is a length parameter accounting
for the shape of the channel. It plays a very important role in developing flow equa-
tions which are common to all shapes of channels.

Expressing the average shear stress 7, as 7, = kp V', where k = a coefficient which
depends on the nature of the surface and flow parameters, Eq. 3.2 is written as

ko VZ=vRS,
leading to V =C /RS, (3.3)

where C = /1% = a coefficient which depends on the nature of the surface and the
P

flow. Equation 3.3 is known as the Chezy formula after the French engineer Antoine
Chezy, who is credited with developing this basic simple relationship in 1769. The
dimensions of C are [L¥2 T ] and it can be made dimensionless by dividing it by ve.
The coefficient C is known as the Chezy coefficient.

3.3 DARCY-WEISBACH FRICTION FACTOR f

Incompressible, turbulent flow over plates, in pipes and ducts have been extensively
studied in the fluid mechanics discipline. From the time of Prandtl (1875-1953) and
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Von Karman (1881-1963) research by numerous eminent investigators has enabled
considerable understanding of turbulent flow and associated useful practical applica-
tions. The basics of velocity distribution and shear resistance in a turbulent flow are
available in any good text on fluid mechanics'2.

Only relevant information necessary for our study in summed up in this section.

Pipe Flow A surface can be termed hydraulically smooth, rough or in transition
depending on the relative thickness of the roughness magnitude to the thickness of
the laminar sub-layer. The classification is as follows:

£V,

< 4 — hydraulically-smooth wall

EV, . .
4 < —— <60 — transitional regime
14

S < 60 — full rough flow

v

where e_ = equivalent sand grain roughness, v« = /T, Ip = /RS, = shear veloc-
ity and

v = kinematic viscosity.

For pipe flow, the Darcy—Weisbach equation is

2

h, =f Lve (3.4)
D 2g

where h, = head loss due to friction in a pipe of diameter D and length L; f = Darcy—

Weisbach friction factor. For smooth pipes, f is found to be a function of the

v

relative roughness (¢,/D ) and type of roughness and is independent of the Reynolds
number. In the transition regime, both the Reynolds number and relative roughness
play important roles. The roughness magnitudes for commercial pipes are expressed
as equivalent sand-grain roughness ¢, The extensive experimental investigations of
pipe flow have yielded the following generally accepted relations for the variation of
f in various regimes of flow:

Reynolds number [Re = \Q] only. For rough turbulent flows, f is a function of the

1. For smooth walls and Re < 10°

f= % (Blasius formula) (3.5)
2. For smooth walls and Re > 10°
S 2.0logRe vf -038 (Karman—Prandtl equation) (3.6)

Jr
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3. For rough boundaries and Re > 10°
1

Ir

4. For the transition zone

=-2log % +1.14 (Karman-Prandtl equation) 3.7

D/e,
Reﬁ

(Colebrook—White equation) (3.8)

149.35

1
— +2log 5—5 =1.14-2log

N

&

It is usual to show the variation of f with Re and 5 by a three-parameter graph

known as the Moody chart.

Studies on non-circular conduits, such as rectangular, oval and triangular shapes
have shown that by introducing the hydraulic radius R, the formulae developed for
pipes are applicable for non-circular ducts also. Since for a circular shape R = D/4,
by replacing D by 4R, Eqgs 3.5 to 3.8 can be used for any duct shape provided the
conduit areas are close enough to the area of a circumscribing circle or
semicircle.

Open Channels For purposes of flow resistance which essentially takes place in
a thin layer adjacent to the wall, an open channel can be considered to be a conduit
cut into two. The hydraulic radius would then be the appropriate length parameter
and prediction of friction factor f can be done by using Eqgs 3.5 to 3.8. It should be

remembered that Re = 4RV
1%

and the relative roughness is (¢ /4R).

Equation 3.4 can then be written for an open channel flow as

LV
" 4R 29
which on rearranging gives
V= 879 JR . Jh IL (3.9)
Noting that for uniform flow in an open channel h,/L = slope of the energy line =
S, =S, it may be seen that Eq. 3.9 is the same as Eq. 3.3 (Chezy formula) with
C=.8g/f (3.10)

For convenience of use, Eq. 3.10 along with Eqs 3.5 to 3.8 can be used to prepare
a modified Moody chart showing the variation of C with

4R
[ e ﬂ] and [—]
'} Es
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If fis to be calculated by using one of the Egs 3.5 to 3.8, Eqs 3.6 to 3.8 are incon-
venient to use as f is involved on both sides of the equations. Simplified empirical
forms of Egs 3.6 and 3.8, which are accurate enough for all practical purposes, are
given by Jain®as follows:

% = 1.80 log Re — 1.5146 (in lieu of Eq. (3.6)) (3.6a)
and % —1.14-2.0 log [€— + %] (in lieu of Eq. (3.8)) (3.82)

Equation (3.8a) is valid for 5000 < Re < 108 and 10°° < :—; <102

These two equations are very useful for obtaining explicit solutions of many flow-
resistance problems.

Generally, the open channels that are encountered in the field are very large in
size and also in the magnitude of roughness elements. Consequently, high Reyn-
olds numbers and large relative roughnesses are operative with the result that most
of the open channels have rough turbulent-flow regimes. Due to paucity of reliable
experimental or field data on channels covering a wide range of parameters, values
of ¢, are not available to the same degree of confidence as for pipe materials. How-
ever, Table 3.1 can be used to estimate the values of ¢, for some common open
channel surfaces.

Table 3.1 Talues qf&‘s for some Common Channel Suy‘bces

SI. No. Surface Equivalent Roughness ¢_in mm
1 Glass 3 x 10~

2 \ery smooth concrete surface 0.15-0.30

3 Glazed sewer pipe 0.60

4 Gunite (smooth) 0.50-1.5

5 Rough concrete 3.0-4.5

6 Earth channels (straight, uniform) 3.0

7 Rubble masonry 6.0

8 Untreated gunite 3.0-10.0

3.4 MANNING’S FORMULA

A resistance formula proposed by Robert Manning, an Irish engineer, for uniform
flow in open channels, is

1
V — E R2/3 SS/Z (3'11)
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where n = a roughness coefficient known as Manning’s n. This coefficient is essen-
tially a function of the nature of boundary surface. It may be noted that the dimen-
sions of n are [L™Y3 T]. Equation 3.11 is popularly known as the Manning’s formula.
Owing to its simplicity and acceptable degree of accuracy in a variety of practical
applications, the Manning’s formula is probably the most widely used uniform flow
formula in the world.

Comparing Eqg. 3.11 with the Chezy formula, Eq. 3.3, we have

1

c_1gue (3.12)
n
From Eq. 3.10, c— (89 _1qus
f n
) n?

Since Eqg. 3.13 does not contain velocity term (and hence the Reynolds number),
we can compare Eq. 3.13 with Eq. 3.7, i.e., the Prandtl-Karman relationship for

rough turbulent flow. If Eqg. 3.7 is plotted as f vs. 4R on a log-log paper, a smooth
S

S

curve that can be approximated to a straight line with a slope of [—%] is obtained

(Fig 3.2). From this the term f can be expressed as
—1/3 13
4R
) -
£, R

0.10

Eq. (3.7)

0.01

0006 [ |

10 102 4R/eg 103 104
Fig. 3.2 Variation qffinfu]])/ roughﬂow
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2
Since from Eq. 3.13, f o< % it follows that n o< ¢ 6. Conversely, if n o< g%,

the Manning’s formula and Darcy—Weisbach formula both represent rough trubulent

8SV*
> 60

flow {

v

3.5 OTHER RESISTANCE FORMULAE

Several forms of expressions for the Chezy coefficient C have been proposed by dif-
ferent investigators in the past. Many of these are archaic and are of historic interest
only. A few selected ones are listed below:

1. Pavlovski formula

c-lg (3.14)
n

inwhichx =25 vn =0.13-0.75 /R (vn —0.10) and n = Manning’s coefficient.
This formula appears to be in use in Russia.

2. Ganguillet and Kutter Formula

23+% + 0.00155

c— S, (3.15)
1+\23+ 0.00155] n

R

0

in which n = Manning’s coefficient.

3. Bazin’s formula

87.0

= 3.16
1+M/R (316

in which M = a coefficient dependent on the surface roughness.

3.6 VELOCITY DISTRIBUTION

(a) Wide Channels

(i) Velocity-defect Law In channels with large aspect ratio Bly,, as for example
in rivers and very large canals, the flow can be considered to be essentially two
dimensional. The fully developed velocity distributions are similar to the logarithmic
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Fig. 3.3 lelocity profile in a wide open channel

form of velocity-defect law found in turbulent flow in pipes. The maximum velocity
u, occurs essentially at the water surface, (Fig. 3.3). The velocity u at a height y
above the bed in a channel having uniform flow at a depth y, is given by the velocity-
defect law for y/y, > 0.15 as

u. ko,
2.3
= T log,, (y7Y,) (3.17)

where u, = shear velocity = /7o / p = {/9RS; , R = hydraulic radius, S, = longitu-
dinal slope, and k = Karman constant = 0.41 for open channel flows®.

This equation is applicable to both rough and smooth boundaries alike. Assuming
the velocity distribution of Eq. 3.17 is applicable to the entire depth y,, the velocity u
can be expressed in terms of the average velocity

VA dy as
Yo v'0
u y
u=V+-—=|1+In —] (3.18)
K Yo
From Eq. 3.18, it follows that
u
V=u - ? (3.19)

(ii) Law of theWall ~For smooth boundaries, the law of the wall as

u 1. wyu
R AR AR\
= I . (3.20)

*
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is found applicable in the inner wall region (y/y, < 0.20). The values of the constants
are found to be k = 0.41 and A_ = 5.29 regardless of the Froude number and Reynolds
number of the flow®. Further, there is an overlap zone between the law of the wall
region and the velocity-defect law region.

For completely rough turbulent flows, the velocity distribution in the wall region
(y/y,<0.20) is given by

u 1 vy
—=ZInZX+4+ 3.21
u, ke A (3.21)

where ¢, = equivalent sand grain roughness. It has been found that k is a universal
constant irrespective of the roughness size®. Values of k = 0.41 and A = 8.5 are
appropriate.

For further details of the velocity distributions Ref. [5] can be consulted.

(b) Channels with Small Aspect Ratio In channels which are not wide
enough to have two dimensional flow, the resistance of the sides will be significant
to alter the two-dimensional nature of the velocity distribution given by Eq. 3.17.
The most important feature of the velocity distributions in such channels is the
occurrence of velocity-dip, where the maximum velocity occurs not at the free
surface but rather some distance below it, (Fig. 3.4) Various investigations have
inferred the secondary currents as responsible for this velocity-dip phenomenon®.
The critical ratio of B/y, above which the velocity-dip becomes insignificant has
been found to be about 5.0. Based on this the channels with B/y, < 5 can be
classified as narrow channels.

Typical velocity distributions in rectangular channels with B/y, = 1.0 and 6.0 are
shown in Figures 3.5(a) and (b) respectively.

Surface velocity
f—  ——

v s . o
1\ Velocity
U ' dip
e]
[0}
o)
Yo o
o
Ke)
<
=
2
Bed %

Velocity u —

Fig. 3.4 Telocity profile in a narrow channel



94 Flow in Open Channels

1.0

-|||<l

0.8

Max. velocity
r line

0.6 -

ylyo

0.4

0.2+

-0.5 -0.3 -0.1 0.1
Zlyo

Fig. 3.5(a) Typical velocity distribution in a narrow channel, B/y, = 1.0. (Ref-4)
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Fig. 3.5(b) Typical velocity distribution in a rectangular channel with B/y = 6.0. (Ref47)

3.7 SHEAR STRESS DISTRIBUTION

The average shear stress 7, on the boundary of a channel is, by Eq. 3.2, given as
7, = 7y RS,. However, this shear stress is not uniformly distributed over the boundary. It
is zero at the intersection of the water surface with the boundary and also at the corners in
the boundary. As such, the boundary shear stress 7, will have certain local maxima on the
side as well as on the bed. The turbulence of the flow and the presence of secondary cur-
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rents in the channel also contribute to the non-uniformity of the shear stress distribution.
A knowledge of the shear stress distribution in a channel is of interest not only in the
understanding of the mechanics of flow but also in certain problems involving sediment
transport and design of stable channels in non-cohesive material (Chapter 11).

Preston tube® is a very convenient device for the boundary shear stress measurements
in a laboratory channel. Distributions of boundary shear stress by using Preston tube in
rectangular, trapezoidal and compound channels have been reported®’. Isaacs and Macin-
tosh?® report the use of a modified Preston tube to measure shear stress in open channels.

Lane® obtained the shear stress distributions on the sides and bed of trapezoidal
and rectangular channels by the use of membrane analogy. A typical distribution of
the boundary shear stress on the side () and bed (7,) in a trapezoidal channel of Bly,
= 4.0 and side slope m = 1.5 obtained by Lane is shown in Fig 3.6. The variation of
the maximum shear stress on the bed 7, and on the sides 7 in rectangular and trap-
ezoidal channels is shown in Fig. 3.7. It is noted from the figure that for trapezoidal
sections approximately 7, = 0.76 vy,S,and 7, = ~Y,S, when Bly, > 6.0.
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Fig. 3.6 Variation of boundary shear stress in a trapezoidal channel with B/)/O =4andm=1.5
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Fig. 3.7 Variation of maximum shear stress on bed and sides of smooth channels
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3.8 RESISTANCE FORMULA FOR PRACTICAL USE

Since a majority of the open channel flow are in the rough turbulent range, the Man-
ning’s formula (Eqg. 3.11) is the most convenient one for practical use. Since, it is
simple in form and is also backed by considerable amount of experience, it is the
most preferred choice of hydraulic engineers. However, it has a limitation in that it
cannot adequately represent the resistance in situations where the Reynolds number
effect is predominant and this must be borne in mind. In the book, the Manning’s
formula is used as the resistance equation.

The Darcy—weisbach coefficient f used with the Chezy formula is also an equally effec-
tive way of representing the resistance in uniform flow. However, field engineers generally
do not prefer this approach, partly because of the inadequate information to assist in the
estimation of <, and partly because it is not sufficiently backed by experimental or field
observational data. It should be realized that for open channel flows with hydrodynamically
smooth boundaries, it is perhaps the only approach available to estimate the resistance.

3.9 MANNING’S ROUGHNESS COEFFICIENT n

In the Manning’s formula, all the terms except n are capable of direct measurement.
The roughness coefficient, being a parameter representing the integrated effects of
the channel cross-sectional resistance, is to be estimated. The selection of a value for
n is subjective, based on one’s own experience and engineering judgement. How-
ever, a few aids are available which reduce to a certain extent the subjectiveness in
the selection of an appropriate value of n for a given channel. These include:

1. Photographs of selected typical reaches of canals, their description and mea-
sured values of n'®!!, These act as type values and by comparing the channel
under question with a figure and description set that resembles it most, one can
estimate the value of n fairly well. Movies, stereoscopic colour photographs
and video recordings of selected typical reaches are other possible effective
aids under the category.

2. A comprehensive list of various types of channels, their descriptions with the
associates range of values of n. Some typical values of n for various normally
encountered channel surfaces prepared from information gathered from vari-
ous sources®11213 gre presented in Table 3.2.

Estimation of correct n-value of natural channels is of utmost importance in practical
problems associated with backwater computations, flood flow estimation, routing
and management. The photographs of man-made and natural channels with corre-
sponding values of n given by Chow!, Barnes! and Arcemont and Schnieder** are
very useful in obtaining a first estimate of roughness coefficient in such situations.

Cowan?®® has developed a procedure to estimate the value of roughness factor n of
natural channels in a systematic way by giving weightages to various important fac-
tors that affect the roughness coefficient. According to Cowan.

n =, +n, +n,+n,4+n)m
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Table 3.2 Values of Roughness Coefficient n

with growth of virgin timber and occasional patches of bushes
and small trees

SI. No. Surface Characteristics Range of n
(@ Lined channels with straight alignment
1 Concerete (a) formed, no finish 0.013-0.017
(b) Trowel finish 0.011-0.015
(c) Float finish 0.013-0.015
(d) Gunite, good section 0.016-0.019
(e) Gunite, wavy section 0.018-0.022
2 Concrete bottom, float finish, sides as indicated
(a) Dressed stone in mortar 0.015-0.017
(b) Random stone in mortar 0.017-0.020
(c) Cement rubble masonry 0.020-0.025
(d) Cement-rubble masonry, plastered 0.016-0.020
(e) Dry rubble (rip-rap) 0.020-0.030
3 Tile 0.016-0.018
4 Brick 0.014-0.017
5 Sewers (concrete, A.C., vitrified-clay pipes) 0.012-0.015
6 Asphalt (i) Smooth 0.013
(ii) Rough 0.016
7 Concrete lined, excavated rock
(i) good section 0.017-0.020
(ii) irregular section 0.022-0.027
8 Laboratory flumes-smooth metal bed and glass or perspex sides 0.009-0.010
(b) Unlined, non-erodible channels
1 Earth, straight and uniform
(i) clean, recently completed 0.016-0.020
(ii) clean, after weathering 0.018-0.025
(iii) gravel, uniform section, clean 0.022-0.030
(iv) with short grass, few weeds 0.022-0.033
2 Channels with weeds and brush, uncut
(i) dense weeds, high as flow depth 0.05-0.12
(ii) clean bottom, brush on sides 0.04-0.08
(iii) dense weeds or aquatic plants in deep channels  0.03-0.035
(iv) grass, some weeds 0.025-0.033
3 Rock 0.025-0.045
(©) Natural channels
1 Smooth natural earth channel, free from growth, little curvature ~ 0.020
2 Earth channels, considerably covered with small growth 0.035
3 Mountain streams in clean loose cobbles, rivers with variable  0.04-0.05
section with some vegetation on the banks
4 Rivers with fairly straight alignment, obstructed by small trees, 0.06-0.075
very little under brush
5 Rivers with irregular alignment and cross-section, covered 0.125
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Where n, = a base value of n for a straight uniform smooth channel in natural
material
n, = correction for surface irregularities
n, = correction for variation in shape and size of the cross section
n, = correction for obstructions
n, = correction for vegetation and flow conditions
m = correction for meandering of the channel
Values of the n, and the other five correction factors are given in Chow' and in Ref. (14).

Example 3.1 | p 5 o.m wide rectangular channel carries water at 20°C at a

depth of 0.5 m. The channel is laid on a slope of 0.0004. Find the hydrodynamic
nature of the surface if the channel is made of (a) very smooth concrete and (b) rough
concrete.

Solution Hydraulic radius R = _2x05 =0.333m
(24+2x0.5)
7,=vRS, = (9.81 x 10%) x 0.333 x 0.0004
= 1.308 N/m?

T 1.308
v, = shear velocity =, | po = ’(W) =0.03617 m/s

(a) For a smooth concrete surface
From Table 3.1 £, = 0.25 mm = 0.00025 m
v at 20°C = 10%m?/s

&v, 0.00025x0.03617

y 10° =9.04

Since this value is slightly greater than 4.0, the boundary is hydrodynamically in
the early transition from smooth to rough surface
(b) For a rough concrete surface
From Table 3.1, ¢, = 3.5 mm = 0.0035
S~ 1266

14

Since this value is greater than 60, the boundary is hydrodynamically rough.

Example 3.2 | p he two cases in Example 3.1, estimate the discharge in the

channel using (i) the Chezy formula with Dancy-Weisbach f, and (ii) the, Manning’s
formula.

Solution Case (a): Smooth concrete channel

& 025

=———————=18%4x10"
4R 4x0.33x10°

(i) e,=025mmand
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Since the boundary is in the transitional stage, Eq. 3.8a would be used.

L 114-2010g [i + 21_02;5']
Jf 4R Re®

Here, Re is not known to start with and hence a trial and error method has to be
adopted. By trial
f=0.0145

C=8g/f =736
V =C RS, =73.6 x +/0.333 x 0.0004 = 0.850 m/s
Q = AV = 0.850 m¥s

(ii) Referring to Table 3.2, the value of n for smooth trowel-finished concrete can
be taken as 0.012, By Manning’s formula (Eq. 3.11),
1

V= x (0.333)**x (0.0004)"2
0.012

= 0.801 m/s
Q = AV =0.801 m¥s
Case (b): Rough concrete channel

()e,=35mm  and j_;e — 2625 x10°

Since the flow is in the rough-turbulent state, by Eq. 3.7,

% — 1.14-2l0g (2.625 x 107
f
f—0.025
o [8><9.81] 60
0.025

V =56 x /0.333x0.0004 = 0.647 m/s
Q = AV =0.647 m¥s

(ii) By the Manning’s Formula
From Table 3.2, for rough concrete, n = 0.015 is appropriate

V= 1 % (0.333)% x (0.0004)"
0.015

= 0.641 m%/s
Q =0.641 m%s

[The following may be noted:
1. The subjectiveness involved in selecting proper value of £ and n.
2. The ease of calculations by using Manning’s formula.
3. Reasonably accurate results can be obtained by the Manning’s formula in
rough-turbulent flows.]
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Empirical Formulae for n Many empirical formulae have been presented for
estimating Manning’s coefficient n in natural streams. These relate n to the bed-
particle size. The most popular form under this type is the Strickler formula:
d1/6
_ 50
211
Where d, is in metres and represents the particle size in which 50 per cent of the bed

material is finer. For mixtures of bed materials with considerable coarse-grained
sizes, Eq. 3.17 has been modified by Meyer et al. as

(3.22)

1/6
_ dgo

n=
26

(3.23)

Where d,, = size in metres in which 90 per cent of the particles are finer than d,.
Thisequation is reported to be useful in predicting n in mountain streams paved with
coarse gravel and cobbles.

Factors Affecting n  The Manning’s n is essentially a coefficient representing
the integrated effect of a large number of factors contributing to the energy loss in a
reach. Some important factors are: (a) Surface roughness, (b) vegetation, (c) cross-
section irregularity and (d) irregular alignment of channel. The chief among these
are the characteristics of the surface. The dependence of the value of n on the surface
roughness in indicated in Tables 3.1 and 3.2. Since n is proportional to (<), a large
variation in the absolute roughness magnitude of a surface causes correspondingly
a small change in the value of n. The importance of other factors are indicated in
Cowan’s method of estimation of n, as mentioned earlier.

The vegetation on the channel perimeter acts as a flexible roughness element.
At low velocities and small depths vegetations, such as grass and weeds, can act
as a rigid roughness element which bends and deforms at higher velocities and
depths of flow to yield lower resistance. For grass-covered channels, the value of
n is known to decrease as the product VR increases. The type of grass and density
of coverage also influence the value of n. For other types of vegetation, such as
brush, trees in flood plains, etc. the only recourse is to account for their presence
by suitably increasing the values of n given in Table 3.2, which of course is
highly subjective.

Channel irregularities and curvature, especially in natural streams, produce energy
losses which are difficult to evaluate separately. As such, they are combined with the
boundary resistance by suitably increasing the value of n. The procedure is some-
times also applied to account for other types of form losses, such as obstructions that
may occur in a reach of channel.

An interesting feature of the roughness coefficient is observed in some large
rivers, where values of n at high stages have been found to be smaller when com-
pared to the values of n at low stages. Typically, n can change from a value, such as
0.05 at low stages to 0.02 at high stages. No satisfactory explanation is available for
this phenomenon. Another instance of similar, but possibly unrelated, variation of n
with the stage is found in the flow through circular channels, such as sewers and tile
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drains. In this case the largest value of n is found to occur when the depth of flow
Yy, = 0.25 D and the least value at y, = D, where D = diameter of the channel. The
range of variation of n is about 30 per cent.

The resistance to flow in alluvial channels is complex owing to the interaction of
the flow, fluid and boundary. Detailed information on this is available in standard
treatises on sediment transport (Section 11.3).

3.10 EQUIVALENT ROUGHNESS

In some channels different parts of the channel perimeter may have different rough-
nesses. Canals in which only the sides are lined, laboratory flumes with glass side
walls and rough bed, natural rivers with sandy bed and sides with vegetation, flood
plains with different land uses are some typical examples. For such channels it is
necessary to determine an equivalent roughness coefficient that can be applied to the
entire cross-sectional perimeter for use in Manning’s formula. This equivalent rough-
ness, also called the composite roughness, represents a weighted average value for
the roughness coefficient.

A large number of formulae, proposed by various investigators for calculating
equivalent roughness of multi-roughness channel are available in literature. All of
them are based on some assumptions and are approximately effective to the same
degree. One of the commonly used method due to Horton (1933) and Einstein
(1934) is described below. Table 3.3 lists several proposed formulae for equivalent
roughness. For calculating subareas the dividing lines can be vertical lines or bisec-
tor of angles at the break in the geometry of the roughness element.

3.10.1 Horton’s Method of Equivalent Roughness Estimation:

Consider a channel having its perimeter composed of N types of roughness, P, P,, ..., P,
..., P are the lengths of these N partsand n,, n,, ..., . ..., n are the respective roughness
coefficients (Fig. 3.8). Let each part P, be associated with a partial area A, such that

N

Z A=A+A+.+A+.+A =A=total area

\ %

Fig. 3.8 Multi-roughness type perimeter
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It is assumed that the mean velocity in each partial area is the mean velocity V for
the entire area of flow, i.e.,

V,=V,=..=V,= ..V, =V

i N

By the Manning’s formula

81/2 _ Vlnl _ V2n2 _ _ Vini _ _ VN nN
0 2/3 2/3 2/3 2/3
- Rl a RZ - a Ri - - RN
Vn
= i (3.24)
Where n = equivalent roughness
A 2/3 n P2/3
From Eq. 3.24 [K] = nipim
"R
A=A T (3.25)
> (P
2A=A=A S
n_3’2P_ 2/3
ie. n= M (3.26)

This equation affords a means of estimating the equivalent roughness of a channel
having multiple roughness types in its perimeter. This formula was independently
developed by Horton in 1933 and by Einstein in 1934. However, Eq. 3.26 is popu-
larly known as Horton’s formula

If the Darcy—Weisbach friction formula is used under the same assumption of
(i) Velocity being equal in all the partial areas, and (ii) slope S, is common to all par-
tial areas, then

2 2
hf/L:SOZfi: fv'p
8gR 80A
2
Hence V_:A:i
8gS, Pf Pf

Pf . :
Thus AlA = ot and on summation S AIA= -1



or

S Pf = Pf
> Pt
=
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(3.27)

Table 3.3 lists some of the equations proposed for estimation of equivalent
roughness. This list is extracted from Ref. 16 which contains a list of 17 equations for
composite roughness calculation.

Table 3.3 Equations for Equivalent Roughness Coefficient (Ref10,16)

SI. No Investigator n, Concept

1 Horton (1933); Einstein 1 213 Mean \klocity is constant
(1934) = IEZ(nf/ZPi)] in all subareas.

2 Pavlovskii (1931) 1 1/2 Total resistance force F is
Muhlhofer (1933) = I—Z(nizﬂ)l sum of subarea resistance
Einstein and Banks (1950) P forces, Z F

3 Lotter (1932) PR®/3 Total discharge is sum of

T PR subarea discharges
X
4 Felkel (1960) P Total discharge is sum of
P subarea discharges
2on,

5 Krishnamurthy and Z Ph2Inn Logarithmic velocity

Christensen (1972) =exp s distribution over depth h
Z Ph for wide channel
6 Yen (1991) Z (nP) Total shear velocity is
== weighted sum of subarea
P shear velocity

Example 3.3 | o earthen trapezoidal channel (n = 0.025) has a bottom width

of 5.0 m, side slopes of 1.5 horizontal: 1 vertical and a uniform flow depth of 1.1 m.
In an economic study to remedy excessive seepage from the canal two proposals, viz
(a) to line the sides only, and (b) to line the bed only are considered. If the lining is
of smooth concrete (n =0.012), determine the equivalent roughness in the above two
cases by using (i) Horton’s formula, and by (ii) Pavlovskii formula.

Solution Case (@) Lining of the sides only
Here for the bed: n,= 0.025, and P, = 5.0 m.

For the sides: n, = n, = 0.012, and P, = P, = 1.10 x /14 (1.5)> = 1.983 m
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2/3
(i) Equivalent roughness n_by Horton’s formula: n, = [%Z(nf’zpi)]

[5.0(0.025)" +1.983x (0.012)" +1.983x (0.012)*?| " ¢ 085448 00158
e [5.0+1.983+1.983]*° 431584
1/2
(ii) Equivalent roughness n_by Pavlovskii formula: n, = [%Z(nfﬁ)]
[5.0%(0.025)° +1.983x (0.012)? +1.983x (0.012)’]*  0,060796 00203
e [5.0 +1.983+1.983]"2 299433

Case (b) Lining of the bed only
Here for the bed: n,= 0.012 and P,= 5.0 m.

For the sides: n, = n, = 0.025, and P,= P,=1.10 x {1+ 1.5)> = 1.983 m
l 2/3
(i) Equivalent roughness n_by Horton’s formula: n, = [EZ(nf’zPi)]

3/2 32 32128
[5.0x(0.012)" +1.983x (0.025)** +1.983x (0.025)"* |~ 0.079107

. — = =0.01833
[5.0+1.983+1.983] 4.31584

1/2
(i) Equivalent roughness n_by Pavlovskii formula: n, = l%Z(nﬁPi)]

[5.0x (0.012)% 4+-1.983x (0.025)* 4-1.983 % (0.025)* 0.05656
n = —
e [5.0 +1.9834-1.983]"? 2.99433

]1/2

= 0.01889

3.11 UNIFORM FLOW COMPUTATIONS

The Manning’s formula (Eg. 3.11) and the continuity equation, Q = AV form the
basic equations for uniform-flow computations. The discharge Q is then given by

Q= %ARmSé’z (3.28)
=K /S, (3.28a)

where, K = 1 AR?3is called the conveyance of the channel and expresses the dis-
n

charge capacity of the channel per unit longitudinal slope. The term nK = AR?? is
sometimes called the section factor for uniform-flow computations.
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For a given channel, AR??is a function of the depth of flow. For example, consider
a trapezoidal section of bottom width = B and side slope m horizontal: 1 vertical.
Then,

A= (B + my)y
P=(B+2y ym*+1)
R__ (B+my)y
(B+2y ym? +1)
5/3,,5/3
AR =BTV ey (3.29)

(B+2y ’mZ _"_1)2/3

For a given channel, B and m are fixed and AR?® = f (). Figure 3.9 shows the rela-
2/3

tionship of Eq. 3.29 in a non-dimensional manner by plotting ¢:W vs y/B for

different values of m. It may be seen that for m > 0, there is only one value y/B for each
value of ¢, indicating that for m > 0, AR?? is a single-valued function of y. This is also
true for any other shape of channel provided that the top width is either constant or
increases with depth. We shall denote these channels as channels of the first kind.

Since AR% = on and if nand S are fixed for a channel, the channels of the first

S0
kind have a unique depth in uniform flow associated with each discharge. This depth
is called the normal depth. Thus the normal depth is defined as the depth of flow at
which a given discharge flows as uniform flow in a given channel. The normal depth

0.1 1.0 5.0
AT T T T T T T T T T T T T T T 7T T T T 7

— m =0 (Rectangular) -

Y/B
T

1.0 1.0
0.9
0.8
0.7

06

05

041

| T I 0.3
0.1 0.2 0.3 0.4 0.6 0.8 1.0 2.0 30 4050

0.3

¢é=AR23/B83

Fig. 3.9 Variation qf¢ with y/B in trapezoidal channels
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is designated as y,, the suffix ‘0 being usually used to indicate uniform-flow condi-
tions. The channels of the first kind thus have one normal depth only.

While a majority of the channels belong to the first kind, sometimes one encoun-
ters channels with closing top width. Circular and ovoid sewers are typical examples
of this category, Channels with a closing top-width can be designated as channels of
the second kind.

The variation of AR?® with depth of flow in two geometries of channels of second
kind is shown in Fig. 3.10. It may be seen that in some ranges of depth, AR¥® is not a
single valued function of depth. For example

-m A Shaped Channels
1 [Trapezoidal Channels
Iy with negative side slope]

m=-0.25

N

2.0

15

1.0
0.9

0.8
0.7

0.6

0.5 Circular channel

y/D —»

y/B

0.4

0.3

I\ T

0.2 i 1

C Circular section 7

0.15 | 1 | L | 1 | 1 [T
0.025 0.05 0.0750.1 0.15 0.20 0.25 0.30 0.35

AR23/ B8R for A shaped Channels
AR?23/ D83 for Circular Channels
Fig. 3.10 Variation quRZ/3 in channels ofthe second kind

(i) for circular channels the range %> 0.82 has two values of y for a given

value of AR?3,
(ii) for A shaped channels the following ranges of y/B, which depend on the
value of side slope m, have two depths for a given value of AR?3;

o for m = - 0.25, the range % >0.71

e for m = - 0.50, the range % >1.30
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As can be seen form Fig. 3.10, the channels of the second kind will have a finite depth
of flow at which AR?, and hence the discharge for a given channel is maximum.

Types of Problems Uniform flow computation problems are relatively simple.
The available relations are

1. Manning’s formula

2. Continuity equation

3. Geometry of the cross section

The basic variables in uniform flow situations can be the discharge Q, velocity of
flow V, normal depth y,, roughness coefficient n, channel slope S; and the geometric
elements (e, g., B and m for a trapezoidal channel), There can be many other derived
variables accompanied by corresponding relationships. From among the above, the
following five types of basic problems are recognized.

Problem type Given Required

1 Y, N, S,, Geometric elements QandV

2 Q, Y, N, Geometric elements S,

3 Q. Y, S, Geometric elements n

4 Q, n, S,, Geometric elements Yo

5 Q. Y, n, S,, Geometry Geometric elements

Problems of the types 1, 2 and 3 normally have explicit solutions and hence do not
present any difficulty in their calculations. Problems of the types 4 and 5 usually do
not have explicit solutions and as such may involve trial-and-error solutions proce-
dures. A typical example for each type of problem is given below.

Example 3.4 | p tranesoidal channel is 10.0 m wide and has a side slope of 1.5

horizontal: 1 vertical. The bed slope is 0.0003. The channel is lined with smooth concrete
of n =0.012. Compute the mean velocity and discharge for a depth of flow of 3.0 m.

N 2

1
‘ 1.5
Yo

|

—10m——!

Fig. 3.11 Example 3.4

Solution Let Y, = uniform flow depth
Here B = 10.0 m and side slope m = 1.5
Area A=B+my)y
= (10.0 + 1.5 x 3.0) 3.0 = 43.50 m?

Wetted perimeter P=B+2yym?+1
=100 +2y225+1 x3.0=20.817m
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Hydraulic radius R= é: 2.090 m
Mean velocity v=1 R}
n
1
= % (2.09)** x (0.0003)"?
0.012 ( ) ( )
=2.36m/s
Discharge Q = AV =102.63 m¥/s

Example 3.5 | | ihe channel of Example 3.4, find the bottom slope necessary to
carry only 50 m¥/s of the discharge at a depth of 3.0 m.

Solution A = 43.50 m?
P=120.817m
R=209m
. Q%n® _ (50.0)* x(0.012)?
° " A?R*® T (43.5)?x(2.09)*"°

= 0.0000712

Example 3.6 | p yriangular channel with an apex angle of 75° carries a flow of
1.2 m¥/s at a depth of 0.80 m. If the bed slope is 0.009, find the roughness coefficient

of the channel.

Solution y, = normal depth = 0.80 m

Fig. 3.12 Example 3.6

Referring to Fig. 3.12

Area A= %x0.80x2><0.8tan [?]

= 0.491 m?
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Wetted perimeter P=2x 0.8 x sec 37.5°=2.0168 m
R=A/P=0.243m

n— ARYS)? (0.491) x (0.243)*" x (0.009)"
Q 1.20
n=0.0151

Example 3.7 | 5 0.m wide trapezoidal channel having a side slope of 1.5 hori-

zontal: 1 vertical is laid on a slope of 0.00035. The roughness coefficient n =0.015. Find
the normal depth for a discharge of 20 m®/s through this channel.

Solution Let
y, = normal depth
Area A=(50+15y)y,
Wetted perimeter P=50+2v325Yy,
=5.0+3.606y,
R— AP — (5.0+1.5y,)y,
(5.04+3.606y,)
Qn

The section factor AR?? = \/§
0

5/3,,5/3
(5.0+15y,)y;" _ 20x0015 _ . .

(5.0+3.606Y,)**  (0.00035)"*
Algebraically, y, can be found from the above equation by the trial-and-error
method. The normal depth is found to be 1.820 m

Example 3.8 | 5 concrete-lined trapezoidal channel (n = 0.015) is to have a

side slope of 1.0 horizontal: 1 vertical. The bottom slope is to be 0.0004. Find the
bottom width of the channel necessary to carry 100 m?/s of discharge at a normal
depth of 2.50 m.

Solution  Let B = bottom width. Here, y, = normal depth = 2.50 m, m = 1.0
Area A=(B+25)x25

Wetted perimeter P =(B+22x25) =B+ 7.071
Qn  100x0.015

— — AR2/3
JS,  +/0.0004
[(B+25)x25"° .
(B+7.07)%

By trial-and-error B =16.33m.
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3.11.1 Computation of Normal Depth

It is evident from Example 3.7 that the calculation of normal depth for a trapezoidal
channel involves a trial-and-error solution. This is true for many other channel shapes
also. Since practically all open channel problems involve normal depth, special attention
towards providing aids for quicker calculations of normal depth is warranted. A few
aids for computing normal depth in some common channel sections are given below.

3.11.2 Rectangular Channel

(a) Wide Rectangular Channel For a rectangular channel, (Fig. 3.13)

v _ Area A =By,
= T Wetter perimeter P =B + 2y,
I’ Hydraulic radius
! B ! R ByO yO

Fig. 3.13 Rectangular channel B+2y, 1+2y, /B
Asy, /B, the aspect ratio of the channel decreases, R — y,. Such channels with large
bed-widths as compared to their respective depths are known as wide rectangular chan-
nels. In these channels, the hydraulic radius approximates to the depth of flow.
Considering a unit width of a wide rectangular channel,

A=y,R=Yy, and B=1.0

% = q = discharge per unit width = % ¥s© Sy’
3/5
gn
y, = |- (3.30)
JS

This approximation of a wide rectangular channel is found applicable to rectangular
channels with y /B < 0.02.

( b) Rectangular Channels with yo/ B >0.02 For these channels ﬂ = AR?%?

Ny

AR2/3 — (By0)5l3 o (yO / B)5l3 88/3

(B+2yo)2/3 (l+ 2y0 / B)2l3

Qn AR2/3 _ (770)5/3

= = = 3.31
\/§88/3 B8/ (1+2710)2/3 qj)(no) ( )

Yo
B

Where Mo =
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Tables of ¢ (1,) vs i, will provide a non-dimensional graphical solution aid for

general application. Since ¢ = \/E“m , one can easily find y,/B from this table for
S,B

any combination of Q, n, S; and B in a rectangular channel.

3.11.3 Trapezoidal Channel

Following a procedure similar to the above, for a trapezoidal section of side slope
m: 1, (Fig. 3.14)

AN

ulq
=

m
Yo
— B —
Fig. 3.14 Trapezoidal channel
Area A=B+my)y,
Wetter perimeter P = (B + 2y/m? +1y,)
B+m
Hydraulic radius R = A/P = (B+mY)Y,
(B+2Jym? +1y,)
Qn — AR?® — (B+ mYO)5/3 yg/3
\/g (B+2 /mz 1 yO)2/3
Non-dimensionalising the variables,
AR2/3 _ Qn _ (1+m770)5/3(770)5l3 _ 332
e _\/S—Bm_ \/ 2 2/3_¢(77°'m) (3.32)
o (1+2ym°+11n,)
Where 7, =Y,/B

Equation 3.32 could be represented as curves or Tables of ¢ vs n, with m as the third
parameter to provide a general normal depth solution aid. It may be noted thatm = 0 is
the case of a rectangular channel. Table 3A.1 given in Appendix 3A at the end
of this chapter gives values of ¢ for n, in the range 0.1 to 1.70 and m in the range 0
to 2.5. Values of 7, are close enough for linear interpolation between successive
values. This table will be useful in quick solution of a variety of uniform flow prob-
lems in rectangular and trapezoidal channels. Similar table of ¢ vs 7, for any desired
m values and ranges of 7, can be prepared very easily by using a spread sheet such as
MS Excel.
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Example 3.9 | ) yanez0idal channel with a bed width of 5.0 m and side slopes

of 1.5 H: 1V is laid on a slope of 0.0004. Find the normal depth corresponding to
discharges of (i) 10.0 m%/s, and (ii) 20.0 m¥s in this channel. Use Table 3A.1 and take
n = 0.015 for both cases.

Solution For Q = 10.0 m¥/s

po_On _ 10.0;20.015 0102
JS,B¥  (0.0004)"* x (5.0)

Looking up in Table 3A.1 under m = 1.5
¢=0.10211  for n,=0.240
¢=0.10597  for n,=0.245

By linear interpolation 7, = 0.24063 for ¢ = 0.1026.

Thus normal depth y, = 0.24063 x 5.0 = 1.203 m

For Q = 20.0 m¥/s.

Qn 20.0x0.015
i JS, B (0.0004)"% x (5.0)*

Looking up in Table 3A.1 underm =15

¢ =0.20382  for 7,=0.350

¢ =0.20930 for 7,=0.355
By linear interpolation 7, = 0.3513 for ¢ = 0.2052.
Thus normal depthy, = 0.3513 x 5.0 = 1.756 m

3.11.4 Circular Channel

Let D be diameter of a circular channel (Fig 3.15) and 26 be the angle in radians
subtended by the water surface at the centre.
A = area of the flow section
= area of the sector OMN - area of the triangle OMN

A=l r(fZHfl.Zr0 sin 6. r, cosf
2 2

= % (r?20—r7 sin 20)

DZ
. o = — (20—sin20) (333)
= Nt
Yo :
\ / _l_ P = wetted perimeter

Fig. 3.15 Circular channel
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Alsocos = fo=Yo _[;_2Y%
r, D

Hence 0 =1(y,/D)

1
Q — HAR2/35(1|J./2

Assuming n = constant for all depths
Qn A" DY® (20—sin20)*"

\/S_ ~pe = g7 (D)™
0 0
Non-dimensionalising both sides

Qn AR?® 1 (0—sin20)™”

\/ng/g - Dsla - 32 92/3

= ¢ (y,/D) (3.35)

The functional relationship of Eq. 3.35 has been evaluated for various values of
y,/D and is given in Table 2A.1 in Appendix 2A. Besides AR*}/D®?, other geomet-
ric elements of a circular channel are also given in the table which is very handy in
solving problems related to circular channels. Using this table, with linear interpo-
lations wherever necessary, the normal depth for a given D, Q, nand S in a circular
channel can be determined easily. The graphical plot of Eg. 3.35 is also shown in
Fig. 3.10.

As noted earlier, for depths of flow greater than 0.82D, there will be two normal
depths in a circular channel. In practice, it is usual to restrict the depth of flow to a
value of 0.8 D to avoid the region of two normal depths. In the region y/D > 0.82, a
small disturbance in the water surface may lead the water surface to seek alternate
normal depths, thus contributing to the instability of the water surface.

Example 3.10 || A trunk sewer pipe of 2.0-m diameter is laid on a slope of 0.0004.
Find the depth of flow when the discharge is 2.0 m%/s. (Assume n =0.014.)

Solution AR®  Qn  20x0014
D™ [5,D%  /0.0004 x (2.0)*"
= 0.22049
2/3
From Table 2A. 2, ART — 0.22004 at Yo _ 0.62
D D

=0.22532 aty /D = 0.63
By interpolation, for AR?*?/D%3 = 0.22049, y /D = 0.621
The normal depth of flow y,=1242m

[Note: The advantage of using Table 2A.1 in calculating the normal depth in
circular channels can be appreciated if one tries to solve this problem by trial
and error]
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3.12 STANDARD LINED CANAL SECTIONS

Canals are very often lined to reduce seepage losses and related problems. Exposed
hard surface lining using materials such as cement concrete, brick tiles, asphaltic
concrete and stone masonry form one of the important category of canal lining and
especially so for canals with large discharges. For such hard surface lined canals
the cross-section recommended by Indian Standards (IS: 4745 — 1968)*? consists of
a trapezoidal cross-section with corners rounded off with a radius equal to the full
supply depth, (Fig. 3.16). For discharges less than 55 m®/s, a triangular lined section
with bottom portion rounded off with a radius equal to full supply depth, (Fig. 3.17),
is recommended by the Central Water Commission. (CWC), India. For convenience
and ease of identification, the above two channel sections are termed standard lined
canal sections and, in particular, as standard lined trapezoidal section and standard
lined triangular section respectively. Note that the standard lined triangular section
is the limiting case of the standard lined trapezoidal section with B = 0. These stan-
dard lined sections have interesting geometrical properties which are beneficial in the
solution of some uniform flow problems.

|I|| <l

@

Fig. 3.16 Standard lined trapezoidal channel section for Q > 55 m’/s

Standard Lined Trapezoidal Section Referring to Fig. 3.16, the full supply depth
= normal depth at design discharge = y,. At normal depth

Area A =By, + myS+y, 0

=B +Y,e)Y, (3.36)
Where e=m+60=m+tan’ %] (3.37)
Wetter perimeter P=B+2my,+2y,0=B+2ye (3.38)
Hydraulic radius R=AP= B+ %)y

B +2ye
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By Manning’s formula
_1
n

(B‘|‘y05)5l3ygl3 L
(B+2y,e)*® |°

Non-dimensionalising the variables,

/3 __5/3
Qne*® (L4 n,)""n;
vzges ¢ (o) = Ao (3.39)
Sy 1+ 2n,)
Yo
Where N, = [%]

From Eq. 3.39 the function ¢, can be easily evaluated for various values of 7,.
A table of ¢, vs 7, or a curve of ¢, vs 7, affords a quick method for the solution of
many types of problems associated with lined trapezoidal channels.

Standard Lined Triangular Section Referring to Fig. 3. 17, at normal depth y,,

my?
Area A= 2 20 +0y =cy? (3.40)
-1 1
Where as before e=m+0=|m—+tan —
m
Wetted perimeter P=2ye (3.41)
and hydraulic radius R=AP=y/2 (3.42)

By Manning’s formula Q= 1(syé)(yO 12)73s)?
n

Qn
0

Yo €

By using Eq. 3.43 elements of standard lined triangular channels in uniform flow
can be easily determined.

2

DN 0
Yo m =cot 6

S

Fig. 3.17 Standard lined triangular channel sectionfor Q<55 m’/s
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Example 3.11 || A standard lined trapezoidal canal section is to be designed to
convey 100 m¥/s of flow. The side slopes are to be 1.5 horizontal: 1 vertical and Man-
ning’s n = 0.016. The longitudinal slope of the bed is 1 in 5000. If a bed width of 10.0
m is preferred what would be the normal depth?

Solution Referring to Fig. 3.16, m = side slope = 1.5
e=m+tan 1_ 1.5+tan *(1/1.5) = 2.088
m

Further, here Q = 100.0 m%s, n = 0.016, S, = 0.0002, B = 10.0 m
~ Qne”®  100x0.016 x (2.088)*°

_ _ —0.8314
% sJ2g%* (0.0002) % (10.0)*"
1+ 5/3 5/3
By Eq.(3.39) 6 = % — 0.8314
0
5/3 5/3
On Simplifying, % — 0.8951
o

On solving by trial and error Ny = % =0.74

_ 0.74x10.0

= =3.544m
Yo 2.088

The normal depth

Example 3.12 || Show that for a standard lined trapezoidal canal section with side
slopes of m horizontal: 1 vertical, and carrying a discharge of Q with a velocity V.,

I T . A
2 M—4

T =75
Qs3/2
0
V/ne

Also examine the situation when (i) M — 4 and (ii) M < 4.

E;5:m+tan‘11;M:
B m

Where 7, = and n is Manning’s coefficient.

Solution For a standard lined trapezoidal canal section (Fig.3.16)

Area A= (B+yze)Y,= QN (3.44)
Perimeter P=(B+2Y,e)
Hydraulic radius R = A/R = Q (3.45)
\.P
From Manning’s formula  V, = 1 R**g)?
n
vin®
i.e R?= = (3.46)

3/2
S0
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2 3,3
Substituting for R in Eq. 3.45 Q :Vs_n
VSZPZ S(:)%/Z
2g3/2 2 2
Hence p2— (3/5—;3: BZ[1+%] (3.47)
S
. Yo€
Puttin = 20
1
from Eq. 3.44 B = E[g]—
\A 1+ 770)770
. . ] 1 2 2 253/2 V
Substituting for B? in Eq. 3.47 ( j ) _Q e
M5 + 1, von® |eQ
ng/z
TVt M
S

Hence 1+ 475 + 4n,= M + My,
M-4) n+M-4)n-1=0

1

T T
2 M—-4

On solving N, ==

(i) WhenM — 4,7, = % — 00, since y, and ¢ are finite values this corresponds
to B — 0.Thus M = 4, corresponds to the case of standard lined triangular
channel section.

(i) When M < 4, n is imaginary and hence this is not physically realisable
proposition.

[Note: The expression for 7 in terms of M derived as above is very useful in solv-
ing some uniform flow problems relating to standard lined trapezoidal sections
where V_ is known, (for e.g. Problem 3.28)].

3.13 MAXIMUM DISCHARGE OF A CHANNEL OF THE SECOND KIND

It was shown in Section 3.11 that the channels of the second kind have two nor-
mal depths in a certain range and there exists a finite depth at which these sec-
tions carry maximum discharge. The condition for maximum discharge can be
expressed as

Q_, (3.48)
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Assuming n = constant at all depths, for a constant S, Eq. 3.48 can be rewrit-
ten as

i(AR“) =0 (3.49)
dy

. d, o

ie. —(A°/P")=0 (3.49)
dy

Knowing AR?® = f (y) for a given channel, Eq. 3.49 can be used to evaluate the
depth for maximum discharge.

Example 3.13 || Analyse the maximum discharge in a circular channel.

Solution Referring to Fig. 3.15, from Eqg. 3.33
D2
and from Eq. 3.34 P=Dé
For the maximum discharge, from Eq. 3.49a
d 5 2
— (A°/P%)=0
0 ( )

i.e. 5P %—ZA d—P:O
o[7 do

D? D2
5D0 —- (22 cos 20)—2?(20—sin 20)D =0

30-50cos 20 +sin20=0

The solution of this equation is obtained as 0 = 150°17,

1-—cosé 0938

y,/D =

Hence the depth of flow for maximum discharge y, = 0.938 D

2/3

At y,/D = 0.935, W] =0.3353

AR2/3

D8/3

Also when y,/D = 1.0, [ ] =0.3117

Hence if Q, = discharge with y, = D, i.e. the pipe running just full, and Q = maxi-
mum discharge then
Q, 0.3353

~m _ =1.0757
Q, 03117
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Thus the maximum discharge will be 7.6 per cent more than the pipe full discharge.
[Note that if chezy formula with a constant C is used, Eq. 3.49 would become

di (AR¥2) = 0. The solution would correspondingly change. The depth for maxi-
y

mum discharge would be y, = 0.95D.]

3.14 HYDRAULICALLY EFFICIENT CHANNEL SECTION

The conveyance of a channel section of a given area increases with a decrease in its
perimeter. Hence a channel section having the minimum perimeter for a given area
of flow provides the maximum value of the conveyance. With the slope, roughness
coefficient and area of flow fixed, a minimum perimeter section will represent the
hydraulically efficient section as it conveys the maximum discharge. This channel
section is also called the best section.

Of all the various possible open channel sections, the semicircular shape has the
least amount of perimeter for a given area. However, for any other selected geometri-
cal shape, the relationship between the various geometric elements to form an effi-
cient section can be obtained as follows.

(a) Rectangular Section Bottom width = B and depth of flow =y
Area of flow A = By = constant
Wetted perimeter P =B + 2y

A
=— +2 v
y = T
If P is to be minimum with A Ye = %
= constant, l
d_P e AZ + 2 — O ) B )
dy y : e !
Fig. 3.18 Hydraulically gﬁcient rectangular channel
Which gives A=2y?
i.e. y,=B./2,B,=2y,andR, = % (3.50)

The suffix ‘e’ denotes the geometric elements of a hydraulically efficient section.
Thus it is seen that for a rectangular channel when the depth of flow is equal to half
the bottom width, i.e., when the channel section is a half-square, a hydraulically effi-
cient section is obtained (Fig. 3.18).

(b) Trapezoidal Section Bottom width = B, side slope = m horizontal: 1 vertical
Area A = (B + my) y = constant

B= ? -my (3.51)
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Wetter perimeter B+ ZyM
:L;‘ my +2yym? +1 (3.52)
Keeping A and m as fixed, for a hydraulically efficient section,
%:_%—mu m’ +1=0
. A= (2 T+m? — m) v (3.53)
Substituting in eqs 3.51 and 3.52
B, =2y, (W - m) (3.54)
P =2y, (2 1+ m? —m) (3.55)
(2 1+m? — m) y?
R = y, /2 (3.56)

2(2 14+m? —m) Y,

A hydraulically efficient trapezoidal section having the proportions given by Eqs
3.53t0 3.56 is indicated in Fig. 3.19. Let O be centre of the water surface. OS and OT
are perpendiculars drawn to the bed and sides respectively.

OS =y,
OT =ORsinf = OR
m? +1
\ 0 v /
R =
e 1
\ s
Ye
g T
0 0
S
| Be I

Fig. 3.19 Hydraulically efficient trapezoidal channel

OR = %Be +my,.

Substituting for B, from
Eqg. 3.50,

OR = y,y1+m?

OT=0S=y,

Thus the proportions of a
hydraulically efficient trape-
zoidal section will be such
that a semicircle can be insc-
ribed in it.

In the above analysis, the side slope m was held constant. However, if m is allowed
to vary, the optimum value of m to make P, most efficient is obtained by putting

ar =0, from Egs 3.55 and 3.53
dm
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P, = 2A@VL+ m? —m) (3.57)

Setting % =0in Eq. 3.57 gives
m
1
m,, = —= = cotd
NE]
g,,= 60°

Where the suffix ‘em’ denotes the most efficient section, Further.

P, =2V, [2\/1+1/ —i]zzﬁ Yo (3.58a)
3
1) 2
B, =2Y,,|2J1+1/3——|=-=v., 3.58b
’ [ v gt (3:550)
A:[Zw/l—kl/ —%]yjm =3y2, (3.58¢)

If L = length of the inclined side of the canal, it is easily seen that
2
Lem == yem = Bem
NE]

Thus the hydraulically most efficient trapezoidal section is one-half of a regular
hexagon.

Using the above approach, the relationship between the various geometrical ele-
ments to make different channel shapes hydraulically efficient can be determined.
Table 3.4 contains the geometrical relation of some most efficient sections.

3.14.1 Uniform flow in Most Efficient Channels

It is seen from Table 3.4 that the area A and hydraulic radius R of a most efficient
hydraulic section can be represented as

A, =k y? andR =K,y where K and K, are constants which depend upon the
channel shape. Thus the discharge in uniform flow through a most efficient channel
section can be represented as

1
Q = E(Klyezm) ><(szem)ys X(Sélz)

Qn
873G 172 = Ken (3.59)
0

Yem

where K, = K K,2® = is a constant unique to each channel shape. Thus for rectangu-
lar shape, from Table 3.4, K, = 2 and K, = Y2and hence K, = 1.260. similarly, values
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Table 3.4 Proportions quome Most lﬁcient Sections

Sl Channel Area Wetted Width ~ Hydraulic  Top Qn
No Shape (A,,) Perimeter (B,) Radius  width W
(G R.,) T,)
= Kem
1 Rectangle Vor
(Half square) 2 y2 4y, 2Yen K3 2y, 1.260
2 Trapezoidal (Half ) A
regular hexagon, 3y 23 £ Yem Yem 1.091
1 ) \/—yem \/—yem \/é yem 2 \/5 o
m=—
NE]
3 Circular (semi- - = Yem
circular) Pl Yen Yo 2y, 2 2 Yem 0.9895

4 Triangle (Vertex y
= 9Q° 2 2v3 - =z 3
angle 90° Yem \/—yem 2\/5 2 yem 0.500

of K_ for other channel shapes are calculated and shown in Col. 8 of Table 3.4. The
use of K_ in calculating parameters of uniform flow in most efficient channel sec-
tions is shown in Example 3.15 and 3.16.

Example 3.14 || A slightly rough brick-lined ( n = 0.017) trapezoidal channel
carrying a discharge of 25.0 m%s is to have a longitudinal slope of 0.0004. Analyse
the proportions of an efficient trapezoidal channel section having a side slope of 1.5
horizontal: 1 vertical.

Solution For an efficient trapezoidal section having a side slope of m, by Eq. 3.53
A= (2><\/1+ m? — m) Y2 = (2x,/1+(1.5)2 —1.5) v
R,=Y/2and Q = 25.0 m%s

Substituting a Manning’s formula,

25.0 = x(2.1056y2) x (y, / 2)** x(0.0004)"?

0.017

y,=2.830m
By Eq. (354), B, =2y, (V1+ m? —m) = 2x2.830x (y1+ (1.5)° —(1.5)) =1.714m

Example 3.15 || When the normal depth of flow in most efficient circular con-
crete (n = 0.014) section laid on a bed slope of 0.005 is 0.50 m, estimate the
discharge.
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Solutions For the most efficient circular section

From Table 3.4, % = 0.9895. In the present case y, = 0.5 and S, = 0.005.
em <0
Hence Q = %x (0.5)*” x(0.005)"2 = 0.787 m%/s.

Example 3.16 || Determine the normal depth, bed width and sides slopes of a
most efficient trapezoidal channel section to carry a discharge of 25 m%/s. The longi-
tudinal slope of the channel is to be 0.0009 and Manning’s n can be taken as 0.015.

Solution  For the most efficient trapezoidal section

From Table 3.4, % = 1.091. In the present case Q = 25.0 m*/s and S, = 0.0009.
em ~0
1/2
Hence y.*° — 1.091x(0.0009)™ _ 0.08728
25.0%0.015

Y,, = 2.50m

Also, from Table 3.4,B_ = iy —i><2 50=2.887m
! T Zem \/é em \/é . .

Sides slope of most efficient trapezoidal channel section, m = = =0.57735

V3

3.15 THE SECOND HYDRAULIC EXPONENT N

The conveyance of a channel is in general a function of the depth of flow. In cal-
culations involving gradually varied flow, for purposes of integration, Bakhmeteff
introduced the following assumption

K2=C,y" (3.60)

Where C,= a coefficient and N = an exponent called here as the second hydraulic
exponent to distinguish it from the first hydraulic exponent M associated with the
critical depth. It is found that the second hydraulic exponent N is essentially constant
for a channel over a wide range of depths. Alternatively, N is usually a slowly varying
function of the aspect ratio of the channel.

To determine N for any channel, a plot of log K vs log y is prepared. If N is con-
stant between two points (K., y,) and (K., y,) in this plot, it is determined as

5 log (K, /K,)
log (y,/Y,)
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4.0 T T T T T T

Third parameter = m

20

1.0

y/B
T

0.4 r
0.3

0.2 |—

0.1

0.04 Liavatari ! ]
2.0 2.5 3.0 3.5 4.0 4.5 5.0

Fig. 3.20 Variation of the second hydraulic exponent N in trapezoidal channels

2/3

For a trapezoidal channel, if ¢ = AI‘BRT given in Table 3A.1 is plotted against n =
y/B on a log paper, from the slope of the curve at any #, the value of N at that point can
be estimated. Figure 3.20 shows the variation of N for trapezoidal channels. The values
of N in this curve have been generated based on the slope of the log K — log y relation
using a computer. Figure 3.20 is useful in the quick estimation of N. It is seen from this
figure that N is a slowly-varying function of y/B. For a trapezoidal section, the mini-
mum value of N = 2.0 is obtained for a deep rectangular channel and a maximum value
of N = 5.33 is obtained for a triangular channel. It may be noted that if the Chezy for-
mula with C = constant is used, values of N different from the above would result.

Example 3.17 || Obtain the value N for (a) a wide rectangular channel, and
(b) a triangular channel.

Solution (a) For a Wide Rectangular Channel
Considering unit width, A=y

R=y

2 1 2 4/3 N

K ==y (y")=C,y
n
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By equating the exponents of y on both sides; N = 3.33
(b) For a Triangular Channel of Side Slope m Horizontal: 1 Vertical

A=my? P =2y{m?+1

m

24m? +1 y

R =

4/3
N

1
Kzzn—z(myz)2 y| =C,y

2dm? +1

By equating the exponents of y on both sides, N = 5.33.

3.16 COMPOUND CHANNELS

A compound channel is a channel section composed of a main deep portion and
one or two flood plains that carry high-water flows. The main channel carries
the dry weather flow and during wet season, the flow may spillover the banks
of the main channel to the adjacent flood plains. A majority of natural rivers
have compound sections. A compound section is also known as two-stage chan-
nel. The hydraulic conditions of the main channel and the flood plain differ
considerably, especially in the channel geometry and in its roughness. The
flood plains generally have considerably larger and varied roughness elements.
(Fig. 3.21).

| Left Flood Plain | Main Channel | Right Flood Plain |

I I I I
e v p—

/

ng NR

Ng

Fig. 3.21 Schematic sketch qfa compound channel

The flow in the compound channel when the water is flowing in both the main
and flood plains is indeed complicated. The velocity of flow in the flood plain is
lower than in the main channel due to relative smaller water depth and higher bed
roughness. The main channel flow will have interaction with the flow in the flood
plains leading to severe momentum exchange at the interface. Further, there will
be complicated interaction with the boundaries at the junction which give rise to
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several sets of vortices leading to turbulence generation. The interactions of the
main channel flow and the flood plain flows are indeed very complex. Figure
3.22, due to Knight and Shinno'’, shows a conceptual model of this interaction
scenario. Various prominent flow features at the junction of the main and flood
bank flows are depicted in this figure. The following salient features are
significant:

« At the junction of the main channel with the flood plain a set of vortex structures
having vertical axis extending up to the water surface exist. This vortex set is
believed to be responsible for momentum exchange between the main and shal-
low water flows.

« Presence of helical secondary flows in the longitudinal stream direction at vari-
ous corners of the channel section as shown in Fig. 3.22. These secondary flows
have different directions at different corners and have influence in modifying
the boundary shear stress.

Field observations have indicated that in the overbank flow situation, the mean veloc-
ity of flow for the whole cross section decreases as the depth of flow increases,
reaches a minimum and then onwards begins to increase with the depth.

In one-dimensional analysis, Manning’s formula is applied to the compound
channel by considering a common conveyance K and a common energy slope S, for

Local Velocities Shear Layer
Momentum Transfer

Depth Mean
Velocities

Interface

Secondary
Flows

Boundary
Shear Stress

Fig. 3.22 Conceptual model of interaction of flows in flood bank and main channel (Ref. 17)
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the entire section to obtain the discharge as Q = K /S, . However, to account for
the different hydraulic conditions of the main and flood plain sections, the channel

is considered to be divided into subsections with each subsection having its own
conveyance, K.. The sum of the conveyances will give the total channel convey-
ance (XK, = K) for use in discharge computation. Various methods for defining the
boundaries of the sub-sections are proposed by different researchers leading to a
host of proposed methods. However, the overall method of considering the channel
as a composite of sub sections is well accepted and the method is known as Divided
Channel method (DCM). Currently DCM is widely used and many well-known
software packages, including HEC-RAS (2006), adopt this method in dealing with
compound channels.

3.16.1 Divided Channel Method (DCM)

A large number of methods of defining the sub-sections in the divided channel
method are available in literature. These include vertical interface, diagonal inter-
face; horizontal interface, curved interface and variable interface to divide the sub-
sections. However, the following two methods are popular, been well studied and
have been found to give reasonably good results:

1. Vertical Interface Method In this method the flood banks are separated from
the main channel by means of vertical interface, (as shown in Fig. 3.24). This inter-
face is considered as a surface of zero shear where in no transfer of momentum takes
place. As such, the length of the vertical interface is not included in the calculation of
the wetted perimeter of either the over bank flow or the main channel flow.

2. Diagonal Interface Method In this method, a diagonal interface (as in Fig.
3.23) is considered from the top of the main channel bank to the centerline of the
water surface. This interface is considered to be a surface of zero shear stress and as
such the length of the diagonal interfaces are not included in the calculation of the
wetted perimeters of the over bank and main channel flows. If the over bank portion
has significant roughness discontinuities equivalent roughness (as indicated Sec.
3.10) for over bank region can be adopted.

While there is no general agreement to choose a particular method, it is generally
believed that the vertical interface method or the diagonal interface method seem to
give the best results. HEC-RAS uses vertical interface procedure. In the procedure
adopted by HEC-RAS, the flow in the over bank areas are subdivided using the n-
values break points (locations where n-values change significantly) as the basis.
Main channel is not normally subdivided. Conveyance is calculated for each sub
division by considering vertical interface. It is known the DCM over estimates the
discharge to some extent and due to extreme complexity of the hydraulics of the
problem, a high degree of accuracy in the discharge estimation should not be expected
in any of the procedures connected with compound channels. Example 3.18 illus-
trates the use of these two DCM procedures.
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An improvement of the DCM is the Weighted Divided Channel Method (WDCM)
due to Lambert and Myers. In this method, improved mean velocities in the main
channel and flood plain areas are obtained by using a defined weighing factor to
the velocities in the stream sections predicted by vertical interface method and hori-
zontal interface method. In horizontal interface method the channel is considered to
be divided in to two parts by a horizontal interface at the level of the banks of the
main channel. The top portion is considered as shallow overland flow and the bottom
deep portion is the main channel the depth of flow being only up to the top of the
banks as restricted by the horizontal interface. This interface is considered as a sur-
face of zero shear and as such, the length of the horizontal interface is not included
in the calculation of the wetted perimeter of either the over bank flow or the main
channel flow.

3.16.2 Other Methods

In addition to the DCM, there have been many other approaches to the study of com-
pound channel discharge distribution problem. Ref. (18, 19.) contain brief reviews of
these methods and also results of important studies. Briefly, salient approaches other
than DCM are:

Empirical Methods Several empirical methods have been developed for esti-
mating the discharge division between the main channel and the flood channel. Out
of these methods the Coherence method of Ackers (1993) and the ¢-index method of
Wormleaton and Merrit (1990) are prominent.

Numerical Methods Computation procedures of solving governing equations by
using various turbulence models have been used by various researchers.

Exchange Discharge Model(EDM) This model proposed by Bousmar and
Zech(1999) focuses on exchange of discharges and momentum transfers through a
computation procedures.

Example 3.18 || A compound channel is symmetrical in cross section and has the
following geometric properties.

Main channel: Trapezoidal cross section, Bottom width = 15.0 m, Side slopes =
1.5 H : 1V, Bank full depth = 3.0 m, Manning’s coefficient = 0.03, Longitudinal
slope = 0.0009 Flood plains: Width = 75 m, Side slope = 1.5 H : 1V, Manning’s
coefficient = 0.05, Longitudinal slope = 0.0009. Compute the uniform flow dis-
charge for a flow with total depth of 4.2 m by using DCM with (i) diagonal inter-
face, and (ii) vertical interface procedures.

Solution  The schematic representation of the channel is shown in Fig. 3.23. Figure 3.24
and 3.25 are the definition sketches of diagonal interface and vertical interface meth-
ods, respectively.
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Diagonal
interface

/
A Az
L3 x
A A Az
Sub-area A; Sub-area A

Sub-area A,

Fig. 3.23 Channel cross-sectional area division for diagonal interface procedure-Example-3.18

Vertical

Diagonal
Interface

Distances in meters

Fig. 3.24 Schematic representation of compound channel of Example-3.18

(i) Diagonal Interface Procedure The channel section is considered divided
into three subsections A , A, and A,, by means of two diagonal interface as shown in
Fig. 3.23. The calculation of area and wetted perimeters of each of the three sub-
areas is given below:

By symmetry, Sub-area A, = Sub-area A,. The diagonal interfaces are as indicated in
Fig. 3.23. As per the rules of this computation procedure, the interfaces are treated as

Table of Computation of Geometrical Properties — Diagonal Interfaces:

Sub-  Area Hyd.
area Ele- Area (m?) Wetted Perimeter (m) Radius
ment (m)
A A, [05x12 x (L5 x1.2)] 1.08 [1.2 x (1+1.5)%)°8 2.163
A, 75x12 % |75 75
A, [05x15)+(15x3)] x05x | 7.2 |0 0
1.2
Totals 98.28 77.16 | 1.274
A, A, [15+(1.5%x3.0)] x3.0 58,5 [15+2x3.0 x [1+(1.5)%% |25.82
A, [15+(2x15x3)]x05x1.2 0 0
144
Totals 72.9 25.82 | 2.824
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surfaces of zero shear stress and hence are not included in the calculation of the
wetted perimeter.
Discharge by Manning’s formula:

1

Sub-Area A Q = mxgszsx (1.274)*" % (0.0009)"? =69.287 m®/s
Sub-Area A, Q, = %x 72.90 % (2.824)*° % (0.0009)"? =145.640 m*/s

Sub-Area A, Q, =Q, = $x98.28x(1.274)2’3 % (0.0009)"2 = 69.287 m*/s

Total discharge Q = Q, + Q, + Q, = 284.21 m¥s
(ii) Vertical Interface Procedure The channel section is considered divided
into three subsections, A,, A,, and A,, by means of two vertical interfaces which
start at the intersection of the flood plains and the main channel as shown in
Fig. 3.25. The calculation of area wetted perimeters of each of the three sub-areas
is given below:

By symmetry, sub-area A, = sub-area A,. The vertical interfaces are as indicated in
Fig. 3.25. As per the rules of this computation procedure, the interfaces are treated as
surfaces of zero shear stress and hence are not included in the calculation of the wetted
perimeter.

Vertical
interf ace

\

/

74
A 12 A22 A32
L3 X

All A21 A31
Sub-area A; Sub-area Aj

Sub-area A,

Fig. 3.25 Channel cross-sectional area division for vertical interface procedure — Example-3.18

Table of Computation of Geometrical properties M —Vertical Interfaces

Sub-  Area Hyd.
area Ele Area (m?) Wetted Perimeter (m) Radius
ment (m)
A A, [05x12x(15x12] | 1.08 |1.2 x (1+ (1.5))°° 2.163
A, T75x12 9 |75 75
Totals 91.08 77.163 | 1.180
A, A, [15+(15x30)] x30 (585 [15+2 x 3.0 x [1+(1.5)7]° |25.817
A, [5+@2x15x3)]x12|288 |0 0
Totals 87.3 25.817 | 3.382
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Discharge by Manning’s formula:

Sub-Area A Q, = %le.OSx (1.180)** x (0.0009)" =61.035 m®/s
Sub-AreaA, Q, = ﬁxS?.l’)x (3.382)%* % (0.0009)"? =196.697 m*/s
Sub-Area A, Q, =Q, = %x 91.08 % (1.180)*® x (0.0009)? = 61.035 m*/s

Total discharge Q = Q, + Q, + Q, = 318.77 m%s

3.17 CRITICAL SLOPE

Critical slope is the slope of a specified channel necessary to have uniform flow of a
given discharge with critical depth as the normal depth. Thus the normal discharge
formula

Q= 1 AR?33Y2 would become
n
l 2130 1/2

Q==ARZS. (3.61)
n

Where A_ = area of the channel at critical depthy_
R, = hydraulic radius of the channel at critical depth y_and
S, = critical slope

(3.62)

22
From Eq. 3.61 S = [&]

A€R413

Since the critical depth is a function of the channel geometry and the discharge, the
critical slope S_ for a give channel is a function of the discharge. If the critical slope
S, is larger than the channel slope S, the normal depth of flow will be larger than the
critical depth and the flow is subcritical and the channel is called mild slope channel.
Similarly, if the critical slope S_is smaller than the channel slope S the normal depth
of flow will be smaller than the critical depth and the flow is supercritical and the
channel is called steep slope channel. Further, if the critical slope S_ is equal to
the channel slope S;the normal depth of flow is equal to the critical depth and the
flow is critical and the channel is called as Critical slope channel. Further details
about the channel classification are given in Chapter 4. Thus the critical slope of a
channel is a conceptual slope value which depends on the discharge in the channel.
Its relative value with respect to the actual slope of the channel determines the nature
of flow of the discharge in the channel.
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Consider a wide rectangular channel. The expression for the critical slope S_ given in
Eq. 3.62 becomes,

n2

gzavﬁ (3.62a)
Substituting the value of critical depth as y, = (q*/ g)*?,
2 10/9
S“{Eﬁﬁq (3.63)

This Eq. 3.63 indicates that S_decreases with increase in g and asymptotically reaches
a value of zero for g—oo. However for a rectangular channel of finite aspect ratio, the
behavior is slightly different, the wide rectangular channel being the limiting case.

3.17.1 Critical Depth for Rectangular Channel of Finite Aspect Ratio

Consider a rectangular channel of width B. By Eq. 3.62

nZQZ
S, = [Acz R
2 3
For critical flow condition in the channel, OC_A JAlso R, = B .
g T (B+2y,)
Substituting for A_and R_ in Eq. 3.62 and after simplifying
1+ 2yc 4/3
gn B
e — W L
B
Sc Bl/3 1+ 2 4/3
5., =B _ @+2n) (3.64)
gn n
where 1 =y /B. S gv
The variation of the non-dimensional term s, — =¢ - with 7 is shown in Fig. 3.26.
gn

It is seen that the parameter S, and hence S_has a minimum value at a value of n =1
and increase on either side of this 7 . value. Thus there is a minimum value of critical
slope for a rectangular channel. The minimum value of critical slope is known as Limit
slope and is designated as S, . By differentiating Eq. 3.64 with respect to 1 and equating
the derivative to zero, the minimum value of » = »_. =y /B is found to be 1/6. The
corresponding value of minimum S, is 8/3. Hence for a rectangular channel the limit
slope is described by
8

gn’
Sy—igm] (3.65)

and this slope occurs atn . =y /B = 1/6.
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From Fig. 3.26 it can be observed that the channel slope is mild for all areas lying to
the left of the critical slope curve and the it is steep for all areas lying to the right of
the critical slope curve. From Eq. 3.65 it can be observed that the limit slope decrease
with increase in the value of B and as such for very large values of B, the limit slope
S, ~ 0. Non-existence of limit slope for a wide rectangular channel is also seen from
the behavior of critical slope for such channels as given by Eq. 3.63. The ratio S /S,
is given by

4/3
s /s =W+ 134 (3.652)
c L 8 771/3 c

Thus the abscissa of Fig. 3.26 also represents S /S ; a unit of x-axis being 2.667
units of S /S . If the actual bed slope of the channel S is less than S , the channel
slope remains mild for all values of depth. However, for any S >S , there is a range
of depths y , and y_, between which the slope will be steep and outside this range the
slope will behave as mild. Further, for a given depth, there is only one critical slope
and for a given slope greater than S, there will be two depths at which the slope will
behave as critical slope.

These aspects of critical slope and limit slope are made clear in the following
Example 3.19.

10t
Mild Slope
B
1:
o C
= Limit Slope
|
1\ (813, 1/6) C Steep Slope
0.1
A
0.01: t t t r ¥ t t t > t t t t t t
00 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 8.0

S.c
[X-axis also represents (2.667 x (Sc/ S| )]

Fig. 3.26 Variation of critical slope in rectangular channels

Example 3.19 || A concrete lined (n = 0.013) rectangular channel of bottom
width 2.5 m is laid on a slope of 0.006. (i) For this channel, estimate the critical slope
which will have a normal depth of flow of 1.50 m. What will be the discharge at this
state? (ii) What is the limit slope of this channel? (iii) Identify the regions of steep
and mild slopes, if any, for variation of normal depth from 0.50 m to 6.0 m in this
channel.
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Solution (i) n =y /B = 1.5/2.5 = 0.60
S B SC Bl/3 - (1+277)4/3
*c T gnz - 7]1/3
y (25"  (1+2x0.60)*"°
© " 9.81x(0.013)? (0.60)"2
818.635 S, = 3.3924
S, = 0.004144
Since the normal depth = y_= critical depth,

Discharge Q = B,/gy’ = 2.5x/9.81x(1.5)* =14.385 m*/s

gn’) 8 9.81x(0.013)?
873 @5

(if) Limit slope S, = 8 = 0.00325745

3
(i) The actual slope of the channel S, = 0.006. Since S, > S, flow in both steep and
mild slope categories is possible. From Fig. 3.26 it is seen that there will be two
depths y_, and y_, at which the flow will be critical. Further, within the range of y ,
and y_,, the channel slope will be steep. Outside the range of these two depths, the
channel slope will be mild. Setting S_ = 0.006,

S,B”®  0.006x(2.5)"

S,=20 49118
gn 9.81x(0.013)
4/3
And by Eq. 3.60), ST20 _ 4911
n

There are two positive roots of n and the values of these have to be determined by
trial and error. Fig. 3.26, which is drawn to scale, affords a first trial. By trial and
error, the two values of 7 are found to be as below:

n, =Y,/B=0.03823 giveny_, = 2.5 x 0.03823 = 0.9558 m

n, =Y,/B =0.5464 givingy , = 2.5 x 0.5464 = 1.366 m

Hence, for any normal depth y,, the regions with mild and steep slopes are as
follows:

(i) Fory,<0.9558 m, the channel slope is mild,
(if) For 1.366 m >y, > 0.9558 m, the channel slope is steep, and
(iii) Fory, > 1.366 m, the channel slope is mild.

3.18 GENERALISED FLOW RELATION

\Y

JOAIT

=~ - (3.66)

Since the Froude number of the flow in a channel if F =
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If the discharge Q occurs as a uniform flow, the slope S, required to sustain this dis-
charge is, by Manning’s formula,

Q2n2
S0 = imi (3.67)

Substituting Eq. 3.66 in Eq. 3.67 and simplifying

2 2 4/3
s, = F°g nUBP
TA
S P4/3
0

or = f(y) (3.68)

F2gn? = TAVE
For a trapezoidal channel of side slope m,

4/3
S (B+2\/m2+1 y)
0 —

F?gn®  (B+2my,)[(B+my)y,]"

(3.69)

Non-dimensionalising both sides, through multiplication by B2,

SoBl/S (1+2 m2 +1 7])4l3
S, =| 2" |= v (3.70)
F°gn

(L 2ma) @+ mp) R ()"

1/3
0

F2gn®

in which n = y /B. Designating [ = S, = generalized slope

S, =f(m,n) (3.711)

Equation 3.70 represents the relationship between the various elements of uni-
form flow in a trapezoidal channel in a generalised manner. The functional relation-
ship of Eq. 3.70 is plotted in Fig. 3.26. This figure can be used to find, for a given
trapezoidal channel, (a) the bed slope required to carry a uniform flow at a known
depth and Froude number and (b) the depth of flow necessary for generating a uni-
form flow of a given Froude number in a channel of known bed slope.

For a rectangular channel, m = 0 and hence Eq. (3.70) becomes

(1 + 2,'7)4/3
= 173

Ul

S, (3.72)

For a triangular channel, B = 0 and hence Eqg. (3.70) cannot be used. However, by
redefining the generalised slope for triangular channels, by Eq. 3.69

2 2/3

S y1/3
0 —

i3y 1M
Fzgn2 *S*t :(21 )

m2

(3.73)
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Roots and Limit Values of S. for Trapezoidal Channels Equation 3.70 can be
written as

4
(1+ 21+ mz)

T 1+ 2mp)’n+mn)

(3.74)

This is a fifth-degree equation in 7, except for m = 0 when it reduces to a fourth-
degree equation. Out of its five roots it can be shown that (a) at least one root shall be
real and positive and (b) two roots are always imaginary. Thus depending upon the
value of m and S,, there may be one, two or three roots. The limiting values of S, are

obtained by putting, Zi =0, which results in
n

81+ m? (L+ mn)(L+2mn) — (L4 2ny1+m?) (1+10mpy+10m?y°) =0  (3.75)
Solving Eq. 3.75 the following significant results are obtained.?

1. For rectangular channels (m = 0), a single limiting value with S, = 8/3 and
n, = 1/6 is obtained.

2. Between m = 0 and m = 0.46635 there are two limiting values.

3. At m = 0.46635, the two limit values merge into one at S, = 2.1545 and
n = 0.7849.

4. For m > 0.46635, there are no limiting points.

For rectangular channels, an interesting extension of result (1) noted above is
as follows: At the limiting state, for given B, S, and 1, the Froude number can be consid-
ered as the maximum uniform flow Froude number (F, ) in the given channel. Thus

S _ SO Bl/3 _ §
*L 2 2
Fla ON 3
S0 2
And by Eqg. 3.65 s - F oo
L
Thus S, =F2. S, (3.76)

Equation 3.76 represents the channel slope required to have uniform flow Froude
number in the given channel which is equal to or less than the pre assigned F__, for
all discharges. It is interesting to observe in Fig. 3.27 that for m = 0.46635, S, is
essentially constant at a value of 2.15 over a range of values of » extending from 0.5
to 1.5 and S, varies very slowly with 7 in the rest of the plot. Thus a trapezoidal sec-
tion with m = 0.46635 would give a channel in which the Froude number of the flow
is essentially constant over a sufficiently large range of depths.

3.18.1 Critical Slope and Limit Slope
The slope of a channel which carries a given discharge as a uniform flow at the criti-

cal depth is called the critical slope, S_. The condition governing the critical slope in
any channel can be easily obtained from Eq. 3.70 by putting F = 1.0. For trapezoidal
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Fig. 3.27 Generalised flow relation [Ref. 20]

1/3
channels, by denoting the generalised critical slope, 5B _ S.. and % =1, , the

gn’
behaviour of S, can be studied using Fig. 3.27. All the conclusions derived in the
pervious section for S, will also apply to the S, -, relationship.

For a channel of given shape and roughness S, will have a least value under condi-
tions corresponding to a limit value of S, . The least value of S_is called the limit
slope, S,. Keeping the critical slope and limit slope in mind, Fig. 3.27 can be studied
to yield the following points:

1. For a trapezoidal channel of given geometry and roughness, a given depth of
critical flow can be maintained by one and only one critical slope. However,
for a given critical slope there can be more than one critical depth.

2. For channels of the second kind (m is negative) and for rectangular channels
(m = 0), only one limit slope exists. Slopes flatter than this cannot be critical
and the slopes steeper than this can be critical at two different depths. For a
rectangular channel, the limit value of S, is 8/3 at . = 1/6.

3. When m > 0.46635, any slope can be critical and for each slope there will be
only one critical depth. There are no limit slopes in this range. For m = 0.46635,
the limit value of S, is 2.15446 at 7). = 0.7849.

4. For 0 <m < 0.46635, there are two values of limit slopes, S, and S , with S |
<S§,, (@) ForS,>S_>§ , there are three critical depths for each value of S ;
the largest of these, however, may be impracticably large. (b) For S, = S, or
S, = S,, there are two critical depths. (c) For S, > S, or S_< S ,, there is only
one critical depth for each value of the slope.

L1’
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Example 3.20 || A rectangular channel is 4.0 m wide and has n = 0.015.

(a) Determine the bed slope required to maintain uniform flow in this channel with
a flow depth of 1.25 m and a uniform flow Froude number of (i) 2.0, (ii) 1.0, and
(iii) 0.50. Also, find the limit slope and the corresponding critical discharge.

(b) Find the longitudinal slope required to ensure that the uniform flow Froude
number in this channel is equal to or less than 0.50 for all discharges.

Solution (a) Recalling Eq. 3.72,
S B SOBl/3 _ (1_'_277)4/3

* gnze - nl/3
I 1.25 . . . .
Substituting n = 20 =0.3125 in the right-hand side of the above equation,
S, =2.81528 = 5,(4.0)"
(9.81)(0.015)*(F)?

Thus,

(i) ForF=20,S,=0.015658
(i) F=10,S,=S,=0.003915
(iii) F=05,S,=0.0009787
At the limit slope, F = 1.0, and limit S, , = 8/3 and ), = 1/6

_2.667(9.81)(0.015)?

o —0.003708

S

Y e :%20.667m

(b) Here F =F__ = 0.50
By Eq. (3.72) S, =FZ2 S,

and S, = 0.003708 as calculated in part (a) above.
Hence required S, = (0.50)? x 0.003708 = 0.000927

Example 3.21 || A trapezoidal channel section with m = 0.25, B = 3.0 m, and

n = 0.015, has to carry a uniform flow with a Froude number of 0.5.

(a) If the bed slope of S| = 0.001052 is to be used, at what depths would this flow be
possible?

(b) Within what range of S, would the above feature of three possible depths be
feasible?

1/3 1/3
S,BY _ (0.001052)(3.0)" _, .

Solution (a) S, = = =2.
@ gn’F?  (9.81)(0.015)%(0.5)°
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From Fig. (3.27), for m = 0.25.

n, = 0.75givingy, = 2.25m

n, = 1.00 giving y, = 3.00 m
and from Eq. (3.70) by trial and error, 7, = 18.70 giving y, = 56.10 m.

(b) From Fig. (3.27), the limit values of S, are 2.40 and 3.25. As such, the slope S,
has to lie between 2.40 x gn?/B*® and 3.25 x gn?/B'?, i.e. between S, = 9.181 x 107!
and 1.243 x 108

3.19 DESIGN OF IRRIGATION CANALS

For a uniform flow in a canal,

_1
n

Q ARZ/C’:St])./Z

where A and R are in general functions of the geometric elements of the canal. If the
canal is of trapezoidal cross-section.

Q= f(n y, S, B, m) (3.77)

Equation 3.77 has six variables out of which one is a dependent variable and the
rest five are independent ones. Similarly, for other channel shapes, the number of
variables depend upon the channel geometry. In a channel design problem, the inde-
pendent variables are known either explicitly or implicitly, or as inequalities, mostly
in terms of empirical relationships.

In this section the canal-design practice adopted by the Irrigation Engineering pro-
fession in India is given. This practice may have application in other fields also. The
guidelines given below are meant only for rigid-boundary channels, i.e. for lined and
unlined non-erodible channels. The design considerations for unlined alluvial channels
follow different principles governed by sediment transport and related aspects. The
wide variety of soil and topographical features of the country led different states and
agencies, in the past, to adopt their own design practices. Reference 21 indicates the
effort of the Central Water Commissions (CWC), India, towards standardisation and
general guidelines applicable to the whole country. Relevant Indian standards for irri-
gation canal design are found in IS: 4745-1968, IS: 7112-1973'2%,

Canal Section Normally, a trapezoidal section is adopted. Rectangular cross-sec-
tions are also in use in special situations, such as in rock cuts, steep chutes and in
cross-drainage works.

The side slope, expressed as m horizontal: 1 vertical, depends on the type of canal,
i.e. lined or unlined, nature and type of soil through which the canal is laid. The
slopes are designed to withstand seepage forces under critical conditions, such as
(i) a canal running full with banks saturated due to rainfall, and (ii) the sudden draw-
down of canal supply. Usually the slopes are steeper in cutting than in filling. For
lined canals, the slopes roughly correspond to the angle of repose of the natural soil
and the values of m range from 1.0 to 1.5 and rarely up to 2.0. The slopes recom-
mended by CWC? for unlined canals in cutting are given in Table 3.5.
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Table 3.5 Side Slopes for Unlined Canals in Cutting

SI. No. Type of Soil m

1 \ery light loose sand to average sandy soil 15t020
2 Sandy loam, Black cotton soil 10t015
3 Sandy to gravely soil 1.0t0 2.0
4 Marum, hard soil 0.75t0 1.5
5 Rock 0.25t0 0.5

Longitudinal Slope The longitudinal slope is fixed on the basis of topography to
command as much area as possible with the limiting velocities acting as constraints.
Usually the slopes are of the order of 0.0001. For lined canals a velocity of about
2.0 m/s is usually recommended.

Roughness Procedure for selecting n is discussed in Section 3.9. Values on n can
be taken from Table 3.2.

Permissible Velocities Since the cost for a given length of canal depends upon
its size, if the available slope permits, it is economical to use highest safe veloci-
ties. High velocities may cause scour and erosion of the boundaries. As such, in
unlined channels the maximum permissible velocities refer to the velocities that
can be safely allowed in the channel without causing scour or erosion of the chan-
nel material.

In lined canals, where the material of lining can withstand very high velocities,
the maximum permissible velocity is determined by the stability and durability of the
lining and also on the erosive action of any abrasive material that may be carried in
the stream. The permissible maximum velocities normally adopted for a few soil
types and lining materials are indicated in Table. 3.6.

Table 3.6 Permissible Maximum Velocities

SI. No. Nature of boundary Permissible maximum
velocity (m/s)

1 Sandy soil 0.30-0.60
2 Black cotton soil 0.60-0.90
3 Muram and Hard soil 0.90-1.10
4 Firm clay and loam 0.90-1.15
5 Gravel 1.20
6 Disintegrated rock 1.50
7 Hard rock 4.0
8 Brick masonry with cement pointing 2.5
9 Brick masonry with cement plaster 4.0

10 Concrete 6.0

11 Steel lining 10.0

In addition to the maximum velocities mentioned above, a minimum velocity in
the channel is also an important constraint in the canal design.
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Too low a velocity would cause deposition of suspended matter, like silt, which
can not only impair the carrying capacity but also increase the maintenance costs.
Also, in unlined canals, too low a velocity may encourage weed growth. The mini-
mum velocity in irrigation channels is of the order of 0.30 m/s.

Free Board Free board for lined canals is the vertical distance between the full
supply level to the top of the lining (Fig. 3.28). For unlined canals, it is the vertical
distance from the full supply level to the level of the top of the bank.

Free board
: Y ¢ FsL
Drain GL \* =7
_\\l/ \ Yo Lining
Rounding off of corner Bed

Fig. 3.28 Typical section of a lined irrigation canal

This distance should be sufficient to prevent over-topping of the canal lining or
banks due to waves. The amount of free board provided depends on the canal size,
location, velocity and depth of flow. The relevant Indian standards'?!® suggest the
minimum free board to be as below:

Discharge Free board (m)
(m?¥/s) Unlined Lined
(a) Q<100 0.50 0.60
(b) Q<10.0 0.75 0.75

However, the current practice of providing free board seems to be as follows:

Q(m?¥/s) <0.15 0.15-0.75 0.75-1.50 1.50-9.00 >9.00

Free board (m) 0.30 0.45 0.60 0.75 0.09

Width-to-Depth Ratio The relationship between width and depth varies widely
depending upon the design practice. If the hydraulically most-efficient channel sec-

L= 1158y, ieB —11547. 1fany

V3 3 Yo

other value of m is used, the corresponding value of Bl/y, for the efficient section

would be, from Eq. 3.54
B_ 2(\/14- m® — m)

0

tion is adopted (Section 3.14), m =
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However, in practice it is usual to adopt a shallower section, i.e. a value of Bly,
larger than that suggested by Eq. 3.54. The CWC recommendation®* for Bly, as a
function of discharge is as follows:

Q(m?¥/s) 0.30 3.0 14.0 28.0 140 285
By, 2.0 4.0 6.0 7.5 14.0 18.0

In large canals it is necessary to limit the depth to avoid dangers of bank failure.
Usually depths higher than about 4.0 m are adopted only when it is absolutely
necessary.

For selection of width and depth, the usual procedure is to adopt a recommended

_Qn
\/g Be/3

and S, the values of B and y, are found. The bottom width is usually adopted to the
nearest 25 cm or 10 cm and the depth adjusted accordingly. The resulting velocity is
then checked to see that permissible velocity constraints are not exceeded. The typi-
cal cross-section of a lined irrigation canal is shown in Fig. 3.28.

value of B/y, and to find the corresponding using Table 3A.1. Knowing Q, n

Super elevation The free board normally provided in design of channels of
straight alignment does not account for super elevation of water surface in curved
channel alignments. Flow around a curve causes water surface to be higher at the
outer curved edge than the normal water surface of straight alignment. This would
necessitate extra free board and additional lining height to guard against overtopping
and erosion respectively. In subcritical flow, the following formulae by SCS are
useful in estimating the super elevation requirement.

2
For rectangular channels: E = ¥'B (3.78)
4q9r
2
For Trapezoidal channels: E = V(LZmyOZ) (3.79)
2(gr—2mv-)

where E = Maximum height of water surface above the depth of flow y,
y, = Normal depth of flow for straight alignment at entrance to the curve
B = Bottom width
r = Radius of channel centerline
V = Average velocity of flow cross section at entrance to the curve.
m = Side slope

Example 3.22 || A trapezoidal channel is to carry a discharge of 50 m%s.

The maximum slope that can be used is 0.004. The soil is hard. Design the
channel as (a) a lined canal with concrete lining and (b) an unlined non-erod-
ible channel.
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Solution (a) Lined Canal

Adopt side slope of 1: 1, i.e., m = 1.0 (from Table 3.4)
n for concrete = 0.013 (from Table 3.2)

Recommended B/y, for Q = 50 m¥s is about 8.0.

For Bly, = 8.0 (i.e. y,/B = 0.125), from Table 3A.1

6=—" 003108

\/ng/?,

Substituting Q = 50.0, n = 0.013, S, = 0.0004 in the above
B = 13.5605 m. Adopt B = 13.50 m. Then actual

___90x0013 ;3145

4/0.0004 x (31.5)3

Corresponding y,/B = 0.12588 giving y, = 1.700 m
A =(13.5+ 1.700) x 1.700 = 25.840
V =1.935m/s
This value is greater than the minimum velocity of 0.3 m/s; is of the order of 2.0 m/s;
and further is less than the maximum permissible velocity of 6.0 m/s for concrete.
Hence the selection of B and y, are all right. The recommended geometric parameters
of the canal are therefore
B =13.50 m, m = 1.0, S, = 0.0004
Adopt a free board of 0.75 m. The normal depth for n = 0.013 will be 1.70 m.

(b) Unlined Canal

From Table 3.4, a side slope of 1 : 1 is adopted. From Table 3.2, take n for hard
soil surface as 0.020.

Recommended By, for Q = 50 m¥s is about 8.0. From Table 3A.1.

For  B-80 6=—2"_ 003108
Yo \/ngm

Substituting Q = 50.0, n = 0.020 and S, = 0.0004 in the above, B = 15.998 m, hence
adopt B = 16.00 m. Actual ¢ = 0.030760 and the corresponding y /B = 0.12422.
Theny, = 0.12422 x 16 = 1.988 m.

A = (16.00 + 1.988) x 1.988 = 35.76 m?

V =50/35.76 = 1.398 m/s

But this velocity is larger than the permissible velocity of 0.90-1.10 m/s for hard

soil (Table 3.5). In this case, therefore, the maximum permissible velocity will con-
trol the channel dimensions.
Adopt V =1.10m/s

500

A== 45455 m° = [1+%]ﬁ B?

B /B

For Bly,=8.0,B=17.978 m
Adopt B=18.0m
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From A = (B + my,) y,, substituting A = 45.455

B=18.0,m=1.0,y,=2245m

P=18.0+2y1+1x2.245=24.35m

R=A/P =.867m

Substituting in the general discharge equation

50 — — x 45.455x (1.867)7° SV
0.02

S, = 0.0002106

Hence, the recommended parameters of the canal are B = 18.0 m, m = 1.0 and
S, = 0.0002106. Adopt a free board of 0.75 m. The normal depth for n = 0.020 will
be 2.245 m.

N

12.

13.

14.

15.

16.
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~ PROBLEMS

Problem Distribution

Topic Problems
Darcy-Weisbach friction factor 3.1-33

\elocity distribution 3.4

Boundary shear stress 3.1, 3.22, 3.24, 3.32
Equivalent roughness 35-38

Uniform flow computation 3.9-333
Computation of normal depth 3.10, 3.12; 3.26 — 3.28; 3.31, 3.32
Standard lined canal sections 3.28 -3.33,3.45
Maximum discharge 3.34-3.38
Hydraulically efficient sections 3.39-3.50

Second hydraulic exponent, N 3.51-3.54
Compound sections 3.55-3.57
Generalised flow relation 3.58 — 3.60

Critical slope and limit slope 3.61-3.69

Design of irrigation canal section 3.70

3.1 Atrapezoidal channel has a bottom width of 2.50 m and depth of flow of 0.80 m. The side
slopes are 1.5 horizontal: 1 vertical. The channel is lined with bricks (¢, = 3.0 mm). If
the longitudinal slope of the channel is 0.0003, estimate (a) the average shear stress, (b)
the hydrodynamic nature of the surface, (c) Chezy C by using f, (d) Manning’s n, (e) the
uniform-flow discharge for cases (c) and (d).

3.2 The cross-section of a stream could be approximated to a rectangular section of
6.0-m bottom width. The stream is in a mountainous region and is formed by cobbles
(dg, = 300 mm). Estimate the discharge if the depth of flow is 1.5 m and the bed slope
is 0.001.

3.3 Using Moody diagram find the friction factor f, Manning’s n and Chezy C for a flow of
7.0 m¥s in a 3.0-m wide rectangular channel at a depth of 1.75 m. Assume the size of
roughness magnitude as 2.0 mm and the temperature of water to be 20°C.

3.4 Assuming the velocity defect law in the logarithmic from to be applicable to the entire
depth of flow y, in a wide channel, show that the average velocity in a vertical occurs at
0.632 y, below the water surface.
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3.5 A channel has multiple-roughness types in its perimeter. Assuming that the total dis-
charge in the channel is equal to the sum of discharges in the partial areas, show that the
equivalent roughness is given by

PR5/3

1 i

3.6 A trapezoidal channel of 4.0-m bed-width and side slopes 1.5 horizontal: | vertical has
a sand bed (n, = 0.025). At a certain reach, the sides are lined by smooth concrete
(n, = 0.012). Calculate the equivalent roughness of this reach if the depth of flow is 1.50 m.
(use Horton’s formula).

3.7 A 3.6-m wide rectangular channel had badly damaged surfaces and had a Manning’s
n = 0.030. As a first phase of repair, its bed was lined with concrete (n = 0.015). If the
depth of flow remains same at 1.2 m before and after the repair, what is the increase of
discharge obtained as a result of repair?

3.8 For the channel shown in Fig. 3.24 (Example 3.18) calculate the equivalent roughness by
Horton’s formula.

3.9 Find the discharge in the following channels with a bed slope of 0.0006 and n = 0.016:
(a) Rectangular, B=3.0m,y, = 1.20 m
(b) Trapezoidal, B=3.0m,m=15andy,=1.10m
(c) Triangular, m= 1.5, y, = 1.50 m.

3.10 A concrete lined trapezoidal channel (n = 0.015) is 8.0 m wide and has a side slope of
2H: IV. The longitudinal slope is 0.006. Estimate the normal depth in this channel for a
discharge of 40 m3/s.

3.11 A trapezoidal channel of 10.0-m bed-width and m = 1.5 carries a discharge of 15.0 m®/s
at a depth of 1.30 m. Calculate the bed slope required (a) if the channel is lined with
smooth concrete and (b) if the channel is an unlined, clean, earthen channel.

3.12 A circular channel, 2.50 m in diameter, is made of concrete (n = 0.014) and is laid on a
slope of 1 in 200.

(a) Calculate the discharge if the normal depth is 1.50 m.
(b) Calculate the depth of flow for a discharge of 15.0 m/s.

3.13 Calculate the quantity of water that will be discharged at uniform flow depth of 0.9 m in
a 1.2-m diameter pipe which is laid at a slope of 1 in 1000. Manning’s coefficient can be
assumed to be 0.015.

3.14 A rectangular channel is to be laid on a slope of 0.0005. The sides will be of smooth con-
crete (n = 0.013). What width of channel is necessary to carry a discharge of 9.0 m¥s with
a normal depth of 1.60 m?

[Note: A trial-and-error method using Table 3A.1 is recommended.]

3.15 An old rectangular canal having a width of 5.0 m and a slope of 0.0001 was gauged to
determine its roughness coefficient. If a discharge of 18.0 m®s was indicated when the
depth of uniform flow was 2.0 m, estimate the value of Manning’s n.

3.16 What size of concrete pipe (n = 0.015) is required to carry a flow of 2.0 m%/s at a depth of
0.9-m diameter, when laid on a slope of 0.0002 ?

3.17 Atrapezoidal channel of 3.0-m bed width and side slope of 1.5 horizontal: 1 vertical carries
a full supply of 10.0 m¥s at a depth of 1.50 m. What would be the discharge at half of full
supply depth (i.e. at 0.75 m)? What would be the depth at half of full supply discharge?

3.18 Atrapezoidal channel having a side slope of 1.5 horizontal: 1 vertical carries a discharges
of 100 m¥s with a depth of flow equal to 0.75 width. If S, = 0.0006 and n = 0.015 find
the bed width and depth of flow.
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3.19 A rectangular channel (n = 0.020) carries a flow of 25.0 m?/s with the depth of flow equal
to the width of the channel. If S, = 0.0004 find the Froude number of the flow.

3.20 A concrete storm water drain (n = 0.012) is 0.75 m in diameter and is to discharge
0.10 m¥/s. What is the minimum slope that has to be employed if the depth of flow should
not exceed 0.8-m diameter?

3.21 A triangular channel of apex angle 90° and a rectangular channel of the same material
have the same bed slope. If the rectangular channel has the depth of flow equal to the
width and the flow areas in both channels are the same, find the ratio of discharges in the
rectangular and triangular channels respectively.

3.22 A circular channel of diameter = 2.5 m carries a uniform flow of 1.5 m%/s at a depth of
2.0 m. If Manning’s n = 0.014, estimate the average boundary shear stress per unit length
of this channel.

3.23 A flow of 10.0 m%s is to be passed in a rectangular channel with the depth of flow equal
to one-third the width. The channel is lined with smooth concrete (n = 0.014). Calculate
the channel dimensions and its longitudinal slope necessary to carry the above discharge
with a mean velocity of 2.5 m/s.

3.24 A 2.6-m wide rectangular channel is lined with rough concrete (n = 0.015). The bed slope
of the channel is 0.0004. If the normal depth of flow is 1.25 m, calculate the (i) convey-
ance of the channel, (ii) discharge, (iii) Froude number of the flow, and (iv) the average
bed shear stress.

3.25 The specific energy in a 2.0-m wide rectangular channel is not to exceed 1.2 m. What
maximum discharge can be carried in such a channel? What longitudinal slope is required
to sustain such a flow? Assume Manning’s n = 0.015.

3.26 A brick-lined (n = 0.017) trapezoidal channel has B = 6.0 m, m = 1.5and S, = 0.004. Find
the normal depth of flow for a discharge of (a) 10.0 m¥s, (b) 16.0 m%/s, and (c) 25.0 m¥/s.

3.27 Show that the normal depth in a triangular channel of side slopes m horizontal: 1 vertical,
is given by

3/8 1/8

m? +1

m5

Qn

5

3.28 Determine the bottom width and full supply depth of a standard lined trapezoidal section
(Fig. 3.29) to carry 180 m¥/s of flow with a velocity of 2.0 m/s when laid on a slope of
1 in 4500. The side slopes are to be 1.25 horizontal: 1 vertical Manning’s n can be
assumed to be 0.014.

y, =1.1892

AV
0 = 0
0 0
Yo
1 bA r'=Yo r'=Yo
1.5

[ |
| B |

Fig. 3.29 Problem 3.28 and 3.29

3.29 A standard lined trapezoidal section (Fig. 3.29) is to carry a discharge of 100 m%s at a
slope of 1 in 1000. The side slopes are to be 1.5 H : 1V and the Manning’s n can be taken
as 0.015. What bottom width in needed to have a full supply depth of 2.00 m?



148  Flow in Open Channels

3.30 Estimate the discharge in a standard lined trapezoidal canal section with B = 35 m,
S, = 1/5000, Manning’s coefficient n = 0.016, normal depth y, = 3.5 m. The side slopes
are 1.5 horizontal : 1 vertical.

3.31 A standard lined triangular canal section has a side slope of 1.75 H : 1V and is laid on a
longitudinal slope of 0.0004. The Manning’s n is found to be 0.016. If the channel is
designed to convey the fully supply discharge at a velocity of 1.5 m/s, estimate (a) the
full supply discharge, and (b) full supply depth.

3.32 A standard lined triangular canal section (Fig. 3.30) is to carry a discharge of 25 m3/s when
laid on a slope of 1 in 1000. The side slopes are 1.25 H : 1V. Calculate the depth of flow
needed. What is the average boundary shear stress in this channel? (Assume n = 0.015)

X

Fig. 3.30 Problem 3.32

3.33 A standard lined triangular channel is designed to carry the full supply discharge at a
depth of 2.5 m when laid on a slope of 0.0004. The side slope of the channel is 1.25 H : 1V and
Manning’s n = 0.015. Determine the full supply discharge in the canal.

3.34 Show that the maximum velocity in a circular channel occurs when y/D = 0.81.

3.35 By using the Chezy formula with constant coefficient C, show that the condition for
maximum discharge in a circular channel occurs when y/D = 0.95.

3.36 A square conduit of side s, placed with its diagonal vertical, acts as an open channel.
Show that the channel carries maximum discharge wheny = 1.259 s.

3.37 A triangular duct (Fig. 3.31) resting on a side is carrying water with a free surface.
Obtain the condition for maximum discharge when (@) m = 0.5, (b) m = 0.25 and
(c) m=0.10.

11I5

-m:1

[— < —

B
Fig. 3.31 Problem 3.37

3.38 Water flows in a channel of the shape of an isosceles triangle of bed width a and sides
making an angle of 45° with the bed. Determine the relation between the depth of flow d
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and the bed width a for maximum velocity condition and for maximum discharge condi-
tion. Use Manning’s formula and note that d is less than 0.5 a.

3.39 Determine the dimensions of a concrete-lined (n = 0.015) trapezoidal channel of effi-
cient proportions to carry a discharge of 7.0 m%s. The bed slope of the channel is 0.0006
and m = 1.25.

3.40 A trapezoidal channel is 5.0-m wide and has a side slope of 0.5 horizontal: 1 vertical.
Find the depth of flow which can make the channel an efficient section. If S, = 0.0002
and n = 0.02, find the corresponding discharge.

3.41 A rectangular channel is to carry a certain discharge at critical depth. If the section is to
have a minimum perimeter, show that y_ = 3B/4.

3.42 A rectangular channel (n = 0.020) is to be 3.0 m wide. If a discharge of 3.00 m¥s is to be
passed with the channel having an efficient section, what longitudinal slope is to be
provided?

3.43 Show that a hydraulically efficient triangular channel section has R, = 2)\//‘35 .

3.44 A trapezoidal channel of efficient section is to have an area of 60.0 m?. The side slope is
1.5 horizontal: 1 vertical. Find the bottom width and depth of flow.

3.45 Show that a standard lined triangular canal section is hydraulically efficient for any real
side slope m.

3.46 A trapezoidal channel with one side vertical and the other sloping at 2H : 1V carries a
discharge of 28 m®/s. Determine the longitudinal slope and cross-sectional dimensions
for best hydraulic efficiency if Manning’ n 0.014.

3.47 A trapezoidal channel has side slopes of 1H : 1V and is required to discharge 14 m®s
with a bed slope of 1 in 1000. If unlined the value of Chezy C = 45. If lined with con-
crete its value is 65. If the cost of excavation per m® is nine times the cost per m? of
lining, determine whether the lined or unlined channel would be chapter? Assume a
free board of 0.75 m in both cases. The section can be assumed to be hydraulically
efficient.

3.48 A lined channel (n = 0.014) is of a trapezoidal section with one side vertical and other
side on a slope of 1 H : 1V. If the canal has to deliver 5 m%s when laid on a slope of
0.0001. Calculate the dimensions of the dimensions of the efficient section which requires
minimum of lining.

3.49 Show that a hydraulically efficient parabolic section (T = Kﬁ) will have the
following relationships between the hydraulic radius R, top width T, and the

depth y :|Take P=T +%y2/T
_Ye _
Re_? and Te_\/gye

3.50 Show that a triangular channel should have a vartex angle of 78°77/47" to satisfy simul-
tancously the conditions of critical state of flow and minimum wetted perimeter.
3.51 Show that the second hydraulic exponent N could be calculated approximately as

3.52 Show that for a deep, narrow rectangular channel as Bly —0. N — 2.0.
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3.53

3.54

3.55

3.56
3.57

3.58

3.59

3.60

3.61

3.62

3.63

Plot the conveyance K = f(y) for a trapezoidal channel: B =3.0 m, m = 1.0, and
n = 0.015, on a log-log paper. By using this plot find the value of the hydraulic
exponent N in the range y = 0.6 to 2.3 m.

Using Fig. 3.20, estimate the value of the second hydraulic exponent N for the following
cases:

m=1.0,y/B=05,1.0,20

m=2.0,y/B=05,1.0,20

For the compound channel shown below (Fig. 3.32) estimate the discharge for a depth of
flow of (i) 1.20 m, and (ii) 1.6 m, by using DCM with vertical interface procedure.

| 17.0 |
n, = 0.030 - ns = 0.035

I =
1 1
ly

, 7.0 7.0

: N 0.9

Sp = 0.0002 3.0 n,=0.02

Distances are in meters
Fig. 3.32 Compound channel of Problem 3.55

Solve Problem (3.55) by using diagonal interfaces,

A compound channel is trapezoidal in cross section and consists of identical flood banks
on the left and right of the main channel. The following are the salient geometric proper-
ties of the compound section

Main channel: Bottom width = 5.0 m, Side slopes = 1.5 H : 1V, Bank full depth = 2.0 m,
Manning’s coefficient = 0.025, Longitudinal slope = 0.001

Flood plains: Width = 25 m, Side slope = 2.0 H : 1V, Manning’s coefficient = 0.06, Lon-
gitudinal slope = 0.001. Compute the uniform flow discharge for a flow with total depth of
2.5 m by using DCM with (i) diagonal interface, and (ii) vertical interface procedures.
Develop the generalised flow relation (similar to Eq. (3.64)) relating the generalised
slope and depth in a trapezoidal channel by using the Chezy formula with a constant
coefficient C. Show from this expression that, (a) for a triangular channel, the critical
slope is independent of depth and (b) for a rectangular channel there is no limit slope.
A 5.0-m wide rectangular channel is laid on a slope of 0.001. If a uniform flow with
Froude number = 0.5 is desired, at what depths would this be possible?

A 25.-m wide rectangular channel has Manning’s n = 0.016. If the longitudinal slope of
the channel is 0.0004, calculate (a) the maximum uniform flow Froude number possible
in this channel and (b) the corresponding discharge.

A brick-lined rectangular channel (n = 0.017) of 6.0-m bottom width is laid on a slope
of 0.003. (i) For this channel, estimate the critical slope which will have a normal depth
of flow of 2.0 m. (ii) Identify the regions of steep and mild slopes, if any, for variation of
normal depth from 0.10 m to 4.0 m in this channel

A rectangular channel (n = 0.015) has a width of 2.50 m and it is desired to have Froude
number at uniform flow to be equal to or less than 0.4 for all discharges in this channel.
Determine the channel slope necessary to achieve these criteria.

A triangular channel (n = 0.018) has a bed slope of 0.016 and a side slope of 1.5 H : 1V.
Estimate the uniform flow Froude number for a normal depth of 0.5 m.

3.64 For a rectangular channel of bottom width B, bed slope S and Manning’s Coeffi-

cient n, show that (i) the maximum uniform flow Froude number occurs at the
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normal depth y, =B/6, and (ii) the discharge corresponding to the maximum

Froude number is
Q _ les\/g
24n

For a trapezoidal section B=3.0 m, m = 1.5and n = 0.02, find the (a) bed slope required
to have a uniform m flow at a Froude number of 0.2 and depth of flow = 2.5 m, (b) criti-
cal slope for the same depth of flow of 2.5 m, and (c) depth of flow with a bed slope of
0.0009 to cause a uniform flow Froude number of 0.5.

For a triangular channel with apex angle = 90°, determine the critical slope for a critical
depth of 1.35 m. If the channel is laid at this slope, what would be the Froude number of
the uniform flow for a depth of flow of 2.0 m? (Assume n= 0.02).

A 1.2-m wide rectangular channel is lined with smooth concrete (n = 0.013). Determine
the limit slope and the corresponding discharge and critical depth.

Obtain an expression for the critical slope in a circular channel as S, = f (n,) where

S, = ﬂiw and 7, = y/D. Show that the limit slope occurs at y /D = 0.316.
gn

2/3
Showthatforaparabolicchannel T = K\/y ,the limitslope isgiven by LC—Z =3.36
gn

e _ 1
K 242

and this limit value occurs at

8 y3/2
Assume P = KyY2 4+ =2
Y 3 K

Design a trapezoidal channel to carry 75 m¥/s of flow. The maximum permissible slope
is 0.0005. It is proposed to adopt a brick-in-cement mortar lining. The soil is classified
as average sandy soil.

* OBJECTIVE QUESTIONS

In a non-prismatic channel

(a) unsteady flow is not possible (c) uniform flow is not possible

(b) the flow is always uniform  (d) the flow is not possible

In a uniform open channel flow

(a) the total energy remains constant along the channel

(b) the total energy line either rises or falls along the channel depending on the state of
the flow

(c) the specific energy decreases along the channel

(d) the line representing the total energy is parallel to the bed of the channel

Uniform flow in an open channel exists when the flow is steady and the channel is

(a) prismatic

(b) non-prismatic and the depth of the flow is constant along the channel

(c) prismatic and the depth of the flow is constant along the channel

(d) fricionless
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3.4 In uniform flow there is a balance between
(a) gravity and frictional forces (b) gravity and inertial forces
(c) intertial and frictional forces (d) inertial and viscous forces

3.5 Uniform flow is not possible if the
(a) friction is large (b) fluid is an oil
(¢ S, <0 (d) §,>0

3.6 A rectangular channel of longitudinal slope 0.002 has a width of 0.80 m and carries an
oil (rel. density = 0.80) at a depth of 0.40 m in uniform flow mode. The average shear
stress on the channel boundary in pascals is
(a) 3.14 x 10°® (b) 6.28 x 10
(c) 3.93 x 10°® (d) 0.01256

3.7 A triangular channel with a side slope of 1.5 horizontal: 1 vertical is laid on slope of
0.005. The shear stress in N/m? on the boundary for a depth of flow of 1.5 m is

(@) 3.12 (b) 10.8 (c) 30.6 (d 548
3.8 The dimensions of the Chezy coefficient C are
(@ L2T? (b) LT (c) moLeTe (d) L¥2T?
3.9 The dimensions of Manning’ n are
(@) L6 (b) L2 T-1
(c) LT (d) Lv3T1
3.10 The dimensions of the Darcy—Weisbach coefficient f are
(@) Lve (o)L T (c) Lv2T1+ (d) moLoTe

u.e,

3.11 A channel flow is found to have a shear Reynolds number

= 25, where ¢, = sand

v
grain roughness, u, = shear velocity and v = kinematic viscosity. The channel boundary
can be classified as hydrodynamically
(a) rough (b) in transition regime
(c) smooth (d) undular
3.12 If the bed particle size d_; of a natural stream is 2.0 mm, then by Strickler formula, the
Manning’s n for the channel is about
(a) 0.017 (b) 0.023
(c) 0.013 (d) 0.044
3.13 In using the Moody chart for finding f for open-channel flows, the pipe diameter D is to
be replaced by

(@ R (b) D/2
()P (d) 4R
3.14 The Manning’s n for a smooth, clean, unlined, sufficiently weathered earthen channel is
about
(a) 0.012 (b) 0.20
(c) 0.02 (d) 0.002
3.15 The Manning’s n is related to the equivalent sand grain roughness, ¢_as
@ Nece (b) Nocel’® © Nocel® d) p= S5
3.16 The Darcy—Weishach f is related to Manning’s n as
8g n’ 8 n’
@ f= RIS (b f= gRY?
RY® 64n
© f= @ f="g
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The Manning’s n for a straight concrete sewer is about

(a) 0.025 (b) 0.014 (c) 0.30 (d) 0.14

An open channel carries water with a velocity of 0.605 m/s. If the average bed shear
stress is 1.0 N/m?, the Chezy coefficient C is equal to

(a) 500 (b) 60 (c) 6.0 (d) 30

The conveyance of a triangular channel with side slope of 1 horizontal: 1 vertical is
expressed as K = C y®?; where C is equal to

(a) 2% (b) 1/n (©) 1/2n (@ 2v2/n

In a wide rectangular channel if the normal depth is increased by 20 per cent, the dis-
charge would increase by

(@) 20% (b) 15.5% (c) 35.5% (d) 41.3%

In a uniform flow taking place in a wide rectangular channel at a depth of 1.2 m, the
velocity is found to be 1.5 m/s. If a change in the discharge causes a uniform flow at a
depth of 0.88 m in this channel, the corresponding velocity of flow would be

(@) 0.89 m/s (b) 1.22 m/s (c) 1.10 m/s (d) 1.50 m/s

It is expected that due to extreme cold weather the entire top surface of a canal carrying
water will be covered with ice for some days. If the discharge in the canal were to remain
unaltered, this would cause

(a) no change in the depth

(b) increase in the depth of flow

(c) decrease in the depth of flow

(d) an undular surface exhibiting increase and decrease in depths

By using Manning’s formula the depth of flow corresponding to the condition of maxi-
mum discharge in a circular channel of diameter D is

(@) 0.94D (b) 099D (c) 0.86 D (d) 0.82D
In a circular channel the ratio of the maximum discharge to the pipe full discharge is about
(@ 1.50 (b) 0.94 (c) 1.08 (d) 1.00

For a circular channel of diameter D the maximum depth below which only one normal
depth is assured

(@ 05D (b) 0.62D (c) 0.82D (d) 0.94D

A trapezoidal channel had a 10 per cent increase in the roughness coefficient over years
of use. This would represent, corresponding to the same stage as at the beginning, a
change in discharge of

(@) +10% (b) -10% (c) 11% (d) +9.1%

For a hydraulically-efficient rectangular section, Bly, is equal to

@ 1.0 (b) 2.0 (©) 05 @ 1/3

A triangular section is hydraulically-efficient when the vertex angle 6 is

(a) 90° (b) 120° (c) 60° (d) 30°

For a hydraulically efficient triangular channel with a depth of flow y, the hydraulic
radius R is equal to

@ 2v2y (b) y/2 © 2y @ y/2V2

3.30 A hydraulically-efficient trapezoidal channel has m = 2.0. Bly, for this channel is

331

3.32

(a) 1.236 (b) 0.838 (c) 0.472 (d) 2.236

In a hydraulically most efficient trapezoidal channel section the ratio of the bed width to
depth is

(a) 1.155 (b) 0.867 (c) 0.707 (d) 0.50

In a hydraulically efficient circular channel flow, the ratio of the hydraulic radius to the
diameter of the pipe is

(@ 1.0 (b) 0.5 (c) 2.0 (d) 0.25
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3.33 For a wide rectangular channel the value of the first hydraulic exponent N is
(@ 3.0 (b) 4.0 (c) 3.33 (d) 5.33

3.34 If the Chezy formula with C = constant is used, the value of N for a wide rectangular
channel will be

(@ 2.0 (b) 3.0 (c) 3.33 (d) 5.33
3.35 For a trapezoidal channel of most-efficient proportions [Qn / (88/333’2)] =¢=
(@) 1/\/5 (b) 0.7435 (c) 0.8428 (d) 1.486
3.36 In a given rectangular channel the maximum value of uniform-flow Froude number
occurs when
(a) y=B/6 (b) R=yr2 (c) y=B/2 @) y, =V,
3.37 The limit slope of a rectangular channel 10 m wide and n = 0.015 is
(a) 0.000423 (b) 0.00372 (c) 0.00273 (d) 0.0732
3.38 Inarectangular channel 10 m wide and n = 0.015, the critical depth corresponding to the
limit slope is
(@ 1.333m (b) 0.667 m (c) 2.667m (d) 1.667 m

3.39 Arectangular channel B =4.0 m, n = 0.015 is to carry a uniform discharge at a depth of
1.0 m and Froude number = 0.5. The required bottom slope is

(a) 0.0035 (b) 0.00505 (c) 0.00095 (d) 0.00045

3.40 A trapezoidal channel with 0 < m < 0.46 will have x number of limit slopes where x is
(@1 (b) 2 (c) 3 (C)RY
@ APPENDIX 3A

Table 3A.1 gives the variation of ¢ = f(1,, m) as represented by Eq. (3.32) and provides a con-
venient aid to determine the normal depth in rectangular and trapezoidal channels. At the
normal depth

n
o= —Q and Yo .
’So BS/3 770 B

Note that the column m = 0 corresponds to a rectangular channel

Table 3A-1 Values of ¢ for Trapezoidal Channels

n, Value of ¢ 7y Value of ¢

m=0 m=10 m=15 m=20 m=25 m=0 m=10 m=15 m=20 m=25

0.100 0.01908 0.02139  0.02215 0.02282  0.02345 0.155 0.03736 0.04463 0.04713 0.04938 0.05151
0.105 0.02058 0.02321  0.02407  0.02484  0.02556 0.160 0.03919 0.04708 0.04982 0.05227 0.05459
0110 0.02212 0.02509  0.02607  0.02694  0.02776 0.165 0.04104 0.04960 0.05257 0.05523 0.05777
0.115 0.02369 0.02702  0.02814  0.02912 0.03005 0.170 0.04292 0.05217 0.05539 0.05828 0.06104
0.120 0.02529  0.02902  0.03027 0.03138 0.03243 0.175 0.04482 0.05479 0.05828 0.06141 0.06439
0.125 0.02693 0.03108 0.03247  0.03371 0.03489 0.180 0.04675 0.05747 0.06123 0.06462 0.06785
0.130 0.02860 0.03319 0.03475 0.03613 0.03744 0.185 0.04869 0.06021 0.06426 0.06791 0.07139
0.135 0.03029 0.03537 0.03709  0.03862 0.04007 0.190 0.05066 0.06300 0.06735 0.07128 0.07503
0.140 0.03202 0.03760  0.03949  0.04119 0.04280 0.195 0.05265 0.06584 0.07052 0.07474 0.07876
0.145 0.03377 0.03988  0.04197  0.04384 0.04561 0.200 0.05466 0.06874 0.07375 0.07827 0.08259
0.150 0.03555 0.04223 0.04452 0.04657  0.04852
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Table 3A-1 (Continued)

n, Value of ¢ 7, Value of ¢

m=0 m=10 m=15 m=20 m=25 m=0 m=10 m=15 m=20 m=25
0.205 0.05668 0.07170 0.07705 0.08189 0.08651 0.455 0.17485 0.28970 0.33534 0.37756 0.41811
0.210 0.05873 0.07471  0.08042 0.08559 0.09053 0.460 0.17744 0.29550 0.34249 0.38597 0.42774
0.215 0.06079 0.07777 0.08386 0.08938 0.09464 0.465 0.18005 0.30136 0.34972 0.39448 0.43749
0.220  0.06287 0.08089  0.08737 0.09325 0.09885 0.470 0.18265 0.30728 0.35703 0.40310 0.44736
0.225 0.06497 0.08406 0.09095 0.09720 0.10316 0.475 0.18527 0.31326 0.36443 0.41183 0.45737
0.230 0.06709 0.08729  0.09460 0.10124 0.10757 0.480 0.18789 0.31929 0.37191 0.42066 0.46751
0.235 0.06922 0.09057 0.09832 0.10536 0.11208 0.485 0.19051 0.32538 0.37947 0.42960 0.47778
0.240 0.07137 0.09391  0.10211 0.10957 0.11669 0.490 0.19314 0.33154 0.38712 0.43865 0.48818
0.245 0.07353 0.09730  0.10597 0.11386 0.12139 0.495 0.19578 0.33775 0.39486 0.44781 0.49871
0.250 _0.07571 010075 0.10991 0.11824 0.12620 0.500 0.19843 0.34402 0.40267 0.45708 0.50937
0255 0.07791 0.10425 0.11391 0.12271 0.13111 0.510 0.20373 0.35674 0.41857 0.47594 0.53110
0.260 0.08012 0.10781  0.11799 0.12726 0.13612 0.520 0.20905 0.36970 0.43480 0.49524 0.55336
0.265 0.08234 0.11142 0.12213 0.13190 0.14124 0.530 0.21440 0.38291 0.45138 0.51499 0.57616
0.270 0.08458 0.11508 0.12635 0.13663 0.14646 0.540 0.21976 0.39635 0.46831 0.53519 0.59952
0.275 0.08683 0.11880 0.13064 0.14145 0.15178 0.550 0.22514 0.41004 0.48559 0.55584 0.62342
0.280 0.08909 0.12257 0.13500 0.14635 0.15721 0.560 0.23055 0.42397 0.50322 0.57694 0.64788
0.285 0.09137 0.12640 0.13944 0.15135 0.16274 0.570 0.23597 0.43815 0.52120 0.59850 0.67289
0.290 0.09366 0.13028 0.14395 0.15643 0.16838 0.580 0.24140 0.45257 0.53955 0.62053 0.69848
0.295 0.09596 0.13422 0.14853 0.16161 0.17413 0.590 0.24686 0.46724 0.55825 0.64302 0.72463
0300 009828 013822 015318 016687 017998 0.600 0.25233 0.48216 057731 0.66599 0.75136
0.305 0.10060 0.14226  0.15791 0.17223 0.18594 0.610 0.25782 0.49733 0.59674 0.68943 0.77867
0.310 0.10294 0.14637 0.16271 0.17768 0.19201 0.620 0.26332 0.51275 0.61654 0.71334 0.80657
0.315 0.10529 0.15052 0.16759 0.18322 0.19819 0.630 0.26884 0.52843 0.63670 0.73773 0.83505
0.320 0.10765 0.15474 0.17254 0.18885 0.20448 0.640 0.27437 0.54436 0.65724 0.76261 0.86412
0.325 011002 0.15901 0.17756 0.19458 0.21088 0.650 0.27992 0.56054 0.67815 0.78798 0.89380
0.330 0.11240 0.16333  0.18266 0.20040 0.21739 0.660 0.28548 0.57698 0.69943 0.81384 0.92408
0.335 0.11480 0.16771 0.18784 0.20631 0.22401 0.670 0.29106 0.59367 0.72110 0.84019 0.95496
0.340 0.11720 0.17214 0.19309 0.21232 0.23074 0.680 0.29665 0.61063 0.74314 0.86704 0.98646
0.345 011961 0.17663 0.19842 0.21842 0.23759 0.690 0.30225 0.62785 0.76557 0.89439 1.01857
0350 012203 018118 020382 022462 0.24455 0.700 0.30786 0.64532 0.78839 0.92225 1.05131
0.350 0.122034 0.181179 0.203818 0.224617 0.244552 0.710 0.31349 0.66306 0.81159 0.95061 1.08467
0.355 0.12447 0.18578 0.20930  0.23091 0.25163 0.720 0.31913 0.68107 0.83518 0.97949 1.11866
0.360 0.12691 0.19044  0.21485 0.2373 0.25882 0.730 0.32477 0.69933 0.85917 1.00888 1.15328
0.365 0.12936 0.19515 0.22048 0.24378 0.26612 0.740 0.33043 0.71787 0.88355 1.03879 1.18855
0.370 0.13182 0.19992 0.22619 0.25037 0.27355 0.750 0.33611 0.73667 0.90832 1.06923 1.22446
0.375 0.13428 0.20475 0.23198 0.25705 0.28108 0.760 0.34179 0.75574 0.93350 1.10019 1.26101
0.380 0.13676 0.20963 0.23784  0.26382 0.28874 0.770 0.34748 0.77508 0.95908 1.13167 1.29822
0.385 0.13925 0.21457 0.24379  0.2707  0.29652 0.780 0.35318 0.79469 0.98506 1.16369  1.33609
0.390 0.14174 0.21956  0.24981 0.27768 0.30441 0.790 0.35889 0.81458 1.01145 1.19625 1.37462
0.395 0.14424 0.22462  0.25591 0.28475 0.31242 0.800 0.36461 0.83474 1.03825 1.22934 1.41381
0.400 0.14675 0.22972  0.26209 0.29192  0.32056
0.405 0.14927 0.23489 0.26834  0.29920 0.32881 0.810 0.37035 0.85517 1.06546 1.26298 1.45367
0.410 0.15180 0.24011 0.27468  0.30657 0.33718 0.820 0.37609 0.87588 1.09308 1.29716 1.49421
0.415 0.15433 0.24539 0.28110 0.31405 0.34568 0.830 0.38183 0.89686 1.12112 1.33190 1.53543
0.420 0.15687 0.25073 0.28759  0.32163 0.35430 0.840 0.38759 0.91813 1.14958 1.36718 1.57733
0.425 0.15942 0.25612 0.29417 0.32931 0.36304 0.850 0.39336 0.93967 1.17846 1.40302 1.61992
0.430 0.16197 0.26158 0.30083  0.33709 0.37191 0.860 0.39913 0.96150 1.20776 1.43942 1.66320
0.435 0.16453 0.26709 0.30757  0.34498 0.38090 0.870 0.40492 0.98361 1.23748 1.47638 1.70718
0.440 0.16710 0.27265 0.31439 0.35297 0.39001 0.880 0.41071 1.00600 1.26763 1.51391 1.75186
0.445 0.16968 0.27828 0.32129 0.36106 0.39925 0.890 0.41650 1.02868 1.29821 1.55201 1.79725
0.450 0.17226 0.28396 0.32827 0.36926 0.40862 0.900 0.42231 1.05164 1.32923 1.59067 1.84334

(Continued)
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Table 3A-1 (Continued)

n, Value of ¢ 7, Value of ¢
m=0 m=10 m=15 m=20 m=25 m=0 m=10 m=15 m=20 m=25
0910 042812 1.07489 136067 1.62992 1.89015 1.31 0.66524 225468 2.99960 3.70806 4.39526
0920 043394 1.09843 139256 1.66974 1.93767 1.32 0.67126 229076 3.05072 3.77362 4.47486
0930 043977 112226 1.42488 171015 1.98592 133 0.67728 232719 3.10236 3.83988 4.55536
0.940 0.44561 1.14638 1.45764 1.75114 2.03489 1.34 0.68330 2.36395 3.15453 3.90684 4.63673
0950 045145 1.17080  1.49084 179271 2.08460 135 0.68932 240106 3.20723 3.97452 4.71900
0960 0.45730 1.19550 1.52449 1.83488 2.13503 1.36 0.69535 243850 3.26046 4.04292 4.80217
0970 0.46315 122050 1.55859 1.87765 2.18621 1.37 0.70138 2.47629 3.31422 4.11203 4.88623
0.980 046901 1.24580 1.59314 192101 2.23813 1.38 0.70741 2.51442 3.36851 4.18186 4.97120
0990 047488 1.27140 1.62814 1.96498 2.29080 1.39 0.71345 255290 3.42335 4.25242 5.05707
1.000 048075 129729 1.66359 2.00954 2.34422 140 071949 259173 3.47872 432370 514385
1.010 0.48663 1.32348 1.69950 2.05472 2.39840 1.41 0.72553 2.63090 3.53463 4.39571 5.23155
0.020 0.49251 1.34997 1.73586 2.10051 2.45333 1.42 0.73158 2.67042 3.59109 4.46845 5.32016
1.030 0.49840 1.37677 1.77269 2.14691 2.50903 1.43 0.73762 2.71029 3.64809 4.54193 5.40970
1.040 050430 1.40387  1.80998 2.19393 256550 1.44 0.74367 2.75052 3.70563 4.61615 5.50016
1.050 051020 1.43127 1.84773 224157 2.62274 1.45 0.74973 2.79109 3.76373 4.69111 5.59155
1.060 051611 1.45898 1.88596 2.28983 2.68076 1.46 0.75578 2.83202 3.82237 4.76681 5.68387
1070 052202 1.48700 1.92465 2.33872 273955 1.47 0.76184 2.87330 3.88157 4.84326 5.77713
1.080 052794 1.51533 1.96381 2.38823 2.79913 1.48 0.76790 2.91494 3.94133 4.92045 5.87133
1.090 053386 154396 2.00345 2.43839 2.85950 1.49 0.77397 2.95694 4.00164 4.99841 5.96647
1100 053979 157291 204356 248917 292067 150 0.78003 299929 4.06251 5.07711 6.06256
1110 054572 1.60216  2.08415 254060 298262 1.51 0.78610 3.04200 4.12394 5.15657 6.15960
1120 055165 1.63173  2.12522 2.59267 3.04538 1.52 0.79217 3.08508 4.18594 5.23680 6.25760
1130 055760 1.66162 2.16677 2.64538 3.10895 1.53 0.79824 3.12851 4.24850 5.31779 6.35655
1.140 056354 1.69182  2.20881 2.69874 3.17332 154 0.80432 3.17231 4.31163 5.39954 6.45647
1150 056949 1.72234  2.25133 2.75276 3.23851 1.55 0.81040 3.21647 4.37532 5.48207 6.55736
1160 057545 1.75317 2.29434 280743 3.30451 156 0.81647 3.26100 4.43959 5.56536 6.65921
1170 058141 1.78433  2.33784 2.86275 3.37133 157 0.82256 3.30589 4.50443 5.64944 6.76204
1180 058737 1.81580 2.38184 291874 343898 1.58 0.82864 3.35115 456984 5.73429 6.86584
1190 059334 1.84760 2.42633 2.97539 3.50746 159 0.83473 3.39678 4.63584 5.81992 6.97063
1200 0.59931 1.87972 247132 3.03271 3.57677 1.60 0.84081 3.44278 4.70241 5.90633 7.07640
121 0.60528 1.91216 2.51681 3.09069 3.64692 1.61 0.84691 3.48914 4.76956 5.99354 7.18316
122 0.61126 1.94493 256279 314935 371790 1.62 0.85300 353588 4.83729 6.08153 7.29091
123 0.61725 1.97802 2.60929 3.20869 3.78973 1.63 0.85909 3.58300 4.90561 6.17031 7.39965
124 062323 201145 265628 326870 3.86241 1.64 0.86519 3.63048 4.97452 6.25989  7.50940
125 0.62922 2.04520 2.70379 3.32940 3.93595 1.65 0.87129 3.67834 5.04402 6.35026 7.62015
126 0.63522 2.07928 2.75181 3.39078 4.01033 1.66 0.87739 3.72658 5.11410 6.44144 7.73190
127 0.64122 211369 2.80033 3.45285 4.08558 1.67 0.88349 377520 5.18478 6.53342 7.84466
1.28 0.64722 2.14844  2.84937 351561 4.16170 1.68 0.88959 3.82419 5.25605 6.62620 7.95844
129 0.65322 218351 2.89893 357906 4.23868 1.69 0.89570 3.87357 5.32792 6.71980 8.07323
130 0.65923 2.21893 2.94901 3.64321 4.31653 1.70 0.90181 3.92332 5.40039 6.81420 8.18905




Gradually Varied
Flow Theory 4

4.1 INTRODUCTION

A steady non-uniform flow in a prismatic channel with gradual changes in its water
surface elevation is termed as gradually varied flow (GVF). The backwater produced
by a dam or weir across a river and the drawdown produced at a sudden drop in a chan-
nel are few typical examples of GVF. In a GVF, the velocity varies along the channel
and consequently the bed slope, water surface slope, and energy slope will all differ
from each other. Regions of high curvature are excluded in the analysis of this flow.

The two basic assumptions involved in the analysis of GVF are the following:

1. The pressure distribution at any section is assumed to be hydrostatic. This
follows from the definition of the flow to have a gradually-varied water sur-
face. As gradual changes in the surface curvature give rise to negligible normal
accelerations, the departure from the hydrostatic pressure distribution is negli-
gible. The exclusion of the region of high curvature from the analysis of GVF,
as indicated earlier, is only to meet this requirement.

2. The resistance to flow at any depth is assumed to be given by the correspond-
ing uniform flow equation, such as the Manning’s formula, with the condition
that the slope term to be used in the equation is the energy slope and not the
bed slope. Thus, if in a GVF the depth of flow at any section is y, the energy
slope S, is given by

_nV?

f = p4/3
R

(4.1)

where R = hydraulic radius of the section at depth y.

4.2 DIFFERENTIAL EQUATION OF GVF

Consider the total energy H of a gradually varied flow in a channel of small slope and
a=10as

2

v
H:Z+E:z+y+5 4.2)

where E = specific energy.
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A schematic sketch of a gradually varied flow is shown in Fig. 4.1. Since the water
surface, in general, varies in the longitudinal (x) direction, the depth of flow and total
energy are functions of x. Differentiating Eq. 4.2 with respect to x

dH _dz dE (4.3)
dx dx dx
2
i.e. d_H:d_Z+d_y i V_ (4.4)
dx dx dx dx|2g
Slope S
— 4-{__ _ _f _ Energy line
V2/2g N ~ -
T Water\ ~ N
e
e
Ey
e
Datum le X
0

Fig. 4.1 Schematic sketch of GVF
In equation 4.4, the meaning of each term is as follows:

1. (:j_H represents the energy slope. Since the total energy of the flow always

X
decreases in the direction of motion, it is common to consider the slope of the
decreasing energy line as positive. Denoting it by S, , we have

Mo, (45)

2. 9z denotes the bottom slope. It is common to consider the channel slope with

dx
bed elevations decreasing in the downstream direction as positive. Denoting it

as S, we have
az _
dx

s, (4.6)

3. represents the water surface slope relative to the bottom of the channel.
dx

g A|V7)_d|Q |dy
dx|2g] dy|2gA®)dx
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__Qdady
T gA® dy dx
Since dA/dy =T,
2 2
d(vi)_ QT @)
dx | 2g gA® dx

Equation 4.4 can now be rewritten as

dy [Q?T\|dy
-S§.=—8§ 4+ = —Z
f ° dx [ gA® ]dx

Re-arranging

d_y_ So —S; (4.8)
=—
dx 1_Q'Ia'
gA

This forms the basic differential equation of GVF and is also known as the dynamic
equation of GVF. If a value of the kinetic-energy correction factor « greater than
unity is to be used, Eq. 4.8 would then read as

d_y . Sy =S¢ (4.83)
dx aQ’T
1- 3
gA

Other Forms of Eq.4.8 (a) If K = conveyance at any depth y and K, = convey-
ance corresponding to the normal depth y,, then

K= Q/\/§ (By assumption 2 of GVF) (4.9)
and K, =Q/fS, (Uniform flow)
S; /S,=K; /K? (4.10)

Similarly, if Z = section factor at depth y and Z_= section factor at the critical
depthy,,

Z:=NJT

and zZZ'QS—Q2
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Hence, QZZ —Z_cz (4.11)
gA Z

Using Eqgs 4.10 and 4.11, Eq. 4.8 can now be written as

{5
_g _\KJ (4.12)

This equation is useful in developing direct integration techniques.
(b) If Q, represents the normal discharge at a depth y and Q, denotes the critical
discharge at the same depth y,

Q, = KL/S, (4.13)
and Q=2 \/5 4.14)

Using these definitions, Eq. 4.8 can be written as

dy _ ¢ 1-Q/Q) (4.15)
dx  "1-(Q/Q,)?

(c) Another form of Eq. 4.8 is Eq. 4.3 and can be written as

dE
&:SO—Sf (4.16)

This equation is called the differential-energy equation of GVF to distinguish it
from the GVF differential equations (Egs (4.8), (4.12) and (4.15)). This energy
equation is very useful in developing numerical techniques for the GVF profile
computation.

4.3 CLASSIFICATION OF FLOW PROFILES

In a given channel, y, and y_ are two fixed depths if Q, n and S are fixed. Also,
there are three possible relations between y, and y_ as (i) y, > y,, (ii) y,<y, and
(iii) y, =y.. Further, there are two cases where y, does not exist, i.e. when (a) the
channel bed is horizontal, (S, = 0), (b) when the channel has an adverse slope,
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(S, is —ve). Based on the above, the channels are classified into five categories as
indicated in Table 4.1.

For each of the five categories of channels, lines representing the critical depth
and normal depth (if it exists) can be drawn in the longitudinal section. These would
divide the whole flow space into three regions as:

Region 1: Space above the top most line

Region 2: Space between top line and the next lower line

Region 3: Space between the second line and the bed
Figure 4.2 shows these regions in the various categories of channels.

Table 4. 1 Classification of Channels

Sl Channel Symbol Characteristic Remark

No category condition

1 Mild slope M Y, >V, Subcritical flow at normal depth

2 Steep slope S Y.>Y, Supercritical flow at normal depth
3 Critical slope C Y. =Y, Critical flow at normal depth

4 Horizontal bed H S,=0 Cannot sustain uniform flow

5 Adverse slope A S, <0 Cannot sustain uniform flow

Mild slope
Sg=+ve

@

‘*~~_‘__R_eg‘ion @

- CcDL Region @ CDL

Critical slope
Sp=+ve Horizontal bed

(iii) (iv)

Region@,,—"———

T @

- - - - CDL = Critical depth line
—_——— NDL = Normal depth line

Sy=-ve
Adverse slope
) (vi)

Fig. 4.2 Regions of flow profiles



162 Flow in Open Channels

Depending upon the channel category and region of flow, the water surface pro-
files will have characteristic shapes. Whether a given GVF profile will have an
increasing or decreasing water depth in the direction of flow will depend upon the
term dy/dx in Eq. 4.8 being positive or negative.

It can be seen from Eq. 4.12 that dy is positive
dx

(i) if the numerator > 0 and the denominator > 0
or (ii) if the numerator < 0 and the denominator < 0.

i.e. g_y is positive if (i) K> K and Z > Z_or
X

(il K<K,andZ>Z,

For channels of the first kind, K is a single-valued function of y, and hence

dy >0if(i)y>y,andy >y or
dx

(i)y<y,andy<y,

similarly, % <0if (i) y, >y >y, or
dx

(i)y,>y>y,

Further, to assist in the determination of flow profiles in various regions, the
behaviour of dy/dx at certain key depths is noted by studying Eq. 4.8 as follows:

d . .
1. As y—Y,, d—y —0, i.e. the water surface approaches the normal depth line

X
asymptotically.
2. Asy—y, g—y —o00, I.e.the water surface meets the critical depth line verti-
X
cally. This information is useful only as indicative of the trend of the profile. In
reality, high curvatures at critical depth zones violate the assumption of gradu-
ally-varied nature of the flow and as such the GVF computations have to end
or commence a short distance away from the critical-depth location.

3. y— o0, % —S, , i.e. the water surface meets a very large depth as a horizon-
X

tal asymptote.
Based on this information, the various possible gradually varied flow profiles are

grouped into twelve types (Table 4.2). The characteristic shapes and end conditions
of all these profiles are indicated in Fig. 4.3.
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In Fig. 4.3, an exaggerated vertical scale is adopted to depict the nature of cur-
vature. In reality the GVF profiles, especially M,, M, and H, profiles, are very flat.
The longitudinal distances are one to two orders of magnitude larger than the depths.
It is evident from Fig. 4.3 that all the curves in region 1 have positive slopes; these

Table 4.2 Types (yFGVF Prqﬁ']es

Channel Region Condition Type
1 y>Yo > Y, M,
Mild slope 2 Vo> Y >V, M,
3 Yo> Y. >y M,
1 y> Y. > Yo S,
Steep slope 2 Y=Y >Yo S,
Ye> Yo >y S,
1 =
Critical slope Y=Y =Y S
3 Y<VYo=1Y. C,
2
Horizontal bed y=JYe H,
3 y <Y, H,
Adverse slope 2 y=Ye A
3 Yy <Y, A
Horizontal
asymptote

(a) Mild slope
Fig. 4.3 Various GVF Profiles (Contd)
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Horizontal
asymptote

(b) Steep slope

Horizontal
7symptote

Horizontal H,
\\
—— — - _ _ __ \ CDL
] p
c H3
4 >

(d) Horizontal bed

Horizontal A,

il

(e) Adverse slope
Fig. 4.3 Various GVF profiles
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are commonly known as backwater curves. Similarly, all the curves in region 2 have
negative slopes and are referred to as drawdown curves. At critical depth the curves
are indicated by dashed lines to remind that the GVVF equation is strictly not applica-
ble in that neighbourhood.

Example 4.1 | ) roctangular channel with a bottom width of 4.0 m and a bottom

slope of 0.0008 has a discharge of 1.50 m¥s. In a gradually varied flow in this chan-
nel, the depth at a certain location is found to be 0.30 m. Assuming n = 0.016, deter-
mine the type of GVF profile.

Solution (a) To find the normal depth y,

b= Qn _ 1.50x0.016 0021046

JS, B +/0.0008 x (4.0)*

Referring to Table 3A:1, the value of y /B for this value of ¢, by interpolation, is

Yo _ 01065
B
Y, =0.426m
(b) Critical depth y_
15
=Q/B==""=0.375m%/s/m
q=Q 20
1/3
0.375)°
— ()= O3 | _0243m
Y. =(a°/9) [ 981 ]

(c) Type of profile
Since y,> y., the channel is a mild-slope channel. Also, given 'y = 0.30 m is such
that

Yo=Y > Y.
As such the profile is of the M, type (Table 4.2).

Alternative method
Instead of calculating normal depth through use of tables, the critical slope is calcu-
lated. By using Eq. (3.64).

B Sc Bl/3 B (1+277)4/3
*C 2 1/3

gn n

S
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_on® (tr2n)” (4.17)

c Bl/3 ,'71/3
Here n =1y, /B =0.243/4.0 = 0.06075. Substituting in Eq. 4.17

o - 981x(0.016) (L+2x(0.06075)) "

— 0.004689
(4.0)" (0.06075)"

[

Since S is less than S_the channel slope is mild. Since given depth y = 0.30 m is
less than y, = 0.243 m, it follows that y, >y > y_ . As such the GVF profile is of
M, type.

4.4 SOME FEATURES OF FLOW PROFILES

(a) Type-M Profiles The most common of all GVF profiles is the M, type,
which is a subcritical flow condition. Obstructions to flow, such as weirs, dams,
control structures and natural features, such as bends, produce M, backwater curves
Fig. 4.4 (a). These extend to several kilometres upstream before merging with the
normal depth.

Horiz. RVF

NDL
CDL

Mild slope
Fig. 4.4 (a) Ml proﬁ]e

The M, profiles occur at a sudden drop in the bed of the channel, at constriction
type of transitions and at the canal outlet into pools Fig. 4.4 (b).

. Drop
Mild slop

Fig. 4.4(b) Mz prqﬁ]e



Gradually Varied Flow Theory 167

v

Sluice gate

NDL
Jump

\} cDL

M3

RVF
Vena contracta Mild slope

Fig. 4.4 (c) M3 pr(ﬁ]e

Where a supercritical stream enters a mild-slope channel, the M, type of profile
occurs. The flow leading from a spillway or a sluice gate to a mild slope forms a typical
example (Fig. 4.4(c)). The beginning of the M, curve is usually followed by a small
stretch of rapidly-varied flow and the down stream is generally terminated by a hydrau-
lic jump. Compared to M, and M, profiles, M, curves are of relatively short length.

(b) Type-S Profiles The S, profile is produced when the flow from a steep
channel is terminated by a deep pool created by an obstruction, such as a weir or
dam (Fig. 4.4 (d)). At the beginning of the curve, the flow changes from the normal
depth (supercritical flow) to subcritical flow through a hydraulic jump. The profiles
extend downstream with a positive water surface slope to reach a horizontal asymp-
tote at the pool elevation.

Sl
cDL

Jump
NDL
Weir

Steep slope 0
Fig. 4.4(d) S, profile

Profiles of the S, type occur at the entrance region of a steep channel leading from
a reservoir and at a break of grade from mild slopes to steep slope (Fig. 4.4(e)). Gen-
erally S, profiles are of short length.

Free flow from a sluice gate with a steep slope on its downstream is of the S,
type (Fig. 4.4(f)). The S, curve also results when a flow exists from a steeper slope
to a less steep slope (Fig. 4.4.(Q)).
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v
S,
Ye
CD(
/VDL
Fig.4.4(e) S, profile
S3 CDL
NDL
Steep slope
Fig. 4.4(f) 53 profile
R _ CcDL
\. = ~ ~
\_ = ~

Steeper slope

Steep slope
Fig. 4.4(g) S, profile
(c) Type C Profiles C and C, profiles are very rare and are highly unstable.

(d) Type H Profiles A horizontal channel can be considered as the lower limit
reached by a mild slope as its bed slope becomes flatter. It is obvious that there is no
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region 1 for a horizontal channel as y, = oo. The H, and H, profiles are similar to
M,and M, profiles respectively [Fig. 4.4(h)]. However, the H, curve has a horizontal

asymptote.

v Sluice gate

Jump
CDL

Horizontal bed
Drop

Fig. 4.4(h) H, and H, profiles

(e) Type A Profiles Adverse slopes are rather rare and A, and A, curves are similar
to H, and H, curves respectively (Fig. 4.4 (i)). These profiles are of very short length.

|||<]

|||q

Adverse slope

S,
Fig. 4.4(i) 4, profile

4.5 CONTROL SECTIONS

A control section is defined as a section in which a fixed relationship exists between
the discharge and depth of flow. Weirs, spillways sluice gates are some typical exam-
ples of structures which give rise to control sections. The critical depth is also a
control point. However, it is effective in a flow profile which changes from subcriti-
cal to supercritical flow. In the reverse case of transition from supercritical flow to
subcritical flow, a hydraulic jump is usually formed by passing the critical depth as a
control point. Any GVF profile will have at least one control section.
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NDL

CDL

My
Yo
\v
Reservoir

S;

Jump

Yo

@)

Control

NDL

Control
(b)

Hy
1%

Horizontal bed

(©)

Control

S3

Control

(d)
Fig. 4.5 (contd)

Control
Jump
M3
Control
CDL
Np;

CDL

Ye
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Control

NDL

@ = Control @

® Drop

Fig. 4.5 Examples of controls in GVF

In the synthesis of GVF profiles occurring in serially connected channel ele-
ments, the control sections provide a key to the identification of proper profile
shapes. A few typical control sections are indicated in Fig. 4.5 (a-d). It may be
noted that subcritical flows have controls in the downstream end while supercrit-
ical flows are governed by control sections existing at the upstream end of the
channel section. In Figs 4.5(a) and (b) for the M, profile, the control section
(indicated by a dark dot in the figures) is just upstream of the spillway and sluice
gate respectively. In Figs 4.5(b) and (d) for M, and S, profiles respectively, the
control point is at the vena contracta of the sluice-gate flow. In subcritical-flow
reservoir offtakes Fig. 4.5(c), even though the discharge is governed by the res-
ervoir elevation, the channel entry section is not strictly a control section. The
water-surface elevation in the channel will be lower than the reservoir elevation
by an amount equivalent to (1+K)V2/2g where K is the entrance-loss coefficient.
The true control section will be at a downstream location in the channel. For
the situation shown in Fig. 4.5(c) the critical depth at the free overflow at the
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channel end acts as the downstream control. For a sudden drop (free overflow)
due to curvature of the streamlines the critical depth actually occurs at distance
of about 4.0 y_upstream of the drop. This distance, being small compared to GVF
lengths, is neglected and it is usual to perform calculations by assuming y, to
occur at the drop.

For a supercritical canal intake Fig. 4.5(e)., the reservoir water surface falls to the
critical depth at the head of the canal and then onwards the water surface follows the
S, curve. The critical depth occurring at the upstream end of the canal is the control
for this flow.

A mild-slope channel discharging into a pool of variable surface elevation is indi-
cated in Fig. 4.5(f). Four cases are shown. In case 1, the pool elevation is higher than
the elevation of the normal-depth line at B. This gives rise to a drowning of the chan-
nel end. A profile of the M, type is produced with the pool level at B as control. The
velocity head of the channel flow is lost in turbulence at the exit and there is no
recovery in terms of the change in surface elevation. In case 2, the pool elevation is
lower than the elevation of the normal-depth line but higher than the critical-depth
line at B. The pool elevation acts as a control for the M, curve. In case 3, the pool
elevation has dropped down to that of the critical-depth line at B and the control is
still at the pool elevation. In case 4, the pool elevation has dropped lower than the
elevation of the critical-depth line at B. The water surface cannot pass through a criti-
cal depth at any location other than B and hence a sudden drop in the water surface
at B is observed. The critical depth at B is the control for this flow.

4.6 ANALYSIS OF FLOW PROFILE

The process of identification of possible flow profiles as a prelude to quantitative
computations is known as analysis of flow profile. It is essentially a synthesis of the
information about the GVF profiles and control sections discussed in the previous
section.

A channel carrying a gradually varied flow can in general contain different pris-
moidal-channel sections of varying hydraulic properties. There can be a number
of control sections of varying locations. To determine the resulting water-surface
profile in a given case, one should be in a position to analyse the effects of various
channel sections and controls connected in series. Simple cases are illustrated to
provide information and experience to handle more complex cases.

Break in Grade Simple situations of a series combination of two channel sec-
tions with differing bed slopes are considered. In Fig. 4.6(a), a break in grade from
a mild channel to a milder channel is s hown. It is necessary to first draw the critical-
depth line (CDL) and the normal-depth line (NDL) for both slopes. Since y_ does
not depend upon the slope (as Q = constant), the CDL is at a constant height above
the channel bed in both slopes. The normal depth y,, for the mild slope is lower
than that of the milder slope (y,,). In this case, y,, acts as a control, similar to the
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weir or spillway case and an M, backwater curve is produced in the mild-slope
channel.

Various combinations of slopes and the resulting GVF profiles are presented in
Fig. 4.6(a-h). It may be noted that in some situations there can be more than one pos-
sible profiles. For example, in Fig. 4.6(e), a jump and S, profile or an M, profile and
a jump are possible. The particular curve in this case depends on the channel and its
properties.

(a) Milder

NDL

Milder M,

Fig. 4.6 (Contd)
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Adverse
Mild

Horizontal NDL
Steep

(h)
Fig. 4.6 GVT profiles at break in grades
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In the examples indicated in Fig. 4.6, the section where the grade changes acts as
a control section and this can be classified as a natural control. It should be noted
that even though the bed slope is considered as the only variable in the above exam-
ples, the same type of analysis would hold good for channel sections in which there
is a marked change in the roughness characteristics with or without a change in the
bed slope. A long reach of unlined canal followed by a lined reach serves as a typical
example for the same. The junction provides a natural control of the kind discussed
above. A change in the channel geometry (say, the bed width or side slope) beyond
a section while retaining the prismoidal nature in each reach also leads to a natural
control section.

Serial Combination of Channel Sections To analyse a general problem of
many channel sections and controls, the following steps are to be adopted:

1. Draw the longitudinal section of the systems.

2. Calculate the critical depth and normal depths of various reaches and mark the
CDL and NDL in all the reaches.

3. Mark all the controls—both the imposed as well as natural controls.

4. ldentify the possible profiles.

Example 4.2 A rectangular channel of 4.0-m width has a Manning’s coeffi-

cient of 0.025. For a discharge of 6.0 m¥/s in this channel, identify the possible GVF
profiles produced in the following break in grades.

a) S, =0.0004 to S, =0.015

b) S, =0.005 to S,, = 0.0004

Solution q=6.0/4.0=1.50m*/s/m

2)s  [(15)’
y, =9 = WS o e1am
g 9.81
Qn  60x0025 000372

For normal depth calculation: ¢ =

\/§st13 - \/§X(4.O)8/3 - \/g

Using this relation, the normal depth for various cases are calculated as below.

S, 0 y,/B from Yo
Table 3A-1 (m)
0.0004 0.1860 0.4764 1.906
0.015 0.0303 0.1350 0.540
0.005 0.0526 0.1950 0.780
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Depending upon the relative values of y , y_and y,,, the type of grade changes are
identified as below:

Case Yo Yoo Y. Type of grade change  Possible Types of
(m) (m) (m) Profiles

a) 1906 0540 0.612  Mild to Steep M, and S,

b) 0.780  1.906 0.612  Mild to Milder mild M,

Various possible GVF profiles in these two cases are shown in Fig. 4.7 (a) and 4.7(b).

(Alternative method)
Instead of calculating normal depth through use of tables, the critical slope is calcu-
lated. By using Eq. (3.64).

Sc Bl/3 (1+ 2,'7)4/3

Sie = gn’ = 771/3
4/3
_gn’ (1+29) (4.17)
c Bl/3 771/3
Here, n =Y./ B = 0.612/4.0 = 0.153. Substituting in Eq. 4.17
2 4/3
s, — 9.81><(0.1?325) y (l+2><(0.133)) — 0.0103
(4.0) (0.153)
Classification of Channels based on value of slope relative to S, = 0.013
Case S Type Sz Type Type of grade change
a) 0.0004 Mild 0.015 Steep Mild to Steep
b) 0.005 Mild 0.0004 Mild Mild to Milder mild
NDL
Yo1 = 1.906
CDL
= ""—-—.________-_\u
So1 =0.0004 ~
yc =0.612

Yo2 = 0.540

Fig. 4.7(a) M, and S, curves-Example 4.2 (a)
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NDL M, curve

CDL Ty~ ==
[yC:o.elz\

Sp1 = 0.005 /
Sp2 =0.004,

Fig 4.7(b) M, curve — Example 4.2 (b)

Example 4.3 | |gentify and sketch the GVF profiles in three mild slopes which
could be described as mild, steeper mild and milder. The three slopes are in series.

The last slope has a sluice gate in the middle of the reach and the downstream end of
the channel has a free overfall.

Solution The longitudinal section of the channel, critical-depth line and normal-
depth lines for the various reaches are shown in Fig. 4.8. The free overfall at E is
oviously a control. The vena contracta downstream of the sluice gate at D is another
control. Since for subcritical flow the control is at the downstream end of the chan-
nel, the higher of the two normal depths at C acts as a control for the reach CB,
giving rise to an M, profile over CB. At B, the normal depth of the channel CB acts
as a control giving rise to an M, profile over AB. The controls are marked distinctly
in Fig. 4.8. With these controls the possible flow profiles are: an M, profile on chan-
nel AB, M, profile on channel BC, M, profile and M, profile connected through a
jump on the stretch DC. All these possible types are marked in Fig. 4.8. The details
of computation of the various profiles and the location of the jump is discussed in
the next chapter.

Example 4.4 A trapezoidal channel has three reaches A, B and C connected in
series with the following properties:

Reach Bed width B Side slope m Bed slope S, n

A 4.0m 1.0 0.0004 0.015
B 40m 1.0 0.009 0.012
C 40m 1.0 0.004 0.015

Solution For a discharge of 22.5 m¥s through this channel, sketch the resulting
water-surface profiles. The length of the reaches can be assumed to be sufficiently
long for the GVF profiles to develop fully.

The normal depth and critical depths in the reaches AB and BC are calculated by
using Tables 3A.2 and 2A.2. respectively as follows:
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b= Qn Yo Yo Qm*® my, Ye Classification of
Reach ¢= /_SoBa/s B (m) \/’Bz.s B (m) the reach
9

A 0.4186 0.566 2.264 0.2245 0.329 1.316 Mild slope
B 0.0706 0.203 0.812 0.2245 0.329 1.316 Steep slope
o 0.1324 0296 1172 0.2245 0329 1.316 Steep slope

Reach A is a mild-slope channel as y, >y, and reaches B and C are steep slope
channels. Reach B is steeper than reach C. The various reaches are schematically
shown in Fig. 4.9. The CDL is drawn at a height of 1.316 m above the bed level and
the NDLs are drawn at the appropriate y, values.

The controls are marked in the figure. Reach A will have an M, drawdown curve,
reach B and S, drawdown curve and reach C and S, rising curve as shown in the figure.
It may be noted that the resulting profile as above is a serial combination of Fig. 4.6(d)
and (f).

M2
CDL NDL
My
v v
i NDL
Mild 5 M,
NDL Jum
Steg P coL
,0@, ) J
/77//0, M3
C D - £
Milder mild
Drop
Fig. 4.8 GVF profile for Example 4.3
NDL
Yon =2.264m
CDL—— —— — — — _ _
0.
812 m
A Mild B
CDL
NDL
Ye =1316

Fig. 4.9 GVF profile for Example 4.4
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Example4.5 | |nq rectangular channel, two reaches M and N are in series, with
reach M being upstream of reach N. These channel reaches have the following

characteristics:

Reach Width (m) Discharge (m®/s) Slope n
M 5.0 15.0 0.0004 0.025
N 4.0 15.0 0.0003 0.015

Sketch the resulting GVF profile due to the change in the channel characteristics as
above.

1/3

qz 1/3 (30)2
Solution g, =15.0/5.0=3.00m*/s/m y_=|—| =|—%| =0.9717m
" g 9.81
5 \1/3 (3 75>2 3
g, =15.0/4.0= 3.75m* /s/m Voo = R R =1.1275m
g 9.81
Normal depth calculations:
Reach nQ 7 from Table 3A.7  Normal depth y, (m)
¢ - \/8788/3
0
M 0.256496 0.6071 3.036 m
0.32220 0.7254 2.902 m
Reach Y, (M) y,(m) Slop Nature of Nature of GVF due
classification  break in grade to break in grade
M 3.3036  0.9717 Mild Mild to M,curve in Reach
N 2.902 1.1275 Mild Steeper mild M

The channel slope changes from Mild Slope to Steeper mild slope and an M2 curve
is formed in the reach M. The curve has the upstream asymptote of y, = 3.3036 m
and ends at a depth of 2.902 m at the junction of the two reaches. The nature of the
GVF profile is shown schematically in Fig. 4.10.
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NDL

TT— -
—_

—_—
—_

Channel M

Channel N
Fig. 4.10 GVF profile of Example 4.5

4.7 TRANSITIONAL DEPTH

The transitional depth is defined as the depth at which the normal discharge Q_is
equal to the critical discharge Q_ and the slope of the gradually varied flow profile is
horizontal. For such a situation,

%: s, (4.18)
X

Since in a GVF from Eq. (4.15)
dy_ 1-(Q/Q)
dx 1-(Q/Q.)

at the transitional depth

Q_ L pH_ % (4.19)

ie Q/\/g = Q/\/E
1AR2/3 AVA/T

n

413
or nSZ_OQ = TA% = -;W (4.20)

Equation 4.20 is the same as the generalized-flow relation (Eq. (3.69)) with F = 1.0.
For a trapezoidal channel, the non-dimensionalised form of Eq. 4.20 will be

4/3
8081/3 (l+ 2771 \V m2 +l)

n’g  (L+2mp)(L+mp ) pl

(4.21)

*0C
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where 7, =y, = transitional depth. It may be noted that S, _ is similar to S,  (Section 3.16)
but with the bed slope S, being used in place of S .

In a given problem, normally S, B, n are fixed and the value of 1, is required. It is
important to note that in the gradually-varied flow calculations, Q_and Q, are fictitious
discharges and are different from the actual discharge Q. As such, at a transitional depth
Y, the actual flow Froude number is not unity (Example 4.4). Since Eq. (4.20) is the
same as Eq. (3.50) of the generalized-flow relationship, the behaviour of the transi-
tional depth in trapezoidal, rectangular and triangular channels is exactly the same as
the behaviour of the critical depth with critical slope (discussed in Section 3.16).
The generalised-flow diagram (Fig. 3.11) can be used for the solution of Eq. (4.21) to
determine the transitional depth.

It may be seen from Eq. (4.20) that the transitional depth depends only on the
channel geometry, roughness and slope and is independent of the actual discharge.
In general, there can be one, two or three transitional depths depending upon
the flow and channel geometry. However, situations with more than one transitional
depth in a profile are rare. In gradually varied flow computations, the transitional depth
is useful to locate sections where the water surface may have a point of inflexion
with respect to the horizontal. In spatially-varied flows, the transitional depth pro-
vides a very effective way of determining the control points.

Example 4.5 | A 2.0-m wide rectangular channel (n = 0.015), carries a dis-
charge of 4.0 m%/s. The channel is laid on slope of 0.0162. A downstream sluice

gate raises the water surface to 7.0 m immediately behind it. Find the transit-
ional depth.

S Bl/3
Solution  From Section 3.17, the limit value of S., = L(;T =2.667
2
Limit slope Sie = 2'667(?2'801))1(/?'015) =0.004672

Since the actual slope S, > S, ., transitional depth is possible.

Lc’
The normal depth y,, for given S, n, B and Q is found by using Table 3A.1.

4.0x0.015

= =0.07424
J0.0162 x (2.0)*?

Y, / B =0.2466,y, = 0.493m

16
x9.81

1/3
Critical depth y_= [4 ] =0.742m
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Since y, <y, <Y, the channel is a steep-slope channel and the GVF profile is an
S,curve. At the transitional depth, from Eq. (4.21),

_S,B¥®  0.0162x(2.0)° g

Supe = = =9.
gn*  (9.81)x(0.015)°

247

_ @+2p)""

1/3

Th
By using trial-and-error method the two transitional depths are found as
Ny =2.985 y,=5970m
n,, = 0.00125, y,, = 0.0025 m

The second transitional depth, y,, is not of any significance in this problem.

The S, curve starting after a jump from the normal depth will continue to rise till
y =y, = 5.970 m at which point it will become horizontal. Beyond y,, The Froude
number aty =y, is

4.0/(2.0x5.97)
F =

. = ———-=10.0438
9.81x5.97
Horizontal
S, Curve v T v
Jump
, y; =5.97m
¢ =0 7.00m
Yosoy 742m CbL
49m Ny
Sp = 0.0162

n=0.015

Fig. 4.11 Example 4.6
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~ PROBLEMS

Problem Distribution

Topic Problems

GVF equation 41,42
Classification of GVF profiles 43,4547

Water surface slope 4.4

GVF profiles at break in grade 458,411

Profile analysis 49, 4.10,4.12 -4.15

41

4.2

4.3

44

45

46

(i) Show that the differential equation of gradually varied flow in a rectangular channel of
variable width B can be expressed as

Q’y dB

S, —S -

dy_ 0 er[ A3 dx
dx _Q°B
gA®

(ii) Further, show that for horizontal, frictionless rectangular channel of varying
width B, the above relation reduces to

_p2\dY e[ y|dB _
(1 F) F 0
dx B dx

where F = Froude number.
Using the basic differential equation of GVF, show that dy/dx is positive for S;, M, and S,
profiles
Show that for a wide rectangular channel the slope is mild or steep according to S, being
less than or greater than
n2910l9
q2/9

A 3.0-m wide rectangular channel has a longitudinal slope of 150 mm/kmh and Manning’s
n = 0.02. When the discharge in the channel is 0.85m?%/s, estimate the slope of the water sur-
face in the channel (relative to the horizontal) at a point where the depth of flow is 0.75 m.
In a very long, wide rectangular channel the discharge intensity is 3.0 m®s/metre width.
The bed slope of the channel is 0.004 and Manning’s n = 0.015. At a certain section in this
channel, the depth of flow is observed to be 0.90 m. What type of GVF profile occurs in
the neighbourhood of this section?

In a 4.0-m wide rectangular channel (n = 0.017) the bed slope is 0.0006. When the channel is
conveying 10.0 m¥/s of flow, estimate the nature of GVF profiles at two far away sections P
and R in this channel where the depth of flow is measure as 1.6 m and 2.1 m respectively.



184  Flow in Open Channels

4.7 A circular channel having a 2.0-m diameter (n = 0.015) is laid on a slope of 0.005. When
a certain discharge is flowing in this channel at a normal depth of 1.0 m, GVF was found to
occur at a certain reach of channel. If a depth of 0.70 m was observed at a section in this
GVF reach, what type of GVF profile was occurring in the neighborhood of this section?

4.8 In a very long trapezoidal channel with bed width B = 3.0 m, side slope m = 1.5,
Manning’s n = 0.016, Longitudinal slope S, = 0.0004, the normal depth is measured
as 1.20 m. Determine the type of GVF profile existing at a section X. in this channel
when the depth of flow at X is (i) 0.5 m, (ii) 0.8 m and (iii) 1.50 m.

4.9 Along and wide rectangular channel (n = 0.016) has a discharge intensity of 4.0 m%s per
metre width. If the bed slope changes from 0.008 to 0.012 at a section, sketch the possi-
ble GVF profiles due to this break in grade.

4.10 Analyse the flow profile in a 4.0-m wide rectangular channel (n = 0.015), carrying a dis-
charge of 15.0 m¥s. The bed slope of the channel is 0.02 and a 1.5 m high weir (C, =
0.70) is built on the downstream end of the channel.

4.11 At a certain section in a rectangular channel, a constriction of the channel produces a
choking condition. Sketch the GVF profile produced on the upstream as a result of this,
if the channel is on (a) mild slope and (b) steep slope.

4.12 A 4.0-m wide rectangular channel has a Manning’s coefficient of 0.025. For a discharge
of 6.0 m¥/s, identify the possible types of GVF profiles produced in the following break
in grades:

(a) S,, = 0.0004 to S, = 0.005

(b) S, =0.015 to S, = 0.0004

4.13 Sketch the possible GVF profiles in the following serial arrangement of channels and
control. The flow is from left to right:
(a) steep — horizontal — mild slope
(b) mild - sluice gate — steep — horizontal — sudden drop
(c) steep — steeper—mild — milder slope
(d) free intake — steep — sluice gate — mild slope
(e) steep — mild — sluice gate — mild — sudden drop
(f) sluice gate — adverse — horizontal — steep slope
4.14 Sketch the GVF profiles produced on the upstream and downstream of a sluice gate
introduced in a
(a) steep slope, (b) mild slope, and (c) horizontal-bed channel.
4.15 A rectangular channel has two reaches A and B in series with characteristics as below:

Reach Width(m) Discharge(m?/s) Slope n
A 4.80 7.40 0.0005 0.015
B 4.80 5.00 0.0005 0.015

The decrease in discharge at B is due to the withdrawal of some flow at the junc-
tion and can be considered to be a local phenomenon. Sketch the GVF profiles
produced in the channels if (a) the channel is continuous and without any
obstruction at the junction, and (b) a sluice gate is provided at the junction.

4.16 In a rectangular channel two reaches A and B in series, with reach A being upstream of
Reach B, have the following characteristics:
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Reach Width (m) Discharge Slope n
(m3/s)

A 35 10.0 0.0004 0.020

B 3.0 10.0 0.0160 0.015

Sketch the resulting GVF profiles due to change in the channel characteristics as above.
4.17 For the channel arrangement shown in Fig 4.11, sketch and label the possible types of
GVF profiles.

Reservoir

CDL Reservoir

Horizontal
Fig. 4.11 Problem 4.17

4.18 For the channel arrangement shown in Fig. 4.12, sketch and label the possible types of
GVF profiles.

Sluice Gate

Fig. 4.12 Problem 4.18

“ OBJECTIVE QUESTIONS

4.1 In terms of conveyances and section factors, the basic differential equation of GVF can
written as dy/dx =

1— (K, /K)’ 1-(K/K
@ s, o) s, KK
1-(z/z,) 1-(z,/z)
2 2
© 801—(|<0/K)2 @ SO1—(|</K0)2
1-(Z,/2) 1-(z/z,)
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4.2 In GVF profiles as the depth y— y

¢!

@Y 0 ¥
dx dx

© Y g @@ B afinite value
dx dx

4.3 For a wide rectangular channel, if the Manning’s formula is used, the differential equation
of GVF becomes dy/dx =

3.33

1-(y, / 1-(y, /
@ s, 2y o) s, 2 Y)
1-(y,1y) 1-(y.1y)
3.33 3
) 5, ) @ s, U%)
1-(yly,) 1-(¥e 1 ¥o)

4.4 For a very wide rectangular channel, if Chezy formula is used, the defferential equation of
GVF is given by dy/dx =

3.33 3
@ s W) o s )
0 3.33 0 3
1—(y.ly) 1-(y.ly)
3 3.33
© s 1—(y,1y) @ s 1—(y,ly)
0 3.33 0 3

4.5 Uniform flow is taking place in a rectangular channel having a longitudinal slope of 0.004
and Manning’s n = 0.013. The discharge per unit width in the channel is measured as
1.2 m3/s/m. The slope of the channel is classified in GVF analysis as

(a) mild (b) critical
(c) steep (d) very steep
4.6 Ina GVF, dy/dx is positive if
(@ K>KjandZ>Z, (b)K>K, and Z< Z,
(©K,>K,and Z,>Z, (d)z>KandZ >K,

4.7 A 2.0-m wide rectangular channel has normal depth of 1.25 m when the discharge is
8.75 m®/s. The slope of the channel is classified as
(a) steep (b) mild
(c) critical (d) essentially horizontal
4.8 Identify the incorrect statement:
The possible GVF profiles in
(a) mild slope channels are M, M, and M,
(b) adverse slope channels are A, and A,
(c) horizontal channels are H, and H,
(d) critical slope channels are C, and C,
4.9 The following types of GVF profiles do not exist:
(@C, H, A (b) A, H,C,
(©)H,A,C, (d)C, A, H,
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4.10 The total number of possible types of GVF profiles are

@9 (b) 11
(c)12 (d) 15
4.11 dy/dx is negative in the following GVF profiles:
(@M, S, A, (b)M,, A, S,
©A,A,M, ()M, A, H, A,
4.12 If in a GVF dy/dx is positive, then dE/dx is:
(a) always positive (b) negative for an adverse slope
(c) negative ify >y (d) positive if y >y,
4.13 In a channel the gradient of the specific energy dE/dx is equal to
(@ S,—S; (b) S,—S,
dy 2
(¢) S,— S, —— (d) s,(1—F9)
dx

4.14 In a wide river the depth of flow at a section is 3.0 m, S, = 1 in 5000 and q = 3.0 m%s
per metre width. If the Chezy formula with C = 70 is used, the water surface slope rela-
tive to the bed at the section is

(a) —2.732x10"" (b) 1.366x10"*
(c) 1.211x10°° (d) —6.234x107*
4.15 The M, profile is indicated by the following inequality between the various depths:
@) ¥,>y.>y (b)) y>y,>y,
©) y.>Y,>y d y>y, >y,

4.16 A long prismatic channel ends in an abrupt drop. If the flow in the channel far upstream
of the drop is subcritical, the resulting GVF profile
(a) starts from the critical depth at the drop and joins the normal depth asymptotically
(b) lies wholly below the critical depth line
(c) lies wholly above the normal depth line
(d) lies partly below and partly above the critical depth line

4.17 When there is a break in grade due to a mild slope A changing into a mider slope B, the
GVF profile produced is

(@) M,curveonB (b) M, curve on B
(c) M, curveonB (d) M, curve on A
4.18 In achannel the bed slope changes from a mild slope to a steep slope. The resulting GVF
profiles are
(@ M, S,) (b) (M, S;)
© M, S,) (d) (M, S,)

4.19 A rectangular channel has B = 20 m, n = 0.020 and S, = 0.0004. If the normal depth is
1.0 m, a depth of 0.8m in a GVF in this channel is a part of
(@) M, (b) M,

() M, (d) s,

4.20 A rectangular channel has uniform flow at a normal depth of 0.50 m. The discharge
intensity in the channel is estimated as 1.40 m®s/m. If an abrupt drop is provided at the
downstream end of this channel, it will cause
(@) M,type of GVF profile
(b) S, type of GVF profile
(c) No GVF profile upstream of the drop
(d) M, type of profile

4.21 The flow will be in the supercritical state in the following types of GVF profiles:

(@) All S curves (b) M,
(c) A, M,,S, (d) S,,M,, S,
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4.22 At the transitional depth
dy
a) —=
@ G =
(b) the slope of the GVF profile is zero
(c) dy/dx = S,
(d) the slope of GVF profile is horizontal
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Flow Computations 5

5.1 INTRODUCTION

Almost all major hydraulic-engineering activities in free-surface flow involve the
computation of GVF profiles. Considerable computational effort is involved in the
analysis of problems, such as (a) determination of the effect of a hydraulic structure
on the flow pattern in the channels, (b) inundation of lands due to a dam or weir con-
struction, and (c) estimation of the flood zone. Because of its practical importance the
computation of GVF has been a topic of continued interest to hydraulic engineers for
the last 150 years. Dupuit (1848) was perhaps the first to attempt the integration of the
differential equation of GVF [Eq. (4.8)]. In the early periods the effort was to integrate
[Eq. (4.8)] through the use of a simple resistance equation (such a Chezy equation
with constant C) and through other simplifications in the channel geometry (wide
rectangular channel, parabolic channel, etc.). Bakhmeteff ! developed a fairly satis-
factory method involving the use of varied-flow functions applicable to a wide range
of channels. This method has undergone successive refinements, through various correc-
tions, from time to time by subsequent research workers in this field and finally in 1955
Chow 2 evolved a fairly comprehensive method using only one varied-flow function.

Simultaneously, with the development of direct integration as above, to meet the
practical needs, various solution procedures involving graphical and numerical meth-
ods were evolved for use by professional engineers. The advent of high-speed com-
puters has given rise to general programmes utilizing sophisticated numerical
techniques for solving GVF in natural channels. The various available procedures for
computing GVF profiles can be classified as:

1. Direct integration
2. Numerical method
3. Graphical method

Out of these the graphical method is practically obsolete and is seldom used. Fur-
ther, the numerical method is the most extensively used technique. In the form of a
host of available comprehensive softwares, it is the only method available to solve
practical problems in natural channels. The direct integration technique is essentially
of academic interest. This chapter describes the theory of GVF computations and a
few well established procedures and specific methods which have possibilities of
wider applications.
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5.2 DIRECT INTEGRATION OF GVF DIFFERENTIAL EQUATION

The differential equation of GVF for the prismoidal channel, from Eq. 4.12, given by

dy ¢ 1-(K3 1K?) F(y)

=T, o Y

d« " 1-(z212°)
is a non-linear, first order, ordinary differential equation. This can be integrated by
analytical methods to get closed from solutions only under certain very restricted
conditions. A methods due to Chow?, which is based on certain assumptions but
applicable with a fair degree of accuracy to a wide range of field conditions, is
presented here.

Let it be required to find y = f(x) in the depth range y, to y,. The following two
assumptions are made:

1. The conveyance at any depth y is given by

K2=Cy" (5.1)
and at the depth y, by

K2 = C,yM (5.2)

This implies that in the depth range which includes y,, y, and y,, the coefficient
C, and the second hydraulic exponent N are constants.

2. The section factor Z at any depth y is given by
Z,=Cy" (5.3
and at the critical depth y, by
Z?=CyM (5.4)

implying that in the depth range which includes y,, y, and y_, the coefficient C, and
the first hydraulic exponent M are constants.

Substituting the relationships given by Eqgs 5.1 through 5.4 in Eq. 4.12,
1—(y, /y)"
W _g (VO—V)M (5.5)
dx l_(yc / y)

Putting u = yly,,dy =y, du and Eq. 5.5 simplifies to

du S| 1-1/u"

(2 )



Gradually Varied Flow Computations 191

Y, 1 y M gNM
i.e. dx =22 |1— e o +|du
S, 1-u Yo) 1—u
Integrating
y v du y, " puut
X==2lu— +|== du|+ Const. 5.6
S, fo 1—u" [yo] ﬁl—u” (56)
. v du
Calling fo o7 F(uN)
the second integral can be simplified as follows:
Put v =u"" where J :L
(N=M+1)
N S
to get dv:TuJ du

=(N-M+1)uNMdu

vy 1 v odv
du=
fo o (N—M—i—l)fo 1-v’

_ % F(v,d) (5.8)

It may be noted that F(v, J) is the same function as F(u, N) with u and N replaced
by v and J respectively.
Eqg. 5.6 can now be written as

x:ﬁu—F(u,N)—kLMiF(v,J) (5.9)
0 yO N
Using Eq. 5.9 between two sections (x,, y,) and (x,, y,) yields
(xz—xl):;’—;’[(uz—ul)—{F(uz,N)—F(ul,N)}
+[£]M = {F(v,.9)~F(v,9)}] (5.10)
Yo M

The function F(u, N) is known as the varied-flow function. Extensive tables of
F(u, N) are readily available?® and a table showing F(u, N) for a few values of N is
presented in Table 5A.1 in Appendix 5A at the end of this chapter.

- . . du
A method of obtaining the exact analytical solutions of f ’
0

1—u®

for integral

du
1—u®

and non-integral values of N is given by Gill*. Numberical integration of f ’
0
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can be performed easily on a computer to obtain tables of varied-flow functions.
Bakhmeteff gives a procedure for this in the appendix of his treatise®.

In practical applications, since the exponents N and M are likely to depend on the
depth of flow, though to a smaller extent, average values of the exponents applicable
to the ranges of values of depths involved must be selected. Thus the appropriate
range of depths for N includes y,, y,, and y,; and for M it includes y,, y,, and y,. In
computing water-surface profiles that approach their limits asymptotically (e.g.y —,),
the computations are usually terminated at y values which are within 1 per cent of
their limit values.

Example 5.1 | 5 trapezoidal channel has a bed width B = 5.0 m, S, = 0.0004,
side slope m = 2 horizontal : 1 vertical and n = 0.02. The normal depth of flow y, =

3.0 m. If the channel empties into a pool at the downstream end and the pool elevation
is 1.25 m higher than the canal bed elevation at the downstream end, calculate and plot
the resulting GVF profile. Assume o = 1.0.

Solution  For uniform flow: y, = 3.0 m

A,= (5+2 x 3.0) x 3.0 =33.0m?

P, =54 2y1+2? x3.0=18.41m

R,=33.0/18.41 = 1.793 m
Q=Q, = ﬁ x (33.0)(1.793)"* 1/0.0004 — 48.70 m*/s

For critical-depth calculation:

meQ  (2.0)7x48.70

o= = =0.7867
J9.B*  J0.81x(5.0)*°
From Table 2A.2. (= M. — 0.676
B

Critical depth y, = 1.690 m.
Since y, >y, the channel slope is mild. Also, since the downstream pool elevation is
1.25 m above the channel bed while y_=1.69 m, the downstream control will be the crit-
ical depth. The water-surface profile will be an M, curve extending from y = 1.69 m
at the downstream end toy — y, = 3.0 m at the upstream end.
In the flow profile the following ranges of parameters are involved:
depthy =3.00mto 1.69 m
y/B = 0.60 to 0.338

N =4.17 to 3.88 (From Fig. 3.8)
M = 3.94 t0 3.60 (From Fig. 2.8)
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For computation purposes, average constant values of N = 4.0 and M = 3.75 are
selected.

For use in Eq. 5.9,

N 40 4,

u = y/3.00, and J= ——— =
N-M+1 125

Yo — 7500

0

M 3.75
v=uw =z Yo J_ [@] [2] =0.093
Yo) N (3.00 4.0

Equation 5.9 for calculation of the distance x reduces to
X = 7500 [u — F(u, 4.0) + 0.093 F(v, 3.2)] + Const.
The calculations are performed in the manner shown in Table 5.1.

The calculations commence from the downstream control depth of y_ = 1.69 m and
are terminated at y = 2.97 m, i.e. at a value of depth which is I per cent less than y,.

Table 5.1 Computation of GVF Profile: Example 5.1

N =4.0 M =3.75 J=32 u=y/3.0 v =ut®
y(m) u v F(u, 4.0) F(v,3.2) X AX L
(m) (m)  (m)

1.69 0.563 0.488 0.575 0.501 259 0 0
1.80 0.600 0.528 0.617 0.547 254
1.89 0.630 0.561 0.652 0.585 243 11 16
2.01 0.670 0.606 0.701 0.639 213 30 46
2.13 0.710 0.652 0.752 0.699 173 40 86
2.25 0.750 0.698 0.808 0.763 97 76 162
2.37 0.790 0.745 0.870 0.836 -17 114 276
2.49 0.830 0.792 0.940 0.918 -185 168 444
2.61 0.870 0.840 1.025 1.019 452 267 711
2.73 0.910 0.889 1.133 1.152 -869 417 1128
2.82 0.940 0.926 1.246 1.293 -1393 524 1652
291 0.970 0.967 1.431 1.562 -2368 975 2627
2.94 0.980 0.975 1.536 1.649 -3020 652 3279
297 0.990 0.988 1.714 1.889 -4112 1092 4371
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In nominating the depths in the first column, it is advantageous if u values are fixed at
values which do not involve interpolation in the use of tables of varied-flow functions
and the corresponding y values entered in the first column. If the value of u or v is
not explicity given in the varied-flow function tables, it will have to be interpolated
between two appropriate neighbouring values, e.g. to find F(v, J ) = F((0.698, 3.2),
Table 5A. | is used to give F(0.69, 3.2) = 0.751 and F(0.70, 3.2) = 0.766. By linear
interpolation between these two values, F (0.698, 3.2) is taken as 0.763.

The last column indicates the distance from the downstream end to the various
sections. It can easily be appreciated that the necessary interpolations in the use of
the varied-flow function table not only make the calculations laborious but are also
sources of possible errors. Another source of error is the fixing of constant values of
N and M for the whole reach. The computed profile is plotted in Fig. 5.1 (note the
highly-exaggerated vertical scale to show details).

If the distance between two sections of known depth is required, the evaluation of
the varied-flow functions at intermediate steps is not needed.

3.00m
2.25m
1.50 m
—0.75m
Sy = 0.0004 POOL
I R T TR I N N TR A ' ! 0 o
4500 m 3000 m 1500 m

Fig. 5.1 GVF profile for Example 5.1

Example 5.2 Find the distance between two Sections A and B of Example 5.1,
giveny, =1.80 mandy, =2.25m.

Solution Referring to the basic calculations performed in Example 5.1, the follow-
ing u, v and F values are evaluated:

Section y u v F(u, 4) F (v, 3.2)
(m)

A 1.80 0.60 0.528 0.617 0.547

B 2.25 0.75 0.698 0.808 0.763

Difference 0.15 0.191 0.216
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The distance between A and B is calculated by using Eq. (5.10) as
L = x, —x, = 7500 (0.15 - 0.191 + 0.093 (0.216))

=157m (the —ve sign is not significant)
If it is required to find the depth y, at a section distance Ax from a given section
where the depth is y, one has to calculate the distances to a few selected depths and
determine the required depth by interpolation.

Example 5.3 Giveny, =2.25min Example 5.1, find the depth at a distance of
1300 m upstream of this section.

Solution Aty = 2.25 m, u, = 0.75. Select a set of two u values (and hence two
depths) as a trial. The calculations are as follows:

Section y u v F(u,4.0) F(W3.2) X AXx L
(m) (m  (m  (m)
1 225 075 0.698 0.808 0.763 97 0 0
2 2.73 091 0.889 1.133 1.152 -869 966 966
3 282 094 0.926 1.246 1.293 -1393 524 1490

By interpolation between Sections 2 and 3, the depth at a distance of 1300 m from
the Section 1 is

y =273+ (282-273 (1300 — 966)| = 2.787m
(1490 — 946)

5.3 BRESSE’S SOLUTION
For a wide rectangular channel, if the Chezy formula with C = constant is used the

hydraulic exponents take the value M = 3.0 and N = 3.0. By putting these values of
M = 3.0and N = 3.0 in Eq. (5.9) the GVF profile would be

3
{ [ yc ]
yO
u dU

F(u3)= -~
(3)= [
The function F(u, 3) was first evaluated by Bresse in 1860 in a closed form as

REN

2u+1

X — ;’_o F(u,3)|+ aconstant (5.11)
0

And from Eq. (5.7)

1

F(u,3)=>1n U +u+1

(u-1y

_ i arctan

V3

+ aconstant (5.12)
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F (u, 3) is known as Bresse’s function. Apart from historical interest, values of
Bresse’s function being based on an exact solution are useful in comparing the rela-
tive accuracies of various numerical schemes of computation.

[Note: Table 5A-1 has a constant of value 0.6042 added to all values of F(u, N).
Bresse’s solution is useful in estimating approximately the length of GVVF profiles

between two known depths. The length of M, profile from 150% of normal depth
downstream to 101% of normal depth upstream can be shown to be given by

LS
=2 _1.654—1.164F> (5.13)

Yo

where F is the Froude number of the normal flow in the channel.
In general the length of the GVF profile between two feasible depths are given by

LS _ ptgr? (5.14)

Yo

where values of A and B for some ranges are as given below:

Value Value of Range of percentage Typical case
of A B of yly, values
0.599 -0.869 97% to 70% M, curve
0.074 -0.474 70% to 30% M, curve
1.654 —-1.164 101% to 150% M, curve
1.173 -0.173 150% to 250% M, curve
-1.654 1.164 150% to 101% S, curve

Example 3.4 |\ 50.m wide river has an average bed slope of 1 in 10000. Com-

pute the backwater curve produced by a weir which raises the water surface imme-
diately upstream of it by 3.0 m when the discharge over the weir is 62.5 m%s. What
will be the raise in water level at a point that is 35 km upstream of the weir? Use
Chezy’s resistance equation with C = 45 and use Bresse’s backwater functions.

Solution Here, Q =62.5m?%s and q = 62.5/50 = 1.25 m®s/m width

By Chezy formula q=Cy¥%fs,
1.25 = 45x y¥24/0.0001
y,= 1.976 m

2

(1.25)
9.81

1/3
2\¥3

Critical depth y_ is given by y_ = [q_] [ ] =0.542m
g
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Yo _ 0,274, % —19760 and u = y/1.976

Yo 0
Bresse’s backwater equation for wide rectangular channels is

3
x=Jo[u— 1_[£] F (u, 3)]+ Constant
S Yo

=19760[u — {1—0.9794} x F (u, 3)] 4 Constant
x =19760[u — {1— 0.9794} x F (u, 3)] + Constant (5.15)
Using this equation the backwater curve is calculated as in the following Table. The

calculations are continued up to 1.01 times the normal depth.
y,=3.0+1.976 = 4.976 m

Table 5.2 GVF Profile Computations — Example 5.4

Depth u F(u,3) x from X Distance
y (m) Eq (i) (m) from The weir
L (m)
4.976 2.518 0.082 48173.1 0
4.347 2.200 0.017 43143 5030 5030
3.952 2.000 0.132 36965.5 6178 11208
3.557 1.800 0.166 32355.5 4610 15818
3.162 1.600 0.218 27397.2 4958 20776
2.766 1.400 0.304 21780.9 5616 26392
2.371 1.200 0.48 14422.9 7358 33750
2.075 1.050 0.802 5227.53 9195 42946
2.016 1.020 1.191 -2893.29 8121 51066
1.996 1.010 1.419 —7503.19 4610 55676

By linear interpolation between sections at distances 33750 and 42946 m the depth
at the section that is 35 km upstream of the weir is 2.331 m.
Rise in the water level at this section = 2.331 - 1.976 = 0.355 m.

Example 5.5 (a) Integrate the differential equation of GVF for a horizontal

channel to get the profile equation as

XZL (y/yC)N—M+1—(y/yC)N+1
SIN-M+1  N+1

where S_ = critical slope.

-+ constant




198  Flow in Open Channels

(b) Using the result of part (a) above develop an equation for GVF profile in a
wide, rectangular, horizontal channel.

Solution dy_ S-S (5.16)
dx QT
gA’
For a horizontal channel S, = 0
Q*_ K, (v
Also, S, :—Z:C—ZC:[—CJ S,
K K y
2 3
Further, QL _ Z? and Az
s T
M
Thus QT _|Ye
oA’ |y
N
_[vc s,
Equation 5.16 is now written as dy y
dx y ]""
1—|2e
y
1
—dx. S, :[1—(yc/y)M —dy
(v./y)
N N-M
Ye Ye
N+1 N-M+1
—Sx=y (y/yc) _(y/yc) + Constant
¢ ‘I N4+1 N—-M+1
N—-M+1 N+1
X = Ye (y/yc) — (y/yc) + Constant
S.| N—M+1 N+1

2

(b) For a wide rectangular channel, by Eq. 3.62 (a) S, = ng

y
Noting that N = 10/3 and M = 3, ’
Substituting for S, N and M in the result of Part (a), viz., that for a horizontal rect-
angular channel,

(y/yC>N—M+1 (y/yc)N+1

N—-—M+1 N +1

(Yo

+ Constant,
SC

we get for a wide rectangular, horizontal channel, the GVF profile as
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_ﬁ E 4/3_2 13/3
X= n’g 4(y/yc) 13(Y/yc) + constant

5.4 CHANNELS WITH CONSIDERABLE VARIATION IN
HYDRAULIC EXPONENTS

There are many channel shapes which have appreciable variation of the hydraulic
exponents with the depth of flow. A circular channel is a typical example of such
channels with the variation of the hydraulic exponents with y/D being as shown in
Fig. 5.2. In such channels

K? =C,y" and K, =C,y" (5.17)

where the suffix ‘0’ refers to normal-depth conditions.
Similarly,

z?=cy" and Z?>=C,y"™ (5.18)

in which the suffix ‘c’ refers to critical-flow conditions. Substituting Eqgs 5.17 and
5.18 in the differential equation of GVF [Eq. (4.12)]

-3
dy_o (G

e [Cul(v
C Ly

(5.19)

1.00

y/D

0.10

0.02

| | | |
2.0 3.0 4.0 5.0

Fig. 5.2 Variation of N and M for a circular channel [6]

When there is considerable variation in the values of hydraulic exponents with the depth,

N =Ny, M =M, andassuch C,, =C, and C,, =C,.
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Obviously, Eq. (5.9) cannot be used as a solution of Eq. 5.19
Assuming C,, =C, and C,, =C, Chow? has obtained the solution of Eq. 5.19 as

ycMc/M M J
yONO/N] W F(V' ‘])

Inwhich u = y/y,"/. However, it has been shown® that this assumption is not valid
and Eqg. 5.20 may give considerable errors. A generalised procedure for direct integration
of Eq. 5.19 using the varied-flow function is given by Subramanya and Ramamurthy?®.

y"

0

X =

u—F(u, N)+ a constant (5.20)

5.5 DIRECT INTEGRATION FOR CIRCULAR CHANNELS
5.5.1 Keifer and Chu’s method

The direct integration of the differential equation of GVF by Chow’s method is very
inconvenient to use in the computation of GVF profiles in circular channels.

A different approach of integration of the differential equation of GVF for circular
channels, developed by Keifer and Chu®, simplifies the calculation procedure
considerably.

Let Q be the actual discharge in a circular channel of diameter D and bed slope S,
Then

Q=K,fs, (5.21)
and Q = Ky+/Ss. (5.22)

where K and K are the conveyance at depths y and y, respectively, y, = normal depth,
S, = energy slope at depth y. Let Q, = a hypothetical discharge corresponding to
uniform flow with the channel flowing full.

Then

Qo = Ko+/So. (5.23)

where K = conveyance at depth D.

ie. Ko :% (wD?/4) (D/4)"

5[l el

2 2 2/3
But [&] = %]: f, (y/D)
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K ) (Q) /oy
and [K—D] [QD] =(Q,) (5.24)
S| =@t (5:25)

The differential equation of GVF, Eq. 4.12, becomes
dy 1_Qr2 fl(y/D)
=S T T
dx 1-Q*T/gA

. QT Q* 1 T/D Q°
Noting that - - == f D 5.26
’ gA° g D° (A/D°) gD (/D) (520

and putting y/D=n

D5
:2 dn _ Q* f (77)0'77
So[1-Q7fi(n) 9D° 1-Q%f,(n)
Integrating,
_ Dy dp Qv f(n)dn Const 5.27
sk o ok et 6
D Q?
x:s—0 |, — ﬁ|2]+c:onst. (5.28)
where I, = "d—n—l Q
i e
and . = ”M:b((}r’n:

2 Jo 1_Qr2f1<77)

Functions 1, and I, are known as Keifer and Chu functions and are available in
slightly different forms in References 3, 6 and 7. The computation of GVF profiles in
circular channels is considerably simplified by the use of these functions. Since
y/D=n= 1/2(1—cos 9) =f (0) where 20 = angle subtended by the water surface

at the centre of the section the functions I and I, can also be represented as I, (Q,, 6),
and 1, (Q,, ). Tables 5A.2(a) and 5A.2(b) in Appendix 5A show the functions I, and
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I, respectively, expressed as functions of Q, and 6/7 . Reference 7 gives details of
evaluating the integrals to get I, and I,. Example 5.6 illustrates the use of Keifer and
Chu method [Eq. 5.28] for circular channels.

It may be noted that the functions I and 1, are applicable to circular channels
only. However, a similar procedure of non-dimensionalising can be adopted to any
other channel geometry, e.g. oval and elliptic shapes, and functions similar to I, and
I, can be developed. Applications of the above procedure for use in rectangular chan-
nels is available in literature®.

Example 3.6 | 7 5 0. diameter circular concrete drainage pipe (n = 0.015) is
laid on a slope of 0.001 and carries a discharge of 3.0 m%/s. If the channel ends in a

free overfall, compute the resulting GVF profile.
Solution Q = 3.0 m¥/s

Q, :Lx [EXZZ

20"
505 <12 X [T} x /0.001 = 4.17 m¥/s

For normal depth, _Qn =0.2241, and

\/g Ds/s

from Table 2.A1, y, / D = 0.628, giving y, = 1.256 m, and (20 / 2r), = 0.582.

For critical depth, Q1 =0.1693 and

\/a Dz.s -

from Table 2A.1, y, / D =0.411, giving y, = 0.822 m, and (20 / 27), = 0.443.
Q,=Q/Q,=0.719

Q%gD® = 0.0287

Since y, >y, the channel is on a mild slope. The downstream control will be the
critical depth y_ = 0.822 m. The GVF profile is an M, curve extending from the criti-
cal depth upwards to the normal depth.

The calculations are performed by using the Keifer and Chu method. Equation 5.28
reduces to

X = 2000 [I, - 0.0287 I,] + Const.

Values of (26/2x) in the range 0.443 to 0.582 are selected and by referring
to Tables 5A.2(a) and 5A.2(b), values of 1,and I, corresponding to a known ¢ and
Q, = 0.719 are found by interpolation. For a given value of (26 /27) the value of

y/D is found by the relation y/D = % (1 -cos 0). The values of x and A x between
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two successive values of y are found by using Eq. (5.28). The calculations are
performed in the following tabular form:

Table 5.3 GVF Profile Computation — Example 5.6

Q, =0.719 D=20m
X = 2000 (I,-0.0287 1,) + Const.
20
g y/D y (m) I I X AX L
(m) (m) (m)
0.443 0.411 0.822 0.0245 3.4470 -149 0 0
0.460 0.437 0.875 0.0346 3.7551 -146 3 3
0.500 0.500 1.000 0.0762 4.6263 -113 33 36
0.530 0.547 1.094 0.1418 5.5188 -33 80 116
0.550 0.578 1.156 0.2296 6.4334 +90 123 329
0.570 0.609 1.218 0.4983 8.6787 +498 408 647

A plot of y vs L gives the requisite profile.

Some errors in the interpolation of I and I, functions are usually involved in the
use of the tables. For greater accuracy, detailed tables of I .and I, at closer intervals of
Q, and 6/7 have to be generated and used.

5.6 SIMPLE NUMERICAL SOLUTIONS OF GVF PROBLEMS

The numerical solution procedures to solve GVF problems can be broadly classified
into two categories as:

(a) Simple Numerical Methods These were developed primarily for hand
computation. They usually attempt to solve the energy equation either in the form of
the differential energy equation of GVF or in the form of the Bernoulli equation.

(b) Advanced Numerical Methods These are normally suitable for use in digi-
tal computers as they involve a large number of repeated calculations. They attempt
to solve the differential equation of GVF [Eqg. (4.8)].

The above classification is a broad one as the general availability of personal com-
puters (PCs) have made many methods under category (b) available for desk-top cal-
culations. Two commonly used simple numerical methods to solve GVF problems, viz.
(i) Direct-step method and (ii) Standard-step method are described in this section.

5.6.1 Direct-Step Method

This method is possibly the simplest and is suitable for use in prismatic channels.
Consider the differential-energy equation of GVF [Eq. (4.16)].
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&:So_sf

Writing this in the finite-difference form

Where S¢ = average-friction slope in the reach Ax

Ax=_2E (5.30)
So — St
and between two Sections 1 and 2
()= ax=— 2B
So *E(Sfl +S12) (5.31)

Equation (5.30) is used as indicated below to calculate the GVF profile.

Procedure Referring to Fig. 5.3, let it be required to find the water-surface profile
between two Sections 1 and (N + 1) where the depths are y, and y, , , respectively. The
channel reach is now divided into N parts of known depths, i.e., values of vy,
i =1, N are known. It is required to find the distance Ax; between y, andy. ,. Now,
between the two Sections i and i + 1,

i+1°

~< _.— Energy line

N

Flow
—

Yn+1 Vi1 Y, . Water surface

i+1

i
H—Axi -

Fig. 5.3 Direct step method
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V2 QZ
AE=Aly+—|=Aly+
vl ar o]

Q° Q°
AE=E —E =y +—|—|y + 5.32
i+1 i y|+1 2gA2+1 \y| ZQAZ ( )

— — 22

and Si—2(Swa+s,) =M T 1 (5.33)

2 2 AR AR

From Eq. (5.30), Ax, — E.—F .Using Eqgs (5.32) and (5.33), Ax; can be evaluated

in the above expression. %Dhe SS(fequential evaluation of Ax; starting from i = 1to N,
will give the distances between the N sections and thus the GVF profile. The process
is explicit and is best done in a tabular manner if hand computations are used. Use of
spread sheet such as MS Excel is extremely convenient.

Example 5.7 | o the channel section and flow conditions indicated in
Example 5.1, (a) calculate the GVF profile from the section having critical depth

up to a section having a depth of 2.96 m by direct step method. (b) Further, cal-
culate the distance between two sections having depths of 2.30 m and 2.80 m
respectively.

Solution  The flow profile is an M, curve with y_= 1.69 m as the control at the
downstream end. The calculations start at the control and are carried in the
upstream direction. The depth range is from 1.60 m to 2.69 m and this is divided
in to 17 reaches. Calculations are performed on a spread sheet and Table 5.4
shows the details. Note that non uniform depth increments are adopted; the
depth increment in a reach is larger if the reach is part of the profile where the
curvature is high and smaller depth increments are adopted where the curve is
flatter. This is a procedure commonly adopted in hand computation and there is
no apparent benefit while computations are carried through the use of a spread
sheet.

Col. 2 has the normal depth. Cols. 3 through 7 have the area A, wetted perimeter P,
hydraulic radius R, velocity V and specific energy E respectively. Col.8 has the dif-
ference in specific energy AE of two successive values of E. The friction slope

n’v?
S = 43

and is entered in Col. 10.entered Col. 12 contains Ax calculated by using Eq. (5.30),

and is indicated in Col.9. The average of two successive S, values is S

i.e., Col-8 The Jast column contains cumulative distances from the starting point.

Col.11
The negative sign of x does not have any significance other than the location of the

origin and hence not considered in the last column.
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Table 5.4 Computation of Flow Profile by Direct Step Method (Example 5.7) (Through Use

of Spread Sheet)

B=50m m =20 , =0.0004 Q = 48.70ms n =002

12 3 4 5 6 7 8 9 10 1 12 13
Sl ym A@m)  Pm)  Rm  V(ws) E(m) AE@m) S g, $-5,  Mxm x(m)
No

1 169 14162 12558 112775 3439 2293 0.00403 0.0
2 180 15480 13050 118622 3146 2304 00118 000315, 000359 -0.00319 37 37
3 200 18000 13944 129085 2706 2373 00686 000208 000262 -0.00222 -309 346
4 210 10320 14391 134246 2521 2424 00508 000172 000190 -0.00150 -338 685
5 220 20680 14839 139365 2355 2483 00588 000142 000142 -0.00102 -57.4 126
6 230 22080 15286 144447 2206 2548 00653 000119 000131 -0.00091 719 198
7 240 23520 15733 149493 2071 2619 00706 000100 000110 -0.00070 -101.2 299
8 250 25000 16180 154508 1948 2693 00749 000085 000093 -0.00053 -1422 441
9 260 26520 16628 159494 1836 2772 00785 000072 000079 -0.00039 -202.9 644
10 265 27295 16851 161977 1784 2812 00404 000067 000070 -0.00030 -1361 780
11 270 28080 17.075 164453 1734 2853 00411 000062 000064 -0.00024 -167.8 948
12 275 28875 17298 166923 1687 2895 00417 000057 000060 -0.00020 2113 1159
13 280 29680 17522 169387 1641 2937 00422 000053 000055 -0.00015 2743 1434
14 285 30495 17746 171846 1507 2980 00428 000050 000051 -0.00011 -3735 1807
15 283 30989 17.880 173318 1572 3006 00259 000047 000049 -0.00009 -3044 2111
16 291 31486 18014 174788 1547 3032 00261 000045 000046 -0.00006 -403.9 2515
17 294 31987 18148 176257 1522 3058 00262 000044 000044 -0.00004 -582.6 3098
18 296 32323 18238 177235 1507 3076 00176 000042 000043 -0.00003 -596.9 3695

Useful hints

in supercritical flow to keep the errors minimum.

the distribution of step sizes.

(b) From Table 5.4 distance between two sections having depths of 2.30 m and
2.80 m respectively is Ax = 1433.6 —197.7 = 12359 m

e The calculations must proceed upstream in sub-critical flow and downstream

e The steps need not have the same increment in depth. The calculations are
terminated aty = (1 £ 0.01) y,
e The accuracy would depend upon the number of steps chosen and also upon

e When calculations are done through use of a hand calculator, care must be
taken in evaluating AE which is a small difference of two large numbers.

Example 5.8 | 5 \iver 100 m wide and 3.0 m deep has an average bed slope of

0.0005. Estimate the length of GVF profile produced by a low dam which raises the
water surface just upstream if it by 1.50 m. Assume n = 0.035.
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Solution  Considering the river as a wide rectangular channel, the discharge per unit
width is

1 5/3c 1/2 1 5/3 1/2
==-y5Rs V2 — =~ (3.0)°%(0.0005
a="Yo So 0_035( )7 ( )

= 3.987 m3/s/m

23 2 \¥3
The critical depthy, = a| _|essny =1.175m
g 9.81

Since y >y, >y, the GVF profile is an M, curve with depth of y = 4.50 m at the low
dam as the control. The direct step method with 10 steps is used to estimate the length
of the backwater profile. The calculations are performed through use of a spread
sheet and the details are shown in Table 5.5. The calculations are terminated at 3.03 m.
The length of the profile is found to be 8644 m.

Table 5.5 Computation of Flow Profile by Direct Step Method (Example 5.8)

Wide Rectangular Channel S =0.0005 n =0.035 q = 3.987m%/s/m
1 2 3 4 5 6 7 8 9 10
Sl. y(m) V(mis) E(m) AE (m) S, 5, S,- S, Ax (m) x (m)
No.
1 45 0.886 4.5400 0.0001294 0
2 43 0.927 43438  -0.196192  0.0001506  0.0001400  0.000360 -545.015 545
3 4.1 0.972 4.1482 -0.195621 0.0001765 0.0001636  0.000336 -581.464 1126
4 3.9 1.078 3.7592  -0.194930  0.0002086  0.0001925  0.000307 -634.001 2475
5 3.7 1.022 3.9533  -0.194086 ~ 0.0002486  0.0002286  0.000271 -715.005 2475
6 815 1.139 3.5661  -0.193043  0.0002991  0.0002738  0.000226 -853.589 3329
7 33 1.208 3.3744  -0.191740  0.0003640  0.0003315 0.000168  -1138.23 4467
8 82 1.246 3.2791 -0.095277 0.0004033  0.0003836  0.000116 -818.624 5286
9 31 1.286 3.1843  -0.094813  0.0004483  0.0004258 7.42E-05  -1277.43 6563
10 305  1.307 31371  -0.047213  0.0004733  0.0004608 3.92E-05  -1203.54 7767
11 3.03 1.316 3.1182  -0.018846  0.0004837  0.0004785  2.15E-05 -876.666 8644

5.6.2 Standard-step Method

While the direct-step method is suitable for use in prismatic channels, and hence
applicable to artificial channels, there are some basic difficulties in applying it
to natural channels. As already indicated, in natural channels the cross-sectional
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shapes are likely to vary from section to section and also the cross-section infor-
mation is known only at a few locations along the channel. Thus, the problem
of computation of the GVF profile for a natural channel can be stated as: Given
the cross-sectional information at two adjacent sections and the discharge and
stage at one section, it is required to determine the stage at the other section. The
sequential determination of the stage as a solution of the above problem will lead
to the GVF profile.

The solution of the above problem is obtained by a trial-and-error solution of
the basic-energy equation. Consider Fig. 5.4 which shows two Sections 1 and 2
in a natural channel. Section 1 is downstream of Section 2 at a distance Ax. Cal-
culation are assumed to proceed upstream. Equating the total energies at Sections
1 and 2,

V2 V.2
22+y2+oz2£:21+yl+ozl$+hf+he (5.34)

where h, = friction loss and h_= eddy loss. The frictional loss h, can be estimated as

h, :§fo:%(5“+sz)

where S, =—7== (5.35)

Energy line
2
V. ——
o 2—; T - he = eddy loss
= ater ~ < h¢ = friction loss

Surf e N A V2

Y2 oy =

29

\ Slope SO

1 Datum

Fig. 5.4 Definition sketch for the Standard-Step method
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There is no rational method for estimating the eddy loss but it is usually expressed as,

h —c, [ o (5.36)
29
where C, is a coefficient having the values as below®.
Nature of Transition Value of Coefficient C
Expansion Contraction
1. No transition (Prismatic channel) 0.0 0.0
2. Gradual transition 0.3 0.1
3. Abrupt transition 0.8 0.6

An alternative practice of accounting for eddy losses is to increase the Manning’s n
by a suitable small amount. This procedure simplifies calculations in some cases.

Denoting the stage = Z + y = h and the total energy by H, and using the suffixes
1 and 2 to refer the parameters to appropriate sections,

2

H=h +a\2/—g and Eq. (5.34) becomes
H,=H,+h; +h (5.37)

The problem can now be stated as: Knowing H, and the geometry of the channel

at Sections 1 and 2 it is required to find h,. This is achieved in the standard-step
method by the trial-and-error procedure outlined below.
Procedure Select atrial value of h, and calculated H,, h, and h_ and check whether
Eq. (5.37) is satisfied. If there is a difference, improve the assumed value of h, and
repeat calculations till the two sides of Eq. (5.37) match to an acceptable degree of
tolerance.

On the basis of the i th trial, the (i + 1) th trial value of h, can be found by the
following procedure suggested by Henderson*'. Het H_ be the difference between the
left-hand side and right-hand side of Eq. (5.37) in the i th trial, i.e.

He =[H, —(H, +h, +h,)] inthei th trial.
The object is to make H_ vanish by changing the depth y,.

V2 V2
y2+zz +O‘2£_Zl_y1_a1$]

Hence dH, _ d
dy, dy,

2 2
CAA _ oV,

1
——Ax(S,, +5;,)-C
2 ( f1 f2) e 2g 29
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Sincey,, Z,, Z, and V, are constants,

2
dH_E — i y2 +(1+Ce)%—1AX Sf2
dy, dy, 29 2
1 das,,
=1-(1+C,)F} —= Ax. 5.38
W+CIF —5 m (5.38)
2
T
Where F? :&32
oA
For a wide rectangular channel,
dS 22
d—;diy[%]e.ss S, /y
Hence dSy, :,3'338“ :,3'338” , leading to
dyz yZ RZ
1.67S,,.Ax
dH, =|1-(1-C)F + —*—
dy, R,
If dHe _ AHe ang Ay, is chosen such that AH_ =H_.
dy,  dy,
, 167S,Ax
Ay, =—H./|1-(1+C,)F, +R7 (5.39)
2

The negative sign denotes that Ay, is of opposite sign to that of H_. It may be
noted that if the calculations are performed in the downward direction, as in super-
critical flow, the third term in the denominator will be negative. The procedure is
illustrated in the following example. Spread sheets, such as MS Excel, are extremely
convenient to calculate GVF profile through the use of the standard step method.

Example 5.9 | small stream has a cross section which can be approximated by
a trapezoid. The cross-sectional properties at three sections are as follows:

Section Distance up the  Bed Elevation (m) Bed Width (m) Side Slope
River (km)

A 100.00 100.000 14.0 15:1

B 102.00 100.800 12.5 15:1

C 103.50 101.400 10.0 15:1
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Section A is the downstream-most section. For a discharge of 100.0 m%/s in the
stream, water surface elevation at A was 104.500 m. Estimate the water-surface eleva-
tion at the upstream Sections B and C. Assume n = 0.02 and o = 1.0 at all sections.

Solution The calculations are performed in Table 5.6. In this
Total head H (Column 7) = Column 4 + Column 6
h, (Column 12) = S, x L =(Column 10) x (Column 11)

2

h = {CeA Z_g] with C, = 0 for expansion.

The first row in the table is based on known information. The second row is
based on an assumed stage of 105. 200 m (i.e. a depth of 4.400 m) at Section B.
Column 14 is obtained as {(Column 7 of previous section) + (Column 12 +
Column 13) of the present section}. It represnts the right-hand side of the Eq. (5.35),
while column 7 represents the left-hand side of the same equation. It is seen
that the first trial is not successful as Column 7 = Column 14. For this trial,
H. =105.272 — 104.797 =0.475 m. Substituting in Eq. (5.39) with C_ = 0.3,

v |, 220072
ay'’ 4.40
to Ay, =-0.429 m.

The next trial stage is therefore taken as = 105.200 — 0.429 =104.771 m, with a
depth of flow of 3.971 m.

It may, be seen from the third row in Table 5.6 that in the second trial of the stage
B = 104.771 m, Column 7 and Column 14 agree. It is usual to score out the unsuc-
cessful trials after a better one has been obtained to avoid confusion.

The procedure is repeated for Section C, by applying the energy equation bet-
ween Sections B and C. In the first trial for C, H_ = —0.293 m. The correction Ay, by
Eqg. (5.39) is + 0.244 m. It may be seen that two trials are needed in this section to
get the correct water-surface elevation.

F?~

2

=0.0327, S,, =1.3308x10“, Ax =2000m, R, =2.963, leads

5.6.3 Standard-step Method for Compound Sections

A majority of natural channels are compound channels (Fig. 5.5). Since the flow
in floodbanks (areas 2 and 3 in Fig. 5.5) is normally at a lower velocity than in the
main channel, the energy lines corresponding to various sub-areas will be at different
elevations above the water surface. A convenient method of handling this situation
is to consider a mean velocity V for the entire section and to assume the energy line
—2
to be at a height av— above the water surface. Also, a common friction slope S; is
assumed. 29
The kinetic-energy correction factor o for the whole section is obtained as
below:
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2

29 a1 5=
2
29 | l______z_ “4 g.____Common energy line
— /
2

Fig. 5.5 Flow in compound sections

If there are N partial areas such that

N
> A = A= total area,
1

N

Swa) R
Sof o

= VSZA :[
Since a common friction slope S, is assumed , if K. = conveyance of the i th
sub-area

(5.40)

Q = Ki\/gandQZI?ZQi :[iKiJ\/g
< 2
&

giving S, = (5.41)

Replacing Q, in Eq. (5.40) by KiJSf,

> (k:/4)

e

If o, are the kinetic-energy correction factors for the partial areas A, Eq. (5.42)
becomes

Z(O‘i Kus/Az)
1 (5.42-a)

o=
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Knowing S, and o from Egs (5.41) and (5.43), the standard-step method can now be
used.

In calculating the geometrical parameters of the sub-areas, the interface between
two sub-areas can be considered either as a vertical interface (as indicated by dotted
lines in Fig. 5.5) or as a diagonal interface or by any other appropriate method indi-
cated in Sec. 3.16.

For a given compound channel section, the value of the kinetic energy correction
factor « as calculated by Eq. (5.42) varies quite rapidly in the region immediately
above the overbank level. Fig. 5.6 shows the variation of a with depth y for symmetri-
cal compound section. Note the large values of the gradient da./dy in a small region of
the depth. This gradient da./dy has serious implications on the definition and computa-
tion of critical depth in compound channels as discussed below.

3.00 TTTTTTTTT T T T T T I T T T T T T T T T I T T T I T T T T TITT T T T

2.50

2.00

1.50

Depthy (m)

1.00

0.50

0.00 TTTTT T T[T T[T T T T[T T T T T T[T T T T [TTTTTTTTT
0.90 1.00 1.10 1.20 1.30 1.40 1.50

Value of a

Fig. 5.6 Variation of ¢ with depth in a symmetric compound channel
[B =1.0m, B]_: 3.0m,y =1.0m,n = 0.013 and n = 0.0144].

Critical Depth in Compound Channels When a channel has a compound sec-
tion the discharge is usually computed by the method of partial areas using one of
the two methods outlined in the above section. The kinetic energy correction factor

ais calculated by Eq. (5.42). The specific energy E =y +a\£— may have more than

one local minima or maxima under some combination of discharge and geometry. In
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such cases the Froude number needs to be properly defined so that the condition of
minimum specific energy would correspond to the critical depth.

Several investigators !> 1314 have analytically confirmed the existence of more
than one critical depth for compound sections. Blalock and Sturm?! have analyti-
cally and experimentally demonstrated the existence of more than one critical
depth in a compound channel. Proper identification of these depths is necessary
in steady and unsteady GVF computations, as the critical depth is an important
control point. Further, numerical instabilities can be expected in neighbourhood
of the critical depth.

Figure 5.7 shows a typical plot of the specific energy E for the compound channel
section shown in Fig. 5.8. Three possible types of E vs y plots, shown as Cases 1, 2
and 3 in Fig. 5.7, depending upon the discharge are possible. In Case 2, the specific
energy has two minima and local maxima.

Blalock and Sturm?'! have shown that the Froude number must be defined for
a compound channel to take care of the variation of the kinetic energy correc-
tion factor «, estimated by Eq. (5.42), with depth adequately so that the Froude
number will be unity at the local minima or maxima of the specific energy, E .
Thus as

QZ
2gA?

E=y+a

at a local minima or maxima of E,

dE —l—an dA Q% da

= _ hadh = 5.43
dy gA? dy 2gA? dy (543)
Noting that dA/dy =T
aQT _ Q? d_a 1
gA®  2gA’ dy
2
or % Q@ _Ada =1 (5.44)
gA 2T dy
The Froude number F_for a compound channel section is now defined as
1/2
_[oQ°T _ Q° da (5.45)
¢ gA®  2gA° dy
The term 99 in Eqg. (5.44) is determined as
dy
da Ao 2AT A
d_y: K31 2[ o _Fgg] (5.46)
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inwhi A il
in which o, = Z [K [3Ti 2R, &y ] (5.47)
K-3
= | 5.48
=25 (549
K, dP,

R,= A//P, = hydraulic radius of the i th sub-section.
T, = top width of i th sub-section.

Using the above expression for da/dy, the Eq. (5.45) for F_ can be simplified as

(5.50)

The term dP,/dy in Egs (5.47) and (5.49) for each sub-section is to be evaluated by
considering the appropriate boundaries of the sub-section.

The depth which products F_ = 1 is taken as the critical depth. For a compound
channel section as in Fig. 5.8, if y = depth of overbank level above the main channel
bed, usually one critical depth [point C, in Fig. 5.7] occurs at a depth less than y , i.e.
y., <Y,.Another critical depth [point C, in Fig. (5.7)] occurs at a depth larger thany ,
i.e.y, >y, .Between these two depths y  and y_, between points C, and C, in Fig. 5.7,
the specific energy reaches a local maxima [point C, in Fig. 5.7]. The depth at this con-
dition, y_,, could also be considered as a kind of critical depth. Usually y, is slightly
larger thany .

For a symmetrical compound channel as in Fig. 5.8 depending upon the magni-
tude of discharge three distinct cases of occurrence of critical depths can be
identified.

Case 1. Onlyy_ exists. The corresponding E -y plot is shown in Fig. (5.7 —Case 1) : Let
the discharge be called Q,.

Case 2. Onlyy . exists. Alsoy_, >y _, Fig (5.7 Case 3) shows the corresponding E-y
plot. Let the discharge be called Q..

Case 3. All the three critical depthsy_, y , and y_, exist. Also, y <y <y._.

The discharge Q, for Case 2 will be such that Q, < Q,< Q,.

As an example, for the symmetrical compound channel section of Fig. 5.8 with B =
1.0m,B,=3.0m,y =10m,n =0.0144and n_ = 0.0130, a discharge Q,= 2.5 m*/s
belongs to Case 2 withy_, = 0.860 m,y_ = 1.003 mandy_, = 1.130 m. Further, dis-
charge Q = 1.60 m®/s and 3.5 m%/s in the same channel would give Case 1 and Case
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Discharge = Q,
Case - 2

Discharge = Q3
Case - 3

Discharge = Qq
Case -1

Depthy

Ym

Specific energy E

Fig. 5.7 Schematic variation Qfspecg'ﬁ'c energy with depth in a symmetric compound section qf
Fig. 5.8

By —»| ‘—t—Bf—>
f Ym

SN
|

Fig. 5.8 Symmetrical compound section

3 respectively. The range of discharges Q, within which the Case 2 occurs, depends

upon the geometry of the channel.

Choudhary and Murthy Bhallamudi*® used a one-dimensional momentum equa-
tion and continuity equation for unsteady flows (St. Venant’s equations) to derive the
Froude number in terms of the momentum correction factor 3 as

F = il (5.51)
Fl

T dy
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The condition at critical flow is obtained by putting F__ = 1 as

gr - A%

%_ Tdy (5.52)

2(KTA)
where B T/ A (5.53)
It appears that for GVF flows in compound channel sections Eq. 5.50 which uses
the specific energy criteria and for unsteady flows Eq. 5.52 which is based on the
momentum criteria are appropriate choices for the definition of Froude number and
hence in the calculation of the critical depths. Usually, the values of the critical depths
calculated by using the two methods do not differ appreciably.

It should be noted that the existence of multiple critical depths would be noticed
only when the compound section is considered to be made up of sub-areas and the
total discharge is calculated as the sum of the partial area discharges. If the com-
pound section is treated as one whole unit for discharge calculation the occurrence of
multiple critical depths does not arise.

5.6.4 Backwater Curves in Natural channels

Methodology Computation of Backwater curves due to construction of dams, bar-
rages and weirs across natural channels is one of the basic procedures in the planning
and design of these structures. The basic issues are to know the extent of flooding,
areal as well as length of the reach affected by the construction of the structure.
For large dams the computations are done for various flood frequencies such as
25, 50, 100, 1000 years and for PMF. In addition to computation of the GVF profile,
the sedimentation aspects of the dam and river complex for various time horizons are
also computed. The GVF profiles are computed for pre-dam and post dam scenarios.
In the post dam situation GVVF without siltation and with siltation are estimated.

The basic methodology used is the Standard — Step method. The computations are
carried out using well tried out softwares like HEC-RAS and MIKE 21. HEC-RAS
has been developed by US Army Corps of Engineers and replaces the widely used
HEC-2 of the same organization. HEC-RAS has been developed to perform one
dimensional hydraulic analysis for natural as well as man-made channel networks. It
is a very versatile program capable of handling very large varieties of water surface
computation problems in rigid bed as well as in mobile bed environment. HEC-RAS is
available along with user’s manual (http:// www.hec.usace.army.mill/software/ hec-1)
for download by individuals free of charge. MIKE-11 is a commercial software of
the company DHI and is an industry standard for simulating flow and water levels,
water quality and sediment transport in rivers, flood plains, irrigation canals, reser-
voirs and other inland water bodies. Details of MIKE-11 are available in the web
site (http://www.dhigroup.com/Software/WaterResources/MIKE11.aspx).
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Basic Assumptions of GVF Computations Before embarking on the compu-
tations of GVF profiles of a natural channel, it is advisable to recollect the basic

assum

ptions involved in the computation procedure and to ensure that the field data

used in the computations do not violate these constraints: The basic assumptions of
the standard step method are:

1.

oo rwWdN

Steady flow

Gradually varied water surface (Hydrostatic pressure distribution)
One-dimensional analysis

Small channel slope

Rigid boundary

Constant (averaged) friction slope between adjacent sections

Basic Data requirement

(i)

(i)
(i)

)

Complete cross-sectional properties at the cross sections under study includ-
ing the stage discharge information at the sections. The number of sections
and intervals between the sections depend upon the site conditions and the
purpose of the study. Concurrent water surface elevations (and hence dis-
charges) at a set of stations at various discharges (preferably at high flows)
are necessary for calibration and validation of the model.

Various discharges selected for the study, viz., 5-year flood, 25-year flood,

100-year flood and PMF etc. obtained by appropriate hydrologic studies.

Channel roughness coefficient: These haves to be carefully selected on the

basis of field survey, study of the photographs and all other relevant details.

It has been found that smaller the value of Manning’s n the longer will be the

profile and vice verse®. Hence the smallest possible n value should be selected

when the longest length of backwater curve, as in the case of submergence
studies related to construction of reservoirs, is needed.

(a) The accuracy of computations, especially in standard-step method, will
have to be pre-decided. HEC-RAS adopts an accuracy of 0.003 m for the
elevation as default

(b) The termination depth of the computations: Since the GVF profiles
approach the normal depth asymptotically, the estimation of the backwater
curve will have to be terminated at a finite depth to achieve meaningful
accuracy. This is usually done up to a depth 1% excess/short of the normal
depth, depending upon the nature of the profile. Thus M, curves are
assumed to stop at a depth of 1.01 times normal depth and M, curves are
assumed to start from a depth of 0.99 times normal depth. In studies related
to backwater effect of a dam, the place where the incremental rise in water
surface begins to cause damage is defined as the end-point of a backwater
curved, For practical purposes, this end point is taken as the termination
depth referred above, namely 1.01 times the normal depth.

Procedure

(i) Division of Sub-sections The cross-sectional data has to be analyzed to establish
the method of analysis, i.e., whether single channel method or divided channel
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method (DCM) of analysis is to be adopted. Compound sections are very common
in natural rivers. HEC-RAS adopts the DCM with vertical sections to accommo-
date the flood plain effect. The composite roughness is calculated by Horton’s
method. The following procedure is adopted by HEC-RAS to identify regions for
adopting composite roughness and divided channel sections:

(@ Normally, the main channel is not sub divided, except when there is a perceptible
change in the roughness coefficient along the perimeter of the main channel

(b) If the main channel portion side slopes are steeper than 5H:1V and the main
channel has more than one n-value, a composite roughness n_(calculated by
Horton’s method) is adopted for the main channel. Otherwise, for flat side
slope cases the main channel also has to be sub-divided appropriately

(c) The composite roughness is calculated separately for the left and right flood
banks.

(ii) Calibration and Validation When all the necessary data for the computation of
backwater curves in a natural channel has been assembled, the controls identified
and the software to be adopted is selected and other details finalised, the next step
is to do the calibration of the model.

Model calibration and validation provides an assessment of the model’s ability
to accurately reproduce known results. Calibration is performed by running the
model at the high flow rate with the estimated n-values. A set of stations where con-
current water surface elevations (and hence discharges) are known are selected.
Water surface elevations at these sections are computed for a given set of data. The
computed water surface profile covering this set of stations is compared to the mea-
sured profile and optimization parameters P and D are determined; where

P=(3, ., (E—E, )Z)M (5.54)

and

2 1/2

D= [Z EEa) ] (5.55)
LN N

in which E is the measured water surface elevation, E_ is the computed water

surface elevation at each cross-section i and N is the total number of sections. It

may be noted that D represents the root mean square of the deviation of the water

surface and provides a measure of the accuracy of the model.

The standard calibration procedure is to adjust the value of roughness factor n
such that P and D are minimized. The program is then reproducing the known results
to its best capability and can be expected to reproduce the other ranges also to the
same degree of accuracy. Before application to the data points of the problem, the
calibrated program (with calibrated values of n) is run on another set of data with
known concurrent water surface elevations to verify that the program would indeed
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reproduce known results within acceptable degree of error. The data used in the veri-
fication stage should be different from the data set used in calibration stage.
The model is now ready for the computation of the desired GVF profiles.

5.7 ADVANCED NUMERICAL METHODS

The basic differential equation of GVF [Eq. (4.8)] can be expressed as

d
d—y = F(y) (5.56)
X
. . So—S; . . .
in which F(y) = —-———— and is a function of y only for a given S, n, Q and

1-(Q*T/gA’)
channel geometry. Equation 5.56 is non-linear and a class of methods which is par-
ticularly suitable for numerical solution of the above equation is the Runge—Kutta
method. There are different types of Runge—Kutta methods and all of them evaluate
y at (x + Ax) giveny at x. Using the notationy, = y(x;) and x, + Ax = x,, , and hence
Y, ., = Y(x,,,), the various numerical methods for the solution of Eg. 5.56 are as
follows:

( a) Standard Fourth Order Runge—Kutta Methods ( SRK)
Vi = yi+%(K1+2Kz+2K3+K4) (5-57)

where K, = AxF(y,)

K, = AxF(y; +K;)

(b) Kutta—Merson Method ( KM)' 5

1
yi+1 = yi +E(K1 +4K4+K5) (558)
1
where K, :§Ax F(y,)

1
K, :EAX F(y, +K)

1 K K
K,==AxF|y, +—=t+-2
3 3 [y| 2 2
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1 3 9
K,==AxF|y +=-K, +=K
4 3 [yl 8 1 8 3}

K, 1AxF[yi +gK1§K3+6K4}

3
An estimate of the truncation error in Eq. 5.58 is given by
e=02K,-09K, +0.8K, —0.1K, (5.59)

In using the above methods, the channel is divided into N parts of known length inter-
val Ax. Starting from the known depth, the depths at other sections are systematically
evaluated. For a known y, and Ax, the coefficients K, K,, ..., etc. are determined by
repeated calculations and then by substitution in the appropriate main equation [Eq. 5.57
or Eq. 5.58], the value of y, , is found. The SRK method involves the determination of
F(y) four times while the KM method involves F(y) to be evaluated five times for each
depth determination. These two methods are direct methods and no iteration is involved.
The KM method possesses an important advantage in the direct estimate of its truncation
error, which can be used to provide automatic interval and accuracy control in the
computations?’.

(¢) Trapezoidal Method (TRAP) This is an iteration procedure with
1
Vi = Vit AX{F(y))+ F(¥.,)} (5.60)

The calculation starts with the assumption of F(y,,,) = F (y,) in the right hand
side of Eqg. 5.60. The value of y. , is evaluated from Eq. 5.60 and substituted in
Eq. 5.56 to get F(y,,, ). This revised F(y,,,) is then substituted in Eq. 5.60. The pro-
cess is repeated. Thus the rth iteration will have

r 1 .
yo =y, +5 Ax {FOW+F )} (5.61)

The iteration proceeds till two successive values of F(y, ) ory, , agree to a desir-
able tolerance.

Comparison of Various Methods Studies have been reported by Apelt' and Hum-
pridge and Moss® on the SRK method; by Apelt!” on the KM and TRAP methods and by
Prasad” on the TRAP method. It has been found that all these three methods are capable
of direct determination of the GVF profile in both upstream and downstream directions
irrespective of the nature of flow, i.e., whether the flow is subcritical or supercritical.
Apelt'” in his comparative study of the three methods has observed that the SRK and
KM methods possess better stability characteristics and require less computational
effort than the TRAP method. Also, while the SRK method is slightly more efficient
than the KM method, the possibility of providing automatic control of the step size and
accuracy in the KM process makes it a strong contender for any choice.

All the three methods are well-suited for computer applications and can easily be
adopted to GVF calculations in natural channels. In these three methods when the
calculations involve critical depth, care should be taken to avoid dy/dx = coaty =y,
by terminating the calculations at a depth slightly different fromy .
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5.8 FLOW PROFILES IN DIVIDED CHANNELS

Divided channels, also known as island-type flow, occur when the discharge is
divided into two or more separate channel as it flows round one or more islands.
Typical simple island type and multi-island type flows are shown in Figs 5.9 and
5.10 respectively. While the divided channels occur frequently in natural channels
they can also occur in storm water systems. In analysing the divided flow, it is
advantageous to represent the flow situation by net work of nodes and links, e.g.,
Fig. 5.11 is such a representation of Fig. 5.9

L
— QL
S T
! 2 3 4
\QR

Fig. 5.9 Simple-island-type flow

—— @B
S

(o
7/
Fig. 5.10 Multi-island-type flow

QL
DM mw@y
w
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Fig. 5.11 Schematic representation of Fig. 5.9
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Simple-island-Type Flow The usual problem in this category is the determina-
tion of the division of discharge Q for a given downstream water-surface elevation.
Referring to Fig. 5.9 and 5.11, the geometry of the main channel as well as the chan-
nels L and R are known. For a Known stage at Section 4, it is required to find the
division of the discharge Q into Q, and Q_ in the channels L and R respectively. The
flow is assumed to be subcritical, as it is the most usual case. In the solution of this
problem the continuity equation at each node and the energy equation for various
paths are employed. Thus in Fig. 5.11, the total discharge Q is divided into Q_and Q,
at node 2 and is recombined at node 3. By the energy equation, the drop of the total
energy between nodes 2 and 3 in path L must be the same as the drop between these
nodes in the path R.

The solution to the problem is achieved through a trial-and-error procedure.
First a trial division of Q_and Q, is assumed such that Q_+ Q, = Q. Starting from
a known stage at 4, the water-surface elevations at the various nodes are calculated
by GVF computations as below:

Step From-to Path Find Elevation Discharge
at Node Used

€)) 4-3 N 3 Q

(b) 3-2 L 2 Q

() 3-2 R 2 Q,

The elevation at Node 2 calculated in steps (b) and (c) must be the same for a cor-
rect division of flow. However, since an arbitrary division was assumed, the two
values would differ by an amount AH. If the calculations are repeated for different
assumed values of Q , in the successive iterations the experience of the previous cal-
culations are used to guide better selections of Q, values. If AH = {elevation at 2 by
step (b) — Elevation at 2 by step (c)}, the correct value of Q, to give zero value of
AH is obtained by interpolation (Fig. 5.12).

AH

Trial
1

[«——Correct Q. —— 4 Q
2 (Assumed)

Fig. 5.12 Interpolations ngH to get Q
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Multi-island-Type Flows Thetrial-and-error type of solution, used in the simple-
island type flow, will become extremely tedious if it is to be successfully applied to
multi-island type flows. Considering the problem as analogous to that of the pipe
network problem, Wylie® and VVreugdenhil*® have developed iterative numerical pro-
cedures for solving the general multi-island system. An efficient algorithm for the
solution of parallel channel network is available in Ref. (20).

5.9 ROLE OF END CONDITIONS

The channel end conditions, being the boundary conditions for GVF computations
play a very important role. Some common end conditions and few cases of interac-
tion of end conditions on the flow are discussed in this section.

Outlet An ideal outflow of a canal into a lake is shown in Fig. 5.13(a). The kinetic

energy of the stream is recovered as potential energy and as such the lake water is

2
higher than the channel water surface at the outlet by an amount Ah = O;V

. In real-

ity, there will be energy losses at the outflow and one can safely assume that all the
kinetic energy of the outflow is lost in shear. Hence, the outflow situation for mild
slope channels is adopted as follows:

If y_= depth of water in the lake and y, = depth of flow in the canal at the outlet,
both measured above the channel bed

Lty >y, Ya= Y0 [Fig. 5.13 (b)]
2.1y =y, Yo=Y [Fig. 5.13 (c)]
3. Ify <y, Y, =V, [Fig. 5.13 (d)]

YL>Yye

(b)
Fig. 5.13 (Contd)
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|

(d)
Fig. 5.13 End conditions

In supercritical flow the control is on the upstream of the channel and as such
Yo=Y

Inlet Figure 5.14 shows a free inlet from a reservoir to a mild-slope channel.
There will be a certain amount of energy loss at the entrance. Initially the flow
will be non-uniform which soon adjusts to uniform flow. At the end of the entrance
zone, for uniform flow,

2

H+A2:y0+oz\%+hf +AH, (5.62)

v
Reservoir
H
-y Yo Vo
Az “2g
~—
Y Entrance length = |
e —— G

floy

Fig. 5.14 Mild-slope channel inlet
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where h, = AZ = head loss due to friction at the rate of S;and AH _= entrance loss
2

V)2~ . . -

=K =2 in which K = a coefficient whose value may range from 0.1 to 0.25 for a
29 .

well-rounded entrance. Thus at the lake entrance for a mild channel

V2

H=y,+(+ K)% (5.63)

If the channel has a steep slope, the critical depth control exists at the channel inlet
and the flow will be established through an S, curve [Fig. 4.5(¢)].

Interaction of Exit and Inlet Conditions Consider the case of a canal
connecting two lakes. Let us assume the canal to be of short length so that both
the reservoirs are spanned by the GVF profile generated. Let the inlet depthy, be
constant and the outlet-pool depth y, be a variable (Fig. 5.15). The interaction of
the downstream pool elevation with the upstream lake, through a GVF profile,
is reflected by the change in the discharge of the canal. The discharge carried by
a canal under conditions of varied flow was termed by Bakhmeteff! as delivery
of a canal.

Delivery in Mild Channels Under Varying Downstream Pool Elevation
Referring to Fig. 5.15, y, = downstream-pool depth measured from the channel
bottom at the outlet. The value of y, is assumed to vary while y, is assumed to
remain constant. Let L = length of the channel and S, = bed slope. Wheny, =y,
=Yy, + LS, i.e. when am is a horizontal line, the discharge in the channel is zero.
Ify =y, i.e. when the water surface ap is parallel to the bed and uniform flow
prevails, the uniform-flow discharge is Q.. Forany y >y, >y,, the discharge Q
will be less than Q,, the resulting GVF profile will be of M, type. The decrease
in the discharge (Q < Q) takes place because of the interaction of the M, curve
causing a drowning effect at the inlet. The variation of the discharge Q with y, in
this zone is shown in Fig. 5.15.

Fig. 5.15 Delivery in a mild-slope channel
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Wheny <y, <y, the M, profile occurs and causes a drawdown effect at the inlet
resulting in an enhanced discharge Q > Q,. The maximum value of Q = Q_ occurs at
y,_=Y,. Further decrease in the value of y_does not cause any change in M, profile,
excepting for a hydraulic drop to occur (rs in Fig. 5.15).

yL

Fig. 5.16 Delivery in a long channel

A channel of this kind, where Q_ > Q,, i.e. where the GVF curves reach up to the
intake and affect the discharge is called a short channel. Conversely, a long channel is
one where the intake is so far away from the outlet that none of the M, curves reach the
intake. In a long channel some M, curves may also not reach the intake. Figure 5.16

indicates the delivery in a long channel. It may be noted that in a long channel,
Q, = Q,and Q, can also occur fory, >y,.

. Y1
\ Reservoir
Foomooo-- =% c
‘ Qm_’ = v C
Qo—> =_Z n
- p
y, M =V
Q —l— B y, = Const

s,
Fig. 5.17 Delivery under varying upstream reservoir level

Delivery in Mild Channels Under Varying Upstream Reservoir Elevations
In this case the downstream pool elevation is kept constant and the upstream reservoir
depth y, is varied (Fig. 5.17). The length of the channel is L and S is its bed slope.
Wheny, =y, = (y_-LS), i.e. line msis horizontal, there is no flow in the canal.

Wheny, < (y, - LS,), the flow is to the reservoir, i.e. in the negative direction and is
not considered here.
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Uniform flow takes place wheny, =y, , i.e. line ns is parallel to the bed and the
delivery is Q . Fory, ,<y, <y, , the discharge is less than Q, and the water surface
profile is an M, curve. For values of y, >y, , the water surface profile is an M, curve
and the delivery is Q > Q. The maximum discharge Q  compatible with y, = constant
occurs when the depth y, = critical depth (line cs in Fig. 5.17). Any further increase
in the upstream depth y, would no doubt increase the delivery Q, but the downstream
water depth will be a critical depth y_ >y, followed by a hydraulic drop (lined cr in
Fig. 5.17), Which is strictly not compatible with the condition y, = constant.

An extensive analysis of delivery problems is reported in literature®.

Example 5.10 || A wide rectangular channel of slope 0.0004 and n = 0.02 con-
nects two reservoirs 1.5 km apart. The upstream reservoir level is constant at an
elevation of 104.00 m and the elevation of the canal invert at the intake is 101.00
m. The intake is free and the loss of energy at the intake can be neglected. (a) What
should be the downstream reservoir level to cause uniform flow in the entire length
of the channel? (b) If the downstream reservoir level is 103.40 m, will it affect the
uniform flow discharge?

Solution (a) Refer to Fig. 5.18(a). Neglecting losses at the entry

2

V,
H=vy +-%
Yo 29
As the channel is wide V, = 1 yesy?
n
1.1
Yo=H *E[E Yo 'Sy T
1 1
=3.0-— 4% %0.0004
Yo 2><9.81[(0.02)2 Yo ]
Solving by trial and error, y,=2.80m

Bed level at downstream end of the channel, i.e., at the Section B
= 101.00 - (0.0004 x 1500) = 100.40 m
Downstream pool elevation = 100.40 + 2.80 = 103.20 m

2
104.00 Vo/29
<5

101.00 \ /

Fig. 5.18(a) Definition sketch of Example 5.10(a)
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(b) Flow when the downstream pool elevation is at 103.40 m:
Assume the flow at the inlet is not affected by the downstream lake elevation.

Y, =2.80m

g, = normal discharge = 0—22(2.80)5/3 (0.0004)¥? = 5.547 m¥/s/m

2 \¥3 2\V3
Critical depth y, for this discharge = [q_] = [%] =1.464 m<y,
g .

The flow is thus subcritical, the channel is a mild slope channel and an M, curve
will result with downstream lake elevation at 103.40 m. (See Fig. 5.18(b)).

(i) Ifthis curve, calculated with discharge = ¢, extends beyond the inlet A, then
the inlet is drowned and the discharge in the channel will be less than g

(ii) If the length of this M, curve is less than 1500 m, the inlet is free and uniform
flow will prevail in the upper reaches of the channel un affected by backwater
of downstream lake. The canal discharge will therefore be q,.

The M, profile is calculated by Direct step method starting from the downstream
end B. The calculations are shown in Table 5.6. It is seen that the M, curve for
g, = 5.547 m¥s/m extends beyond the inlet A. Hence the uniform flow discharge is
affected by the downstream pool elevation of 103.40 m.

104.0 vii2g
»

M, curve

H Yof T TTTTEE——
______ ——103.40
101.00 Ay T ---____103.20
— B
B
0.0004 10040
Fig. 5.18(b) Definition sketch of Example 5.10(b)
Table 5.6 Computation of Flow Profile by Direct Step Method (Example 5.10)
Wide Rectangular channel n =0.02 S, = 0.0004 q=
5.547 m3/s/m
1 2 3 4 5 6 7 8 9 10
SIl. y(m) V(m/s) E(m) AE(@m) S S, S,—S,  Ax(m) x(m)
No.
1 3.00 1849 3.174 0.000316 0
2 295 1880 3.130 -0.0440 0.000334 0.000325 7.48E-05 —589 589
3 290 1913 3.086 -—0.0437 0.000354 0.000344 5.59E-05 —782 1371
4 285 1946 3.043 —0.0434 0.000375 0.000364 3.56E-05 —1220 2591
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Example 5.11 || A rectangular channel, B = 3.0 m and n = 0.015, takes off from
a reservoir. The channel slope is 0.017. At the intake the bed of the channel is at an
elevation of 100.00 m. If the reservoir water surface is at 102.00 m and the entrance
losses are equal to 0.2 times the velocity head at the intake, calculate the discharge in
the channel. At what distance from the intake would the uniform flow commence?

Solution  First it is necessary to find whether the slope is mild or steep. By Eq. (3.65)

2
limit slope 5 — % 9_33 Here, B=3.0m, S, = 0.017 and n = 0.015
B

2
5, = 8, (98D x(0.0157 (ou.3015) —0.004

3 (3.0)
Since S, > S, the channel slope is steep. An S, curve is formed at the inlet to reach the
normal depth asymptotically, (Fig 5.19). Here H = 102.00 — 100.00 = 2.00 m.

2 2 2

. \ . . V
At the inlet, y, +—+0.2—-=2.0. Since in a rectangular channel — = 0.5y,
29 29 29

1.5y, + 0.1y, = 2.0

vV 2
2
V, = 3502 mis, q = (3.502 x 1.25) = 4.377 m¥/sim and Q = 4.377 x 3.0 = 13.13 ms.

Hence y, = 1.25 m and =0.625 m.

13.13x0.015
(3)%° x+/0.017
and y,= 0.780 m. The S, profile at the inlet is calculated by direct step method and
details shown in Table 5.7. it is seen from this table that the normal depth would
occur at a distance of about 127 m from the inlet.

To find normal depth: ¢ = =0.0807 From Table 3A.1, % =0.260

Table 5.7 Computation of Flow Profile by Direct Step Method (Example 5.11)

Rectangular Channel, S, =0.017 n =0.015 q = 4.377 m¥/s/m
B=30m
1 2 3 4 5 6 7 8 9 10 11
sl. y V. EMm AE R(m) S, S, S-S, Ax X
No. (m) (m/s) (m) (m)  (m)
1 1.25 3502 1.875 0.682 0.00460 0

110 3.979 1.907 0.0321 0.635 0.00653 0.00556 0.01144 2.8 3
095 4.607 2.032 0.1250 0.582 0.00984 0.00818 0.00882 14.2 17
0.85 5.149 2202 0.1696 0.543 0.01348 0.01166 0.00534 31.8 49
0.79 5541 2355 0.1531 0.517 0.01663 0.01505 0.00195 78.7 127

a B~ W DN
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10.
11.

12.

13.

14.

15.

16.

17.

18.

H=2.00m

100.00

102.00

S, Curve

Fig. 5.19 Deﬁnition sketch g“ExampIe 5.11
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~ PROBLEMS

Problem Distribution

SI.  Topic Problems
No.
1. Direct integration of GVF — Special cases 51t05.4
2. Computation of GVF
-by Varied Flow Function 55
-by Bresse’s function 5.11,5.12,5.12
-by Keifer and Chu method 5.15
-Direct step method 5.6,5.9,5.13,5.17, 5.20, 5.22
-Standard step method 5.16
3. Simple island flow 5.14
4, Flow at free inlet 5.22 t0 5.66
5.1 Prove that the GVF profile for a horizontal channel can be expressed as
C C N—-M+1
= 72—1 yN ) R— + Constant
Q°(N +1) gC,(N—M +1)
Where C, and C, are coefficients associated with the hydraulic exponents M and N
respectively.
5.2 Show that for a horizontal channel, by assuming Chezy C = constant, the GVF profile is
given by
CZ 4
X = —\y— y 5|+ Constant
9 ¢
5.3 Establish that the GVF profile in a frictionless rectangular channel is given by
1 3
x=Jo 1+= Yo + Constant
S 20y
5.4 Show that in a wide rectangular critical slope channel the gradually varied flow profiles

calculated by using Chezy formula with C = constant are horizontal lines.
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5.5 A trapezoidal channel having B = 6.0 m, side slope m = 2.0, S; = 0.0016, Manning’s
n = 0.02 carries a discharge of 12.0 m%s. Compute and plot the backwater produced due
to operation of a sluice gate at a downstream section which backs up the water to a depth
of 4.0 m immediately behind it. Use Varied flow functions.

5.6 Calculate the backwater curve of Problem 5.5 by direct-step method.

5.7 A trapezoidal channel B =5.0 mand m = 2.0 is laid on a slope of 0.0004. If the normal
depth of flow is 3.10 m, compute: (a) the profile of an M, curve in this channel lying
between depths of 5.0 m and 3.15 m, and (b) the profile of an M, curve lying between
depths of 0.5 m and 1.2 m. Assume Manning’s n = 0.02.

5.8 A rectangular brick-lined channel (n = 0.016) of 4.0-m width is laid on a bottom slope
of 0.00009. It carries a discharge of 15 m3/s and the flow is non-uniform. If the depth at a
Section A is 2.6 m, calculate the depth at section B, 500 m downstream of A, by using (a)
only one step, and (b) two steps.

5.9 A sluice gate discharges a stream of 0.59 m depth with a velocity of 15 m/s in a wide
rectangular channel. The channel is laid on an adverse slope of S; = — 0.002 and ends
with an abrupt drop at a distance of 100 m from the gate. Assuming n = 0.02, calculate
and plot the resulting GVF profile.

5.10 Figure 5.5 shows the section of a stream with flow in the flood plain. Idealise the section
as shown in the figure into three parts with side slopes of 2 : 1 and bottom width and
depth for parts 1, 2 and 3 as 15.0 m, 5.0 m; 10.0 m, 1.50 m; 15.0 m and 2.5 m respec-
tively. Determine the value of the overall kinetic-energy correction factors « and the
friction slope for a discharge of 200 m®/s. The values of the kinetic-energy correction
factors for the three subsections can be assumed as o, = 1.20, o, = 1.05 and o, = 1.15.
Assume n = 0.035 for all the boundaries.

5.11 A stream which could be considered as a wide rectangular channel has a slope of 0.0003
and Chezy C = 40. Calculate the backwater profile produced by a weir on the stream
which raises the water surface immediately upstream of it by 4.0 m when the discharge
over the weir is 3.0 m%/s/m. Use Bresse’s back water functions.

5.12 Derive Equation (5.13) and verify the values of the coefficients given in the table accom-
panying the equation.

5.13 A 3-m wide rectangular channel laid on a slope of 0.005 carries a flow at a normal depth
of 1.20 m. A sharp-crested rectangular suppressed weir (C, = 0.62) is located with its
crest at 2.0 m above the channel bottom at the downstream end of the channel. Compute
and plot the water surface profile. Assume n = 0.02.

Path Width Slope Length N
Left 15.0m 0.0009 2000 m 0.025
Right 10.0 m 0.0010 1800 m 0.030

5.14 A small stream is of rectangular cross section. At a certain section it divides itself,
encloses an island and then rejoins to form a single channel again. The properties of the
two paths past the island are as follows:

At a short distance downstream of the confluence the discharge is found to be 160 m®/s
and depth of flow of 4.0 m. Find the discharge in each channel and the depth of flow at
the point of division. Neglect the energy loss at the division and at the confluence.

5.15 A concrete circular channel (n = 0.015) of diameter = 2.0 m is laid on a slope of 0.05.
This channel is used for emptying a pond. The flow enters the channel as a free inlet from
the pond. Compute and plot the water-surface profile for a discharge of 8.00 m3s.
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Station  Distance up the Elevation of the Cross-section
Stream Stream Bed (m)

1 50.0 m 100.0 trapezoid: B = 15.0 m
m=15

2 52.0 km 101.0 trapezoid: B = 14.0 m
m=1.5

3 54.0 km 102.0 trapezoid: B = 14.00 m
m=1.25

4 56.0 km 103.0 trapezoid: B = 13.00 m
m=1.25

5.16 A stream has the following cross-sectional data:

For a discharge of 150 m¥/s, the depth of flow of the downstream-most Section 1 is 5.10 m.
Assume n = 0.025. Using the standard-step method, compute the water-surface eleva-
tions at Sections 2, 3 and 4. (Assume gradual transition).

5.17 A trapezoidal channel, B =4.5m, m = 0.5 and n = 0.020, has S, = 0.01. There is a break
in grade to the horizontal at a section. The depth of flow at the junction is 3.0 m when the
discharge is 30.0 m?/s. Sketch the resulting water-surface profile on the sloping channel.

5.18 A rectangular channel of 6.0 m width carries a discharge of 8.40 m®/s. The channel slope
is 0.0004 and the Manning’s n = 0.015. At the head of the channel the flow emanates
from the sluice gate. The depth of flow at the vena contracta is 0.15 m. If the hydraulic
jump is formed at a depth of 0.25 m, find the distance between the toe of the jump and
the vena contracta.

5.19 A trapezoidal channel B = 4.50 m, m = 1.0, n = 0.03 has a bed slope of S ;= 0.003. The
channel ends in a sudden drop. Calculate the GVF profile for a discharge of 25.0 m¥/s.

5.20 A trapezoidal channel B =7.5m, m = 1.5 and n = 0.025 is laid on a slope of 0.0004.
When the discharge is 20.0 m%/s, a low weir at a downstream location creates a pool of
depth 3.00 m just upstream of it. Calculate the length of the backwater and also the depth
at a section 1.0 km upstream of the weir.

5.21 A wide rectangular channel of slope 0.0005 connects two reservoirs 20 km apart. The
upstream reservoir level can be considered to be constant and the downstream reservoir
elevation is variable. The elevation of the canal invert at the intake is 200.00 m. The intake
is free and the normal depth and the uniform flow discharge intensity in the canal are 2.00 m
and 4.0 m¥/s/m width respectively. If the downstream reservoir level reaches 192.40 m, will
it affect the uniform flow discharge in the channel? (Use Bresse’s function).

5.22 A wide rectangular channel with a bed slope of 0.015 takes off from a reservoir. The inlet
to the channel is free and the discharge intensity is 3.00 m%/s/m. Calculate the GVF pro-
file from the inlet to the section where the depth is 1% excess of the normal depth.
Assume Manning’s coefficient n = 0.015.

5.23 A rectangular channel, B = 4.0 m and n = 0.015, is laid on a slope of 0.0004. The channel
is 500-m long and connects two reservoirs. The bed of the channel at the intake is at an ele-
vation of 120.0 m. The intake is free and has a loss coefficient of 0.2 (a). If uniform flow
takes place at a depth of 2.0 m, what are the elevations of the upstream and downstream
reservoirs? (b) If the elevation of the upstream reservoir is held constant and the down-
stream reservoir elevation is lowered by 1.0 m, what is the delivery of the channel?

5.24 A 6.0-m wide rectangular channel has n = 0.012 and S, = 0.006. The canal takes off from
a reservoir through an uncontrolled smooth inlet. If the elevation of the water surface is
2.10 m above the channel bed, estimate the discharge in the channel and the minimum
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distance from the inlet at which the flow can be considered to be uniform. Neglect energy
losses at the entrance to the channel.

5.25 Write an algorithm for computing the discharge in a trapezoidal channel taking off from
a reservoir, given S, n, B, m and H, where H = reservoir elevation above the channel
invert at the upstream end. The channel-entrance losses can be neglected.

5.26 A trapezoidal channel B = 3.0 m, m = 1.50, n = 0.025 and S,= 0.00050 takes off from
a reservoir with free inlet. The reservoir elevation is 7.0 m above the channel bed at the
inlet. Calculate the discharge in the channel by neglecting entrance losses.

* OBJECTIVE QUESTIONS

5.1 Bresse’s backwater function corresponds to the indicated set of (M, N) values:

1.1
@ G2 o [53
© [333] @ @)

5.2 The solution of the differential equation of GVF by Chow’s method, involves the use of
varied flow function F (u, N) =

* du I N
@) [HUN (b) [(1—u Jdu
r udu * du
c — d
© [T @ [
5.3 The Keifer and Chu varied-flow functions are useful for GVF computations in
(a) all types of channels (b) channels with closing top
(c) circular channels only (d) rectangular channels only

5.4 The Kutta-Merson method of solving the GVF differential equation involves
(a) evaluation of the function four times for each step
(b) evaluation of the function five times for each step
(c) three evaluations of the function per step
(d) iteration procedure
5.5 The standard-step method aims to solve
(a) the differential equation of GVF
(b) the differential-energy equation of GVF
(c) the Bernoulli equation
(d) the momentum equation
5.6 The trapezoidal method (TRAP) of numerical integration of GVF involves
(a) direct solution involving evaluation of the function four times
(b) iterative procedure
(c) Simpson’s rule
(d) Graphical procedure
5.7 Bresse’s backwater function is applicable to
(a) Circular channels
(b) Trapezoidal channels
(c) Any shape of channel
(d) Wide rectangular channel
5.8 The direct-step method of calculating the GVF profile uses the relation
(@) AE= Ax(S,-S,) (b) Ax=AE/S,-S,)
(c) Ax=AE(S,-S,) (d) Ay = Ax(S,-S,) /(1 -F?)
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5.9 In the direct-step method and standard-step methods, the calculations

(a) must proceed upstream in subcritical flow
(b) must end on a control section
(c) must always proceed upstream
(d) must proceed upstream in supercritical flow

5.10 The direct-step method
(@) is best-suited for natural channels
(b) is accurate for all step sizes
(c) is most accurate for calculating supercritical flow profiles
(d) is none of these

5.11 The standard-step method is
(a) an unguided trial-and-error method
(b) arapidly-converging iterative procedure
(c) not applicable to natural channels
(d) not applicable to artificial channels

5.11 Inacompound section the slope of the common energy line S, is

@_ 0 9
LKA (2K, )2
S(KS A
© 29 @ oo
SKZ /A (ZK ) /A

5.12 The standard Runge-Kutta method for solving GVF profiles is
(a) an iterative procedure
(b) not rapidly converging
(c) dependent on the nature of the profile
(d) independent of the direction of computation
5.14 In a simple island-type divided channel of rectangular cross-section, the discharge
division
(a) is judged by common sense
(b) is inversely proportional to Manning’s n
(c) is to be found by iterative GVF calculations
(d) has no fixed value
5.15 For an uncontrolled canal inlet at a reservoir, the discharge drawn
(a) is fixed by the critical depth that occurs at the inlet
(b) is determined by a control on the downstream end
(c) depends on whether the channel is steep or otherwise
(d) is a constant
5.16 A mind channel connecting two reservoirs is called a short channel if
(a) the discharge varies with the downstream-pool elevation
(b) the channel is on a steep slope
(c) the channel is frictionless
(d) some M, curves extend all the way up to the reservoir
5.17 A mild slope channel enters a lake with a sudden drop in its bed. If the depth of water in
the lake measured above the channel bed at its outlet y, is greater than the critical depth,
then the depth of flow in the canal at the outlet y,

@ =y, (b) =y,
(c) = normal depth =y, (d) <y,
5.18 A compound section as in Fig. 5.19 may have a maximum of
() one critical depth (c) three critical depths

(b) two critical depths (d) four critical depths
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Fig. 5.19 Symmetrical compound section

@ APPENDIX 5A

This appendix contains the varied-flow functions and the Keifer and Chu functions.
d
1—
This table is reproduced by permission of the American Society of Civil Engineers and
contains material from Chow, V T, ‘Integrating the equations of gradually varied-flow’
Proc. ASCE, \ol. 81, Paper No. 838, pp. 1-32, Nov. 1955.

2. Tables 5A.2(a) and 5A.2(b) contain the Keifer and Chu functions I,(Q,, 6/7) and 1,(Q,, 6/)
respectively. These functions are for the use of GVF computations in circular channels
through the use of Eq. (5.28). In these tables 26 = angle subtended by the water surface
at the centre of the channel and @ is related to the depth y by the relation

1. Tables 5A.1 contains the varied-flow functions F(u ,N) = f LA — for a few values of N.
ol-u

y/D= %(l—cos@)

Values of 26 for different y/D values are available in Table 2A.1.

Q, is the discharge ratio given by Eq. (5.24). Tables 5A.2(a) and 5A.2(b) are the adopted
versions of original tables supplied to the author for publication through the courtesy
of Dr Chandra Nalluri, University of New Castle-upon-Tyne, New Castle-upon Tyne,
England. The step lines in the tables indicate the barriers for interpolation representing
the location of normal depth.
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Table 5A.1 Varied Flow Function F (u, N)
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u\N 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.6 5.0

0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.02 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020
0.04 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040
0.06 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060
0.08 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080
0.10 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
0.12 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120
0.14 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140
0.16 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160
0.18 0.181 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180
0.20 0.201 0.200 0.200 0.201 0.200 0.200 0.200 0.200 0.200 0.200 0.200
0.22 0.221 0.221 0.221 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220
0.24 0.242 0.241 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240
0.26 0.262 0.262 0.261 0.261 0.261 0.260 0.260 0.260 0.260 0.260 0.260
0.28 0.283 0.282 0.282 0.281 0.281 0.281 0.280 0.280 0.280 0.280 0.280
0.30 0.304 0.303 0.302 0.302 0.301 0.301 0.300 0.300 0.300 0.300 0.300
0.32 0.325 0.324 0.323 0.322 0.322 0.321 0.321 0.321 0.321 0.320 0.320
0.34 0.346 0.344 0.343 0.343 0.342 0.342 0.341 0.341 0.341 0.340 0.340
0.36 0.367 0.366 0.364 0.363 0.363 0.362 0.362 0.361 0.361 0.361 0.360
0.38 0.389 0.387 0.385 0.384 0.383 0.383 0.382 0.382 0.381 0.381 0.381
0.40 0.411 0.408 0.407 0.405 0.404 0.403 0.403 0.402 0.402 0.401 0.401
0.42 0.433 0.430 0.428 0.426 0.425 0.424 0.423 0.423 0.422 0.421 0.421
0.44 0.456 0.452 0.450 0.448 0.446 0.445 0.444 0.443 0.443 0.442 0.441
0.46 0.479 0.475 0.472 0.470 0.468 0.466 0.465 0.464 0.463 0.462 0.462
0.48 0.502 0.497 0.494 0.492 0.489 0.488 0.486 0.485 0.484 0.483 0.482
0.50 0.525 0.521 0.517 0.514 0.511 0.509 0.508 0.506 0.505 0.504 0.503
0.52 0.550 0.544 0.540 0.536 0.534 0.531 0.529 0.528 0.527 0.525 0.523
0.54 0.574 0.568 0.563 0.559 0.556 0.554 0.551 0.550 0.548 0.546 0.544
0.56 0.599 0.593 0.587 0.583 0.579 0.576 0.574 0.572 0.570 0.567 0.565
0.58 0.626 0.618 0.612 0.607 0.603 0.599 0.596 0.594 0.592 0.589 0.587
0.60 0.653 0.644 0.637 0.631 0.627 0.623 0.620 0.617 0.614 0.611 0.608
0.61 0.667 0.657 0.650 0.644 0.639 0.635 0.631 0.628 0.626 0.622 0.619
0.62 0.680 0.671 0.663 0.657 0.651 0.647 0.643 0.640 0.637 0.633 0.630
0.63 0.694 0.684 0.676 0.669 0.664 0.659 0.655 0.652 0.649 0.644 0.641
0.64 0.709 0.693 0.690 0.683 0.677 0.672 0.667 0.664 0.661 0.656 0.652
0.65 0.724 0.712 0.703 0.696 0.689 0.684 0.680 0.676 0.673 0.667 0.663
0.66 0.738 0.727 0.717 0.709 0.703 0.697 0.692 0.688 0.685 0.679 0.675
0.67 0.754 0.742 0.731 0.723 0.716 0.710 0.705 0.701 0.697 0.691 0.686
0.68 0.769 0.757 0.746 0.737 0.729 0.723 0.718 0.713 0.709 0.703 0.698
0.69 0.785 0.772 0.761 0.751 0.743 0.737 0.731 0.726 0.722 0.715 0.710
0.70 0.802 0.787 0.776 0.766 0.757 0.750 0.744 0.739 0.735 0.727 0.722
0.71 0.819 0.804 0.791 0.781 0.772 0.764 0.758 0.752 0.748 0.740 0.734
0.72 0.836 0.820 0.807 0.796 0.786 0.779 0.772 0.766 0.761 0.752 0.746
0.73 0.854 0.837 0.823 0.811 0.802 0.793 0.786 0.780 0.774 0.765 0.759
0.74 0.868 0.854 0.840 0.827 0.817 0.808 0.800 0.794 0.788 0.779 0.771

(Continued)
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Table 5A.1 Varied Flow Function F (u, N)

u\N 2.6 2.8 3.0 3.2 34 3.6 38 4.0 4.2 4.6 5.0

0.75 0.890 0.872 0.857 0.844 0.833 0.823 0.815 0.808 0.802 0.792 0.784
0.76 0.909 0.890 0.874 0.861 0.849 0.839 0.830 0.823 0.817 0.806 0.798
0.77 0.930 0.909 0.892 0.878 0.866 0.855 0.846 0.838 0.831 0.820 0.811
0.78 0.950 0.929 0.911 0.896 0.883 0.872 0.862 0.854 0.847 0.834 0.825
0.79 0.971 0.949 0.930 0.914 0.901 0.889 0.879 0.870 0.862 0.849 0.839
0.80 0.994 0.970 0.950 0.934 0.919 0.907 0.896 0.887 0.878 0.865 0.854
0.81 1.017 0.992 0.971 0.954 0.938 0.925 0.914 0.904 0.895 0.881 0.869
0.82 1.041 1.015 0.993 0.974 0.958 0.945 0.932 0.922 0.913 0.897 0.885
0.83 1.067 1.039 1.016 0.996 0.979 0.965 0.952 0.940 0.931 0.914 0.901
0.84 1.094 1.064 1.040 1.019 1.001 0.985 0.972 0.960 0.949 0.932 0.918
0.85 1121 1.091 1.065 1.043 1.024 1.007 0.993 0.980 0.969 0.950 0.935
0.86 1.153 1.119 1.092 1.068 1.048 1.031 1.015 1.002 0.990 0.970 0.954
0.87 1.182 1.149 1.120 1.095 1.074 1.055 1.039 1.025 1.012 0.990 0.973
0.88 1.228 1.181 1.151 1.124 1.101 1.081 1.064 1.049 1.035 1.012 0.994
0.89 1.255 1.216 1.183 1.155 1131 1.110 1.091 1.075 1.060 1.035 1.015
0.90 1.294 1.253 1.218 1.189 1.163 1.140 1.120 1.103 1.087 1.060 1.039
0.91 1.338 1.294 1.257 1.225 1.197 1.173 1.152 1.133 1.116 1.088 1.064
0.92 1.351 1.340 1.300 1.266 1.236 1.210 1.187 1.166 1.148 1117 1.092
0.93 1.435 1.391 1.348 1.311 1.279 1.251 1.226 1.204 1.184 1.151 1.123
0.94 1.504 1.449 1.403 1.363 1.328 1.297 1.270 1.246 1.225 1.188 1.158
0.950  1.582 1518 1.467 1.423 1.385 1.352 1.322 1.296 1.272 1.232 1.199
0.960 1.665 1.601 1.545 1.497 1.454 1.417 1.385 1.355 1.329 1.285 1.248
0.970  1.780 1.707 1.644 1.590 1.543 1.501 1.464 1.431 1.402 1.351 1.310
0.975 1.853 1.773 1.707 1.649 1.598 1.554 1.514 1.479 1.447 1.393 1.348
0.980  1.946 1.855 1.783 1.720 1.666 1.617 1575 1.536 1.502 1.443 1.395
0.985  2.056 1.959 1.880 1.812 1.752 1.699 1.652 1.610 1573 1.508 1.454
0.990 2212 2.106 2.017 1.940 1.973 1.814 1.761 1.714 1.671 1.598 1.537
0.995  2.478 2.355 2.250 2.159 2.079 2.008 1.945 1.889 1.838 1751 1.678
0.999 3.097 2.931 2.788 2.663 2.554 2457 2.370 2.293 2223 2102 2.002
1.000 oo o co o co o co 0o () o ()

1.001  2.640 2.399 2.184 2.008 1.856 1.725 1.610 1.508 1.417 1.264 1.138
1.005  2.022 1.818 1.649 1.506 1.384 1.279 1.188 1.107 1.036 0.915 0.817
1.010 1757 1572 1.419 1.291 1.182 1.089 1.007 0.936 0.873 0.766 0.681
1.015  1.602 1.428 1.286 1.166 1.065 0.978 0.902 0.836 0.778 0.680 0.602
1.020 1493 1.327 1.191 1.078 0.982 0.900 0.828 0.766 0.711 0.620 0.546
1.03 1.340 1.186 1.060 0.955 0.866 0.790 0.725 0.668 0.618 0.535 0.469
1.04 1.232 1.086 0.967 0.868 0.785 0.714 0.653 0.600 0.554 0.477 0.415
1.05 1.150 1.010 0.896 0.802 0.723 0.656 0.598 0.548 0.504 0.432 0.374
1.06 1.082 0.948 0.838 0.748 0.672 0.608 0.553 0.506 0.464 0.396 0.342
1.07 1.026 0.896 0.790 0.703 0.630 0.569 0.516 0.471 0.431 0.366 0.315
1.08 0.978 0.851 0.749 0.665 0.595 0.535 0.485 0.441 0.403 0.341 0.292
1.09 0.935 0.812 0.713 0.631 0.563 0.506 0.457 0.415 0.379 0.319 0.272
1.10 0.897 0.777 0.681 0.601 0.536 0.480 0.433 0.392 0.357 0.299 0.254
111 0.864 0.746 0.652 0.575 0.511 0.457 0.411 0.372 0.338 0.282 0.239
112 0.883 0.718 0.626 0.551 0.488 0.436 0.392 0.354 0.321 0.267 0.225
113 0.805 0.692 0.602 0.529 0.468 0.417 0.374 0.337 0.305 0.253 0.212
1.14 0.780 0.669 0.581 0.509 0.450 0.400 0.358 0.322 0.291 0.240 0.201
115 0.756 0.647 0.561 0.490 0.432 0.384 0.343 0.308 0.278 0.229 0.291
1.16 0.734 0.627 0.542 0.473 0.417 0.369 0.329 0.295 0.266 0.218 0.181
117 0.713 0.608 0.525 0.458 0.402 0.356 0.317 0.283 0.255 0.208 0.173
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Table 5A.1 Varied Flow Function F (u, N)

u\N 2.6 28 3.0 3.2 3.4 3.6 38 4.0 4.2 4.6 5.0
118 0.694 0.591 0.509 0.443 0.388 0.343 0.305 0.272 0.244 0.199 0.165
119 0.676 0.574 0.494 0.429 0.375 0.331 0.294 0.262 0.235 0.191 0.157
120 0.659 0.559 0.480 0.416 0.363 0.320 0.283 0.252 0.226 0.183 0.150
1.22 0.6 28 0.531 0.454 0.392 0.341 0.299 0.264 0.235 0.209 0.168 0.138
124 0.600 0.505 0.431 0.371 0.322 0.281 0.248 0.219 0.195 0.156 0.127
1.26 0.574 0.482 0.410 0.351 0.304 0.265 0.233 0.205 0.182 0.145 0.117
1.28 0.551 0.461 0.391 0.334 0.288 0.250 0.219 0.193 0.170 0.135 0.108
1.30 0.530 0.442 0.373 0.318 0.274 0.237 0.207 0.181 0.160 0.126 0.100
1.32 0.510 0.424 0.357 0.304 0.260 0.225 0.196 0.171 0.150 0.118 0.093
134 0.492 0.408 0.342 0.290 0.248 0.214 0.185 0.162 0.142 0.110 0.087
1.36 0.475 0.393 0.329 0.278 0.237 0.204 0.176 0.153 0.134 0.103 0.081
1.38 0.459 0.378 0.316 0.266 0.226 0.194 0.167 0.145 0.127 0.097 0.076
140 0.444 0.365 0.304 0.256 0.217 0.185 0.159 0.138 0.120 0.092 0.071
142 0.431 0.353 0.293 0.246 0.208 0.177 0.152 0.131 0.114 0.087 0.067
144 0.417 0.341 0.282 0.236 0.199 0.169 0.145 0.125 0.108 0.082 0.063
1.46 0.405 0.330 0.273 0.227 0.191 0.162 0.139 0.119 0.103 0.077 0.059
148 0.394 0.320 0.263 0.219 0.184 0.156 0.133 0.113 0.098 0.073 0.056
150 0.383 0.310 0.255 0.211 0.177 0.149 0.127 0.108 0.093 0.069 0.053
155 0.358 0.288 0.235 0.194 0.161 0.135 0.114 0.097 0.083 0.061 0.046
1.60 0.335 0.269 0.218 0.179 0.148 0.123 0.103 0.087 0.074 0.054 0.040
1.65 0.316 0.251 0.203 0.165 0.136 0.113 0.094 0.079 0.067 0.048 0.035
170 0.298 0.236 0.189 0.153 0.125 0.103 0.086 0.072 0.060 0.043 0.031
175 0.282 0.222 0.177 0.143 0.116 0.095 0.079 0.065 0.054 0.038 0.027
1.80 0.267 0.209 0.166 0.133 0.108 0.088 0.072 0.060 0.049 0.034 0.024
185 0.254 0.198 0.156 0.125 0.100 0.082 0.067 0.055 0.045 0.031 0.022
1.90 0.242 0.188 0.147 0.117 0.094 0.076 0.062 0.050 0.041 0.028 0.020
1.95 0.231 0.178 0.139 0.110 0.088 0.070 0.057 0.046 0.038 0.026 0.018
2.00 0.221 0.169 0.132 0.104 0.082 0.066 0.053 0.043 0.035 0.023 0.016
210 0.202 0.154 0.119 0.092 0.073 0.058 0.046 0.037 0.030 0.019 0.013
2.20 0.186 0.141 0.107 0.083 0.065 0.051 0.040 0.032 0.025 0.016 0.011
2.3 0.173 0.129 0.098 0.075 0.058 0.045 0.035 0.028 0.022 0.014 0.009
2.4 0.160 0.119 0.089 0.068 0.052 0.040 0.031 0.024 0.019 0.012 0.008
25 0.150 0.110 0.082 0.062 0.047 0.036 0.028 0.022 0.017 0.010 0.006
2.6 0.140 0.102 0.076 0.057 0.043 0.033 0.025 0.019 0.015 0.009 0.005
2.7 0.131 0.095 0.070 0.052 0.039 0.029 0.022 0.017 0.013 0.008 0.005
2.8 0.124 0.089 0.065 0.048 0.036 0.027 0.020 0.015 0.012 0.007 0.004
2.9 0.117 0.083 0.060 0.044 0.033 0.024 0.018 0.014 0.010 0.006 0.004
3.0 0.110 0.078 0.056 0.041 0.030 0.022 0.017 0.012 0.009 0.005 0.003
35 0.085 0.059 0.041 0.029 0.021 0.015 0.011 0.008 0.006 0.003 0.002
4.0 0.069 0.046 0.031 0.022 0.015 0.010 0.007 0.005 0.004 0.002 0.001
4.5 0.057 0.037 0.025 0.017 0.011 0.008 0.005 0.004 0.003 0.001 0.001
5.0 0.048 0.031 0.020 0.013 0.009 0.006 0.004 0.003 0.002 0.001 0.000
6.0 0.036 0.022 0.014 0.009 0.006 0.004 0.002 0.002 0.001 0.000 0.000
7.0 0.028 0.017 0.010 0.006 0.004 0.002 0.002 0.001 0.001 0.000 0.000
8.0 0.022 0.013 0.008 0.005 0.003 0.002 0.001 0.001 0.000 0.000 0.000
9.0 0.019 0.011 0.006 0.004 0.002 0.001 0.001 0.000 0.000 0.000 0.000
10.0 0.016 0.009 0.005 0.003 0.002 0.001 0.001 0.000 0.000 0.000 0.000
20.0 0.011 0.006 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
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Gradually Varied Flow Computations

(ponunuo)))

‘] uonoun,y nyy pup aafiayy

¥8IET  09€S'T  8V08'T ¢€9T'C ¢S.9C wy6r'e 8¢S8€E  9T0v'G | OVPET 808L0 0950 809v'0 896E€0 +8SE€'0  8CEE'0  00CE0  ¢L0€0 0.0
OvvET  9T99T  ¥0EB'T 9T0CC <C6ELC 9609t ¢6TOY  CIET9 | ¥9CT'T  ¥8/90 ¢66V'0 960¥0 ¥8S€'0 00C€0 ¥v6Cc’0 91820 91820 TLO
89G€'T  ¥v¥/ST  8898'T 8¢S¢'c ¢€08¢ 9/€L€ v86T¥ 91886 | 00960 88850 087’0 ¢I.E0 00C€E0 918¢'0 889¢0 095¢'0 <¢€vc’0 ¢L0
¥¢8ET  0009'T  v¥68'T CI6CC ¢L98'C ¥8/8'EC CEOVY | CE08C ¢6T8'0 0CIS0 896E°0 00CE0 91820 095¢'0 <¢Eve'0 v0ECO0 910  €L0
¢S6E'T  99¢9T  00¢6'T 96¢€¢ ¢le6'c 0ce0v vov9v | 0870'¢c  OvOL0 O08yP'0  9S¥PE'0 91820 ¢E€¥¢'0 ¥0EC'0  8¥0CO0 8¥0C'0  0C6T0  v.'0
080¥'T  ¥8E9T  9S¥6'T 089E€'Cc ¢S66'¢ 998T'F <¢ST6F | 9S¢9T ¥PI90 896E°0 <¢LOE0 09520 9.T¢’0  0¢6T0 ¢6LT'0 ¢6LT0 ¥99T'0  SL'0
80cv'0  0¥99'0  C¢IL6'T v90¥'¢ ¢6S0°€ 0¢SEv 809¢'S | OvvE'T  8v¢S0 9SVE'0  889¢'0 9/1¢0 0¢6T°0 ¢6LT0 ¥99T0 9€ST'0  9€ST'0 910
9€EV'T  89/9T  8966'T 0cEy'c ¢ceCT'€ <¢IESy ¥0L9'S | ¥9CT'T 809¥'0 ¥¥6c'0 ¥0EC'0 0C6T0  ¥99T'0  9€ST'0  80YT'0 8OYVI'O 08210  LL0
Yoyl 9689'T  vce0'c ¥OLve vvIT'€ C€Lv  ¥9¥Z9 | 00960 896E0 0950 8¥0C0 ¥99T0 80VT'0 08CT0 082T'0 <CSTT0 ¢SITO 8.0
¢6Sr'T  CSTLT ¢S€0¢  096¥'c 9G9¢¢’€ 08¢6'v 89TT'L | ¢618'0 9SvE0  +0€C'0  ¢6LT°'0 8OVT'O0 08210 ¢STT0  ¥¢0T0 +20T'0 ¥e0T'0 6.0
02/¥'T  082LT  8090C vvES'Cc 89LC'E€ 8CET'S 99868 | Ov0L'0 ¥¥6¢'0 0C6T'0 9EST'0  08CT0  ¢STT'0  ¥¢0T'0 9680°'0 96800 96800 080
8v8y'T  80VL'T  9€/0C 0095¢ 80CE'E€ V¥OSE'S | 8Y96'T9 91090 09520 +¥99T°'0 08¢T'0 ¥¢0T0 96800 96800 8900 89.00 8900 180
9/6V'T  9€SL'T  ¥980°C 8¢/S¢ ¥99€€  089S'S | vv6¥'6S 8vCS'0 €.1¢0 80vT'0 ¥¢0T'0 96800 89/0'0 89.00 0¥90°0 0900 0¥90'0 ¢80
9L6V'T  9EGLT ¢660¢  ¥865¢  9LTV'E  8¢LL'G | 96¢€8S 08YY'0  ¢6.T0 ¢STT'0 96800 8900 0V900 O¥90'0 ¢IS00 ¢TSO0  ¢IS00 €80
¥0IST  ¥99L'T  0CTT'¢c ¢I19C <cEr'€ 0¢S6'G | 8¥8V'.S OF8E'0  9€ST'0  +#¢0T'0 89200 O¥90'0 ¢IS00 ¢TS00  ¢IS00  +¥8€0°0  ¥8E00  ¥80
¥0TIST  C6LL'T  8veT'c 89€9C 9I8Y'E  ¥BITO | #ev,'9S 8CEE0 08210 89/00 0¥90'0 <CTS00 ¢IS00 +¥8€00  ¥8E0'0  ¥8E0'0  ¥8EO0  S80
¢eCS'T  ¢6LL°T  9LET¢ 96¥9'C¢  ¢L0S'€ ¢6SC9 | vvl6'SS 918¢'0 ¥¢0T0 0¥90'0 ¢IS00 ¥8€00  ¥8E00 ¥8E0'0  95¢00 95¢00 95¢00 980
¢ECST  0¢6LT  ¥0ST'C ¥C99'c 8CESE  vv/E€9 | 00000 ¥0€C'0 96800 ¢IS00 ¥8E0'0 ¥8E0'0 99200 9S5¢00 99200 9S5¢00 95¢00 280
¢eCS'T  0¢6L'T  v0ST'¢ ¢S/9¢ 9SYS'€  Ovoy'9 08vP'9T | 0c6T0 O¥90'0 +¥8E0°0 ¥8E0'0 95¢00  99¢00 95¢0°0 95¢00 82T00 82100 880
09€S'T  8¥08'T ¢e9T'c  ¢G/9C ¥B8SSE  08¢S'9 0¢Ly'LT| v99T0 ¢IS00 +¥8€0°0  95¢00 95¢0°'0 8¢I0'0 8CT00 8¢I00 8CT00 82100 680
09€ST  8¥08T ¢e9T'c  0889Cc ¢CILSE€ C6/99 ¥99L°/T| 08¢T0 ¥8EO0 99¢00 8¢I00 82700 8¢I00 8ZT00 8¢I00 8CT00 82100 060
09€S'T  8¥08'T ¢E9T'¢ 0889°c OV8S'E€ 9/199 ¢L06LT| ¥¢0T'0 95¢00 82T0O0 8¢I0°0 8¢I00 82T00 82100 8¢I00 8ZT00 82100 160
09€ST  8¥08'T  09/TC 800LC 896S€ CEV9'9 <CTL6°ZT| 8900 99¢00 8¢T00 82I00 8¢I00 82T0'0 00000 00000 00000 00000 260
09€S'T  8¥08'T  09/T¢ 800LC 896S'€ 09999 ¥¢cO8T | O¥90'0 8¢I00 8ZTO0  8¢I0°0 00000 00000 00000 0000 00000 00000 €60
09€S'T  8¥08'T  09.TC 800LC 9609°€ 88999 0870'8T| ¥8€0'0 82100 00000 00000 00000 00000 00000 00000 00000 00000  ¥6°0
88vS'T  9/18T  09/T¢ 800L¢ 9609°€ 91899 8090'8T | 95¢0°'0 00000 00000 00000 00000 00000 00000 0OOO'® 00000 00000  S6°0
88yST  9/18T  09/T¢ 800L¢c 9609°€ 91899 9€.0°8T | 95¢0'0 00000 0000'0 00000 00000 00000 00000 00000 00000 00000 9670
88VST  9/18T  09/TC 800LC 9609€ ¥¥699 9€.0°8T | 8¢T00 00000 00000 00000 00000 00000 00000 00000 00000 00000 260
88VST  9/18T  09/T¢ 800LCc 9609€ v¥699 9€.0°8T | 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 860
88yST  9/18T  09/TC 800LC 9609€ v¥¥699 9€.0°8T | 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 6670
88vS'T  9/18T  09/T¢ 800LC 9609°€ v¥¥69'9 9€.0'8T | 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 OOT
09T 0S'T o't 01T 0T 07’1l 0T 00T 060 080 0.0 090 0S50 (0140] 0€'0 020 0T0  ‘O\g

m\ QQ.EUQBHN@@ mm:NB\»,\mv a[qp]. Aﬁ—vN .<m Qﬁﬁ—@rﬁ




246  Flow in Open Channels

(ponuruo’))

‘] uorppun,y nyy pup 1afidy

960V'0 80970  9/€50 ¥PI90 9620 vO/80 88060 96V0T 826CT VBEQT VOSTC Ovv6C <¢Slcv  OV8L'9 V8IS CITOEE | 992261 SEO
28EV0  P98Y0 €950 82590 089L°0 9TZ60 82260 9ETTT 969T 8OVLT CI6CC O9ETE 895GV  vOLZL 089G'ET 0BIT6E | YOTEST 9E0
809¥'0  8¥20 91090 CT690 26180 82/60 OVZOT 9//TT 26SYT  09S8'T O02€¥'Z O0SCET OV98Y  ve8lL WBSLWT 9S8.°T9 | 09LEET LED
v9870  Y0SG0 22290 96220 9/S80 OvZ0T 0880T OTYZT 88YST ¥8S6T 82/GC 9SYSE CILTS  9SvE'S 9ESTOT [ vZez1¢  C6LETT 8E0
0TS0  09/50 95990 808/0 88060 0880T OZSTT #BIET 95¢9T 9S/0C ¥92/C ¥0SL'€ OV0S'S  0096'8 8898°/T | 9/€6WT 9ESL6  6E0
9/650  Y¥I90  OVOLO 26180 00960 <c6STT 09TCT ve8eT ¢STLT 888T'C 0088 8086 ¥298'S  9529'6 009T'0Z | ZSE9TT  2SEV'8 OV
28950 0090  ¥ew,0 9/580 UTOT ¢e0T ¢l92T  26SY'T  9LT8T  OWOEC WOV cTTCh 9SEC9  9E6E0T CEC6'EC | 02Lv'6  YPEEL v
88850  ¥8/90 8080 09680 ¥Z90T /92T CIEET 098ST 2L06T O0ZEYe 82ITE  bYSv'y 2Ev9'9  89/2'TT[VBBTOST vOT6L  82IV9 v
V190  OvOL0  ¥908°0 2/v60 OSTTT vBIET ¢S6ET 8CT9T  8966T 009SC 6/E€  VOTLv CU60Z  0CSECT|9T08TT 2/0/'9 02895 €V
82590  YZv/0  8yy80 93860 8YOUT vZ8ST 0ZPT 9689 2660 08897 vBSS'E 0266 9L/  9S8°ET|9T098  82ZLIS  ¥996W  wvO
¥8L9'0  089L0 €880 OPZOT 09TZT vOVK'T O9EST ¥99LT  9T0ZC 09187 VOSL'E  98.2S BOWT'S  9SZ0'9T|vZe89  8v00'E  2€Orh  Sv0
00/'0  ¥9080 91260 <¢SL0T 2L92T OTST 0009T 2Ev8T OVOEC 89S6'C  vev6's  986S'S 9868 96vY'EZ| 0289  9LLEY  OVOBE  9v0
96220 02880 00960 9STTT ¥BIET wp/ST OV99T 0026T +90VC 9L60'C Q09T  26S6'S 82196 [ 82598  88y.¥  00V8'E  OI8YE Ly
28510 Y080 866 8YOTT 969ST ¥BE9T  8OVLT 96007 880§ VBEZE 9LLEW  09EE9 9ETLOT | ¥28T'9 v0L0F  OZ6EE 960 8¥0
808/'0 09680 8950T ¢€0cT 80ZvT v20LT 8Y0S8T 980T OVZ9T OZ6EE 0809 OV8L'9 9S05CT | 9688y 8ZESE  0B00E  9///C 6V
26180  P¥E60  2SL0T  YYSZT  02V'T  26LLT  9T88T 09T  26ELT  ¥BSSE  89/8'v  880SL 882966E| 02E0Y 8YBO'E  2G.9T  2€8YT 0G0
8yv8'0 00960  9ETTT 82627 09EST <cEv8T V8SET 9592  ¥SS8C  8veL€  v8ST'S  ¢/86'L [CE009  8vOy'e OSTLZ  9E6ET 00K 150
v0/80  ¥8060  02STT OPWET 2/8ST <2l06T 2SE0T ¢SSET 9696 89T6'C  VBLY'S  YYEE'S |09TvY  vBI6T 9S6€C  9/STT  9600C 250
09680  Ov2OT  ¥OBTT 28T ¥BEQT OV86T 26607 Sypy'c  9/60°C  880TY  96V8'S  ¥299'0T|82ESE  bYEGT 8vel'e 00267  8Y0S8T €50
91260  ¥290T  882CT 9SEVT YZOLT v8Y0Z 888TZ vWESC ¥BEC'E  VOZEV 9629 [ vevlZ 2IS6C  vyige vv68T  ZSTLT  9S29T  vS0
00960  0880T 2/92T 02.K'T 98SLT 8vgl'z 99927 89897 ZBLE'E 89SGY  9EL8'Q | B9ETH EBY'T  ¥BS6'T 9689T  88YST 02T S50
99860  ¥9CTT  9S0ST ¢€eST OLI8T 91007 YeveT ¢6ELC  82ES'E 9528  BTLL | 952 9/€T?  082.T YOIST  ZS6ET  CIEET 950
2IT0T  02STT  OWWET br/ST 8898T ¥8lCC ¢6IvC 9Iv8T  ¥989E  8CET'S vOIS6 | ¢TT9C 88987  O09SST 89SET  wwSZT ¢80T LSO
89507  YO6T'T  ¥Z8ST 8CI9T 8ZE6T CGGEC  880SC Ovp6'c  9398'€  OVOS'S [ 00087 888TC 95¢9°T  969€T 09TZT  v9ZTT  0880T 850
¥290T  09T¢T  080Y'T OV99T OVB6T 0ZEPZ ¥86GC <26S0°€ 9/G0F POGE'S | 0002E 8898 O9EEV'T  09TZT 0880T OVZ0T 95860 650
0880T  YYSZT  ¥9PY'T  2STLT 0807 88057 08897 28T b29Ty Y699 | Zesy'z  82T9T /92T  0880'T 99860 91260  2€880 090
9ETTT  0062T  8v8Y'T 985.'T O0ZIT'C v86SC 9L.L°C STEE 950y 26/T'8 | ¥220 <¢S6ET v9eTT 82,60 26880 02680 9080 190
Z6ETT  9S0ST  ¢€eST  8Y0ST 09/T'C  ¢S/9C  0088C cEvb'S  0008'% [ 8vOV  20LT 882CT 8660 080 9S6L0  SGL0  962L0 290
8Y9TT  OvWET  9T9ST ¢ev8'T 2¢l2ge 8v9lZ Y286 8965  ¥BST'S | ¢G/9C 26SYT  ¢S/0T 09680  808.°0 89TLO  ¥B/90 82590 €90
VOBTT  909ET  0009T ¥Y68T ¢I6ZC vbS8Z 8YSOE  YOSLE  02€9'S | 9802 v¥SZZ 00960 986L0  OvOL0 00¥90  vYT90 88850 90
09TZT  2S6ST  ¥8E9T 9SV6'T ¢SGET 89567 CL8TE  9626'€  9GZv'9 | 9689T 0880 8YY80 89TLO  2/Z90 09/G0 V0SS0 9EES0  S9°0
8822’T  80cv'T  OV99T OV86'T 26TYZ vOVO'E  YZOEE  9TeTy  9/60'TT| 802vT  Z¥60  2SSL0 00V90  2E9S0 8¥2S0  Z66Y'0 9SO 990
VSZT  26SP'T  ¥ZOLT 2SE0T  ¢e8v'e  88YT'E  VOSWE  ¢6SS [ 9TveC  ¢e0ZT  02€80 99990 2950  02IS0 9ELV0  08VK0  2SEVO 90
008CT  8v8Y'T  8OP.T 98.0C ¢LYSC OV9ZE  YESSE 0809 | 8090C 89EOT 96220 88850 0CTSO  O08vY0 YZZrO  896E0  OVBE0 890
93067 VOTST  ¥99.T 8vZle  2UI92 vI9E'E  2669C  80V6y | ¥BE9T 09680 82590 8YeS0 08YYO  960v'0  2T/E0  vBSE0  9S¥ED 690
09T 051 O’T 08T 02T  OTT 0T 00T 060 080 OZ0 090 050 OvO OE0 020  OT0 OWf

(ponuniuo)) (q) *VS 1qeL




247

Gradually Varied Flow Computations
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Rapidly Varied Flow-1
—Hydraulic Jump

6.1 INTRODUCTION

Hydraulic jump is one subject which has extensively been studied in the field of
hydraulic engineering. It is an intriguing and interesting phenomenon that has caught
the imagination of many research workers since its first description by Leonardo
da Vinci. The Italian engineer Bidone (1818) is credited with the first experimental
investigation of this phenomenon. Since then considerable research effort has gone
into the study of this subject. The literature on this topic is vast and ever-expanding.
The main reason for such continued interest in this topic is its immense practical
utility in hydraulic engineering and allied fields. A hydraulic jump primarily serves
as an energy dissipator to dissipate the excess energy of flowing water downstream
of hydraulic structures, such as spillways and sluice gates. Some of the other uses
are: (a) efficient operation of flow-measurement flumes, (b) mixing of chemicals,
(c) to aid intense mixing and gas transfer in chemical processes, (d) in the desalination
of sea water, and (e) in the aeration of streams which are polluted by bio-degradable
wastes.

A hydraulic jump occurs when a supercritical stream meets a subcritical stream of
sufficient depth. The supercritical stream jumps up to meet its alternate depth. While
doing so it generates considerable disturbances in the form of large-scale eddies and
a reverse flow roller with the result that the jump falls short of its alternate depth.
Figure 6.1 is a schematic sketch of a typical hydraulic jump in a horizontal channel.
Section 1, where the incoming supercritical stream undergoes an abrupt rise in the
depth forming the commencement of the jump, is called the toe of the jump. The jump
proper consists of a steep change in the water-surface elevation with a reverse flow
roller on the major part. The roller entrains considerable quantity of air and the sur-
face has white, frothy and choppy appearance. The jump, while essentially steady,
will normally oscillate about a mean position in the longitudinal direction and the
surface will be uneven. Section 2, which lies beyond the roller and with an essen-
tially level water surface is called the end of the jump and the distance between
Sections 1 and 2 is the length of the jump, L, The initial depth of the supercritical
stream is'y, and y, is the final depth, after the jump, of the subcritical stream. As indi-
cated earlier, y, will be smaller than the depth alternate to y,. The two depths y, and
y, at the ends of the jump are called sequent depths. Due to high turbulence and shear
action of the roller, there is considerable loss of energy in the jump between Sections
1 and 2. In view of the high energy loss, the nature of which is difficult to estimate,
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Fig. 6.1 Definition sketch of a hydraulic jump

the energy equation cannot be applied to Sections 1 and 2 to relate the various flow
parameters. In such situations, the use of the momentum equation with suitable
assumptions is advocated. In fact, the hydraulic jump is a typical example where a
judicious use of the momentum equation yields meaningful results.

6.2 THE MOMENTUM EQUATION FORMULATION FORTHE JUMP

The definition sketch of a hydraulic jump in a prismatic channel of arbitrary shape is
presented in Fig. 6.2. The channel is inclined to the horizontal at an angle 0. Sections
1 and 2 refer to the beginning and end of the jump respectively.

Fig. 6.2 Definition sketch for the general momentum equation
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A control volume enclosing the jump as shown by dashed lines in the figure, is
selected. The flow is considered to be steady.

Applying the linear momentum equation in the longitudinal direction to the con-
trol volume,

P,—P,—F,+Wsing=M,—M, (6.1)

where P, = pressure force at the control surface at Section 1=~A Y, cosf by
assuming hydrostatic pressure distribution, where Y, = depth of the
centroid of the area below the water surface.
P, = pressure force at the control surface at Section 2=+ A, y, cosf if
hydrostatic pressure distribution is assumed.
(Note that P =AYy if §is small.)
F = shear force on the control surface adjacent to the channel boundary.
W sinf = longitudinal component of the weight of water contained in the control
volume.
M, = momentum flux in the longitudinal direction going out through the
control surface = 3,0QV, .
M, = momentum flux in the longitudinal direction going in through the con-
trol surface = 3,pQV, .

The hydraulic jump is a rapidly-varied flow phenomenon and the length of the
jump is relatively small compared to GVF profiles. Thus frictional force F_is usu-
ally neglected as it is of secondary importance. Alternatively, for smaller values of 6,
(W sind—F,) can be considered to be very small and hence is neglected.

For a horizontal channel, 8 =0 and W sing = 0.

6.3 HYDRAULIC JUMP IN A HORIZONTAL RECTANGULAR
CHANNEL

(a) Sequent Depth Ratio Consider a horizontal, frictionless and rectangular
channel. Considering unit width of the channel, the momentum equation, Eqg. 6.1,
can be written in the form

1 1
E'Y y12 _E'szz = ﬁzpqu - /61qu1 (6.2)

Taking 3,= ,= 1.0 and noting that by continuity
g = discharge per unitwidth = V.y, =V,y,

ie., VY, (Vi +Y,)=——=2y¢ (6.3)

On non-dimensionalising,
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q2
e F? (6.3a)
1

A

Y1

A

Y1

1
2

where F, = Froude number of the approach flow =V, / /gy,
Solving for (y,/y,) yields

%:%(_HJHsFﬁ) (6.4)

This equation which relates the ratio of the sequent depths (y,/y,) to the initial
Froude number F_ in a horizontal, frictionless, rectangular channel is known as the
Belanger momentum equation. For high values of F , say F, > 8.0, Eq. 6.4 can be
approximated for purposes of quick estimation of the sequent depth ratio as

y,y,~ 141F, (6.4a)

Equation 6.4 can also be expressed in terms of F, :VZ/,/gy2 = the subcritical
Froude number on the downstream of the jump as

L:%(_H s | (65

Ya

(b) Energy Loss Theenergy loss E_in the jump is obtained by the energy equation
applied to Sections 1 and 2 as

E =E-E, (as the channel is horizontal, Fig. 6.1)

o]
Vit —— |~V + ——
to2gyy) |7t 2gy;

[yiyf]
A

1 2
:<y1*y2>+§qg

Substituting for g2/g from Eq. 6.3 and simplifying

3
EL :(y27y1> (6.6)
4y,y,
3
i
or E_W (6.6a)
K
VA

The relative energy loss % = [EL]/[ElJ

1
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E F?
But — =14+
A 2
3
E__
& 4[y2 1+F—12
Y1

Substituting for (y,/y,) from Eq. 6.4 and simplifying,

E (—3+\/1+8F12)3
E, 8(2+F12)(—1+./1+8F12)

Equation 6.7 gives the fraction of the initial energy lost in the hydraulic jump. The
variation of E /E, with F_isshown inFig. 6.3 which highlights the enormous energy
dissipating characteristic of the jump. At F, = 5, about 50 per cent of the initial ene-
rgy in the supercritical stream is lost and at F, = 20, E / E, is about 86 per cent.
Figure 6.3 also serves as a yardstick for comparing the efficiencies of other types of
jumps and energy-dissipating devices.

(6.7)

100|||||||||||||||||||
80—
e -
~ 60—
wo
8
= 40—
B Horizontal rectangular N
20— channel ]
| | | | | | | | | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
F1: V_l
gy,

Fig. 6.3 Relative energy loss in a jump

Experimental studies by many research workers and specifically the compre-
hensive work of Bradley and Peterka® which covered a range of Froude numbers
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up to 20, have shown that Eqs 6.4 and 6.6 adequately represent the sequent-depth
ratio and energy loss respectively in a hydraulic jump formed on a horizontal
floor.

(c) Classsification of Jumps As a result of extensive studies of Bradley
and Peterka! the hydraulic jumps in horizontal rectangular channels are classified
into five categories based on the Froude number F, of the supercritical flow, as
follows:

(i) Undular Jump 1.0 < F < 1.7 The water surface is undulating with a very
small ripple on the surface. The sequent-depth ratio is very small and E _/ E, is
practically zero. A typical undular jump is shown in Fig: 6.4 (a).

(i) Weak Jump 1.7 < F < 2.5 The surface roller makes its appearance at F, ~
1.7 and gradually increases in intensity towards the end of this range, i.e. F, ~ 2.5.
The energy dissipation is very small, is E / E, about 5 per centat F, = 1.7 and 18 per
centat F, = 2.5. The water surface is smooth after the jump (Fig. 6.4 (b)).

(iii) Oscillating Jump 2.5 < F < 4.5 This category of jump is characterised
by an instability of the high-velocity flow in the jump which oscillates in a
random manner between the bed and the surface. These oscillations produce
large surface waves that travel considerable distances downstream [Fig. 6.4(c)].

\
\% \%
Y2
Y1
(a) Undular jump, 1.0 <F, <1.7 (b) Weak jump, 1.7 <F; <2.5
Roller Oscillating jet

(c) Oscillating jump, 2.5 < F1<4.5
Fig. 6.4 (Continued)
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(e) Strong or Choppy jump F1 > 9.0
Fig. 6.4 Classification of jumps (1)

Special care is needed to suppress the waves in stilling basins having this kind
of jump. Energy dissipation is moderate in this range; E_/ E,= 45 per cent at
F,=4.5.

(iv) ‘Steady’ Jump 4.5 < F, < 9.0 In this range of Froude numbers, the jump is
well-established, the roller and jump action is fully developed to cause appreciable
energy loss (Fig. 6.4 (d)). The relative energy loss E, / E, ranges from 45 per cent to
70 per cent in this, class of jump. The ‘steady jump’ is least sensitive in terms of the
toe-position to small fluctuations in the tailwater elevation.

(v) Strong or Choppy Jump F, >9.0 Inthis class of jump the water surface is very
rough and choppy. The water surface downstream of the jump is also rough and wavy
(Fig. 6.4(e)). The sequent-depth ratio is large and the energy dissipation is very efficient
with E, / E,values greater than 70 per cent.

It is of course obvious that the above classification is based on a purely subjective
consideration of certain gross physical characteristics. As such, the range of Froude
numbers indicated must not be taken too rigidly. Local factors in stilling basin design
can cause overlaps in the range of Froude numbers. Figure 6.5 (Plate 1) shows four
typical hydraulic jumps in a rectangular laboratory flume.

An interesting and useful relationship involving F, and a non-dimensional param-
eter made up of E_ and q is obtained as below:

Using Eq. (6.6a) and Eq. (6.4)

3
2
£ 1 (—3+,/1+8F1)

%I (Lo e

qZ q2/3

30 Y1 = s
A )

g9

Since F’=
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Fig. 6.5 Hydraulic jumps at different froude numbers (Courtesy: M G Bos)
[Note: The flow is right to left]

E
Substituting fory, in the expression for TL given above,
1

3
16g™E, (—3+,/1+8Ff)
(R -1+ \L+8r?)

A common problem encountered in the hydraulic design of stilling basins for barrages
is to estimate the elements of the hydraulic jump when discharge intensity (q) and
energy loss (E,) are the only known parameters of the jump. Equation 6.8 is very

—f(R) (6.8)
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useful in this context. A trial and error solution procedure is used to solve Eq. 6.8 to
obtain F, for known g and E, . Knowing F,, other parameters of the jump are then
found by direct use of the relevant equations. Example 6.4 illustrates the above use
of Eq. 6.8. A good description of the above problem and an exact solution for
determination of sequent depths when g and E, are the only known parameters of the
jump is given by Swamee and Rathie?.

(d) Characteristics of Jump in a Rectangular Channel

(i) Length of the Jump  The length of the jump L, is an important parameter affecting
the size of a stilling basin in which the jump is used. There have been many definitions
of the length of the jump resulting in some confusion in comparing various studies.
It is now usual to take the length of the jump as the horizontal distance between the
toe of the jump to a section where the water surface levels off after reaching the
maximum depth (Fig. 6.1). Because the water-surface profile is very flat towards
the end of the jump, large personal errors are introduced in the determination of the
length L,

Experimentally, it is found that L, ly,=f(F,).The variation of Lj/yzwith F, obtained
by Bradley and Peterika' is shown in Fig. 6.6. This curve is usually recommended for
general use. It is evident from Fig. 6.6 that while L /y, depends on F_ for small val-
ues of the inlet Froude number, at higher values (i.e. F, > 5.0) the relative jump
length LJ./y2 is practically constant beyond a Froude number value of 6.1. Elevatorski®
has shown that the data of reference 1 can be expressed as

8 T T T T T T T

‘<— Steady jump —>|<— Strong jump —

L]/yz
N o
L I L I L I L
L

i
2 Yo 4
=% |
Horizontal
0 1 1 1 1 1 1 1
2 4 6 8 10 12 14

Fig. 6.6 Length of the hydraulic jump on a horizontal floor
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(ii) Pressure Distribution The pressures at the toe of the jump and at the end of
the jump follow hydrostatic pressure distribution. However, inside the body of the
jump, the strong curvatures of the streamlines cause the pressures to deviate from
the hydrostatic distribution. Observations by Rajaratnam* have shown that in the
initial portions of the jump the pressures in the jump body will be less than the
hydrostatic pressure. The deficit from the hydrostatic pressure increases with an
increase in the initial Froude number F,. However, at the bottom of the channel
and in a narrow region close to the bed, the pressures are essentially hydrostatic.
Thus the pressure-head profile on the bed is the same as the mean water-surface
profile.

(iii) Water-Surface Profile A knowledge of the surface profile of the jump is useful
in the efficient design of side walls and the floor of a stilling basin. Consider
the coordinate system shown in Fig. 6.7. The coordinates of the profile are (x, h)
with the boundary condition thatat x = 0, h = 0, and at x = L, h = (y,~y,). In
general, h =f (x, F)).

Based on an analysis of a large number of jump profiles and bed-pressure profiles
obtained by various investigators, Subramanya® and Rajaratnam and Subramanya®
have shown that the jump profile can be expressed in a non-dimensional manner as

n="~f(\) (6.10)
in which = #
g 0.75(y, — v,)
h I
1
l v
I
I
[ i
1 (Y2- Y1)
h 0-751()’2 -Y1) | Y
{ |
X I X
Y1 X ! |
I
;
L 1

Fig. 6.7 Definition sketch for the jump profile (6)

and A = x/ X, where X = a length scale defined as the value of x at which
h = 0.75(y, — y,). The variation of n with X is given in Table 6.1.
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Table 6.1 Coordinates of the Non-dimensional Jump Profile. 56

A 7 A n A n

0.00 0.000 0.60 0.655 1.30 1.140
0.05 0.185 0.70 0.736 1.40 1.180
0.10 0.245 0.80 0.820 1.50 1.215
0.15 0.280 0.90 0.920 1.60 1.245
0.20 0.320 1.00 1.000 1.80 1.290
0.30 0.405 1.10 1.060 2.00 1.320
0.40 0.485 1.20 1.105 2.20 1.333
0.50 0.570 2.40 1.333

It may be noted that in the  — A relationship the Froude number does not appear
explicitly. In Eq. 6.10, X is the length scale and is given by %6

X 508 F—7.82 (6.11)

Y1

Equation 6.11 together with Table 6.1 enables one to adequately predict the jump
profile.

Since the profile approachesh = (y,—y,) atx = L asymptotically, the coordinates
calculated from Table 6.1 may not exactly match the requirement of the end of the
jump. For practical purposes it is suggested that the coordinates (», \) be used to plot
the profile up to A &2 1.80 and then to smoothly finish the curve by joining the profile
to the end of the jump atx = L.

(iv) Velocity profile  When the

v supercritical stream at the toe
= enters the jump body, it under-
l«— Reverse flow goes shearing action at the top

as well as at the solid boundar-
ies. The top surface of the high-
velocity flow will have high
relative velocities with respect
to the fluid mass that overlays

Forward flow

boundary shear at the bed causes
a retardation of the velocity in a
boundary layer. As a result of
these actions the velocity distri-
bution in a section at a distance
I x from the toe will be as shown

in Fig. 6.8. It is seen that the

Fig. 6.8 Velocity distribution in a jump velocity profile has two distinct

[
° q%, it. The intense shear at the sur-
§ = face generates a free shear layer
(0] . . .
T y. 2 &  Which entrains the fluid from
¥i E 2 the overlying mass of fluid. The
g B
= 3
L O
m

> fe—
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portions—a forward flow in the lower main body and a negative velocity region
at the top. In the forward flow, the total volumetric rate of flow will be in excess
of the discharge Q entering the jump at the toe. This is due to the flow entrain-
ment at the shear layer. To maintain continuity, i.e. to account for the excess for-
ward flow, a reverse flow exists at the top. This situation results in the formation
of the roller.

The forward velocity profile has zero velocity at the bed, maximum velocity at a
distance ¢ and then gradually decreases to zero at a height y, above the bed. The
region 0 <y < ¢ can be called the boundary layer part and the region 6 <y <y, the
free-mixing zone. This velocity configuration indicates that the motion of the forward
flow is similar to a wall jet except that the pressure gradient is adverse. The velocity
profile and shear stress can be studied by following the methods of analysis similar
to those used in the study of wall jets.

The velocity u at a distance y from the bed in the boundary layer portion (0 <y < 8)
can be expressed by a velocity-defect law

u—u

== f(y/0) (6.12)

£

where u, = /7, /p =shear velocity and u_ = maximum velocity aty = ¢. In the free-
mixing zone the velocity profile is found to be self-similar and can be expressed as®

u_ y
' f(y/é,) [for 5 > 0.16] (6.13)

m 1

u
where 6, = value of y at which U = ?m . The maximum velocity u_occursaty = 6~ 0.166,.

It may be noted that the non-dimensionalised velocity profile is explicitly indepen-
dent of F, and x. The scales of the above relationship are u_ and 6, which are given

by

3—"1*: F(x/y,) (6.14)
0,
and 71 = f(x/y,) (6.15)

Both Eq. 6.14 and Eq. 6.15 are found* to be independent of the initial Froude number F..

(v) Other Characteristics  Inaddition to characteristics mentioned above, information
about shear stress and turbulent characteristics enhance one’s understanding of the
jump phenomenon. It has been found that the initial boundary-layer thickness and
relative roughness of the bed play a major role in these aspects. Useful information
on these topics are available in literature*”.

(e) Computations Computations related to hydraulic jumps in rectangular channels
are relatively simple. While most of the problem types are amenable to direct solution,
a few types require trial and error solution procedure. The available relations are
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(i) Continuity equation
(i) Momentum equation for sequent depths and
(iii) Energy equation for energy loss in the jump.

The basic variables can be discharge intensity q; sequent depths y, andy,; and energy
loss E, . There can be many other derived variables and corresponding relationships.
Based on the above there can be a variety of problem types and a few common ones
are illustrated in the following examples.

Example 6.1 | |, 5 hydraulic jump occurring in a rectangular channel of 3.0-m,

width, the discharge is 7.8 m®/s and the depth before the jump is 0.28 m. Estimate
(i) sequent depth, and (ii) the energy loss in the jump.

Solution (i) V, :ﬁ: 9.286 m/:
X VU.

V, .
F 9.286

p— l = =
" Joy, +9.81x0.28

The sequent depth ratio is given by Eq. (6.4) as

Yo %[—1+\/1+8F12}: %[—1+\/1+8><(5.603)2}: 7.424

Yi

5.603

Sequent depth =y, = 0.28x7.424 =2.08 m
(ii) The energy loss E, is given by Eq. 6.6 as

£ _ (,—y)’_ (208-028)°
Y 4y, 4%0.28x2.08

=2.503m

Example 6.2 A rectangular channel carrying a supercritical stream is to be

provided with a hydraulic jump type of energy dissipater. It is desired to have an
energy loss of 5.0 m in the hydraulic jump when the inlet Froude number is 8.5. What
are the sequent depths of this jump?

Solution GivenF, =85andE =5.0m

ByEq.64  Ji_ %[—1+\/1+8F12 ] - %[—1+\/1+8><(8.5)2 ] —1153

Y1

3
.
ByEq67 i )
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3
50 _(153-17 25.32
y,  4x1153

y, = 5.0/25.32 = 0.198 m
and y,=0.198 x 11,53 =2277m

Example 6.3 | 5 hydraulic jump takes place in a rectangular channel with

sequent depths of 0.25 m and 1.50 m at the beginning and end of the jump respec-
tively. Estimate the (i) discharge per unit width of the channel and (ii) energy loss.

Solution (i) By Eq. 6.4 %=%[—1+ ferr]

1
150 1
T = T[-14-414+8F7]
025 2
Thus, F2 =21 and F, = 4.583 m.
V, = 4.583x+/9.81x0.25 = 7.177 m/s
Discharge per unit width = g = V,y, = 7.177 x 0.25 = 1.794 m3/s/m width
(ii) The energy loss E, is given by Eq. 6.6 as

3 3
— 1.50-0.25
EL:(y2 %) :( ) =1.302m
4yy, 4x0.25x1.50

Example 6.4 In a hydraulic jump taking place in a horizontal apron below an

Ogee shaped weir the discharge per unit width is 0.25 m®/s/m and the energy loss is
2.75 m. Estimate the depths at the toe and heel of the jump.

Solution  This kind of problem needs a trial and error solution procedure. Eq. 6.8 is
used for easy trial and error solution.
Here g = 0.25 m¥s/mand E = 2.75m.

169"°E, 16x(9.81) x2.75

q2/3 (2 5)2/3 =51.135
(—3+J1+8F12 )3
By Eq. 6.8, f(F)= =51.135 (6.16)

(S ENETTY
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Equation 6.16 is solved for F, by a trial and error procedure. Table E-6.4 given

below indicates the various trials in a typical solution procedure: Use of Spread sheet
(such as MS Excel) greatly facilitates the procedure.

Table E-6.4 Trial and Error Procedure — Example 6.4

Trial Assumed Numerator ~Denominator f(F)) Remarks
F, Value of f(F,) of f(F,)
1 5.0 1396.46 38.53 36.24  Increase the value of F, in the next
trial

2 6.0 2744.00 52.83 51.94  Decrease F, by a small amount

3 5.9 2581.31 51.32 50.30 Increase F by a very small
amount

4 5.95 2661.82 52.07 52.12 Value of F, can be accepted

Hence, F,=5.95. Using Eq. 6.4

Yo %(—1—&— J1+8F? ) - %[—1+ 148 (5.95)° ] —7.929

Y1

]
ByEq.6.6a B, _ ¥ _(7.929-1)°
Y 4[ A ] 4(7.929)
Yi
y,= 2.75/(10.49) = 0.262 m
y,= 0.262 x 7.929 = 2.079 m

=10.490

Example 6.5 An overflow spillway (Fig. 6.9) is 40.0 m high. At the design

energy head of 2.5 m over the spillway find the sequent depths and energy loss in a
hydraulic jump formed on a horizontal apron at the toe of the spillway. Neglect
energy loss due to flow over the spillway face. (Assume C, = 0.738).

Solution  The discharge per meter width of the spillway is

q= %Cd,/Zg H?
= %x0.738><\/2><9.81><(2.5)3/2

=8.614 m®/s/m
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Energy line
%
Hd =250m
EL
Vil2g
P=40.0m v22g
y v
! Y2
1 2
Fig. 6.9 Example 6.5
By the energy equation
VZ
P+H; =V, +Z
(Energy loss over the spillway is neglected)
- (8.614)° i2s
bo2gy! '
By trial-and-error
y, =0.30m
v, =9 801 o871 mss
Y 0.3
F =V,/\{gy, =28.71/~/9.81x0.3 =16.74
By Eq. 6.4,
5o g leen|
——==—|-1+4,/1+8(16.74) |=23.18
030 2 ( )
y,=6.954m
(Vo)
Energy loss E = W= ¥) (6.6)
4y,y,
3
_ (6.954-03)" _ 3530 m
4x0.30%x6.954

E,= Energy at Section 1 = 42.5m
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Percentage of initial energy lost = % x100 =83.0%

1

Example 6.6 | ) sillway discharges a flood flow at a rate of 7.75 m*/s per metre
width. At the downstream horizontal apron the depth of flow was found to be 0.50 m.

What tailwater depth is needed to form a hydraulic jump? If a jump is formed, find its
(a) type, (b) length, (c) head loss, (d) energy loss as a percentage of the initial energy,
and (e) profile.

Solution g =7.75m?3s/m, andy, = 0.50 m

775 =1550 m/s

15.50

F = —
' J9.81x0.50

=70

Sequent-depth By Eq. (6.4)

Y _ %(—1+\/1+8><(7)2 ) —941

Y1

y, = 4.71 m = required tailwater depth.

(a) Type Since F, = 7.0, a “steady’ jump will be formed
(b) Since F>5.0, L=61y,

L= length of the jump = 6.1x4.71 = 28.7 m

_ 3
(c) E_ = head loss = Oy, =(4.71-0.50)% /(4x0.5x 4.71)
4y,Y,
=7.92m
2 2
dE =y, . — 05+ 850 1575
29 2x9.81
E_ 62.1%
El
(e) Profile By Eq. (6.11)
X

2 —5.08(7.0)—7.82 = 27.74

1

X =13.87 m
0.75(y,—y,) =3.16 m

A=——and U—L

1387 3.16
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Substituting these for the values of A\ and »n given in Table 6.1 a relation
between x and h is obtained. As suggested in Section 6. 4(c), the profile is calculated
upto A =~ 1.80, i.e. up to x = 25.0 m and then is joined by a smooth curve to the
end of the jump at x = L, = 28.7 m. The change in the depth in this range would
be 0.0433 x 3.16 = 0.14 m. This being a flat curve, i.e., a change of 0.14 m in
3.70 m, the procedure as above is adequate.

6.4 JUMPS IN HORIZONTAL NON-RECTANGULAR CHANNELS

If the side walls of a channel are not vertical, e.g. in the case of a trapezoidal chan-
nel, the flow in a jump will involve lateral expansion of the stream in addition to
increase in depth. The cross-sectional areas are not linear functions of the depth of
flow. This aspect introduces not only computational difficulties in the calculation
of the sequent-depth ratio but also structural changes in the jump. A brief introduc-
tion to this wide field of jumps, in non-rectangular channel, is given in this
section.

(a) Basic Equations Consider ahorizontal frictionless channel of any arbitrary
shape, such as in Fig. 6.2. For a hydraulic jump in this channel, the general momentum
(Eq. 6.1) with the assumption of 3, = 3, = 1.0 reduces to:

P,—P,=M,— M, (6.17)
i.e. Y A171 - Azyz = szvz _levl
_ Q. pQf
A A (6.18)

where A = area of cross-section any y = depth of the centre of gravity of the area
from the water surface.
Rearranging Eq. 6.17

P+M=P,+M,

2
ie. P+M=~|Ay +Q—A] = Const. (6.19)
g
2
ie. PAM _p A+ 2 —const (6.192)
v gA
The term P, [: P+M ] is the specific force (Section 1.11 (c)).
Y
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6

y in metres
T
1

Discharge Q = 13.50 m3/s

0 40 80 120 160

_ 02
P5=Ay+Q_ - 5
Ag

Fig. 6.10 Speci 'cfforce diagramjbr Example 6.7

The specific force P_ is a function of the depth of flow, channel geometry and dis-
charge. A parabolic curve with two distinct limbs resembling the specific-energy
curve is obtained for plots of P_vsy for a given Q in a given channel (Fig. 6.10). The
lower limb represents the supercritical flow and the upper limb the subcritical flow.
An ordinate drawn at a given P_ cuts the curve at two points A and B where the
respective depths represent the sequent depths for the given discharge. The point C
corresponding to the merger of these two depths is obviously the critical depth for the
given flow Q.

The specific-force diagram provides a convenient means of finding
sequent depths for a given discharge in a given horizontal channel. If suit-
ably non-dimensionalised, it can provide a quick graphical solution aid in
cases involving a large number of calculations. For small and isolated cal-
culations, Eq. 6.19a is solved by a trial-and-error procedure to obtain the
sequent depths.

The energy loss E, due to a jump in a non-rectanglar horizontal channel is

i——] (6.20)



Rapidly-Varied Flow-1—Hydraulic Jump 267

Example 6.7 | 5 trapezoidal channel is 2.0 m wide at the bottom and has side

slope of 1.5 horizontal: 1 vertical. Construct the specific-force diagram for a dis-

charge of 13.5 m¥s in this channel. For this discharge find the depth sequent to the
supercritical depth of 0.5 m.

Solution The channel cross section is shown as an inset in Fig. 6.10.
A =(0+15x05)x05=1375m?
T,=20+2x15%x05=35m

A_ 0.393m
Tl
V, = 135 _ 9.818 m/s
1.375
9.818

F=——2°% _500
' J9.81x0.393

For a trapezoidal section
- y 2 Y
Ay =|| By = |4+ my“ =
’ \[ y2] Y 3]
y2

2
Specific force P, = Ll + Ay
Ag

~ (135)?
9.81A

+ Ay

18.578

yZ
=———+—(6+3
* (20+15y)y 6 ( )

Values of P_ were computed using this equation for different y values, ranging
fromy =0.1 mtoy = 6.0 mand is shown plotted in Fig. 6.10.

From Fig. 6.10, the depth sequenttoy, = 0.5 mis y, = 2.38 m (point B).

(b) Sequent-depth Ratios Expressions for sequent-depth ratios in channels of
regular shapes can be obtained by re-arranging the terms in Eq. 6.19a to get equality
of specific forces as
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T AT =S AT,
wr-n =35
S R Te
Noting that F? — iT;, and on re-arranging
S S

Substituting the expression for A, T and y pertinent to the given geometry will
lead to an equation relating the sequent-depth ratio to the inlet Froude number and
other geometric parameters of the channel. In most non-rectangular channels Eq.

6.21 contains the sequent-depth ratio ¥,/ ¥ in such a form that it needs a trial-and-
error procedure to evaluate it. Reference 8 gives useful information of hydraulic

jumps in all shapes of channels.

(c) Jumps in Exponential Channels Exponential channels represent a class of
geometric shapes with the area related to the depth as A = k y* in which k and a
are characteristic constants. For example, values of 1.0, 1.5 and 2.0 for a represent
rectangular, parabolic and triangular channels respectively.

In the case of an exponential channel (Fig. 6.11),

T Top width
v d
A
y T=—=kay"" (6.22)
CG+ !
y t A dy
o= (y/a) (6.23)
h
_ 1 py
A=K, ya y==% 0t(y—h)dh,

Fig. 6.11 Exponential channel

where t = top width at any height h.

1 y a-1
:—Afo kah ™ (y—h)dh
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Simplifying y=y/(a+1)
Substituting for T, (A/T) and y in Eq. 6.21

Y Yo .| yi/a ny
Yz Yo g|_pr| K1E g N
ey 620
a+l a
i.e. [ﬁ] 1= Flz[a+1] 1_[ﬁ] (6.25)
VA a Y,

Using this equation the ratio y, / y, can be evaluated as a function of F, and a.
The energy loss E due to a jump in a horizontal exponential channel can be

expressed by using Eq. 6.20 as
2a
[
Y2 (6.26)

E, (2a+F?)

2a[l—y2]+ F?2

1

Experimental studies by Argyropoulus on hydraulic jumps in parabolic channels®
and triangular channels® have shown that the sequent-depth ratios calculated by
Eq. 6.25 agree closely with the experimental data.

Example 6.8 A hydraulic jump takes place in a horizontal triangular channel

having side slopes of 1.5 H : 1 V. The depths before and after the jump are 0.30 m and
1.20 m respectively. Estimate the (i) flow rate, (ii) Froude number at the beginning
and end of the jump, and (iii) energy loss in the jump.

Solution P=vAy = y(myz)%
_pQ°_ pQ°
A my?
ymy? | pQ°
.. P+M =" 4 P2 Const,
By Eq. (6.19) 3 my? Const
gmy’ , Q* _gmy,  Q°

my; 3 my,’
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L, m (i)
Q*/g ENTIRY
Sy
¥ Ys
3 3 2,,4
2w Y (i =10y
Q*/g= 3 —(772—1>y12 where 5=y, /y,
2 3_1 2
L Uil
Qg =7 =
Here m=15, y1:0.3‘n=ﬁ:@:4,0
03

L e e (O
Q’/g= 3 (0.3) po =0.12247

Q = 1.096 m¥/s
: Q
For a triangular channel, Froude number F = ————
AJgAIT

Fe_ QT _Q’2my _ 2Q°
- 3 3,6 2.,5
gA gmvy gmy

, 2x(1.096)°
R = 2 5
9.81x(1.5)" x(0.3)

— 4488  F =6.693

) 2x(1.096)°
F = 2 5
9.81x(1.5) x(1.2)

—0.04375 F, =0.209

Energy loss: E, =E —E,

7 2g) 17 2g
A =15x(0.3)' =0.135 mz V, =00 _g 139 m

0.135
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2 o, 1096
A, =15x(12)" =2.160 m% V, === =0507m

e [o.3+ (8.119)” ] [1_2 N (0.507)2]

2x9.81 2x9.81

=3.66-1213=2.447m

Example 6.9 | x circular culvert of 2.0-m diameter carries a discharge of 3.0 ms.

If the supercritical depth in a hydraulic jump occurring in this channel is 0.55 m
determine the sequent depth. Assume horizontal frictionless channel.

Solution y, =0.55m y /D = 0.55/2 = 0.275

From Table 2A.1 fory,/D = 0.275, A /D* = 0.17555

Thus A, = 0.17555x(2.0)* = 0.7022 m?.

For a circular channel section flowing part full, the distance of the centre of gravity
from the centre of the circular section (Z in Fig. 6.12) is given by

2(r? — 72)%2
L Ar—)”
3A
Also, from Fig. 6.12 the depth of the centre of gravity from the water surface of the
flow sectiony =y — (r + 2)
In the presentcase,z=r —y=1.0-055=0.45m

, _ 2 (1.0)* - (0.45)°  0e7E ™
' 3%0.7022 e

]3/2

Fig. 6.12 Definition sketch — Example 6.9



272 Flow in Open Channels

A,ID?

Trial y,(m) ,/D from A my)  z, Y, P,  Remarks
Table
2A-1

N>

1 150 0.7500 0.63185 2.52740 0.500 0.1713 0.6713 2.0597 Reducey,
slightly

2 120 0.6000 0.49203 1.96812 0.200 0.3186 0.5186 1.4868 Reducey,
slightly

3 1.18 0.5900 0.48221 1.92884 0.180 0.3290 0.5090 1.4574 Give very
small incre-
menttoy,

4 1.185 0.5925 0.48467 1.93866 0.185 0.3264 0.5114 1.4646  Accept

Y, =0.55-1.00+0.6762 = 0.2262 m

Q° _
Psl =—+ 1
9A AY

Specific force at Section 1

(3.0)°
=" 1(0.7022x0.2262) =1.4654
9.81x0.7022

Equating the specific forces before and after the jump, P, =P_, = 1.4654

2
Further P, = Q—A2+ Ay, =1.4654 (6.27)
9

The value of y, satisfying this equation is obtained by trial and error.
Trial and error solution of Eq. 6.27
The sequent depth y,= 1.185m

Note: For hydraulic jumps occurring in horizontal, frictionless circular channels
several empirical equations are available for facilitating quick calculations.
Following are two such equations:

(1) Straub(1978):

1.01

- yc

9 ‘ (6.28)

*

(i) F, = [ﬁ]m (6.29)

Y1
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(iii) (a) For F, <1.7, %=(yc)2 (6.30)

(b) For F, >1.7 (in Sl Units)

1.73
Y2 _1.087(y,)"" [y—]
y.

1
(2) K. Subramanya(1996):

Y2 _ _0.01F? +0.8644F, + 03354 (6.31)

Yi
Alternative Methods to Example 6.9
(1) By using Straub’s Equations

0.506

_ 101 | Q
Yo = (D)o.zes \/a
0.506
1.01 3.0
Y. = @ 0)0,265 [ f9.81 81] =0.823m

y./D=0.823/2.0=0.412

1 1

1.73
Hence calculation of y_is OK and Yo _ 1.087(y, )" [ﬁ] =2.1534

Sequent depth y, = 1.1844 m.

(2) Alternative Method-2
y,=055my /D=055/2=0.275
From Table 2A.1 fory /D = 0.275, A,/D?=0.17556 and T./D =0.89296

Thus A, = 0.17556 % (2.0)> = 0.7022 m?,
and T, = 0.89296x 2.0= 1.78596 m
For using Eq. 6.31 V, = Q = _30 =4.272 m/s
A 0.7022
F= i 4.272 =2.1752
oA \/9.81>< 0.7022
T, 1.78596
By Eg. 6.31 Y _ —0.01F? 4 0.8644F, +0.3354
Y,

Y2 _ _0,01(2.175) +0.8644(2.175) + 0.3354

Y1

= —0.04731 + 1.8803 + 0.3354 = 2.1683
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Sequent depth y, = 2.168x 0.55= 1.193 m
(It may be noted that this method is easier and the error is less than 1%)

6.5 JUMPS ON A SLOPING FLOOR

When a hydraulic jump occurs in a channel with a sloping floor, the situation is
described by the general momentum equation, Eq. 6.1. There are too many unknown
terms relative to the number of available equations and unless additional information
is provided the solution of the momentum equation is not possible. Even if the sim-
plified situation of a rectangular frictionless channel is considered, the term W sin @
representing the longitudinal component of weight of the water in the jump poses a
problem as an unknown quantity. This is because W sind involves the length and
profile of the jump, information about which can be obtained only through experi-
mental observations. As such, even though many attempts have been made to obtain
the sequent-depth ratio through the momentum equation, no satisfactory general
solution is available so far. An example of a typical simplification of Eq. 6.1 to obtain
the sequent-depth ratio in a jump on a sloping floor is given below.

The definition sketch of a jump on a sloping floor in a rectangular frictionless
channel is indicated in Fig. 6.13. The momentum correction factors 3, and (3, are
assumed equal to unity. A unit width of the channel is considered with q = discharge
per unit width, y, = depth before the jump and y, = depth at the end of the jump.
Consider a control volume as shown by dashed lines and the momentum equation in
the longitudinal direction would be, from Eq. 6.1

P, —P,+Wsinf =M,— M, (6.32)

Fig. 6.13 Definition sketch for a jump on a sloping floor
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Assuming hydrostatic pressure distribution at Section 1 and 2,

and P,= %yyf cosd

If the water surface were a straight line joining y, and y,, then the area of the jump
1 L,

==y, +Y)—.
5 (%) o5l

(Note that the length of the jump L is defined as a horizontal distance between y,
and y,). Introducing a coefficient to account for the curvature of the jump profile
and cos 0 term,

1
w :EK'V Lj(y1+yt) (6.33)

The momentum flux M, = pg?/y, and M,= pg?/y,
Equation 6.32 can now be re-written as

lv[yf cosf — y? cosf + KL-(y1+yt)Sin0]:pq2 1 1
2 i "

Re-arranging

2
[L] _1_W[1+£]: 2F12 [yt/yllJ
Y1 Y1 y,) coso| Yy /ly,

where F, =V, / /gy, .

[Note that F_ is not the exact Froude number of the inclined channel flow at Sec-
tion 1= F _butis only a convenient non-dimensional parameter. The Froude
number of flow in channels with large 6 is given by Eqg. 2.8a. Hence for

a=1.0, F; =V\/gcosf. A/T

3 2
o [yl] _KLi tanH[LJ B

id =0 (6.34)
Y, Y1 Y

cosf

1+Ktham9 2':12 L+2F12
y,  coso)ly,

Equation (6.34) can used to estimate the sequent-depth ratio by a trial-and-error
procedure if the term (KLJ.) is known. In general, (KLJ.) can be expected to be a func-
tion of F, and 0 and its variation can be obtained only through experimental study.

6.5.1 Characteristics of Jumps on a Sloping Floor

Extensive experiments have been conducted by the U.S. Bureau of Reclamation
resulting in useful information on jumps on a sloping floor''. Based on the USBR
study, the following significant characteristics of sloping-floor jumps can be noted.
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(a) Sequent Depth y, Definingy, = equivalent depth corresponding to y, in
a horizontal floor jump = %(—1+,/1+8F12), the sequent depth y, is found to be

related to y, as

L_te
Y2
The variation of [L with tan 6 is shown in Fig. 6.14. By definition %: 1.0
Y> 2

when tan 6 = 0 and it is seen from Fig. 6.13 that 'y, /y, increases with the slope of the
channel having typical values of 1.4 and 2.7 at tan § = 0.10 and 0.30 respectively.
Thus the sloping-floor jumps require more tailwater depths than the corresponding
horizontal-floor jumps.

The best fit line for the variation of y, / y, with tan ¢ shown in Fig. 6.14, can be
expressed as

y,/'y,=1.0071 exp (3.2386 tan ) (6.35)
300 ] T T TT | LI | T T T°T | LI | LI | T T TT ]
2.80 | ]
260 ] w a
] Y1 Y ]
i — ° ]
2.40 - o ]
] 0 ]
220 e Data from Ref.[11] .
« 1 wEZEiwieerl y ]
2 2.00 ° —
= 7] _
1.80 ° ]
] e ]
1.60 ° .
1.40 Eq. (6.35) ,
1.20 -
100 T T TT | LI | T T T°T | LI | LI | T T TT
0.00 0.05 0.10 0.15 0.20 0.25 0.30

tan 0

Fig. 6.14 Variation Qf)/l /)/_) in jumps on a sloping floor
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(b) Length of the Jump Lj The length of the jump L, was defined in the USBR
study as the horizontal distance between the commencement of the jump and a point
on the subcritical flow region where the streamlines separate from the floor or to
a point on the level water surface immediately downstream of the roller, whichever
is longer.

The length of the jump on a sloping floor is longer than the corresponding L of a
jump on a horizontal floor. The variation of L./ y, with F, for any 6 is similar to the
variation for & = 0 case shown in Fig. 6.6. In the range of 4.0 < F, < 13, LJ./ y, is
essentially independent of F, and is a function of 6 only. The variation can be approx-
imately expressed as 2

L/y,=61+40tan¢ (6.36)
in the range of 45 < F, < 13.0.

Elevatorski’s® analysis of the USBR data indicates that the jump length can be
expressed as

L=m(y-y,) (6.37)

® Data from (3)
e Lj=ms (e =y1) in which m_ = f(6). The varia-
- tion of m_with tan ¢ is shown in
Fig. 6.15. It may be seen that
m, = 6.9 for tan = 0 and
- decreases with an increase in
the value of the channel slope.
Equation 6.37 is based on a
- wider range of values for F,
than in Eq. 6.37.

0 01 02 03 04 (c) EnergyLossE, Knowing
tan 0 the sequent depths y, and y, and
Fig. 6.15 Length of jumps on sloping floor the length of the jump, the energy
loss E, can be calculated as
E =H,—H,
where H = total energy at a section

E = (E,+ L,tand)—E,

2 2

V V,
=y, cosf+—+L. tand—y, cosd — 6.38
Yy 2g C Yy 29 (6.38)

where y, = sequent depth in a sloping channel at Section 2. It is found that the
relative energy loss E /H, decreases with an increase in the value of 0, being
highest at tan & = 0. The absolute value of E_ is a function of 6, being least when
6=0.
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Example 6.10 || A rectangular channel is laid on a slope of 1 horizontal: 0.15
vertical. When a discharge of 11.0 m®/s/metre width is passed down the channel at a
depth of 0.7 m, a hydraulic jump is known to occur at a section. Calculate the sequent
depth, length of the jump and energy loss in the jump. What would be the energy loss
if the slope was zero?

Solution g =11.00 m®/s/m
V 11.00

Atinlet A =15.714 m/s
0.70
15.714
F=—22"" _60
' J9.81x0.7

y, = equivalent sequent depth in a horizontal floor jump

=21 firer| = 220 1 i (o] |

=56m
Sequent depth From Eq. 6.35 or from Fig. 6.13, corresponding to a value of tan § = 0.15

Y 163
Y,

y, = sequent depth in the inclined floor jump
=163 x 5.6 =9.13m

Length of the jump
From Fig. 6.14, corresponding to tan ¢ = 0.15, m = 3.8

By Eg. 6.37 L,=3.8(9.13 - 0.70) = 32.03 m

By Eg. 6.36 L,=5.6(6.1+4.0 x 0.15) =37.52 m
An average value of L= 34.5 m could be taken as the jump length.
Energy loss

V2

Initial specific energy E, =y, cosd +$

cos ¢ = 0.98893

(15.714)°

E, =(0.7x0.98893) + [ =13278m

% 9.
(Note the small effect of the cos# term on the energy.)

Lj tand = 345 x 0.15=5.175m
H, = total energy at Section 1 with the bed level at 2 as datum
=E,+L,tand = 13.278 + 5.175 = 18.453 m
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29
2
H, =(9.24x0.98893) +—(11'0/9'24)
2x9.81
=9.210m
The energy loss E,=H, —H,
ie. E = (E,+ Litand) — (E)
= 18.453 — 9.210 = 9.243.
Also E /H, :%:0.501:50.1%
18.453

For a horizontal floor jump:
y,=5326m, y, =0.70 m

e _(,—y) _ (526-0.70)°
4y, 4x0.7x5.6

=7.503m

E, =y, +V?/29=13286m

7503

L/ E,= ——— %100 =56.48%

13.286
(Note that the relative energy loss in the sloping floor jump is referred to the total
energy H,.)

6.6 USE OFTHE JUMP AS AN ENERGY DISSIPATOR

The high energy loss that occurs in a hydraulic jump has led to its adoption as a part
of the energy-dissipator system below a hydraulic structure. The downstream portion
of the hydraulic structure where the energy dissipation is deliberately allowed to
occur so that the outgoing stream can safely be conducted to the channel below is
known as a stilling basin. It is a fully-paved channel section and may have additional
appurtenances, such as baffle blocks and sills to aid in the efficient performance over
a wide range of operating conditions. Stilling basins are so designed that not only a
good jump with high energy-dissipation characteristics is formed within the basin
but it is also stable. For economic considerations the basin must be as small as
practicable.

Designing a stilling basin for a given hydraulic structure involves considerat-
ions of parameters peculiar to the location of the structure in addition to the
mechanics of flow. This feature makes the engineering design rely rather heavily
on the experience of the designer. Model studies are usually resorted to arrive at
an efficient design. To assist in the preliminary design, type designs are available.
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The US Bureau of Reclamation has developed a series of type designs®® and Fig. 6.16
shows details of one such design. This stilling basin is recommended for F > 4.5
and V, <18 m/s. Note the chute blocks to assist in splitting and aerating of flow;
baffle blocks which offer additional resistance to flow; and the end sill which
helps the outgoing stream to be lifted up into a trajectory so that the basin end is
not subjected to scouring action. The effect of these appurtenances is to shorten
the stilling basin length to 2.7 y, as against 6.1 y, required for a free unaided
hydraulic jump. Also, the minimum tailwater depth required is 0.83 y, as against
y, for an unaided jump. Further details on energy dissipators are available in
References 13 and 3.

Chute blocks End sill
0.2 hg Baffle piers

/

0.375 hy
S, W3
S3

2:1 Slope
1 1:1 Slope
>

. L R IS
~—0.8 y,—*

0.2 hs | Nominal
—>| |<— L | I
T 1H: 1V 2H: 1V _T_
| i
Baffle pier End sill
hyly; =10 Si=v;
hsly, = 0.60 + F,/6 W=y
1=Y1

hy/y;=1.00 + Fy/18 W3=0.75 hy = S,

Tailwater depth = 0.83 y, (min)

=1.00 y, (recommended)
1 2
yaly1=—(-1+ y1+8F

F;>4.5and V;<18.0m/s
Fig. 6.16 USBR-type Il stilling basin (after Bradley and Peterka, paper no. 1403, Reference 13)
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6.7 LOCATION OFTHE JUMP

A hydraulic jump is formed whenever the momentum equation (Eq. 6.1) is satisfied
between the supercritical and subcritical parts of a stream, In connection with GVF
calculations it has already been indicated that the control for supereritical flows is at
the upstream end and for subcritical flows the control is at the downstream end. Thus
if a jump exists in a stretch of a channel, its location will satisfy three requirements,
viz. (a) the inlet depth y, is part of the upstream GVF profile, (b) the sequent depth y,
is part of the downstream GVF profile, and (c) the depths y, and y, satisfy the momen-
tum equation and are separated by a distance L.. The procedure for locating the jump
by satisfying the above requirements is illustrated with the help of an example.

Consider a sluice gate acting as an upstream control (point 4) and the pool eleva-
tion (point P) acting as a downstream control in a mild-slope channel (Fig. 6.17). The
algorithm for the location of the jump by graphical or numerical computation proce-
dure is as follows:

1. Starting from point A, compute the GVF profilc ABC. Point C is the critical depth.
2. Calculate the sequent-depth CB' A" in which every point B' is sequent to a
point B vertically below it on the curve ABC. This curve is obtained by using
the appropriate form of the general momentum equation (Eq. (6.1). For a rect-
angular channel of very small slope, if depth at B =y, depth at B'=y, =

(v2/2)| -1+ 1+ 8F |

3. Noting that LJ./yZ: f (F,), compute L for each point on the curve CB'A" and
shift the curve by displacing each point in the downstream direction by respec-
tive L values. The resulting curve is CDE.

4. Startmg from P, compute the M, profile, curve PDQ.

5. The-intersection of the curve PDQ with CDE (point D) gives the downstream end
of the jump. The toe of the jump, point B, is located by drawing a horizontal line
from D to cut CB'A" at B' and then a vertical from B’ to cut the curve ABC at B.

Vertically exaggerated scale
. v Depth of B V1
=Y2
Curve A'B’ C Curve of sequent depths

< \ Curve CDE = Curve A'B'C displaced
to the right by distance L;

N
Q—— s ! M, Curve

\._/§<:\A 5 Curve —_— Pool

Mild slope

Fig. 6.17 Location of a hydraulic jump
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In numerical computations the same principle as above can easily be incor-
porated. Note that this procedure gives direct determination of the end points of
a jump and the method is general and can be applied in a wide variety of jump
situations.

In the example described above, the subcritical water surface profile M, was a
particular GVF profile which depended upon the downstream control. Depending on
the control, it could be an M, profile also. If instead of a local control, a very long
channel would have given a friction control which would ensure uniform flow with
the normal depth being controlled by the friction of the channel. The depth down-
stream of a hydraulic structure, such as a sluice gate, controlled by the downstream
channel or local control is known as tailwater depth.

Tailwater level plays a significant role in the formation of the jump at a particular
location. Consider a flow from a sluice gate of opening a [Fig. 6.18(a)]. The depth at
the vena contracta is y,. Let the depth sequent to y_ be y,. Let the tailwater level be y,.
Depending upon the relative values of y, and y, two basic types of jumps can be
identified.

Wheny, =y,, a hydraulic jump will form at the vena contracta. Also ify, <y, , the
jump is repelled downstream of the vena contracta through an M, curve. The depth at
the toe of the jump y, will be larger than y, and the sequent depthy,, =y, [Fig. 6.18(b)].
Such a jump is known as repelled jump. Jumps with sequent depth equal to or less
than y, are known as free jumps, indicating that the supercritical stream before the
jump is not affected by tailwater. The procedure indicated at the beginning of this
section can be used to locate the position of a free jump.

If however the tailwater is larger than y, [Fig. 6. 18(c)] the supercritical stream is

submerged and the resulting jump is called submerged or drowned jump. The ratio,

% =S s called submergence factor and influences the characteristics of sub-
2

merged jump considerably®. Generally, the energy dissipation in a submerged jump

is smaller than that in a corresponding free jump.

A Yi=Y2

Ya
Fig. 6.18 (a) Free jump at vena contracta, (y, = y,)
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Fig. 6.18 (b) Free repelled jump, (y <y,)

L
A = Vena Contracta
y, = depth sequent to y,
—_— v
.
T N -7 yz
<. A _.-
i N
b7
Ya

Fig. 6.18 (c) Submerged jump, (y, <y,)

Example 6.11 || A sluice gate in a 3.0-m wide rectangular, horizontal channel
releases a discharge of 18.0 m%s. The gate opening is 0.67 m and the coefficient of
contraction can be assumed to be 0.6. Examine the type of hydraulic jump formed
when the tailwater is (i) 3.60 m (ii) 5.00 m, and (iii) 4.09 m.

Solution Let A be the section of vena contracta (Fig. 6.17).
y, = depth at vena contracta = 0.67 x 0.6 = 0.40 m
V, =18.0/(3.0 x 0.4) =15.0m/s
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‘ <

F, = Froude number at vena contracta =
gy,

F :—15'0 =7.573

* . /9.81x 0.4

If y, = Sequent depth required for a jump at vena contracta

Yo _ %[_1 T+ 8Fa2]
Ya
1 2
_ 5[71 + L+ 8x (7573 ] —10.22

y,=10.22 x 0.40 = 4.09 m

1. When the tailwater depthy, = 3.60 m,
Since y, <,, afree, repelled jump will form.

= _180 _ 1.667 m/s
3.0 x 3.60
1.667
F=———20 _0281
" J/9.81x3.60

The depth at the toe of this repelled jump y, is given by

A %[—1 + 1+ 8Ft2}

Yi
K 1[—1 + L+ 8x (0.281) ] —0.1387
360 2

y,=050m

An M, curve will extend from Section A (y, = 0.40 m) to Section 1 (y, = 0.50 m).
2. When the tailwater depth y, = 5.0 m.

Since y,>y,, asubmerged jump will occur.
3. Wheny, = 4.09, y, =y, and a free jump will occur at Section 1 withy, =y, = 0.40 m.

Example 6.12 ||

The flow in a wide rectangular channel of bed slope S, = 0.0005
and n = 0.020 is controlled at the upstream end by a sluice gate. At a certain time the
sluice gate was adjusted to discharge 7.0 m%/s per metre width of the channel with a
depth of 0.40 m at the vena contracta. Find the location of the jump and the sequent
depth.

Solution  Refer to Fig. 6.19. Sequent depth after the jump =y, = tailwater depth.

3/5 3/5
V. [ﬂ] _ [7.0>< 0.020] Caoom

JS \/0.0005
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y,=y,=3.00m
__ 9 7.0
Y,+/0Y, 3.04/9.81x3.0

N %(_H,/l +8F )= %[—1 +yL+8x (0.429)2]: 0.286m
y

2

F, =0.429

y, = 0.286 x 3.0 =0.86 m

Length of the jump = L,=6.1x3.00=18.00m
There will be an M,-type GVF profile from the vena contracta to the toe of the jump
and this is evaluated by the direct step method.

I
-2
TW=yp=Y,

Toe of Jump

Y1

0.40 mI

| § |

Fig. 6.19 Schematic sketch of Example 6.12

Computation of Flow Profile by Direct Step Method—Example 6.12

Wide Rectangular Channel S, = 0.0005 n=0.020 q=7.0m3s/m
. Specific AX
SI.  Depth \elocity ,,2 _ _
V429 Ener AE(m S m
No. y(m) V(mis) o (mg)y m S S, Srs, (m x(m
040 1750 15.610 16.01 0.4156 0.0

050 14.00 9.990 1049 552 0.1976 0.30660 -0.3061 18.0 18.0
060 1167 6937 754 295 0.1076 0.15257 -0.1521 194 374
0.70 10.00  5.097 580 -1.74 0.0644 0.08597 -0.0855 20.4 57.8
0.80 875 3902 470 -1.09 0.0412 0.05280 -0.0523 20.9 78.7
0.86 8.14 3377 424 -047 0.0324 0.03682 -0.0363 12.8 91.6

o OB W NP

The toe of the jump is at a distance of 91.6 m from the vena contracta of the jet issu-
ing from the sluice gate.
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10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
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» PROBLEMS

Problem Distribution

Topic Problems
1. Elements of jump in a rectangular channel 6.1-6.10
2. Jump below a sluice gate 6.11, 6.23, 6.24, 6.31, 6.32
3. Jump below an overflow spillway 6.12-6.14
4. Jump at an abrupt rise 6.15, 6.30
5. Jump at a sudden drop 6.16
6. Jump on a sloping floor 6.17,6.25, 6.27
7. Jump in non-rectangular channels 6.18-6.22, 6.26
8. Location of the jump 6.23, 6.24
9. Forced hydraulic jump 6.28
10. Circular hydraulic jump 6.29
11. Repelled jump 6.31, 6.32

(Unless otherwise stated the channel is assumed to be frictionless for purposes of hydraulic
jump calculations.)

6.1 A hydraulic jump occurs in a horizontal rectangular channel with sequent depths of 0.70 m and
4.2 m. Calculate the rate of flow per unit width, energy loss and the initial Froude number.

6.2 A hydraulic jump occurs in a horizontal rectangular channel at an initial Froude number
of 10.0. What percentage of initial energy is lost in this jump?

6.3 The following table gives some of the possible types of problems associated with a
hydraulic jump occurring in a rectangular channel. Complete the following table.

(Note that Problem 6.3(c) requires a trial-and-error approach. Assume F,, find y,, y, and

check E, . Repeat till satisfactory values are obtained.)

Prob. \'A y, (m) q F, y, V,(mis) F, E E/E,
No.  (m/s) (m2s/m) (m) (m (%)

a 0.170 1.84

b 9.00 2.90

c 2.00 1.75

d 1.60 0.90

e 1350 0.350

f 0.15 8.00

6.4 A hydraulic jump in a rectangular channel has the Froude number at the beginning of the
jump F, = 5. Find the Froude number F, at the end of the jump.

6.5 Show that the Froude numbers F, and F, in a hydraulic jump occurring in a rectangular
channel are related by

8F° 8F,

(14 +8r? )3 -1+ L+8F] )3

6.6 A rectangular channel carrying a supercritical stream is to be provided with a hydrau-
lic jump type of energy dissipator. If it is desired to have an energy loss of 5 m in the
jump when the inlet Froude number is 8.5, determine the sequent depths.

6.7 Show that in a hydraulic jump formed in a horizontal, frictionless, rectangular channel the
energy loss E, relative to the critical depth y_ can be expressed as

@ F'= (b) R’ =
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6.8

6.9

6.10

EL i <a71>9

Y, 32(a+1)a’
where a = sequent-depth ratio = y,/y,.
In a hydraulic jump occurring in a horizontal, rectangular channel it is desired to have an
energy head loss equal to 6 times the supercritical flow depth. Calculate the Froude
number of the flow necessary to have this jump.
In a hydraulic jump taking place in a horizontal, rectangular channel a sequent-depth
ratio of 10 is desired. What initial Froude number would produce this ratio? What would
be the Froude number after the jump?
In a hydraulic jump taking place in a horizontal rectangular channel the discharge inten-
sity and head loss are found to be 4.7 m¥s/m and 6.0 m respectively. Determine the
sequent depths of the jump.

6.11 Water from a low dam is released through a sluice gate on a horizontal rectangular chan-

nel. The depth of water upstream of the sluice gate is 16.0 m above the channel bed and
the gate opening is 1.5 m. The sluice gate can be assumed to be sharp-edged. If a free
hydraulic jump is formed just downstream of the gate, find the sequent depths and the
percentage of the initial energy lost in the jump.

6.12 An overflow spillway has its crest at elevation 125.40 m and a horizontal apron at an eleva-

6.13

tion of 95.00 m on the downstream side. Find the tailwater elevation required to form a
hydraulic jump when the elevation of the energy line is 127.90 m. The C, for the flow can
be assumed as 0.735. The energy loss for the flow over the spillway face can be neglected.
In Problem 6.12 if the tailwater elevation is 102.40 m, what should be the elevation of
the apron floor to cause the jump?

6.14 At the bottom of a spillway the velocity and depth of flow are 12.0 m/s and 1.5 m respec-

tively. If the tailwater depth is 5.5 m find the location of the jump with respect to the toe
of the spillway. What should be the length of the apron to contain this jump? Assume the
apron to be horizontal and Manning’s n = 0.015.

6.15 A hydraulic jump is formed in a stiliing basin created by a step of height AZ in a rectangular

horizontal channel as in Fig. 6.20. Assuming hydrostatic pressure distribution at Sections 1,
2 and 3, and normal hydraulic jump operation between Sections 1 and 2, show that

2
[ﬁ] 1+ 2F12[1—ﬁ]+£ Az JL+8F?

pmm— 1—
Y1 3 Vi | V1

(Note: Reference 14 gives details of this aspect of control of hydraulic jumps.)

®

®
® 7 -
/f/’ . Y3
_-___,,—" Y2
;> Y1 AZ
1 2

Fig. 6.20 Jump at an abrupt rise—Problem 6.15
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6.16 When a hydraulic jump occurs at an abrupt drop in a rectangular channel, depending
upon the relative step height AZ/y,, two distinct situations are possible as shown in
Figs 6.21 and 6.22. Considering the reaction of the step as shown in Figs 6.21 and 6.22

show that, for the case A:

2
[yzAZ] =
Y, Y,
F12 _\Nn 1
EZl
Y,
and for the case B:
2 2
] )
F2_ Yy VA
2 =

2[1”}
Y,

(Note: This situation has been studied in detail by Hsu®®, and Moore and Morgan?®.)

@

S

=7Y2— Case - A

Fig. 6.21 Jump at a sudden drop—Problem 6.16, (Case A)

®
+
v
=
1
— N1 S Yo T~
| A
=R
AZ
|
f—1
Ay + AZ) Case-B

Fig. 6.22 Jump at a sudden drop—Problem 6.16, (Case B)
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6.17

6.18

6.19

6.20

The Rihand dam in U.P, India, has a sloping apron stilling basin with a slope of 0.077.
If the depth for a flood flow of 64.0 m3/s per metre width is 1.93 m, estimate the sequent
depth, length of the jump and energy loss in the hydraulic jump.

A hydraulic jump occurs in a horizontal 90° triangular channel. If the sequent depths in
this jump are 0.60 m and 1.20 m, estimate the flow rate and the Froude numbers at the
beginning and end of the jump.

For a hydraulic jump taking place in a horizontal, frictionless, triangular channel show
that the sequent depths y, and y, are related to the pre-jump Froude number F as

p2_ 20’ -1)

TR N

wheren =Y, /y;.

A horizontal trapezoidal channel of 2.0-m bed width and side slopes 2 horizontal : 1 ver-
tical carries a discharge of 6.225 m¥/s at a depth of 0.20 m. If a hydraulic jump takes
place in this channel, calculate the sequent depth and energy loss.

6.21 A trapezoidal channel of 7.0-m bottom width and side slope 1 horizontal : 1 vertical carries

6.22

6.23

6.24

6.25

6.26

6.27

a discharge of 20 m¥/s. Prepare the specific energy and specific-force diagrams for this chan-
nel. If the depth after a jump on a horizontal floor in this channel for the given discharge is
known to be 2.25 m, find the sequent depth and energy loss. What are the limitations of the
plots prepared by you? Can you think of a non-dimensional representation of the specific-
force and specific-energy diagrams so that they can be used for jump computations in trape-
zoidal channels having a wide range of geometrical parameters and discharges?
A circular culvert of 1.5-m diameter carries a discharge of 1.0 m%/s. The channel can be
assumed to be horizontal and frictionless. If the depth at the beginning of a hydraulic
jump occurring in this channel is 0.30 m, determine sequent depth.
A sluice gate discharges 10.0 m®/s per meter width in to a wide rectangular channel of
n = 0.025 and bottom slope S, = 0.0002. The depth of flow at the vena contracta is 0.40
m. If the channel ends in a sudden drop at a distance of 1300 m downstream of the gate,
locate the position of the jump.
The flow in a wide rectangular channel of bed slope S, = 0.0008 and n = 0.025 is con-
trolled at the upstream end by a sluice gate. The sluice gate is adjusted to discharge 8.0
m?/s per meter width of the channel, with a depth of 0.50m at the vena contracta Find the
location of the jump and the sequent depth
A wide rectangular steep channel (tan § = 0.20) has a horizontal apron. Find the maxi-
mum tailwater depth that will have a jump completely in a horizontal apron when a dis-
charge of 2.47 m3/s per metre width passes down the steep channel at a depth of 0.30 m.
What tailwater depth will cause the jump to occur completely on the sloping channel?
Prepare a plot of E / E, vs F, for rectangular, parabolic and triangular horizontal chan-
nels using Eqs (6.23) and (6.24). Observe that the highest relative energy loss occurs in
a triangular channel.
(a) Show that the relative energy loss in a hydraulic jump occurring on a sloping rectan-
gular channel is

2 2
cos@[l—y‘]+':11—[yl] +[Ly‘]tan0
E Vi 2 Yi Ye Y1
H 2 (L =169
! cosf+ -1+ y‘]tano
2 Vi i
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where H, = total energy referred to the bed at the end of the jump as datum and
F =V, /oy,
(b) Analyse E, and show that the magnitude of energy loss is larger in a sloping-channel
jump as compared to the loss in a corresponding horizontal-channel case.
6.28 Baffles are provided in stilling basins to introduce an additional drag force on the
flow.
(a) Figure 6.23 (a) shows a baffle wall placed in a horizontal rectangular channel jump.
pV12
2
inwhich C = drag coefficient. Show that the sequent-depth ratio y,/y, for this case
is related as

The drag force per unit length of the baffle wall can be expressedas P, =C

2
=L
(1_ y1 / yz)
(b) Figure 6.23(b) shows a jump assisted by baffle blocks. Write the momentum equa-

tion to this case. (References 17 and 4 contain information on the role of baffles in
the stilling-basin performance).

1 Y1

B B S
W
Plan Plan
2 2
1 1
y2 y2
Y1 h Y, h
Horizontal L-Section Horizontal L- Section
(a) (b)

Fig. 6.23 (a) Jump assisted by a baffle wall—Problem 6.28 (a)
(b) Jump assisted by baffle blocks—Problem 6.28 (b)

6.29 A vertical jet of water striking a horizontal surface spreads out radially and can
form a circular hydraulic jump under proper tailwater conditions. Figure 6.24 is a
definition sketch for such a circular jump. Use momentum and continuity equa-
tions to get
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6.30

6.31

Q
Jump
v/ Jump v
vi Y2
Section e
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Ps2 P2
o Q\/ PSl
180 9 0°
Half plan

M1
)
Fig. 6.24 Circular hydraulic jump—Problem 6.29

1 2F?
= RY2]+§(R—Y)(1+Y +Y2):ﬁ(1— RY)

VZ
inwhichR=r,/r, F2, =—Land Y = 22
ay, Y.

Hint: Consider a small element of the jump of angular width dé as in Fig. 6.22 and apply
momentum and continuity equations in the x-direction. The major difference between the
jump in a prismatic rectangular channel and the present case of circular jump is that in
the present case the hydrostatic forces on the two walls of the element have a net compo-
nent in the x-direction. To evaluate this, one requires the profile of the jump. One of the
common assumptions is to assume the profile to be linear. In the present case also assume
the profile of the jump to be a straight line.

[Note: References 18, 19 and 20 can be consulted for details on circular hydraulic jumps.
The same equation applies to a jump in a gradually expanding rectangular channel details
of which are available in references 21 and 22.]

A discharge of 6.65 m3/s per metre width from a low spillway enters a horizontal apron
at a depth of 0.5 m. The tailwater depth is 3.0 m. Determine the depth of depression of
the stilling basin below the original stream bed necessary to ensure that a hydraulic jump
will form in the stilling basin.

Water flows from under a sluice gate into a wide rectangular channel having a bed slope of
0.0001. The gate opening is such that the discharge rate is 6.0 m3/s/metre width. Determine
whether a free hydraulic jump can occur and if so determine its sequent depths when the
depth at the vena contracta is (i) 0.50 m and (ii) 0.40 m. Assume Manning’s n = 0.015.
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An opening of a reservoir is controlled by a sluice gate. The gate opening is 1.30 m.
Water surface elevation upstream of the gate is 100.00 m. If the elevation of the bed is
85.00 m and the tailwater elevation is 91.00 m.

(a) What is the discharge per unit width?

(b) What kind of jump is formed? What are the sequent depths?

(c) What is the maximum tailwater depth that could be sustained by a free jump?
(Assume C_= 0.75 and C, = 0.71 for the sluice gate).

* OBJECTIVE QUESTIONS

The hydraulic jump is a phenomenon

(@) in which the water surface connects the alternate depths

(b) which occurs only in frictionless channels

(c) which occurs only in rectangular channels

(d) none of these

A hydraulic jump occurs when there is a break in grade from a

(@) mild slope to steep slope (b) steep slope to mild slope

(c) steep slope to steeper slope (d) mild slope to milder slope

The sequent-depth ratio in a hydraulic jump formed in a horizontal rectangular channel
is 16.48. The Froude number of the supercritical stream is

(@ 8.0 (b) 4.0 (c) 20 (d) 12.0

The Froude number of a subcritical stream at the end of a hydraulic jump in a horizontal
rectangular channel is 0.22. The sequent-depth ratio of this jump is.

() 11.25 (b) 15.25 (c) 8.35 (d) 6.50

If the Froude number of a hydraulic jump is 5.50, it can be classified as
(@) an oscillating jump (b) aweak jump

(c) astrong jump (d) asteady jump

The initial depth of a hydraulic jump in a rectangular channel is 0.2 m and the sequent-

depth ratio is 10. The length of the jump is about

@ 4m (b) 6m (c) 12m (d) 20m

In a hydraulic jump taking place in a horizontal rectangular channel the sequent depths

are 0.30 m and 1.50 m respectively. The energy loss in this jump is

(@ 1.92m (b) 1.50 m (c) 0.96m (d) 1.20m

Seventy per cent of the initial energy is lost in a jump taking place in a horizontal rectan-

gular channel. The Froude number of the flow at the toe is

(@ 4.0 (b) 9.0 (c) 20.0 (d) 15.0

In a hydraulic jump occurring in a horizontal rectangular channel with an initial Froude

number of 12, the sequent depth ratio is found to be 13.65. The energy dissipation as a

percentage of the initial specific energy is about

(a) 62% (b) 50% (c) 87% (d) 73%

The concept of constancy of specific force at the beginning and the end of a jump

(a) assumes horizontal frictionless channel

(b) is valid for jumps in a rectangular sloping floor basin

(c) is valid for all kinds of channels provided the friction can be assumed to be negligi-
bly small

(d) assumes constancy of specific energy
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6.11 Asluice gate discharges a flow with a depth of y, at the vena contracta. y, is the sequent
depth corresponding to y,. If the tailwater depth y, is larger then y, then
(@) arepelled jump occurs (b) a free jump occurs
(c) asubmerged jump takes place (d) no jump takes place

6.12 Ify, = sequent depth for a rectangular channel obtained by assuming horizontal friction-
less channel in the momentum equation and y,, = corresponding actual sequent depth
measured in a horizontal rectangular channel having high friction, one should expect
@) Y,>VY,, ® Y, =Y, (©) ¥, <Y, © v,<Y,,

6.13 If the length of the jump in a sloping rectangular channel = L and the corresponding
length of the jump in a horizontal rectangular channel having same y, and F, is L then
@) Lj > Ljs (b) LJ.S > Lj (c) Lj = LJ.S (d) Lj/LjS =0.80

6.14 If E ; = energy loss in a jump in a sloping rectangular channel and E , = energy loss in
a corresponding jump on a horizontal rectangular channel having the same y, and F,,
then

@ E,, =E,. (b) E,,>E . (©) E,, <E. (d) E/E =080



Rapidly Varied
Flow-2 7

7.1 INTRODUCTION

Rapidly varied flows (RVP) are a class of flows which have high curvatures, a con-
sequence of which is the presence of non-hydrostatic pressure distribution zones in
a major part of the flow. Further, these flows are essentially local phenomenon in
the sense friction plays a minor role. The hydraulic jump studied in Chapter 6 is an
important RVF phenomenon. In this chapter a few steady, rapidly varied flow situa-
tions are discussed. Since a very wide variety of RVF problems occur in practice, an
exhaustive coverage of all situations is not possible in a book of this nature and hence
a few basic and important flow types are covered. The RVFs covered in this chapter
are due to (i) sharp-crested weirs, (ii) overflow spillways, (iii) broad-crested weirs,
(iv) end depths, (v) sluice gates, and (vi) culverts. Many of the RVFs studied here are
used for flow measurement purposes.

7.2 SHARP-CRESTED WEIR

A weir is a structure built across a channel to raise the level of water, with the water
flowing over it. If the water surface, while passing over the weir, separates at the
upstream end and the separated surface jumps clear off its thickness, the weir is called
a sharp-crested weir. It is also known as a notch or a thin plate weir. Sharp-crested
weirs are extensively used as a fairly precise flow-measuring device in laboratories,
industries and irrigation practice. The sharp-crested weirs used in practice are usu-
ally vertical metal plates with an accurately-machined upstream edge of thickness
not exceeding 2.0 mm and a bevel of angle greater than 45° on the downstream face
edge. The weirs come in many geometric shapes but the rectangular and triangular
ones are the most commonly used.

7.2.1 Rectangular Weir

Figure 7.1 shows the definition sketch of flow over a sharp-crested rectangular weir.
The water surface of the stream curves rapidly at the upstream of the weir and
plunges down in a parabolic trajectory on the downstream. This surface is known
as upper nappe. At the weir crest, the flow separates to have a free surface which
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Energy line
> h
dh V20h
Ho Hy
Nappe
Air vent
P
AZ v
v
Yo Yt
<2mm
90° v
> 45°

Clinging nappe
Sharp crest

Fig. 7.1 Definition sketch of a sharp-crested weir

initially jumps up to a level higher than the weir crest before plunging down. This
surface is known as lower nappe. If the weir extends to the full width of the chan-
nel, the lower nappe encloses a space having air initially at atmospheric pressure.
Asthe flow proceeds for sometime, some of the air from this pocket is entrained by
the moving water surfaces and the pressure in the air pocket falls below the
atmospheric pressure. This in turn causes the nappe surfaces to be depressed.
This change is a progressive phenomenon. A limiting case of the air pocket
completely evacuated is a clinging nappe shown in Fig. 7.1. To maintain stan-
dardised conditions for flow measurement, the air pocket below the lower
nappe should be kept at a constant pressure. The atmospheric pressure in this
pocket is achieved through the provision of air vents. The weir flow as above
assumes at tailwater level far below the crest and is termed free flow. A detailed
description of nappe changes and its effects on flow measurement are available
in literature!. Figures 7.2 and 7.3 show a fully aerated and non-aerated nappe
respectively.

7.2.2 Discharge Equation
It is usual to derive the discharge equation for free flow over a sharp-crested weir by

considering an ideal undeflected jet and to apply a coefficient of contraction to
account for the deflection due to the action of gravity.
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Fig. 7.2 Fully-aerated nappe (Courtesy: M G Bos)

Fig. 7.3 Non-aerated nappe (Courtesy: M G Bos)

Thus for a rectangular weir of length L spanning the full width B of a rectangular
channel (i.e., L = B), the ideal discharge through an elemental strip of thickness dh
at a depth h below the energy line (Fig. 7.1), is given by

dQ,= L+/2gh dh (7.1)

V¢
Thus the ideal discharge g — L\/Elﬂ:ﬁﬁx/ﬁdh (7.2)
24
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and the actual discharge Q= C_Q, (7.3)
in which C_ = coefficient of contraction.
3/2 V02 3/2
29

However, since Eq. 7.4 is rather inconvenient to use, the discharge equation is writ-
ten in terms of H,, the depth of flow upstream of the weir measured above the weir
crest, as

2

Thus Q:%CmﬁaLrt+§L (7.4)
9

Q- 2,29 LH" (75)

where C, = coefficient of discharge which takes into account the velocity of approach
V, and is given by

C, =C,

V2 3/2 V2 3/2
1+ | -] (7.6)
2gH, 2gH,

In ideal fluid flow C, = f(H, /P) and this variation has been studied by Stretkoff 2. In
real fluid flow C, should in general be a function of Reynolds number and Weber
number, in addition to the weir height factor H, /P. If Reynolds number is sufficiently
large and if the head H, is sufficiently high to make the surface tension effects negli-
gible, the coefficient of discharge

C,= f(H,/P)

The variation of C, for rectangular sharp-crested weirs is given by the well-known
Rehbock formula

H
C, =0.611+0.08-2 (7.7)

which is valid for H, /P < 5.0.
7.2.3 Sills
For very small values of P relative to H,, i.e., for % > 20, the weir acts as a sill

placed al the end of a horizontal channel and as such is termed sill. Assuming that the
critical depth y, occurs al the sill

2 1/3
HP oy, - [QBZ] @8)
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ie. Q=Byg(H,+P)" = c 29 LH? (7.9)

and L=B,
the value of C, from Eq. (7.9) works out to be

3/2

P
C, =1.06|1+— (7.10)
1
1.20
110 Eq.(7.10) v
Sill Hy
P
1.0
Weir
Eq.(7.7)
5 0.9
(@)
0.8 \Y
Hl
0.7 P
sill
0.6
0 0.1 0.2 0.3 0.4 0.5 0.6
P/H,

Fig. 7.4 Variation Ode for weirs and sills

This relationship for C, has been verified experimentally by Kandaswamy and
Rouse®. The variation of C, given by Eq. 7.7 for weirs and by Eq. 7.10 for sills is
shown in Fig. 7.4.

In the intermediate region of weirs and sills (i.e. 20 > H,/P > 5) the C, values
are expected to have a smooth transition from Eq. 7.7 to Eq. 7.10 as shown in
Fig. 7.4.

A review of the effect of liquid properties on C is available in Ref. 1. Gener-
ally, excepting at very low heads, i.e. H, < 2.0 cm for the flow of water in rect-
angular channels, the effects of Reynolds number and Weber number on the value
of C, are insignificant. Thus for practical purposes, Eq. 7.7 and Eq 7.10 can be
used for the estimation of discharges. The head H, is to be measured upstream of
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the weir surface at a distance of about 4.0 H, from the weir crest. If weirs are
installed for metering purposes, the relevant standard specifications (e.g. Interna-
tional Standards: 1SO: 1438, 1979, Thin-plate weirs) must be followed in weir
settings.

7.2.4 Submergence

In free flow it was mentioned that the tailwater level is far below the crest
to affect the free plunging of the nappe. If the tailwater level is above the weir
crest, the flow pattern would be much different from the free-flow case (Fig. 7.5).
Such a flow is called submerged flow. The ratio H,/H, where H, = downstream
water-surface elevation measured above the weir crest, is called submergence
ratio. In submerged flow, the discharge over the weir Q_depends upon the sub-
mergence ratio. An estimation of Q_ can be made by use of Villemonte

[ ]
1

0.385

Q=Q (7.11)

Fig. 7.5 Submerged sharp-crested weir

where Q, = free-flow discharge under head H,, n = exponent of head in the
head-discharge relationship Q = KH" .For a rectangular weir, n = 1.5.

The minimum value of H, /H, at which the discharge under a given head H,
deviates by 1 per cent from the value determined by the free-flow equation is
termed modular limit or submergence limit. In sharp-crested rectangular weirs
the modular limit is negative, i.e. the submergence effect is felt even before the
tailwater reaches the crest elevation. Thus to ensure free-flow it is usual to spec-
ify the tailwater surface to be at least 8 cm below the weir crest for small weirs.
This minimum distance will have to be larger for large weirs to account for fluc-
tuations of the water level immediately downstream of the weir due to any wave
action.
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7.2.5 Aeration Need of Rectangular Weir

The need for aeration of rectangular weirs spanning the full width of a channel
was indicated in Sec. 7.2.1. The rate of air supply (Q, in m¥s) required to completely
meet the aeration need is given by®

Q_ 01 (7.12)

Q (yp / H1)3/2

in which Q = water discharge and y = water-pool depth on the downstream of the
weir plate (Fig. 7.1). If a submerged hydraulic jump takes place, y, can be estimated
by the tailwater depth. On the other hand, for the case of a free jump occurring on the
downstream, y, can be estimated by the following empirical equation®

0.22

Q,

— - 7.13
L2g(AZ)’ 713

y, =AZ

where AZ = difference in elevation between the weir crest and the downstream floor
(Fig. 7.1).

To cause air flow into the air pocket through an air vent, a pressure difference
between the ambient atmosphere and the air pocket is needed. Assuming a maximum
permissible negative pressure in the pocket (say 2 cm of water column), the size of
the air vent can be designed by using the usual Darcy-Weisbach pipe flow equation.

Example 7.1 | p 5 0.m wide rectangular channel has a discharge of 0.350 m¥s.

Find the height of a rectangular weir spanning the full width of the channel that can
be used to pass this discharge while maintaining an upstream depth of 0.850 m.

Solution A trial-and-error procedure is required to solve for P. Assuming C, =
0.640, by Eq. 7.5

HY? = 0.350/[:23 x 0.640 x v19.62 x 2.0| = 0.0926

H, =0.205 mand P = 0.850 - 0.205 = 0.645m
H,/P =0.318 mand C, = 0.611 + (0.08 x 0.318) = 0.636
2nd iteration: Using the above value of C,

oz — 00920 4 640 — 0.00318
0.636

H,=0.206 m, P = 0.644 m, H, /P = 0.320
and C, =0.637
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Accepting the value of C, the final values are H, = 0.206 m and P = 0.644 m. The
height of the required weir is therefore P = 0.644 m.

Example 7.2 | 5 5_m wide rectangular channel has a rectangular weir span-
ning the full width of the channel. The weir height is 0.75 m measured from the

bottom of the channel. What discharge is indicated when this weir is working under
submerged mode with depths of flow, measured above the bed channel, of 1.75 m and
1.25 m on the upstream and downstream of the weir respectively.
Solution  Weir height P = 0.75 m,
H =175-075=100mandH,=125-0.75=0.5m
H,/P =1.0/0.75 = 1.333 and H,/H, = 0.5/1.0 = 0.50

C,=0.611 + 0.08 ( 1.333) = 0.718
Q = %cd J29L(H,)" = §x0.718><\/19.62 x2.5%(1.0)" = 5.30 m¥s

By Villemonte equation for submerged weir flow, and noting that for rectangular
weir flow n =1.5

H 0.38

0.385
Q=0Q 1—(H—2)1-5] = 4.24x[1-(05)*| " =448 mss
1

7.2.6 Contracted Weir

The discharge Eqs 7.4 and 7.5 have been derived for a weir which spans the full
width of the channel. In such weirs there will be no contraction of the streamlines at the
ends and as such they are termed uncontracted or suppressed weirs. However, if the
length of the weir L is smaller than the width of the channel, such weirs are known as
contracted weirs (Fig. 7.6). In contracted weirs, the flow issuing out of the weir open-
ing will undergo contraction at the sides in addition to the contraction caused by upper

and lower nappes. As a result, the effective

I L I width of the weir is reduced.

The discharge from contracted weir can be
T n obtained by using the effective length L_ in the
~ " A EI?iqv.es7.4. The well-known Francis formula

where n = number of end contractions. For the
weir shown in Fig.7.6, n = 2, and if m number
of piers are introduced on a weir crest, n =
————— B ——1  2m + 2. The discharge equation for the con-
Fig. 7.6 Weir with end contractions tracted weir is written as

L,=L-0.1nH, (7.14)
!
l
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3/2

2 velt (v (7.15)
_2¢c fg(L—oanH)||H + Yo | Yo -
Q 3 c g( 1) 1 29 [29

ForL>3H, and H,/P <1.0, the value of C_is taken as C_ = 0.622.

For contracted sharp-crested weirs, Kindsvater and Carter ¢ have given a modified
version of Eq. 7.15, based on their extensive experimental investigation covering a
wide range of variables, as

Q= %delzg LHY? (7.16)
where C, = coefficient of discharge for contracted weir, L, = effective length and

H,, = effective head. The effective length and head are obtained as

L=L+K, (7.16a)
and H,=H, +K, (7.16b)

where K, and K _are additive correction terms to account for several phenomena
attributed to viscosity and surface tension. Values of recommended K, and K _are
given in Table 7.1. The discharge coefficient C, is a function of L and H,/P,
expressed as B

H
C, =K, +K, [?1} (7.17)

The variation of K, and K, are also shown in Table 7.1.

Table 7.1 Value s of Parameters for Use in Eq. (7.16)*°

LIB K, (m) K,, (m) K, K,
1.0 ~0.0009 0.602 +0.0750
0.9 0.0037 . 0.599 +0.0640
0.8 0.0043 2 0.597 +0.0450
0.7 0.0041 3 0.595 +0.0300
0.6 0.0037 g 0.593 +0.0180
0.5 0.0030 o 0.592 +0.0110
0.4 0.0027 = 0.591 +0.0058
0.3 0.0025 I 0.590 +0.0020
0.2 0.0024 x 0.589 -0.0018
0.1 0.0024 0.588 ~0.0021

“Equation (7.16) is subject to the limitations H /P < 2.0, H, >0.03m, L > 0.15mand P > 0.10 m.

Example 7.3 | 5 5 o.m wide rectangular channel has a contracted rectangular
weir of 1.500-m length and 0.60-m height. What would be the depth of flow upstream

of the weir when the flow through the channel is 0.350 m3/s?
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Solution In this case L — E = 0.75. From Table 7.1,

B 200

K_= 0.0042, K, = 0.001, K, = 0.596 and K, = 0.0375.
L, =L + K = 150 + 0.0042 = 1.5042 m

As a trial-and-error procedure is needed to calculate H,, assume C, = 0.60 for the
first trial. From Eq. 7.16

HY? = 0.350 /

H, = 0.2584 m, H, = 0.2584 — 0.001 = 0.2574 m

%x 0.60x+/19.62 x1.5042 | = 0.13133

H, /P = 0.2574
0.60

=0.429 and from Eq. 7.17
C,= 0.596 + (0.0375 x 0.429) = 0.612

2nd iteration: Using the above value of C

HY? = 0'13123 % 0.600 = 0.128755

H, = 0.255m, H = 0.254 m, H./P= 0.4233 and
C,. = 0.612 which is the same as the assumed value.

Hence the final values are H, = 0.254 mand C,. = 0.612.
Upstream depth =H, + P = 0.254 4- 0.600 = 0.854 m

The water surface on the upstream will be at a height of 0.854 m above the bed.

7.2.7 Non-Rectangular Weirs

Sharp-crested weirs of various shapes are adopted for meeting specific requirements
based on their accuracy, range and head-discharge relationships. The general form of
head-discharge relationship for a weir can be expressed as Q = KH,", where K and n
are coefficients. The coefficient n depends upon the weir shape and K depends upon
the weir shape and its setting. The discharge equations for some commonly used weir
shapes are given in Table 7.2.

A variety of sharp-crested weir shapes have been designed to give specific head-
discharge relationships and are described in literature®. A type of weir for which the
discharge varies linearly with head, known as Sutro Weir finds use in flow measure
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Table 7.2 Discharge Relationships for some Commonly Used Non-Rectangular
Thin-Plate Weirs

Shape Discharge
3 f
H 5/2
Triangular v 1 o= fS Cq ‘/Z tan 6 H,
V % Cy=1n(0)
P For 20 =90°,C4 = 0.58

Circular

1@ Q=Cy 6d25, ¢ —f(Hy/d), Cy=f (Hy/d)

le— d —i

je—— B —~

le— O—te I >

Parabolic Jil Q=1 rc Jk2gH?
:
1
i T 2 3/2 4
Trapezoidal ‘ Tl Q= §Cd ~/ 29 Hi (L;L+€Hl tan 9)
=Ly~ 0
P
i

ment of small discharges and in automatic control of flow, sampling and dosing
through float operated devices.

The details of some special sharp-crested weirs are given in the next section.

7.3 SPECIAL SHARP-CRESTED WEIRS
7.3.1 Introduction

This section deals with special sharp-crested weirs designed to achieve a desired
discharge-head relationship. These are also sometimes called proportional weirs
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(P-weirs). Since the flow over a P-weir can be controlled easily by float-regulated
dosing devices, these are widely used in industry and irrigation.

Given any defined shape of weir, the discharge through it can be easily deter-
mined, e.g. in the case of a rectangular weir, the discharge is proportional to h*?, and
in the case of a triangular weir (V-notch) the discharge is proportional to h%?, etc.,
where h is the head causing flow. The reverse problem of finding the shape of a weir
to have a known head-discharge relationship constitutes the design of proportional
weirs. The design of proportional weirs has considerable applications in hydraulic,
environmental and chemical engineering.

7.3.2 Linear Proportional Weir

The linear proportional weir, with its linear head-discharge characteristic is used as
a control for float-regulated dosing devices, as a flow meter and as an outlet for grit
chambers (sedimentation tanks). The linear proportional weir was invented by
Stout (1897). This weir is only of theoretical interest as its width at base is infinite.
This was improved by Sutro (1908) to develop a practical linear P-weir and is well-
known as the Sutro weir. Referring to Fig. 7.7, the Sutro weir has a rectangular
base over which a designed shape is fitted. It is found that for flows above the base
weir the discharges are proportional to the heads measured above a reference plane
located at one-third the depth of the base weir. Referring to Fig. 7.7.

Q_b[h+§a] (7.18)

where b = the proportionality constant.

Weir Crest
Fig. 7.7 Deﬁnition sketch cj‘]inear weir proportional weir
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7.3.3 Shape of the Sutro Weirs

Referring to Fig. 7.7, let the weir have the base on a rectangular weir of width 2wW
and depth a. For convenience, the horizontal and vertical axes at the origin O are
chosen as y and x-axes respectively. The weir is assumed to be symmetrical about
the x-axis.

The discharge through the rectangular weir when the depth of flow is h above the
origin is

4
q, = WC, J2g[(h+a)*? —h¥?] (7.19)

where C, = coefficient of discharge.
The discharge through the upper portion above the origin called the complimentary
weir is

g, = 2C,\29 foh,/h— X f(x)dx (7.19a)

The total discharge through the weir is

Q=q,+q,
We wish this discharge to be proportional to the head measured above the refer-
ence plane situated % above the crest of the weir. This reference plane is chosen

arbitrarily by Sutro for mathematical convenience. Thus
Q = ql + qz

:gwcd\/@[(h +a)? —h¥2] 4 2c,\2g [Jhx f(xdx

:b[h+2—3a] for h>0 (7.20)

where b is the proportionality constant.

As there is no flow above the base weir when h = 0, we have by substituting h = 0
in Eq. 7.20

b=WKa' (7.21)
where K = 2C,+/2g

Substituting this value of b in Eq. 7.20

%W [(h+a)3’2—h3’2]—|—j;h\/h—x f(x) dx:Wa”z[h+%

Re-arranging,

~——

(7.22)

foh\/h—x f(x) dx = Wa'? [h+%]—§w [(h-+a)"* —h*?]
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2 2 2
—W|2a¥ £ a?h+ Zh¥2 — Z(a+h)¥?
3 3 3( )
= %W \hm —ga’mhz +%a’3’2h3 7%61,5/%4 + } (7.22a)

It is required to find the function f(x) such that Eq. 7.22a is satisfied for all positive
values of h. This is achieved by expressing f(x) in a series of powers of x and deter-
mining their coefficients. A general term x™ in f(x) results in a term

L/;h\/h—xxm dx:j;hxm[hl’z—%h1’2X+%h3’2x2—...] dx

= Const (h)m+ ¢ (7.23)

so that the first term in Eq. 7.22a can be obtained by a constant term in the series for
f(x) and the other terms by taking m half an odd integer. Consequently we assume,

FOO=y=A+A X2+ AX + A x4 (7.24)

Substituting this in Eq. 7.22a

j;h(A&\/h7X+AZ\/hX7X2 +...)dx

_ ﬂhm n TAN n nAh® n 57Ah* n
3 8 16 128

— %W {h3/2 _ga—HZhZ _|_
This leads to
A=W
A2 — _ga—I/ZW
Vs
2 -3/2
=—a "W
A 3T
and so on.

Substituting these coefficients in Eq. 7.24

2 X1/2 X3/2 X5/2
f(X) =W 1—;[F—W+5a7—
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=W 1—Etan1\/Z (7.25)
T a
The discharge equation for the Sutro weir can now be summarised as
2 a
Q=hb h+§a =b H—§ =bH, (7.26)

where b =WKa"?and K = 2C, J2g
H = depth of flow in the channel. (It is usual practice to make the crest of the
base coincide with the bed of the channel)
h = head measured from the top of the rectangular base weir
H, = depth of water over the datum.

The sharp edged Sutro weir is found to have an average coefficient of discharge
of 0.62.

A simple weir geometry, called quadrant plate weir, which has the linear head-
discharge relationship is described in Ref. 7. This weir has the advantage of easy fab-
rication and installation under field conditions. Linear proportional weirs having
non-rectangular base weirs are described in Ref. 8 and 9.

Example 7.4 | 5 gtro weir has a rectangular base of 30-cm width and 6-cm

height. The depth of water in the channel is 12 cm. Assuming the coefficient of dis-
charge of the weir as 0.62, determine the dischage through the weir. What would be
the depth of flow in the channel when the discharge is doubled? (Assume the crest of
the base weir to coincide with the bed of the channel).

Solution Givena=0.06 m, W=0.30/2=0.15m,H=0.12m
K =2C,/20 =2x0.62x~/2x9.81 = 5.492¢F

b =W K a2 = 0.15x5.4925x (0.06)*2 = 0.2018

FromEq.7.26 Q= b[H —%

= 0.2018[0.12 —0—26J =0.02018m*/s

= 20.18 litres/s

When the discharge is doubled, Q = 2x0.02018 = 0.04036 m*/s
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From Eq. 7.26, 0.04036 =0.2018 [H —0—26]

H=0.2+0.02=0.22m

=22cm

Example 7.5 Design a Sutro weir for use in a 0.30-m wide rectangular chan-
nel to have linear discharge relationship in the discharge range from 0.25 m to 0.60

mé/s. The base of the weir will have to span the full width of the channel.
Assume C, = 0.62.

Solution Here 2W=0.30 m. and C, = 0.62.

K=2C, 29 =2x0.62x+/2x9.81 = 5.49

Qun = %WK a¥? =0.25

g % 0.15 x 5.49 x a** = 0.25

a=0.592m
b=WK+/a = 0.15x5.49x~/0.592 = 0.6337
Q=bH,
For Q = 0.60 m¥/s, H, = Q_ 060 ;o468 m
b 06337
a 2 .
=H —§:h+§a (Refer Fig. 7.7)

H = 1.1444 m and h = 0.0552 m.
Using Eq.7.25, the profile y = f(x) is calculated as

1— Etan’1 X
T 0.592

y="f(x)=0.15

7.3.4 General Equation for the Weir
Cowgill® and Banks® have shown that the curve describing the weir producing a dis-
charge Q = b h™for m > 1/2 is given by
b I'(m+1)
= X) = . .
y=yx) 2C,+2gm T'(m=1/2)

(x)m 2 (7.27)
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when Q = fzcd f(x)y/29 (h— x) dx

where h = head measured above the crest of the weir
X, ¥ = coordinates along vertical and horizontal axis respectively
b = a coefficient of proportionality
C, = coefficient of discharge of the weir
I' = gamma function.
The relationship between the exponent m and the profile of the weir is shown in
Fig. 7.7-A.

m=1.0
m = 3/2

(e}
Fig. 7.7A Weir profiles for different values of exponent m

It is clear from Eq. 7.25 that an attempt to design a weir producing a discharge
proportional to h™ for m < 3/2 inevitably leads to a curve which will be asymptotic at
the base giving rise to infinite width, which is physically unrealizable. The linear
proportional weir (m = 1) is one such case. Sutro overcame this defect by the inge-
neous method of providing a rectangular base. A rational explanation for the selec-
tion of the datum was provided by Keshava Murthy®213 which is enunciated in the
theorem of slope discharge continuity.

The slope-discharge-continuity theorem states: ‘In any physically realizable weir
having a finite number of finite discontinuities in its geometry, the rate of change of
discharge is continuous at all points of discontinuity.” Physically this means that the
curve describing the discharge versus the head for any compound weir cannot have
more than one slope at any point. This is clear as otherwise it would mean, theoreti-
cally, there could be more than one value for the discharge in the infinitesimal strip
in the neighbourhood of the discontinuity which is physically meaningless. The proof
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of this theorem which is based on the use of the theorem of Laplace transforms is
beyond the scope of this book.

The P-weir consists of a known base over which a designed complimentary weir
is fixed. Each weir is associated with a reference plane or datum which is determined
by evaluating a new parameter \ called the datum constant by the application of
slope discharge-continuity theorem. The problem of design of P-weirs is solved by
the technique of solution of integral equations. This is explained by the design of
quadratic weirs in the following section.

7.3.5 Quadratic Weir-notch Orifice

A quadratic weir is a proportional weir in which the discharge Q is proportional to the
square root of the head h. This weir has applications in bypass flow measurement.

ot
s |
©
< |
V I
= I'=
|
|
|
|
y =f(x)
! ~ h
I . .
Base weir | Complimentary weir
|
|
| y-axis
Ny A
[ a

| w |
Fig. 7.8 Definition sketch

It is evident from the general Eq. 7.27 that an attempt to design a weir to pass a
discharge proportional to h™, for m < 3/2 inevitably leads to a curve having infinite
width at the bottom which is physically unrealizable. In order to obviate this, the
quadratic weir is provided with a base in the form of a rectangular weir of width 2W
and depth a, over which a designed curve is fitted (Fig. 7.8).

Referring to Fig. 7.8 the weir is assumed to be sharp-edged and symmetrical over
the x-axis. When the flow is h above the base, the discharge through the rectangular
weir, below the y-axis, is

G = %WK (h+a)™ — 2] (7.28)

where K = 2C, /29, C, = the coefficient of discharge. The discharge from the
complementary weir above the origin is

6, =K " Jh=x £ (s)dx (7.282)
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Total discharge Q = q, + g,

_ %WK[(h+a)3/2—h3/2]+ Kfohw/h—x () dx (7.29)

We wish to have the discharge Q = b+/h+ \a, where b is the proportionality constant
and X is the datum constant. In other words, the discharge is proportional to the square
root of the head measured above a reference plane. The constants b and ) are to be
evaluated. They are determined by the two conditions of continuity of discharge and
the requirement of the slope discharge continuity theorem. Rewriting Eq. 7.29

Q= 2WK[(h+)" —h*7 ]+ [ =X F(dx

=hJh+)a for h>0 (7.30)

When h = 0, there is no flow above the base weir. Hence, substituting h = 0 in Eq.
7.30

%WKam =bV)a (7.31)

Differentiating Eq. 7.30 on both sides by using Leibnitz’s rule for differentiating
under the integral sign, and re-arranging

W {(h+a)”2 —hl’z] —o(h)  (7.32)

S —
Jﬁ K h+Aa

Applying the slope-discharge-continuity theorem, i.e, putting h = 0 in Eq. 7.32. we have
b

= 2Wa''? (7.33)
Ky/\a
Solving Equations 7.31 and 7.33
A= 1 and b= iWKa (7.34)
3 3 '

The reference plane for this weir is situated at 2—; above the crest of the weir. Equation

7.32 is in the Abel’s form of integral equation whose solution is®:

y=f(x f

Substituting for ¢'(h)



314 Flow in Open Channels

(7.35)

0
%
o Z
_2.. 1/ x a
y:Wl 7 tan ]\'/;_?
%)
a
Hg=h+2
d 3 .
0 y—axis
a
Datum 3
I
weircrest/ I w |

Fig. 7.9 Quadratic weir

orifice for all practical purposes. As this weir gives discharges proportional to the
square root of the head (measured above the reference plane), both while acting as a
notch as well as an orifice, this device is also called a notch-orifice.

The discharge equation for the quadratic weir can now be written as

Q:b\/h +§:b\/[H —%a

where b = 2 WKa and K = 2C,/2g

NE

and h = depth of flow above the rectangular base
H, = head above the reference plane
H = depth of flow

= bvHe (7.36)
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Quadratic weirs having non-rectangular lower portions (base weirs) are described
in detail in Ref. 14.

The quadratic weir has an average coefficient of discharge of 0.62. In a quadratic
weir the error involved in the discharge calculation for a unit per cent error in head is
only 0.5 per cent as against 1.5% in a rectangular weir and 2.5% in a \-notch. Hence
this is more sensitive than the rectangular weir and V-notch.

Example 7.6 |\ qadratic weir is designed for installation in a rectangular

channel of 30-cm width. The rectangular base of the weir occupies the full width
of the channel and is 6 cm in height. The crest of the base weir coincides with the
channel bed. (a) Determine the discharge through the weir when the depth of flow in
the channel is 15 cm. (b) What would be the depth of flow upstream of the weir when
the discharge in the channel is 25 litres/s? [Assume C, =0.62].

Solution Given:a=0.06 m, W=0.30/2=0.15m,H=0.15m

K =2C,2g — 2% 062 /2 x 981 = 54925

b= iW Ka= 2 x 0.15x 5.4925 x 0.06 = 0.05708

V3 V3

From Eq. (7.36), Q = b [H _2_;

(@ Q=0.05708 x|0.15 —

2% o.oe]r’2

= 0.0189 m¥/s = 18.93 litres/s
(b) When the discharge Q = 25 litres/s = 0.025 m®/s

1/2
From Eq. (7.36), 0.025 = 0.05708x[H _[ZXO-OG]]

H=0.1918 + 0.04 = 0.2318 m
=23.18cm

7.3.6 Modelling of Flow Velocity using Special Weirs

In many hydraulic engineering situations, it is desirable to maintain a constant aver-
age velocity in a channel for a range of flows. A typical example of this situation is
the grit chamber used in waste water treatment. To obtain such a control of the veloc-
ity of flow in the channel, proportional weirs can be used at the outlet of the channel.
The channel cross-section shape, however, will have to be determined. This, in turn,
depends upon the shape of the outlet weir and the relationship between the upstream
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head and velocity. Design of such channel shapes controlled by a weir at the outlet is
described in references 8 and 15. It is interesting to note that a linear proportional
weir, such as a Sutro weir, fixed at the end of a rectangular channel ensures constant
average velocity in the channel irrespective of the fluctuations of the discharge.

7.4 OGEE SPILLWAY
The ogee spillway, also known as the overflow spillway, is a control weir having an

ogee (S-shaped) overflow profile. It is probably the most extensively used spillway
to safely pass the flood flow out of a reservoir.

""" Energy line
Energy =
head ~Head
—_—
Straight
. face
Vertical N
u/s face s 3
River bed Reverse curve at the toe
Fig. 7.10 Typical ogee spillway
%
Hs1 hg
=0.11 Hgy
Ogee
spillway

Equivalent sharp
crested rectangular
weir

Fig. 7.11 Lower nappe as a spillway proﬁ]e

A typical ogee spillway is shown in Fig. 7.10. The crest profile of the spillway is
so chosen as to provide a high discharge coefficient without causing dangerous cavi-
tation conditions and vibrations. The profile is usually made to conform to the lower
nappe emanating from a well-ventilated sharp-crested rectangular weir (Fig. 7.11).
This idea is believed to have been proposed by Muller in 1908. Such a profile assures,
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for the design head, a high discharge coefficient, and at the same time, atmospheric
pressure on the weir. However, heads smaller than the design head cause smaller tra-
jectories and hence result in positive pressures and lower discharge coefficients.
Similarly, for heads higher than the design head, the lower nappe trajectory tends to
pull away from the spillway surface and hence negative pressure and higher dis-
charge coefficients result.

For a high spillway (H_/P)= 0, it is found experimentally that the spillway apex
is about 0.11 H_, above the equivalent sharp-crested weir crest (Fig. 7.11). The design
head for the spillway is then h,= 0.89 H_,. Considering the discharge equation with
suffix ‘s’ for an equivalent sharp-crested weir

q= %C(,S\/EHQ’2 (for the sharp-crested weir)

and q= %Cdl\/ﬁ h3' (for the overflow spillway)

itis easy to see that C,, = 1.19 C_, i.e. the ogee spillway discharge coefficients are numeri-
cally about 20 per cent higher than the corresponding sharp-crested weir coefficients.

7.4.1 Uncontrolled Ogee Crest

If there are no crest gates over them, such spillways are designated as uncontrolled
spillways. The crest shapes of uncontrolled ogee spillways have been extensively
studied by the US Bureau of Reclamation, and accurate data relating to the nappe
profiles, coefficient of discharge and other information pertinent to spillway design
are available®. Considering a typical overflow spillway crest (Fig. 7.12), the profile
of the crest downstream of the apex can be expressed as'®

y [ X ]n
2 K|= (7.37)
H, d
- _} __________ Energy line
V2/2g
h
l .
Eq. (7.38) —

Y _k[X)\n
P Hg Hg
O = Origin of coordinates Eq. (7.37)

and apex of crest

Fig. 7.12 Elements of a spillway crest
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in which x and y are the coordinates of the downstream curve of the spillway with the
origin of coordinates being located on the apex, H, = design energy head, i.e. design
head measured above the crest to the energy line. K and n are constants and their
values depend upon the inclination of the upstream face and on the velocity of
approach. For low velocities of approach, typical values of K and n are

Upstream face K n

\ertical 0.500 1.850
1 Horizontal : 1/3 vertical 0.517 1.836
1 Horizontal : 1 vertical 0.534 1.776

The crest profile upstream of the apex is usually given by a series of compound
curves.

Cassidy? reported the equation for the upstream portion of a vertical faced spill-
way as

1.85

d d d

0.625
HL - 0.724[Hi +0270| - 0.432[Hi + 0.270] +0.126 (7.38)

This is valid for the region 0> Hi >—-0.270 and0 < HL < 0.126 . The same co-
ordinate system as for the downstredam profile (Eq. 7.37) isdused for Eq. 7.38 also.

Since the hydraulic characteristics of the approach channel vary from one spill-
way to another, it is found desirable to allow explicitly for the effect of the velocity
of approach in various estimations related to the overflow spillway. With this in view,
the expression for the design discharge Q, over an ogee spillway at the design head
is written as

Q, = écw@ L, H? (7.39)

in which H, = design-energy head (i.e., head inclusive of the velocity of approach
head), C,, = coefficient of discharge at the design head and L, = effective length of
the spillway. If H) = any energy head over the ogee spillway, the corresponding dis-
charge Q can be expressed as

Q :%coﬁ L, H? (7.40)
where C, = coefficient of discharge at the head H,. In general, C; will be diffe-
rentfromC_ . IfH /H,>1.0then C /C > 1.0. If on the other hand, H /H, < 1.0. then
C,/C,,< 1.0. By definition, if H,/H,= 1.0, C /C ;= 1.0

The discharge coefficients C and C, are both functions of P/H_ and P/H, respec-
tively, and of the slope of the upstream face. For a vertical faced ogee spillway,
the variation of C, with P/H is shown in Fig. 7.13 (Ref. 18). It is seen that for
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Fig. 7.13 Jariation (fC{IO with P/Hd

P/H,> 2.0, i.e. for high overflow spillways, the coefficient C  is essentially constant at a
value of 0.738. For spillways of small heights and high energy heads, i.e. for P/H, < 1.0,
the value of C, decreases with P/H, reaching a value of 0.64 at P/H, = 0.10.

The analytical modelling of the spillway flow has been attempted by many
investigators. Cassidy® has calculated the coefficient of discharge and surface
profiles for flow over standard spillway profiles by using the relaxation technique
in a complex potential plane. Ikegawa and Washizu® have studied the spillway
flow through the finite element method (FEM) by making considerable simplifica-
tion of the basic problem. Diersch et al.?* have given a generalised FEM solution
of gravity flows of ideal fluids and have studied the variation of C, with H /H, for
a spillway of P/H, = 4.29.

Several experimental data are available on the variation of C,. It is found that C /C
is essentially a function of H /H, as indicated in Fig. 7.14. It is seen that C / C
increases continuously with H /H . Experiments by Rouse and Reid"’, Cassidy",
Schirmer and Diersch® and the FEM studies of Diersch have revealed that the dis-
charge coefficient ratio C,/ C, continues to increase with H /H, ,as shown in Fig. 7.14
up to a certain maximum value of head ratio (H,/H,) .. The increased discharge coef-
ficientat (H,/H,) > 1.0 is due to the occurrence of negative pressures on the crest. At
sufficiently high negative pressures, separation of the boundary layer from the crest
and consequent decrease in the flow efficiency results. Also, if the minimum negative
pressures approach the vapour pressure, cavitation can occur. The maximum head
ratio (H,/H,),, thus corresponds to the onset of separation, and its value is known to
depend to a small extent on P/H,. Experimental studies'” have shown that there is no
possibility of separation and also no pressure fluctuations of any consequence would
occur in the overflow spillway operation with H /H, < 3.0, the inception of cavitation
is the only problem to be guarded against.
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Fig. 7.14 Variation of C,/C, with (H /H )

It is seen that the overflow spillway, when working at 1< H /H, < (H,/H,), , has
the desirable feature of higher values of the discharge coefficient C . This feature can
be advantageously exploited in the spillway design. As maximum possible flood flow
over a spillway is a rare event, the spillway profile can be designed to correspond to
a lower value of head such that at the maximum possible flood, H,/H, > 1.0. The
other structural features can of course be designed to safely accommodate the flood
flow. This ensures that the spillway will be functioning at a higher average efficiency
over its operating range. When the maximum flood flow occurs, the spillway will
perform at a head more than the design head, and consequently, with an enhanced
efficiency. This practice of designing is called underdesigning of the spillway.

The use of H and H,the energy heads, in the discharge equation is not very con-
venient for discharge estimation. Usually, the value of V” / 2g is very small relative

to the upstream head h , where h, = (H0 —V} /29). For spillways with h /P <0.50,
the velocity of approach can be assumed to be negligibly small and the relevant head
over the crest up to the water surface can be used in place of the energy head, i.e. h;
and h, can be used in place of H, and H, respectively.

To approximately estimate the minimum pressure on the spillway P_, for opera-
tions higher than the design head, the experimental data of Cassidy'’ in the form

P =-1.17

vH

H, 1] (7.41)

d

can be used. This equation is valid in the range of H,/P from 0.15 to 0.50.

Example 7.7 | pp overflow spillway is to be designed to pass a discharge of

2000 m¥/s of flood flow at an upstream water-surface elevation of 200.00 m. The crest
length is 75.0 m and the elevation of the average stream bed is 165.00 m. Determine
the design head and profile of spillway.



Rapidly Varied Flow-2 321

Solution A trial-and-error method is adopted to determine the crest elevation.

Discharge per unit width g, = %20 = 26.67 m3s/m. Assume C, = 0.736.

)3/2

2
By Eq. 7.39 q, :§Cdo 29 (H,

26.27 = %(0.736)\/19.62 (Hy )"

H,=5.32m
Velocity of approach V, = — 3 — 26.67
P-+h, (200.00—-165.00)
=0.762 m/s

2

h,= Y& —0,0296~0.03m
29

a

Elevation of energy line = 200.03 m
Crest elevation =200.03 — 5.32 = 195.71m
P =195.71 — 165.00 = 30.71m

PH, = 27 _5 77
5.32

For this value of P/H, from Fig. 7.13, C, = 0.738.

2nd iteration
H )" = 26.67 . H.=531m
(Ho) (2/3)(0.738)v19.62"

h, =~ 0.03. Elevation of energy line = 200.03 m
Crest elevation 200.03 — 5.31 =194.72m
P=194.72 — 165.00 = 29.72 m

P/H, = 5.60. For this P/H , from Fig. 7.13,C, = 0.738. Hence no more iterations are
required.

Design energy head H, = 5.31m
and crest elevation = 194.72 m

The downstream profile of the crest is calculated by Eq. 7.37, which for the present
case is
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1.8
Y _os0| X
5.31 5.31

The upstream profile is calculated by Eq. 7.38 which, for the range 0 < — x < 1.434,
is given as

0.625

1.85
Y _o724| X + 0270 — 0432 X + 0.270 + 0.126
5. 31 531

531

The apex of the crest at elevation 194.72 m is the origin of coordinates of the above
two profile equations.

Example 7.8 | In the spillway of Example 7.7 what would be the discharge if the
water-surface elevation reaches 202.00 m? What would be the minimum pressure on
the spillway crest under this discharge condition?

Solution h,=202.00-194.72 = 7.28 m
h, + P =202.00 - 165.00 = 37.00 m

Assuming the velocity of approach head h, = 0.05 m, the elevation of the energy
line = 202.05 m.

H,=202.05-194.72 = 7.33m

M1 g
H, 531

From Fig. 7.14, corresponding to H, _ =1.38, C— =1.04.
Hd CdO

Since C,,= 0.738
C,=0.768

zg J19.62 (0.768)(7.33)"* = 45.00 m¥/s/m

2
8500 oiemis, b, =Y ~0.08m
37.00 29

2nd iteration
Elevation of the energy line = 202.08
H, =202.08 - 194.72 = 7.36 m
ﬂ =1.386 & =1.04 from Fig. 7.14,

d do
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C,=0.768
q= % V19.62 (0.768) (7.36)"" = 45.28 m*/s/m

V., = 1.224 m and h, ~ 0.08 m which is the same as the assumed value at the
beginning of this iteration.
Hence

H,=7.36 m, q = 45.28 m¥s/m
Q =45.28 x 75 = 3396 m®/s

Minimum pressure
Using Eq. 7.41

Fo . 117(7.36)(1.386 1)
"

=-332m
The minimum pressure head over the spillway will be 3.32 m below atmospheric.

Example 7.9 | 5 snillway with a design height of 30.0 m above the river bed is

designed for energy head of 4.25 m. If a minimum pressure head of 4.0 m below
atmospheric pressure head is allowed, estimate the allowable discharge intensity
over the spillway.

Solution By Eq. 7.41 P :_1,17[i_1]
7H, H,

_A0 g ey
H, 4.25

HZ —4.25H, —1453 = 0

H
H,=6.49 mand —> = 6.49/4.25 = 1.527

d

From Fig. 7.15, 50 _1.06 and
do

P _5%9 ;06530

H, 425

Hence C,, = 0.738. Thus C; = 1.06 x 0.738 = 0.782
Allowable discharge intensity

q= % x 0.738 x +/19.62 x (6.49)*% = 36.0 m¥/s/m.
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Fig. 7. 15 Flow under a crest gate
7.4.2 Contractions on the Spillway

Very often an overflow spillway operates with end contractions. These contractions
occur due to the presence of abutments and piers on the spillway to carry a bridge.
Equation 7.40 is used to calculate the discharge at any head H,. The effective length
of the spillway L, is estimated by

L,=L-2(NK +K)H, (7.42)

in which L = actual length of the spillway, N = number of piers, K= peir
contraction coefficient and K_ = abutment contraction coefficient. The values of K
and K depend essentially on the geometry of the contraction-causing element in
relation to the flow. For preliminary studies, the following values are usually
adopted?.

Piers: (1) Square-nosed with rounded corners K, = 0.02
(ii) round-nosed K, =0.01
(iii) pointed-nosed K, = 0.00
Abutments: (i) Square with sharp corners K,=0.20
(ii) round entry corner K,=0.10

7.4.3 Spillway with Crest Gates

When spillways are provided with crest gates, they have to operate as uncontrolled
spillway under high flood conditions and with partial gate openings at lower flows.
At partial gate openings, the water issues out of the gate opening as an orifice flow
and the trajectory is a parabola. If the ogee is shaped by Eq. 7.37 the orifice flow,
being of a flatter trajectory curve, will cause negative pressures on the spillway crest.
These negative pressures can be minimised if the gate sill is placed downstream of
the apex of the crest. In this case the orifice flow will be directed downwards at the
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initial point itself, causing less difference between the ogee profile and the orifice
trajectory.

If the trajectory of the orifice flow with the gate sill located at the apex of the
crest is adopted for the spillway profile, the coefficient of discharge at the full-
gate opening will be less than that of an equivalent uncontrolled overflow
spillway.

The discharge from each bay of a gated ogee spillway is calculated from the fol-
lowing large orifice equation.

Qz%@Cng(Hjlz —H”?) (7.43)

where C = coefficient of the gated spillway, L, = effective length of the bay after
allowing for two end contractions, H, = energy head above the spillway crest and
H, = energy head above the bottom edge of the gate (Fig. 7.15). The coefficient of
discharge C, depends upon the geometry of the gate, gate installation, interference of
adjacent gates and flow conditions. For radial gates, an approximate value of the
coefficient of discharge C, can be expressed by using the USBR data®® as

H
C, = 0615 + 0104 L for A oss (7.44)

0 0

Example 7.10 || An overflow spillway with a 15-m crest above the stream bed
level has radial gates fitted on the crest. During a certain flow, the gate opening was
1.0 m and the water surface upstream of the gate was observed to be 2.5 m above the
crest. Estimate the discharge from a bay of 15-m length by neglecting end
contractions

Solution Referto Fig. 7.15.h, = 1.5 mand h, = 2.5m.
First trial: Assume h)= H and h, = H,

By Eq. 7.44 C = 0.615 + 0.104 x% =0.677

By Eq. 7.43 Q :% x 0.677 x15x V1962 x ((25)" - (L5)"") = 63.445 mls

2
Velocity of approach V, = 63445 =0.2417 m/sand v

-2 =0.003m.
(17.5x15) 29
Second trial: H, = 1.50 4 0.003 = 1.503 m

H, =2.50 + 0.003 = 2.503 m

C, = 0.615+O.104><% = 0.677 . No change from the assumed value.
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Q= g % 0.677 x 15 x +/19.62 x ((2.503)3’2 - (1.503)3’2) — 63.49 m¥s

In view of the very small change in the value of Q, no further trials are required.

7.5 BROAD-CRESTED WEIR

Weirs with a finite crest width in the direction of flow are called broad-crested
weirs. They are also termed as weirs with finite crest width and find extensive
applications as control structures and flow measuring devices. It is practically
impossible to generalise their behaviour because a wide variety of crest and
cross-sectional shapes of the weir are used in practice. In this section the salient
flow characteristics of only a simple, rectangular, horizontal broad-crested weir
are presented.

Figure 7.16 is a definition sketch of a free flow over a horizontal broad-crested
weir in a rectangular channel. This weir has a sharp upstream corner which causes
the flow to separate and then reattach enclosing a separation bubble. If the width B
of the weir is sufficiently long, the curvature of the stream lines will be small and the
hydrostatic pressure distribution will prevail over most of its width. The weir will act
like an inlet with subcritical flow upstream of the weir and supercritical flow over it.
A critical-depth control section will occur at the upstream end-probably at a location
where the bubble thickness is maximum.

Assuming no loss of energy between Sections 1 and 2 (Fig. 7.16), and further
assuming the depth of flow at Section 2 to be critical,

2

Y 3
H= 4+ ==
yc 29 2yc

V. =49y, and y_ :§H

Fig. 7.16 Definition sketch of a broad-crested weir
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The ideal discharge per unit width of the weir is

G = Ve¥e = % [%g] H¥* =1.705 H*? (7.45)
To account for the energy losses and the depth at Section 2 being not strictly equal
to the critical depth, the coefficient of discharge C, is introduced in Eq. 7.45 to get

an equation for the actual discharge g as
q=C,0,

=1.705 CH¥? (7.46)

and Q = gL, where L = length of the weir.

It may be noted that in connection with broad-crested weirs, L = length of the
weir measured in a transverse direction to the flow and B, = width of the weir mea-
sured in the longitudinal directon. Thus B, is measured at right angles to L. In sup-
pressed weirs L = B = width of the channel. This terminology is apt to be confusing
and as such warrants a clear understanding of each of these terms.

Since Eq. 7.46 is rather inconvenient to use as it contains the energy head H, an
alternate form of the discharge equation commonly in use is

Q :%Cd J29 LH? (7.47)

where H, = height of the water-surface elevation above the weir surface measured
sufficiently upstream of the weir face and C, = the coefficient of discharge.

If the upstream end is rounded, the separation bubble will not exist and
instead, a boundary layer will grow over the weir with the critical-depth con-
trol point shifting towards this downstream end. The flow over most part of its
crest will be subcritical. Considerable flow resistance from the upstream face
to the critical flow section exists, influencing the value of C,. The round-nosed
broad-crested weir is not dealt with in this section and the details on it are
available in Ref. 4.

7.5.1 Classification

Based on the value of H,/B the flow over a broad-crested weir with an upstream
sharp corner is classified as follows? 2,

1. H,/B, < 0.1: Inthis range the critical flow control section is at the downstream
end of the weir and the resistance of the weir surface plays as important role in
determining the value of C, (Fig. 7.17a).

This kind of weir, termed as long-crested weir, finds limited use as a reliable
flow-measuring device.

2. 0.1< H, /B, <0.35: The critical depth control occurs near the upstream end
of the weir and the discharge coefficient varies slowly with H, /B, in this
range (Fig. 7.17b). This kind can be called a true broad-crested weir.
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Fig.7.17 (a) Long-crested weir (Hl/BW <0.1)
(b) Broad-crested weir (0.1< H/B, < 0.35)
(c) Narrow-crested weir (0.35 < H, /B, <1.5)
(d) Sharp-crested weir (H, /B, >1.5)

3. 0.35<H,/B, < about 1.5: The water-surface profile will be curvilinear all
over the weir. The control section will be at the upstream end (Fig. 7.17c). The
weirs of this kind can be termed as narrow-crested weirs. The upper limit of
this range depends upon the value of H, /P .

4. H,/B, > about 1.5: The flow separates at the upstream corner and jumps clear
across the weir crest. The flow surface is highly curved (Fig. 7.17d), and the
weir can be classified as sharp-crested.

7.5.2 Discharge Coefficients, C,and C

From Eqs 7.47 and 7.46 the discharge coefficients C and C, respectively are given
as

Q Q
Cd =—— and Cdl B E—y (7.48)
A formal dimensional analysis of the flow situation will reveal that
H, H H k
C,(orC,)=f|—2,—% —L Re W, —~ 7.49
o (0r Co) L'B, P H, (7.49)
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in which Re = Reynolds number, W = Weber number and k /H, = relative roughness
of the weir surface. In most of the situations of practical interest with broad crested
weirs, the parameters Re, W, k /H, and H, /L have insignificant effect on C, (or C,)).
Hence for practical purposes,

C,(orC,)=f(H,/B and H,/P) (7.50)

Considerable experimental investigations have been conducted to study the varia-
tion of C, (or C,,) as indicated by Eq. 7.50. Lakshmana Rao* has given a good bibli-
ography on these studies. Govinda Rao and Muralidhar? on the basis of extensive
studies of the weir of finite crest in the range 0 < H, /B, < 2.0 and 0<H, /P <1.,
have given the following expressions for the variation of C:

1. For long weirs, H,/B, <0.1
C,=0.561 (H,/B,)** (7.51)

2. For broad-crested weirs, 0.1<H,/B, <0.35

C, =0.028(H, /B, )+0.521 (7.52)

3. For narrow-crested weirs, 0.45< H, /B, < about 1.5
Cy=0.120(H,/B,) +0.492 (7.53)

The upper limit of H, /B, in Eq 7.53 depends on H, /P.

Between cases 2 and 3, there exists a small transition range in which Eq. 7.52 pro-
gressively changes into Eq. 7.53. In this transition region Eq. 7.52 can be used up to
H,/B, <0.40and Eq. 7.53 for H,/B, > 0.40. It may be noted that Eq. 7.51 through
Eq. 7.53 show C, as a function of H,/B, only and the parameter H,/P has no
effect on C, in the range of data used in the derivation of these equations. Surya Rao
and Shukla* have conclusively demonstrated the dependence of C, on H,/P . As
such Equations 7.51, 7.52 and 7.53 are limited to the range 0 < H,/P <1.0.

Singer® has studied the variation of C_ for values of H, /B, upto1.5and H, /P
up to 1.5. For the range 0.08 < H, /B, <0.33 and H, /P < 0.54, the value of C,is
found to remain constant at a value of 0.848. For higher values of H, /B, aswell as
H, /P, the coefficient C , is a function of both these parameters.

7.5.3 Submerged Flow

It the tailwater surface elevation measured above the weir crest H, = (y, — P)
(Fig. 7.18) is appreciable, the flow over the crest may be entirely subcritical. The
discharge in such a case will depend upon both H, and H,. The submergence (modu-
lar) limit depends upon H, /B, and in the broad-crested weir flow range, it is of the
order of 65 per cent. At this value, the downstream water surface drowns the critical
depth on the crest. For submergences larger than the modular limit, the coefficient of
discharge (C, or C,,) decreases with the submergence ratio H, /H, ata rapid rate.
Compared to the sharp-crested weir, the broad-crested weir has very good submer-
gence characteristics.
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Fig 7.18 Submerged broad-crested weir flow

Example 7.11 || A broad-crested weir with an upstream square corner and span-
ning the full width of a rectangular canal of 2.0-m width is planned. The proposed
crest length is 2.50 m and the crest elevation is 1.20 m above the bed. Calculate the
water-surface elevation upstream of the weir when the discharge is (a) 2.0 m¥s and
(b) 3.50 m¥s.

Solution (a) Q = 2.0 m¥/s

Assume the weir to function in the broad-crested weir mode and hence assume
C, = 0.525 as a first guess. From Eq. 7.47

2.0 = % x 0.525 x 1/19.62 x 2.0 x H?
H.* =0.645 and H, =0.747m

L = 0.299. The assumption is OK.

W

, =0.028(0.299) +0.521 = 0.529

O UU|I

By Eq. 7.52

Substituting this C, value in Eq. 7.47
H¥? =0.640. H, = 0.743 m and from Eq. 7.52

C, =0.529
Hence the water-surface elevation above the bed=1.943 m.
(b) Q = 3.25 m¥/s

Since Q is higher than in case (a), it is likely that H /B, > 0.35. Hence assuming the
weir to function in the narrow-crested weir mode, the calculations are started by
assuming C,= 0.55.
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Istiteration C,= 0.55
From Eq. 7.28, 3.50 = §x0.55><\/19.62 x2.0xH"?

H
H¥?=1.077, H, =1.05m, B—l =042
The weir flow is in the transition region between the broad-crested and narrow-
crested weir modes. Hence, by Eq. 7.53

C,= 0.120 x (0.42) +- 0.492 = 0.534

2nd iteration Using C, = 0.534 in Eq. 7.47

H
HP'® =1.100, H, =1.071m, —* = 0429

w

From Eq. 7.53, C, = 0.543

H
3rd iteration H¥? = 1.091, H, =1.060 m, B—l =0.424

C, =0543

Hence, H, = 1.060 and the water-surface elevation above the bed is 2.260 m.

Example 7.12 || Show that for a triangular broad crested weir flowing free the
discharge equation can be expressed as

Q_ Cdltane |2 59H5’2

where H = energy head measured from the vertex of the weir, # = semi-apex angle
and C, = coefficient of discharge.

2

Solution H =y, +VL =1.25y,
29
4
ory, =—H
Yo =1
2 16 2 -
A=my = gtane H* where § = semi vertex angle.

F= V\/__lorv /Z_ng,z
9. 5

Q=C,VA

6 g 5/2
—C, tan0 H
Q= 25 @ \'5
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7.6 CRITICAL-DEPTH FLUMES

Critical-depth flumes are flow-measuring devices in which a control section is
achieved through the creation of a critical-flow section by a predominant width con-
striction. In practice, these are like broad-crested weirs but with a major change that
these are essentially flow-measuring devices and cannot be used for flow-regulation
purposes. A typical critical-depth flume consists of a constricted portion called the
throat and a diverging section. Sometimes a hump is also provided to assist in the
formation of critical flow in the throat (Fig. 7.19).

Rectangular

throat
B
L
Plan
Energy line
1%
1%
H, Jump
H,
P
L - Section

Fig. 7.19 Standing-wave flume

7.6.1 Standing-wave Flume

The critical-depth flume shown in Fig. 7.19 is known as a standing-wave flume or
throated flume. This flume can be fitted into any shape of the parent channel. The
throat is prismatic and can be of any convenient shape. Thus for a rectangular parent
channel, it is convenient to have a rectangular throat, and for a circular sewer, a cir-
cular throat is preferable. A hydraulic jump forms on the downstream of the throat
and holds back the tailwater. If the throat is submerged by the tailwater. subcritical
flow prevails all over the flume. It is usual to operate the flume in the free-flow mode
only, i.e. with the throat unsubmerged.

During the operation a critical depth is formed somewhere in the throat and as
such its discharge equation is similar to that of a broad-crested weir (Eq. 7.46).
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However, it is usual to relate the discharge to the upstream depth H, which can be
typically recorded by an automated float equipment.
Thus for a rectangular throat section, the discharge is given by

Q=C,BH,"” (7.54)

where C, = overall discharge coefficient of the flume= f(H,/L). For a well-
designed flume, C, is of the order of 1.62. It may be noted that in standing-wave
flumes, H, is the difference in the water-surface elevation upstream of the inlet and
the elevation of the crest at the throat. If the flume is submerged and the subcritical
flow prevails all over the flume, Eq. 7.54 is not valid and two depth measurements
are needed to estimate the discharge. Constriction flumes operating in the subcritical
flow range are called venturi flumes.

The modular limit (H, / H,) of standing wave flumes is high, being of the order
of 0.90. It is usual to take it as 0.75 to incorporate a small safety factor and to avoid
the region of transition from the free to submerged-flow mode.

Large varieties of standing-wave flumes with different types of modifications of
the basic type described above, resulting in different geometric shapes and corre-
sponding flow characteristics are in use*®. However, the basic favourable features of
all these throated flumes can be summarised as (i) low energy loss, (ii) rugged con-
struction, (iii) easy passage for floating and suspended material load, and (iv) high
modular limit. These features are responsible for extensive use of throated flumes as
flow-measuring devices in water-treatment plants and in irrigation practice.

Example 7.13 || (a) A standing-wave flume without a hump is to be provided in
a rectangular channel of bottom width =2.0 m, n = 0.015 and S, = 0.0004. A maxi-
mum discharge of 2.50 m¥/s is expected to be passed in this flume. If the modular limit
of the flume is 0.75, find the width of the throat. (Assume C, = 1.62.)

Solution ¢ = Qn - 2'5X<0'015) =0.29529

JS, B J0.0004(2.0)"

From Table 3A.1, Yo (corresponding to m=0) = 0.656 and normal depth
B

Y, = 1.312 m. This is the tailwater depth H,.

1.312
For a modular limit of 0.75, H, = o 1.749 m
Q 2.50
By Eq. 7.54, B, = =
Y ©OCH® 162x(1.749)"

=0.667 m

Example 7.14 || In the Example 7.12 compare the heading up of water surface
(afflux) due to the flume and also due to a suppressed free flowing sharp-crested weir.

Solution From Example 7.13 heading up (afflux) due to flume
=H -H,=1749-1312=0.47m.
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Sharp-crested weir

For free-flow operation, the crest of the weir should be at least 0.08 m above
the tailwater elevation. Hence P = 1.312 + 0.080 = 1.392 m.

1% trial: Assume C, = 0.650

ByEq.75 Q = % Cy\20 LW

h, = head over the crest
2 2.50

hf =3 =0.651,h =0.751m
—x0.65x2.0x~/19.62
3

% = 0.54 and by Rehbock equation (Eq. 7.7)

C, = 0.611 + 0.08(0.54) = 0.654

2nd trial Using C, = 0.654

W2 = 0.651 x 2020
0.654

—0.647, h =0.748m

h /P =0537 and c, =0.654

Hence, h,=0.748 m
Afflux =0.748 m + 1.392 - 1.312 = 0.828 m

7.6.2 Parshall Flume

The Parshall flume is a type of critical-depth flume popular in the USA. This flume
consists of a converging section with a level floor, a throat with a downstream slop-
ing floor and a diverging section with an adverse slope bed (Fig. 7.20). Unlike in the
standing-wave flume, the head (H,) is measured at a specified location in the con-
verging section. The discharge in the flume in the free flow mode is given by

Q=KH] (7.55)

where K and n are constants for a given flume. The dimensions of various sizes of
Parshall flumes are standardised and further details are available in references 4, 5,
25 and 26.

7.7 END DEPTH IN A FREE OVERFALL

A free overfall is a situation in which there is a sudden drop in the bed causing the flow
to separate from the stream bed and move down the step with a free nappe. The situa-
tion is analogous to the flow over a sharp-crested weir of zero height. A free overfall
causes not only a GVF profile in the subcritical flow, but also offers the possibility of
being used as a flow measuring device in all flow regimes.
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Fig. 7.20 Parshallﬂume

A typical free overfall is schematically illustrated in Fig. 7.21. The flow in the nappe
emerging out of the overfall is obviously affected by gravity. With the atmospheric pres-
sure existing above and below the nappe, the water-surface profile is a parabola. Due to
the need for continuity of the water-surface profile, the gravity effect extends a short dis-
tance on the water-surface profile behind the edge, causing an acceleration of the flow.
Also, at the brink, the pressure should necessarily be atmospheric at points F and F'.
This causes the pressure distribution at section FF' to depart from the hydrostatic-pres-
sure distribution and assume a pattern as shown in Fig. 7.21. At sections upstream of the
brink, the water-surface curvature gradually decreases and at a section such as 1, at a
distance x, from F, the full hydrostatic pressure is re-established. The result of this effect
of the free overfall is to cause a reduction in the depth from Section 1 in the down stream
direction with the minimum depth y, occurring at the brink. This depth y, is known as
the end depth or the brink depth.

In subcritical flow a critical section must occur if the flow has to pass over to
supercritical state. The critical depth y, based on hydrostatic pressure distribution
will occur upstream of the brink. In Fig. 7.21 Section 1 can be taken as the critical
section withy, =y . Then x, = x_. In supercritical flow, y; will be equal to the normal

depth,y, =,
7.7.1 Experimental Observations

Rouse?” was probably the first to recognise the interesting feature of the end
depth at a free fall. His experiments on the end depth for subcritical flow in a



336  Flow in Open Channels

Energy line
y
F’ Vy
E 0
Y1 v Vx
Ye
X
F
X
1 1

Pressure Az

Fig. 7.21 Definition sketch of the end depth

horizontal rectangular channel with side walls continuing downstream on either
side of the free nappe with atmospheric pressure existing on the upper and lower
sides of the nappe (confined nappe) indicated that y,=0.715y_. Since then a large
number of experimental studies have been conducted on a variety of channel
shapes and boundary conditions. Some of the important studies are summarised
in Table 7.3.

Table 7.3 Results of Experimental study on End Depth Ratio in Subcritical Flow in Horizontal
Channels

SI. No Shape End depth ratio Yo Variation Reference
Yo (approximate)

1 Rectangular Channel 0.715 + 2.0% 5,27,31
(Confined Nappe)

2 Rectangular Channel 0.705 + 2.0% 28,31
(Unconfined Nappe)

3 Triangular 0.795 + 2.0% 28

4 Circular 0.725 + 3.5% 29

5 Parabolic 0.772 +50% 28

In Table 7.3, the term unconfined nappe means that the side walls terminate at section
FF" and it is seen that this end constraint has the effect of decreasing y, / y_ values. For
subcritical flow. in horizontal, rectangular channels, y, / y_ = 0.705 for unconfined nappe
as against 0.715 for the confined case. It is interesting to note that the channel-roughness

magnitude does not have any significant influence on the value of Y. / Y. in the subcritical
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Fig.7.22 End-depth ratio in rectangular channels

flow range. The possible magnitude of error of the various experimentally determined
values of y,/ y_is also shown in Table 7.3.

For the supercritical flow cases, Delleur et al.% showed that the relative end depth
can be expressed as

Yo _ [S—O,channelshape] (7.56)
Ye S

For a given channel, the variation of Y, / Y, can be expressed as a unique function
of S, /S, The results of some experimental observations on rectangular channels
are indicated in Fig. 7.22. Similar variations of y, /Yy, with S, /'S, for triangular,
parabolic, circular and trapezoidal channels recorded in various experimental studies
are reported in the literature'. In experimental studies on large values of S /S, considerable
scatter of data, of the order + 10 per cent, is observed.

c

Experimental studies®* have shown that in subcritical flow X: s of the order of
Ye
3.0 to 6.0 and is a function of the Froude number of the flow. Further, if the brink

flow is not to be affected by the tailwater level, the drop Az (Fig. 7.21) should be
greater than 0.6 y_ (Ref. 5).

7.7.2 Analytical Studies

For the prediction of end depth, several analytical attempts have been made by earlier
workers. Most of them are based on the application of the momentum equation with vari-
ous assumptions, especially regarding the velocity and pressure distributions at the brink
section. In a typical momentum approach?2%32 the pressure force at the brink section is

expressed as P, = ije K,, when K, = a pressure-correction factor and y, = the
depth of the centre of gravity below the free surface at the brink section. The success of
the momentum equation to predict y, depends upon the proper choice of K, (the variation
of K, with the geometry of the problem has to be determined experimentally).
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The numerical solution of a two-dimensional ideal fluid-flow at a free overfall has
been attempted by some investigators through various finite difference schemes. An
excellent review of these studies on potential flow in a free overfall and a theory
describing such a flow is presented by Strelkoff et al.*® While it is possible to solve
the end-depth problem in a wide rectangular channel through advanced numerical
techniques, such as the finite-element method, the solution of the problem in chan-
nels of different shapes have to be tackled by alternative methods.

An elegant method which differs from the above two approaches has been
reported by Anderson®. Based on Anderson’s work, a generalised energy method
for the prediction of end-depth in channels of any shape is given by Subramanya3®
and is described below. This method is simple, does not need any coefficient and can
predict the end-depths to a remarkable degree of accuracy in a variety of
situations.

7.7.3 Generalised Energy Method for End Depth Prediction™

In a free overfall, the water surface is a continuously falling curve. The water surface
profile starts in the channel somewhere upstream of the edge, passes through the brink
and ends up as a trajectory of gravity fall. In deriving the general expression for the
end-depth, expressions for the curvature of the water surface are separately derived for
the channel flow as well as for the free overfall and matched at the brink.

(a) Curvature of the Channel Flow Consider a channel of any shape having a
free over fall (Fig. 7.21). The water surface curvature is assumed to be relatively small
and is assumed to vary linearly from a finite value at the surface to zero value at the
channel bottom. The effective piezometric head is then expressed by the Boussinesq
equation (Eq. 1-35) The water surface curvature is convex upwards and the specific
energy E at any section is given by Eqg. 1.41 as

2

\Y
E:hep-i-aa
By using Eq. 1.33 for hep
V2 1Viy(d?y
E=y+a—+=—2L|—2 7.57
y a2g 3 g [ NG (757)
. Q? 1Q% (d?y
ie. E=y+ +=——==VY|— 7.58
y QZQAZ 3 gA® | dx® (7.58)

Assume the specific energy E to be constant in the neighbourhood of the brink
and further assume o =1.0 for simplicity. The conditions at the brink section
(denoted by the suffix e ) is expressed, by non-dimensionalising Eq. 7.58 with respect
to the critical depth y,, as

E_Y, @ 1@ yd(y)

(7.59)

Yo Ve 20ATY. 3OATY. Yo d(xy.)|
Y =Ye
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Denoting the critical conditions by the suffix c,

A
ye/yc:n; AEZTC C:f(n) and Ee/yc:‘g

Remembering that Q° /g = A* /T, Eq. (7.59) can be simplified as

1 1 d*(y/y,)
e=n+="F(n)+=nf 77—C

y=1y,

(7.60)

The expression for the curvature of the channel water surface at the brink is from
Eq. 7.60,

d’(yly)|_ 3 [ 1 (7.61)
d(x/yc)z‘ nf (77){5 73 f (77)]
Y="VYe
(b) Overflow Trajectory Referring to Fig. 7.21, V, is x — component of the
velocity in the overflow trajectory and is given by
V, =V, cosd (7.62)

where V, = mean velocity at the brink inclined at an angle 6 to the horizontal. For a
gravity fall

dv, dv,
and —% = —g
dt dt

where V, =y - component of the velocity in the trajectory.

Vv
Since d_y:

¥
ax Vv,
2 2
d g =—g/V} = ——g'}
dx (V,A) cos*¢
2
- (7.63)
Q°cos 6
Q" _A
Noting that = — = Eq. 7.63 can be written as
g c
d’y T.A’ 1

x? A’cos? 6 y. f (n)cos® 6
Thus,

)l 1 (7.64)
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(¢) General Equation for End Depth Ratio For a continuous water surface
slope at (x =0,y =y,) Eq. 7.61 and Eq. 7.64 must be identical and as such

13 [E_ _lf()
f(n)cos’d  nf(n) EPRRY
Simplifying,
6= cos” 0 —21(3cos’ 0 —1)—3f (n)cos’ 0 =0 (7.65)

In the usual cases when @ is small, cos@ ~1.0,cos”*# ~1.0 and Eq. 7.65 simplifies to
6c —4n—3f (n): 0 (7.66)

This equation is the general equation relating the end-depth ratio » with the non-dimen-
sionalised specific energy at the brink and is based on the assumption of constancy of the
specific energy in the neighbourhood of the brink. To illustrate the use of Eq. 7.66, the
prediction of end-depth in exponential channels is presented in the following section.

7.7.4 End Depth in Exponential Channels

An exponential channel is defined as the one in which the area A is related to the
depth y as A=Ky?, where K and a are constants. It is easily seen that a =1.0,1.5 and
2.0 represents rectangular, parabolic and triangular channels respectively.

A

For exponential channels, T = o =Kay*" and $ = % (7.67)

A 1 1 2a 1
fln)="t— —=(y / = 7.68
(n)= ATy =R ) = (7.68)

Eg. 7.66 now becomes
31

6~y —> =0 (7.69)

The solution of Eq. 7.69 is now obtained for subcritical and supercritical channel
flows separately.

(1) Subcritical Flow If the flow upstream of the brink is subcritical, the critical
depth must occur before the end-depth. Assuming constant specific energy E between
the critical section and end section

2
O __, A
29 A 2T,

Since E, =y, +
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Al
TC yC

By substituting Eq. 7.67 for an exponential channel

1
e=1+-
2

em14 (7.70)
2a

Thus,for a given exponential channel shape (i.e. a = constant), ¢ is constant for sub-
critical flow.

Eqg. 7.69 now becomes

1 31
1+ —|—=4n———=0
2a] K an®

6

and can be solved for a given value of a . It is seen that for a given value of a , the
end-depth ratio # is a constant in subcritical flow and is independent of the flow
parameters like Froude number.

(ii) Supercritical Flow If the flow upstream of the brink is supercritical, the

normal depth Y, is less than y_and the critical depth does not exist in the profile
between y_and y,. Considering a section between y, and y_(Fig. 7.23)

E E 2
— 9—_0:ﬁ+ Q

Yoo Y. Yo 29A%Y,

2
Putting Yo _ 6 and, noting that Q_Tg =F’
Y. gA
2
e=0+-—2; A
2 T,
F 2
= 6—5—% f (6) (7.71)
Energy line
e
E T avd
Yooy _ T

Fig. 7.23 Free overfall in supercritical flow
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where  f(§)= A

TO yc
In an exponential channel f (§)=6/a (7.72a)
3 2a+l 2a+1
and Fr=2To_|Yel _ [1] (7.72b)
A) Tc yO 6
y 1
or y—o == m (7.72c)
c 0

Thus for an exponential channel having supercritical flow upstream of the brink, by
substituting Equations 7.72a, b and c in Eq. 7.71 it is seen that ¢ is a function of the
upstream Froude number F, given by

2
o % R (7.73)
FOZ 2a+1 2a
n="f(@F) (7.74)

End-depth ratios in Exponential Channels Using Eq. 7.69 along with appropri-
ate expression for ¢, [viz. Eq. 7.70 in subcritical flow and Eq. 7.73 in supercritical flow],
the value of the end-depth ratio n can be evaluated for a given flow situation. Table 7.4
gives the values of n for subcritical flows in rectangular, parabolic and triangular
channels evaluated by Eq. 7.69 along with the corresponding results obtained
experimentally.

Table 7.4 Comparison of End-Depth Ratios of 1) Obtained by Eq. (7.69)

Channel shape a n= Ye by Eq.(7.69)  Mean experimental Per cent under
c value ( Table 7.3) estimation
Rectangle 1.0 0.694 0.715 + 3.5% 2.9
Parabola 15 0.734 0.722 + 5.0% 4.9
Triangle 2.0 0.762 0.795 + 2.5% 4.2

Generally, the predictions are less by about 5% of the mean experimental values,
probably due to the neglect of frictional effects. Considering the nature of scatter of
experimental results, the prediction of n by Eq. 7.69 can be taken as satisfactory and
adequate.

Figure 7.24 shows the variation of the end-depth ratio  with F for supercritical
flows, in rectangular, parabolic and triangular channels, obtained by solving
Eq. 7.69. Detailed experimental data are not available to verify these predictions
completely. However, available data on triangular channels?” have shown the prediction
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Fig. 7.24 Variation of the end-depth ratio in supercritical flows

to be satisfactory. Satisfactory comparison of available data in rectangular channels
is shown in Fig. 7.22.

7.7.5 End Depth in Other Channel Shapes

The generalised energy method described in the earlier section is a simple and ver-
satile technique to predict the end-depth ratio n in both subcritical and supercritical
flow modes in prismatic channels of any shape. However, Eq. 7.66 and expres-
sions for € and f(n) may not always be simple expressions and may pose some
difficulty in the solution for 7. Subramanya and Keshavamurthy®" have used Eq.

. . . m . .
7.66 to estimate the end-depth ratio 7 as a function of mye for subcritical flows in

trapezoidal channels. The available data substantiate the high degree of accuracy
of this prediction.
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Subramanya and Niraj Kumar®® have used the generalised energy method (Eq.
7.66) to predict the end-depth in subcritical flows in circular channels as = f(y_/D).
It has been shown that 7 is essentially constant at 0.73 in the entire practical range of
y./D viz. 0 <y /D < 0.8. This compares very well with the value of » = 0.725 & 3.5%
obtained by Rajaratnam and Muralidhar?. Niraj Kumar® has reported extensive use
of Eq. 7.66 to predict the end-depth ratio n in a variety of channel shapes including
elliptical sections, inverted trapezoidal sections and standard lined triangular canal
section.

Numerous applications of the generalized energy method to solve end depth ratio
in a variety of channel shapes has been reported in literature. Reference 48 gives a
review (as of 2002) of the research work on the topic of end depth in open channels
and contains an exhaustive bibliography on the topic

Example 7.15 || A channel has its area given by A = ky® where k = a constant. For
subcritical flow in this channel estimate the ratio of the end-depth to critical depth.

Solution  This is an exponential channel with a = 3.0. For subcritical flow by Eq. 7.70
1
e=14+—=1.167
2a

1 11
By Eq. 7.68, f(n) = SEa

n
The general equation of end depth Eq. 7.66 is

6c —4n—3f (n)zO

Substituting for  and f(n),(6x1.167)—4n —gis =0
n
i.e. is+477—7 =0
n
Solving by trial and error n=y,/ly, =0.80.

Example 7.16 || A rectangular channel carries a supercritical flow with a Froude
number of 2.0. Find the end-depth ratio at a free overfall in this channel.

Solution  In supercritical flow, for an exponential channel, ¢ =f (a, F))
Here a=1.0

By Eq. 7.53 E=——7
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1 2
= P 1+(2X1)]:1.89
11
By Eq. 7.68, f(n)—ﬁzn—z

The general equation of end-depth, Eq. 7.66 is

6e—-4n-f(n)=0

3
Substituting for  and f(n),6x1.89—47n— ol
ie. 472-1134+3=0
Solving by trial-and-error, n=y,ly, = 0.577.

7.7.6 End Depth as a Flow-Measuring Device

The unique relationship for y /y_for a given channel at a free overfall has given end
depth the status of a flow meter. For flow-measurement purposes, the end section
should be truly level in the lateral direction and must be preceded by a channel of
length not less than 15y_. The overfall must be free and where it is confined by side
walls, the nappe well ventilated. The accuracy of measurement is better if the slope is
flat, i.e. as near to being a horizontal bed as possible. The depth should be measured
at the end section on the channel centreline by means of a precision point gauge.
In subcritical flows for a given channel shape a constant value of y_/y_ as given in
Table 7.3 (or as obtained by using the general equation for end depth, Eq. 7.66) is
used to estimate the discharge for a given y,. The general accuracy of flow-measure-
ment by the end depth method is around 3 per cent in subcritical flows.

International organization for Standards, Geneva, Switzerland has brought out
two standards; 1SO 3847 (1977) and ISO 4371 (1984) for end depth method of flow
measurements in rectangular channels and non-rectangular channels respectively.
The website http://www.Imnoeng.com contains details of 1ISO 3847 and 4371 proce-
dures and free softwares for calculation of discharge for a known end depth in rect-
angular, triangular and circular channels.

In supercritical flows y /y_ = fn(F ) and as such two depths y, and y, are needed
to estimate the discharge. In view of this, the end-depth method is not advantageous
in supercritical flows.

Example 7.17 || Estimate the discharges corresponding to the following end-
depth values in the following horizontal channels. [Assume the flows to be sub-
critical and use the end depth ratio values given in Table 7.3].
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Channel shape Property End depth (m)

Rectangular Bed width =2.5m 0.70 m, Confined
nappe

Triangular Side slope =15H:1V 0.55m

Circular Diameter = 0.90 m 0.40 m

Solution (i) From Table 7.3 for a rectangular channel having a confined nappe at
the free fall,

y,/y.=0.715
y, = 0.70/0.715 = 0.979

1/2

1/2
q=[oy’]" = |9.81x(0979)’| = 3.034 m’/s/m

Q=25 x 3.034 = 7.585 m¥/s

(if) For a triangular channel from Table 7.3,
y,/y=0.795
y, = .0.55/0.795 = 0.692
_gm?y®  (9.81)x(L5) x(0.692)°

2 = =1.751
Q 2 2

Q = 1.323m%/s

(iii) For a circular channel from Table 7.3,
y,ly,=0.725
y. = 0.40/0.725 = 0.552, y_/ D = 0.552/0.90 = 0.613

From Table 2A-1, L =0.3637

\/6 D25

Q =0.875m%s

7.8 SLUICE-GATE FLOW

Gates in a variety of shapes and with different operational characteristics are used
for purposes of flow control. For their design information on the head-discharge rela-
tionship, pressure distribution and vibration characteristic is required. In this section
the head-discharge characteristic of a vertical sluice gate is dealt with in detail.
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7.8.1 Sluice Gate

A sluice gate consists of a vertical sliding gate operating within grooves in the

sides of the span. An ideal sharp-edged sluice gate in a horizontal rectangular

channel is indicated in Fig. 7.25 Note the sharp edge with a bevel in the down-

stream. This kind of gate is used for idealised studies as in laboratories, since

the sharp upstream edge provides a well-defined separation line for the flow. As

the water issues out of the gate open-

ing, the free surface converges rapidly

v till the fast stream attains a minimum

depth with flow lines parallel to the

bed. This minimum area section, called

vena contracta, occurs at a distance

Ho H; of about a from the plane of the gate,

where a is the height of the gate open-

ing. If the tailwater is not sufficiently

v high to submerge the vena contracta,

Y2 the flow, being independent of the tail-

water elevation, is designated as free-

Fig. 7.25 Definition sketch of free sluice flow. The flow Is subcrlt_lgal u_pstrear_n

gate flow of the gate and is supercritical immedi-

ately downstream of the gate when the

gate discharges under free-flow conditions. Referring to the vena contracta as

Section 2, the ratio of the depth y, to the gate opening a is called the coefficient
of contraction C, i.e.,

Energy line

y,=Ca (7.75)

Assuming that there is no entry loss between Sections 1 and 2 (Fig. 7.25) and
a, = a, = 1.0.
V2 V,?
H +- =y, +-2% (7.76)
29 29
Since the discharge per unit width q is given by the continuity equation as
q=H\V,=vy\V,= Cca v,

Equation 7.76 simplifies to

i.e. q=C, ay2gH, (7.77)
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where C = coefficient of discharge for free-flow given by

C
Cy=——— (7.78)

It may be noted that the term 29H, in Eq. 7.77 which has the dimensions of
velocity does not represent any real velocity in the system. Only the overall dis-
charge is properly represented and the terms C, and y2gH. are hypothetical
guantities.

Another way of representing the discharge q is to rearrange Eq. 7.76 to get

q=C,a,/29(H, —C,a) =C,a\/2gAH (7.79)

where AH = difference in the depths of flow at Sections 1 and 2 and C, = the coef-
ficient of discharge given by

C,=—— (7.80)

7.8.2 Coefficients C, Cdf and C,

The coefficient of contraction C_is a function of the geometry of the opening and
in sluice-gate flow C_ = f (a/H,). As such, both C and C, are also functions of
a/H, Since the gate has a sharp edge, the separation point is fixed and the Reynolds
number of the flow does not have any effect on C_and hence on C and C,.

The value of C_. is determined by the flow profile from the gate to Section 2. The
ideal-fluid flow theory can be used to study the variation of C_. However the flow
being predominantly gravity-influenced, considerable mathematical difficulties are
encountered. Fangmeir and Strelkoff“ have studied sluice-gate flow by applying
the complex-function theory. Solutions obtained with such an approach properly
account for the free surfaces upstream and downstream of the gate and are consid-
erable improvements over the earlier works, e.g. Benjamin. Larock*? has devel-
oped a theory which covers sluice gates of arbitrary inclinations as well as radial
gates by assuming the upstream free surface to be a fixed horizontal boundary.
McCorquodale and Li*® were probably the first to apply the finite-element method
(FEM) to sluice-gate flow. However, they assumed the free surface of the efflux jet
to be an ellipse and as such their results are not exact. Isaacs* presented a numeri-
cal method based on FEM for the analysis of flow from a sluice gate of arbitrary
geometry. A generalised FEM approach to two-dimensional and axi-symmetric
gravity flows of ideal fluids has been reported by Diersch et al.?* Their method is
applicable to a wide variety of free-surface flow problems, such as sluice-gate flow,
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flow over spillways, flow under spillway gates, end-depth problems, etc., and is
capable of calculating C, the discharge coefficient and velocity and pressure dis-
tributions. Their calculations for the discharge coefficient C for a vertical sluice
gate gave excellent agreement with earlier experimentally determined values®
(Fig. 7.26).

T | T | T | T | T | T | T
0.60 — Ref —
B Theory I: 40 Fz.angmeir & Strelkoff — O |

0.58 o 21 Diersch et al. — o
s 45 Henry (Expts) ]
s 056 — —
U — —
0.54 |— —
0.52 |— _
L o 4

050 L1 | L

0 0.1 0.2 0.3 0.4 0.5 0.6
alH;

Fig. 7.26 Variation chdf

Experimentally, the variations of C . and C, have been studied by a number of
research workers. The results of Henry’s experiments* are generally recognised
to be accurate enough with a possible error of + 2 per cent for discharge predic-
tions. The variation of C  with H./a obtained by Henry with data of Rajaratnam
and Subramanya“® is indicated in Fig. 7.27.

The variation of C, with al H,, has been studied by Rajaratnam and Subramanya*
and Franke and Valentin*’. The values of C 4 for various values of a H, are indicated
in Table 7.5.

Table 7.5 Variation g"Cd with a/H, (Rajaratnam and Subramanya 46

a/H1 0.00 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70
C, 061 0.61 0.60 0.605 0.605 0.607 0.620 0.640 0.660

d

It may be noted that the variation of C in the range of a/ H, from 0 to 0.30 is
very small and one can adopt a constant value of a/H, within this range. The C_
values over the practical ranges of a / H,, from Eq. 7.78 are essentially constant
at 0.60.
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Fig.7.27 Variation grcdfand C,, (Henry™)

7.8.3 Submerged Flow

In free-flow, the tailwater level has no effect on the discharge. If the tailwater level
is increased, while keeping the discharge constant, a hydraulic jump that is formed
in a downstream section of the canal gradually advances upstream till the toe of
the jump is at the vena contracta. Any further increase in the tailwater elevation
causes the jump to be submerged. This would cause the depth at Section 2 to be
higher than C a and if the discharge is constant, the upstream depth H, will have
to increase. Such a situation, where the downstream depth H, > C a, is designated
as submerged flow (Fig.7.28). Thus the limit of the free jump is the jump formed at
the vena contracta. The tailwater corresponding to this limiting case y,,/ a is known
as modular limit and represents the maximum relative tailwater depth which would
ensure free-flow. Higher values of y/a than the modular limit would cause sub-
merged flow.

In submerged flow the operating head is AH = (H, —H,) and the discharge is
confined in the downstream direction at Section 2 to a depth y, ~ C_a. Above the
depthy , at Section 2 there will be a roller in which the upper layers will have nega-
tive velocity. By applying the energy equation to Sections 1 and 2 and neglecting the
energy losses, it can be shown that

q=C, a\29AH (7.81)

where C = discharge coefficient for submerged flow. It has been experimentally*
establishcd that C = C, = f (a/H,). For the estimation of discharges in submerged
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Fig. 7.28 Submerged sluicegate flow

sluice-gate flow, the data in Table 7.5 can be used together with Eq. 7.81. Between
Sections 2 and 3 (Fig. 7.28) there exists a submerged hydraulic jump which dissipates
some of the energy. If it is desired to find H, for a known g and y,, the momentum
equation, with due notice that the flux of momentum at Section 2 is confined, to a
depth 'y, only, can be used.

If the discharge in the submerged flow is defined in a manner analogous to

Eq. 7.77, as
q=Cs, ay29H, (7.82)

where C,, = a discharge coefficient for submerged sluice-gate flow proposed by
Henry* then by the energy equation between Sections 1 and 2, and by momentum
equation between Sections 2 and 3, it can be shown that

C,,= f(H/ay,/a) (7.83)

Henry* has evaluated C,, experimentally and his results along with some experi-
mental data from Raiaratnam and Subramanya® are shown in Fig. 7.27. This curve
can be used for the estimates of discharge in submerged flow when H,, y, and a are
known. Because of steep gradients of the C_, curves, considerable errors are likely to

i—LJ is small.

arise in the estimation of C, from Fig. 7.27 if [
a a

7.8.4 Practical Gate Lips

In practical applications the bottoms of the vertical-leaf gates are usually made with
a bevel on the upstream face, usually with a slope of about 45° and with a narrow
seat surface on the bottom. This form of gate has considerably higher discharge coef-
ficients compared to a sharp-edged gate. While the overall functional form of the
discharge coefficients can remain essentially the same as for a sharp-edged gate, the
actual values which depend on many factors peculiar to the installation have to be
determined by model studies.
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7.9 CULVERT HYDRAULICS

A culvert is a conduit provided to transmit the flow of a stream past an obstacle such
as a roadway, railway or any kind of embankment. It entails essentially a constric-
tion of the flow path and consequently the hydraulics of the stream flow undergoes a
change in and around this hydraulic structure. While the culverts appear to be simple
structures its hydraulics is extremely complex. To appreciate the complexity of flow
analysis, consider the following features:

The flow through a culvert
(i) can be subcritical or supercritical

(ii) can be a closed conduit flow or an open channel flow or both forms may
exist

(iii) may have an inlet control or an outlet control

(iv) may be such that the free surface flow in the barrel can have uniform flow or
GVF or RVF or any combination of the above

(v) may be such that either the inlet or the outlet or both inlet and outlet may be
submerged or both may be unsubmerged

In view of the many possible flow types in a culvert, the classification of the flow
through a culvert has undergone several changes to achieve clarity. Chow ¢ (1956)
classified the culvert flow in to 6 types based on the submergence or otherwise of the
inlet and outlets. USGS (1976)* classifies the flow through culvert in to 6 types
depending upon the nature of the slope and relative headwater and tailwater eleva-
tions. Currently the most widely used classification is that of Federal Highway
Administration (FHWA) of US Department of Transport as given in their Hydraulic
Design Series-5 (HDS-5) of 2001 (Revised 2005)%. The HDS-5 system of classifica-
tion is described in this section. The following web site of FHWA can be consulted
for free download of Ref. (50) as well as for free download of related softwares:
http://www.fhwa.dot.gov/engineering/hydraulics/software.cfm.

The culvert conduit (also called barrel) can be circular, rectangular, elliptical and
other geometrical shapes composed of circular arcs. However, the circular shape is
the most commonly adopted shape. Wide choice of materials like concrete, brick and
stone masonry, conduits made of sheets of steel and aluminum are available for the
construction of the culvert barrel.

Figure 7.29 is a definition sketch of flow through a culvert. In this figure,

d = Diameter

GVF water surface
__________________________ T™W
I-Wt_,r I Elow  ———

/ / }
Inlet Roughness coefficient n/ So = Bed slope \ Culvert Barrel \ Outlet

Fig. 7.29 Definition sketch of culvert flow
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HW = Headwater = head above the invert of the culvert inlet
TW = Tailwater = depth of water downstream of the culvert measured from the
outlet invert
d = Diameter of the culvert conduit
S, = Slope of the conduit
n = Manning’s roughness coefficient of the conduit

This figure shows a type of flow in which both the inlet and the outlet of the culvert
are unsubmerged. In this case the flow in to the culvert is in weir flow mode. If the
headwater elevation is sufficiently above the top edge of the inlet the flow in to the
culvert barrel will be in the orifice flow mode (with discharge proportional to square
root of head ) and the inlet is said to be submerged. The limit of submergence depends

upon the ratio % and the limiting value is found to be in the range of 1.2 to 1.5.
- HW . .
HDS-5 adopts 1.2 as the minimum o ratio marking the onset of submerged flow.

HW
Thus for a4 >1.2 the inlet is considered to be submerged.

The inlet of a culvert has a very important role in reducing energy losses at the
entry, especially in closed conduit flow conditions. The flow entering the culvert
barrel undergoes contraction of the flow area at the inlet and a properly designed inlet
would increase the coefficient of contraction leading to higher efficiency. Some stan-
dard types of culvert inlets popularly used in USA are (i) Projecting barrel,
(ii) Cast-in — situ concrete headwall and wing walls, (iii) Pre-cast end sections, and
(iv) Culvert end mitered in to the slope. Additional factors like structural stability,
aesthetics, erosion control and embankment slope control play a role in the final
selection.

The outlet is considered to be submerged for all values of tailwater elevation,
measured above the invert of the outlet, which are greater than the diameter of the

conduit at the outlet, that is % >1.0. Considering the control of flow at the inlet

and at the outlet, the flow in a culvert is classified by HDS-5 in to four types under
inlet control condition and to five types under outlet-control condition. The different
types of flows are named alphabetically. For clarity sake, prefixes IC and OC to indi-
cate inlet control and OC outlet control respectively are adopted in this book. Thus
Type IC-A indicates inlet control, Type—A flow and OC-C indicates outlet control
Type-C flow in the culvert. The details of the classification are given below and also
are shown in Figs 7.30 and 7.31.

Inlet Control (IC) In this type the flow control is at the inlet, viz., the
upstream end of the culvert and four categories of flow are possible as shown in
Fig. 7.30 -(i to iv).

Type IC-A  (Fig.7.31-(i).) Here both the inlet and the outlet are unsubmerged and
channel is steep. The inlet acts like a weir and critical depth is formed just down-
stream of the inlet edge. The free surface flow will be a GVF of S, type in the initial
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(iv) Type IC — D: Outlet submerged
Fig. 7.30 Types of inlet control in culverts (Ref. 50)

portion with the normal depth occurring in the downstream part depending upon the
length and other hydraulic characteristics. The tail water level is too low and does not
influence the flow at the outlet

Type IC-B  (Fig. 7.30-(ii).) This type of flow is similar to Type IC-A described
earlier but with the additional feature of the tailwater causing the submergence
of the outlet. The flow at the inlet is still like a weir with critical depth at the
upstream end. The S, curve formed will have a hydraulic jump at an appropri-
ate location to cause full conduit pressure flow in the downstream part of the
conduit.
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Fig. 7.31 Types of outlet control in culverts (Ref. 50)

Type IC-C  (Fig.7.30-(iii)) In this type the inlet is submerged with HW >1.2d . The
tailwater level is too low and a free surface flow takes place as in Type IC-A. Critical
depth at the upstream end section, S, profile and possibility of occurrence of normal
depth at the downstream section are the characteristic features of the water surface
profile in the conduit.

Type IC-D  (Fig. 7.30-(iv).) This type of flow is the equivalent of Type IC-B with
inlet being submerged. The tailwater level is high enough to submerge the outlet and a



356  Flow in Open Channels

hydraulic jump is formed inside the barrel. This type of free surface flow inside a barrel
with its two ends sealed would require a vent to preserve atmospheric pressure in the
air space. The median drain as indicated in the figure would act as the desired vent pipe.
The control remains at the inlet and the flow at the inlet is of the orifice type.

Outlet Control (OC) In this type the flow control is at the outlet and five
categories of flow are possible as shown in Fig. 7.31-(i to v).

Type OC-A  (Fig. 7.31-i). Here both the inlet and the outlet are submerged. The flow
is that of a pure pipe flow (viz. pressure flow) throughout the culvert conduit.

Type OC-B  (Fig. 7.31-ii). In this type the headwater is low causing the inlet to be
un-submerged while the tailwater is high to cause submergence of the outlet. The
flow in the culvert conduit is a pressure flow.

Type OC-C  (Fig. 7.31-iii). This is the limiting case of Type OC-A. The inlet is sub-
merged and the outlet is free. The conduit flows full, with free exit, due to high head-
water elevation and consequent high differential head.

Type OC-D  (Fig. 7.31-iv). Here, the inlet is submerged but the tailwater is low to
cause free flow at the outlet. The culvert conduit is full in the initial partial length in
the upstream and free surface flow prevails on the downstream portion of the con-
duit. The channel slope is mild.

Type OC-E  (Fig. 7.31-v). In this type of flow both the inlet and the outlet of the
culvert are un-submerged and the free surface flow prevails over the full length of
the conduit. The slope is mild, and as such uniform flow, M, and M, type of GVF profiles
are possible depending upon the hydraulic properties and the tailwater elevation.

7.9.1 Factors Affecting Culvert Flow

Based on the details of inlet and outlet control types of flow described above, the fac-
tors affecting culvert flow can be listed as in Table 7.6. Inlet control occurs generally
in steep, short, culverts with free outlet. Similarly, outlet control can be expected to
occur in flat sloped culvert with high tailwater conditions.

Table 7.6 Factors affecting Culvert Flow

Factor Inlet control Outlet control
Head water elevation (HW)  yes yes
Inlet area yes yes
Inlet edge configuration yes yes
Inlet shape yes yes
Conduit area No yes
Conduit shape No yes
Conduit length No yes
Conduit slope Yes, to a small extent yes
Tailwater elevation No yes
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7.9.2 Discharge Equations

Basically the discharge in a culvert is described by the weir flow equation or orifice
flow equation or pipe flow equation depending upon the boundary conditions and
geometrical configurations. Numerous coefficients to account for friction, entrance
losses and other type of losses which depend on the conduit geometry, inlet geometry
and conduit characteristics are involved. Based on thorough experimental results
FHWA has identified the various equations and appropriate coefficients applicable to
different types of flow situations. Reference 50 can be consulted for details regarding
discharge estimation in various types of flows.

Performance Diagram A plot of the headwater elevation against discharge in a
culvert installation is known as the performance curve of the culvert and summarises
various head - discharge relationships that may exist for the culvert. This is an impor-
tant and useful plot in the design process. Further, the performance chart helps in
understanding the conditions of flow at the design headwater elevation and also in
knowing the sensitivity of the (HW) — Q relation at that point. Thus the performance
curve enables one to estimate the consequences of flow rates higher than the design
rate at the site and also benefits of inlet improvements.

Figure 7.32 shows the typical performance curve of a culvert. It is seen that two
discharges for the selected design flow are possible. For conservative design if Q, is

Culvert plus
overtopping

Roadway crest

Outlet

control /L'

Inlet control

Overall performance
curve

Head water elevation

’/Top of culvert

/7 Design HW

Flow rate

Fig. 7.32 Culvert performance curve with roadway overtopping (Ref- 50)



358  Flow in Open Channels

selected the culvert barrel capacity is higher than what has been designed and this
can be utilized by inlet improvement.

It is normal practice in India to design culverts for free surface flow operation.
However, in USA the culverts are invariably designed to flow full at design dis-
charge. Another aspect to be considered in the design of culverts is the velocity of
flow at the outlet in relation to scour of the bed material of the stream. Generally rip-
rap protection is needed at the outlet and in some cases energy dissipaters also have
to be provided to prevent serious scours due to high outlet velocities.

7.9.3 Design of Culverts

Reference 50 contains valuable information, worked examples and nomographs
for the design of culverts under all types of flow conditions. FHWA web site
http://www.fhwa.dot.gov/engineering/hydraulics/software.com contains complete
information on FHWA Hydraulics Engineering Publications and Software for culvert
analysis and related topics. Culvert Analysis Program, HY-8 by FHWA is free public
domain software. Web site http://www.imnoeng.com contains free computation/
design facility and valuable information on all aspects of culvert flow. A program
for design of culverts under inlet/outlet control and for preparation of performance
chart using HDS-5 methodology is available in this web site. A large number of
commercial softwares are available for culvert design and details about these can
be obtained through the internet search.
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7.1 A rectangular sharp-crested suppressed weir is 2.0 m long and 0.6 m high. Estimate the
discharge when the depth of flow upstream of the weir is 0.90 m. If the same discharge
was to pass over an alternative contracted weir of 1.5 m length and 0.60 m height at the
same location, what would be the change in the water-surface elevation?

7.2 A sharp-crested suppressed weir is 1.5 m long. Calculate the height of the weir required
to pass a flow of 0.75 m®/s while maintaining an upstream depth of flow of 1.50 m.

7.3 A rectangular sharp-crested suppressed weir is 3.0 m long and 1.2 m high. During a high
flow in the channel, the weir was submerged with the depths of flow of 1.93 mand 1.35 m
at the upstream and downstream of the weir respectively. Estimate the discharge.

7.4 Develop expressions as given in Table 7.2 for the discharge over triangular, circular, par-
abolic and trapezoidal sharp-crested weirs.

7.5 Arightangled triangular notch discharges under submerged condition. Estimate the discharge
if the heights of water surface measured above the vertex of the notch on the upstream and
downstream of the notch plate are 0.30 m and 0.15 m respectively (Assume C = 0.58).

7.6 A 15-m high sharp-crested weir plate is installed at the end of a 2.0-m wide rectangular
channel. The channel side walls are 1.0 m high. What maximum discharge can be passed
in the channel if the prescribed minimum free board is 20 cm?

7.7 A sharp-crested weir of 0.80-m height and 2.0-m length was fitted with a point gauge for
recording the head of flow. After some use, the point gauge was found to have a zero
error; it was reading heads 2 cm too small. Determine the percentage error in the esti-
mated discharges corresponding to an observed head of 50 cm.

7.8 Design a Sutro weir for use in a 0.30-m wide rectangular channel to have linear dis-
charge relationship in the discharge range from 0.25 m%s to 0.60 m%/s. The base of the
weir will have to span the full width of the channel. Assume C, = 0.62.

7.9 Design a quadratic weir spanning the full width of a 0.50 m rectangular channel at the
base and capable of passing minimum and maximum discharges of 0.10 m®/s and 0.40 m®/s
respectively under the desired proportionality relationship. (Assume C, = 0.61.)

7.10 A Sutro weir with a rectangular base is installed in a rectangular channel of width 60 cm.
The base weir spans the full width of the channel, has its crest coinciding with the chan-
nel bed; and has a height of 12 cm. (i) Estimate the discharge through the channel when
the depth of flow in the channel immediately behind the weir is 25 cm. (ii) What dis-
charge in the channel is indicated when the depth of flow is 33 cm? (iii) What depth of
flow in the channel can be expected for a discharge of 0.20 m¥s? [Take C, = 0.61].

7.11 A quadratic weir with rectangular base of 45 cm width and 9 cm height has a depth of
flow of 15 cm in the channel. Estimate (i) the discharge through the weir and (ii) the depth
of flow in the channel corresponding to a discharge of 25 litres/s. [Take C, = 0.61].

7.12 Find the elevation of the water surface and energy line corresponding to a design discharge of
500 m?¥/s passing over a spillway of crest length 42 m and crest height 20 m above the river bed.
What would be the energy head and minimum pressure head when the discharge is 700 m3/s?

7.13 A spillway with a crest height of 25.0 m above the stream bed is designed for an energy
head of 3.5 m. If a minimum pressure head of 5.0 m below atmospheric is allowed, what
is the allowable discharge intensity over the spillway?

7.14 A spillway has a crest height of 30.0 m above the bed and a design energy head of 3.0 m.
The crest length of the spillway is 50 m. As a part of remodelling of the dam, a three-span
bridge is proposed over the spillway. The piers will be 1.5 m thick and are round-nosed
and the abutment corners will be rounded. What will be the change in the water-surface
elevation for the design-flood discharge?

7.15 An overflow spillway with its crest 10 m above the river bed level has radial gates fitted
on the crest. During a certain flow, the water surface upstream of the dam was observed
to be 2.5 m above the crest and the gate opening was 1.5 m. Estimate the discharge from
a bay of 10.0 m length. (Neglect end contractions.)
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7.16

7.17

7.18

7.19

7.20

7.21

7.22

7.23

An ogee spillway with a vertical face is designed to pass a flood flow of 250 m®/s. The dis-
tance between the abutments of the spillway is 45.0 m. A three-span bridge is provided over
the spillway. The bridge piers are 1.20 m wide and are round nosed. If the crest of the spill-
way is 10.0 m above the river bed level, find the elevations of the water surface and energy
line. Using this discharge as the design discharge, calculate the spillway crest profile.

A 2.5-m wide rectangular channel has a broad-crested weir of height 1.0 m and a crest
width of 1.5 m built at a section. The weir spans the full canal width. If the water-surface
elevation above the crest is 0.5 m, estimate the discharge passing over the weir. If the
same discharge passes over another similar weir, but with a crest width of 2.5 m. what
would be the water-surface elevation upstream of this second weir?

A broad-crested weir of 2.0-m height and 3.0-m width spans the full width of a rectangu-
lar channel of width 4.0 m. The channel is used as an outlet for excess water from a tank
of surface area 0.5 hectares at the weir crest level. If the water level in the tank at a cer-
tain time is 0.90 m above the weir crest, what is the discharge over the weir? Estimate the
time taken to lower the water-surface elevation by 60 cm. (Assume that there is no inflow
into the tank and the surface area of the tank is constant in this range.)

A 2.0-m wide rectangular channel carrying a discharge of 2.5 m%s is to be fitted with a
weir at its downstream end to provide a means of flow measurement as well as to cause
heading-up of the water surface. Two choices, viz. (i) a sharp-crested weir plate of 0.80 m
height, and (ii) a broad-crested weir block of 0.80—m height and 1.0-m width, both span-
ning the full width of the channel, are considered. Which of these weirs causes a higher
heading-up and to what extent?

A standing wave flume is used to measure the discharge in a 10.0 m wide rectangular
channel. A 5-m wide throat section has a hump of 0.5 m height. What is the discharge
indicated when the upstream depth of flow in the channel at the flume entrance is 2.10 m?
Assume an overall coefficient of discharge of 1.620 for the flume.

A rectangular throated flume is to be used to measure the discharge in a 9.0 m wide chan-
nel. It is known that the submergence limit for the flume is 0.80 and the overall discharge
coefficient is 1.535. A throat width of 5.0 m is preferred. What should be the height of the
hump if the flume is to be capable of measuring a discharge of 20.0 m¥/s as a free flow
with the tailwater depth at 2.30 m?

Obtain the end-depth ratio n:£ for a triangular channel having (a) subcritical flow
C

and (b) supercritical flow with a Froude number of 2.5.

Show that for a channel whose area A = k y2® the end-depth ratio 7 for subcritical flow

mode is 0.783. Also, determine the variation of » with Froude number F for supercritical

flow in the channel.

7.24 A parabolic channel with a profile x> = 4ay, where y axis is in the vertical direction, termi-

7.25

7.26

nates in a free fall. Show that the end-depth ratio n =y, /y, for supercritical flow is given by
2nt-4P4+1=0
Determine the relevant root of this equation and compare it with the experimentally
obtained value of 7.
Find the end depth at a free overfall in a rectangular channel when the upstream flow is
at a Froude number of 3.0 with a normal depth of 0.70 m.
Estimate the discharges corresponding to the following end-depth values in various
channels. The channels are horizontal and the flow is subcritical in all cases.
(i) Rectangular channel, B=20m,y=06m
(ii) Triangular channels, m=10,y.=05m
(iii) Circular channel, D=090m,y=03m
[Hint: Use the value of y,/y_given in Table 7.3.]
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7.27 Write a general mometum equation to the flow at the end-depth region in an exponential
channel (A = ky?). Assuming the channel to be horizontal without any friction and the
pressure force at the brink to be P, = vy, A K, show that

- 1 [a+1}(1—5f)

et a4
where e =Y, 1y,

7.28 A 2.0-m wide rectangular channel has its depth backed-up to a height of 1.2 m by a
sharp-edged sluice gate. If the gate opening is 0.30 m and the downstream flow is free,
estimate the discharge through the gate and the force on the gate.

7.29 A 2.0-m wide rectangular channel has to pass a flow of 2.4 m¥s through a sluice gate
opening of 0.4 m. If the water depth upstream of the gate is 2.0 m, find the depth of water
immediately below the gate.

7.30 Apply the momentum equation to the submerged sluice gate flow (Fig. 7.28) by making
suitable assumptions and estimate the depth H, immediately below the sluice gate in
terms of y, a, C.and H,

7.31 Obtain an expression for the force on the sluice gate in submerged flow for the situation
in Fig. 7.28.

7.32 Show that the modular limit of the free flow in a sluice gate (Fig. 7.28) is given by

C 2
% = ?°[—l—|— J1+8F.] where F? = [%J[% —CC] and y, = tailwater depth.

C

r

* OBJECTIVE QUESTIONS

7.1 The head over a 3.0-cm sharp-crested sill is 96 cm. The discharge coefficient C, for use in
the weir formula is
(a) 0.738 (b) 0.848 (c) 0.611 (d) 1.11

7.2 A suppressed sharp-crested weir is 0.50 m high and carries a flow with a head of 2.0 m
over the weir crest. The discharge coefficient C, for the weir is

(a) 1.06 (b) 0.931 (c) 0.738 (d) 0.611
7.3 The discharge Q in a triangular weir varies as
(a) HOs (b) HS (c) H?° (d) H?S

7.4 In a triangular notch there is a +2% error in the observation of the head. The error in the
computed discharge is
(@) +2% (b) +5% (c) —-5% (d) +2.5%

7.5 A nominal 90° triangular notch was found to have 2% error in the vertex angle. While dis-
charging under a constant head, the error in the estimated discharge is
(@ 7% (b) 7/4% (c) /2% (d) 2%

7.6 In submerged flow over sharp-crested rectangular weirs the Villemonte equation relates
Q,/Q, as equal to

1.5

H 0.385 Y 0.385
1-| P2 b) 1|2
@ 3] s
H 1510385 Y 0.385 |-
(c) 1—[—2] (d) 1—[—2]
H, H,
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7.7 In a triangular notch the tailwater head is 50% of the upstream head, both measured
above the vertex of the notch. If the free flow discharge under the same upstream head is
0.5 m¥/s, the submerged flow, in m¥/s, is
(a) 0.464 (b) 0.411 (c) 0.500 (d) 0.532
7.8 A parabolic sharp-crested weir has a profile given by x? = ky. The discharge in the weir
is given by Q = K H" where n is
(@ 0.5 (b) 1.5 (c) 2.0 d) 25
7.9 A separate arrangement for aeration of the nappe is necessary in a
(a) contracted rectangular weir
(b) suppressed rectangular weir
(c) submerged contracted rectangular weir
(d) triangular weir
7.10 In a linear proportional weir with a rectangular base of height a, the discharges are lin-
early proportional to the head h, measured above a datum. The minimum head at which
the linear head-discharge relation is observed is h, =
(@ a (b) a/2 (c) a/3 (d) 2a/3
7.11 Inaquadratic weir the measured head above the datum was found to have an error of 2%.
This would mean that the discharges estimated from the weir discharge formula will
have an error of

(@) 0.5% (b) 1% (c) 2% (d) 4%
7.12 Designing of the spillway profile to conform to the shape of the nappe of a sharp crested
weir makes

(a) the pressures on the spillway crest always positive

(b) the pressures to be positive for H, > H,

(c) the pressures on the spillway always zero

(d) the pressure on the crest zero for H) = H, only
7.13 If the head H, over an overflow spillway is less than the design head H;

(a) the pressure on the spillway crest will be negative

(b) the cavitation phenomenon can occur

(c) the separation of the streamlines from the surface can occur

(d) the coefficient of discharge C, will be less than the design coefficient of discharge C,
7.14 The coefficient of discharge C, at any head H, of a spillway is a function of

H H
(@) |—=|only (b) |—2|only
P H,
H, H, P
c) |—,—|onl d) |—onl
(© P Hd] y ()[Hd] y
7.15 A vertical face ogee spillway will have a crest profile downstream of the apex given by
(y/H,) =
(@ 0.5 (x/H)° (b) 0.5 (x/H,)*

(c) 1.85 (x/H,)*> (d) 2.0 (x/H*®

7.16 A broad-crested weir with H./B, = 0.5 and H /P = 1.0 and a sharp-crested weir with
H,/P = 1.0, both span the full width of a canal. If the coefficient of discharge C, of the
weir (= C,,) and C, of the broad-crested weir (= C, ) are compared, it will be found that

(a) de > Cdb (b) Cdb > de

(c) C,=C, (d) C,,=C, forsmall H, only.
7.17 A finite crest width weir with H,/B, = 0.20 is classified as a

(a) long-crested weir (b) broad crested weir

(c) narrow-crested weir (d) sharp-crested weir
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7.18 The modular limit of a sharp-crested weir (M,) broad-crested weir (M,) and standing
wave flume (M,) are compared under equivalent conditions. It will be found that

(@ M;>M, > M, (b) M, <M, <M,
(© M,>M, <M, (d) M, <M, >M,
7.19 The overall coefficient of discharge of a standing wave flume C, = Q/ (BH3?) is of the order of
(a) 0.61 (b) 0.95 (c) 3.30 (d) 1.62
7.20 The discharge equation of a Parshall flume is expressed as Q =
@ KyH, (b) KH, () KH, (d) K (H32-H2?)

7.21 The end depth ratio y,/y, in a channel carrying subcritical flow is a function of
(a) shape of the channel only (b) Shape and Manning’s coefficient
(c) Normal depth only (d) Shape and Froude number

7.22 A 2-m wide horizontal rectangular channel carries a discharge 3.0 m¥s. The flow is sub-
critical. At a free overfall in this channel the end depth in metres is
(a) 0.438 (b) 0.612 (c) 0.715 (d) 1.488

7.23 A 2.5-m wide rectangular channel is known to be having subcritical flow. If the depth at
a free overfall is 0.5 m, the discharge in this channel in, m%s, is
(a) 2.56 (b) 4.40 (c) 1.83 (d) 3.50

7.24 Two horizontal channels A and B of identical widths and depths have roughness such that
(K), = 2(K),. If the discharges observed by the end-depth method in these two channels
are denoted as Q, and Q, respectively, then it would be found that

1
@ Q,>Q, (b) Q,= EQB © Q=Q, (d) Q, <Q

7.25 The effective piezometric head h, at the brink of a free overfall could be represented as
@ h, <y, (b) h, >y, © h, =Y, (d) h, =

7.26 Ifa rectangular channel carrymg a dlscharge of 1.85 m¥s/m W|dth shows a brink depth
of 0.35 m at a free overal, then
(a) the discharge measured is wrong
(b) the end depth is wrongly measured
(c) the flow is subcritical regime
(d) the flow is in the supercritical regime

7.27 In submerged flow through a sluice gate the coefficient of discharge C, =

a
@ >0 ®C, ©Cc,  @OC,
Hl a
7.28 The coefficient of discharge C, in free sluice gate is related to C.. as
Cc C.a
@ C,=——o"  ()C,= :
J1+(C.al Hl)2 H,\J1—(C.a/ Hl)2
C C
ST ey T [ ale
7( ca Hl) 1— i Cc
Hl
7.29 The discharge coefficient C , in submerged sluicegate flow is
(@ f(a/H) (b) T(y,/a) (c) f(a/H,, y,/a) (d) =C,

7.30 Sluice gates used in field applications have
(a) abevel on the upstream face
(b) a bevel on the downstream face
(c) bevels on both upstream and downstream faces
(d) no bevel.



Spatially
Varied Flow 8

8.1 INTRODUCTION

A steady spatially varied flow represents a gradually-varied flow with non-uni-
form discharge. The discharge in the channel varies along the length of the chan-
nel due to lateral addition or withdrawal. Thus, spatially varied flow (SVF) can
be classified into two categories: (i) SVF with increasing discharge and (ii) SVF
with decreasing discharge. Since there is considerable amount of difference in
the flow and analysis of these two categories, they are dealt with separately in
this chapter.

8.2 SVF WITH INCREASING DISCHARGE

SVF with increasing discharge finds considerable practical applications. Flows in
side-channel spillway, wash-water troughs in filter plants, roof gutters, highway gut-
ters are some of the typical instances. Figure 8.1 shows a typical side-channel spill-
way causing an SVF in the channel below it. The lateral flow enters the channel
normal to the channel-flow direction causing considerable turbulence. It is difficult
to assess the net energy imparted to the flow and as such the energy equation is not
of much use in developing the equation of motion.

Reservoir

N

Spillway

Lateral spillway
channel

Fig. 8.1 Lateral spillway channel flow
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8.2.1 Differential Equation of SVF with Increasing Discharges

In applying the momentum equation, the following assumptions are made:

1.

6.
7.

The pressure distribution is assumed to be hydrostatic. This amounts to assum-
ing the water-surface curvatures to be moderate. The regions of high curvature,
if any, must be delineated and excluded from the analysis.

. The one-dimensional method of analysis is adopted. The momentum correc-

tion factor (5 is used to adequately represent the effect of non-uniformity of
velocity distribution.

. The frictional losses in SVF are assumed to be adequately represented by a

uniform flow resistance equation, such as Manning’s formula.

. The effect of air entrainment on forces involved in the momentum equation is

neglected.

. It is assumed that the lateral flow does not contribute any momentum in the

longitudinal direction.
The flow is considered to be steady.
The channel is prismatic and is of small slope.

Consider a control volume formed by two Sections 1 and 2, distance Ax apart
(Fig. 8.2). Applying the momentum equation in the longitudinal x direction.

or

M,-M, =P -P,+Wsinfd-F, (8.1)
AM = - AP + Wsin 0 - F, (8.1a)

in which M = momentum flux = 8pQ%A

P = pressure force = YAy

q

EEEE RN ERERERRERE

L/t
X
YI CG t
Yy e y
Area = A

Fig. 8.2 Definition sketch of SVF with lateral inflow
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where Y = depth of the centre of gravity of the flow cross-section from the water
surface, W sin § = component of the weight of the control volume in the x direction
and F, = frictional force = yAS, Ax.

Dividing Eqg. (8.1a) by Ax and taking limits as Ax — 0,

dMm dpP
—_— AS, —~vAS 8.2
dx dx+7 0 T ®2)
. .~ dM 20dQ Q2 dA
In this ) — = x> x 77
0 dx pﬁ[A dx  A? dx
_ 52, QTdA
pﬁ[ Aq* A2 dx]

dQ

where q_= M = discharge per unit length entering the channel.
... dP dy _dA
i) —=~y|A—+4+y—
(i dx 7[ dx +y dx]

By taking moments of the areas about the new water surface after a small change dy
in depth, (Fig. 8.3),

A(y+dy)+dAd—2y:(A+dA)(y+d y)
v /
A = { dy Ady+@:ydA+Ady+dAdy
TN« . !
y By neglecting second-order small
CG .
l quantities,
Ady+ydA= Ady
Fig. 8.3 De_zﬁ'nition sketch
Thus d—szAd—y
o dx dx
Hence, Eq. (8.2) simplifies to
24Qq, QT d d
e X —y:f—y+(so—sf)
gA gA® dx dx
S,—S; —(2 A
o dy _ So—S, —(20Qq /gA’) 63)
dx QT
1-5=2
gA

Equation 8.3 is the basic differential equation governing the motion in the SVF with
increasing discharge. In general, q_is a function of x. However, in a lateral spillway
channel g, is constant. In view of the high non-uniform velocity distribution in the
channel cross-section, it is necessary to use proper values of the momentum cor-
rection factor G. In lateral spillway channels, values of  as high as 1.60 are not
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uncommon. It may be noted that if 3= 1.0 and q =0, Eq. 8.3 will be the same as
that of the differential equation of gradually varied flow (GVF) (Eq. 4.8)

Equation 8.3 is a non-linear equation and is more complex than the GVF equation.
Closed-form solutions are not possible except in highly-simplified cases. A numerical
solution of the equation is feasible. Starting from a section where the flow properties
are known (such as a control section), the water-surface profile can be computed.

8.2.2 Control Point

If the flow is subcritical everywhere in the channel, the control of the profile will be
located at the downstream end of the channel. However, for all flow situations other than
the above, the determination of the control point is a necessity to start the computations.

In an SVF with increasing discharges, the critical depth line is not a straight line
parallel to the bed as in GVF but is a curved line. Depending upon the combination of
the bottom slope, channel roughness and channel geometry, the critical depth of spa-
tially varied flow can occur at a location somewnhere between the ends of the channel,
giving rise to a profile which may be subcritical during the first part and supercritical
in the subsequent part of the channel. A method of calculation of the critical depth and
its location based on the concept of equivalent critical depth channel has been pro-
posed by Hinds!. An alternative method based on transitional profiles suggested by
Smith?, which has advantages like simplicity and less tedious calculations compared
to Hind’s method, is described below:

Consider Eq. 8.3 written as

_Si26Qq
2
W _g S OAS, (8.4)
dx QT
1-8=
gA

Defining Q = K\/§: actual discharge
Q, = K4/S, = normal discharge in the channel at a depth y

3
Q.= % = critical discharge modified by .

Equation 8.4 reduces to

_KZQZ_QZ[Zﬂqu*]
dy o KQF QIl oAQ

dx  ° 1-(Q/Q,)

ok el
P 5 B G

= 9 1—(Q/QC)2

(8.5)
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Redefining Q , = modified normal discharge

Q,
26K? q,

gA* Q

Equation 8.5 is simplified as

o)
ﬂzs #

& T1-(Q/Q)

Equation 8.5a is of the same form as Eq. 4.15, and the location of the transitional
profile at a given x would be determined by the condition Q , = Q_. The intersection of
the transitional profile with the critical-depth line will satisfy the condition Q =Q,, = Q_ and
hence would locate the control point; i.e. the section at which the actual flow would
pass at critical depth.

At transitional depth, Q , = Q..

S [
i.e. 26K2q ﬂT
1+ *
V" gAQ

1+

2 2
or Zﬁqu*:ﬁQT”T_l (86)
gA"Q A'g
Substituting Q, =K /S, and simplifying
2
o _1ST oA )
Q 2| A 5K

which is the equation of the transitional profile for SVF with increasing discharge.
In a general SVF with increasing discharge,

Q = Qi ""f; q*dx

where Q, = channel discharge at x = 0. For the SVF in a lateral spillway channel
Q,=0.and g, = Constant, i.e. Q = d, x which simplifies Eq. 8.7 to

X 2

A BK?

1 1(sT g~
oz

t

the suffix t denoting the transitional profile. It is interesting to note that in an SVF due
to a side-channel spillway, the transitional profile is independent of the rate of lateral
inflow.
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To locate the control point, the critical depth line is first calculated and plotted to
scale (Fig. 8.4). Note that the critical depth line for SVF with increasing discharge is

3
to be calculated by using the relationship Q, = /% . The transitional profile is

then calculated by Eq. 8.7 and plotted on the same figure and the intersection of the
critical-depth line with the transitional profile gives the location of the control sec-
tion at which the actual flow passes as a critical depth (Fig. 8.4).

This method is of general use and can be easily incorporated into a numerical-
method algorithm to compute the SVF profile using a digital computer.

Critical depth
line

Transitional
profile

Elevation

So
L Control \

section
| | I\

0 Distance along the channel Xc
Fig. 8.4 Determination of control section through transitional profile

Example 8.1 A horizontal, frictionless, rectangular lateral spillway channel of
length L has a free overfall. Show that the equation of the flow profile is

o K _ g8y

2

dy 'y q,
Show that the solution of the above equation for the condition of critical depth y,
2 3
occurring at the outletis | X| — 3| Y[ 1Y
L 2|y, | 2|V,
2Qq,

-S, —
ﬂi 0 f gAZ

Solution S * LN
dx 1 (Q*T/gA%)

$,=0,5=0 A=By, T=8B, q.x=0Q

2

dy  2q’x/gB’y
dx 1—(a’x* / gB%*y®)

Hence
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2,2 2
1- q*2x S|dy =— Zq;xz dx
9By 9By
2
Put t = x?, then dt = 2x dx. Further, put qz* 5 _ .Then
gBYy" M

t1 1
1—— = )dy = ——dt
( yM)y M

dy y dy y q
2.,3
The solution is X2 = — 9B’y +C,y
2g? !

Atthe outlet, x=Landy =y,

BZ 2
L2 = gquyC +C1yc
BZ 3
Clzi L2+g 2yzc]
Ye 2L°q;
X_Z_ l+ ngys l_ gBZy3
2 2.2 212
L 2L a | Y. 2q*L

gB®  gB’ gB%y?
But 2o == and 5
Q@ Q Q!

-3

Example 8.2 A lateral spillway channel is trapezoidal in section with B =5.0 m,
m =1and n =0.015. The bed slope is 0.10. Find the location of the control point and

the critical depth for a lateral discharge rate of (a) g, =2.0 m¥/s/m, (b) g, = 3.0 m%s/m.
Assume G =1.25.

=1

Thus

Solution The computations necessary to plot the critical-depth line and the transi-
tional profile are done in a tabular form as shown in Table 8.1. Various depth values
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are assumed and x, and x , the longitudinal coordinates of the transtitional profile and
the critical-depth line respectively, are calculated. x is calculated by using Equation

8.8and x, = % where Q, =+/gA’/ AT

%

The transitional profile and the critical-depth line for a given q_are plotted and
the control point is determined by the intersection of these two lines as:

g =30m’/s/m, y,=40m, x,=56.0m

q =20m’/s/m, y,=265m, x,=40.0m

Example 8.3 | 5pain an expression to determine the critical depth and its loca-

tion for a lateral spillway channel of rectangular section. Use the Chezy formula
with C = constant.

Solution In a rectangular section B = T. Using the Chezy formula.
K2 =A2C%R
The transitional profile for the rectangular channel is obtained by using Eq. 8.8. as

i_i[i g ]

x 2y pBC?R
2
. x = PCRY (8.9)
(BC°RS, —gy)
The equation of the critical-depth line is given by
Q. =0q,x, =(gB*y; /)
ie. X2 = gB%y}/3q’ (8.10)

At the critical-flow section, the critical-depth line and the transitional-depth line
intersect. Hence x, =X,y =Y.

9B’y  48°C'yR’
Bai  (BC°RS,—gy,)’

Simplifying,

©oapctq

— (8.11)

Ye
Ye [ﬂczso - gR_]

C
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with suffix ¢ denoting the critical-depth section. Equation 8.11 is the desired expres-
sion for the determination of critical depth. This equation will have to be solved by
trial and error to get the critical depth. Substitution of this y_in Eq. 8.10, gives the
location of the critical-flow section.

8.2.3 Classification and Solutions

Unlike GVF, SVF with lateral inflow has not received extensive attention and as such
the detailed classification and analysis of a general-flow situation are not available in
literature. By assuming zero friction and 5 = 1.0, Li® has made a detailed study and
has classified the flow into the following categories:

Type A The flow is subcritical throughout the channel and the Froude number
increases continuously in the downstream direction.

Type B The flow is subcritical throughout but the Froude number will first increase,
reach a maximum value less than unity and then decrease.

Type C The flow is subcritical initially, passes through a critical section to become
supercritical in the downstream portions of the channel and then terminates in a jump
due to downstream control such as a submerged outlet.

Type D The same as Type C, but the jump is not formed in the channel. The outlet
is free.

These four types of flow can be determined by a study of the transitional profile
and the critical-depth line along with the downstream end conditions. In general,
Type C and D situations can occur in side spillway channel design and Type A and
B can occur in washwater-trough and gutter-design problems. Li® has classified the
above four types of flow in frictionless rectangular channels on the basis of param-

S,L
eters F and G = ;— where F, and y, are Froude number and depth of flow at the
end of the channel réspectively. Solutions to subcritical and supercritical SVFs with

increasing discharge in frictionless rectangular channels are also presented by Li® as
dimensionless graphs.

Gill* has given approximate algebraic solutions to SVF with increasing discharges in
frictionless rectangular channels based on the method of perturbation. His predictions
cover a range of subcritical flow Froude numbers, the supercritical flow, the Type D flow
and compare well with Li’s work. Gill has extended his analytical method to cover the
case of SVF in a wide rectangular channel with the friction effect duly accounted.

In view of the various assumptions with regard to friction, the channel geometry
and value of 3 involved in these studies, one should be cautious in using these results
in practical situations.
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8.2.4 Profile Computation

As already indicated, the basic differential equation of SVF with lateral inflow
(Eg. 8.3) is non-linear and no closed-form solutions are available to a general prob-
lem. A host of numerical techniques are however, available for its solution. The
computations proceed from a control point where the flow properties are known.
Regarding the friction formula, in the absence of any other resistance formula exclu-
sively for SVF, a convenient uniform flow formula, such as Manning’s formula, is
used. There is some evidence that the value of the roughness coefficient is likely
to be higher in SVF than in uniform flow. Till conclusive results are available, it
is prudent to use uniform flow values. Experimental studies®® have shown that the
assumption of 5 = 1.0 is unrealistic and a proper selection of 3 will greatly enhance
the accuracy of prediction of the SVF profile.

Numerical Methods The advanced numerical methods (Section 5.8) discussed in
connection with GVF computations are all eminently suitable for SVF computations
also.

However, jy in Eg. (8.3) is a function of x and y, and can be written as
X

S,—S, —(2 / gA?
dy S =S (/6’?q* g ):F(x,y) (8.3a)
dx 1 QT

_B gA3

The SRK and KM methods (Section 5.8) will take the following forms to suit
Eg. 8.3a

(i) Standard Fourth-Order Runge—Kutta Method (SRK) for SVF
1
Yia =Y+ 6(K1+2K2+2K3+K4) (8.12)

in which K, = Ax-F(x, V)

AX-F X+ = Axyl—s-;K]

| |
[N

2

|
X+ F[x+ Axy,+1K]
(

AX-F(x +Ax Y, +K,)
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(i) Kutta—Merson Method (KM) for SVF

1
Yin = yi+E(K1+4K4+K5) (8'13)
: : 1
in which Klngx-F(xi,yi)
1 1
K, ==AX-F|x + =AX, Yy, + Kl]
3 3
1 1 1 1
K, ==Ax-F|x + =A%, y, + =K, + =K
3 3 i 3 y| 2 1 2 z]

1 1 3 9
K,=-AX-F|x +-AX, y,+-K, + =K
4 3 i 2 y 8 1 8 3]

K, :%AX.F X, + AX, y, +2K1 —%Ks +6K4]

(iii) Trapezoidal Method (TRAP) for SVF
1
Yin =Y +EAX[F(Xi ' yi)+ F(Xi+1’yi+1)] (8.14)

The details of these methods, their relative accuracy and advantages are the same as
discussed in Section 5.8 in connection with the GVF computations.

8.3 SVF WITH DECREASING DISCHARGE

SVF with decreasing discharges occurs in a variety of field situations, typical exam-
ples being side weirs, bottom racks and siphon tube irrigation systems. The abstrac-
tion of water from a canal by using the above means is hormally achieved in such a
manner as to cause minimum obstruction and with consequent little energy losses in
the parent channel. It is usual to assume that energy loss due to diversion of water is
zero and the energy equation is used to derive the basic equation of motion.

8.3.1 Differential Equation for SVF with Decreasing Discharge

The following assumptions are made:

1. The pressure distribution is hydrostatic

2. The one-dimensional method of analysis is used (the energy-correction factor
v is used to adequately represent the non-uniformity of velocity distribution).

. The friction losses are adequately represented by Manning’s formula.

4. Withdrawal of water does not a affect the energy content per unit mass of water
in the channel

. The flow is steady

6. The channel is prismatic and is of small slope.

w

[$)]
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Consider the total energy at a Section X,

VZ
H=Z+y+a — (8.15)
29

Differentiating this with respect to x

dH dZ dy  d V?
—=—+4+—+—|a— 8.16
dx dx dx dx[a2g] (6.16)
dH dz

But i ¢ and ~ o

d[vz] d[ QZ] a[@d_q 2Q° dA dy

Bl SV . Y -
dx| 2g) dx| 29A*] 2g|A® dx A’ dy dx
d—A:T and d—Q:q
dy dx *
Equation 8.16 simplifies to
g _g _9Qq
0 f 2
y_ A ®8.17)
dx 1_onzT
gA’

Equation 8.17 is the basic differential equation governing the motion of SVF with
decreasing discharges. Note the difference between Eq. 8.17 and Eq. 8.3. When q_= 0,
Eqg. 8.17 will be the same as the differential equation of GVF, Eq. 4.8. Unlike the
SVF with increasing discharges, in this case q_is not externally controlled but will
be implicitly governed by the flow conditions.

8.3.2 Computations

The determination of the critical-flow control point in the SVF with decreasing dis-
charges is difficult as q_is not explicitly known. Normally, SVF with lateral out-
flow occurs in a relatively small portion of length of canals and the upstream or
downstream depth, depending upon the flow, is known through the characteristics of
the outflow structure and main channel. This forms, the starting point for the SVF
computations.

Itis first necessary to establish a relationship for q_as a function of the rele-
vant flow conditions. The SVF profile is then computed by using a numerical
procedure, such as SRK, KM or TRAP method discussed in Section 8.2.4. The
method of approach depends upon the understanding of the particular flow
phenomenon.
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A few specific examples of flow situations where SVF with lateral outflow occurs,
are described below.

8.4 SIDE WEIR

A side weir, also known as a lateral weir, is a free-overflow weir set into the side of a
channel which allows a part of the liquid to spill over the side when the surface of
the flow in the channel rises above the weir crest. Side weirs are extensively used as
a means of diverting excess storm waters from urban drainage systems and as water-
level control devices in flood-control works. In irrigation engineering, side weirs of
broad crest are used as head regulators of distributaries and escapes.

Energy line
\%
E
Yo Yt
Yo
Y1 y s
X .
L L - Section
1 2
B Q Q,
V, Vv,
Side weir
Plan
Qs

Fig. 8.5 Definition sketch of side weir flow

Figure 8.5 is a definition sketch of the flow over a side weir. Side weirs are usually
short structures with L/B < 3.0. It is obvious from specific energy considerations
(Section 2.2) that the longitudinal water surface should increase in the downstream
direction when the main channel flow is subcritical throughout. Similarly, the water-
surface profile would be a decreasing curve for supercritical flow in the channel. The
possible flow profiles can be broadly classified into the following three categories:

Type 1 The channel is on a mild slope and the weir heights s >y where y_ is the
critical depth corresponding to the incoming discharge Q, at Section 1, (Fig. 8.6a). At
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the downstream end the normal depth corresponding to discharge Q, will prevail. Thus
Yy, =Y, the tailwater depth. At Section 1, the depth y, will be such thaty <y, <y,
where y, = normal depth for Q, = Q,. Along the weir the depth increases from
y, toy,. Upstream of Section 1 there will be an M, curve fromy, to y,. The control for
the SVF will be the downstream depth y, =y

Type 2 The channel is on mild slope (y, >y_) and with s <'y_ (Fig. 8.6b). If the
weir is long, flows below critical depth are possible. At the upstream end of the

Steep slope, S <Y1, Y1 = Yo

Type 3

()
Fig. 8.6 C]assyq'cation qfﬂow over side weirs
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weir, the depth y, can be considered to be equal to y_. At the downstream end the
depth y, will rise to the tailwater depth y, through a jump. Depending upon the tail-
water depth, the jump can also advance into the weir portion. The control for this
type 2 profile is at Section 1.

Type 3 The channel is on a steep slope, (y, <y,,) and with s <y_ (Fig. 8.6c). The
upstream depth y, =y, decreasing depth water profile will start from Section 1. At
Section 2 the depth reaches a minimum value and in the downstream channel the
water surface rises through an S, profile to meet the tailwater depth y,. The control
for this profile is y, =y, at Section 1.

8.4.1 De Marchi Equation for Side Weirs

Referring to the definition sketch (Fig. 8.5), to derive an equation to the sideweir
flow, the following assumptions are made:

1. The channel is rectangular and prismatic.

2. The side weir is of short length and the specific energy is taken to be constant
between Sections 1 and 2. This is equivalent to assuming (S, - S) =0or (S, =0
and S, = 0). Experimental studies have shown that this is a reasonable
assumption.

3. The side weir is assumed to be sharp-edged weir with proper aeration of the
nappe and to be discharging freely.

4. Kinetic energy correction factor « is taken as unity.

The SVF differential equation (Eq. 8.17) with the above assumptions would

become
dQ 2,,2
——=| /gB
o Q[ i ] /9B%y
dx Q@
gy3BZ
d
dy Qy[_dff]
ie. s T (8.18)
dx  gB%y"—-Q
The outflow rate = discharge over the side weir per unit length
d 2
= [d—f] =3 Cu20(y-9)" (8.19)

in which C,, = a discharge coefficient known as the De Marchi coefficient. Also,
since the specific energy E is assumed to be constant, the discharge in the channel at
any cross-section is given by

Q =Byy29(E—Yy) (8.20)
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From Eqs 8.18, 8.19 and 8.20

3
dy _4Cy VE-Y)(y-s] (8.21)
dx 3 B 3y—2E
Assuming that C,, is independent of x, on integration,
3B
X = by (Y, E, s) + Const. (8.22)
2C,,

in which

C2E-3[E-y . [E—y
ow (v, E,s) = E s \y_s 3sin —

Equation 8.22 is known as the De Marchi equation and the function @y (y, E, s) is
known as the De Marchi varied flow function. Applying Eg. 8.22 to Sections 2 and 1,

X, =% =L= gci (¢M2 _¢M1) (8.23)

M

knowing L, s, and (Q and y) at either 2 or 1, the discharge over the side weir Q_ can
be computed by Eq. 8.23 and by the continuity equation

Q=0Q,-Q, (8.24)

De Marchi Coefficient C,  Experimental and theoretical studies by Subramanya
and Awasthy” have shown that in subcritical approaching flow the major flow parameter
affecting the De Marchi coefficient is the Froude number of the approaching flow.
The functional relationship of C,, and initial Froude number is shown to be

2
C, =0.611 1—L (8.25)
(F*+2)
where  F = Vi
NIM

Equation 8.25 can be simplified as

C. —0.864 | = R (8.26)

MY 21 F12 .

However, for supercritical approach flow the effect of the approach Froude
number is insignificant and the variation of C,, for F, > 2.0 is obtained as

C, = 0.36 - 0.008F, (8.27)
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There have been numerous studies on the side weirs in rectangular channels since
last three decades. A majority of these studies are on subcritical approach flow condi-
tion as this is the most common situation in practice. Borghi et al ® have studied the
effect of parameters, s/y, and L/B, and propose the following experimentally derived
equation for estimation of the De Marchi coefficient C,, for subcritical approach
flow:

C, = 0.7—0.48F, —0.3i+0.06% (8.28)

1

Olivetto et al® have studied the side weir flow in rectangular and circular channels
both through theoretical and experimental means. The studies relate to the case
of subcritical flow in the approach channel with supercritical flow along the side
weirs. Ghodsian® has experimentally studied the hydraulic characteristics of sharp
crested triangular side weirs. For this flow situation the De Marchi equation has been
expressed as

C,=A-BF-C> (8.29)
Vi

where s = height of the vertex of the triangular weir above the bed of the channel.
The coefficients A, B and C are found to be functions of the weir angle 6.

Uyumaz!! has studied the behavior of a rectangular side weir in a triangular chan-
nel and has derived the relevant discharge equation. The channel studied had one side
vertical and the side weir was located in the vertical side. The coefficient of discharge
C,,» given by Eq. 8.25 and 8.27 was found to be adequate for this case also. However,
if the weir is set in the inclined side of the channel, the coefficient C,, can be expected
to be a function of the inclination of the side also.

8.4.2 Computations

The design of a side weir or the calculation of the side-weir discharge can be accom-
plished by use of appropriate Egs 8.23 through 8.27 along with the selection of the
proper control depth. In using the De Marchi equation since it is assumed that S, =
S, = 0, the controls would be y, =y, for flows of Type 1 and Type 3. However, for
Type 2 flows the coefficient C,, is calculated by taking F, = F_ and for calculations
of discharge and depth profile the depth at Section 1 is assumed as y, =y . The
downstream depth y, would, in all types of flows, be determined by the condition of
constancy of specific energy, (E = constant).

It is apparent that iterative procedures have to be adopted in the calculation of Q_ or L.

Example 8.4 A rectangular channel, B =2.0 m, n = 0.014, is laid on a slope
S, =0.001. A side weir is required at a section such that it comes into operation when
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the discharge is 0.6 m¥s and diverts 0.15 m®/s when the canal discharge is 0.9 m%/s.

Design the elements of the side weir.

Solution  The normal depths at the two discharges are found by referring to Table
3A.las:

Q, d)an/\/ng’3 y,/B Yo
0.6 0.0418 0.165 0.33m
0.9 0.0628 0.220 0.44m

The height of the weir crest s=0.33m.

For a discharge of 0.9 m¥/s:

O 9 2 1/3
2—0] / 981 = 0.274m

Critical depth ¥, =

Since s >y, and y, >y, the flow is of Type 1.

c1’

In the use of the De Marchi equationy, =y, = 0.44 m.

0.9 1.023
V, = —1.023mfs, F, = ———— =0.4924
1T 1%0.44 b J0.81x0.44

. (1.023)2
Specific energy E, = 0.44 + =0.4933 m=E,
2x9.81

Discharge over the side weir Q, = 0.15 m3/s
Discharge at the end of the weir Q, = 0.90 — 0.15 = 0.75 m%s
At Section 2, E, = 0.4933 = E,

u (075 _ 4023

+ —y, +
Ve (Bzy2)22g V2 y,” x4x2x9.81

By trial-and-error, y,=0.46m

F,= 2[51J =0.38
Y2

De Marchi varied flow function
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2E 3s f _ 3in / —
y—s E—s

2E —3s (2><04933 3><033)
E-s 0.4933-0.33

b, — (0.02082) 04933 — 044 . ., (04933044 oo
044 - 033 0.3493 — 0.33

¢, = (—0.02082) /% —3sin™ /M = —1.416
0.13 0.1633

From Eq. 8.25,

3x(0.4924)"
C, =0611 [1 - ——— =0.502
2+(0.4924)

—0.02082

From Eq. 8.23,
L= <¢M2 - ¢Ml)

3
2
320
2"
=2,

O|UJ

1.416 +1.840
502 ( * )

0.
534 m

Example 8.5 | |, Eyample 8.3, if the length of the side weir provided is 4.20 m
with s = 0.33 m, find the discharge over the side weir and the depth y,.

Solution C,,=0.502, E =E,=0.4933
y, =044 mand ¢, =—1.840

In Eq. 8.23
3 2
420 = = % +1.840
2 02 (%2 )
oy, = —1.1372.

The value of y, to satisfy ¢,,, = — 1.1372 is found by trial-and-error as y, = 0.471 m.

Q, = By, {29(E, —,)
= 2% 0471 /2 x 9.81 x (0.4933 — 0.471)
= 0.623 m*/s
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Q, = discharge over the side weir = Q, - Q,
=0.900 - 0.623 = 0.277 m¥s.
8.4.3 Uniformly Discharging Side Weirs

In many applications of side weirs, such as in irrigation systems and in the disposal
of effluents, it is sometimes necessary to have side weirs in which the discharge rate

[—Z—Q] is constant along its length. From Eq. 8.19 it follows that if (jj_Q = g = constant,
X X

(y — s) is constant along the weir. If s is kept constant, the water surface elevation
will be constant for such weirs. Further, if specific energy is assumed to be constant,
the water surface will be parallel to the energy line; i.e. the velocity of flow will be
constant for a uniformly discharging weir. Hence,

V,=V=V,

By continuity equation, Q,-q x=Q

ie Ai_q*X:Aandq_*_ A-A
A vV, L
A—A
Al—[%]x:A (8.30)

Thus, the uniformly discharging side weir can be achieved by linear reduction of
area of flow. This can be achieved in two ways: (i) by contouring the channel side
(Fig. 8.7(a)), and (ii) by contouring the channel bed (Fig. 8.7(b)). Further details on
uniformly discharging side weirs are available in literature®?.

For a uniformly discharging side weir, the lateral outflow Q. is therefore,

Q, = %cM J2gL(y—s)"” (8.31)

where C,, = De Marchi coefficient given by Eq. 8.25 or Eq. 8.27 depending on the
nature of the approaching flow. Further, by continuity,

Ql_ Q2 = Qs

The computations for Type 1, 2 and 3 flows follow the same assumptions as indicated
in the previous section.

Example 8.6 A 1.5-m wide rectangular channel conveys a discharge of 1.7 m®/s
at a depth of 0.6 m. A uniformly discharging side weir with crest at 0.42 m above the bed
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Energy line
v v
V2/2g
= const.
y Y2=Y1
Y1
s
L-Section X L
1 2
Side contouring
By
B B,
weir
PLAN
(a)
Energy line
v \%
(Yy1—S)  (y—s)=const.
Y2
Y1

AZ,
Bed contouring

(b)
Fig. 8.7 Un{form])/ discharging side weirs
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at the commencement of the side weir is proposed to divert a flow of 0.30 m%/s laterally.
Design the length of the side weir and other geometry of the channel at the weir.

Solution V, =Q,/A = (1.17)/(1.5 x 0.6) = 1.3 m/s
Froude number F =V, / (gy,)*? = 1.3/(9.81 x 0.6)"* = 0.536
The approach flow is subcritical.

By Eqg. 8.25

C, =0.611 J|1-

_S3F
(F*+2)
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o611 |lp 3x(0536)"
{(0536)" +2}

=0.482

2 1/3
Critical depth at Section 1 =y = (q*/g)"* = \w]

9.81
=0.396m
Height of the weircrest =s=0.42m

Sincey, <s, Type 1 flow will prevail andy, =y, = 0.60 m.

Depth of water over the weir = (y —s) = (0.60 — 0.42) = 0.18 m.

Diverted discharge Q ZECM\/@ L(y—s)¥?
* 3

0.30 = % % 0.482 x \/19.62 x L x (0.18)*"

=0.1087 L

Length of the side weir L = 0.30/0.1087 = 2.76 m

Q, = downstream discharge = 1.17 - 0.30 = 0.87 m*/s

For a uniformly discharging side weir, V, =V, = V.

Hence V,= 1.3 m/sand A, = Q,/V, = 0.87/1.3 = 0.6692 m?.

(i) If side contouring is adopted, y, = y,=y
Bed width at Section 2 = B, = A /y, = 0.6692 /0.60 = 1.115m
The bed width varies from 1.50 m at Section 1 to 1.115 m at Section 2, distance 2.76 m
downstream of Section 1, linearly.
(i) If bed contouring is adopted, B, = B, = B
Depth of flow at Section 2 =y, = A,/B, = 0.6692/1.50
=0.446 m
Az, = change in the elevation of bed at Section 2
= 0.600 - 0.446 = 0.154 m.

The variation of Az is linear with a value of zero at Section 1 and 0.154 m at Section 2.

8.5 BOTTOM RACKS

A bottom rack is a device provided at the bottom of a channel for purposes of divert-
ing a part of the flow. The device consists essentially of an opening in the channel
bottom covered with a metal rack to prevent the transport of unwanted solid material
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through the opening. Bottom racks find considerable application in hydraulic engi-
neering as intake structure as for example in Trench weir and kerb outlets. Trench
weirs are used as water intakes in mountain streams and bottom intakes are used in
them to prevent gravel entry in to the water intake.

Bottom racks can broadly be classified into four categories as:

1. Longitudinal bar bottom racks, in which the bars are laid parallel to the flow
direction. This is the most widely used type of rack arrangement.

2. Transverse bar bottom racks, in which the bars are placed transverse to the
direction of flow.

3. Perforated bottom plates, in which a plate with a uniformly spaced openings
form the rack.

4. Bottom slots, the limiting case of transverse bar bottom rack without any
rack.

Further, the above types can either be horizontal or inclined with reference
to the approach bed of the canal. The trench weir, which find considerable use as
intake structure in mountainous streams, especially for mini and micro hydel projects,

0 1 2
Energy line
E
E
Yo Qs
Qr
Vie Q Y2e
y
L - Section Qp
X
0 1 2
S
B
Vo Vi Vs,
D
L

Fig. 8.8 Definition sketch of longitudinal bar bottom rack
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contains a sloping longitudinal bar bottom rack made up of round steel bars as its
chief component. The inclination of the rack, which is of the order of 1 in 10, is
provided to facilitate easy movement of the bed sediment load of the stream over
the rack.

Figure 8.8 shows the definition sketch of a longitudinal bar bottom rack. The bars
are usually of circular cross-section and are laid along the direction of flow. The flow
over the bottom rack can attain a variety of water surface profiles depending upon the
nature of the approach flow, state of flow over the rack and tailwater conditions. Sub-
ramanya and Shukla'® have proposed a classification of the flow over bottom racks
into five types as below:

Table 8.2 Types of Flow Over Bottom Racks

Type Approach Flow Over the rack Downstream state
Al Subcritical Supercritical May be a jump
A2 Subcritical Partially supercritical Subcritical

A3 Subcritical Subcritical Subcritical

BI Supercritical Supercritical May be a jump
B2 Supercritical Partially supercritical Subcritical

Figure 8.9 shows the characteristic feature of these five types of flow. Out of the
above, Types Al, A3 and B1 are of common occurrence and also are of significance
from design considerations.

8.5.1 Mostkow Equations for Bottom Racks

Mostkow?? derived expressions for the water-surface profile for spatially varied flow
over bottom racks by making the following assumptions:

1. The channel is rectangular and prismatic.

2. Kinetic energy correction factor o = 1.0.

3. The specific energy E is considered constant along the length of the bottom
rack.

4. The effective head over the racks causing flow depends upon the type of rack,
such as (i) for racks made of parallel bars, the effective head is equal to the
specific energy, and (ii) for racks made of circular perforations, the effective
head is equal to the depth of flow.

The differential equation of SVF with lateral outflow Eq. 8.17 under the assump-
tions (1), (2), and (3) would become

_4Q
5 V%

= 8.32
dx gB’y*—-Q° (8:32)
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Fig. 8.9 Classification of different types of flows over bottom racks

(a) SVF with Bottom Racks Made of Parallel Bars

Under assumption (4) the outflow per unit length of rack, by considering it as an
orifice, is

[—d—Q]:CleB 26 (8:33)
dx
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in which C,, = a defined coefficient of discharge and £ = void ratio = ratio of the
opening area to the total rack area. Since the specific energy E = constant, the dis-
charge Q at any section is given by:

Q = Byy2g(E—Yy) (8.34)

Substituting Eqs 8.33 and 8.34 in Eq. 8.32

dy _ 2:CE(E-Y)

(8.35)
dx 3y—2E
On integration,
x=——=Y Yy const (8.36)
eC, E E

Putting y/E =7 and using the boundary conditiony =y, and x = 0, gives

X= %(wl—m —ny1=n) (8.37)

which is the equation of the SVF profile. As in the case of the De Marchi equation
(Section 8.3.3), the control depths for use in Eq. 8.37 which are compatible with the
assumptions are:

(i) y, =y, for A3 and B1 type flows and
(i1) y, =Yy, for Al type flows.

Note that from Eq. 8.37, [d_Q] is constant along the rack. Hence the total discharge
Q, diverted out i, dx

Q, =C.eBL J20E (8.38)
( b) SVF Equation for Bottom Racks Made of Perforated Plates

For perforated plate bottom racks the outflow discharge per unit length, under
assumption (4), is
dQ
[—d—x] =C,eB {29y (8.39)
where C, = discharge coefficient for perforated plate flow. Substituting Eqs 8.39 and
8.34 in Eq. 8.32, and simplifying

dy _ 2¢C,yy(E—y)

dx 3y—2E (840)
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Integrating and using the boundary condition y =y, at x = 0, yields the SVF profile
for perforated bottom plates as

l(cOS1\/;_0051\/,71)—1—2\/7;1(1—771)—\/77(1—77)] (8.41)

eC, |2

in which 7 = y/E and suffix 1 refers to Section 1.
8.5.2 Estimation of Discharge Through a Bottom Rack

Longitudinal Bar Bottom Rack For purposes of estimation; the diverted
discharge Q, is expressed in terms of the specific energy E, at the reference approach
section, in a manner similar to Eq. 8.38 as

Q, =C,BLe\/20E, (8.42)

where C, = coefficient of discharge of the longitudinal bar bottom rack. As a result
of experimental studies, Subramanya**¢ has shown that,

C, = fn[D/s,S ,n: and (type of flow)] (8.43)
where D = diameter of the rack bar; s = clear spacing of the bars in the rack,

V2
20E,

F.
2+F;

S, = longitudinal slope of the rack and 7. = a flow parameter =

The functional relationship for the variation of C, in various types of flows are as
below:

(a) Inclined Racks

Al Type flow . C,=0.53 + 0.4 log (D/s) - 0.61 S (8.44)
Bl Type flow : C, = 0.39 + 0.27 log (D/s) - 0.8 5. — 0.5 log S, (8.45)

(b) Horizontal Racks

Al Type flow : C, = 0.601 + 0.2 log (D/s) - 0.247 7 (8.46)
A3 Type flow : C, = 0.752 + 0.28 log (D/s) - 0.565 "l (8.47)
Bl Type flow : C, = 1.115 4 0.36 log (D/s) — 1.084 7 (8.48)

It has been found*>!¢ that the energy loss over the rack is significant in Type Al
and Type BI flows. However, the energy loss over the rack is not significant in Type
A3 flows. This implies that Mustkow’s water surface profile equation (Eq. 8.41)
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could be used only in A3 type flows. In all other cases, the water surface profile
is to be computed by using the basic differential equation of SVF (Eq. 8.22) with
an estimated value of the energy slope S,. Approximate expressions for S_in Type
Al and Type B1 flows over longitudinal bottom racks are available in Ref. (15)
and (16).

Brunella et al'” have studied the performance of inclined bottom racks made of
circular longitudinal bars. Flow features of the channel below the rack is also stud-
ied in detail. Further, this study contains a good review of past studies on bottom
racks.

Transverse Bar Bottom Racks In these, the rack bars are made of circular
bars or rectangular shaped flats and are kept transverse to the direction of flow.
Field applications of such racks are rather limited. Detailed information on
the variation of a defined coefficient of discharge in flows through and over a
bottom rack made of flats of rectangular section are presented by Subramanya
and Sengupta®.

Perforated Bottom Plates Perforated bottom plates find use for diverting bottom
layer of a flow in some industrial applications. Hydraulic characteristics of horizontal
bottom plates have been studied by Subramanya and Zagade*®. Figure 8.10 shows the
geometry of perforations used in the study. The diverted flow discharge is defined in
a manner similar to Mustkow’s Eq. 8.39 as

Q, =C,,BLey29Y, (8.49)

where C = defined coefficient of discharge of perforated bottom

—

;QOOQ
- OO O QO]
OO 00O

k L |
Fig. 8.10 Perforated bottom plate—definition sketch
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plate, y, = depth of flow at reference approach section. The variation of C " for vari-
ous types of flows are *°

(a) Al Type flow:
For B/L > 2.0,

C,y = 0.292— 0032+ 0.0083%+0.058% (8.50)
S

For B/L < 1.78, Cop is essentially independent of B/L and
C4 =0.41-0.03(D/5)+0.0083(D /1) (8.51)
where t = thickness of the plate, and D = diameter of the perforation.

(b) B1 Type flows:

C

—% —0.26—0.28 1, (8.52)
FO

V2 F2

20E, (2+F7)

where 7. = a flow parameter =

As in longitudinal bar bottom racks, here also the energy loss has been found to
be significant in Al and B1 Type flows and as such Mustkow’s water surface profile
equation (Eq. 8.41) is not valid for these types of flows. Approximate expressions for
the estimation of the energy slope S_in flows over perforated bottom plates, for use
in the basic differential equation of SVF, are available in Ref. (19).

Bottom Slots Bottom slots are the limiting cases of transverse bar bottom racks
and their practical applications are rather limited. The diverted discharge Q, through
a slot of length L and spanning the full width of the channel can be expressed as

Q, =C,BLe,/2gE, (8.53)

where E, = specific energy of the approach flow, and C = coefficient of discharge
of the slot.
The variation of C has been studied by Nasser et al*® and Ramamurthy et al**.
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~ PROBLEMS

Problem Distribution

g~ w DN

SI. No. Topic Problems
Lateral spillway channel 8.1t08.6
Side weir 8.7, 8.8
Uniformly discharging side weir 8.9, 8.10
Bottom racks 8.11t08.13
Radial flow 8.34
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8.1 Show that the following equation is applicable to a control section where critical depth
occurs in a frictionless lateral spillway channel:

S;OAT. _,
469’

8.2 A side channel spillway channel is 100 m long and is rectangular in cross-section with B =
5.0m, n=0.020, 3= 1.30and S, = 0.15. If the lateral inflow rate is 1.75 mé/s/m, find the
critical depth and its location.

8.3 A lateral spillway channel is trapezoidal in cross-section with B = 10.0 m, side slope
m = 0.5 and Manning’s roughness n = 0.018. The bed slope is 0.08. If the lateral inflow
rate is 2.5 m®/s/m length, find the critical depth and its location. Assume 5 = 1.20.

8.4 Show that for a wide rectangular channel having SVF with a constant in flow rate of q,,
the critical flow section is given by

8q2
X, =—————=
9(S, —g/C?’

when 8 = 1.0 is assumed and Chezy formula with C = constant is used. What would be
the corresponding value of y ?

8.5 A lateral spillway channel of length L is rectangular in cross-section. If at the channel exit,
y, = depth of flow and F, = Froude number, show by neglecting friction and assuming 3 =
1.0, that the critical depth y is given by

Ye _ 4F?/G? and is located at x_, given by
2

X _ 8'} where g — ok

Y. G'S, Y.

8.6 A wide rectangular channel of length L having a uniform lateral inflow rate has a discharge
of g, per unit width at the channel exit. If the Darcy-Weisbach friction factor f is used for
representing friction effects, show that

25607
gLz (8s, — )

4

4096 97

and Ty e % 3
gL*(8s, — f)

8.7 A 3.0-m wide rectangular channel can carry a discharge of 3.60 m®/s at a normal depth of
1.2 m. Design a side weir so that it will pass all the flow in the canal when the discharge
is 2.00 m%/s and will divert 0.6 m%/s when the canal discharge is 3.60 m%/s.
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8.8 A rectangular canal of 2.0 m width carries a flow with a velocity of 8.75 m/s and depth
of 1.25 m. A side weir of height 0.75 m and length 1.20 m is provided in one of its walls.
Find the quantity of flow diverted by the side weir.

8.9 A rectangular channel is 1.5 m wide and conveys a discharge of 2.0 m?¥/s at a Froude
number of 0.3. A uniformly discharging side weir having contouring on the sides only is
set at a height of 0.4 m above the bed with its crest horizontal. If the length of the side
weir is 1.8 m, estimate the total flow diverted by the side weir.

8.10 A rectangular channel is 2.0 m wide and carries a flow of 3.00 m%s at a depth of 0.9 m.
At a certain location in this channel a uniformly discharging side weir is proposed to
divert 0.30 m¥/s of flow laterally. The weir crest is horizontal and is placed at a height of
0.65 m above the bed at the commencement of the side weir. Calculate the length of the
side weir and other dimensions of the channel geometry to achieve the objective.

8.11 Show that, by Mustkow’s method of analysis, the minimum length L  of a parallel bar
bottom rack required to completely divert the initial discharge Q, in a channel is given by

YNfow
E E

8.12 A mountainous stream is of rectangular cross section and has a width of 10.0 m, depth of
flow of 0.25 m and carries a discharge of 6.0 m¥/s. A trench weir type intake made up of
longitudinal parallel bar rack is proposed at a section to divert the flow. The proposed
rack has a longitudinal slope of 0.01 and is made of circular bars with diameter to spac-
ing ratio of 1.0. Estimate the minimum length of the rack required to completely divert
the flow. The blockage due to debris can be assumed as 50% of rack opening.

8.13 A 2.0-m wide rectangular channel carries a discharge of 3.5 m%s at a Froude number
of 0.30. A 2.0-m long parallel longitudinal bar bottom rack having a void ratio (ratio of
opening to total rack area) of 0.2 is provided at a section. Supercritical flow is known to
occur over the rack. Estimate the discharge diverted out.

8.14 An axisymmetric radial flow emanates from a source on to a horizontal plane. Show that
the basic differential equation of SVF with decreasing discharges can be expressed in

L. & _E
" eCBy2¢E ¢C,

this case as
2
i
dy _ lor
=t
“ o [7)
ay

* OBJECTIVE QUESTIONS

8.1 The basic differential equation of SVF with increasing discharge is based on the

(a) continuity equation (c) energy equation
(b) momentum equation (d) Manning’s equation

8.2 The basic differential equation of SVF with decreasing discharge is based on the
(a) continuity equation (c) energy equation

(b) momentum equation (d) Manning’s equation
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8.3 The differential equation of SVF with decreasing discharge has one extra term in the
numerator on the right-hand side when compared to the corresponding GVF equation.

This term is
22:Qq 2a:Qq
_ ol b %
(@) oA (b) + oA’
23Qq, aQq,
_ g d) —
(c) e (d) e

8.4 The transitional profile in a lateral spillway channel is
(a) independent of the roughness of the channel
(b) independent of rate of lateral flow
(c) independent of channel geometry
(d) independent of the bottom slope of the channel

8.5 The flow profile in a side spillway channel can be determined by using
(a) Standard step method
(b) Standard Runge-Kutta method
(c) De Marchi equation
(d) Mustokow equation

8.6 A lateral spillway channel is rectangular in cross-section with a bottom width of 4.0 m.
At a certain flow the critical depth was found to be 0.5 m and occurred at a distance of
5.53 m from the upstream end. The lateral inflow rate in m¥s/m is
(@) 0.20 (b) 0.40
(c) 0.80 (d) 1.10

8.7 The De Marchi varied-flow function is
(a) used in SVF over bottom racks
(b) used in SVF in lateral spillway channels
(c) meant for side weirs in frictionless rectangular channels
(d) meant for subcritical flows only

8.8 The De Marchi coefficient of discharge C,, for a side weir is
(a) independent of the Froude number
(b) same as that of a normal weir
(c) essentially a function of inlet Froude number, F,
(d) approaches unity as F, — 0

8.9 A rectangular channel 2.5 m wide has a discharge of 2.0 m®/s at a depth of 0.8 m. The
coefficient of discharge C,, of a side weir introduced in a side of this channel with a crest
height of 0.2 m above the bed is
() 0.574 (b) 0.611
(c) 0.286 (d) 0.851

8.10 To achieve uniformly discharging side weirs the area of flow A at any section distance x

from the upstream end of the weir is related as:

(@ A=A —Mx (b) A=A, — Mx

() A= Mx (d) A=x¥?
8.11 Aside weir is provided in the side of channel. If E = specific energy is assumed constant,
at any section within the length of the side weir, the discharge Q in the channel is given by

(&) Q = constant (b) Q=B4(E—-y)2g

© Q:% (d) Q=ByJ29(E—y)
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8.12 Inauniformly discharging side weir provided in the side of a rectangular channel having
subcritical flow, the longitudinal water surface along the weir
(a) increases in the downstream direction
(b) remains parallel to the crest
(c) decreases in the downstream direction
(d) increases linearly in the downstream direction
8.13 In a uniformly discharging side weir in a rectangular channel, if x is the longitudinal dis-
tance from the start of the weir
(a) the area of the flow cross-section in the canal decreases linearly with x
(b) the mean velocity of the flow varies linearly with x
(c) the depth of flow above the weir crest varies linearly with x
(d) the area of flow cross-section in the canal remains constant
8.14 A trench weir type intake has as its main component a
(a) side weir (c) transverse, parallel bar bottom rack
(b) longitudinal, parallel bar bottom rack (d) perforated bottom plate



Supercritical-Flow
Transitions

9.1 INTRODUCTION

The response of a free surface to a small disturbance is markedly different in sub-
critical and supercritical streams. In supercritical streams, even small boundary
changes can cause disturbances which can be felt at considerable distances down-
stream. The changes in the boundaries required at a supercritical transition are not
governed merely by simple energy considerations as in the case of subcritical flows,
but the possibilities of surface disturbances make them highly sensitive flow situations
requiring very careful attention to the design. This chapter deals with some important
aspects of supercritical transitions related to surface disturbances. Much of the basic
information relating to supercritical flows was presented at an ASCE symposium by
Ippent, Ippen and Dawson?, Rouse et. al.® and Knapp*.

9.2 RESPONSE TO A DISTURBANCE

Consider a stationary pool of water in which a disturbance, say a solid object, is
moving with a velocity V. Let us assume that the motion of the solid body is trans-
mitted to the water in the form of finite impulses at regular intervals. Each impulse
will cause a small wave on the water surface which will travel in all directions at
the same relative velocity to the fluid C from the instantaneous position of the body.
It is known that for shallow waves (i.e., waves with large wave lengths compared
with the depth) of very small amplitude, C = @ and thus the ratio of velocity of
movement to C represents the Froude number of the flow, F = V /@.

The pattern of disturbance when V — 0 for a practically stationary disturbance-
causing body is a set of concentric circles each moving with a velocity C [Fig. 9.1(a)].
The radii of the two successive circles differ by C At, where At is the interval
between impulses. The disturbance pattern when 0 <V / C < 1.0 is indicated in Fig.
9.1(b). This represents a simple disturbance in a subcritical flow. A, A,, A, and A,
represent the various locations of the body with the circles 1, 2, 3 and 4 denoting var-
ious wave fronts, with reference to the present position of the body. Thus, if A is the
present position and A, the position of the body at time (1. At) prior to the present
position, then A, A, = V At and radius of circle 1 = C At. Similarly, A A, = 2VAL,
A,A,=3VAtand A A, =4V At Also, the radii of circles 2, 3and 4 are 2CAt, 3CAt
and 4C At respectively. It is easy to see that the wave fronts are always in front of the
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body. The distribution of wave fronts is however not uniform, the waves being
crowded in front of the body and sparsely distributed behind it. The crowding of
the wave fronts in front of the body will depend on the magnitude of V/C. When
VIC = 1.0, the waves will all have a common tangent at the nose of the body.

V<C

C4 At
V4 At

<|o

sing@=

V2 At

V3At P’ \
V>C
VA AL \
(©)

Fig. 9.1 Patterns of disturbance spread: (a) Still water (b) Subcritical flow (c) Supercritical flow
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In supercritical flow, i.e., when V > C, the wave fronts lag behind the body
[Fig. 9.1 (c)]. However, a pair of common tangents envelops the various waves and
the half angle between these two common tangents is given by

AP C4at C

sing = ==
AA,  V4AL V

=Joy /v :é (9.1)

So far, we have considered discrete impulses as the interaction between the solid
body and the fluid. On the other hand, if continuous interaction is considered,
there will be an infinite number of disturbance circles with the angle PA P’. The
lines AP and A P’ represent a boundary between two regions, viz. the area within
the angle PA P’ represent a boundary between two regions, viz. the area within the
angle PA P’ which is affected by the motion of the solid body and the rest of the
area outside the angle 5 in which the effect of body motion is not felt. The distur-
bances thus, propogate along the lines A P and A P’ which are called shock fronts
or shock waves.

The above situation finds an analogy in the compressible fluid flow in gas dynam-

ics in which case C = velocity of propagation of sound and sin ﬂ:\%:i

M
where M = Mach number. The shock waves are also called Mach lines or Mach
waves in compressible fluid flow.

Summing up, it can be concluded that in subcritical velocities of the body

(O<Vvc< @ ) the disturbances of any magnitude would be transmitted upstream
and downstream. In supercritical velocities (V > \/& ) the disturbances are confined
to an area in the downstream direction bounded by two shock fronts, each aligned at
an angle (3 to the direction of motion.

Now let us consider a situation in which the boundary is stationary and the
fluid is moving past it. For a small change in the alignment of the vertical
wall of a channel (Fig. 9.2), the disturbance is the change in the momentum

Shock wave Plan

Fig.9.2 Wave pattern at a change in alignment
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caused by the deflection on the boundary by A6 at A. In subcritical flow past
the boundary, the change in momentum will be reflected by a permanent defor-
mation of the stream surface, upstream and downstream of the point A. In
supercritical flow, however, the boundary change at A cannot affect the flow
upstream and hence the effect of the disturbance will be confined to a region,
downstream of A, bounded by the shock wave emanating from A and the boundary.
The effect of the disturbance will be felt as a change of depth in this area. Since
the flow is confined between two side boundaries, the shock wave undergoes
multiple reflections at the boundaries resulting in a highly disturbed water sur-
face in the downstream.

9.3 GRADUAL CHANGE IN THE BOUNDARY

Consider a supercritical flow in a horizontal frictionless rectangular channel (Fig. 9.3)
with one of the walls deflected through a small angle A 0. The change in the boundary

Y1 Vi

B
v
v ) Y2 Vin2 ,
nl y
_— 1
{

Section MM

Fig. 9.3 Supercritical flow past a small change in boundary alignment
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causes a shock wave at an angle 3,, to the approaching flow. The flow upstream of
the shock has a velocity of V, and depthy, and the flow after the shock has a velocity
of V, and depth y,. From the vector diagram of the velocities,

V,=V,sing

V, =V, cos g,

vV, =V,sin (3, - Af)

V,=V,cos (3, - A0)
where the suffixes n and t refer to the normal and tangential directions with respect
to the shock front. Considering the unit width of the shock-wave front, the continuity
equation can be written as

YVo = YoVio (9.2)

In a direction normal to the shock wave, the momentum equation is written as

1 1
PR R A D AV DA (9:3)

From Egs 9.2 and 9.3

1
Vi =9, —ﬁ[ﬁﬂ] (94)
2y (%
For very small disturbances, y, — y, and hence,
V,=V,sing—, /g y,, and dropping suffixes

Vv, :Vsinﬁ:\/ﬂ or
Joy ©5)

sinfg=-1=-=
g V

which is the same result as in Eq. 9.1.
From the vector triangle ABD,

<_Avn) o V1
sinAf  sin(90+ 3 — A9)
e LAV = — V, sin Af
sin (90+ 3, — A9)
As A9 — 0, SV (9.6)

dd  cosp
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The momentum equation, Eq. 9.3 can be written as
P+M= %yyz +%Vn2y = Const.
Differentiating,
vydy—k%(zvny an)—Fg(Vn2 dy) =0

2

i.e. 1_|_V_”
gy

ydy:—zv” yadv,
g

2
For very small angular changes, from Eq. 9.4, Vo =1.0 and hence,
ay

_ Oy ) Vo _Vsing ©.7)
av,) ¢ 9
By Egs 9.6 and 9.7,
_ Vo[ dy|_dy_Vsing V.
de dav, ] do g cosp
. 2
1.€. Q:V—tanﬂ (9.8)
de g
V2
Assume that there is no energy loss, i.e., the specific energy E=y+—=
constant. Noting that 29
F? . 1 .
E=y 1+7 and sin 3 = x Eg. 9.8 can be written as
dy _2(E-y)y (9.9)
dg | J2E -3y
The solution of this equation is given as
_ 3y 41 3y
6=+3tan" —tan ' — -C 9.10
V3 2E —3y J3\V2E-3y ! (9.10)
in which C, is a constant.
Other forms of Eq. 9.10 are
f =+3tan* 3 —tan! L —-C, (9.11)
JF? -1 JF? -1
2 J—
or 6—3tan 3" 1—tzan*\/FZ—l—Cz (9.12)

V3
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The constants C, and C, can be evaluated by using the initial condition, 6 = 0
when F = F,.

Equation 9.10 or its other forms give the variation of the Froude number at a
gradual change in the boundary in a horizontal frictionless channel. Equation 9.12
is in a form which is analogous to the well-known Prandtl-Meyer function in
supersonic flows. The two constants C, and C, are related by C + C, = 65.8846°.
Figure 9.4 is a plot of Eqg. 9.11 in the form of (6 + C,) against F and is helpful in
understanding the interdependence of F with 6. Also, it can be used as an aid in
solving problems concerning supercritical flow past curved boundaries.

Engelund and Peterson® have shown that Eq. 9.5 relating 8 with F is only true for
wide rectangular channels. However, for channels with finite aspect ratios, the wave
angle 3 has been shown to be a function of F and B/y, where B = width of the channel.
For a single reflecting wave in a channel of width B (such as in Fig. 9.2) Harrison® has
shown that

. 1 [tanh(wy/ Bcos
sin = — (7Y 5) (9.13)
F wy/Bcosp
70 T T T T T TTTT T T 1 1
—— 65.8846° 4
60 V3 -l 1 1
50 7
40 Eq.(9.11)
%)
+ -
N2
30
20
10 +
0 IIIIIIIII|IIIIIIIII| 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | 1 |
1.0 1.5 20 3.0 40 50 6.0 10 15 20 25 30
F

Fig. 9.4 Variation of (0 + C,) with F
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Also, Eq. 9.13 can be simplified for small values of (wy / B cos 3) = x as

sinf=— 5

1 x?
- [1 —] (9.14)

The evaluation of Eq. 9.14 indicates that Eq. 9.5 gives values of 3 within 5 per cent
error for y/B < 0.15. In view of its simple form, Eq. 9.5 is usually used in channels of
all aspect ratios to estimate 3 in preliminary calculations.

Experiments by Ippen and Dawson? on a curved wall composed of two reverse
circular curves, each with a central angle of 16°, indicated good agreement with Eq.
9.11 in the first half of the curve but showed deviations in the second part, probably
due to the neglect of the effects of friction and the aspect ratio in the theory.

Concave Wall A curved surface can be considered to be made up of a large
number of straight segments, each with a deflection angle A 8. For a concave
vertical wall surface (Fig. 9.5), at the first break at A, a disturbance line emanates
from the boundary at an angle (3, to the flow. Since A6 is positive in this case, it will
cause a decrease in the Froude number as is evident from Fig. 9.4. Thus F, < F, and
y, > Y,. At the second break in the wall, by similar argument, F, < F, and y, > y,.
Thus the Froude number decreases and the depth of flow increases in the downstream

Plan

— At wall
---Along A; B3 C3 Dj
Water surface

yl

}

L - Section Distance along wall

Fig. 9.5 Supercritical flow at a concave wall
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direction. Since sin 5 = = a decrease in F causes an increase in the value of 5. The

water surface profiles will thus have steeper gradients as one moves away from
the wall. If these disturbance lines coalesce, ajump will occur. This type of disturbance
caused by a concave wall is known as positive disturbance.

Convex Wall For a convex vertical wall guiding a supercritical stream as in
Fig. 9.6, the wall surface curves away from the direction of flow, and as such A6 is
negative.

As indicated earlier (Fig. 9.4), a decrease in 6 causes an increase in the Froude
number which, in turn, is responsible for the decrease in depth and also for the
reduction in the value of (. Thus, the effect of a convex wall on a supercritical stream
is opposite to that of a concave wall. The increase in the value of  causes the distur-
bance lines to diverge, and consequently, the water-surface profiles are flatter as one
moves away from the wall. The disturbance produced by a convex wall is termed as
a negative disturbance.

Plan

Water surface

Along A3;B;C3D3

At wall

L - Section Distance along wall

Fig. 9.6 Supercritical ﬂow at a convex curve
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Example 9.1 | 5 g nercritical stream with a velocity of 4.34 m/s and a depth of

flow of 0.12 m enters a curved boundary of total deflection angle of 5°. Calculate the
Froude number, depth of flow and direction of the disturbance line § just after the
curve, if the boundary is (a) concave, and (b) convex to the flow. The channel is
assumed to be horizontal and frictionless.

4.34

————=140
4/9.81x0.12

B, =sin"! % =14.478°

Solution F =

Equation 9.11 or Fig. 9.4 can be used to study the effect of the boundary on the flow.

(a) ConcaveWall ForF, = 4.0, fromFig. (9.4), (¢ +C)) = 27.26°
A = +5.0°
Hence at the end of the curve, (0 + C)) = 27.26 + 5.0 = 32.26°
For this value, from Fig. 9.4, F, = 3.32.
Since the specfic energy is assumed to be constant in the derivation of Eq. 9.11,

2 2

F F
E=y 1—%71 =Y, 14—72
2
0.2 1+42]
y2 :—2 :0166 m
L. (332)
2

. 1
=sin'—— =17.53°
b 3.32

(b) ConvexWall ForF, = 4.0, as found above, (0 + C,) = 27.26°
Af=-50°

Hence at the end of the curve, (0 + C)) = 27.26 — 5.0 = 22.26°
For this value, from Fig. 9.4, F,=4.96

0.12[1—&-16]

-1 2. oo2m
(4.95)

Ya

= 11.655°
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9.4 FLOW AT A CORNER

In contrast to the gradual change in the boundary through a series of infinitesimally
small angular changes, a sudden change in the boundary orientation by a finite angle
6 is called a corner. The supercritical flow past a convex corner can be analysed in
a manner similar to that of a gradual change, while the flow past a concave corner
needs a different approach.

9.4.1 Convex Corner

In a convex boundary, the disturbance diverges outward. For a convex corner at A
(Fig. 9.7), the deflection angle of # can be considered to be made up of a series of
small angles A6, A6, ...., etc. Let AB, be the first disturbance corresponding to
F, deflected by a small angle A6,. The inclination of AB, to the initial flow direc-

tion x will be 3 = sin™ 1 . A disturbance line, such as AB,, is a characteristic of

1
the incoming flow and is called a characteristic or Froude line. Across the Froude

line AB,, the velocity increases from V, to V, and the streamlines are deflected by
an angle A6,. The next Froude line AB, is due to a further change of the boundary

direction by A6,. The inclination of AB, is 3, = sin™ 1 to the flow direction
2
in B, AB,, i.e., its inclination with x direction is (3, — A6,). The velocity is now

(82— Aby)

Ay

Fig. 9.7 Flow round a convex corner
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increased from V, to V, and the streamlines undergo a further deflection A6, in
their direction. This process continues and the velocity vector gradually changes
direction. Since A6, A0, are arbitrary they can be made infinitesimally small,
making the increase in velocity and Froude number gradual. The last Froude line

will be AB_ and its inclination is B_ = sin™ Fi , where F_is the Froude number

of the flow past the corner. The streamlines after the Froude line AB_ will be par-
allel to the downstream boundary, AA,. It may be noted that in this flow, save for
friction (which is neglected), there is no change in the energy of the system. Thus
in a convex corner, the velocity and depth changes are confined to a fan-shaped
region bounded by Froude lines F, and F_at angles 3, and 3 respectively. This
fan-shaped region is known as the Prandtl-Meyer fan. The relationship between F,
A6 and 3 at any Froude line is governed by Eq. 9.11. The various elements of the
flow can be calculated using Fig. 9.4.

MM A flow with a Froude number of 3.0 passes round a convex corner
of deflection angle 10°. If the initial depth of the flow is 0.65 m, find (a) the Froude
number after the corner, (b) the depth of flow in the downstream section, and (c) the
angular spread of the Prandtl-Meyer fan.

Solution Referring to Fig. 9.7,
F,=30,-A0=10°andy, = 0.65m

B, =sin"! % =sin™ % =19.47°

1

Using Fig. 9.4, for F, = 3.0, 0 + C, = 35.0°.
For the downstream sections of the corner,

(0+C, - Af) = 35.0-10.0 = 25° and corresponding
F,=44

B, =sin" 2 sint L _g3aee
F, 4.4

.. Width of Prandtl-Meyer fan = 3, + 6 - 3, = 16.33°

Since specific energy is assumed to be constant,

FZ FZ
E=y |1+ |=y, |1+
y1 2 ym 2
2 2
Yo _2+FH 243 0515

y, 24+F2 2+(4.4)

y,, = 0.515 x 0.65=0.335 m.
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9.4.2 Concave Corner and Oblique Shock

If a flow past a concave corner is analysed by a stepwise treatment as in the
previous section, it will be found that the first Froude line AB, will be down-
stream of the last Froude line AB_ (Fig. 9.8). This would require a reverse flow
and hence the method is not applicable to the situation. The reason for this ana-
malous behaviour is that in a concave corner, the various Froude lines intersect
and interact causing a rapid change in the water surface and some energy loss.
When different Froude lines coalesce, a single shock wave inclined at an angle
B, to x direction takes place. Across this shock, there will be a considerable
change of depth as in a hydraulic jump. Such a shock wave is called an oblique
shock wave.

AO A Lﬁl

Fig. 9.8 Flow past a concave corner if oblique shock is neglected

Figure 9.9 shows the geometry of an oblique shock. 3, is the inclination of the
shock wave to the approaching flow of velocity V., depth y, and Froude number F,.
After the shock, the depth increases to y, with the velocity and Froude number
decreasing respectively to V, and F,. The components of the velocity normal and
tangential to the shock wave are

V,=V,sin g and
V, =V, cos 3, and

V,=V,sin (5, - 0)
V, =V, cos (3, - 0)

Consider a control volume of unit width as shown in Fig. 9.9. By the continuity
equation

y,V, sin 8, =y,V, sin (8 - 0) (9.15)

From the momentum equation in the normal direction to the shock wave, by
assuming hydrostatic pressure distribution and neglecting friction.

1 .2

1 . .
Eyyl —Efyyz2 = py,V, sin® (B, —0)— py,V,’ sin’ 3, (9.16)
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Fig.9.9 Oblique shock geometry

From the momentum equation in a direction parallel to the shock wave, as there is
no net force in that direction, it follows that

V, cos 3, =V, cos (3, - 0) (9.17)

These three basic relations (Eqgs 9.15, 9.16 and 9.17) aid in deriving useful rela-
tionships between the various parameters of the oblique shock.

From Eqgs 9.15 and 9.16
ﬁ:%(—l—h/lJrSFfsinz ﬁs) (9.18)

Y1

It may be noted that F, sin 8, = F_, = normal component of the initial Froude
number of Eq. 9.18 is of the same form as the familiar hydraulic-jump equation
[Eq. (6.4)], in a rectangular channel. Thus the normal components of the velocities
satisfy the basic equation of a hydraulic jump and as such an oblique shock wave is
called an oblique jump.
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From Eqgs 9.15 and 9.17

Y, __ tang (9.19)

y]_ tan (ﬂs 70)
Eliminating [ﬁ from Eqgs 9.18 and 9.19

1
tan 3, (‘/1+8F125in265 73)
tand = (9.20)
2tan? 3, —1+ /L +8Fsin® 3,

From Eq. 9.18,

F, =Fsing, = l[ﬁ][ﬁﬂ] (9.21)

2(¥: )\ %

An expression for F, in terms of F, and (, /y,) can be obtained as follows:
V2 =V2+V72
and V7 =V2 +V2
But by Eq. 9.17, V, =V,
V)=V -V2i4+V)

From Eq. 9.15, V., =V, [ﬁ] sin 3,

Y>

V,? =V} |1—sin2 B,

Bl

2
e, S [L]_ 2 [L] 1_[LJ
Y "2 Y>

Substituting for F from Eq. 9.21 and simplifying

e
Y, 21y, )\ Y2

Equations 9.15 through 9.22 enable the solution of the various elements of the oblique
shock wave. Usually a trial-and-error procedure is required for solving oblique-jump
problems. Equation 9.20 when plotted as 3, = f (F,, 0) (Fig. 9.10), provides a graphi-
cal aid which together with relevant equations greatly simplifies the determination of

oblique-jump elements. Ippent has given a four quadrant chart for the graphical solu-
tion of oblique-jump equations.

2

1422
Y1

F2 = (9.22)
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Fig. 9.10 Variation (3, in an oblique shock

In an oblique-jump the energy loss can be estimated by

V2 V2

Eo= y1+$ - yz+£
FZ F2
or Fo_|1 8 _[ﬁ] 142
Y 2 ) Wy 2

Substituting for F,? from Eq. 9.22 and simplifying,

3
i
Eo _ %

Y, Ay, 1Y)
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_ 3
or E,= —(yzzly ;’1)
172

which is the same as the energy loss in normal hydraulic-jumps (Eq. 8.6). Usually, the
value of F  is very small and as such the energy loss in an oblique-jump is relatively small.

Estimation ofﬁs For a given value of F, and 6, the value of 3, can be estimated
by using Fig. 9.10. However, this will only be a rough estimate, because of the scale
of the figure and if accurate value is desired the value obtained from Fig. 9.10 can
be refined by trial and error through use of Eq. 9.23. For quick and fairly accurate
estimation of values of 3, the following correlation equation can be used:

38, = (1.4679 - 0.2082 F, + 0.0184 F?) 0 + (60.638 F, %) (9.23)

where 3, and ¢ are in degrees. This equation has been derived from Eg. 9.20 for
values of ¢ in the range 1.0° to 11.0° and Froude number F_ in the range 2.0 to 7.5.
Equation 9.23 gives results within an error band of + 2.5%.

Example 9.3 | p gpercritical stream in a wide rectangular channel has a
Froude number of 6.0. One of the vertical walls is turned inward at a section with a

deflection angle of 10°. Calculate the elements of the oblique-jump formed due to this
change in direction if the initial depth of flow is 0.50 m.

Solution F, =6.0, ¢=10.0°andy, =0.50m

From Fig. 9.10, B,=18.5

Using Eq. 9.19,

Y, tang,  tanl85 _ 9939

y, tan(3,—0) tan85°

Y, =(0.5)x(2.239)=1.119m

Using Eq. 9.22,
1 1( 1
F?=|——1|(6.0)> — = | —— [(1.239) (3.239)°
2 [2.239]{( ) 2[2.239]( ) )
= 14.782
F,=384

F.,=F, sin 5 = 1.904
F.,=F,sin(0,-0) = 0.57

(Note the small values of Froude numbers normal to the shock),



418  Flow in Open Channels

3 3
Energy loss £ — (Y.-v) _(L119-050)" 0106
4yy,  4(1.119)(05)

F? 36
1+
2

E =y, = 0.5[1+?] =9.5m

E .
Relative energy loss ?LO = % =0.011=1.1 per cent

(Note the very small relative energy loss.)

9.5 WAVE INTERACTIONS AND REFLECTIONS

9.5.1 Reflection of a Positive Wave

Consider one of the walls of a rectangular channel being deflected inwards by
an angle 6 (Fig. 9.11). An oblique shock wave AB inclined at an angle 3, to the
initial direction emanates from A, the magnitude of 3, being given by Eq. 9.20.
As the wave arrives at B, the angle of the wall to the flow direction downstream
of AB is the deflection angle causing the next shock wave. In the present exam-
ple, the wall at B making an angle 6 with the flow acts as a concave corner. The
approach Froude number is F,. An oblique shock BC making an angle 3, with
the flow direction [i.e., (8,—0) with the wall] will emanate from B. For known
values of F, and 6, 3, is obtained from Eq. 9.20 or Fig. 9.10. Since F, < F, 3,
will be greater than 3,. The successive reflections are similarly found. It may be

.
NBB

[
- /Q/

0
o
F3

Plan

Fig.9.11 Rgﬂection (ypa positive wave
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noted that after each reflection the value of the Froude number decreases and
the 3 value increases, ultimately reaching 90° when the downstream flow in the
channel becomes critical.

9.5.2 Interaction of Two Oblique Shocks

Two oblique shocks emanating from either end of an unsymmetric contraction
in a channel are shown in Fig. 9.12(a). The deflection angles are ¢, at A, and 6,
at A,. The shock wave A B, is inclined at 3, to the horizontal and AB at 3, to
the horizontal. Downstream of A B, the Froude number is F, while downstream
of AB, it is F,. Downstream of BC, and BC,, the flow must have the depth and
direction same all across the section till it is intercepted by a shock wave. As a
first approximation, the flow direction may be taken as inclined at (6, - 0,) = ¢
to the horizontal. Knowing 4, the deflection angles of shock waves BC, and BC,
are calculated using the appropriate Froude numbers. Since F, < F and F, <F,,
B, > 3,and 8, > 3. Itis important to realise that A BC, (and similarly A,BC,) is
not a single straight line. If the contraction is symmetrical (¢, = 6,), there will
be symmetry about the centreline which acts as a reflection surface and the flow
situation is as discussed in Section 9.5.1. A typical cross wave pattern obtained
as a result of shock wave interaction in a symmetrical contraction is indicated in
Fig. 9.12(b).

(b)
Fig. 9.12 (a) Unsymmetrical contraction (Ref- 1), (b) Symmetrical contraction (Ref. 1)

9.5.3 Convergence of Two Oblique Shocks

When two oblique shock waves from two adjacent concave corners coalesce at C
(Fig. 9.13), CD is a combined shock wave. To calculate the direction b, of the shock
CD, the Froude number F, and deflection angle = (6,+ 6,) may be used as a good
approximation. This is based on the assumption of zero energy loss.
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4
A [51
Fig. 9.13 Convergence of two oblique shock waves (Ref. 1)

9.5.4 Interaction of a Positive and a Negative Shock

Consider a negative wave (Fig. 9.14) intersecting a positive shock wave from an
upstream location A. At B, the Prandtl-Meyer fan is drawn with a large number of
Froude lines. The depths at the intersection of these Froude lines with the shock wave
are obtained by a simple superposition. The shock wave will be deflected due to a
change of the Froude number at the intersection points of the Froude lines.

01

A
Fig. 9.14 Interaction of two kinds of waves (Ref. 1)

Example 9.4 | 1, the channel contraction shown in Fig. 9.11, the initial Froude

number F, is 4.00 and the inward deflection angle 0 is 6°. Calculate F,, F, and 3, 3,
and 3..
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Solution (i) For the first wave,

For F, = 4.0 and 6 = 6°, by using Fig. 9.10, 3, = 3, = 19°.

From Eg. 9.19, Yo _ tan19° =1.491
y, tanl3°

From Eq. 9.22, F) = [%91][42 —%[ﬁ]x(1.491—1)><(1+1.491)2 =10.04

F,=3.169
(ii) For the second wave,
For F, = 3.169 and # = 6°, by using Fig. 9.10, 5, = 3, = 23.5°.

tan 23.5°
From Eq.9.19, 22 =-212° _j 379
y, tanl7.5

From Eq. 9.22.

1 2 1 1 2
F?=|——||(3.179) —= 1.379—-1)x(1+1.379) | = 6.718
: [1.379]\( ) 2[1.379]X( Jx(L+ )

F,=2.592
(iii) For the third wave,

For F, = 2.592 and 6 = 6°, by using Fig. 9.10, 3, = 8. = 26.5°.
1 S C

FromEq. 9.19, Y2 _1@n26.5° ) oo,
y, tan20.5°
From Eq. 9.22,
S (2.592)2—1[ L ><(1.334—1)><(1+1.334)2 =4.525
“ 11.334 2(1.334
F,=2127

9.6 CONTRACTIONS

In the contraction of a subcritical flow channel, the main aim is to smoothly guide
the flow, and the desirable profile having a short length provides a separation-free
streamlined transition with the least energy loss. The curvature of the sides does not
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affect the lateral water-surface profile, which remains horizontal. If such a curved
contraction is used in a supercritical flow, it is apparent, from the discussion in the
earlier sections, that numerous positive and negative waves would be generated at
the boundary. These would undergo interactions and multiple reflections to produce
a highly undesirable water surface in the downstream channel.

In complete contrast to the streamlining practice adopted in the subcritical flow, it
is possible to design an acceptable downstream wave-free supercritical contraction
composed of straight-edge boundaries. Figure 9.15 represents a straight-edge con-
traction in a horizontal frictionless channel. The supercritical flow will meet the con-
cave corners at A, and A, each having a deflection angle 6. The oblique shock waves
formed intersect at B. Downstream of A B and A B the streamlines will be parallel to
the wall and the values of the depth and Froude number attained are y, and F, respec-
tively. If the length of the contraction is too short, the shock waves BC, and BC,
would reach the boundary beyond the corners D, and D, respectively as shown in
Fig. 9.15. The convex corners D, and D, will each create a fan of negative waves
which also travel downstream, interacting with various positive waves. The result is
a highly disturbed downstream water surface due to the presence of cross waves.

If the length of the contraction is too long, the interacted waves BC, and BC, will
hit the sloping walls of the channel, as in Fig. 9.12(b), and even here there will be
multiple reflections and cross waves in the downstream channel.

If, however, the contraction length of the channel is so designed that the interacted
waves BC, and BC,, meet the channel walls exactly on the corners D, and D, respec-
tively (i.e., points D and C coincide), the deflecting effect of the shock wave and the
wall will cancel each other. The downstream channel will be free from shock waves
due to the contraction. The relationship between the various parameters for this ideal
contraction are obtained as below.

Az

AL g Negative disturbances

Fig. 9.15 Incorrect contraction
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Vi y1

Ay

Fig.9.16 ngnition sketch cy"an ideal contraction

The plan view of an ideal supercritical flow contraction is indicated in Fig. 9.16.
The flow is symmetrical about the centreline. Considering the directions normal to
the shock fronts A B and A,B, the depths y, and y, can be related by Eq. 9.18 as

ﬁ:%(—1+,/1+8Ffsin2 51) (9.24)

Y1

in which 3, = angle the shock waves A B and A B with respect to the initial flow
direction. Similarly, for the shock waves BC, and BC,,

ﬁ:%(flJm/lJrSFfsinzﬂz) (9.25)

Y

in which 3, = angle of the shock waves BC with respect to the inclined wall. Since
there is no change in momentum parallel to a shock front, by Eq. 9.19,

Y, __tanf (9.26)

y, tan(s,—0)

and Y, __tanf, (9.27)

y, tan(B,—0)
Adopting Eq. 9.22,

QI

and F2=|22 (9.29)

where F, = final Froude number.
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By the continuity equation,
(81 yl)Vl = (Bsy3) V3

B 3/2 F
i.e. [_1] — [ﬁ] 5 (9.30)
B3 yl Fl
The length of the ideal contraction is obtained by the geometry of the contraction as
L= (B~ B:) (9.31)
2tand

Design In the design of supercritical flow contractions usually F, y,, B, and B,
are known and it is required to find the wall deflection angle 6. Thus when F, and

B .

?are given, there are seven unknowns, namely, 0, 3,, 3,, F,, F,, y,/y, and y.ly,.
1

While seven equations, Egs 9.24 through 9.30, are available, the non-linearity of

the equations precludes a closed-form solution of 6. Harrison® through the use
of the Newton—-Raphson technique of iteration obtained the design information as

0= f E,Fl and 3= f [E,F1
B

Bl yl 1
Eq. 9.24 through 9.30 to obtain four equations in four unknown ¢, F,, 3, and 3, and
solved them by the least square error minimisation technique. Figure 9.17 is a plot of

B L . .
0=f 33 F, | obtained in the study. Figures 9.17 and 9.10 together with the relevant

1
equations from among equations 9.24 through 9.30 enable the determination of all
the elements of a supercritical flow contraction. The curve A in Fig. 9.17 represents

the condition of F, = 1.0, and thus the choking condition.

. Subramanya and Dakshinamoorthy?, used

130 T T T T T T T T T
L E Curve A E
i 1 (Fs=1)
10.0 - o i
ocb S
(7] B 90,
(]
& - 2. \o; 2N
g L o\®
= o\ ¥
= L &
o.
5.0 <
4+
3 -
2L
1  Third parameter = F;
0 1 1 1 1 1 1
0 0.2 0.4 0.6
B3 /B,

Fig. 9.17 Jariation qf@ in contraction (Ref. 7)
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References 1, 2, and 6 contain very useful information pertaining to supercritical
flow contractions. The ideal contraction as above is to be used in preliminary designs
only and the final design will have to be based on model studies as the friction and
slope of the channel not considered in the ideal design can modify the shock-wave
geometry. It should be remembered that the straight-edge supercritical contractions
are only valid for the design Froude number. For any off-design values of F, the
reflected waves do not strike at the corners D, and D,.

Example 9.4 | 5 roctangular channel carries a flow with a Froude number of

6.0 in a 5.0-m wide channel with a depth of 0.75 m. It is required to reduce the width
to 2.5 m. Design a contraction and determine all the elements of the transition. Also,
determine the energy loss in the transition.

. B
Solution y, =0.75m, F =60 and ES =05

1
1

From Fig. 9.17, 0 =4.25°
Referring to Fig. 9.10 or to Eq. 9.23, for 6 = 4.25° and F = 6.0,
B, =13.0°
tan °
Using Eq. 9.26, Yo_ _tanh _ wn1® o,
y, tan(8,—6) tan8.75°
y,=112m
From Eqg. 9.28
F2=| 2|07 |2 |w50-1)(L5+1)
15 15
= 23.305
F,=4.83

For the shock waves BC, and BC,, F, = 4.83 = initial Froude number and ¢ = 4.25°.
Using Fig. (9.10) or Eq. 9.23, with § = 4.25° and F = 4.83,

B, = 15.5°
From Eqg. 9.26,

tan tan15.5°
Ys _ b _ -—1.394
y, tan(B,—6) tan11.25

Yo _ Y Y2 1.394 x 1.50 = 2.09

i Yo %
y, = 2.09 x 0.75 = 1.568 m
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From Eq. 9.29
1 2 1 1 2
F?=|——||(4.83)" —=| ——((0.394)(2.394
3 [1.394“( ) 2[1.394}< ) ) ‘
=16.15
F,=4.02
From Eq. 9.31
= 50-25 45883
°  2tan4.5°
F B,/B
Check: By Eq. 9.30, =% =———
Fl (yg / yl)
c _ 6.0x20 307
*(200)" 7

~ 4.02 with about 1 per cent error.

In view of the possible errors in the use of various plots, this error is acceptable.
Thus the elements of the transition can be summed up as

y,=075m f = 4.25° L, —15.883m
B,=5.00 m B, =13.0° y,=1125m
F,=6.00 3, =155° y,= 1.568'm
F,—483 F,= 4.02
Energy loss:

2 2

E,=V, 1+F71 =075 1+@ =14.25m
2 4.02)°

E, =y, |1+ |= 1568 1+%]= 14.238 m

2

E, —E,-E,=14.250 - 14.238 = 0.012 m

9.7 SUPERCRITICAL EXPANSIONS

9.7.1 Introduction

The main aim of a supercritical flow expansion design is to have the desired chan-
nel-width expansion and to maintain a downstream water surface which is free
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from cross waves. Since a supercritical flow past a convex boundary creates a grad-
ual change in the water surface, an analysis of the flow situation with the help of
Eqg. 9.11 is feasible. It may be noted that in view of the analogy of these expansions
with supersonic nozzles, the advance techniques available for the design of the latter
can be advantageously used for the corresponding open-channel flow problems. The
basic principles of the supercritical flow expansion design are outlined in the follow-
ing sections.

9.7.2 Design of Expansions

The half plan of an expansion from width B, to B, in a horizontal rectangular
frictionless channel is indicated in Fig. 9.18. The boundary initially expands in
a convex curve from a to e. In this process the negative disturbances, i.e. Froude
lines emanate from the boundary. Five such lines are shown in Fig. 9.18. These
lines intersect the corresponding lines from the opposite wall at the centre line
which can be treated as a reflecting plain wall. The reflected waves, after interact-
ing with the oncoming lines, finally reach the wall. If the wall is turned through the
same angle as a streamline would be turned by the expansion wave, no reflection
occurs and the flow is wave-free. The proper wall angles are provided on this basis
at points a,, b,, c,, d,, e,. Naturally, a smoother boundary contour can be obtained
by considering a large number of Froude lines. It may be noted that the initial
curve abcde is arbitrary and the length and shape of the transition depend upon
this curve.

Detail at the wall

Suppression of expansion
wave by bending wall

Half Plan
Fig. 9.18 Expansion with reflection free boundary
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B, /2

¢ b LIRS

Fig.9.19 Minimum length expansion

me

Half Plan

For a minimum length design, the points a through e will be coincident, i.e. a sharp
convex corner at a (Fig. 9.19). A Prandtl-Meyer fan will occur at a and considering a
suitable number of Froude lines, the transition can be designed as before. Figure 9.19
is a typical minimum-length expansion.

Graphical methods of designing the expansion as above are available in Ref. 1.
Numerical computation procedures are generally preferred. A FORTRAN program
which can easily be converted to the design of supercritical flow expansions is given
by Pond and Love®.

9.7.3 An Empirical Method

Based on an experimental study, Rouse et al®. proposed empirical design curves
expressed by the equation

B x B

—=f [ 2 ] (9.32)

B].Fl ' El

where B is the width of channel at any section x from the beginning of the expansion,
the B, and B, are the initial and final widths of the channel respectively. The curves
consist of an expansion convex curve followed by reverse curves. The expansion
curve is given by®

3/2

+1.0 (9.33)

B 1 x
B, 4

B, B].Fl

The coordinates of the reverse curves proposed by Rouse et al.,® are summarised in
Table 9.1. All the reverse curves are tangential to the expansion curve given by Eq. 9.33.

Equation 9.33 together with the generalised coordinates of Table 9.1 give the
boundaries of the supercritical expansion suitable for preliminary studies. Ref. 9
reports experimental study on the Rouse expansion.

9.7.4 Inclusion of Resistance

Generally, the bottom slope, friction and channel curvature, if any, affect the
performance of a supercritical flow transition and it is the usual practice to test
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Table 9.1 Coordinates of the Reverse Curves in Supercritical Expansions

Values of B/B,

X BZ =
BF, El =15 2.0 25 3.0 3.5 4.0
1.00 1.200
1.38 1.300 1.400
1.50 1.350 1.425
1.75 1.400 1.550 1.550
2.00 1.450 1.600 1.700
2.25 1.475 1.650 1.750 1.750
2.50 1.485 1.775 1.900 1.900 1.925
2.70 1.500 1.820 2.000 2.100 2.100 2.100
3.00 1.900 2.100 2.200 2.250 2.250
3.50 1.950 2.250 2.400 2.450 2.500
4.00 2.000 2.350 2.550 2.675 2.775
4.50 2.425 2.685 2.825 2.950
5.00 2.500 2.800 3.000 3.150
5.50 2.850 3.150 3.300
6.00 2.925 3.240 3.450
6.50 2.950 3.320 3.550
7.00 3.000 3.400 3.700
7.50 3.425 3.775
8.00 3.475 3.850
8.50 3.485 3.875
9.00 3.500 3.900
9.50 3.930
10.00 3.950
10.50 4.000

the preliminary design through model studies for these effects as well as for the
possibility of separation of streamlines at the boundary.

If the supercritical flow in an expansion is considered as a two-dimensional prob-
lem, the basic differential equations of motion together with the continuity equation
form a system of hyperbolic quasilinear partial-differential equations of the first
order. The equations can be solved numerically, e.g. by the method of characteris-
tics. It is possible to include the friction effects as “friction slopes’ by using a suit-
able resistance formula. A generalised problem of an expansion having curved
boundaries, with a bottom slope and friction can be analysed through numerical
methods. Detailed on this kind of analysis is available in litrerature, 0111213,

Example 9.5 | 5 5 5. wide rectangular channel carrying a flow with a Froude
number of 2.5 is to be provided with an expansion to a width of 5.0 m. Obtain the

profile of the expansion profile by using Rouse’s curves.
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Solution Rouse’s expansion curve is given by Eq. 9.33 as

B 1 3/2
_ = — L +10
B, 4|BF
Here B,=25mand F = 25.
3/2
B 1 x |7,
25 4(25x25
3/2
B=—425 .
25 (9.34)

X

Reverse Curve From Table 9.1, for B,/B,=2.0, the reverse curve starts at —— =1.38,
171

i.e,atx=1.38 x 2.5 x 2.5 = 8.63 m. Also from Table 9.1, for B,/B, = 2.0, the length

of transition is given by =4.0.HenceL =4.0 x 2.5 x 2.5 =25.0 m. Coordinates

1'1
of the reverse curve corresponding to B,/B, = 2.0 are obtained from Table 9.1. Thus for

3/2
0<x<86m, B= X2_5+ 2.5 and for 8.6 < x < 25.0 m values of B are obtained by

using Table 9.1. A smooth curve is drawn through the reverse curve coordinates to
merge with the expansion curve (Eq. 9.34) without Kinks.

9.8 STABILITY OF SUPERCRITICAL FLOWS

A flow is said to be stable if a small perturbation in the flow does not get amplified.
From this point of view a subcritical flow is inherently stable. However, in supercriti-
cal flows under certain favorable conditions a perturbation can grow until the origi-
nally steady flow breaks up in to a train of unsteady surges called roll waves. The
transformation of a steady supercritical flow in to an unstable unsteady flow situation
is analogous to the transition from laminar to turbulent flow. The roll waves are char-
acterized by a series of shock fronts separated by regions of gradually varied flow.
The wave speed, height and wavelengths of roll waves generally increase as they
move downstream. The onset of roll-waves is an important constraint in the design
of channels for supercritical flow.
The stability analysis'* of the flow leads to the criterion for stable flows as

—1<v, <1 (9.35)

In which V, = Vendernikov number = xF [1 Rj—i]

Where x = 2/3 if Manning’s formula is used for describing the channel resistance and
x = 0.5 if Chezy formula is used for describing the channel resistance

F = Froude number of the flow,
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R = hydraulic radius,
P = wetted perimeter, and
A = area of cross section of the flow.

Thus the onset of instability in a channel depends on the channel geometry and the
Froude number of the flow. Channels having V, = 0 will be stable for all values of
Froude number and thus constitute channels of absolute stability. Ref. 14 can be con-
sulted for further details on stability.

Example 9.6 | perive the conditions for stable supercritical flow in (a) rectan-
gular, and (b) triangular channels. Consider that Manning’s formula is used to

describe the channel resistance to flow.

Solution By Eq. 9.35, for stable supercritical flow V, = % F [1— RZ—Z <1
(a) Rectangular channel A =By and P = B+2y

gp _dPdy 2

dA dydA B

For stable flow, EF 17$£ <1
3 (B+2y) B

gF B <1
3 |B+2y

3. .Y

je. F<|=+32

ie., _[2 B]

(b) For triangular channel A=my* P = 2y\1+m?

dP_dPdy 2J1+m’ _i+m’

dA  dydA  2m m
2 [ 2
For stable flow E Fl1- my 1+m <1
2y\1+m? my

ie., %g 1orF<3
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10.

11.

12.

13.
14.
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~ PROBLEMS

Problem Distribution

Topic Problems
Response to a disturbance 9.1-9.2
Gradual change in the boundary 9.3-94
Obligue shock 95-9.9
Convex corner 9.7-9.9
Contractions 9.10-9.12-9.13
Expansion 9.11-9.14-9.18
Application of shock principle 9.15-9.17
Stability 9.19
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9.1 A rectangular channel has a velocity of 5 m/s and a depth of 0.60 m. If a thin obstruction
such as a vertical pole is present in the midst of the stream, estimate the direction of
waves produced.

9.2 When a stone was thrown into a pond waves of amplitude 1 cm and velocity 2 m/s were
produced. Estimate the depth of water in the pond.

9.3 A wide rectangular channel carries a flow with a depth of 0.15 m and a Froude number
of 4.5. Calculate and plot the water surface profile next to a side wall which has (i) a con-
cave curve of 8° central angle, and (ii) a convex curve of 8° central angle. The radius of
the curved wall is 10 m and the other side wall can be assumed to be too far away to have
any interference.

9.4 For agradual change in the boundary of a supercritical stream, an assumption of constant
specific energy is made in the derivation of Eq. (9.10). Assuming, instead, a constant
velocity, derive an expression for § as § = 3 + sin 3 cos 3 + a constant.

9.5 A free surface flow with a depth of 0.50 m and initial Froude number of 2.0 approaches
a concave corner of deflection angle 10° in one of the walls. Determine the inclination of
the shock wave to the original direction of flow and the depth after the shock.

9.6 A supercritical stream of velocity 10.0 m/s and depth 0.24 m is deflected by a concave
corner having a deflection angle of 20°. Determine the inclination of the shock waves of
the original direction of flow, the depth after the shock and the energy loss.

9.7 Label the positive and negative shock waves in the cases shown in Fig. 9.20.

Y

\

@) (b)

Y

Y

N
X\
/o

7

/

~

(d)
Fig. 9.20 Problem 9.7

9.8 If the stream in Problem 9.6 is deflected by a 9° convex corner, determine the down-
stream flow condition and the angular spread of the Prandtl-Meyer fan.
9.9 Sketch the flow past a thin plate kept in a supercritical flow as in Fig. 9.21.
9.10 For the channel contraction shown in Fig 9.11, if F, = 3.5 and 6 = 5°, calculate F,, F,
B, By and 3.
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Thin plate
F1 éi/
90

Fig. 9.21 Problem 9.9

9.11 A 3.0-m wide horizontal frictionless rectangular channel has an enlarging section as
shown in Fig. 9.22. Calculate the expansion waves at 0 for an initial Froude number of
2.0 with a depth of flow of 0.50 m. Sketch a few Froude lines and graphically determine
their reflections and interactions.

90
C o}

Fig.9.22 Problem 9.11

9.12 An unsymmetrical contraction, as in Fig. 9.12, has F, = 4.0, §, = 5° and 6, = 8°
Calculate F,, F,, 3, 3,, 3, and 3, Sketch the shock waves and streamlines.
9.13 Design symmetrical contractions for the following sets of data and fill in Table 9.2.

Table 9.2 Problem 9.13

SI. F1 Y; B1 Fs Ys B, Fz Y, 0 51 Bz
No. (m)  (m) (m) (M)

1 50 070 6.0 - = 3.0 = - = - =
2 6.0 050 4.0 - - - - - 5.0° - -
3 40 0.60 = - = 2.5 = - 6.0° - =
4 — - — - 130 20 - - 75° 18° -

9.14 For values of F, = 4.0 and B,/B, = 2.0, sketch a preliminary design of an expansion.

9.15 If a bridge is to be built across a supercritical stream, from the consideration of mechan-
ics of flow, what factors govern the shape of the bridge piers, span and shape of abut-
ments? Which of these factors will be different in subcritical flow?



9.16

9.17

9.18

9.19

9.1

9.2

9.3

9.4

9.5

9.6

9.7
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The division of supercritical flow at a branch channel or a side weir can be solved by
treating the problem as a particular type of channel transition. Considering a simple 90°
branch channel, indicate an algorithm for calculating the branch-channel discharge for
given main channel flow properties.

Curves are usually used in channels to cause a change in the direction of flow. In super-
critical flow it is possible to create a change in direction with wave-free downstream flow
by employing sharp corners instead of curves. How can this be achieved and what are the
limitations ?

A 3.0-m wide rectangular channel carrying a supercritical flow having a Froude number
of 3.0 is to be provided with an expansion to a width of 4.5 m. Obtain the profile of the
expansion by using Rouse’s curves.

Derive the conditions for stable supercritical flow in (i) rectangular channels, and (ii) tri-
angular channels, if the resistance in the channels is described by Chezy formula.

» OBJECTIVE QUESTIONS

A thin vertical rod placed vertically in a 0.80 m deep channel creates two small distur-
bance waves each making an angle of 30° with the axis of the channel. The velocity of
flow in m/s is

(a) 5.60 (b) 2.80

(c) 1.40 (d) 0.70

When a stone was thrown into a pond waves of amplitude 0.80 cm and velocity 2.6 m/s
were observed. The depth of water in the pond is about

(@ 6.9m (b) 0.69 m

(c) 0.83m (d) 3.13m

A flow with a Froude number of 6.0 in a wide channel undergoes a change in the direc-

tion at a curve. The disturbance at the beginning of the curve makes an angle 3.
(a) =9.59°

(b) =6.35°

(c) =16°

(d) which depends on whether the curve is convex or concave

When a supercritical flow is guided by a curved convex wall

(a) the Froude number decreases

(b) the disturbance lines converge

(e) the water surface becomes steeper at distances away from the wall

(d) the depth decreases along the wall

A flow with F, = 4.0 and y, = 0.9 m moves past a convex corner and attains F, = 5.0
downstream of the corner. The depth y, in metres is

() 1.35 (b) 0.90

(c) 0.60 (d) 6.0

If a stream with F, = 5.0 flows past a convex corner which produces a Prandtl-Meyer
fan of angular spread 3° 36, the Froude number downstream of the corner is

() 3.91 (b) 7.24

(c) 9.57 (d) 5.02

An oblique jump occurs when

(a) asubcritical flow is turned by a convex corner

(b) asupercritical flow is turned by a convex corner

(c) an obstruction is obliquely placed in a channel

(d) when a supercritical flow is deflected by a concave corner
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9.8 In an oblique hydraulic jump having a deflection angle of 15° with the approaching uni-
form flow of Froude number 6.0, the sequent depth ratio is
(@ 1.75 (b) 175
(c)0.20 (d) 4.0
9.9 An oblique hydraulic jump has a deflection angle of 18.5° with the approaching uniform

flow. The depths before and after the jump are 0.4 m and 0.90 m respectively. The energy
loss head in the jump is
(@) 0.028 m (b) 0.087 m
(c) 0.500 m (d) 0.274m

9.10 A supercritical flow past a convex corner produces
(a) a positive wave
(b) a Froude line
(c) adrop in water surface accompanied by considerable energy loss
(d) a negative disturbance of fixed angular width

9.11 In an oblique shock
(a) the flow after the shock is always subcritical
(b) the depth of flow downstream of the shock is lower than the upstream depth
(c) the flow after the shock is always supercritical
(d) none of these

9.12 In a supercritical contraction design
(a) the length of the transition is constant for all Froude numbers
(b) the transition is operative for only one depth
(c) the transition is meant to operate at the design Froude number only
(d) does not give a unique solution for a given F, and B,/B,

9.13 A streamlined transition unit was designed for the expansion of a subcritical flow in a
channel. If this transition unit is introduced in a supercritical flow channel
(a) it will function efficiently if used as a contraction
(b) it will function efficiently if used as an expansion
(c) flow separation occurs if used as a contraction
(d) cross waves will be produced if used as an expansion
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10.1 INTRODUCTION

For a complete understanding of flow in open channels, in addition to the study
of steady flow which has been dealt with in the previous chapters, unsteady flow
also deserves attention as it is encountered in one way or other in practice in all
open channels. However, the complex nature of unsteady flows together with their
diversity in form make the subject matter too difficult and extensive to be treated
in a single chapter. As such, only a brief introduction to unsteady open-chan-
nel flow problems and the descriptions of a few simple cases are included here.
A list of reference for details and for further reading are given at the end of the
chapter.

Unsteady flows, also called transients, occur in an open channel when the dis-
charge or depth or both vary with time at a section. These changes can be due to
natural causes, planned action or accidental happenings. Depending upon the
curvature of the water surface, the transients can be broadly classified as (i) grad-
ually-varied unsteady flows (GVUF) and (ii) rapidly-varied unsteady flows
(RVUF). The chief characteristics of a GVUF are: (i) the small water-surface
curvature which enables the pressures to be assumed as hydrostatic and (ii) inclu-
sion of friction in the analysis. Flood flow in a stream is a typical example of this
kind of flow. In an RVUF there is appreciable change in the water surface in rela-
tively short distances and the friction plays a minor role in determining the flow
characteristics. The formation and travel of a surge due to the sudden closure of
a gate is a good example of an RVUF. Some field situations which give rise to
transients can be listed as:

1. Heavy rainfall in a catchment, snow melt, breaking of log or ice-jams, etc.,
which give rise to floods in rivers, streams and surface-drainage systems.

2. Operation of control gates in hydraulic structures and navigation locks;
acceptance and rejection of a sudden load by turbines in a hydroelectric
installation; sudden starting or tripping of pumps—all leading to the possi-
bility of surges.

3. Tides in estuaries and tidal rivers causing a surge, usually called a bore, which
is propagated upstream. The bore on the river Severn, near Gloucester, England
is a typical example [Fig. 10.1].
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Fig. 10. 1 The Severn bore (Courtesy: The Citizen, Gloucester, England)

10.2 GRADUALLY VARIED UNSTEADY FLOW (GVUF)

As mentioned earlier, the flood flow in a river is a typical GVUF. In view of the
importance of floods in various phases of human activity, the problem of determin-
ing the modification of flood hydrograph in its passage through a river, known as
flood routing, has received considerable attention. Consequently, a large number of
solution procedures are available. The basic equations of GVUF relevant to the flood
routing are presented in this section.

10.2.1 Equation of Continuity

For an unsteady flow in a channel, the continuity equation, as derived in Chapter 1
(Eqg. 1.36), is in the form

0Q 9y
— 4T =
X ot

=0 (10.2)

Noting that 9Q _ d(AV)
OX OX

=0



Unsteady Flows 439

UV

=0 (10.2)
ox ox ot

This equation assumes no lateral inflow or outflow. However, if there is a lateral
inflow of g per unit length of channel, Eq. 10.2 will read as

oV oA oy
A—4+V—+T-2L-q=0 10.
ax+ 8xJr ot g (10.3)

The cross-sectional area, in general, can be a function of depth and can also vary
from section to section, i.e. A = A(X, y). The x derivative of area at constant time is
written as

o |ox), oy o

8A_[8A] (0] oy
y Oy

in which the suffix denotes the variable to be held constant in addition to time

A
in taking the derivative. Since [Z_y] =T,

a_A—[a_A] +Tﬂ
OX ox), 15)4

The first term [%] represents the rate of change of area with the depth held constant

and is the gain in the area due to the width change. The second term [T %] represents

the gain in the area due to an increase in the depth. The continuity equation in its
general form is

oV ay oy OA
A—+VT —=+—=—q+V|—]| =0 10.4
6xJr 8x+8t a- [8X]y (104)

OA S
For a prismatic channel, [&] = 0, which simplifies Eq. 10.4 as
y

ov oy ay
A—+VT —=+4+T—=-q=0 10.4a
OX N Ox N ot a ( )

10.2.2 Equation of Motion

The equation of motion for GVUF in a prismatic channel is derived by the applica-
tion of the momentum equation to a control volume encompassing two sections
of the flow as in Fig. 10.2. Since the flow is gradually varied, hydrostatic pressure
distribution is assumed. The forces acting on the control volume are:
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F, = pressure force at the upstream Section | = v A}
F, = pressure force at the downstream Section 2

= 7[A+%Ax]
OX

_ 0y
+—AX
y ox ]

F, = component of the body force in the x direction

= ~vA Axsin 6 and
F, = shear force on the perimeter = Pr, AX
where ¥ = depth of the centroid of the upstream Section 1 and
7, = average shear stress acting over the flow boundary.
By neglecting the second order small quantities, the net force in the x direction is
written as

1 cVv 2 Surface at Surfgce at
. section 2
v section 1
v
W sin 6 Y+0yAx %XA Ax = dA dy
y X
Fq Flow F v
2
y
CG
w y
Fs P X
AX

Fig. 10. 2 Dgﬁm’tian sketchjbr momentum equation

= _A@_y%+ Aso_ﬁ

F oot AX
OX OX vy

By taking the moments of area about the water surface at Section 2 and neglecting
the second order small quantities

RO

15)4 y OX I5)4 (10.5)

P
Also, Mo _ps
v

f
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Hence, F—~ gy +AS, — AS, | Ax (10.6)

net -
X

The momentum equation for an unsteady flow states that the net external force on
the control volume in a given direction is equal to the net rate of the momentum
efflux in that direction plus the time rate of increase of momentum in that direction
in the control volume. Assuming 3, = 3, = 1.0 and considering the x direction:

1. Momentum influx into Section 1 = M, = pAV ?

2. Momentum efflux from Section 2 = M, = p|AV? + g(AVZ)Ax
X

3. Time rate of increase of x-momentum in the control volume

0
= —(pAV Ax
By the momentum equation,

MZ_ Ml + Mu = Fnet

i 3 [~ 70 (a2 [ dy ]
Le. —| = AVAX|+——(AV ) Ax=yA|——=+S,-S,; |A
otlg X]+98x( ) YA ok T2
Dividing throughout by %Ax and simplifying,
0 0 2 ay
a(AV)—F&(AV )+9A5= gA(S, S, )

—+V——+g — 4V —+A—|=

oV oV @+\L(‘9A oA av_(s_s>
ot X ox Al ot X OX 91> =

O0A OA ov
.102, —+V—+A—=0
By Eq. 10.2, ot o + o

and on re-arranging,

Vov 1oV
WNVN LW 5

Ox gox g ot o -t (10.9)

If there is a lateral inflow g per unit length into the control volume with negligible
initial momentum in the longitudinal x direction, the equation of motion will read as

@4_!8_\/4_58\/ —(SO_Sf)_qV

7Y _ a7 (10.8)
Ox gox g ot Ag
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The continuity equation, Eq. 10.2 and the equation of motion (Eq. 10.7) of unsteady
open-channel flow are believed to have been first developed by A J C Barré de-Saint
Venant in 1871 and are commonly known as Saint \enant equations. These are simul-
taneous, quasi-linear, first order, partial differential equations of hyperbolic type and
are not amenable to a general analytical solution.

The St Venant equations are expressed in a number of ways by choosing different
dependent variables. Some of the common forms are listed below:

(i) With flow rate Q _(x, t) and depth y(x, t) as dependent variables The
velocity V in Eq. 10.7 is replaced by Q/A to get St Venant equations as

o : dy 10Q
— 4+ ——= 10.9a
Continuity Equation ot T 0 (10.9a)
Momentum Equation Q. 9 Q + gAay +gA(S,—S,) =0 (10.9b)
ot 8x
ay 0 ,,._ .
From Eq. 10.5 v &(Ay). Hence Eq. 10.9(b) can be written as
(9Q 0 [Q?
St ax[ +9 Ay] gA(S, - S/ ) (10.9c)

This equation is known as momentum equation in conservation form. This form is
particularly useful in handling steep fronts and shocks such as in a surge due to a dam
break.

(ii) With flow rate Q (x,t) and Stage h(x, t) as dependent variable Ifh=
the elevation of the water surface measured above a datum (i.e. stage), then the water
depth'y = h-h,, where h, is the elevation of the bed. Further,

gy oh oy oh oh  oh

ot Mok T ax ox ox

The St Venant equations are

h 1
6‘+8Q

Continuity Equation — 10.10a
YE ot T ox ( )

. 0Q  0(Q° oh
M tum Equat —+—|—|+09JA—+gAS =0 10.10b
omentum Equation ot 8x[ A] g gV gA S, ( )
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(iii) With flow velocity V(x, t) and depth y(x, t) as dependent variables By

Eqg. 10.4 the continuity equation is:

@Jréa_v V@+\L[%] =0
gt T Ox ox T ox),
By Eg. 10.7, the momentum equation is

ov ov oy
4V =—t+g=2L+g(S,-S,)=0
at+ 8X+98X+g(o ‘)

Eqg. 10.11(b) can be written to reflect the significance of various terms as

- 9 |v2 1V
e

Steady
< .
uniform

Steady
l«——— Non-uniform

[GVF]
Unsteady
Non-uniform
[GVUF]

le———

(10.11a)

(10.11b)

(10.11c)

Simplifications have necessarily to be made in the basic equations to obtain analytical
solutions and there are many models under this category of simplified equations. One
simple model, viz., the uniformly progressive wave is described here as an example.

Example 10.1 ||
be written with discharge as the primary variable as

199, 2Q 8—Q+(1fF2)%:so—sf

Ag ot  A’*g Ox
2
T
c2_Q
where X
Solution  Continuity equation is a—Q+a—A =0
ox ot

8y VoV 10V

Equation of motion, is —
oX gox g ot

(So - Sf )
Putting V = Q/A

ov 0
—=(QIA) =SS =
ox  Ox Aox A Ox Aox A O

L VOV _ QaQ QTdy_ QA .0

)_10Q_QOA_10Q QT oy

g dx Alg dx Algax  Alg ox ox

Show that the momentum equation of St. Venant equations can

(10.7)

(10.12)
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ov 9 10Q Q OA
2V _Yo/a=Lx X 00 10.13
ot ot (Q/A) Aot Aot 1013)
But by continuity equation oA__ R
y y e ot ox
Hence Eqg. 10.13 becomes la—vzia—QJr ? x (10.14)
got Ag ot  A°g ox
Substituting 10.12 and 10.14 in Eq 10.7
10Q  2Q 9Q 2\ Oy
I Ex P (1—F*)) 2 =5 —§ 10.14a
Ag dt  A?g Ox ( )Bx o ( )

10.3 UNIFORMLY PROGRESSIVE WAVE

A highly simplified concept of a flood wave is a uniformly progressive wave in which
the wave form is assumed to move with its shape unchanged. A particular case of this
type of wave is a monoclinal wave consisting of only one limb joining two differing
uniform flow water levels upstream and downstream of it. Figure 10.3(a) indicates
a typical monoclinal wave which is sometimes approximated to the rising limb of a
flood wave. In this the wave front moves with a uniform absolute velocity of V. For
an observer who moves along with the wave at a velocity V, , the wave appears to be
stationary. Hence, this unsteady flow situation can be converted into an equivalent
steady-state flow by

Monoclinal

Unsteady flow
(a) Steady flow

(b)
Fig. 10.3 (a) A monoclinal wave (b) Equivalent steady flow

0

superimposing a velocity (—V, ) on the system (Fig. 10.3(b)). The continuity equa-
tion can then be written as

Q. =A, (V,—V)=AN,— V) =AYV, - V) (10.15)
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The quantity Q, is termed as overrun. Simplifying,

v _AY-AV, 4Q
"TUA-A  AA

From this it may be seen that the maximum value of V_is obtained as

dQ
V) =—~
Vu)n =30 (10.16)
Since, dA =T
dy
1dQ
V) ==—
Vu)n =1 &y (10.17)
For a wide rectangular channel, the normal discharge per unit width is
1
q, == y5/3801/2
n
or, g, 51 g 5y
dy 3n 3
where V= % _ normal velocity.
Thus (V,), =k, V. (10.18)

where k, = 1.67 for a wide rectangular channel. It can be shown thatk = 1.44 and
1.33 for wide-parabolic (R =~ y) and triangular channels respectively. Field observa-
tions have indicated that for small rises in the flood stage, the absolute-wave veloci-
ties can be roughly estimated by Eq. 10.18.

Considering the equivalent steady-state flow

d 0 dx 0
—(V,-V)=—(V,-V)—+—(V, -V )=0
S v)=Zp, )& Dy, )

Since V,, = % = constant, on simplification,
N_ W
ot OX

Also, since V=V, _&

A
ov _ QT gy

ox  A? dx



446  Flow in Open Channels

Substituting these in the equation of motion (Eq. 10.7), it can be expressed as

gy 1 oV
Yi2v-v)Z=s s
8x+g(v W)ax o
@_ Sy =S
. ox . Q7T
i.e. 1—=F 10.19
oA’ ( )

This is the differential equation of a monoclinal rising wave. Note the similarity
with the differential equation of GVF (Eq. 4.8). The profile of the wave is obtained
by integrating this equation.

Equation 10.19 can be simplified by considering the denominator to be approxi-
mately equal to unity for small velocities (i.e. by neglecting the effect of the velocity
head) as

where Q, = K\/g = normal discharge at any depth y and Q = actual discharge at
that depth. On re-arranging,

Q_ h_ NI (10.20)
Qn SO
In a uniformly progressive wave for any point on the wave profile
ﬂ — @ +VW @ =0
dt ot OX
and hence, @ = ,M
Ox Vv,
Substituting in Eq. 10.20 leads to
Q_ | oyl (10.21)
Qn VWSO

This equation indicates that during the rising stages in a flood flow, the actual dis-
charge is larger than the discharge read by the normal stage-discharge relationship.
Conversely, during the falling stages in a flood flow, the actual discharge is lower
than that indicated by the normal stage-discharge curve. Equation 10.21 is used in
hydrometry to correct the normal discharges read from a stage-discharge curve when
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the depth is changing at a rate (9y/ot). In using this formula for natural channels it
is usual to assume V, = 1.4V _, where V_ = Q /A in cases where V, is not known.
Also, the energy slope S.. is used in place of S,

10.4 NUMERICAL METHODS
10.4.1 Classification

The solution of St Venant equations by analytical methods, as already indicated, has
been obtained only for simplified and restricted cases. Graphical solutions are in use
since a long time but are seldom preferred these days. The development of modern
digital computers during the last three decades has given impetus to the evolvement
of sophisticated numerical techniques. There are a host of numerical techniques for
solving St Venant equations, each claiming certain specific advantages in terms of
convergence, stability, accuracy and efficiency. All such techniques can be broadly
classified into two categories:

1. Approximate methods which are essentially based on equations of continuity
and on a drastically curtailed equation of motion. The storage routing methods
popularly adopted by hydrologists, Muskingum method, kinematic wave and
diffusion analogy belong to this category.

2. Complete numerical methods which aim to solve the basic St Venant equations
through numerical modelling. Several individual methods under this category
are available and they can be further classified into sub-classes as in Table 10.1.

In the method of characteristics (MOC), the St Venant equations are converted

into a set of two pairs of ordinary differential equations (i.e. characteristic forms)

Table 10.1 Classification of Numerical Methods for Solving StVenant Equations

Numerical methods for St \enant equation

\ \
Approximate methods Complete numerical methods

Storage  Muskingum Diffusion Kinematic Direct method MOC  FEM
routing  methods analogy wave
method models I E

]

Characteristics nodes Rectangular grid

I = Implicit method MOC = method of characteristics
E = Explicit method FEM = finite element method
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and then solved by finite-difference methods. In the direct method, the partial
derivatives are replaced by finite differences and the resulting algebraic equations
are then solved. In the finite-element method (FEM) the system is divided into a
number of elements and the partial differential equations are integrated at the nodal
points of the elements.

The finite-difference schemes are further classified into explicit and implicit
methods. In the explicit method, the finite difference algebraic equations are usu-
ally linear and the dependent variables are extracted explicitly at the end of each
time step. In the implicit method, the resulting algebraic equations are generally
non-linear and the dependent variables occur implicitly. Each of these two methods
has different schemes of finite differencing.

To start the solution all methods require an initial condition specifying the
values of all the unknowns at an initial time for every computational section along
the channel. In the usual subcritical flow, the upstream boundary condition is a
hydrograph of the stage or discharge and the downstream boundary condition is
normally a stage-discharge relationship. In the absence of a separate resistance
formula for unsteady flows, the friction losses are estimated by using a uniform
flow resistance equation, typically the Manning’s formula is used and in such
a case,

_nv?  n’Q? _Q|Q|

Sf - R4/3 - A2R4/3 - Kz

where K = conveyance.
10.4.2 Method of Characteristics

Consider a unit width of a wide rectangular channel having a GVUF without lateral
inflow. Using the celerity of a small wave C = @ ,

gy _2CoC (10.22 a)
ox g Ox

and dy_2€oC (10.22 b)
ot g ox

Substituting these in the equation of continuity (Eg. 10.2) and noting that for a wide
rectangular channel T=B =1.0and A=y = C?%qg

2CV 9C  C? 9V 2C OC
=== =9

i i = (10.23)
g Oox g oOx g ot
The equation of motion (Eqg. 10.7) by a similar substitution becomes,
2 vV ov 1oV
_C8C A 9 +_8_:(3073f) (10.24)

ga ga g ot
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Dividing Eq. 10.23 by + C, adding to Eq. 10.24 and re-arranging,

C Vv \
2(C iV)—i2a—+(\/ iC)a—+a— =9(S,—S;)
ot ot
On further simplification,
(\/iC)QJrQ(ViZC)—g(S -S)) (10.25a, b)
ox ot R T
dy
If ™ =V +C, (10.26 a, b)
Egs 10.26 a,b reduce to
d
E(V +2C)=09(S,—-S;) (10.27 a, b)

It may be noted that Eqgs 10.27 a, b are satisfied only when Eqs 10.26 a, b are satisfied.
Equations 10.26 a, b represent two directions, designated as characteristics, namely

1. % =V +C, called the positive characteristic: (C,) direction (Eg. 10.26 a).
t
2. % =V —C, called the negative characteristic: (C_) direction (Eq. 10.26 b).

Equations 10.27 a, b represent a pair of ordinary differential equations each valid
along the respective characteristic direc-
tions and which can be solved by finite dif-
ference methods. Similarly, a set of complete
equations can be developed for a general
prismatic channel. P

Considering an x-t plane, (Fig 10.4), if c
the depth and velocity are known at two
points R and S, unknown values of the R
dependent variables can be found at a S
point P which is the intersection of the C,
characteristic from R a_nd C chara_cterl_stlc Fig. 10.4 Characteristic lines in the X
from S. Thus as a first approximation,
from Eq. 10.26 along the C, line

x-t plane

X, =X, =V, +C) (t, —t.)
and along the C_line

X, =X, = (V, —C) (t, —t.)

P S
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Similarly, from Eq. 10.27,
for the C, line
(Ve =Va) +2(C, — C) = 9(S, — Sp)(t, — 1)
and for the C_line
(Ve —V) —2(C, — C;) = 9(S, — Sie)(t, — 1)
In these four equations there are four unknowns (t,, x,, V, and C_) which can be
solved. The value of y, is
t calculated from the relation
y = C2qg. Instead of the
above simple finite differ-
encing, other procedures,
such as the trapezoidal rule,
can be adopted for better
P accuracy. This procedure of
getting P as the intersection
R S of two characteristics from
known points R and S is
called the characteristics-
1 2 3 4 X grid method. For a complete
Fig. 10.5 Characteristic grid numerical solution one
boundary condition equation
is needed at each end of the channel. A complete solution procedure can be built up on
this basis. Let the information along the channel at time t be known at points 1, 2, 3, ..., i
spaced Ax; apart (Fig. 10.5). Starting from any three points-say, 2, 3, 4-points Rand S can
be established. Point P is established by using points R and S and the procedure is repeated
for the whole x-t plane. The main advantage of this method is that there is no interpolation
but it also has the disadvantage in that the results are obtained at odd t and x values.
Another method of solving the characteristic equations is to adopt a rectangular grid
work of known spacings in t and x axes (Fig. 10.6). The coordinates of M, O, N, and P
are known. Flow information (V
t and C) is initially known at M, O, N
and the values of V and C at point P
are needed. If P is the intersection
p of two characteristics C, and C_,
then R is the intersections of C,
C. C_ At characteristic PR with OM and S is
the intersection of C_ characteristic
M IR o s|n PS with NO. Then, as a first
approximation

A xR o—i—Coand%Cz:VO—Co

Fig. 10.6 Rectangular grid At

where the suffix ‘0’ denotes the
values at point O. By interpolation between O and M, values of V_ and C_ are deter-
mined. Similarly, by interpolating between N and O, V and C; are estimated.
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Now using a finite-differencing method, the characteristic Eqs 10.25 a, b and 10.27
a, b are solved to obtain V_ and C, at the point P. The method is repeated for all the
nodes of the grid. This method is known as the rectangular-grid method.

Basically, four schemes of calculations by MOC arc available. These are the
implicit and explicit methods applied to each of the characteristic-grid and rectangu-
lar-grid framework (Table 10.1). The details of these various methods and their rela-
tive advantages are presented by Wyliel. Valuable information on MOC is given by
Price?, Strelkoff® and Choudhry*.

The stability of MOC is governed by the Courant condition
‘ AX
V +C

At <

(10.28)

which puts a constraint on the mesh size. Equation 10.28 is automatically satisfied in the
characteristics-grid method but a strict adherence to this condition is warranted in the
rectangular-grid method. The time steps must be chosen keeping this constraint in mind.

10.4.3 Direct Numerical Methods

A wide variety of finite-difference schemes exist for solving St Venant equations.
A few of these which are in common use are indicated in Table 10.2, in which the
finite-difference approximations to the partial derivatives in the x-t plane and the
order of truncation errors, are presented. The substitution of these

Table 10.2 Finite Dgﬁérence Schemesfor So]ving StVenant Equations

M =f(x, t), € =truncation error, X = unknown
® —known

1. Diffusing scheme

! -Ax - M My -Mmy

ox 2Ax

j+1

R At —

-1 i+
e =01[A7

2. Upstream differencing scheme

t e— Ax >l i j i
j+1 oM :Mi+1—Mi or Mi —Mi_y
T ox AX AX
S| i
M 7Mi+l—M|J
j l X o At
i—1 i i+1
e=01[47

(Continued)
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Table 10.2 (Continued)

M =f(x, t), € = truncation error, X = unknown
e =known

3. Leap-frog scheme

oot — Ax i i
j+1 T oM _ Mi1—Mig
iﬁ ox 2Ax
i : :
j i
oM M Tomt
-1 x a 2At
i— i i+1
e=01[a%

4. Four point implicit scheme
t

fe—— Ax —i

j+1 M 1 j i +1 j j
g ! x ZAX(Mi+1+MiJ++1_Mi = b +l)
5
i l OM 1 i j+1 i i
J X Ny = A+1 J+1 J M.
i e=0[A3 j4+1 ot _2At(M' +M 1 - M M'.1)

approximations to partial derivatives in the St Venant equations result in algebraic
equations for the unknowns. In these schemes, At and Ax values are fixed to have a
rectangular grid in the x-t plane.

(a) Explicit Method In the explicit finite-difference scheme, the St Venant equa-
tions are converted into a set of algebraic equations in such a way that the unknown
terms (V and y) at the end of a time step are expressed by known terms at the begin-
ning of the time step. Consider, for example, the diffusion scheme. In this scheme
(Fig. 10.7), values of V and y are known at R arid S and the values of V and y at point

R |<_Ax_>|<—Ax —>|S

Fig. 10.7 Deﬁm‘tion sketchfor dyjrusing scheme
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P are desired. This is done by substituting the finite differences for — oV oV oy
P ox ' ot ox
y

o as per the diffusion scheme in Table 10.2, into the St Venant equations. Thus

and

1
ay B yp _E(yR +y5)

ot At
o0y _ (¥s —Ye)
OX 2AX
Similar expressions are obtained for 88—\: and Z—V also.
X

Further,
1
Sf :E(st +SfR)

Substituting these in equations 10.2 and 10.7 and simplifying

1 1 At , 1
VP :E(VR +VS)+EA_{ (VR Vs )+g(yR _ys)}—"_gAt[SO_E(SfR +st)
(10.29)
_E ﬁ(QR_Qs) 10.30
yp—z(yR+ys)+Ax—(TR+Ts) (10.30)

From these two equations the two unknowns V, and y, are solved. The procedure
is repeated for all the nodes of the x-t plane grid. For stability the step sizes At and Ax
must be so chosen that the Courant condition

Ic +V|— <1 (10.31)

is satisfied throughout the computation space which in turn puts a limit on the size of
time steps. Better accuracy than with the diffusion scheme is obtainable by following
other schemes, such as the Leap-Frog or Lax-Wendroff schemes?. A variation of Lax-
Wendroff scheme, known as McCormack scheme has been widely used in flood rout-
ing using explicit scheme*.

(b) Implicit Method In implicit finite-difference schemes the partial derivatives
and the coefficients are replaced in terms of values of the variables at known and
unknown time level of the nodes of an elemental cell of size Ax and At. The
unknown variables therefore appear implicitly in the algebraic equations. The set of
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algebraic equations for the entire grid system will have to be solved simultaneously
in these methods. Because of the large number of time steps required by an explicit
method to route a flood in a channel, implicit methods which can use large time steps
without any stability problems are preferred. Several implicit finite-difference
schemes have been proposed for the solution of the St Venant equations. Out of these
the schemes proposed by Preissmann*S, Amein®7, Strelkoff®, Abbot and lonesg?,
Beam and Warming?®, and Ligget and Woolhiser®® are some of the popular schemes.
A few essential details of Preissmann scheme, which is by far the most popular of the
implicit schemes, are given below.

Preissmann Scheme The Preissmann scheme uses a four point weighted method
at a point P as shown in Fig. 10.8. For a given variable M, such as depth y, stage h, or
discharge Q, a weighing coefficient is used to approximate the derivatives and the
coefficients are as below:

(i) The time derivatives are

oM ~(MiHl + MijJ:rll)_(Mij + Mlj‘l)

ot 2At (1052
(ii) The space derivatives are
oM oM+ M™)  (A-a)(ML, - M) (10.33)
OX AX AX
i, j+1) (i+1,j+1)
P
At
‘;
£ At” = a At
'_
(i, (i+1.]) )
Ax_ |, AX
== S
| Ax | Distance x

Fig. 10.8 Definition sketch for Preissmann scheme
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(iii) The value of M as a coefficient is

M = ; (M M)+ %(lfa)(MinfMij)

i+1

!
The value of o= i—tt locates the point P along the time axis in the finite differ-

ence grid.

The Preissmann scheme is unconditionally stable for 0.50 < « < 1. For typical
applications, a value of « in the range 0.55 to 0.70 is recommended in order to avoid
higher order numerical oscillations.

Consider the St. Venant equations in the form of Egs 10.10a and 10.10b with the
discharge Q(x, t) and stage h(x, t) as the dependent variables. With

S, = % , the St Venant equations are

_— oh 10Q
Continuit ——=0 (10.10a
y 2 T o ( )
9Q  91Q QIQI
Momentum — 4 — + —+ A——=0 (10.10c
ot ox A] oA g ( )

The application of the Preissmann scheme to the derivatives and the coefficients
in the Eqs 10.10a and 10.10c results in

8h (hl+l+hlj+tl) (hj +h|J+1)
ot 2At

8_Q _ <QijJr1+ ij;rll) (QJ +Q|+l)
ot 2At

@~Q(Qij++11_Qij+l)+(l a)( i+1 Qij)

ox AX AX
Qe (@), [aaler] ()
x{A] Ax|lA), |A) Ax | AL, LA

on_ (W =0 (1-a)(hl )
OX AX AX
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The coefficients A and T are given by —

1 i+ i+ 1 —a i i
A=Za(A AT+ (1-a) (Al +A))

i+1 i+1

1 +1 +1 1
T=2 af T +T) + 2(1 a)(T), +T))
Substituting these expressions in Eq. 10.10a and Eq. 10.10c,

- (0 )

2 [o(QE -9+ (1-0)(Ql —QI)]

+AX a(lejl‘i‘TJ%l) (1 )(TJ1+TJ> (1034)
Ll Q)+l
N Q2 j1 Qz j+1 (1—a) Qz j QZ i
" Ax [TJPA - [Tl ' Ax 7 o LA i
o (AT A )] LA 4| (- )
2 2 11 A i+1
@), . 1]Qiql QN
T AX <h'“_hi)+5a[ ] [ }
) [Q|_§9|]l + [—Q|?|]J }0 for 05<a <10 (10.35)
2 K i+1 K i

In these two Egs 10.34 and 10.35 the terms having superscript j are known. The
unknown terms are those having superscript ( j + 1) and can be expressed in terms of

Q™ QU W™ and W, As the unknowns are raised to the power other than unity,
these equations are non-linear.

If there are a total of N grid lines at any j value with the upstream boundary as
i = 1 and the downstream boundary as i = N, there will be (N — 1) grids at which the
above equations are applicable. Thus there are (2N — 2) equations. Further, there are
two unknowns at each of N grid points, totaling to 2N unknowns. The two additional
equations to form the necessary set of equations are supplied by the boundary condi-
tions. In subcritical flows, one boundary condition is applied at the upstream end and
another at the downstream boundary. In supercritical flows, however, both the bound-
ary conditions are applied at the upstream end.
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The upstream boundary condition is usually a known inflow hydrograph,
Q™ = f (t1*). The downstream boundary condition is usually a known stage-discharge
relationship (i.e. channel rating curve) given as Qi =t (h,j'“) .The set of non-linear

algebraic equations are solved by adopting an iterative procedure, such as Newton-
Raphson method.

It is generally recognized that while an implicit method is more difficult to pro-
gramme than an explicit method, it has stability, greater accuracy and has economy in
computing time. Details on various numerical techniques can be had from Ref. [4, 5].
Extensive bibliography on unsteady flows in open channel flows is available in Ref.
[11, 12].

The use of FEM to route floods in channels and natural streams is presented by
Cooley and Moin,® and King*. Szymkiewicz®® has presented an FEM algorithm to
solve St. Venant euations for a channel network. Jie Chen®has developed an approx-
imate formulation of St. Venant equations for natural channels which through the use
of FEM can be used effectively to simulate dam break problems and flood routing in
natural channels.

A large number of software are available, for unsteady flow simulation in general
and for flood flow analysis/forecasting and dam break problem in particular. Among
these, the HEC-RAS of U.S. Army Corps of Engineers, FLDWAV of U.S. NWS and
MKE-11 of DIH, Denmark are very popular (2007). Among these, HEC-RAS is
available along with user’s manual (http://www.hec.usaace.army.mill/software/hec-1)
for download by individuals free of charge. Details of MIKE-11 are available at
(http://www.dhigroup.com). BOSSDAMBRK (http://www.bossintl.com ), which is
commercial software, is an enhanced version of NWS DAMBRK model.

Examplel0.2 || Determine the time derivative and space derivative of the flow
rate Q by using Preisman scheme (« =0.65), when the discharges at various (x, t)
values are as given below:

x =1000 m x= 1500 m
Att=3.0h Q= 125.00 m®/s Q=115.00 m®/s
Att=40h Q= 140.00 m¥/s Q=120.00 m%/s

Solution Here At =1.5h = 5400 s and Ax=500 m.

Q! =125.00m°/s )., =115.00m*/s
Q' =140.00m%/s Q' =120.00m/s

0Q _ (Qin + Q|J++11> _< i +Qij)
ot 2At
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140.0+120.0)—(115.0+125.0
= ( )= + ) =0.01852 m®/s/m
2x5400

09 _ (-9 (1-a)

x AX O Ax ( ij“_Q‘j)

~ 0.65%(120.0-140.0) (1—0.65)
a 500 500

(115.0 —125.0) = —0.019 m*/s/m

10.5 RAPIDLY VARIED UNSTEADY FLOW — POSITIVE SURGES
10.5.1 Classification

The rapidly-varied transient phenomenon in an open channel, commonly known
under the general term surge, occurs wherever there is a sudden change in the
discharge or depth or both. Such situations occur, for example, during the sudden
closure of a gate. A surge producing an increase in depth is called positive surge
and the one which causes a decrease in depth is known as negative surge. Further,

Positive surge moving Positive surge moving
downstream upstream

—-
yi |[—V1
Type-2
WPl (b)
Negative surge moving Negative surge moving
downstream upstream

Type-3 Type-4
() (d)
Fig. 10.9 Types g(surges



Unsteady Flows 459

a surge can travel either in the upstream or downstream direction, thus giving
rise to four basic types [Fig. 10.9 (a,b,c,d)]. Positive waves generally have
steep fronts —sometimes rollers also —and are stable. Consequently they can be
considered to be uniformly progressive waves. When the height of a positive
surge is small, it can have an undular front. Negative surges, on the hand, are
unstable and their form changes with the advance of the surge. Being a rapidly-
varied flow phenomenon, friction is usually neglected in the simple analysis of
surges.

10.5.2 Positive Surge Moving Downstream

Consider a sluice gate in a horizontal frictionless channel suddenly raised to cause a
quick change in the depth and hence a positive surge travelling down the channel
[Fig. 10.10(a)]. Suffixes 1 and 2 refer to the conditions before and after the passage
of the surge, respectively. The absolute velocity V, of the surge can be assumed to be
constant. The unsteady flow situation is brought to a relative steady state by applying
a velocity (-V,) to all sections. The resulting flow is indcated in Fig. 10.10(b). In
view of the possible loss of energy between Sections 2 and 1 in the equivalent steady

M Positive surge

R
VW
. Vv
Vv \Z N 1 =
2z, Vv,
Y1 —_—
Horizontal
(@)
.SV ___.
v__| :
= I
K :
1 I
| l
V-V || ; 4
~— Y2 | I (Vw — V1)
! ! Y1
e ! |

<£ (b) é

Fig 10.10 (a) Positive surge moving downstream (b) Equivalent steady flow
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motion, the linear momentum equation is applied to a control volume enclosing the
surge to obtain the equation of motion.
By the continuity equation,

A,(V,-V,)=A(,-V,) (10.36)

The momentum equation, through the assumption of hydrostatic pressure at
Sections 1 and 2, yields

YAV, =AY, = % AV, =Vi)[(Ve =V,) = (v, =V, )] (10.37)

From Eg. 10.36

A
V, =21V, +(1-A /A,
A 1-AlA)

Substituting this relation in Eq. 10.37,

A1 o Ao
—-V,)? = ,—AY, 10.38
VW =0 (AT - AT) (10.38)

V, =V, +9(A/A)(AY, - AT,/ (A —A) (10.38a)

Since the surge is moving downstream, (V, -V,) is positive and as such only the
positive sign of the square root is considered practical.

For a rectangular channel, considering unit width of the channel. The continuity
Eq. 10.36 is

y, (V,=Vy) =Y, (V,=V,) (10.39)

The momentum equation 10.37 is simplified as

1 1
Sy —Zayi =Ty, -V, V) (10.40)
2 2 g
y y
From Eg. 10.39 V, ==V, +[1——1 Vi
Y, Y,

Substituting for V, in Eq. 10.40 and on simplifying,

2

Vi, —Vi) 1 ﬁ[ﬁ +1] (10.41)
ay, 2y \%

The equation sets 10.36 and 10.38 and 10.39 and 10.41 contain five variables y,,

Y, V., V,and V. If three of them are known, the other two can be evaluated. In most
of the cases trial and error methods have to be adopted.
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Example 10.3 || A 3.0-m wide rectangular channel has a flow of 3.60 m¥s with a
velocity of 0.8 m/s. If a sudden release of additional flow at the upstream end of the
channel causes the depth to rise by 50 per cent, determine the absolute velocity of the
resulting surge and the new flow rate.

Solution  The flow is shown in Fig. 10.11(a). The surge moves in the downstream
direction and the absolute velocity of the wave V, is positive. By superposing (—V,)
on the system the equivalent steady flow is obtained (Fig. 10.11 (b)).

VW
v
Va Y, =2.25m =
=15m
V,;=0.8m/s N
()
V,
Vi =
Y2
(Vw - V2)
yl (Vw - Vl)

(b)
Fig. 10.11 (a) Positive surge moving downstream (b) Simulated steady flow

360 _ygm Y215,
0.8x3.0 Y,

Here V.=0.8m/s, y, =

y,=15%x15=2.25m Also V, is positive.

For a positive surge moving downstream in a rectangular channel, by Eq. 10.41,

(v, V)’ :}ﬁ[&+1]
gy, 2%
(v, —08)" 1

_lasa541
o8 2 Les+Y
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(V —0.8)? = 27.591 and by taking the positive root

V, = 6.053 m/s
By continuity equation, y, (V,—V,)) =Y, (V,—V,) and
v, =Ny, 4 1—ﬁJvW
2 2
= £><0.8 + 1—£ x6.053 = 2.551 m/s
2.25 2.25
New flow rate Q, =By, V, = 3.0 x 2.25 x 2.551
=17.22 m¥s

Example 104 || A rectangular channel carries a flow with a velocity of 0.65 m/s
and depth of 1.40 m. If the discharge is abruptly increased threefold by a sudden lifting
of a gate on the upstream, estimate the velocity and the height of the resulting surge.

Solution  The absolute velocity of the surge is V, along the downstream direction.
By superimposing a velocity (—V,) on the system, a steady flow is simulated as
shown in Fig. 10.12.

(IS

* ~ y; =1.40m

(Vw — V1) 1

Simulated Steady Flow
Fig. 10.12 Example 10.4

Here y,=1.40mand V, = 0.65 m/s.
V,y, = 3.0x1.40x0.65 = 2.73 m¥%s.
By continuity equation, y, (V, —V) =Y, (V, —V,)
1.40 (V, —0.65) =V, y, —2.73

1.82
(y, —1.40)

For a positive surge moving in the downstream direction, by Eq. 10.41

2
M) iﬁ[&ﬂJ
ay 2y (%

Vv, (y,—1.40) = 1.82 or V, =
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2
\1'82 —0.65]
y, —1.40 _ 1y, Y, n
9.81x1.40 211.40)(1.40
(273—-0.65y,)
——— =22 =3504y, (1.40+
(y, —1.40)° a ¥2)
By trial and error, y,= 1.76m.
Height of surge Ay=y,—y, =176-1.40=0.36 m.
1.82 . L
v =———— = 5.06 m/s (in the downstream direction).
(1.76 —1.40)

10.5.3 Positive Surge Moving Upstream

Figure 10.13(a) shows a positive surge moving upstream. This kind of surge occurs
on the upstream of a sluice gate when the gate is closed suddenly and in the phenom-
enon of tidal bores, (Fig. 10.1). The unsteady flow is converted into an equivalent
steady flow by the superposition of a velocity V, directed downstream [to the left in
Fig. 10.13(a)]. As before, suffixes 1 and 2 refer to conditions at sections of the chan-
nel before and after the passage of the surge, respectively.

V
Y2
M
(@)
Vi Vi
Y2
Vi (V1 +Vy) (Vo + V)

(b)
Fig. 10.13 (a) Positive surge moving upstream
(b) Simulated steady flow

Consider a unit width of a horizontal, frictionless, rectangular channel. Refferring
to Fig. 10.13(b), the continuity equation is

¥V, + V) =YV, + V) (10.42)
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It is seen that the equivalent flow (Fig. 10.13(b)) is similar to a hydraulic jump
with initial velocity of (V_+V,) and initial depth of y, The final velocity is (V, +V,)
and the depth after the surge is y,. By the momentum equation,

1 1
T T = N W, V)~ ()]

= % V.V, +V) (v, —V,) (10.43)

Using Eq. 10.42, v, =Ny, _[1_£]VW
Y, Y

Substituting this relation, Eq. (10.43) is simplified as

2
My V) 1 ﬁ[ﬁ +1] (10.44)
gy, 2%V

From Egs 10.44 and 10.42, two of the five variables 'y, y,, V,, V, and V_ can be
determined if the three other variables are given. It is to be remembered that in real
flow V, is directed upstream. The velocity V, however may be directed upstream or
downstream depending on the nature of the bore phenomenon.

10.5.4 Moving Hydraulic Jump

The Type-1 and Type-2 surges viz. positive surges moving downstream and moving
upstream respectively are often termed moving hydraulic jumps in view of their simi-
larity to a steady state hydraulic jump in horizontal channels described in Chapter 6
(Sec. 6.2). This will be clear from a study of the simulated steady flow situations of
the above two types of flows as depicted in Fig. 10.10 and Fig. 10.13. This similarity
could be used advantageously to develop short cuts to predict some flow parameters
of the positive surge phenomenon.

If the velocities relative to the wave velocity V_ (i.e., the flow situation as would
appear to an observer moving along the surge with a velocity V, ) are adopted, the
relative velocity at Section 1 (V,,) can be represented as follows:

1. For Type-1 surge (surge moving downstream) V= (V -V,)
2. For Type-2 surge (surge moving upstream) V= (V +V,)

With this notation, both Figs 10.10 and 10.13 can be represented by a single
Fig. 10.14 which is essentially same as that of a steady flow hydraulic jump.

Further, the Egs 10.41 and 10.44 obtained by application of momentum equation
in Type-1 and Type-2 cases can be expressed by a single equation as below by consid-
ering the two surges as a moving hydraulic jump as depicted in Fig. 10.14.
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2
Vr2
1 Y2
Vi~ Y,
Fig. 10.14 Moving hydraulic jump
2
Vi F2— lﬁ[ﬁ n 1} (10.45)
ay, 2y, %

which is of the same form as Eq. 6.3(b) of steady flow hydraulic jump. Using this

similarity of form, the ratio Y2 of the moving hydraulic jump, which is equivalent
Yi
to the sequent depth ratio of a steady state hydraulic jump, is given by

Yl iverd] (10.46)

Y1

The energy loss in the moving hydraulic jump would, by similarity to steady state
hydraulic jump, be given by

3
L (10.47)
4Y.Y,

which is independent of F . Note that Eqs 10.45 and 10.46 are applicable to both
Type-1 and Type-2 surges when the relative velocity V , appropriate to the type of
surge under study is used. That the concept of treating positive surges as moving
hydraulic jump enables the relationships of some parameters to be expressed in a
compact form is apparent.

Example 10.5 || A 4.0-m wide rectangular channel carries a discharge of 12.0 m%s
at a depth of 2.0 m. Calculate the height and velocity of a surge produced when the flow
is suddenly stopped completely by the full closure of a sluice gate at the downstream
end.

Solution A positive surge with a velocity (-V, ) i.e., travelling upstream, will
be generated as a result of the sudden stopping of the flow, (Fig. 10.15(a)). By
superimposing a velocity V, on the system, a steady flow is simulated as shown
in Fig. 10.15(b).
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Gate
v
Vi =
—= V2=0
Vi ~ |y;=2.0m Y2
1.5m/s
(a) Positive surge moving upstream
Gate
v e
w VW -
R vA—
(Vl + Vw) VW Y2
- |1 J
(b) Simulated steady flow
Fig. 10.15 Example 10.5
12.0
Here,ylz 20 m, IZMZJ.S m/S
.0Ox4.

V,=0 and y,>2.0

By continuity equation, Eq. 10.42,y,(V, +V,) =y,(V,, +V,)
20(15+V)=V,y,
30
"y, =20
For a positive surge moving in the upstream direction, by Eq. 10.44

Vo +V)* 1y, ﬁﬂ]
ay, 2y %
2
154|320 || —981x20xtx2 [Lﬂ]
y, 20 2720120
2
15
'fyzzo = 24525 y, (y, +2.0)
2.

Solving by trial and error, y,=2.728 m.

Height of the surge Ay =y, -y, = 0.728 m.

Velocity of the surge V,, = L: 4.121 m/s in the simulated flow. Hence,
2.728—2.0

the surge is of height 0.728 m and moves upstream with a velocity of 4.121 m/s.
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Example 10.6 || In a tidal river the depth and velocity of flow are 0.9 m and 1.25
m/s respectively. Due to tidal action a tidal bore of height 1.2 m is observed to travel
upstream. Estimate the height and speed of the bore and the speed of flow after the
passage of the bore.

Solution LetV_ (directed downstream) be the velocity of the bore. Superimpose a
velocity (-V,) on the system to get simulated flow as shown in Fig. 10.16.
Herey, =0.9m,V, = 125m/s,
y,=0.9+120=210m.
For a positive surge moving in the upstream direction, by Eq. 10.44

MtV 1y, ﬁ+1]
oy, 2y (%
9.81x09 21 (21
+1.25)° = T x —=x| == +1.0{=34.335
V. ) 2 0.9 [0.9 ]
Taking the positive root, V, = 4.61 m/s
+
VW
VW
e
= y,=2.10m
y; =09m ﬁ,
V,+V,

Fig. 10.16 Simulated stead)/ﬂow

By continuity equation, Eq.10.42, y,(V, + V,) =y,(V, +V,)
2.1(4.61+V,) =009 (4.61 4 1.25)

V,=-2.1mls

The bore has a velocity of 4.61 m/s and travels upstream. The river has a velocity
of 2.1 m/s directed upstream after the passage of the bore.

10.6 RAPIDLY VARIED UNSTEADY FLOW — NEGATIVE SURGES
10.6.1 Celerity and Stability of the Surge

The velocity of the surge relative to the initial flow velocity in the canal is known as
the celerity of the surge, C.. Thus for the surge moving downstream C =V -V, and
for the surge moving upstream C =V +V, From Egs 10.41 and 10.44 it is seen that
in both the cases
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1
C,— EQ%(VHFYZ) (10.48)

1

For a wave of very small height y, — y, and dropping suffixes, C, = @ , a result
which has been used earlier.

Consider a surge moving downstream. If the surge is considered to be made up of
a large number of elementary surges of very small height piled one over the other, for
eachofthese V, =V, + \/& . Consider the top of the surge, (point M in Fig. 10.10(a)).
This point moves faster than the bottom of the surge, (point N in Fig. 10.10(a)). This
causes the top to overtake the lower portions and in this process the flow tumbles
down on to the wave front to form a roller of stable shape. Thus the profile of a posi-
tive surge is stable and its shape is preserved.

In a negative surge, by a similar argument, a point M on the top of the surge moves
faster than a point on the lower water surface (Fig. 10.17). This results in the stretch-
ing of the wave profile. The shape of the negative surge at various time intervals will
be different and as such the analysis used in connection with positive surges will not
be applicable.

— V1At fe—

M -le v
At time t // i
Vo -
/7
7
/7
7
7 >
N e T Y1
Z -
) T Vi At time
— Y2 t + At
— v, At —

Fig. 10.17 Stretching (yra negative surge

For channels of small lengths, the simple analysis of a horizontal frictionless chan-
nel gives reasonably good results. However, when the channel length and slope are
large, friction and slope effects have to be properly accounted for in a suitable way.
Further, changes in the geometry, such as the cross-sectional shape, break in grade and
junctions along the channel influence the propagation of surges. A good account of the
effect of these factors is available in literaturer'’18,

10.6.2 Elementary Negative Wave
Since the shape of a negative surge varies with time due to the stretching of the

profile by varying values of V_ along its height, for purposes of analysis the nega-
tive surge is considered to be composed of a series of elementary negative wavelets
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of celcrity @ superimposed on the existing flow. Consider one such elemen-
tary negative wave of height éy as in Fig. 10.18(a). The motion is converted to
an equivalent steady-state flow by the superimposition of a velocity (-V,) on the
system. The resulting steady flow is indicated in Fig. 10.18(b). The continuity and
momentum equations are applied to a control volume by considering the channel to
be rectangular, horizontal and frictionless. The continuity equation is

(Vw_vz) Y, = (Vw_Vl) Y:

PuttingV, =V, y, =yandV,=V-&Vandy,=y-20y andsimplifying by neg-
lecting the product of small terms.

&N y=(V, -V)dy

w

Ccv
r - - - - - - - - === I
' |
- | o
I =
B e
?V T [ Vw : Y1
| T 1 Vq
Y2 ; |
V, —l> : I
I
| o _ J
\ Horizontal
@ frictionless @
(@)
CVv
FTm oo I
I }_ I
I I
. T X
I I
ivd ! o !
= T [ ! Y1
[ ! (wavl)
Yo I !
(Vw — V) +— — !
I I
l \_ o _____ I

Horizontal Q
. 1
@ frictionless

(b)
Fig. 10.18 (a) Elementary negative wave
(b) Equivalent steady flow
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v _VV (10.49)

sy oy
By applying the momentum equation to a control volume enclosing the
Sections 1 and 2 in the direction of equivalent steady flow

or

T2 =) =2 (=) [V V)= (v, V)

Introducing the notation as above and neglecting the product of small quantities the
momentum equation simplifies to

yv__ 9 (10.50)
oy
Combining Eqgs 10.47 and 10.46

(V- V) =C?=gy

or C=+oy (10.51)

in which C = celerity of the elemental at negative wave.
Also from Eq. 10.47

Y
— =gy

oy
dv

As oy — 0, d_:j:,/g/y (10.52)
y

Equation 10.52 is the basic differential equation governing a simple negative
wave which on integration with proper boundary conditions enables the determina-
tion of the characteristics of a negative wave.

10.6.3 Type 3 Negative Wave Moving Downstream

Consider a sluice gate in a wide rectangular channel passing a flow with a
velocity of V, and a normal depth of flow of y, in the channel downstream of
the gate. Consider the sluice gate to partially close instantaneously. Let the new
velocity and depth of flow at the gate be V, and y, respectively. The closure
action of the gate would cause a negative wave to form on the downstream
channel (Type 3 wave) and the wave would move in the downstream direction
as shown in Fig. 10.19. The velocity V and depth y at any position x from the
gate is obtained by integrating the basic differential equation of a simple nega-
tive wave given by Eq. 10.52.

For the negative wave moving downstream, positive sign in Eq. 10.52 is adopted
and the resulting basic differential equation is
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Fig. 10.19 Type-3 negative surge moving downstream

&=
On integration V= 2@+ Constant
Using the boundary condition V=V aty =y,
V =V, +2gy —2/ay, (10.53)
Since the wave travels downstream C =V, -V = \/&
Hence V, =V + @

=V, +3\gy —2,/ay, (10.53a)

If the gate movement is instantaneous at t = 0, with reference to the co-ordinates
shown in Fig. 10.19, V_ is in the direction of positive x and hence the profile of the

negative wave surface is given by V,, = 3—:
x=V,t
x=(V, +3Jagy — 2oy )t (10.54)

Equation 10.54 is the expression for the profile of the negative wave in terms of x,
y and t. This equation is valid for the values of y between y, and y,.Substituting in

Eq. 10.54, the value of \/a obtained from Eq. 10.53,
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Vv, 3
x:[—31+5v +\/gy1]t

2x V, 2
or V=|-=24+21_2= 10.55
[3t+3 3 gyl] ( )

Equation 10.55 gives the value of velocity in terms of x and t.
Note that the Egs 10.50, 10.51 and 10.52 can be used for instantaneous complete
closure also, in which case V= 0andy, = 0.

Examplel0.7 || A sluice gate in a wide channel controls the flow of water. When
the flow in the downstream channel was at a depth of 2.0 m with a velocity of 4.0 m/s,
the sluice gate was partially closed, instantaneously, to reduce the discharge to 25%
of its initial value. Estimate the velocity and depth at the gate as well as the surface
profile of the negative wave downstream of the gate.

Solution Let suffix 1 refers to flow conditions before the gate closure and suffix 2
conditions after the passage of negative wave.
Prior velocity V, = 4.0 m/s

New discharge _ 40 Z 20 _ 50 mess =V,y,
From Eq. 10.50, V =V, +2gy —2,/gy,

V, = 4.0+2,/9.81y, —21/9.81x 2.0

V, = 6.2642,y, —4.8589 (10.56)

Also V,y,=20 (10.57)
Solving by trial and error, 'V, =1.781m/s and y, = 1.123 m
For the profile substituting for V, andy, in Eqg. 10.51

x:(V1+3@—2 gyl)t

= (4.0+3,0.81y —2/9.81x2.0 )t

X = (9.396\5 —4.859)t (10.58)

Equation (c) represents a parabola, concave upwards, and holds good for values of y
in the range 1.123 m to 2.0 m.
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—_—

— X

Fig. 10.20 7j/pe —4 negative surge moving downstream

10.6.4 Type 4 — Negative Surge Moving Upstream

Figure 10.20 shows a negative surge produced by instantaneous raising of a sluice
gate located at the downstream end of a horizontal, frictionless channel. Type-4 negative
wave which starts at the gate is shown moving upstream.

Integrating the basic differential equation , Eqg. 10.51, the relationship between the
velocity and depth is obtained as

V= —2\/& + constant (10.59)

Using suffixes 1 and 2 to denote conditions before and after the passage of the wave
respectively, and using the boundary condition V =V, aty =y,

V =V, +2ay, —2ay (10.60)

Note that the negative sign of Eq. 10.52 has been used in deriving Eq. 10.59. This is
done to obtain positive values of V for all relevant values of depth y.
The celerity of the wave C in this case is

C=V,+V =gy
or Vv, =Joy -V
=3Jay -2y, -V, (10.61)

With reference to the co-ordinate system shown in Fig. 10.20, the wave velocity V,_is
negative in major part of the wave and positive in the lower depths. Considering

_dx

" dt

the profile of the negative wave is given by

(=x)=V, t= (3@ =249y, —Vl)t (10.62)
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10.6.5 Dam Break Problem

A particular case of the above Type-4 negative surge is the situation with V.= 0. This
situation models the propagation of a negative wave on the upstream due to instan-
taneous complete lifting of a control gate at a reservoir. This ideal sudden release of
flow from a reservoir simulates the sudden breaking of a dam holding up a reservoir
and as such this problem is known as Dam Break problem.

Figure 10.21 shows the flow situation due to sudden release of water from an
impounding structure. This is a special case of Type-4 wave with V., = 0. The co-
ordinate system used is : x = 0 and y = 0 at the bottom of the gate; x is positive in the
downstream direction from the gate and negative in the upstream direction from the
gate;, y is positive vertically upwards. By Eq. 10.61

v, =3\oy —2\/ay, (10.63)

Gate x=0

Positive
Surge

~<|<

—

yatx=0

Fig. 10.21 Dam break Problem

and by Eq. 10.60 the velocity at any section is

V =2gy, —2.Jay (10.64)
The water surface profile of the negative wave is

(—x) = (3Jay — 2,/gy,)t (10.65)

The profile is a concave upwards parabola. The conditions at the gate are interest-
ing. At the gate, x = 0 and using the suffix 0 to indicate the values at the gate, from
Eq.10.65

2
=2
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ie., Yo = g Y, (10.66)

Note that y, is independent of time and as such is constant. The salient features of the
wave profile are as follows:

Aty =0 X =2t{ay,

Aty =y, X =—t,/gy, and
4

Atx=0 y:§y1

The velocity at the gate V, by Eq. 10.64 is

2
Vo= 5\/ gy, ¢ (10.67)
. . . 2 4
The discharge intensity q=V,Y, = [§ WA ][5 yl]
_8 oy (10.68)
>7 9y

which is also independent of time t.
Note that the flow is being analyzed in a horizontal frictionless channel and as such
the depth y, with V,= 0 represents the specific energy, E. At the gate axis (x = 0)

Yo = % y, = % E = Critical depth

VRN
Also at x = 0, the Froude number of the flow F, = === =1.0. Thus
Y, 4
g [9 yl]
the flow at the gate axis is critical and the discharge maximum. Furthet, it is easy to
see that upstream of the gate the flow is subcrtical and on the downstream of the gate
(for positive values of x) the flow is supercritical.

This simple ideal analysis of a sudden release from an impounding structure
is found to give satisfactory results for a major part of the profile. However, in real situ-
ation the downstream end is found to have a rounded positive wave instead of the para-
bolic profile with its vertex on the x-axis. In actual dam break the tapered leading edge
of the ideal profile is modified due to action of ground friction to cause a positive surge
to move downstream. Details about dam break analysis are found in Refs. 4 ,19 & 20.

10.6.6 Partial lifting of Downstream Gate

A variation of the dam break problem is the case of partial instantaneous lifting of the
downstream gate from initial closed position. A simple case of a sluice gate in a rect-
angular channel of width B is analyzed as follows.
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Consider the sluice gate to be suddenly raised by an amount a from an initial

closed position. If a> 9 y, , then it amounts to full raised position as indicated in the
previous section and the analysis is that of the dam break problem. However, if

4 - . . L
a< 3 y,, then it is partial closure and an analysis for such a case is given below.

Fig. 10.22 Parial lifting of downstream gate

Refer to Fig. 10.22. Before the operation of the gate, the water upstream of the
gate is at rest at a depth y,. The gate is lifted instantaneously, and partially, so that
h, = drawdown at the gate. A negative wave produced by this action travels
upstream with a wave velocity V, given by Eq. 10.61 and a forward flow velocity
V is created and is described by Eq. 10.53. Since V, = 0, Eq. 10.61 and 10.60
become,

Vv, = 3@— 2,/9Y,
V= _2@4' 2\/ ay,
Atx=0y,=(y,-h,) and velocity V=V,
Thus V, =2gy, —2a(y,—hy) (10.69)

The discharge Q, = By,V, which is constant as V, and y, do not change with time. Q,
can be expressed in terms of h  and y, for substituting fory, and V, as

Q,= B (y,~hy) (2J/ay, —2J/a(v,—1y)

On simplification, an expression for the discharge can be obtained in non-dimen-

sional form as
St
Y1

Byl\/g_yl Y1

(10.70)
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Wave Profile: The profile of the negative wave at any time t is given as

(—x) =V, t=(2fgy, —3/oy )t (10.71)

where y = depth of flow at any (x, t).

Example 10.8 || A reservoir having water to a depth of 40 m undergoes an instan-
taneous, ideal, dam break. Estimate the depth and discharge intensity at the dam site
and the water surface profile of the negative wave 3 seconds after the dam break.

Solution The water surface profile with positive x in the downstream of the gate
axis, is by Eq. 10.65 is

(%) = (3Jay —2/ay, )t

(—x) = (3\/9.81>< y —2,/9.81x40, )t

x=39.62t— 9.396.fy

Atx=0, y=y,=(39.62/9.396) = 17.78 m.

Velocity atx =0,V =V, = %,/gyl = 2\/9.18x40 =13.21m/s

Profile after 3 seconds: x = 39.62 x 3-9.396 x 3 ﬁ

:X = 118.86 - 28.188 [y

Example 10.9 || A wide rectangular horizontal channel is passing a discharge
of 1.5 m¥s/m at a depth of 3.0 m. The flow is controlled by a sluice gate at the
downstream end. If the gate is abruptly raised by a certain extent to pass a flow of
3.0 m¥s/m to the downstream, estimate (i) the new depth and velocity of flow in the
channel at a section when the negative surge has passed it, (ii) the maximum wave
velocity of the negative surge, and (iii) profile of the negative surge.

Solution This is a case of Type-4 wave, where the negative wave moves upstream.
Using the suffix 1 for the conditions before the passage and 2 for conditions after the
passage of the negative wave and suffix 0 to the position of the gate,

Velocity at any section

V=V, +2.[gy, 2/gy. Herey, = 3.0 mand V, = 1.5/3. 0 = 0.5 m/s.

V=05+2981x30-2.,08lxy

=11.35-6.264 .y (10.72)
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After the passage of wave, V, = 3.0y, and from Eq. 10.72V, = 11.35—6.264\/§
By trial and error, y, = 2.66 m and V,= 1.13 m/s.

Velocity of wave, by Eq. 10.61: V, = 3./gy —24/ay, -V,

—3.Jgy —2./9.18x 3.0 -05=3./gy —11.35

V,, is maximum aty =y, and hence max. V= 3./9.81x 3.0 —11.35 = 4.925 m/s

Wave profile is given by Eq. 10.62 as (—x) = (3@— 2,/9y, —Vl)t

—x = (3,0.81y ~2,/9.81x3.0 - 05)t

x = (11.35-6.264,[y )t
(The profile is in the negative x direction.)
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~ PROBLEMS

Problem Distribution

Topic Problems
1 Equation of motion of GVUF 10.1-10.2
2 Monoclinal wave 10.3
3 Positive surge 10.4-10.13
4 Negative surge 10.14-10.16

10.1 Show that the continuity equation for a GVUF in a non prismatic channel with no lateral
in flow is

Aa—V+VT@+eyVa—T+T@:O
15)4 15)4 15)4 I5)4

where ¢ = a coefficient which depends on the nature of the non-prismaticity of the chan-
nel with e = 0.5 and 1.0 for triangular and rectangular channels respectively.

10.2 Derive the equation of motion for GVUF in a channel having a lateral outflow g per unit
length as

dy Vv 1oV
)
ox g ox g ot o

where D, = 0 for bulk lateral outflow as over a side spillway, and D, = [VAU] q for lat-
eral inflow with x component of the inflow velocity = u; g

10.3 Show that by using the Chezy formula with C = constant, the ratio (V,)_/V, of a mono-
clinal wave is 1.50 and 1.25 for wide rectangular and triangular channels respectively.

10.4 Show that the celerity of a positive surge in a prismoidal channel can be approximated
for small surge heights h relative to the area A as

A 3
C=+,/9 +h+] ~+,/9|=+=h
[ g[T 2 ]
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10.5 For a positive surge travelling in a horizontal rectangular channel, fill in the blanks in
the following table

SI. No. y, (m) V, (m/s) y, (m) V, (m/s) V,, (m/s)
a 2.00 1.50 4.00 - -

b 1.00 1.75 = - +5.50
c 1.75 0.70 = - —5.00
d - 3.00 1.50 - —3.00
e 0.30 - 0.60 - 3.50

10.6 Ata point in a shallow lake, a boat moving with a speed of 20 km/h is found to create a
wave which rises 35 cm above the undisturbed water surface. Find the approximate
depth of the lake at this point.

10.7 A positive surge is often known as a moving hydraulic jump. Obtain an expression in
terms of depths y, and y, for the energy loss in a moving hydraulic jump in a horizontal
rectangular channel. Estimate the energy loss wheny, = 0.9 mandy, = 2.10 m.

10.8 A rectangular channel carries a discharge of 1.50 m®/s per metre width at a depth of 0.75
m. If the sudden operation of a sluice gate at an upstream section causes the discharge
to increase by 33 per cent, estimate the height and absolute velocity of the positive
surge in the channel.

10.9 The depth and velocity of flow in a rectangular channel are 0.9 m/s and 1.5 m/s respec-
tively. If a gate at the downstream end of the channel is abruptly closed, what will be the
height and absolute velocity of the resulting surge?

10.10 A 2.0 m wide rectangular channel, 2 km long carries a steady flow of 4.6 m®s at a depth
of 1.15. The sides of the channel are 2.0 m high. If the flow is suddenly stopped by the clo-
sure of a gate at the downstream end, will the water spill over the sides of the channel ?

If there is no spillage, what minimum time interval must elapse before the arrival of the
surge at the upstream end?

10.11 A trapezoidal canal with B =5.0 m and side slope 1H : 1V carries a discharge of 30.0 m%/s
at a depth of 3.0 m. Calculate the speed and height of a positive surge (i) if the flow in
the canal is suddenly stopped by the operation of a gate at a downstream section, (ii) if
the discharge is suddenly increased to 45.0 m¥/s
(Hint: Use the equation for the celerity given in Problem 10.6 and a trial-and-error
procedure).

10.12 A wide tidal river has a low water velocity of 1.5 m/s and a depth of flow of 2.5 m.
A tide in the sea causes a bore which travels upstream, (a) If the height of the bore is
0.90 m, estimate the speed of the bore and the velocity of flow after its passage, (b) If
the bore is observed to cover a distance of 2.5 km in 10 minutes determine its height.

10.13 Show that in a positive surge moving down a rectangular channel with absolute velocity
V,,, the depths before the passage of the surge y, and after the passage are related by a
function of the Froude number of the relative velocity.

10.14 A wide rectangular channel carries a discharge of 10 m3/s/m at a depth of 3.0 m. Through
operation of a gate at its upstream end, the discharge is reduced instantaneously to 4.0 m%/s.
Estimate the height of the negative wave and the velocity of flow in the channel downstream
of the gate after the event.

10.15 A small dam stores 9 m of water in the reservoir created by it. If a wide section of the
dam collapse instantaneously, using the ideal dam break solution, estimate the dis-
charge, depth of flow at the axis of the dam and surface profile 2 s after the dam break.
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10.16 A negative wave of 0.75-m height is produced in a rectangular channel due to the sudden

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

lifting up of a gate. The initial depth upstream of the gate is 3.0 m. (a) Determine the dis-
charge per unit width through the gate and the profile of the negative wave at 4.0 s after
the gate is opened. (b) What will be the discharge if the gate is lifted up by 2.0 m?

* OBJECTIVE QUESTIONS

In a gradually varied unsteady, open-channel flow dQ /dx = 0.10. If the top width of
the channel is 10.0 m, HA/Ot is

(@ 0.1 (b) 0.01 (c) 0.1 (d) -0.01

The equation of motion of GVUF differs from the differential equation of GVF by one
essential term. This term is

10V oV 10V oy
@ g ot () ot © g ot @ OX
In a uniformly progressive wave the maximum value of the absolute wave velocity V, is
equal to

0Q O0A 0Q 0Q
@ S ®) © o @ Ha
In a flood the water surface at a section in a river was found to increase at a rate of 5.6
cm/h. If the slope of the river is known to be 1/3600 and the velocity of the flood wave
is assumed as 2.0 m/s, the normal discharge for the river stage read from the stage dis-
charge curve Q, is related to the actual discharge Q as Q/ Q, equal to
(@) 1.014 (b) 0.96 (c) 0.822 (d) 1.404
The stage discharge relation in a river during the passage of a flood wave is measured. If
Q.= discharge at a stage when the water surface was rising and Q_= discharge at the
same stage when the water was falling then
() Q.= Qq (b) Q> Q;
(¢) Q< Q. (d) Q./ Q.= constant for all stages
In the method of characteristics applied to flood routing, the St Venant equations are
converted into
(a) four differential equations (c) one ordinary differential equation
(b) two ordinary differential equations (d) four partial differential equations

The Courant stability criteria in the method of characteristics requires At/Ax be

<|— b 1

@ <[ ()>ViJ
1

(© <M=c| w>§k16

In explicit finite-difference schemes for solving St Venant equations the Courant condi-
tion to be satisfied throughout the computational space is

AX At
— V<1
(@ X IC+VI<1 (b) A, ICTVI<

A At
© A—’t‘\cw\zl © R, C+V[>1
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10.9 In finite-difference schemes for solving St Venant equations
(a) the explicit schemes are unconditionally stable
(b) the implicit schemes require Courant conditions to be satisfied
(c) The implicit schemes are stable for values of the weighing coefficient o« < 0.5.
(d) None of the above statements is correct.
10.10 A positive surge of height 0.50 m was found to occur in a rectangular channel with a
depth of 2.0 m. The celerity of the surge is in m/s
(@) £4.43 (b) £2.25 (c) £1.25 (d) £5.25
10.11 A trapezoidal channel with B = 0.6 m, m = 1.0 and depth of flow = 2.0 m has a positive
surge of height 0.80 m. The celerity of the surge in m/s
(@ +4.43 (b) £ 95 (c) £35 (d) none of these
10.12 A stone thrown into a shallow pond produced a wave of amplitude 2 cm and velocity of
1.80 m/s. The depth of the pond in m is
(@) 1.80 (b) 0.33 (c) 0.30 (d) 0.02
10.13 A tidal bore is a phenomenon in which
(a) a positive surge travels upstream in a tidal river with the incoming tide
(b) a positive surge travels downstream in a tidal river with the incoming tide.
(c) apositive surge travels downstream in a tidal river with the outgoing tide
(d) a negative surge is associated with an incoming tide
10.14 In a negative surge
(a) the wave velocity V, is constant
(b) the celerity is always negative
(c) the water surface is a uniformly progressive wave
(d) the celerity varies with depth
10.15 A canal has a velocity of 2.5 m/s and a depth of flow 1.63 m. A negative wave formed
due to a decrease in the discharge at an upstream control moves at this depth with a
celerity of
(@ +6.5mls (b) —6.5m/s () +15mfs (d) —4.0m/s



Hydraulics of Mobile
Bed Channels

11.1 INTRODUCTION

The previous chapters considered the characteristics of flows in rigid bed channels.
The boundary was considered rigid, the channel slope and geometry fixed and the
roughness magnitudes invariant. While these conditions hold good for a wide range
of man made channels and to some extent to non-erodible natural channels also,
there exists a class of open channel flows in which the boundary is mobile. Unlined
channels in alluvium—both man made and natural channels—where the boundaries
are deformable and the channel flows carry sediment along with water come under
this category. The hydraulics of mobile bed channels, which is basic to successful
engineering solution to a host of sediment problems such as erosion, deposition and
change in the planform, form the subject matter of the important area of study known
as Sedimentation Engineering or Sediment Transport. Obviously, a vast topic like
sediment transport cannot be adequately covered within the confines of a single chap-
ter in a book like this. As such, only a brief introduction to the hydraulics of mobile
bed channels with emphasis on the design of stable unlined canals is attempted in
this chapter. For further details, the reader should refer to the treatises and other good
literature on this, topic [Ref. 1 through 7 and 9].

The alluvium or sediment refers to the loose, non-cohesive material (such as sand
and silt) transported by, suspended in or deposited by water. A channel cut through
an alluvium and transports water and also, in general, sediment having the same
characteristics as in the boundary of the channel is termed alluvial channel. Such
channels invariably have extremely complex interaction with the boundary and as
such the available knowledge on the subject has a very heavy bias towards experi-
mental observations and empirical corelations.

11.1 INITIATION OF MOTION OF SEDIMENT

When the flow of water in a channel having a non-cohesive material (such as sand)
is carefully observed, it will be found that in some cases the bed may also become
dynamic with the particles of the bed moving in sliding or rolling or jumping mode.
Suppose the channel is a laboratory channel where the flow parameters can be con-
trolled. If the motion of the bed particles is observed for a wide range of bed shear
stresses 7, (= RS,), it will be noticed that while for small 7 values there may be
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no motion of bed particles at all, the flows with large values of 7, will have definite
observable motion. The condition of flow at which the bed particles will just begin to
move is known as the condition of critical motion or incipient motion. The bed shear
stress corresponding to incipient motion is known as critical shear stress or critical
tractive force and is designated as 7. It should be realized that the motion of the bed
particles at 7, = 7, is not a step function at 7_ but it only implies that in a statistical
sense considerable number of bed particles will be set in motion when the critical
shear stress is reached.

Considering the sediment, fluid and flow properties at the stage of initiation of
motion, Shields*>"® proposed two non-dimensional numbers viz. Shear Reynolds

u.d
number R,, = —— and Non-dimensional shear stress 7, = "¢
v

(v —=7)d
where d = diameter of the bed particle and
7, = p,g = unit weight of the sediment particle
~ = pg = unit weight of water

T, = critical shear stress

U, = [E] = shear velocity at incipient condition
P

v = kinematic viscosity of water

At the stage of initiation of motion, Shields obtained through experimental study the
functional relationship between 7, and R, _as shown in Fig. 11.1. This curve, known
as Shields curve, represents the mean line through data points and have been varified
by numerous investigators. Shields curve is in some sense similar to Moody diagram
representing the variation of the friction factor f. Here, up to R, = 2 the flow is
similar to the smooth boundary flow, the particles being completely submerged in a
laminar sublayer, and 7 is not affected by the particle size. In the range 2 < R, < 400,
the flow is in transition stage where both the particle size d and fluid viscosity v affect
7.. When R, > 400, 7,_is not affected by R, as the curve reaches a limiting value of
0.056. At this limiting value the critical shear stress 7_ is a function of particle size
only. This is an indication of the boundary becoming completely rough and hence
the critical stress being independent of the viscosity of the fluid. Some investigators
have obtained the constant value of 7, at high R, as slightly less than 0.056; It could
be as low as 0.045, (Ref. 4, 11, 16)

It is to be noted that the minimum value of 7, is 0.03 and is obtained at R, = 10.
Thus for 7, <(r,,),;, N0 motion should ever occur. If in a channel flow 7, > 7_the bed
will be in motion and if 7, < 7_the bed could be taken to be not in motion and hence
stable. Since in nature the sediments have non-uniform size distribution, it is usual to
take the median size (d, ) as a representative size for the sediments.
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Fig. 11.1 Shield’s diagram

For a sediment to relative density 2.65 and water at 20°C in the channel (v =
1 x 10-° m%s)

7,, = 0.056 corresponds to uZ = T —0.056 g [ﬁ—l]d
P Y

ie. u,, = 0.952 g2
Further R.. = 400 corresponds to
d _ 1/2 -6\ __
[uch ;] =(0.952 d°d) /(110" ) = 400

i.e. d = 0.0056 m = 5.6 mm; say 6 mm

Designating the particle size inmmasd_, ford > 6.0 mm, the critical shear
stress could be estimated as

7.=0.056 (7,-~)d (11.2)
7, = 0.056x1.65x9790xd__/1000 (11.2)
=0.905d

Thus in a general way for sediments in water, d > 6.0 mm would correspond to
rough boundary with critical shear stress given by 7. = 0.905d_ .

To use the Shields’ curve to estimate the critical shear stress for a given particle
sized <6 mm one has to adopt a trial and error procedure. This is due to the fact
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that 7_ occurs in both the non-dimensional parameters of the curve. Swamee and
Mittal® have expressed the Shields’ curve results in an explicit relationship between
7_and d by an empirical non-dimensional formula. For the specific case of water at
20°C (v =1 x10%m?/s) and sediment of relative density 2.65, the empirical relation-
ship of Swamee and Mittal® reduces to

0.409d2_

7, =0.155+ —
140.177d2,

(11.3)

where d_is the particle size in mm and 7_is in N/m?,

This equation is based on the limiting value of the Shields curve as 0.06 and is
very convenient in calculating to an accuracy of about 5% error the values of 7_of
particle sizes up to about 5.5 mm. For higher sized particles Eq.11.2 is of course
more convenient to use.

Consider an alluvial channel with R, > 400 (i.e. having sediment particles of size
greater than 6.0 mm). Then from Fig. 11.1 for this range

-
T _0056
(v, —7)d

If d, = size of a particle that will just remain at rest in a channel of bed shear stress
7, then

To

d—-—_ "o
¢ 0-056(% —7)

But for a uniform channel flow of hydraulic radius R and bed slope S

7,= YRS,
R
Thus, = RS (11.4)
0.056 (fys — ’y)
Taking relative density ~, /v = 2.65
d,=10.82RS,~ 11RS, (11.5)

Equation 11.5 valid ford__ > 6.0 mm provides a quick method for estimating the size
of a sediment particle that will not be removed from the bed of a channel.

Example 11.1 || A wide rectangle channel in alluvium of 3.0-mm median size
(Relative density = 2.65) has a longitudinal slope of 0.0003. Estimate the depth of
flow in this channel which will cause incipient motion.

Solution  Substituting d . =3.0inEq. (11.3)
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0.409d2

7, =0.155+
[1+0.177d7,

]1/2

0.409(3)°

> =2.44 Pa
2
[1+0.177(3)’]

7, =0.155+

For flow in a wide rectangular channel at depth D, 7, = 4D S and at incipient
motion 7, = ..

Hence, 9790 x D x 0.0003 = 2.44
Depth D = 0.831 m.

Example 11.2 || Estimate the minimum size of gravel that will not move in the
bed of a trapezoidal channel of base width = 3.0 m, side slope = 1.5 H: IV, longitu-
dinal slope = 0.004 and having a depth of flow of 1.30 m.

. . . 3.0+1.5%x1.30)x1.30
Solution R = hydraulic radius = ( )

{3.0+ 2x1.30%/(L.5)° +1]

=0.837m
From Eqg. (11.5), d, =11RS,
= 11x0.837x0.004=0.0368 m
d,=3.7cm

11.3 BED FORMS

When the shear stress on the bed of an alluvial channel due to flow of water is larger
than the critical shear stress 7_ the bed will become dynamic and will have a strong
interaction with the flow. Depending upon the flow, sediment and fluid characteris-
tics, the bed will undergo different levels of deformation and motion. As a result of
careful observations the following characteristic bed features are recognized:

1. Plane bed with no sediment motion

2. Ripples and dunes

3. Transition (a) Plane bed with sediment motion and
(b) Standing wave

4. Antidunes

These bed features are called bed forms or bed irregularities. Schematically, these
bed forms are shown in Fig. 11.2.

The sequence of formation of these bed forms are best understood by considering
a hypothetical laboratory channel with sediment bed where the slope and discharge
in the channel can be changed at will. Consider an initial plane bed and a very low
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velocity of flow being admitted into the channel. The following sequence of bed
forms can be expected in the channel.

(1) Plane Bed with no Sediment Motion This situation corresponds to the
case when the actual shear stress 7, is less than the critical shear stress .. There
will be no motion of the sediment and the bed will remain plane. The friction
offered to the flow is due to the resistance of the grains only.

(2) Ripples and Dunes

(a) Ripples If the shear stress in the channel is increased (by increasing either dis-
charge or slope) so that 7, is moderately greater than 7, the grains in the bed will
begin to move and very soon the bed will be covered by a saw tooth type of ripple
pattern (Fig. 11.2). The height of the ripples will be considerably smaller than their
length. The sediment motion will be essentially in the form of rolling and sliding of
the particles on the ripple bed. The water surface will remain essentially calm and
plane. An interesting feature of the ripples is that they are not formed if the sediment
size is greater than about 0.60 mm.

(b) Dunes As the shear stress on the bed is gradually increased in our hypotheti-
cal channel, the ripples gradually grow into larger sizes. Then a different bed form
known as dunes appear with ripples riding over them. At higher shear stress values
the ripples disappear leaving behind only the dunes pattern on the bed.

Dunes are larger in size than the ripples with small height to length ratios. The
water surface will be wavy and out of phase with the dunes, (Fig. 11.2). The sediment
transport will be larger than in ripples and the dunes advance downstream though
with a velocity much smaller than that of the water flow. The flow will be in subcriti-
cal range.

The flow in a channel with ripples and dunes in the bed is characterised by separa-
tion of the flow on the lee side of the bed form. This in turn causes large energy losses
and particularly so in duned beds. The shedding of the vortices from the separation
region of the dunes cause ruffling of the free water surface. In both the ripples and
dunes, the bed form gets eroded on the upstream side and some of this material gets
deposited on the lee side of the bed form in a continuous manner causing the crest of
the bed wave pattern to move downstream.

While the distinction between the ripples and dunes is clear in a general qualita-
tive sense, it has not been possible to differentiate between them in terms of specific
quantifiable parameters. As such, it is usual to consider the ripples and dunes as one
class and to distinguish this class of bed form from others.

( 3) Transition

(a) Plane bed with sediment motion Further increase of the shear stress after the
dune bed pattern phase will lead to a transition phase where the bed undulations get
washed away progressively to achieve ultimately an essentially plane bed surface
(Fig. 11.2). The sediment transport rate would be considerably larger than in dune
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Fig. 11.2 Bed forms in alluvial channels
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phase. The flow, however, will be in subcritical range with the Froude number of the
flow being nearer unity.

(b) Standing wave Further increase in the shear stress beyond the plane bed stage
bringing the Froude number nearer unity and beyond it, would lead to the formation
of symmetrical sand waves with associated water surface standing wave, (Fig. 11.2).
The water surface undulations will be in phase with the sand waves.

The above two bed features viz. plane bed with sediment motion and the standing
wave stage, are clubbed into one class called transition. The transition phase of bed
form is very unstable.

(4) Antidunes If the shear stress in our hypothetical channel is further increased
beyond transition phase, the symmetrical sediment wave and the associated standing
wave slowly start moving upstream. The waves gradually grow steeper and then break.
The bed form at this stage is called antidunes. A characteristic feature of the standing
wave and antidune type of bed forms is that there is no separation of the flow at these
bed forms. As such, the energy loss is mainly due to grain boundary roughness.

It should be noted that while the sand waves move upstream it does so in a relative
sense due to a rapid exchange of sediment in the bed profile. The sediment in the lee
side of the wave gets eroded and some of it gets deposited on the upstream side of the
bed form to cause the wave crest to move upstream. The general flow of water and
sediment transport will be in the downstream direction. Further, the antidunes appear
only in water-sediment interface in alluvial channels and have not been noticed in
air-sediment interface in desert environment. The flow at antidune bed form stage
will be supercritical and the sediment transport rate will be very high.

Bed Form and Resistance In alluvial channels the different bed forms that can
occur have a marked impact on the total resistance to flow. In a mobile bed channel
the total resistance to flow could be considered to be made up of the resistance due
to the grains composing the bed and the drag resistance offered by the bed form
shapes. Thus it is obvious that the same channel may exhibit different resistances
depending on the bed form present. Figure 11.3 shows schematically the variation

0.10 i
0.08 Ripples & dunes /\ i

\ ..

- - \ Transition
0.06 / \“/
1
Plane bed |/ k L Anti
0.04 ! ' Antidunes
\
0.02 L1 |m | k |
0.001 0.01 0.10 1.0 15

Slope (Percent)

Fig. 11.3 Schematic variation of friction factor f with bed forms [Based on data on d =
0.28 mm, Ref 7]
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of the Darcy-Weisbach friction factor f with bed forms. This figure is based on
laboratory data of Simons® for a sand of d = 0.28 mm and is meant only to illustrate
qualitatively the behaviour of f with bed forms. It can be seen that the friction factor
f has a sudden increase at the onset of ripples, then onwards the increase is gradual
in ripples stage and rapid in dunes stage. At the transition phase there is a sudden
drop in the value of f. In the antidune stage the increase is fairly rapid.

Typical orders of magnitude of Manning’s coefficient n, friction factor f and non-
dimensional Chezy coefficient C/./g at various bed forms are given Table 11.1. This
table highlights the impact of the bed forms on the channel resistance and the need
for proper identification of appropriate bed forms in studies connected with the
hydraulics of mobile bed channels.

To estimate the resistances due to the grains 7, and due to bed forms 7" it is usual
to consider the total shear stress 7, to be made up of the two components such that

T, =T, + 1, (11.6)

Table 11.1 Range qf Resistance Factors—Manning’s cogﬁqcient n, Friction factor f and Chezy
coefficient C 1Jg —at Various Bed Forms

Ref. [7] [Note: C/\fg=.8/1]

Bed Form Darcy-Wesbach Manning’s Non-dimensional
Friction Factor Coefficient Darcy Coefficient

Plane bed without sediment 0.020-0.036 0.012-0.016 15-20

motion

Ripples 0.056 - 0.163 0.018 - 0.030 7-12

Dunes 0.047 - 0.163 0.020 - 0.040 7-13

Plane bed with 0.020 - 0.040 0.010-0.013 16 - 20

sediment motion

Antidunes (Breaking) 0.040 - 0.065 0.012-0.018 11-16

Assuming the energy slope S; to be the same for both the components and the total
hydraulic radius of the channel R to be made up of two parts R and R"

YRS, =vR'S, +vR"S,

Hence, R=R'+R" (11.7)
where R' = hydraulic radius associate with grain roughness and R" = hydraulic
radius associated with bed forms. Further, Manning’s formula is used to represent the
channel resistance. If n = Manning’s roughness coefficient of the channel flow and n,
= Manning’s roughness coefficient corresponding to the grain roughness only, then
the mean velocity in the channel is

v = LRengy2 (11.8a)
n
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Also, v = LRy (11.80)
nS
n 3/2
From Egs 11.8aand b R' = [—S] (11.9)
n

Strickler’s Equation (Eq. 3.22) is used to estimate n_as

dl/6

n
o211

The shear stress due to the grains, which forms an important parameter in the study
of sediment transport mechanics is given by

3/2
RS, = [%] - RS, (11.10)

Prediction of Bed Forms There have been numerous attempts*>®° to predict the
bed forms in terms of flow and sediment parameters. Whether analytical or empiri-
cal, all these attempts are at best partially successful. A typical classification due to

Garde and Rangaraju* (Fig.11.4) considers the parameters S™ = [(57")/] and R/d
Y =N
,10 5 107 5 10° 5 10 5 10°
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0
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[6)]

ll No motion Ripples & dunes
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Fig. 11.4 Prediction of bed forms
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as significant parameters. The lines demarcating the various bed form phases can be
expressed as:

For plane bed with no motion $"< 0.05 (R/d)?! (11.11a)
For ripples and dunes 0.05 (R/d)”' < S™ < 0.014 (R/d)=°46 (11.11b)
For transition 0.014. (R/d)2¢ < S*™ < 0.059 (R/d)%** (11.11c)
For antidunes S* > 0.059 (R/d)054 (11.12d)
where S = > =S, /1.65 for sediments with relative density of 2.65.

[((ve =" 19]

Fig.11.4 or its equivalent equations 11.11a, b, c, d are useful in the determination
of bed forms in a given flow situation.

Example 11.3 || An unlined irrigation channel in an alluvium of median size
0.30 mm is of trapezoidal section with bed width = 3.0 m, side slope = 1.5H: 1V,
and longitudinal slope = 0.00035. If this channel carries a discharge of 1.5 m¥s at
a depth of 0.8 m, estimate the (i) nature of the bed form, (ii) shear stress due to the
grain roughness, and (iii) shear stress due to bed forms.

Solution Area A =[3.0+ (1.5 x 0.8)] x 0.8 =3.36 m?
Perimeter P = [3.0+2x0.8x+/(L5) +1]:5.884m

R = A/P = 3.36/5.884 = 0.571 m
R/d = 0.571/(0.0003) = 1903
0.05 (R/d ) = 0.05 (1903) = 2.63 x 10-°
0.014 (R/d )04 = 0.014 (1903)-°% = 4.34 x 10~

. s,
I YR

Since 0.05 (R/d)! < S™ < 0.014 (R/d)°, by Eq. 11.11b the bed form is of ripples
and dunes category.

=S, /1.65=0.00035/1.65=2.12 x 10"*

Manning’s coefficient due to grains by Eq.3.22 is
n, = (0.0003)"/21.1 = 0.0122
By Manning’s formula,

Q — % AR2/38(])./2
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15— 1(3.36)(0.571)2%(0.00035)"2 = 20433
n n

n = Manning’s coefficient for the whole channel = 0 0288

By Eq. 11.10, the shear stress due to the grains

3/2 3/2
- [“_] 7RS, = [%] x 9790 x 0571 x 0.00035
n .

= 0.539 Pa

7, = Average bed shear stress due to flow. = YR S

= 9790 x 0.571 x 0.00035 = 1.957 Pa

7," = shear stress due to bed forms = 7, - 7',

=1.957-0.539 = 1.418 Pa

11.4 SEDIMENT LOAD

In an alluvial channel the sediment particles in the bed will start moving when the
bed shear stress 7, exceeds the critical shear stress 7, At small values of excess bed
shear stress (7, — 7,) the particles may roll or slide on the bed. Sediment transported
in this manner is called contact load. Sometimes the sediment particles may leave
the boundary to execute a small jump (or hop) to come in contact with the bed again.
This mode of sediment transport through a large number of small jumps is known as
saltation load. The saltation of sediment particles in water flow takes place essen-
tially in a thin layer, of the order of two grain diameters, next to the bed. In view of
this, both the contact load and saltation load are considered under one class as bed
load. Thus all the sediment that will be transported in a thin layer of the order of two
grain diameters next to the bed is classified as bed load.

At higher shear rates, the fluid turbulence may pick up the displaced particles and
keep them in suspension. The sediment transported in suspension mode is known as
suspended load. Whether a particle will travel as bed load or suspended load depends
upon the parameter w/u, where w = fall velocity of the particle and u, =./r,/p =
shear velocity of the flow. The particles of fall velocity w move in suspension mode
when wiu, < 2.0.

The sum of the suspended load and bed load is total load. It should be noted
that the total load is made up of material emanating from the boundary of the
channel and as such it is also sometimes called as total bed material load. Some-
times, the suspended material may contain very fine material like clay not found
in the boundary of the channel. This material would have come to a stream, and
thence to a channel, as a product of erosion during a runoff process. Such sus-
pended material which does not form part of the bed material is known as wash
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load and its transport characteristics are different from that of bed material sus-
pended load. Unless otherwise specifically mentioned as significant, the wash
load is usually ignored in alluvial geometry design. The term suspended load is
understood to refer to bed material only.

Bed Load The transport rate of sediments in the bed load (q,) is usually referred
to in units of weight per second per unit width (N/s/m). A very large number of
empirical and semi-analytical expressions are available to estimate the bed load g, in
terms of sediment, fluid and flow parameters. Duboys (1879) was the first to propose
an expression for g as a function of excess of shear stress 7, over the critical shear
stress 7, Viz.

Uy =a(r,-7) (11.12)

Since then a very large number of empirical formulae involving the parameter
(r, — 7. ) have-been proposed by various investigators. Probably the most widely
used empirical equation for g, is due to Meyer-Peter and Muller** which relates g
in a dimensionless manner as

¢y =8 (7', —0.047)% (11.13)
where ¢, = bed load function
= (5;3)1/2 ’ : 172 (11.14)
Vs {”}/5 _1]
~y
and 7', = dimensionless grain shear stress
__RS, _[n]"_oRS, (11.15)
(vs=7)d In] (v.—md)

in which g, = bed load in N/s/m
d = mean size of sediment
R = hydraulic radius of the channel
~ = unit weight of water
7= unit weight of sediment particles
n = Manning’ coefficient for the whole channel
n, = Manning’s coefficient of particle roughness
R' = hydraulic radius corresponding to grain roughness
S, = longitudinal slope of the channel.

In Eq. 11.13 the term 0.047 corresponds to the asymptotic value in the shields
diagram.
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Other commonly used methods of bed load estimation are due to Einstein’ and
Bagnold?, the details of which are available in reference 4, 5, 6, 7 and 9.

Suspended Load Consider a steady channel flow of depth D carrying sedi-
ment in suspension. The sediment particles which are lifted up from the bed are
kept in suspension due to turbulence while the particles try to settle down due to
their weight. This results in a concentration profile C =fn(y) with sediment con-
centration C being distributed in a vertical in a manner to achieve equilibrium of
the forces acting on the particles, (Fig. 11.5).

il
i

f—— < —»
c
O
lf—— < —»

Velocity u
Suspended load concentration C

Fig. 11.5 Suspended load concentration and velocity profile in a channel

In a steady flow, the upward diffusion of the sediment is balanced by the settling
of the sediment particles and the basic differential equation governing this action is
given by

Cw+ssd—C= 0 (11.16)
dy
where C = concentration of sediment, by weight

w = fall velocity of the sediment particles

e, = mass diffusion coefficient, generally a function of y.

At any height y above the bed, the shear stress

_,(b-y
T, = 0[ S ] (11.17)

By Prandtl’s mixing length theory 7, can also be written as

T, = PEn (11.18)
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where ¢, = diffusion coefficient for momentum.

By considering the logarithmic form of velocity distribution in the channel.

du u.

= 11.19
oy ky (11.19)
where k = Karman’s constant (= 0.4).
Assuming ¢, = ¢, from Eqs 11.17, 11.18 and 11.19
_ y
£, = ku. B(D -y) (11.20)
Substituting in Eq. 11.16 yields
y dcC
Cw+ku,—(D—-y)—=0
w 5 ww
a@€___ «D (11.21)

__—dy
c ku.y(D—y)

Assuming kL: Z = constant, integration of Eq. 11.21 between y = a and y
u

yields +
fyd_C R D
a C a y(D-y)

5

where C_ = concentration at any height a above the bed. Equation 11.22 which
gives the ratio concentration C of suspended material at any height y above the
bed to the concentration C, at any reference level a is known as Rouse equation.
Figure (11.6) shows the variation of C/C_ with (y — a)/ (D — a) for a/D = 0.05 with
Z as the third parameter. It can be seen that the concentration profile becomes more
uniform as the parameter Z becomes smaller.

Since Z is proportional to w, for a given shear stress 7, the smaller the particle
size, the more uniform would be the sediment concentration profile. Conversely, for
large particle sizes (i.e. large w), the concentration profile will have high concentra-
tions at the bottom layers.

In the parameter Z, the Karman coefficient k is of the order of 0.4. Some experi-
mental observations*® have shown that k decreases at high concentrations of
sediment.

dy

z

(11.22)

5
y

<
Ca
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Fig. 11.6 Rouse’s equation for C/Ca

Knowing the concentrations profile and the velocity profile in a vertical, (Fig. 11.5),
the suspended sediment load g, per unit width of channel in a vertical can be esti-
mated as

v :faDCudy

where a, = level corresponding to the edge of the bed load layer ~ 2d. This method
requires estimation of C_, by an alternative means. Details of estimating g, are avail-
able in Ref. 5

Example 11.4 || In a wide alluvial stream, a suspended load sample taken at a
height of 0.30 m above the bed indicated a concentration of 1000 ppm of sediment
by weight. The stream is 5.0 m deep and has a bed slope of 1/4000. The bed material
can be assumed to be of uniform size with a fall velocity of 2.0 cm/s. Estimate the
concentration of sediment at mid depth.

Solution By Eg. 11.22
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Herea=03m,D=50m,y=D/2=25m, C, = 1000, w = 0.02 m/s.

o w
u.k
w
Since the channel is wide, R = D and u. =/gDS,, Z = ——
’ k\/gDS,
Assuming k = 0.4, Z= 0.02 = 0.4515
0.4x~/9.81x5x1/4000

0.4515

50-25
( ) 03 = 0.2887

By Eq. 11.22 C /1000 = x
25  (5.0-0.3)

C = 2887 ppm by weight.

Total Bed Material Load The sum of the bed load and suspended load form the
total bed material load. Using expressions derived for estimation of bed load and
suspended load elaborate procedures for estimation of total bed material load are
given by Einstein, Colby et al, and Bishop et al, [Ref. 5,7,9]. Numerous empirical
equations for the estimation of total bed material load have been proposed. One of
these, a commonly used equation due to Englund and Hansen?* which expresses the
total bed material load per unit width g, in terms of easily determinable parameters,
is given below:

¢, f=04752 (11.23)
where ¢, = total load function and
q 1
o = ’YS(QCT13)1’2 l%_lrlz (11.24)
Y
where 7, = non-dimensional shear — T—O (11.25)
v, — 7] d
89RS,
f = Darcy — Weisbach friction factor = Vi (11.26)

g, = total bed material load per unit width of channel in N/s/m

V = mean velocity in the channel
and other parameters are same as in Eq. 11.13.
Equation (11.23) is based on data pertaining to a wide range of bed forms and grain
sizes and therefore could be relied on to predict the total load fairly adequately.
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Example 11.5 || A wide alluvial channel has a bed material of median size
0.8 mm. The channel has a longitudinal slope of 5 x 10~ The depth and velocity in the
channel were measured as 1.6 m and 0.90 m/s respectively. Estimate the (a) bed load,
(b) total load, and (c) suspended load per metre width of this channel.

Solution  (a) Bed load, q,:
Since the channels is wide R=y,=1.60m.

2/381/2
0

By Manning’ formula V= 1 ye
n

0.90 = L (1.6) (510 4)*2
n

n=0.034

~d”®  (0.0008)"°
211 211

=0.0144

By Eg. 3.17, n,

0.0144]"
T, = l0.0340] 7Y,S, = 0.27567y,S,
) Ty 0.27567Y,S,
To = =

(- md (y—d

02756 x 1.6 x5x 10"

—0.167
1.65 x 0.0008
By Eq. 11.4 ¢ = %o 7z
~ (gds)uz ['Ys _'7]
) 0t
0 = G X
B
2.65 x 9790 x[9.81(0.0008)°| *  (1.68)"

= 0.4234 q,

By Meyer—Peter formula 11.13
b5 =8 (', — 0.047)%
0.4234 q, = 8(0.167 — 0.047)%2
0, = 0.785 N/s per metre width.
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(b) Total load, g,
%

5 (gd3)1/2 \’ys _7]1/2

By Eq. 11.24 ¢ =

q 1
= X 1/2 x 1/2
2.65 x 9790 x[9.81(0.0008)*| ~  (1.65)

¢r

= 0.4234 q,
The Darcy—Weisbach friction factor f, by Eq. 11.26 is

—4
¢ _BORS, 8x9.81x16x5x10" . .

V2 (0.9)°

TYeS,  16x5x107*
(y,—v)d  1.65x 0.008

*

= 0.6061

By Eq. 11.23 ¢, f=04752

0.4234 g, x 0.0775 = 0.4 x (0.6061)
Total load = g, = 3.486 N/s per metre width
(c) Suspended load, q,
0; = q,+0;
d.= suspended load = 3.486 — 0.785
= 2.701 N/s per metre width

11.4.1 Measurement and Estimation of Sediment Load

A stream flowing in a watershed transports not only the runoff that is produced in the
catchment but also the erosion products out of the watershed by means of its flow.
The total sediment load is transported out the catchment by the stream in three com-
ponents depending upon their origin as wash load, suspended load and bed load.

In connection with the measurement, the following essential properties of differ-

ent types of sediment loads in a stream are worth noting:

e Wash load is generally composed of fine grained soils of very small fall
velocity.

« The suspended load particles move considerably long distances before settling on the
bed and sides and any measurement of suspended load also includes wash load.
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« Bed load is the relatively coarse bed material and is moved at the bed surface
through sliding, rolling, and saltation. In a general sense, bed load forms a small
part of total load (usually < 25%) and wash load forms comparatively very
small part of the total load.

Bed load measurement in field is extremely difficult. While a large number of
devises are available for measuring bed load for experimental / special investiga-
tions, no practical devise for routine field measurement of bed load is currently in
use. For planning and design purposes the bed load of a stream is usually estimated
either by use of a bed load equation such as those due to Meyer—Peter and Muller
(Eqg. 11.13), Einstein” and Bagnold® or is taken as a certain percentage of the meas-
ured suspended load.

The suspended load of a stream is measured by taking the samples of sediment
laden stream water. The collection of samples is through specially designed sam-
plers that do not alter the flow configuration in front of the sampler and get rep-
resentative samples of the stream water. A variety of samplers from the simple
ones (for example an ordinary bottle) to highly sophisticated ones are available.
The sediment from the collected sample of sediment laden water is removed by
filtering and its dry weight determined. It is usual to express suspended load as
parts per million (ppm) on weight basis as

- Weight of sendiment insample 6
weight of (sediment +water) of the sample

S

Thus the sediment transport rate in a stream of discharge Q m3/s is

Q, = (Q x C,x 60 x 60 x 24)/10° = 0.086 QC Tonnes/day

Routine observations of suspended load are being done at many stream gauging
stations in the country. At these stations in addition to stream flow discharge Q the
suspended sediment concentration and hence the suspended sediment load Q_ is also
noted. The relation between Q_ (tones/day) and stream discharge Q (m?/s) is usually
represented in a log—log plot known as sediment rating curve. The relationship
between Q_ and Q can be represented as

Q,=KQ"

where the exponent is usually around 2.0.

The sediment rating curve in conjunction with the stream flow hydrograph can be
used to estimate the suspended sediment load transport in the stream in a specified
time interval. A method of estimating the annual sediment yield of a watershed by
using the sediment rating curve in conjunction with flow duration curve is described
in Ref. 10. For details regarding Sediment problems and relevant measurement tech-
niques Ref.6 and 11 can be consulted.
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11.5 DESIGN OF STABLE CHANNELS CARRYING CLEAR WATER
[CRITICALTRACTIVE FORCE APPROACH]|

There are two basic types of design procedures used in the design of alluvial chan-
nels. These are

1. Critical tractive force method
2. Regime channel method

The first one, viz., the critical tractive force approach attempts to restrict the shear
stress anywhere in the channel to a value less than the critical shear stress of the bed
material. If the channel carries clear water there will be no deposition problem and
hence the channel will be of stable cross-section. This approach, proposed by Lane is
the subject matter of this section. On the other hand the regime channel approach
proposes to design a channel under dynamic equilibrium while the channel is carry-
ing a small amount of sediment. Design of a non-scouring and non-silting channel is
the object of the regime approach. Details of the regime approach proposed by Lacey
will be discussed in the next section.

Stability of a Particle on a Side-slope Consider a particle on the side of a
channel of inclination 6 to the horizontal, Fig. 11.7. Let

d = size of the particle so that its effective area a = C,d* where C, is a coefficient.
w, = submerged weight of the particle = C, (7, - ) d® where C, is a coefficient.

The weight w, will have components w_ sin ¢ along the slope and w_ cos ¢ normal
to the slope. Due to the flow a shear stress 7, exists on the particle situated on the
slope. The drag force on the particle due to shear is

Fos=7,8

DS

Side slope

—_—

Bed of canal

Fr=/F% +w?2 sin2g

Fig.11.7 Stability of a particle on the side slope of canal
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and resultant force tending to move the particle

F, = F2 +w?sin’0
Stabilizing force F .= w_cos ¢

At the condition of incipient motion, F, /F,=tan¢
Where ¢ = angle of repose of the sediment particles under water.

2 2 ain2
Thus, w =tan®¢ (11.27)
w; cos” 0
2 1/2
L tan“ 6
On simplifying, Fos =W, cosd.tan¢ 1—m (11.28)
an

From Eq. (11.28), when 6 = 0, the drag force on a particle situated on a horizontal
bed at the time of incipient motion is obtained. Thus if 7,= shear stress on the bed of
a channel, from Eq. (11.28),

Foo=T7,a=Ww_tan ¢ (11.29)
Hence, Fos _ 7w
Foo 7o
T tan?g "
and from Eq. (11.28), —=cosf |1-—; = K, (11.30)
Ty n° ¢
=K1, (11.31)

Design Procedure

1. The angle of repose ¢ of the sediment is determined by laboratory tests. For
preliminary design Fig. 11.8 giving the variation of ¢ with the particle size and
particle shape can be used.

2. The longitudinal slope of the channel is established from topographical consid-
erations. The side slope of the channel is established from practical and con-
structional aspects. However, € should be much smaller than ¢.

3. Strickler’s formula (Eq 3.17) is used to estimate Manning’s coefficient n for
the channel as

n=d¥/21.1

4. Since it is required to have no sediment motion anywhere in the channel, by

allowing for factor of safety 7, is taken as

T, =K, 7, (11.32)

where 7_ = critical shear stress and K, = a coefficient of value less then unity and
taken as follows
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Fig.11.8 Variation of the angle of repose 10} of particles under water [Ref. 8]

b_
Do
o

Channel condition Value of K,
Straight channel 0.90
Slightly curved 0.81
Moderately curved 0.67
\ery curved 0.54

From Eq. 11.31

5.

6.

7, =K K, (11.33)

The critical shear stress of the particle is determined by Shields curve or by the
appropriate equivalent empirical equation, Eq. 11.2 or 11.3.

Since there will be considerable variation of the magnitude of shear stress on
the perimeter (Fig. 3.6), the non-erodible channel will have to be designed to
withstand the maximum shear stress that may occur anywhere in the perimeter
of the channel. For a conservative design of a trapezoidal section of normal
depthy, and longitudinal slope S, the maximum shear stress on the sides (), ...
and bed (7)., can be safely taken respectively as

(Tw)max =075 v yOSO (1134)
(Tmax = 7 YoSo (11.35)

Thus for the non-erodibility condition,

7-W S (TW) max

KK,7, <0.757Y,S, (11.36)
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and T, < (1)

ie. K, 7,<7Y,S, (11.37)

The lesser of the two values of y, obtained from Egs 11.36 and 11.37 is adopted. The
following example illustrates the design procedure well.

Example 11.6 || Design a stable non-erodible channel to carry 10 m¥s of clear

water through a 10—-mm bed of rounded gravel. A longitudinal slope of 0.0008 and
side slope of 2 horizontal: 1 vertical are to be adopted.

Solution  From Fig. 11.8 for rounded gravel of d = 10 mm, ¢ = 32°.
tan ¢ = 0.6249

Side slope tan 6 = 1/2 = 0.5, cos 6 = 0.8944

Sined >6, by Eq.11.2, 7, = 0.905 x 10 = 9.05 Pa

For the bed: By considering a straight channel K, = 0.9
7, =K, 7,=0.9 x 9.05=8.145 Pa

By making Ty = (T)max = 7 Yo S
Yo = 0 g 04m (11.38)
9790 0.0008
2 0 1/2
For the side: By Eq. 11.30, K, = cos@ 1 lan"0
tan® ¢
2 1/2
K, = 0.8944 1-[@] — 0536
0.6249

7, =K, 7, = 0536 x 8.145 — 4.366 Pa

Making 7, = (7,)

W /max

=0.759Y,S,

B 4.366
0.75 x 9790 x 0.0008

Yo =0.743m (11.39)

Adopting the lower of the two values of y, given by 11.38 and 11.39
Yy, = 0.743 = say 0.740 m
To determine the bed width, B:
Area A=(B+2x0.74) x0.74
= (B + 1.48) x 0.74
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Perimeter P = (B +2x0.74 x /5) = (B + 3.3094)
By Eg. 3.22, Manning’s coefficientn = (d )¢/ 21.1
= (0.01)"%/21.1 = 0.022

1

— E AR2/38[])./2

By Manning’s formula, Q

5/3 5/3
Hence o_100- L, (B+148" 079

0= X ——— x (0.0008)"?
0.022 (B+3.3094)

(B + 1.48)%3=12.848 (B -+ 3.3094)*

Solving by trial-and-error, B = 12.4 m.

11.6 REGIME CHANNELS

The term regime is used in connection with alluvial channels to signify a state of
dynamic equilibrium. Lacey (1930) defines a regime channel as one which carries a
constant discharge under uniform flow in an unlimited incoherent alluvium having
the same characteristics as that transported without changing the bottom slope, shape
or size of cross-section over a period of time. Thus in a regime channel, in contrast to
the non-erodible channels discussed in the previous section, there will be suspended
load, bed load and formation of bed forms. In the initial periods in the life of a chan-
nel, there can be changes in the depth, width and longitudinal slope towards attaining
the dynamic equilibrium. After the attainment of the regime state, the dimensions of
the canal including the longitudinal slope will remain essentially constant over time
so long as the discharge and other flow characteristics are not disturbed. The regime
channel is thus a channel in dynamic state with neither erosion nor deposition.

A rigid bed canal can be said to have one degree of freedom in the sense that for
a given channel a change in thé discharge would cause a change in depth only. For an
alluvial man-made canal, on the other hand, a change in discharge can cause changes
in width, depth and bed slope to achieve a new regime. Thus an alluvial channel has
three degrees of freedom. In the same way, a natural alluvial river has four degrees
of freedom as its planform can also alter. The basic philosophy of regime concept
recognizes the degrees of freedom of an alluvial channel and aims at providing initial
conditions which are very near the final regime values.

The regime theory of designing stable channels evolved in India during the
late 19th century and early periods of twentieth century by the British engineers.
Through keen observations of the behaviour of large number of irrigation canals
they recognized that in channels that performed satisfactorily the depth and
velocity were such that the water and sediment discharges were in equilibrium. In
these canals there were no objectionable scour and deposition and maintenance
was minimal. These observations have resulted in empirical relations connecting
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the geometry and flow properties of regime channels. Most of the data for the
development of regime relations have come from irrigation canals in Indo-
Gangetic plain which had a low sediment load (< 500 ppm by weight). Since the
regime correlations do not include the sediment load explicitly, these equations
should be considered applicable only to channels carrying similar concentrations
of sediment load.

Further, the regime method is based on the hypothesis that channels adjust their
slope, width and depth until they are in equilibrium with the incoming discharge and
sediment load. As both discharges and sediment load vary in time in real canals, in
using the term regime it is understood that sediment deposition and scour are bal-
anced over some suitably long period.

Kennedy Equation  Historically, Kennedy (1895) was the first to propose a relation-
ship between the velocity V and depth y, of a stable channel as

V=Cy (11. 40)

On the basis of observation on Bari-Doab canal system (now in Pakistan) where
the channel bed material had a median size of 0.32 mm, Kennedy found the coeffi-
cient C = 0.56 and the exponent a = 0.64. Further, he introduced a coefficient m
(known as critical velocity ratio), to account for the variation of the size of sedi-
ments, so that Eq. 11.40 became

V =0.56m yo® (11. 41)

In using Eq. 11.41 for designing a stable channel, Manning’ formula is used to
describe the channel friction. Tables of recommended values of By, = fn (discharge)
and recommended values of m = fn (sediment size) are other information needed to
estimate the value of y, and B of a stable channel to convey a discharge Q, in a chan-
nel of bed slope S,. It is to be noted that Kennedy’s method of stable channel design
assumes the slope to be independent. In view of many deficiencies, the use of Ken-
nedy equation to design stable channels is now obsolete.

Lacey’s Equations Lindley (1919) was the first to recognize the need to have three
relationships to account for the three degrees of freedom of an alluvial channel.
He advanced the basic philosophy of regime concept in his statement® “when an
artificial channel is used to convey silty water, both bed and banks scour or fill,
changing depth, gradient and width until a balance is attained at which the channel
is said to be in regime”.

Lacey, through systematic analysis of the available stable channel data, perfected
the regime concept and gave final forms to it through an adequate set of three primary
equations. It is these equations, with minor modifications, that are in general use in
India and many other parts of the world as regime equations. Basically, there are
three equations of Lacey to represent the three degrees of freedom of an alluvial
channel, viz., depth, width and gradient. The role of the sediment size is expressed,
in an approximate way, by a fourth equation. These equations are:

P=475/Q (11.42)
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R = 0.48 (Q/f )" (11.43)

S, = 0.0003 ( f )**/Q" (11.44)
in which f, = 1,76\/% (11.45)
where P = wetted perimeter in m

R = hydraulic radius in m
Q = discharge in the canal in m%/s
S, = longitudinal bed slope

d,., = particle size in mm

f, = silt factor to account for effect of sediment size on
regime dimensions

It is of interest to note that the regime channels have been found to attain a side
slope of 0.5 horizontal: 1 vertical at regime due to gradual deposition of fine material.
This value of 0.5 H: 1 V is attained irrespective of the initial side slope value pro-
vided at the time of construction of the canal. Thus in the design of all regime chan-
nels, the final side slope value of 0.5 H: 1 V is taken in the calculation of area,
perimeter, etc.

There have been many improvements of the Lacey equations to define the behaviour
of regime channels, notable amongst them is the work of Blench* and Simons and Albert-
son?. The regime equations of Blench provide for the effect of sediment concentration
also on the regime dimension. The Simons and Albertson equations were derived from a
larger data set than was available to Lacey and as such are more widely applicable. Refer-
ences 1 through 7 and 9 could be consulted for further details on regime channels. Exam-
ple 11.7 illustrates use of Lacey equations to design a regime channel.

Based upon these four independent equations of Lacey, (Eq. 11.42 through 11.45)
a number of derived relationships between the different parameter have been devel-
oped. For example the velocity of flow V can be expressed as

V =10.8 R**8}® (11.46)

in a manner similar in form to Manning’s formula.

Example 11.7 || Design a canal by Lacey’s theory to convey 40 m¥s of water.
The canal is to be cut in an alluvial soil of median size 0.6 mm.

Solution  Silt factor f =176 d,,

=1.761/0.6 =1.36
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~0.0003x 2

Longitudinal slope S e
Q
0.0003 x (1.36)"" y
— T _2.72x10
(40)
Hydraulic radius R = 0.48(Q/f )"
1/3
=0.48 40 =1.482m
1.36
Wetted perimeter P—=4.75/Q

—4.75 40 = 30.04 m

Since the final regime channel will have a side slope of 0.5 horizontal: 1 vertical,
P =(B+2y1+(05)y,) =30.04 m (11.47)
P=B+2236y,=30.04m
B = (30.04-2.236y,)
A=(B+05y,)y,=PR=(30.04 x 1.482)

=44.52 m?

Substituting for B,

(30.04 — 2236y, + 0.5y,) y, = 44.52

1.736y,2 — 30.04 y, + 4452 = 0

Solving for y,

(30.04 + \/(30.04)2 — 4% 44.52x1.736
Yo = 2x1.736

_30.04+24.36
3.472

=15.66 m and 1.636 m
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Neglecting the higher value of y, as impractical,

y,=1.636 m

B =30.04 - (2.236 x 1.636) = 26.38 m
Thus,

B =26.38m

y,= 1636 m

S,= 2.72 x 10

Side slope =05 H: 1 V.

Example 11.8 || A regime Lacey channel having a full supply discharge of
30 m¥/s has a bed material of 0.12-mm median size. What would be the Manning’s
roughness coefficient n for this channel?

Solution f,=176d,, =1.76+0.12 = 0.61

5/3

0.0003f%°  0.0003(0.61)

& @ =7.46x10"°

By Eq. (11.44) S, =

=——"—=0.019
10.8

s¥)  (7.46x10°)"
10.8

By Eq. (11.46) n [

11.7 SCOUR

Scour is removal of sediment in a stream due to action of flowing water. In connec-
tion with bridges, scour could be defined as the result of erosive action of flowing
water excavating and carrying away sediment from the bed and banks of a stream
due to interference of structures such as abutments and bridge piers on the flow-
ing water. In an alluvial stream there will be continuous transport of sediment in
the stream as a geomorphological process. If however there is additional natural or
man induced causes to upset the sediment supply and removal in a reach, such as
construction of a barrage or a dam, the stream will have long term changes in the
stream bed elevation. If there is progressive build up of stream bed in a reach due to
sediment deposition it is called as aggradation. Conversely, if there is a progressive
long term lowering of the channel bed due to erosion as a result of deficit sediment
supply to the reach it is called as degradation. In connection with a bridge structure,
three types of scour are recognized:
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1. Degradation scour This is present in the channel at the bridge site due to
stream degradation phenomenon in the reach generating from certain causes upstream
of the reach.

2. Contraction scour Due constriction of the width of the stream flow at a bridge
site, the velocities in the stream would increase and cause erosion resulting in removal
of sediment from the bottom and sides of the river. It is also known as general scour.

3. Local scour Due to the presence of bridge piers and abutments the three
dimensional flow around the obstruction would cause vortices that would scoop the
sediment in the immediate neighborhood of the abutment and piers and deposit the same
at some other location. This results in a deep scour hole around the foundation of bridge
elements and may impair the structural safety of the structure. Further, depending upon
the sediment movement in the stream, local scour is classified in to two kinds:

(i) Clear-water scour This refers to the situation where there is no sediment
movement in the bed of the stream and hence no sediment is supplied from upstream
into the scour zone. Typical clear water scour situation include (i) coarse bed material
streams, (ii) flat gradient streams in low flow (iii) armored stream beds, and (iv) vegetated
channels

(ii) Live-bed scour This on the other hand, refers to the situation where sediment
is continuously being supplied to the scour hole areas. Thus, for example, in a stream
where there is dune movement, the scour hole depth will be affected by the movement
of a dune in to or out of the scour hole. After a long time there will be some kind
equilibrium with the scouring mechanism and bed movement and the equilibrium will
be reached asymptotically. The depth of scour will oscillate about a mean position.

Total scour The sum of the three types of scour enumerated above, viz., long term
degradation, contraction scour and local scour are known as the total depth of scour
at the bridge.

The time development of a scour hole in clear water flow and in live bed situation
is shown in Fig. 11.9. The main difference between the clear water scour and the live

Time-averaged equilibrium Equilibrium scour depth
scour depth in live bed scour iy clear water scour

Scour depth dg

Clear water scour

Live bed scour

Time, t

Fig. 11.9 Time development of scour
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bed scour is the time taken to reach equilibrium scour; it takes longer in the live bed
scour to reach equilibrium. It has been observed in experimental studies that in the
live bed scour the equilibrium scour depth is only about 10% smaller than in the cor-
responding maximum clear water scour depth. The time development of scour is
logarithmic in nature.

11.7.1 Local Scour

Scour at a Bridge Pier Scour caused by flowing water of a stream past a bridge
pier or abutment has been recognized as a major cause of bridge failure. Considerable
research attention has been devoted since past several decades to understand the
scour phenomenon and to design safe and economical bridge structures. A brief
description of the scour at a bridge founded on an alluvial stream is given in the
following paragraphs.

Figure 11.10 shows a schematic representation of flow around a bridge pier and
its scour hole. When the flow approaches a bridge pier, there is a stagnation point
at the point of intersection of the flow with the pier, thus in an ideal case a vertical
line of stagnation is obtained. Due to the velocity distribution in the approaching
flow which is zero at the bed and approaches a maximum at or near the surface, a
pressure gradient from top to the bottom is created. Due to this there is a plunging
flow and its interaction with the separated boundary layer close to the bed and the
main flow results in a set of vortices wrapping most of the upstream part of the
pier as shown in Fig. 11.10. The plan view of this set of vortex is in the form of a
horseshoe and as such this vortex structure is known as horseshoe vortex. In addi-
tion to the horse shoe vortex, which is known to be the prime agent responsible

Pier

Surface
roller

Wake vortex
// oo 2 [

Down flow/-\* ., / / /
//?% Zah

4()

Flow .

Scour hole

64

\6/6

......

et e Horseshoe vortex

Sediment
bed

Fig. 11.10 Schematic sketch of vortex system at circular bridge pier
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for scour, there exists a wake containing vertical wake vortices in the separation
zone in the downstream region of the pier. This system of horseshoe and wake
vortices causes the sediment to be lifted up of the bed in the scour hole and car-
ries the sediment out of the separation zone to create a scour hole around the
pier.

The action of horseshoe vertex is to remove the bed material from around the base
of the pier. When there is live bed condition in the stream, the transport rate of sedi-
ment away from the base region of the pier will be greater than the transport rate of
sediment in to the region. As the scour hole develops, the strength of the horseshoe
vertex is reduced, thereby reducing the transport rate of sediment out of the region.
Eventually, an equilibrium is reached between the bed material inflow and outflow
and the scour hole development ceases.

In the clear water situation, the scouring action ceases when the shear stress
caused by the horseshoe vertex equals the critical shear stress of the sediment parti-
cles at the base of the scour hole.

The structure of the vortex has been studied in the laboratory by many investiga-
tors. Reference 12 and Ref. 13 explain the mean flow characteristics and turbulent
structures of the horseshoe vortex respectively.

Study of local scour at bridge piers has been studied very extensively over several
decades and consequently there has been numerous equations purporting to predict
the maximum depth of scour. Most of these studies are in the laboratory under simple
or idealized conditions and the field studies are rather limited. A review of the studies
on scour at bridge piers is available in Ref. 6, 14, 15 and some recent equations are
reviewed by Sturm?,

The Federal Highway Administration of US Department of Transportation has
brought out the Hydraulic Engineering Circular No 18 (HEC-18)'" in 2001 which
presents the state of knowledge and practice for the design, evaluation and inspection
of bridges for scour. This document, along with its companion documents HEC-20
and HEC-23, which represents the current recommended procedure relating to Scour
for adoption is available in http://isddc.dot.gov.OLPFiles/FHWA/010590.pdf

Figure 11.11(a) gives the definition sketch of bridge pier and related scour com-
plex, and Fig. 11.11(b) gives some of the common pier shapes. For the estimation
of local scour at bridge piers under situation given in Fig. 11.11, HEC-18 adopts
the Colorado State University (CSU) formula of Richardson, Simons and Julien
(1990) given by

d 0.35
= 20KKKK, [%] Fos (11.48)
in which

d, = Scour depth, (m)

y, = flow depth directly upstream of the pier, (m)

K, = correction factor for pier nose shape, Fig (11.11) and Table (11.2)

K, = correction factor for angle of attack, , Fig (11.11) and Equation 11.49
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(a) Square Nose

(b) Round Nose

L
Vv
V1 Flow
v, PIER
D, (Width = b)
Scour hole
Alluvial " *2* ="\
o, L
4-'.
SIS
AR
! !
Fig. 11.11 (a) Definition sketch of a scour hole at a bridge pier
[} L |
R :
N X E
b - o

(e) Group of Cylinders

(c) Cylinder

(d) Sharp Nose

Fig. 11.11 (b) Common pier shapes



516  Flow in Open Channels

Table 11.2 Correction Factor K , for Table 11.3 Correction Factor K, _for Angle of

Pier Nose Shapes Attack @ of the Flow
Shape of Pier Nose K, Angled Lib=4 Lb=8 Llb=12
(a) Square Nose 1.1 0 1.0 1.0 1.0
(b) Round Nose 1.0 15 15 2.0 25
(c) Circular Cylinder 1.0 30 2.0 2.75 35
(d) Group of Cylinders 1.0 45 2.3 3.3 4.3
(e) Sharp Nose 1.9 90 25 3.9 5.0

Angle = Skew Angle of Flow, L = length
of Pier (m)

Table 11.4 Correction Factor K 3 _for Bed Condition

Bed Condition Dune height (m) k,
Clear water scour N/A 1.1
Plane bed and Antidune flow N/A 1.1
Small Dunes 3>H>06 1.1
Medium Dunes 9>H >3 12tol.1
Large Dunes H>9 1.3

K, = correction for bed condition = as in Table 11.4

K, = correction factor for armoring by bed material of size from Eqs 11.50 to
11 51a.

b = Pier width (m)
L = length of pier (m)

1

\
F,= Froude number directly upstream of the pier = \/—
gy,

V,= mean velocity of flow

The correction factor K, for the angle of attack of the flow ¢ is calculated as
L 0.65
K, = [cos@+ [B] sin 9] (11.49)

In Eq.11.48 L/b is taken as 12.0 even if the actual value exceeds 12.
Armoring is a natural process whereby an erosion resistant layer of relatively large
particles is formed due to the removal of finer particles by stream flow. If the bed
material consists of relatively large proportion of coarse material, in a scouring action
the fines will be eroded first and the larger particles may form an amour coat to resist
further scouring thus reducing the maximum depth of scour.
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The correction factor K, reduces the scour for materials having D, > 2.0 mm and
D,, > 20 mm. The correction K, is given as follows:

e K,=1.0for D, <2.0 mmand Dy, <20.0 mm

e For D, > 2.0 mm and Dy, > 20 mm, the following relationships are used to

calculate K,
K, = 0.4(V, )5 (11.50)
where V, = Vi Voo >0 (11.50a)
VcDSO _VicDSD
V. ., = approach velocity in m/s required to initiate scour at the pier for the grain size
D, (m).

icDx

0.053
v, :0.645[T*] Voo, (11.51)

V = critical velocity in m/s for incipient motion for the grain size D (m)

V,, = 6.19y/°D¥? (11.51q)

1

In the above y, = depth of flow just upstream of the pier, excluding local scour, (m).
V,= velocity of the approach flow just upstream of the pier (m/s)

D = grain size for which x percent of the bed material is finer (m)
The minimum value of K, is 0.4.

A study of the above equations reveal the following significant points relating to
parameters affecting the scour depth:

(i) The greater the approach velocity greater will be the scour depth.

(ii) Similarly, scour depth is directly related to the positive power of the depth
of flow.

(iii) The scour depth increases with an increase in the width of the pier.

(iv) If the approach flow is at an angle to the pier the projected length of the pier
will come in to play and the scour increases.

(v) Shape of the pier plays an important role on the scour depth.

(vi) Size and gradation of the bed material do not have an important role on the
scour depth; the time taken to achieve maximum scour depth depends on the
grain size.

(vii) Lodging of debris around a pier can increase the width of pier, change its
shape and its projected length with consequent increase in the maximum
depth of scour
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11.7.2 Abutment Scour

The mechanism of local scour at an abutment is essentially same as at a bridge pier.
Fig. 11.12 shows the formation of horseshoe vortex (primary vortex) and wake vortices.
In view of wide range of shape, layout and flow situations possible in abutment scour, the
problem is rather complex.

N

Abutment Wake vortex

Bow wave
T~
ﬁ‘@?@/

]

Down flow

$

. . rimary vortex

Fig. 11.12 Schematic sketch of flow field at an abutment (Ref. 18)

A detailed review of work done on abutment scour up to 2004 and including all
aspects of the scour problem such as flow field, scouring process and scour depth
estimation formulae are presented in Ref. 18. Further, relevant useful information
related to abutment scour is available in Ref. 16. Detailed survey of abutment scour
problem and FHWA recommendations are contained in HEC-18, (Ref. 17)

Constriction Scour When there is a contraction in a mobile bed channel there is
an increase in the velocity and shear stress in the contracted region which leads to a
higher transport rate and change in the sediment transport equilibrium. In live bed
contraction scour maximum scour occurs when the shear stress in the contracted
portion reduces to a value such that the bed sediment transported in to the section
is equal to the bed sediment transported out of the contracted section. In clear water
scour case equilibrium is reached when the shear stress in the contracted section
reaches the critical shear stress. HEC- 18 contains detailed description of the
contraction scour and recommends the following formulae for its estimation.
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(i) Live bed contraction scour

6/7 Ky
Y2 _ [%] [%] (11.52)
i Q) (W,

and average scour depth  y =y,—y, (11.53)

where y, = average depth in upstream main channel (m)
y, = average depth in the contracted channel (m)
y, = existing depth in the contracting channel before scour (m)
y, = average scour depth (m)
Q, = flow in the upstream channel transporting sediment (m%/s)
Q, = flow in the contracted channel (m?/s)
W, = bottom width of the upstream channel that is transporting bed material

(m)

W, = bottom width of the main channel in the contracted section less pier
widths (m)

K, = Exponent determined as below

V. Jw K, Mode of bed material transport

<0.50 0.59 Mostly contact bed material discharge
0.50t02.0 0.64 Some suspended material discharge
>2.0 0.69 Mostly suspended material discharge

Where V, = shear velocity in the upstream section (m/s)

BRLR in which S = slope of the energy grade line in the main channel
w = fall velocity of the bed material based on D, (m/s)

(ii) Clear water contraction scour

2 3/7
- %] (11.54)
and average scour depth  y =y, -y, (11.55)

y, = average equilibrium depth in the contracted section after contraction scour (m)
Q = discharge through the bridge (m)

D, = diameter of the smallest non-transportable particle in the bed material (taken
as equal to 1.25 D, ) (m)
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y, = average existing depth in the contracted section (m)

y, = average scour depth (m)

Degradation Scour Long-term degradation of the stream may be the result of
some modification of the stream in the upstream regions or in the watershed. The
stream may be in equilibrium, or aggrading or degrading at the bridge site. Details
of aggradation and degradation phenomenon may be obtained in any treatise on
Sediment Transport and is beyond the scope of this book. Details of estimation
of degradation of stream at a bridge site are given in HEC-18. Procedures for
estimating long-term aggradation and degradation at a bridge site are available in
HEC- 20 (Ref. 19).

Total Scour The total scour at a bridge site is the sum of degradation scour, local
contraction scour and abutment or pier scour. HEC-18 adopts this procedure to get a
conservative estimate of scour.

Example 11.9 ||
design state:

A bridge on an alluvial stream has the following features at the

Upstream depth of flow =3.5m

Discharge intensity = 10.5 m%/s/m

Bed condition = plane bed. Bed material: median size = 1.0 mm

Piers: Round nosed, 12.0 m long and 1.5 m wide.

Estimate the maximum depth of scour at the bridge piers when the angle of attack of
flow with respect to the pier front end is (a) 20° and (b) zero

Solution By Eq. 11.48

% = 2.0K,K,K,K, (%)0-35 o

b=15m,q=105m%s/mandy =35m

V,=10.5/35=3.0m/s

E_ V, 3.0

1 =
"o Joy, 9.81x35

y,/b =3.5/1.5=2.333, L/b = 12.0/1.5= 8.0

=0512m

K, = correction factor for pier nose shape from Table (11.2) = 1.0
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(a) 6=20°
K, = correction factor for angle of attack from Eq. 11.49
= (C0s20° + (8.0) Sin 20°)°%5 = 2.33
K,= correction for bed condition from Table 11.4 for plane bed = 1.1
K, = correction factor for armoring by bed material for D_ < 2.00 mm = 1.0
d

- =20x10x233x11x1.0x (2.333)°%(0.512)°® =5.172 m
dS

=5.172 x1.5 = 7.76 m below average bed level.
(b) For6=0°K,=1.0

& 5 0%1.0x1.0x1.1x1.0% (2.333)°*(0.512)% — 2.22

b
d, =222 x 1.5 = 3.33 m below average bed level.

The Indian Practice The current practice followed in India is based on the
Lacey equation. Two Codal provisions are available. Indian Railways Standards
(1985) and IRC-5 (1998) and IRC-78 (2000) stipulates that in channels with alluvial
beds the design scour depth be two times Lacey depth.

The following four Lacey equations are used:

The hydraulic radius of Lacey Eq. 11.43 is considered as depth and as such Eq. 11.43
is written as

1/3
D, = 0.470[%] (11.56)
P=475/Q (11.42)
f, =1.763/d (11.45)

Here, D , = normal scour depth (in meters) below the design flood level and is called
as Lacey regime depth.

Q = design flood discharge (m?/s)

f. = lacey silt factor with d = median diameter of bed particles in mm.

When Lacey ‘s waterway as given by Eq. 11.42 is not available and restricted water-
way is used IRC recommends that that instead of Eq. 11.56 the following equation be
used to determine the Lacey depth of scour:
2 1/3
D, = 1.34[qf—] (11.57)

S
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where g = intensity of discharge under the bridge = Q/W,
where W, = effective waterway.
Based on the analysis of field data by Inglis, a multiplying factor of 2.0 is used to
obtain design maximum depth of scour below HFL as
D,=20D, or D ,=20D,_asisappropriate. (11.58)
This method, of estimating design scour depth as above, is sometimes known as

Lacey-Inglis method. It is to be noted that in this method there is no separate provi-
sion for calculation of degradation scour or contraction scour.

Example 11.10 | gqimate the maximum depth of scour for design for the follow-
ing data pertaining to a bridge in the Gangetic plain; (Use Lacey — Inglis equations)

Design deischarge = 15,000 m¥/s
Effective Water way = 550.0 m

Median size of bed material =d__ =0.10 mm

Solution By Eq. 11.42, P = 4.75,/Q = 4.75\15000 = 581.8 m
Since this is greater than W, = 550 m, use Eq. (11.53)
By Eq.11.44 f =1.76,/d . =1.76+/0.10 = 0.556

g = 15000/550 = 27.27 m®¥s/m
1/3

2
By Eq. 11.57 D, _1.34[%] —14.76 m below HFL

Design scour depth D, = 2.0 D,=2x1476=29.52m below HFL
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~ PROBLEMS

Problem Distribution

Topic Problems

Initiation of motion and Critical shear stress 11.1to 11.5

Bed forms and Resistance 11.6 to 11.10

Bed load 11.11,11.12,11.16 and 11.24

Suspended load 11.13t0 11.15

Total load 11.16, 11.18

Non- Erodible channel 11.17,11.18

Lacey Regime channel 11.19t0 11.24

Bridge Pier Scour 11.25, 11.26

11.1 Estimate the critical shear stress for the following sizes of sediment particles in the bed

of a channel:
(@ 0.1mm (b) 1.0 mm (c) 10 mm

11.2 A wide stream has a sediment bed of median size 0.35 mm. The slope of the channel is

1.5 x 104

(a) If the depth of flow in the channel is 0.25 m, examine whether the bed particles will
be in motion or not.

(b) What would be the status of the bed when the depth of flow is 0.10 m?
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11.3 The median size of bed sediment in a wide gravel bed river is 50 mm. The river bed
experiences threshold conditions when the energy slope of flow is 0.005. Estimate the
depth of flow at this stage.

11.4 A wide alluvial channel has a flow which causes incipient motion of the bed particles.
The temperature of the water is 25° C (v = 0.897 x 10%m?s). It is expected that the
temperature would drop to 5°C (v = 1.519 x 10-°m?s) and all other flow parameters
would remain unaltered. Examine, with the help of Shields diagram, the status of the
channel bed when the initial shear Reynolds number (u,d/v) is (a) 5, (b) 100, and
(c) 500. [The change in the densities due to temperature change may be neglected].

11.5 A wide rectangular channel carries clear water at a depth of 1.2 m. The channel bed is
composed of coarse gravel of d_, = 40 mm. Determine the slope of the channel at which
incipient conditions exists. What is the discharge per unit width at this slope?

11.6 A wide channel in an alluvium of grain size d,, = 0.30.mm has plane bed with no
motion. The depth of flow is 0.25 m and the bed slope is measured as 0.0002. Estimate
the mean velocity and discharge per metre width in this channel.

11.7 Two wide alluvial channels A and B have the following features:

Channel A Channel A
Depth of flow 1.20m 1.20m
Slope 1.65 x 10°® 1.65 x 10°®
Bed material size 1.3 mm 12 mm

Estimate the nature of the bed form in each of these two channels.

11.8 A wide alluvial channel has a bed slope of 6 x 10~* and bed material of median size
0.5 mm. Estimate the maximum depth of flow that can be adopted in this channel while
maintaining the ripple and dune type of bed form.

11.9 A mobile bed channel with median grain size of 0.8 mm has a longitudinal slope of
2 x 10~*and carries a discharge of 10 m%s at a depth of 1.5 m. The channel is trapezoi-
dal in section and has a bed width of 10 m and side slopes of 1.5 horizontal : 1 vertical.
Estimate (a) the Manning’s roughness coefficient n, (b) the shear stress at the bed due
to (i) sediment grains, and (ii) bed forms.

11.10 An irrigation channel is to be excavated on a slope of 0.0001 through a terrain consist-
ing of coarse sand having d,, = 0.8 mm and relative density 2.65. The discharge is to be
1.5 m¥s. If no sediment transport is to be allowed, determine a suitable width for the
channel by assuming it to be wide rectangular and the banks are protected.
11.11 Calculate the bed load per unit width in a wide stream having the following data:
d,, = 0.5mm

S, = 0.0004

n = Manning’ coefficient for the channel = 0.025

g = water discharge per unit width = 3.0 m%/s/m.
11.12 Estimate the bed load for the following canal in coarse alluvium:

d,= 12mm

50
Yy, = depth of flow = 5.87 m
B = width =46.0m
S, = longitudinal slope = 6.5 x 10~
n = Manning’s coefficient for the channel = 0.025

The channel may be assumed to be a wide rectangular channel, with sides protected.
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11.14

11.15

11.16

11.17

11.18

11.19

11.20

11.21
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When a sediment of fall velocity w is suspended in water where the mass diffusion
coefficient &, can be assumed constant, show that the concentration C at a height y
above the bed is given by

~w(y—2a)

ES

g—exp
C

a

where C, = reference concentration at a level a above the bed.

In a wide channel with a depth of flow of 3.0 m suspended load samples at depths of
2.0 m and 2.5 m below the water surface indicated concentrations of 1200 ppm and
1800 ppm respectively. Estimate the concentration at a depth of 0.5 m below the water
surface.

A wide channel has a slope of 1 in 4500 and a depth of flow of 2.0 m. Suspended load
sampling at a height of 0.4 m above the bed revealed a concentration of 800 ppm by
weight, consisting of particles having a fall velocity of 0.05 m/s. Estimate the concen-
tration at levels of (a) 0.8 m and (b) 1.2 m above the bed.

A wide alluvial stream has a bed material of 0.25-mm median size and a longitudi-
nal slope of 2.0 x 10~*. Estimate the bed load and total load per unit width of this
stream when the depth of flow is 2.0 m and the water discharge is 1.2 m%/s per metre
width.

A channel which will carry a discharge of 60 m¥s is to be cut on a slope of 0.0005
through coarse, well-rounded gravel having a median size of 25 mm and relative den-
sity 2.65. Determine the suitable base width and depth of flow for a non-erodible chan-
nel of trapezoidal cross section with a side slope of 2H: 1V for the canal.

A trapezoidal channel of side slopes 2.5 H: 1V is cut in angular gravel of 2.0-mm
median size. The base width of the channel is 10.0 m. If this channel is to carry clear
water determine the maximum possible longitudinal slope to have a stable channel at a
full supply depth of 1.5 m. What is the full supply discharge of this channel at this maxi-
mum slope?

Using the primary Lacey equations, show that the velocity of flow in a regime channel
is given by

V =10.8R» S'?

Fill in the following table relating the elements of a Lacey regime channel:

SI. No. Q B Yo S, \ Manning’s Silt
m3/s m m m/s Coefficient ~ factor
n f
0} 30.0 - - - - - 0.80
(i) - - - 3.27 x 10+ - - 1.24
(iii) - 30.0 1.50 - - - -
(iv) 15.0 - - 2.0 x 10 - - -

Design channels by the Lacey theory for the following two cases:
(a) Discharge = 50 m®s, Median size of alluvium = 0.9 mm
(b) Discharge = 10m®/s, Median size of alluvium = 0.50 mm
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11.22 A regime channel is designed by Lacey theory to carry 20 m¥/s of full supply discharge
in an alluvium of median size 1.2 mm. What would be the Manning’s roughness coeffi-
cient n of this channel?

11.23 Show that the Lacey regime equations would yield the following relationship for the
Manning’s roughness coefficient n applicable to a Lacey regime channel:

0.028d3/%
n= o

where d = sediment size in mm.
11.24 Design a regime channel by Lacey’s equations to convey 15 m¥/s of water in an alluvium
of median size 1.2 mm. What bed load and total load can be expected in this channel?
11.25 The following data pertain to a bridge on an alluvial stream at the design state:
Upstream depth of flow = 4.0 m, Discharge intensity = 12.0 m®/s/m
Bed condition = Small dunes. Bed material: median size = 1.2 mm
Piers: Sharp nosed, 18.0 m long and 1.5 m wide.
Estimate the maximum depth of scour at the bridge piers when the angle of attack of
flow with respect to the pier front end is 5°.
11.26 For the design of a bridge the following data have been collected:
Design flood discharge = 600 m®/s; Bed material = 0.08 mm.
Estimate the design scour for use in the design of the bridge piers.
[Use Lacey-Inglis method].

“ OBJECTIVE QUESTIONS

11.1 For a gravel of median size 11 mm, the critical shear stress is about
(@) 3.2Pa (b) 10 Pa
(c) 0.62 Pa (d) 22 Pa

11.2 For water flow in coarse alluvium, the minimum size of the particle at which the critical
shear stress is independent of the viscosity of water is about
(@) 6 mm (b) 6cm
(c) 0.06 mm (d) 3mm

11.3 Shields diagram is a plot of non-dimensional shear stress 7. against
(@) Reynolds number of flow
(b) relative depth of grain size, d/R
(c) Shear Reynolds number, u,_d/v
(d) u, R/v, where R = hydraulic radius.

U,

11.4 In Shields diagram the minimum shear Reynolds number R, = [ beyond which

the critical shear stress is independent of R, is about
(@ 10 (b) 2000
(c) 2 (d) 400
11.5 The size d_of a sediment particle that will just remain at rest in the bed of a wide rect-
angular alluvial channel of depth D and slope S is given by d_ equal to

(@11DS, (b) 10.8 D** S 3
(©) 11 /RS, (d) 1 R*3Sy/?

11
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11.6 If in an alluvial channel the Manning’s n corresponding to plane bed without sediment
is 0.016, the same channel with dunes on the bed will have a Manning’s coefficient n,

such that
(@) n,<0.016 (b) n,=0.016
(c) n,>0.016 (d) n,=0.032

11.7 Indicate the incorrect statement in an alluvial channel

(a) if the bed form is dunes, then the water surface will be out of phase with the bed
forms

(b) if the bed form is antidunes, then the water surface, will be in phase with the bed
form

(c) ripples are not formed in sediment of size greater than 0.6 mm

(d) if the bed form is dunes, then the Froude number of the flow is greater than
unity.

11.8 In an ideal laboratory channel with alluvial bed the channel flow is to be observed at
various progressively higher shear values. Starting from the plane bed form the follow-
ing sequence of bed forms can be expected:

(@) Ripples and dunes—Transition—Antidunes
(b) Transition-Dunes—Antidunes

(c) Ripples and Dunes—Antidunes—Transition
(d) Antidunes—Ripples and dunes—Transition.

11.9 The hydraulic radius associated with the grain roughness R’ is related to total hydraulic

radius R as
n 3/2 n
@) R’[—S] R (b) Fe’l—S]R3’z
n n
n n 2/3
(©) R’:{—S}R (d R'=|=| R
n

where n_and n are Manning’s coefficient corresponding to grain roughness and total
channel roughness respectively.

11.10 Bed load is a term used to describe
(@) the combination of contact load and wash load
(b) the combination of contact load and saltation load
(c) the combination of contact load and suspended load near the bed
(d) the bed material load.

11.11 The term wash load refers to
(@) the saltating part of bed material load
(b) suspended load during a flood
(c) part of suspended load comprising of particles not available in the bed material
(d) bed load after the fines have been washed out.

11.12 An alluvial channel has a bed material of median size 0.9 mm. The Manning’s coeffi-
cient n of this bed when it is plane and without motion of particles is
(a) 0.0009 (b) 0.0123
(c) 0.0273 (d) 0.0147
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11.13 An unlined alluvial channel has trapezoidal section with side slopes of 2.5 horizontal:
1 vertical. If the angle of repose of the bed material is 35°, the ratio of critical shear
stress of the sediment particle on the side to that on the bed is
(a) 0.61 (b) 0.93
(c) 0.65 (d) 0.76

11.14 In a trapezoidal channel having a side slope = m horiz : 1 vertical, depth of flow = D,
longitudinal slope = S, the maximum shear stress on the sides is about

(@) 7DS, (b) 0.99 7DS,

(c) 0.76 1DS, (d) [%JWDSO

11.15 In aregime alluvial channel designed by Lacey’s theory,
(a) the bed load is zero
(b) the suspended load is zero
(c) the bed will have dune type of bed form
(d) the bed form will be of plane bed with sediment motion.
11.16 The Lacey’s equations for a regime channel consists of a set of x independent equations
relating to the flow, where x equal to

(@ 1 (b) 3
(c) 8 d) 2
11.17 An alluvium with a median size of 0.32 mm has Lacey’s silt factor f of value
(@) 1.76 (b) 1.00
(c) 0.57 (d) 0.80
11.18 A regime canal has a discharge of 100 m?s. It will have a perimeter of
(@ 48m (b) 10.0m
(c) 47.5m (d) 22.0m

11.19 A regime channel has a width of 22.2 m and depth of flow of 1.70 m. The discharge in
the channel is about
(@) 68 m¥/s (b) 3.0m?%s
(c) 30.0 m¥s (d) 7.0m3s
11.20 When an alluvial channel attains its regime it will have side slopes
(a) of value equal to the angle repose of the alluvium
(b) of value equal to the angle of repose of the alluvium under water
(c) of value 0.5 vertical : 1 horizontal
(d) of value 0.5 horizontal : 1 vertical
11.21 The Lacey regime formulae are in general applicable to alluvial channels with sediment
concentration in ppm by weight of less than about

(a) 10,000 (b) 1000
(c) 500 (d) 5000
11.22 The mean velocity in a Lacey regime channel is proportional to
(a) Rl/3 (b) R1l2
(C) 801/2 (d) 501/3

11.23 A regime channel of longitudinal slope S, will have Manning’s roughness coefficient n
given by n is equal to

1/6
0

10.8

@)

(b) [S,*]

(©

1/6 i
10.8 @ RY6



Hydraulics of Mobile Bed Channels 529

@ APPENDIX-A

Table A.1 Physical properties of Water

Tem- Specific Density Viscosity Kinematic Surface Vapour  Vapour Bulk modu-

pera- weight p M x 10% viscosity tension pressure pressure lus of
ture. ¥ kg/m? Ns/m? v x 10° o P, head elasticity
°C KN/m? m?/s N/m kN/m2 Ply Kx10°
abs m kN/m?
0 9805 999.8 1.781 1.785  0.0756  0.61 0.06 2.02
5 9.807 1000.0 1.518 1.519 0.0749 0.87 0.09 2.06
10 9.804 999.7 1.307 1.306  0.0742 1.23 0.12 2.10
15 9.798 999.1 1.139 1.139 0.0735 1.70 0.17 214
20 9.789 998.2 1.002 1.003  0.0728 2.34 0.25 2.18
25 9.777 9970 0.890 0.893 0.0720 3.17 0.33 2.22
30 9.764 995.7 0.798 0.800 0.0712 424 0.44 2.25
40 9.730 992.2 0.653 0.658 0.0696 7.38 0.76 2.28
50 9.689 988.0 0.547 0.553  0.0679  12.33 1.26 2.29
60  9.642 983.2 0.466 0.474  0.0662 19.92 2.03 2.28
70 9589 977.8 0.404 0.413  0.0644 31.16 3.20 2.25
80 9530 971.8 0.354 0.364 0.0626  47.34 4.96 2.20
90  9.466 965.3 0.315 0.326  0.0608 70.10 7.18 2.14

100 9.399 9584 0.282 0.294  0.0589 101.33  10.33 2.07
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SOME USEFULWEBSITES RELATED TO OPEN
CHANNEL HYDRAULICS

. USGS - Surface Water Field Techniques
http://www.usgs,gov

. US Department of Transportation. Federal Highway Administration
http://www.fhwa.dot.gov/engineering/hydraulics/index.cfm

. US Bureau of Reclamation, USA
http://www.usbr.gov/pmts/hydraulics_lab/

. Hydrologic Centre, US Army Corps of Engineers
http://www.hec.usace.army.mil/

. W M Keck Laboratory of Hydraulics and Water Resources Technical Reports
administration.
http://www.caltechkhr.library:caltech.edu/

. Dr. Victor Miguel Ponce — Online Open Channel Hydraulics
http ://www.victormiguelponce.com
http://onlinechannel.sdsu.edu/

. Fluid Flow Calculations web site of LMNO Engineering Research and

Software, Ltd.
http://www.Imnoeng.com



Hydraulics of Mobile Bed Channels

ANSWERSTO PROBLEMS
CHAPTER 1
12 (@) a=2.0, B=133
1 1
(b) a= . B=
(1-a)’ (1-a)
3 2
1
1a (04D 50ty
n’(n+3) n(n+2)
14 o =571, 8 =2374
16 (@) v= % (b) V=2.0m/s
r
() a=1.023, 8 =1.008
(k+1) (2K +1)
L@ b, =Z, 42 O =74 h
1.8 ply=0.466y
1.9 ply=1.266y
1.13 (a) 1.046 m (b) 1.0473 m (c) 1.0431m

1.14 (a) Atx = 1.0m, hep =1.173m  (b) Atx=2.5m, hep =1101m
1.15 Q = 3618 m¥/s
1.16 q = 0.3889 m3/s/m
1.17 g = 1.03625 m*/s/m
118 h =8.424m
119 (a) y,=3.818 m, (b) y,=0.232m
(c) y,=0.244m, (d) g=1.843 m¥s/m
120 Az=0.751m, AW _=0.251m
121 H, =16.753m, h,, = 16.280 m

H, =16.331m, h, = 15.782m

PB

1.22 E = 0109 m

531
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1.24 Afflux = 0.056 m
1.25 F, = 5000 N/m, F, = 10182 N/m width
1.26 (a) 51.86 kN/m (b) 61.97 kN/m

() 62.79 kN/m (d) 33.51 kN/m width
1.28 F = 6.91 kN/m, E, = 0.453m
1.29 F_ = 13.67 kN/m

CHAPTER 2

2.3 Az=-0.857Tm
2.4 () 0.736 m. 1.940 m, (b) 0.936 m, 1.943 m (c) 0.730 m, 1.888 m
2.7 E=1.5906 m, y,= 0.497 m

2.17 Q =0.031 m¥s. E=0.60m

2.18 (a) Subcritical (b) y,=1.148m
(c) E=1454m (d) y,=1.08m
219 (a) Q=3322m’s, E =0.75m
(b) B=25m, E,.=120m

() y,=0.972m, E,=1458m
(d) Q=1585m%s, y =040m
220 (i) y,=0.283m, E.=0.978m
(i) Q=0.164m%s, E _=0.375m
(i) Q =0.354m%s, y =0.480m

221 (a)y,=0.546m, E,=0.775m
(b) Q=1206m¥s, E _=0.422m
(c) B=3.0m, E,=0571m
(d) y,=0.80m, Q = 11.068 m¥/s

222 () Q=0558m¥s, E ,=051lm
(b) Q=0.741m3s, E =0.540m
2.23 (a) y, = 0.947 m, (b)y, =1.1644 m
224y =1.185m
225 D=150m
226 Q=1216 m¥s,E.=0.836 m
2.27 Q =0.737 m%s
2.29 Q =11.50 m¥s
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2.32 (i) 3.106, 3.500, 3.833 and 4.200 (ii) 3.96, 3.84 and 4.35

233 y,=1079m

2.34 (a)y,=1.366m,y, =2.086m(b)y,=1.651m,y, =2.00m

235 Az, =0.244m

2.36 B,=2.472m

2.37 (a)y,=0.871m,y, =090 m
(b)y,=0.657m,y, =0.911m

2.38 Q =3.362 m¥s,y, = 1.153 m, F, = 0.289
y,=0.261m, F,=2.683

2.39 Az=-0.366m

240y, =2171m

241 y,=0.744m, Az =0.133m

242 B,=3.299m

243 Q=4.825m’s, Az=-0.25m

244 Az=0.440m, Ay =0.011m

CHAPTER 3

3.1 (a) 7, = 1.6187 N/m*>  (b) rough (c) C = 60.9
(d)n=0.014 (e) Q,, = 2.314 m¥s, Q,,, = 2.458 m%s
3.2 Q=9.035m%s
3.3 f=0.0178,n = 0.0145,C = 66.5
3.6 n=0.0181
3.7 38.9%
3.8 n=0.0474
3.9 (a) 4.206 m¥/s, (b) 6.373 m¥s, (c) 3.773 m¥/s,
3.10 y,=0.944m
3.11 (a) 1.9446 x 10* (b) 3.46 x 10
3.12 (a) 12.176 m%/s (b)y,=1735m
3.13 Q =0.974 m¥s
3.14 B=3.656m
3.15 n=0.0188
3.16 D=2.00m
317 Q=2.73ms,y,=0.093m

533
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3.18 B=4.85m,y,=3.638m

3.19 F,=0.197

320 S,=7.196 x 10*

3.21 0.9615

3.22 7,=0.2674 N/m?

323 B=3.465m,y,=1.155m,S = 1.998 x 10
3.24 K=160.5m?s, S, = 3.209 m¥s, F = 0.282, 7, = 2.50 N/m?
325 Q=4.48m%s, S =52 x 103

3.26 (a) 1.179 m, (b) 1.540 m, (c) 1.957 m
328 B=23.00m,y,=3.105m

3.29 B=13.09m

3.30 Q=271.3m’s

3.31 Q =2352mds

3.32 y,=2.352m, 7, = 11.537 Pa

3.33 Q =18.61 m¥s

3.37 (a) y =0.849 B, (b)y=1635B

3.38 (i)d =0.3382 a, (ii))d =0.4378 a

339 y,=1.597m, B, =1.120 m

340 y,=4.045m, Q =32.12 m%s

342 §,=2.609 x 10

3.44 B,=3232m,y,=5338m

346 B,=357m,y, =2.89m,S, =27 x 10*
3.47 Lined canal is 14.7% cheaper.

348y =1934m,B =2735m

353 N — 351
354 m YL =05 1.0 20
10  N=37 40 44
15 N=39 43 47
355 (i) 2.902 m¥s (ii) 6.568 m¥/s
3.56 (i) 2.631 m¥s (ii) 6.010 m¥s
357 (i) 41.450 m¥s (ii) 47.99 m¥s

359y, =0250m,y,=230m
3.61 S_=0.004447, Slope is Mild in the range of depths.
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3.62 S, = 0.0006939

363 F,=05

3.64 (a) S, =1.6036 x 10* (b) S, =4.009 x 103 (c) y,=3.96 m

365 @S,=71x10%  (b)F=107

366 S_=4.166 x 10°°0=0.336 m*s, y, = 0.2m

3675, =228

3.68 m =15, n=0.015, By, = 10.0
B=180m.y,=1.821m,V =3.618 m/s

CHAPTER 4

44 [d—y - so] — —1.437x10"*

4.5 S, curve
4.6 (i) M, curve (ii) M, curve
4.7 M, curve
4.8 (i) M, curve, (ii) M, curve, (iii) M, curve
4.9 S, curve on steeper channel
4.10 Jump and S, curve
4.12 (a) Mild — Steep (b) Mild — Steeper Mild
(c) Steep—Mild (d) Mild — Milder Mild
4.13 (a) [H,-J-H,] or [J-S-H,]
(b) M~M,~3-M-S,~J-S -H, or
M,~M,~3-M,~M~S,—H_~J-H,
(©) [S-3-S-M,]or [S,-M,-J-M,]
(d) S~J-S-S-M-J
(e) I-5-M,-M-J-M, or
M~J-M,~M_~J-M,
(f) AI-AH-S,
4.14 (a) [J-S,] on the upstream and S, on the downstream
(b) M, on the upstream and (M, - J — M,/M, ) on the downstream
(c) Horizontal on the upstream and (H, -J-H,) on the downstream
415 (@ M,onA (b) M, onAand (M,-J)onB
4.16 M, curve onAand S, curve on B
4.17 [S,-H-J]or [S,-3-S]]
4.18 M~M-J-M,-S,
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CHAPTER 5

5.5 M, curve; L = 2.28 km
5.7 (@) 9.16 km (b)130m

5.8

5.9 y,—1.074m

5.10
511
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
521
5.22
5.23
5.24

5.25 Q =178 m¥/s

(@) 2.87m

o =1.195,

L =24,500 m
M, profile, L = 454 m
Q, =105 m¥s, Q. = 55 m¥/s

(b) 2.873 m

S,= 9.795x 10

S,curve, L=70m

105.604 m, 106.355 m and 107.313 m.

Sl curve, 69 m

225 m

M, curve, 222 m
2.69m, 6.16 km

Inlet is submerged

Xx=89m

(a) 122.109 m and 121.800 m

Q=3113m%s,L=222m

CHAPTER 6

6.1 q=8.4mds/m; E, =3.65m; F, =458

6.2 EJE, =T2.7%

(b) 11.3 m¥/s

v, A q F, Y, Vv, F, = E,
El %
() 1033 0170 1756 8.00 1.84 0954 0225 3.722 66.4
(o) 891  0.100 0891 900 1224 0.728 0.210 2900 69.9
(@] 800 0250 2000 510 1683 1188 0.292 1750 50.0
(d) 954 0151 1440 7.84 1600 0900 0227 3140 655
(e) 1350 0350 4725 729 3435 1375 0237 6.105 633
() 13.64 0068 0928 16,70 1574 0590 0.150 8.00 837
6.4 F,=0.296

6.6 y, =0.198m,y,=2277m
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6.8 F, =482
6.9 F, =13.65F,= 0235
6.10 y,=0.348m,y,=3.40m
6.11 y, =0.90m,y,=6.94m; E /E, = 55%
6.12 101.486 m
6.13 95.973m
6.14 Repelled jump; y, = 1.674 m, L, =26.4, H, curve of length = 81.0 m
6.17 y, = 26.21m, Lj =120m,E =40.77m
6.18 Q = 1541 m¥s; F, = 2.494; F, = 0.441
6.20 y,=1.875m,E =6.880 m
621 y,=0.242mE =4.695m
6.22 y,=0.796 m
6.23 Jump at 80 m from the gate, y, = 1.02m, y,= 3.99 m,
6.24 x=620m,.y, =0.96m,y,=3.23m
6.25 y, =1.892m,y =359 m
6.30 Az=0.880m
6.31 (i) No free jump is possible. Submerged jump occurs
(i) free repelled jump, y, = 0.467 m,y, = 3.737m
6.32 (a) q=15.31 m%¥s/m

(b) Free —repelled jump,y, =1.119m,y,=6.0m
© y,,=653m.

CHAPTER 7

7.1 0.074 mrise

7.2 P=1.088m

7.3 3.512m¥s

7.5 Q,=0.0626 m¥s

7.6 2.965 m¥s

7.7 6.38%

78 a=0.592m,H, =1144m
79 a=0231m,H,  =1386m

7.10 (i) 0.118 m¥s, (ii) 0.163 m%/s, (iii) 0.396 m

7.11 (i) 38 lit/s, (ii) 9.91 cm
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7.12 23.088 m, 23.102m with river bed as datum, 3.8440 m, —1.069m
7.13 34.243 m¥s/m

7.14 0.150 m

7.15 59.3 m¥s

7.16 11.939 m and 11.950 m above the bed

7.17 0.502 m above the crest

7.18 1240s

7.19 Broad crested weir; 0.076 m

7.21 16.39 m¥/s

7.22 0.785m

7.23 n=0.657

7.24 n=10.7834

7.25 n=0.733

7.26 0.673m

7.27 (i) 4.815 m¥/s, (ii) 0.695 m¥/s, (iii) 0.505 m3/s
7.29 1.624 m¥/s; 7580 N

7.30 0.747m

7.31 0.487m

CHAPTER 8

82y =3l4mandx, =43.7m

83y =33mandx =7475m

87 L=1.353m,s=0.79m

8.8 Q, = 0.206 m¥s

8.9 Q, = 0.206 m¥s
810 L=1.729m, Az=0.09morB,=1.80m
8.12 L=0.767m
8.13 Q,=3.17m%s

CHAPTER 9

9.1 3=29°

9.2y, =0393m

95 3,=42°y,=072m

9.6 3, =29°y,=084m,E =0268m

9.7 (a) Positive  (b) Negative (c) Positive (d) Negative
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9.8 F_ =136, 3, = 4.217 °, Width of fan — 4.606°
9.10 F,=2.86,F, = 2.384, 3, = 18.3°, 3, = 21.87°, 3, = 25.96°
9.12 F,=3.395,F, = 3.30, 3, = 18.5°, 3, = 21.5°, 3, = 25.5°, 3, = 22°.
9.13
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s. F, 'y, B F Y, B, F, v, o B, B
No. (m) ~ (m) (m)  (m) (m)
1 50 0.7 6.0 3317 1450 3.00 402 1038 52° 16.5° 19.2°
2 60 05 40 379 1155 1.802 4.649 0.803 5.0° 13.5° 17.0°
3 40 06 471 2622 1213 25 3.194 0.885 6.0° 19.5° 4.0°
4 52 048 504 2939 130 20 3.807 0.841 7.5° 8.0° 225°
CHAPTER 10
10.5 (a) V, = -2.335 m/s, V,=-6.17m/s
orV, = 5.335 m/s, Vv, =9.17m/s
(b)y,=1.265m, V, =2.535m/s
(c)y, = 2.640 m,
(d)y,=0.385m, V,=-1.459 m/s
(e) V, = 0.529 m/s, V, =2.015m/s
106 y,=2.60m
10.7 = 0.2286 m
10.8 y,=0.85m, vV, =4.95m/s
109 Ay =0.501m, VvV, =2.695m/s
10.10 y, = 1.915m, V,=30m/s, Time=11m6.6s
10.11 (i) h=0.6 m, V,, = 4.248 m (directed upstream)
(ii)h=0.216 m, V,=6.208m
10.12 (a) V, = 4.774 ms, V, =-0.160 m/s

(b) Ay =0.485m
10.14 Att=20s, x = 37.585—18.792fy

10.15 V, = 2.778 m/s, y,=144m
10.16 (a) g = 3.27 m¥s/m, () g, = 15.103 m¥s/m
CHAPTER 11

11.1 (a) 0.159 Pa, (b) 0.532 Pa, (c) 9.05 Pa
11.2 (a) in motion, (b) not in motion
113 y,=0.925m

11.4 (a) no motion, (b) motion of bed, (c) incipient conditions
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11.5 S, =0.0031, q = 2.69 m3/s perm
11.6 V = 0.456 m/s, q=0.114 m¥s/m
11.7 Channel A : Transition; Channel B : Dunes
11.8 y,=1.40m
11.9 n=0.0292; 7/ = 0.8086 Pa; 7,” = 1.526 Pa
11.10 B=12.0m
11.11 g, = 2.131 N/s perm
11.12 Q, = 2091 N/s
11.14 C, = 433.2 ppm
11.15 C, = 125 ppm; C, = 27 ppm
11.16 g, = 0.1494 N/s per m; g, = 0.1.752 N/s per m; g, = 1.603 N/s per metre
1117 B=7.10m; y,=320m
1118 5, =8.5 x 105 Q = 9.43 m¥/s

No. Q m?3/s m Yo S, VvV m/s n f
(i) 30.0 2193 1.83 1.17 x 10+ 0.718 0.020 0.80
(i) 5.12 8.74 0.90 3.27 x 10+ 0.618 0.243 1.24
(iii) 49.3 30.00 1.50 523 x 10+ 1.07 0.0263 2.06
(iv) 15.0 1540 1.34 2.00 x 10+ 0.695 0.0224 1.03
11.21 (a) S,=3.674 x 10*,B =29.95m, Yy, =1.627m

(b) S, = 2.943 x 10*,B = 13.788 m y,= 0551 m
11.22 n = 0.0265
11.24 Q, = 11.12 N/s; Q, = 18.86 N/s
11.25 d, = 4.13 m below average bed level.
11.26 D, = 10.00 below HFL
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Chapter 1

0 1 2 3 4 5 6 8 9
1.0 b c d d d c c c
1.10 b c a c b b d c c
1.20 d b b b d a a b
Chapter 2

0 1 2 3 4 5 6 8 9
2.0 c d c b c a d
2.10 d c a a b a d c
2.20 d c c c a a
Chapter 3

0 1 2 3 4 5 6 8 9
3.00 - c d c a c a d c
3.10 d b a d c b a b c
3.20 c b b a c c d a d
3.30 c a d c b b a
Chapter 4

3 4 5 6 8 9

4.0 b b c a c c
4.10 a b a a c b
4.20
Chapter 5

0 1 2 3 4 5 6 8 9
5.0 - d d c b c a
5.10 d b b d d c
Chapter 6

0 1 2 3 4 5 6 8 9
6.0 d d a d c b d
6.10 a c b c
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Chapter 7

0 1 2 3 4 9
7.0 - d b d b b
7.10 d d d c c
7.20 c a b c c
7.30 a
Chapter 8

0 1 2 3 4 9
8.0 b c d b a
8.10 a d a b
Chapter 9

0 1 2 3 4 9
9.0 a b a d b
9.10 d d d
Chapter 10

0 1 9
10.0 c d
10.10 d d
Chapter 11
0 1 9

11.00 - b a
11.10 b c c

11.20 d c




Index

A

Abel’s form of integral equation, 313
Abutment Scour, 519

Advanced Numerical Methods, 203
Adverse slope, 161, 169

Aeration, 301

Aeration of the nappe, 364

Afflux, 36, 333

Aggradation, 512

Air entrainment, 368

Alluvial channels, 139

Alluvium, 2, 484, 508

Alternate depths, 43, 73

Antidunes, 488

Antoine Chezy, 86

Apron floor, 288

Armoring, 517

B

Backwater, 157
Backwater curve, 165, 197, 218
Baffle blocks, 279, 291
Baffle wall, 291

Baffles, 291

Bakhmeteff, 42, 123

Base weirs, 315

Bazin’s formula, 91

Bed forms, 488

Bed irregularities, 488
Bed load, 495, 502

Bed shear stresses, 484
Bernoulli equation, 22
Blasius formula, 87

Bore, 438

Bottom rack, 80, 378, 389
Bottom Slots, 396
Boundary layer, 258, 259
Boussinesq equation, 338
Boussinesq, 19

Break in Grade, 172
Bresse’s function, 196
Bresse’s solution, 195, 196
Brink depth, 335
Broad-crested weirs, 295, 326

C
Calibration, 220
Canal-design practice, 139

Cavitation, 316
Celcrity, 469

Central Water Commissions (CWC), 139

Channel, 369

Channel with a Hump, 60
Channels of the first kind, 105
Channels of the second kind, 106
Channels with Large Slope, 12
Channels with Small Slope, 11
Characteristic, 412, 450
Characteristics grid method, 451
Chezy coefficient, 86

Chezy formula, 86, 90

Choked conditions, 69, 70, 184
Choppy Jump, 254

Chute blocks, 280

Circular Channel, 56, 112
Circular culvert, 271

Circular hydraulic jump, 291, 292
Circular jump, 291

Clear-water scour, 513

Clinging nappe, 296

Coefficient of contraction, 298, 347
Coefficient of discharge, 298, 318
Coherence method, 128
Colebrook-White equation, 88
Complimentary weir, 307, 312
Composite roughness, 101
Compound channels, 125
Compound sections, 211
Concave curvilinear flow, 15
Concave Wall, 409

Confined nappe, 336
Constriction Scour, 519

Contact load, 495

Continuity equation, 19, 30, 347
Contracted Weir, 302
Contraction scour, 513
Contractions, 433

Control point, 169

Control section, 169

Control volume, 26, 28, 29, 85
Convex corner, 433

Convex curvilinear flow, 13
Convex Wall, 410

Conveyance, 104, 123

Courant condition, 452

Critical depth, 43, 73



544  Index

Critical depth in circular channels, 49
Critical discharge, 51

Critical motion, 485

Critical shear stress, 485

Critical slope, 131, 132, 136, 161
Critical slope channel, 131
Critical tractive force, 485
Critical velocity ratio, 509
Critical-flow condition, 43

Cubic parabola, 43

Culvert, 295, 352

Curvilinear flow, 13

D

Dam break, 443

Dam Break problem, 475
Darcy-Weisbach equation, 87
Darcy—Weisbach friction factor, 87
Datum constant, 312, 313

De Marchi Coefficient CM, 382, 383
De Marchi Equation, 382, 383

De Marchi varied flow function, 383
Degradation, 512

Degradation scour, 513

Delivery of, 227

Design head, 317

Design-energy head, 318

Diagonal Interface Method, 127
Differential equation of GVF, 190, 201
Diffusing scheme, 453

Diffusion coefficient, 498

Diffusion scheme, 454

Direct integration, 189

Direct Numerical Methods, 452
Direct-Step method, 203

Divided channel, 219

Divided Channel method (DCM), 127
Drowned jump, 282

Dunes, 488

Dynamic equation of GVF, 159

E

Effective length, 318

Effective piezometric head, 10, 16, 17, 19
Empirical formulae, 100

Empirical Methods, 128

End contractions, 324

End depth, 295, 335

End sill, 280

Energy Dissipator, 248, 279

Energy equation, 22, 30

Energy loss in the jump, 260
Equation of continuity, 19
Equivalent roughness, 101, 102, 127
Equivalent sand-grain roughness, 87
Euler’s equation, 10

Exchange Discharge Model, 128
Expansion, 433

Explicit method, 449, 453
Exponential channel, 75

F

FHWA, 358

Finite crest width weir, 364
Finite-difference schemes, 449
Finite-element method, 449
First hydraulic exponent, 51, 73
Fluid, 1

Flood banks, 150

Flood plain, 125

Flood routing, 439

Flood wave, 38

Free Board, 141

Free flow, 296, 347

Free jumps, 282

Free overfall, 34, 37, 334
Free repelled jump, 283

Free surface, 1

Free-mixing zone, 259
Free-surface flow , 189
Friction slopes, 430

Froude line, 412

Froude number, 44, 47, 48, 49
Full rough flow, 87

G

Ganguillet and Kutter Formula, 91
General scour, 513

General Transition, 71
Generalised — flow relation, 134, 180
Generalized slope, 150

Gradually varied flow, 3, 4, 157
Graphical method, 189

Grit chamber, 315

GVF equation, 183

GVF profile , 194

H

HDS-5, 352

HEC-18, 20, 23, 515
HEC-RAS, 218
Helical secondary, 126



Horizontal bed, 161
Horseshoe vortex, 514
Horton’s formula, 102, 103
Hump height, 60
HY-8, 358
Hydraulic drop , 229
Hydraulic exponents, 199
Hydraulic jump, 36, 248
Hydraulic radius, 86
Hydraulically efficient, 119
Hydraulically efficient
trapezoidal, 120
Hydraulically smooth wall, 87
Hydrostatic, 157
Hydrostatic distribution, 14
Hydrostatic pressure, 10
Hydrostatic Pressure
Distribution, 11

|

Ideal contraction, 424
Implicit method, 449, 454
Inception of cavitation, 319
Incipient motion, 485
Incompressible fluid, 1
Indian Practice, 522
Initiation of motion, 485
Inlet control, 352

Interface, 125

Irrigation Engineering, 139
Island-type flow, 223

J
Jump profile, 257
Jumps on a Sloping Floor, 274, 275

K

Karman-Prandtl equation, 87
Keifer and Chu’s method, 200
Kennedy Equation, 509

Kerb outlets, 390

Kinetic Energy, 7

Kinetic energy correction factor, 8
Kutta—Merson Method , 221

L

Lacey’s Equations, 509
Lacey-Inglis method, 523
Laminar sublayer, 87, 485
Lateral flow, 368

Index

Lateral spillway, 369

Lateral weir, 380

Law of the Wall, 92
Lax-Wendroff schemes, 454
Leap-Frog, 454

Limit slope, 132, 136

Linear Proportional Weir, 306
Linear-momentum equation, 26
Live-bed scour, 513

Local phenomenon, 295
Local scour, 513

Location of the jump, 281
Long-crested weir, 327
Longitudinal Slope, 140
Lower nappe, 296

M

Manning’s formula, 89, 90, 377

Manning’s n, 90

Maximum discharge, 117

Mechanics, 1

Median drain, 356

Median size, 485

Membrane analogy, 95

Method (DCM) , 220

Method of characteristics, 430

MIKE 21, 218

Mild slope, 161

Mild slope channel, 131

Minimum specific energy, 73

Mobile bed channels, 484

Mobile boundary channels, 2

Modular limit, 300, 329, 350

Momentum, 8

Momentum correction factor, 8

Momentum equation, 26, 30

Momentum equation in
conservation form, 443

Momentum exchange, 125

Monoclinal wave, 480

Moody chart, 88

Moody diagram, 145, 485

Most Efficient Channels, 121

Most efficient section, 121

Mostkow Equations, 391

Moving Hydraulic Jump, 465

Moving-boat method, 33

Multi-island-type flow, 223, 225

Multi-roughness type
perimeter, 101

545
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N

Narrow channels, 93
Narrow-crested, 328

Natural channel, 6, 9, 218
Natural streams, 100
Negative disturbance, 410
Negative surge, 459, 468, 480
Negative Wave, 469
Non-prismatic channel, 151
Non-rectangular channel, 265
Non-uniform flow, 3

Normal Acceleration, 14
Normal depth, 81, 105, 110,
Notch, 295

Notch-orifice, 314

Numerical Method, 128, 189, 448

(0]

Oblique jump, 415

Oblique shock, 433

Oblique shock wave, 414

Ogee Crest, 317

Ogee spillway, 316
One-dimensional analysis, 7, 126
Open channel, 1, 88

Orifice, 314

Oscillating jump, 253, 293
Outlet control, 352

Overflow spillways, 295, 262, 316
Overland flow, 5

Overrun, 446

P

Parabolic, 305

Parshall Flume, 334
Pavlovski formula, 91, 103
Performance curve, 357
Permissible \elocities, 140
Piezometric head, 12

Plane bed, 488

Positive surge, 459, 480
Prandtl, 86

Prandtl’s mixing length theory, 497
Prandtl-Meyer fan, 413, 429
Prandtl-Meyer function, 408
Preissmann Scheme, 455
Pressure, 10

Pressure distribution, 10, 30
Preston tube, 5, 95

Primary vortex, 519
Prismatic channels, 1, 85, 207

Profile analysis, 183
Projecting barrel, 353
Proportional weir, 305
P-weirs, 306

Q
Quadrant plate weir, 309

Quadratic weir, 312, 361

R

Rapidly varied flows, 3, 4, 295
Rectangular Section, 47
Rectangular Weir, 295
Rectangular-grid method, 452
Regime channel, 504, 508
Rehbock formula, 298
Relative roughness, 87
Repelled jump, 282, 284
Reynolds number, 93, 298
Rigid bed channels, 484
Rigid channels, 2

Ripples, 488

Robert Manning, 89

Roll waves, 431

Roller, 259, 460

Rough turbulent-flow, 89
Roughness, 140

Rouse equation, 498
Runge—Kutta methods, 221

S

Saint Venant equations, 443
Saltation load, 495

Scales, 259

Scour, 512

SCS, 142

Second hydraulic exponent, 123
Secondary currents, 5

Section factor, 51

Sediment, 484

Sediment engineering, 2
Sediment load, 495

Sediment rating curve, 503
Sediment transport, 2, 101, 484
Sedimentation Engineering, 484
Self-similar, 259

Separation, 319

Sequent Depth Ratio, 250
Sequent depths, 248

Shallow waves, 402
Sharp-crested weirs, 295



Shear Reynolds number, 485

Shear stress, 86

Shear velocity, 87, 259, 485
Shear-stress distribution, 2

Shields curve, 485

Shock fronts, 404

Shock wave, 71, 404, 406

Side weir, 380

Side-channel spillway, 367

Sill, 279, 298

Simple-island-Type Flow, 224
Siphon tube irrigation systems, 378
Skijump spillway, 34
Slope-discharge-continuity theorem, 311
Sloping apron, 290

Sluice gate, 25, 295, 347

Spatially varied flow, 5, 20, 38, 367
Special Weirs, 315

Specific energy, 42, 73

Specific Force, 30

Spillway bucket, 16

Spillway crest, 32

St. Venant’s equations, 217
Stability, 431, 433, 468

Stability analysis, 431

Stable flows, 431

Stagnation point, 514

Standard lined canal sections, 114
Standard lined trapezoidal section, 114
Standard lined triangular section, 114
Standard-step Method, 203, 207, 211
Standing wave, 491

Standing-wave flume, 332

Steady flow, 2, 19, 26

Steady jump, 293

Steady uniform flow, 3

Steep slope, 161

Steep slope channel, 131

Stilling basin, 279, 280

Straub’s Equations, 273
Streamlined transition, 422
Strickler formula, 100

Strickler’s Equation, 493

Strong jump, 293

Subcritical flow, 44, 60
Submerged, 282

Submerged flow, 300, 329, 350
Submerged jump, 282, 283
Submerged sluice-gate, 34
Submergence, 300

Submergence factor, 282

Index

Submergence limit, 300
Submergence ratio, 300

Sudden drop, 172

Super elevation, 142

Super critical expansions, 427
Supercritical Flow, 62
Supercritical flow region, 44
Supercritical streams, 402
Supersonic flows, 408
Supersonic nozzles, 428
Suppressed weirs, 302

Surface of zero shear, 127, 128
Surface of zero shear stress, 127
Surface tension, 1, 298, 303
Surface velocity, 7

Surges, 438, 459

Suspended load, 495, 502

Sutro Weir, 304, 361

SVF with increasing discharge, 367

T

Tailwater depth, 280, 282

Tailwater level, 282

The section factor for uniform-flow
computations, 104

Thin plate weir, 295

Throated f ume, 332

Tidal bores, 464

Top width, 44

Torrents, 9

Total bed material load, 495, 500

Total energy, 42, 151

Total load, 495

Total scour, 513

Transients, 438

Transition, 60, 66, 73, 426

Transitional depth, 180

Transitional profile, 370, 371, 400

Trapezoidal Channel, 49

Trapezoidal Method , 222

Trench weir, 390

True broad-crested weir, 327

Turbulent flows, 87

Turbulent regime, 1

Two-stage channel, 125

U

Unconfined nappe, 336
Uncontracted, 302

Underdesigning of the spillway, 320
Undular jump, 253
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